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ABSTRACT
Theoretical models and experimental configurations are aimed at an under-
standing of fundamental mechanisms of the coupled interactions inherent in
mixing processes resulting from the application of an electric field to liquid
systems with components of differing conductivities. Practical operations and
mixing quality parameters are described, and the advantages and disadvantages
of electrically driven mixing schemes are discussed.

The electroquasistatic form of Maxwell's Equations, with associated bound-
ary conditions, force density, and stress tensor, are employed. Constitutive
laws for a binary electrolyte are developed with convection, diffusion, and
migration accountad for as ion transport mechanisms. Subject to the applica-
bility of simplifying assumptions, a conductivity is defined and its behavior
characterized by a diffusion equation. Electric transfer relations for a
charge-free half space are developed. The Navier-Stokes equations, with an
electrical force density included, describe a mechanical subsystem. Two
characteristic times, the electro-viscous time, U/EEZ, and the viscous-inertial
diffusion time, pZz/n, are identified and quantified for familiar fluids.
Mechanical transfer relations for a viscous half space are developed.

Surface-coupled stability analyses are performed in two models involving
abrupt conductivity changes at the interface between mechanically identical
fluids. The effects of a small density difference in a gravity field are re-
tained. Application of a current normal to the unperturbed interface results
in temporally growing modes at high wavenumbers, with growth rate characterized
by the electro-viscous time. With an electric field applied tangential to the
unperturbed interface, ao electrical coupling results and all wavenumbers are
temporally decaying.

Transfer relations are developed for a layer of exponentially varying con-
ductivity in a tangential electric field in terms of tangential wavenumber,
temporal frequency, a time constant ratio, and conductivity gradient. The
layer is then bounded on each side with half spaces, and the dispersion rela-
tion for bulk fluid motions developed. The system is found to be unstable,
with maximum growth rate occurring at a wavelength on the order of the layer
thickness. Various eigenmodes are given physical meaning by plotting eigenfunc-
tions on each side of and through the layer region. Maximum growth rate and
corresponding wavenumber are determined as functions of model parameters. Re-
placement of the half-space bounding regions with rigid equipotential walls again
results in temporally growing modes, which are identified and characterized.
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A numerical integration scheme, appropriate to the transfer rela-
tion technique and permitting description of electromechanical continua
with smoothly varying equilibrium material properties, is presented and
employed in detail to model a region with permittivity a function of
normal coordinate. Results are checked against an exact solution for an
exponential permittivity distribution. Finite difference equations in
correspondence with first order governing differential eguations are
derived for electromechanical configurations involving varying conduc-
tivity layers in equilibrium tangential and normal electric fields.

Experimental results are described, corresponding to application of
an electric field tangential to the interface between two miscible fluids
of identical mechanical properties, but disparate electrical conductivities.
Photographs are presented of slanted propagating fronts at the scale of
the interface. Correspondence with the earlier overstability theory, in
terms of slant angle, distance between fronts, and propagation velocity,
is demonstrated. Photographs corresponding to relatively high values of
applied electric field show violent mixing processes of relevance to
practical mixing operations. Quantitative descriptions of fluid component
distribution as a function of time confirm scaling of the mixing process
with the electro-viscous time, except at fields so high that inertia plays
a role.

Thesis Supervisor: James R. Melcher
Professor of Electrical
Engineering



. . . Until one is committed there is hesitancy, the chance

to draw back, always ineffectiveness. Concerning all acts of
initiative (and creation), there is one elementary truth, the
ignorance of which kills countless ideas and splendid plans:
that the moment one definitely commits oneself, then Providence
moves too. All sorts of things occur to help one that would
never otherwise have occurred. A whole stream of events issues
from the decision, raising in one's favour all manner of unfore-
seen incidents and meetings and material assistance, which no

man could have dreamt would come his way. I have learned a deep

respect for one of Goethe's couplets:

Whatever you can do, or dream you can, begin it.

Boldness has genius, power, and magic in it.

--- W. H. Murray
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CHAPTER I. INTRODUCTION

A. Ion Transport Mechanisms

Ion transport mechanisms in liquids consist of migration, diffu-

1

sion, and convection. Migration, described in terms of an ion
mobility, refers to the motion of charged particles relative to a back-
ground of neutral molecules in the face of an electric field. Collisions
with the neutral molecules result in a "viscous" retarding force. The
diffusion mechanism describes an ion flux independent of charge, propor-
tional to the local concentration gradient, and away from regions of high
concentration. Finally, convection refers to motions of the neutral
fluid molecules that result in a redistribution of ions contained therein.
Often, the convection mechanism is dominant in liquids. For example,
the relative effects of convection and molecular diffusion are described
by the Peclet number, UZ/KD, where U is the fluid velocity, % is a charac-
teristic length, and Kp is the diffusion coefficient.(z) Taking as typi-
cal M.K.S. values U = 10-2 m/sec and Kp = 10-.9 mz/sec, we see that the

diffusion mechanism can compete with convection only for length scales

on the order of 1Y or less.

Similarly, the ratio of diffusion to migration terms in the ion
transport equations is, through the Einstein relation RT/FRE, where at
room temperature, RT/F = 25.6 millivolts, E is an applied field and £
is a characteristic length. Thus, the dimensionless number comparing con-
vection to migration is URT/KDFE. Taking the same values for U and Kp as
above, we see that an electric field on the order of 105 V/m is needed
to make migration competitive with convection. In a typical electrolyte,

this value of electric field would be accompanied by a high current density
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and associated Ohmic heating.

It is, however, part of our purpose here to point out that the
convection mechanism is not independent of applied electric field; i.e.,
that fluid motions, ion concentrations and electric field distribution
are intimately related to one another through the two-way electrohydro-
dynamic coupling of electrical and mechanical subsystems. Thus, at an
electric field of 105 V/m, fluid motion and ion convection driven by
electric forces on a bulk charge distribution are of prime importance.

To be more specific, we picture the coupling mechanisms between
the above-cited ion transport processes as follows. First, any local
difference in number densities of positive and negative ions results
in a net free charge density and, subject to an applied electric field,
a net force density on the fluid bulk. Fluid motions in response to the
electric force are retarded by viscosity. As a simple example, consider

(3)

"Taylor's pump" as shown in Fig. 1.

Figure 1. Taylor's pump

A conducting fluid of viscosity 1 and depth d is contained by a
box of length £ , with insulating bottom and sides and conducting elec~-

trode ends. A slanted electrode extends over the free surface of the
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fluid, at angle 0 to the surface, attaining height a above the fluid
at the right end. The left end and slanted electrode are grounded,
while the right electrode is at potential V. We wish to describe the
motion of the fluid, far enough from the ends of the box so that the
flow may be considered one-dimensional. That is, we assume a velocity

profile of the form

v = Iz v, (%) . (L.1)

The velccity distribution, driven by a pressure which is a func-
tion of z alone, which yields zero net flow over any cross section, takes

the form:
2 X
v = A - 2] . (1.2)

The potential distribution within the conducting fluid is simply

o= V(z/0) : (1.3)

The potential distribution in the triangular region, in terms of the

polar coordinates shown in Fig. 1, is

¢=_%r§£u§:.g)_ . (1.4)

sin a

The tangential electric stress on the fluid surface, then, is:

T = g EE . (1.5)

ZX x=d 0°x 2z x=d al

Balancing tangential electric and viscous stresses at the fluid surface,

we evaluate the constant A in Eq. (2) to finally specify the fluid
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velocity distribution:

2
eOV d

S0 s xp2 o x
VZ(X) - znﬂa [2 (d) (d)] . (1'6)
If we define a characteristic electric field in the free space region

by )
)4
2 = X
E® = 2 (1.7)

and a length characterizing fluid motions by d/2, we see that the velo-

city distribution takes the form:

z T

__d/2[3 % _ %]
v (X) - = [2 (d) (d)_l (1'8)
where the characteristic time T is defined by:

Tz } (1.9)

In more general situations, involving for example bulk-coupled
rather than surface-coupled interactions, we shall find that we should
replace €, by € in the definition of T . This electric-viscous time will
assume fundamental importance throughout. It is a characteristic time
associated with the fluid convection resulting from an electric force
density. Cecmmonly, the electric pressure €E? is extremely small; hence,
of limited usefulness in causing bulk large-scale motions. In many fluids,
however, the retarding viscous force is also very small. Even at the
modest electric field E = 10 V/m in water (n = 10" ® nt-sec/m?, €= 8150),
we have T v 1 sec. At the high electric field E = 10° V/m mentioned

above as necessary for migration to compete with convection at characteristic
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velocity U = 10°? m/sec, we have T v 10 * sec. Thus, it is only on a
length scale of Ut = lu that the electrically driven convection is char-
acterized by the assumed velocity.

The return link in the coupling of ion transport mechanisms in-
volves the effect of any given ion concentration distribution on the
electric field structure. Thus, for example, if the fluid may be char-
acterized by a local conductivity, and fluid convection due to an elec-
tric force density results in a conductivity redistribution, then the
electric field and force density are, in return, restructured. This two-
way coupling between electrical and mechanical subsystems is characteris-—
tic of problems in electrohydrodynamics. It allows at least the possi-
bility of instability, i.e., growth in time of any small perturbation
from a given equilibrium situation.

As noted above, in reference to the Peclet number, there always
exists a small scale on which diffusion effects are dominant. The dif-
fusion mechanism results in a smoothing of ion concentration distribution,
hence a lessening of the electrically driven convection effects on the
small scale. Typically, in an electrohydrodynamic stability analysis,
equilibrium inhomogeneities are limited in sharpness by the diffusion
process. The large scale mixing which results from an electrically driven
instability may, in the nonlinear stage, yield a new equilibrium configu-
ration, again limited in property gradients by diffusion. Finally, dif-
fusion enters into the instability dynamics on a scale where the diffusion

time is comparable to a convection time.



-18-

B. Electrohydrodynamic Mixing

The phenomenon of mixing finds practical application in a host of
operations designed to reduce bulk nonuniformities in composition, prop-

(4)

erties, or temperature. We are concerned here, in particular, with
situations involving liquid components. A very common and important
application is the bringing together of different molecular species to

(5)

obtain a chemical reaction. Mass and heat transfer operations are
often enhanced by mixing processes. Bulk flow, eddy diffusion, and
molecular diffusion are all mechanisms whereby transfer processes are
accomplished.

Two characperistics, scale and intensity, are used to describe

(6)

the quality of a mixture of two fluids. Scale refers to the average
distance between centers of maximum difference in properties. In tur-
bulent mixing, scale is determined by eddy size and is reduced by break-
up of eddies. In laminar mixing, the movement and stretching of layers
and strands of components results in scale reduction. Intensity refers

to the magnitude of variation in properties within a mixture. Intensity
changes as a result of mixing only when scale is reduced to the resolution
capability of the diagnostic tool, or when molecular diffusion effects are
appreciable.

Equipment used in mixing operations is usually purely mechanical,
with a stirring device providing the required external force. Our interest
here is in the feasibility of use of an electrical force density to accom-
plish mixing. We emphasize here that an electrohydrodynamic mixing pro-

cess inherently involves more than the simple addition of a known force

density as a driving term in the fluid equations of motion. Electrical
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and mechanical subsystems are coupled "in both directions". That is,
the electric field and force density distributions are affected by the
fluid motions, and the fluid motions are driven by the electric force
density. A self-consistent solution to a set of coupled electrical and
mechanical equations must be determined before either the fluid velocity
field or electric field is known.

The attractiveness of an electrically driven mixing scheme is
readily apparent. Accumulation of free charge in an Ohmic conductor occurs
in regions of conductivity variation, in direct proportion to the magni-
tude of conductivity gradient. Thus, in a situation where mixing of
various fluid components is to be accomplished by the application of an
electric field, the charge density, and hence the force density, occur
locally at places within the mixture where they are most needed. As will
be emphasized by the bulk-coupled model of Chapter IV, fluid motions driven
by a rotational force density occur on a scale determined by the conduct-
ivity gradient scale. By contrast, a mechanically driven stirring device
is most efficient in scale reduction of large-scale fluid property varia-
tions and least effective with respect to fine-scale inhomogeneity. Thus,
an attractive mixing scale might involve the use of mechanical stirring
for large-scale mixing, with electrically driven mixing to accomplish

2 to 10 * meter wavelength range. Finally, at

scale reduction at the 10~
the finest scale, molecular diffusion times become short enough to compete
with the electric-viscous time, n/€E?, discussed in Section A.

Ohmic losses associated with fluid heating in proportion to the

square of local current density are responsible for an inherent ineffic-

iency in an electrically driven mixing scheme. Thus, operations employing
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the electrical force density as a drive for fluid motions are most
attractive when the components to be mixed are poor conductors (for
example, oils and other organic liquids). Even in instances of relatively
high Ohmic losses, an electrically driven operation may well provide the
most efficient means of dealing with small-scale inhomogeneities.

The possibility of use of an electric force density in mixing pro-
cesses has been recognized in previous literature. For example, in the
course of an investigation seeking to employ an electric field to sep-
arate xylene molecules on the basis of their dipole moments, Cropper and

(7)

Seelig noted turbulent mixing upon application of a dc field normal
to the interface between hydrocarbon and solvent phases. The hydrocarbon
phase consisted of 10 volume percent each of o- and p-xylene in iso-
octane and the solvent was dimethylformamide. (Dimethylformamide is

much more conducting than iso-octane.) They reported mixing varying
"from spectacular to poor, for reasons not entirely evident'.

Holland(s)

continued the investigations of Cropper and Seelig,
using a pulsating field in mixing cells of various shapes and sizes.
He used a Schlieren optical system to observe fluid motions. Measuring

"complete mixing', he empirically fit an exponen-

the time required for
tial curve to the "field force" time dependence. He also determined the
power requirements for the electrically driven mixing technique and found
them very near those for a laboratory type baffled blade mixer.

C. Overview

Our development in the chapters to follow is aimed an an understand-

ing at the fundamental level of the coupled interactions inherent in
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mixing processes resulting from the application of an electric field to
liquid systems with components of differing conductivities. In the pro-
cess, several interwoven themes are pursued.

After setting down models for electrical and mechanical subsystems
in Chapter II, we proceed to develop theoretical descriptions of simple
electrohydrodynamic configurations. In Chapter III, we make use of elec-
trical and mechanical half-space transfer relations to perform surface-
coupled stability analyses in two models invoiving abrupt conductivity
changes at the interface between mechanically identical fluids. The
application of a current density normal to the unperturbed interface
results in temporally growing modes at high wavenumbers, with growth
rate characterized by the electro-viscous time, n/eg? ,» first encountered
in the "Taylor's pump' example of Section I.A.

With an electric field applied tangential to the unperturbed inter-
face, no electrical coupling results and all wavenumbers are temporally
decaying. This fact presents the opportunity for emphasizing the rele-
vance of structure in configurations involving interfaces, where it is
natural to use models with abrupt discontinuities in material property
parameters. In Chapter IV, transfer relations are developed for a layer
of exponentially varying equilibrium conductivity in a tangential elec-
tric field. The layer is then bounded on each side with electrical and
mechanical half-spaces, and the dispersion relation for bulk fluid motions
developed. Thus, the region of varying conductivity between two fluids of
differing conductivities, experiencing an electric field tangential to

the interface region, is modeled. The system is found to be unstable,
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with maximum growth rate occurring at a wavelength on the order of the
layer thickness. The maximum growth rate and corresponding wavenumber
are determined as functions of model parameters. A viscous-dominated
regime, wherein growth occurs in direct proportion to €E?/n, again em-
phasizes the importance of the electro-viscous time. Simultaneously,
the concept of bulk-coupled instability at the scale of interface
structure is developed in detail.

The analysis of Chapter IV hinges on the discovery of a conduct-
ivity distribution leading to constant coefficients in the governing
differential equations. A more general description, with equilibrium
material properties arbitrary smoothly varying functions of position,
requires the use of a numerical integration technique. In Chapter V,

" such a technique, appropriate to our transfer relation description,
is presented. Thus, means are described for generalizatiom of the
concepts pursued in the context of the Chapter IV model.

Chapter VI presents experimental results corresponding to appli-
cation of an electric field tangential to the interface between two
miscible fluids of identical mechanical properties but disparate elec-
trical conductivities. Photographs of slanted, propagating fronts at
the scale of the interface, and correspondence in several respects with
the overstability theory of Chapter IV, confirm its physical realization.

Relatively high values of electric field lead to violent mixing
processes of relevance to practical mixing operations. The complex
nature of the phenomena observed here emphasizes both strengths and
weaknesses inherent in the models of earlier chapters. Our theoretical

descriptions take the form of stability analyses, and involve linearization
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of the governing equations, i.e., assumption of small perturbations from
an equilibrium. The processes experimentally observed at high field
values are grossly nonlinear in nature. However, the importance of the
electro-viscous time carries through even here, with a demonstration of
scaling in time with n/cE? of fluid component distributions. Thus, a
concept encountered in the context of linear theories is found to have
validity in highly nonlinear situations.

More generally, our simple models have as objectives not only an
understanding of experimental configurations of deliberately simple geo-
metry. In addition, they point to fundamental mechanisms inherent to
all processes involving the same basic ingredients. It is with an
understanding of such mechanisms that we can make meaningful observa-
tions and predictions with respect to complex electrohydrodynamic mixing

phenomena.
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CHAPTER IT - GENERAL MODELS

A. Electrical

1. Electroquasistatics

We shall be concerned, throughout, with phenomena in which electric
energy storage dominates magnetic energy storage, and characteristic
lengths are much shorcter than an electromagnetic wavelength. Thus, Maxwell's
equations, governing electric field E, current density 3} and free charge

density pf, for a linear isotropic material with permittivity e, take

their electro-quasi-static forms:(l)
Faraday's Law: VXE = 0 (2.1)
Gauss' Law: VeeE = s (2.2)
ap
Conservation of Charge: VeJ + szi =0 (2.3)

Equation (2.1) is integrated by the introduction of a scalar potential &:
E=- Vo ] (2.4)

In situations where € does not vary with spatial position, Eqs. (2.2) and

(2.4) may be combined to yield Poisson's equation:

The force density F on a distribution of free charge density pg exper-

iencing electric field E in an electroquasistatic system is:

F = peE . (2.6)

For an incowpressible linear dielectric of constant permittivity, F is

written in terms of the Maxwell stress tensor(z) (in index notation):(B)
aTi.

where
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€
T.. = EEiE. —'56

ij i 13PkEk

and Gij is the Kronecker delta:

(The Einstein summation convention is employed.)

Boundary conditions, corresponding to Eqs.

(2.

8)

(2.9)

(2.2) and (2.3)

at a surface between regions (a) and (b), defined by normal vector n as

shown in Fig. 1 are, respectively:

n x [E]

1]
O

neJeE] = O ¢
lej
n - [3f + atSf = 0

where

Jal =4, - Ay

and I
s

account for a surface current density. ]

\al

>

\®)

Figure 1

Boundary Geometry

.10)
.11)

.12)

.13)

£ is the free surface charge density. [Equation (2.12) does not
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2. Conduction in a Binary Electrolyte

In this section we describe the diffusion and migration of two
dilute species of ions, positive and negative, distributed throughout
the bulk of a fluid. Conservation of particles, for the positive and neg-

ative species respectively, is expressed by:

oy
- -
é-t-+Vn+v+VI‘+-0 (2.14)
on_ _ _
5 *Vonv+VT! =0 (2.15)

where n, and n_ are particle densities (number per unit volume), V is the
local fluid velocity, and Tl and T' are particle current densities (number
per unit area per unit time) as measured with respect to the macroscopic

fluid continuum. In accounting for diffusion and migration as ion trans-

port mechanisms in the fluid frame, we write the local particle current

densities:
T _ T
x+— -K+ Vn++n+b+E (2-16)
T"= =K Vn -nb6E (2.17)

where K,_ and K_ are diffusion coefficients and b, and b_ are particle mobil-

ities. We make use of the Einstein relation between diffusion coefficients

(4)

and particle mobilities:

z, b,

= Kt F/RT (2.18)

where z, and z_ are chargee per ion, F is the Faraday (96,500 coulombs),

R is the gas constant (8.3151 joules/®K) and T is the absolute temperature
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in degrees Kelvin. At room temperature,

RT
F

= 25.6 millivolts . (2.19)

For incompressible fluid motions,

Vv

=0 (2.20)

(See Section II.B.1.) Thus, combining (2.14) - (2.17) and (2.20):

Dn
Dt

Dn_
Dt

V'K+Vn+ - V'n+b+E (2.21)

]

VeK_ Vn_ + Ven_b_E (2.22)

where we have used the convective derivative operator:

D

Dt

= i% + VeV . (2.23)

Provided the ion concentrations are small, the diffusion coefficients

and mobilities may be considered constants in space and time. Multiply-

ing through Eqs. (2.21) and (2.22) by z,e and z_e respectively, where e

is the electronic charge (1.6 x 10

servation

DO+

Dt

Dp_

—

Dt

where

-1
9), we obtain statements of charge con-

for the two species:

= 2 _ «n B

= K+V oy b+V p+E (2.24)
=K V%p_+ b_Vep_E (2.25)
= z,en, (2.26)
= z en (2.27)

liquids, particularly in electrolytes, the difference between



-29-
positive and negative charge densities is small relative to the individ-

ual charge densities. In such a case,

e

Al A
oy P + Py , where Py << Pe (2.28)

and

ne

p_+ o'

_ o !, where p! << Pe . (2.29)

The net free charge density, then, is

|

- - = — '
P; =Py -0 pp - Pl - (2.30)

We now combine Eqs. (2.24), (2.25) and (2.30) by multiplying (24) and (25)

by b_ and b+, respectively, and adding

D - 2 2. _ 2. =
Dt (b_p, + b,p) K,b_Vep, + K b, V°p_ - b b Vp E (2.31)

or, approximately, ignoring p; and p' in Eqs. (28) and (29) respectively:

Dp

(b_+ b)m— = (Kb_ +KbIV?, =-bb Vo E . (2.32)

The second term may be neglected compared to the first on the right-hand
side of Eq. (32) if the electric field is sufficiently small that

K,b_+K_ b,

= +
lpeE| <<
£ b b_

[Vp,| (2.33)

or, using the Einstein relation, Eq. (2.18) and characterizing the \Y
operator by 1/% , where % is a characteristic length, we have:

Pe

Pf

|S8E] << (z, + 2.) % . (2.34)

When the inequality (34) is satisfied, Eq. (32) becomes:
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Dpe )

D-t—— = Keffv De (2.35)
where K,b_+K b,

Keff = -W— . (2.36)

The migration current density due to an applied field E is:

- - -
J = p+b+E + p_b E = pe(b+ + b )E (2.37)
Thus, because Pe is independent of E, it is natural to define a conductivi-

ty:
0= p,(b, +b) (2.38)

Combining Eqs. (35) and (38), then:

Do _ 2
Dt Keffv o] (2.39)

Equation (39) is a conductivity diffusion equation. It reflects no expli-
cit dependence on electric fields. Nonetheless, the electric field plays
an implicit role in tending to preserve charge neutrality, as expressed in
Egqs. (2.28) and (2.29).

If we characterize D/Dt by 1/tdiff and V2 by 1/82%, we have, from
Eq. (39):

tager = MlRegr - (2.40)
If we deal with phenomena involving other charaéteristic times which are

small compared to tdiff’.we are justified in approximating Eq. (39) by:

X -0 (2.41)

i.e., by modeling the fluid as having a constant conductivity associated

with each elementary volume of fixed identity.
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3. Charge Relaxation

In order to describe the behavior of the free charge density, Pg s
in the system considered in Sec. II.A.2, we subtract Eq. (2.25) from (2.24)
using Egqs. (2.28) - (30):

Dpg ) ) .
s = (R -K)V%0_ + V2(K,0! -K p!) -

(b, + b_)V*p E = V* (b0} +b_p")E . _ (2.42)

+04
Provided the diffusion coefficients are not very nearly equal, we may neg-
lect the second and fourth terms comparéd to the first and third terms on
the right-hand side of Eq. (42):

Dpf

= - 2 - en T
== (K, -K)V?_ - (b +b)V-pE . (2.43)

Ordinarily, the migration term dominates the diffusion term in (43), i.e.,

K, -K_

|RE| >> |/
b, +b_

(2.44)

or, using the Einstein relation, Eq. (2.18), and neglecting effects of the

small integers z, and z_:
12Ef > & . (2.45)

When the inequality (45) is satisfied, Eq. (43) becomes

Dpf

T (b, + b_)V'peE . (2.46)

[Note that, provided Eq. (45) is satisfied, (46) describes the evolution of
Df even in the case where the diffusion coefficients are identical in Eq.

(42).]. Expanding our Eq. (46) and using the conductivity definition, Eq.
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(2.38) and Gauss' Law, Eq. (2.2), we have

Dpf

Dt %pf = - E*Vo . (2.47)

Equation (2.47) is the charge relaxation equation. In a uniform con-
ductor, where the right-hand side is zero, it predicts exponential decay
in time of any initial free charge distribution for an observer moving with

a particle of fluid of fixed identity. Decay occurs with the charge relaxa-

tion time:

alm

trelax (2.48)

If we deal with phenomena involving other characteristic times which are

large compared with tr , so that the exponential decay occurs essentially

elax

instantaneously, we may approximate Eq. (47) by

_ pf = - E-VO' . (2.49)

Equation (49) is a statement of conservation of charge in the instantaneous
relaxation limit. It predicts a free charge distribution at any point
where there is a conductivity gradient, and proportional to the electric
field magnitude.

It is worthwhile here to restate the two approximations used in ar-
riving at the conductivity diffusion equation in Section II.A.2, Eq. (39),

and the charge relaxation equation in this section, (47). Ignoring z, and

+
z_ in inequality (34), and combining with inequality (45), we see that the

electric field is bounded from both above and below for the equations to

simultaneously hold:
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N
—El-—— (2.50)
Pel

4. Electric Transfer Relations for a Charge-free Half Space

For later reference, we now consider a region of uniform conductivity
and permittivity, consisting of an infinite half space, either x < 0 or

x > 0, as shown in Fig. 2. Because the region is uniformly conducting,

Of = 0 (2.51)
and Poisson's equation (2.5) becomes LaPlace's equation:
V¢ = 0 . (2.52)

We look for solutions having sinusoidal dependences on tangential

coordinate z, and time t:

» = Re a(x)e(St-sz) (2.53)
T = Ref(x)e Stikz) (2.54)
Equation (52) is time-independent and becomes
™ -k = 0 (2.55)
where we have used the operator notation
. d
D = Ix . (2.56)

Solutions of (55) which decay away to zero in upper and lower half spaces

are, respectively:

PU(x) = daeTkE 5 g (2.57)
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~

Ly = 0P & x<o . (2.58)

The electric field components at the surfaces, from Eq. (2.4), are:

g% = - pou =k (2.59)
X

x=0
EY = jkéY = jko% ‘ (2.60)
Z

x=0
P - p* - k3P (2.61)
X

x=0
A0 ~ N : .\.‘
P = 5t = jkoP (2.62)
z .

x=0

Combinings Egqs. (59) and (60), and (61) and (62), we have the half-space

electric transfer relations

~a _ _.a0

Ex = JEZ (2.63)
28 .o B . (2.64).
E, = JEZ

B. Mechanical N

1. Navier-Stokes Equations

We are concerned with two-dimensional motions of viscous;”incompresi
sible fluids subject to gravitational and electrical force densities. Thus
the Navier-Stokes equations, governing fluid velocity v and pressure p for
a material with viscosity n and density p in a uniform gravitational field,

- g{k, take the forms:

Vev = 0 (2.65)

v IR — = -
D[;% + V'Vé] +Vp =nv¥i + PgE - pei, . (2.66)
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Equation (65) is satisfied by the introduction of a stream function,

¥=Ty U(x,z,t) , (2.67)
such that
T=- UxV . (2.68)

Note that, as is defined in Eq. (67), the guage has been set to

VeV =90 . (2.69)

In order to eliminate p as an unknown, we take the curl of Eq. (66);
also, we substitute for ;'using Eqs. (67) and (68) and make use of the

vector identity

VXVUxV¥Y = Y(V-Y) -V2y (2.70)

1t}

and Eq. (69), to obtain

P —;; V2 + o[V x (veVv)] = nv2v%y + [V x (0,E)] (2.71)
y y

Equation (71) makes it clear that rotational electrical force densities
enter into the familiar fluid mechanical competition betweer inertial and
viscous force densities.
The viscous stress tensor, defining stress components in terms of
strain rates for an incompressible Newtonian fluid is:
Svi ov,
..o= = pb.. + nli— + L .
le P ij n 9% . %, (2.72)
j i
Boundary conditions at a surface between regions (a) and (b) defined by

normal vector n as in Fig. 1, are:
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n*fvl =0 (2.73)
nxvl =0 (2.74)
ﬁsijﬂ n; + ]]Tij[]nj =0 (2.75)

where we have accounted only for mechanical and electrical surface force

densities in Eq. (75). Surface tension, for example, is not accounted for.

2. Characteristic Times

To gain some "feel" for the implications of Eq. (66), we compare terms
to draw out two characteristic times. First, consider the coupling between
the first inertial term on the left and the first viscous term on the right.

1f we characterize the V operator by 1/% and the 3/3t operator by 1/T, we

obtain

o —-2—2“’T =5 @‘i’w (2.76)
or 2

T = _Q]f__ ) (2.77)

T is the familiar viscous diffusion time. If we think of suddenly excit-
ing a viscous material at jts surface at some instant T is the time required
for rotational modes to diffuse a depth & into the material. Figure 3 shows
T versus & on a log-log plot for some familiar fluids.

On the other hand, consider the coupling between the viscous and elec-
trical terms on the right-hand side of Eq. (66). Again, characterizing the

V operator by 1/%, using Gauss' law, Eq. (2), to set
Ps =T (2.78)

and making
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Figure 3

T versus £
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Figure 4

T Versus E
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- _._ (2.79;
we find:
. cE7
A = T (2.80)
or (2.81)
__ n
¢ cE

¢ is the characteristic electric-viscous time. Figure 4 shows T versus

E on a log-log plot for the same fluids as Fig 3.

3. Mechanical Transfer Relations for a Viscous Half Space

In the spirit of Section II.A.4, consider an infinite half space of
viscous fluid, either x > 0 or x < 0, as shown in Fig. 5. As in Section
I1.A.4, the regions are uniformly conducting, hence, are charge free. Thus,
there is no electrical force density; i.e.,

[vxpm] = 0 . (2.82)

in Eq. (71).

In equilibrium, the fluid is stationary; i.e.,
v =0 (2.83)

and (66) is satisfied by the pressure distribution:

Pt = - pgx (2.84)

where the superscript E denotes equilibrium quantities.
We consider perturbations from equilibrium associated with an inter-

face displacement gz,t). Assuming solutions having sinusoidal dependences
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on 2z and t:

[£,7.0,0] = RelE ,¥(x),0(x),p(x)] e(SE7IK2)

(2.

85)

Because the perturbation amplitudes are assumed small, we linearize the

governing equations, dropping the convective term

v = 0 (2.86)
in Egqs. (66) and (71).

Equation (68) becomes:

v, = - ik (2.87)

v,=-D . (2.88)
The z-component of Eq. (66) becomes:

~ L _Nrn2 - w2 _ SP1n

P Tk [p? - & n]vz (2.89)
and Eq. (71) becomes:

[p?- ¥*][0*- & - £ = o . (2.90)
Assuming solutions to Eq. (90) of the form:

v=ce* (2.91)

we have

Yy =%k (2.92)

and

as possible solutions. Discarding solutions which grow as x + * »,

have two solutions each in the upper and lower half-spaces:

Y i'qu'/k2+-Sn—p (Re ¢ > 0) (2.

93)
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Y, =k 3 Y, =9
(2.94)
L 2
Yl =k ’ YZ =q

Now, writing out the most general stream function solution in each
region:
2
b =L efn® (2.95)
n=1
(Superscripts u or £ on all variables are implied.) Using Eq. (95) in

Egs. (87) and (88):

Y X Y.X A
Gx - jke ! - jke 2 Wl
A Y,x Y, . (2.96)
v, - Y e -Y,e L WZ

The velocity components at the equilibrium position of the interface

x = 0, are then:

~ 0 . S u
v - jk - jk [Wl
R . . l.A . (2.97)
vZ - YI - Yz li,2
VX8 - jk - jk “PfQ'
(2.98)
~B L L )
vZ YI Y2 1yz

From Eq. (72), we determine the perturbation stress tensor components:

S

xx Zanx -p (2.99)

A~
S
XZ

nlov, - jkv,] . ‘ (2.100)

Using Eq. (96) in Eqs. (89), (99) and (100) we get:
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~ 2 Y X n Y X ~
. N _ a2 _ SP 1 (2 _ 5o 2
S i &r, - 3k Y. e iR, k)'q Y,e ¥
~ ] 2 2y 1% 2 2, 2% "
Sy - n(Y1 + k%)e - n(Y2 + k%)e ¥,
(2.101)

Finally, the stress components at the equilibrium position of the inter-

face are:
s ¢ LT T L - S0Py, u N 2 _ - SBy  u yu
Se | 3w, T - 3= S T - 3 - 2y, v
~ 2 2 ~
s - n(v(T +1h) - ndy)1 + 1) ¥,
(2.102)
SBr: Dyro %72 a2 _ 8Py N o L2 spi ~3
S A - - 4 - -
« |3 w1 -3 - oy Sy, 1 - 3-T0y, ¥
A 2 2 > L
sPIL -}t e - n(ly t T+ ¥
2 2
(2.103)

To arrive at a set of half-space mechanical transfer relations, relating

stress components to velocity components at the equilibrium interface posi-

tion for upper and lower half spaces, we invert Eqs. (97) and (98), combine

with Eqs. (102) and (103) and use Eq. (94):

A _9 o ~Q

Sy % (k+a) jlk=-q) Ve
=7

a0 . )

S, - j(k=-q) -(k+q) v,

(2.104)
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5 e+ q) 3 (k=) o

- (2.105)
. _ ~ B
s f -j(k-q) (k + q) v,

‘

In a problem involving coupling between a fluid half-space and another
region, it is the stresses and velocities at the perturbation position of
the interface, x=¢, which appear in the boundary conditions. We denote

. . . ~ (a
these quantities by enclosing the superscript a or B8 in parentheses: vx( ),

5 ®
X

» etc. We now consider how these perturbation position quantities are
related to the stresses and velocities at the equilibrium position of the

interface, x=0, appearing in Eqs. (104) and (105).

Consider, for example, Sx(a). Because & is a perturbation quantity,

”~

we may expand Sx in a Taylor Series about x =0, retaining only terms up to

first order in £ :

~ 9S
XX

s. (@ = 3 sxxj =
x=0

2 S o XX
x X & =

E . (2.106)

x=£

i
7
+

x=0 x=0

Now, the second term on the right-hand side of Eq. (106) makes a first order
contribution only if anx/axIx=0 has an equilibrium value. The distinction

E - .
between asxx/ax|x=0 and SSXX/BX’X need not be made, since it can make

=0
a difference only to second order. Thus, we have, finally:
s @ _ go & £ (2.107)
X X ox ' . :
x=0

Reconsidering the equilibrium, we have from Eq. (83):

voOo= v = 0 (2.108)
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and from Eqs. (72), (84) and (108) we have:

sz = 0 (2.109)
E_
Sxx = pgx ] (2.110)

Equations (108) and (109), together with (107), generalized to any stress
or velocity component, imply that for Gx’ Gz and §z, correct to first order,
there is no difference between quantities evaluated at x=0 and at x=£.
However, in the case of §x, combining Eqs. (107) and (110)

A~

A (a) _ o ~
s, % = 8 + gt . (2.111)

Finally, referring back to the electric transfer relations, Eqs. (63) and
(64), we recognize that, for a half space with the perturbed boundary of
x = &, no distinction need be made between electric field components
evalutated at x=0 and at x=§, provided the equilibrium configurations

involve no gradients in electric fields within the half spaces.
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CHAPTER III. CONDUCTIVITY DISCONTINUITY MODELS

A. Introduction

Situations involving a junction between two miscible fluids of dif-
fering conductivities will, in general, involve the diffusion mechanism
described in Sections I.A and II.A.2. It is not meaningful to consider
questions of electrohydrodynamic stability by assuming perturbations from
an equilibrium state if, due to diffusion, the "equilibrium" is evolving
at a rate comparable to the perturbation dynamics. If, however, diffusion
times are long compared to times describing instability dynamics (e.g., T
and T as defined in Section II.B.2), we may characterize the junction by
an equilibrium conductivity distribution, itself evolving slowly with
time, and subject to electrohydrodynamic instability as modeled in a sit-
uation of static equilibrium.

Moreover, we might expect that, provided the region over which conduc-
tivity variation occurs at the junction between fluids is thin compared
with lengths describing instability dynamics, a model involving a discrete
jump in conductivity would suffice to describe the interface. We consider
such a model in this chapter, subject to an equilibrium electric field,

first normal and second tangential to the interface.

B. Equilibrium Normal Electric Field

A plane interface bounds two incompressible fluid half-spaces, stressed
by an initially perpendicular current density, E-I;, as shown in Figure 1.
The fluids are ohmic conductors, of conductivities 0, and 0> mass den-
sities P, and Py above and below the interface, respectively, and identical
permittivity € and viscosity n. If, physically, the lower half-space rep-

resents the same fluid as the upper half space, but slightly doped to
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increase its conductivity, the density difference Py - °y is small com-
pared to either p, or Py - For this reason, we shall account for the density
difference only in the gravitational terms of the governing equations, ig-
noring it to the extent of using an average density in expressing the
viscous decay length. Our aim is to find the dispersion relation for
small-amplitude sinusoidal interface mections:

£ = Re £ e(St7Ik2) . (3.1)

+x

Jt +g oa’ pa9 €, TN

—%Qvﬂfv——+
4
g

J"‘ +g cb, pb’ C, n

Figure 1. Normal Field Geometry

We have previously characterized each of the fluid half-spaces electrically
by the transfer relations of Section II.A.4, and mechanically by the trans-
fer relations of Section II.B.3. We now determine the boundary conditions

necessary to tie the fluids together, mechanically and electrically, at the

interface. Mechanical stress balance, from Eq. (2.75), requires:

HSijﬂ nj + ﬂTijn nj = 0 (3.2)

where sij are viscous stress tensor components, as defined by Eq. (2.72),

Tij are Maxwell stress tensor components as defined by Eq. (2.8), n. are

J
interface unit normal vector components, and



-50-
lal=a, - &, . (3.3)

The interface unit normal vector components, correct to first order in R

are

n =1 (3.4)

n, = - %% = Re {? Gx(a) e(St_jkz) (3.5)

where, in writing Eq. (3.5), we have recognized that, to first order in ¢

GX(“) — . (3.6)

In equilibrium, (3.2) is satisfied by

E eJ?2 | 1 1
Ip"l= =5 [O z - Oby] : (3.7)
a

Subject to interface perturbation, we obtain for the i=x and i=2z com-

ponents of Eq. (3.2), respectively:

5 @3 O, [0_1& A gxw)] -0 (3.8)

3 @3 B 1k @ st[—lz- i __17} e3 [_L HONEE: (B)] o

(3.9)
The boundary conditions on perturbation fluid velocity, from Eqs. (2.73)
and (2.74), are:

RGN ()
X

p 3 (3.10)

5 (@) 5 (B)

2 z . (3.11)
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The boundary condition on tangential electric field at the interface

is, from Eq. (2.10):
ax[E] =0 . (3.12)

Writing out Eq. (12) for the assumed equilibrium and perturbation yields:

ﬁz(a)_ 5 B)_ Jk 5 (o) [_1_ - _1_] = 0 . (3.13)

4 ] X O'a O'b

The boundary condition on normal electric field at the interface, recall-

ing the assumption of instantaneous charge relaxation, is from Eq. (2.12):
n.JoE] = o . (3.14)

Subject to perturbations, we obtain for Eq. (3.14)

z (@) 2 (B _
OE_ "~ -OFE, = 0 . (3.15)

Equations (2.63), (2.64), (2.104) and (2.105) are now modified so as to
be in terms of the perturbation interface variables which appear in the
boundary conditions just derived, according to the discussion at the end
of Section II.B.3. This amounts to nothing more than substituting pertur-
bation interface variables [ superscripted (o) and (8)] for equilibrium inter-

B

face variables (superscripted o and RB), except in the case of Sél and Sx .

For these variables, we make use of Egqs. (2.111) and (6) to write:

sx(“) = 8 % 42 vx(“) (3.16)
2@ _a 8 P~
L S A A (3.17)

Thus, writing out the transfer relations in terms of perturbation inter-

face variables, we have
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g @ - _ 45 @ (3.18)
X YA
O 5 ® 619
2 (o)) mq Pab o m o~ (@)
S, R ktq) + e 3 (k=q) | Ve
= n (3.20)
s, 1 L -ix-0 S+ L5@
. -q b8 7 o (B
Sx(B) " c(kta) + === on j(k-q) v
A = n
s, ® L - k- w+qd L5 ® (3.21)

We emphasize here the assumption of a slight density difference, ﬂpﬂ.
While the distinction between P, and Py has been retained in the gravita-
tional terms of Eqs. (20) and (21), it has been ignored in not distinguish-

ing q, in Eq. (20) from qp in (21); q is to be determined using an average

) S(pa+ob)
q =,k g , (Re q >0) . (3.22)

Equations (8), (9), (10), (11), (13), (15), (18), (19), (20) and (21)

density

form a system of 12 homogeneous equations in twelve unknowns. We begin
solving the system by algebraically eliminating six unknowns. Combining

(13), (15), (18) and (19), we have

~ (B) kI %57 % ~ ()

B - v (3.23)
X sOB b-+0 X

~ (@) I % "% & (o)

E = = v (3.24)
X sca Ob +Ca X



~ @ _ _ikd b % 7 (w
E = v (3.25
z sOy, ob+0 X
~ a. "0
(@) _ jkJ b "az (o)
Ez sO, Gb-+ca Vx (3.26)

Now, using Egs. (10), (11), (23), (24), (25) and (26) in Eqs. (8), (9),
(20) and (21), we obtain a system of six homogeneous equations in six

unknowns, as expressed in matrix form below:

_ S -
-QQ,LEH— 0 -1 1 0 0 .0 o
- '81; E 0 0 0 -1 1 QZ(O‘) 0
na(ktq) p.g ~
3 w— t : % j(k=g)n 0 -1 0 0 SX(B) 0
= (3.27)
j(k-q)n (k+q)n 0 0 0 1 §x(°‘) 0
nq(k+q) p.g ~
i — i j=gn -1 0 0 0 s, o
- j(k-q)n (k+q)n 0 0 -1 0 gz(a) 0
where
g -0
— a b
¢ = eJ—575 (3.28)
ab
1 1
El =3 |—-— .2
Iel [Ua Ub] (3.29)
v = 2d (3.30)
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Either by direct substitution of Egqs. (20) and (21) into the first

two rows of Eq. (27), or by expanding out the determinant of the 6 X6

matrix set equal to zero for nontrivial solutions, we arrive at the disper-

sion relation:

n SﬁEEﬂl - &ﬂgﬂ_ +.EQ£§H_ = 0 . - (3.31)
Melcher and Smith(l) have considered the problem of two fluid half-spaces

stressed by an initially perpendicular current density in greater general-
ity than in the above analysis. We may check Eq. (31) by considering the
appropriate limit of the analysis in Reference (1). For the case of

instantaneous charge relaxation, Eq. (17) of Reference (1) becomes:

ﬂOezﬂ = 0

and, correspondingly, the last row of the determinant in Eq. (18) of
Reference (1) becomes

0 0 o0 0 o, 9

Expanding out the determinant, then, and setting Pty = 2p in all terms
except the gravitational which involves gﬂpﬂ s Ea = € ua = ub =n, and

T = 0, we obtain a simplified version of Eq. (19) of Reference (1):

k R
__42’121...11 +— = 0 . (3.32)

s°2p s q

Using Eq. (22), we see that Eqs. (31) and (32) are identical.
We now proceed to analyze the dispersion relation. Rewriting (31) we

have:
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el ek2J2 (0,- ob)2
vsq(k +q) - gk 7 " (°a°b)Y T = 0 (3.33)

where v 2 n/p . (3.34)
Recalling the definition of q, Eq. (22) as
s =Vv(q+k)(q-k) s (3.35)

and combining Eqs. (33) and (35), we arrive at a fourth-order equation for

q as a function of the wavenumber k:

Iol  ex?3%(0_-0,)?
2 + 2_ 1.2y _ - a bl _
véq(q *k)(g°~ k°) - gk % (anb)z % 0 . (3.36)

Given a value of k, we determine solutiomns to Eq. (36) which satisfy the
condition Re q > 0. Corresponding values for growth rate s are then given
by Eq. (35).

Normalizing (35) and (36) and defining various pertinent time con-

stants, we have:

T

s = ‘?E-(g? - 1) (3.37)
v

q(g+1)(q® -1) +e = 0 (3.38)

where

9 = q/k (3.39)

5 = Ty (3.40)
=% ¥ -l

NAAYAAYA:
o (2) (2 W o
v g v
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T, = 2N
EC T /1 1V (3.42)
(35
| (3.43)
v - k% :
73
T = _Ep__,_”> (3.44)
8 gloll

Note that, as defined, TE and Tg are independent of k. Tv is the only
quantity in e which varies as k is varied. Because g is used to define s,
this normalization is independent of k. Thus, the dependence of s on T,
with g and Tg held fixed, is a direct indication of the functional depend-
ence of s on 1/k2.

Some understanding of the character of the solutions to Egqs. (37) and

(38) may be gained without carrying out a complete solution. First, the

critical wavenumber for which growth first occurs, kc’ is defined by

s =0 atk=k . (3.45)

From Egs. (37) and (40), then:

32 =1 at k = kc (3.46)
From Eq. (38):

e = 0 at k =k, (3.47)
and from Eq. (41),

3
Tv ‘ Ty
‘[—— = T at k = kc . (3.48)
g E

Entering the definitions of Eqs. (42), (43) and (44) in (48) and solving

for kc, we obtain
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g lel
kc 2( 1 1)2 ( 3.49)
eI = - =
o o
a b

For combinations of parameters such that[%vltﬁ]§'<< 1, Eq. (37) yields

a=1+3"2s . (3.50)

Substituting (50) into (38) and retaining only first order terms in[%v/TE]E;

T

2 s+e=0 . (3.51)

o |

Combining Eqs. (41) and (51):

1 ¥y,
=l_iﬁ/ZT_Ez (3.52)
2 2\1T Tg :

E

or, using Eq. (40):
1

T W1\
s = 5%——[1 -(—‘1) (—E) } (3.53)
E TE T

g
If T, << Tgo Eq. (53) becomes simply:

1
s =~ (3.54)
ZTE

At the other extreme, for combinations of parameters such that

[l'V/TE]_S_ >> 1,

T

q-= s . (3.55)

3
m <

Substituting Eq. (55) into (38), and ignoring unity terms:

T 2
<?! -) + e = o . (3056)
E .

Combining Eqs. (41) and (56) we get:

’



/.
s - i[zz_ <__> ]
- Tv TE Tg
or, using Eqs. (40), (42), (43) and (44):

1 1/2

| [ewz(c_la R ]

s = 20 - 20

2
If T, << Tg(Tg/TE) » Eq. (57) becomes:

(3.57)

(3.58)

(3.59)

(3.60)

Appendix I presents a general solution for the quartic, Eq. (38),

with parameter e defined in terms of the various time constants by Eq. (41).

We summarize the results here. Solutions are computed by the following

program:

Define: _ 5117 + 107

+ 512

= .61968

0
14

- 51/17 - 107
- = 512

c = ,20172

IfeS-c_,orif0<es c,» compute:

>
"

1 99 1%
3 [(1 +7g ©) + 9{§(c+ -e)(c_ +e)} 2:|

-~
[

y1 Y
= % [(1 + ?._2 e) - 9{-;-(c+ -e)(c_ + e)} /2]

(3.61)

(3.62)
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_ 1
Z1 = 78 + A+ B
_ 11 A+B . A-B
Z, =38 7 ti1— 3 (3.62)
continued
_11 _A+B _ . A-B
2, T8 2 i3 :
If -c_ < e < 0, or if c, < e, compute
1+ 29 e
16
¢ = arc cos ey
(1+397%
= il .1 A g0}
Z1 = %8 + 3 1 + 3e cos(3)
(3.63)
= il .1 Ai33 ¢ . 2T
Z2 = 8 + 3 1 + 3e cos(3 + 3)
- 1l .1 $ _ 2T
23 = 78 + 3 1 + 3e cos (3 3 )
In either case, choose vZ, /2;, and /f; such that
= 3
./z”l./'z:/'z”3 = . (3.64)
Then, the four roots of Eq. (38) are given by:
1
2 /Z: + /f; + /Z: A
4 = VI -V -V -+
=2 1 2 3 4
1 (3.65)
4, = - V2, ¥ V%, - VT - g
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Note that, in general, only some of the solutions given by Eq. (65)
will satisfy the condition Re q > 0. For those roots having positive real
parts, we use Eq. (37) to determine corresponding values of s.

The behavior of s as a function of e is displayed in Figs. 2, 3 and
4, In each case, the ordinate plots‘}v/TE}g because only one curve is
necessary to define the function[%v/Té}g_versus e for all combinations of
time constants. If we were to plot s versus e, we would obtain a family of
curves, with TV/TE a parameter. It must be emphasized, however, that the
quantity[}vlTﬁ]E_ varies with k not only due to the dependence of s on k,
but also due to the dependence of T, on k.

Figure 2 shows[}v/Tﬁ]g_versus e on linear scales in the region near
the origin (-2 < e < 2). Solid lines indicate Re[%v/TEJ§_and dotted lines
Im [}v/Tﬁ1§' For e < 0, there is one pure real, growing (s > 0) solution.
Only one of the four solutions given in Eq. (65) has Re g > 0. For 0 < e< c4
there are two pure, real, decaying (s < 0) solutions, with values 0 and -1
at e =.0, and merging with[}v/TElg_: - 0.59 at e =c,. In this region, two
solutions in Eq. (65) have Re q > 0. Finally, for c < e, there are two
complex conjugate solutions with negative real part (decaying, oscillatory).
Again, in this region, two solutions have Re g > 0.

Figures 3 and 4 display[}vlTé}E versus e over a wide range of values.
Figure 3 shows -e varying from 1 to 10° on a log scale, and Fig. 4 has +e

ranging from 1 to 10° . 1In Fig. 4, a dashed line indicates negative real

values of[}vlTé]g_and a dotted line, again, imaginary values.

For large values of * e, the curves in Figs. 3 and 4 are as predicted

by the approximation under [TV/TE]E > 1 given by Eq. (57):
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Figure 2
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[t, /1] s versus e
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[Efv/TE]g = /Te : (3.66)

Figures 5 and 6 show the behavior of e as a function of TE/Tg and
TE/TV. Again, a proper choice of scales allows the display of all informa-

tion using one curve. Equation (41) is rewritten:

To\3 T /T - % T /T T
(—T—E—:) e = [——E-——V‘—;} - [—Ll—a] ’ (3.67)
g (TE/Tg) (TE/Tg)
3
the function (TE/Tg)ae versus TE/TV/(TE/Tg)3 is positive for TE/TV/(TE/Tg) <1

and negative for TE/Tv (TE/Tg)3 > 1. It displays a minimum of

3 - 3 _ . 3
(TE/Tg) e 4/27 at TE/TW/(TE/Tg) 9/4. TFigure 5 shows (TE/Tg) e
3 . < 3
versus TE/TV/(TE/Tg) on linear scales for 0.5 TE/TV/(TE/Tg) < 10.0.
Figure 6 shows the same function, over a wide range of values, on log
scales. The dashed line for TE/TW/(TE/Tg)S > 1 indicates negative ordinate

T 2
values. For T./T./(t./T )% << 1, or equivalently, T_ >> T £ , Eq. (67)
E' v E''g v Tg

becomes:
- Y
Tp 3 TE/TV 2
(T) e = | —I (3.68)
TL/T
g (tg/ g)
or, T 3/2
~{ v
e = (T ) (3.69)
g

This behavior corresponds to the solid line with slope —-% in Fig. 6. On

3 . 2
the other hand, for TE/TW/(TE/Tg) >> 1, or equivalently, T, < Tg(Tg/TE) s

Eq. (67) becomes:

Ty 3 /T -t
(.T_E) e = - [L’_J (3.70)
g (TE/Tg)

or
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~ --IX (3.71)
e = == . .

This behavior corresponds to the dashed line with slope -1 in Fig. 6.

We may now consider the behavior of s as a function of TE/TV (k? depen-
dence) for a given value of TE/Tg. For small enough TE/TV, e is positive
and large. Hence, EV/Té}E is decaying, oscillatory. In this region, the
density difference (a heavy fluid below a light fluid) dominates over elec-
tromechanical effects.

As TE/TV increases, e decreases until, eventually, the value e = ¢4 is
reached. Here, the imaginary part of Ev/Télg has just become zero and the
negative real part splits into two negative pure real solutions.

As TE/Tv increases further, one of the solutions becomes less negative
and one more negative. When TE/TV reaches the value (TE/‘rg)3 , e passes
through zero. At this point, one solution of Evlrﬁ]E- changes from nega-
tive to positive pure real, and the other reaches the value -1 and disap-
pears. The value of TE/Tv where the positive solution first appears corres-
ponds to the critical wavenumber defined by Eq. (49).

Further increase of'%/‘rv yields further decreise of e, until, at
TE/TV = %(—:—E)a , the minimum value, e = - —%—(—:—i) is attained. At this
point, E&/ Tﬁ]g' reaches a maximum. (Note that this does not imply a max-
imum in s at this point.)

As TE/TV is increased even more,[}v/TE]g_ becomes less negative,
approaching zero asymptotically as TE/Tv is increased without bound. Cor-
respondingly,‘}v/Téjg_ remains positive pure real and decreases toward zero.
In this region, the condition‘%v/TEJ§_<< 1 holds, and Eq. (54) is applicable.

Thus, s approaches the value l/ZTE as k is made large. Physically, for very

short wavelengths, a competition between an electrical surface force density
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of the form-% €E® and a viscous drag of the form nV% leads to a growth

1
rate 57— .

21g

If the condition (TE/Tg)3 << 1 holds, then near the minimum in e,
-e >> 1. In this case, the condition‘}v/Télg >> 1 is satisfied, and Eq.
(58) is applicable. In fact, there will exist a range of T, for which
T, << Tg(Tg/TE)2 also, and hence, Eq. (60) applies. In this case, the com-

o . . . 1 . .
petition is between the electrical surface force density, -E‘EE2 and inertia

p(3v/dt), and leads to a growth rate k 4?3}/2@(1/08 - 1/Ob)2. The value
of k where transition from inertia-dominated to viscous-dominated solutions

occurs may be determined by setting:

eJ2 (1  1)2 1
k\/ (_ __) . L (3.72)
20 \3, "3, 2ty

Combining Eqs. (42) and (72) we obtain:

1 1
N IR ) (3.73)
transition 2q 2

Note that k must be small enough to avoid the viscous~-dominated region, yet
large enough to avoid the gravity-dominated region, in order for the inertia-
dominated region to appear. It is possible for Tg to be small enough (den-
sity difference large enough) so that the condition (TE/Tg)3 << 1 does not
hold; thus, for there to exist no range of values for k in which the inertia
dominated solution appears. Stated another way, an inertia-dominated regime

. . >> .
will appear only if ktransition kC

To deal with a real set of physical constants, consider the case of
two layers of water, the lower an electrolyte and the upper distilled. We

take:



o =103 %80 . ooz am oy gp7e I
msec sec
A1)y _ v | 3 Vo -
J (Oa Ob) Tem 10 o 5 € 8180
Then, TE = 2.79 sec. We take several values of Upﬂ/p to see how the value

of Tg affects the solution. Figures 7 through 17 display s versus k on
linear and log scales for various values of ﬂpﬂ /o . The usual coding is
employed: solid curves for real values, dotted curves for imaginary values,
and dashed curves for negative real values on log plots.

Note that, in each case, for large enough k, the electric-viscous solu-
tion s = l/ZTE is reached. With zero density difference (Fig. 7), we see
the electric—inertia solution increasing linearly with k for small k and
the electric=viscous solution for large k. The transition wavenumber is
as given by Eq. (73).

As a small density difference is introduced ([lpll/p = 10”7 in Figs. 8 and
9 and ﬂpﬂ/p = 10_6 in Figs. 10 and 11), we see the appearance of k., the
lower bound for growing solutions, two decaying solutions for values of k
less than but near k., and finally, gravity-dominated decaying oscillatory
solutions for small k. 1In Figs. 8 and 10, the inertia-dominated regime is

apparent for k. < k < ktransition'

As the density difference is increased, the inertia-dominated regime

becomes narrower and the regime with two purely decaying solutions becomes

¢

wider. Figures 12 and 13 have lell/p = 107°

, Figs. 14 and 15 have [[oll/p =
10™*, and Figs. 16 and 17 have [Ipl/p = 107® . 1In Figs. 14 and 16, the
inertia-dominated regime is completely absent, with transition directly from

viscous-dominated to gravity-dominated solutions. (In Figs. 15 and 17, only
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s versus k, [Joll/p = 10 (13.6 < k < 13.7)
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s versus k, Joll/p = 107" (1000 < k < 2000)
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the less negative solution is shown in the region of two pure decaying

solutions.)

C. Equilibrium Tangential Electric Field

A plane interface bounds two incompressible fluid half-spaces, stressed

by an initially tangential electric field, E;iz, as shown in Fig. 18.

X
E, Yg 0., Pgs €5 N
-
/\vf\vf\vﬂ\v - Figure 18 .
> £ z
Ej tg Ops Pps €5 N Tangential Field Geometry

The situation is identical to that considered in Section III.B, except that
the equilibrium field has been changed from normal to tangential to the
interface. Again, we are concerned, physically, with two miscible fluids,
one doped to increase its conductivity. The same approximation concerning
small density difference, [Io]l is made. We seek the dispersion relation for

small-amplitude sinusoidal interface motions,
£ = Re E e(St_jkz) . (3.74)
As in Section III.B, mechanical stress balance from Eq. (2.75) requires:
l]sijﬂnj + ﬂTijﬂnj =0 (3.75)
with the interface normal defined by:

n = ] (3.76)

n o= - -g-g = pe Ik 0x(°‘> o (st-ikz) (3.77)
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In equilibrium, Eq. (75) is satisfied by:

151 = o . (3.78)

Subject to interface perturbation, we obtain for the i = x and i =2z compon-

ents of Egq. (75), respectively:

o (o) S (R ~ (o) - (B _ )

s, -8 ) - eEE Y + eEE 0 (3.79)

s @ _ g B L pg@_pg® _g (3.80)
Z VA 0 X 0 X

The boundary conditions on perturbation fluid velocity, from Eqs. (2.73)

and (2.74), are:

GX(O‘) = QX(B) (3.81)

() _ oo (B
v, = v, (3.82)
The boundary condition on tangential electric field at the interface

is, from Eq. (2.10)
nx[E] =0 (3.83)

Subject to perturbations, we obtain for Eq. (83):

@ _ 5 ® (3.86)

z z
The boundary condition on normal electric field at the interface, recalling

the assumption of instantaneous charge relaxation, is from Eq. (2.12):

neJJocE] =0 . (3.85)
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Writing out Eq. (85) for the assumed equilibrium and perturbation yields:

) ) ik o (@) _
9,E, ok 7 + ol £, S v, 0 . (3.86)
The manipulations required to express the transfer relations -- Egs.

(2.63), (2.64), (2.104) and (2.105) in terms of the interface variables
appearing in the boundary conditions just derived are identical to those
performed in Section III.B. Immediately applicable are Egqs. (18), (19),

(20) and (21). Combining Eqs. (79) and (84) we arrive at:

g'(on) _ g (B) (3.87)
x X
Combining Eqs. (20), (21), (81) and (87):
glel] .
[2n Lk+q) - . ]vx(o” = 0 . (3.88)

For non-trivial solutions, then, we require the dispersion relation:

Aol

2n-§(k-+q) - = 0. (3.89)

Equation (89) may be derived in a more systematic manner by algebraic-

ally combinings Eqs. (84), (86), (18) and (19) to obtain E_(*, §x<3>,
- (B) ~ ()
X

E (@) , each in terms of v

and E
2 z

and substituting these four
equations, as well as (81) and (82), into Egs. (79), (80), (20) and (21)
to yield six homogeneous equations in six unknowns. Setting the deter-
minant of the coefficient matrix to zero then results in Eq. (89).

(2)

Melcher and Schwarz have considered the problem of two fluid half-
spaces stressed by an initially tangential electric field in greater gen-

erality than in the analysis presented above. We may check Eq. (89) by
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considering the appropriate limit of the relation in Reference (2).
Setting pa = pb in all terms except the gravitational, which involves
gﬂpﬂ » Uy TR, T Es VT VS 2n4?a + pa} and T = 0, we obtain a simplified

version of Eq. (34) of Reference (2):

gklloll
[—W][q—k]'i'k:O . (3.90)

Using Eq. (22), we see that Eqs. (89) and (90) are identical.

Note that Eq. (89) is identical to Eq. (31) in the special case J=0
of that equation, and that EO does not appear in Eq. (89). Physically,
we have found that the tangential field system involves no electromechanical
coupling. We expect the system to exhibit only decaying modes in time for
any given wavenumber, k. These mcdes are identical to those found in the
normal field system of Section III.B in the limit J = 0. Although we may
not use the normalization of Section III.B in this limit (TE +> ™), we note

that the parameter e defined by Eq. (41) becomes simply:

3
e = (1,/7) 72 (3.91)

and is always positive. Figure 2 then indicates that s always has a nega-
tive real part.
The nature of the decaying solutions changes from pure decay to oscil-

latory decay at
e=c, = 0.61968 (3.92)

or, combining Egs. (91), (92), (43) and (44), at

v, 7
. - gllell/207 7 - gllel
k = kgv = —__C_T\jz— ~ 1,1729 '—W— (3.93)
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For k > kgv’ ¢ < c, and there are two negative pure real (decaying)
solutions for s. For k< kgv’ e > cy and there are two complex conjugate
solutions with negative real part (decaying, oscillatory).
We may further characterize the slowly decaying solution in the

region k > kgv when k is large enough so that Is/k2V| << 1. Then, the

definition of q, Eq. (22), may be approximated:
q = VEZ + s/v = k(l + ?EST;)-) . (3.94)

Substituting Eq. (94) into the fourth order equation for q [Eq. (36) with
J = 0], and retaining only first order terms in s/k2v :

glloll

Lok (3.95)

s =

It is to be recognized, at this point, that the absence of electro-
mechanical coupling in a linearized analysis does not preclude the physical
possibility of a surface-coupled electrohydrodynamic instability. Such an

instability, however, must arise fron nonlinear coupling terms.
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CHAPTER IV. EXPONENTIAL CONDUCTIVITY DISTRIBUTION IN TANGENTIAL FIELD

A. Layer Transfer Relations

The interfacial discontinuity models presented in Chapter 111 clearly
cannot account for effects occurring on the scale of the thickness of the
interface itself. It is our aim, now, to relax the restriction that the
region over which conductivity variation occurs at the junction between
fluids be thin compared with lengths describing instability dynamics.

We consider a layer of fluid, as shown in Fig. 1, extending from x = 0
to x = A, over which an equilibrium conductivity distribution, Oo(x) is

given, experiencing a uniform equilibrium tangential electric field, Eéfz.

xh o surface
. '
o, (%) —_—
— Ej
0 Q\ — 2
B surface

Figure 1. Layer of varying conductivity in tangential field.

It is to be emphasized that the discussion at the beginning of Section
III.A still pertains here. That is, we continue to assume that diffusion
times are long compared to times describing instability dynamics, so that
we may describe the layer by an equilibrium conductivity distribution,
itself evolving slowly with time, and subject to electrohydrodynamic in-
stability as modeled in a situation of static equilibrium.

In equilibrium, the fluid is static:
v = 0 (4.1)

and charge free:
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of = 0 : (4.2)
f
We consider perturbations with z-t dependence e(SCOJkZ). The per-

turbation dynamics of the incompressible, viscous layer are described,
mechanically, by Eq. (2.71), with the convective inertia term on the

left absent due to linearization. The electrical drive term on the right,
subject to perturbation is, using Eq. (2.1) and linearizing:

[V (oe®)], = [Vop x Bl = - E 5= - (4.3)

Thus, combining Egqs. (2.71) and (4.3) in terms of complex amplitudes:

sp[D?- k21§ nlp? - k2179 - E DPs (4.4)

where:

D

d
i . (4.5)

Poisson's equation (2.5) relates perturbation charge to potential:
(0% -k*)¢ =-op. /e . (4.6)

Combining Egs. (4) and (6):

~ €EE ~
[0? - k1L * - 1~ 2y + —2 p4]

[}
o

(4.7)

The return coupling, i.e., the effect of fluid motion on potential
distribution, derives from the equation of charge conversation, neglect-
ing charge relaxation, Eq. (2.49):

Pe _
0= + E*Vo = 0 . (4.8)

Linearizing Eq. (8) in terms of complex amplitudes:
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5f -~ ~
0, = - JkE,0 + E Do = 0 . (4.9)

Subject to the assumptions that led to Eq. (2.41), we finally state
that the conductivity of an elemental volume of fluid of fixed identity
remains constant:

— _' | — /o
3t + v*VYo 0 (4.10)

or, linearizing Eq. (10) in terms of complex amplitudes:
so - jkWDOO = 0 . (4.11)

Combining Egqs. (6), (9), (11) and (2.4), we arrive at a relation between

the electric potential and the velocity stream function:

2
k

[GO(D2 - k%) + (DcO)D]<1A> = EO(DOO){}; . (4.12)

Equations (7) and (12) represent the two-way linkage between elec-

trical and mechanical subsystems characteristic of electrohydrodynamic

phenomena. Combining them to obtain one homogeneous equation in ¢ :

2

o lg EEO ~
[p2- ¥¥]|(p? - k2 - —S%Q—)(F [p? - k%] + D) s T %q) = 0
o}

(4.13)

Characteristic of bulk-coupled models involving inhomogeneous
equilibrium property distributions, Eq. (13) is a non-constant coefficient
differential equation in the independent variable x. For a general equil-
ibrium conductivity distribution Oo(x), we would necessarily resort to
a numerical integration procedure to determine a solution. There is,

however, one non-trivial distribution for which Eq. (13) has constant
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coefficients, i.e:

[e)
0, (x) = gg (b—g) . (3.14)

Here, O, and GB represent known values of conductivity at the upper and

lower surfaces of the layer respectively, and the variation has an expo-

nential character across the layer. For this distribution, the factor

involving Oo(x) in Eq. (13) takes on a value independent of x:

_————-’\\-

o (%)
0 _ A
Do, (x)  1nR (419
where
%
R:E; . (4.16)

We shall analyze the layer with exponential equilibrium conductivity
distribution in detail in this chapter.

Substituting Eq. (15) into (13), and assuming solutions of the form

~

eYX, we find, for non-zero ¢, a sixth-order equation in Y:
EE?
2 _ .2 2 _ L2 _8p,,__A 2 _ 2 ¥ "o -
[y k][(Y K- g - Bl v+ - — rJ 0,
(4.17)
or, in normalized form:
T k2
[x* - K] [(® -k - s DA -y InR-kH-—7y1InR] = 0 (4.18)

where: k = kA (4.19)
T = pA%/n (4.21)
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1z n/eR,” (4.22)

s = 8T . (4.23)

Note the appearance, as a parameter, of the ratio T/T of the two charac-
teristic times introduced and discussed in Section II.B.2.

Two of the six solutions to Eq. (18) are immediately apparent:
Y =tk (4.24)
and
Y = -k (4.25)
Remaining is a fourth-order equation in Y:

kZ
Y - ¥’1oR - y2[2k? + _s_%]+ Y1nR |:_l_<_2 +s (% - _ST)]

+ K[ + 5 1] (4.26)

]
o

For any given wavenumber k, growth rate s, and parameters T/T and R, it
is straightforward to numerically solve the quartic Eq. (26) for the
remaining roots in Y.

Denote the six solutions to Eq. (18) by 11, 12, la’ lq, ls and ls
We proceed now to express the various electrical and mechanical perturba-
tion complex amplitudes within the layer in terms of these six Yy's. Our
objective is a set of transfer relations, determining stresses and normal
current densities in terms of velocities and potentials at the layer sur-
faces. The potential and stream function distributions are expressed as

linear combinations of solutions of the form eYX:

6

~ ~ Y X/A
¢ = Zq’n & (4.27)
n=
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- ~ Y. x/4
v =Z y_e " (4.28)
n=1 1

Equation (12), with (15) substituted in, permits determination of

the six coefficients ‘i’n in terms of d)n:
v g 2 27
¥y = -E_z [ln-lnlnR—k]Q)n (4.29)

Defining normalized perturbation complex amplitudes:

= ¢ S = o0
b = EOA (4.30) v T V.3 (4.35)
= = .(_/I;g.. (4 31) i = - I. (4 36)
i)n - EOA ) Y, = V2 )
vz 0% (4.32) 5z oomx (4.37)
v = bEr : =x T €Eg ’
- > - gxz
A 2 ~ JX
p = '—LzeEo (4.34) ;]_x = G E (4.39)

oo
we may rewrite Eq. (29) in normalized form as:
~ s 1 ) A
-qin = - ;}Ez— H‘ [ln - XfllnR -k ]i’in . (4-40)

Using the stream function definition, Eq. (2.68), the normalizations, Eqgs.

(33), (35) and (36) and Egqs. (28) and (40), we have:

6

~ js x/A
= E =1 1. 2|2 An
vy T k 1nR Y, ~ X,InR - k Qn e (4.41)
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. ~ X, x/A
v = §: 2y I:Ié__Y_nlnR—_z]Qnen (4.42)

n=1 k 1nR

The interface potential and velocity perturbation complex ampli-
tudes, then, are expressed in terms of the six coefficients gn by
evaluating Eqs. (27), (41) and (42) at x = 0 and x = A. We express the

results in matrix form below, with superscript o denoting the upper sur-

face (x = A) and superscript B denoting the lower surface (x =0):

(vl = [ul[a] (4.43)
where
Ma 7 m
va o}
—x -1
2B o
—X 2
[v] =|v® (4.44) [4] = §3 (4.45)
B P
-z —4
/\a A
] 2,
/\B R
(2] 2,

and [H] is a 6 X6 matrix, with entries defined by:

js 1

Hm - k ﬁ[lnz XY, InR- g]eln (4.46)
is 1 2 2

H2n = —E_ m[ln -lnlnR-]‘(] (4.47)
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SYq Tn

_ 1 2 _ _ 12

Hsn = ‘—E{ ——lnR[In lﬂ In R l(_] e (4.48)

H = 2In ——-[Yz - In R - kz] (4.49)
4D kZ InR Tn X

Yn

H = e (4.50)
sTi

H = 1 (&.51)
sl

The perturbation normal current density distribution is determined bv

JX = UOEX . (4.52)

Using the potential definition , Eq. (2.4), the normalizations, Egs.

(31) and (39), and Eqs. (27) and (52), we have:

6

~ x/4
] - Z - R o : (4.53)

$
X ~ -n

Finally, we determine the perturbation stress complex amplitudes.
From Eq. (2.72) and the normalizations, Eqs. (37) and (38), the pertur-

bation stress tensor components are:

~

20Dv_ - p (4.54)

fen > >Lm)
n

, = ADv - ikv . (4.55)

To obtain ﬁ_for use in Eq. (54), we return to the Navier-Stokes Equa-

tion (2.66). Writing out the z-component in linearized form, we have:

- 5 = - ; 2. 2 v o
jkp spv, + n(D® - k%)v, + p.E (4.56)
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Combining Eqs. (6) and (56):
cE

p = A0 ((DZ - - Ly -2 (Dz-kz)é] (4.57)

or, using Eqs. (30), (34) and (36) to normalize:

N [ TS Y
Using Eqs. (41), (42) and (58) in Egs. (54) and (55) we have:
6
= 1 - k2 _s L
Sy n=1Kk [hR—T(ln T Y BRSO, 3K‘S"T)
~ x/h
'*‘j(lnz ‘52)] -?-n exﬂ (4.59)
6
~ E l 2 2 B 2 2 - Y X/A
éfznﬂ'_—zm[ln’fh]j SRR EE (460

The interface normal current and stress perturbation complex amp-
litudes, then, are expressed in terms of the six coefficients Qn by
evaluating Eqs. (53), (59), and (60) at x = 0 and x = A. The result,

expressed in matrix form, is:

[s] = [6][A] (4.61)

w0 >
Q

where

lens 4
QNmNme

[s] (4.62)

> (v Jon

]

oD
W

¥
k
L
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[A] is defined by Eq. (45) and [G] is a 6 X6 matrix, with entries defined

by:
oy Isx T
“in T % l'—lﬁi o @~ Yy MR- KO- K - s )
+3Q? - EZ)J o (4.63)
_ 1 1 jé'lﬂ 2 2 2 T
Gzn-‘g[‘ﬁ TR Up T Xy PR KD -3k - s )
+3iQ? - 32)] (4.64)
S
6 = TR 2+ EIIL? - YR - K]E T (4.65)
1 s
S T TR BN HEI - Y, BR - (4-66)
Gon = -~ X (4.67)
G, = - Ry, . (4.68)

We may now write a set of transfer relations to describe the layer in
terms of perturbation complex amplitudes at its surfaces. Inverting Eq.

(43):
a] = [H]7'[v] (4.69)

Combining Eqs. (61) and (69):

[s1 = [Gcl[H]"'[v] = [qQ][V] (4.70)
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Equation (70) expresses the desired relations. For given values of k,
s, T/t, and R, the 36 elements of the transfer matrix [Q] are determined
as follows: numerically solving the quartic, Eq. (26) for four roots,
and adding the two extra roots given by Eqs. (24) and (25) yields Y,
(n=1, ..., 6). Then, Eqs. (46)-(51) and (63)-(68) determine the 36
elements of [H] and the 36 elements of [G]. Inverting [H] and premultiply-

ing by [G], the desired transfer matrix [Q] is computed.

B. Half-Space Boundaries

Having determined transfer relations for a viscous layer with ex-
ponentially varying equilibrium conductivity distribution in an equilib-
tium uniform tangential electric field in Section IV.A, we are ready to
generalize the tangential field analysis presented in Section III.C. We
envisage a physical situation involving two miscible fluids of identical
viscosity, permittivity, and density, but with the lower fluid doped so
as to have higher conductivity. Provided the region of conductivity
variation is thin and perturbation wavelengths short compared to the
thickness of the fluid layers, we may model the regions bounding the
layer of varying conductivity as half spaces. In contrast to the model
considered in Section III.C, lengths characterizing the instability dyna-
mics are now of the same order as the thickness of the region of conduc-
tivity variation.

Of course, the exponential conductivity distribution of our vis-
cous layer does not accurately represent the diffusive distribution which
actually joins the two regions of uniform conductivity. Figure 2 shows
oo(x) versus x/A for an exponential junction between two external layers

of conductivies in the ratio R=e; (e is the natyral logarithm base
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L 2.7183). Note that, in contrast to the actual distribution, the
slope here is discontinuous at the surfaces of the varying layer. Such
a discontinuity implies no surface charge density or surface force den-
sity, and is of no consequence except as regards the detailed structure
of the equilibrium conductivity distribution. The stability analysis
to follow is not expected to be sensitive to the details of this dis-
tribution.

We consider, then, a model as shown in Fig. 3.

A
half-space: 0 =04
A
x/A
E, layer: O =0g (Oa/OB)
0 > 2
—

half-space: ¢ = GB

Figure 3

Exponential Conductivity Layer Bounded by Half-spaces

Our aim is to couple the viscous layer with exponentially varying equil-
ibrium conductivity to viscous half-spaces of constant conductivities,
above and below. The entire system experiences an equilibrium tangential
electric field, EOE;. Because we do not include gravity in this analysis,
and because there is no equilibrium electrical force density, according
to the discussion at the end of Section II.B.3, no distinction need be
made between perturbation quantities evaluated at equilibrium and at per-
turbation positions of the interfaces. Having analyzed the half-spaces

electrically in Section II.A.4 and mechanically in II.B.3, and the varying
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conductivity layer in Section IV.A, our remaining task in arriving

at a dispersion relation for the system of Fig. 3 is to splice together
the regions at the boundaries x=0 and x = A. The boundary conditions,
from Eqs. (2.10),(2.12) in the instantaneous. relaxation limit, (2.73)

~ A ~ A~ A,

(2.74) and (2.75) respectively, are that ¢, gx, Xx’-zz’-gx and §z be

continuous across the boundaries. Thus, we require that the layer ¢

P4

variables be identijcal to the upper half space o variables and the layer
8 wvariables be identical to the lower half-space B variables. At this
point, we rewrite the half-space transfer relationms, using Egs. (30),
(35),(36), (37), (38) and (39) to normalize the various perturbation
complex amplitudes. At the upper and lower surfaces, the perturbation

normal current densities are, respectively:

(S
Il

Q

(c]

X oFx (4.71)

and

B _ B

Jx = OBEX . (4.72)
From Eqs. (2.60), (2.63) plus (30), (39) and (71):

Ta . "o

3. =k (4.73)
From Eqs. (2.62), (2.64) and (30), (39) and (72):

B _ °B

37 =-REk9 (4.74)

From Eqs. (2.104), (35), (36), (37) and (38):
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~ q ~ ~
o . o4 o
_S,‘c—’ {—E(5+g) ik -] v, ) v,
“al N SR (4.75)
L§2“l | i@-k - @+ v, v,
From Egs. (2.105), (35), (36), (37) and (38):
~ g ~ = ~
éxB o ktrte k-9 xxs-i xxe
~ g B : ~giE [p°] ~ g (4.76)
S, g - K q+K %J v,
where, from Eqs. (2.93), (19), (21), (22) and (23):
q =K +sT/t , (Reg>0) . 4.77)

The splicing of regions is now accomplished by simply writing out

Eqs. (70), (73), (74), (75) and (76) simultaneously:

S = + + + + o + = +

—X Qll-v-x Quzx lezz lez Q15-‘;)- le_{b_ Pn XX 12 Yz
(4.78)

§° = + + + + + = +

X Qzllx Qny‘x stx’l Qzuy'z st9 Qats9 Pn XX F?zy'l
(4.79)

’\a AC{, AB I\(x “B Aa AB a a o a

S =Q v, + vio+Q v+ + + = v+ pow

-z Qsl‘x Qsz—X Qsa—z Q%y_z st9 Qasi P:a_1y'x PzzX
(4.80)

B "o °B "o "B ~o °B B ~B B~ B

S = + + + + =

-2 Qulxx Quzxx Qualz QMXZ Qus2 * Q%Q P21 Vx * P?z Yz

(4.81)



= + + + + <+ = k
iX 51 XX Qsz K Q53v quy' st'ql stg - ‘(P'
(4.82)
TR "o °B “a ~B To B &
= + b + - - Rk b
QX SIX'X * Qszzx + Qealz + qulz sti sti -
(4.83)
Combining like terms in Eqs. (78)-(83), we have in matrix form:
[F][vl = [0O] (4.84)

where [V] is defined by Eq. (44), [0] is a column matrix of six zeros,

and:
-p -p @ Q Q
11 1n 12 13 12 14 15 16
B
Q Q - P Q qQ -p5 Q Q
21 22 11 23 24 12 25 26
o o
Q -P Q Q -P Q Q Q
[F] = 31 21 2 33 2 N 35 36
B
- P Q qQ -»° Q Q
41 u2 21 43 Ik 22 45 46
Q Q Q Q -k Q
51 52 53 54 55 56
Q Q Q Q Q + Rk
61 62 63 o4 65 66
(4.85)
For non-trivial solutions to Eq. (84), we require:
D=det [F] = 0 . (4.86)

Equation (86) is the dispersion relation for the coupled system of Fig. 3.
For a given k, s, T/T, and R, the procedure for computing D is straight-

forward. For a given k, T/T, and R, we must carry out a search procedure
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in the complex s plane, looking for values of s where Eq. (86) is satis-—

fied.
Assuming, for the time being, that D(s) is an analytic function,
we follow Betchov and Criminale(l), doing a Taylor Series expansion

for a small increment As, and retaining only up to the first order term

in As :

D(s +48) = D(s) + 32| s . (4.87)

s

1f s is near a zero of D, we choose As so as to move closer to the

zero by making
D(s + 4s) = 0 . (4.88)

Combining Eqs. (87) and (88):

D(s)
As = - D
ds

s

. (4.89)

In an iterative search procedure, if the initial starting point s
is too far from the zero being sought, the routine will not converge.
Convergence can be improved by reducing the magnitude of the steps taken
in the direction of the zero. Thus, we modify Eq. (89):

D(s)
As = =~ A

= dp
ds
S

(4.90)

where A < 1.
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To determine dD/diiq , we take a small exploratory step, 6s ,

some fraction of the previous As:

s = uAs (4.91)

where u<1l. Then:

D(s +6s) - D(s)
__;1_12 v (4.92)
S . 8s

Equation (91) is used so as to reduce the size of the exploratory step
used to determine the derivative as the zero is approached. Normally,
we set u=0.1 and A = 1, but when there is difficulty with convergence,
we reset A = 0.5.

The procedure employed in determining eigenfrequencies s such that
D(s) = 0 for a given k, T/T, and R is as follows: values of D are com-
puted at grid points in the s plane, with the grid size varied over many
orders of magnitude. In this way, some "feel" for the complex function
D(s) is gained and we obtain initial estimates for the positions of
zeroes. We may then use the search routine described above to converge
in on the zeroes. We proceed now to describe the complex function D(s)
using information learned empirically by computing its value at grid
points in the s plane.

First, the function has complex conjugate symmetry about the real
s axis. That is, the value of D at a point 5. * js; 1is the complex
conjugate of the value at the point 5. - js; . In particular, then,

1

when we find a zero in the upper half-plane, we know immediately that
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there is another zero, mirrored through the real axis, in the lower
half-plane. Thus, we need only carry out a search for zeroes in the
upper half-plane.

Second, the function has a branch cut, extending leftward along
the_s_r axis from a branch point at s = -k?/(T/1) + jO to negative in-
finity. To the left of the branch point, in crossing the negative real
axis, when s is changed incrementally from s+ je to s, - je, the func-
tion D has a discontinuous imaginary part; i.e., it jumps from Dr+ iD4
to Dy- 3Dy, where Dy is nonzero.

The nonanalyticity of D(s) can be traced back to two distinct steps
in the computation procedure. First, recall the numerical routine for
finding the roots, Yy , to Eq. (26). 1If we picture a listing, in four
columns, of the four roots Iq, _12,.13, and I@’ as functions of s as
S is incremented in steps along a contour in the complex plane, the
functions will appear continuous until the contour crosses a branch cut.
Upon crossing, two columns will suffer discontinuities. If, however,
these two columns were interchanged for values of s beyond the branch
cut crossing, the functions would appear continuous throughout. That is,
the branch cut represents only a reordering of the names, Yoo Yoo Yio Yo
of the four solutions. In the computation of the matrices [H] and [6],
this is equivalent to an interchanging of two columns, hence a reversal
in sign of det [H] and det [G]. Because det [H]and det [G] also have
complex conjugate symmetry about the real s axis (in the same sense as

does D), this necessarily implies that both functions are pure imaginary

along the branch cut. The matrix [Q] = [G][H]m1 , nevertheless, has a



-101~-

determinant which is analytic across the branch cut in det [H] and det |G].
The second step in the computation procedure for D which involves a
non-analytic function is the determination of g, the viscous decay number,
defined by Eq. (77). The defining restriction Re g > 0 implies a branch
cut in the function g which is coincident with the branch cut in D, i.e.,
extending from a branch point at s = - 52/(T/T) + jO, along the negative

real axis to negative infinity. We see this by writing out Eq. (77):

ﬂ=\/(52+T )+j(-TT—§i) , (Re g >0) . (4.93)

T3

Now, the function q = /E—, (Re ¢ > 0) has a branch cut consisting of
the entire negative real z axis and a branch point at the origin. Thus,
from Eq. (93), we see that the branch point in the s plane is at

s = -EZ/(T/T) + jO, and the branch cut extends leftward along the nega-
tive real s axis. It is the nonanalyticity across the branch cut of

B] , defined

q(s) which is used in computing the elements of [Pa] and [P

by Eqs. (75) and (76) respectively, which leads to a branch cut in D(s).
Finally, computation of D(s) at grid points in the s plane leads

to the discovery of zeroes [eigenfrequency solutions to Eq. (86)] in the

right half-plane with non-zero 55 (corresponding to oscillatory growth in

time). Recall that, for any one zero in the upper half-plane, there is

a corresponding mirror image zero in the lower half-plane. Henceforth,

we confine our discussion to the set of zeroes in the upper half-plane.

0f all the zeroes, we shall call the one with largest s, the first eigen-

frequency, the one with second largest S, the second eigenfrequency, and

SO0 on. We find that the first eigenfrequency also has the largest value

of 84 (oscillates most rapidly), and so on. Characteristic of internal
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mode problems, there is an infinite set of eigenfrequencies in the right
upper half plane, all within a rectangular region with corners at the
first eigenfrequency and the origin. (See Fig. 4.) Any one eigenfre-
quency has an infinite set of eigenfrequencies between itself and the
origin. No zeroes are found in the left half-plane.

To better understand the significance of the various eigenfrequencies,
it is desirable to determine the distributions of perturbation complex amp-
litudes of physical quantities as functions of the x-coordinate (the
eigenfunctions). This may be accomplished as follows.

Having found a value of s where Eq. (86) is satisfied, we desire a
nontrivial column matrix [V] satisfying Eq. (84). It is a straightforward
matter to perform matrix manipulations on [F] (taking linear combinations
of rows) so as to produce zero entries everywhere below the main diagonal.
Having performed such manipulations, because D = 0, the 6,6 element will
become zero. Thus, the last equation represented by (84) is satisfied by
an arbitrary entry for the bottom element of [V]. We arbitrarily give

this element the value 1 + jo, i.e.,

of - 1+ 30 . (4.94)

Then, the manipulated set of equations derived from Eq. (84) may be used
to determine the values of all the other variables in [V], consistent
with Eq. (94). We emphasize that (94) was set arbitrarily. We could
just as well have set any one of the other elements of [V] to any desired
value. The arbitrarity, here, reflects the fact that when Eq. (86) is

satisfied, any [V] satisfying Eq. (84) can be multiplied by any complex
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constant with Eq. (84) still satisfied. Physically, we can excite an
eigenmode at an amplitude and phase of our choice.
Having determined a [V], Eq. (69) allows us to compute the corres-

~ ~ A~

ponding [A], i.e., the Qn' The various physical quantities, ¢, Ve Vs

~ ~

Qx’ §x and_S’:z are then given, in terms of the %, as functions of posi-
tion through the varying conductivity liayer, by Egqs. (27), (41), (42)

(53), (59) and (60). In the half space bounding regions, we use Egs. (30)
through (39) to normalize the spatial distributions defined by Egs. (2.57),
(2.58), (2.94), (2.96), (2.97), (2.98) and (2.101) and arrive at the fol-
lowing distributions:

In the upper half-space, define:

x'=z x-A . (4.95)
Then:
~ ~y —k x'/A
o(x"') =¢ e (4.96)
~ ~ —‘1_(. X'/A
& =kg e (4.97)
v, (x") TR R S
= u (4.98)
v (x") k ek x'/A ged” /8 ¥
§X<X') j(ZI_(_Z +E% )e.E X'/A jZE_q e-g X'/A EJ—U
_ o 4.99)
~ — ' - ' ~
5, - gk X7 -+ g9 tF ] |y

where
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A = e
¥ a/k
! j(g + k)
~y sT/T
-1
;fz _ L

In the lower half-space:

~ g k X/A
000 = of e
R k X/A
J (x) = - Rk iBe

r ix(x) - ik k x/A
;z(x) k k x/A
g (x) - j(2k?% + s-I)
2x = T =7
g (X) - 2k2 k X/A

| —2 . -

where:
/\gl 1
4 ja+ o |V
) s T/ 1

~2
Y, -1

The various physical quantities, ¢, VooV

| [ ~a]
j Vo
(4.100)
. "o
{4 _'XZ N
(4.101)
(4.102)
- ik o4 x/A .2%
(4.103)
x/A ~%
q el ¥,
. "Ql
g ||Y
(4.104)
-G +g?)ed ¥y
. "B
-3 Vo
(4.105)
. B
j v,

~

S

~

Z

A~ ~

J S _and S_ are given
e ~z & ’

in terms of the elements of [V], as functions of position in the upper and

lower half-spaces, by Eqs. (95)-(105).

Figures 5, 6, 7, 8, 9, and 10 display the eigenfunctions ¢, ix’ v,

A ~

—Z

A~ ~

—X

V_s §x’ and §z respectively, for the first eigenfrequency (hereafter called
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the first eigenfunctions) at k =1, %-= 1, and R = e. In each case, real
and imaginary parts are shown as functions of x across the varying conduc-
tivity layer and one layer thickness into the half-spaces on either side

of the layer. (Real and imaginary parts describe the distributions, as
real functions of x, at two values of z spaced T/2k apart, or at two values
of t spaced TT/Zsi apart.) The ordinate scales on these plots, and on all
eigenfunction plots to follow, are of no significance. All that is rele-
vant is the relative magnitudes of the various quantities as functions of
position across the layer.

~ ~

Figures 11 and 12 display the second eigenfunctions for ¢ and v, and

~

Figs. 13 and 14 the third eigenfunctions for ¢ and v, all at k =1,

B

=1, and R = e. Comparison of Figs. 5, 11, and 13, and of Figs. 7, 12,

Al

and 14, gives physical significance to the first three eigenfrequencies.
The most rapidly growing mode involves the least variation of physical
quantities across the layer. Higher (less rapidly growing) modes involve

more and more points of zero slope within the layer.
Figures 15 and 16 show the first eigenfunctions for ¢ and v, at

0.1 and Figs. 17 and 18 the first eigenfunctions for ¢ and v, at

| =
i

k

10. (T/t =1 and R = e in both cases.) As we would expect, increas-
ing k causes more rapid variation of the eigenfunctions as functions of x.
The simplest components of these modes are the LaPlacian solutions, vary-

ing as eE x/4 and eﬁk X/A.

The other four roots, Y,» although more com-
plicated functions of k, still have the basic character of increasing in
magnitude as k is increased. It is essential not to confuse the rapid

variation of eigenfunctions in Figs. 17 and 18, due to a large value of
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k, with that in Figs. 13 and 14, where we are observing a higher eipen—
function. The mode displayed in Figs. 17 and 18 is the fastest-growiny
one at k = 10, and involves the least variation of all the eigenmodes at
that wavenumber. It has evolved directly from the cigenmode shown in
Figs. 15 and 16 as k changed from 0.1 to 10.

Having identified a set of eigenfrequencies for one set of para-
meters, k, T/T, R, we now wish to follow the eigenfrequencies as func-
tions of k, with the other parameters, T/T and R, held fixed. (As a
practical matter, we specifically identify the first three eigenfrequen-
cies.) We need not "start from scratch" for each new k, printing out a
grid to obtain initial estimates for the positions of zeroes of D(s).
Rather, provided we increment k in small enough steps, we can start the
search for each zero at the position of that zero for the previous value
of k. The result is a pair of plots of the real and imaginary parts of
s for the first three eigenfrequencies as functions of k, as shown in
Figs. 19 and 20.

Several characteristics of these curves are to be noted. First, for
small k (waves long compared to the layer thickness), all eigenfrequencies
approach zero. 1In this limit, the situation approaches the model of Sec-
tion III.C -~ i.e., an abrupt interface, with no first-order electromech-
anical coupling. In the opposite extreme, for large k, where the viuen-
functions vary rapidly across the layer thickness, a1l cigenfrequencics
approach zero asymptotically. At some intermediare k (kv 1), the real
and imaginary parts take on maximum values. For the same mode, the maxima

of real and imaginary parts occur at different values of k. Maxima occur

at increasing values of k for higher modes.
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To display the dependence of such plots on the parameter T/!, we
show the same information, Re s and Im s versus k for the first eigenfre-
quency, in Figs. 21 and 22 for T/t = 1077 and in Figs. 23 and 24 for
T/T = 10°.

It is at the value of k where Re s has its maximum that we predict
fastest growth in time for any given T/T and R. Denote this value E*,
and the first eigenfrequency at this value s*. Then, to describe the
maximum growth rate and wavenumber as functions of the parameters, we
desire plots of k*, Re s*, and Im s* as functions of T/T for various valucs
of R. To obtain this information for a given R, without an inordinate
amount of computation, we determine three points near the maximum on the
Re s versus k curve for any one given T/71, fit the points with a quadratic
and locate the maximum of the quadratic. That maximum must lie within the
range of values of k used to define the quadratic in order for the fit to
be deemed acceptable. The values of k and s at the maximum, then, are k*
and s*. We use the same technique in searching for the position of a
zero as we increment T/T as we did in incrementing k. Specifically, k is
held conetant at the value of k* for the previous T/T, and s* is used as
the initial estimate of the zero in D(g) for a new T/T. Plots of k*,
Re s*, and Im s* versus T/T on a log scale are shown in Figs. 25 and 26,

respectively, for five values of R:

R o= 1) v g 1q R =e° ¥ 7148.
R =e ¥ 2.72 and
R =¢e'°Y 22 000.

R = 25.9
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Figure 24.
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Usinz Eqs. (19), (21), (22) and (23), we write out T/t in terms

of physical parameters. and unnormalize k and s:

- 2
% - ;—2 (E L) (4.106)
k% = 4&*/A (4.107)
cEn2
sk = E* no (4.108)

For T/T << 1, viscous effects dominate over inertia, and k* and s* are
independent of T/T. Thus, if we think of varying T/T in this range by

varying E holding all other parameters constant, k* remains constant

o’
while s* increases quadratically with E.. Alternatively, if we varv T/T
by varying A, k* decreases as 1/A while s* remains constant.

For T/T >> 1, inertia plays an important role in the instability
dynamics, and k* increasés while Re s* and Im s* decrease with T/T. Note,
however, that because T/T is plotted on a log scale in Figs. 25 and 26,
the functions are relatively insensitive to T/T. Thus, if again we think
of increasing Eg, k* increases slowly while Re s* and Im s* increase less
rapidly than quadratically with Eg- If we hold E, constant and increase
A, k* decreases less rapidly than 1/A and Re s* and Im s* decrease.

Finally, we see that k*, Re s* and Im s* are relatively insensitive

to R, but that all three functions increase with R, with one exception.

For large T/T, Re s* first decreases, then increases with R.
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C. Physical Mechanism

The physical nature of the instability described in Section IV.B is
made apparent by plotting velocity streamlines at k* and s*, with T/-
small enough so that the flow is viscous dominated. Figures 27 and 28
are plots of real and imaginary parts of the first eigenfunctions, ix and
iz respectively, at k* and s*, for T/T1 = 10~~ and R = e. Here, we have
used the eigenfrequency which has Im s* < 0 to establish the physical sig-
nificance of mirror-image eigenfrequencies. The corresponding velocity
streamlines are plotted across the layer width and one layer thickness
into each of the bounding half-spaces in Fig. 29. The negative imaginarv
part of s* indicates propagation of the entire picture to the left. The
corresponding eigenfrequency with positive imaginary part would have stream-
lines slanted to the right, with the entire picture propagating to the right.
The physical mechanism responsible for overstable modes in the config-
uration described may be understood with the help of Fig. 30. Within the
range of varying conductivity, bounded above and below by half-spaces,
slanted layers of alternating low and high conductivities 0% and OB are
postulated. Application of an electric field in the horizontal direction
in the leftmost layer leads to surface charge accumulation at the slanted
interfaces, so as to yield a continuous normal current density. Interfaces
bounded on the left by low conductivity and on the right by high conductivity
experience an upward-directed shear force due to the tangential electric
field component. Similarly, interfaces bounded on the left by high conduc-
tivity and on the right by low conductivity experience a downward-directed
shear force. The resulting cellular fluid motions, then, alter the conduc-

tivity distribution by drawing in less conducting fluid from the upper half-



-133-

2.0 T T T T \|
\\\\\
sh \\\\ )
N
. " - /)
X/ <—Real Imaginary ——s—"
05+ i
0.0
- 0.5 —~
_IO I N | & | L |
“ 03 -o02 -0l 0.0 0.l 0.2 0.3
Vx
Figure 27. y_versus x/A, first eigenfunction, kek*=1.6412,

T/t = 10 ¢, R = 25.9




20

n
T

X/

Q.5

s\-——lmagmqrg

\\

~

Real ———X

0.0

——

- 1.0
- 0.6

Figure 28.

- 04

)

T/t = 10°%, R = 25.9

v, versus x/A, first eigenfunction, k = k*= 1.6412,



Figure 29.

1.C

O.
o

X/

Velocity streamlines, k = k* = 1.6412, T/T = 10 * ,

R = 25,9



-136-

Figure 30. Physical Mechanism
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space and more conducting fluid from the lower half-space. This effect-
ively propagates the slanted layer structure to the left. This corres-
ponds to eigenvalue solutions with s; < 0.

If rightward-slanted layers are postulated at the outset, the
resulting surface charge accumulations, fluid motions, and conductivity
alterations lead to a rightward-propagating structure, corresponding to
the mirror-image eigenvalue solutions with s; > 0.

Reversal of the equilibrium electric field direction does not alter
the physical mechanism as described here. The propagation direction de-
pends only upon the assumed direction of slant and orientation of high and
low conductivity regions. Maximum growth rate as a function of wavenumber
is attained by optimizing cell size (and resulting slant angle) with res-
pect to the competition between electrically driven shearing forces and
retarding viscous drag and inertia.

The direction of propagation for a given slant direction is, in
general, defined as follows: If Vco is a vector normal to the inter-
face and pointing toward the region of higher conductivity, and k is a
vector obtained by crossing the direction of slant through an acute angle
into the horizontal direction, then the layers propagate in the direction
of the vector VOO x K.

It is important to realize that we have characterized mathematically,
in Section, 1V.B, and physically in this section, an instability associated
with the region of conductivity variation between two regions of constant
conductivity. An abrupt discontinuity model, as presented in Section III.C,

can never account for this sort of internal instability. 1In the language
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of that section, the coupling mechanism is "within the interface itself".
Nevertheless, the constant conductivity regions bounding the layer are
disturbed by the instability. That is, the eigenfunctions -- potential,
current, velocity, and stress distributions -- extend into the bounding
regions. Thus, the instability provides an electrohydrodynamic mechanism
for conductivity, mass, and momentum transport across the laver. Onr
analysis provides a clear indication that, in situations involving con-
ductivity gradients normal to an applied electric field, internal clec-
trohydrodynamic coupling can result in an instability tending to augment

the conductivity diffusion process.

D. Rigid, ‘Equipotential Boundaries

To further distinguish the instability modeled in Sections IV.B and
IV.C from a surface-coupled instability, we remove the fluid half-spaces
and bound the varying conductivity layer in equilibrium tangential elec-
tric field with rigid, equipotential (in the perturbation sense) bound-
aries. In this way, we isolate the "interface" region, identifying
mechanisms to be identified solely with the internal dynamics of the laver.

The boundary conditions become, simply:

- B . ,

= ¢ = 0 (4.109)
=V = 0 (4.110)

= v = 0 (4.111)

or, in terms of the matrix notation of Eq. (44):
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(vi = 0] (4.112)

where |0] is a column matrix of six zervoes. Rewriting the transfer recla-

tions which describe the layer, Eq. (70), we have:
v = o] '1s] . (4.113)
Thus, combining Eqs. (112) and (113), we have, for non-trivial |S]:

D' ZDet [Q]7F = 0 . (4.114)

Equation (114) is the dispersion relation for the layer bounded by

rigid, perfectly conducting walls. From Eq. (70):

Q"' = mMmiel”t . (5.115)

In order for (114) to be satisfied, then, either

D" = Det [H] = O (4.116)

or =1 .

Det [G] = 0 (4.11.,

The search for zeroes in D', then, may be carried out without doing a
matrix multiplication by searching for solutions to Egs. (116) and (117).
No solutions to Eq. (117) are found in the finite s plane, and thus (116)
determines all the solutions to (114).

The procedure used to search for solutions to Eq. (116) is identical
to that used in Sect.on IV.B. to search for solutions to Eq. (86). In
characterizing the functions D'(s) and D"(s) empirically by computing their

values at grid points in the s plane, we find the following:
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D' is analytic throughout. However, D" has a branch cut extending
from a branch point on the negative real axis, leftward to infinity. The
branch point corresponds to an occurence of double roots in the solution
of Eq. (26). Tor example, for the choice of parameters T/T =1, R = e, we

can determine directly that, at s = - k+j0, the roots of Eq. (26) are:

Y = k, k, -k, 1-k . (4.118)

The branch cut in the four roots to Eq. (26), ln’ due to a reordering of
the names Yy, ¥,, Y,, ¥,, leads directly to a branch cut in D"(s). As
described in Section IV.B, D" is pure imaginary and reverses sign along
the branch cut.

Computation of D" at grid points in the s plane leads to the dis-
covery of a set of eigenfrequency solutions to Eq. (116) -- and, hence, to
Eq. (114) -- in the right half-plane similar to the set found in the half-
space bounded model of Section IV.B. As was the case for that model,
there is an infinite set of eigenfrequencies in the right upper half-plane
(with mirror images in the lower half plane), and any one eigenfrequency
has an infinite set of eigenfrequencies between itself and the origin.

In addition, for the present problem, a set of zeroes lying directly
on the negative real s axis (superimposed on the branch cut) is found.
These eigenfrequencies correspond to pure decay (no oscillation) in time.
One such zero has the least negative Re s (slowest decay), and the set
extends leftward along the real s axis without bound. That is, there is
no most rapidly decaying eigenfrequency. Note that, because D" is not
analytic across the branch cut, the search routine described in IV;B need

not necessarily converge on zeroes lying on the branch cut. Nonetheless,
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as it happens, it does. Whenever there is doubt as to the validity
of a scarch for a particular zero, or as to whether all valid zeroes
have been found due to the existence of the branch cut, we simply resort
to dealing with D'(s), a function involving no branch cut. We find, how-
ever, that D and D" have the same set of zeroes, with one exception. This
occurs at the branch point where D" has a zero, but D' does not. We might
jump to the conclusion that this zero in D" represents an unobservable mode,
i.e., one which involves internal motions of the layer, but for which the
surface stresses and normal current densities are zero. This., however,
is not the case. To understand this situation, we must, as in Section
IV.B., determine the distributions of perturbation complex amplitudes of
physical quantities as functions of the x-coordinate (the eigenfunctions).
For the present problem, this is accomplished as follows:

Having found a value of s where Eq. (116) is satisfied, we desire a
non-trivial column matrix [A] satisfying Eq. (43). Analogous to the man-
ipulations performed on [F] in Section IV.B, we take linear combinations
of rows in [H] so as to produce zero entries everywhere below the main
diagonal. Having performed such manipulations, because D" = 0, the 6,6
element will be zero. The last equation represented by Eq. (43) is satis-
fied by an arbitrary entry for the bottom element of [A]. We arbitrarily

give this element the value 1 + jO, i.e.,

= 1+ j0 . (4.119)

al;e>

Then, the manipulated set of equations derived from Eq. (43) may be used
to determine the values of all the other variables in [A], consistent wi.h

Eq. (119). We are herein setting directly one of the coefficients of the
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’Y X/L\ ~

-0 . - . .
c components of ¢, i.e., $ . By contrast, in Section 1V.B., we

. . . N
set the entire function, evaluated at one surface, i.e., &~

[3

This dis-
tinction is immaterial to the characterization of eigenfunctions. We
desire only, in one way or another, to excite the eigenfunctions and
observe the spatial distributions they imply.

We return now to the branch point, where D" has a zero but D' does
not, and consider the eigenfunctions corresponding to this apparent cigen-
frequency in D"(s). We recognize, first, that this zero in D" has occurred
as a result of a double root in the solutions, Iﬂ. to Eq. (26). The
double root and the dependence of the ith column of [H] on only Y; (see
Eqs. (46)-(51), defining the elements of [H]) immediately imply two iden-
tical columns in [H] , and hence D" = 0. Similarly, the double root implies
Det [G] = 0, and thus, a singularity in Det [G]—l. For this reason, we
may have D" = 0 with D' # 0.

Now, consider the matrix manipulations involved in determining the
eigenfunctions. To be specific, call the double root Y, = Y,. Then, the
fifth and sixth columns of [H] are identical. Manipulations on Eq. (43)

then will yield the form:

1 H' H' H' H' H' Q-T 6—1

12 13 [ 15 15 —1

0 1 H' H' H' H' o] 0
23 24 25 25 -2

0 0 1 H' H ' H' ¢ 0

*» 35 35 -3 | =
0 0 0 1 g ' ® 0 (4.120)

45 us -4

0 0 0 0 1 1 .25 0

LB 0 0 0 0 0 -25 0
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Thus, 2; is arbitrary. Now, constructing the other elements of fal,

using Eq. (120):

= -9 (4.121)

@ =é=2 =9 = 0 . (4.122)

yo= =V (4.123)
-5 -6

1'% = Yy =Yy =¥ = 0 . ([4.124)
-4 3 -2 -1

Thus, from Eqs. (27) and (28):

N éls x/b o~ X x/A

9 =2 +9 e = 0 (4.125)

~ X, x/h A Y, x/A

b= ¥ e +Y e = 0 . (4.126)

The eigenfunctions, then, are trivial-- i.e., identically zero across
the layer. The situation may be further complicated by other double roots,
or even triple roots, but the same manipulations will always lead to triv-
ial solutions. Thus, having discounted the zero in D" at the branch point,
we find that D' and D" have the same set of non-trivial eigenfrequencies.

Figures 31 and 32 describe the functions D' and D" in the complex s
plane. Figures 33, 34, and 35 display the first eigenfunction §x at T/t =
1, R=e and k = 10_3, 1, and 10, respectively. As in Section IV.B., Fig.
35 shows more variation across the layer of the first eigenfunction, due

to a large value of k. The second function, at the same value of k,
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displays even more variation, as shown in Fig. 36, where we plot the
second eigenfunction éx at T/t =1, R =e, k = 10.

The first two eigenfunctions (real and imaginary parts in separate
figures) are shown at T/T = 1, R =e, k = 1, for ;x in Figs. 37 and 38
and for é in Figs. 39 and 40. Note, in Figs. 39 and 40, that the poten-
tial distribution provides no obvious indication as to which eigenfunction
corresponds to the first and which to the second eigenfrequency. On the
other hand, the velocity distributions in Figs. 37 and 38 characteristic-
ally involve more variation for the second eigenfrequency. As in Section
IV.B., we emphasize that the ordinate scales in these eigenfrequency plots
are without meaning. Even the relative magnitudes of two modes, shown on
the same figure, must not be compared, since they provide only an indi-

Y. x/A

cation of the importance of the e component of the function (the one
excited to amplitude 1 +j0) in each case. Only the shapes of the functions
of x are of importance.

Finally, we describe the decaying eigenfrequencies by plotting the
two slowest decaying eigenfunctions at T/T = 1, R = e, k=1, for Iix'
and L§| in Figs. 41 and 42, respectively, Note in Fig. 41 that !ixl is,
as far as we can see, symmetric about the center of the layer. The fluid
mechanics for this mode apparently is essentially uncoupled from the assym-
metric electrical subsystem. The coupling from the electrical to the
mechanical subsystem, as manifested in the electrical force contribution
to the Navier-Stokes equation, is negligible. This is due to the fact that,

even for the slowest decaying mode, the eigenfrequency is relatively large

in magnitude. Because the coupling term enters with a 1/s dependence, it
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is smal! compared to the other terms in Eq. (18). Thus, the velocity
eigenfunctions are the same as would be found with no electrical force
in the model.

The return coupling, i.e., the effect of the fluid mechanics on the
clectrical subsystem through convection of the conductivity gradient, is
still present. The potential distribuation in Fig. 42 is, of course, sen-—
sitive to the equilibrium conductivity gradient; hence, it is not symmetric
about the center of the layer. If we were to solve the purely fluid
mechanical problem of a viscous layer bounded by rigid walls, we would
find a set of purely decaying eigenfrequencies, essentially coincident
with those found here. Only to the extent that the electrical-to-mechani-
cal coupling link remains finite is there a shift in position of the
eigenfrequencies.

The behavior of Re s, for the first two growing eigenfrequencies,
as a function of k, is displayed in Fig. 43 for T/t = 1, R =e. The
curves have forms much like those obtained in the half-space-bounded
problem of Section IV.B., going to zero at small k and at large k, and
peaking at an intermediate k*. It would be straightforward to proceed
with an analysis like that of Section IV.B., determining k* and s* as
functions of the parameters T/t and R. However, our intention here is
not to solve the rigid, equipotential boundary problem in detail; we have
demonstrated that the region of conductivity variation, even when isolated

and rigidly bounded, displays growing (unstable) modes.



Re s

~

-2
.32 X10

C.eX10

-2
0.00X10

-157-

«—— first eigenfrequenc |

< Socond

eigenfrequency

et e

R S ——

S

Figure 43.

Re 8 versus k, T/T =1, R= e

24



-158-

CHAPTER IV BIBLIOGRAPHY

1. Betchov, Robert, and Criminale, William O., Jr., Stability of
Parallel Flows, New York: Academic Press, 1967, p. 78.




-159-
CHAPTER V. NUMERICAL INTEGRATION TECHNIQUE FOR SMOOTHLY INHOMOGENEOUS

LAYERS

A. Varying Permittivity Layer

An electromechanical problem involving coupling throughout the bulk
between electric or magnetic fields and a continuous medium, in which the
equilibrium material properties are smoothly varying functions of position,
generally results in differential equations with non-constant coefficients.
Thus, although such a problem may be well specified, a straightforward
analytic solution of the governing equations is not, in general, possible.
Consider, as an example involving no mechanics, a planar region with per-

mittivity a function of the x-coordinate, as shown in Fig. 1:

Y ny
A
A
G ‘.
z
R
'&;B ’]‘)’B
’ X

Figure 1. Planar region with permittivity a function

of transverse coordinate

B
Spatially periodic potentials have complex amplitudes %a and ¢ in

the planes x = A and x = 0, respectively (both arbitrary functions of time

since the governing equations will involve no dynamics).

o(x = b) = Re §le IKZ (5.1)
o(x = 0) = Re gle ke (5.2)
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Our object is to determine transfer relations, specifying the normal

. . . Vo avo v 3 AN
electric displacement amplitudes, DX = € Ex and DX = Ex in terms

gve) V3 . . .
of ¢ and ¢ . Due to the presence of a polarization charge density, the

potential variation across the layer will be other than LaPlacian.
The governing differential equations for the layer are Eqs. (2.2),

with no free charge, Pes and (2.4):

VeeE = O (5.3)

E = - Vo . (5.4)
In terms of complex amplitudes, Eq. (4) becomes

y s
Ex = - D¢ (5.5)

and

]

n,
E, ikg (5.6)

fthere D = d/dx).
Expanding Eq. (3):
eV'E + E*Ve = 0 (5.7)

or, because Ve = E% De:

N Y v B
s[DEx - JkEZ] + ExDe = 0 . (5.8)

Combining Egqs. (5), (6) and (8):

[D? +D?€ D-k2¥= 0 . (5.9)

Equation (9) is a linear differential equation with non-constant coef-
ficients. In the special case € = constant, De = 0 and Eq. (9) reduces

to LaPlace's equation.
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To gain some insight into the effect of a nonuniform permittivity,
we recognize , before proceeding with a numerical technique for integrat-
ing Eq. (9), that one particular permittivity distribution does yield a

constant coefficient Dc/e, and hence permits straightforward analytic

solution -- that is, exponentially varying. If we take
x/4
B (e
e(x) = ¢ (— (5.10)
EB
we have:
be _ 1n R
e T T T A& (5.11)
where R = ¢B/e® . (5.12)
Combining Egs. (9) and (11):
2 - 2R p 2§ = o . (5.13)

Equation (13) is linear with constant coefficients. Assuming solutions

of the form

LIONENG (5.14)
we have

Y=%[112Ri%]5 Y, (5.15)
where: 3z (l“AR)Z + 4k, (5.16)
Writing out ¢(x) = <1>1eY+x + <1>2eY'x , (5.17)

solving for the coefficients @1 and @2 subject to the conditions

B

< ve find:

%(0) = EB and %(A) = %a, and computing %;x and D



;B;‘ 5a(Y+ eY+A‘Y_eY'A) "538/(S %(tl

i
o
1
1
-
o]
~
o
!
™
™
~~
;<
®
£
i
<
+
®
i
N’
=

(5.18)

It is convenient to normalize Eq. (18) as follows:

. . %: . = . ’\l:__A_m . l:A_ Z 2
Define: ¢ = % 3 k= kb Qx = o DX 5 =3 = /khx R)“ + 4k
(5.19)
Y, = Yv,.0 =1 In R +~l Y_ =Y A= l{in R - L
T 2 sy =" 2| S
Then:
-3 T T >
—X 1 12 -
= (5.20)
38 T T 3B
—X 21 2 -
Z-+ Y - Y Y
Y& - Yo et Yest_y,e--
where: T = T = -R (5.21)
1 ol+ - ol 2 olt - oY -
T o= 1T = - RS
12 21 ot _ oY

We now proceed with a technique for numerically integrating Equation
(9), and hence for determining the transfer matrix in the case of an arb-
itrarily prescribed (smoothly varying) permittivity. We begin by writing
finite difference equations for a thin layer, of thickness d, as shown in
Fig. 2, with variables at the lower and upper boundaries of the incremental

layer identified by subscripts i and i+ 1 respectively:
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Figure 2. Variables at boundaries of an incremental layer.

5. -3
N 1~ O
g, = —1td—l (5.22)
DS, . ~ DS,
and Dz'qv)i _ 1+1d 1 . (5.23)

A
Using Eq. (9) to express Dzlfi in terms of chi and ’&;i’ and rewriting Egs.

(22) and (23):

0
q>i+1 I 1 d —| ;Ei
= (5.24)
2 —q[BE
Da;iﬂ dk® 1 d( € )i o§,
or, in normalized form:
§=%;: o=z a¥idaz9; k= (5.25)
n,
g)-i+l 1 d Ei
= (5.26)

2 — ————
Pﬁi-‘-l dk 1 Q(A € )i -D—Qi

Equation (26) tells us how to compute § and _D_’(}é at the upper boundary of

an incremental layer, given the same quantities at the lower boundary.
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A 4"
Applied repeatedly it allows us to find ¢ and Dp through the bulk
VB 3 . v .
of the layer in terms of ¢ and D¢ by repeated matrix multiplications.
If the laver is broken into n increments of equal thickness, d = 1/n,

then after % successive multiplications, x = 2dA, and:
o] 1 d 1 d 14

p¥Go | [aK’ 1-9(”—8) 4K l-d(A 95) a ¥ 1—9_(A-D€—E) 1 bé®
-1 22

e - e A
(&)
(5.27)
or -
> Y A
e L ) L i
= 1 12
= . (5.28)
D3 (x) LG L, n3?
When £ =n, x = A and: EOL M, M, EB
= g (5.29)
e’
i) My My PE
where Mij = Lij ) . (5.30)
Finally, rearranging Eq. (29) and computing the normalized dis-
placements:

pge) o v
—BX 1 € ﬁ Tll T12 Q
%R _.B B B
P—x € _D_%_ TZI Tﬁ E—

where



T _ Mz? T = M M11 MZZ
1n ’ 12 21 "
Ml? 12
M (5.32)
11
T = - R'ﬁi- 5 T22 = R'ﬁ——
2 12 2

and, as before, R Eif%ea . Equations (27)-(30) allow us, by marching
across the layer of varying permittivity, to obtain variables at the

x = & plane in terms of those at the x = 0 plane. Rearrangement then
yields the transfer relations in their conventional form... Egs. (31)-
(32).

Note that we have a check on the accuracy of this numerical
technique for the special case of an exponential permittivity distribu-
tion, the exact solution being expressed in Egs. (20)-(21). An even
simpler check may be performed in the case of uniform permittivity,
where the transfer relations are simply LaPlacian. In terms of the

above-introduced normalization and transfer matrix as defined in Eq. (3D,

the matrix entries for the uniform permittivity case are:

T, = T, = k coth k
K (5.33)
Te = Ty T~ Sinh

In fact, for both the constant and exponential permittivity distributions,
it may be shown that the exact solutiomns, rewritten in the stepwise form
of Eq. (24) and specialized to layers of thickness d << 1/k, yield the
same finite difference integration formulas given by Eq. (24.)

Another check upon the accuracy of the numerical integration tech-

nique is available by comparing the cross terms, T, , and T, » of Eq. (31).
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Regardless of the permittivity distribution, energy considerations
require the reciprocity condition le = T21‘ This condition is numer-
ically satisfied to a degree dependent upon the step size d used.

As examples of the use of the numerical integration technique,
Figures 3 and 4 present results for three different permittivity distri-
butions. 1In Fig. 3, the elements of the matrix L, as defined by Eq. (28),
are plotted as functions of position through the bulk of the layer x/4,
for constant permittivity, and for permittivities decreasing linearly
and exponentially from bottom tc top, reaching a value at the upper
surface 1/5 as large as at the lower. (In the cases of constant and
exponential distributions, numerical integration results are in agree-

ment with those obtained by evaluation of the exact solutions.) For

this plot, in each case, k = 1. Note that it is only the last values

of the elements of L, i.e., those at x/A 1, that matter in computing

the elements of T. Further note that L,,= L,, for the constant and ex-
ponential distributions, but that the cross elements become distinct
for the linear distribution.

In Fig. 4, the elements of the matrix T, as defined in Eas. (31)
and (32), are plotted on log-log paper as functions of k for the same

three permittivity distributions. The elements T11 and T22 are positive

while le and T21 are negative for each of the distributions.

B. Varying Conductivity Layer in Equilibrium Tangential Electric Field--

Finite Difference Equations

The transfer relation technique used to characterize the expon-
entially varying conductivity layer in equilibrium tangential electric
field in Chapter IV can, at least in principle, be extended to config-

urations described by non-constant coefficient differential equationms,
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using a numerical integration technique analogous to that described
in Section V.A. Thus, the situation is exactly that described 1in
Section IV.A., where we allow Oo(x) to remain a general function. TIn
order to deal with differential equatioms no higher than first order,
we use, instead of Egs. (4.7) and (4.12), a set of ten first order
equations in ten unknowns. The x and z components of the Navier-Stokes

equation (2.66) are:

stDVX = DSXx - Jkaz (5.34)
S(sz = DSXZ - JkSZZ + Eopf (5.35)

where we have written the equations in terms of perturbation stress
~ ~

tensor components Sxx’ S and Szz’ defined by:

Xz
S =-p+ 2y, (5.36)
5. = nidv, - kv] (5.37)
EZZ - - p- 2njk;z . (5.38)

The incompressibility condition, Eq. (2.65), yields:

~ ~

Dv, - jkvZ = 0 . (5.39)
A curl-free electric field, Eq. (2.1), requires:

~

jkE_+ DE, = 0 (5.40)

and Gauss' Law, Eq. (2.2), becomes:



-170-

DE_ - jkE, = pf/e (5.41)
The equation of charge conservation, neglecting charge relaxation ——
Eq. (2.49)--- yields:

OO ~ . ~ ~

= Pg - JkE,o + (DOR)E, = o . (5.42)
Finally, from Eq. (2.41) the constant conductivity condition is:

so + (DGO)VX = 0 (5.43)

Algebraic elimination of the four variables p, Szz, Pg and 0 leaves

a system of

V_s V
X z

~

* Ez,

~

Dv
X

~

Dv
z

~

DE
z

~

DS
XX

~

DS
Xz

A

DE
X

We proceed,

six first order differential equations in the six variables

S , S and E_:
xx’ “xz X
= jkvz (5.44)
- kv +L1s (5.45)
JEVy n “xz :
= —jkEX (5.46)
= sOvX + jk SXz (5.47)
. DO’ A ~ ~ DO
- |k€ 2 o) 2 . o
. EO o Vo + [sp+ 4nk ]vz + Jkax+ €E, oq Ex (5.48)
: Do, ~ ~ Do ~
_dk . Mo ‘ - 2o
S E, Oo x + JkEz 5 Ex (5.49)

next, to define a set of normalized variables:



/\2
T 0z nfee? : T=E— . £z x/b
o n
- d _ _
d= 7 5 k=kKb 5 s = 8T
r ~ ~ ~ ~ g ~ S
— T — T — XX . - X2
VT VT P Y2 TVe R G 3 FEE? G %% w7 50
i _ % ;, _Ex E _E, 3 _ Ik
=y - ; 5 = - ’ = ’ _—
EOA X E -z E, —X GaEO
n _ "o . _ADGO_ 1 9b,
= - 5 n = = o e
-0 o, 1 O, 1_10 d&

Finally, Egs. (44)-(50) are used to write a set of finite difference
equations for an incremental layer of thickness d, identified by superscripts

i and i+l at lower and upper boundaries respectively:

oo ot 4okt (5.51)
-x —X —=—z
~ vl L it !
v, = jkdv " +yv - +d5S, (5.52)
o si_ e (5.53)
E, E, - jkd E_ .
o Iyt estaskast (5.54)
=X =T = X =X == =z
~ it jkd ~ ~ s ~ ~ s N
s L ht 95 +d[s T+ 4]y +ikd S +S '+ 4dn'E]
=z s - X == ==z == =X ——1 =X
(5.55)
ikd .. ~ o
i+l _ —— ., 1 . i i i
E - - ——nlv +ikdE +[1-dh'E, (5.56)

~ ~

Equations (51)-(56) allow us to compute the six variables Vs Yoo _I;z,

~ A 2

§'x’ S,, and E  at the upper surface of an incremental layer when the same

variables are known at the lower surface. Applied repeatedly, they may be



-172-

used to '"'march' across the thickness A, and determine vy o XZOL, _E_Za,
Sa,SC" and Ea 1'ntermsova,vB,E8 ,SB,Se ,andEB The
—-x ’ = —-x —x > —z ’ =z -x ’ =z -x
results, then, are the 36 elements of a matrix [L], defiped by:
: T T r 7]
R L L L L L v B
| X % 11 12 13 14 15 16 -X
v L L L L L L 8
-2 21 22 23 24 25 26 -z
- 1 I ~
&l L L L L L L g
—Z = 31 32 33 3u 35 36 -2 (5.57)
~ I ~
s L L L L L L s B
- 41 42 43 4y 45 46 X
s % L L L L L L b
-z | 51 52 53 54 55 56 2
g L L L L L L g
X 61 62 63 64 65 66 ] —X i

Knowing the elements of [L], a matrix manipulation program, as des-
cribed in Appendix B, is used to compute the 36 elements of the transfer

matrix [T], defined by:

AT T 7o
s“l T T T T T T v
- 11 12 13 14 15 16 X
s B T T T T T T v?
—X 21 22 23 24 25 26 —X
sy T T T T T T v

- 31 32 33 34 35 36 (5.58)

~ ~ 0

s B T T T T T T Y

=z b1 42 43 4y 45 46 -z

o T T T T T T S

2y 51 52 53 5y 55 56 -2z

~ ~ i

8 T T T T T T EB
_“X_ |61 62 63 64 65 66 _1 -z

Finally, J is related to E :
-x =x
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to determine the layer transfer relations:

where ~ .

[S] =

and [Q] is given by:

11

21

31

[Q] .

b1

51

RT61

[Q] V]

12

22

32

42

52

RT62

RT

13

23

33

43

53

63

(5.62)
Ty, kT
T,y kT,
T,, kT,
T,, 3KT,q
Tg, jkTss
RT

64

jkRT,__ jkRT
=" Tg5 J= sﬁj

I

JKT,

kT, ¢

JKT, ¢

JKT ¢

<

(5.59)

(5.60)

(5.61)

(5.63)

(5.64)
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C. Varying Conductivity Layer in Equilibrium Normal Electric Field --

Finite Difference Equations

Provided we use a numerical integration technique to deal with the
governing differential equations, we can describe a varying conductivity

layer with equilibrium electric field oriented normal to the layer surfaces

as shown in Fig. 5:

AX

o) T f T f T E, ()T,

Figure 5. Layer of varying conductivity in normal field.

In equilibrium, the fluid is static:

vE = o - (5.65)
and supports constant current density Jo 1% . Thus:
Eo(x) = Jo/oo(x) . (5.66)

Gauss' Law, Eq. (2.2), then determines the equilibrium charge density dis-

tribution:
o - - EJO Dco(x) Dco(x)
Prot™) = 0, (¥ 0, (x) €Eo (x) 0, (%) (5.67)
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The corresponding equilibrium pressure distribution, defined such that

P = pp when EO = 0, is:

P = Pyt %—EEOZ(X) . (5.68)

(st—sz). The dyna-

We consider perturbations with z—-t dependence e
mics are described by first order differential equations deriving from
the Navier-Stokes equation, stress tensor component definitions, incom-
pressibility condition, electroquasistatic Faraday's law, Gauss' law ,

charge conservation, and constant conductivity condtion, in correspondence

with Eqs. (34)-(43) of Section V.B., thus

sovX = DSXx - Jkaz + pfo Ex + Eopf (5.69)
spv2 = DSxz - ijZZ + pfo Ez (5.70)
Se = = Pt 2nDv, (5.71)
SXZ = n[sz - jkvx] (5.72)
zz = ~ P = 2nikv, (5.73)
DvX - kaz = 0 (5.74)
JkEX +DE, = 0 (5.75)
DEx - JkEz = pf/E (5.76)
O'. /\ pfo ~ ~ ~
- — U a =
og + —— 0 + EGDI + (Do )E 0 (5.77)
SO + (Doo)vX = 0 . (5.78)

Our development proceeds in complete analogy with the analysis for

the tangential field equations of Section V.B. Algebraic elimination of
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the four variables p, Szz’ pf and 0 leaves a system of six first order

equations in the six variables Vs vz, Ez’ Sxx’ sz’ and EX:
Dvx = kaZ (5.79)
Dv = jkv +1s (5.80)
z X N Xz
DEZ = - jkEx (5.81)
o 2
~ t.EO D GO pfOEo DGO ~
DS =1sp - 5 5 vX
XX s o s o
. DO ~ ~ DO' ~
_ ik g2 0O . _o_
< eES oy v, + Jksxz + eEO % Peo EX (5.82)
~ _ 2 ~ _ ~ . N .
DSxz [sp + ka:] v, pfoEz + _‘]ksxx (5.83)
A D o p DO. R ~ . ~
DE_ = él:Eo — + go 00]V +35E0——0°" + JkE,
o od* 8 0
- 239 E (5.84)
o] X - '
o]
We use the normalized variables:
_ _ A2 —
T = 2 > 5 T = pa ; & = x/A
€(E) n
_d _ _
d = N k = kA 5 = ST
v = v % 3 = v -% s S = sz S = Xz
= ; = 2, = 2
- X z z —x e (E%) 2z € (EY)
. ~ N N (5.85)
sz 0.5 osxon B o
J - 3 == - ’ =, - 3 ~. -
EaA X B Z B X e
h = % : h = A_DOQ_ - 1 dll'0
-0 - g& e Go h £
LI
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. A"%0, 4 dThy 1

h, = = T T2 LT

z % b, ar h

o = = A = -
where o7 = Go(x-—A) and E¥ = Eo(x =A)

(5.86)

to write a set of finite difference equations for an incremental layer of

thickness d, identified by superscripts i and i+l at lower and upper bound-

aries ,respectively:

e B (5.87)
Tx —x ===z
v - ykdvi +vt+as’ (5.88)
—2Z - —X —2 —_ =2
i - gt ykae? (5.89)
—2 —Zz — =X
i i, i
s L 4ls XL 2o IS Y i
Sy ol RE I TCICS NN ) PO PRI b
n, B, it
Qi
A S o i el [
+ S + jkd S+ 2d — | E (5.90)
- - N
—0
e} . A~z hiw,\ . ~ = ~ .
g I+ dsl+4k2]vl+d[—11El+jde1+51 (5.91)
=z == = |~z =|h "z - X —2
h ]
1 i2 . i
Zx s .f_li Y + s L_hi v +JE£EZ+[_§£1]E‘X
© -0
(5.92)

Successive use

defined by Eq. (57).

The matrix manipulat

of Eqs. (87)-(92) yields the 36 elements of the matrix [L],

ions given in Appendix B yield the

elements of the matrix [T], defined by Eq. (58).

A

Finally, Iq

~

is related to E :
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J =hE - —uv (5.93)
—X _0"‘)\ s X

~

and E7 is related to ¢:

E, =ike (5.94)

to determine the elements of the matrix [Q], defined by Eq. (61), in terms

of the elements of [T]:

T Tp T Ty kT KT
T To T Ta JkT,e kT,
T, T, T, T,  JkT KT
(@} = . . (5.95)
Tul Tuz Tna Tuu JETus J—liTue
bt
5175 | T Tes Ty, kT 3KTg
h
RT  {RT,, - S RT,, RT jk RT | JRRT
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CHAPTER VI. TANGENTIAL FIELD EXPERIMENTS

A. Low Field Instability and Correspondence with Theory

Experimental studies involving the application of an electric
field tangential to the interface between two miscible fluids of iden-
tical mechanical properties but disparate electrical conductivities
lead to unexpected phenomena. Figure 1 shows a drawing of an elec-
trohydrodynamic flow cell.

Microscope slides allow optical projection through the cell from a
tungsten arc point light source. Two fluids enter via respective inlet
tubes at the top and bottom. Removal via the outlet tubes at the sides
allows formation of a clean horizontal interface midway up the cell.

An electric field is applied tangential to the interface by means of
wire electrodes running vertically along the sides.

The liquid used is Mazola corn oil. Pure corn oil enters at the
bottom inlet tube. That entering at the top inlet tube is doped in
electrical conductivity with Shell anti-static fluid ASA-3 (85001) and
dyed with Fisher Scientific Flaming Red Dye A-801 (Lot 770942). Depend-
ing upon the experiment to be performed, the lower fluid is used straight,
as doped and dyed, or diluted with pure corn oil to 1/20 concentration
by volume. The various physical properties are listed in Table I.

Still photographs obtained by projecting the image of the cell
directly onto the shutter of a 35 mm. camera, with relatively low values
of applied electric field, are shown in Figs. 2 and 3. The lower (clear)
fluid is pure corn oil, while the upper (dark) fluid is the 1/20 mixture
of doped and red-dyed corn oil. The conductivity ratio in this case is

R = 25.9.
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Table TI. Corn 0il Properties

0.922 x 10® Kgm/m"’.

It

Density: 0

1]

Viscosity: n 6 x 10 > Kgm/m-sec.

il

Permittivity: € 3.1 g, = 2.74 % 107"} farad/m.

Conductivity:

Pure: O 4.05 X% 10_11 mho/m.
1/20 Mixture: o = 1.05 X 10~ mho/m.

Straight doped and dyed: o0 = 8.1 X 10> wmho/m.

For each of the sequences shown, a clean interface is formed, then
allowed to diffuse for a known time before application of the field. In
each of the four sequences shown in Fig. 2, the interface has diffused one
hour; in the first two sequences of Fig. 3, it has diffused four hours; in
the last sequence of Fig. 3, it has diffused nine hours. Thus, assuming

diffusion is unaffected by the cell walls, the sequences in Fig. 3 begin

o

with interface structures twice and three times as broad as those in Fig.
Photographs are taken at the indicated times after the instant the electri-

cal source is switched on.

In each sequence, note the appearance, at the scale of the interface
structure, of slanted fronts, originating at the outer edges and propagat-
ing toward the center. The distances between fronts in the sequences in
Fig. 3 are, respectively, approximately twice and three times those in
Fig. 2. Distance between fronts appears to be independent of the value

of electric field, depending only on the initial interface structure.
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(a) 0.0 sec. (b) 187.5 sec. (c) 375 sec. (d) 750 sec. (e) 1125 sec.

Sequence (a) - (e): E = 1.21 x 10% V/m (interface diffused 1 hour)

) ] ] i i | ]

(f) 0.0 sec. (g) 83.3 sec. (h) 166.7 sec. (i) 333.3 sec. (3j) 500 sec.

[\

Sequence (f) - (j): E=1.82 X 10“ V/M (interface diffused 1 hour)

(k) 0.0 sec. (1) 46.9 sec. (m) 93.7 sec. (n) 187.5 sec. (o) 281.5 sec.

Sequence (k) - (o): E = 2.42 % 10* V/m (interface diffused 1 hour)

P I .
ot [RESRESR—,
’

L4 L4 - -

(p) 0.0 sec. (q) 30.0 sec. (r) 60.0 sec. (s) 120.0 sec. (t) 180.0 sec.

Sequence (p) - (t): E = 3.03 x 10* V/m (interface diffused 1 hour)

Figure 2. Photographs of experimental cell fluid component dis-

tributions
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. | - - 3

(a) 0.0 sec. (b) 83.3 sec. (c) 166.7 sec. (d) 333.3 sec. (e) 500 sec.

E = 1.82 x 10* V/m (interface diffused 4 hours)

Sequence (a) - (e):

(g) 30.0 sec. (h) 60.0 sec. (i) 120.0 sec.

-

(f) 0.0 sec. (j) 180.0 sec.

Sequence (f) - (j): E = 3.03 X 10* V/m (dinterface diffused 4 hours)

(k) 0.0 sec. (1) 30.0 sec. (m) 60.0 sec. (n) 120.0 sec. (o) 180.0 sec.

Sequence (k) - (o): E = 3.03 X 10* V/m (interface diffused 9 hours)

Figure 3. Photographs of experimental cgll fluid component dis-

tributions
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The slant angles of fronts vary between photographs, but lie in the
range of 20° - 30°.

The respective time intervals between photographs are scaled to 1/E2.
Note that, with this scaling, the sequence of events appears quite simi-
lar for sequences with identically diffuse initial interfaces. In real
time, for example, the first sequence in Fig. 2 evolves over a period 6%
times as long as the last.

The phenomena observed in Figs. 2 and 3 are, presumably, associated
with electrohydrodynamic instability at the scale of the structure of the
interface. Thus, it is matural to consider the degree of correspondence
between experimental observations and the theory of Chapter IV.

Comparison of the slanted fronts in Figs. 2 and 3 with the cells in
Fig. IV.29 requires that the photographs be turned upside down, so that the
more conducting fluid is on the bottom. Alternatively, the cross-product
defined in Section IV.C. may be used to see that the fronts slant and
propagate in the manner described by the theory for fluid cells.

It is essential to recognize here that detailed correlation between
experiment and theory cannot be claimed for two reasons: first, the exper-
imental configuration is not well enough controlled, at the scale of the
processes described. Second, the detailed evolution of the instability
from initial noise is not simply determined by the fastest growing wave-
number. There is, however, strong evidence that the experimentally ob-
served fine-scale processes find explanation in the physical mechanism
identified by the theory. The slant angle in the center of the cells of

Fig. IV.29 (27°) falls within the experimentally determined range (20° - 30°)



-185-

The wavenumber., k, as mentioned above, is independent of the value of
eclectric field and is halved when the interface is allowed to diffuse to
double its initial thickness. This corresponds to k* = k{. = one known
number, dependent only on R and T/T in the theory.

Finally, it is possible, by starting with two different bits of
enperimental data and working back through the theory, to arrive by two
different routes at an estimate of the initial interface thickness. Con-

sidering, for example, the first sequence in Fig. 3:

E, = 1.82 x 10° V/m
T = n/EE; = 6.63 sec.
R = 25.9

Assuming T/T << 1, Figs. IV.25 and IV.26 yield:

s* = 0,064
=r
s* = 0.123
=i
k¥ = 1.641

Measurement of the distance between fronts in Fig. 3d and assumption that
it may be identified with the fastest-growing wavenumber yields:

3.9 x 107 m

2TA/ k*

10”2 m. Measurement of the velocity of the front from

which implies A
Fig. 3.c to 3.d to 3.e and assumption that it may be identified with the
phase velocity s?/k* yields:

E;A/E*T = 1.2 x 107" m/sec

which also implies A = 10~% m. Checking the validity of the assumption



T/T << 1 gives

'I‘ = A— = 0-0154 << T .

Thus, the assumption that experimentally observed fronts correspond to
the theoretically predicted propagating cells leads to consistent pre-
diction of interface thickness from two separate pieces of experimental
data.

Propagating fronts in a region of spatially varying conductivity
are suggestive of similar phenomena observed in poorly conducting fluids

1)

with thermally induced property gradients. Propagation of phases of

unstable modes 1is, similarly, consistent with a bulk-coupled electrohy-

(2)

drodynamic theory.

B. High Field Mixing

The photographs shown in Figs. 2 and 3 all correspond to relatively
low values of electric field. For relatively higher values, (E 105 V/m
and higher), the interface curves, buckles and folds over on itself.
In static equilibrium, there is no electrical force density. The rota-
tional character of the electric force density created by the instability
is evident as fluid components roll and swirl into one another.

Figure 4 demonstrates the sort of mixing attainable in relatively
short times at relatively high values of electric field. The fluid
orientation has been reversed here, with the pure corn 0il on top. Straight
dyed and doped corn 0il is used in the lower part of the cell, yielding
a conductivity ratio of R = 200. Motions of the kind shown here are of

(3)

obvious interest with regard to practical mixing operations.
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(b) 120 sec. (¢) 60 sec. (d) 120 sec.

(a) - (b): E = 6.06 x 10* V/m (¢) - (d): E =1.21 x 10° V/m

(e) 60 sec. (f) 120 sec. (g) 60 sec.

(e) - (f): E = 3.03 x 10° V/m (g): E = 6.06 x 10° V/m

Figure 4. Photographs of experimental cell fluid component dis-

tributions at relatively high electric fields
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An important consideration in the large-scale processes shown is
viscous drag due to the proximity of front and back cell walls.

A quantitative description of the mixing process exemplified bv Fig.
4 is accomplished with the use of a photocell, providing an electrical
sivnal with magnitude directly proportional to the intensity of light
incident on a narrow slit. The photocell is positioned behind the mix-
ing cell, so that the intensity of light from the tungsten arc source
depends upon the optical properties of fluid at a given level in the
cell.

Vertical positioning is such that light incident on the photocell
slit has passed through the experimental cell just above the interface.
As dark fluid is swept up into the region above the initial interface,
the light intensity incident on the photocell slit is diminished, and a
chart recorder sensing photocell output provides a time history of the
mixing process at one vertical position in the cell. (Variations in the
horizontal direction are automatically averaged out by this method.)

Figzure 5 shows plots of light intensity as a function of time for
six different values of electric field. The time scale here is normal-
ized to the electric-viscous time, T = n/SE? It is evident that the
mixing process evolves on the scale of the cell over times of the order
1027 . The point here is that, except for the highest value of electric
field, the various normalized curves are reasonably close to one another,
even though the run at 0.606 X 10° V/m evolved in real time over a
period 40 times as long as the run at 3.84 X 10° V/m. The scaling of the
mixing process with T is thus experimentally confirmed. At the highest

field value (E =6.06 x 10° V/m), inertia apparently plays a role in the
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electrohydrodynamic process, with growth occurring less rapidly than
would be predicted on the basis of a purely viscous flow.

Further quantitative data are obtained in a second photocell exper-
iment, this time allowing a determination of fluid distribution over the
vertical length of the cell. The vertical position of the photocell slit
may be varied over a range of 2 cm. on either side of the initial fluid
interface. An electrical signal corresponding to cell position drives
one scale of an x-y plotter, with light intensity signal driving the
second scale. Thus, by running the photocell over the mixing cell length,
a curve describing fluid component distribution is obtained. The 1/20
mixture is used for the dark fluid because, for dilutions of 1/20 and
less, light intensity through the cell is directly proportional to‘per—
centage of clear corn oil in the mixture.

Because the flows involved are viscous-dominated, it is possible
to apply an electric field for a given time, switch off the field, take
a photocell distribution run, and switch the field back on to continue
the experiment. (There is no concern here with lengths small enough
for diffusional processes to alter the distribution during the time the
field is off.) The fineness with which the distribution may be deter-
mined is limited by the photocell slit width (1.6 mm).

Figures 6 through 12 show evolutions of fluid component distribu-
tions for values of electric field varying by a factor of 10. 1In each
case, distributions are determined at three times in addition to the
initial clean interface distribution. The times at which plots are made

are chosen so as to have t/T take on the same three values in each case.
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Figure 6.
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Cell Position (em.)

Relative light intensity through experimental cell

versus cell position, E = 0.606 X 10° V/m
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Figure 7. Relative light intensity through experimental cell

versus cell position, E = 1.21 x 10° V/m
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Figure 8. Relative light intensity through experimental cell

versus cell position, E = 1.82 x 10° V/m
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Figure 10. Relative light intensity through experimental cell

versus cell position, E = 3.03 x 10° V/m
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Figure 11. Relative light intensity through experimental cell

versus cell position, E = 4.24 X 10° V/m

e e et
L N T PUR
™, - ~
el Sy SO it =316
v Tt T949n tr 632
s t/v 032 bot/v=9438 l
S t/t - 3l6 a |
o $0 =0 e el e |
£ | \\\ N \\ '
i - - \~ R ’-:-\,\_, o .
li N Lo A l I
-20 - 1.0 0.0 [RY) 20D

Coll Pasitizr  (cm)

PFigure 12. Relative light intensity through experimental cell

versus cell position, E = 6.06 x 10° V/m



-195-

Thus, the lowest field run spans a time period 100 times as long as the
highest field run.

Again, strong experimental evidence of scaling of the mixing pro-
cess with 1 is provided by the similarities of evolutions for various
values of electric field. At the highest field value, some details of
the plots have a somewhat altered character, possibly the result of

inertial effects beginning to have a noticeable influence on the motions.
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APPENDIX A. SOLUTION OF THE QUARTIC EQUATION (3.38)

(1)

A general quartic solution is used to determine the four roots
of Eq. (3.38) for any given value of the parameter e:

Given a quartic of the form

agﬁ + bﬂ? + cgz +dg+e = O (A.1)
compute:
_ 3p?
P = - Ba? + 'C:C; (A.2)
gz 2o _be,d (A.3)
8a3 2a2" a
- 3b" b?c bd , e
d = - - e
an R = - 756a% * T6a® ~%aZ T a (4.4)

For the particular form Eq. (3.38):

S § =3 ]
P = 3 Q 3’ and R = 756 + e . (A.5)
The "reducing cubic"” has the form
2+ Bg2 (B2 R, Q2 _ A.6
2 16 4 64 (A.6)
or, for Eq. (3.38):
11 19 e 9
3 _ =1 g2 2 ey, __2_ _
27~ 16 ® +(256 4)2 4096 o . (A-7)
(2)

A general cubic solution is used to determine the three roots of

Eq. (A.7). Given a cubic of the form
z3 +P'2Z2+Q'Z+R = 0 , (A.8)

compute:
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a'z 203Q" - [2']H) (a.
and
b = -51—4(2[13']3 - 9P'Q' + 27R') . (A.
For Eq. (7):
R A S 99
a' = 36(1 + 3e), and b 216(l + 16 e) (A.
Next, compute:
D= Y2+ (a"h?® . (A.
For Eq. (7):
D= - =o>=(e -c ) (e+c) (A
17288 ~C4 c_ .
where
_ 51/17 + 107 _
c, = 512 ~ 0.61968 (A.
and
- 51/17 - 107 _
c_ = 512 ~ 0.20172 . (A.
The sign of D determines the character of the roots of Eq. (8).
For D 2 0, there are one real and two complex conjugate roots.

this case, compute:

J—b‘ + /D (A.

10)

11)

12)

13)

14)

15)

In

A= 16)
and
B = Y-b' - /D . (A.17)
The three roots of Eq. (8) are then given by
P'
Zl=—’3— + A+ B (A.18)
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__P' A+B . A-B
L, = -3 St V3 (A.19)
__ P A+B . A-B
2 =- 3 5 5 V3 . (A.20)
For the case of Eq. (7), D 2 0 occurs in the regions
eS$=-c_ and 0 £e& cy (A.21)
and we have
1
/2 1/3
1 99 e
A = 3 [Fl + 16 e) + 9{‘-3-(0+ -e)(c_+ e)} ] (A.22)
Yl V5
- 1 39 oy - 9f&¢ -
B = 6[}1 + e e) 9{3(c_+ e)(c_ + e)} } (A.23)

For D < 0, there are three real and unequal roots. In this case, compute:

¢ = arccos [:;fi%g;;%] . (A.24)
-(a")

The three roots of Eq. (8) are then given by

]
7. = - 42/ cos 2 (A.25)
1 3 3
; = B o $ . 2m
z, =- 3 + 2v/-a' cos (3 + 3 ) (A.26)
__ P —~ Q_AT[) (A-27)
Z3 = 3 + 2v=-a cos( 3 3
For the case of Eq. (7), D < 0 occurs in the regions
c_<ex<0 and c, e (A.28)

and we have
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2 /~a' = ]§ Y1 + 3e (A.29)
1 +-%%e

¢ = arccos —————3~ (A.30)
(1 + 3e) 72

In either case, (D > 0 or D < 0), we have

- = ‘ (A.31)

Now, returning to the solution of the quartic, (1), and in particular
Eq. (3.38):
Determine the square roots of the roots of the reducing cubic, with

signs chosen such that:

_-Q
VL == (8.32)

For Eq. (3.38) we require

- 3
/2“1 /i;/z’; = & . (A.33)

Finally, the four roots of Eq. (1) are given by

q, = I VT VT - (A.34)
_ b

9, = VI, - Vi, - VI, - - (A.35)

@ = VI 4V -V - = (A.36)

=3 1 2 3 4a

o = F -VT +/7 - = (A.37)

~u 1 2 3 4a

For Eq. (3.38) we have:

b .1
Za - "% . : (A.38)
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APPENDIX B. MATRIX MANIPULATIONS FOR CHANGING TRANSFER RELATION FORMS

Knowing the elements of [L], the (6Xx6) matrix defined by Eq. (5.57),
the elements of [T], the (6 x6) matrix defined by Eq. (5.58) may be computed
according to the following program:

Compute the quantities:

Q e, , 0 Q

Q 9] Q Q §2
k)

= - B.1)
where Aab = LMLab Laqub (
, - _ 5
and Qab = L15Lab Lasle (B.2)
Then, compute D, = A A - A A (B.3)
35 26 36 25
and DQ = 0 Q -  Q . (B.4)
24 36 W 26

Finally, the elements of [T] are given by:

T =@ L -Q L )/by (B.5)
21 26 35 6 25

=
]

@ 9 -8 9 )/Dy (B.6)
22 26 31 % 21



[}

QL D
% 15/Q

@ @ - 2 @)/D
R 7] % 22

-Q L /D
2% 15 o0

@ 2 - a8 )/pg
% 33 ¥ 23

(. L -A L )/DA
3 24 26 34

21 % 26 31

- A
36 Lllb /DA

(A A=A A )/Dy
22 36 26 3

AZG le /DA

23 3% 26 33

(AL --I\L)/DA

25 34 35 24

(A, A=A A )/Dy
25 31 35 21

N L /Dy

3B L

(AZS AQ - A35 AZZ )/DA
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(B.

(B.

(B.

(B.

(B.

(B.

(B.

(B.

(B.

(B.

(B.

(B.

(B.

(B.

(B.

(B.

(B.

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)



I

33

34

51

52

53

54

55

41

L T +L T

23

T
25

T
23

+ L

55 43

S5

T
55 45

LGS

L)

T
4y

T
uy

56 63

+ L

T
66 63

L T
66 65

46

T
566U

T
66 6k

L T
66 66

(B.28)

(8.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)

(B.40)
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