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Abstract

The thesis deals with monitoring and control of system-wide electromechanical (or “swing”)
dynamics in power systems. The first part of the thesis is devoted to observer-based mon-
itoring, while the second part introduces novel decentralized controllers that exploit the
wave nature of the swing disturbances in order to manipulate their propagation.

Power system monitors can be used to estimate the full state of the system as well as
identify and isolate a number of events (e.g., faults) using only sparse local measurements,
all in the presence of various system disturbances. The thesis analyzes different observer
realizations for the Differential Algebraic Equation (DAE) swing model of a power system,
and highlights the advantages of designing singular observers (versus state-space observers)
for DAE models. We investigate various design approaches, and introduce a novel graphical
design approach using a directed graph that reflects system structure. Investigations into
the type, number and placement of measurements are conducted. Design examples on small-
(9 bus) and large-scale (179 bus) power systems are discussed for both type of monitors.

The second part of the thesis develops and exploits a spatio-temporally integrated view of
electromechanical dynamics. This contrasts with the traditional approach of either studying
temporal variations at fixed spatial points or investigating spatial variations of specified tem-
poral behavior. We use a continuum model of the swing dynamics to expose the wave-like
propagation of electromechanical disturbances and to gain insight for the design of controls.
We develop strategies for decentralized control of these electromechanical waves, drawing
on prototype controllers found in electromagnetic transmission line theory (e.g., matched-
impedance terminations) and active vibration damping (e.g., energy-absorbing controllers
and vibration isolators). Finally, we propose various controllers to realize quenching or
confining-and-quenching strategies, and test these in simulations of a 179-bus reduced-order
representations of the WSCC network.
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Chapter 1

Introduction

Electrification of the industrialized world has been labeled as the greatest engineering ac-

complishment of the 20th century by the National Academy of Engineering of the United

States1. The power system infrastructure (i.e., the generation plants as well as transmission

and distribution networks) comprises complex engineered systems and spans vast geograph-

ical areas. With the onset of deregulation of the energy industry, profit has emerged as an

important driving factor in the operation of the power grid. During the past regulated era

these power systems were conservatively designed for robustness purposes, and were also

operated in such a manner as to have ample reserve capacity. In the current deregulated

industry environment, power grids are being operated closer to their limits, and this new

operation paradigm and inadequate investment in the power grid infrastructure make these

grids prone to failure as well as more difficult to control.

The importance of ‘keeping the lights on’ was recently emphasized by the spate of large-scale

blackouts, all occurring during 2003, in the north-east of the USA, Sweden, Italy and in

London. Various factors that contributed to the final collapse of the north-eastern US power

grid are outlined in [1]. Key events in the buildup to this blackout were the “unnoticed”

tripping of lines in Ohio — unnoticed because one of the big Mid-Western power utility’s

alarm system had failed. Also, the monitoring tools (with limited capabilities) used by

the Midwest Independent System Operator (MISO) were disabled for a brief period due

to human error and thus not functioning correctly. The lack of information regarding the

state of the Mid-Western grid contributed to MISO operators not being able to take timely

1See URL — http://www.greatachievements.org/greatachievements/
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corrective actions. These blackout events suggest that a reevaluation of current monitoring

and control schemes for power systems may be needed.

The research that forms the basis of this thesis started taking shape even before the recent

blackouts, but turns out to be aligned with recommendations of the joint U.S.-Canada

Power System Outage Task Force (investigating the north-east US blackout of 2003) made

in [1]: that better real-time tools for operators and reliability coordinators should be adopted

(recommendation #23); that the use of time-synchronized data recorders should be required

(recommendation #28); and that controls should be implemented to manage system health,

network monitoring, and incident management (recommendation #35). The explorations

reported in this thesis have overlap with all of the above recommendations and we are

hopeful that this work will resonate with some in the power system community.

Even though this writing is intended for a high-voltage power transmission grid audience,

some of the ideas in this thesis can also be applied to smaller scale power systems such as

those found on ships and possibly buildings.

1.1 Scope and Contributions of this Thesis

System-wide studies are fundamental to power system engineering, and in this thesis alter-

native approaches to power system monitoring (e.g., state estimation, fault detection and

isolation) and control of power networks are investigated.

Our focus is on the electromechanical transients of power networks in response to load,

supply or other perturbations. These transients can be studied using a dynamical model

describing the swing motions of the network. We mainly focus on the swing model of power

networks and neglect voltage dynamics. Extensions to more general power system models

can be built on these results.

– 14 –



Chapter 1 Introduction

1.1.1 Power System Monitors

Traditional power system state estimation schemes are aimed at providing best estimates

of quasi-static variables (voltage magnitudes and angles at network buses) using a set of

redundant (but typically inconsistent) measurements. In this thesis a dynamic state esti-

mation scheme will be discussed, which is concerned with estimating the swing states (i.e.,

bus voltage angles, and generator speed deviations2) of a power network from sparse mea-

surements by using observers. The nonlinear dynamic observer model, accumulates over

time and interpolates over space (i.e., over the entire network) the information contained

in measurements (possibly sampled), obtained from a limited — i.e., highly non-redundant

— set of sensors. The role of the dynamic model is to relate measurements taken at any

given time to those taken at other times, and to relate measured variables at the sensor

locations to unmeasured variables throughout the network. In this way, sufficiently redun-

dant information about the entire system is built up over time. Appropriate processing of

this information then yields the desired estimates of the system state. These observers can

be employed in model-based fault detection and identification schemes.

Fault detection and identification play an important role in modern day complex controlled

processes. If the system under consideration should stay operable even in the presence

of faults, being able to isolate and identify a fault in time will be extremely valuable.

This information helps a supervising entity to determine whether the fault can lead to a

catastrophic failure or whether the system might recover and what type of control action is

needed. In the case when the system might recover, no action might be needed. However,

for the case where the system is heading towards a catastrophic failure, it is imperative that

control action be taken.

We will now discuss the two sections of this thesis in more detail. We begin by discussing

2Modeling reactive power on the network might enable us to estimate bus voltage magnitudes as well,
but the quality of such estimation using a limited set of sensors can be poor. This possibility is attributed to
not using a dynamic model of the voltage states. In this case, we are merely executing a traditional power
system state estimation for the bus voltage magnitudes using a few measurements.
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the two subsections associated with our power system monitor work. First, we focus on

swing state estimation and observer design in general. Next we discuss the possibility to

apply observer-based fault detection and isolation schemes to power systems.

After the above discussions, we will discuss our work on power system control in more detail.

State Estimation

State estimation in power systems has mainly focused on static estimation from redundant

measurements [2]. There is a literature on dynamic state estimation (DSE), which deals

with: either recursive processing of measurements, but with no dynamics in the state [3, 4];

or with slow-speed state dynamics induced by load variations, so the dynamics referred to

is that of the load, and these dynamics are estimated on-line in various ways using load

forecasting ideas [3, 5, 6].

In this thesis we will continue with our earlier work presented in [7], where we investigated

the use of a few (rather than redundant) measurements for observer-based dynamic state

estimation, while focussing on the faster dynamics associated with the swing motions of a

power system. Control centers run contingency analyses using very detailed models of power

systems, and with the favorable state of current computation capability, it may be argued

that real-time simulators of the swing dynamics of the system are feasible. What makes

observer-based approaches attractive, is that one can use these real time simulators and

feed the measurements through an appropriate gain matrix to realize an observer. Hence,

implementing observers seems conceptually straightforward.

Observer-based dynamic estimation of the swing state of a power network was investigated in

[7, 8, 9, 10, 11]. Swing-state estimation, as defined in [7], involves estimating the bus angles

and generator speeds and not the bus-voltage magnitudes. In [9] the single-machine, infinite-

bus case is treated using a nonlinear gain-scheduled observer. In [7] a mixture of generator

and load buses were modeled via a nonlinear Differential Algebraic Equation (DAE) swing

model, in contrast to a linear collapsed all-generator network investigated by Stolz in [8]. He
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realized Linear Quadratic Estimators (LQE) for an all generator network (i.e, state-space

model) using only angle measurements. Stolz introduced a “hybrid” observer that uses the

LQE designed gain matrix in the intuitive nonlinear extension of the Luenberger observer.

Modir et al. [10, 11] used linear Kalman filters to perform swing-state estimation. The

models used in the estimator were linearized versions of the network model and genera-

tor model; and a Markov model was used to represent the process load. The filters were

employed in a modular setup to enhance traditional state-estimation schemes (voltage mag-

nitudes and the steady-state of the bus angles were updated by a traditional power system

state estimation scheme).

Phadke [12] states that one of the biggest developments in real-time monitoring of power

systems has been the advent of Synchronized Phasor Measurement Units (PMU). These

PMUs provide real-time measurements of voltages and currents (on the three-phase element

level) at substations. Typical scan rates of these devices are 1 cycle of the fundamental

frequency, and the measurements can be repeated as often as 2-5 cycles [12]. Samples are

time stamped and processed at a suitable location in order to build up an integrated picture

of the state of the power system. Executing dynamic state estimation as proposed in this

thesis, using PMU’s sparsely located across the whole network, will provide us with a more

detailed system-wide picture of the dynamic state of the power system. If one wanted a

similar system-wide picture using only these PMU’s, numerous devices would have to be

placed, which would be costly.

In [12], it is further remarked that there is a lack of tools to accurately evaluate the condition

of the network in real time. This lack of adequate information of the system state can lead

to false trips in the power network. We believe that observer-based system wide dynamic

state estimation can help with the mitigation of these false trips. However, investigating the

performance of our observer-based state estimators, for a false-trip case-study, falls outside

the scope of our exploratory work. A study of this nature is left for future research.

An additional application of the proposed state estimation work in this thesis might be

– 17 –



Chapter 1 Introduction

adaptive relaying. Adaptive relaying entails an assessment of the state of the power system

and automatically making adjustments to the protection system so that the settings of these

devices are correct for the current operating conditions [12]. Illustrating how we could use

our observer-based state estimators in the realization of an enhanced adaptive relaying

scheme, is also left for future research.

Recent investigations [13] have been conducted by members of the Power System Engi-

neering Research Center into power system state estimation and optimal measurement

placement for a distributed multi-utility industry. This research investigates optimal design

of metering systems (particularly to maintain full system observability during switching

actions), distribution of data and computational burdens of state estimation among par-

ticipating control areas, and methods for estimating controller and system parameters as

well as state variables. Note that this type of state estimation follows the traditional power

system state estimation framework, hence the state variables are bus voltage magnitudes

and angles that are estimated using a redundant set of measurements.

In a deregulated environment a local power company may want to employ dynamic swing

state estimator, in order to gauge the actions of their competition (as well as the state of the

network). This estimator/monitor can use a non-redundant set of measurements (possibly

provided by an Independent System Operator (ISO) or their own sparsely deployed field

devices). Assessing the economic benefit of following such an approach falls outside the

scope of this thesis.

Fault Detection and Isolation

The swing-model observers that will be investigated in this thesis can also be used in the

realization of model-based fault detection and identification schemes. An unexpected change

in system function is seen as a fault [14]. From this general definition it can be concluded

that a fault does not necessarily represent a physical failure or a breakdown. Detection and

identification of incipient (slowly developing) faults are important; undetected in due time,

these might lead to a catastrophic outcome. The steps that a fault detection and isolation
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system executes are [14, 15]: fault detection (a binary decision of either that something

happened); fault isolation (determining the location of the fault); and fault identification

(gauging the size, type, and nature of the fault).

Types of power system faults and disturbances that will be investigated in this thesis are:

prime mover input power/torque changes; load changes; balanced line-flow faults (e.g., line

outages). Other type of faults that can be considered (but not in this thesis) are gener-

ator inertia uncertainty/changes, damping uncertainty/changes as well as sensor failures.

Preliminary work investigating the detection and identification of inertia uncertainty and

sensor failures was reported in [16], where information from multiple observers (running in

parallel) was used in a parameter estimation scheme.

In order for controlled systems to continue operating acceptably during the occurrence of a

fault, information about the fault is important. There may be some acceptable performance

degradation for a fault-tolerant system operating under a faulty condition. However, the

primary objective is to maintain system operation and give the operating entity reasonable

time to repair the system or employ alternative measures in order to avoid a catastrophe.

Fault diagnosis plays an important role in a fault-tolerant control system, because before any

control law can be reconfigured the fault ought to be reliably detected, isolated, identified

and the necessary information should be communicated to a supervision entity [14].

Limit checking (checking a variable or a trend and taking action once it reaches a certain

threshold) is an easy way of implementing a fault diagnosis system [14]. The drawbacks

of limit checking are: false alarms originating from input variations and change of the

operating point; and a single fault can cause many system signals to exceed their limits and

hence it appears as multiple faults.

Examples in the power system context, where power flow limit checking by relays led to

catastrophic black-outs when the limits were set incorrectly, are discussed in [12]. Limit

checking can also lead to a false trip of a generator when the transient swing the machine

is experiencing will return to a stable operating point, but is falsely perceived as unstable.
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Currently, in order to curb the number of false trips of generators, out-of-step relaying is

advocated [12]. Conditions when a group of machines (or a portion of the power system)

is about to lose synchronism with the rest of the network are detected by the out-of-step

relaying scheme. This scheme should then disconnect the appropriate machines from the

rest of the network in order to avoid a catastrophic failure. If the swings are stable, system

separation might still occur if some relay zones are entered. Phadke [12], furthermore

states that often the actual power system state is different from which had been simulated

for determining the relay-zone settings. This discrepancy results in the out-of-step relays

seldom being very reliable in their decision making. Current proposed solutions include the

use of time synchronized phasor measurements of the machines experiencing the swing. By

communicating between the relevant relays, the outcome of the swing that is in progress

can be assessed using the equal-area criterion. Observer-based dynamic state estimation

and fault detection might prove beneficial (and cheaper — because fewer PMU’s need to

be employed) in mitigating these false trips of generators.

Hardware Redundancy and Analytical Redundancy are ways the reliability of a system

can be increased [14]. The former implies having multiple parallel units of hardware. The

drawbacks of this method are: the cost of extra equipment (that may be sitting idly);

maintenance cost; additional space to accommodate equipment. This appears to be the

route that power system operators have been following in the past.

On the other hand, Analytical Redundancy uses cross-checking of dissimilar measured vari-

ables to generate residual signals used for FDI [14]. Model-based approaches use a mathe-

matical model of the process; consistency checking is done between the measured variables

and their estimates. The benefit of this approach is that no additional hardware faults

are introduced, but this comes at the cost of developing better mathematical models and

increased computational requirements when the scheme is realized in software.

One of the new adaptive relaying protection concepts discussed in [12], will use multiple

protection schemes running in parallel. It is proposed that a voting scheme (which is a

– 20 –



Chapter 1 Introduction

considered a suitable approach for processing information) should be used to decide whether

a certain piece of equipment should be tripped. Our aim is to illustrate that the state

estimation and FDI frameworks, developed in this thesis, can provide alternative and more

flexible ways in realizing adaptive relaying protection schemes. The realization of such

adaptive schemes will not be discussed in this thesis.

Model-based FDI includes observer-based and parameter estimation approaches [17, 18].

FDI can be achieved by designing residual generators (realized using observers) that are

sensitive to predefined faults and robust to predefined disturbances [14, 19]. For parameter

estimation methods model parameters are tracked and changes in these parameters serve

as the basis for detecting and isolating faults [18]. Model-based approaches are attractive

in the power system setting, because power system models are well understood and taken

to be quite accurate descriptions of the dynamics.

In [20], a modular method for fast fault detection and classification in power systems is

presented. Model-free and model-based fault detection approaches are discussed, and for

the model-free case signal processing and wavelet theory are used to create fast and sensitive

fault indicators. For the model-based case the authors remark (and do not examine) that

residual generation schemes can be used to generate fault indicators. The indicators can

then be analyzed by standard statistical hypothesis testing or artificial neural networks to

create intelligent decision rules. The creation of intelligent decision rules fall outside the

scope of this thesis, but investigations into generation of residuals as fault indicators in the

power system context will be one of the contributions of this thesis.

The authors of [20], also conducted a survey of fault-detection methods in the power system

environment. They stated that the problem of detecting high-impedance faults (i.e., line

outages) was unresolved. They briefly mentioned different approaches explored, but this

survey appeared not-extensive and might be a bit dated.

In [21, 22] members of the Power System Engineering Research Center investigated a fault

location algorithm applied to transmission networks using modeling, simulation and limited
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field recorded data. The idea behind the algorithm is to match the recorded waveforms

(captured using digital relays) and simulated waveforms to determine the most probable

fault location. The simulated waveforms are obtained by running a short circuit program,

using an accurate model of the system under consideration.

It is worthwhile pointing out that most of the fault detection and isolation literature in the

power system context focuses on the three-phase element level (i.e., investigates balanced

and unbalanced faults), whereas in this thesis we will focus more on a higher level system

description. Thus, the line faults that we will investigate will be of the balanced type.

It can be argued that the global view of system stability gets lost by using detailed “local”

element-level fault detection/location algorithms. The proposed FDI investigations in this

thesis will focus on the system-wide level and aim to provide a “big picture” to power system

operators.

1.1.2 Power System Control

The faults that occur in the system excite various dynamics, including the electromechan-

ical dynamics of the system. The last topic that will be addressed in this thesis, focuses

on the control of electromechanical transients associated with the acceleration and decel-

eration of generator rotors that are coupled through an electric power grid. The notion of

electromechanical disturbances in power systems propagating as traveling waves appears in

a paper by Semlyen in 1974 [23], which presented partial differential equations describing

the idealized continuum limit of a swing-equation model. Cresap and Hauer [24] used a con-

tinuum model while analyzing the Western Power System in 1981, in order to explain the

emergence of a new swing mode. More recently, electromechanical waves in power systems

were similarly modeled by Thorp, Seyler and Phadke [25], as a way to understand angle

observations from phasor measurement units in the field. These electromechanical waves

are manifested in the mechanical shaft dynamics of electrically-coupled generators.
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Accepting that electromechanical disturbances spread as traveling waves, one can design a

controller to extinguish these transients in a manner analogous to impedance matching for

suppression of electromagnetic waves on transmission lines. We developed such a controller

that approximately achieved an impedance matching objective and reported it in [26]. In

that paper we demonstrate that such a “zero-reflection” controller (ZRC) will effectively

quench electromechanical traveling waves at the boundary of the network.

It is important to emphasize that this approach to system control design is very different

than traditional methods. Typical tuning of governor and power system stabilizer controls

uses linearized models and modal analysis [27]. Usually this is accomplished with a detailed

model of the generator(s) to be tuned and a simplified representation for the remainder of the

system. The only spatial information that is used in the design is embedded in information

about mode shapes, and is therefore quite indirect. In cases when a detailed representation

over a wide geographical area is used one identifies critical modes of oscillations and their

mode shapes, and tunes the controller accordingly [27]. This approach is analogous to

representing the dynamics as a superposition of standing waves rather than as a traveling

wave.

This thesis reviews and extends work reported in [26]. As mentioned above, in that paper

we demonstrated the effectiveness of a ZRC in quenching electromechanical traveling waves

at the boundary of the network. We also showed that this control strategy appears to be

robust to wide variations in parameter values. However, in that work mostly regular grids

of generators were considered. This thesis investigates the performance of these ZRC con-

trollers (as well as other Electromechanical Wave Controllers — EWC’s — we will develop)

in more practical settings (i.e., irregular grids and networks consisting of generators and

loads).

Only being able to negate the electromechanical disturbance at the boundary of a network

might expose heavily loaded parts of the network to traveling electromechanical distur-

bances, making these stressed parts prone to failures. This situation is not desirable and it
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is beneficial for overall system stability and reliability if we are able to confine these distur-

bances to local areas and eventually extinguish them locally. In order to create a confining

and quenching control strategy, we will develop zero-transmission controllers (ZTC) and

perturbation quenching extinguishers (PQC).

In this thesis, we will demonstrate practical uses of these electromechanical wave controllers,

by realizing various control strategies and implementing them on models of aggregated real

world networks.

1.2 Organization of Thesis

In Chapter 2 models for line-flows on the network are given. The swing model, describ-

ing the electromechanical behavior of a power network, is also introduced in this chapter.

Model uncertainty is discussed and possible electromechanical perturbations the system can

experience are introduced.

Part one of this thesis is concerned with the development of power system monitors. In

Chapters 3 and 4 various observer design approaches are tested in order to efficiently and

effectively design power system monitors. Chapter 3, follows more of a traditional approach

to observer design, whereas in Chapter 4 a novel graphical observer design technique is

proposed that is suitable for large-scale systems.

In Chapter 5, the observer framework developed in the two previous chapters are used in

fault detection and isolation schemes. The graphical-observer-design approach introduced

in Chapter 4 is preferred to realize the observers studied in Chapter 5.

The second part of this thesis focuses on decentralized control of electromechanical transient

disturbances in power networks. In Chapter 6, the notion of electromechanical transient

motions traveling as electromechanical wave motions, is introduced and discussed. We

develop a theory to study the interconnection of electromechanical ‘transmission lines’ (also
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referred to as strings-of-generators) with lumped electromechanical elements. We use this

theory to suggest various controllers that will be able to manipulate ‘wave’ reflection and

transmission on lumped parameter networks.

In Chapter 7, we apply these decentralized controllers to general network models, such as

the model of the 179-bus aggregated Western States Coordinating Council (WSCC) model.

In Appendix C we present a brief write up highlighting some of the issues involved when

we move beyond the swing model and we want to implement a one of our decentralized

controllers through the voltage loop of a generator.

In Chapter 8, we give a summary, with intertwined conclusions, of the thesis work. We end

this journey by pointing to possible future research directions.
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Power System Models

Dynamic modeling of power systems can be described as a mature field, as the numerous

textbooks on the subject can attest [28, 29, 30, 31, 32]. Most of our attention will be

focused on the swing model (also referred to as the classical model) for power systems.

This electromechanical model accounts for generator mechanical shaft dynamics and their

relation to the conversion of mechanical power to electric power to supply the needs of the

power system. These rotating machines are electrically coupled through transmission lines.

A helpful analog is to think of this system as a spring-mass system where: the strength

of a particular spring is related to the electrical power flow on the associated electrical

transmission line; and the masses are the rotational inertias of the generators. This chapter

presents various versions of the nonlinear swing model, which is the most basic dynamical

model of a power system.

2.1 Power Systems

Power systems consists of generation equipment, transmission lines, distribution networks

and loads. These power system networks may span vast geographical areas, and in this

thesis we will be focussing on system-wide (i.e., wide-area) studies of the dynamics of these

systems.

Power systems can be modeled for our purposes as nonlinear lumped parameter circuits. We

assume balanced three-phase operation, with quasi-sinusoidal current and voltage signals.
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A voltage time signal is expressed as v(t) = V (t) cos(ωst + δ(t)), where V (t) is a slowly

varying amplitude and δ(t) a slowly varying phase (slow relative to ωs). Of importance to

us are the time-varying magnitude V (t) and phase δ(t) of this sinusoidal signal. We can

gather these variables to form a phasor, which for this voltage signal is the voltage phasor

V̂ (t) = V (t)∠δ(t).

Our emphasis in this thesis will be on system-wide dynamic investigations. Of particular

interest are how:

(a) the transient response to an electromechanical perturbation (generator and line outages,

load changes, etc.) can be estimated using observers;

(b) electromechanical perturbations propagate in both space and time on a power network;

(c) an occurrence of an electromechanical perturbation can be detected.

In the next section, we will introduce the swing model of a power system.

2.2 Active and Reactive Power Flow on the Network

For a power network we can construct a graph whose nodes correspond to buses in the

network, and whose edges correspond to the transmission lines or transformers between

these network buses.

Let θ denote the vector of bus angles (measured in radians), V the vector of per-unit voltage

bus magnitudes, P (θ, V ) and Q(θ, V ) the vectors of directed active and reactive power flows

on the transmission lines (measured in per-unit, see [29, 32] for a discussion on the per-unit

system, abbreviated as p.u.) which can be written in the following convenient matrix-vector
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forms,

P (θ, V ) = −ΥB sin(F ′θ) − ΥG cos(F ′θ) + 1
2G(F ′ − |F |′) ◦ V 2, (2.1)

Q(θ, V ) = ΥB cos(F ′θ) − ΥG sin(F ′θ) + 1
2(B)(F ′ − |F |′) ◦ V 2. (2.2)

where: F is the directed bus-line incidence matrix of the network graph (the orientation

of line h can be picked arbitrarily, and Fs,h = 1, Ft,h = −1 if this directed line goes from

bus s to bus t); ′ denotes matrix transposition; depending on the context, diag(·) extracts

the diagonal of its matrix argument and forms a column vector, or forms a diagonal matrix

by placing its vector argument on the diagonal; sin(·) and cos(·) imply taking elementwise

sine or cosine of their corresponding vector arguments; ◦ implies elementwise multiplication

of two vectors; V 2 implies the elementwise square of the vector V ; B and G are diagonal

matrices with line susceptances and conductances as diagonal elements; gh and bh are the

conductance and susceptance of line h respectively. The network θ can be ordered as:

θ = [ θ′g θ′l ]′, where subscripts g and l indicate generator and load buses respectively. Let

ng be the number of generator buses; and nl be the number of load buses. If the orientation

picked for edge h when defining F goes from node s to node t then Pst(θ, V ) is simply the

hth component of P (θ, V ) above.

Let Pnw(θ, V ) denote the active power flowing into the network, and Qnw(θ, V ) the reactive

power flowing into the network. We obtain the powerflow equations of the network by

aggregating (using F — the divergence operator) the line flows at the buses, and these

equations are expressed as follows:

Pnw(θ, V ) = −FΥB sin(F ′θ) − |F |ΥG cos(F ′θ) + diag(FGF ′) ◦ V 2; (2.3)

Qnw(θ, V ) = −FΥG sin(F ′θ) + |F |ΥB cos(F ′θ) − [diag(FBF ′) + diag(Bsh)] ◦ V 2; (2.4)

Υ = diag(exp(|F |′ ln(V ))); (2.5)

where Bsh is a vector of the shunt susceptances at each bus (contributed by capacitive

elements in the network). In (2.3) F ′θ yields a vector of angle differences across branches
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of the network; diag(FGF ′) and diag(FBF ′) are n-dimensional vectors whose elements are

the sums of the conductances and susceptances of edges emanating from the corresponding

nodes respectively.

To illustrate these expressions, let us look at an example where we want to find the pow-

erflow expressions between two buses s and t. We assume that the network consists of one

transmission line between buses s and t. For this edge we have F ′ =
[

1 −1
]

and the

associated susceptance b and conductance g. We can show that:

Pnw =


 Pst(= P (θ, V ))

Pts


 =


 −VsVtb sin(θs − θt) − VsVtg cos(θs − θt) + gV 2

s

−VsVtb sin(θt − θs) − VsVtg cos(θt − θs) + gV 2
t


(2.6)

Qnw =


 Qst(= Q(θ, V ))

Qts


 =


 VsVtb cos(θs − θt) − VsVtg sin(θs − θt) − bV 2

s

VsVtb cos(θt − θs) − VsVtg sin(θt − θs) − bV 2
t


 (2.7)

which agrees with the expressions given on page 72 in [2].

2.3 Swing Models

Three variations of the swing model will be introduced in this section. In the first version

the source impedances of the network generators are taken into account and consequently

the generator bus angles and internal angles of the generators are different from one another

when nonzero power is delivered by the generator. We also assume for this model that the

bus voltage magnitudes are not tightly controlled and hence we will consider reactive power

on the network.

The second variation is obtained when we neglect the machine source impedance. In this

scenario, one can assume that the internal angles of the generators are equal to the generator

bus angles. We still assume that the bus voltage magnitudes are not tightly controlled.

The third variation is obtained by assuming that the bus voltage magnitudes are tightly
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regulated at the specified operating point. This assumption reduces the size of the model,

since reactive power in the network is neglected.

The swing model is merely Newton’s second law in rotational form. For a generator in the

network, a mismatch between the prime-mover input torque/power (i.e., mechanical input

power to the generator) and the electrical power supplied to the electrical network will either

accelerate or decelerate the generator. We will focus on transmission-level power system

models in this thesis, and assume that loads do not exhibit dynamics on the time-scales of

interest. On the transmission level, the loads represent aggregated load areas or distribution

networks from lower voltage levels; an instantaneous load change might correspond to load

shedding. It is commonly assumed that these loads are functions of frequency and voltage

levels.

The first version of the swing model mentioned above takes the following nonlinear Differential-

Algebraic Equation1 (DAE) form (using (2.3 and (2.4)):




I 0 0 0

0 Mg 0 0

0 0 0 0

0 0 0 0




︸ ︷︷ ︸
M




δ̇

ω̇

θ̇

V̇




︸ ︷︷ ︸
ẋ

=




ω

P e
g − Pelec(δ, θ, V, Eg) − Dgω

 Pelec(δ, θ, V, Eg)

P e
l


 − Pnw(θ, V )


 Qelec(δ, θ, V, Eg)

Qe
l


 − Qnw(θ, V )




︸ ︷︷ ︸
f(x, u, w)

; (2.8)

where ω is a vector of generator speed deviations from synchronous, measured in rad/s

and x denotes the internal variables of the DAE description. The dimension of the singular

system is n(= 4ng +2nl). Note that δg and ω are state variables (xd =
[

δ′g ω′
]′

), while θ

1Also called descriptor, singular or generalized systems. DAE systems appear in the fields of robotics,
economics and circuits to name a few. The increasing complexity of systems requires more modular modeling,
which can be achieved by interconnecting subsystems. This concept of subsystem modeling leads to the use of
redundant coordinates in the description of the complex system. Generally the behavior of these subsystems
are described by differential equations, and their coupling by algebraic equations [33].

– 30 –



Chapter 2 Power System Models

and V are composed of algebraic variables (xa). The vector P e
l denotes power injected at the

load buses (and hence typically has negative entries), while P e
g is the net power injected at

the generator buses (typically mechanical power input to a generator if we neglect losses in

the generator). We can combine these two vectors into vector P e (the vector of external bus

power injections). These injections may be partly or completely known; the known parts

are gathered in the vector u, while the unknown parts (perhaps ‘process noise’, faults or any

other unknown-inputs) are gathered in w. Dg and Mg are diagonal matrices whose nonzero

entries consist of the damping coefficients and the (normalized) inertias of the generators

respectively. Pelec and Qelec are respectively the active and reactive power, provided by the

generators to the network, and are expressed as:

Pelec,i =
Eg,iVg,i

X′

d,i

sin(δi − θg,i); (2.9)

Qelec,i =
V 2

g,i

X′

d,i

− Eg,iVg,i

X′

di
cos(δi − θg,i). (2.10)

where Eg,i is the constant source voltage, δi is the phase angle of the source, and X ′
d,i is the

source impedance.

The second version of the swing model is obtained when the source reactances (X ′
d) are

omitted and as a consequence we set δ = θg, and the following nonlinear DAE swing model

is obtained:




I 0 0 0

0 Mg 0 0

0 0 0 0

0 0 0 0




︸ ︷︷ ︸
M




δ̇

ω̇

θ̇l

V̇




︸ ︷︷ ︸
ẋ

=




ω

P e
g − Pnw

g (θ, V ) − Dgω

P e
l − Pnw

l (θ, V )

Qe − Q(θ, V )




︸ ︷︷ ︸
f(x, u, w)

, (2.11)

where all the variables have been previously defined. The dimension of this singular system

is now n(= 3ng + 2nl).

Assuming that the bus voltages are tightly regulated around their operating set-points (they
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appear stiff), the third variation of the swing model is obtained. Without loss of generality,

we can assume that the network voltages stay constant at V = 1p.u. The nonlinear DAE

swing model for this case will only feature the active power flowing in the network and is

expressed as:




I 0 0

0 Mg 0

0 0 0




︸ ︷︷ ︸
M




δ̇

ω̇

θ̇l




︸ ︷︷ ︸
ẋ

=




ω

P e
g − Pnw

g (θ, V = 1) − Dgω

P e
l − Pnw

l (θ, V = 1)




︸ ︷︷ ︸
f(x, u, w)

, (2.12)

where all the variables were as previously defined. The dimension of this singular system

is n = 2ng + nl, which for a large scale power network can be almost a factor of 2 smaller

than for the model in (2.11).

For most of this thesis, we will work with (2.12).

2.4 Power System Measurements

The measurements y = g(x) available to an observer greatly influences the performance of

the realized state estimator. In this thesis, we will investigate the number, nature and place-

ment of measurements needed in order to realize observers for large-scale power systems.

In [7], an initial investigation of this sort was launched for a small-scale example.

Focusing on the swing model (2.12), five types of measurements are available for observer

design. The measurements available at selected buses or lines are those of bus angles,

generator speeds, power injected into the network at the buses, power flow on the lines, and

angle differences across lines. Thus, the ith measurement (in the absence of noise), can take
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on one of the following forms (assuming V = 1p.u.):

g(x)i =





θj , j ∈ {1, · · · , n}
ωj , j ∈ {1, · · · , ng}

Pnw
j (θ), j ∈ {1, · · · , n}

Pst(θ), s, t ∈ {1, · · · , n}]|(s, t) an edge

δst(θ), s, t ∈ {1, · · · , n}]|(s, t) an edge

, (2.13)

where θj is the bus angle associated with bus j, ωj is the speed deviation from synchronous

associated with generator j, Pnw
j (θ) is the net power at bus j flowing into the network (this

is simply the jth element of (2.3)) and Pst(θ) is the power injected at s onto the line h to

bus t. Pst(θ) is obtained by taking the hth entry of (2.1) (where we kept V fixed).

In [8] only direct angle measurement were considered and in [10] the authors investigated

the employment of only frequency measurements at generator buses (i.e., generator speed

measurements). The measurement set we investigate in this thesis is in accordance with

measurements used for traditional power system state estimation schemes, as discussed in

[2].

2.5 Linearized Swing Model

Linearized versions of the swing models introduced in the previous section are frequently

studied by power engineers. A vector in the nonlinear system can be expressed as ζ(t) =

ζ + ζ̃(t), where ζ is the steady-state vector and ζ̃(t) is the vector of deviations from this

steady-state (assumed small when deriving the linearized model). In order to simplify

notation, the time dependence of the variables will be suppressed.

The different nonlinear DAE swing models introduced in the previous section can be lin-

earized around the steady state (loadflow) solution δ = δ, θ = θ, V = V and ω = ω = 0.

The Jacobian matrices: P θ ,
[

∂P nw

∂θ

]
θ,V

; Qθ ,

[
∂Qnw

∂θ

]
θ,V

; P V ,
[

∂P nw

∂V

]
θ,V

; and QV ,
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[
∂Qnw

∂V

]
θ,V

, feature in the linearized versions of swing models (2.8), (2.11) and (2.12) and

are expressed as:

P θ =
[
−FΥB diag(cos(F ′θ)) + |F |ΥG diag(sin(F ′θ))]F ′ (2.14)

Qθ =
[
−|F |ΥB diag(sin(F ′θ)) − FΥG diag(cos(F ′θ))]F ′ (2.15)

P V = 2GV −
[
FΥB diag(sin(F ′θ)) + |F |ΥG diag(cos(F ′θ))]F ′ diag(V )−1 (2.16)

QV =
[
|F |ΥB diag(cos(F ′θ)) − FΥG diag(sin(F ′θ))]F ′ diag(V )−1 − 2BV (2.17)

where G = diag(diag(FGF ′)), B = diag(diag(FBF ′) + Bsh) and Bsh are the shunt suscep-

tance branches from buses to ground (contributed by capacitor banks). A matrix of the

form FWF ′ is called the edge-weighted Laplacian of a graph, and we note that for a lossless

power network (i.e., G = 0) P θ is an edge-weighted Laplacian of the graph associated with

the power network. Interesting statements can be made about the relation between the

graph spectra of Laplacian matrices and their relation to the modal dynamics of oscillatory

networks (see [34] for a detailed study on this subject applied to linearized power system

swing models).

The Jacobian matrices (2.14) – (2.17) can be partitioned into four submatrices by distin-

guishing between generator and load buses. For instance, we can partition P θ as follows:

P θ =


 P θ

g,g P θ
g,l

P θ
l,g P θ

l,l


 . (2.18)

Neglecting higher-order deviation terms in the linearization of (2.12), a linearized DAE

swing model of the following form can be written:




I 0 0

0 Mg 0

0 0 0




︸ ︷︷ ︸
M




˙̃
δ

ω̇

˙̃
θl




︸ ︷︷ ︸
˙̃x

=




0

Bg

Bl


 P̃ e

︸ ︷︷ ︸
Bũ + Ew

−




0 −I 0

P θ
g,g D P θ

g,l

P θ
l,g 0 P θ

l,l




︸ ︷︷ ︸
−A




δ̃

ω

θ̃l




︸ ︷︷ ︸
x̃

, (2.19)
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where
[

0 B′
g B′

l

]′
=

[
∂f

∂P e

]
P

e
. We only show the linearized version of (2.12), but using

Equations (2.14) – (2.17), linearized versions of (2.8) and (2.11) can also be obtained.

Gathering the differential and algebraic variables and partitioning the vectors and matrices

in the linearized models (of which (2.19) is an example) accordingly (for this example the

partitioning is indicated by solid lines in (2.19)), the linearized DAE swing model can be

written in the following form:


 Md 0

0 0







˙̃xd

˙̃xa


 =


 Add Ada

Aad Aaa





 x̃d

x̃a


 +


 Bd Ed

Ba Ea





 ũ

w


 (2.20)

where x̃d are the differential and x̃a are the algebraic variables of the DAE description.

DAE models associated with the swing model of a power system are regular and of index

one, which means that |λM −A| 6= 0 and that Aaa is invertible respectively. The condition

of regularity ensures that the characteristic polynomial for the system does not vanish

identically. The index of a DAE system measures the type of singularity, and it gives

the number of times the algebraic equations of a DAE system have to be differentiated in

order to get a full set of differential equations for all the variables of x [33]. For thorough

treatments of the DAE systems the interested readers are referred to [33, 35, 36].

Seeing that the swing DAE model is of index one, we can express it with an equivalent state-

space model by “collapsing” the DAE model down using a Ward reduction. Essentially all we

do is to express algebraic variables in terms of differential variables. The original structure

of the system is lost when we collapse the system. Sparse system matrices in the DAE

description are then replaced by full matrices in the state-space description. The structure

effectively becomes hidden when we carry out such a transformation.

A natural question is why one would be interested in investigating and simulating the

structure-preserving DAE linear model, when it has an equivalent state-space formulation?

Reasons for this are discussed in [37]. From a numerical point of view, such a transformation
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causes difficulties. The authors of [37] suggest that if accurate results are sought, one should

work with the index-one DAE system rather than with its reduced-order state-space system.

In Section 3.2, this issue will arise again in the context of observer design.

Let us collapse (2.19) into a state space model. First we express the algebraic variables as

a function of the differential variables and inputs:

x̃a = −A−1
aa (Aadx̃d + Bau + Eaw). (2.21)

Next, we substitute this expression into the differential equation block of the differential

variables to obtain:

˙̃xd = Asx̃d + Bsũ + Esw, (2.22)

where As = M−1
d (Add − AdaA

−1
aa Aad), (2.23)

Bs = M−1
d (Bd − AdaA

−1
aa Ba), (2.24)

Es = M−1
d (Ed − AdaA

−1
aa Ea). (2.25)

The linearized system output (measurements) of the DAE model, ỹ = Cx̃ (where ỹ is

the linearized version of y = g(x) and C ,

[
∂g(x)

∂x

]
x
), can be expressed in terms of the

state-space variables as follows:

ỹ = Csx̃d + Dsũ + Jsw; (2.26)

Cs = (Cd − CaA
−1
aa Aad); (2.27)

Ds = −CaA
−1
aa Ba; (2.28)

Js = −CaA
−1
aa Ea. (2.29)
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2.6 Parametric Model Uncertainty

The parameters in the models influence the behavior of the state trajectories. Possible

uncertain parameters for the models presented thus far are the line parameters (i.e., line

susceptances and conductances), inertias of the machines, load or generation changes, and

internal impedances of generators. In the next chapter we will be concerned with the design

of observers that can track the system state even in the presence of these parametric model

uncertainties. In functional form the linearized swing model (2.20) with model uncertainty

is expressed as

(M − M̃) ˙̃x = (A + Ã)x̃ + Bũ + Ew, (2.30)

ỹ = (C + C̃)x̃, (2.31)

where M̃ represents uncertainty of machine inertias; Ã represents uncertain line parameters,

uncertain generator impedances, and the uncertainty of the damping coefficient for gener-

ator shaft dynamics; and C̃ might represent uncertain line parameters for corresponding

power flow measurements on lines, or inaccuracy associated with the measurement device.

Suppose that the parameters of each line are only known to a given accuracy. Moreover,

let the line susceptance and conductance of a line h be expressed as bh = bh + b̃h and

gh = gh + g̃h respectively, where overbar signifies the known part and overtilde refers to

the uncertain part. We can gather all the known susceptances and conductances into the

diagonal matrices B and G respectively. The uncertain parts can similarly be gathered into

diagonal matrices B̃ and G̃. Investigating how these uncertain parameters feed into the

linearized swing model, we can, for instance, write their contribution to (2.14) as:

P̃ θ =

ne∑

h=1


−b̃h cos(F ′

hθ)︸ ︷︷ ︸
βh

Fh + g̃h sin(F ′
hθ)︸ ︷︷ ︸

αh

|Fh|


F ′

h, (2.32)

where b̃h or g̃h can be zero for any line; and ne signifies the number of lines in our network.
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The matrices FhF ′
h and |Fh|F ′

h are rank-one perturbation matrices. Similar expressions can

be developed for the contributions of the uncertain parameters to Equations (2.15) – (2.17).

Concentrating on the linearized version (with parametric model uncertainty) of the swing

model (2.12) expressed in functional form in (2.30), we can make the contributions of (2.32)

to Ã explicit as follows:

Ãb
h =




0 0 0

βhFh,gF
′
h,g 0 βhFh,gF

′
h,l

βhFh,lF
′
h,g 0 βhFh,lF

′
h,l


 ; (2.33)

Ãg
h =




0 0 0

αh|Fh,g|F ′
h,g 0 αh|Fh,g|F ′

h,l

αh|Fh,l|F ′
h,g 0 αh|Fh,l|F ′

h,l


 . (2.34)

The contributions of uncertainty in the damping coefficients is given by Ãd and is given by:

Ãd =




0 0 0

0 −D̃g 0

0 0 0


 . (2.35)

Finally we evaluate Ã as follows:

Ã = Ãd +
∑ne

h=1

(
Ãb

h + Ãg
h

)
. (2.36)

2.7 Electromechanical Perturbations Experienced by Power

Networks

The electromechanical perturbations that we will investigate in this thesis are load or gener-

ation changes, generator outages, line flow perturbations (e.g., line outages or short circuits).
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All faults are assumed to be of a balanced nature, i.e., all three phases of the power system

are affected equally.

The above perturbations generally will be unknown to the system operator (except maybe

scheduled generation changes). In this thesis, we want to investigate how one can monitor

the state of the system in the presence of these unknown perturbations. Moreover, we

will be concerned with observer design in order to yield satisfactory state-estimates in the

presence of these input perturbations (referred to as ‘unknown inputs’) to our system. In

the next few subsections we will discuss how to model these perturbations.

2.7.1 Modeling of Load and Generation Changes

Modeling external perturbations in the form of load and generation changes is straightfor-

ward, because these changes are accounted for by changing the appropriate entry in either

P e
g or P e

l defined in (2.8).

2.7.2 Modeling Generator Outages

The loss of a generating facility is a potential large perturbation that the system can expe-

rience. A total generator outage can be modeled by changing the generation amount to zero

and removing the mass and damping terms associated with the generator from the swing

model (M will drop rank — see (2.12)). This total loss of generation and the removal of

the generator from the network will change the defined structure of the network, because a

generator bus is converted to a load bus. The differential and algebraic variables associated

with the generator bus in the DAE description will coalesce into algebraic variables associ-

ated with the new load bus. This change in classification has to be taken into consideration

when such an event is simulated.

Partial generation outages are easier to model in our swing model setup. Assume that
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originally a number of generators were running in parallel, and a fraction of these parallel

generators suddenly go off-line. Thus, at the generator bus (as seen from the network side),

we will see a mass and damping change of the aggregated generator along with a change

in generated power (Mg,i, Dg,i and P e
g,i — defined in (2.12) — will change). These changes

can easily be done during the course of a simulation.

2.7.3 Modeling of Line Flow Perturbations

We mainly consider the case of a line outage. We investigate this effect using the linearized

version of (2.19) and, as previously indicated in Section 2.6, a change in the line-parameters

corresponding to rank-one perturbations in A. An unknown line outage occurring on line

h (directed from bus s to bus t) can thus be modeled as:

Ew =

...

s →
...

t →
...




0

κ1

0

κ2

0




ζF ′
hx̃︸ ︷︷ ︸

w

, (2.37)

where κ1 = −bh cos(F ′
hθ)+gh sin(F ′

hθ); κ2 = +bh cos(F ′
hθ)+gh sin(F ′

hθ); w is the unknown-

input; and ζ reflects the percentage fraction of the outage. For a complete line outage, one

will have ζ = −1.

2.8 Conclusion

In this chapter we did the groundwork and introduced different types of swing models that

one can look at. However, the work pertaining to power system monitors in the following

chapters can be extended to models that incorporate voltage dynamics.
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Nonlinear and linearized versions of the swing models were given, and a matrix-vector

equation was written that displays the network structure. We showed what type of model

uncertainty one might expect for these models. We also discussed the different types of

measurements available for us in order to create power system monitors. Lastly, we discussed

different types of electromechanical perturbations that may occur in a power system.

In the following two chapters we will focus on swing-observer design for power systems and

illustrate how we can apply these observers to realize power system monitors.
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Power System Monitors using

Model-Based Observers
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System-Wide State Estimation using

Observers

In this chapter we will develop the model-based observer framework that can be used for

the realization of power system monitors. Two types of monitors will be considered: first,

a monitor concerned with dynamic state estimation; and second, the realization of fault

detection and isolation filters.

Traditional state estimation in power systems has mainly focused on static estimation from

redundant measurements [2]. There exists literature on dynamic state estimation (DSE),

which deals with either: recursive processing of measurements, but with no dynamics in

the state [3, 4]; or slow-speed state dynamics induced by load variations, so the dynamics

referred to are that of the load, and these dynamics are estimated on-line in various ways

using load forecasting ideas [3, 5, 6]. Traditional power system state estimation will not be

addressed further in this thesis. The interested reader is referred to the authorative text by

Monticelli [2].

Observer-based dynamic estimation of the swing state of a power network was investigated

in [7, 8, 9]. In [9] the single-machine, infinite-bus case is examined. Swing-state estimation,

as defined in [7], involves estimating the bus angles and generator speeds, but not the

bus-voltage magnitudes. In [7] a mixture of generator and load buses was modeled via a

nonlinear Differential Algebraic Equation (DAE) swing model, in comparison to the linear

collapsed all-generator network investigated in [8].
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A dynamic model of the system is used in the realization of an observer to accumulate over

time, and interpolate over space (i.e., over the entire network), the information contained

in measurements obtained from a limited — i.e., highly non-redundant — set of sensors.

The role of the dynamic model is to relate measurements taken at any given time to those

taken at other times, and to relate measured variables at the sensor locations to unmeasured

variables throughout the network. In this way, sufficiently redundant information about the

entire system is built up over time. Appropriate processing of this information then yields

the desired estimates of the system state.

It should be pointed out that even though our investigations relating to observer design are

essentially confined to the swing model, the methodologies proposed should be extendable

to the case where we want to incorporate the voltage variables associated with the power

network. For this one might represent the generators using two-axis models (see [32] for a

description of this model) and model reactive power flowing on the network (see (2.4)). In

this thesis, examples of this sort will not be presented.

Initial work on swing-state estimation has been reported in [7]. The following items distin-

guish the work discussed in this thesis from this paper:

• We investigate other possible nonlinear observers, and motivate our choice of retaining

the observer form introduced in [7].

• We investigate different synthesis methods that yield superior state tracking perfor-

mance. Moreover, we illustrate that designing observers using DAE design techniques

has some added benefit relative to state-space observer design techniques.

• We investigate the performance of the observers in a noisy setting.

• We illustrate how one can design observers that are robust to model uncertainty, which

was not done in [7].

• We introduce a novel graphical observer design approach in the next chapter, borrowing

ideas from the theory of linear structured systems [38]. We furthermore illustrate that
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this design technique is attractive for large-scale systems.

Linear observers can be designed for the linearized swing model (2.19), and these observers

may be expected to do a reasonable job of tracking deviations of the nonlinear swing model

(2.12) from steady state, provided these deviations are small enough to be reasonably cap-

tured by the linearized model. In this thesis, we are interested in tracking large deviations

from nominal, and with this in mind, we will realize nonlinear observers.

The measurement set available to an observer greatly influences the performance of the

realized state estimator. The placement and the number of measurements available to an

observer is an important problem that will be addressed in this chapter. Increasing the

measurement set might enhance the performance of the observer-based state estimator,

because of the extra information contained in the larger set of measurements. A method

for deciding the number, nature and placement of measurements needs to be investigated.

In [7] an initial investigation of this sort was launched for a small scale example. In this

chapter we will revisit this problem.

3.1 Nonlinear Observer

The nonlinear swing model (2.12) (in which we neglected machine reactances and took all

bus voltages to be constant) can be rewritten as:

Mẋ = A0x + Bu + NΦ(Rx), (3.1)

A0 =




0 I 0

0 −Dg 0

0 0 0


 , (3.2)

where Φ(Rx) contains all the nonlinear terms associated with Pnw(θ) given in (2.3). For the

time being let us assume that the network is lossless, i.e. G = 0, resulting in N =


 0

FBΥ



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and Φ(Rx) = sin(Rx) where Rx = F ′θ. Each of these nonlinear elements φi(Rix) of Φ(Rx),

corresponding to line i and with Ri being the ith row of R, is Lipschitz continuous. Note

that the nonlinear terms are due to the active power transfer laws across the transmission

lines of the power network, and are therefore sinusoidal.

A possible nonlinear observer for this system might be:

M ˙̂x = A0x̂ + Bu + k(x̂, y − ŷ), (3.3)

where x̂ denotes the internal (differential and algebraic) variables of the observer system,

y = g(x) is the measured output (where element i of g(x) can take on any of the possibilities

shown in (2.13)), ŷ = g(x̂) is the observer’s estimate of y, and k(·, ·) is a yet-undetermined

nonlinear function.

Defining the error vector e = x − x̂, we obtain the dynamic equations for the error system

as follows:

Mė = A0e + N(Φ(Rx)) − k(x̂, y − ŷ). (3.4)

In the next few subsections, we will explore different possible functions k(·, ·). However,

this exploration will not be extensive, and the interested reader is referred to [39] in which

a summary on nonlinear observer design is given.

3.1.1 Linear Parameter Varying Observer for Nonlinear State Estimation

The most intuitive choice of k(x̂, y− ŷ), that is in accordance with the observer we proposed

in [7], is:

k(x̂, y − ŷ) = NΦ(Rx̂) + L(y − ŷ), (3.5)
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which leads to the observer having the nonlinear form

M ˙̂x = A0x̂ + Bu + NΦ(Rx̂) + L(y − ŷ), (3.6)

where L is the observer gain and the last term is a linear correction term proportional to

the discrepancy between the measured y and the observer’s estimate ŷ of y. This type of

observer is in accordance with that used by Rajamani in [40] for the state-space case.

Substituting (3.5) into (3.4) we obtain the nonlinear DAE error system associated with

observer (3.6):

Mė = A0e + N(Φ(Rx) − Φ(Rx̂)) − L(y − ŷ). (3.7)

Global asymptotic observer design for state-space systems (i.e., when M is invertible and

without loss of generality we take M = I) of the form (3.1), with y = Cx, has been studied

by Rajamani [40]. The observer that he proposes is of the form (3.6) (with M = I) and

with ŷ = Cx̂. He proves that for (A0, C) observable, and Φ(Rx) Lipschitz with a constant

γ, the state-space error dynamics (i.e., (3.7) with M = I) is globally asymptotically stable

as long as we can design L such that: (A0 − LC) is stable, and that the minimum singular

value over all positive frequency values of (A0 − LC − jωI) is greater than γ. This result

ties in with the small gain theorem for the interconnection of the linear dynamics with the

static state-dependent nonlinear block.

For the swing model, the A0 matrix in (3.2) is so sparse, that in order to guarantee a similar

notion of observability for the DAE system, we will need an extensive measurement set; we

would essentially need to measure all load angles. However, in this thesis we want to confine

our attention to scenarios where we have a limited set of sensors.

Using the relationship x = x̂ + e we can rewrite the nonlinear part in (3.7) as:

Φ(Rx) − Φ(Rx̂) =
[

∂Φ
∂Rx̂

]
Re + ξ(x̂, e), (3.8)
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where
[

∂Φ
∂Rx̂

]
denotes the Jacobian of Φ(·) with respect to Rx̂, and ξ contains higher order

terms associated with this linearization. The ith element of the vector ξ is found to be

ξi(x̂i, ei) = cos(Rix̂)(sin(Rie) − Rie) + sin(Rix̂)(cos(Rie) − 1). (3.9)

Substituting (3.8) into (3.7) we obtain the following DAE error system:

Mė = (A0 + N
[

∂Φ
∂Rx̂

]
R)e − L(y − ŷ) − Nξ(x̂, e), (3.10)

from which we define A(x̂) = (A0 + N
[

∂Φ
∂Rx̂

]
R).

The error system (3.10) is recognized as a Linear Parameter Varying (LPV) [41] system

with parameter x̂, and in recent years research attention has been focused on designing

controllers for such state-space systems [42]. What appears to be common in these designs

are that a family of gains is designed, and using gain-scheduling, the appropriate gain is used

as the parameters vary. For the observer case the varying parameter is x̂ and one possibility

in the observer realization is to redesign the gain along the trajectory of x̂. However, this

approach can be computationally intensive (depending on the synthesis method) if this gain

L(x̂) is redesigned in real-time as the x̂ trajectory changes significantly. A possible trade-off

might be to design the gain L at a specific operating point and use L for a wide range of

Rx̂.

The beauty of writing the error system as an LPV system, is that a linear design technique

can be used to design a stabilizing L(x̂) for the error system. The existence of such an L(x̂)

depends on the ‘observability’ of (M, A(x̂), C) [43], where A(x̂) is less sparse than A0. The

observability of (M, A(x̂), C) does not require an extensive measurement set, as we discuss

in Section 3.3, and we can thus investigate limited measurement sets.

Let us investigate the stability of the error system by considering the following Lyapanov
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candidate function for this DAE system [44]1:

V = e′M ′Xe, (3.11)

with M ′X = X ′M ≥ 0. (3.12)

Taking the time derivative of V we find:

V̇ = e′((A(x̂) − L(x̂)C)′X + X ′(A(x̂) − L(x̂)C))e︸ ︷︷ ︸
V̇l

+ 2e′X ′Nξ(x̂, e)︸ ︷︷ ︸
V̇nl

. (3.13)

We have abandoned the idea of finding a global stabilizing gain L for the error dynamical

system, instead we are interested in finding a local stabilizing gain L(x̂). First, let us

consider the behavior of V̇nl in the neighborhood of e = 0. In this local neighborhood e

remains small, and from (3.9) we notice that ξi(x̂, e) → 0 and hence V̇nl → 0. Thus we only

need to focus on the linear system (M, A(x̂)−L(x̂)C) for which we can use a linear synthesis

technique to design stable error dynamics. For such a system we know that we can find a

X that will satisfy (3.12) and also have V̇l < 0. Thus in the neighborhood of e = 0 we have

that V̇ → V̇l < 0 and V ≥ 0 hence V is a valid Lyapanov function and the DAE-LPV error

system will be local asymptotically stable around e = 0 if (M, A(x̂)−L(x̂)C) is stable, even

if x̂ evolves (granted that L(x̂) is updated as x̂ evolves).

3.1.2 Arcak-Kokotović Nonlinear Observer

Recently Arcak and Kokotović [45] introduced a novel nonlinear observer for state-space

models of the form (3.1) with M = I. They assume that each nonlinear term is mono-

tonically nondecreasing. In [46] the same authors suggests how one can recast a problem

with Lipschitz nonlinearities to a problem with nondecreasing nonlinearities, allowing us to

investigate their observer design method for our swing-models. The state-space observer

presented in [45, 46, 47] can be generalized to include the DAE case. This DAE Arcak-

1We assume that the original system (2.12) is local asymptotical stable.
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Kokotović observer has the following form in the case of linear measurements y = Cx:

M ˙̂x = A0x̂ + NΦ(Rx̂ + K(y − ŷ)) + L(y − ŷ), (3.14)

ŷ = Cx̂, (3.15)

Defining e = x − x̂, the error dynamics are obtained as:

Mė = (A0 − LC)e + NΨ(z), (3.16)

Ψ(z) = (Φ(Rx) − Φ(Rx̂ + K(y − ŷ))), (3.17)

z = (R − KC)e, (3.18)

where z is the modified output of the linear DAE system (M, A0−LC, R−KC). This linear

system is then interconnected in a feedback fashion with a multivariable sector nonlinearity

Ψ(·). The output of this nonlinear block provides us with the driving input of the linear

DAE system.

In [45] a state-space observer (i.e., M = I) of the form in (3.14) is shown to have globally

exponential stable error dynamics when a specific Linear Matrix Inequality (LMI) problem

is feasible. (See Appendix A for a brief introduction on LMI’s.) The design method relies

on a circle criterion argument and the extension of their proof of stability for the state-space

observer to the DAE case can be done. In this extension, their original LMI condition given

in [45] is augmented by the additional LMI (3.12). The nonlinearities in the swing model

are not monotonic nondecreasing, but in [46], the authors illustrate how global Lipschitz

nonlinearities can be transformed to monotonic nondecreasing nonlinearities. In [47] an

initial treatment of the analytical tests for the existence of such an observer was given;

however in most of the papers by these authors, the feasibility of the conditions for the

existence of such observers relied on the feasibility of the set of LMIs they had proposed.

Rather than giving an extensive analysis of an Arcak-Kokotović observer, let us investigate

the added benefit of having the extra feedback K(y−ŷ) available. Focusing on the nonlinear
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part we see that:

φi(Rix) − φi(Rix̂ + KiCe) = sin(Rix̂) [cos(Rie) − cos(KiCe)]

+ cos(Rix̂) [sin(Rie) − sin(KiCe)] , (3.19)

from this we see that we have the opportunity to cancel the ith nonlinear component of

Φ(Rx) from the DAE error system. This cancellation is achievable (i.e. there exists such

a Ki) when ker(Ri) ⊇ ker(C). What this implies is that the structure of C helps in the

distribution of the elements of Ki (a design matrix) such that we are able to cancel the

nonzero entries of Ri. The added benefit of having KCe feeding back into the nonlinear

term of the observer is not apparent if the latter condition for each ith component does not

hold. If we force this condition to hold for every ith component we will need an extensive

measurement set (i.e., the nullspace of C would become smaller ultimately tending to the

empty set, which is in the nullspace of each Ri). Studies using extensive measurement sets

fall outside the scope of our work where we only want to focus on limited measurement sets.

3.1.3 Hybrid Nonlinear versus Linear Observers Using the Same Linearly

Designed Gain

From the two previous subsections one can conclude that designing an LPV observer might

yield the best state estimator for the nonlinear system. (One can think of this estimator as

a special case of the Extended Kalman Filter.) However, implementing this LPV observer

in real-time can be very computationally intensive (depending on the design method used

to find L(x̂)) for a large-scale power network. Thus, in the ensuing studies, we will not

realize LPV observers in our simulations in order to save on computational requirements,

although the design approaches we will introduce could be used when LPV observers are

to be implemented.

In this section we will introduce our hybrid observer that uses an observer gain that is
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designed using a linearized model (at x and u) in the realization of

M ˙̂x = f(x̂, u = u, w = 0) + L(y − ŷ), (3.20)

where M , f , u, w are as defined in (2.12), y = g(x) + v is the measured data, and ŷ = g(x̂)

is the output predicted by the observer.

The error dynamics associated with this observer is written as

Mė = f(x, u = u, w) − f(x̂, u = u, w = 0) − L(y − ŷ), (3.21)

which can be written as the LPV system

Mė = (A(x̂) − LC(x̂))e + ξ(e, x̂) + Ew − Lv, (3.22)

where A(x̂) =
[

∂f
∂x̂

]
, C(x̂) =

[
∂g
∂x̂

]
and E =

[
∂f
∂w

]
.

We can rewrite the above error dynamics as

Mė = (A(x) − LC(x))e + β(e, x̂, x) + Ew − Lv, (3.23)

where β(e, x̂, x) = [A(x̂) − A(x) − LC(x̂) + LC(x)]e + ξ(e, x̂). In Section 3.1.1 we showed

that ξ(e, x̂) → 0 in a local neighborhood of e = 0. In order to have β(e, x̂, x) → 0 in this

neighborhood of e, we need that x̂ be close to x.

Placing this extra restriction of x̂ being close to x, might urge us to investigate linear

observers of the form

M
˙̂
x̃ = A(x)̂̃x + L(ỹ − ̂̃y), (3.24)

where ỹ = C(x)x̃+v is the linearized version of y with measurement noise v, and ̂̃y = C(x)̂̃x
is the estimate of ỹ. Defining ẽ = x̃ − ̂̃x, the following linear error dynamical system is
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obtained

M ˙̃e = (A(x) − LC(x))ẽ + Ew − Lv, (3.25)

which is similar to (3.23).

One might expect that the linear observer may do a reasonable job of tracking deviations

of the swing dynamics from steady state, provided these deviations are small enough to be

reasonably captured by the linearized model. On the other hand, we would expect that the

hybrid nonlinear observer (3.20) can track larger deviations from nominal.

We anticipate that this nonlinear observer will tend to perform better than a linear observer.

For instance, assume no modeling errors and that the linear and nonlinear observers have

initial conditions equal to the state of the system. When the state and the state moves

away from the linearization point, the linear observer can have an internal model that

differs wildly from the model of the plant. Thus, discrepancies will arise and the error will

start to increase. The nonlinear observer, on the other hand, will track the state.

Experimentally it was found that for the examples we considered in this thesis, the discrep-

ancies between the performances of the linear and nonlinear observers were marginal. An

illustration of these discrepancies will not be shown at this juncture.

3.2 DAE or State-Space Observer Synthesis

The question we want to address in this section is whether we should design the observer

gain L using DAE or state-space observer design techniques. Before we discuss available

synthesis methods let us investigate the relation between DAE and state-space observer

design.

The question of whether to design observers using state-space design or DAE observer
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design techniques was briefly mentioned in [33]. The author preferred to design state-space

observers for the known-input state-estimation problem; however, he did not elaborate on

the perceived benefits of using a state-space design approach.

Recently various researchers have investigated DAE observer design. Some of the papers

address observer design for very general DAE models, such as rectangular (as compared

to square) DAE systems and higher-index DAE systems. Such general investigations fall

outside the scope of this thesis, seeing that the DAE model of the swing dynamics is square

and of index one.

We start off by assuming that an L exists that stabilizes the error system. The conditions

that the DAE model needs to satisfy in order to guarantee the existence of such L will be

addressed in the following section.

We can express (3.25) in the the following form (where we assumed the absence of model

uncertainty):


 Md 0

0 0







˙̃ed

˙̃ea


 =


 Add − LdCd Ada − LdCa

Aad − LaCd Aaa − LaCa





 ẽd

ẽa




+


 Ld Ed

La Ea





 −v

w


 . (3.26)

ẽd is the vector of dynamical variables (also referred to as the slow variables); ẽa is the

vector of algebraic variables; v is the vector of measurement corruption signals (and in the

standard setup is referred to as measurement noise); and w is the vector of unknown inputs

driving the error dynamical system.

In order to answer the question of this section, it is instructive to collapse (3.26) to form

a state-space model (see Section 2.5, where the steps associated with collapsing a DAE

model to its equivalent state-space model are illustrated). Collapsing (3.26) we obtain the
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state-space equivalent model as:

Mdėd =
[
Add − LdCd − (Ada − LdCa) (Aaa − LaCa)

−1 (Aad − LaCd)
]
ed

+(Ed − (Ada − LdCa)(Aaa − LaCa)
−1Ea)w

−(Ld − (Ada − LdCa)(Aaa − LaCa)
−1La)v, (3.27)

e =


 Ing

−(Aaa − LaCa)
−1(Aad − LaCd)


 ed

−


 0

(Aaa − LaCa)
−1


 (Eaw − Lav) . (3.28)

Equation (3.27) confirms that we are faced with a tricky design, if we were to use state-

space techniques, because of the presence of the gain block La. Setting La = 0 simplifies

the observer design and we find that (3.27) reduces to,

Mdėd =
[
Add − LdCd − (Ada − LdCa) (Aaa)

−1 (Aad)
]
ed

+(Ed − (Ada − LdCa)(Aaa)
−1Ea)w − Ldv, (3.29)

which can be conveniently expressed using the collapsed state-space matrices of the original

system (see Equations (2.22) – (2.29)). Thus (3.29) can be expressed as

ėd = (As − LsCs)ed + Esw − Lsv, (3.30)

e =


 Ing

−A−1
aa Aad


 ed −


 0

A−1
aa


Eaw (3.31)

where Ls = M−1
d Ld. We recognize that by setting La = 0 we can design the gain of the

nonlinear DAE observer, L =
[

L′
d L′

a(= 0)
]′

, by designing a state-space observer gain

Ld.

A natural question to ask is whether we lost degrees of freedom in the design stage by taking

La = 0. What are the benefits of having the additional gain block La? The answer to this
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question is best demonstrated by the following small example.

3.2.1 DAE versus State-Space Example

In this example we will consider the DAE system corresponding to a linearized swing model

of a generator connected to a load. The system matrices are given by:

A =




0 1 0

−b −d b

b 0 −b


, E =




0

0

1


, M =




1 0 0

0 1 0

0 0 0


, C ′ =




0

0

1


, L =




l1

l2

l3


.

The collapsed state-space system (As, Esw, Cs, Dsw) can be computed using Equations

(2.22) – (2.23).

Consider realizing a DAE observer of the form (3.24) for which the error dynamics are of the

form (3.26). Our aim is to design observers that will attenuate the effect of the unknown-

input. Thus, we want the steady-state error in response to an unknown step input to be

attenuated. The expression of the steady-state error for this system is given by:

Gew(s = 0) = (sM − A + LC)−1E|s=0 =




b−dl1−l2
b(dl1+l2+l3)

l1
dl1+l2+l3

1
dl1+l2+l3


 .

Choosing l1 = 0, l2 = b and l3, large the steady-state error Gew(s = 0) → 0. We used

the three available design parameters to achieve ‘ideal’ unknown-input attenuation. There

are no extra design parameters available in order to independently move the poles of the

closed loop error dynamical system. For this design these closed-loop poles are at (1
2(−d±

√
−4b + d2)), which is different from the open-loop poles (0,−d) of the system.

Now let us consider the state-space design case where we need to find the elements of

Ls =
[

ls1 ls2

]′
. The expression of the steady-state error for the state-space designed
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closed-loop error dynamical system in response to an unknown step input is given by:

Gew(s = 0) = Cfs(sI − As + LsCs)
−1(Es − LsDs)|s=0 + Dfs =




b−dls1−ls2
b(dls1+ls2)

ls1
dls1+ls2

1
dls1+ls2




It is evident that for this case one cannot achieve ‘ideal’ unknown-input attenuation. Setting

ls1 = 0 and ls2 = b, only two of the three steady-state errors can be set to zero (Gew(s =

0) =
[

0 0 1
b

]
), and the poles are also at (1

2(−d±
√
−4b + d2)). Thus, by setting La = 0

we have eliminated one of our degrees of design freedom.

In the presence of measurement noise it will not be advisable to let l3 be too large, but a

suitable trade-off can be achieved.

In Section 4.2.2 the benefit of having La nonzero will be highlighted again, using a different

motivation. Another benefit of having La nonzero in (3.26) is that the extra degrees of

freedom come in handy when directional fault detectors (where the occurrence of a fault

yields a unique output direction, aiding in fault isolation) are realized.

DAE observer design is currently an active research field and literature exists where various

state-space synthesis techniques are extended in order to realize full-order DAE observers

[36, 43, 48, 49, 50, 51]. We will not investigate all of these techniques, but rather focus on

H∞ estimation problem for DAE systems. A very recent recent paper [50] (2003) reported

on H∞ filtering for DAE systems, treating a more general class of problems than the H∞

observer design problem that we limit ourselves to here.

3.3 Observability Notions for DAE Models

In Section 2.4 different types of measurements available for swing-observer design were

introduced. In this section we will discuss what kind of observability guarantees the exis-
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tence of L in (3.24). Various researchers have asked this question [36, 48, 43]. In [36] the

requirement for the existence of a stabilizing L for an index-one DAE system is given as:

• System (2.19) has a singular observer (i.e., L exists) if and only if it is detectable

(Theorem 4-1.2, page 105 in [36]).

• System (2.19) is detectable if and only if rank


 sM − A

C


 = n, ∀s ∈ C

+
, s finite.

The requirement of detectability limits the set of measurements that can be employed, and

translates to detectability of the equivalent state-space system.

A subtle issue emerges when we consider swing-observer design utilizing a single speed

measurement. Using a measurement of this form results in the system not being detectable.

The reason is that the mode at s = 0 is unobservable, i.e. the matrix


 A

C


 has rank less

than n. This reflects the fact that absolute angles cannot be estimated using just speed

measurements, only relative angles can. However, relative angles are ultimately all that we

require in our application. It suffices for us to modify the above rank test for detectability

by checking for rank n at all nonzero s ∈ C
+, implying that single speed measurements are

allowed.

3.4 H∞ Observer Synthesis

Kalman Filtering (of which Linear Quadratic Estimation is a special case) was used to design

[7, 9, 10, 11] swing-state observers for power systems. Kalman Filtering is one of the more

popular ways to deal with state estimation [52]. Kalman Filtering is generally based on

the assumption that the system under consideration and the statistics of stationary white

noise processes w and v. The Kalman filter provides an optimal estimate of the desired

system state that minimizes the covariance of the estimation error. In the case when the
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noise statistics are not exactly known, one can use the describing parameters of the noise

processes as tuning parameters in the design process. Mangoubi [53] incorporated model

uncertainty in the Kalman filter framework, but a detailed discussion of these extensions

fall outside the scope of this thesis.

At the beginning of the 1990’s researchers introduced H∞ filtering to bypass the requirement

of exact knowledge of the statistics of the system noise processes. In the H∞ framework we

assume that the unknown input signals w (which can be process noise or large deviations

due to faults on the system) and the measurement corruption signals v (which can be a

noise process or a momentarily offset in the measurement) have bounded energy.

In this thesis we will introduce and discuss the H∞ filtering problem using a Linear Matrix

Inequality (LMI) setup. A brief explanation of LMIs is given in Appendix A and the

interested reader is referred to the textbook [54] and the course notes by Scherer and

Weiland [55]. It is reasonable to ask why we opted to investigate the H∞ problem using the

LMI framework, and not the traditional Algebraic Riccati Equation setup. The reason is the

ease with which we could test the difference between DAE observer and state-space observer

design. Incorporating extra constraints (possibly performance related) on the problem is

also handled with more ease in the LMI setup. Another bonus is that the Matlab LMI

toolbox [56] can be used to solve the H∞ optimization problem subjected to LMIs.

In section 3.2 we illustrated the extra degrees of freedom afforded by designing a DAE

observer versus a state-space observer design. Unfortunately, for practical power networks

the number of non-generator buses is substantially greater than the number of generator

buses. Thus, the size of the DAE model can potentially be orders larger than the equivalent

state-space system. The number of decision variables associated with the DAE H∞ LMI

filtering problem can potentially be very large compared to the number of decision variables

associated with the H∞ filtering problem for the equivalent state-space system. In the

following two subsections we will investigate estimation for the descriptor case and the

state-space case. In practice, the scenario might arise that the DAE H∞ filter might not
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be feasible when we take the computational issues into consideration.

3.4.1 DAE Systems

The H∞ observer design setup is a direct application of the generalized bounded real lemma

[50]. The generalized bounded real lemma for the following DAE system

Mẋ = Ax + Bu (3.32)

y = Cx + Du, (3.33)

for which we use the shorthand (M, A, B, C, D) can be stated as follows.

LEMMA 3.1

The transfer function matrix

Gyu = C(sM − A)−1B + D (3.34)

associated with system (M, A, B, C, D) have ‖Gyu‖∞ < γ2, if and only if there exists a

matrix X such that

M ′X = X ′M ≥ 0 (3.35)
 A′X + X ′A + C ′C X ′B + C ′D

B′X + D′C D′D − γ2I


 < 0 (3.36)

From the constraint M ′X = X ′M ≥ 0 one can show for our diagonal singular M that

X =


 Xdd 0

Xad Xaa


 with M ′

dXdd = X ′
ddMd. Thus, due to the structure of M some of the

decision variables (elements of X) are eliminated.

The H∞ observer synthesis LMIs are obtained by substituting (M, A−LC, E, Q = I, D = 0)
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corresponding to the system given in Equation (3.25) for (M, A, B, C, D) in Lemma 3.1.

Hence, the H∞ filter exists if the following LMIs with decision variables X, Y ′(= −X ′L),

γ2 are feasible:

M ′X = X ′M ≥ 0 (3.37)
 A′X + X ′A + Y ′C + C ′Y + C ′

eCe X ′E

E′X −γ2I


 < 0. (3.38)

The premise of the design is to minimize γ2 subject to the constraints (3.37) and (3.38).

The introduction of Y into the problem ensures that the problem stays linear because

LMI solvers cannot solve the LMI feasibility problem with decision variables X, L and γ2.

The latter problem would involve matrix terms of the form X ′L, which is nonlinear in the

decision variables.

The presence of the measurement corruption signals v can adversely influence the perfor-

mance of an observer. The level of trust the LQE/Kalman filter places in these corrupted

measurements is weighted according to the description of the noise processes associated

with the measurements. We have assumed in the H∞ filter design discussed thus far that

the measurement signal is uncorrupted, and we will have to take possible measurement

corruption into account.

One possible way of including the effect of measurement noise is to append v to w and −L

to Bw, thus effectively redefining w. However, it was found that the realized observers were

conservative and performed poorly in the presence of unknown load/generation changes.

Following this approach one implicitly assumes that ‖v‖2 and ‖w‖2 are comparable, which

might not be the case.

Another possible approach to account for v is to investigate a multi-objective design problem

[55], i.e., ‖Gew(s)‖∞ < γ2 and ‖Gev(s)‖∞ < ν2. Unfortunately, multi-objective design

problems are typically intractable in state-space, so these problems are frequently converted

to a mixed design problem [55]. In this thesis we will investigate the mixed design problem,
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which requires us to also satisfy the additional (in conjunction with (3.37) and (3.38)) LMI

constraint:


 A′X + X ′A + Y ′C + C ′Y + C ′

eCe Y ′

Y −ν2I


 < 0, (3.39)

where we substituted the system (M, A − LC,−L, Ce, 0) into Lemma 3.1. The main dif-

ference between mixed and multi-objective design is that for the mixed design problem we

want to find X and Y that satisfy constraints (3.37) – (3.39), whereas for the multi-objective

design problem we want to find X1 and Y1 (satisfying (3.37) and (3.38)) as well as X2 and

Y2 (satisfying (3.37) and (3.39)). The existence of distinct Xs and Y s makes it difficult to

obtain L in the multi-objective case.

In designing an observer using the mixed design approach that will be able to guarantee

a certain level of unknown-input and measurement corruption attenuation, we would want

to minimize γ2 + ανν
2, where αν is fixed. Initial choices for αν might be αν = ‖v‖2

‖w‖2
. The

larger αν becomes, the less the observer will trust the measurements and consequently will

rely more on the internal model of the observer.

We will now briefly state the LMI-based H∞ filtering problem for state-space systems. We

will then move on to an example where we will pit H∞ DAE designed observers versus H∞

state-space designed observers.

3.4.2 State-Space Models

The bounded real lemma for state-space systems is obtained from Lemma 3.1 simply by

setting M = I.

Following the same route as the DAE case, the LMI constraints of the state-space H∞

filtering problem are given by the following, where we use the matrix notation from (2.22)
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– (2.27) and also define Cfs =


 I

−A−1
aa Aad


 and Dfs =


 0

−A−1
aa Ea


:

X = X ′ > 0; (3.40)
 A′

sX + X ′As + Y ′Cs + C ′
sY + C ′

fsCfs X ′Es + Y ′Ds + C ′
fsDfs

E′
sX + D′

sY + D′
fsCfs D′

fsDfs − γ2I


 < 0; (3.41)


 A′

sX + X ′As + Y ′Cs + C ′
sY + C ′

fsCfs Y ′

Y −ν2I


 < 0. (3.42)

The mixed-design state-space H∞ filter is obtained by minimizing γ2 + α2
v subject to the

above constraints.

3.4.3 Comparison Example: Nine-Bus Power System

The following example will serve a dual purpose. Firstly, we will illustrate the performance

difference between DAE-designed H∞ filters and state-space-designed H∞ filters. Secondly,

we will illustrate the performance of these observers in a noisy setting (we assume mea-

surement noise and process noise on all the load buses), and establish that the DAE H∞

optimization problem did not let La become too large (to minimize ‖A22−L2C2‖), otherwise

the response of the DAE-designed observer would be too sensitive to possible measurement

corruption signals.

The power system example we will be considering is a classical nine-bus example (see Figure

3.1) adopted from [32]. For this system we assume that there are three unknown-input in

total (at bus 5, 6, and 8). We assume that both observers have the same measurements

available, and these are of the form of direct angle measurements taken at buses 4, 7 and 9.

During the course of the simulation we will apply a discrete event in the form of a 2p.u.

unknown load change in the real power load at bus 8. We will assume the system and the

observer were initially in their respective steady states for both simulations. The applicable
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Figure 3.1: Classical 9-bus example used in this this section (and other sections to follow).
The line parameters are shown as impedances.

event occurs during 0.001s ≤ t ≤ 4.001s in each simulation. For the ensuing discussion we

will examine the angle at a bus relative to the center-of-inertia angle movement θcoi that is

computed as:

θcoi =
∑ng

i=1
Mi

Mtotal
θi, (3.43)

and we define θic = θi − θcoi and θ̂ic = θ̂i − θ̂coi where i ∈ {2, · · · , n}.

In Figures 3.2 – 3.4 the performance of the DAE-designed H∞ filter is contrasted to the

performance of the state-space designed H∞ filter. From these figures we can conclude that

the DAE-designed filter indeed does a better job than the state-space-designed filter. (One

can define a metric on e for both of these observers to get a quantitative feel of performance

difference.)

Note that there are no direct speed measurements taken at bus 3, or in fact anywhere in

the network, so the dynamic model plays a key role in providing the speed estimate shown

in Figure 3.4(b).
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Figure 3.2: Time plots of the system response (solid line); DAE-designed H∞ filter (dashed
line — Obs1) and state-space-designed H∞ filter (dashed-dot line — Obs2) in response to
a 2p.u. load change at bus 8.
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Figure 3.3: Time plots of the system response (solid line); DAE-designed H∞ filter (dashed
line — Obs1) and state-space-designed H∞ filter (dashed-dot line — Obs2) in response to
a 2p.u. load change at bus 8.
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Figure 3.4: Time plots of the system response (solid line); DAE-designed H∞ filter (dashed
line — Obs1) and state-space-designed H∞ filter (dashed-dot line — Obs2) in response to
a 2p.u. load change at bus 8.

3.4.4 Robust H∞ Estimation

In Section 2.6 we discussed possible uncertain parameters in our swing models. This para-

metric model uncertainty has not been accounted for during the observer design stage, and

in Appendix B we account for these uncertainties in the observer design problem. We will

not build on this technical material, but the interested reader is referred to the appendix.

3.4.5 Measurement Placement and Type

A possible measurement placement and type exploration algorithm can be devised by se-

quentially working through the list of possible measurements. A similar strategy was pro-

posed in [7] using the LQE observer synthesis method. However, employing a similar ap-

proach, but utilizing H∞ DAE filtering, will be too unwieldy for practical power networks.

A possible cost function for this approach might be a combination of the error convergence

rate and γ. Due to the computational burden such a sequential search will evoke, we will
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not report on the initial results obtained using this algorithm.

As an alternative one can use H∞ state-space filter design algorithms that use Algebraic

Riccati Equation solvers. The computational requirements of this approach will be more

viable, but will place restrictions on out our measurement set as discussed in Section 3.3.

3.5 Conclusion

In this chapter we investigated observer design for swing models. We briefly touched on

nonlinear observer possibilities. We concluded that a viable approach for realizing an ob-

server for the nonlinear swing model would be to design a linear parameter varying observer

gain (the parameters in question are the estimates of the system state variables).

This possibility presented us with the opportunity to design an observer gain using linear

techniques. The next question that arose was whether we should design these gains using

state-space techniques or DAE design techniques. We concluded that when unknown-input

attenuation is of importance we should design the observer gain using a DAE synthesis

technique. This approach provides us with more degrees of freedom in order to attenuate

the effect of the unknown input on the estimation problem.

We then discussed the conditions under which we can find these observer gains. From there

we investigated the realization of robust H∞ filters for the DAE and state-space design

case. The state-space case is considered for computational reasons. Unfortunately, a DAE

system associated with a practical power network can be large. The number of algebraic

variables can be much larger than the number of differential variables, increasing the number

of decision variables in the LMI-based H∞ optimization problem significantly. From these

studies we concluded that if computational power is limited, LMI-based H∞ DAE filter

design is presently not realistic.

In the next chapter we will introduce a novel observer design approach, that is suited for
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on-line design for large-scale systems.
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Graphical Observer Design for

Large-Scale Systems

A linear state-space system is considered structured when each entry of the state-space

system matrices, (A, B, C, D), is either a fixed zero, a free parameter, or a fixed nonzero

parameter. The survey paper [38] presents a good introduction to these types of systems

and summarizes representative results in the field. The background section presented here

is a brief summary of the survey [38]. The reader should keep in mind, however, that our

main interest will be in structured systems with fixed zeros and fixed (nominally known)

parameters, but not free parameters.

The structure in the system is mainly derived from the fixed-zero entries in the system

matrices. The fixed non-zero parameters of these matrices represent the specific role that

certain variables play in the system. Examples of these fixed parameters are: a system

comprising a composition of subsystems (e.g., a series connection); and fixed algebraic

relations between variables (e.g., one state variable being the derivative of another state

variable — this results in having 1s in the system matrices). The absence of relations

between variables gives rise to the fixed-zero entries in the system matrices. For these fixed

zeros one can conclude that some variables have no direct action on others. The locations

of these fixed zeros pin down the structure of the system.

Several approaches can be followed in studying the properties and the possibility of con-

trol/estimation for such systems [38]. The most widely used approach (and the approach

followed in the sections preceding this one) is to obtain values of the physical parameters
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and incorporate them into a standard state-space representation with numerical data, to

which we can apply the techniques of state-space theory. Numerous results have been pub-

lished attesting to the success of such an approach. However, the authors in [38] state that

knowledge on the structure of the system is typically lost or not used. The zero entries of

the system matrices have a strong meaning (showing no direct actions between certain vari-

ables), and in standard state-space design approaches these zeroes are treated as numerical

values like any other, and not exploited.

In the survey paper [38] the authors report on investigations of system-theoretic properties

(also called generic properties) associated with these structured systems that are true for

almost any value of the free parameters. They also illustrate how these generic properties

can be checked by means of directed graphs that can be associated with a structured

system. The vertices of this graph correspond to the variables in the system description

(i.e., input, state and output variables), and there exists a directed edge from vertex i to

vertex j if there is a nonzero parameter quantifying the direct dependence of the variable

associated with vertex j on the variable associated with vertex i. Some of the generic

results the authors discuss in [38] are: controllability; solvability of the disturbance-rejection

problem; and input-output decoupling of structured systems expressed in graph-theoretic

terms. The authors also point out some drawbacks of investigating structured systems and

their associated directed graphs. Some of the drawbacks are:

• Aspects of the structure that may influence the properties of the system are completely

ignored. For example, knowledge of the nonzero fixed entries is not used.

• There are properties (for instance stability) which cannot be handled with this model.

Neither stability nor instability is a structural property.

• This model is based on a state-space model with a given order. All the parametric

variations of the system that we accept are limited within this order.

In [19] the same authors investigate the generic solvability of the fault detection and iso-
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lation problem for state-space systems. In this paper they provide necessary and sufficient

conditions under which this problem has a solution for almost any values of the free pa-

rameters. These conditions are expressed in terms of input-output paths of the directed

graph associated with the original LTI system (not the closed-loop LTI system associated

with the residual error dynamical system). Investigating this directed graph provides good

insight into the problem. We will discuss this paper further in Section 5.1.1.2, and later on

in this section.

In both [38, 19] the authors stress that investigating the directed graph of the linear struc-

tured system is a useful modeling and analysis tool. They emphasize that this modeling

technique allows one to get a number of important results based only on poor information

of the system. Graph-theoretic conditions are furthermore intuitive and easy to check, by

hand for small systems, and by means of well-known polynomially bounded combinatorial

techniques for larger systems. These polynomial-bounded algorithms can be regarded as

special, since in general, checking graph conditions can be NP-hard. The computational

burden is thus low and allows us to deal with large-scale systems, especially when the system

matrices are very sparse.

Our interest is in the use of graphical techniques to display system structure. Results on

generic properties are of less interest, since our models don’t typically have free parameters

in the sense of [38, 19].

In [38, 19] the authors focus on state-space systems, but the swing model we have been

studying is in DAE-form. One can follow the approach of expressing the DAE system

in its equivalent state-space form, however, by doing so the structure in our problem is

hidden and on top of this we lose degrees of design freedom when we design the observers

using this equivalent state-space model (as we discussed in Section 3.2). We thus want to

work with the structure-preserving DAE form, and by doing this we will also be able to

establish connections between the structure of the network and the directed graph of the

linear structured system.
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Reinschke [57] investigated generic controllability of linear structured DAE systems and

from his work it is evident that additional arcs are associated with entries in the M matrix.

For the swing model considered in this thesis, these additional arcs help us to distinguish

between differential and algebraic variables, but do not provide us with additional insight

during the observer design process. We will elaborate on this observation when we introduce

an example. Reinschke also illustrated the usefulness of using graphical design methods for

multivariable control problems in his book [58].

In the next few sections we will show how one can design unknown-input observers by

creating a desired directed graph of the linear structured error dynamics associated with

the observer. What makes this observer design approach so attractive is the fact that

the designed L can easily be updated by extracting certain values from linearized system

matrices. This extraction from linear matrices, which can be accomplished by linearizing

at each point along the system trajectory, makes this approach feasible for on-line, LPV-

observer realization.

What we will illustrate is that one can design the observer gain elements by following a

few simple rules and taking the network structure into consideration. The intuitive design

approach makes it feasible to realize observers (not just for a swing model) on large-scale

power systems without running into computational issues that are normally associated

with the design of H∞ filters for large DAE power-system models. Using this graphical

observer-design approach, the observer can furthermore be made adaptable and can easily

be reconfigured when measurements are lost (due to failures or bad data detection) or new

measurements are incorporated. Because of these advantages, we advocate this type of

observer design as a viable approach for large-scale power systems that operate at different

operating points.

The design approach discussed in this section appears to be novel, to the best of the author’s

knowledge. Similar investigations for the dual problem, i.e., input-output decoupling and

disturbance rejection for the control problem, have been covered by Reinschke in [58].

– 72 –



Chapter 4 Graphical Observer Design for Large-Scale Systems

On the downside, this observer design approach will not provide us with performance guar-

antees in the presence of unmodeled dynamics and model uncertainty. If the latter two

scenarios are encountered, it might be beneficial to use robust observer design theory such

as H∞ filtering, discussed earlier.

What sets our approach apart from the investigations in [19] is that when we discuss observer

design in the following sections, we will draw the directed graph of the error dynamical

system rather than the original system. The authors of [19] are concerned with analysis

of the fault detection problem given a specific structured model, and are attempting to

determine whether the FDI problem is solvable by merely investigating the directed graph

of the original system (M, A, E, C). We on the other hand, want to solve a design problem.

4.1 Directed Graphs Associated with Linear Structured Sys-

tems

For the convenience of the reader we will briefly repeat the observer-based state estimation

problem. The following system

Mẋ = Ax + Bu + Ew (4.1)

y = Cx, (4.2)

with: internal variables x; measurements y; and subject to unknown inputs (w), can be

estimated using an observer of the form

M ˙̂x = Ax̂ + Bu + L(y − ŷ) (4.3)

ŷ = Cx̂, (4.4)

where x̂ is the estimate of x, L is the designed-observer gain, and ŷ is the estimated version

of y. Defining e = x − x̂ the resulting DAE-error system for this estimation problem has
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the form

Mė = (A − LC)e + Ew (4.5)

r = Qe, (4.6)

where r is defined as residuals and we use (M, A−LC, E, Q, D = 0) as shorthand notation

for this DAE-error system. (We will drop D = 0 from the above shorthand for the rest of

this thesis.)

We can associate a directed graph G(V,Z) with the linearized version of the error dynamics

given by Equation (3.26). For this system we have n internal variables in the DAE descrip-

tion; m unknown inputs (that can be divided into faults and disturbances); and p residuals

(also the number of measurements of the original system). V denotes the set of vertices, and

is obtained by forming V = E ∪ W ∪ R where E,W,R are the error, unknown input and

the residual variable sets denoted by {e1, e2, · · · , en}, {w1, w2, · · · , wm}, {r1, r2, · · · , rp}.
Thus the variables of the system description form the vertices of the directed graph.

The arc set Z is obtained by forming the union of Eb = {(wi, ej)|Eji 6= 0}, Ea = {(ei, ej)|Aji 6=
0}, Em = {(ei, ej)|Mji 6= 0}, Er = {(ei, rj)|Qji 6= 0}, and Elc = {(ei, ej)|Lj,:C:,i 6= 0} (where

Lj,: represents row j of L and C:,i represents column i of C). The latter arc set comprises

the so called feed-back arcs. We see that the associated edge weights can be obtained from

the system matrices and are a function of the operating (linearization) point. In the studies

discussed in [38], the authors are not concerned with these edge weights, whereas in this

thesis we will use these values during observer design.

Due to the diagonal structure of M the set Em will consists of self-cycles at the differential

variable vertices. These additional loops do not provide us with extra insight into observer

design and will be omitted in the directed graph examples shown in the following few

sections. Also, whenever Q = I we will not explicitly draw the Er arcs.
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4.2 Graphical Observer Design

4.2.1 Motivating Examples

We start this section by investigating the elementary example we introduced in Section

3.2. The underlying power system consists of one generator and one load, and the system

matrices are given as:

A =




0 1 0

−b −d b

b 0 −b


, E =




0

0

1


, M =




1 0 0

0 1 0

0 0 0


, C ′ =




0

0

1


, L =




l1

l2

l3


.

In Figure 4.1(a) the directed graph of the linear structured error-dynamical system (M, A−
LC, E, I) is shown, before values of L are assigned. In this figure e1 = θ1− θ̂1, e2 = ω1− ω̂1,

and e3 = θ2 − θ̂2. For this example we algebraically designed an observer gain in order

to force a maximal number of zero entries in the transfer function matrix Gew(s), i.e., the

transfer function from unknown inputs w to errors e to become zero. Substituting the

elements of this DAE-designed L into Figure 4.1(a), we obtain Figure 4.1(b). From this

figure we note that there are no forward paths from w to e1 or e2. We further note that there

is a high-gain self-cycle at e3, which gives us the ability to attenuate the unknown input

to a desired level. In Figure 4.1(c) the state-space-designed observer case is considered.

From this directed graph we notice that there are also no forward paths from w to e1 or

e2; however the effect of the unknown input on e3 cannot be attenuated to a desired level

because l3 = 0, as prescribed by state-space observer design.

Our second example is a little more complicated. Let us investigate a three-bus power

system example, shown in Figure 4.2(a). The power system consists of one generator and

two loads (2 differential variables — x1, x2 — and two algebraic variables — x3, x4). The

directed graph of the linear-structured DAE model (M, A, E, I), is shown in Figure 4.2(b),

and the system matrices are:
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Figure 4.1: Design steps associated with observer design for unknown-input attenuation
discussed in Example 3.2.1.
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Figure 4.2: Three-bus system and the associated directed graph of the linear structured
system.

A =




0 1 0 0

−b1 − b2 −d b1 b2

b1 0 −b1 − b3 b3

b2 0 b3 −b2 − b3




, E =




0

0

0

1




, M =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




.

For this example we place an angle measurement at bus 2, resulting in C =
[

0 0 1 0
]
.

The observer-design graph is shown in Figure 4.3(a), which depicts the directed graph

(M, A−LC, E, I) where e1 = θ1− θ̂1, e2 = ω1−ω̂1, e3 = θ2− θ̂2, and e4 = θ3− θ̂3. Our aim is

to force as many entries as possible to zero in Gew(s) by an adequate choice of L. A sufficient

choice is L =
[

0 b1 (−b1 − b3) l4

]′
, and consequently Gew(s) =

[
0 0 1

l4−b3
0

]′
.

The design result is shown in Figure 4.3(b).

From Figure 4.1(b) and Figure 4.3(b) we notice that in both instances signal flow paths in

the respective (M, A−LC, E, I)-graphs were eliminated. We also ended up with a desirable
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Figure 4.3: Graphical Observer Design with C =
[

0 0 1 0
]
.

scenario of being able to achieve a designed level of attenuation of the driving w on all

e-variables.

4.2.2 Design Approach

The two examples in the previous section hint that there might be more to the approach

of eliminating forward paths in the directed graph of (M, A − LC, E, I). Abstracting from

these single-disturbance single-measurement examples, we might suggest the following de-

sign steps:

(a) Draw G(V,W) for the error dynamical system (M, A−LC, E, I) (the internal-variable

vertex set of the DAE system is denoted by the set {e});

(b) By assigning values of L, eliminate forward paths in G(V,W) from the e-vertex where
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the feedback arcs (i.e., −LC) originate (i.e., the measured state variables), except the

forward paths to the e-vertices directly impacted by w (i.e., one hop away).

(c) Increase the edge weights of these latter forward paths to form high-gain arcs from the

measurement site to the e-vertices directly influenced by the disturbance (i.e., one hop

away from w).

The above design approach does not cover all possible cases. For instance, when we are

dealing with a line-flow perturbation (i.e., two e vertices are dependently affected by the

same perturbation), the two high-gain arcs we insert between the measurement site and

these two e-vertices will necessarily end up being related to one another. One such example

will be considered at the end of this section.

Next we will state a more general result than what the above design approach and exam-

ples suggest. The dual problem, disturbance rejection using full-state feedback control, is

discussed by Reinschke on pages 82-87 of [58]. The theorem we will present in this section

is not the dual extension of Reinscke’s work, although his work served as inspiration.

Assumptions

We will first consider the case where the number of measurements, p, is larger than the

number of unknown inputs, m, (i.e., p ≥ m). We assume that the e-vertices of system are

enumerated in order to yield E =




0

F


, where F ∈ R

q×m and q is defined as the number of

e-vertices that are one hop away from an unknown input. Initially we assume that q ≥ m.

The case where q < m will be discussed in Section 4.3.3. We will focus on systems for
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which C may be written as C =




CE

Cλ


 =




0 CE,b 0

Cλ,a Cλ,b Cλ,c


, where CE ∈ R

m×n and

Cλ ∈ R
(p−m)×n. We have that

[
Cλ,a Cλ,c

]
∈ R

(p−m)×(n−m) and CE,b ∈ R
m×m. The

observer gain matrix is given by L =

[
LE Lλ

]
=




L0,E L0,λ

L1,E L1,λ


, where LE ∈ R

n×m,

Lλ ∈ R
n×(p−m), L0,E ∈ R

(n−q)×m, L1,E ∈ R
q×m, L0,λ ∈ R

(n−q)×(p−m), and L1,λ ∈ R
q×(p−m).

Let A = sM−A+LC, which we split up into A = AE+Aλ. We define AE = sM−A+LECE

and accounting for the partitioning of E and CE , we can express

AE =




A0,a L0,b A0,c

A1,a L1,b A1,c


 .

Here L0,b = (sM0,b − A0,b + L0,ECE,b) ∈ R
(n−q)×m and L1,b = (sM1,b − A1,b + L1,ECE,b) ∈

R
q×m, where M =




M0,a M0,b M0,c

M1,a M1,b M1,c


 and A =




A0,a A0,b A0,c

A1,a A1,b A1,c


. This choice of

AE leads to

Aλ = LλCλ =




L0,λCλ,a L0,λCλ,b L0,λCλ,c

L1,λCλ,a L1,λCλ,b L1,λCλ,c


 .

The general idea is that the blocks L0,b and L1,b will be used to attenuate the impact of the

unknown inputs on the e-variables. The matrix Aλ will be used to move the poles of the

closed-loop error system, after achieving the desired level of unknown input attenuation,

and hence Aλ provides us with extra degrees of freedom. We can now state the following

theorem.
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THEOREM 4.1

For a system (M, A − LC, E, I) satisfying all the assumptions given in the preceding para-

graphs, the following structure can be enforced on Gew(s = 0):

Gew(s = 0) = I(sM − A + LC)−1E|s=0 =




0

Gb(s = 0)

0




, (4.7)

if we have:

(a) L0,b|s=0Gb(s = 0) = 0;

(b) ker




A0,a + L0,λCλ,a A0,c + L0,λCλ,c

A1,a + L1,λCλ,a A1,c + L1,λCλ,c


 |s=0 = ∅;

(c)




L0,λ

L1,λ


Cλ,b = 0.

(d) L1,b|s=0Gb(s = 0) = F .

Proof. Pre-multiplying both sides of the expression Gew(s) = IA−1E by A = sM −A+LC

yields the following set of linear equations:

AGew(s) = E. (4.8)
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With the partitioning Gew(s) =

[
G′

a(s) G′
b(s) G′

c(s)

]′
, and developing the submatrix

multiplications in the preceding equation the following sets of linear equations are obtained:

[
A0,a + L0,λCλ,a A0,c + L0,λCλ,c

]

︸ ︷︷ ︸
B0




Ga(s)

Gc(s)




︸ ︷︷ ︸
G0(s)

+ (L0,b + L0,λCλ,b)Gb(s) = 0; (4.9)

[
A1,a + L1,λCλ,a A1,c + L1,λCλ,c

]

︸ ︷︷ ︸
B1




Ga(s)

Gc(s)




︸ ︷︷ ︸
G0(s)

+ (L1,b + L1,λCλ,b) Gb(s) = F, (4.10)

where B0 ∈ R(n−q)×(n−m) and B1 ∈ R(q)×(n−m). We group (4.9) and (4.10) together to

form:




B0

B1


G0(s) +




L0,b

L1,b


Gb(s) +




L0,λ

L1,λ


Cλ,bGb(s) =




0

F


 (4.11)

Investigating conditions (a), (c) and (d), we notice that we need to evaluate (4.11) at s = 0

due to our restriction that the observer gain elements remain real.

Accounting for conditions (a), (c) and (d) from the theorem statement and evaluating
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Equation (4.11) at s = 0 yields:




B0

B1


 |s=0G0(s = 0) =




0

0


 , (4.12)

and from condition (b) we conclude that G0(s = 0) = 0, implying that

Gew(s = 0) =




0

Gb(s = 0)

0




.

Discussion

Requirement (a) in the theorem statement can be satisfied if we set L0,b|s=0 = (sM0,b −

A0,b + L0,ECE,b)|s=0 = 0. This implies that we eliminate all the entries in this matrix and

thus set L0,ECE,b = A0,b. Interpreting this action graphically on the directed graph of

(M, A−LC, E, I) translates to cutting the forward paths from the measurement site to all

the e-vertices that are not directly influenced by unknown inputs (i.e., the 0 block of E).

To obtain L1,b we partition F =




FR

FZ


 and correspondingly L1,b =




LR

LZ


. The R

subscript implies that the matrix is in R
m×m and the Z subscript implies R

(q−m)×m. From

condition (d) of Theorem 4.1 we have LR|s=0Gb(s = 0) = FR, and by defining the desired
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level of attenuation for the elements of Gb(s = 0) we can find the elements of LR|s=0 (note

that Gb(s) is invertible). To find LZ |s=0 we use the relationship LZ |s=0Gb(s)|s=0 = FZ , and

for FR invertible we have LZ |s=0 = FZF−1
R LR|s=0.

Illustrative Example

We will investigate the 3-bus power system example we discussed at the beginning of this

section. Let C =




0 0 1 0

1 0 0 0


 and E =

[
0 0 κ1 κ2

]′
, hence we have m = 1, q = 2,

and p = 2. The structure of E is indicative of a line-flow perturbation (see Section 2.7.3).

We split A up into

AE =




s −1 l11 0

b1 + b2 s + d −b1 + l21 b2

−b1 0 +b1 + b3 + l31 −b3

−b2 0 −b3 + l41 b2 + b3




, and Aλ =




l12 0 0 0

l22 0 0 0

l32 0 0 0

l42 0 0 0




.

In order to satisfy condition (a) of Theorem 4.1 we set L0,b|s=0 = 0, by choosing l11 = 0

and l21 = b1.
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Testing condition (b) of Theorem 4.1, we construct




B0

B1


 =




s + l12 −1 0

b1 + b2 + l22 s + d b2

−b1 + l32 0 −b3

−b2 + l42 0 b2 + b3




,

from which we see that the nullspace of the above matrix is empty at s = 0 when: l12 6= 0,

l22 6= −b1, l32 6= b1 − b3 in combination with l42 6= 2b2 + b3; or l12 6= 0, l22 6= −2b2 − b1,

l32 6= b1 + b3 in combination with l42 6= −b3, as required. Thus we have placed modest

restrictions on the values that Lλ can take.

We note that condition (c) of Theorem 4.1 is also satisfied and that LλCλ,b = 0.

In order to complete the unknown-input attenuation design we need to find L1,b|s=0. By

Setting Gb(s = 0) = κ1

b1+b3+l31
we deduce that LR = b1 + b3 + l31 and that LZ = κ2κ

−1
1 (b1 +

b3 + l31). However, LZ = −b3 + l41, from which we can back out what we need l41 to be as

a function of l31 (our design parameter used to manipulate Gb(s = 0)).

Thus, in order to enforce Gew(s) =

[
0 0 κ1

b1+b3+l31
0

]
, we need to set l11 = 0, l21 = b1,

l41 = b1κ2+b3(κ1+κ2)+κ2l31
κ1

(note we did not require s = 0, because we measured an algebraic

variable). From this example we also note that we still have four degrees of freedom (l12,

l22, l32 and l42) to move the poles of (M, A − LC), however, we have some restrictions on

what these values can be.
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Figure 4.4: Graphical Observer Design with C =

[
0 0 1 0
1 0 0 0

]
.
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In Figure 4.4(a) the directed graph of (M, A − LC, E, I) is shown before we assigned the

values of LE . In Figure 4.4(b) we show the directed graph of (M, A − LC, E, I) after LE

was designed to achieve unknown-input attenuation. Notice that we cut the forward paths

from e3 to other e-vertices not directly influenced by w (i.e., forward paths from e3 to e1

and e2). In this figure we show the high-gain arcs from e3 to e3, namely LR, and from e3

to e4, namely LR.

4.3 Measurement Placement, Type and Number

The different measurements that are available for observer design can be tested using this

graphical-design approach. In this section we will discuss issues related to measurement

placement, the type of measurements available for observer realization as well as the number

of measurements necessary to achieve a designed level of w attenuation on the e-variables.

4.3.1 Measurement Placement

In this section we confine ourselves to only consider single measurement, single disturbance

cases. We will investigate measurement placement on the three-bus power system shown in

Figure 4.2(a), as well as the nine-bus power system example given in Figure 3.1.

Three-Bus Example

We investigate measurement placement of direct angle sensors. The unknown input is
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assumed to be an unknown load change at bus 3 (i.e., E =

[
0 0 0 1

]′
). The three

possible sensor sites are at bus 1, 2 or 3. With the observer design we will aim to achieve

a designed level of attenuation from the driving unknown input. Thus we want to be able

to control all entries of Gew(s), as we discussed in Theorem 4.1.

Let us consider placing the angle measurement at bus 1. The directed graph depicting the

observer design setup is shown in Figure 4.5(a). Following our design approach discussed

in Section 4.2.2, we choose L =

[
0 (−b1 − b2) b1 l4

]′
and the result of the design is

shown in Figure 4.5(b). For this design, the transfer function matrix from w to e is found

to be

Gew(s) =

[
1 s b3s(d+s)

b2b3+b1(b2+b3)
(b1+b3)s(d+s)

(b2b3+b1(b2+b3))

]′

−b2 + l4 + s(d + s)
. (4.13)

Using the final-value theorem we find the steady-state error response of the observer to a

step input change, i.e., Gew(s = 0) =

[
1

l4−b2
0 0 0

]′
. By choosing l4 to be large we can

attenuate the effect of the unknown input to a desired level. We notice from Gew(s) in (4.13)

that there are dynamics in the errors, and this is attributed to the use of a dynamic-variable

measurement in the realization of this observer.

We notice from Figure 4.5(b) that the directed graph of the designed error dynamics has

two cycles from e4 to e4 (i.e., closed paths in the graph: e4 → e2 → e1 → e4 and e4 → e3 →

e2 → e1 → e4, ignoring self-cycles) and the shortest path consists of 3 hops.
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Figure 4.5: Graphical Observer Design with C =
[

1 0 0 0
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The case when we measure the angle at bus 2 (i.e., C =

[
0 0 1 0

]
) has already

been discussed. The directed-graph illustrating the design setup is shown in Figure 4.3(a),

with the design result shown in Figure 4.3(b). From Figure 4.3(b), we notice that the

designed directed graph of the error dynamics have three cycles from e4 to e4 (i.e., paths

e4 → e2 → e1 → e4, e4 → e2 → e1 → e3 → e4, and e4 → e3 → e4) and the shortest path

consists of 2 hops.

Our last possible direct angle sensor site is bus 3, and for this case C =

[
0 0 0 1

]
. The

associated directed-graph design setup is shown in Figure 4.6(a). Following the graphical-

observer design approach we obtain L =

[
0 b2 b3 l4

]′
and the design result is shown

in Figure 4.6(b). We find the transfer function matrix from w to e to be

Gew(s) =

[
0 0 0 1

b2+b3+l4

]′
(4.14)

(note that s is absent here, because we use an algebraic-variable measurement in the observer

realization). Analyzing the designed directed graph shown in Figure 4.6(b), we notice that

there are no cycles going from e4 to e4, but only the self-cycle at e4.

A designer might want to keep small the length of the shortest cycle, from (and to) the

unknown input whose effect on the e-variables is to be attenuated, in the designed directed

graph. However, in this thesis we will not investigate whether there is a link between keeping

the cycles short and the performance of the observer.

Nine-Bus Example
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In this part we will demonstrate how we can design observers for the nine-bus power system

shown in Figure 3.1. We will not attempt to draw the directed graph of this system, but

will illustrate the design process using plots of the structure of the A and A−LC matrices.

In this example we will compare the performance of two different observers. We assume that

there is a single unknown input in the form of an unknown load change at bus 8. The first

observer (abbreviated as ‘Obs 1’) uses an angle measurement taken at bus 4. The second

observer (‘Obs 2’) uses an angle measurement taken at bus 8. From Figure 3.1 we notice

that the measurement used in the realization of Obs 1 is far removed from the unknown

input, and hence we anticipate that the shortest cycle in the directed graph of the designed,

structured error dynamics will be longer than the shortest cycle in the designed directed

graph of Obs 2.

Designing the observer gain for Obs 1 involves setting 5 gain elements in L (the rest of the

entries will be zero). Four of these gain elements are indicated in Figure 4.7(a) and the fifth,

L11, is chosen large to create a high-gain path from e7(= θ4 − θ̂4) to e11(= θ8 − θ̂8). Thus

we have eliminated (and we will not show this graphically) all forward arcs from e7, and

then inserted only one high-gain arc from e7 directly to e11 (the e-vertex directly impacted

by the unknown input).

Designing the observer gain of Obs 2 requires us to set three gain elements. In Figure

4.8(a) the structure of A for the nine-bus system is shown. In this figure we point out two

gain elements that will feature in L. The third gain element, L11, is chosen to be large in

order to attenuate the effect of the unknown input. Gain elements L10 and L12 eliminate
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Figure 4.7: Observer 1 design steps.

transmission paths from e11 to any other vertices in the directed graph. For this designed

observer there are no cycles from e11 to e11 (except the self-cycle at e11).

In Figures 4.9(a) – 4.10(b), time responses of state estimates provided by both observers are

compared to the variables of the actual system in response to an unknown load change at bus

8 (2p.u. during t ∈ [0.1s, 4s]). We have introduced some parametric model uncertainty into

the system model. We assumed that the parameters of the system are randomly perturbed

by 10% (using a uniform distribution) around their associated nominal values. Nominal

values were used for the realization of both observers.

From Figures 4.9(a) – 4.10(b) we note that both observers perform well. It appears as if

Obs 2 performs marginally better than Obs 1. This observation coupled with the ease of
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Figure 4.8: Observer 2 design steps.
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Figure 4.10: Time plots of the system, and two observer evolutions in response to a 2p.u.
unknown load change at bus 8 during t ∈ [0.1s, 4s].

design associated with Obs 2 hints that it might be beneficial to have the measurement site

in close proximity of the location of the unknown input.

4.3.2 Measurement Type

Let us expand our investigations and consider different types of measurements. In this

section we will illustrate these types of investigations once again on our three-bus model,

shown in Figure 4.2(a). The aim of this section is to illustrate how one would study the use

of different types of measurements. We do not change the type of unknown input, and the

type of measurements we have not considered yet are: machine speeds; angle differences

(equivalent to power flow measurements on individual lines); and power flowing into the

network at a particular bus.
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We will not present an exhaustive study on the different types of measurements and their

possible placements, but rather illustrate how similar studies can be approached.

Three-Bus Example

We start out with measuring the speed of the generator, i.e., C =

[
0 1 0 0

]
. In Figure

4.11(a) we illustrate the directed graph for the design setup. Choosing L =

[
1 −d 0 l4

]′

we obtain the directed graph given in Figure 4.11(b). The transfer function matrix from w

to e in this case is

Gew(s) =

[
0 1

s+l4

b3s
(s+l4)(b2b3+b1(b2+b3))

(b1+b3)s
(s+l4)(b2b3+b1(b2+b3))

]′
, (4.15)

from which we notice that the system only has one pole that appears in Gew(s). WE know

that we should expect two poles, thus we know that one pole and zero must have cancelled

in all the three nonzero elements of Gew(s).

If we consider the the steady-state error associated with this observer in response to an

unknown step input, we find that

Gew(s) −→
[

0 1
l4

0 0

]′
as s → 0. (4.16)

Cutting the forward path from e2 to e1 introduces a row of zeros in the A matrix, and

hence A drops rank and the resulting closed-loop error dynamics will have an additional

eigenvalue at zero.

– 96 –



Chapter 4 Graphical Observer Design for Large-Scale Systems

e2 e1

e3

e4

w
1

1

−b1 − b2

b1

b2

b3

b1

b3

b2

−d

−b1 − b3

−b2 − b3

−l2

−l1

−l3

−l4

(a) Design Setup

e2 e1

e3

e4

w
1

−b1 − b2

b1

b2

b3

b1

b3

b2

−b1 − b3

−b2 − b3

≫

(b) Designed Structured Er-
ror Dynamics

Figure 4.11: Graphical Observer Design with C =
[

0 1 0 0
]
.

– 97 –



Chapter 4 Graphical Observer Design for Large-Scale Systems

We now move on to investigating an angle difference measurement or a power flow measure-

ment on a transmission line. The latter is a linear function of the angular difference across

the line, hence a power flow measurement and its corresponding angle difference measure-

ment are structurally equivalent. The angular difference measurement we investigate in

Figure 4.12(a) is θ1 − θ3. We note that C =

[
1 0 −1 0

]
violates our assumption in

the buildup to Theorem 4.1 that CE =

[
0 CL 0

]
where we assumed that CL is square.

From Figure 4.12(a) it is not straightforward to decide which paths to cut. Performing a

change of variables1 so that enew =

[
e1 e2 (e1 − e3) e4

]
which modifies C to becomes

Cnew =

[
0 0 1 0

]
, the matrix A(= sM − A + LC) is transformed to

Anew =




s 1 −l1 0

−b2 s − d −b1 − l2 b2

−b3 0 b1 + b3 − l3 b3

b2 + b3 0 −b3 − l4 −b2 − b3




, (4.17)

from which is clear that we want to choose L =

[
0 −b1 b1 + b3 l4

]′
. For this choice

of L we obtain the the transfer function matrix from w to e to be

Gew(s) =

[
0 0 −1

b3+l4
0

]′
, (4.18)

1The transformation matrix T =




1 0 0 0
0 1 0 0
1 0 −1 0
0 0 0 1


 is used and we have enew = T−1e and Cnew = CT .
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Figure 4.12: Graphical Observer Design with C =
[

1 0 −1 0
]
.

and in Figure 4.12(b) the designed directed graph for the current choice of L is shown.

The above choice of L is not the only choice that can yield a designed level of w-attenuation

on e. For instance, suppose we change the internal-variables2 such that Cnew =

[
1 0 0 0

]

2The transformation matrix T =




1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1


 is used.
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and enew =

[
(e1 − e3) e2 e3 e4

]
and for this we find that

Anew =




s − l1 1 0 0

−b1 − b2 − l2 s − d −b2 b2

b1 − l3 0 −b3 b3

b2 − l4 0 b2 + b3 −b2 − b3




, (4.19)

and following our design approach we choose L =

[
0 −b1 − b2 b1 l4

]′
yielding

Gew(s) =

[
0 0 1

b2−l4

1
b2−l4

]′
. (4.20)

We notice that even though we were not able to enforce the structure as given in Theorem

4.1, we still ended up with a desirable scenario of being able to manipulate the nonzero

entries of Gew(s = 0) to a specified level by changing l4. This positive outcome suggests

that Theorem 4.1 should be revisited.

One interesting observation is that when we extract




B0

B1


 from (4.17) we notice that its

nullspace is nonempty when s = 0, but empty when s 6= 0. Extracting the same matrix

from (4.19) we notice that its nullspace is nonempty for all s. This might be the reason

why we can enforce the structure of Theorem 4.1 in (4.18) but not in (4.20).

Similar studies can be done for the angular difference measurements θ1−θ4 and θ2−θ3, but

will not be shown here. From Figure 4.12(b) we notice that the graph structure looks similar
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to the graph structure in 4.3(b). The only difference now is that we have two high-gain arcs

— e1 to e4 and e3 to e4.

Measuring the power flow into the network at a particular bus can possibly provide a

designer with a lot of dependent feedback arcs in the directed graph (number of arcs is a

function of the number of transmission lines connected at the bus where the measurement is

taken). Suppose, for our three-bus example, we measure the power flowing into the network

at bus 1. We are thus measuring P12(θ) + P13(θ) =

[
b1 + b2 0 −b1 −b2

]
x̃. This type

of measurement is structurally equivalent to having C =

[
2 0 −1 −1

]
. Using this

structural equivalent measurement for observer design, we find the observer-design setup

shown in Figure 4.13(a), and taking L =

[
0 −b2 −b3 l4

]′
results in the directed graph

shown in Figure 4.13(b). The transfer function matrix from w to e for this design is

Gew(s) =

[
0 0 0 −1

b2+b3−l4

]′
. (4.21)

From Figure 4.13(b) we notice that the structure of the directed graph is similar to the

directed graph shown in Figure 4.6(b). There are no cycles from e4 to e4 (excluding self-

cycles). What we have done with our choice of L was to cut all the forward paths from e4

and insert a self-gain arc at e4.
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4.3.3 Number of Measurements

It is reasonable to ask whether we will be able to achieve a designed level of unknown-input

attenuation with fewer measurements than the number of inputs. In [19], a similar type

of question was addressed for a state-space model. The authors wanted to determine un-

der what conditions (expressed in graph-theoretic terms) the fault detection and isolation

problem could be solved. The fault detection and isolation problem has overlap with the

problem of unknown-input attenuation, because a fault-detection filter needs to be insensi-

tive to certain unknown inputs (viewed as disturbances), and sensitive to the remnant of the

unknown inputs (i.e., the faults that we want to identify). The pertinent result from [19] is

given by the following theorem, which deals with generic solvability of the FDI-problem.

LEMMA 4.2

[19] Consider a structurally observable system (A,B,C,D) and its associated directed graph

G(V,W). The single observer-based triangular fault detection and isolation problem (i.e.,

the problem of attenuating all disturbances and identifying — but not necessarily isolating

— all faults) is generically solvable with stability if and only if

k = kq + kf

where: k is the maximum number of unknown input to output vertex-disjoint paths in

G(V,W);

kq is the maximum number of disturbance to output vertex-disjoint paths in G(V,W); and
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kf is the number of faults that need to be detected and isolated.

If we are only concerned with disturbance attenuation then kf = 0, and we need k =

kq. Hence, in order to achieve ‘ideal’ disturbance attenuation we need at least as many

measurements as there are disturbances, otherwise we would not be able to find vertex-

disjoint paths.

In the buildup to Theorem 4.1 we confined our attention to the case where q (the number of

e-vertices directly impacted by unknown inputs) is larger than or equal to m (the number

of unknown inputs). We will consider the case when we have q < m by hand of an example.

Let us assume for the three-bus power system shown in Figure 4.2(a), we have

E =




0 0 0

0 0 0

1 0 κ1

0 1 κ2




and let us assume that

C =




1 0 0 0

0 0 1 0

0 0 0 1




.

Clearly q < m, and the unknown-inputs are load changes at bus 2 and bus 3 as well as a

line-flow change on the line between buses 2 and 3. We notice that we can not find vertex

disjoint paths from the unknown inputs to the outputs of the system (M, A, E, C), and
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applying Lemma 4.2 we might suspect that we would not be able to solve the unknown-

input attenuation problem.

4.3.4 Illustrative Nine-Bus Example

Investigating the design of unknown-input attenuation observers is tricky when the mea-

surements are overlapping. For instance, if one of our measurements is θi and another is

θi − θj , then one cannot independently design the columns of L along the lines presented

in the previous subsections. We will illustrate the subtleties by means of the following

example.

We will investigate the nine-bus system shown in Figure 3.1. In this section we will compare

the performance of two different observers. We assume that there are two unknown inputs:

an unknown load change at bus 8; and a line perturbation going from bus 8 to bus 9 (we

simulate a nearly complete line outage).

The first observer (abbreviated as ‘Obs 1’) uses an angle measurement taken at bus 4 in

conjunction with an angular difference measurement between buses 4 and 5. The second

observer (‘Obs 2’) uses angle measurements taken at buses 4 and 5. For both observers

the measurement at bus 4 will be used to attenuate the effect of the possible line outage

between buses 8 and 9. The second measurement of each observer will be used to attenuate

the effect of the unknown-load change at bus 8.

Designing the observer gain for Obs 1 involves removing the entries in A by setting the
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Figure 4.14: Observer 1 design steps.

first column of L (i.e., L1) to A:,i − A:,j and the second column of L (i.e., L2) to −A:,j ,

where i is an index associated with the angle at bus 4 and j corresponds to the angle at

bus 5. In Figure 4.14(a), we illustrate what entries we want to remove. We then proceed

to insert three high-gain elements in the A − LC matrix as shown in Figure 4.14(b), by

setting element g of L1 to be large and element h of L2 to the same large element. (Here g

is the index that corresponds to the angle at bus 9 and h corresponds to the angle at bus

8.) Taking this action brings about the three high-gain elements as illustrated in Figure

4.14(b). We thus create high gain paths from: e7 = θ4 − θ̂4 to e11 = θ8 − θ̂8; e7 = θ4 − θ̂4 to

e12 = θ9 − θ̂9; and e8 = θ5 − θ̂5 to e11 = θ8 − θ̂8. We have thus eliminated all forward arcs

from e7 and e8 from the original (M, A, E, I)-directed graph, and then inserted high-gain

arcs (as indicated in Figure 4.14(b)) to the vertices e11 and e12 that are directly impacted

by unknown inputs.
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The design of Obs 2 is more straightforward: we set the first column of L to L1 = A:,i and

the second column of L to L2 = A:,j , with i and j as previously defined. We then proceed

to insert the three required high-gain elements in the A − LC matrix as shown in Figure

4.14(b), by setting element g of L1 to be large and element h of L1 to be the negative of the

g element. We also set element h of L2 to be large (and can be unrelated to the gains in

L1). Executing these steps, we enforce the same structure on A−LC as in Figure 4.14(b).

In Figures 4.15(a) – 4.16(b) we illustrate how these two observers perform in tracking the

state of the system in response to both unknown inputs occurring simultaneously. Even

though we enforced the same structure on A − LC, Obs 1 fares worse than Obs 2. This

performance degradation might be attributed to the overlapping measurements of Obs 1

(i.e., using θ4 and θ4 − θ5 versus using θ4 and θ5). Thus caution should be exercised when

overlapping measurements are used.

4.4 State Estimation of Large-Scale System: WSCC 179-Bus

The system under consideration in this section is a 179-bus aggregated version of the West-

ern States Coordinating Council (WSCC) power system3. The one-line diagram of this

system is shown in Figure 7.14. There are a few discrepancies between this one-line dia-

gram and the data of the model provided to us. These discrepancies do not impact the

results of our studies adversely. The nature of these discrepancies are manifested as either a

3We would like to thank Professor A. G. Phadke at VPISU, Professor V. Vittal and Xiaoming Wang at
Iowa State University for sharing the aggregated WSCC 179 bus model with us.

4A special thank you to Xiaoming Wang for providing us with this one-line diagram.
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Figure 4.15: Time plots of the system, and two observer evolutions in response to: an
unknown load change at bus 8; and a line flow perturbation on the line directed from bus
8 to bus 9 during t ∈ [0.1s, 4s].
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– 108 –



Chapter 4 Graphical Observer Design for Large-Scale Systems

renumbering of network buses and order shuffling of local interconnections of non-generator

buses.

In this section we will design a swing-motion observer for the uncontrolled system. We

assume that none of the generators has any type of implemented controls (e.g., no governor

controls). We assume that a generation change occurs at generator 30 in the form of a

mechanical power pulse (amplitude of 1p.u. for 1 second starting at t = 0.01s). The angle

measurement we will use is taken at bus 48. The perturbation is applied in the most northern

part of the network, while we take our direct angle measurement in the southern part of the

network. One can envision that the number of hops in the directed graph (M, A−LC, E, I)

from the measurement site to the e-vertex directly impacted by the unknown input will be

very long.

We design the observer gain by setting L equal to the jth column of A, where j is the index

of the angle at bus 48 (the variable we are measuring). We then insert a high gain arc from

ej to ei, where i is the index of the e-vertex directly impacted by the unknown input (i.e.,

ei = ω8 − ω̂8, where ω8 is the speed of the generator at bus 30).

In Figure 4.18 we show a select few time-plots of estimated angles, compared to the angles

of the uncontrolled system, in response to the unknown (to the observer) mechanical power

pulse occurring at generator 30. In this simulation we have introduced some parametric

model uncertainty into the system model. We assumed that the parameters of the system

are randomly perturbed by 10% (using a uniform distribution) around their associated

nominal values. Nominal values were used for the realization of the observer. For this
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simulation we assumed that the initial states of the system and the observer agreed. (This

assumption was made in order to avoid solving the loadflow for the perturbed system before

commencing our transient simulation.) The angles that we are displaying are θ− θ̂coi (where

θ̂coi is the estimated center of inertia movement for this system and θ − θ̂coi is the system

angles relative to this estimated center of inertia movement) and θ̂ − θ̂coi (observer).

The sample of plots in Figure 4.18 represent angles across the whole network. In Figure

4.18(a) we estimate the angle at bus 2, which is in the south-east part of the network. In

Figure 4.18(b) we estimate the angle θ48 at the bus where our direct angle measurement is

taken. In Figure 4.18(c) we show the estimate of the angle at bus 30, where the perturbation

is applied. In Figure 4.18(d) we show the estimate of θ162. All these plots illustrate that

the observer does a very good job of tracking the angle-variables of the perturbed system

in response to the unknown input step of P30.

In Figure 4.19 a select few plots of generator speeds are shown. The sample plots are

representative of the generator speeds across the network. We see from these plots that

the observer adequately estimates the speed deviations of the generators. Note that the

estimate of ω8 appears very oscillatory (see Figure 4.19(b)), and this behavior is attributed

to the high-gain arc we inserted in our design.
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mechanical input power at bus 30 changed from its steady-state value.
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Figure 4.19: Time plots of selective speeds of generators in the network. During t = 0.01s
to t = 1.01s the mechanical input power at bus 30 changed from its steady-state value.
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4.5 Conclusion

In Chapter 3 we investigated H∞ filtering for DAE systems, and indicated that the design

of these filters is very computationally intensive for large-scale systems. This motivated us

to investigate an alternative design approach that relies on ideas of structured systems and

their associated directed graphs. We introduced a novel graphically motivated observer-

design approach and illustrated on small examples how one would address the impact of

measurement placement, the number of measurements as well as the type of measurements

on the observer design problem. This graphical design approach technique relies on knowl-

edge of the network structure and on values that can be extracted from linearized models of

the nonlinear swing model. This design approach is not computationally intensive, making

it plausible for the realization of a linear-parameter-varying observers.

This graphical observer design technique is powerful for steady-state unknown input atten-

uation, but no guarantees on the stability of the filter are given. In Theorem 4.1 we did

investigate the case where extra measurements can be used to change the eigenvalues of the

(M, A − LC) error system.

Thus if a mismatch in initial conditions between the observer and the plant is anticipated,

and fast convergence of the error to zero is of importance, one would have to introduce

extra degrees of freedom in order to move the eigenvalues of (M, A−LC) such that the real

parts of these eigenvalues are sufficiently negative.

We thus propose a dual design approach, where we first identify the unknown inputs, then
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introduce (or use existing) measurements that can be used to achieve a desired level of

unknown-input attenuation as described in this chapter. The second step will be to use

more measurements that do not violate the conditions of Theorem 4.1 and use these for the

sole purpose of moving the eigenvalues of (M, A−LC) using an eigenstructure assignment

technique.

Our work described in this chapter is still in the initial phases and more work is needed

to address the issue of model uncertainty and robustness. In all the simulation showed

in this chapter we did assume model uncertainty and the nominal values were used for

observer design. Despite these moderate uncertainties the graphically designed observers

did well. Another issue that need some further investigation is to quantify the link between

the performance of an observer and the distance (in the directed graph of the structured

system) between an unknown input and its canceling measurement.

In the next chapter we will focus on the graphical-observer design technique for linear

structured systems and use it in the design of fault detection and isolation filters.
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Power System Monitors: Fault Detection

and Isolation

In the previous chapter we investigated various observer design approaches for the swing

model of a power system. The main purpose of this chapter is to illustrate the practical

value of using these observers to create power system monitors.

One of the main points from the previous chapter was that for large-scale power systems it is

computationally intensive to design full-order DAE observers using traditional design tech-

niques, such as H∞-filtering. We will use the graphical observer design technique introduced

in Section 4.2.2 to design the monitors shown in this chapter.

In this chapter we will first consider the design of fault detection schemes on a small power

system and then consider a large-scale system.
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5.1 Model-Based Fault Detection and Isolation

Model-based FDI includes observer-based and parameter estimation approaches [17, 18].

FDI can be achieved by designing residual generators (realized using observers) that are

sensitive to predefined faults and robust to predefined disturbances [14, 19]. For parameter

estimation methods model parameters are tracked and changes in these parameters serve as

the basis for detecting and isolating faults [18]. Model-based approaches are attractive in

the power system setting, because power system models are well understood and considered

to be quite accurate descriptions of the system.

In [20], a modular method for fast fault detection and classification in power systems is

presented. Model-free and model-based fault detection approaches are discussed, and for

the model-free case, signal processing and wavelet theory are used to create fast and sensitive

fault indicators. For the model-based case the authors remark (and do not examine) that

residual generation (RG) schemes can be used to generate fault indicators. The indicators

can then be analyzed by standard, statistical hypothesis testing or artificial neural networks

to create intelligent decision rules. The creation of intelligent decision rules falls outside the

scope of this thesis, and investigations into generation of residuals as fault indicators in the

power system context will be one of the contributions of this thesis.

Furthermore, in [20], the authors conduct a survey of fault-detection methods in the power

system environment. They state that the problem of detecting high-impedance faults (i.e.,

line outages) is unresolved. They briefly mention different approaches explored, but the

– 117 –



Chapter 5 Power System Monitors: Fault Detection and Isolation

survey is not extensive and might be a bit outdated.

In [21, 22] members of the Power Systems Engineering Research Center investigated a fault

location algorithm applied to transmission networks using modeling, simulation, and limited

field recorded data. The idea behind the algorithm is to match the recorded and simulated

waveforms to determine the most probable fault location. The recorded waveforms are

captured using digital relays. The simulated waveforms are obtained by running a short-

circuit program using an accurate model of the system under consideration.

It is worthwhile pointing out that most of the fault detection and isolation literature in the

power system context focuses on the three-phase-element level (i.e., it explores balanced

and unbalanced faults), whereas in this thesis we will focus more on a higher level system

description. Thus, the line faults that we will investigate will be of the balanced type.

In [17], a summary of current FDI techniques is given. The FDI field can be split into

four groups: 1) Model-based techniques: This class includes quantitative methods (i.e.,

using system theory in order to design residual generators [14, 19], parameter estimation

techniques, observer-based state estimation and parity space concepts [15]; 2) Qualitative

and Artificial Intelligence methods: Methods mentioned are neural networks, fuzzy logic

and decision neuro-fuzzy; 3) Knowledge-based methods; 4) Empirical and signal processing

techniques (spectral analysis, parameter estimation methods using Auto Regressive Moving

Average models).

In this thesis we will only consider model-based FDI methods. In the following few para-
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graphs a subset of the earlier work on model-based FDI will be mentioned briefly.

Beard-Jones fault detection filters (BJDF) [14]: In 1971, Beard 1971 proposed the

idea of replacing Hardware Redundancy with Analytical Redundancy. He developed filters

that generate directional residuals for fault detection and isolation purposes. Jones (in

1973), Massoumnia, Willsky and Verghese (in 1989) redefined this approach in a geometric

setting. Several papers have been devoted to the design of BJDF, and in [14] the authors

state that the design problem is well understood for state space models.

Stochastic systems FDI [14]: Mehra and Peschon introduced a general procedure for FDI

using innovations (or residuals) generated by a Kalman filter. In 1976, Willsky presented key

concepts of analytic redundancy in model-based FDI with emphasis on stochastic systems

and jump detection. One of the statistical approaches is the multiple model adaptive filter

approach with multiple hypothesis testing on residuals generated by a bank of Kalman

filters was developed by Willsky, Deyst and Crawford in 1974. Recent developments employ

Principal Component Analysis (Martin, Morris and Zhang 1996 and [18]).

Parity relation approach for FDI [14]: This entails generating the residual (or parity

vector), based upon consistency checking of the system input and output data over a time

window (Mironovski 1978, 1980; Chow and Willsky 1984; Gertler 1998 [15]).

Parameter estimation approach for FDI [14]: Process fault diagnosis is achieved by

tracking unmeasurable process parameters or state variables (as done by Isserman in 1984).

System identification techniques are generally used.

– 119 –



Chapter 5 Power System Monitors: Fault Detection and Isolation

Nonlinear dynamic systems FDI [14]: Two approaches are usually followed: (1) The

model is linearized at an operating point. Robust techniques are applied to generate resid-

uals. This approach works well if the linearization does not cause large mismatch between

linear and nonlinear models and the system stays close to the operating point. (2) When

these latter conditions are violated the FDI problem has to be tackled directly using non-

linear techniques.

Frequency domain design FDI [14]: An RG method based on the factorization of the

system transfer matrix. H∞ optimization and µ-synthesis techniques have been proposed

to improve the robustness of the frequency RG approach.

In this thesis we will consider the implementation of residual generators (in which we use the

observers developed in the previous chapter) in order to create fault detection and isolation

(FDI) schemes.

5.1.1 FDI via Residual Generation

5.1.1.1 Brief Problem Description

The objective of robust FDI is to make a system robust to disturbances (subset of the

unknown-inputs) while making it sensitive to the occurrence of predefined faults. Thus, for
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the system

Mẋ = Ax + Bu + E1w + R1ψ, (5.1)

y = Cx + Du + E2w + R2ψ, (5.2)

faults ψ need to be identified while no false alarms should be recorded when disturbances

w occur.

Fault detection filters are a special class of full-order observers and have the following form:

M ˙̂x = (A − LC)x̂ + (B − LD)u + Ly (5.3)

ŷ = Cx̂ + Du (5.4)

r = Q(y − ŷ)

= QCe + QE2w + QR2ψ (5.5)

where L and Q are design matrices and r is the vector of residuals. The existence of Q

relaxes the problem by providing the designer with extra degrees of freedom. Unknown-

input attenuation and fault amplification are easier to achieve in this setting1.

In [59], the authors state that the design freedom for Q and L is reflected by the num-

ber of independent outputs when employing a diagnostic observer as a residual generator.

Generally it is assumed that the number of outputs is greater than the number of faults to

be identified. The reasoning behind this assumption is that the dimension of the output

1Note that when Q = I a BJDF will be realized.
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measurements has to provide sufficient information for isolating multiple faults, as well as

the additional freedom for characterizing the robustness of a diagnostic observer.

In [19] the generic solvability of the above FDI problem is investigated. The authors in [19]

investigate LTI state space structured systems (i.e., the entries of the system matrices are

either fixed zeros or free parameters) to which they associate a directed graph depicting

paths from disturbances and faults to the system outputs. They then provide necessary

and sufficient conditions under which the FDI problem has a solution for almost all values

of the free parameters (see Lemma 4.2). These conditions are expressed in terms of input

to output paths of the directed graph. Moreover, they state that if the maximum number

of vertex-disjoint disturbance/fault to output paths is equal to the maximum number of

vertex-disjoint disturbance to output paths plus the number of faults, then there exist an

Q and an L such that Grd(s) = 0 (for all s) and we can make Grf (s) upper triangular

(which is desired for isolation purposes). Here Grd(s) is the multivariable transfer function

matrix from disturbance to residuals, and Grf (s) is the transfer function matrix from faults

to residuals. The authors do not address the design of such Q’s and L’s, and such design

remains difficult with current techniques. Using the main result of this paper will enable

a designer to place system measurements with greater effect in order to identify or reject

particular faults and disturbances.

Eigenstructure assignment has been demonstrated [14] to be a viable design approach for

observer-based residual generation for LTI models, and it appears that this design method

has received the most attention in the past 20 years in the field of observer-based fault
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detection and isolation. In [14], left eigenvectors of the observer (i.e., of A−LC) are assigned

to be orthogonal to the disturbance distribution directions. Furthermore, the authors of

[14] demonstrate that for a few instances where left eigenvector assignment does not work,

partial right eigenvector assignment parallel to the disturbance distribution directions might

be effective. Assignment of the eigenvectors is achieved by designing an appropriate L. Once

these eigenvectors are assigned, these modes are blocked from propagating through to the

residuals by designing an appropriate Q.

When a BJDF is realized, eigenstructure assignment is used to design the feedback gain

matrix L in such a way that the output estimation error (i.e., the residual vector) has

uni-directional characteristics associated with some known fault directions.

Fault detection investigations for descriptor systems have received less attention than LTI

models [17, 49, 51]. In [51] the authors investigate robust fault detection for linear descriptor

systems with only actuator faults and process disturbances. They present a new parametric

eigenstructure assignment design approach where the residual is generated using a full-order,

singular observer. The investigations here provide an alternative approach to this design

problem.

5.1.1.2 Residual Generator Examples

We will study the nine-bus example shown in Figure 3.1. In all the simulations that we will

present here, we will assume that there is some uncertainty in the model we are employing
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when we realize observers. This uncertainty is modeled by randomly perturbing the model

parameters by ±10%, using a uniform distribution. In this thesis we will not consider

the case of sensor failures or measurement disturbances, so that R2 = 0 and E2 = 0 and

subsequently we drop the subscripts of E1 and R1 as well. Fault detection examples of this

kind can be treated in a similar manner to the examples we present here. We will consider

three fault detection cases:

Example 1

In the first case we assume that load changes at buses 5, 6 and 8 are faults that we want to

identify. From [19] (see Lemma 4.2 for a discussion of the result in [19]) we know that we

need at least three measurements in order to realize a fault detection filter. In Section 4.2.2

we illustrated how easily unknown-input observers for the system, with desired attenuation

levels, can be realized by placing direct angle measurements at buses 5, 6, and 8 (i.e. at

the buses directly impacted by the unknown inputs). The unknown-input observer design

for this sketched scenario would involve cutting particular forward signal flow paths in

the directed graph associated with the DAE system (M, A − LC, E, I). We cut the paths

from the e-vertices where the measurements are placed to all other e-vertices, except of

the terminating (of a forward arc) e-vertex is directly affected by an unknown input w.

This design philosophy assures that for our current example that the unknown inputs can

only affect the e-vertices directly connected to the w-vertices. Thus, there will be a one-

to-one mapping, thus P5 = w1 will affect only e5, etc.. The final step in the design of the

unknown-input observer would be to attenuate the w signals. This is achieved by choosing
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the self-cycle gains at the e5–, e6–, and e8–vertices to be large in order to achieve the desired

levels of attenuation.

For the FDI-filter the design of the observer is similar, but the residuals need to indicate

to us when an actual fault occurred. Thus in the last step, attenuation of the unknown-

input signals (viewed as disturbances to the power system state-estimation monitor) will be

modified to amplify the unknown inputs (now viewed as faults that we want to detect and

isolate). The complete design approach is summarized as follows: repeat the step of cutting

the forward signal flow paths in the directed graph of (M, A − LC, R, C); then choose the

self-cycle gains at the e5–, e6–, and e8–vertices to be small in order to amplify the fault

signals. From this design description it is evident that the transfer function from faults

to residuals, Grf (s), will be diagonal for all s (assuming that the plant model is perfectly

known). For our current example Grf (s) = 0.1I, and this diagonal structure makes fault

isolation and identification easy.

In Figure 5.1 time plots are shown of the residuals for the FDI-filter described above. In

this particular simulation we assume that only P8 occurs during the period 0.01s to 4.01s.

We expect that only r3(t) would significantly change during this event period, which is the

case seen in Figure 5.1.

In Figure 5.2 time plots are shown of the residuals for the same FDI-filter, but for the

scenario when all three faults occur simultaneously during the period 0.01s to 4.01s. As

expected, we see from Figure 5.2 that all three residual signals change in order to indicate

that all three faults occurred simultaneously.
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Figure 5.1: FDI example 1 for the nine-bus system. Faults: P5, P6, P8; Measurements: θ5,
θ6, θ8. In this simulation only P8 changed with 2p.u., during 0.01s and 4.01s.
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Figure 5.2: FDI example 1 for the nine-bus system. Faults: P5, P6, P8; Measurements: θ5,
θ6, θ8. In this simulation all three faults occurred simultaneously (P5 changed with 3p.u.;
P6 changed with 1p.u.; P8 changed with 2p.u.) between 0.01s and 4.01s.
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Example 2

Our second example presents us with a more challenging design. Suppose the nine-bus

system (shown in Figure 3.1) is subjected to two possible faults: a line flow change due to

a line outage between bus 8 and bus 9 (we will refer to it as f1); and a load change at bus 8

(refer to as f2). We assume that we have two direct angle measurements placed at bus 4 and

bus 5. We want to associate f1 with the angle measurement at bus 4 and f2 with the angle

measurement at bus 5. In Figure 5.3(a) the directed graph associated with the residual-

generator filter design setup for the linear structured system (M, A − LC, E, C) is shown.

The vertices G1, G2, and G3 are super nodes and each consists of two vertices associated

with the angle and speed of the machines. A few feedback arcs, which are taken to be zero

in the design, are omitted in this figure. These arcs are directed from the measurement

locations (i.e., e4 and e5) to the generator super nodes. These omissions should not create

confusion here.

The transfer function matrix from faults to residuals (i.e., Grf (s) = C(sM −A + LC)−1E)

for the designed structured system shown in Figure 5.4(a) is obtained as

Grf (s) =




1
3 0

0 −1
15


 . (5.6)

This diagonal structure enables us to detect, isolate and identify simultaneous faults. The

purpose of this example is to illustrate that we can achieve satisfactory fault detection and

isolation by using measurements that are not placed in the vicinity of the faults. In our
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Figure 5.3: Graphical Observer Design of a Fault Detection and Isolation Filter for the
Nine-Bus System. f1 = P8, f2 = P89, C = {θ4, θ5}
Definitions: λh – edge weight of an element in A associated with line h of the power system.
κ1 and κ2 are defined in Equation (2.37)
Unknowns for Figure (a): β6 = −λ5 − λ7, β7 = −λ2 − λ8 − λ6, β8 = −λ8 − λ9, β9 =
−λ3 − λ7 − λ9, ζG12 = 0, ζG22 = 0, ζG32 = 0, ζG11 = λ1 − l11, ζG21 = 0, ζG31 = 0,
ζ42 = λ4 − l42, ζ52 = −λ4 − λ5 − l52, ζ51 = λ4 − l51, ζ61 = λ5 − l61, ζ92 = −l92, ζ71 = −l71,

81 = −l81, ζ91 = −l91, ζ72 = λ6 − l72, ζ82 = −l82, ζ62 = −l62.
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Figure 5.4: Graphical Observer Design of a Fault Detection and Isolation Filter for the
Nine-Bus System. f1 = P8, f2 = P89, C = {θ4, θ5}
Definitions: λh – edge weight of an element in A associated with line h of the power system.
κ1 and κ2 are defined in Equation (2.37)
Unknowns: β6 = −λ5 − λ7, β7 = −λ2 − λ8 − λ6, β8 = −λ8 − λ9, β9 = −λ3 − λ7 − λ9,
ζG12 = 0, ζG22 = 0, ζG32 = 0, ζG11 = 0, ζG21 = 0, ζG31 = 0, ζ42 = 0, ζ52 = 0, ζ51 = 0,
ζ61 = 0, ζ92 = −l92, ζ71 = 0, 81 = −l81, ζ91 = −l91, ζ72 = 0, ζ82 = −l82, ζ62 = 0.
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previous example we placed our direct angle measurements at the buses impacted by the

faults in order to yield a straightforward design problem. Note that we assumed some model

uncertainty during our simulations, and that accounts for the discrepancies between what

(5.6) suggests and the simulation results shown in Figures 5.5 – 5.7.

In the simulation results in Figure 5.5, where only f1 occurred during the period 0.01s to

4.01s, we show a few system states with their estimates as well as the residuals for the

FDI-filter described above. We expect that only r1(t) (and θ̂4 − θ̂coi) would significantly

change during this event period, which is what we see in the sub-figures of Figure 5.5.

In Figure 5.6, where only f2 occurred during the period 0.01s to 4.01s, we show a few system

states with their estimates as well as the residuals for the above described FDI-filter. We

expect that only r2(t) (and θ̂5 − θ̂coi) would significantly change during this event period,

which is what we see in the sub-figures in Figure 5.6.

In Figure 5.7 simulation results are shown of a few system states with their estimates as

well as the residuals for the above described FDI-filter, when both f1 and f2 occurred

simultaneously. From the sub-figures of Figure 5.7 we see that both residuals changed

significantly during the event period.

In the (c)-sub-figures of Figures 5.5 – 5.7 we illustrate that the FDI-filters provide us with

good state estimates for θ8 (and in fact for all states except θ4 and θ5 — our residuals),

in addition to the residuals indicating when the faults occurred. This good state-tracking

performance is attributed to level of disturbance attenuation we can achieve following our
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Figure 5.5: FDI example 2 for the nine-bus system. Faults: P89, P8; Measurements: θ4, θ5.
In this simulation only f1 occurred during 0.01s and 4.01s.
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Figure 5.6: FDI example 2 for the nine-bus system. Faults: P89, P8; Measurements: θ4, θ5.
In this simulation only f2 occurred between 0.01s and 4.01s.
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Figure 5.7: FDI example 2 for the nine-bus system. Faults: P89, P8; Measurements: θ4, θ5.
In this simulation both faults occurred simultaneously between 0.01s and 4.01s.
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graphical-observer design technique discussed in Section 4.2.2.

Example 3

The third case that we consider builds on the previous example. In particular, we add

an additional disturbance, in the form of a mechanical input power change at generator

3. All the unknown inputs (i.e., faults and disturbance) occur in the same vicinity for

this small example. The question we will ask is whether we will be able to solve the FDI-

problem and attenuate this additional disturbance if we have an additional direct angle

measurement at bus 7. We will answer the question by testing whether the result in [19]

holds. We first draw the directed graph of the system (M, A, [E R], C). (We do not

show this directed graph, and the interested reader can easily construct this graph.) From

investigating this directed graph, we conclude that we cannot find three vertex-disjoint paths

from the faults/disturbances to the system outputs as required by Lemma 4.2. Hence, we

suspect that the FDI problem is not solvable for this system.

Moving this third measurement around, it becomes clear that only a direct angle measure-

ment at bus 3 or a generator speed measurement at bus 3 can be used to attenuate this

additional disturbance.
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5.2 Fault Detection and Isolation for a Large-Scale System:

WSCC 179-Bus System

The system under consideration in this section is the 179-bus aggregated version of the

Western States Coordinating Council (WSCC) power system we introduced in Section 4.4.

In Figure 5.8 we illustrate on the WSCC 179-bus one-line diagram the fault, disturbance

and measurement locations assumed for our example. We will assume that there are two

faults and two disturbances. For each fault we chose a disturbance in close proximity, e.g.,

for the fault at bus 30 we chose a disturbance at bus 79, and for the fault at bus 40 we

chose a disturbance at bus 43. We assume that we have direct angle measurements at buses

34, 59, 83 and 2 available for filter design. All the disturbances and faults are assumed to

be in the form of mechanical power pulse perturbations. The unknown-input steps had the

following amplitudes from t = 0.01s to t = 1.01s: P̃30 – 0.5p.u.; P̃40 – 1p.u.; P̃43 – −0.5p.u.;

and P̃79 – 1p.u..

In Figure 5.9 we show the residuals when all four unknown inputs (i.e., both faults and both

disturbances) occur simultaneously. We notice that the residuals driven by the disturbances

stay approximately zero and can be left out of the FDI-filter realization by choosing Q =
[

I2 0

]
. From this figure we notice that r1(t) and r2(t) react during the event period.

The amplifying gains used in the residual generator were not chosen very small in order

to avoid numerical integration problems (attributed to large discontinuities when we want

amplify the residual when the fault occurred). From this figure we note that we can identify
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bance and measurement locations.
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Figure 5.9: FDI example 1 for the WSCC 179-bus system. Faults: P30 and P40; disturbances
P79 and P43; Measurements: θ34, θ59, θ83 and θ2. In this simulation all four unknown-inputs
occurred simultaneously between 0.01s and 1.01s.

and isolate both faults that occur simultaneously.

5.3 Conclusions

In this chapter we discussed the fault detection and isolation problem using observers. We

briefly surveyed the literature in the field, and then illustrated how we can design FDI-filters

using our graphical observer design approach introduced in Chapter 4.

We found the graphical observer design to be very suited for the creation of fault detection

and isolation filters for swing models of power systems. Following our design approach dis-

cussed in Section 4.2.2 and Theorem 4.1, we know that we can manipulate every element in
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the transfer function from unknown-inputs to estimation errors (i.e., Gew(s)) under certain

conditions (that the swing models often meet). Under these conditions we can enforce a

certain structure on Gew(s = 0) such that for a single unknown-input the observer using

a certain single measurement, Gew(s = 0) will have all zero entries except for the one

corresponding to the measurement used in the observer realization.

For state estimation purposes we made this non-zero element in Gew(s = 0) tend to zero

by increasing a specific gain element, however for fault detection and isolation purposes

we want to increase this element by lowering this same gain element. By doing so we will

amplify the fault (unknown input) instead of attenuating its effect as in the state estimation

case.

In this chapter we illustrated how to design residual generators, following the above ap-

proach, on a small-scale (i.e., 9 bus) and a large-scale (i.e., 179-bus WSCC) examples. This

chapter concludes our investigations on power system monitors and we will now introduce

novel controllers that can manipulate electromechanical movements of a power system in

response to an electromechanical perturbation.
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Chapter 6

Decentralized Electromechanical Wave

Controllers

In this chapter we present a class of novel electromechanical wave controllers (EWC’s),

extending those introduced in [26, 60], and suited for decentralized deployment in a power

network. Analogs of these controllers can be found in electromagnetic transmission line

theory (e.g., matched impedances) and active vibration damping (e.g., energy absorbing

controllers and vibration isolation).

We will focus on the control of electromechanical transients associated with the acceleration,

deceleration, and stability of shaft dynamics of generators that are coupled through an elec-

tric power grid. The notion of electromechanical disturbances in power systems propagating

as traveling waves first appeared in a paper by Semlyen in 1974 [23], which presented partial

differential equations describing the idealized continuum limit of a swing-equation model.

Cresap and Hauer [24] analyzed the Western Power System in 1981, in order to explain the

emergence of a new swing mode. They conjectured that a distributed homogeneous string

of generators can provide information about the low frequency modes of the system. The
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simple wave equation they obtained was used to obtain the model frequencies, which they

then reconciled with observed data of the actual system. More recently, electromechanical

waves in power systems were similarly modeled by Thorp, Seyler and Phadke [25], as a way

to understand angle observations from phasor measurement units in the field. These elec-

tromechanical waves are manifested in the mechanical shaft dynamics of electrically-coupled

generators.

Accepting that electromechanical disturbances spread as traveling waves, one can design

a controller to extinguish these transients in a manner analogous to impedance matching

on transmission lines. In [26] and [60], we demonstrated that “zero-reflection” controllers

(ZRC’s) that enforce an impedance matching constraint at the boundary of the network

effectively quench electromechanical traveling waves on the network. In [26] we also showed

that this control strategy appears to be robust to wide variations in parameter values.

In that work mostly regular grids of generators were considered. In this chapter we will

extend these initial electromechanical wave control ideas and develop “zero-transmission”

controllers (ZTC’s), perturbation-quenching controllers (PQC’s) and comment on placing

ZRC’s inside (as opposed to at the boundary) the network. At first these EWC will be

introduced in the context of elementary (yet descriptive) swing models describing regular

networks (such as a string of generators). We will also investigate the generalization of these

EWC’s to be applicable to more elaborate power system descriptions and their application

to more general networks are to be covered in Chapter 7.

It is important to emphasize that the EWC approach to power system control design is very
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different from traditional methods. Typical tuning of governor and power system stabilizer

controls use linearized models and modal analysis [27]. Usually this is accomplished with

a detailed model of the generator(s) to be tuned and a simplified representation for the

remainder of the system. Hence, little spatial information is used in the design. In cases

when a detailed representation over a wide geographical area is used, modal techniques

are employed. One identifies critical modes of oscillations, and perhaps their mode shapes,

and tunes the controller accordingly [27]. This approach is analogous to representing the

dynamics as a superposition of standing waves rather than a traveling wave.

The damping controllers that are developed in this chapter have a similar structure to

a damping controller Samuelsson proposed in [61]. The latter damping controller modu-

lates active power injection at a load bus by using bus frequency as the controller input.

Samuelson’s and our damping controllers are the electromechanical equivalent of a dash-pot

in a mechanical system or a resistor in a electric circuit. One of the differences between

Samuelsson’s damping controller and ours is the approach to designing the electromechanical

‘impedance’ (controller gain) of the controlled element. Samuelsson designs this impedance

by using modal analysis and root locus design techniques, in order to increase the damping

of a select few modes of the system [61, 62]. We, on the other hand, arrive at the gains of

our damping controllers (ZRC’s and PQC’s) by thinking of a power network as a distributed

‘electromechanical transmission line’ (also referred to as a string-of-generators) in the one-

dimensional case or as an ‘electromechanical membrane’ in the two-dimensional case. In [26]

and [60], we designed the ZRC impedance to be equal to the electromechanical impedance

of the string of generators, enforcing an impedance matching constraint resulting in zero
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reflections.

Samuelsson suggests a means to practically realize one of his active power controllers by on-

off control of a heating load (a field test of this controller is discussed in [61]). Interestingly,

Japanese researchers have proposed and tested a similar type of superconducting magnetic

energy storage (SMES) controller [63], where a more heuristic experimental approach was

followed to derive an appropriate control law.

Samuelsson investigated the scenario where multiple damping controllers are used in order

to damp extensive slow modes of the system [62]. He recognized that in order to achieve

maximum damping for these modes the gains of these multiple damping controllers can-

not be set arbitrarily large. He discussed the connection between maximum damping and

impedance matching in the context of lumped parameter circuits, and used this analog as

an explanation why the gains of the controllers cannot be set arbitrarily large. In the next

chapter we will report our initial investigations into implementing multiple electromechani-

cal wave controllers on general power networks. We point to how one can design appropriate

controller gains without resorting to modal analysis and root locus design techniques.

In the following section the result of the electromechanical wave equation for swing power

networks, as derived in [26], will be summarized. In Section 6.1.3 the insertion of a lumped

electromechanical element connected in shunt between two ‘electromechanical transmission

lines’ will be analyzed. In Section 6.2 electromechanical controllers are developed and tested

on a string of generators.
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Figure 6.1: A link in a string of generators

6.1 Electromechanical Wave Theory

6.1.1 The Continuum Model

To develop a continuum swing model we start with a one-dimensional grid (string) of in-

finitesimal generators spaced infinitesimally apart. A single link in a chain of generators is

highlighted in Figure 6.1, where x denotes spatial position. In this figure, the line impedance

between generators is denoted by z∆, where ∆ is the spatial distance separating neighboring

generators and z is per-unit impedance per unit length. Similarly, the generator parameters

are expressed as h∆, d∆ and pm∆ respectively, where h is the inertia constant per unit

length, d is the damping coefficient per unit length, and pm is the mechanical input power

per unit length. We assume a local load consuming real power pl∆ and define pg = pm −pl.

In general z, h and d could be functions of position, but we shall focus on the case where

these parameters are invariant with position. We neglect machine reactance, and also as-

sume the voltage magnitude E is constant in space and time.

Writing z−1 = g − jb, the classical machine equation for the generator at position x can be
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written as

2h∆

ωs

d2δ(x)

dt2
= pg∆ − d∆

dδ(x)

dt

−E2b

∆
(sin(δ(x) − δ(x − ∆))

+ sin(δ(x) − δ(x + ∆)))

−E2g

∆
(2 − cos(δ(x) − δ(x − ∆))

− cos(δ(x) − δ(x + ∆))) (6.1)

where ωs is the nominal system frequency and δ is the machine angle relative to a frame

rotating at ωs. By taking the limit as ∆ → 0 the paper [25] arrives at a nonlinear wave

equation in δ. The controller we design in this paper is obtained from the simplified linear

and undamped wave equation obtained under the assumptions g = 0 and d = 0. (However,

the controller is tested in our simulations on lumped models for which both line conductance

and machine damping are nonzero.) The simplified equation is identical to that in [23], and

can be obtained as shown below.

By taking g = 0 and d = 0, the second and fourth terms on the right hand side of (6.1)

disappear. Let P denote the power flow at x in the direction of increasing x. We find that

in the limit as ∆ → 0:

P = −E2b
∂δ

∂x
(6.2)

because sin(δ(x+∆)− δ(x)) ≈ δ(x+∆)− δ(x) for small ∆ (assuming δ is continuous in x).
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Let ω denote the deviation of machine speed from ωs (so ω = dδ
dt

). Then using (6.2) in

equation (6.1) it is easily seen that in the limit the following partial differential equation

results:

2h

ωs

∂ω

∂t
= pg −

∂P

∂x
(6.3)

Differentiating (6.2) with respect to t, we get:

∂P

∂t
= −E2b

∂ω

∂x
(6.4)

The pair of equations (6.3), (6.4) are analogous to the standard telegrapher’s equations for

electromagnetic waves on a transmission line, with P playing the role of line current and ω

playing the role of voltage. From (6.2), (6.3) and (6.4), it is easy to obtain linear undamped

wave equations for δ, ω, or P . For instance (6.3) and (6.2) together yield:

2h

ωs

∂2δ

∂t2
= pg + E2b

∂2δ

∂x2
. (6.5)

For two-dimensional grids, a similar derivation yields the same sorts of equations, but the

parameters will have different units and the second derivative with respect to x is replaced

by the Laplacian operator in two dimensions. For example, in two dimensions, h will

correspond to inertia constant per unit area, and z will be per-unit impedance per unit

length per unit cross-sectional width. However, in this thesis we will focus on the one-
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dimensional wave equation and a practical power system will be seen as an interconnection

of multiple one-dimensional lines.

6.1.2 One-Dimensional Wave Phenomena on a String-of-Generators

Equation (6.5) is a wave equation in the variable δ with characteristic velocity of propagation

equal to

v =

√(ωs

2h

)
(E2b). (6.6)

For purposes of illustrating wave phenomena in a string of generators, and to introduce an

example on which we will later test different electromechanical controllers, we adapt a model

presented in [25]. Specifically, we break the discrete ring system they considered, to form a

string of 60 identical generators connected through identical transmission lines. (Note that

in [26] we investigated a string of 64 instead of 60 generators.) With 2H
ωs

= 1, E = 1p.u.,

g = 1p.u. (line conductance), d = 0.01p.u. (machine damping), and b = 6p.u. (‘negative’ line

susceptance) the classical machine equations describing this system in standard state space

form are of the form (2.12). In the simulation that follows, the trivial loadflow solution is

assumed.

The results of a simulation, where a power pulse perturbation was applied (amplitude

0.1p.u., tbegin = 0.01s, tduration = 0.5p.u., electrical energy injected W = 0.05p.u.) at

generator 30, are shown in Figures 6.2 to 6.4. In Figure 6.2 the time evolution of successive
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Figure 6.2: δ — wave propagation on an open-ended string of generators.

generator angles is shown. One can see the forward and reverse propagating waves and

their (positive) reflections at the open-ended boundaries of the string of generators. One

also notices the slow dispersion of the waves as they travel, which is due to the generator

damping and the dissipative component of the line impedance.

In Figure 6.3 the deviational power flow on the transmission line sections between nodes s

and t are shown. Pst is directional and defined as flowing from bus s to t.

In Figure 6.4 the angles of the generators at buses 30 and 60 are shown. The time it takes

the electromechanical waves to travel down the line from bus 30 to 60 can be calculated as

t = x
v
≈ 30√

6
= 12.25s, (6.7)
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Figure 6.3: Pst — wave propagation on an open-ended string of generators.

which agrees well with the numerically calculated value of 12.33s. (Note that the discrep-

ancy can be due to the inclusion of line conductances during the simulation.)

We can calculate a wavelength associated with these wave-like swing motions. The wave-

length λ is calculated as

λ = v
f
, (6.8)

where f is the frequency of the swing mode driving the wave-like propagation. Investigating

the time-plots of ω and P̃ (as well as executing a Fast Fourier Transform of ω60) we find

f ≈ 0.55Hz. Using this value and the value for v we find that λ = 4.4∆. From standard

electromagnetic textbooks we know that the discrete approximation (i.e., the nonlinear
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Figure 6.4: Plot of δ30 and δ60 showing the time taken to traverse from generator 30 to
generator 60.

swing model) is a satisfactory replica of the continuum model (for low frequencies) when

the discrete separation is much smaller than the wavelength. In this case this relation is

smaller, but not substantially.

The traveling electromechanical waves in this model are analogous to traveling electromagnetic

waves on transmission lines. In the case of transmission lines, one considers traveling waves

in terms of current and voltage, and one can describe the reflection using reflection coef-

ficients based on the characteristic impedance of the line. Also, with proper termination,

one can set the reflection coefficient to zero, which eliminates any reflection on the line. We

propose to do the same with our string-of-generators example.

In the power system model, which exhibits electromechanical wave phenomena, we have
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already seen that frequency and power flow are the variables that naturally play a similar

role to voltage and current in the electromagnetic transmission line case. To find the char-

acteristic impedance relating P and ω, consider forward traveling waves for both variables:

P+ = P
(
t − x

v

)
= P (y) (6.9)

ω+ = ω
(
t − x

v

)
= ω(y) (6.10)

where v is the velocity of propagation. Substituting these into (6.4) gives

∂P+

∂y
=

E2b

v

∂ω+

∂y
, (6.11)

which leads to the solution

P+ =
E2b

v
ω+. (6.12)

This suggests that the forward traveling waves in power flow and frequency remain in

constant proportion. The characteristic impedance, or proportionality constant, is defined

by

Co =
ω+

P+
=

v

E2b
=

√(ωs

2h

) (
1

E2b

)
. (6.13)

At the ends of the string, the forward and reverse traveling waves must sum in a particular

way to match the imposed boundary condition. If an end is open, i.e. power flow is equal to
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zero, then the reverse traveling wave in power must be exactly the negative of the forward

traveling wave, so that they sum to zero at the boundary. This situation corresponds to a

negative reflection in power flow and a positive reflection in frequency (and angle). If the

string of generators is terminated with a so-called “infinite bus” at which frequency is held

constant, then the reverse traveling wave in frequency must be a negative reflection of the

forward traveling wave. This corresponds to a negative reflection in frequency (and angle),

and a positive reflection for power flow.

6.1.3 Inserting a Lumped Electromechanical Impedance Between Two

Strings

In order to deal with more general power networks, it is instructive to consider the case

depicted in Figure 6.5, where two different strings-of-generators are connected at x = 0.

The string to the left has an electromechanical characteristic impedance of C1, and the

impedance of the string to the right is C2. At x = 0 a lumped parameter electromechanical

device is connected in shunt.

We assume that the electrical power Pc flowing into and the frequency ωc across the lumped

element are held in constant proportion,

ωc = CPc. (6.14)

An electromechanical element that maintains the above relationship is analogous to a re-
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Figure 6.5: Connection of two different string-of-generators through a shunt lumped elec-
tromechanical element. ω+

i is the amplitude of the forward traveling frequency wave on the
ith string-of-generators and ω−

1 is the reverse traveling wave on string 1. The second string
is infinitely long, hence no reverse traveling waves on string 2. The same convention holds
for the power waveforms.

sistor in an electrical circuit, or a dash-pot in a mechanical system.

In this section, our aim is to define a reflection and transmission coefficient that will aid us in

the development of different electromechanical wave controllers. Following an approach used

in classical electromagnetic transmission line theory, we assume a time harmonic electrome-

chanical wave excitation and can thus focus on the time-harmonic telegrapher’s equations,

which are ordinary differential equations in x for the phasors ω(x) and P (x).

The solutions to the one-dimensional time-harmonic telegrapher’s equations for the fre-

quency waves are:

ω1(x) = ω+
1 e−jk1x + ω−

1 ejk1x,∀x ≤ 0; (6.15)

ω2(x) = ω+
2 e−jk2x,∀x ≥ 0. (6.16)

where k1 and k2 are the wave-numbers associated with string-of-generators 1 and 2 respec-

tively; also ω+
i and ω−

i are wave amplitudes of the forward and backwards traveling waves on

the ith string-of-generators. We assume that the string-of-generators for x > 0 is infinitely
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long and that no backward traveling waves will exist, hence ω−
2 = 0.

The solutions to the one dimensional time-harmonic telegrapher’s equations for the electrical

power waves are:

P1(x) = P+
1 e−jk1x + P−

1 ejk1x =
ω+

1

C1
e−jk1x − ω−

1

C1
ejk1x, (6.17)

P2(x) = P+
2 e−jk2x =

ω+

2

C2
e−jk2x, (6.18)

where we have used the fact
ω+

1

P+

1

= − ω−

1

P−

1

= C1.

Evaluating an electrical power balance at x = 0 (the electromagnetic equivalent is a current

balance), we find that

Pc = P1(x = 0) − P2(x = 0)

=
ω+

1

C1
− ω−

1

C1
− ω+

2

C2
. (6.19)

Furthermore, at x = 0 we know that ω1(x = 0) = ω2(x = 0) = ωc. Substituting ω+
1 + ω−

1 in

place of ω+
2 and ωc in (6.19), we can calculate a reflection coefficient as

Rω =
ω−

1

ω+

1

=
C−1

1
−C−1

2
−C−1

C−1

1
+C−1

2
+C−1

. (6.20)

Substituting ω+
2 in place of ωc in (6.19) and using (6.20), we can calculate a transmission
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coefficient

Tω =
ω+

2

ω+

1

=
2C−1

1

C−1

1
+C−1

2
+C−1

. (6.21)

There is a relationship between the reflection and transmission coefficients that can be

obtained from the continuity constraint on the frequency waves at x = 0:

ω+
2 − ω−

1 = ω+
1 (6.22)

⇒ Tω − Rω = 1. (6.23)

The reflection and transmission coefficients are expressed for the frequency waves, and

similar coefficients for the electrical power waves can be expressed in terms of the frequency

waves’ coefficients:

RP =
P−

1

P+
1

= −Rω; (6.24)

TP =
P+

2

P+
1

=
C1

C2
Tω. (6.25)

We can define an electrical power sink (or absorption) coefficient for the stationary con-
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straint as:

SP =
Pc

P+
1

(6.26)

=
(1 + Rω)C1

C
(6.27)

=
TωC1

C
=

2C−1

C−1
1 + C−1

2 + C−1
. (6.28)

Investigating the electrical power balance at x = 0 we have:

P1(x = 0) = P2(x = 0) + Pc (6.29)

⇒ P+
1 + P−

1 = P+
2 + Pc, (6.30)

from which we find the relationship between TP , RP and SP as,

TP + SP − RP = 1. (6.31)

The classic case addressed in electromagnetic transmission line theory deals with only one

transmission line terminated in a load impedance C, so C2 = ∞ in effect. For this case

Rω = C−C1

C+C1
and Tω = 2C

C+C1
. Matching the impedances by setting C = C1 results in zero

reflection. The part of the wave that is transmitted does not flow on any string (because none

exists), but appears to flow on a virtual infinitely long string to the right of the constraint.

For this matched impedance situation SP = 1, and the maximum electromechanical power

is transferred to the load.
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Suppose now that string 1 is open ended at x = 0 (i.e., C → ∞, in addition to C2 = ∞,

hence power flow equals zero). We find that Rω = 1 and Tω = 2 in this case. In the

power system context, this implies that frequency (and angle) doubling will occur at the

constraint, in conjunction with a negative reflection of power flow to yield zero power flow

at the constraint point.

Now suppose this single string-of-generators is connected to an infinite bus at x = 0 (i.e.,

C = 0 and C2 = ∞); we then compute Rω = −1, Tω = 0 and the frequency will remain

constant at the constraint (i.e., ωc = 0).

6.2 Electromechanical Wave Controllers

Various types of electromechanical wave controllers can be realized by manipulating C, ωc,

or Pc. These control laws are motivated by the preceding electromechanical wave theory but

will be implemented on discrete irregular power networks, where it might not be apparent

that wave behavior exists. We will begin by looking at the zero-reflection controller discussed

in [26] and [60], then move on to a zero-transmission controller and lastly investigate a

perturbation-quenching controller.

6.2.1 Zero Reflection Control

We start off by recapping [26] and [60]. We confine our investigation to a single string

(i.e., C2 = ∞ in Figure 6.5). Terminating this string with C = C1 would result in zero
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reflections. In [26] it was shown how this impedance matching constraint can be achieved

with a generator for the nonlinear discrete swing model. Moreover, by ensuring that the

deviation in power flow from nominal into the end generator and the deviation in frequency

from nominal of the end generator stay in the constant proportion C1, the termination in a

matched impedance can be enforced.

Given a simple swing equation model, the most natural control input is the mechanical

power to the controlled generator. One could also consider controlling a local load power

at the controlled generator bus, for instance using some flexible AC transmission system

(FACTS) and/or SMES devices.

The control objective is to maintain the following relation:

P̃end =
ωend

C1
(6.32)

where P̃end is the deviation from nominal in the line power flow P end to the terminating

generator. In [26] it was shown that a controller using the control law

P̃g,end = K(P̃end −
ωend

C1
) − P̃end + Dω (6.33)

can approximately achieve this objective (where K is a gain, P̃g,end is the deviation of Pg,end

from its nominal value P g,end). This control can be implemented if one possesses good

estimates of the parameters C1 and D, and good measurements of P̃end and ω; otherwise,

approximations to this control law (for instance omitting the term Dω) can be considered.
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Substituting (6.33) into the classical machine equation of the controlled generator, the

dynamical equation becomes:

2H

ωs

dωend

dt
= K

(
P̃end −

ωend

C1

)
. (6.34)

In [60] we showed that (6.32) can be achieved exactly, however the resulting control law

required additional information (e.g. dP̃end

dt
). From simulation, our example in [60] suggested

that the performance enhancement between achieving (6.32) exactly versus approximately

was small.

If the gain K can be chosen such that the generator dynamics are fast enough to track

the incident wave, this controller will effectively eliminate reflections. If, due to physical

limitations on P̃g,end, the dynamics cannot track the wave, then some reflection will occur.

In the latter case, some other actuation will be required to meet the control objective (6.32).

Choosing K too large might result in an overshoot of ω, inducing additional reflections.

We tested controller (6.33) on the 60-machine system introduced in the previous section.

The controller is realized at machine 60, the gain is chosen to be K = 2, and it is assumed

that measurements of frequency and electric power out of the generator are available. (Typ-

ically these measurements should be available on all machines.)

The results of simulations using the same initial disturbance described previously are shown

in Figure 6.6. From this figure we see that the controller has eliminated the reflection

observed without the controller (compare Figure 6.6 with Figure 6.2). The other end of the
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troller realized at the end generator.

string-of-generators remains open, and a reflection is observed at that end.

The controller works extremely well. If examined very closely, one can see that it does not

completely eliminate reflections. Certainly there are a number of reasons why this is the

case. The most obvious is that the wave equation model used to derive the controller is

different from the lumped model governing the swing-motions of the string-of-generators.

The former is distributed, linear, and neglects damping; the latter is discrete (in space) and

contains nonlinearities. Furthermore, the controller objective is not achieved directly, but

is implemented through an input into a generator. In Figure 6.7 we see that the waves of

ω+ and P+ stay in constant proportion at the end generator, and conclude that the control

objective is sufficiently met.

It is possible to realize a ZRC by controlling the power flowing into the lumped element
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Figure 6.7: Control objective check at end generator (where a ZRC is realized).

directly. In the discrete power network this corresponds to controlling the deviational load

power extraction at the bus. One possible approach is to set the deviational local load

extraction to be equal to ωend

C1
. However, assuming the generator is absent at the end bus

and hence only a local load extraction remains, it may be that ωend will not be available.

Samuelsson [61] advocates a similar control law and he has two approaches to deal with

the issue of not having an ω readily available at the controlled load bus: lead filter the

bus angle measurement at the controlled bus; or use the machine speed of the ‘nearest’

generator. Both of these approaches can present problems and for the second approach it

might be difficult to gauge which machine is the closest.

Setting the controlled load extraction equal to ωend

C1
presents us with a further predicament,

that of using the appropriate mass 2h
ωs

when calculating C1. (Note that a load bus in the

the swing model does not have an associated mass, because the swing models we study in
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this thesis belongs to the class of Differential Algebraic Equation models.) Following an

ad-hoc procedure we can use the mass of the ‘nearest’ generator, but it might be difficult

to gauge which machine is the nearest. Not having the appropriate mass available does not

influence the root-locus design technique that Samuelsson use to obtain the impedance of

his controller [61].

A clear choice for our string-of-generators example is to use the machine speed at the

adjacent generator. For this scenario the ZRC-Load control law takes the following form:

P̃g,end = −ωend−1

C1
. (6.35)

We recognize the similarities between our ZRC and direct velocity (or force) feedback con-

trol used for damping control of active structures [64]. Such controllers absorb perturbation

energy and are aptly named absorbing controllers. These energy absorbing controllers en-

sure that the closed-loop system is passive and as a result globally asymptotically stable

[64]. The controller configuration belongs to the class of collocated controllers (i.e., the

sensor and the actuator are located at the same location) [64], making it ideal for decen-

tralized deployment. (Samuelsson also highlighted this point in [62], where he discussed his

electromechanical damping controller that is realized at load buses and manipulates active

power injection at the load.) Furthermore, the controller gain is only a function of local

network parameters.

In Figure 6.8(a) we show the eigenvalues of the linearized system of the string-of-generators
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with a ZRC implemented at generator 60. We can check whether this controller achieved

maximum damping by linearizing this closed loop system at the current operating point.

Furthermore, let us assume that the controller gain of 1
C1

is 1
C

, where C can be varied.

Conducting a root-locus study for this feedback structure we increase the controller gain,

1
C

, from 0 to infinity. The result of this root-locus is shown in Figure 6.8(b). In Figure 6.8(c)

we focus on the movement of one of the closed-loop eigenvalues when we increase the gain of

the controller. Comparing Figure 6.8(b) with Figure 6.8(a) it is evident, from the envelope

of the pole-zero movement that we achieve approximately maximum damping on all the

modes when C = C1. Thus, the turning point of the nose-curve plot shown in Figure 6.8(c)

would correspond to when C = C1. A more thorough stability analysis is warranted when

one considers actuator limitations (such as ramp-rate limits) of the proposed controllers.

Energy Properties of Controllers

From Figure 6.6 we conclude that the perturbation energy has been quenched, and the

system has settled at a new operating point. In the following two paragraphs, we will

discuss the electrical and electromechanical energy balances associated with the system.

Electrical Energy Balance: We anticipate that the electrical energy we injected through the

power pulse to be extracted by the zero-reflection controller. Integrating the control effort

over time we find
∫

P̃g,end dt = −0.048 ≈ −0.05[(p.u.)s], and the electrical energy injected

into the system by means of a power pulse was 0.05[(p.u.)s]. Thus, the electrical energy

injected into the system is extracted by the ZRC, but this extraction is distributed in time.

In addition, the amplitude of the control effort is equal to the amplitude of the impinging
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power wave, and has a maximum amplitude variation of 20% of the original perturbation

pulse amplitude.

Electromechanical Energy Balance: From Figure 6.6, we notice that the angle differences

across the edges are the same at the initial time instant and the final time instant, implying

that the potential energy associated with angle differences across electrical transmission lines

is unchanged between the initial and final times. The kinetic energy is similarly unchanged,

because the generator speeds returned to synchronous. Hence the total work done on the

system is zero. This constraint can be expressed in terms of the velocity of the center of

inertia (coi) of the system:

∫ tf
t0

(P̃g,30 + P̃g,60)ωcoi dt = 0 (6.36)

where ωcoi =
∑60

i=1
Mi

Mtotal
ωi. Evaluating the above integrals, we find that the electromechan-

ical energy injected into the system is
∫

P̃g,30ωcoi dt = 2.21×10−5p.u., and is approximately

equal to the electromechanical energy absorbed by the ZRC, namely |
∫

P̃g,60ωcoi dt| =

2.22 × 10−5p.u., confirming that the electromechanical perturbation was quenched. (For a

discussion on energy function analysis in power systems, see [32].)

Another form of ZRC can be achieved at non-boundary buses. For the case depicted in

Figure 6.5, if C−1 = C−1
1 − C−1

2 it follows that Rω = 0 and Tω = 1. Such a controller

can shepherd the whole impinging perturbation into a particular part of the network that

is geared towards dealing with perturbations. Note, however, that for the scenario where

C1 = C2, an infinite value of C results and the controller will be non-existent.
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Two-Dimensional Example: L-shaped Grid of Generators

In [26] we also tested this control strategy on a 30-by-30 regular two-dimensional grid of

generators, using the same generator and network impedance parameters as in the string-

of-generators examples. By placing zero-reflection controllers on all generators located on

the edges of the grid, one might expect that waves incident normally to the edges will not

reflect, while waves not incident normally will propagate along the edge. This was indeed

the case, as illustrated in [26]. Again, the controller works remarkably well; the initial

disturbance travels to the edges of the grid and is essentially eliminated.

The objectives of the following example are three-fold. We want to illustrate how one can

use these one-dimensional ZRC to control a two-dimensional grid of generators, and to

show that the grid parameters need not be homogenous, and also show that the controllers

only need local network information (making them ideal for decentralized control). We will

thus examine an L-shaped grid with spatially varying parameters (first introduced in [26]).

The parameters of each line and generator (only inertias) were randomly perturbed using

a uniform distribution ranging from −90% to +90% of the corresponding nominal values.

The zero-reflection controllers on the boundaries of the grids are designed using only local

characteristics of the grid. The controllers are designed to eliminate the normal component

of the incident waves. Thus, only information about lines directed inward from the boundary

are required for controller design. An initial machine angle displacement in the form of a

two-dimensional Gaussian pulse was assumed and selected time shots of the time evolution

due to this perturbation are shown in Figure 6.9. The time sequences of spatial plots shown
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in this figure indicates how traveling waves traverse the non-uniform grid. The left-hand

side of the time sequence plots correspond to the system response when no control was

applied. The right-hand side plots correspond to the case when ZRC’s were implemented

on boundary generators. From these plots, it is evident that for the perturbed parameter

systems, traveling wave phenomena are still evident, although the waves are non-smooth

due to mismatched impedances inside the network. The general wave trend is visible and the

deviations (due to parameter mismatches) are generally smaller than the traveling wavefront

of the initial Gaussian angle disturbance.

This positive result on a system where the parameters varied significantly provide us with

hope that we will be able to apply our EWC ideas to practical power systems.

6.2.2 Zero Transmission Control

Only being able to negate the electromechanical disturbance at the boundary of a network

might expose heavily loaded parts of the network to a traveling electromechanical distur-

bance, making these parts prone to failures. This situation is not desirable and it might

be beneficial for overall system stability and reliability if one is able to confine the distur-

bance to a local area and quench it locally. With this concept in mind, zero-transmission

controllers (ZTC) will be developed in this section. (The analog of this concept in the

mechanical vibration literature is vibration isolation.)

The premise of a ZTC is to negatively reflect the frequency and angle waveforms (Rω =
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Figure 6.9: A sequence of snapshots of wave propagation in a 30x30 perturbed parameter L
shaped grid of generators. Snapshots in lefthanded column correspond to the uncontrolled
case and the snapshots in the righthanded column correspond to the ZRC case.
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−1 ⇒ Tω = 0). In order to achieve zero transmission, the controlled generator should

appear to have an electromechanical impedance C = 0. There are two ways to achieve this:

by implementing a ZTC at a generator bus or a load bus.

When we implement the ZTC through a generator, it will have to appear as an ‘infinite’

bus when the waves hit the controlled (i.e. generator) bus. The controller will appear as an

electromechanical short circuit and maximum deviational electrical power will flow into the

controller. A conceivable ZTC control law can be obtained by replacing C1 with C = 0 in

the control law (6.33). However, the required control input power is infinite, which is not

feasible. We can relax the requirement of having Rω = −1 and investigate the case where

Rω = −0.98.

Implementing this control law at generator 50 for the string-of-generators example discussed

above and applying the same power pulse perturbation at generator 30, we obtain the results

shown in Figure 6.10. Note that when the forward traveling angle wave δ+
1 encounters the

ZTC at generator 50 (at approximately 8s) it is reflected negatively, giving rise to δ−2

traveling backward on the string. The backward traveling angle wave δ−1 hits the open end

of the string at roughly 12s, and is positively reflected, giving rise to δ+
2 traveling forward.

Thus, it is evident that there are instances when the forward and backward traveling waves

cancel one another. This cancelling interference of the angle waveforms can be beneficial

to system operation.

From Figure 6.10, we note that after about 80s the waveform repeats (ignoring the small

dispersion in the waveform due to nonzero line resistances). The controller does not ab-

– 169 –



Chapter 6 Decentralized Electromechanical Wave Controllers

0102030405060708090100

0

10

20

30

40

50

60

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

G
en

er
at

or
 In

de
x

δ − Propagation with ZTC at Generator 50 (R=−0.98)

Time [s]

ZTC (R≈−1) 

Open End 

Cancelling Interference 

Figure 6.10: Angle wave propagation on a string-of-generators with a ZTC (Rω = −0.98)
realized at generator 50.

sorb or inject any net electrical or electromechanical energy over this period. Moreover,

integrating the control effort P̃g,50 over the cycle (i.e., from t = 0 to t = 80s) we find

that the electrical energy injected into the system is very small (9.14 × 10−5) compared

to the perturbation energy injected (0.05). Thus, the injected energy (both electrical and

electromechanical) due to the power pulse perturbation stays confined to the area between

generators 1 and 50.

The negative reflection of ω is accompanied by a power doubling at the controlled bus;

from Figure 6.11, we can see that the amplitude of the ZTC’s control effort is twice the

amplitude of the impinging power wave. Thus the amplitude of the ZTC’s control effort

shown in Figure 6.11 should be twice as large as the amplitude of the ZRC’s control effort

shown in Figure 6.7, which is easily verified.
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Figure 6.11: P̃g,50 and ω50 at generator 50 where a ZTC (Rω = −0.98) is realized.

In Figure 6.12 plots of ω50 and ω60 are shown. From this figure it is evident that not all of

the incident wave (at generator 50) is reflected backwards; a small portion is transmitted

to generator 60.

We can also realize a ZTC at a load bus by manipulating Pc instead of the bus frequency. For

zero transmission we have Rω = −1 implying that RP = 1 (from (6.24)) and P−
1 = P+

1 . By

setting C = 0 in (6.28), we see that SP = 2 implying that Pc = 2P+
1 (i.e., power doubling).

For this zero transmission scenario, we know that Pc = P1(x = 0) = P+
1 + P−

1 , and since

RP = 1 we have Pc = 2P+
1 . Translating this control requirement to the discrete nonlinear

swing model, we note that all we need to maintain is P̃g,n = −P̃n−1,n. The controller throws

the impinging wavefront back. This control law can be implemented at a load bus using a

SMES device. In order to illustrate this point, we will remove the generator at bus 50 and

realize a controlled load bus. Applying the same power pulse perturbation at generator 30,
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Figure 6.12: Plot of ω50 and ω60 showing that a small part of the wave does get transmitted.

we obtain the results shown in Figure 6.13.

6.2.3 Perturbation Quenching Control

As part of a confining and quenching strategy it will be helpful if we can extract elec-

tromechanical wave energy from the system at non-boundary buses. The purpose of this

controller will be to absorb maximum incident electromechanical perturbation energy, thus

limiting reflection and transmission of the incident wave.

The electromechanical power flowing into the lumped electromechanical element at x = 0

– 172 –



Chapter 6 Decentralized Electromechanical Wave Controllers

0102030405060708090

0

10

20

30

40

50

60

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

O
rd

er
ed

 In
de

x

δ − Propagation with ZTC at Load 50

Time [s]
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implemented at bus 50. The reflection coefficient at bus 50 is Rω = −1.

(as shown in Figure 6.5) is

Pcωc =
ω2

c

CM

=
(1 + Rω)2

CM

(ω+
1 )2, (6.37)

where CM is the impedance of the lumped element. Maximizing the incident electrome-

chanical power (6.37) absorbed by the controller, we find that CM = (C−1
1 +C−1

2 )−1, which

is the parallel combination of the characteristic electromechanical impedances of the strings

connected at x = 0.

We tested this controller on a modified 60-generator string-of-generators example. The

original string was modified to form two different strings-of-generators connected at gen-

erator 50. The negative line susceptances of the transmission lines between generators

– 173 –



Chapter 6 Decentralized Electromechanical Wave Controllers

0

50

100

150

200

0

10

20

30

40

50

60

−0.005

0

0.005

0.01

0.015

0.02

0.025

O
rd

er
ed

 In
de

x

δ: Propagation with PQC at bus 50

Time [s]

C
1
 = f(|b| = 6) PQC 

C
2
 = f(|b| = 24) 

Figure 6.14: δ̃ evolution on two different strings-of-generators with a PQC realized at bus
50. String 1 (generators 1 through to 50) have C1 = f(|b| = 6), String 2 (generators 50
through to 60) have C2 = f(|b| = 24).

50 and 60 where changed from 6 p.u. to 24 p.u., while the rest of the parameters were

kept the same as in the previous simulations. Figure 6.14 shows the result when sim-

ulating the previously discussed power pulse perturbation at generator 30. Comparing

Figure 6.14 with Figure 6.2, we notice that electromechanical perturbation energy has been

extracted from the system. We know that the perturbation electromechanical energy is

∫
P̃g,30ωcoi dt = 2.21 × 10−5p.u. and the electromechanical energy delivered by the PQC

controller is
∫

P̃g,50ωcoidt = −1.98× 10−5p.u.. Over the time interval shown in Figure 6.14,

we notice that not all of the perturbation energy has been extracted, but a bulk of this

energy is extracted within the first 60 seconds.

Writing an electromechanical power balance at x = 0 we can define an absorption coefficient

associated with this controller. In studies dealing with noise and geophysics, absorption
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coefficients are generally defined [65]. The absorption coefficient α in our case can be

obtained via the following calculations:

P+
1 ω+

1 + P−
1 ω−

1 + P+
2 ω+

2 + Pcωc = 0 (6.38)

⇒ (ω+

1
)2

C1
(1 − R2

ω) +
(ω+

1
)2

C2
T 2

ω + SP Tω

C1C
(ω+

1 )2 = 0; (6.39)

⇒ α ,
SP Tω

C1C
= (Tω)2

C2 = 1−Rc2

C1
− Tc2

C2
(6.40)

⇒ α = 4C2C
(C2C+C1(C2+C))2

. (6.41)

In [65], (where C1 = C2) the absorbtion coefficient (associated with a dashpot) was derived

as 1 − R2
ω − T 2

ω .

6.2.4 Transmission Doubling Control

Another possible EWC is to mimic an open circuit at x = 0. In this case Rω = 1 (angle

doubling at x = 0), and from (6.23), we know that Tω = 2. We also note that for this

case RP = −1 and we will have cancelling interference of the electrical power waveforms

for x < 0. In order to achieve this type of behavior we need to have C = −C2, resulting in

transmission doubling of the angles for x > 0; and from (6.31), TP = −SP = 2C1

C2
.

A possible benefit of this type of controller is that the electrical power waveform reflected

back will subtract (and in the best case cancel) the incident electrical power waveform P+
1 .

This might be beneficial if we are dealing with a heavily loaded string-of-generators, for

which an increase of the electrical power waveform will result in a line trip. We will not
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discuss this type of controller further in this thesis.

6.3 Electromechanical Wave Controllers Realized at Hub Nodes

Thus far, we investigated one-dimensional scenarios where we have, at most, two strings-of-

generators connected at a shunt lumped electromechanical element. In this section we will

investigate whether we can absorb maximum incident electromechanical power and limit

transmission on certain lines by realizing an EWC at a hub node.

Due to the linear nature of the electromechanical wave equation, superposition holds, and

for our present investigation we can confine our attention to the case where only one elec-

tromechanical wave (ω+
1 , P+

1 ) is incident at the lumped element connected at the hub node.

We will follow the same approach as depicted in Figure 6.5, but now we have n−1 infinitely

long strings-of-generators that are connected in parallel for x > 0. For this system, the

time-harmonic frequency solutions to the telegrapher’s equations are given by:

ω1(x) = ω+
1 e−jk1x + ω−

1 ejk1x,∀x ≤ 0; (6.42)

ωi(x) = ω+
i e−jkix,∀x ≥ 0,∀i ∈ [2, · · · , n]; (6.43)

where ki is the wavenumber associated with string i and ω+
i is the frequency wave amplitude

of the forward traveling wave on string i.

The electrical power waves that will flow on the string-of-generators after the wave is incident
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at the stationary constraint are given by:

P1(x) =
ω+

1

C1
e−jk1x − ω−

1

C1
ejk1x (6.44)

Pi(x) =
ω+

i

Ci
e−jkix,∀x ≥ 0,∀i ∈ [2, · · · , n]. (6.45)

We can easily obtain the reflection and transmission coefficient for the frequency waveforms,

by replacing C2 in (6.20) and (6.21) by the parallel combination of the electromechanical

impedances of C2 through to Cn−1, i.e., we replace C−1
2 with

∑n−1
i=2 C−1

i and obtain:

Rω =
C−1

1 − ∑n
i=2 C−1

i − C−1

C−1
1 +

∑n
i=2 C−1

i + C−1

=
C − C1(1 + C

∑n
i=2 C−1

i )

C + C1(1 + C
∑n

i=2 C−1
i )

; (6.46)

Tω =
2C−1

1

C−1
1 +

∑n
i=2 C−1

i + C−1
, (6.47)

and once more we find Tω − Rω = 1.

Note that only one frequency transmission coefficient is defined. This result makes sense

because at x = 0 we have ω+
i = (1 + Rω)ω+

1 , because of the continuity constraint on the

frequency waves at x = 0.

The reflection and transmission coefficients of the electrical power waveforms can also be

obtained to show that RP = −Rω. Noticing that the electrical power splits up between

the different strings-of-generators (the circuit analog is having resistors in parallel) yielding

distinct transmission coefficients. The individual transmission coefficients can therefore be
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expressed as follows:

TP (k) =
(1 − Rω)C−1

k∑n
i=2 C−1

i + C−1

= C−1
k C1Tω, (6.48)

indicating how much electrical power is transmitted from string 1 to string k (where 2 ≤

k ≤ n − 1).

The fraction of incident electrical power that the lumped shunt electromechanical device

sinks is given by SP = C−1C1Tω, as shown previously.

6.3.1 Zero Reflection Control at Hub Nodes

As previously remarked, ZRC’s can be realized at non-boundary buses inside the network.

In this instance, we will manipulate C−1 = C−1
1 −∑n

i=2 C−1
i to yield Rω = 0. The outcome

is that Tω = 1, and thus the incoming electric power splits up in an analogous fashion to

currents in paralleled resistors in an electrical circuit. Note that we do not have control

over how these transmission powers split up. The electric power transmission coefficient for

string k is given as TP (k) = C1

Ck
.
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6.3.2 Zero Transmission Control at Hub Nodes

Zero transmission controllers can also be implemented at hub nodes by either controlling

the machine speed at the controlled bus or a local load extraction/injection. The electrical

power transmission coefficient for string k is given by TP (k) = C−1
k C1Tω, and can be

minimized when we minimize Tω. Hence, irrespective off what string transmission is to be

limited, we still need to minimize Tω. From (6.47) it can be seen that when C = 0 then

Tω → 0. Using the control law (6.33) with C → 0, we can realize a ZTC at a generator

bus. We know that requiring C = 0 would make the generator completely stiff and require

an infinite mechanical input power to the generator to achieve this goal. By relaxing the

requirement on Rω to only be approximately equal to one, we can obtain a more reasonable

control effort. This relaxation however, complicates matters slightly. Note that the realized

ZTC described thus far is only sensitive to waves incident from x < 0, but in practice there

might be more than one wave incident at x = 0. Thus, we will have to realize multiple

control laws (that will be summed in the end), where each law will reflect each incoming

wave ‘completely’ on the associated incoming line.

We can implement a ZTC by controlling the local load extraction/injection by taking the

negative sum of the deviational electrical power flows on the edges into the controlled bus.

However, the deviational flows on the edges where transmission is to be limited must be

excluded from this summation. We will illustrate this law using Figure 6.15. Suppose we

want to implement a ZTC at load bus n. Three directed edges are connected to n. The

directed edges are denoted by (s, n), (n, t) and (n, l) where the first element in an edge
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Figure 6.15: A link in a string of generators

2-tuple indicates the source node, and the second element the sink node. For this example

the ZTC control law in order to limit transmission on (n, l) will be P̃g,n = −P̃s,n + P̃n,t.

The control law to limit transmission on (n, t) and (s, n) will be P̃g,n = P̃n,l.

6.3.3 Perturbation Quenching Control at Hub Nodes

The results for the case presented in Section 6.2.3 easily extends to the more general case

of having multiple lines in parallel for x > 0. In trying to find the controller that will

ensure that maximum incident electromechanical power be absorbed we find that C−1
M =

∑i=n
i=1 C−1

i , which is the parallel combination of the electromechanical impedances of the

strings connected to the controlled bus.

– 180 –



Chapter 6 Decentralized Electromechanical Wave Controllers

6.3.4 Some Thoughts on Control Strategies

In this chapter, we introduced a framework to devise control schemes that can manipulate

electromechanical waves which travel on power networks. We are sure that there are many

more control schemes one can think of that have not been developed, however, finding all

the possible schemes is beyond the scope of this thesis. We do, however, want to suggest

that we might be able to achieve maximum electrical power transfer to a particular line

(say k) by controlling both C and Ck; or by manipulating electrical powers flowing on the

lines. We will leave this question for future research.

6.4 Conclusion

In this chapter we discussed the notion of electromechanical wave theory. We investigated

wave behavior on a discrete nonlinear swing model and verified that electromechanical wave

theory seems plausible. We defined appropriate reflection, transmission and sink coefficients

for the scenario where we have two strings-of-generators connected through a lumped shunt

electromechanical element.

Different electromechanical wave controllers can be implemented by manipulating the elec-

tromechanical impedance of this lumped element. These controllers can be implemented

in a decentralized fashion, and the controller gain/structure depend on local network pa-

rameters and topology. Electromechanical wave controllers can be realized using SMES

or possible FACTS devices. Existing network generators can also be employed assuming
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the mechanical input power to the generator can be manipulated fast enough. This is an

idealized requirement and investigations into controlling the speed of the generator through

the field excitation loop of the generator have been launched.

We conjecture that these decentralized electromechanical wave controllers can be configured

in real-time, based on real-time measurements made elsewhere in the system (in order to

assess which direction a perturbation waveform might be coming from). In order to achieve

this a supervisory centralized level of control might be necessary, to assess the current

topology of the network and configure the controllers accordingly. More work on the latter

topic will yield fruitful integrated control schemes.
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Applications of EWC’s to General

Networks

In this chapter we will investigate whether the electromechanical wave controllers introduced

in the previous chapter can be used to control general power networks. In this chapter the

general model we will study is an aggregated version of the Western States Coordinated

Council power network. Investigations similar in nature to those reported here have been

reported in [66], where we studied a system based on the IEEE 118 bus loadflow test case.

In the second part of this chapter we focus on extending the ZRC developed for the simple

swing model to more elaborate power system models. We will first extend our ZRC control

law to the swing model with non-stiff voltage magnitudes and generators with nonzero

source impedances. Thereafter, we will consider the two-axis model of a generator.

– 183 –



Chapter 7 Applications of EWC’s to General Networks

7.1 WSCC 179-Bus Aggregated Model

The system under consideration in this section is a 179-bus aggregated version of the West-

ern States Coordinated Council (WSCC) power system already used in Chapter 4. A

one-line diagram of this system is shown in Figure 7.1.

In Figure 7.2(a) we represent the geographical locations of the three-upper-voltage-level

network buses of the full WSCC network (circa 1996)1. Figure 7.2(b) was obtained by

incorporating the information contained in Figure 7.2(a)2 with the aggregate model infor-

mation associated with Figure 7.1.

In Chapter 6 we mainly focussed on all generator networks with regular grids (either one-

or two-dimensional). In this section we want to investigate whether a general network

such as the WSCC 179-bus model exhibits electromechanical wave behavior in response to

an electromechanical perturbation. There is no reason that we should expect to see any

behavior of the sort, but in [66] we illustrated wave behavior on a 118-bus system. We

conjectured in [66] that one can view a general network as the interconnection of multiple

strings-of-generators. This conjecture is partially inconsequential, because our aim is to

illustrate how we can use wave-motivated control laws on a discrete (i.e., lumped parameter)

sparse network where wave behavior might not be apparent.

The WSCC aggregated model has 29 generators and 150 non-generator buses. We might

1This work was completed by a graduated MEng student in our group, Paisarn Sonthikorn, in 2002.
2Geographical Information System Database created by P. Sonthikorn and E. Scholtz.
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Figure 7.1: One-line diagram of an aggregated WSCC network.
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Figure 7.2: Geographical locations of the WSCC-network buses.

anticipate that it will be difficult to spot wave phenomena due to the spare distribution of

generators (hence mass) in the system.

In this section we make some simplifying assumptions. We assume that none of the gen-

erators has any type of implemented controls (e.g., no governor controls), and the only

controllers that will be implemented are the EWC’s that we will design. We will confine

our attention to the simple swing model of the form (2.12) for which we assume that all

voltage magnitudes at the buses are controlled tightly around the loadflow solution.
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7.2 Uncontrolled Response

We start off by investigating the uncontrolled case. Let us assume that a power pulse

perturbation (with amplitude 1p.u. and duration 1s, resulting in a 100MJ energy injection,

assuming a base of 100MW ) occurs at generator 30 (see top of Figure 7.1). We assume

a nontrivial loadflow on the network, but will only illustrate deviational quantities of the

variables in all subsequent figures.

In Figure 7.3 time evolutions of bus angles (machine and load angles) are shown, illustrating

how the perturbation travels through the network. In order to make the spatial traveling

effect more apparent, the original bus indices of Figure 7.1 were reordered according to the

geographical distance from the perturbed bus. This reordered index was used in the creation

of Figure 7.3, as seen on the y-axis, while the x-axis indicates time. From Figure 7.3 we

see that the angles keep on increasing due to the electromechanical energy injected into the

system.

The same information contained in the Figure 7.3 could also be displayed as a sequence

of time-snap ‘membrane’ plots, as shown in Figure 7.4. The lightly dashed network graph

shown in the xy plane forms a reference for the membrane. Vertical dashed lines are

connected from this reference to the corresponding moving node of the membrane. The z-

axis displacement reflects the bus angle displacements at the time the snap-shot was taken.

The node and edge colors change in time in order to illustrate the time evolution of the

variables δ̃ and P̃st respectively. (Note that the flows on the edges have certain associated
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Figure 7.3: δ̃ wave propagation on the WSCC network with no controls implemented.

directions, as defined when F is constructed for the network.) Dark blue indicates the most

negative value and bright red the maximum positive value. The color scheme we use is

based on the ‘JET’ color scheme of Matlab. The color range for the node evolutions in

the plots shown in Figure 7.4, Figure 7.9 and Figure 7.15 are assumed to be the same (the

maximum positive deflection 15◦ and the most negative deflection value is taken as −4◦).

We can calculate the wavelength associated with this traveling perturbation, but in order

to do so we need the swing frequency associated with this traveling perturbation as well

as the wave velocity. We calculate the ‘velocity’ by noting the time difference between the

start times of angle responses associated with bus 81 and bus 2 in response to the applied

perturbation. Using this information we calculate v ≈ 1246.5km
0.53s

≈ 2360km.s−1, which agrees

with a figure of 2500km.s−1 mentioned by Cresap and Hauer in [24]. We identify the swing
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(a) T = 0s (b) T = 0.20875s

(c) T = 0.41625s (d) T = 0.625s

(m) T = 3.1262s (n) T = 3.7512s

(o) T = 4.3762s (p) T = 5.0012s

(e) T = 0.83375s (f) T = 1.0412s

(g) T = 1.2512s (h) T = 1.4587s

(q) T = 5.6262s (r) T = 6.2512s

(s) T = 6.8762s (t) T = 7.5012s

(i) T = 1.6675s (j) T = 1.8762s

(k) T = 2.0837s (l) T = 2.2925s

(u) T = 8.1262s (v) T = 8.75s

(w) T = 9.22s (x) T = 10s

Figure 7.4: Time snap membrane plots for the WSCC 179-bus uncontrolled case. The
vertical movement of the nodes indicate the evolution of the bus angles. The lightly dashed
network graph in the xy plane serves as a reference for the moving membrane.
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Figure 7.5: Magnitude plot of Fast Fourier Transforms of a few generator-speed signals.

frequency by executing Fast Fourier Transforms of a few generator-speed signals, and in

Figure 7.5 we show a magnitude plot of these Fast Fourier Transforms. From this figure

we observe two peaks at 0.34Hz and at 0.84Hz. In [24] the authors mention frequencies of

0.2Hz and 0.33Hz. Using the first frequency peak in Figure 7.5 we calculate the wavelength

to be roughly 6940km (4340 miles).

7.2.1 Estimation of Electromechanical Waves Using Observers

In this section we illustrate that using our observer framework, developed in the first part

of this thesis, we can estimate a traveling wave on the network. Let us recall our state-

estimation example shown in Section 4.4. In this example we assumed a mechanical input

power pulse at bus 30 and measured the direct angle at bus 48. Thus we have the perturba-
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Figure 7.6: Estimate of δ̃ wave propagation on the WSCC network with no controls imple-
mented.

tion in the north and the measurement in the south. In Figure 4.18 a select few estimated

angles are compared to real angles. If we create a waterfall plot of all the angles (ordered

according to the geographical distance away from the perturbation impact), we obtain Fig-

ure 7.6. Comparing Figure 7.6 with Figure 7.3, we can not distinguish between the actual

state and the estimated state. It appears as if the quality of our estimations is not impacted

by the separation between our measurement site and the perturbation location.

7.3 Quenching Control Strategy

In order to combat the continuing movement of the system’s center-of-inertia (as illustrated

in Figure 7.3), the injected electromechanical perturbation energy needs to be extracted
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from the system. The goal of the ensuing investigation is to establish whether the injected

energy can be extracted by utilizing a few ZRC’s placed at the extremities of the network.

There are numerous possible control strategies/placements/numbers of these controllers

that we can investigate, but this section is not intended to be of an exhaustive nature, and

will merely serve as an illustration of how these EWC’s can be employed to control general

power networks.

We place three ZRC’s at the boundary of the WSCC network in an arbitrary fashion. In

Figure 7.7 the locations of the ZRC’s are indicated with white squares. These controller

are designed in a straightforward manner. The control laws for these ZRC’s are of the

form (6.33). The characteristic impedance used in the realization of a ZRC is calculated

using only local information, i.e., the mass of the generator used as the actuator and the

susceptance of the branch connected to this controlled generator bus. Note that the system

has non-uniform parameters and we are not saying that calculating the above ‘characteristic

impedance’ will yield maximum quenching of the perturbation, but rather that this provides

us with more than adequate quenching control as can be seen in Figure 7.8.

In Figure 7.8 time evolutions of the bus angles are shown, illustrating how the perturbation

traverses the network. Once again we have the same bus reordering as was described in

the previous section. In this plot we notice that the deviational angles settle, because the

perturbation energy is absorbed by the boundary ZRC’s. The corresponding membrane

plots are shown in Figure 7.9, from which we observe that the system settled at a new

operating point. From these plots it is also evident that the waves reach the boundaries of
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Figure 7.7: Quenching control strategy setup.
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Figure 7.8: δ̃ wave propagation on the network for the quenching control strategy.

the grid, where the injected perturbation energy is absorbed by the ZRC’s (whose locations

are indicated by squares in the sub-figures of Figure 7.9).

Control Effort

An important question that we need to ask is whether or not we are setting unrealistic

goals for the ZRC’s. Figure 7.10 sheds some light on this issue. We notice from this figure

that the control effort for the investigated simulation is divided comparably between the

three controllers. Thus all controllers work equally hard to absorb the perturbation energy.

Importantly we again notice that the control effort is distributed over time, and the peak

demand on the controllers is not excessive, compared to the original perturbation ampli-

tude. For instance, the peak amplitude of the control effort of generator 70 (located nearest

to where the perturbation was applied, hence it reacts first) is about 30% of the perturba-
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(a) T = 0s (b) T = 0.20875s

(c) T = 0.41625s (d) T = 0.625s

(m) T = 3.1262s (n) T = 3.7512s

(o) T = 4.3762s (p) T = 5.0012s

(e) T = 0.83375s (f) T = 1.0412s

(g) T = 1.2512s (h) T = 1.4587s

(q) T = 5.6262s (r) T = 6.2512s

(s) T = 6.8762s (t) T = 7.5012s

(i) T = 1.6675s (j) T = 1.8762s

(k) T = 2.0837s (l) T = 2.2925s

(u) T = 8.1262s (v) T = 8.75s

(w) T = 9.22s (x) T = 10s

Figure 7.9: Time snap membrane plots for the WSCC 179-bus quenching controlled case.
The vertical movement of the nodes indicate the evolution of the bus angles. The lightly
dashed network graph in the xy plane serves as a reference for the moving membrane.
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Figure 7.10: Control effort associated with the quenching control strategy.

tion amplitude (assuming a 100MV A base, this works out to be 30MW , which compares

favorably to the 1200MW supplied by this generator in steady-state to the system).

From Figure 7.10 it appears as if the generator at bus 70 works the hardest in quenching

the perturbation. We can quantify this by evaluating the electromechanical energy injected

into the network at each of the controlled buses as follows:

Eem,i =
∫ tfin

0 ωcoiP̃g,i(τ)dτ, (7.1)

using this we find: Eem,4 = −3.4 × 10−3; Eem,40 = −4.0 × 10−3; Eem,70 = −8.6 × 10−3.

Summing up these numbers, the electromechanical energy that was extracted equals 16.0×

10−3, which is smaller than the injected energy of 26× 10−3. The difference between these

two numbers is attributed to network losses.

In order to help us understand the sizing of the actuators, it is instructive to investigate
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the electrical energy injected into the network, i.e.,

Ee,i =
∫ tfin

0 P̃g,i(τ)dτ, (7.2)

using this we find: Ee,4 = −0.1909; Ee,40 = −0.1844; Ee,70 = −0.3041. Summing these

numbers, the electrical energy extracted equals −0.6794. This is smaller than the injected

energy of 1. The difference is attributed to the system not having settled yet. Thus we

see that the ZRC at bus 70 needed to absorb roughly 30MJ when the perturbation was

100MJ .

Note that if more ZRC’s had been used, the effort required of each would have been corre-

spondingly smaller.

Control Scheme Performance in Response to Different Perturbations

A natural question to ask is whether the proposed control setup will be able to deal with

other perturbations in an effective manner. In this section we will keep the same control

setup but investigate two different power pulse perturbations.

First let us assume that a power pulse perturbation (of similar magnitudes as previously)

occurs at generator 43 (see the bottom left corner of Figure 7.1). The performance of the

control scheme in response to this perturbation is illustrated by the plots in Figures 7.11(a)

and 7.11(b). In Figure 7.11(a) we see that the system settles at a new operating point in

a similar fashion as in Figure 7.8. The ordered index in Figure 7.11(a) differs from the

ordered index in Figure 7.8; the former is ordered according to the distance away from bus
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Figure 7.11: Confining control study when the perturbation occurs at bus 43.

43 while the latter uses the distance away from bus 30. The control effort shown in Figure

7.11(b) is of the same order of magnitude as that shown in Figure 7.10.

In the second case we will assume a power pulse perturbation occurs at the generator located

at bus 112 (see the middle of Figure 7.1). The performance of the control scheme in response

to this perturbation is illustrated by the plots in Figures 7.12(a) and 7.12(b). Once more we

see in Figure 7.12(a) that the system settles at a new operating point in a similar fashion

as in Figures 7.8 and 7.11(a). The ordering associated with the ordered index (y-axis) in

Figure 7.12(a) differs from the orderings associated with the two sets of ordered indices (i.e.,

tow different y-axis) in Figure 7.8 and Figure 7.11(a). For Figure 7.12(a) the indices were

ordered according to the distance away from bus 112. The control effort shown in Figure

7.12(b) is of the same order of magnitude as those shown in Figures 7.10 and 7.11(b).

What we can conclude from these studies is that the application of ZRC’s at fixed locations
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Figure 7.12: Confining control study when the perturbation occurs at bus 111.

appears to handle different input perturbations with comparable efficiency.

7.4 Confining and Quenching Control Strategy

Suppose we want to confine and quench the power pulse perturbation occurring at bus 30

by isolating the lower left corner of the network and absorbing the injected perturbation

energy in the rest of the network (see Figure 7.13, where the dashed boundary marks the

region to be isolated). In order to achieve our goal we place ZTC’s at the locations indicated

by the white diamonds in Figure 7.13, and ZRC’s in at the locations indicated by the white

squares.

The ZRC’s are designed as we described in Section 7.3. The design steps associated with

realizing ZTC’s at non-generator buses, with multiple lines connected to the bus, are dis-
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Bus 108

Figure 7.13: Confining and quenching control setup. (White diamonds — ZTC’s; White
squares — ZRC’s).
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cussed in Section 6.3.2. We modify the active power we inject at the controlled bus in order

to reflect the impinging wave backwards. For instance, the ZTC law at bus 108 is realized

as follows:

P̃g,108 = −P̃135,108 − P̃133,108 − P̃104,108, (7.3)

where buses 104, 109, 133, 135, 153, 174 and 175 are connected to bus 108 through branches.

P̃i,j is the deviational power flowing from bus i to bus j on the branch directed from bus i

to bus j. We note that in (7.3), we do not include the deviational power flows on the lines

that transmission of the perturbation is to be limited.

In Figure 7.14 we see that there are sections of the network that are not exposed to the

perturbation. The time-snap membrane plots in Figure 7.15 provide an alternative view of

the results shown in Figure 7.14. From these figures it is clear that we do a satisfactory job

isolating the lower left part of the network from this perturbation.

This isolation scheme comes at a premium, as is seen when we analyze the control effort

of the ZTC’s given in Figure 7.16(b). We observe from Figure 7.16(a) that the quenching

of the perturbation is left to mainly two controllers. From Figure 7.14 it appears as if

the quenching controllers have a tougher time to quench the perturbation. Significant

oscillations are still visible at 10 seconds.

In Figure 7.16 the control efforts of the various controllers are shown. Evaluating (7.1) for

each controller we find: Eem,29 = 22.1× 10−3; Eem,4 = −6.5× 10−5; Eem,40 = −1.3× 10−6;
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Figure 7.14: δ̃ wave propagation on the network for the confining and quenching strategy.

Eem,70 = −14.8×10−3; Eem,118 = −10.8×10−3; Eem,108 = 12.4×10−3; Eem,28 = 2.0×10−3;

Eem,129 = 4.6×10−6; Eem,131 = 7.2×10−6; and summing up these numbers we find there is

a 10.9 × 10−3 positive amount of energy unaccounted for. Part of this unaccounted energy

is attributed to network losses. The remnant can be explained by observing that the system

has not completely settled. From these numbers and Figure 7.16 it is evident that the ZRC’s

at buses 4 and 40 can be eliminated.

7.5 Conclusion

In this chapter we used different types of Electromechanical Wave Controllers (EWC’s) that

we developed in Chapter 6 to create various control schemes, that we tested on a 179-bus
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(a) T = 0s (b) T = 0.20875s

(c) T = 0.41625s (d) T = 0.625s

(m) T = 3.1262s (n) T = 3.7512s

(o) T = 4.3762s (p) T = 5.0012s

(e) T = 0.83375s (f) T = 1.0412s

(g) T = 1.2512s (h) T = 1.4587s

(q) T = 5.6262s (r) T = 6.2512s

(s) T = 6.8762s (t) T = 7.5012s

(i) T = 1.6675s (j) T = 1.8762s

(k) T = 2.0837s (l) T = 2.2925s

(u) T = 8.1262s (v) T = 8.75s

(w) T = 9.22s (x) T = 10s

Figure 7.15: Time snap membrane plots for the WSCC 179-bus confining and quenching
controlled case. The lightly dashed network graph in the xy plane serves as a reference for
the moving membrane.
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Figure 7.16: Control effort associated with the realization of the confining and quenching
strategy.

aggregated WSCC system. We focused on the swing dynamics of this WSCC system, and

assumed that no other controls were implemented.

We investigated the uncontrolled case, where we applied a perturbation in the northern

part of the network and watched it spread through this sparse network. We calculated the

wavelength of the perturbation wave obtained from our simulation of this discrete lumped

nonlinear swing model. The values we calculated for the wave velocity and wave frequency

agree with values of these variables mentioned in [24].

In this chapter we also illustrated how we can use our observer framework developed in

the first part of this thesis to estimate traveling perturbation waves. This illustration does

not hint towards the numerous possibilities of having monitors that can detect and identify

perturbations, estimate the state of the system and then in real-time configure controllers
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(such as our EWC’s). However, it does tie the two parts together.

In this chapter we also investigated two different control strategies that were realized using

the EWC’s we devised in Chapter 6. First, we investigated a quenching control strategy

realized using three ZRC’s that we placed in an arbitrarily fashion. We found that these

three controllers did an adequate job in quenching the applied perturbation.

Second, we realized a confining and quenching control strategy. With this example we

illustrated that we can isolate the south-western part of the network from the northern-

applied perturbation. We needed multiple ZTC’s in order to guarantee reasonable control

efforts.

One issue that is still unresolved is, whether the required ramp rates of the control efforts

shown in this chapter are plausible when we use existing power equipment. We did illustrate

that the magnitudes of the control efforts do not seem unreasonable, but no conclusion can

be drawn regarding the ramp rates as of yet.

In Appendix C initial ideas pertaining to a ZRC realization through the voltage loop of

a generator (using its Automatic Voltage Regulator) are presented. We anticipate that

controlling a generator in this fashion, that we might be able to achieve the desired ramp

rates. However, this AVR-control strategy might have a control-effort magnitude limit.

This limit can be bypassed by using multiple controllers, hence distributing the control

effort. At this point in time we believe that SMES devices are the easiest to implement as

actuators in our EWC’s.
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Conclusions and Future Work

In this thesis we covered mainly two topics: power system monitors; and decentralized

controllers for electromechanical waves in power networks. Our contributions reported in

this thesis are to the following fields: power system modeling, power system state estimation,

observer design for Differential Algebraic Equation (DAE) systems, observer design for

fault detection and isolation filters for these DAE systems, application of fault detection

and isolation schemes to power networks, investigation into an integrated temporal and

spatial view (i.e., wave view) of the swing dynamics of a power system, and control of

power networks by manipulating electromechanical waves (i.e., swing motions) of a power

network.

In this chapter a brief summary of the work discussed in the various chapters will be given.

We will also highlight the lessons we learned and the contributions we made, before pointing

to future research possibilities.
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8.1 Summary and Conclusions

In Chapter 1 we stated the aim of this thesis and related our work to existing literature as

well as indicated some of the contributions of this thesis.

In Chapter 2 we introduced swing dynamic models from the well established field of power

system modeling. As a minor contribution we extended the work presented in [67], where

the powerflow equations of a network (active and reactive power), and the directed line-flows

in the power network are expressed using matrix-vector equations. These equations account

for the network topology more clearly. This formulation helps us to form a better wide-

area view of a power system’s swing motion behavior in response to faults/disturbances.

In this chapter we also spent some time discussing the type of disturbances that a power

system might experience. The types of disturbances are not exhaustive, and we decided to

concentrate on only a few of them.

In the first part of this thesis we focused on the design of power system monitors. Chapters

3 and 4 were concerned with various topics associated with model-based observers, which

form the building blocks of power system monitors. The monitors we investigated in this

thesis are swing-state estimators of the system, and fault-detection-and-isolation filters.

Chapters 3 and 4 were mainly concerned with the creation of state-estimation monitors

in the presence of unknown inputs (i.e., unknown electromechanical perturbations such as

load or generation changes as well as line-flow perturbations).

Model-based observers make up for the non-redundancy of sensors in space (because of their
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isolated and scattered deployment) and/or in time (because of limitations on their sampling

rate). We use model-based observers as the core of our power system monitors, and the

quality of such a monitor is only as good as the designed observer. Thus, a significant

amount of time was spent in this thesis to investigate different observer design techniques

that can be used for the design of full-order observers for the DAE model of a power system’s

swing dynamics.

In Chapter 3 different possible nonlinear observers were investigated (for instance we ex-

tended the novel Arcak-Kokotović observer introduced in [45] and studied it in the power

system context). We discussed and illustrated that in order to design a global stabilizing

observer gain for the nonlinear observer-error dynamical system of the swing model, we

needed an extensive measurement set (e.g., measuring all the load bus angles); however, in

this thesis we wanted to confine our attention to cases where we have a limited set of sensors

available for observer design. (We also concluded that the novel Arcak-Kokotović observer,

where the nonlinear terms featured in the error DAE model can be cancelled, also required

an extensive measurement set. The benefit of using this observer was not clear to us for the

case where we only use a limited set of sensors.) Hence, we chose a full-order nonlinear DAE

observer (originally proposed in [7]) that yields local asymptotically stable local error dy-

namics. This observer is the intuitive nonlinear extension of the standard linear state-space

observer, and uses the nonlinear model of the system plus a linear correction term that

is proportional to the discrepancy between the system measurements and the observer’s

estimate of these measurements. The gain matrix of this linear term is designed using a

linear synthesis technique. In Chapter 3 we also showed that the nonlinear error dynamical
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system can be written as a linear parameter varying (LPV) error dynamical system, where

the varying parameters are the observer’s estimate of the internal variables of the system x.

Essentially, a linear synthesis technique is used to design observer gains, possibly on-line,

along the trajectory of the observer’s estimate of x. This approach appears attractive for

power systems, seeing that linearized models of power systems are often computed on-line

during contingency studies. However, this approach can be very computationally intensive

depending on the linear synthesis method employed.

One important contribution we made to DAE observer design is illustrating that by using

the original DAE model (as compared to a collapsed state-space model) during the observer

design process, we had extra degrees of freedom (as compared to state-space observer design)

for unknown-input attenuation.

A significant part of Chapter 3 was devoted to H∞ filtering for DAE systems in the presence

of measurement corruption signals. The case of robust H∞ filtering design in the presence

of model uncertainty, using the Linear Matrix Inequality (LMI) framework, is discussed in

Appendix B. We incorporated parametric model uncertainty in the mass matrix (the matrix

that pre-multiplies ẋ) into our investigations, and in doing so we extended the work reported

in [52, 68]. We concluded Chapter 3 by observing that H∞ filtering for DAE models of large-

scale power networks is currently very computationally expensive, eliminating LMI-based

H∞ filter design as a possibility for the on-line realization of an observer with an LPV error

system. This prompted us to investigate the observer design technique reported in Chapter

4.
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The novel graphical observer design technique introduced in Chapter 4 employs ideas from

the theory of linear structured systems. For these systems, directed graphs can be con-

structed that depict signal flow paths from unknown inputs to internal variables to outputs.

Investigations such as number-and-type of measurements were graphically investigated on

small-scale examples. The lessons learned from these investigations were used to create

state estimators for larger systems, which performed superior to the H∞ filters designed in

Chapter 3 for the same systems. This graphical observer design method is attractive for

application to larger-scale systems, because the design relies on setting most values in the

observer gain matrix to be equal to values extracted from the system matrices, except for

very specific high-gain arcs.

This graphical design approach relies on knowledge of the network topology and the values

that can be extracted from linearized models of the nominal nonlinear swing model. This

design approach is not computationally intensive, making it plausible for the realization of

an observer with an LPV error system. The expensive part in the on-line realization of this

observer will be the linearization step around the observer’s estimate of x. Once we have

this linearized system, the observer gain is designed by extracting specific values from the

linearized matrices.

We found this graphical observer design technique to be very powerful during the design

of monitors (which we assume to be stable) that can achieve a desired level of steady-state

unknown-input attenuation. However, this design approach does not provide us with any

guarantees on the stability of the filter. In Theorem 4.1 we did investigate the case where
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extra measurements can be used to change the eigenvalues of the error dynamical system

to ensure stability of the filter.

If a mismatch in initial conditions between the observer and the system is anticipated,

and fast convergence of the error to zero is of importance, one would have to introduce

extra degrees of freedom during the design process in order to move the eigenvalues of the

error system (M, A−LC), such that the real part of these eigenvalues are sufficiently large

negative numbers.

We propose a dual design approach, where we first identify the unknown inputs whose effect

on the errors we want to attenuate, then we introduce (or use existing) measurements that

can be used to achieve a desired level of unknown-input attenuation as described in Chapter

4. The second step is to use extra measurements that do not violate the conditions of

Theorem 4.1, and employ them for the sole purpose of moving the eigenvalues of (M, A−LC)

by using an eigenstructure assignment technique. Eigenstructure assignment techniques are

generally considered to be suited for large-scale system design. Eigenstructure assignment

techniques for state-space and DAE systems exist in the literature. However, it appears

from the literature that eigenstructure assignment designs have mainly focused on the dual

problem of observer design (i.e., state-feedback control). Note that if we are only concerned

about moving the eigenvalues of the error system, and we are certain that we will not

negatively influence our unknown-input attenuation design, we can use a pole placement

technique for a new modified collapsed state-space system.

More measurements, due to cheap and easy deployment of measurement devices, might
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enhance our estimator’s performance, by providing us with more degrees of freedom to

attenuate identified unknown inputs as well as being able to move the eigenvalues of the

error dynamical system. A large set of measurements also holds potential benefits for fault

detection, isolation and identification.

The relative ease of designing observers using the graphical observer design method sim-

plified the task of creating fault-detection-and-isolation filters for swing models of power

systems, as illustrated in Chapter 5. This chapter illustrates how to design residual gener-

ators (i.e., fault-detection-and-isolation filters) for various combinations of different types

of faults and in the presence of disturbances, using a small-scale and a large-scale example.

Following our design approach discussed in Section 4.2.2 and Theorem 4.1, we know that we

can manipulate every element in the transfer function from unknown-inputs to estimation

errors (i.e., Gew(s)) under certain conditions (which the swing models generally meet). Un-

der these conditions we can enforce a certain structure on Gew(s = 0) (where s = 0 indicates

steady state properties). For example, we can design Gew(s = 0) to have all zero entries

except for one, which corresponds to the measurement used in the observer realization, for

the case when we have a single unknown input and a specific type of single measurement.

For state estimation purposes we make this non-zero element in Gew(s = 0) tend to zero by

increasing a specific gain element. However, for fault detection and isolation purposes we

want to increase this element by lowering this same gain element. By doing so we amplify

the fault we want to detect instead of attenuating its effect as in the state estimation case.

In Chapter 5 we illustrated how to design residual generators, following the above approach,
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on a small-scale (i.e., 9-bus) and a large-scale (i.e., 179-bus) examples. This chapter con-

cluded our investigations into power system monitors and we then moved on to introduce

our novel controllers that can manipulate electromechanical movements of a power system

in response to an electromechanical perturbation.

The second part of this thesis concentrated on the development and application of decen-

tralized controllers of electromechanical transients in power networks. We believe that the

spatio-temporal dynamics of electromechanical systems (such as the swing model of a power

network) are important because of the vast geographical areas these networks span. Con-

sequently we developed an integrated wave point of view to study the transients associated

with the occurrence of electromechanical perturbations. Previous researchers used such a

viewpoint to study and explain various power system analysis questions, whereas in our

work we use this wave view to devise controllers that we apply to the lumped, discrete,

nonlinear swing model.

In Chapter 6 we used this notion of electromechanical waves traveling in power networks

to develop an electromechanical strings-of-generators theory (along the same lines as elec-

tromagnetic transmission line theory). Furthermore, we developed control strategies for

decentralized control of these electromechanical waves, drawing on prototype controllers

found in electromagnetic transmission line theory (e.g., matched-impedance terminations)

and active vibration damping (e.g., energy-absorbing controllers and vibration isolators).

These decentralized “Electromechanical Wave Controllers” (EWC’s) belong to the class of

collocated controllers (i.e., controllers with input and output located at the same point in
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space), and include controllers that can achieve zero reflection or zero transmission of a

traveling electromechanical perturbation at certain spatial points of the network. In Chap-

ter 6 we mainly studied homogeneous all-generator networks in order to formulate and test

our ideas in a controlled environment. The structure of EWC’s is not novel to the power

system community, and Samuelsson proposed a similar structured damping controller that

modulates active power injection at a load bus by using bus frequency as the controller

input [61]. The difference between his and our damping controller is the manner in which

the controller gain is obtained. (Samuelsson uses root locus design and we use our wave

point of view). One of our contributions to the field of power system damping and control

is our investigation into the energy properties and control effort of our EWC’s, for which

we noticed that our damping controllers would quench perturbation energy with modest

time-distributed control efforts. Our zero-transmission controllers on the other hand would

not quench the perturbation, but rather redirect the energy of the perturbation.

The actuators we envision are existing power equipment such as generators, active loads,

SMES devices and flywheels. From our studies we concluded that the peak demand on

an actuator might be modest (this is a function of the perturbation magnitude), but the

required ramp rate of the control effort still needs to be related to current capabilities of

existing power equipment.

In Chapter 7 we applied EWC’s to a 179-bus aggregated model of the Western States

Coordinating Council’s network. This sparse power network has more load buses than

generators. We first investigated whether the simulation of the classical model associated
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with this general network yields swing motions that can be interpreted as electromechanical

waves. We then realized a quenching control scheme where a limited number of zero-

reflection controllers are placed at the boundary of the network. We successfully illustrated

that these few controllers were able to absorb the injected perturbation energy adequately.

The peak demand of the control effort for this specific example was found to be roughly

25% of the peak amplitude of the perturbation pulse, and roughly 2% of the steady-state

power delivered by the controlled generator. In the case of larger disturbances, these three

ZRC’s would have to work harder, pushing the machines to their limits. However, we were

ambitious in our choice of only three controllers for the 179-bus system, and operators

would most likely want to share the burden among more controllers. A confining and

quenching control strategy for the same perturbation was satisfactorily investigated for the

same WSCC system.

In Chapter 7 we also tied the two thesis topics together by showing how we can estimate

a traveling electromechanical perturbation using our observer framework developed in the

first part of this thesis. This elementary illustration hints at the possibilities of having

monitors that can detect and identify perturbations, estimate the state of the system and

then in real-time configure controllers (such as our EWC’s). We are very optimistic about

such integrated monitoring and control schemes, and will elaborate more on this in the

section pointing to future research possibilities.
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8.2 Future Work

In this thesis various topics were addressed and in the previous section we highlighted

several of our contributions of this thesis. However, as is the case with research, some

new interesting questions arose. These questions and other interesting problems are left for

future research.

8.2.1 Power System Monitors

The observer framework developed in Chapters 3 and 4 was done using the DAE swing model

of a power system. The next foreseeable extension of our work would be to move beyond

the swing model and investigate a DAE model where generators are represented by the

two-axis model (possibly with Automatic Voltage Regulators included) and to incorporate

bus-voltage magnitudes and reactive power flow.

We are optimistic that the time invested in arriving at the graphical observer design method

was well spent. We envision that using this design method for DAE two-axis power system

models will enable us to yield insight into monitoring of real-world networks, making our

approach and ideas more tangible for power system operators.

A deeper understanding into the workings of the graphical design method might also be

fruitful. The issue of observer robustness in the presence of parametric model uncertainty

for the graphically designed observers has not been addressed in this thesis. However, in

all the simulations shown in Chapters 4 and 5 we assumed that there was some model
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uncertainty and we used nominal values during observer design. Despite these moderate

uncertainties we introduced, the graphically designed observers performed well.

Another issue that needs some further investigation is to quantify the possible link between

the performance of an observer and the distance (as measured in the directed graph of

the structured system) between an unknown input and its cancelling measurement. If

this length is large in the directed graph, this might correspond to a large geographical

separation between these sites. We might discover that this distance should be small for

good performance. For instance in Section 4.3.1 we showed by means of a nine-bus example

that a monitor where this distance was short performed better when compared to another

monitor where this distance was longer.

The case of measurement faults has not been investigated during our fault detection and

isolation studies. Investigations into how we can use these type of fault detection filters in

the identification of bad data, and use these filters as an aid to traditional power system

static state estimators, might be interesting.

Lastly we can state more generally that more work is required to assess the capabilities and

uses of our monitors in system-wide monitoring and control (e.g., protective relaying) of

power systems, especially in a deregulated environment.
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8.2.2 Decentralized Electromechanical Wave Controllers

The next step in our controller studies will be to move beyond the swing model. As part of

this extension we already initiated investigations into whether wave phenomena for ω and

P hold when more elaborate power system models (e.g., where generators are represented

by two-axis models) are used. These studies are not reported in this thesis and they are of

a numerical nature.

Another part of our investigation that warrants more investigation is whether we would

be able to use generators as actuators by controlling them through the voltage loop us-

ing the Automatic Voltage Regulator of the generator. Following this approach will yield

insight into the relationship between our proposed EWC’s and currently employed Power

System Stabilizers. Some of the points to clarify are the similarities and differences between

the damping controllers proposed in this thesis and the damping controllers proposed by

Samuelsson, as well as the relation of these collocated controllers to notions of passivity.

We would also like to suggest more study on the placement of controllers. Currently con-

trollers are placed by studying the topology of the network and considering the aim of the

control strategy.

A further question that seems interesting to investigate and potentially important for the

future is the idea of controller reconfiguration in real-time by having an overlying supervisory

control level.
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8.2.3 An Integrated Monitoring and Control Framework

The power-system monitors and controllers developed in this thesis can be integrated to

form an integrated on-line monitoring and control system. A possible approach might be

to use FDI filters to detect power-system perturbations, then isolate and identify them in

order to gauge the magnitudes of these perturbations. Having this information available,

operators can then configure in real-time a desired EWC constellation (e.g., a quenching

or a confining and quenching control strategy). The information regarding the magnitudes

of the perturbations will enable system operators to configure the appropriate number and

type of controllers in order to distribute the cumulative control effort of the EWC’s across

the network. We envision that multiple controller sites may exist across the network, to be

configured (as zero-reflection or zero-transmission controllers) in real time and switched in

to operation as needed.

Our power system state estimation monitors can further be used in a parameter estimation

scheme that estimate those parameters that feature in the controller gain calculation (e.g.,

the controlled generator mass and impedances of the transmission lines connected to the

controlled generator bus). One such parameter estimation scheme, which uses the outputs

of multiple parallel-running observers and the measurements of the system to estimate the

parameters, was investigated as a possible fault-detection and identification scheme in [16].
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Linear Matrix Inequalities

It has been shown in recent years that Linear Matrix Inequalities (LMI’s) can be used

to approach control problems that appear hard if not impossible to solve in an analytical

fashion [55]. An LMI is an expression of the form Q(z) = Q0 + z1Q1 + · · · + zmQm > 0

where z = (z1, · · · , zm) is a vector of m real numbers refered to as ‘decision variables’.

Q0, · · · , Qm are real symmetric matrices belonging to Rn×n. LMI’s are interesting because

the LMI Q(z) > 0 defines a convex constraint on z.

Many optimization problems in control, identification and signal processing can be formu-

lated (or reformulated) using LMIs. The cost function associated with the LMI formulated

problem is convex and well-proven convex optimization techniques can be used to solve the

problem. There are three generic problems related to the study of LMI’s [55]:

• Feasibility Problem: Test whether there exists a solution z to the problem Q(z) > 0.

The LMI is feasible if such an z exists, otherwise it is called infeasible.

• Optimization Problem: This problem involves the optimization of a scalar cost func-

tion J(z) that is subject to an LMI constraint Q(z) > 0.
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• Generalized Eigenvalue Problem: The objective of this problem is to minimize a real

scalar λ, subject to 



λQ(z) − R(z) > 0

Q(z) > 0

R(z) > 0

In [55, 54] numerical methods used to solve LMI problems efficiently are discussed. Such

discussions fall outside the scope of this thesis and the interested reader is referred to these

references. The LMI Control Toolbox in Matlab [56] is used to solve the LMI problems

formulated in this thesis.

The following two lemmas (taken from [54]) come in handy when one investigates LMI prob-

lems (for instance then conversion of a Linear Matrix Inequality to its associated Algebraic

Riccati Equation).

LEMMA A.1

Schur Complement for Strict Inequality: [54] The matrix inequality, with R11 and

R22 symmetric,

R(z) =




R11 R12

R′
12 R22


 > 0

holds if and only if

R22 > 0,

R11 − R12R
−1
22 R′

12 > 0.
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LEMMA A.2

Schur Complement for Nonstrict Inequality: [54] The matrix inequality, with R11

and R22 symmetric,

R(z) =




R11 R12

R′
12 R22


 ≥ 0

holds if and only if

R22 ≥ 0,

R11 − R12R
†
22R

′
12 ≥ 0,

R12(I − R22R
†
22) = 0,

where R†
22 denotes the Moore-Penrose inverse of R22.
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Robust H∞ Estimation

In Section 2.6 we discussed possible uncertain parameters in our swing models. This para-

metric model uncertainty has not been accounted for during the observer design stage, and

we will do so at this juncture. In this section we will illustrate how one can design esti-

mation filters utilizing theory from robust control. This framework provides the designer

with an avenue to include model uncertainty and make the obtained filter robust to such

uncertainties. State-space observer design will not be investigated in this section, because

the collapsed state-space swing model does not have the structure-preserving properties of

the DAE model, making it more challenging to investigate the effect of parametric model

uncertainty.

In [52] the robust H∞ filtering problem for a state-space model with parametric uncertainty

and state delay is considered. In [68] the stabilization problem for a descriptor system with

parametric uncertainty (in all the matrices except M) was studied. The results reported in

this section join the work done in the latter two papers, but also extend it by considering

the scenario of having uncertainty in M .
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As a recap, the uncertain DAE swing model can be written as:

(M − M̃) ˙̃x = (A + Ã)x̃ + Ew, (B.1)

ỹ = (C + C̃)x̃, (B.2)

z̃ = Qx̃, (B.3)

where the minus sign in front of M̃ was chosen for convenience and should not create

confusion. In (B.1) we also assumed that ũ = 0, and in (B.2) we assumed that v = 0.

It can be shown for the swing model that the uncertain time-varying matrices M̃ , Ã and C̃

can be written in the following forms:




Ã

C̃


 =




S1

S2


∆T1, (B.4)

M̃ = Sm∆mTm, (B.5)

where ∆′∆ ≤ I and ∆′
m∆m ≤ I. This type of uncertainty formulation is also considered in

[52, 68].
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Making this formulation more concrete we find that S1, S2 and T1 are:

S1 =

[
Sb Sg Sd 0

]
(B.6)

S2 =

[
0 0 0 Sc

]
(B.7)

T1 =

[
T ′

b T ′
g T ′

d T ′
c

]′
(B.8)

∆ = diag(∆b, ∆g, ∆d, ∆c) (B.9)

The submatrices forming part of S1, S2 and T1 are calculated as:

ne∑

h=1

Ãb = Sb∆bTb =




0

In


FBρb

︸ ︷︷ ︸
Sb

∆b F ′




Ing 0 0

0 0 Inl




︸ ︷︷ ︸
Tb

(B.10)

ne∑

h=1

Ãg = Sg∆gTg =




0

In


 |F |Gρg

︸ ︷︷ ︸
Sg

∆g F ′




Ing 0 0

0 0 Inl




︸ ︷︷ ︸
Tg

(B.11)

Ãd = Sd∆dTd =




0

Ing

0




ρdDg

︸ ︷︷ ︸
Sd

∆d

[
0 Ing 0

]

︸ ︷︷ ︸
Td

(B.12)

C̃ = Sc∆cTc = ρc∆cC. (B.13)
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Similarly we can find Sm and Tm as:

M̃ = Sm∆mTm =




0

Ing

0




ρmMg

︸ ︷︷ ︸
Sm

∆m

[
0 Ing 0

]

︸ ︷︷ ︸
Tm

(B.14)

Before we prove a lemma that is concerned with the asymptotic stability of the system

given by (B.1) and (B.3), we list the following lemma that will be invoked in appendix.

LEMMA B.1

Let D, S, F be real matrices of appropriate dimensions with F satisfying F ′F ≤ 0. Then

for any scalar ǫ > 0 and vectors τ and υ ∈ R
n the following holds:

2τ ′DFSυ ≤ ǫ−1τ ′DD′τ + ǫυ′S ′Sυ.

We will now prove the lemma that is concerned with the asymptotic stability of the system

given by (B.1) and (B.3).

LEMMA B.2

System (B.1), (B.3) is asymptotic stable and ‖z‖2
2 < γ2‖w‖2

2 under zero-initial conditions
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for any non-zero w, if there exist scalars ǫ1 > 0 and ǫ2 > 0 and matrix X such that

M
′
X = X ′M ≥ 0 (B.15)




Ξ 0 X ′S1 X ′Sm X ′E

0 ǫ2T
′
mTm 0 0 0

S′
1X 0 −ǫ1I 0 0

S′
mX 0 0 −ǫ2I 0

E′X 0 0 0 −γ2I




< 0, (B.16)

Ξ = A
′
X + X ′A + Q′Q + ǫ1T

′
1T1, (B.17)

where S1, T1, Sm and Tm are as defined earlier.

Proof. We will first establish asymptotic stability of the system (B.1), (B.3) under the

conditions of the lemma with w = 0. Let us consider the Lyapunov function candidate

V = x̃′MXx̃ (see [44] for an exposition on Lyapunov theory for DAE systems) and its time

derivative,

V̇ = x̃′(A
′
X + X ′A + Ã′X + X ′Ã)x̃ + 2x̃′X ′M̃ ˙̃x, (B.18)

where we can rewrite the last term as

2x̃′X ′M̃ ˙̃x = 2x̃′X ′Sm∆Tm
˙̃x. (B.19)
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Using Lemma B.1 we can bound (B.19) as follows,

2x̃′X ′Sm∆Tm
˙̃x ≤ ǫ−1

2 x̃′X ′SmS′
mXx̃ + ǫ2 ˙̃x

′
T ′

mTm
˙̃x, (B.20)

where this inequality will hold for any ǫ2 > 0.

Using (B.4) we can rewrite (Ã′X + X ′Ã) as

(Ã′X + X ′Ã) = (S1∆T1)
′X + X ′(S1∆T1), (B.21)

which we can bound using the following identity taken from [68].

LEMMA B.3

[68] For any matrices K1, K2, K3 of appropriate dimensions with K2 > 0 the following

inequality holds

K ′
1K3 + K ′

3K1 ≤ K ′
1K2K1 + K ′

3K
−1
2 K3.

Choosing K1 = S′
1X, K2 = ǫ−1

1 I and K3 = ∆T1 we can bound (B.21) as follows,

(S1∆T1)
′X + X ′(S1∆T1) ≤ ǫ−1

1 X ′S1S
′
1X + ǫ1T

′
1∆

′∆T1 (B.22)

≤ ǫ−1
1 X ′S1S

′
1X + ǫ1T

′
1T1, (B.23)

where the last inequality follows from having ∆′∆ ≤ I.
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Incorporating the inequalities (B.20) and (B.23) into (B.18) we find,

V̇ ≤




x̃

˙̃x




′ 


Λ 0

0 ǫ2T
′
mTm




︸ ︷︷ ︸
Ω1




x̃

˙̃x


 , (B.24)

Λ = A
′
X + X ′A + ǫ−1

1 X ′S1S
′
1X + ǫ1T

′
1T1 + ǫ−1

2 X ′SmS′
mX (B.25)

We can show that Ω1 in (B.24) is equivalent to

Ω1 ≡




A
′
X + X ′A + ǫ1T

′
1T1 0 X ′S1 X ′Sm

0 ǫ2T
′
mTm 0 0

S′
1X 0 −ǫ1I 0

S′
mX 0 0 ǫ2I




, (B.26)

by using the Schur complement (see Appendix A).

Investigating the lemma statement we note that Ω1 < 0. Thus, V is positive semi-definite

and V̇ is negative definite, implying that V is a valid Lyapunov function and that system

(B.1) is asymptotic stable.

Let us now consider the case where w 6= 0, and the system is under zero initial conditions.

If system (B.1) – (B.3) is dissipative with respect to the supply function γ2w′w − y′y for

any quadratic function V = x̃M
′
Xx̃, then from [55] we know that V̇ should be less than or

equal to the supply function. This is the condition that we need to check given our current
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theorem statement. Thus, let us define J as follows

J = z′z − γ2w′w + V̇, (B.27)

where V̇ is given by (B.18) with the additional term 2x̃X ′Ew (due to the nonzero input)

added to the righthand side.

Thus, we can easily show that

V̇ ≤




x̃

˙̃x

w




′ 


Ω




X ′E

0




[
E′X 0

]
0







x̃

˙̃x

w




, (B.28)

from which it follows

J ≤




x̃

˙̃x

w




′ 


Λ + Q′Q 0 X ′E

0 ǫ2T
′
mTm 0

E′X 0 −γ2




︸ ︷︷ ︸
Ω2




x̃

˙̃x

w




. (B.29)
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And we can now show by using Schur complements that Ω2 is equivalent to

Ω2 ≡




Ξ 0 X ′S1 X ′Sm X ′E

0 ǫ2T
′
mTm 0 0 0

S′
1X 0 −ǫ1I 0 0

S′
mX 0 0 −ǫ2I 0

E′X 0 0 0 −γ2I




,

where Ξ is given in (B.17). From LMI (B.16) in the theorem statement we see that J < 0

hence, the system is dissipative and ‖z‖2
2 ≤ γ2‖w‖2

2.

Let us suppose that we want to realize an observer for system (B.1), (B.2) of the form

M ˜̂x = (A − LC)˜̂x + Ly, (B.31)

from which we obtain the following associated error dynamical system:

Mė = (A − LC)e + Ew + M̃ ˙̃x + (Ã − LC̃)x̃. (B.32)

From (B.32) we notice that the actual state and the error dynamics are not independent,

and we have to consider them together in order to design a robust stable observer.

THEOREM B.4

The robust H∞ filtering problem is solvable for the stable uncertain system given in (B.1) –
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(B.3) if there exist scalars ǫ1 > 0, ǫ2 > 0 and matrices Xa, Xb and Y such that the following

LMIs hold:

M
′
Xa = X ′

aM ≥ 0 (B.33)

M
′
Xb = X ′

bM ≥ 0 (B.34)

Γ =




Γ11 0 Γ13 Γ14 Γ15

0 Γ22 0 0 0

Γ′
13 0 −ǫ1I 0 0

Γ′
14 0 0 −ǫ2I 0

Γ′
15 0 0 0 −γ2I




< 0 (B.35)

Γ11 =




A
′
Xa + X ′

aA + ǫ1T
′
1T1 0

0 A
′
Xb + X ′

bA + Y ′C + C
′
Y + C ′

eCe


 (B.36)

Γ22 =




ǫ2T
′
mTm 0

0 0


 (B.37)

Γ13 =




X ′
aS1

X ′
bS1 + Y S2


 (B.38)

Γ14 =




X ′
aSm

X ′
bSm


 (B.39)

Γ15 =




X ′
aE

X ′
bE


 (B.40)

where Y ′ = −X ′
bL. A suitable H∞ observer will be of the form (B.31).
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Proof. Let us concatenate the dynamical equations of the uncertain system and the error

dynamics associated with the observer to form the following system:




M 0

0 M




︸ ︷︷ ︸
M




˙̃x

ė


 =




A 0

0 A − LC




︸ ︷︷ ︸
Ac




x̃

e




︸ ︷︷ ︸
η

+




Ã 0

Ã − LC̃ 0




︸ ︷︷ ︸
Ãc




x̃

e




+




M̃ 0

M̃ 0




︸ ︷︷ ︸
M̃




˙̃x

ė


 +




E

E




︸ ︷︷ ︸
E

w (B.41)

e = Ceη (B.42)

The uncertain matrices Ãc and M̃ are respectively equivalent to:

Ãc =




S1

S1 − LS2




︸ ︷︷ ︸
S1

∆

[
T1 0

]

︸ ︷︷ ︸
T1

; (B.43)

and M̃ =




Sm

Sm




︸ ︷︷ ︸
Sm

∆m

[
Tm 0

]

︸ ︷︷ ︸
Tm

. (B.44)

We still have that ∆′∆ < I and ∆′
m∆m < I.
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Defining X = diag(Xa, Xb) and Y = diag(0, Y ) we can show that Γ is equal to

Γ ≡




Ξ 0 X ′S1 X ′Sm X ′E

0 ǫ2T ′
mTm 0 0 0

S ′
1X 0 −ǫ1I 0 0

S ′
mX 0 0 −ǫ2I 0

E ′X 0 0 0 −γ2I




(B.45)

where Ξ = A′
cX + X ′Ac + C′

eCe + ǫ1T ′
1T1 (B.46)

From this equivalence and the fact that Γ < 0 from the theorem statement we see that we

can apply Lemma B.2, which completes the proof.

At this juncture we will not illustrate with an example. We can demonstrate the feasibility

of this LMI problem on a small system, similar to what was done in [52]. In [52] the authors

did not minimize γ2, but rather chose a value and then computed a feasible solution for

their example. From preliminary investigations on a small example we found that trying to

minimize γ2 we ran into feasibility problems.
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Towards Implementing an EWC through

an AVR

This write up highlights some of the issues involved toward implementing an EWC through

the voltage loop of a generator using the Automatic Voltage Regulator (AVR). We will

mainly focus on realizing a ZRC for a string-of-generators example and we will only inves-

tigate the simple swing model.

In this write up we assume that the external mechanical-torque input to the generator can

not be manipulated as well as that an external active-load extraction at the controlled bus

is non-existent. Thus the only variable that can be used to achieve control is to modify the

electrical power output of the generator.

Let us start with the swing model with no source impedance. For simplicity we assume

that the voltage magnitudes are constant for all time. The dynamical equations of the end
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generator is:

δ̇ = ω (C.1)

2H

ωs
ω̇ = Pm + Pend, (C.2)

where Pend is the power that flow into the final generator. Only ω is expressed as a devia-

tional variable, and in steady state we have that Pm = −P end.

Following our approach in [60] we enforce P̃end = ω
Co

by substituting this relationship into

(C.2) (where we now assume that P̃m = 0, which is not the case in [60]), from which we

find that the dynamical equations of the end generator change to:

δ̇ = ω (C.3)

2H

ωs
ω̇ =

ω

Co
(C.4)

and we see that there is a positive eigenvalue associated with this closed loop system. Thus

the end generator will go unstable and we can thus not achieve a ZRC at this end generator

by manipulating the electrical power output of this generator.

Alternatively, if we follow our approach in [26] the right hand side of (C.2) is equal to

K(P̃end − ω
Co

), and from this equivalence we obtain what P̃m should be to achieve the

control objective. In our current investigation we assume that P̃m = 0. Evaluating the LHS
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equivalence we have:

P̃end = K(P̃end −
ω

Co
) (C.5)

→ (K − 1)P̃end = K
ω

Co
(C.6)

where we see that (C.6) is consistent with our objective P̃end = ω
Co

only in the limit as K

becomes large. Making P̃end the subject of (C.6) and substituting it into the right hand

side of (C.2) we find:

δ̇ = ω (C.7)

2H

ωs
ω̇ =

K

(K − 1)

ω

Co
(C.8)

and if 0 < K < 1 then the eigenvalue K
2H
ωs

(K−1)Co
will be in the LHP. Thus we have

contradicting aims: first we want K to be very large, second we want 0 < K < 1.

What note that both (C.4) and (C.8) do not have any driving terms and the dynamic

evolution of ω will be attributed to a nonzero initial condition of ω (which is taken to be

zero).

New approach

We relax our aim of trying to control the impinging wave at the end generator and rather

focus on controlling the impinging wave at the second to last generator (refer to it as

generator 1 henceforth). From our previous studies we know that if the power a local active
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load extraction at generator 1 is equal to ω1

Co
then there will be no wave reflections at the

bus of generator 1 and the end generator will absorb the wave energy. We will use the end

generator to provide us with this load extraction/injection, and hence we have P̃e = − ω1

Co
.

Substituting this into the dynamical equations of the last two generators we obtain:

δ̇1 = ω1 (C.9)

δ̇ = ω (C.10)

2H

ωs
ω̇1 = P̃end −

ω1

Co
(C.11)

2H

ωs
ω̇ =

ω1

Co
(C.12)

This control scheme works and we are able to absorb the wave energy similar to the case

where we manipulated the mechanical input power to the last generator.

Adding Voltages and Source Impedances

Next, we assume that the generator has a source impedance and we will distinguish between

δ (machine angle) and θ (bus angle). We model voltage magnitudes on the network as well.

In Figure C.1 we show the last two generators in the string of generators for this kind of

power system model.

From the preceding paragraphs we have realized that we will not be able to achieve ZRC

at the end generator bus, but rather that we want to manipulate the output power of this

generator in order to achieve zero reflection control at the second-to-last generator bus.
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δδ

θ θ

Figure C.1: Last two generators in our string-of-generators example, where generators have
source impedances.

We can achieve ZRC at the bus of generator 1, if we can guarantee that the power supplied

to the network bus of generator 1 is

P̃e + P̃e1 = − θ̇1

Co
, (C.13)

where θ̇1 is the bus frequency at the second-to-last generator. We can simplify matters by

assuming that θ̇1 ≈ ω1, because we will not manipulate P̃e1. Ideally we want P̃e1 ≈ 0.

Assuming that we achieve this objective of having P̃e = − ω1

Co
− P̃e1 and substituting this
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Figure C.2: θ-Propagation on the string of generators, with generator impedances included
(Xs = X

4 ).

objective into the electromechanical differential equations of the last generator we obtain

δ̇1 = ω1 (C.14)

δ̇ = ω (C.15)

2H

ωs
ω̇1 = −P̃e1 (C.16)

2H

ωs
ω̇ =

ω1

Co
+ P̃e1 (C.17)

0 = P̃end + P̃e + P̃e1 = P̃end −
ω1

Co
. (C.18)

From C.18 we notice that we indeed satisfy the zero-reflection control objective at bus 1.

This control scheme does an adequate job as illustrated in Figure C.2.

– 240 –



Appendix C Towards Implementing an EWC through an AVR

The deviational-electric power out of the end generator is expressed as

P̃elec =
EV

X ′
d

sin(δ − θ) − P elec (C.19)

where E is the voltage behind machine reactance and V is the voltage magnitude at the

network bus. If we extrapolate to the two-axis model and control the last generator through

the AVR then we would essentially modulate V (the terminal voltage of the generator) as

wells as δ. We will not test such an implementation at this point in time, and leave it for

future research.
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