A FATOU-TYPE THEOREM FOR HARMONIC FUNCTIONS ON SYMMETRIC SPACES¹

BY S. HELGASON AND A. KORÁNYI

Communicated by G. D. Mostow, August 31, 1967

1. Introduction. The result to be proved in this article is that if u is a bounded harmonic function on a symmetric space X and x_0 any point in X then u has a limit along almost every geodesic in X starting at x_0 (Theorem 2.3). In the case when X is the unit disk with the non-Euclidean metric this result reduces to the classical Fatou theorem (for radial limits). When specialized to this case our proof is quite different from the usual one; in fact it corresponds to transforming the Poisson integral of the unit disk to that of the upper half-plane and using only a homogeneity property of the Poisson kernel. The kernel itself never enters into the proof.

2. Harmonic functions on symmetric spaces. Let G be a semisimple connected Lie group with finite center, K a maximal compact subgroup of G and g and f their respective Lie algebras. Let B denote the Killing form of g and \mathfrak{p} the corresponding orthogonal complement of f in g. Let Ad denote the adjoint representation of G. As usual we view \mathfrak{p} as the tangent space to the symmetric space X = G/K at the origin $o = \{K\}$ and accordingly give X the G-invariant Riemannian structure induced by the restriction of B to $\mathfrak{p} \times \mathfrak{p}$. Let Δ denote the corresponding Laplace-Beltrami operator.

Fix a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p}$ and let M denote the centralizer of \mathfrak{a} in K. If λ is a linear function on \mathfrak{a} and $\lambda \neq 0$ let $\mathfrak{g}_{\lambda} = \{X \in \mathfrak{g} \mid [H, X] = \lambda(H)X$ for all $H \in \mathfrak{a}\}$; λ is called a restricted root if $\mathfrak{g}_{\lambda} \neq 0$. Let \mathfrak{a}' denote the open subset of \mathfrak{a} where all restricted roots are $\neq 0$. Fix a Weyl chamber \mathfrak{a}^+ in \mathfrak{a} , i.e. a connected component of \mathfrak{a}' . A restricted root α is called positive (denoted $\alpha > 0$) if its values on \mathfrak{a}^+ are positive. Let the linear function ρ on \mathfrak{a} be determined by $2\rho = \sum_{\alpha>0} (\dim \mathfrak{g}_{\alpha})\alpha$ and denote the subalgebras $\sum_{\alpha>0} \mathfrak{g}_{\alpha}$ and $\sum_{\alpha>0} \mathfrak{g}_{-\alpha}$ of \mathfrak{g} by \mathfrak{n} and $\overline{\mathfrak{n}}$ respectively. Let N and \overline{N} denote the corresponding analytic subgroups of G.

By a Weyl chamber in \mathfrak{p} we understand a Weyl chamber in some maximal abelian subspace of \mathfrak{p} . The *boundary* of X is defined as the set B of all Weyl chambers in the tangent space \mathfrak{p} to X at \mathfrak{o} ; since this boundary is via the map $kM \rightarrow \mathrm{Ad}(k)\mathfrak{a}^+$ identified with K/M, which by the Iwasawa decomposition G = KAN equals G/MAN, this defi-

 $^{^1}$ This work was supported by the National Science Foundation, GP 7477 and GP 6155.

A FATOU-TYPE THEOREM ON SYMMETRIC SPACES

nition of boundary is equivalent to Furstenberg's [2] (see also [6] and [4]). In particular the group G acts transitively on B as well as on X. The two actions will be denoted $(g, b) \rightarrow g(b)$ and $(g, x) \rightarrow g \cdot x$ $(g \in G, b \in B, x \in X)$. Let db denote the unique K-invariant measure on B normalized by $\int_B db = 1$. Then according to Furstenberg [2], the mapping $f \rightarrow u$ where

(1)
$$u(g \cdot o) = \int_{B} f(g(b)) db \quad (g \in G),$$

is a bijection of the set $L^{\infty}(B)$ of bounded measurable functions on B onto the set of bounded solutions of Laplace's equation $\Delta u = 0$ on X. The function u in (1) is called the *Poisson integral* of f.

If $g \in G$ let $k(g) \in K$, $H(g) \in a$ be determined by $g = k(g) \exp H(g)n$ $(n \in N)$. Observe that if g^h denotes hgh^{-1} for $h \in G$ then $k(\bar{n}^m) = k(\bar{n})^m$, $H(\bar{n}^m) = H(\bar{n})$ for $\bar{n} \in \overline{N}$, $m \in M$. According to Harish-Chandra [3, Lemma 44], the mapping $\bar{n} \rightarrow k(\bar{n})M$ is a bijection of \overline{N} onto a subset of K/M whose complement is of lower dimension and if f is a continuous function on B, then

(2)
$$\int_{B} f(b)db = \int_{\overline{N}} f(k(\overline{n})M) \exp\left(-2\rho(H(\overline{n}))\right) d\overline{n}$$

for a suitably normalized Haar measure $d\tilde{n}$ on \overline{N} . If $a \in A$ we have $ak(\tilde{n})MAN = k(\tilde{n}^a)MAN$ whence

(3)
$$a(k(\bar{n})M) = k(\bar{n}^a)M$$

so the action of a on the boundary corresponds to the conjugation $\bar{n} \rightarrow \bar{n}^a$ on \overline{N} .

Let E_1, \dots, E_r be a basis of \overline{n} such that each E_i lies in some $\mathfrak{g}_{-\alpha}$, say $\mathfrak{g}_{-\alpha}$. Since the map exp: $\overline{n} \to \overline{N}$ is a bijection we can, for each $H \in \mathfrak{a}^+$, consider the function $\overline{n} \to |\overline{n}|_H$ defined as follows: If $\overline{n} = \exp(\sum_{i=1}^r a_i E_i)$ $(a_i \in R)$ we put

$$\left| \bar{n} \right|_{H} = \underset{1 \leq i \leq r}{\operatorname{Max}} \left(\left| a_{i} \right|^{1/a_{i}(H)} \right)$$

Since

(4)

$$\bar{n}^{\exp iH} = \exp\left(\sum_{1}^{r} a_{i} \exp(-\alpha_{i}(H)l)E_{i}\right)$$

we have

(5)
$$|\bar{n}^{\exp tH}|_{H} = e^{-t} |\bar{n}|_{H}$$
 for $\bar{n} \in \overline{N}$, $t \in R$, $H \in \mathfrak{a}^{+}$.

For r > 0 let $B_{H,r}$ denote the set $\{\bar{n} \in \overline{N} | |\bar{n}|_{H} < r\}$ and let $V_{H,r}$ denote the volume of $B_{H,r}$ (with respect to the Haar measure on \overline{N}).

LEMMA 2.1. Let $f \in L^{\infty}(B)$ and u the Poisson integral (1) of f. Put $F(\tilde{n}) = f(k(\tilde{n})M)$ for $\tilde{n} \in \overline{N}$. Fix $\tilde{n}_0 \in \overline{N}$ and $H \in \mathfrak{a}^+$ and assume

(6)
$$\frac{1}{V_{H,r}} \int_{B_{H,r}} |F(\bar{n}_0\bar{n}) - F(\bar{n}_0)| d\bar{n} \to 0$$

for $r \rightarrow 0$. Then

$$\lim_{n\to+\infty} u(k(\tilde{n}_0) \exp tH(\cdot o)) = f(k(\tilde{n}_0)M).$$

PROOF. By the Iwasawa decomposition we can write $\bar{n}_0 = k(\bar{n}_0) \cdot (a_1n_1)^{-1}$ $(a_1 \in A, n_1 \in N)$ so

$$u(k(\bar{n}_0) \exp tH \cdot o) = u(\bar{n}_0 a_1 n_1 \exp tH \cdot o) = u(\bar{n}_0 \exp tH a_1 n_1 e^{xp(-tH)} \cdot o).$$

But $G = A \overline{N}K$ so $n_1^{\exp(-tH)} = a(t)\overline{n}(t)k(t)$, each factor tending to e as $t \to +\infty$. If $H_t \in a$ is determined by

$$\exp tH_t = \exp tHa_1a(t)$$

we have

$$u(k(\bar{n}_0) \exp t H \cdot o) = u(\bar{n}_0 \bar{n}(t)^{\exp t H t} \exp t H_t \cdot o).$$

The function $f'(b) = f(\bar{n}_0 \bar{n}(t)^{\exp tH_t}(b))$ has Poisson integral $u'(x) = u(\bar{n}_0 \bar{n}(t)^{\exp tH_t} \cdot x)$; using (1) on u' and f' with $g = \exp tH_t$ we get from (2) and (3)

$$u(k(\bar{n}_0) \exp tH \cdot o) - f(k(\bar{n}_0)M)$$

=
$$\int_{\overline{N}} (F(\bar{n}_0\bar{n}(t)^{\exp tHt}\bar{n}^{\exp tHt}) - F(\bar{n}_0)) \exp(-2\rho(H(\bar{n}))) d\bar{n}$$

SO

(7)
$$= \int_{\overline{N}} |F(\bar{n}_0 \bar{n}^{\exp tH_t}) - F(\bar{n}_0)| \exp(-2\rho(H(\bar{n}(t)^{-1}\bar{n})))d\bar{n}.$$

Now if c > 0 let \overline{N}_c denote the "square"

$$\overline{N}_{c} = \left\{ \exp\left(\left| \sum_{i=1}^{r} a_{i} E_{i} \right\rangle \right| \left| a_{i} \right| \leq c, 1 \leq i \leq r \right\}.$$

The integral on the right in (7) equals the sum

260

[March

A FATOU-TYPE THEOREM ON SYMMETRIC SPACES

$$\int_{\bar{N}_{e}} \left| F(\bar{n}_{0}\bar{n}^{\exp iH_{i}}) - F(\bar{n}_{0}) \right| \exp(-2\rho(H(\bar{n}(t)^{-1}\bar{n}))) d\bar{n}$$

$$+ \int_{\bar{N}-\bar{N}_{e}} \left| F(\bar{n}_{0}\bar{n}^{\exp iH_{i}}) - F(\bar{n}_{0}) \right| \exp(-2\rho(H(\bar{n}(t)^{-1}\bar{n}))) d\bar{n}.$$

Since $\rho(H(\bar{n})) \ge 0$ for all $\bar{n} \in \overline{N}$ ([3, p. 287]) and since the mapping $\bar{n} \rightarrow \bar{n}^{\exp H}$ has Jacobian $\exp(-2\rho(H))$ (cf. (4)) we see that

(9)
$$\int_{\overline{N}_{c}} \left| F(\bar{n}_{0}\bar{n}^{\exp iH_{i}}) - F(\bar{n}_{0}) \right| \exp(-2\rho(H(\bar{n}(t)^{-1}\bar{n}))) d\bar{n}$$
$$\leq \exp(2\rho(tH_{i})) \int_{\overline{N}_{c}^{\exp iH_{i}}} \left| F(\bar{n}_{0}\bar{n}) - F(\bar{n}_{0}) \right| d\bar{n}.$$

Now $\bar{n} \in \overline{N}_{c}^{exp}$ if and only if

 $\bar{n} = \exp(\sum a_i e^{-a_i(tH_i)} E_i) \text{ where } |a_i| \leq c$

and $tH_t - tH$ is bounded (for fixed \bar{n}_0 and H). It follows that

$$\overline{N}_{s}^{\exp tH_{t}} \subset B_{H,ds}^{-t} \quad \text{for all } t \geq 0,$$

 $d = d(H, \bar{n}_0, c)$ being a constant. But since the map exp: $\bar{n} \rightarrow \overline{N}$ is measure-preserving it is clear that

$$V_{H,de^{-t}} = \exp(-2\rho(H)t)d_1 \qquad t \ge 0$$

where $d_1 = d_1(H, \tilde{n}_0, c)$ is another constant. Also

$$\exp(2\rho(tH_t)) \leq \exp(2\rho(tH))d_2$$

where $d_2(H, \tilde{n}_0)$ is a constant. Thus the right hand side of (9) can be majorized for all $t \ge 0$:

(10)
$$\exp 2\rho(tH_t) \int_{\overline{N}_0} \exp tH_t \left| F(\bar{n}_0\bar{n}) - F(\bar{n}_0) \right| d\bar{n} \\ \leq d_3 \frac{1}{V_{H,de^{-t}}} \int_{B_{H,de^{-t}}} \left| F(\bar{n}_0\bar{n}) - F(\bar{n}_0) \right| d\bar{n}$$

where d and d_3 are constants depending on H, \bar{n}_0 and c.

On the other hand, if $\| \|_{\infty}$ denotes the uniform norm on \overline{N} the second term in (8) is majorized by

(11)
$$2\|F\|_{\infty} \int_{\overline{N}-\overline{N}_{\sigma}} \exp\left(-2\rho(H(\bar{n}(t)^{-1}\bar{n}))\right) d\bar{n}$$
$$= 2\|F\|_{\infty} \left(1 - \int_{\bar{n}(t)\overline{N}_{\sigma}} \exp\left(-2\rho(H(\bar{n}))\right) d\bar{n}\right) \cdot$$

1968]

Now given $\epsilon > 0$ we first choose c so large that

$$2\|F\|_{\infty}\left(1-\int_{\overline{N}_{c/2}}\exp(-2\rho(H(\bar{n})))d\bar{n}\right)<\epsilon/2;$$

since $\bar{n}(t) \rightarrow e$ for $t \rightarrow +\infty$ we can choose t_1 such that $\bar{n}(t) \overline{N}_c \supset \overline{N}_{c/2}$ for $t \geq t_1$. Then the expression in (11) is $\langle \epsilon/2 \rangle$ for $t \geq t_1$; by our assumption (6) we can choose t_2 such that the right hand side of (10) is $\langle \epsilon/2 \rangle$ for $t > t_2$. In view of (7) and (8) this proves the lemma.

The next lemma shows that, for a fixed H, the assumption of Lemma 2.1 actually holds for almost all $\bar{n}_0 \in \overline{N}$.

LEMMA 2.2. Let $F \in L^{\infty}(\overline{N})$ and fix $H \in \mathfrak{a}^+$. Then

(12)
$$\lim_{r\to 0} \frac{1}{V_{H,r}} \int_{B_{H,r}} \left| F(\bar{n}_0 \bar{n}) - F(\bar{n}_0) \right| d\bar{n} = 0$$

for almost all $\bar{n}_0 \in \overline{N}$.

The proof of this result is essentially in the literature: In [1] Edwards and Hewitt give all the necessary arguments for the case of a discrete sequence tending to 0 and everything they do remains trivially valid in the case $r \rightarrow 0$. The result in the exact form required here was also proved by E. M. Stein independently of [1] (cf. his expository article [6]).

THEOREM 2.3. Let u be a bounded solution of Laplace's equation $\Delta u = 0$ on the symmetric space X. Then for almost all geodesics $\gamma(t)$ starting at o

$$\lim_{t\to\infty} u(\gamma(t)) \quad exists.$$

PROOF. Let $S^+ = \{H \in \mathfrak{a}^+ | B(H, H) = 1\}$. Then the mapping $(kM,H) \rightarrow \operatorname{Ad}(k)H$ is a bijection of $(K/M) \times S^+$ onto a subset of the unit sphere S in \mathfrak{p} whose complement has lower dimension. Since $\dim(K/M-k(\overline{N})/M) < \dim K/M$ the mapping $(\overline{n}, H) \rightarrow \operatorname{Ad}(k(\overline{n}))H$ is a bijection of $\overline{N} \times S^+$ onto a subset of S whose complement in S has lower dimension. If \overline{N}_H denotes the set of \overline{n}_0 for which (12) holds (with $F(\overline{n}) = f(k(\overline{n})M)$) and if $S_0 = \bigcup_{H \in S^+} \operatorname{Ad}(k(\overline{N}_H))H$ it follows from the Fubini theorem that $S - S_0$ is a null set. This concludes the proof.

REMARKS. (i) If f is continuous the limit relation

 $\lim_{t \to +\infty} u(k \exp t H \cdot o) = f(kM) \qquad (H \in \mathfrak{a}^+, kM \in K/M)$

(13)

[March

A FATOU-TYPE THEOREM ON SYMMETRIC SPACES

follows immediately from (1), (2) and (3), by use of the dominated convergence theorem. (See also [4, Theorem 18.3.2.]) In particular, u has the same limit along all geodesics from o which lie in the same Weyl chamber in \mathfrak{p} .

(ii) In the case when X has rank one (dim a=1) A. W. Knapp [5] has proved (13), even under the weaker assumption that $f \in L^1(B)$.

References

1. R. E. Edwards and E. Hewitt, Pointwise limits for sequences of convolution operators, Acta Math. 113 (1965), 181-218.

2. H. Furstenberg, A Poisson formula for semisimple Lie groups, Ann. of Math. 77 (1963), 335-386.

3. Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241-310.

4. F. I. Karpelevič, Geometry of geodesics and eigenfunctions of the Laplace-Beltrami operator on symmetric spaces, Trudy Moscov. Mat. Obšč. 14 (1965), 48-185.

5. A. W. Knapp, unpublished manuscript.

1968]

6. C. Moore, Compactifications of symmetric spaces, Amer. J. Math. 86 (1964), 201-218.

7. E. M. Stein, *Maximal functions and Fatou's theorem*, C.I.M.E. summer course on bounded homogeneous domains, Cremonese, 1967.

Massachusetts Institute of Technology and Yeshiva University 263