A FATOU-TYPE THEOREM FOR HARMONIC FUNCTIONS ON SYMMETRIC SPACES1

BY S. HELGASON AND A. KORANYI

Communicated by G. D. Mostow, August 31, 1967

1. **Introduction.** The result to be proved in this article is that if *u* is a bounded harmonic function on a symmetric space X and x_0 any point in X then *u* has a limit along almost every geodesic in X starting at x_0 (Theorem 2.3). In the case when X is the unit disk with the non-Euclidean metric this result reduces to the classical Fatou theorem (for radial limits). When specialized to this case our proof is quite different from the usual one; in fact it corresponds to transforming the Poisson integral of the unit disk to that of the upper half-plane and using only a homogeneity property of the Poisson kernel. The kernel itself never enters into the proof.

2. **Harmonic functions on symmetric spaces.** Let G be a semisimple connected Lie group with finite center, *K* a maximal compact subgroup of G and $\mathfrak g$ and $\mathfrak k$ their respective Lie algebras. Let B denote the Killing form of a and p the corresponding orthogonal complement of f in α . Let Ad denote the adjoint representation of G. As usual we view p as the tangent space to the symmetric space $X = G/K$ at the origin $o = \{K\}$ and accordingly give X the G-invariant Riemannian structure induced by the restriction of *B* to $\mathfrak{p} \times \mathfrak{p}$. Let Δ denote the corresponding Laplace-Beltrami operator.

Fix a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p}$ and let M denote the centralizer of α in *K*. If λ is a linear function on α and $\lambda \neq 0$ let α_{λ} $=\{X\in\mathfrak{g}\mid [H, X]=\lambda(H)X \text{ for all } H\in\mathfrak{a}\};\lambda \text{ is called a restricted root}$ if $\mathfrak{g}_{\lambda} \neq 0$. Let \mathfrak{a}' denote the open subset of \mathfrak{a} where all restricted roots are $\neq 0$. Fix a Weyl chamber α^+ in α , i.e. a connected component of α' . A restricted root α is called positive (denoted $\alpha > 0$) if its values on a^+ are positive. Let the linear function ρ on a be determined by $2\rho = \sum_{\alpha>0}$ (dim g_{α}) α and denote the subalgebras $\sum_{\alpha>0} g_{\alpha}$ and $\sum_{\alpha>0}$ $\beta_{-\alpha}$ of β by α and \overline{n} respectively. Let N and \overline{N} denote the corresponding analytic subgroups of *G.*

By a Weyl chamber in p we understand a Weyl chamber in some maximal abelian subspace of p. The *boundary* of X is defined as the set *B* of all Weyl chambers in the tangent space $\mathfrak p$ to *X* at *o*; since this boundary is via the map $kM \rightarrow \text{Ad}(k)\mathfrak{a}^+$ identified with K/M , which by the Iwasawa decomposition *G=KAN* equals *G/MAN,* this defi-

¹ This work was supported by the National Science Foundation, GP 7477 and GP 6155.

A FATOU-TYPE THEOREM ON SYMMETRIC SPACES

nition of boundary is equivalent to Furstenberg's [2] (see also [6] and [4]). In particular the group G acts transitively on *B* as well as on X. The two actions will be denoted $(g, b) \rightarrow g(b)$ and $(g, x) \rightarrow g \cdot x$ $(e \in G, b \in B, x \in X)$. Let *db* denote the unique K-invariant measure on *B* normalized by $f_B d\mathbf{b} = 1$. Then according to Furstenberg [2], the mapping $f \rightarrow u$ where

(1)
$$
u(g \cdot o) = \int_B f(g(b)) db \quad (g \in G),
$$

is a bijection of the set $L^{\infty}(B)$ of bounded measurable functions on *B* onto the set of bounded solutions of Laplace's equation $\Delta u = 0$ on X. The function *u* in (1) is called the *Poisson integral off.*

If $g \in G$ let $k(g) \in K$, $H(g) \in \mathfrak{a}$ be determined by $g = k(g)$ exp $H(g)n$ $(n \in \mathbb{N})$. Observe that if g^h denotes hgh^{-1} for $h \in G$ then $k(\bar{n}^m) = k(\bar{n})$ $H(\bar{n}^m) = H(\bar{n})$ for $\bar{n} \in \overline{N}$, $m \in M$. According to Harish-Chandra [3, Lemma 44], the mapping $\vec{n} \rightarrow k(\vec{n}) M$ is a bijection of \vec{N} onto a subset of *K/M* whose complement is of lower dimension and if *f* is a continuous function on *B,* then

(2)
$$
\int_B f(b) db = \int_{\overline{N}} f(k(\vec{n}) M) \exp(-2\rho(H(\vec{n}))) d\vec{n}
$$

for a suitably normalized Haar measure $d\bar{n}$ on \overline{N} . If $a \in A$ we have $ak(\bar{n}) MAN \!=\! k(\bar{n}^a) MAN$ whence

$$
(3) \t a(k(\vec{n})M) = k(\vec{n}^a)M
$$

so the action of a on the boundary corresponds to the conjugation $\bar{n} \rightarrow \bar{n}^a$ on \overline{N} .

Let E_1, \dots, E_r be a basis of $\overline{\mathfrak{n}}$ such that each E_i lies in some $g_{-\alpha}$, say $g_{-\alpha}$. Since the map exp: $\overline{\mathfrak{n}} \rightarrow \overline{N}$ is a bijection we can, for each $H \in \mathfrak{a}^+$, consider the function $\bar{n} \rightarrow |\bar{n}|_H$ defined as follows: If \bar{n} =exp($\sum_{i=1}^{r} a_i E_i$) ($a_i \in R$) we put

$$
\left| \bar{n} \right|_{H} = \text{Max} \left(\left| a_{i} \right|^{1/\alpha_{i}(H)} \right)
$$

Since

(4)

i I I

$$
\bar{n}^{\exp iH} = \exp\bigg(\sum_{1}^{r} a_i \exp(-\alpha_i(H))E_i\bigg)
$$

we have

(5)
$$
\int \tilde{n}^{\exp iH} |_{H} = e^{-t} | \tilde{n} |_{H} \quad \text{for } \tilde{n} \in \overline{N}, \quad t \in R, \quad H \in \mathfrak{a}^{+}.
$$

For $r>0$ let B_H , denote the set $\{\vec{n} \in \mathbb{N} \mid \|\vec{n}\|_H < r\}$ and let $V_{H,r}$ denote the volume of $B_{H,r}$ (with respect to the Haar measure on \overline{N}).

LEMMA 2.1. Let $f \in L^{\infty}(B)$ and u the Poisson integral (1) of f. Put $F(\bar{n}) = f(k(\bar{n})M)$ for $\bar{n} \in \overline{N}$. Fix $\bar{n}_0 \in \overline{N}$ and $H \in \mathfrak{a}^+$ and assume

260 **S. HELGASON AND A. KORANYI**
\nLEMMA 2.1. Let
$$
f \in L^{\infty}(B)
$$
 and *u* the Poisson integral
\n $F(\bar{n}) = f(k(\bar{n})M)$ for $\bar{n} \in \overline{N}$. Fix $\bar{n}_0 \in \overline{N}$ and $H \in \mathfrak{a}^+$ and
\n(6) $\frac{1}{V_{H,r}} \int_{B_{H,r}} |F(\bar{n}_0 \bar{n}) - F(\bar{n}_0)| d\bar{n} \to 0$
\nfor $r \to 0$. Then

for $r \rightarrow 0$ *. Then*

$$
\lim_{n\to+\infty}u(k(\bar{n}_0)\exp tH(\cdot o))=f(k(\bar{n}_0)M).
$$

PROOF. By the Iwasawa decomposition we can write $\bar{n}_0 = k(\bar{n}_0)$ \cdot $(a_1 n_1)^{-1}$ $(a_1 \in A, n_1 \in N)$ so

$$
u(k(\bar{n}_0) \exp tH \cdot o) = u(\bar{n}_0a_1n_1 \exp tH \cdot o) = u(\bar{n}_0 \exp tH a_1n_1^{\exp(-tH)} \cdot o).
$$

But $G = A \overline{N}K$ so $n_1^{\exp(-tH)} = a(t)\overline{n}(t)k(t)$, each factor tending to *e* as $t \rightarrow +\infty$. If $H_t \in \mathfrak{a}$ is determined by

$$
\exp tH_t = \exp tHa_1a(t)
$$

we have

$$
u(k(\bar{n}_0) \exp tH\cdot o) = u(\bar{n}_0\bar{n}(t)^{\exp tH} \exp tH_t\cdot o).
$$

The function $f'(b) = f(\bar{n}_0 \bar{n}(t))e^{i\pi p - tHt}(b)$ has Poisson integral $u'(x)$ $= u(\bar{n}_0\bar{n}(t))^{\exp(H_t,x)}$; using (1) on *u'* and *f'* with $g = \exp tH_t$ we get from (2) and (3)

$$
u(k(\vec{n}_0) \exp tH \cdot o) - f(k(\vec{n}_0)M)
$$

=
$$
\int_{\overline{N}} (F(\vec{n}_0\vec{n}(t)^{\exp tH} \cdot \vec{n}^{\exp tH} \cdot) - F(\vec{n}_0)) \exp(-2\rho(H(\vec{n}))) d\vec{n}
$$

SO

$$
\left| u(k(\bar{n}_0) \exp tH \cdot o) - f(k(\bar{n}_0)M) \right|
$$

(7)

$$
\leq \int_{\overline{N}} \left| F(\bar{n}_0 \bar{n}^{\exp tH} - F(\bar{n}_0) \exp(-2\rho (H(\bar{n}(t)^{-1}\bar{n}))) d\bar{n} \right|
$$

Now if $c > 0$ let \overline{N}_c denote the "square"

$$
\overline{N}_c = \left\{ \exp \left(\sum_{i=1}^r a_i E_i \right) \middle| \left| a_i \right| \leq c, 1 \leq i \leq r \right\}.
$$

The integral on the right in (7) equals the sum

I

I

1968] A FATOU-TYPE THEOREM ON SYMMETRIC SPACES 261

$$
\int_{\overline{N}_c} \left| F(\overline{n}_0 \overline{n}^{\exp iH_i}) - F(\overline{n}_0) \right| \exp(-2\rho (H(\overline{n}(t)^{-1} \overline{n}))) d\overline{n} \n+ \int_{\overline{N}-\overline{N}_c} \left| F(\overline{n}_0 \overline{n}^{\exp iH_i}) - F(\overline{n}_0) \right| \exp(-2\rho (H(\overline{n}(t)^{-1} \overline{n}))) d\overline{n}.
$$

Since $\rho(H(\vec{n})) \ge 0$ for all $\vec{n} \in \overline{N}$ ([3, p. 287]) and since the mapping $\vec{n} \rightarrow \vec{n}^{\text{exp } H}$ has Jacobian $\exp(-2\rho(H))$ (cf. (4)) we see that

$$
\int_{\overline{N}_c} \left| F(\overline{n}_0 \overline{n}^{\exp tH_t}) - F(\overline{n}_0) \right| \exp(-2\rho (H(\overline{n}(t)^{-1}\overline{n}))) d\overline{n}
$$
\n
$$
\leq \exp(2\rho(tH_t)) \int_{\overline{N}_c^{\exp tH_t}} \left| F(\overline{n}_0 \overline{n}) - F(\overline{n}_0) \right| d\overline{n}.
$$

Now $\bar{n} \in \overline{N}_e$ are H_i if and only if

 $\bar{n} = \exp(\sum a_i e^{-a_i (tH_i)} E_i)$ where $|a_i| \leq c$

and tH_t-tH is bounded (for fixed \bar{n}_0 and *H*). It follows that

$$
\overline{N}_s^{\exp tHt} \subset B_{H,ds^{-t}} \quad \text{for all } t \geq 0,
$$

 $d=d(H, \bar{n}_0, c)$ being a constant. But since the map exp: $\bar{n} \rightarrow \bar{N}$ is measure-preserving it is clear that

$$
V_{H,d_{\sigma^{-t}}} = \exp(-2\rho(H)t)d_1 \qquad t \geq 0
$$

where $d_1 = d_1(H, \bar{n}_0, c)$ is another constant. Also

$$
\exp(2\rho(tH_t)) \leq \exp(2\rho(tH))d_2
$$

where $d_2(H, \bar{n}_0)$ is a constant. Thus the right hand side of (9) can be majorized for all $t \ge 0$:

$$
\exp 2\rho (tH_t) \int_{\overline{N}_c} \exp tH_t \left| F(\vec{n}_0 \vec{n}) - F(\vec{n}_0) \right| d\vec{n}
$$

\n
$$
\leq d_3 \frac{1}{V_{H, d\sigma^{-t}}} \int_{B_{H, d\sigma^{-t}}} \left| F(\vec{n}_0 \vec{n}) - F(\vec{n}_0) \right| d\vec{n}
$$

where d and d_3 are constants depending on H , \bar{n}_0 and c .

On the other hand, if $\|\cdot\|_{\infty}$ denotes the uniform norm on \overline{N} the second term in (8) is majorized by

$$
2||F||_{\infty} \int_{\overline{N} - \overline{N}_{c}} \exp(-2\rho(H(\overline{n}(t)^{-1}\overline{n}))) d\overline{n}
$$

(11)
$$
= 2||F||_{\infty} \left(1 - \int_{\overline{n}(t)\overline{N}_{c}} \exp(-2\rho(H(\overline{n}))) d\overline{n}\right).
$$

t

Now given $\epsilon > 0$ we first choose c so large that

$$
2||F||_{\infty}\bigg(1-\int_{\overline{N}_{\mathfrak{o}/2}}\exp(-2\rho(H(\vec{n})))d\vec{n}\bigg)<\epsilon/2;
$$

since $\bar{n}(t) \rightarrow e$ for $t \rightarrow +\infty$ we can choose t_1 such that $\bar{n}(t) \overline{N}_e \supset \overline{N}_{e/2}$ for $t \ge t_1$. Then the expression in (11) is $\lt \epsilon/2$ for $t \ge t_1$; by our assumption (6) we can choose t_2 such that the right hand side of (10) is $\langle \epsilon/2 \rangle$ for $t > t_2$. In view of (7) and (8) this proves the lemma.

The next lemma shows that, for a fixed *H,* the assumption of Lemma 2.1 actually holds for almost all $\bar{n}_0 \in \overline{N}$.

LEMMA 2.2. Let $F \in L^{\infty}(\overline{N})$ and fix $H \in \mathfrak{a}^+$. Then

(12)
$$
\lim_{r \to 0} \frac{1}{V_{H,r}} \int_{B_{H,r}} |F(\bar{n}_0 \vec{n}) - F(\bar{n}_0)| d\vec{n} = 0
$$

for almost all $\bar{n}_0 \in \overline{N}$.

The proof of this result is essentially in the literature: In [1] Edwards and Hewitt give all the necessary arguments for the case of a discrete sequence tending to 0 and everything they do remains trivially valid in the case $r \rightarrow 0$. The result in the exact form required here was also proved by E. M. Stein independently of [1] (cf. his expository article [6]).

THEOREM 2.3. *Let u be a bounded solution of Laplace's equation* $\Delta u = 0$ on the symmetric space X. Then for almost all geodesics $\gamma(t)$ *starting at o*

$$
\lim_{t\to\infty}u(\gamma(t))\quad exists.
$$

PROOF. Let $S^+ = \{ H \in \mathfrak{a}^+ | B(H, H) = 1 \}$. Then the mapping $(kM,H) \rightarrow \text{Ad}(k)H$ is a bijection of $(K/M) \times S^+$ onto a subset of the unit sphere S in $\mathfrak p$ whose complement has lower dimension. Since $\dim(K/M-k(\overline{N})/M)$ < dim K/M the mapping $(\bar{n}, H) \rightarrow$ Ad $(k(\bar{n}))H$ is a bijection of $\overline{N} \times S^+$ onto a subset of S whose complement in S has lower dimension. If \overline{N}_H denotes the set of \overline{n}_0 for which (12) holds (with $F(\bar{n})=f(k(\bar{n})M)$) and if $S_0=U_{H\in \mathcal{S}^+}$ Ad($k(\overline{N}_H)H$) it follows from the Fubini theorem that $S-S_0$ is a null set. This concludes the proof.

REMARKS. (i) If *f* is continuous the limit relation

 $\lim_{M \to \infty} u(k \exp tH \cdot o) = f(kM)$ $(H \in \mathfrak{a}^+, kM \in K/M)$ $1 \rightarrow +\infty$

I

1968] A FATOU-TYPE THEOREM ON SYMMETRIC SPACES 263

follows immediately from (1), (2) and (3), by use of the dominated convergence theorem. (See also $[4,$ Theorem 18.3.2.) In particular, u has the same limit along all geodesics from *o* which lie in the same Weyl chamber in p.

(ii) In the case when X has rank one (dim $\alpha = 1$) A. W. Knapp [5] has proved (13), even under the weaker assumption that $f \in L^1(B)$.

REFERENCES

1. R. E. Edwards and E. Hewitt, *Pointwise limits for sequences of convolution operators,* Acta Math. 113 (1965), 181-218.

2. H. Furstenberg, *A Poisson formula for semisimple Lie groups,* Ann. of Math. 77 (1963), 335-386.

3. Harish-Chandra, *Spherical functions on a semisimple Lie group.* I, Amer. J. Math. 80 (1958), 241-310.

4. F. I. Karpelevi6, *Geometry of geodesics and eigenfunctions of the Laplace-Beltrami operator on symmetric spaces, Trudy Moscov. Mat. Obšč. 14 (1965), 48–185.*

5. A. W. Knapp, unpublished manuscript.

 \mathbf{I}

i

I I $\mathfrak{g}_{\mathbb{Z}}$

6. C. Moore, *Compactifications of symmetric spaces,* Amer. J. Math. 86 (1964), 201-218.

7. E. M. Stein, *Maximal functions and Fatou's theorem,* C.I.M.E. summer course on bounded homogeneous domains, Cremonese, 1967.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY **AND** YESHIVA UNIVERSITY