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1. Introduction. The result to be proved in this article is that if u
is a bounded harmonic function on a symmetric space X and x0 any
point in X then u has a limit along almost every geodesic in X starting
at x0 (Theorem 2.3). In the case when X is the unit disk with the non-
Euclidean metric this result reduces to the classical Fatou theorem
(for radial limits). When specialized to this case our proof is quite
different from the usual one; in fact it corresponds to transforming the
Poisson integral of the unit disk to that of the upper half-plane and
using only a homogeneity property of the Poisson kernel. The kernel
itself never enters into the proof.

2. Harmonic functions on symmetric spaces. Let G be a semisimple
connected Lie group with finite center, K a maximal compact sub-
group of G and g and their respective Lie algebras. Let B denote the
Killing form of g and the corresponding orthogonal complement of
f in g. Let Ad denote the adjoint representation of G. As usual we
view as the tangent space to the symmetric space X = G/K at the
origin o= {K} and accordingly give X the G-invariant Riemannian
structure induced by the restriction of B to X, . Let A denote the
corresponding Laplace-Beltrami operator.

Fix a maximal abelian subspace aCp and let M denote the
centralizer of a in K. If X is a linear function on a and X0O let gx
= {XEGj [H, X] =X(H)X for all HEa}; X is called a restricted root
if gx #0. Let a' denote the open subset of a where all restricted roots
are #0. Fix a Weyl chamber a+ in a, i.e. a connected component of
a'. A restricted root a is called positive (denoted a > 0) if its values on
a+ are positive. Let the linear function p on a be determined by
2p= >0o (dim g,)a and denote the subalgebras Ea>o ga and
Ec>0 g- of g by n and nf respectively. Let N and N denote the cor-
responding analytic subgroups of G.

By a Weyl chamber in p we understand a Weyl chamber in some
maximal abelian subspace of p. The boundary of X is defined as the
set B of all Weyl chambers in the tangent space to X at o; since this
boundary is via the map kM--Ad(k)a+ identified with K/M, which
by the Iwasawa decomposition G=KAN equals G/MAN, this defi-

1 This work was supported by the National Science Foundation, GP 7477 and
GP 6155.
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nition of boundary is equivalent to Furstenberg's [2] (see also [6] and
[4]). In particular the group G acts transitively on B as well as on X.
The two actions will be denoted (g, b)--g(b) and (g, x)-->g.x
(gEG, bB, xEX). Let db denote the unique K-invariant measure
on B normalized by fB db = 1. Then according to Furstenberg [2], the
mapping f--u where

(1) u(g.o) = jf(g(b))db (g E G),

is a bijection of the set L-(B) of bounded measurable functions on B
onto the set of bounded solutions of Laplace's equation Au = 0 on X.
The function u in (1) is called the Poisson integral off.

If gEG let k(g) EK, H(g)Ea be determined by g= k(g) exp H(g)n
(nEN). Observe that if gh denotes hgh-l for hEG then k(nm) =k()",
H(iit)=H() for nEN, mEM. According to Harish-Chandra [3,
Lemma 44], the mapping fi--k(R)M is a bijection of N onto a subset
of K/M whose complement is of lower dimension and if f is a con-
tinuous function on B, then

(2) f(b)db = f f(k(i)M) exp (-2p(H(n)))da
B 1V"=

for a suitably normalized Haar measure dii on N. If aEA we have
ak (fi) MA N = k ( a) MA N whence

(3) a(k(i)M) = k(a3)M

so the action of a on the boundary corresponds to the conjugation
i--na on N.

Let E1, · ·. , E, be a basis of Ii such that each E lies in some
g-,, say g-,,. Since the map exp: i-*N is a bijection we can, for
each HEa+, consider the function -+l n[ H defined as follows: If
n=exp(~ aEi) (aiER) we put

f a= Max (I a Ic%(H))

Since

(4)

we have

(5) I

noi m = exp ( E a exp(-ai()t)E)
I

eLs H lH = - Il jH forniEN, tER, H E a+.

For r>0 let BH,, denote the set {fiEN] I nI<r} and let VH,, de-
note the volume of BH,, (with respect to the Haar measure on T).
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LEMMA 2.1. Let fEL-(B) and u the Poisson integral (1) of f. Put
F(n) =f(k()M) for s ETW. Fix ioEN and HEa+ and assume

(6) 1rV E, ,J B ,I F(*oti) - F(iio) d -O 0

for r-O. Then

lim u(k(So) exp tH(.o)) = f(k(io)M).

PROOF. By the Iwasawa decomposition we can write i-o=k(to0)
·(alnl)-l (alEA, nlEN) so

uz(k(oo) exp tH-o) = u(Soalnl exp tH o) = u(io exp tHalnxP((-tK)o).

But G=ANK so n'P(-tff)=a(t)ti(t)k(t), each factor tending to e as
t--+ 0o. If HEa is determined by

exp tl = exp tHala(t)

we have

u(k(fo) exp tH.o) = u(fio(t)e° P t exp tH,.o).

The function f(b)=f(fofi(t)eP tat(b)) has Poisson integral u'(x)
=u(tOii(t)eIP HSr.x); using (1) on u' and f' with g=exp tHi we get
from (2) and (3)

u(k(io) exp tH o) - f(k(o)M)

- (F(IoI(t)eP s'Ht=IP ') - F(io)) exp(--2p(H()))d
N

SO

(10)I u(k(0o) exp tH o) -f(k( 0)M) I

Since p(H(n)) 0 J
n--*nexP H has Jaco

(9)
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+ f I F(ioxP 1Ht) - Fifi) - I exp(-2p(H((t)- 1i)))di.

Since p(H(g)) _>O for all gEN ([3, p. 287]) and since the mapping
.jn=xp H has Jacobian exp(-2p(H)) (cf. (4)) we see that

f F(ogOXn tt) - F(go) exp(-2p(H(i(t)- 1 )))df

_ exp(2p(tHN)) F(Lo) - F(ao) d.

Now E N, -P t t if and only if

= exp(, aie-1 ('H')E) where I a c

and tHt-tH is bounded (for fixed go and H). It follows that

(9)

for all t 2 0,

on integral u'(x)
=exp tHt we get

d=d(H, o, c) being a constant. But since the map exp: ft--R is
measure-preserving it is clear that

VH,d,- = exp(-2p(H)t)di t _ 0

where dl =dl(H, ao, c) is another constant. Also

exp(2p(tHt)) exp(2p(tH))d2

where d2(H, lo) is a constant. Thus the right hand side of (9) can be
majorized for all t >_0:'xp(- 2p(H()))df

exp 2p(tHe) e p E I F(ioi) - F(go) do

,ds d B
VH,d.- B ,de-t

I F( 0,) - F( 0io) I dn

where d and da are constants depending on H, go and c.
On the other hand, if II jII denotes the uniform norm on N the

second term in (8) is majorized by

(11)

21[II= r_ exp (-2p(fH((t)-ld)))d)

= 2I. . -f-.,, ep (-2p(H(n)))d)
A(t)No

xpM BEd-'N, Bdi-t

(10)
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Now given > 0 we first choose c so large that

21IF11 (1 - exp(-2p(H(i)))df) < / 2;

since A(t)--e for t-- + oo we can choose t such that A(t)NWioND for
t Ž ti. Then the expression in (11) is < /2 for t > ti; by our assumption
(6) we can choose t2 such that the right hand side of (10) is <e/2
for t>t 2. In view of (7) and (8) this proves the lemma.

The next lemma shows that, for a fixed H, the assumption of
Lemma 2.1 actually holds for almost all 0oE-N.

LEMMA 2.2. Let FEL(i) and fix HEa +. Then

(12) lim r
--+O VH . Br r

I F(i0tio) - F(so) I df = 0

for almost all aoE N.

The proof of this result is essentially in the literature: In 11]
Edwards and Hewitt give all the necessary arguments for the case of
a discrete sequence tending to 0 and everything they do remains
trivially valid in the case r--0. The result in the exact form required
here was also proved by E. M. Stein independently of [1] (cf. his
expository article [6]).

THEOREM 2.3. Let u be a bounded solution of Laplace's equation
Au=0 on the symmetric space X. Then for almost all geodesics (t)
starting at o

lim u(7 (t)) exists.
(13) ,--.

PROOF. Let S+= {IHEa+ B(H, H)=11. Then the mapping
(kM,H)--Ad(k)H is a bijection of (K/M)XS + onto a subset of the
unit sphere S in p whose complement has lower dimension. Since
dim(K/M-k(N)/M) <dim K/M the mapping (, H)--Ad(k())H
is a bijection of N XS+ onto a subset of S whose complement in S has
lower dimension. If NH denotes the set of hno for which (12) holds
(with F(t)=f(k(h)M)) and if S=UHEs+ Ad(k(NH))H it follows
from the Fubini theorem that S-So is a null set. This concludes the
proof.
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follows immediately from (1), (2) and (3), by use of the dominated
convergence theorem. (See also [4, Theorem 18.3.2.1) In particular,
u has the same limit along all geodesics from o which lie in the same
Weyl chamber in p.

(ii) In the case when X has rank one (dim a= 1) A. W. Knapp [5]
has proved (13), even under the weaker assumption that fEL 1(B).
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