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Abstract

We survey a new approach that the author and his co-workers have developed to formulate

stochastic control problems (predominantly queueing systems) as mathematical programming prob-

lems. The central idea is to characterize the region of achievable performance in a stochastic control

problem, i.e., find linear or nonlinear constraints on the performance vectors that all policies satisfy.

We present linear and nonlinear relaxations of the performance space for the following problems: In-

dexable systems (multiclass single station queues and multiarmed bandit problems), restless bandit

problems, polling systems, multiclass queueing and loss networks. These relaxations lead to bounds

on the performance of an optimal policy. Using information from the relaxations we construct heuris-

tic nearly optimal policies. The theme in the paper is the thesis that better formulations lead to

deeper understanding and better solution methods. Overall the proposed approach for stochastic

control problems parallels efforts of the mathematical programming community in the last twenty

years to develop sharper formulations (polyhedral combinatorics and more recently nonlinear relax-

ations) and leads to new insights ranging from a complete characterization and new algorithms for

indexable systems to tight lower bounds and nearly optimal algorithms for restless bandit problems,

polling systems, multiclass queueing and loss networks.

Keywords: Queueing networks, loss networks, multiarmed bandits, bounds, policies, opti-

mization.
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1 Introduction

In its thirty-years history the area of optimal control of stochastic systems (predominantly queueing

systems) has addressed with various degrees of success several key problems that arise in areas as diverse

as computer and communication networks, manufacturing and service systems. A general characteristic

of this body of research is the lack of a unified method of attack for these problems. Every problem

seems to require its own formulation and, as a result, its own somewhat ad hoc approach. Moreover,

quite often it is not clear how close a proposed solution is to the optimal solution.

In contrast, the field of mathematical programming has evolved around a very small collection of key

problem formulations: network, linear, integer and nonlinear programs. In this tradition, researchers

and practitioners solve optimization problems by defining decision variables and formulating constraints,

thus describing the feasible space of decisions, and applying algorithms for the solution of the underlying

optimization problem. When faced with a new deterministic optimization problem, researchers and

practitioners have indeed an a priori well-defined plan of attack to solve it: model it as a network, linear,

integer or nonlinear program and then use a well-established algorithm for its solution. In this way they

obtain feasible solutions which are either provably optimal or with a guarantee for the degree of their

suboptimality.

Our goal in this paper is to review an approach to formulate stochastic control problems (predom-

inantly queueing systems) as mathematical programming problems. In this way we are able to produce

bounds on the performance of an optimal policy and develop optimal or near-optimal policies using in-

formation from the formulations. We address the following problems, which, are, in our opinion, among

the most important in applications and among the richest in modeling power and structure (detailed

definitions of the problems are included in the corresponding sections of the paper):

1. Indexable systems (multiclass queues and multiarmed bandit problems).

2. Restless bandit problems.

3. Polling systems.

4. Multiclass queueing networks.

5. Multiclass loss networks.

In order to motivate the approach we first comment on the power of formulations in mathematical

optimization, then describe the approach of the paper in stochastic control in broad terms and put it in

a historical perspective.

On the power of formulations in mathematical optimization

Our ability to solve efficiently mathematical optimization problems is to a large degree proportional to

our ability to formulate them. In particular, if we can formulate a problem as a linear optimization prob-

lem (with a polynomial number of variables and constraints, or with a polynomial number of variables
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and exponential number of constraints such that we can solve the separation problem in polynomial

time) we can solve the problem efficiently (in polynomial time). On the other hand, the general integer

optimization problem (IP) is rather difficult (the problem is .AP-hard). Despite its hardness, the mathe-

matical programming community has developed methods to successfully solve large scale instances. The

central idea in this development has been improved formulations. Over the last twenty years much of

the effort in integer programming research has been in developing sharper formulations using polyhedral

methods and more recently techniques from semidefinite optimization (see for example LovAsz and Schri-

jver [39]). Given that linear programming relaxations provide bounds for IP, it is desirable to enhance

the formulation of an IP by adding valid inequalities, such that the relaxation is closer and closer to the

IP. We outline the idea of improved formulations in the context of IP in Figure la.

On the power of formulations in stochastic control

Motivated by the power of improved formulations for mathematical programming problems, we shall

now outline in broad terms the approach taken in this paper to formulate stochastic control problems as

mathematical programming problems. The key idea is the following: Given a stochastic control problem,

we define a vector of performance measures (these are typically expectations, but not necessarily first

moments) and then we express the objective function as a function of this vector. The critical idea

is to characterize the region of achievable performance (or performance space), i.e., find constraints

on the performance vectors that all policies satisfy. In this way we find a series of relaxations that are

progressively closer to the exact region of achievable performance. In Figure lb we outline the conceptual

similarity of this approach to the approach used in integer programming. Interestingly we will see that

we can propose both linear and nonlinear relaxations (the latter also based on ideas from semidefinite

programming).

The idea of describing the performance space of a queueing control problem has its origin in the

work of Coffman and Mitrani [15] and Gelenbe and Mitrani [20], who first showed that the performance

space of a multiclass M/G/1 queue under the average-cost criterion can be described as a polyhedron.

Federgruen and Groenevelt [18], [19] advanced the theory further by observing that in certain special

cases of multiclass queues, the polyhedron has a very special structure (it is a polymatroid) that gives

rise to very simple optimal policies (the cp rule). Their results partially extend to some rather restricted

multiclass queueing networks, in which it is assumed that all classes of customers have the same routing

probabilities, and the same service requirements at each station of the network (see Ross and Yao [47]).

Shanthikumar and Yao [50] generalized the theory further by observing that if a system satisfies certain

work conservation laws, then the underlying performance space is necessarily a polymatroid. They also

proved that, when the cost is linear on the performance, the optimal policy is a static priority rule (Cox

and Smith [16]). Tsoucas [57] derived the region of achievable performance in the problem of scheduling

a multiclass nonpreemptive M/G/1 queue with Bernoulli feedback, introduced by Klimov [35].

Bertsimas and Nifio-Mora [6] characterize the region of achievable performance of a class of stochas-
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Figure 1: (a) Improved relaxations for integer programming (b) Improved relaxations for stochastic
optimization problems.

tic control problems that include all the previous queueing control and multiarmed bandit problems,

establishing that the strong structural properties for these problems follow from the corresponding prop-

erties of the underlying polyhedra. Interestingly this exact characterization of the achievable region as

a polyhedron leads to an exact algorithm that uses linear programming duality and naturally defines

indices (Gittins indices) as dual variables. We review these developments in Section 2.

For restless bandit problems Whittle [62] proposes a relaxation that provides a bound for the problem.

Bertsimas and Nifio-Mora [71 propose a series of increasing more complicated relaxations (the last one

being exact) that give increasingly stronger bounds and a heuristic that naturally arises from these

relaxations using duality that empirically gives solutions which are close to the optimal one. We review

these developments in Section 3.

For polling systems Bertsimas and Xu [10] propose a nonlinear (but convex) relaxation, and a heuristic

that uses integer programming techniques, that provides near optimal static policies. We review these

developments in Section 4.

For queueing network problems Bertsimas, Paschalidis and Tsitsiklis [8] propose a linear programming

relaxation that provides bounds for the optimal solution using a systematic method to generate linear

constraints on the achievable region. In this paper we propose stronger nonlinear relaxations that are

based on ideas from semidefinite programming. We review these developments in Section 5.

For loss networks Kelly [33] has developed bounds based on nonlinear optimization, while Bertsimas

and Crissikou [5] propose a series of increasingly more complex linear relaxations (the last one being
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exact) and a heuristic that arises from these relaxations. We review these developments in Section 6.

In Section 7 we present some theoretical limitations of the current approach using some negative

complexity results, while in Section 8 we conclude with some open problems.

2 Indexable systems

Perhaps one of the most important successes in the area of stochastic control in the last twenty years is

the solution of the celebrated multiarmed bandit problem, a generic version of which in discrete time is

as follows:

The multiarmed bandit problem: There are K parallel projects, indexed k = 1,..., K. Project

k can be in one of a finite number of states jk E E. At each instant of discrete time t = 0, 1,...

one can work only on a single project. If one works on project k in state jk(t) at time t, then one

receives an immediate reward of Rkjk(t). Rewards are additive and discounted in time by a discount

factor 0 < < 1. The state j(t) changes to jk(t + 1) by a homogeneous Markov transition rule, with

transition matrix pk = (Pi)i,jeEk while the states of the projects one has not engaged remain frozen.

The problem is how to allocate one's resources to projects sequentially in time in order to maximize

expected total discounted reward over an infinite horizon. More precisely, one chooses a policy u (among

a set of policies U) for specifying the project k(t) to work on at each point of time t to achieve:

max Eu [itRk(t)iIk,(t)]

The problem has numerous applications and a rather vast literature (see Gittins [23] and the references

therein). It was originally solved by Gittins and Jones [21], who proved that to each project k one could

attach an index yk(kk(t)), which is a function of the project k and the current state jk(t) alone, such

that the optimal action at time t is to engage a project of largest current index. They also proved

the important result that these index functions satisfy a stronger index decomposition property: the

function 7 k(.) only depends on characteristics of project k (states, rewards and transition probabilities),

and not on any other project. These indices are now known as Gittins indices, in recognition of Gittins

contribution. Since the original solution, which relied on an interchange argument, other proofs were

proposed: Whittle [61] provided a proof based on dynamic programming, subsequently simplified by

Tsitsiklis [55]. Varaiya, Walrand and Buyukkoc [58] and Weiss [60] provided different proofs based on

interchange arguments. Weber [59] and Tsitsiklis [56] outlined intuitive proofs.

The multiarmed bandit problem is a special case of a stochastic se'vice system S. In this context,

there is a finite set E of job types. Jobs have to be scheduled for service in the system. We are interested in

optimizing a function of a performance measure (rewards or taxes) under a class of admissible scheduling

policies. A policy is called admissible if the decision as to which project to operate at any time t must

be based only on information on the current states of the projects.
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Definition 1 (Indexable Systems) We say that a stochastic service system S is indexable if the fol-

lowing policy is optimal: to each job type i we attach an index yi. At each decision epoch select a job

with largest current index.

In general the optimal indices yi (as functions of the parameters of the system) could depend on charac-

teristics of the entire set E of job types. Consider a partition of set E into subsets Ek, for k = 1, ... , K.

Job types in subset Ek can be interpreted as being part of a common project type k. In certain situa-

tions, the optimal indices of job types in Ek depend only on characteristics of job types in Ek and not

on the entire set E. Such a property is particularly useful computationally since it enables the system to

be decomposed into smaller components and the computation of the indices for each component can be

done independently. As we have seen the multiarmed bandit problem has this decomposition property,

which motivates the following definition:

Definition 2 (Decomposable Systems) An indexable system is called decomposable if for all job

types i E Ek, the optimal index yi of job type i depends only on characteristics of job types in Ek.

In addition to the multiarmed bandit problem, a variety of stochastic control problems has been

solved in the last decades by indexing rules (see Table 3 for examples).

Faced with these results, one asks what is the underlying reason that these nontrivial problems have

very efficient solutions both theoretically as well as practically. In particular, what is the class of stochas-

tic control problems that are indexable? Under what conditions are indexable systems decomposable? But

most importantly, is there a unified way to address stochastic control problems that will lead to a deeper

understanding of their structural properties?

In this section we review the work of Bertsimas and Niiio-Mora [6]. In Section 2.1 we introduce via an

example of a multiclass queue with feedback, which is a special case of the multiarmed bandit problem,

the idea of work conservation laws. These physical laws of the system constrain the region of achievable

performance and imply that it is a polyhedron of special structure called extended contra-polymatroid.

In this way the stochastic control problem can be reduced to a linear programming problem over this

polyhedron. In Section 2.2 we propose an efficient algorithm to solve the linear programming problem

and observe that the algorithm naturally defines indices. In Sections 2.3 we consider examples of natural

problems that can be analyzed using the theory developed, while in Section 2.4 we outline implications

of these characterizations.

2.1 Work conservation laws

In order to present the idea of conservation laws we consider the so called Klimov problem with n = 3

classes: three Poisson arrival streams with rates Ai arrive at a single server. Each class has a different

service distribution. After service completion, a job of class i becomes a job of class j with probability
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Pij and leaves the system with probability 1 - pkPik. Let xz' be the expected queue length of class i

under policy u. What is the space of vectors (, x, x ) as the policies u vary? For every policy

A i}x! > b(i)}), i = 1,2,3

which means that the total work class i brings to the system under any policy is at least as much as the

work under the policy that gives priority to class i. Similarly, for every subset of classes, the total work

that this set of classes brings to the system under any policy is at least as much as the work under the

policy that gives priority to this set of classes:

Al1,21 1 + A1,2} 2 b({1 2}),

Al'3}x1x + A{l',31X3 > b({1, 3}),

A12,31X2 + A _2'313 b({2,3}).

Finally, there is work conservation, i.e., all nonidling policies require the same total work:

Al1,2,3)21 + A(1,2,31 2 + A{1,2,31 3 = b({1, 2, 3}).

The performance space in this example consists exactly of the 23 - 1 = 7 constraints. In Figure 2 we

present the performance space for this example.

Figure 2: An extended contra-polymatroid in dimension 3.

The polytope has 3! = 6 extreme points corresponding to the 6 permutations of a set of 3 elements.

Extreme point A corresponds to the performance vector of the policy that gives highest priority to class

7
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1, then to class 2 and last priority to class 3. The vector corresponding to point A is the unique solution

of the triangular system:

A{"xl = b({12),

A1l'2}x + A1'2}X2 = b({1, 2}),

A1o23e + Al23xi2 + A h23A X3 = b({1, 2, 3}).

Polyhedra of this type are called extended contra-polymatroids and have the property that their extreme

points correspond to the performance vectors of complete priority policies.

In order to present these ideas more generally we consider next a generic stochastic service system.

There are n job types, which we label i E E = {1, . . . , n}. Jobs have to be scheduled for service in the

system. Let us denote U the class of admissible scheduling policies. Let x be a performance measure

of type i jobs under admissible policy u, for i E E. We assume that x' is an expectation. Let x, denote

the performance vector under a static priority rule (i.e., the servicing priority of a job does not change

over time) that assigns priorities to the job types according to permutation 7r = (rl,..., 7rn) of E, where

type 7rn has the highest priority.

Definition 3 (Conservation Laws) The performance vector x is said to satisfy conservation laws if

there exist a set function b(-) : 2E -- + and a matrix A = (As)iEE,SCE satisfying

As > 0, for iES and Ai = 0 , for iESC, for all S C E,

such that:

(a)

b(S)= ASx forallr: {r 1 ,...,7rlS} = S and S C E; (1)
iES

(b) For all admissible policies u E U,

S ASxu > b(S) for all S C E and E AiExZ' = b(E), (2)
iES iEE

or respectively,

ASx' < b(S) for all S C E and AiExu = b(E). (3)
iES iEE

Condition (1) means that all policies which give priority to the set E \ S over the set S have the

same performance irrespective of the rule used within S or within E \ S. Moreover, all such policies

have the same performance b(S) (conservation law). Condition (2) means that all other policies have

performance bigger than b(S), while for S = E all policies have the same performance.

The following theorem characterizes the performance space for a performance vector x satisfying

conservation laws as a polyhedron.
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Theorem 1 Assume that performance vector x satisfies conservation laws (1) and (2) (respectively (1)

and (3)). Then

(a) The performance space for the vector x is exactly the polyhedron

B,3(A, b) = { x E : ASxi > b(S),
iES

or respectively

B(A, b) = { x E n : A < b(S),
iES

for S c E and E AEi = b(E)},
iEE

for S c E

(b) The vertices of lB(A, b) (respectively B(A,b)) are the performance

rules.

We can explicitly characterize the performance vectors corresponding to priority rules as follows.

Let r = (7r1, ... ,rn) be a permutation of E corresponding to the static priority rule 7r. We let x, =

(X,... , xn)' be the performance vector corresponding to the static priority rule r. We also let

b7. = (b({7r 1}),b({7rx, 7r2}),.. ., b({7r 1,.. ., 7r,}))'.

Let A, denote the following lower triangular submatrix of A:

. XAb {1i 10 ... 0

A,= 

:C : A. ... :17r'

Then, the performance vector x is the unique solution of the linear system

I lr i l 7jXi = b(7r, ... 7rj}), j . . . n

i:1

or, in matrix notation:

x, = A, lb.

(6)

(7)

It is not obvious that the vector x E Be:(A, b) found in (7). This is a consequence of the fact that

the performance vectors satisfy conservation laws. This motivates the following definition based on

Bhattacharya et. al. [12]:

Definition 4 (Extended Polymatroid) We say that polyhedron B(A, b) is an extended polymatroid

with ground set E and correspondingly LB(A, b) is an extended contra-polymatroid if for every permu-

tation 7r of E, x, E B(A, b) or correspondingly x7 E B3(A, b).

The connection of conservation laws and extended polymatroids is that if a performance vector x satisfies

conservation laws (1) and (2) (resp. (1) and (3)), then its performance space Be(A,b) in (4) (resp.

l3(A, b) in (5)) is an extended polymatroid (resp. contra-polymatroid).
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Remark: If As = 1 for all i E S, x, E B(A, b) if and only if the set function b(S) is submodular, i.e.,

for all S, T C E,

b(S) + b(T) < b(S n T) + b(S u T).

This case corresponds to the usual polymatroids introduced in Edmonds [17].

2.2 An algorithm for optimization of indexable systems

Suppose that we want to find an admissible policy u E U that maximizes a linear reward function on

the performance EiEE Rix', where the vector x satisfies conservation laws (1) and (2). This optimal

control problem can be expressed as

(Lr*) max{ E Rix u E U}. (8)

By Theorem 1 this optimal control problem can be transformed into the following linear programming

problem over an extended contra-polymatroid.

(LPc) max E Rxi : XE f3(A, b) (9)
iEE

The theory over extended polymatroids is completely analogous. Given that the extreme points of the

polytope Bc(A, b) correspond to priorities (permutations), the problem reduces to finding which priority

is optimal.

Tsoucas [57] and Bertsimas and Nifio-Mora [6] presented the following adaptive greedy algorithm.

The algorithm constructs an optimal solution y to the linear programming dual of problem (LPc). It

first decides, which class will have the highest priority r,n by calculating the maximum R, i E E (this

is the greedy part of the algorithm). This value is assigned to x,,. It then modifies the rewards (this is

the adaptive part of the algorithm) and picks the next class by performing a similar maximum ratio test.

The algorithm also calculates numbers yi, which define indices. We next formally present the algorithm.

Algorithm Ag

Input: (R, A).

Output: (, r, y,v, S), where 7r = (r 1 ..., 7rn) is a permutation of E, y = (YS)scE, v = (vl,...,vn)

and S = {Sl,..., Sn}, with Sk = {rl, ..., 7rk}, for k E.

Step O. Set S = E. Set v,=max{ :iEE};

pick rn E argmax{ -i i E E};

set yn = vn.

Step k. For k = 1, ... , n- 1:
R. -k1 S-1

Set Snk = Sn-k+l \ {7r-k+l ; set vn-k = max{ -i E Sn- }

pick 7r-k E argmax{i :E0 i S-k 
iet + 

set ff~n-k = /rn-k+l + n-k

10



Problem Feasible space Indices Optimal solution

iEs Ais xj < b(S), SC E
(LP) minxEs(Ab) Cx |B(Ab) iEE AEz = b(E) (C, A) A- -|y - < Y,

x>0
x-r = Alb,

f ies AsEx > b(S), S C E
(LPc) maxXEBs(Ab) Rx Bc(A,b)b iEEAzxi =b(E) (R,A) -y .". < <rn

Y~ = A-lbr

Table 1: Linear programming over extended polymatroids

aExtended polyrnatroid

bExtended contra-polymatroid

Step n. For S C E set
s vjI, if S = Sj for some j E E;

0, otherwise.

Bertsimas and Niiio-Mora [6] show that outputs y and y of algorithm AG are uniquely determined

by the input (R, A). Moreover, y is an optimal solution to the linear programming dual of (LPc). The

above algorithm runs in O(n3 ). They also show, using linear programming duality, that linear program

(LPc) has the following indexability property.

Definition 5 (Generalized Gittins Indices) Let y be the optimal dual solution generated by algo-

rithm Ag. Let

'yt= E PS iEE.
S: EDS3i

We say that -7, ... , -y are the generalized Gittins indices of linear program (LP,).

Theorem 2 (Indexability of LP over extended polymatroids) Linear program (LPc) is optimized

by the vector x., where r is any permutation of E such that

711 <·< _on- (10)

Let yl, ... , -y, be the generalized Gittins indices of linear program (LP). A direct consequence of

the previous discussion is that the control problem (LPu) is solved by an index policy, with indices given

by Yl, . .. , n-

Theorem 3 (Indexability of Systems Satisfying Conservation Laws) A policy that selects at each

decision epoch a job of currently largest generalized Gittins index is optimal for the control problem.

Bertsimas and Nifio-Mora [6] provide closed form expressions for the generalized Gittins indices,

which can be used for sensitivity analysis. Optimization over an extended polymatroid is analogous to

the extended contra-polymatroid case (see Table 1).
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In the case that matrix A has a certain special structure, the computation of the indices of (LPc)

can be simplified. Let E be partitioned as E = U- 1Ek. Let Ak be the submatrix of matrix A

corresponding to subsets S C Ek. Let R k = (Ri)ieEk. Assume that the following condition holds:

As AsnEk = (Ak)snEk, for i ES n Ek and S CE. (11)

Let {Yk}iEEk be the generalized Gittins indices obtained from algorithm A6 with input (R k, Ak).

Theorem 4 (Index Decomposition) Under condition (11), the generalized Gittins indices corre-

sponding to (R,A) and (Rk, A k ) satisfy

i=7ik, foriEEk andk=1,...,K. (12)

Theorem 4 implies that the reason for decomposition to hold is (11). A useful consequence is the

following:

Corollary 1 Under the assumptions of Theorem 4, an optimal solution of problem (LPe) can be com-

puted by solving K subproblems: Apply algorithm A6 with inputs (R k, Ak), for k = 1, .. ., K.

2.3 Examples

In order to apply Algorithm AG in concrete problems, one has to define appropriate performance vectors,

calculate the matrix A, the set function b(.) and the reward vector R. In this section we illustrate how

to calculate the various parameters in the context of branching bandit problems introduced by Weiss [60],

who observed that it can model a large number of stochastic control problems.

There is a finite number of project types, labeled k = 1,..., K. A type k project can be in one of

a finite number of states ik E Ek, which correspond to stages in the development of the project. It is

convenient in what follows to combine these two indicators into a single label i = (k, ik), the state of a

project. Let E = {1, ... , n} be the finite set of possible states of all project types.

We associate with state i of a project a random time vi and random arrivals Ni = (Nij)jEE. Engaging

the project keeps the system busy for a duration vi (the duration of stage i), and upon completion of

the stage the project is replaced by a nonnegative integer number of new projects Nij, in states j E E.

We assume that given i, the durations and the descendants (vi; (Nij)jEE) are random variables with an

arbitrary joint distribution, independent of all other projects, and identically distributed for the same

i. Projects are to be selected under an admissible policy u E U: Nonidling (at all times a project is

being engaged, unless there are no projects in the system), nonpreemptive (work cannot be interrupted

until the engaged project stage is completed) and nonanticipative (decisions are based only on past

and present information). The decision epochs are t = 0 and the instants at which a project stage is

completed and there is some project present.

We shall refer to a project in state i as a type i job. In this section, we will define two different

performance measures for a branching bandit process. The first one will be appropriate for modelling
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a discounted reward-tax structure. The second will allow us to model an undiscounted tax structure.

In each case we demonstrate what data is needed, what the performance space is and how the relevant

parameters are computed.

Discounted Branching Bandits

Data: Joint distribution of vi, Ni l ,.. , Ni, for each i:

(Bzl, , ··,) =E[eY @iZNil ... zi]

· ,(0) = Ii(O, 1, ... , 1) ,

mi, the number of type i bandits initially present, Ri, an instantaneous reward received upon completion

of a type i job, Ci, a holding tax incurred continuously while a type i job is in the system and a > 0,

the discount factor.

Performance measure: Using the indicator

1 if a type j job is being engaged at time t;{O otherwise,

the performance measure is

x(at) = Eu [ e-tIj(t)dt]. (14)

Performance Space: The performance vector for branching bandits xu(a) satisfies conservation laws

(a) ZiE A x(a) > ba,(S), for S C E, with equality if policy u gives complete priority to S-jobs.

(b) ZiEE Atx'(a) = ba(E).

Therefore, the performance space for branching bandits corresponding to the performance vector xU(a)

is the extended contra-polymatroid base Bc(A,, bo). The matrix A,, and set function b.(-) are calculated

as follows:
1 - sc(a)Ais 1 - i) iES SCE; (15)

b.(S) = I [Esc(a) ] j - ( S E (16)
jESc jEE

and the functions Is(0O) are calculated from the following fixed point system:

at (0 = i (, (( Es ) i E E.

Objective function:

max V(R, C)(m) = E i.,ax(a) -E miC = {R +Ci -EE[Nij]Cj}) 1i (a) m
iEE iEE iEE jEE 1 iEE

(17)

Undiscounted Branching Bandits

We consider the case that the busy period of the branching bandit process is finite with probability 1.
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Data: E[vi], E[v], E[Nij]. Let E[N] denote the matrix of E[Nij].

Performance measure:

1, if a type j job is being engaged at time t;

0, otherwise,

Qj(t) = the number of type j jobs in the system at time t.

=E[J Ij(t)tdt] jE.

W.. = j Eu[Qj(t)] dt, j E E.

Stability: The branching bandits process is stable (its busy period has finite first two moments) if and

only if E[N] < I (the eigenvalues of the matrix E[N] are smaller than one).

Performance space:

I. The performance vector O" satisfies the following conservation laws:

(a) ies ASOiu < b(S), for S C E, with equality if policy u gives complete priority to Sc-jobs.

(b) EiEE AiEO' = b(E).

The matrix A and set function b(-) are calculated as follows:

Ai= E[Tsi ] iES, (18)
E[v] '

and
() E[( )2]- E[(TS')2] + E[vi]E[v2] E[T ¢] E[(T/S )2]b(S) = [ E [ 192

iES 2 E[vi] (19)

where we obtain E[Tis], Var[Tis] (and thus E[(Tis)2 ]) and E[vj] by solving the following linear systems:

E[T ] = E[v] + EE[NijIE[Tj], i E E;
jEs

Var[T s ] = Var[vi] + (E[Tjs])JESCov[(Ni,)jes)] (E[TjS])jes + E[Ni, ]Var[Tfs],i E;
jES

E[vj] = mj + E E[Nij] E[vi], j E E.
iEE

Finally,

E[Ts] = E mi E[Ti,],
iES

Var[TS] = E mi Var[Tis].
iES

II. The performance vector Wu satisfies the following conservation laws:

(a) EiEs A'isWi > b'(S), for S C E, with equality if policy u gives complete priority to S-jobs.

(b) ZiE AEW = b'(E), where

A s = E[T], i E S, (20)
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Problem Performance measure Performance space j Algorithm

max.Eu uV(j,~C) x (a) = fow Eu[Ij(t)]e- a t dt Bc(A., ba)a (a, A.) ~ (a)
A,, ba(.): see (15), (16) Ry: see (17)

mineu V ( C).
(finite busy period case) = fo Eu [Ij (t)t dt] B(A, b)b (C,A) 4 y

A, b(.): see (18), (19) C: see (22)
W~ = fo E[Qj(t)]dt] Bc(A', b') (C, A') , 7

A', b'(-): see (20), (21)

Table 2: Modelling Branching Bandit Problems.

'Extended contra-polymatroid base
bExtended polymatroid base

b'(S) = b(E) - b(SC) + 2 E hE[Tjs], (21)
iES

where row vector h = (hi)i E E is given by

h = m(I - E[N])'Diag(( )EE)(I - EN]),

and Diag(x) denotes a diagonal matrix with diagonal entries corresponding to vector x.

Objective function:

min V(OC) = i + 2 E Cihi= E Ci -E E[Nj]Cj + 2 E Cihi (22)
iEE iEE iEE v] jEE iEE

In Table 2 we summarize the problems we considered, the performance measures used, the conserva-

tion laws, the corresponding performance space, as well as the input to algorithm AG.

Given that branching bandits is a general problem formulation that encompasses a variety of prob-

lems, it should not be surprising that the theory developed encompasses a large collection of problems.

In Table 3 below we illustrate the stochastic control problem from the literature, the objective criterion,

where the original indexability result was obtained and where the performance space was characterized.

For explicit derivations of the parameters of the extended polymatroids involved the reader is referred

to Bertsimas and Nifio-Mora [6].

2.4 Implications of the theory

In this section we summarize the implications of characterizing the performance space as an extended

polymatroid as follows:

1. An independent algebraic proof of the indexability of the problem, which translates to a very

efficient solution. In particular, Algorithm Ag that computes the indices of indexable systems is

as fast as the fastest known algorithm (Varaiya, Walrand and Buyukkoc [58]).
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System Criterion Indexability I Performance Space

Batch of jobs LCa Smith [51]: Db Queyranne [43]: D, pc
Rothkopf [49] Bertsimas & Nifio-Mora [6]: P

DCd Rothkopf [48]: D Bertsimas & Niiio-Mora [6]: P
Gittins & Jones [21]

Batch of jobs LC Horn [31]: D Bertsimas & Nifio-Mora [6]: EP e

with out-tree Meilijson & Weiss [40]

prec. constraints DC Glazebrook [24] Bertsimas & Niflo-Mora [6]: EP
Multiclass M/G/1 LC Cox & Smith [16] Coffman & Mitrani [15]: P

Gelenbe & Mitrani [20]: P
DC Harrison [26, 27] Bertsimas & Nifio-Mora [6]: EP

Multiclass f MIG/c LC Federgruen & Groenevelt [18] Federgruen & Groenevelt [19]: P
Shanthikumar & Yao [50] Shanthikhumar & Yao [50]: P

Multiclass G/M/c LC Federgruen & Groenevelt [18] Federgruen & Groenevelt [18]: P
Shanthikumar & Yao [50] Shanthikumar & Yao [50]: P

Multiclass LC Ross & Yao [47] Ross & Yao [47]: P
Jackson network 9
Multiclass M/G/1 LC Klimov [35] Tsoucas [57]: EP
with feedback DC Tcha & Pliska [54] Bertsimas & Niflo-Mora [6]: EP
multiarmed bandits DC Gittins & Jones [21] Bertsimas & Niiio-Mora [6]: EP
Branching bandits LC Meilijson & Weiss [40] Bertsimas & Nifio-Mora [6]: EP

DC Weiss [60] Bertsimas & Nifio-Mora [6]: EP

Table 3: Indexable problems and their performance spaces.

aLinear cost
bDeterministic processing times
CPolymatroid
dDiscounted linear reward-cost
eExtended polymatroid
f Same service time distribution for all classes
9 Same service time distribution and routing probabilities for all classes (can be node dependent)

2. An understanding of whether or not the indices decompose. For example, in the classical mul-

tiarmed bandits problem Theorem 4 applies and therefore, the indices decompose, while in the

general branching bandits formulation they do not.

3. A general and practical approach to sensitivity analysis of indexable systems, based on the well

understood sensitivity analysis of linear programming (see Bertsimas and Niflo-Mora [6] and Glaze-

brook [25]).

4. A new characterization of the indices of indexable systems as sums of dual variables correspond-

ing to the extended polymatroid that characterizes the feasible space. This gives rise to new

interpretations of the indices as prices or retirement options. For example, we can obtain a new

interpretation of indices in the context of branching bandits as retirement options, thus general-

izing the interpretation of Whittle [61] and Weber [59] for the indices of the classical multiarmed

bandit problem.
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5. The realization that the algorithm of Klimov for multiclass queues and the algorithm of Gittins

for multiarmed bandits are examples of the same algorithm.

6. Closed form formulae for the performance of the optimal policy that can be used a) to prove

structural properties of the problem (for example a result of Weber [59] that the objective function

value of the classical multiarmed bandit problem is submodular) and b) to show that the indices

for some stochastic control problems do not depend on some of the parameters of the problem.

Most importantly, this approach provides a unified treatment of several classical problems in stochas-

tic control and is able to address in a unified way their variations such as: discounted versus undiscounted

cost criterion, rewards versus taxes, preemption versus nonpreemption, discrete versus continuous time,

work conserving versus idling policies, linear versus nonlinear objective functions.

3 Restless bandits

In this section we address the restless bandit problem defined as follows: There is a collection of N

projects. Project n E J/ = {1,..., N} can be in one of a finite number of states in E En, for n = 1, ... , N.

At each instant of discrete time t = 0, 1, 2,..., exactly M < N projects must be operated. If project

n, in state in, is in operation, then an active reward Rt is earned, and the project state changes into

jn with an active transition probability pin. If the project remains idle, then a passive reward R/ is

received, and the project state changes into j , with a passive transition probability p0j. Rewards are

discounted in time by a discount factor 0 < < 1. Projects are to be selected for operation according

to an admissible scheduling policy u: the decision as to which M projects to operate at any time t must

be based only on information on the current states of the projects. Let U denote the class of admissible

scheduling policies. The goal is to find an admissible scheduling policy that maximizes the total expected

discounted reward over an infinite horizon, i.e.,

Z* = maxEu [(Rl (t) + " + RN(t))/], (23)

where i(t) and an(t) denote the state and the action (active or passive), respectively, corresponding to

project n at time t. We assume that the initial state of project n is in with probability ain, independently

of all other projects.

The restless bandit problem was introduced by Whittle [62], as an extension of the multiarmed

bandit problem studied in the previous section. The latter corresponds to the special case that exactly

one project must be operated at any time (i.e., M = 1), and passive projects are frozen: they do not

change state (poi° = 1, pj = 0 for all n E N and in # in). Whittle mentions applications in the

areas of clinical trials, aircraft surveillance and worker scheduling.

In this section we review the work of Bertsimas' and Nifio-Mora [7], who build upon the work of

Whittle [62] and propose a series of N linear relaxations (the last being exact) of the achievable region,
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using the theory of discounted Markov decision processes (MDP) (see Heyman and Sobel [29]). They

also propose an indexing heuristic that arises from the first of these relaxations.

In order to formulate the restless bandit problem as a linear program we introduce the indicators

PI(t) = 1, if project n is in state in and active at time t;

n 0, otherwise,

and
J9 (= 1, if project n is in state in and passive at time t;
I (t = O. otherwise.

Given an admissible scheduling policy u E U we define performance measures

Ki (u) = Eu [I (t)t]} and xO (u)Eu I I9 (t)Ot1
t=O t=O

Notice that performance measure xi (u) (resp. x (u)) represents the total expected discounted time

that project n is in state in and active (resp. passive) under scheduling policy u. Let

P = { x = ( a (U))i EEuaE{Oi}nEH I EU}

the corresponding performance space. As the restless bandit problem can be viewed as a discounted

MDP (in the state space E1 x ... x EN), the performance space P is a polyhedron. The restless bandit

problem can thus be formulated as the linear program

Z*=mx Rin ax. (24)
XEP %- Z

nEAJ iEE, aE{O,1}

For the special case of the multiarmed bandit problem P has been fully characterized as an ex-

tended contra-polymatroid. For the restless bandit problem we construct approximations of P that

yield polynomial-size linear relaxations of the linear program (24).

3.1 A First-order Linear Programming Relaxation

The restless bandit problem induces a first-order MDP over each project n in a natural way: The state

space of this MDP is En, its action space is Al = {0, 1}, and the reward received when action an is taken

in state in is R~'. Rewards are discounted in time by discount factor 3. The transition probability from

state in into state jn, given action an, is n . The initial state is i, with probability ain.

Let

Qn ={Xn = ( ())inEE a lEA' L E 

From a polyhedral point of view, Q is the projectiorr of the restless bandit polyhedron P over the space

of the variables xc for project n. From a probabilistic point of view, Q is the performance space of the

first-order MDP corresponding to project n. In order to see this, we observe that as policies u for the

restless bandit problem range over all admissible policies U, they induce policies un for the first-order
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MDP corresponding to project n that range over all admissible policies for that MDP. From the theory

of discounted MDPs we obtain

Q = 1 J , EQ -{xn O + I = + p E, E pinnjxn , jn E En. (25)
i.EEn anE{O,1}

Whittle [62] proposes a relaxation of the problem by relaxing the requirement that exactly M projects

must be active at any time and imposing that the total expected discounted number of active projects

over the infinite horizon must be M/(1 - 3). This condition on the discounted average number of active

projects can be written as

E E x(u)= [Z EItU E l]3t = fMPt 1- MP
nEJ i EE. t=o inEEn t=O

Therefore, the first-order relaxation can be formulated as the linear program

Z 1 =- max E E E R>intj n (26)
nEA iEE. anE{O,1}

subject to

+ 3an = j + E pnj X, a in En, n iE r,
inEEn a.E{0,1}

z: M
nE iEE 1

We will refer to the feasible space of linear program (26) as the first-order approximation of the restless

bandit polyhedron, and will denote it as pl. Notice that linear program (26) has O(NIEmax,) variables

and constraints, where Emax = maxnE IEnI.

3.2 A kth-order Linear Programming Relaxation

We can strengthen the relaxation by introducing new decision variables corresponding to performance

measures associated with kth-order project interactions. For each k-tuple of projects 1 < n <

... < nk < N, the admissible actions that can be taken at a corresponding k-tuple of states

(il,..., ik) range over

k = { (a,..., ak) E {0, 1} I al + +ak < M

Given an admissible scheduling policy u for the restless bandit problem, we define kth-order perfor-

mance measures, for each k-tuple 1 < nl < ... < nk < N of projects, by

xj.(u)= I (t). I(t)t] , j, E En, ... jk E Enk (27)

The restless bandit problem induces a kth-order MDP over each k-tuple of projects n < * < nk as

follows: The state space of the MDP is Enx x... x Enk, the action space is Ak, and the reward correspond-

ing to state (in,, . . ink) and action (a,, .. . a) isRnl + + Rk . Rewards are discounted in time
, ·, , , $~~~~~~~nl
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by discount factor . The transition probability from state (in,.. ., in*) into state (,...,ink), given

action (amn .- , an,), is The initial state is (in,,. .. , ink) with probability ail '-.. ink

As in the first order relaxation all performance vectors in the k-th order relaxation satisfy

E ... Jk = ail .. *a*Ok +PE p11.7 S S***Pkjk Pil i ... jl E Enl , jk E Enk

(al, ...,ak)EA
k

il EnlE, .,ikEEnk

(al ... oak)EAk

(28)

If u is an admissible scheduling policy, then

Z S S x1u ()f ) N-M (29)

l<nl< <nk<N ilEEl .. ikEE ...
(al ,....k)EA k '

al +"'+ak=r

for

max(0, k - (N - M)) < r < min(k, M). (30)

Conservation law (29) follows since at each time the number of k-tuples of projects that contain exactly

r active projects is M N-M for r in the range given by (30).

In terms of the origina performance vectors

x'(u) = M x2i.: i (L). (31)

(al ,...,ak)EAk

ii EEn,,...,ikEEk:

i,=i,a,=a

We now define the kth-order relaxation of the restless bandit problem as the linear program

Zk = maxE E S Rxan an
nEhJ inEEn an E{O,1}

subject to (28), (29), (31) and nonnegativity constraints on the variables. We define the kth-order

approximation to the restless bandit polyhedron P as the projection of the feasible space of the above

linear program into the space of the first-order variables, x?, and denote it as pk. It is easy to see that

the sequence of approximations is monotone, in the sense that

p1 D p2 D . . pN = p

Notice that the kth-order relaxation has O(NklEmaxlk) variables and constraints, for k fixed. Therefore,

the kth-order relaxation has polynomial size, for k fixed.

The last relaxation of the sequence is exact, i.e., ZN = Z*, since it corresponds to the linear pro-

gramming formulation of the restless bandit problem modeled as a MDP in the standard way.
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3.3 A Primal-dual Heuristic for the Restless Bandit Problem

The dual of the linear program (26) is

M
Z 1 = min E aj,,Aj,, + l- A (32)

nEhN jnEEn

subject to

Ai - E PAi,, > Ri in En, n E ,
jn. E E,

Ai, P E p Aj, + A > R, in E E, n E X,

jn E E

Let {p"a}, {Ai,}, i E En, n E nA be an optimal primal and dual solution to the first-order

relaxation (26) and its dual. Let {7i. } be the corresponding optimal reduced cost coefficients, i.e.,

jn EE

Y = Zin- B pilnj, lj +X - Ri,
jn E E

which are nonnegative. It is well known (see Murty [41], pp. 64-65), that the optimal reduced costs have

the following interpretation:

1tl is the rate of decrease in the objective-value of linear program (26) per unit increase in the value of

the variable xl.

7i is the rate of decrease in the objective-value of linear program (26) per unit increase in the value of

the variable x ° .

The proposed heuristic takes as input the vector of current states of the projects, (il,..., iN), an

optimal primal solution to (26), {'j. }, and the corresponding optimal reduced costs, {5Ij }, and produces

as output a vector with the actions to take on each project, (a*(il),..., a*(iN)). An informal description

of the heuristic, with the motivation that inspired it, is as follows:

The heuristic is structured in a primal and a dual stage. In the primal stage, projects n whose corre-

sponding active primal variable iln is strictly positive are considered as candidates for active selection.

The intuition is that we give preference for active selection to projects with positive ln with respect

to those with xl = 0, which seems natural given the interpretation of performance measure x1 (.) as

the total expected discounted time spent selecting project n in state in as active. Let p represent the

number of such projects. In the case that p = M, then all p candidate projects are set active and the

heuristic stops. If p < M, then all p candidate projects are set active and the heuristic proceeds to the

dual stage that selects the remaining M - p projects. If p > M none of them is set active at this stage

and the heuristic proceeds to the dual stage that finalizes the selection.

In the dual stage, in the case that p < M, then M -p additional projects, each with current active

primal variable zero ( = 0), must be selected for active operation among the N - p projects, whose
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actions have not yet been fixed. As a heuristic index of the undesirability of setting project n in state in

active, we take the active reduced cost -ln This choice is motivated by the interpretation of -n stated

above: the larger the active index ln is, the larger is the rate of decrease of the objective-value of (26)

per unit increase in the active variable xi. Therefore, in the heuristic we select for active operation the

M -p additional projects with smallest active reduced costs.

In the case that p > M, then M projects must be selected for active operation, among the p projects

with in > 0. Recall that by complementary slackness, -l = 0 if in > 0. As a heuristic index of the

desirability of setting project n in state in active we take the passive reduced cost - . The motivation

is given by the interpretation of 7n stated above: the larger the passive index yio is, the larger is the

rate of decrease in the objective-value of (26) per unit increase in the value of the passive variable x°.

Therefore, in the heuristic we select for active operation the M projects with largest passive reduced

costs.

Assuming that the optimal solution of (26) is nondegenerate we can interpret the primal-dual heuristic

as an index heuristic as follows:

1. Given the current states (il,..., viN) of the N projects, compute the indices

Se in 'iinec. 

2. Set active the projects that have the M smallest indices. In case of ties, set active projects with

i1 > 0.

In contrast with the Gittins indices for usual bandits, notice that the indices in for a particular

project depend on characteristics of all other projects. Bertsimas and Nifio-Mora [7] report computational

results that show that the primal-heuristic and the bound given by the second order relaxation are very

close, proving that both the relaxation and the heuristic are very effective.

4 Polling systems

Polling systems, in which a single server in a multiclass queueing system serves several classes of cus-

tomers incurring changeover times when he serves different classes, have important applications in com-

puter, communication, production and transportation networks. In these application areas several users

compete for access to a common resource (a central computer in a time sharing computer system, a

transmission channel in a communication system, a machine in a manufacturing context or a vehicle in

transportation applications). As a result, the problem has attracted the attention of researchers across

very different disciplines. The name polling systems comes primarily from the communication literature.

Motivated by its important applications, polling systems have a rather large literature, which for the

most part addresses the performance of specific policies rather than the optimal design of the polling
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system. For an extensive discussion of the research work on polling systems, we refer to the survey

papers by Levy and Sidi [37] and Takagi [52], [53].

Consider a system consisting of N infinite capacity stations (queues), and a single server which serves

them one at a time. The arrival process to station i (i = 1, 2,..., N) is assumed to be a Poisson process

with rate Ai. The overall arrival rate to the system is A = ENl Ai. Customers arriving to station

i will be referred to as class-i customers and have a random service requirement Xi with finite mean

xi and second moment (2). The actual service requirement of a specific customer is assumed to be

independent of other system variables. The cost of waiting for class-i customers is ci per unit time.

There are changeover time dij whenever the server changes from serving class-i customers to class-j

customers. The offered traffic load at station i is equal to pi = Aixi, and the total traffic load is equal

to p = = 1 Pi-

The natural performance measure in polling systems is the mean delay time between the request for

service from a customer and the delivery of the service by the server to that customer. The optimization

problem in polling systems is to decide which customer should be in service at any given time in order

to minimize the weighted expected delay of all the classes. Let U be the class of nonpreemptive, non-

anticipative and stable policies. Within U we further distinguish between static (Ustatic) and dynamic

(Udynamic) policies. At each decision epoch static policies do not take into account information about

the state of stations in the system other than the one occupied by the server and are determined a priori

or randomly. In particular the server's behavior when in station i is independent of the state of the other

stations in the system (i.e., the queue lengths and the interarrival times of the customers). Examples

of static policies include randomized policies, in which the next station to be visited by the server is

determined by an a priori probability distribution, and routing table policies, in which the next station

to be visited is predetermined by a routing table. A special case of the routing table policies is the cyclic

policy, where the stations are visited by the server in a cyclic order.

Dynamic policies take into account information about the current state of the network. For example,

a threshold policy or a policy that visits the most loaded station, is a dynamic policy, because the decision

on which customer to serve next by the server depends on the current queue lengths at various stations

in the system. In certain applications it might be impractical or even impossible to use a dynamic policy.

For example in a transportation network, the vehicle might not know the overall state of the network. As

a result, although static policies are not optimal, they can often be the only realistic policy. Moreover,

when there are no changeover times, the policy that minimizes the mean weighted delay is an indexing

policy (the c rule), a static policy.

While the literature on performance analysis of polling systems is huge there are very few papers

addressing optimization. Hofri and Ross [30] and Reiman and Wein [46] address the optimization problem

over dynamic policies for polling systems with two stations. Boxma et. al. [13] propose heuristic polling

table strategies. In this section we review the work in Bertsimas and Xu [10] in which a nonlinear (but
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convex) optimization problem is proposed, whose solution provides a lower bound on an arbitrary static

policy. Using information from the lower bounds and integer programming techniques, static policies

(routing table policies) are constructed that are very close (within 0-3%) to the lower bound.

4.1 Lower bounds on achievable performance

We develop in this section lower bounds on the weighted mean waiting time for polling systems for

nonpreemptive, nonanticipative and stable policies. We call these policies admissible. We present bounds

for both static and dynamic policies.

Let E[Wi] be the average waiting time of class-i customers. The goal is to find a static policy

u E Utatic to minimize the weighted mean delay E[W] for the polling system:

N

EUumiin~ E[W]= >iciAiE[Wi]. (33)

Within a particular class, we assume that the server uses a First-In-First-Out (FIFO) discipline. We

denote with dij the changeover time when the server changes from serving class-i customers to class-j

customers (i, j = 1,2,..., N).

Theorem 5 The optimal weighted mean delay in a polling system under any static and admissible policy

is bounded from below by Zstati, the solution of the following convex programming problem:

Zsttic= min E= i i + 21 -
N i(l-pi) (34)

E =L 1 i 

subject to =l mi- mki = 0, i = 1,2,..., N (35)

i,j=l dijmij < 1-p (36)

mii = O, mij 0 V i,j,

The mij in the above convex optimization problem represent the steady state average number of visits

from station i to station j per unit time. Constraint (35) represents conservation of flow, while (36)

is the stability condition. These constraints are still valid even under dynamic policies. The fact that

the objective function in (34) represents a lower bound for the optimal solution value, only holds for

static policies. The idea of the proof is that under a static policy, the expected waiting time of class i

customers decomposes to
A (2) v(2)

E[W] = 2(1 -pi) 2v'

where vi, v(2) are the first and second moments of the vacation times observed at station i. Using the

inequality v( 2) > v2 and expressing the expected vacation times vi in terms of mij we obtain the bound.

For details see Bertsimas and Xu [10]. Notice that while the feasible space of (34) is a network flow

problem with a side constraint, the objective function is a nonlinear, but convex function.

In order to acquire further insight on the bound of the previous theorem, the flow conservation

constraints (35) are relaxed to obtain a closed form formula for the lower bounds.
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Theorem 6 a) The weighted mean delay in a polling system under any static and admissible policy is

bounded from below by:

1 c2i( 2 ) + (i 1 ciA(1pi)di*)2
Zclosed 1= - + - (37)

2,\ 1 -i 2,(1 - p)

where di* = dj(i),i = minjdji }.

b) For a homogeneous polling system (ci = 1, xi = x, for all i = 1, 2,..., N), under static and admissible

policies, the weighted mean delay is bounded from below by:

+ (38)

2(1 - p) 2A(1 - p)

Notice that the bound from (38) is stronger than (37) for the special case of a homogeneous system. For

arbitrary policies including dynamic ones we can prove the following.

Theorem 7 The optimal weighted mean delay in a polling system under any admissible policy is bounded

from below by

Zdynamic = max{. [= )2)] [-N1/N rix- ]

1 minjEN{Ei-A i i - i= A (2)
1-p injEN~ 2(--p)

where ai = '=1 pj and p = N=1 pj is the system utilization.

The first term in the lower bound represents the optimal weighted mean delay with no changeover costs

(the optimal policy corresponds to the cpl rule), while the second term incorporates changeover times in

the lower bound.

4.2 Design of effective static policies

The goal of this subsection is to provide a technique to construct near optimal policies using integer

programming. As already mentioned the mij are interpreted as the steady state average number of visits

from station i to station j per unit time. Let eij = mij/ k,l mkl and E = [eij] be the corresponding

changeover ratio matrix. Intuitively, in order for the performance of a policy u to be close to the lower

bound, it is desirable that the proportion of changeovers from station i to station j under the policy u is

close to eij. We refer to this requirement as the closeness condition. We consider two classes of policies

that satisfy the closeness condition approximately.

Randomized policies:

Under this class of policies the server after serving exhaustively all customers at station i moves to

station j with probability Pij. Kleinrock and Levy [34] consider randomized policies, in which the next

station visited will be station j with probability pj, independent of the present station.
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Given the values of mij from the lower bound calculation, we would like to choose the probabilities

pij so that the closeness condition is satisfied. An obvious choice is to pick pij = eij/ k=1 eik. P = [Pij]

is the corresponding changeover probability matrix. We note, however, that this choice of pij does not

necessarily represent the optimal randomized policy.

Routing table policies

Under this class of policies the server visits stations in an a priori periodic sequence. For exam-

ple the server visits a three station system using the cyclic sequence (1,2,3,1,2,3,...) or the sequence

(1,2,1,2,3,1,2,1,2,3,...), i.e., stations 1 and 2 are visited twice as often as station 3. Boxma et. al. [13]

use heuristic rules to construct routing table policies.

We use integer programming methods to construct routing tables that satisfy the closeness condition.

Let hij be the number of changeovers from station i to station j in an optimal routing table. H = [hij] is

the changeover matrix. Note that unlike mij, hij should be integers. Notice that Ei j hj is the length of

the routing table, i.e., the total number of changeovers in the periodic sequence. Moreover, eij Sk,l hkl

is the desired number of changeovers from station i to station j in the routing table under the closeness

condition. In order to satisfy the closeness condition, a possible objective in selecting a routing table is

to minimize the maximum difference between the number of changeovers hij from station i to station j

in the optimal routing table and the desired number of changeovers determined by eij Sk,l hkli i.e.,

min{max{lhij - eij E hklt}}. (39)
h ij k

In addition, the flow conservation at each station requires that

N N

Ehij -E hki = , i 1,2,..., N, (40)
j=1 k=l

i.e., the number of visits by the server to station i should equal to the number of visits by the server

from station i to other stations. The hij's should also form an Eulerian tour. Let I be the set of all

stations and G be the subset of stations in the network. Since the Eulerian tour should be connected,

we require that for all subsets G of the stations

E hij>1, VGCI, G. (41)
iEG, jEO

In summary, the problem becomes

(PEu.erian) minh{maxiJ{lhij - eij -k,l hkll}}

subject to: j=1 hij -'N l hki =, i = 1, 2,...,N (42)

EiEGc j-dhij > , V G C I, G 

hij > 0, integer, i,j = 1, 2,..., N

Equation (42) can be easily converted to a pure integer programming problem. Since our goal is only to

obtain an approximate solution, we approximate the problem by relaxing the connectivity constraints in
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equation (41). But if equation (41) is relaxed, hij = 0, V i,j will be a feasible solution and will minimize

the objective function in (42). In order to exclude this infeasible solution to (42), we impose a lower

limit on the length of the routing table. Since each of the stations should be visited at least once in

any feasible routing table, the length of any routing table should be at least N. Moreover, we place an

upper bound Lmaz on the length of the routing table to make the integer programming solvable:

(Pappox) minh{maxi,j{hij - eij k,l hkl i}}

subject to j hij- =l hi = 0 i 1, 2,..., N

N < i, hj < Lmaz

hij 0, integer, ij = 1, 2,..., N

The previous formulation can be reformulated as a pure integer programming problem as follows:

(Papproz) min y

subject to y-hij +eij k,'Lhk O, i,j=1,2,...,N

+hij -eijEk,lhkl > O, i,j = 1,2,...,N (43)
N _(43)

ji=1 hij k- =1 hki = O, i = 1, 2,..., N

N < ij hij < L,,

hij O, integer, i = 1, 2,..., N

Note that there are many feasible routing tables that will be consistent with the hij's obtained from

the solution of (Papp,). We will select a Eulerian tour that spaces the visits to the stations as equally as

possible. Although it is possible to formulate this requirement precisely as another integer programming

problem, we found numerically that the added effort is not justified from the results it produces.

4.3 Performance of proposed policies

Based on extensive simulation results, Bertsimas and Xu [10] arrive at the following conclusions:

1. The routing policies constructed outperform all other static routing policies reported in the lit-

erature and they are at most within 3% from the lower bounds for the cases studied. Moreover,

randomized policies are outperformed by routifig table policies.

2. The performance of the routing table policy improves compared against other static routing policies

as the change-over times or the system utilization increases.

3. For lower change-over times and system utilizations dynamic policies outperform static policies by

a significant margin. But as the change-over times or system utilization increase, static policies are

equally or more effective. This is a rather interesting fact, since at least in the cases that optimal

dynamic policies are known (two stations), they are rather complicated threshold policies (Hofri

and Ross [30]).
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4. Based on the intuition from the proof of the static lower bound and the numerical results, Bertsimas

and Xu [10] conjecture that the static lower bounds developed in this paper are valid for dynamic

policies also under heavy traffic conditions or for large changeover costs.

These results suggest that as far as static policies are concerned the routing table policies constructed

through integer programming are adequate for practical problems.

5 Multiclass queueing networks

A multiclass queueing network is one that services multiple types of customers which may differ in their

arrival processes, service requirements, routes through the network as well as costs per unit of waiting

time. In open networks we are interested to determine an optimal policy for sequencing and routing

customers in the network that minimizes a linear combination of the expected sojourn times of each cus-

tomer class, while in closed networks we are interested in i the maximization of throughput. There are

both sequencing and routing decisions involved in these optimization problems. A sequencing policy de-

termines which type of customer to serve at each station of the network, while a routing policy determines

the route of each customer. There are several important applications of such problems: packet-switching

communication networks with different types of packets and priorities, job shop manufacturing systems,

scheduling of multi-processors and multi-programmed computer systems, to name a few.

In this section we present a systematic way introduced in Bertsimas, Paschalidis and Tsitsiklis [8]

based on a potential function to generate constraints (linear and nonlinear) that all points in the achiev-

able space of a stochastic optimization problem should satisfy.

We consider initially an open multiclass queueing network involving only sequencing decisions (rout-

ing is given) with N single server stations (nodes) and R different job classes. The class of a job

summarizes all relevant information on the current characteristics of a job, including the node at which

it is waiting for service. In particular, jobs waiting at different nodes are by necessity of different classes

and a job changes class whenever it moves from one.node to another. Let a(r) be the node associated

with class r and let Ci be the set of all classes r such that a(r) = i. When a job of class r completes

service at node i, it can become a job of class s, with probability prs, and move to server a(s); it can

also exit the network, with probability po = 1 - = P,,. There are R independent Poisson arrival

streams, one for each customer class. The arrival process for class r customers has rate AO, and these

customers join station a(r). The service time of class r jobs is assumed to be exponentially distributed

with rate it,. Note that jobs of different classes associated with the same node can have different service

requirements. We assume that service times are independent of each other and independent of the arrival

process.

Whenever there is one or more customers waiting for service at a node, we can choose which, if any, of

these customers should be served next. (Notice, that we are not restricting ourselves to work-conserving
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policies.) In addition, we allow for the possibility of preemption. A rule for making such decisions is

called a policy. Let n,(t) be the number of class r customers present in the network at time t. The vector

n(t) = (ni(t), ... , nR(t)) will be called the state of the system at time t. A policy is called Markovian

if each decision it makes is determined as a function of the current state. It is then clear that under a

Markovian policy, the queueing network under study evolves as a continuous-time Markov chain.

For technical reasons, we will only study Markovian policies satisfying the following assumption:

Assumption A: a) The Markov chain n(t) has a unique invariant distribution.

b) For every class r, we have E[n(t)] < oo, where the expectation is taken with respect to the invariant

distribution.

Let n, be the steady-state mean of nr(t), and x, be the mean response time (waiting plus service

time) of class r customers. We are interested in determining a scheduling policy that minimizes a linear

cost function of the form E-R=l czx,. As before we approach this problem by trying to determine the set

X of all vectors ( 1, . . ., R) that are obtained by considering different policies that satisfy Assumption

A. By minimizing the cost function ER7=l cXr over the set X, we can then obtain the cost of an optimal

policy.

The set X is not necessarily convex and this leads us to considering its convex hull X'. Any vector

x E X' is the performance vector associated with a, generally non-Markovian, policy obtained by "time

sharing" or randomization of finitely many Markovian policies. Note also that if the minimum over X'

of a linear function is attained, then it is attained at some element of X. We will refer to X' as the

region of achievable performance.

5.1 Sequencing of Multiclass Open Networks: Approximate Polyhedral Char-

acterization

The traffic equations for our network model take the form

R

Ar = Aor + Ar'r r = 1,. ,R. (44)
r'=1

We assume that the inequality

rECi Ar

holds for every node i. This ensures that there exists at least one policy under which the network is

stable.

Let us consider a set S of classes. We consider a potential function of the form (Rs(t))2 where

RS(t) = Z fs(r)nr(t), (45)
rES

and where fs(r) are constants to be referred to as f-parameters. For any set S of classes, we will use

a different set of f-parameters, but in order to avoid overburdening our notation, the dependence on S

will not be shown explicitly.
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We will impose the following condition on the f-parameters. Although it may appear unmotivated

at this point, the proof of Theorem 8 suggests that this condition leads to tighter bounds. We assume

that for each S we have:

For any node i, the value of the expression

r [ prr, (f (r) - f(r')) + E Prr, f (r)] (46)
r'ES r'¢S

is nonnegative and the same for all r E Ci n S, and will be denoted by fi. If Ci n S is empty,

we define fi to be equal to zero.

Bertsimas, Paschalidis and Tsitsiklis [8] prove the following theorem. We present its proof, since it is

instructive of how potential function arguments can be used in general to construct polyhedral approx-

imations of the achievable region in stochastic control problems.

Theorem 8 For any set S of classes, for any choice of the f-parameters satisfying the restriction (46),

and for any policy satisfying Assumption A, the following inequality holds:

Af (r)xr > D'(S) (47)
rES D'(S)

where:

N'(S) = E AOr f2 (r) + , A, E p,,rrtf2 (r') +
rES riS r'ES

Ar [ prr(f(r)- f(r'))2 + Prr, f2(r)
rES r'ES r'$S

D'(S)= 2 [fi - Aorf.(r)
i=1 rES

S being a subset of the set of classes and xc, the mean response time of class r.

Proof We first uniformize the Markov chain so that the transition rate at every state is equal to

= AO, + E or
r r

The idea is to pretend that every class is being served with rate t, but a service completion is a fictitious

one unless a customer of class r is being served in actuality. Without loss of generality we scale time

so that v = 1. Let rk be the sequence of transition times for the uniformized chain. Let B,(t) be the

event that node a(r) is busy with a class r customer at time t. Let B(t) be its complement. Let 1{.}

the indicator function. We assume that the process n(t) is right-continuous.
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We have the following recursion for R(rk)

E[R(rk+l) I n(Ik)] =

A0 Ar(R(k) + f(r)) + E ArR2 (rk) +
rES rOS

ril {Br(Tk) ) E P' (R(k) - f(r.) + f(r))2
+ Prt (R(k) - f(r))2 +

rES 'ES r s 

Ar 1 {Br(k)I (.Tk) +

rES

EAdrl 1{Br(7k)} I Prr,(R(rk) +f(r'))2 + d p,,R (Ork) +
rOS [r'ES ratS

l rl{Br(k)}R2 (rk)
roS

In the above equation, we use the convention that the set of classes r' 0 S also contains the case r' = 0,

which corresponds to the external world of the network. (Recall that pro is the probability that a

class r customer exits the network after completion of service.) We now use the assumption that the

f-parameters satisfy (46). Then, the term

2 E l {Br(rk)} [ prr'R(rk)(f(r) - f(r')) + E PrrR(k)f(r)]
rES L 'ES r,¢S

can be written as

N

fi R(rk)1{server i busy from'some class r E S n Ci at rk}.
i=l

(Recall that we defined fi = 0 for those stations i having Ci n S empty.) To bound the above term, we

use the fact that the indicator is at most 1. It should now be apparent why we selected f-parameters

satisfying (46). By doing so, we were able to aggregate certain indicator functions before bounding them

by 1.

In addition, to bound the term

) 2prlBr('T)} PrrR(-k)f(r')
roS r'ES

we use the inequality l{Br(rk)} > 0.

We apply all of these bounds to our recursion for R(rk). We then take expectations of both sides

with respect to the invariant distribution (these expectations are finite due to Assumption A) and we

can replace E[R(rk)] by E[R(t)]. After some elementary algebra and rearrangements, using (46) and

the relation (valid in steady-state) E[1{Br(rk)}] = A7,/p,, we finally obtain (47). 0

Remarks: In order to apply Theorem 8, we must choose some f-parameters that satisfy (46). We

do not know whether there always exists a choice of the f-parameters that provides dominant bounds.
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But, even if this were the case, it would probably be difficult to determine these "best" f-parameters.

Later in this section, we show that finding the best f-parameters is not so important because there is a

nonparametric variation of this bounding method that yields tighter bounds. The situation is analogous

with polyhedral combinatorics, where from a given collection of valid inequalities we would like to select

only facets.

Let us now specify one choice of the f-parameters that satisfies (46). For a set S of classes, (46) yields

fi = f() ' -(r) P - r) r) p , Vr E Ci n S
r'ES r'ES r'S

which implies

= f(r)- Prf(r'), Vr E Ci n S
~r r'tES

Thus, due to (46), in order to explicitly determine the f-parameters, it suffices to select nonnegative

constants fi, for each station i with Ci n S nonempty. One natural choice of these fi's that appears to

provide fairly tight bounds is to let fi = 1, for all stations i with Ci n S nonempty. This leads to fs(r)

being equal to the expected remaining processing time until a job of class r exits the set of classes S.

With this choice, the parameters fs(r) can be determined by solving the system of equations

1
fs(r) = - + Prr'fs(r), r E S. (48)

r' ES

Moreover this choice of the f-parameters causes the denominator of (47) to be of form 1 - Ers A/r,

which is the natural heavy traffic term; this is a key reason why we believe that it leads to tight bounds.

Our claim is also supported by the fact that in indexable problems (Section 2), this choice of the f-

parameters yields an exact characterization.

We next present a nonparametric method for deriving constraints on the achievable performance

region. This variation has also been derived independently in Kumar and Kumar [36]. We use again a

function of the form

R(t) = : f(r)nr(t) (49)
r=1

where f(r) are scalars that we call f-parameters. We introduce Boi(t) to denote the event that node i is

idle at time t. We then define

I,, = E[1{Br(k)}nlr'(k)] (50)

and

Ni,, = E[1{Boi(rk)}nr,(rk)], (51)

where 1{.} is the indicator function and the expectations are taken with respect to the invariant distri-

bution.
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Theorem 9 For every scheduling policy satisfying Assumption A, the following relations hold:

R

2pI- 2 prpr'-rlr'r - 2A0oAx, = Ao + A(l - Prr) + ~ ArPrr r = 1,...,R (52)
r'=1 r' 6r

and

R R

/II + rIrr- E I1JPJr Il?- E YwPtir Iwrh - Ao0 ,\rxr, - \o'AX =
w=1 =l1

-Arprr - Ar'prr Vr, r' such that r > r'. (53)

E Irr, + Nir, = Ar'r' (54)
rECi

Ir, 0, Nir 0, xi > 0

Proof We uniformize as in Theorem 8 and proceed similarly to obtain the recursion

E[R2 (rk+l) n(rk)] =

R

,I Aor(R(rk) + f(r))2 +
r=l

prl({Br(k)} Prr(R(rk) - f(r) + f(r'))2 + pro(R(rk) - f(r))2 +
r=l '=1

R

r=l

Rearranging terms and taking expectations with respect to the invariant distribution, we obtain

2:Ar EPrr(f(r)-f(r')) + prof(r) E[l1 Br(rk)}R(Tk)]-2 Or f(r)E[R(Tk)]

r=l f'=l r=l
R R R 

= E Aorf 2 (r) + Ar E Prr(f(r) - f(r'))2 + prof2(r) (55)
r=l r=l '=

Moreover, it is seen from (49) and (50) that

R

E[1 {B(k)}R(rk)] = f(r')Irr.-

Let us define the vector f = (f(1),..., f(R)). We note that both sides of (55) are quadratic functions

of f. In particular, (55) can be written in the form

f'Qf = f'qof, (56)

for some symmetric matrices Q, Qo. Since (56) is valid for all choices of f, we must have Q = Qo. It

only remains to carry out the algebra needed in order to determine the entries of the matrices Q and Qo.

From (55), equality of the rth diagonal entries of Q and Qo yields (52), and equality of the off-diagonal

terms yields (53). Due to symmetry, it suffices to consider r > r'.
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Finally, since the events Br(rk) = "server i busy from class r at rk", r E Ci, and Boi(-rk) ="server i idle

at k'k" are mutually exclusive and exhaustive we obtain (54). 0

Remark: An alternative derivation of the equalities of the previous theorem is as follows: we consider

a test function g and write

E{E[g(n(rk+l))l n(rk)]} = E[g(n(rk))J,

as long as the indicated expectations exist. By rewriting the previous equality in terms of the instan-

taneous transition rate matrix for the Markov chain n(t), and by introducing some new variables, we

obtain certain relations between the variables. In particular, (52) can be derived by considering test

functions of the form g(n(t)) = n2(t), while (53) can be derived by considering the test functions of the

form g(n(t)) = nr(t)nr,(t). Intuitively, we expect that these quadratic test functions capture some of

the interaction among different customer classes.

By minimizing ER,= cr, subject to the constraints of Theorem 9 we obtain a lower bound which is

no smaller than the one obtained using Theorem 8. In addition, the linear program in Theorem 9 only

involves O(R2 ) variables and constraints. This should be contrasted with the linear program associated

to our nonparametric variation of the method which involved R variables but 0( 2 R) constraints.

5.2 Indexable systems: Polynomial reformulations

When applied to the systems we studied in Section 2, the parametric method gives as the performance

space an extended polymatroid. In particular, for undiscounted branching bandits Bertsimas, Paschalidis

and Tsitsiklis [9] obtain exactly the polyhedron (extended polymatroid) outlined in Section 2. The

nonparametric method gives a new reformulation of the extended polymatroid using O(N 2 ) variables

and constraints, where N is the number of bandit 'types. This is interesting because a) it makes it

very easy to solve indexable systems with side constraints, using linear programming techniques (see

Bertsimas et. al. [9]) and b) it has been conjectured in mathematical programming that whenever linear

optimization problems are solvable in polynomial time, they have formulations with a polynomial number

of variables and constraints. No such polynomial formulation has been known for polymatroids and

extended polymatroids. The nonparametric method produces polynomial reformulations, thus proving

the conjecture for this special case. It is interesting that a purely stochastic method (potential function

method) proves a nontrivial result in mathematical programming.

We briefly review the application of the method to the undiscounted branching bandit problem

described in Section 2. Let k be the sequence of service completions. Let Xi(tk) be 1 if at time k a

class i customer starts being served. Let Nr(t) be the number of class r customers present in the system

at time t. Any nonpreemptive policy satisfies the following formula that describes the evolution of the

system:
R

Ni(rk+l) = Ni(rk) + E Xj (rk)(Nji - ij), (57)
j=o
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We first observe that the value of Pi = E[Xi(rk)] is the same for all policies and can be obtained as the

unique solution of the system of equations

R

pj+E[Nji] = Pi+, i = 1 , (58)
j=o

which is obtained by taking expectations of both sides of (57) with respect to the stationary distribution.

Moreover,
R

Ep + =1, (59)
i=O

which follows from the definition of pt.

By considering the potential function

R(t) = E fiNi(t) (60)
iE-

and applying the evolution equation (57) for t = rk+l and using the parametric potential function

method we obtain that the performance vector n+ = E[Ni(rk)] satisfies conservation laws, and thus its

performance space is an extended polymatroid (see Bertsimas et. al. [9]).

More interestingly, consider the auxiliary variables

zji = E[Xj(rk)Ni(rk)], i,j E E,

Let z stand for the R(R + 1)-dimensional vector with components zij. Notice that zji = 0 if and only

if Ni(rk) > 0 implies Xj(Tk) = 0; that is, if and only if class i has priority over class j. In particular, a

policy is nonidling if and only if zoi = 0 for all i # 0.

Then by applying the nonparametric method we obtain

Theorem 10 The achievable space (n + , z) for the undiscounted branching bandit problem is exactly the

polyhedron
R R

pE[(Nji - ji) 2] + 2 zjiE[Nji - ji] = 0, i E E,
j=o j=o

R R R

zjrE[Nj - Sjr] + EzjrE[Njr - j] + E pjE[(Njr - ejr)(Nj, - j,'] = 0, r,r' E E.
j=o j=o j=0

n+ =z ji, i E E,
jEE

n, zij > 0.

Notice that the previous characterization involves only a quadratic number of constraints at the

expense of a quadratic number of new variables. Having characterized the performance space at service

completions Bertsimas et. al. [9] show how to pass to the performance space at arbitrary times. The

extended polymatroid that results is identical with the one obtained in Section 2. A characterization

corresponding to Theorem 10 is obtained as well.
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5.3 Extensions: Routing and Closed Networks

In this section we briefly describe several generalizations to the methods introduced in the previous

section. In particular, we treat networks where routing is subject to optimization and closed networks.

Routing and Sequencing

The framework and the notation is exactly as in Section 5.1. Instead of the routing probabilities p,,

being given, we control whether a customer of class r becomes a customer of class r'. For this reason,

we introduce Pr,,r' (k) to denote the probability (which is under our control) that class r becomes r' at

time rk+, given that we had a class r service completion at time rk+l. For each class r, we are given

a set F, of classes to which a class r customer can be routed to. (If F, is a singleton for every r, the

problem is reduced to the class with no routing decisions allowed.)

The procedure for obtaining the approximate achievable region is similar to the proof of Theorem 8

except that the constants p,, are replaced by the random variables p,s(-rk) in the main recursion. We

also need to define some additional variables. Similarly with equations (50) and (51), these variables will

be expectations of certain products of certain random variables; the routing random variables pr,'(k)

will also appear in such products.

An important difference from open networks is that the application of the nonparametric method

to R(t) also yields the traffic equations for the network; these traffic equations are now part of the

characterization of the achievable region because they involve expectations of the decision variables

prr,(-k), whereas in Section 5.1 they involved the constants p,,. Application of the method to R2 (t)

provides more equations that with some definitional relations between variables, similar to (54), complete

the characterization.

Closed Networks

Consider a closed multiclass queueing network with N single server stations (nodes) and R different

job classes. There are K customers always present in the closed network. We use the same notation

as for open networks except that there are no external arrivals (o = 0) and the probability that a

customer exits the network is equal to zero (pro = 0). We do not allow routing decisions, although

routing decisions can be included in a manner similar to the case of open networks.

As in open networks, we only consider sequencing decisions and policies satisfying Assumption A(a);

Assumption A(b) is automatically satisfied. We seek to maximize the weighted throughput

R

r=l

where A, = ItE[1 B,(7rk)}] is the throughput of class r. The derivation of the approximate achievable

region is routine and we omit the details.

Although we presented the method for systems with Poisson arrivals and exponential service time

distributions, the method can be easily extended to systems with phase-type distributions by introducing

additional variables. Moreover, one can use the method to derive bounds on the performance of particular
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policies. This is done by introducing additional constraints that capture as many features of a particular

policy as possible.

5.4 Higher Order Interactions and Nonlinear Characterizations

The methodology developed so far leads to a polyhedral set that contains the achievable region and takes

into account pairwise interactions among classes in the network. We can extend the methodology and

its power as follows:

1. We take into account higher order interactions among various classes by extending the potential

function technique developed thus far.

2. We obtain nonlinear characterizations of the achievable region in a systematic way by using ideas

from the powerful methodology of semidefinite programming.

In particular, we show how to construct a sequence of progressively more complicated nonlinear

approximations (relaxations) which are progressively closer to the exact achievable space.

Higher Order Interactions

The results so far have made use of the function R(t) = ER=l f(r)n(t) and were based essentially

on the equation

E[E[R2 (rk+l) I n(mr)]] = E[R2(k)I.

By its nature, this method takes into account only pairwise interactions among the various classes. For

example, the nonparametric method introduces variables E[l{Br(rk)}nj(r)], taking into account the

interaction of classes r and j.

We now describe a generalization that aims at capturing higher order interactions. Consider again an

open queueing network of the form described in Section 5.1, where there are no routing decisions to be

made. We apply the nonparametric method by deriving an expression for E[R3 (rk+l) n(rk)] and then

collecting terms; alternatively, we can use test functions g(n(t)) = nr(t)nj(t)nk(t). (We need to modify

Assumption A(b) and assume that E[na(t)] < oo.) In addition to the variables Irj = E[l{Br(rk)}nj(Tk)],

we introduce some new variables, namely,

Hrjk = E[1{Br(rk)}nj(rk)nk(k)] (61)

and

Mjk = E[nj(rk)nk(rk)]

The recursion for E[R3 (rk+ ) n(rk)] leads to a set of linear constraints involving the variables {((nr, Irj, HTjk, Mjk)

The new variables we introduced take into account interactions among three customer classes and

we expect that they lead to tighter constraints. Another advantage of this methodology is that we can
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now obtain lower bounds for more general objective functions involving the variances of the number of

customers of class r, since the variables Mjj = E[n2(rk)] are now in the augmented space.

Naturally, we can continue with this idea and apply the nonparametric method to E[Ri(-rk+l) I n(rk)]

for i > 4. In this way, we take into account interactions among i classes in the system. There is an

obvious tradeoff between accuracy and tractability in this approach. If we denote by Pi the set obtained

by applying the nonparametric method to E[Ri(rk+j) I n(rk)], the approximate performance region that

takes into account interactions of up to order i is nl=1PP. The dimension of this set and the number of

constraints is O(Ri), which even for moderate i can be prohibitively large.

The explicit derivation of the resulting constraints is conceptually very simple but is algebraically

involved and does not yield any additional insights. In fact this derivation is not hard to automate.

Bertsimas et. al [8] have used the symbolic manipulation program Maple to write down the recursion

for E[Ri(T-k+l) I n(rk)], and generate equality constraints by collecting the coefficients of each monomial

in the f-parameters.

Nonlinear Interactions

From higher order interactions we find linear equalities on joint moments of the type

sU1, -. JR) = Enl (rk)...-nR (k)J.

Clearly these quanitities are related. We next outline that their relation can be captured with the

condition that a certain matrix is positive semidefinite. The general problem is as follows:

Under what conditions the numbers s(j 1, J,R) represent the joint moments E[Y" ... YAR], where

Y1 ,..., YR is a collection of random variables?

We consider the vector

Y = (1, Yl n,, a Y1th Y2m , e Y1gYR, Y2, Y2Y3, ... Y2YR, ... ,YRe, Y,- - )o,

in which we include all the monomials of degree 1, 2,.... If the numbers sj,...jR) represent joint

moments, then there exists a joint density f(.) such that

s(j l, j , jR) = 1 ' ..R .$f(Yl, .. .,YR)dy ... dyR-

We consider the matrix

Z(y) = yy'.

Clearly the matrix Z(y) is symmetric and positive semidefinite. Therefore, the matrix

Z = f Z(y)f(y)dy

is also symmetric positive semidefinite. Notice that the entries of the matrix Z are the numbers

s(jl,...,jR). Therefore, a linking constraints for the variables s(, ... ,jR) is that the matrix Z is

symmetric and positive semidefinite. Clearly these are necessary conditions. If one is only given
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s(i,j) = E[YiYj], the condition that the matrix Z is semidefinite corresponds exactly to the require-

ment that the covariance matrix is semidefinite.

In summary we can strengthen the bounds we obtain from linear relaxations, by obtaining linear

constraints on higher order moments and adding the constraint that the matrix Z is symmetric positive

semidefinite. This is an instance of a positive semidefinite optimization problem that can be solved

efficiently.

5.5 Performance of the bounds

In this section we summarize the principal insights form the extensive computational results reported in

Bertsimas et. al. [8] regarding the performance of these methods:

1. The lower bound obtained by the nonparametric variation of the method is at least as good as the

lower bound obtained by the parametric method as expected. In fact in more involved networks

it is strictly better. The reason is that the nonparametric method takes better into account the

interactions among various classes.

2. The strength of the lower bounds obtained by the potential function method is comparable to the

strength of the "pathwise bound" derived in Ou and Wein [42].

3. The bounds are very good in imbalanced traffic conditions and the strength of the bounds increases

with the traffic intensity. A plausible explanation is that in imbalanced conditions the behavior

of the system is dominated by a single bottleneck station and for single station systems we know

that the bounds are exact.

4. In balanced traffic conditions, the bounds also behave well, especially when the traffic intensity is

not very close to one.

5. In certain routing examples, the method is asymptotically exact (as p -- 1), which is very encour-

aging.

6. In closed network examples, the bounds were extremely tight.

7. When applied to indexable systems considered in Section 2 the parametric variation of the method

produces the exact performance region (extended polymatroid), while the nonparametric variation

leads to a reformulation of the achievable region with a quadratic (as opposed to exponential)

number of constraints. This is particularly important when side constraints are present, because

we can now apply linear programming methods on a polynomial size formulation of the problem.

The techniques in this section are generalizable to an arbitrary stochastic control problem as follows:

1. Given a stochastic control problem, first write the equations that describe the evolution of the

system (see for example (57)).
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2. Define a potential function of the type (60) and apply the nonparametric variation of the method.

3. By defining appropriate auxiliary variables, find a relaxation of the achievable region.

4. By exploring higher order interactions, obtain stronger relaxations.

Overall, the power of the method stems from the fact that it takes into account higher order interactions

among various classes. The first order method is as powerful as conservation laws since it leads to exact

characterizations in indexable systems. As such, this approach can be seen as the natural extension of

conservation laws.

6 Loss networks

In this section we consider the problem of routing calls/messages in a telephone/communication network.

The important difference with the problem of the previous section is that this is a loss network, in the

sense that calls that can not be routed are lost as opposed to being queued. Because of its importance

the problem has attracted the attention of many researchers (for a comprehensive review see Kelly [32]).

We will describe the problem in terms of a telephone network, which is represented by a directed

graph G = (V, A) with N = IVI nodes and N(N - 1) ordered pairs of nodes (i,j). Calls of type (i,j)

need to be routed from node i to node j and carry a reward w(i, j). Arriving calls of type (i, j) may be

routed either directly on link (i,j) or on a route r E R(i,j) (a path in G), where R(i,j) is the set of

alternative routes for calls of type (i, j). Let Cij be the capacity of the direct link (i, j) (Cij = 0 if the

link (i,j) is missing). Let S(i,j) = {(i,j)} U R(i,j) be the set of routes for calls of type (i,j). When a

call of type (i, j) arrives at node i, it can be routed through r only if there is at least one free circuit

on each link of the route. If it is accepted, it generates a revenue of w(i,j) and simultaneously holds

one circuit on each link of the route r for the holding period of the call. Incoming calls of type (i,j)

arrive at the network according to a Poisson process of rate Aij, while its holding period is assumed to

be exponentially distributed with rate ij and independent of earlier arrivals and holding times. The

problem is to find an acceptance/rejection policy to maximize the total expected reward in steady state.

Our goal in this section is to illustrate that modeling the problem as a MDP and aggregating the state

space leads to an upper bound on the expected reward and near optimal policies. We report results

obtained in Bertsimas and Cryssikou [5]. Kelly [33] has developed an approach based on nonlinear

optimization to obtain bounds. We illustrate the methodology first for the case of one link and two

classes of arriving calls and then for a network.

Single Link

Consider a single link of capacity C, which is offered two different types of calls. Let A1 and A2 be the

arrival rates, l and 2 be the service rates and wl and w2 be the reward generated by acceptance of
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a type 1 and 2 call, respectively. We are interested in maximizing the expected reward 21 wiE[ni],

where ni is the number of calls of type i in steady-state.

We can formulate the problem exactly as a MDP (see Heyman and Sobel [29], p. 183) by introducing

2C variables

xij = P{A1 = 1 nl = i,n 2 = j}, ij = P{A2 = n = i,n2 = j,

where Ar is the decision (1, O0) of whether a call of type r is accepted (rejected) respectively. The balance

equations lead to a formulation of the problem as a linear programming problem in the variables xij, yij.

The optimal solution of this linear program completely specifies the optimal policy. In contrast Kelly

[33] uses dynamic programming to solve the single lifik problem optimally.

Network

Let n.j be the number of calls of type (i, j) routed through path r E S(i, j) in steady-state. We consider

Markovian policies, in the sense that a decision is only based on the current state. Let Aij denote the

(0, 1) decision of whether an incoming call (i, j) is routed through route r E S(i,j). We can model the

problem as an MDP in an exponential state-space. Instead we will consider relaxations of the exact

MDP.

Analogously to the ideas we introduced in Section 3 on restless bandits we introduce a first order

relaxation by introducing the variables

P(Aj; = 11 n = 1 = l}

and a second order relaxation of the MDP by introducing the variables

P{Aj= II n = 1, nf = k}.

Notice that the second order relaxation for the single link case is exact. Both relaxations lead to linear

programming problems that give an upper bound on the maximum reward.

Kelly [33] considers a nonlinear relaxation using the variables

2ij= E[n", !ij = y E E nrj%]-
r$(ij)

In terms of the strength of the relaxation Bertsimas and Cryssikou [5] report that for symmetric networks

and symmetric data the second order relaxation and the relaxation of Kelly [33] are close, while under

asymmetry either in the topology or the data, the second relaxation is stronger.

We next outline how we can define heuristic policies from these relaxations. An optimal policy

should specify the probability of accepting a call through a particular route given the number of calls

in each link. Given that the relaxations only compute P{Ar = 11 nPq = 1} ( the first order relaxation)

or P{Aj = 11 npq = 1, n = k} (the second order relaxation), we can propose an approximation as

follows. From the first or second order relaxation we accept a call of type (i, j) through route r with
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probability P{Aj = 11 nj = 1}, i.e., we use only limited information from the relaxations. In several

computational experiments Bertsimas and Cryssikou [5] report that this policy behaves within 0 - 3%

from the upper bound. In other words, both the bound and the policyare nearly optimal.

7 Limitations of the proposed approach

The strategy we have presented through examples to obtain bounds and policies for stochastic control

problems consists of the following steps:

1. We first define appropriate decision variables.

2. Using the potential function method or using particular properties of the control problem we

generate a relaxation (or a series of relaxations) of the achievable space.

3. If the relaxation is exact we have found an exact solution of the problem (for example indexable

systems). If not, optimizing over the relaxation we obtain a bound on the achievable performance.

4. By using information from the bounds we construct near optimal policies (for example restless

bandits, polling systems and loss networks) using linear and integer programming.

Two questions that naturally arise:

1. Having solved the relaxation of the stochastic control problem, how does one construct policies?

2. Can we explicitly characterize the achievable space of the stochastic control problem or are there

limitations to our ability to describe the achievable region?

The answer to the first question is not yet complete. For restless bandits, polling systems and loss

networks we proposed empirically effective heuristics from the relaxations, but the heuristics were some-

what ad hoc. For queueing networks we did not propose policies. Avram, Bertsimas and Ricard [2]

formulate optimization models for fluid models of multiclass networks and using the maximum principle

and infinite linear programming duality find optimum threshold policies that can then be simulated for

the queueing network control problem.

Regarding the second question, complexity theory-provides insights to our ability to fully characterize

the achievable region. There was an important distinction among the stochastic control problems we

addressed. While indexable systems are solvable very efficiently by an essentially greedy method (an

indexing rule), the research community has had significant difficulties with the other problem classes. It

is fair to say that there do not exist general methods that solve large scale versions of these problems

efficiently. One naturally wonders whether these problems are inherently hard or we could perhaps solve

them if we understand them at a deeper level.
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The following brief discussion is informal with the goal of explaining the fundamental distinction

in complexity of these problems (for formal definitions see Papadimitriou [44]). Let , PSPAC£,

£XPTZME be the class of problems solvable by a computer (a Turing machine) in polynomial time,

polynomial space (memory) and exponential time respectively. Let AP the class of problems which,

if given a polynomial size certificate for the problem, we can check in polynomial time whether the

certificate is valid. A significant tool to assess the difficulty of a problem is the notion of hardness.

For example if we show that a problem is £XPTZM£-hard, it means that it provably does not have

a polynomial (efficient) algorithm for its solution, since we know that £XPTSIMrZ P. If we prove

that a problem is PSPAC£-hard it means that if we find a polynomial algorithm for the problem,

then all problems in PSPAC£ have efficient algorithm. It is widely believed (but not yet proven) that

PSPAC£ 7 P; therefore, proving that a problem is PSPACE£-hard is a very strong indication (but not

yet a proof) of the inherent hardness of the problem.

Papadimitriou and Tsitsiklis [45] have recently shown that the multiclass queueing network problem

is EXPTZME-hard and the restless bandit problem is PSPACE-hard. It is immediate that the polling

optimization problem is hfP-hard, since it has as a special case the traveling salesman problem. Mod-

ifications of the proof methods in [45] show that the loss network problem is also £XPTZME-hard,

and the polling system problem is PSPACE-hard. Finally, indexable systems have efficient algorithms

and, therefore they belong in the class P. In Figure 3 we summarize this discussion and classify these

problems in terms of their computational complexity: The difficulty the research community has had in

developing efficient methods for the stochastic control problems is a reflection of their complexity.

In view of the complexity of these problems, we won't be able to characterize completely as a convex

region with a polynomial number of variables and constraints the performance space of queueing and

loss networks. Moreover, it is unlikely we would be able to characterize the achievable space for restless

bandits and polling systems.

8 Open Problems

Our previous discussion left open the following questions:

1. Find a systematic technique to propose policies from relaxations.

2. Develop techniques to bound the closeness of heuristic policies to relaxations. Techniques developed

in the field of approximability of combinatorial problems might be useful here (see for example

Bertsimas and Vohra [11]).

3. Investigate computationally the power of semidefinite relaxations for multiclass queueing networks.

In closing, we hope that the results we reviewed will be of interest to applied probabilists, as they

provide new interpretations, proofs, algorithms, insights and connections to important problems in
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EXPTIME

Figure 3: Classification of the complexity of the stochastic control problems we addressed.

stochastic control, as well as to mathematical optimizers, since they reveal a new and important area of

application.
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