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I. Introduction

The neoclassical theory of capital accumulation and growth under

certainty for both positive and optimal savings functions has received extensive

study in the literature for almost two decades. However, the study of cap-

ital accumualation under uncertainty began much later and these analyses for

the most part confined themselves to linear technologies. In his pioneering

work, Phelps 19 , and later, Levhari and SrinivSisan [ 10 and Hahn [ 5 ,

examine the optimal consumption-saving decision under uncertainty with a

given linear production technology. Hakansson [ 6 , Leland 9 1,

and Samuelson [ 21 in discrete time and Merton [ 12 , 13 in continuous

time, along with a host of other authors, have studied the combined

consumption-saving-portfolio problem where the production functions are linear,

but where there is a choice among alternative technologies.

There have been a few notable exceptions to this concentration on

linear technologies. In a seminal paper, Mirrlees [ 17 tackled tne stochastic

Ramsey problem in a continuous-time neoclassical one-sector model subject to

uncertainty about technical progress. Later, in [ 18 ], he expanded his analysis

to other types of technologies. Mirman [ 16 for positive savings functions

and Brock and Mirman 1 for optimal savings functions, using a discrete-

time, neoclassical one-sector model, proved the existence, uniquentlss, and

stability of a steady-state (or asymptotic) distribution for the capital-labor
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ratio. These steady-state distributions are the natural generalizations

under uncertainty to the golden-age-golden-rule levels of the capital-labor

ratio as deduced in the certainty case. While these papers are important

contributions with respect to existence and uniqueness, they have liLtle to

say about the specific structure of these asymptotic distributions or about

the biases (in an expected-value sense) induced by assuming a certainty

model when, in fact, outcomes are uncertain.

The basic model used in this paper is a one-sector neoclassical

growth model of the Solow-type where the dynamics of the capital-labor

ratio can be describea by a diffusion-type stochastic process. he particular

source of uncertainty chosen is the population size although the analysis

would be equally applicable to technological or other sources of uncertainties.

The first part of the paper analyzes the stochastic processes and asymptotic

distributions for various economic variables, for an exogeneously-given

savings function, and deduces a number of first-moment relationships which

will obtain in the steady-state. In addition, the special case of a Cobb-

Douglas production function with a constant savings function is examined in

detail and the steady-state distributions for the capital-labor ratio, interest

rate, etc. are derived. The second part investigates the stochastic Ramsey

problem and a correspondence between this problem and an auxiliary problem

involving the steady-state distribution only is derived which generalizes

the notion of minimizing divergence from Bliss to te stochastic case.

II. The Model

We assume an one-sector neoclassical model with a constant returns to

scale, strictly concave production function, F[K,L], where K(t) denotes the

capital stock and L(t) denotes the
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labor force which is assumed to e proportional to the population size. The

capital accumulation equation can be written as

K(t) = F[K(t), L(t)] - XK(t) - C(t) (2)

where X is the rate ot depreciation (assumeu to be non-negative and constant)

and C(t) is aggregate consuption.

Tne source of uncertainty in the model is the population size, L(t).

A reasonable stochastic process for the population dynamics can be deduced

from a simple branching process for population growth. Let h denote the

length of time between generations" and Xi(t + h) denote tne random variable

th
number of offspring (net of deaths) for the i- person alive at time t. It

is assumed that the expected number of offspring (net of deaths) per person

per unit time, n, is a constant and the same for all individuals in every gen-

eration. It is also assumed that the random variable deviation from the

mean can be written as the sum of two independent components: (1) a "systematic

component, on (t;h ), reflecting random effects common to all individuals

at a given point in time t such as changes in social mores and tastes with

respect to child-bearing, natural disaster, wide-spread disease, discovery of

2/
a "wonder" drug, national economic conditions, etc. -- This component is

assumed to be independently and identically distributed over time.3/ (2) a

"non-systematic" component, vici (t;h), reflects random effects specialized

th t4/
to the i- person alive at time t.-

This assumed process can be formally described by a conditional

stochastic equation for Xi (t + h), conditional on L(t) = L: namely,
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Xi (t + h) nh + rl (t:h) + VIff (t;h), i = , 2, . , L (2)

where n, , and v i are constants; Et () = Et (i) - O; Et ( =
2 ) = Et (ci) = h;

t ( i) = 0 = Et (eij), i # j; Et[n (t;h) n(t + kh;h)] = 0,

k = 1, 2, . and "Et" is the conditional expectation operator,

conditional on knowledge of all relevant) events which have occurred as of time t.

1o obtain a stochastic difference equation for the population size,

note that L(t + h) - L(t) = EXI (t + h), and hence, by summing equation (2)

from i = 1 to L, we have that

L(t + h) - L(t) = nLh + Ln(t;h) + vliC (t;h) (3)

conditional on L(t) - L. From (3), the conditional expected change in pop-

ulation can be written as

E L(t + h) - L(t)I L(t) = L] = nLh (4)
t

and the conditional variance as

Var[L(t + h) - L(t)I L(t) = L] 2 [12L2 + (1, Zvi) L]h (5)
L i

If the vi are bounded and approximately the same size, then v4/L = 0(1)

(e.g., if vi = v, then vI / L = v2). Hence, for large populations (L>>])

and Cr2 > 0, one can reasonably neglect the contribution of the "non-systematic"

components to total population variance, ana simplify the analysis by

approximating (5) with

Var[L(t + h) - L(t)I L(t) = Ll] A 2L2h (6)

________�___1______1__��_ �1�1�� I_
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Because the major goal of the paper is to develop additional

properties of the steady-state distribution beyond those of existence and

uniqueness, we choose to work in continous time and restructure the discrete

time stochastic process for population size as a diffusion process.-- The

"surrogate" random variable for population size generated by the diffusion

process approximation to (3) has a continuous density function on the non-

negative real line, and its sample path over time will be continous with pro-

bability one. Hence, for it to be a reasonable description of the population

dynamics, the population size must be large enough to ignore the inherent dis-

creteness of the birth-death process and large enough to justify the continuity

assumption for changes over time. In addition, the approximation becomes

more accurate for large values of the time variable, t, when compared with

the interval between successive transitions, h. This is particularly important

because we are primarily interested in the steady-state distribution where

t = 

The procedure of approximating discrete time processes by diffusion

processes is useful because the mathematical methods associated with a con-

tinuum generally lend themselves more easily to analytical treatment thaw

those associated with discrete processes. In addition, there is a large body

of theory developed for the analysis of diffusion processes.

Apart from boundary conditions, the transition probabilities for

a diffusion process are completely determined by a functional description of

its instantaneous (infinitesmal), conditional mean and variance, 6/ and

hence, equations (4) and (6) are sufficient specifications to determine the

appropriate "surrogate" diffusion process.

Although the diffusion sample path Is conrinout, t is not differertlnhle.

Therefore, differential equations with standard time derivatives cannot be used
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to describe the dynamics. However, there is a generalized theory of

stochastic differential equations developed by Ito and McKean 7/

which is applicable to diffusion processes. In particular, the surrogate

population dynamics corresponding to the discrete model described in (3)

can be written as

dL = nLdt + cLdz (7)

where dz stands for a Wiener process and nL and o2L2 are the instantaneous

mean and variance per unit time, respectively. Using Ito's Lemma

equation (7) can be integrated, and by inspection, the random variable

L(t) / L(0) will have a log-normal distribution with

E {log [L(t) / L(O) } = (n)t (8.a)

and

Var{log [L(t) / L(0)]} = o2t (8.b)

Having established a valid continous time formulation for the

population dynamics, we now determine the dynamics for capital accumulation.

As in the certainty model, the dynamics can be reduced to a one-dimensional

process by working in intensive (per capita) variables. Define

k(t) E K(t)/L(t), capital-labor ratio

c(t) - C(t)/L(t), per capita consumption

f(k) - F(K,L)/L = F(K/L, 1), per capita (gross) output

s(k) - 1 - c/f(k), (gross) savings per unit output

�1Y�I���
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Because smooth functional transformations of diffusion processes are diffusion

processes, the dynamics for k will be a diffusion process whose stochastic

9/differential equation representation can be written as -9

dk = b(k) dt - a(k) dz (9)

where b(k) - [s(k)f(k) - (n + - 2)kl is the instantaneous expected change

in k per unit time and a(k) - o 2k2 is the instantaneous variance. Hence, the

accumulation equation in per capita units follows a diffusion process and

the transition probabilities for k(t) are completely determined by the functions

b(k) and a(k).

Before going on to analyze the distributional characteristics of

k, it is important to distinguish between the stochastic process for k anu

the one for K. While the sample path for k is not differentiable, the sample

path for K is. Since at a point in time, t, both K(t) and L(t) are known,

output at that time, F(K,L), is known, and from (1), K is a well-defined

time derivative which is locally certain. Hence, competitive factor shares

are a well-defined and the same as in the certainty model. Namely, the

interest rate, r, and the wage rate, w, satisfy

r = f'(k) (10a)

and

w = f(k) - kf'(k) (10b)

Thus, unlike in the portfolio models, there is no "current" uncertainty,

but only future" uncertainty, and the returns to capital (and labor)

over the next "period" (instant) are known with certainty. The returns to

I11I_________��1_I__�--XI--.--l- -i.il�_-��� -- _-_
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capital would be viewed by an investor as more like those obtained by

continually reinvesting in very) short-term bonds (i.e., "rolling-over shorts")

when the future interest rates are stochastic than those obtained by investing

in common stocks with end-of-"period" price uncertainty.

III. The Steady-State Distribution for k

Just as in the certainty model where the existence and quantitive

properties of the steady-state economy can be examined, so one can do so for

the uncertainty model. However, instead of there being a unique point, k,

in the steady-state, there is a unique distribution for k which is time and

initial condition independent and toward which the stochastic process for k

tends. As suci it is the natural generalization of the certainty case which is

included as a limiting case whenL dispersion tends to zero.

Since existence and uniqueness properties are not the major goals

of the paper, we assume throughout the paper that the following set of suff-

icient conditions for existence are satisfied: (1) f(k) is concave and

satisfies the nada conditions; (2) s(k) > 0 for all k k, for some positive

k; (3, n + -- 2 > 011/

As discussed in the previous section, the stochastic process for k

is completely determined by the functions b(k) and a(k) which in turn

depend upon the particular production function and saving rule. However,

it is possible to deduce a general functional representation for the steady-

state probability distribution. Let Tk ( ) be the steady-state density

function for the capital-labor ratio. As is deduced in Appendix B, Tk( )

will satisfy
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7k(k) = (k) exp [ 2b() dx] (11)
a ex a (x)

where m is a constant chosen so that K 7k (x) dx = 1.

Substituting for b(k) and a(k) from (9) into (11), we can rewrite (11) as

; -2(n+X)
Wk(k) = mk 4 2 fk s(x)t(x) (12)

exp[ -~ z dX (12)

While equation (12) does show that the determination of the steady-state

distribution reduces to one or "mere" quadrature, little more can be said

about k ( ) directly without further specifying the function s( )f( ).

However, without further specification of this function, one can deduce

certain moment relationships which must obtain in the steady-state.

If g(k) is a "well-behaved" function -/ of k and "E" is the

expectation operator over he steady-state distribution for k, then

E{g'(k)[s(k)f(k) - (n + X - j2)kj+ 2- g''(k)k2} = 0. (13)

The proof for (13) can be found in Appendix C.

Armed with (13), one can deduce a number of steady-state moment

equalities among a variety of interesting economic relationships by simply choosing

the appropriate function for g( ). For example, for g(k) = k, we have that

E(S(k)f(k)] = (n + X - '2) E[k], (14)

and if s(k) = s, a positive constant, then

E[f(k)] = (n+X- 2) E[k] (14')
s

For g(k) = log(k), we have that

E[ s(k)f(k) n + X 2 (15)
k 2

= vi + X,

I ___________1____1________s__^l__ll~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~l~~~l ~ ~ ~ ~ _I_________~~~~~~~--
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and if s(k) = s, then

E[ f(k)] = X (15')
k s

The reader can try other forms for g( ) and deduce still more relationships.

IV. The Cobb-Douglas/Constant Savings Function Economy

There is a specific functional form for s( )f( ) of no little

interest where the steady-state distributions for all economic variables can

be solved for in closed form. If it is assumed that the production function

is Cobb-Douglas, f(k) = k, 0 < a < 1, and that gross savings is a constant

traction of output-3/ (s is a constant, 0 < s < 1), then by substituting

the particular functioual form in (12) and integrating, we have that irk

will satisfy

-2 (n+ X)

k (k) -im k exp[ (( 16)

While the constant, m, could be determined by direct integration, it will

throw light on the whole analysis to compute it in an indirect way. If

R -k - 1, the output-to-capital ratio and rR (R) is its steady-state density

function, then, from (16),

(R) = k (k) / (17)

m- e -bR= m R e
(1-cr)

where y - [2(1+ )/(l - )a2] > 0 and b [2s/(l - )cr2] > 0. By inspection,

14/R has a gamma distributiorr-- , and therefore, m must satisfy

m = (1 - a) bY / r ()

--- �-- ~-�~--I----��' -- _1�_1�.-��1_--·--. .-̂----. -1.111_�·_ --_·^�-�-

(18)
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where F( ) is the gamma function. Because R has a gamma distribution, we

have that the moment-generating function for R is

6R
0 [0] Ee } (19)

= 1 ] Y

and for non-integral or negative moments, we have that

m [ e ] - E{R} (20)

r (e+y) b-
r (y)

for 0 > -y. The density functions and moments of the distributions for all

the economic variables can be deduced from equations (17)-(20), and the more

important ones are summarized in Table I.

Since most of the literature on growth models have neglected uncer-

tainty, it is useful to know whether the steady-state solutions obtained in

these analyses are unbiased estimates of the first-moments of the corresponding

steady-state distributions. Unfortunately, the certainty estimates are

biased as is illustrated in Table II using the closed-form solutions of this

section. In particular, the certainty estimates for expected per capita

consumption, output, and capital are too small while the estimates for the

output-capital ratio and the interest rate are too large. These results

suggest that care must be taken in using the certainty analysis even as a

first-moment approximation theory.

In this and previous sections, it has been shown that by working in

continuous time and modeling the stochastic dynamics with diffusion processes,

a number of important properties of the steady-state distributions in addition



Table I.

Steady-State Probability Distributions

2s
b - 2s

(l-i) oz

1
2 (ny-.a 2 ) 2(,+ A)

- (-a)a (-a)

Ir

Capital/Labor Ratio

(1-a)
a

(k K/L)

Density Function:

nk (k) = 0

(1-ac br
r (y)

-2 (n+X)

k -7 exp[-bk-ll

Moment-Generating Function: 0

Ik l0] - E{k } = ] [b]k FLY]~~

Per Capita Output (y f(k) = k )

Density Function:

Iy(y) = 0

nb y-(n+l) exp [-by ]

Moment-Generating Function:

, < (-oa)y

,k< 0

, k> 0

6

< nyI [el = Ely [ = E{y } r[ [-b/ l[6 rl] [bl

,k< 0O

k > O



Table I. (continued)

Output/Capital Ratio (R = f(k)/k = k 1)

Density Function:

iR(R) - 0 , R< 

by R - 1 exp[-bR] R > 

Moment-Generating Function-

[e] R= Ir(R+- [b] 0
R F(y)

0R[0] = E{eOR} = (1 -

Interest Rate (r = f'(k) = aka -l)

Density Function:

T (r) = O , r < 0

(b/ot) '~ r
(b)Y r-l exp[ -I , r > 0
I'(y) r

Moment-Generating Function:

0 T'(Y+O) -
r [0] = (r } = ) [ ]

rB,[el]~ ~~~~ = - Y( 0[0] = Efere} = ( 0-r (--
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to existence and uniqueness can be determined. In the special case of this

section, a complete analytical descr1ption was possinle. Even in those cases

where closed-form solutions are not deducible, powerful numerical integration

techniques are available for solution of the parabolic partial differential

equations satisfied by the transition probabilities and moment-generating

functions. Hence, both simulation and estimation of the model are feasible.

While the analysis presented assumed uncertain population size, the approach

extends itself in a straightforward fashion to a variety of other specifications.

For example, Mirrlees [17 ] has labor-augmenting technical progress as the

source of uncertainty in his model where the (future) level of technical

progress is log-normally distributed. The analysis presented here would be

identical for his model where the intensive variables are in efficiency ratler

than per capita units.

There are partial difrerentia: equations for multi-dimensional

diffusion processes corresponding to the ones for the one-dimensional process

examined here. Hence, multi-sector models with more than one source of un-

certainty can be studied with the same mode of analysis used here.

In addition, these analyses often provide "throw-offs" useful in

other areas of research. For example, in developing a theory for the term

structure of interest rates, It is usually necessary to postulate some process

for the basic short-rate over time. Using tne model of this section, we can

derive an analytical description for the interest rate process. Since r

Ot-1
( a ak ) is a smooth, monotone function of k, the interest rate dynamics

will itself be generatea by a diffusion process. From (9) and Ito's Lemma,

we can deduce the form for the stochastic differential equation for r to be

�·____X______ ______I��_II�
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dr = (Ar - Br2) dt + vrdz (21)

wher

A 5 (1 - a)(n + y - 2 2) > 0 (22)

B - (1 - t)s/o

2 - (1 - a))22

Using Ito's Lemnma again, we can stochastically integrate (21) to obtain an

expression tor the random variable r(t), conditional on r(o) ro, in terms

of random variables with known distributions: namely,

r(t) = (rexp[(A-lv2)t + vZ(t)]) / (1 + r Bftexp[(A- v )s+vZ(s)]ds) (23)

where Z(t) - ft dz is a gaussian distributed random variable with a zero mean

and E{Z(s)Z(s')} = min (s, s'). By inspection of (23), /r(c) is equal

to a weighted integral of log-normally-distributed random variables. Since

it has already been shown that r(t) has a gamma distribution as t - t, we

have as a curious side-result that the distribution of an infinite integral

of Log-Normal variates is inverse gamma.

�I__LI_ I �---_-�-� -*---�---X-__-_-l.__-��-^---- -----
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V. The Stochastic Ramsey Problem

In the previous sections, an expression for the steady-state dis-

tribution of the capital-labor ratio was determined for an arbitrary savings

function. We now turn to the problem of determining the optimal savings

policy under uncertainty. Formally, the finite-horizon problem is to find

a savings policy, s (k, T-t), so as to

Max E {fT U[(1 - s)f(k)] dt+ (24)
O O

subject to k(T) > 0 with probability one and where U[ ] is a strictly concave,

von Neumann-Morgensten utility function of per capita consumption for the

representative man. The technique used to solve the problem is stochastic

dynamic programming. Let

J[k(t),t;T] - Max Et {it U[( - s)f(k)] dT} (25)

15/
J[ ] is called the Bellman function and by the principle of optimality- 5/ ,

J must satisfy

)J aT 1 2 j0 = Max U[(l-s)f(k)] + + [sf-k] + -2 2k2} (26)
iat 2 s}

where the stochastic process for k satisfies (9) and -= (n + X - Cr2) > 0.

The first-order condition to be satisfied by the optimal policy s is

U'[( - s )f] = J (27)

where U'[c] - du To solve for s (in principle), one solves (27) for sdc

as a function of k, T-t, and J/3k and substitutes into (26) which becomes

a partial differential equation for J. Having solved this equation, one sub-

stitutes back into 27) to determine s as a unction of k and T-t.

-~~~~~" ^1 1~--'-~-- ~.
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because of the non-linearity of tne Bellman partial differential

equation, closed-form solutions are rare. However, in the limiting infinite-

horizon (T + ) case of Ramsey, the analysis is substantially simplified

because this partial differential equation reduces to an ordinary differential

equation. Since the stochastic process for is time-homogeneous and U[ i

is not a function of t, we have from (25) that

,aJ = -Et{U[(l-s*[k,T-t]) f[k(T - t)]} t28)
Dt t

16/
If an optimal policy exists- , f( ) satisfies the Inada conditions,

* * k
and > 0, then lim s (k, T-t) = s (k,° °) = s (k), and from the analysis

T-o
in the previous sections, there will exist a steady-state distribution for

k, ik, associated with the optimal policy s *(k). Taking the limit in (28),

we have that

lim ( ) -E {U[(1 - s ) f(k)]} (29)

-B,

where E is the expectation operator over the steady-state distribution

rk and B is the level of expected utility of per capita consumption in the

Ramsey-optimal steady-state which is independent of the initial condition,

k(t).

From the Bellman equation, (26), and (29), we have that, as

T -+ , J must satisty the ordinary differential equation

0 = U[(1 - s )f] - B + J'[s f - k] + J'' o2k2 (30)

where primes denote derivatives with respect to k. By differentiating the

first-order condition (27) with respect to k, we have that
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* * ds
3J ' = U''[(1 - s )f(k)] [(1 - s ) f'(k) - f (k)] (31)

substituting for J"'' and J' from (27) and (31) into (30) and rearranging

terms, we can rewrite (30) as

0 -1 a 2k2fU' ) dS + (fU' - 2 1 2 '° 2 ' dk + - 2 l s+ k2U f' - Uk+U-B (32)

which is a first-order differential equation for s . Note that for the

(degenerate) case of certainty (02 = 0), (32) reduces to

( f - k) = U' (32')

which is "Ramsey's Rule" where B is the "bliss level" of utility associated

with maximum steady-state consumption and k (s*f - Sk) along the optimal

certainty path.

In the certainty case and without regard to the time-optimal path

associated with max Of U[c]dt, the optimal steady-state capital-labor ratio

can be determined by the static maximization of U[c(k)] in the seady-state

(i.e., with k = 0). the solution for all strictly concave utility functions

is the well-known Golden Rule, f'(k ) = 3. Hence, it is natural to ask

whether there exists a corresponding method using only the steady-state dis-

tribution for determining the optimal savings policy under uncertainty.

To answer this question, we consider the problem of tindlng the

savings policy, s (k), that maximizes the expected utility of per capita

consumption over the steady-state distribution. I.e.,

Max E {U[(1 - s) f(k)]} = Max fo U[( - s)f(k)] k(k) dk (33)
{s} {s} o

which is the natural generalization to uncertainty of the static -aximiza-

tion under certainty.

__1���_____________1_11_1 __��__1�1
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From equation (12), we can rewrite the steady-state density

function for k as

ak(k) = mk - 6 exp [ 2 h(k)]k .cr

6 E 2 2

h(k) E fk s(x)f(x)x-2 dx

dh -2
h(k) d = s(k)f(k)k

.. d

(34)

(35)

dzh ds -2 , -2 -3
h(k) -dZh m ds fk + sf'k -2 2sfk

2

and m is a constant chosen such that m foo k e dk = 1. Substituting
0

from (34) for rk and noting that from (35), (1 - s)f = f - k2h, we can rewrite

(33) as the constraine maximization problem

2 2
Max {[m U[f- k 26]k-

- h k h
UI0f-k h0k e dk ] + X[1 - m f dk]}0 0

(36)

where X is the usual multiplier for the constraint. Inspection of (36)

shows that formally, it is identical to a standard ntertemporal maximization

problem under certainty where the independent variable is k instead of time.

Hence, either the classical calculus of variations or the maximum principle

can be employed to solve it. The the Euler equations for (36) can be written

as

2 2h
d ,2-6 -h 2 -6

O d [U'k e I + - k edk

O = 0 U Ik(k) dk - X f0J r (k) dk

2 h

= 1 - m k 6 ea dk
0

(U - ) (37a)

(37b)

(37c)

where

in �1_11.1-�-�--�� .··-----���·-�--·��·1-11_-1__11.---�--..
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Carrying out the differentiation in (37a), substituting for h, h, and 6

from (35), and rearranging terms, we can rewrite (7a) as

ds
O + - (U kf) dfs + (- l"k2f' + f')s k2f - D kU'

2
4-+ (U - X) (38)

**
where s (k) is the optimal policy associated with 36) and (37).

A comparison of (38) and (32) shows that the two differential

equations are identical except for the constant terms X and B. However,

from (37b), we see that

A = o U[i - s )f] (k) dk (39>

- Max E {U[c]}

- B, by its definition in (29).

Hence, the optimal policy associated with (36) and the one associated with

** *
(24) for T = " are identical. I.e., s (k) = s (k). Just as in the certainty

case, the criterion Max E {f [U - X] dt} has the interpretation of mini-
o o

mizing the (expected) divergence from bliss and clearly in the certainty case,

X is the utility of maximum substainable consumption. One major difference

in the uncertainty case is that the steady-state maximization gives the

optimal savings policy for all time and not just the asympotitically optimal

savings policy. Further, while we have demonstrated the correspondence

between the two problems only for the special case of continuous-ti.me diffusion

processes, it is probably not a difficult task to prove it for general tme-

homogenous Markov processes and time-independent utility functions,

��1_1_______��__
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Unfortunately, inspection of (38) shows that there is no unique

optimal steady-state distribution for k for all concave utilities correspond-

ing to the Golden Rule under certainty. However, there is a special case

where unanimity obtains.

Suppose f(k) is Cobb-Douglas and we ask the question what constant

savings function is optimal? From the correspondence between 24) with

T oo and (36), the problem can be formulated as choose the constant s

so as to

Max fOO U[(1 - s)kal] (k;s) dk (40)
{s} o

where from (16) and (18)

wT(k;s) = (1 - a) -bOkxp(b -II
r(y) bk exp[-bk 

and 6 is as defined in (35); y - (6 - 1)/(1 - a) and b - 2s/(l - a)c2.

The first-order condition for a maximum in (40) is

o0 - o c asU - k'T] dk (41)

Define V(k;s) '~ U [(1 - )k ]. Noting that V' i dV/dk = all - s)k'- l'

and 3n/3s = [(y/s) - (2k l(1 - a) C02)] T, we can rewrite (41) as

O = [fO {a(l - s )(* V - kV}dk]/a(-s (41')

Using integration by parts, we have that

co

0o d-k

- V d
- 0 - V - (k7r) dk0 d

__ I -- s*" ·- ��Y�-
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by the definition of iT and the concavity of V. Using d(kr)/dk - [l + b (l-a).

ks - 1 - 6] r in (42) and substituting (42) into (41'), we can rewrite (41') as

0 = f0 V{[b (l-a) - 1 + (*(1)y + 1 - 1]} dk (43)

By inspection, the integrand of (43) will be identically zero for all V, T,

and k if s = a. Hence, in the class of constant savings rules with a Cobb-

Douglas production function, the optimal rule is s = a for all concave

utility maximizers.



Footnotes

The contents of this paper were presented in various forms at the
NBER Conference on Growth Theory (Yale, December 1971); Mathematical
Economics Seminar (Rochester, March 1973); Mathematical Economics
Seminar (Columbia, April 1973). My appreciation to the participants
for their helpful comments. My special thanks to R. M. Solow for many
discussions. Aid from the National Science Foundation is gratefully
acknowledged. F. Bourguignon has independently derived a number of the
results in this paper. See "A Particular Class of StochasLic One
Sector Growth Model in Continuous Time" (mimeo, University of Western
Ontario, March 1973).

1. See Cox and Miller [2, p. 235] and Feller [4, p. 325]. However, as will
be shown, we use a modified version of the processes presented tere.

2. One might reasonably uestion the assumption that the distribution for
n be exogenous and independent of L since per capita wealth, K/L, may
affect both birth and death rates, and for finite amounts of land, L
may also through "crowding". However, since endogenously determined
population growth is not central to the paper and its inclusion would
follow along the same lines of analysis, we exclude it for brevity
and simplicity. For a discussion of endogenous population growth in
the certainty case, see Merton [15].

3. In an extension to the discussion in footnote 2, one might question the
assumption of serial independence for n1. The analysis could be modified
to allow for serial dependence by introducing Ornstein-Uhlenbeck type
processes [2, p. 225]. However, the cost of introducing these processes
would be a more-complex, multi-dimensional dynamics structure, and it
is not clear that the asymptotic distributions would be greatly affected
by such serial dependencies.

4. Tle terms "individual", "family", and "group" are used interchangably
in much the same way as "population size" and "labor force" are in the
standard analysis. Provided that the number of families is roughly
proportional to the number of people and the number of people per
family is not large, none of the analysis is materially effected by this
interchange of interpretation.

5. This combination provided enormous simplifications in the study of the
consumption-portfolio problem. For examples, see Merton [12, 13, 143.
For further discussion of the diffusion approximation to the branching
process, see Cox and Miller [2, p. 237] of Feller [4, p. 32 6 j. Note:
they analyze the cas= where birth rates across individuals are independent
(i.e., C2 = 0), and hence, the variance of their process is proportional
to L. instead of L2 as in our case.

6. See Feller [4, p. 321].
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Footnotes 2

7. See Ito and McKean [71 and McKean [11].

8. See Appendiz A. For the partlcuaLr Integration of equation (7), see
McKean [11, p. 33.

9. For a derivation of (9) using Ito's Lemma, see Appendix A.

10. See Merton [14] for a discussion of the distinction between the two
types of uncertainty with respect to interest rates and common stocks.

11. The sufficiency of these conditions for existence is shown in Appendix
B. Actually, a weaker condition than (3) would be n - 1/2 2 + X > 0
= p + X >0. However, in that case, certain first-moment relationships
in the steady-state would not exist including E[k] which would diverge.
Since (3) is not much stronger than + A > 0, we prefer it. Also if
n > a2, then > 0 which implies that with probability one, L(t) -+ as
t + oo. Hence, the L>>l assumption of the approximation in (6) and the
conditions under which the diffusion approximation is accurate will be
satisfied for any positive initial population and sufficiently large t.

12. Sufficiently "well-behaved" would be that g is a C2 function on the
interval (0,p) and that lim g'k2 lim g'k2n = O.

k-*O k-o

13. Therefore, C = (l-s)f(k). The analysis of this section would be identical
for a Modigliani-Pigou type consumption function where C = (1-s)f(k) + k.
with 6 a positive constant. The formulas would be the same with
"(X+6)" substituted wherever "X" appears.

14. For a description of the gamma distribution, see Feller [4, p.46].

15. For a rigorous development of the optimality equation (26), see Kushner
[8], and for a less-formal discussion, see Merton [12, 13].

16. There is an extensive literature on the existence of an optimal policy
for the Ramsey problem under certainty. For a discussion of existence
under uncertainty, see Mirrlees [17, 18].



Appendix A

Ito's Lemma

While the sample paths of diffusion-type stochastic processes

are continuous with probability one, they are not differentiable. Hence,

standard equation representations cannot be used to describe the dynamics

of such processes. However, a complete theory of stochastic differentail

equation for processes of this type has been developed (cf. [7] and [11])

which allows for (stochastic) Integration and differentiation in a manner

similar to that of the ordinary calculus. The stochastic analog to the

Fundamental Theorem of the Calculus is called Ito's Lemma which for one-

dimensional, time-dependent diffusion processes can be stated as [11, p. 32]:

It^'s Lemma

Let F(X,t) be a C2 function defined on R2x[0,oo) and take the

stochastic integral

X(t) = X(O) + ft b(x,s)ds + ft a(xs)dz,
O o

then the time-dependent random variabhle y F is a stochastic

integral and its stochastic differential is

9F aF 1 X2F 2
dv = - dx + - dt + (dx) 

3x at 2 (d

where

dx = b(x,t) dt + Ja(x,s) dz

and the product of the differentials (dx) 2 is defined by the

multiplication rule

dzdz = 1 dt

dzdt = 0

�m _1 ·1_�__�--�---_1_1_.1_-��-�
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ItS's Lemma is a particularly powerful practical tool for the

analysis of stochastic dynamics. For examples of its application to some

economic problems, see [12], [13], and [14]. The Lemma shows exactly how

to differentiate and hence, integrate functions of Wiener processes. Since

diffusion processes can be written as functional transformations of Wiener

processes, the Lemma allows one to immediately deduce the dynamics for any

well-behaved function of a diffusion-process random variable. Thus,

by inspection of the resulting Ito equation, one can determine the

instantaneous mean and variance for the transformed process and hence, all

the information necessary to determine the transition probabilities and

moments of the transformed process. Further, as is illustrated in the text

by deducing the distribution for future interest rates in the Cobb-Douglas

example it is sometimes possible to use Ito's Lemma to ntegrate the

differential euation directly to obtain a representation for the random

variable as a function of the nitial value, time, and a random variable

whose distribution is well-known (e.g., gaussian), even when no closed-form

solution exists for the transition probabilities.

To determine the stochastic differential for the capital-labor

ratio, k K/L, we apply Ito's Lemma as follows:

k = K/L G(L,t) (A.1)

9G K k
= =- -

a2G 2K 2k

K = (sf(k) - k) from (2).
L

� _����
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From Ito's Lemma,

(A.2)dk = 3-C dL + dt + 2 2 (dL) DL at 2 atL

From (7) and Ito's Lemma, we have that

dIL = nLdt + oLdz

(dl,) = 2L2dt

Substituting from (A.1) and (A.3) into (A.2), we have that

k 12k 2L2ddk = (- ) (nLdt + cLdz) + (sf(k) - Xk)dt + l(~z)r2L2dt (A.4)
2L

= [sf(k) - (X+n-a2)k] dt - akdz

which is equation (9) of the text.

Finally, there is a multi-dimensional version of Ito's Lemma [11,

p.32] for vector-valued diffusion processes.

�--�-����1·---��11�------·-------------- --�



Appendix B

The Steady-State Distribution for a Diffusion Process

let X(t) be the solutilon to tile lt( equation

dx - b(x) dt + a(x) dz (B.1)

where a( ) and b( ) are C2 functions on [0, ®) and independent of t with

a(x) > 0 on (0,o] and a(O) = b(O) = 0. Then X(t) describes a diffusion

process taking on values in the interval [0,] with X = 0 and X = 

natural absorbing states. I.e., if X(t) = O, then X(T) = 0 for T > t

and similarly, for X(t) = .

Let p (X,t;Xo ) be the conditional probability density for X at

time t, given X(O) X . Because X(t) is a diffusion process, its

transaction density funtion will satisfy the Kolmogorov-Fokker-Planck

"forward" equation (Feller [4, p. 326] and Cox and Miller [2, p. 215]).

1 a2 3 p(x,t:X 0 )
2 A z [a(x)p(x,t;Xo)] - aX [b(x)p(x,t;X0 )] = a (B.2)

Suppose that X has a steady-state distribution, independent of

XO. I.e., lim p(X,t;XO) = r(x). Then, lim (p/Dt) = 0, and

X will satisfy

1 d2 d
2- dxr [a(x)7r(x)] -dx [b(x)7T(x)] = 0 (B.3)

By standard methods, one can integrate (B.3) twice to obtain

a formal solution for (x): namely,

7T(x) = mlIl(x) + m2 I2(x)

_ ��_� �--------------

(B.4)



B-2

where

exp [2 fX b(v) y]
11x) a(x) a (y)

and
1 fx x b(s)

I2(X) 1 I exp [2 x ) ds] dy
12 a(x) y a(s)

and m1 and m 2 are constants to the be chosen such that

roo
j W(x)dx = 1.

While the formal solution was straightforward, the proof of

existence and the determination of the constatnts is more difficult.

Formally, a steady-state distribution will always exist in the sense that

x will either (1) be absorbed at one of thle natural bo-llnares (I.e., a

degenerate distribution with a dirac function for a density) or (2) it will

have a finite density function on the interval (0,®) or (3) it will have

a discrete probability mix of (1) and (2). However, we are interested

in the conditions under which a strictly non-trivial steady-state distri-

bution exists [possibility (2)]. Under such conditions, the boundaries

are said to be inaccessible. I.e., prob {X(t) < e} + 0 and prob {X(t) > 1/c}

+ 0 as C + 0. Further, it can be shown that the boundaries are inaccess-

ible if and only if fx I2 (y)dy and I2 (y)dv both diverge and f I(y)dy
o 2 x 2 o I 01 dy

is bounded. Hence, under these conditions, we can conclude that m2 - 0.

We now prove that the boundaries are inaccessible for the

stochastic process (9) described in the text. From (9) and the assumptions

of Section III, we have that

b(k) [s(k)f(k) - (n + X - o2)k]

1_____1�_·�__��___��___I___II___IX______

(B.5)



B-3

and

a(k) - o2k 2 (B.6)

where f(k) is a concave function satisfying lim f'(k) = m and lim f'(k) - 0;
k+>O . ke-n

0 < £ < s(k)S 1; n + X - 2 > 0.

The method of proof is to compare the stochastic process gener-

ated by (9) with another stochastic process which is known to have inacces-

sible boundaries and then to show that the probability that k reaches its

boundaries is no larger than the probability that the comparison process

reaches its boundaries.

Using Itb's Lemma (Appendix A), we can write the stochastic

differential equation for x = log(k) as

dx - h(x)dt - adz (B.7)

where

h(x) - e s(ex)f(ex) - (n +X 1 - 2) (B.8)

Using the assumptions that 0 < c < s(eX) and f'(0) = along with

L' Hospital's Rule, we have that

lim lI(x) = o

and similarly, using the assumptions that s(eX) < 1 and f'(oo) = 0, we have

that

lim h(x) -(n + X - 2) < 0 (B.9)
2

By continuity, there exists an x > -oo such that for all x [-,x], there

exists a 1 > 0 such that

_�1_1_1�_�___�
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h(x) h (x) > 6S > (B.10)

Similarly, there exists an x < such that for all x [x, ], there exists

a 2 < 0 such that

h(x) < h(x) < 6 < 0 (B.11)

Consider a Wiener process Wl(t) with drift 61 and variance 02

defined on the interval [-oo, x] where x is a reflecting barrier. I.e.,

dW1 = 61dt - dz (B.12)

for W1£[-o,x] . Cox nd Miller [2, p. 223-225] have shown that such a

process with 61 > 0 has a non-degenerate steady-state, and hence, - is

an inaccessible boundary. Comparing (B.12) and (B.7), we see that the two

processes differ only by the drift term. Further, from (B.10), the drift

on x is always at least as large as the drift on W1 in the interval [-c,x].

Therefore, the probability that x will be absorbed at -' s no reater

than for W1, and hence, - is an inaccessible boundary for x. But,

x log k. Thus, zero is an inaccessible boundary for the k process.

Consider a Wiener process W2 (t) with drift 62 and variance a
2

defined on the interval [x,o] where x is a reflecting barrier. Again,

using the Cox and Miller analysis, W2 will have a non-degenerate steady-

state provided that 62 < 0. But from (B.11), the drift on x will be at

least as negative as 62 on the interval [x, ], and hence, is an

inaccessible boundary for x. Therefore, is an inaccessible boundary for

k. Hence, we have proved that under the assumptions of the text, both

boundaries of the k process are inaccessible and that a non-trivi-s. steady-

�___I__1__________I____�1_�__·___11 �________l_____·L______I�_�� �



B-5

state distribution for k exists. Note: as mentioned in footnote 1l,

we only required the weaker assumption that (n + - 2) > 0 used in

(B.9) to prove existence.

Because the boundaries are inaccessible, we also have that

m2 = 0 in (B.4). A first integral of (B.3) gives

id 1
2 d-x [a- b(x)ir(x) -m2 = (B.13)

for a non-degenerate steady-state. We use this result in Appendix C.

Finally, the solution for the non-degenerate steady-state dis-

tribution can be written as

r(x) = m exp L2 ( dy] (B.14)
a(x) a(y)

where m is chosen so that 7r(x) dx = 1.
0

1011�(1 �.ll��0�--�-- �-��



Appendix C

More Steady-State Properties

Let X(t) be a random variable whose dynamics can be written as

the Ito stochastic differential equation

dx = b(x)dt + /a(x) dz (C.1)

where a(x) and b(x) are such that x has a steady-state distribution (x)

which satisfies (B.14) in Appendix B.

Let g = g(x) be a time-independent function of x. Provided that g

is a sufficiently well-behaved function, the stochastic process generating

g will also be a diffusion process with a stochastic differential equation

representation

dg(x) = hg(x)dt + /g(x) dz (C.2)

where by Ito's Lemma (Appendix A),

b (x) - g'(x)b(x) + 2 g"(x)a(x) (C.3)

ag (x) - [g'(x)] 2 a(x).

If g( ) is twice continuously differentiable and g'( ) satisfies the conditions:

lim [g'(x)a(x)7(x)] = lim [g'(x)a(x)T(x)] O0, then
x-o x->c

E{bg(x)} - E{g'(x)b(x) + 2 g"(x)a(x)} = (C.4)

where "E" is the expectation operator over the 7( ) distribution.

Proof of (C.4) follows directly from integration by parts:

E{b (x)} = F [g'(x)b(x) + -2 g"(x)a(x)]Tr(x)dx
o [ (C.5)
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Integrating by parts,

Jo g"(x)a(x)ir(x)dx [g"(x)a(x)FT(x)] - g d (x)(x)dx (C.6)S 0 0 p'(x> [a(x)r(x)dx

)d__
= - f g'(x)d [a(x)r(x)]dx

from the limit conditions imposed on g'(x). Substituting from (C.6) into

(C.5) and rearranging terms, we have that

r,{h~ } - d
Efbg(x)} =.of g'(x){b(x)lr(x) 2 d [a(x)Tr(x)]}dx0 2 dx (C.7)

because r( )

brackets, {

satisfies (B.13) in Appendix B, and hence, the term in curly

}, is identically zero. O.E.D.
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