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Abstract

This work focuses on understanding the trends of particle production in heavy-ion col-
lisions. We investigate the physics of multiple scattering and rescattering in A + A
reactions. By varying the number of participants in 160 + A, 28Si + A systems at 14.6
A.GeV/c and the 197 Au + 197Au system at 11.6 A.GeV/c, we vary the size of the reaction
zone as well as the mean number of binary collisions, (NBC). With the full E802/E866
data available, we have been able to determine and compare shapes and magnitudes of
the rapidity distributions for reactions of varying number of participants. Measured fidu-
cial yields for pions and kaons have been determined as a function of the participants in
the reaction. Pion production increases linearly as a function of participants, averaging
n, = (1.1 ± .1) x (total participants). Production of K + from fiducial yields is shown
to increase linearly for 197Au + 197Au reactions by, nK+ = (0.050 ± .005) x (total par-
ticipants). Energy and baryon densities vs. the number of participants have also been
examined assuming thermal sources. The meson number densities range from (0.29 +
.03 ± .04) - (.48 ± .05 ± .06) /fm 3 for the oxygen and silicon projectiles. The meson
number density for the gold projectile is (.56 ± .03 ±: .04) /fm3 . The proton number
densities range from (.18 ± .02 ± .03) - (0.39 ± .04 ± .06) /fm3 for the oxygen and silicon
projectiles. The proton number density for the gold projectile is (.66 ± .07 ± 0.1)/fm3 .
Proton number densities are twice the meson densities in 197Au + 197Au collisions. This
large discrepency and the large measured baryon "temperatures" may indicate collective
effects such as hydrodynamic expansion. Total energy densities reach (1.4 0.1 0.2)
GeV/fm3 in central 197Au + 197Au collisions.

Thesis Supervisor: Dr. Stephen G. Steadman
Title: Senior Research Scientist, Department of Physics
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Chapter 1

Introduction

1.1 A Brief History of Relativistic Heavy-Ion Col-

lisions

Initial work in the field of relativistic heavy-ion physics started with the early experi-

ments at the Bevalac (Berkeley, California) in 1974. Experiments using ions as large as

197Au, with incident momentum Pbeam 1 A.GeV/c, were collided with fixed targets.

This work focused on understanding the nuclear equation of state. This experimental

effort clarified that relativistic heavy-ion collisions were not simple superpositions of pp

collisions, but rather hosted global phenomena that occurred in the many-body collisions

of these reactions. Experiments were designed to study these phenomena in reactions of

increasing size and incident momentum.

Theoretical work continued simultaneously. In particular, there were predictions of

a new state of nuclear matter [Lee76] , [Wei76], an excitation when nuclear matter is

heated to extreme conditions. It soon became clear that relativistic heavy-ion collisions

were the technique to systematically push nuclear matter to these extreme conditions. At

very high densities and/or at very high temperatures, the nature of the QCD vacuum is

modified [QM83-Ja], [Shur80]. The Relativistic Heavy-ion Collider (RHIC) was proposed
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to provide the needed incident momentum for these extreme conditions. Collisions at

RHIC would have high energy densities yet a baryon free region at mid-rapidity. The

experimental effort at the Brookhaven Alternating Gradient Synchrotron (AGS) grew

as a predecessor to RHIC. The AGS has hosted collisions of oxygen (A=16) and silicon

(A=28) at 14.6 A.GeNV/c with various targets, and in 1992 gold nuclei (A=197) have

been accelerated to 11.6 A.GeV/c .

Heavy-ions have been accelerated at Le Conseil European pour la Recherche Nucleare

(CERN's) SPS ring concurrently with the AGS program. Oxygen and sulfur (A=32)

have been accelerated to 200 A.GeV/c, and Pb beams will become available in late 1994.

Higher energy densities may be achieved at CERN; however, higher baryon densities in

the central rapidity regions are found at the AGS, as will be explained in the following

section.

Future work at RHIC [QM91-Gu], scheduled to begin experimental work in 1999, will

provide collisions of 197Au + 197Au with a center of mass momentum of 200 A.GeV/c.

The Large Hadron Collider (LHC), proposed for the next decade at CERN, will collide

208Pb + 208Pb with a center of mass energy of 8 A. TeV [Nat92-Gu].

1.2 A Closer Look at Heavy-Ion Collisions

In the last eight years, relativistic heavy-ion collisions have been performed at two sites:

the AGS and the SPS ring at CERN. Heavy-ion reactions at both locations are similar,

both violent in nature. Both projectile and target nuclei are disintegrated in a central

collision. Collisions at the AGS will be described in this work where the incoming pro-

jectiles essentially "stop" in the target nucleus. This produces a cored-out volume of a

hot, dense mass of nucleons. Once the density of nuclear matter exceeds that of about

5 - 6 times normal nuclear matter, nucleons overlap to such an extent that one cannot

treat quarks confined to isolated nucleons. Under these conditions, it is hoped that a

transition to a new state of nuclear matter, the Quark Gluon Plasma (QGP), will be
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possible. This is discussed further in the next chapter.

There are a few important differences in heavy-ion collisions at the AGS compared

to the higher energy CERN collisions. Baryons that multiple scatter with other nucleons

are more likely to populate the mid-rapidity regions of AGS collisions. The larger cross-

sections for nucleons at lower momentum also increase the amount of multiple scattering.

We will take advantage of this important difference as we try to understand how multiple

scattering plays a role in redistributing the incoming beam energy to the target nucleons.

Rescattering of produced mesons off nucleons is also more important at the AGS than

at higher beam momentum. Particle cross-sections are much higher due to resonance

effects [PPDB80]. The cross-sections for pp and np reactions increase enormously below

about 1 GeV/c momentum, increasing from approximately oapp 50 millibarns at 100

GeV/c to oapp x 1000 millibarns at 200 MeV/c incident momentum.

Relativistic heavy-ion collisions may also be described in a region of rapidity space,

namely the projectile, the target, and the central rapidity region. Figure 1-1 [QM91-Sa]

shows a sketch of the regions of vanishing baryon density. Collisions at the AGS are in the

baryon rich region. The smaller rapidity at the AGS (Ylab = 3.44) for oxygen and silicon

compared to SPS (Ylab - 6), makes it easier for nuclear matter to fill the mid-rapidity

region.

In a central 160 + 197Au collision at the AGS, for example, kinetic energy from the

projectile nucleons is transferred to the target nucleons. Energy is deposited to the

target nucleons, and a clump of matter, composed of projectile and target nucleons, is

created. This comoving mass of nucleons moves approximately at a common velocity.

The common velocity is a weighted average velocity of the participant nucleons. This

excited matter exists for only a few fm/c. In earlier experiments, it was found that

protons incident on lead nuclei have a rapidity loss of about Ay m 2 - 3 (Fig. 1-2). Once

the incoming nuclei have an incident momentum greater than a few GeV, projectile nuclei

lose a constant amount of rapidity, regardless of the incident energy. At 100 A.GeV/c,

for example, fast nuclei impinging on target nuclei lose up to 2 to 3 units of rapidity
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Figure 1-1: Simplified diagram showing the regions of vanishing
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free region [QM91-Sa].
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Figure 1-2: Rapidity loss for pPb collisions of various impact parameters [Bus88]. The
vertical axis shows the probability that the rapidity loss for baryons is Ay for protons
with incident momentum of 100 A.GeV/c. There is a limiting rapidity shift A y t 2
- 3 for pA collisions as the size of the target mass is increased. We therefore expect a
maximum limit to baryon densities in A + A collisions, occurring when the rapidities of
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[Bus84]. This finding implies that the ideal beam rapidity for maximum baryon densities

would then be x 5. Mid-rapidity (y = 2.5) would then be situated at the peak rapidity

loss. The AGS beam rapidity of 3.44 is close to this value and therefore hosts collisions

where the highest baryon densities may be produced in the laboratory.

There is a trade-off in obtaining a large degree of stopping and in reaching an equi-

librated state with the larger 197Au + 197Au reaction. Though the lighter projectiles

have fewer overall participants, these projectiles achieve greater mean rapidity loss. The

nucleons of an oxygen ion, for example, in a central 160 + 197Au collision, will undergo

relatively more collisions than the peripheral nucleons of a gold ion in a central 197Au +

197Au collision. The larger gold-gold collisions provide for more nucleon-nucleon interac-

tions and probably achieve a greater degree of equilibration in the center of the collision.

But, even in the most central 197Au + 197Au collisions there are still many single pp

collisions near the periphery of the nuclei that do not achieve a high degree of equilibra-

tion. Furthermore, it may be easier to understand the explicit dynamical processes in

collisions of smaller nuclei than in the more complicated 197Au + 197Au collisions.

There are still no unambiguous theoretical signatures that predict an unconfined QGP

at any incident beam energy. Furthermore, there are no clear indications that the QGP

phase transitions is a first order or second order transition. In either case, there are many

predictions that an increase in the strange particle multiplicity will accompany the onset

of a QGP phase [Chi79], [Fah79], [Witt84], [Koc86].

Nearly 10 years ago, predictions of increased strange matter production [Raf82] in

heavy-ion collisions were made. The fermi momentum of u and d quarks in protons

and neutrons depends on the density. After summing over the momentum, the density

becomes: p = N/V = g/h 3 F d3p. The fermi momentum may be written as

PF(u, d) (3)1/3(ppo )1/3p (1.1)

where po = 260 MeV/c is the fermi momentum for nucleons in normal nuclear matter. An

increase in density by a factor of 5 in a heavy-ion collision will push pF(u,d) 600-700
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MeV/c [Nag92], well above the 200 MeV s-quark mass. It is energetically more favorable

to produce strange quarks in low p states instead of producing more u and d quarks in

high p states.

At AGS energies, since stopping is essentially achieved, in thermal equilibrium the

ratio of strange to non-strange particle production, for example, may be predicted. We

begin using a Maxwell-Boltzmann distribution for two particle species (strange and non-

strange) s and q. For a given energy and temperature, the strange to non-strange ratio

is simply R = fMB/fMB, where the fugacity is fi = e"/T. Then,

R= e/T. (1.2)

In equilibrium, if T = 150 MeV, and ,u = 200 MeV and , = 313 MeV, we get R = 0.47.

In ideal conditions, the strange to non-strange meson ratio (K+(us)/7r+ (u d)), would

provide such a measurement of R. Both mesons share the abundant u quarks and either

a created d or s quark. The highest ratio is observed in central 197 Au + 97Au reactions

where K+/7r+ ~ 0.25.

As heavy-ion collisions increase in size, we might also expect to increase the degree of

equilibration. Experimentally, we can measure the K+/lr+ ratio for systems of different

sizes to determine if we are at least moving in the right direction towards a QGP phase.

The microscopic processes of individual nucleon-nucleon collisions can also be under-

stood in the context of cascade models. This thesis will examine multiple scattering and

rescattering in heavy-ion collisions at the AGS at BNL. Experimentally, we only measure

particle yields and the number of reaction participants. We understand how particle

yields depend on multiple scattering and rescattering with cascade models. Hopefully,

we will better understand how secondary interactions affect particle yields.
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Figure 1-3: Nuclear Matter phase diagram, showing the point of normal matter and
possible trajectories of various reaction scenarios at RHIC energies. A heavy-ion collision
at AGS energies could hopefully follow a track similar to the one labeled "Fragmentation
Region" in the figure.

1.3 Why Study Heavy-Ion Collisions?

Figure 1-3 shows a schematic nuclear matter phase diagram. Normal nuclear matter is

shown as a point on the diagram and the trajectory for a hypothetical heavy-ion collision

at the AGS is shown.

The Quark Gluon Plasma (QGP) is a prediction of lattice gauge calculations for

baryon free nuclear matter under extreme conditions. Physicists are interested in deter-

mining the shape of the transition boundary as well as the location of the transition.

The temperature vs. density phase diagram shown in Figure 1-3 indicates a transition

at 5 - 10 po, where p, is the normal nuclear matter density.

We note that the phase diagram includes a rather broad deconfinement boundary.

Based on present understanding of heavy-ion collisions at the AGS it is hoped that a

collision trajectory could be traced out such as that labeled "Fragmentation Region" in

Figure 1-3. If a phase transition of nuclear matter occurs, it should manifest itself in the
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dependence of particle production on the density of participant nucleons.

As mentioned in the previous section, the AGS beam momentum implies that sec-

ondary collisions play an important role in heavy-ion collisions. Multiple scattering and

rescattering are both important aspects of the collision since we are interested not only

in creating a high baryon density in the central region of heavy-ion collisions, but also

in equilibrating the reaction as much as possible in the few fm/c duration of a heavy-ion

reaction. The total time for the reaction may be estimated by the time it takes a 14.6

GeV/c nucleon to traverse a nucleus, approximately a few to 10 fm/c. Most nucleons

that participate in the collision have an opportunity to collide only a few times with

other nucleons or with produced particles within the duration of the collision.

The thermodynamic conditions in a heavy-ion collision are quite different than a gas

at room temperature where there are a very large number of participants interacting over

a long period of time. It is natural to ask to what degree heavy-ion collisions are equili-

brated. In other words, what degree of initial momentum memory of the beam nucleons

is lost when they impact the target nucleons? It would be interesting to understand the

degree of equilibrium reached in the collision as well as the participant number densities

for a variety of projectile-target combinations.

This work builds on the earlier analysis efforts of Matt Bloomer [Blo90]. Bloomer

examined rapidity distributions and baryon densities for Si + Al, Cu, and Au reactions

using the E802 spectrometer and examined pA reactions at higher energies with the

Fermilab Hybrid Spectrometer E565/570. This analysis will use improved E802 spec-

trometer calibrations as well as a more complete data set, examining the 160 and 28Si +

A reactions as well as ' 97Au + 197Au data from the first E866 run. With three projectiles

(A=16,28,197) and three targets (A=27,64,197), this data set offers a much larger range

in size and number of participants than the earlier analysis.

As in the previous analysis, we use a zero-degree calorimeter (ZCAL) to measure

the number of participants in the above reactions. With the new data set, we hope

to piece together a yield vs. participant function (see Chapter 6) over a wide range of

26



participants. We also hope to understand better how multiple scattering plays a role in

heavy-ion reactions. With the zero-degree calorimeter and the ensemble of projectiles

and targets, we are free to vary the number of participants that we examine. Using a

simple model of two colliding spheres, we effectively vary the impact parameter of the

collision and therefore the geometry of the collision. When we do this, we also vary the

amount of multiple scattering that can take place in a collision as we vary the mass of

the spectator material that surrounds the initial hot reaction participants. Thus with

the ensemble of collisions, we hope to understand how particle production varies over the

size of the reaction system as well as the surrounding environment.

1.4 Heavy-Ion Collisions Models

We examine several models in this thesis. The focus of the model comparison in this

thesis is twofold;

1. Understanding to what extent the present cascade models match the yields of 7r's

over the full range of total participants determined in 160, 28 Si, and 197 Au colli-

sions.

2. Understanding the degree of equilibration, i.e., understanding the amount of sec-

ondary collisions for heavy-ion collisions at AGS energies.

This thesis uses models at three levels. First, we compare one of the simplest models, the

isotropic fireball model [Land53], [Land56], [Nat92-He] with central AA data. This model

is a useful starting point and simple in conception. Secondly, we will use geometric models

(as those used in the input to FRITIOF [And87] and [Nil87]) to calculate participants

in heavy-ion collisions of various impact parameter ranges. In Chapter 4 we will discuss

clean-cut collisions in terms of hard spheres with a skin depth determined by a Woods-

Saxon potential. Thirdly, we look at the cascade codes, Relativistic Quantum Molecular

Dynamics (RQMD), and A Relativistic Cascade (ARC). A comparison of yields for pions

and kaons will be made with this model in Chapter 6.
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Figure 1-4: A Gedanken experiment to allow nucleons to interact in a controlled envi-
ronment. Ideally, one would like to vary several physics parameters and then observe
particle yields and inverse slope parameters (temperatures).

1.5 Questions to be Answered in this Thesis

We would like to understand if and why heavy-ion collisions differ from a simple super-

position of many pp collisions. Do nuclear collisions with many participants differ from

collisions with relatively few participants?

Consider a Gedanken experiment as in the simple box experiment in Figure 1-4.

Suppose we can add nucleons at a specified energy Eo and momentum po, and observe

the overall particle yields and inverse slope parameters that emerge from a hole in the

side of the box to be detected. In light of this figure, the following list of parameters,

those within and out of our control, are described in Table 1.1.

The systems under observation after a heavy-ion collision of type Al + A 2 are very

transient. We can change the number of initial participants by varying the impact pa-

rameter and size of the projectile. Some nucleon participants will scatter only one time,

others as many as 10 times, for nucleons in central 197Au + 9 7Au collision (see Chap-

ter 4). In addition, our collision zone is unlikely to be homogeneous. For these two

regions, heavy-ion collisions may not approach the level of control implied by Figure 1-4.

Therefore, we must be careful in the interpretation of the experimental results.
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ITEMS IN EXPERIMENTAL CONTROL
Within experimental control Outside experimental control
1. Size of the box. 1. Homogeneity of number of collisions

within the box.
2. Number of nucleons in the box.
3. Longevity of the box**. 2. Filter between box and detector.*

Table 1.1: Summary of items in and outside experimental control. * By varying the
number of forward going spectators with the zero-degree calorimeter in this experiment,
we effectively change the impact parameter of the collision and therefore the amount of
surrounding material (i.e., filter). ** This variable is however only loosely controlled as
the longest collision durations are only m 10fm/c.

The goals of this thesis are four-fold:

1. We will determine the particle yields and inverse slope parameters for a large se-

lection of heavy-ion collisions. Collision systems of 160 + A and 28Si + A will be

compared to the 197Au + ' 97Au reactions.

2. We will compare the total yields for the above reactions vs. the number of partici-

pants in the reaction. Yields for r's and kaons will be compared with the number of

participants in the reaction. The participants are determined using the calorimeter.

3. We will perform an in-depth analysis of how secondary collisions affect particle

production. We will examine the RQMD code and tag particles that undergo at

least one collision after the initial collision in a heavy-ion reaction. This analysis

will be described in Chapter 4.

4. Finally, we will address trends in dN/dy and discuss the inverse slope parameter

for the full range of collision systems.

1.6 Techniques of the Analysis

We address the first question in Section 1.5 using the E802 spectrometer to measure

particle yields. The particle invariant differential yields, d2 n/27rptdptdy, will be plotted
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as a function of Pt for 7r±, Ki, and protons over the measured ranges in rapidity. The

E802 spectrometer (in particular the time-of-flight wall) differentiates pions from the

lighter electrons up to a momentum of 0.7 GeV/c, pions and kaons up to 2.2 GeV/c

and kaons from protons up to 3.7 GeV/c using the particle's time of flight and the path

length. The cross-sections are fit with exponential functions and Boltzmann functions

in both mt and pt and an inverse slope parameter is measured for each particle as well

as the integrated yield, dN/dy. The specific technique to determine these values will be

discussed later in Chapter 5 and the data presented in their entirety in the appendices.

We use the zero-degree calorimeter to measure the mean number of projectile par-

ticipants < Npart > In symmetric collisions, the mean number of target participants is

< ytar > = < Npart = < > /2. The number of participants is related to the

energy deposited in the calorimeter:

Participants = Aproj ( - EZCAL/ Tbeam ) (1.3)

Our procedure is to make software cuts of varying energy deposited in the ZCAL and to

examine the corresponding particle rapidity distributions for pions, kaons, and protons.

With the full E802 data set and the first running period of E866 data available, we

are able to compare shapes and magnitudes of the rapidity distributions for reactions

of varying impact parameters but with fixed < Nptt >. We are more interested in the

global trends of the data in this analysis, i.e., trends in average particle yields.

1.6.1 Scaling

Though the term scaling is widely used in the field of heavy-ion reactions, we will use

this term to imply the invariance of an observable, normalized to some parameter and

measured over some phase space appropriate to the experiment. A simple example of a

scaling observable is a linearly scaled variable. For example, over a limited number of

participants, the production of ir's appears to be a linear function with the number of
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DATA SUMMARY
Projectile Runs Target Ospec Field (kG) Comments

160 Jun 88 27 Al64 CU,19 7 Au 5,14,24,34,44 ±2, 4, 6 full analysis
2sSi Dec 88 27A1,64 Cu,97Au 5,14,24,34,44 ±2, 4, 6 reanalysis of

ZCAL data
197Au Apr 92 27A1,64 CU,19 7 Au 24,34,44 i2, ±4 full analysis

Table 1.2: This table shows a quick summary of the data that was analyzed in this work,
including the projectile, the run period, the target, and the spectrometer angle setting.

participants. This linearity occurs up to about 100 total participants, representing central

28Si + A collisions. Do collisions of more participants follow this linear dependence? We

will examine this scaling in Chapter 6 and determine pion, and more crudely kaon scaling

over a much larger range of participants, using 197Au + 197Au data.

Protons, though not created in these reactions, are an excellent means of measuring

how energy is distributed in these collisions as one varies the size of the reacting system as

well as varying the surrounding target material. We measure hadron yields with respect

to: (1) the number of total participants and (2) the rapidity.

1.7 The Data Sets

The nature of this analysis is to examine as wide a variety of heavy-ion collisions over

as wide a range of reactions participants as were available at AGS energies. We combine

E802 data including the lighter-ion running, oxygen data (June 1988) and silicon data

(December 1988) with the heavy-ion gold beam data E866 (April and May 1992). Table

1.2 gives a brief listing of the data taken, including the running period, targets, and

trigger conditions.

The oxygen and silicon data were taken at a beam momentum of 14.6 A GeV/c

while the gold running was done at 11.6 A. GeV/c.

The entire data set has been analyzed using a cross-section routine written by Chuck

Parsons and modified by several students, [Par92], [PZ,91], [MRSZ,92]. Chapter 5

contains details of creating differential yields and cross-sections and explains data filtering
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and quality.

1.8 Summary of this Thesis

This thesis is organized in eight chapters. Chapter 2 discusses the models used in this

thesis. The discussion focuses on simple descriptions of the nuclei in violent collisions. We

discuss the fireball model of heavy-ion collisions as well as the cascade models, Relativistic

Quantum Molecular Dynamics (RQMD) and A Relativistic Cascade (ARC). Chapter 3

describes of the E802 spectrometer. Chapter 4 describes the event characterizations and

interpretation of the centrality measurements with the ZCAL.

Chapter 5 describes the cross-section analysis. We discuss data quality and filtering

and correct for inefficiencies. Chapter 6 discusses the particle yields, results of dN/dy,

and inverse slope parameters for the various reactions. Chapter 7 discusses energy and

baryon densities in these collisions. Finally, Chapter 8 draws the conclusions reached in

this thesis.

The appendices contain particle invariant yields, dN/dy, and inverse slope parameters

for semi-inclusive spectra. Minimum-bias and hardware triggered spectra of ir+, K+ and

protons from O + A, Si + A, and Au + Au reactions are shown.
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Chapter 2

Models

We begin this section with a very simple geometric collision model between two nuclei,

each having approximate uniform density in the center and falling off at the edges accord-

ing to a Woods-Saxon potential. This picture of the nucleus (a Glauber model) treats

the protons and neutrons classically because of the high relative momentum between the

projectile and the target nuclei. The beam momentum Pbeam = 14.6 A · GeV/c >> 200

MeV/c, the Fermi momentum associated with the nucleons in cold nuclear matter.

We are also able to estimate theoretically the number of participants in a heavy-

ion collision at the AGS, given the impact parameter of the projectile with this model.

Figure 2-2 shows a typical symmetric heavy-ion collision somewhere between a central

and peripheral collision. The produced particles are created in this dense, hot region,

formed in rapidity space (see Section 2.1) somewhere between the target and the projectile

rapidity (y = 3.44 at the AGS for oxygen and silicon running and y = 3.2 for gold

running).

Kinematic variables are needed in the discussion of particle cross-sections and yields.

Therefore, a discussion of the appropriate kinematic variables is now presented.
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2.1 Kinematic Variables

Kinematic variables for high energy collisions are often described in terms of rapidity

y and perpendicular momentum pt, or transverse mass mt:

mt = /pt 2 + m 2, (2.1)

and

Y = E + Ptl) = tanh-l ( 1 1), (2.2)

where mo is the mass of of tmeasured particle, E is the energy of the particle and 11l =

v,/c or the velocity along the beam axis. Transverse and parallel momentum are also

related by p = pt 2 -+ pl 2, where p is the total momentum of the particle. Energy and

longitudinal momentum may also be expressed in terms of mt and y:

E = mtcosh(y), (2.3)

Pl = mtsinh(y). (2.4)

Observed particles from high energy collision are often described in terms of an invariant

cross-section, defined such that the quantity ain, is frame invariant:

Oinv = E d. (2.5)dp3

The invariance of this quantity makes it useful when comparing cross-sections of data

sets from various collision energies. In this analysis, we discuss the invariant yield instead

of the cross-section. When using a trigger that selects events of interest, we may define

the invariant yield as
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d2 ni 1 d3 ortrig (2.6)
27rptdptdy Utrig dp3

where ni is the yield for a particular particle.

2.2 Energy and Baryon Density

2.2.1 Techniques to Extract Energy and Baryon Density

Ultimately, we would like to construct a picture of the heavy-ion collision so that we may

be able to extract the important quantities from these transient, heated and compressed

states of nuclear matter. Where on the (T,p) nuclear phase diagrams of Fig. 1-3 are

heavy-ion collisions at the AGS? The details of determining the temperature1 will be

described later. For the moment, we focus on techniques to determine the energy and

baryon densities, and EB. We discuss and EB in terms of a thermal model.

2.2.2 A Thermodynamic Approach

How relevant is a thermodynamic discussion for heavy-ion collisions at AGS energies?

There are several parameters that could be addressed in order to answer this question.

Some important parameters may include:

* available energy

* collision time

* redistribution of energy.

There is certainly sufficient energy available at the AGS such that incident nucleons are

able to interact numerous times. Measured proton yields in central 197Au + 197Au colli-

1We actually measure the inverse slope parameter, not the temperature. Some of these transient
states of matter are probably not in thermodynamic equilibrium.
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sions, for example, do peak at mid-rapidity and suggest a large degree of secondary scat-

tering. Incident nuclei are so energetic that nuclear transitions and more subtle effects

need not be considered. The more relevant issues are collision times and redistributions

of energy.

A heavy-ion collision occurs in approximately the time needed for a nucleus to trans-

verse another nucleus. At the AGS this is a few fm/c. In classical equilibrium, a large

period of time is allowed for particles in the system to interact. In these heavy-ion colli-

sions at the AGS, the more relevant question may be asked: Is there sufficient time for

participant baryons and produced particles to exchange enough momentum with other

particles such that the initial momentum information is lost? In other words, what par-

ticle spectra are expected if thermal equilibrium is reached? A general expression is

obtained that must be satisfied for particles which are in thermodynamic equilibrium

[Nat92-He],

eh T T
dN/dy = Cm 2 Te-mcsh(Y)/T[1 + 2 T + (2.7)

m cosh(y) m cosh(y)'

where C is a constant. This expression reduces for m >> T to

dN/dy - e-m(Y-YFB) 2 /2T, (2.8)

where YFB is the fireball rapidity. Equation 2.7 reduces to

1
dN/dy - 2 ' (2.9)

cosh2y

for massless particles. Equation 2.8 describes rapidity spectra for a thermal fireball for

light particles (pions and kaons). Protons in central 197Au + 197Au collisions are also

well fit by Equation 2.8. Satisfying Eq. 2.8 does not necessarily imply that the particles

come from a thermal source. Not satisfying this equation would most certainly preclude

any analysis using a thermodynamic approach.
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It is also reassuring that protons display dramatic changes in their dN/dy shape as

the size of the collisions increase from peripheral 19'Au + 97Au collisions (reminiscent

of 160 and 28Si + A proton distributions) to central collisions. Cascade calculation (see

Chapter 4) show that protons and neutrons in 197Au + 197Au collisions dramatically in-

crease in the mean number of total scattering events from peripheral to central collisions.

The mean number of binary collisions increases from (NBC) 1 to about 10. Baryons

in the center of the central collisions certainly undergo even more collisions. Particles

that undergo these many collisions lose any initial momentum information as they are

"stopped" at central rapidities.

By no means do these observations prove that equilibrium exists for any collision sys-

tem under observation; but together, these observations indicate that a thermal approach

may be reasonable, especially for central 197Au + 197Au collisions.

Next we examine two cases of thermodynamic collisions. First, the Landau fireball

model is examined. This model assumes that all initial kinetic energy is transferred to

participants in the fireball. This then determines the temperature of the system.

An alternative approach is to determine the temperature and chemical potentials

from thermal fits to the particle spectra, weighted appropriately with quantum statistical

functions. These temperatures and chemical potentials can then be used to determine

densities.

2.2.3 The Landau Fireball Model

The Landau model is one of the earliest models that attempts to explain some of the basic

physics in a very high density hot hadronic or quark matter fireball [Land53], [Land56].

The model is also one of the simplest pictures of the heavy-ion collision. A good discussion

of the model is found in the Ph. D. thesis work by Bloomer [Blo90]. It is worthwhile to

briefly describe the basis of the model here and to predict the physics parameters, such

as number of participants, temperature, and kinematics for central 160 + A, 28Si + A,

and 197Au + 197Au collisions.
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Target

Projectile

Figure 2-1:
A sketch of a heavy-ion collision where the projectile is smaller than the target. 0 is
defined as arcsin(RT/Rp).

The model assumes that the projectile collides with the target nucleus and that the

intercepted volume gives the size of the fireball. The comoving mass radiates energy via

particle production. The volume and total energy are both calculable from the fireball

model. The volume of the overlap of the projectile on the target nucleus may be calculated

for central collisions. A clean-cut collision gives the following geometrical relationship

from Figure 2-1 [E802-17]:

Voverlap = 3 Rtarg(1 -cos 3 0). (2.10)

The value 0 is shown in the sketch of Figure 2-1 and the following geometrical constructs

are apparent:

sin2S = Rproj/Rtarg (2.11)
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mpr.o = moNpo ; mta = moNta,., (2.14)and,

where Npoj = number of projectile nucleons and Ntarg = number of target nucleons. The

number of target nucleons may be determined from the atomic number, Ntarg = Aarg,

39



where Ata,, is defined as

Atarg = Atarg (1 - cos 3 0). (2.15)

The second factor of 2.15 represents the ratio of overlapped volume to total volume of

the target nucleus as defined in Figure 2-1. We let m, = 0.938 GeV/c 2 for both protons

and neutrons. The total kinetic energy available in the fireball is

TC = - mpo - mtarg. (2.16)

The energy density is determined by dividing the total fireball kinetic energy by the

volume of the fireball. Because of the Lorentz contraction along the beam direction, one

writes V = Vo-y. Using p, = 0.17 GeV/fm3 , the normal nuclear density, the volume

Vfb = Ntarg (2.17)
YPo

The energy and baryon density for a heavy-ion collision are calculated separately for

the projectile and the target. We begin with the energy density and write it in terms of

the atomic numbers of the target and projectile: Atarg, Aproj. Then,

A (1-cos) (2.18)

and,

eB = 2po. (2.19)

The geometric factor used here is only for the larger nucleus. The y factors are used

to describe the density in these approximations and are defined as

"proj = COSh(Ybeam - YFB), (2.20)

and
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Ytarg = cosh(YFB).

The number of participants is easily determined in a central fireball calculation. All

the nucleons from the projectile are assumed to interact as long as the projectile is smaller

than the target nucleus (or the same size), which is always the case for the collisions in this

analysis. The number of participants involved in the target nuclei may be determined

from Equation 2.15. The rapidity of the fireball is related to the fireball mass using

Equation 2.13:

m b = a7= E(2.22)

cosh(yfb)

Table 2.1 shows the number of participants with the respective thermal fireball predictions

for each collision reaction and Figure 2-3 sketches the various reactions of Table 2.1. The

thermal fireball rapidity

YF = cosh'(EclA/mfb). (2.23)

Finally, we may estimate the fireball model's energy and baryon densities from Equa-

tion 2.18 and 2.19:

e -pr + o -Etarg = Tib 'projPo + Tb targPo (2.24)= proj Ctarg - cm A.A(2.24)
Aproj Atarg 

and

eB = Bpr ° + eB ta rg = yprojPo + 'YtargPo (2.25)

Table 2.2 shows the predictions of the fireball model that complement the predictions

from the earlier analysis [Blo90].

Figure 2-3 plots the results of the fireball predictions for FB, TFB, , and EB for

the projectile, target, and total participants. Later, we compare these predictions with
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LANDAU FIREBALL MODEL PREDICTIONS
Proj. Targ < > < Nr> < tal> mib Tfb YF

GeV GeV
p 8 Be 1 1 2 3.99 3.32 1.72

27A1 1 3.11 4.11 3.93 5.52 0.84
64Cu 1 4.59 5.59 5.63 6.29 0.63
197Au 1 6.20 7.20 4.49 6.90 0.48

160 27A1 16 17.2 33.2 89.0 58.1 1.66
64Cu 16 30.8 46.8 122.7 78.1 1.18
197Au 16 52.2 68.2 159.2 95.3 0.81

28 Si 27A1 28 27.0 55.0 151.1 99. 1.72
64Cu 28 40.7 68.7 194.6 125. 1.40
197 Au 28 75.6 103.6 251.5 156. 1.27

197Au 27A1 89.4 27 116.4 244.6 135.0 2.45
197Au 197Au 197 197 394 954.3 678.6 1.6

Table 2.1: Predictions for the Landau fireball model for the range of collisions that will
be analyzed in this thesis. For the non-symmetric collisions the number of participants
were generated with the geometric algorithm used as an input to FRITIOF. The center
of mass energy available for a pp type collision with pbeam=1 4 . 6 A-GeV/c is v/ = 5.4
and for a pp collision with pbeam=11. 6 A.GeV/c, xv = 4.81.
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FIREBALL CENTRAL COLLISION SUMMARY

Central collisions p,O,Si,Au Projectiles

O

O

1it 3
1(J

10 2

10

I
, , o +o + ; 3+. + . .a~ 00 . s . . . .+ + + + 4 + + 

O 0 A * Total Energy Density

* 0 A * Total Baryon Density

0

o A
0 A *O

, , , * 0 t A*
I I I 1 I I 1 1 I I I I I I I

10

Number of Total Participants

Figure 2-3:
Predictions of the Landau fireball model plotted as a function of numbers of participants.
The plot shows the energy and baryon densities for the total number of participants. The
data for the graph comes from Table 2.1. The above calculations use the beam momentum
appropriate for the AGS; p b,am = 14.6 GeV/c for proton, oxygen, and silicon projectiles
and p beam = 11.6 GeV/c for the gold projectile.
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DENSITIES FROM THE LANDAU FIREBALL MODEL
Projectile Target Ybeam 'proj targ eproj Etarg B Btarg B

p 8Be 3.44 2.88 2.88 1.62 1.57 0.48 0.48 .96
27A1 3.44 6.76 1.37 6.28 .41 1.14 0.23 1.37
64 cu 3.44 8.33 1.25 8.70 .280 1.41 0.21 1.62
197Au 3.44 9.67 1.17 11.2 .221 1.63 0.19 1.82

160 27AI 3.44 3.04 2.72 1.87 1.54 0.51 0.45 .96
6 4 CU 3.44 4.84 1.78 4.01 .76 0.81 0.30 1.11
197A 3.44 6.92 1.34 7.92 .31 1.17 0.22 1.39

28Si 27AI 3.44 2.88 2.88 1.73 1.77 0.48 0.48 .96
6 4Cu 3.44 3.91 2.15 2.95 1.14 0.66 0.36 1.02
197 Au 3.44 4.75 1.88 4.49 .66 0.80 0.31 1.11

197 Au 27A1 3.2 1.59 5.83 .408 4.9 0.27 0.99 1.26
1 9 7A 197Au 3.2 3.22 2.57 1.88 1.5 0.54 0.43 .97

Table 2.2: Predictions of the energy and baryon densities for the Landau fireball model
for a wide range of central collisions. Densities are measured here in units of GeV/fm3 .

the values from the data. We note that the energy and baryon densities that have been

predicted by this model overestimate e and B obtained with the data. The density

is overestimated partly because the model assumes the participants completely "stop".

A more realistic picture is that only partial "stopping" occurs, with some of the inci-

dent longitudinal momentum not equilibrated (i.e., more longitudinal than transverse

momentum). The Landau fireball model shows a decrease in for larger systems. This

results because of the large transferred energy for small projectile systems and their small

volumes.

It is also interesting to note that the baryon densities from this calculation remain

fairly constant, targ ; .2 GeV/fm3 and prj t .5 GeV/fm3 . Thermal parameters,

determined by fitting the data, produce very different results when they are used to

determine the densities of particle species. This comparison will be discussed next.
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2.2.4 Thermodynamic Approximation Using Fit Parameters

Perhaps a better approach to estimating the densities in AGS collisions in the context

of a thermal model is to determine densities using temperatures and chemical potentials

determined from fitting the momentum spectrum. The invariant spectrum for a fireball

has the form

d3N C
E d3 -= ( 3 mtcosh(y - yFB)e - m' t ° h( y- F)/T, (2.26)

where C is a constant. Typically, the temperature is written in terms of an effective tem-

perature, T,ff = T/cosh(y - YFB). In a small rapidity slice, Ay, the invariant spectrum

takes on the form [Nat92-He]

dN
2m mte--mt/T. (2.27)dydmt2 ~ te

At low momentum, particle species are expected to show evidences of quantum sta-

tistical effects. Further refinement to Eq. 2.27 gives

dN mt
dydm- 2 e(E-)/ 1' (2.28)

where the denominator accounts for the Bose or Fermi statistical dependency.

At low momentum, pion spectra are observed to rise above a Boltzmann distribution

[Par92], [HIP93-go]. 2 One possibility to explain the shape of the pion spectra at low

momentum may be decaying A resonances. However, some studies have shown that

decaying A's do not reproduce the low momentum rise seen for the pions [Par92]. Other

possibilities include decaying baryons and Bose statistics to explain the rise in pion yields

at low momentum.

In this section, we will examine the possibility of Bose and Fermi statistics to describe

the low momentum pion and proton behavior.

2 The most recent pion spectra taken with low magnetic field settings in E859 also show that pion
spectra rise above a Boltzmann distribution[Sun94].
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The distribution function for Bose-Einstein (BE) particles, and Fermi-Dirac (FD)

particles may be expressed as

+1 FD/BE distribution

f 1e(E-IT with A= {

0 MB distribution, = +0.

The chemical potential may be considered as a potential energy term and is equivalent

to the energy required to create one more particle in thermodynamic equilibrium:

OE
ON sv (2.29)

The shape of the pion spectra and differences between 7r+ and r- may, in part, be affected

by the chemical potential [Gor91]. In one model a Coulomb term, Q, is added to the

chemical potential to account for the nuclear charge:

r- = r- Q; Pr+ = + Q .

In a similar manner, the chemical potential for the baryons

Ulp = CB + Q; Pn = PB -

Because of the Coulomb effect the invariant cross-section, or differential yield, is altered.

The Coulomb effect and the contributions to the cross-section will be discussed in Chapter

7. Equation 1.2 may also be used to predict Q in AGS A + A data. Pion abundances,

determined with chemical potentials using pu+ and pq_, are

R = e-,Q/T, (2.30)

assuming Q = Q+ = -Q_. Later we will show that central ' 97Au +1 97Au collisions,

where R = .6 - .7, are reasonably accounted for in this model for low momentum pions

Pt < 200 GeV/c. After correcting for the expected 7r- abundances for the neutron rich
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197Au +197Au collisions, the excess r- may be accredited to a Coulomb contribution to

the chemical potential on the order of ttQ - 15 MeV. The chemical potential for pions

that are determined by fitting Bose functions for A + A collisions gives a reasonable

explanation to the abundances of r- at low momentum and provides another way to

describe the differences in pion abundances along with conservation of isospin. This

ratio will be discussed more in Chapter 6.

We expect that particles detected in the E802/E866 spectrometer come from a source

distribution where Bose-Einstein effects for pions and kaons and Fermi-Dirac effects for

protons occur. By modeling the heavy-ion collisions as a thermal system, we may extract

the densities by summing over the number of states and obtain

N g 3

= v = VJI d d p/h. (2.31)

The degeneracy-spin factor g is also included here. A good discussion of energy and

baryon density in a thermal model may be found in a lecture by Zimanyi [Nat92-Zi].

The invariant spectra are fitted to the Bose-Einstein or Fermi-Dirac form, as appro-

priate. For r's, we have

rgP42rg p dp
4P (27g )3 ° ef co ;;;9_U)/T p _d 1(2.32)(2rh) e(V2 -T)/T_ 1

This expression may be integrated over p to give a number density of each particle species

at freeze-out. The thermal fits to the data are treated later in the discussion of this thesis.

Results of the thermal fits to the data will be described in Chapter 7.

Work continues at the AGS to determine the true contribution of resonance decays

and quantum statistical effects to low momentum particle yields.
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2.3 Cascade Models

Cascade models are a general class of event generators that allow particles to progress

through a series of collisions. These models fall into several categories of varying com-

plexity. We begin with the simplest model, FRITIOF. Later, we discuss the RQMD and

ARC models.

2.3.1 Specific Dynamical Models

FRITIOF: The FRITIOF [And87] model is a form of Wounded Nucleon Model (WNM).

Wounded nucleon models are a general class of models that assume that particle produc-

tion is directly proportional to the number of participants in a heavy-ion collision. This

model has first been treated in pA collisions, invoking the simple linear relationship for

pion production [Bial74]:

N, = a + bNtot . (2.33)

Macroscopically, the FRITIOF model collides pp, pA, and AA collisions. Both target

and projectile fill a nuclear volume with an average intra-nuclear spacing of 1.13 fm

between adjacent nucleons. The boundaries of a nucleus are not sharp, but are described

by a Woods-Saxon distribution. A projectile bores out a cylindrical core, similar to that

described in the fireball model, and nucleons in this core become the collision participants.

The mean number of collisions per participant, v, is determined in this bored cylinder.

Each subsequent collision transfers momentum to the target nucleons via Monte-Carlo

collision processes. Once a projectile nucleon interacts, in pA and AA collisions, they are

free to interact with subsequent target nuclei in the bored core. For A + A collisions, the

target nuclei are free to interact multiple times after they initially interact by a leading

nucleon; they multiple scatter. On the other hand, target and projectile spectators

and participants never interact with created hadrons. These spectators are untreated in

FRITIOF.
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Individual nucleons in FRITIOF are described as massless strings [And87]. A collision

of two quarks excites a QCD color string that figuratively stretches between the two

quarks. Hadronization occurs as a color string de-excites.

FRITIOF is modeled for high energy experiments (i.e., CERN energies), where the

interaction duration is small compared to the hadronization time. Produced hadrons

generally do not rescatter since the projectile has long since bored through the nucleus

before the produced particles could interact with the spectators. At AGS energies, it is

likely that produced particles have an opportunity to interact with target and projectile

nucleons.

In summary, the FRITIOF model provides a good starting point for understanding

nuclear collisions, but neglects the rescattering.

RQMD: The RQMD (Relativistic Quantum Molecular Dynamics) model [Sor89] was

designed to study the space-time evolution of heavy-ion collisions over a very wide range

of energies, starting from the lowest incident momentum at the BEVALAC (Pbeam = 2

Gev/c) , DUBNA (Pb,am = 3 GeV/c), AGS (pbeam = 14.6 GeV/c and 11.6 GeV/c), and

finally CERN (Pb,,eam = 200 GeV/c). The model assigns an eight dimensional phase space

for each particle, the 4-position and 4-momentum vectors. The model includes a soft

many body collective potential that may be turned off if desired. Studies have shown

that particle production is not greatly affected by this potential [Mosk92], [So194].

The baryon-baryon, baryon-meson, and meson-meson cross-sections are taken from

experimental data when available. The RQMD uses a 1 fm/c mean formation time in

the center of mass frame of the two particles. Quantum effects are also included. They

are:

1. Quantum stochastic scattering of hadrons and quarks.
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2. Pauli blocking in collisions.

The RQMD model approaches particle production in three different energy regions.

The lowest energy regime is (quasi-) elastic scattering of hadrons in heavy-ion collisions

(relevant up to a few GeV/c incident momentum per nucleon). Next there is the region

of resonance production and subsequent particle formation, the most relevant region at

AGS energies. Finally, there is the high energy region characterized by hard quark-quark

scattering.

The most important resonances created in the intermediate particle production pro-

cess arise from the following baryon-baryon, meson-meson, and baryon-meson interac-

tions:

rN (1232),

r- p(770),

NN - NA(1232).

At higher energies (CERN energies), contributions from direct quark-quark interactions

also become important.

ARC : The ARC model [Pan92] is also an intra-nuclear cascade model. The ARC

model has been developed recently to specifically study many body interactions of heavy-

ion collisions at AGS energies. The ARC model excites masses to higher resonance states

and then allows them to decay. After the original collision, subsequent collisions are

possible if the trajectory of a nucleon comes within a critical distance of another nucleon,

determined by the nucleon-nucleon inelastic cross-section.
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After a collision, particle production may occur via two types of mechanisms in ARC:

Direct (DIR) and Resonance (RES) production and scattering.

* DIR: Mode that handles intranuclear inelastic nucleon collisions as if they occurred

in free space.

* RES: Mode of particle production via low-lying baryonic and mesonic resonances

as intermediate states within nuclear matter.

Mesons may be produced from both DIR and RES modes. A 1 fm/c formation time

is required for hadronization in the DIR mode. It has been shown that the RES mode

gives a quantitatively better description to the E802 data [Pan92]. DIR production, on

the other hand, has been shown to produce more stopping, too high of a pion yield and

too low a K+ yield as well as too low a nucleon effective temperature [HIP93:-ka].

Energy is shared by resonant states as well as produced particles, and this results in

a dissipation of the energy within a few fm/c's after the start of the collision.

The cascade model has shown to be a very powerful and effective analysis tool in

understanding heavy-ion collisions at the AGS. Some caveats and limitations of the model

include:

* No Fermi momentum is assigned to the nucleons in either the projectile or target

nucleons. This initial Fermi momentum is assigned to each particle once a collision

occurs.

* Nucleons travel in straight line trajectories since there is no nuclear mean field in

this model. Tests done with the RQMD model [Mosk92] with the mean field turned

off show that the mean field plays no significant role in particle production at AGS

energies.

* The lack of knowledge of resonance-resonance cross-sections is a weakness to the

model.
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The ARC model will be compared to the measured yields of pions and K + in 28Si +

27A1 and 197Au + 197 Au reactions.

2.4 Summary

We have examined the fireball model in the context of heavy-ion collisions at the AGS. A

thermal model is also examined. The temperatures and chemical potentials are obtained

by fitting the particle's momentum distributions with thermal functions. Chapter 7

contains a comparison of these two approaches.

Two cascade models RQMD and ARC are also discussed. These two models are

compared in Chapter 6 to the measured yields of pions and kaons in 28Si + 27A1 and

197Au + 197Au collisions.
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Chapter 3

Experimental Setup

This chapter describes the E802/E866 experimental layout. A brief overview of the AGS

and Tandem Van de Graaff facilities is described as well as the experimental floor layout.

Data for this thesis was obtained from three experimental running periods from June 1988

through April 1992. Apparatus changes which affect the analysis are described. This

chapter emphasizes the spectrometer and the zero-degree calorimeter (ZCAL), which

were used extensively in this analysis.

3.1 The AGS and Tandem Facilities at Brookhaven

National Laboratories

The AGS has long been used for high energy acceleration of protons to 30 GeV/c on fixed

targets. The acceleration of heavy-ions came after the Tandem Van de Graaff Facility

was constructed in the early 1970's and used to accelerate heavy-ions to a few MeV/c

per nucleon [Abb89]. In 1986, a transfer line was completed between the Tandem facility

and the AGS. Thus, heavy-ions from the Tandem could be injected into the AGS at a

momentum of p z: 120 A-MeV/c. Ions of 160 and 28Si were chosen; with a charge-to-

mass ratio Z/A = 1/2 for oxygen and silicon, they could be accelerated to a momentum

of about half that of the proton (Z/A=1) to 14.6 A.GeV/c. Heavy-ion beams from the
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Figure 3-1: Layout of the AGS Accelerator facility.

AGS are extracted to several experimental beam lines. Figure 3-1 shows a map of the

AGS/Tandem layout.

In the spring of 1992, the gold beam was commissioned. A booster in front of the

AGS allows for the acceleration of partially stripped gold ions to a high enough velocity

to strip the remaining electrons. The gold ions are then injected into the AGS ring. The

smaller charge-to-mass ratio of the gold ions allows for their acceleration only to 11.6

A.GeV/c. The highest baryon densities achievable are expected to be reached with the

AGS gold program.

Experiment E802 was the first of three series of experiments and started in 1986.

Ongoing work has included spectrometer upgrades and improved rare-particle triggering

(E859). A forward spectrometer, new multiplicity array, and a data acquisition system

are changes that are implemented for gold running in E866. The forward spectrometer

is needed for measuring particles in the forward high multiplicity regions of 197Au +
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97Au collisions. This thesis data includes the 160 + A reactions taken during June 1988

and 28Si + A data during December 1988. Finally, 1'97Au + 197Au reactions measured

during April 1992 are analyzed here and compared to the lighter-ion data.

3.2 Experiment E802/E866

We will refer mostly to the partitions of experiment E802 in this section. The experimen-

tal discussion is divided into roughly two parts: (1) a discussion of event characterization

and (2) a discussion of particle identification with the E802 spectrometer. Event charac-

terization is done by the ZCAL, the TMA (Target Multiplicity Array), and Lead Glass

Array. Particle identification is done primarily with the E802 spectrometer. Figure 3-2

shows the spectrometer arm and the event characterizing partitions.

3.2.1 Beam Counters and Target

The beam counters comprise four scintillators that are used to define the trigger for beam

interactions as well as to provide the start signal for all other partitions. Several beam

scintillators are used to define the beam profile and collimate the beam, including UDEW

BVETO, AND BTOF (see below).

The beam scintillators are responsible for making sure that the beam shape is rea-

sonable and to supply a minimum bias INT trigger. A logical BEAM signal is defined

as:

BEAM = PRE n UDEW n BTOF n BTOT n BVETO. (3.1)

The beam counter scintillators function in the following roles:

1. PRE: A digital busy that prevents beam pile-up by rejecting beam events that are

preceeded by another beam event by less than 3s.

2. UDEW: The most upstream scintillator set that defines the beam horizontal and
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vertical position.

3. BTOT: Measures the charge of each beam particle with a resolution of 0.5 charge

units (for silicon).

4. BTOF: A scintillator that defines the starting time, TO, for the TOF partition

and all other partitions. BTOF has a time resolution of At = 30 - 40 ps for E802

running.

5. BE: The "Bull's Eye" counter is a downstream scintillator, sitting 10.6m from the

target directly in front of the zero-degree calorimeter. The bull's eye scintillator

forms one part of the interaction trigger, defined as:

INT = BEAM n BE (3.2)

The BE scintillator measures charge carried by the beam fragments . Charge thresh-

olds for the three beams were fixed at Z = 6.5, 12.4 and 75 for oxygen, silicon and gold

beams. An interaction is considered to have occurred when Z BE < Zthres. The bull's eye

counter is only sensitive to charge, so that interactions in which only neutrons are lost

from the projectile will not result in a detected interaction. The measured cross-sections

for A + A collisions will be smaller than the actual inelastic cross-section. One must

take this into account when determining the error associated with the measured inelastic

cross-section.

3.2.2 The Target Multiplicity Array

The target multiplicity array (TMA) is an array of resistive plastic tubes operated in the

proportional mode and read out from signals induced on copper cathode pads [Abb89].

The TMA surrounds the target completely in azimuthal angles as well as forward angles

from 6 to 140 ° . The array consists of two parts, a barrel and wall . The barrel is a

cylindrical array (1520 pads) of tubes surrounding the target ( = 40 ° to 149° and = 0
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to 2r). The wall is placed at forward angles ( = 6 to 400) and is designed with higher

segmentation (1728 pads) for larger multiplicities in the forward direction. The TMA's

large coverage allows it to be used as a central trigger. The online TMIA central trigger

is defined as an event where the total charge multiplicities are approximately the upper

7% in multiplicity for a given A + A collision. The barrel covers 27r and ranges from

40° to 149 ° in 0.

With only a couple of exceptions, the TMA is not used in this analysis. TMA trig-

gered oxygen data are shown for completeness with the minimum bias and spectrometer

triggered data set. The reader is referred to Ph. D. theses where the TMA was used

as a central trigger for event characterization (see T. Abbott's thesis [Abb90th] and C.

Parson's thesis [Par92]). Contributions to the overall accuracy of the TMA include;

* Uncertainty of the multiplicity due to hits on two or more adjacent pads. These

clusters are counted as only one hit, since hits near the edges of pads may fire

adjacent pads.

* There are small inefficiencies due to two or more particles hitting one pad. These

double events are counted as one particle track.

* The TMA cannot distinguish events that do and do not come from the target.

Target out subtraction can be done offline, however, only on an "average" basis.

3.2.3 The Zero Degree Calorimeter

The ZCAL is the principle event characterizing detector in this work and functions to

measure the projectile spectators. The ZCAL is located 11.7m downstream from the

target and is a rectangular shaped box filled with a sandwich of 138 layers of 60 x 60

cm of scintillator and iron sheets. Very forward produced particles will also be absorbed

in the ZCAL, although they represent only a very small fraction of the energy deposited.

The ZCAL converts kinetic energy of the beam fragments to photons. Because of the high

efficiency of the detector, a simple conversion relates the energy deposited in the ZCAL to
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the number of projectile nucleons as described in Equation 1.3. The calorimeter provides

8.9 interaction lengths and therefore essentially all the incident spectators' kinetic energy

is measured by the calorimeter.

The size of the calorimeter's opening angle (1.47 ) was determined from the root-

mean-square angles expected for fragments from Bevalac energies [Gre75]. A simple

calculation also shows that the inscribed opening angle of the ZCAL is sufficiently large

so as to absorb spectators that move in transverse directions to the beams with a Fermi

momentum of .27 GeV/c:

Ospec-max = Arctan( ) = 1.060 < 1.47° (3.3)
14.6

Light is channeled to the 16 wavelength shifters that are mounted on the side of

ZCAL and then is channeled to phototubes in one of two hadronic sections, HI(front)

or H2(rear). Each hadronic section is composed of 8 locations (see Figure 3-3) and each

location has two air-gap-coupled wave-length-shifter plates (WLS), 5mm(thick) x 24.5

cmx 24.5 cms. The ZCAL was used for 160, 28Si, and 197Au projectiles and run in

the mode where the energy output was roughly matched from H1 and H2. Figure 3-4

shows the energy response of the calorimeter as a function of transverse distance across

the face. The figure also shows the total energy summed from the two sections as well as

the resolution for 28Si beams impinging on different x positions across the calorimeter.

The ZCAL is very linear in output to the number of incident nucleons [Abb89] for

160 and 28Si as well as for 197Au projectiles. Limitations of the instrument include:

* The ZCAL accurately measures the projectile spectators. Once a projectile is com-

pletely occluded by the target, there is no forward energy. Thus, for asymmetric

systems, the correlation between EZCAL and impact parameter is significantly re-

duced.

* The ZCAL aperture is collimated when the spectrometer is positioned at the most

forward setting (5° ). At this setting the beam pipe travels through the yoke of the
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Figure 3-3: Beam-eye sketch of the ZCAL showing the eight locations for either hadronic
sections H (front) for H2(back). Two air-gap-coupled wave-length-shifters (WLS) are
at each of the eight locations for each hadronic section.(From [E802-40])

Henry Higgins magnet forcing the opening angle subtended at the calorimeter to be

decreased from 1.5 ° to 0.80 [E802-40]. The effect of the beam pipe in this running

mode is two-fold: collimation attenuates the beam but the influence of albedo

from showering off from the beam pipe tends to offset this attenuation. The large

incident angle of the fragments within the beam pipe allow for secondary particles

to shower into the ZCAL. With this complication, several attempts were made to

use the calorimeter so that comparisons with 140 data could be made. After these

efforts, it was still realized that the severe non-linearity of the collimated beam and

the ZCAL response do not allow us to use data at this most forward setting.

* The ZCAL's light output is 9 % larger at the periphery of the scintillator than at the

center. Nucleons that impact at the scintillator create photons in the interaction

with the scintillator. These photons will be partially absorbed before reaching the

wave shifters and light-guides, reducing the signal. This correction is taken into

account when simulating ZCAL response in Monte-Carlo generated collisions.

60



* The performance of the ZCAL changed between 1988 and 1992. The most notable

change for this analysis came during the E866 phase. Prior to the gold projec-

tile running a high intensity silicon run at a few times 106 per spill degraded the

calorimeter resolution from cZCAL/EZcAL = 76%//E(GeV) (for oxygen and sil-

icon running) to OZCAL/ EzcAL 230%/ /E(GeV).

* A very large target out subtraction was seen in the 197Au + 197Au data. A large

target out contribution was seen for high values of ZCAL. Fig. 5-7 shows a large

target out contribution for large values of ZCAL (ZCAL>ZCALBEAM). Target out

subtraction eliminates most of this contribution.

* Ron Soltz also discovered that the peak of the ZCAL energy spectra shifted de-

pending on the beam rate. This rate dependency was seen for the high intensity

running of March 1992[Sol94b]. All gold running for E866 was done with a much

reduced intensity and this specific problem is not seen.

Despite the aforementioned limitations, the ZCAL is the best device for determining

the number of participants in the collision.

3.2.4 The Spectrometer

The spectrometer arm can be divided into 4 sections; (1) the Henry Higgins magnet, (2)

the tracking chambers, (3) the time-of-flight wall, and (4) miscellaneous detectors. The

spectrometer consists of a rotatable frame whose purpose is to provide a rigid support for

the magnet and tracking chambers and other partitions. The length of the spectrometer

is about 7m and is determined so that kaons would survive long enough to be detected.

The spectrometer measures particles in the range of 0.5 < Plab < 4.7GeV/c , 5 < Olab <

51°

Henry Higgins The Henry Higgins magnet is a variable strength dipole magnet mounted

on the spectrometer arm. The magnet itself is 3600 kg and is designed to allow for a

substantial solid angle of 25 msr and provides a homogeneous field at +0.2T, ±0.4T, and
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Figure 3-4: Dependence of energy deposited in H1 and H2 as a function of the transverse
displacement across the face of the ZCAL. The total energy EZCAL = H1 + H2 is also
plotted as well as the resolution a/E for incident 2 Si beams.

+0.6T. The magnet is capable of going to ±1.2 T but was never run in this mode. Large

magnet-field clamps were mounted on the ends of the magnet to reduce the field to a few

parts x 10 -4 Tesla in the region adjacent to the magnet. The beam pipe passes through

a hole bored through the beam side yoke when the spectrometer is in the most forward

(5 ) angle setting.

The tracking chambers The E802 tracking chambers T1,T2,T3,and T4 are drift cham-

bers designed to identify events with multiplicities up to about 10. A total of 4 drift cham-

bers, each with 10 planes in the original E802 setup, were arranged as shown in Table 3.1.

Later, for E859 and E866, another 3 planes were added in the frame T3.5, but these addi-

tional planes were never used effectively to increase track trajectory information. A good

discussion of the spectrometer's drift chambers is documented in several Ph.D. student

theses (see the theses of M. Bloomer [Blo90] and H. Huang. [Hua90O]). Tracking chamber

T2 was replaced for E859 and E866 with a new chamber that has more planes and higher

segmentation and is slightly larger to better match the spectrometer acceptance.
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CHARACTERISTICS OF THE TRACKING CHAMBERS
Wire Wires per Drift Ionization

chamber Module Angle Planes Plane Length Length
T1 X 0 2 32 4 mm 3 mm

V -45 2 32 4 mm 3 mm
Y -90 2 16 4 mm 3 mm
U 45 2 32 4 mm 3 mm
W -26 2 32 4 mm 3 mm

Total T1 10 288
T2(E802) U 30 2 21/22 10.5 mm 7 mm

X 0 3 20/19/19 10.5 mm 7 mm
Y -90 3 11/10/10 10.5 mm 7 mm
V -30 2 22/21 10.5 mm 7 mm

Total T2 10 175

T2(E859) U 30 3 28/28/28 10.5 mm 7 mm
and X 0 3 28/27/27 10.5 mm 7 mm
T2(E866) Y -90 3 13/13/14 10.5 mm 7 mm

V -30 3 28/28/28 10.5 mm 7 mm
Total T2 12 290
T3 U 30 2 36 16.1 mm 7 mm

X 0 3 36 15.3 mm 7 mm
Y -90 3 16 15.3 mm 7 mm
V -30 2 36 16.1 mm 7 mm

Total T3 10 300
T4 U 30 2 44 16.5 mm 7 mm

X 0 3 40 17.5 mm 7 mm
Y -90 3 16 17.2 mm 7 mm
V -30 2 44 16.5 mm 7 mm

Total T4 10 344

Table 3.1: Characteristic of the
table is taken from [Abb89]. The

Tracking Chambers. Most of the information in this
additional information and changes in T2 are included.
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Table 3.2: Fiducial dimensions for the E802/E866 drift chambers. The thickness for each
chamber is - 21cm .

Each chamber is composed of 10 "active" planes that are composed of alternating

sense and field wires. Between each sense/field plane are cathode wire planes that are

kept at high negative voltage (between 1000 and 2000 V depending on the chamber).

The electric field in each chamber is "shaped" by field wires, positioned alternating

between sense wires and kept at a negative voltage. As charged particles ionize the

Argon-Isobutane gas mixture flowing through the chambers, the released electrons "drift"

towards the sense wires that are held at large positive voltages.

Sense wires are 10#m in diameter and made of gold plated tungsten for the T1

chamber and 30ttm diameter gold-plated tungsten for T2, T3, and T4 chambers. The

field and cathode wires were somewhat larger, with a diameter of 100lum, made of copper

- beryllium alloy.

Drift chambers increase in size with distance from the target so that the solid angle

(fixed by the aperture of the Henry Higgins magnet) is maintained. Figure 3-2 shows T1

and T2 positioned before the magnet and T3 and T4 after the magnet. The active area

of the chambers are found in Table 3.2.

Using a offline self-correcting geometry algorithm [E802-54], [E859memip], the cham-

ber geometry was maximized and a 200 m resolution was achieved. Two multiwire

proportional trigger chambers (TR1 and TR2) were added for E859 running that would

allow for pattern recognition behind the magnet and serve as an input to an online PID

trigger.

64

T1 26.4 cm x 13.6 cm

T2(E802) 42.2 cm x 23.5 cm

T2(E859,E866) 39.5 cm x 20.4 cm

T3 113.7 cm x 52.1 cm

T4 143.5 cm x 58.7 cm



The Time-of-flight Wall The TOF partition plays a critical role in the identification

of particles. The wall sits 6.5m from the target, behind the tracking chambers. The

survival rate for 1 GeV/c kaons at 6.5m from the source is 42 % [Abb89].

The TOF wall performs three principle functions concerning particle tracking and

identification. First, it acts as a space-point hit detector for trajectory information, later

used in tracking codes. Second, the TOF wall measures the time-of-flight of the particles

so that offline particle identification may be done. Finally, the detector is also used to

determine the particle charge by adding up the energy deposited in the phototubes at

the top and bottom of each picket. The ADC value is obtained in the following way:

< ADC >= ADC(UP) ADC(DOWN). (3.4)

The TOF wall consists of 160 pickets that are 78cm x 1.6 cm x 1.6 cm in dimen-

sion. Two Hamamatsu R2083-subnanosecond phototubes receive light on each end of

the plastic scintillator pickets. Both x and y positions may be determined with TOF.

The x position is determined by the slat position. The y - position is determined by the

difference in timing of the photomultiplier tubes positioned at the top and bottom of the

TOF wall.

The TOF resolution steadily decreased over the three running periods. An 80ps

resolution was obtained for oxygen and silicon runs and the resolution decreased to about

120ps for gold running.

The TOF slats were ORed together to form a TOF trigger. The SPEC trigger was

made up of BEAM, TOF and T1Y:

SPEC = BEAM n TOF n T1Y. (3.5)

The TOF information is capable of separating pions, kaons, and protons up to a momen-

tum of 2.2 GeV/c.
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3.2.5 The Data Acquisition

The data acquisition is described in great detail in several of the hardware notes and

publications of the E802 collaboration; [Abb89], [Lev87], [Wad87]. There are about 6000

total channels in the E802 setup. Analog signals from the various detectors are digitized

in CAMAC and FASTBUS modules (ADC's and TDC's). A 68020 microprocessor (the

Chairman) is capable of handling data from all 6000 channels approximately every 20

milliseconds. Data is written to a 9-track tape on a VAX host computer once it is put in

a standardized event bank structure called YBOS [CDF156]. Typically, one tape is used

for each run and hundreds of runs make up each running period. Each running period

will be described in the upcoming sections.

3.3 Data Sets

The data analyzed in this work cover several running periods. Essentially five types of

hardware triggers are used over the data set for this thesis: BEAM, INT, SPEC, TMA,

and ZCAL. An offline ZCAL trigger is also used on INT and SPEC triggered data to

select out events of a certain numbers of participants. A summary of the important

considerations of data taking over the several running periods are listed below.

1. The gold running included the E859 changes in hardware. A new T2 replaced the

T2 of E802. (See Section 3.2.4).

2. New trigger chambers are included in the E859 and E866 running. The addition

of trigger chambers adjacent to drift chambers T3 and T4 for E859 and E866 also

needed to be included in the acceptance calculations. (See Section 3.2.4).

3. 5° running forced the beam pipe to go through the magnet yoke. Interference with

the magnet did not allow reliable comparisons with the ZCAL at this angle setting.

4. In this analysis, two different reconstruction codes were used. The reconstruction

code RECONSTRUCT was used on the 160 and 28Si data set, [Hua90O], [Sar89].
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The AUSCON code [Roth94] made use of the E859 trigger chambers and was used

on the 197Au + 197Au data set. The efficiency of the RECONSTRUCT code was de-

termined using a hand scanning process. The total number of tracks reconstructed

is compared to those that should have been reconstructed. The efficiency of RE-

CONSTRUCT was determined to be 85 ± 5 %[Hua90O]. The efficiency for AUSCON

was determined with Monte-Carlo generated tracks and was found to be 91 5 %.

5. Both INT and SPEC triggers were used as minimum bias triggers for the oxygen

data. The INT trigger was used for the majority of the oxygen running period. The

SPEC trigger came online late in the oxygen running period and was merged ap-

propriately with the INT triggered data for ,spec = 34° and 44° running. With only

one exception, the rest of the oxygen data were triggered with the hardware SPEC

trigger. TMA triggered data were included in this thesis only for completeness and

for comparison with the offline ZCAL triggered oxygen data.

3.4 Data Analysis

The enormous quantity of data from E802/E866 has called for an analysis procedure to

have a very generalized format and is broken up into different stages. Once again, some

minor changes have occurred over the 4 running periods of this work. The raw data,

once on tape, undergoes a series of data "passes". The following list includes the main

steps in the data analysis procedure.

PASSO This is the first pass on the raw data set where initial calibrations are done.

During this pass, pedestals and gains of ADC's are determined for each detector as well

as timing offsets of the TDC's for the drift chambers and TOF wall.

PASS1 Physical quantities are determined during this pass. The zero-degree calorime-

ter energies are determined for every event as well as the values for the other event

detectors including the TMA, Lead Glass, and Beam detectors.

PASS2 This phase of data analysis is essentially devoted to track reconstruction using
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either the RECONSTRUCT or AUSCON codes. RECONSTRUCT was used with oxygen

and silicon data sets. A complete discussion of this code may be found in Ph.D. theses

of H. Huang [Hua90O] and M. Sarabura [Sar89]. The gold data set was reconstructed with

the AUSCON code. A complete discussion of the AUSCON code may be found in the

thesis work of P. Rothschild [Roth94]. Particle tracks are reconstructed using information

from the spectrometer's drift chambers, trigger chambers and TOF wall.

PASS3 PASS3 was used to do particle identification. In this thesis 7r±, K+, and

protons were analyzed and particle ID was done using the a particle's time-of-flight, t,

the track momentum, p, and the path length, 1:

m = p /1 - 2/ GeV/c2, (3.6)

with

= 1/ct. (3.7)

Table 3.3 shows the breakup of the data analysis stages up through the physics com-

pression stage for all the running periods that were used in this analysis. Final data

processing includes a physics compression stage where data that has particle ID is writ-

ten to a file called an "ntuple". Every run used in the analysis has an ntuple file. All the

run ntuples are next compressed into a running period summary file. These summary

files contain all the physics information to determine particle invariant cross-sections and

yields. Invariant yields are the topic of Chapter 5.

3.5 Summary

The principle E802/E866 partitions are summarized in this section. The calorimeter is

used for event characterization in this work and has proven to be a reliable means to

measure incident collision spectators.
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Physics compression
pass 0 pass 1,2 pass 3 (Summary File)

160 BNL MIT, Columbia MIT/author MIT/author

28Si BNL MIT MIT/C. Parsons MIT/C. Parsons

197Au BNL MIT MIT MIT/author

Table 3.3: Summary of analysis passes.
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Chapter 4

Nuclear Geometry

In this chapter we discuss the geometry of heavy-ion collisions and its effects on particle

production. We attempt to understand heavy-ion collisions from a simple picture of

colliding spheres.

Next, we discuss particle production using a simple wounded nucleon model. We also

include a discussion of a more general wounded nucleon model that includes rescattering.

We use the recently developed RQMD code and examine particle production in this model

for 28Si + 27A1 and 197Au + 197Au reactions. Finally, we study how the E802 calorimeter

is used to determined the reaction participants.

4.1 A Geometric Model

A simple description of the time-independent nuclear density is given by the Woods-Saxon

distribution,

P(r) = (4.1)
14 e( r- R i/2) / b'

The value a is a normalization constant. This value is determined by integrating the

distribution P(r) over all space to obtain the atomic mass of the nucleus. The value b is

also determined empirically: b=.545 fm.
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Figure 4-1: A Woods-Saxon density profile of several nuclei and a table of the half
radii that are used in this model. The FRITIOF model uses these density profiles for
determining the number of collisions that will take place as the projectile bores through
the target nucleus.

The half-radius, R1/2, is defined to be the radius where the density falls to half

the central density. This radius is empirically determined to be R1/2 = r A 1/3 . The

parameter r is approximately 1.1 fm. The values of r used in FRITIOF are chosen to

fit experimental nuclear inelastic cross sections, a/tl. Figure 4-1 shows density profiles

(setting a = 1) for several nuclei used in this work. Figure 4-2 shows the relative sizes of

oxygen, silicon, and gold.

4.1.1 Collision Participants

We begin with a few observations from earlier work.
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Figure 4-2: Relative sizes of nuclei used in this analysis.

* The median rapidity loss for protons in central p + Pb collisions at 100 A.GeV/c is

Ay 2 [Bus84].

* At AGS energies, a semiclassical approximation is used to determine the number of

binary collisions, (NBC), that a projectile nucleon makes with the target nucleons.

(NBC) is approximated by the number of times a projectile nucleon overlaps the

target nucleons as it traverses straight through it. Specifically, (NBC) = (v)tar g

Ntag . A similar relation gives the projectile participants, (NBC) = ()pro ° j Npar

The quantity (v)tar g and (V)proj are the mean number of collisions for a target

participant or projectile participant.

* Particle production for p + A reactions (200 GeV/c incident momentum) is pro-

portional to the mean number of collisions per participant (v)tot [Blo90].

* Pion production depends on both the rapidity loss of the projectile as well as the

total size of the collision system. Results from N + N interactions demonstrate
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that the pion production rate is ~ 1.5 7r's per participant (assuming 7r° = (r+ +

7r- )/2)) for 28Si + 197Au collisions at the AGS [Par92]. At y = 1, where target

protons undergo a rapidity shift of 1, there is enough excitation energy available

for resonance baryon production and subsequent decays.

* Kaons are produced in NN and NM collisions (N = nucleon and M = meson) and

are produced at higher rates for larger systems [Abb94]. This increased rate is

supposedly dependent on the effects of rescattering in the larger systems and will

be the subject of investigation with the cascade model in the following section.

4.1.2 A Simple Geometric Model of Participant Nucleons

Before a discussion of particle production, we can ask, how does particles production

depend on incident energy? The energy available per nucleon can be written

v = /(Npro mo)2 + (Ntargmo)2 + 2EprojNtargmo, (4.2)

where mo is the nucleon mass. Clearly, the available energy in the reaction increases with

the mass of the projectile and target and does not reach a maximum at some particular

collision size.

Secondly, there may be complications from spectator matter that distort the particle

yields. At AGS energies, there may be sufficient time during a collision for produced

particles to interact with the spectator material. Consider a central 160 + 197Au collision

that leads to the formation of a Delta. Consider a pion that is created by a Delta

decay (A(1232)). If the pion is created from a decaying resonance with transverse and

longitudinal momentum pt = Pll = 1 GeV/c, it will be emitted at Oparticle = 45 in the

center of mass frame. The Delta has a momentum of v GeV and a Lorentz corrected

lifetime of 3.1 fm/c. The impinging oxygen nucleus at 14.6 A-GeV/c will pass through

the gold target in about t = 12 fm/c . In this time, the produced pion should pass

through some of the surrounding target matter. A full analysis of nuclear shadowing is
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Physical Quantity Scaling Variable
EZCAL
NtOt = Npro + N targpart -- Npart part

Yield =fy (dN/dy)dy b
Inverse Slope, T

(NBC)
(v)tot =(Vy)targ + ()pro j

Measured
x
x

Simulated

(see caption)

x

x
x

Table 4.1: Possible scaling variable for particle production in heavy-ion collisions. Note
that the number of target participants is only known for symmetric collisions. A ge-
ometric model is needed to determine the target and hence the total participants for
asymmetric collisions.

required to fully study this effect.

There are several factors that affect particle production. A brief list of some of these

variables (both measured and modeled) are shown in Table 4.1. The first two variables are

experimentally measured. Symmetric collisions have an advantage, (Npaj = parg ) and

therefore N t t may also be determined. In an asymmetric collision, Ntar and Ntt must

be modeled. These measured variables will be discussed in more detail in Chapter 6,

where yields and inverse slope parameters are presented as a function of the number of

collision participants. In particular, yields and inverse slope parameters of 7r',K + and

protons are measured as a function of the energy deposited in the ZCAL (giving a direct

measurement of Nprj and Nrt )

The relationship between the mean number of collisions, (NBC), and particle pro-

duction should also be considered. Is the number of participants or the mean number

of collisions more important for particle production? For example, we might imagine a

projectile nucleon that when struck by a target nucleon is excited to only one state and

is then free to decay to a meson. We would then say that the number of participants

(namely, the projectile nucleons plus the target nucleons) play a more important role

than the number of collisions. In A + A collisions, the projectile nucleon could poten-

tially be struck several times in an A + A collision and yet hadron production would
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EXTENDED WOUNDED NUCLEON MODEL

Table 4.2: Extended WNM collision scenarios

not be enhanced. The important scaling variables in that scenario would be the number

of participants. We know that in a real nucleus, a nucleon can be struck several times.

Delta resonances can be created and then further excited, thereby increasing the number

of produced particles. In summary, we would expect that particle production actually

depends in some complicated fashion on both the total number of participants and on the

mean number of binary collisions. Unfortunately, it is impossible to measure the number

(or even mean number) of binary collisions in a heavy-ion reaction. However the RQMD

model does predict the mean number of binary collisions for a given impact parameter.

Before a discussion of this cascade model, it is informative to understand nuclear col-

lision in terms of clean-cut geometry. The first three scaling variables can be understood

with this model. From Chapter 1, the forward energy measured in the ZCAL is related

to the number of total participants,

NPr = Aproj(l - EZCAL/Tbeam) (4.3)
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RepresentationType of collision.
Initial collision: Both the unwounded target and the projectile
nucleons undergo a first collision. oo

A projectile nucleon has collided already but the
target nucleon has not been struck. eo

A target nucleon has collided already but the
projectile nucleon is unstruck. o0

Both the target and projectile nucleons have been
struck at least once. ee

A nucleon that has rescattered off at least one meson. o0

A nucleon struck by another nucleon has scattered off
at least one produced meson. e.
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Total number of participants vs. the impact parameter. The simple mapping from
EZCAL to number of participants is done with Equation 1.3 with instrumentation reso-
lution folded in. (Simulations done with a clean-cut geometry, an input to FRITIOF).

The energy deposited in the calorimeter is a measure of the number of projectile

spectators and hence projectile participants.' With this assumption, the trends in the

particle yields and slope parameters may be described in terms of Ntort NP°J and

Npartrg and not in terms of EZCAL.

Earlier, Matt Bloomer examined N pot as well as Nprt°J and Npart for 2Si on gold and

aluminum targets [Blo90]. We use this analysis as a starting point and examine the

RQMD model in light of the number of participants and the number of binary collisions.

Figure 4-3 shows the relationship between the total number of participants and impact

parameter for 160 + A, 28 Si + A and 197Au + 197Au collisions from this geometric model.

In this picture, the impact parameter, b, is not the most fundamental physics pa-

rameter governing particle production. The more fundamental parameter for particle

production, the number of total participants, does not vary as strongly at small and

1Limitations to this assumption will be discussed at the end of this chapter. For example, some
created mesons will also be detected in the calorimeter.
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large impact parameters, especially for 160 and 28Si ions. Tables 5.8 and 5.9 give a full

listing of impact parameters and number of participants for these collisions.

In the much more complex RQMD cascade model, different types of interactions

are taken into account. Because of the complexity of the RQMD model, we make some

simplifications in order to understand how binary collisions play a role in A + A collisions.

We keep the list of collision possibilities from the earlier analysis and extend the list as

appropriate for including, at least in the simplest manner, rescattered events (see Table

4.3).

By using the RQMD model, we can extend the list of collision possibilities to include

collisions where nucleons interact multiple times with each other (multiple scattering ).

Nucleons in the RQMD model are also free to interact with mesons (rescattering ).

The additional collision possibilities give rise to an an extended wounded nucleon

model. A wounded nucleon model implies that nucleons are capable of producing particles

when hit (wounded). A simple wounded nucleon model was used in the earlier analysis

and allows for the first four cases in Table 4.2. An extended wounded nucleon model

allows for many more collision possibilities. Table 4.3 shows a schematic of an extended

wounded nucleon model. Table 4.3 shows more collision possibilities but lists only a

fraction of the collision possibilities in the RQMD model. The extended wounded nucleon

model does not differentiate how many times a particle has been multiply hit by other

nucleons or mesons.

In the analysis by Bloomer, the number of binary collisions and the number of target

and projectile participants are related in the following manner:

NBC = NprojPa rt < Part >- Ntargpart < Vpart > (4.4)

The number of binary collisions in a cascade scenario may be described as the total

number of times a nucleon or meson collides with either another nucleon or with another

meson. Using Table 4.3, we may express (NBC) as
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Table 4.3:
A schematic diagram of the extended WNM for heavy-ion collisions used in the context
of the cascade model, RQMD. The upper left four regions represent the collision space
discussed under the analysis of M. Bloomer. The rest of the space is an extension of the
Wounded Nucleon Model that accounts for collisions of either projectile nucleon with
hadronic matter of the form of r±, p±, K+± , etc.

(NBC) = 00+o0+0+.+

oo.+oe.+o.+. +

o.o+o+o+.+

o o.+o..+.o.+. .

The RQMD model provides a tool for measuring the relative strengths of the con-

tributions to (NBC) . Figure 4-4 is a plot of the number of binary collisions a proton

or neutron undergoes in 28Si + 27Al and 197Au + 97Au collisions. There are a number

of interesting details that we may learn from this picture. First, the lower curve in the

left panel shows the number of binary collisions that protons and neutrons undergo if

they interact only with other nucleons as they travel straight through the target. This

simplest scheme is used in the FRITIOF model and represents only a fraction of the

collisions oo+o+o+ . The next higher curve, represented by the black circles is

probably a more realistic representation of oo+o+*o+oo and is about 1.5 times greater

in magnitude than the FRITIOF curve.

Rescattering events are then added to the multiple-scattering curve. The open dia-

monds and triangles show the effect of adding the contribution of the pions and kaons

to the total number of binary collisions. This contribution is depicted in Table 4.3. The

contribution to binary collisions from pions in 28Si + 27A1 collisions is approximately 10
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- 15% above the contribution from multiple-scattered nucleons.

For 97 Au + 197Au data, there is a different result. Pions contribute to a slightly

larger fraction of the total number of collisions compared to the 28Si + 27Al data. At b

_ 0, the pions from 197Au + 97Au collision represent about 1/3 of the total contribution

to (NBC) -

Kaons do not contribute significantly to (NBC), neither for 28Si + 27A1 nor for 197Au +

' 97Au collisions. In both cases, they represent only about 1% of (NBC) 

Finally, the total number of binary collisions are added for comparison. The black

stars in the figure represent the number of binary collisions that nucleons undergo with

any other particle. These particles include A resonances and other short lived mesons

such as the p and the i/. Again, there are marked differences between the 28Si + 27A1 and

197Au + 197Au collisions. The 28Si + 27A1 collisions indicate that the number of collisions

in addition to those already accounted for represent a constant 40% increase. In 197 Au +

19 7Au collision, when b < 8 fm, collisions become more and more dominated by baryonic

resonances and short-lived mesons. At b = 0, this contribution is equal in magnitude

to the number of binary collisions that nucleons undergo from multiple scattering and

rescattering.

We conclude from Figures 4-3 and 4-4 that

1. The number of total participants is flat once the projectile is shadowed by the

target. This occurs for b < 2 fm for 160 + 197Au and 160 + 64 Cu and for b < 1.5

fm for 28Si + 197Au and 28Si + 64Cu collisions. The target is partly opaque to the

projectile in both of these models. Since 28Si + 27A1 and 197Au + 197Au collisions

are symmetric, this overlap does not occur.

2. The number of binary collisions play an important role in the equilibration of a

system.
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Mean Binary Collision vs. B: Si +Al and Au +Au
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Figure 4-4: Number of binary collisions vs. the impact parameter for 28Si + 27A1 and
197Au + 19 7 Au collisions (RQMD and FRITIOF simulations). The incident beam mo-
menta for the two projectiles are 14.6 and 11.6 A-GeV/c respectively. The contributions
to (NBC) from collisions calculated from a clean-cut geometry and a more realistic mul-
tiple scattering picture are made. The contribution from rescattering of pions and kaons
is also shown. Note that the RQMD model shows large contributions of binary collisions
at large impact parameters.
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4.2 Nuclear Geometry and the ZCAL

The zero degree calorimeter plays a critical role in this analysis. The calorimeter's re-

sponse to the collision fragments is relatively simple to interpret; however, some precau-

tions must be considered. To begin, the calorimeter has an intrinsic resolution, dependent

on the energy deposited. The resolution for each projectile is

aZCAL 76%
(160 and 28Si projectiles), (4.5)

rZCAL 230%
EZCAL 230% (197Au projectiles). (4.6)

¥Ezc.L - E(Ge V)

At the full beam energy, oxygen and silicon nuclei result in a kinetic energy resolution,

AE = 11.2 and 11.4 GeV. This is better than a one nucleon resolution. The ZCAL is

symmetric in around the beam. This condition assures that off central collisions (b

> 0) will not be misinterpreted as long as all forward going spectators are seen by the

ZCAL. These conditions are not simultaneously met by other detectors in the E802, E859

and E866 apparatus.

There are a few important questions to be considered before using Eq. 4.3. For

example,

1. Is the calorimeter energy output linear with incident energy?

2. Is there a non-linear energy response across the face of the calorimeter?

Deviations from linearity are not seen for 160 and 28Si projectiles [Beav89] and the

total output of the calorimeter is generally understood as being linear with incident

energy. Unfortunately, no systematic study of the calorimeter response was made for

very heavy-ions, near A=197. Unfragmented gold nuclei, injected into the calorimeter

have been studied and the calorimeter's response is tuned to match the linear response

extrapolated from the lighter-ion studies. Non-linearity in the response of the calorimeter

in the region between A=28 and A=197 is not expected.
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The second area of concern is the non-linearity of the calorimeter's response across

its fiducial opening. There is an overall 9% drop in response to input energy near the

center of the calorimeter. The gains of the hadronic sections of the calorimeter have

been adjusted to offset this inefficiency and any spatial inefficiencies should be averaged

out over many collisions. A decrease in the overall energy resolution is seen for 197Au +

197Au running. No large positional dependencies have been measured. Figure 4-5 shows

a comparison of the average energy deposited in the ZCAL for BEAM and INT triggers

for 197Au + 197Au collisions. A slightly wider distribution is seen for INT triggers as

expected; however, both spatial distributions are fairly flat near the midpoint of the

calorimeter face.

It is also important to ask to what degree do produced particles contaminate the

ZCAL spectra? The calorimeter's acceptance subtends a 1.5 cone around the beam.

Pseudorapidity is defined as r = -In(tan(0/2)); Given 0=1.5 o, then 71 = 4.3 . The

yields of 7r's at this pseudorapidity (about one pion) are not expected to be greater

than about 1% of the total yields. The contamination for central 160 + 97Au and

28Si + 197Au collisions will contribute A E = /m 2 + p I2 1 GeV. We therefore expect

contamination to be no greater than about one nucleon (probably much less) based on

the measured yields for pions. Contamination from produced particles is worse for central

197 Au + 197 Au collisions. Up to 50 GeV due to produced particles may be deposited in

the calorimeter. This contribution is approximately 20% of the signal.

Figures 5-6 and 5-7 show the calorimeter energy spectra for three projectiles and

their respective targets. Lists of ranges in ZCAL energies used in each measurement are

tabulated in Tables 5.6 and 5.7. The ranges for 197 Au + 197Au collisions are superim-

posed on the spectra of Figure 5-6. The ZCAL is especially effective when measuring

symmetric collisions (27A1 + 28Si and 197Au + 197 Au ), since there will always be some

forward projectile spectators producing a signal in the ZCAL. Asymmetric collisions are

more difficult to interpret in terms of the number of participants. Both symmetric and

asymmetric collisions are considered in this analysis. However, the projectile nuclei are

82



Spatial ZCAL Energy Dependence
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Figure 4-5: Spatial distribution of the energy deposited in ZCAL. A comparison is made
between BEAM and INT triggers and show a slightly larger spread in deposited en-
ergy with INT triggers. Since light is detected only at the edges of the detector, any
inefficiencies at the center will be averaged out.
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never larger than the target nuclei. A large cross-section for central 160 + 197Au and

28Si + 197Au is apparent in Fig. 5-6. In these asymmetric cases, the more peripheral

collisions are emphasized for two reasons:

1. The ZCAL is more sensitive to peripheral collisions, where the signal is not am-

biguous.

2. Since we are comparing spectra as a function of the number of participants in

the reaction, it is important to maximize the statistics for particle production in

those collisions where statistics are poor. The large 197Au + 197Au collisions provide

information for collisions with a large number of participants and must be compared

to collisions at the opposite extreme. Peripheral non-symmetric collisions provide

these needed statistics.

FRITIOF simulations show the relationship of the impact parameter with ZCAL

energy (Fig. 4-6). Lines representing the centrality cuts have been superimposed. The

scatter plot shows that the impact parameter is best determined at mid-rapidity and

that the most central impact parameter for asymmetric collisions is somewhat distorted.

The relationship between impact parameter and forward projectile energy is difficult to

determine for these central collisions, see Fig. 4-6.

4.3 Summary

In this chapter we have briefly outlined the geometric considerations of heavy-ion colli-

sions. The important scaling variables have been tabulated and will be referred to in the

analysis of particle production participants. A discussion of binary collisions in heavy-ion

reactions has been extended to included mesons and baryonic resonances. The details of

Figure 4-4 will be important in light of particle production in A + A collisions (Chapter

6). Finally, we highlight the calorimeter's capabilities and limitations in distinguishing

the number of collision participants.
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Impact Parameter vs. ZCAL
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ZCAL value intersects the distribution. Simulations done with FRITIOF.
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Chapter 5

Cross-Section Analysis

5.1 Introduction

This chapter defines and discusses the Lorentz invariant semi-inclusive cross-section and

differential yield. We also discuss the minimum bias and central triggered cross-section.

By semi-inclusive we imply that a pion, for example, is created in a reaction 160 +

197Au -* 7r + X, where X is any other particle or particles. Minimum bias in this context

implies that no special triggering conditions need to be met other than an interaction has

occurred (as defined by a bull's-eye beam scintillator) and/or that a particle has been

detected in the spectrometer.

We begin the discussion on cross-section and differential yields with a few definitions.

An interaction is defined as any inelastic collision of a beam particle with a target nucleus.

For example, an INT event occurs when there is a beam particle after the collision with

Z < Zthres, Zthres = 6.5, 12.6, and 75 for 160, 28Si, and 197Au projectiles, respectively.

The particle cross-section is defined as the number of outgoing particles per scatterer per

incoming flux. The differential yield is the number of particles of a given type emitted

per event. We will use the differential yield throughout the remaining discussion of this

thesis work. Cross-sections are difficult to accurately determine in this analysis. By

attempting to measure the upper 10% of oi,,ne in a particular reaction, we may include
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events that vary in the range 8 to 12 % ine, . This variation results in a 20% error

in the measurement of the cross-section. The differential yields, on the other hand, do

not vary dramatically from 8 to 12% inel and therefore decrease the variations of the

measurement. Particle cross-sections are therefore addressed only when necessary.

5.2 Definitions

A very simple definition of cross-section may be given in terms of a probability for having

some species of particles be produced in a reaction per scattering particle per incident

particle flux [E802-39],

number of outgoing particles per scatterero' = . (5.1)incoming flux

This definition is sometimes useful and helps us to think about the cross-section in terms

of a probability. A Lorentz invariant, momentum dependent cross-section for this analysis

is appropriate for defining the cross-section in terms of the perpendicular and transverse

momentum and mass,

d3 E d2 ar E d2a
inv = E - (5.2)

v dp3 - 2r ptdptdpll 2ir mtdmtdmll (5.2)

Both pt and Pll have been defined in Chapter 2. The transverse momentum is related to

the rapidity by

cosh(y) = , sinh(y)= P . (5.3)Mit mt

Using dplI = Edy, we can rewrite Equation 5.2 as

d3a d2a, d2a
= in =E -_= (5.4)dp3 27rptdptdy 27rmtdmtdy'

The invariant cross-section is written in terms of the measurable quantities:
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d2a N Acceptance. Decay 10 27 mtarg

2 7ptdptdy 27rptNBEAMdptdy t. AAV

* N = N(y,pt) is the number of counts for a particular trigger and particle species.

* Acceptance is the particle-by-particle geometric acceptance correction for the b

coordinate, 2/6+.

* Decay is the particle-by-particle decay correction factor.

* dpt is the differential transverse momentum. This variable is fixed in software at

the value of 0.05 GeV/c.

* dy is the differential rapidity. This variable is a fixed constant in CSPAW in units

of 0.05.

* AAV is Avogadro's number, 6.023 x 1023.

* t is the target thickness measured in gm/cm2

* mtarg is the Atomic Weight of the target in gm/mole.

In this thesis, we will present data in terms of the differential yield. This quantity is

directly proportional to the particle cross-section of a particular particle species, i.e.,

d2ni _ 1 d2o'~
(5.6)

2'7ptdptdy - j 2rptdptdy (5.6)

The differential yields are displayed in the appendices for 7r, K, and protons for p +

A, 160 + A, 28Si + A and 197Au + 197Au reactions.

5.3 Procedure

Differential yields have been generated for three running periods in this thesis work.

The software package for differential yield generation is a relatively flexible one that is
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used in the Physics Analysis Workstation (PAW) environment. All four data sets have

been analyzed with the same cross-section procedure called CSPAW, created by Chuck

Parsons and modified by several students [PZ,91], [MRSZ,92]. This cross-section software

package allows the user to make small detailed changes in the code, implementing certain

trigger conditions and filters for a wide range running conditions. Physics information for

each run is stored in the form of compressed ntuples, as explained in Chapter 3. These

data files allow for very quick processing of information and determination of differential

yields. Full data sets may be processed from the compressed ntuple stage to the finished

differential yield histograms in about one hour on a VAX 3100 workstation.

We will briefly describe the process of creating a differential yield. The reader is re-

ferred to collaboration memos, [PZ,91] and [MRSZ,92], for more details on the procedure.

One first starts with a reconstructed output file (see Chapter 3). Data that have been

analysed up through the pass3 stage (particle ID) are translated into a form suitable

for analysis in the PAW environment. A run-by-run ntuple file is created and contains

track, event, and run information. The next stage creates a large ntuple summary file

containing all the runs for a run period in one file. A typical run in a directory would be

listed according to target, run angle, and magnetic field setting. This manner of storing

information has proven to be very flexible and allows a very efficient way to analyze very

large data sets in short periods of time.

Quality checks are next done on the data. First, trigger scaledowns are checked for

consistency. One can determine if wrong scaledowns were typed into the database when

created at run time. Inefficient TOF slats are flagged for correction later on. A list

of runs that contains bad or inefficient TOF slats is generated. Figure 5-1 shows the

run-by-run listing of bad TOF slats for oxygen and gold data sets (The reader is referred

to Chuck Parson's thesis [Par92] for a slat-by-slat correction of the silicon data set).

The acceptance files are next created for each running period and are the topic of the

following section.

89



SUMMARY OF MINB, CENTRAL 160 and 197Au DATA ANALYSED
Beam Target particle 5 14 24 34 44 Central
160 27A1 r+ 16.9 14.3 14.8 10.8 6.2 73.9

7r- 17.3 15.7 16.1 13.3 7.6 74.1
K + 3.5 1.5 0.91 0.56 0.28 12.6
K- 1.8 0.63 0.26 0.11 0.04 5.7
Protons 17.3 16.7 21.3 23.9 15.6 84.3

64Cu 7r+ 12.9 15.3 13.6 7.1 4.4 89.2
7r- 14.8 14.5 14.7 8.9 5.9 96.4
K + 2.7 1.7 1.0 0.44 0.25 14.5
K- 1.2 0.5 0.21 0.08 0.04 5.1
Protons 15.7 20.1 23.3 18.9 16.5 132.4

197A 7r+ 27.5 40.0 8.8 9.5 12.2 126.1
7r- 28.8 41.3 9.8 11.8 13.4 133.2
K + 5.9 5.3 0.8 0.8 0.85 24.1
K- 2.4 1.6 0.16 0.13 0.13 8.1
Protons 36.0 72.1 20.3 33.2 48.3 243.7

14 21 24 34 44
197Au 197Au 7r+ 37.0 5.1 33.5 18.6 31.8 52.8

r- 39.3 8.9 50.2 22.1 34.9 61.1
K + 3.9 0.65 3.1 1.4 1.8 5.0
K- 0.73 0.11 0.59 0.83 0.26 0.8
Protons 56.6 11.6 53.8 33.7 63.7 77.2

Table 5.1: Summary of minimum-bias data that were analyzed exclusively in this thesis.
The'statistics (multiply all numbers by 1000) were determined for identifiable particles
found in the spectrometer for minimum bias data samples. The central-collision statistics
are compressed to show all the spectrometer running angles. Statistics for 28Si running
may be found elsewhere, but are at least as good, and in many cases better than the
minimum bias statistics for 160 and 197Au running. Offline ZCAL cuts are limited by
the poorer statistics of the back angle minimum bias data samples.
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Bad Slats for Oxygen and Gold Data Sets
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Figure 5-1: Bad Slats listed for each run. If slats were considered dead or only inefficient,
they would be corrected when the acceptance is generated.

5.3.1 CSPAW: Acceptance Generation

The acceptance is generated on a run-by-run basis for each particle. Acceptance his-

tograms are generated for each particle type and for all relevant running conditions (i.e.,

magnet field, spectrometer angle, etc.) prior to differential yield generation.

The acceptance boundaries are generated analytically using detector positions and

then checked with data for consistency. Previously, the acceptance calculations required

extensive Monte Carlo simulations of tracks through the spectrometer. This time con-

suming and clumsy process was stream-lined in CSPAW.

In CSPAW, the detector geometry is referenced at first to form the rough acceptance

boundaries. Data are then superimposed on this acceptance and checked for voids or

places where data falls outside the boundaries. This technique maximizes the acceptance

for the experiment and is especially useful in regions of low pt.

First, a database of geometric values that define the edges of the acceptance around

chambers, the TOF wall and the boundaries of the magnet is generated. The routine

GENACC is run in the PAW environment and loads the acceptance for each run.
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Iint 81 interior points weighted by 1
Iide-a 18 x-side points weighted by 1/2
Iside-y 18 y-side points weighted by 1/2
Icorner 4 corner points weighted by 1/4

Table 5.2: Table of acceptance weights for each acceptance subbin. Weights are applied
to each subbin depending on the fraction in the acceptance.

The run-by-run acceptance histograms are created in the routine YPTACHST. The

actual values for the chamber boundaries and the TOF wall are contained in a file called

BUILDACCEPT. This database file contains all the boundaries for all running periods

as well as geometry shifts even over one running period. For example, for June 88 running,

the target shift was seen. Particle tracks from different spectrometer settings pointed back

to different target positions. This shift was incorporated on an angle-by-angle basis.

Data containing acceptance information are stored in two-dimensional histograms,

binned in y - pt coordinates. Each bin is 0.05 units in rapidity as well as in transverse

momentum. Each y -pt bin is checked at the time of acceptance generation in the routine

BININACCEPT to determine if the acceptance is satisfied. Bins that are close to

the edge of the acceptance are weighted appropriately. Acceptance bins are multiplied

by a correction factor, depending on the fraction of the bin that lies within the geometric

boundary. An algorithm divides each y - pt bin into 10x 10 total subbins. The actual

fraction that the subbin has in the acceptance is next calculated so that the contents in

that bin may be weighted correctly. Each of these subbins are multiplied by a weighting

factor F,

F = 1 X nt + .5 x Iside-x + .5 X Iside-y + .25 x Icorner (5.7)

100

A second unique feature of CSPAW acceptance generation is the way that data are

binned. Typically, the data are binned and acceptance is verified in y - pt space. In

the CSPAW environment, bins are converted to 0 particle VS. O9 bend-particle space. The

familar coordinate is simply the polar coordinate measured from the beam direction.
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Acceptance for Gold Target at Ospec = 44 

Oxygen Data
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Figure 5-2: Acceptance plotted in particle VS bend-particle coordinates (see text). The side
boundaries are sloped, since the physical chamber boundaries of T3 and T4 occur after
the magnet. Slight modifications to this picture occur for E866 running, as two trigger
chambers, TR1 and TR2, modify the acceptance boundary after the magnet.
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Figure 5-3: Diagram of bend-particle after the HH magnet, showing the relationship to
the particle's initial polar coordinate.

The 0 bend coordinate is determined from the particle's momentum. Assuming a constant

magnetic field in the Henry Higgins magnet, we have the approximation,

0.3qBL
Obend-particle M 0 (5.8)

where q is the charge of the particle, B is the magnetic field strength (assumed to be

constant within the magnet interior) and L is the path length of the particle in the field

and p is the particle's momentum. Figure 5-3 shows a schematic of the Henry Higgins

spectrometer, depicting a possible trajectory of a charged particle, bent in the magnet

by an angle, bend-particle.

A particle's deflection, Ax, is a measure of its displacement from an imaginary line

emanating from the target and going straight through the magnet. The deflection may

be determined from a small angle approximation. The mapping of all deflected positions

fills in the acceptance boundary of Figure 5-2. The total deflection, Ax = x2 - xl, is

given by
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AX - [bend-particle(Z1 - Z2 ) + (parttcle - Oazis)(Z)]/COS(Oparticle) 

where we have used the small angle approximation, tan(Oparticle - Oaxis) Oparticle -

Oaxis and tan(Obend-particle) Obend-particle. Rearranging Equation 5.9, we have a linear

relationship between 9 bend-particle and 0 HH = Oaxis - Oparticle, The relation is:

Z1 HH AX COSOparticle
Obend-particle ( -z 2 + (z- z2) (5.10)

(Z - Z2) (Z1- Z2)

This linear relationship has the nice property that when data or objects are binned

and plotted as a function of bend-particle, objects that vary linearly in 0 (i.e., detector

sides, TOF slats, etc.) also vary linearly in Obend-particle, Changes in the acceptances due

to geometry shifts appear as straight lines in this picture.

Bad TOF slats are also incorporated in the acceptance at this point. The routine

FINDPHIBADSLAT is called when the acceptance for each bin is determined. The

AO contribution due to the bad slat is calculated and the azimuthal angle contribution

due to the badslat, bbad, is subtracted from the AO of the particle. Dead and inefficient

TOF slats appear as streaks in Fig. 5-2. Details of the subtraction routine are rather

complicated and the reader is referred to the memo by C. Parson and this author [PZ,91].

Finally, acceptance boundaries are verified for accuracy by superimposing the data

on the geometric boundaries of the Oparticle - bend-particle polygon of Fig. 5-2.

5.3.2 CSPAW: Filtering

Cross-sections and differential yields created in CSPAW are generated using an event and

particle track loop routine, RUN3, that will be described in the next section. At the start

of each cross-section generation, runs are checked for quality and some are filtered. We

enumerate a list of filters that are used before differential yields are determined. These

filters eliminate events where there are large background contributions. For reference,

Table 5.3 gives a listing of the possible track status.
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Track Status Description
88 T1T2 and TOF not verified. T3T4 verified.
94 T1T2T3T4 verified, but no TOF hit.
120 Verified with T3T4-TOF, but have no T1T2 verification.
126 Verified with T1T2T3T4-TOF but track does not point to target.
255 Good track.

Table 5.3: Summary of the track status used in the data.

1. Track Status 120. The ratio of 120 status track to 255 status tracks is kept to less

than 1.6 for INT triggered events.

2. Track Status 126. The ratio of 126 status tracks to 255 status tracks is kept to less

than 0.25 for INT triggered events.

3. PID Mass Checks. Particles that are detected in the spectrometer must pass upper

and lower mass cuts, determined from momentum and time-of-flight information.

(see Equation 3.6).

4. Inappropriate Runs Discarded. ZERO FIELD, CC, LASER, and PULSER runs

were not used to produce differential yields and therefore must be filtered. Runs

were also discarded when hardware and software tests were being done on certain

trigger chambers. For example, runs were not used during the June 88 period where

the T1 trigger chamber underwent hardware and software tests.

5. Bad Runs. Runs were discarded when high voltage trips were set during the run.

This particular problem was seen for the June 88, oxygen runs and December 88

and June 89 silicon runs, expecially when the spectrometer was set at 50

6. Follow Events. Beam events are corrected for at the final analysis stages. Typically

bad beam and follow events account for < 5% of the total beam.

96



5.3.3 CSPAW: Differential Yield Generation

In this section, we discuss the production of invariant cross-sections and differential yields

produced for each particle species.

The differential yield is the number of particles emitted per event. We therefore need

to know the event rate, NINT. NINT is related to NBEAM in the following way,

NINT = NBEAM' CBEAM TARGFRAC, (5.11)

where

Good Beam Events
CBEAM = All Beam Events (5.12)

REALFRAC is defined as the fraction of the inelastic cross-section for that event. The

quantity TARGFRAC is the ratio of the interaction rate to the beam rate, with the

background rate subtracted out. The term CBEAM is the good beam fraction and is a

number typically between 0.95 and 1.0. Not all of the live beam is useful. Events are

rejected if another beam particle follows the event within a 1sec period. Likewise, events

are rejected if a beam particle is preceeded by another event within a window of 3 sec.

The quantity NBEAM is the number of (live beam events for an entire run) x (Beam

scaledown/Trigger scaledown). Only a small fraction of total beam events are written to

tape and therefore the total number is calculated by multiplying the measured number

by the beam scaledown. The trigger scaledown, (i.e., the spectrometer scaledown, etc.)

is divided through here and has the same effect as multiplying N, the number of counts,

by this factor.

The differential yield has a particle-by-particle geometric acceptance, 2r/6S, correc-

tion. There is also a particle-by-particle decay correction. When dividing through by

the transverse momentum and rapidity variables we obtain the differential yield. A com-

plete discussion of the particle cross-section and differential yields may be found in the

cross-section memos (see [PZ,91] and [MRSZ,92]).
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The summary file is first loaded into PAW memory. The run, event, and particle

track loop routine, RUN3, is executed in PAW. The differential yields for each run are

determined and the results are merged together. The event looping routine, RUN3,

calls the routine RUNACC at the start of every run. RUNACC performs several

functions. A run-by-run filter database, RUNFILT, is also called. This routine throws

out any runs that should not be included in the analysis. Secondly, the software triggers

are defined here and finally acceptance histograms are loaded into memory at this stage.

Next, the routine CSFILL is called for every particle track. The routine fills y-pt his-

tograms with particle track information. Decay corrections and any physics corrections

are done at this time. Various other corrections associated with instrumentation and

analysis, including chamber inefficiencies, particle ID inefficiencies, and track reconstruc-

tion inefficiencies are also done here.

The routine MERGERUN is called at the end of every run and calls the rou-

tine RUNFACT where event normalizations are determined. Finally, runs are merged

together in the routine CSMERGE. Figure 5-4 shows these routines in a flow-chart

schematic in the PAW environment.

Next, the rapidity distribution may be determined. The quantity dN/dy is determined

by integrating over the differential yield:

dN/dy = pt(2) d2n 27ptdp. (5.13)
pt(l) 2ptdptdy

The major component of dN/dy will come from the low pt contribution and we must first

make an appropriate fit to the distribution and extrapolate to pt = 0. The momentum

spectra may be fit in a functional form and integrated out so that a yield at a particular

rapidity may be determined as in Equation 5.13.

The quality and statistics of the E802 and E866 data set allows one to fit the mo-

mentum spectra in terms of an exponential function,
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Figure 5-4: Cross-Section Flow Chart.
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= A. e- pt/T (5.14)
27rptdptdy

Wie are free to change variables of integration . The momentum spectrum has been

plotted in terms of pt and mt because of the relations mt = m + pt2 and mt dmt = pt

dpt. Equation 5.14 may then be rewritten

d2n
= A e- m t' /T (5.15)

27rmtdmtdy

Proton spectra were fit to either exponential or Boltzmann functions in mt. For a

Boltzmann distribution, d3n/dp3 = A. e - E /t, and therefore the differential yield may be

written in terms of mt and y. Using the relations E = mtcosh(y) and dy = dpll/E, we

have

d2n
27rdmdy = Amtcosh(y) e- (m t)co0h(y)/T. (5.16)

27rmtdmtdy

The differential yields are calculated in rapidity slices, typically .2 units of rapidity in

width. The integrated yield is next determined. Event yields are determined by fitting

a functional form to the rapidity distribution. Produced particles, pions and kaons, are

fitted with a Gaussian distribution of the form

dn A -( - YO)2
/2°

2 (5.17)
dy ,K

The values for A and o are tabulated in the following chapter. The value yo = yb,am/2

for symmetric 28Si + 27A1 and 197Au + 197 Au collisions. Since protons are not abundantly

produced in collisions at these energies, their rapidity distributions, not surprisingly, are

different in form than the produced meson distributions.
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5.3.4 CSPAW: Error Handling

Both statistical and systematic errors must be understood throughout the analysis. The

differential yield may be written as

d2n Nw(y, pt) (518)
2irptdptdy DNDYFACT'

The weighted counts, Nw = N Acceptance. Decay/27rpt. The value DNDYFACT is

defined as NINTREALFRACdptdy. The error of the differential yield is

I tJDN yF5cONw (5-19)
aDY = DY DNDYFACT + (519)

DNDYFACT2 N (

The error associated with counting independent events or a particular species is 0 N = VN

and therefore oa wNw2 = 1/Nw. The error resulting from the event normalization

must be handled in more detail. The normalization factor, DNDYFACT, is composed of

several terms, each contributing to the error of DNDYFACT.

The error associated with the normalization to the differential yield is a statistical

error from counting the fraction of the "good" beam used. The terms REALFRAC and

TARGFRAC are by definition exact quantities. The error from the normalization term

arises in counting particles that satisfy the conditions imposed by these quantities. The

error associated with counting the number of beam particles is therefore simplified to

determining the error associated with counting the beam particles that pass all filters,

NGood beam. The relative error for this quantity is,

%good beam fraction (BEAM GOOD BEAM (5.20)

(number of good beam events)2 (BEAM - GOOD BEAM) 2

The above terms may be combined to give a summed relative error,

ry2 1 1
01IY + (5.21)IY 2 BEAM-GOOD BEAM Nw (5.21)
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After determining the yields and errors, the momentum spectra are fit by one of several

functional forms described in the previous sections. An exponential or Boltzmann form

is fit to the momentum spectra. The constants A and T and their associated errors

of Equation 5.14, 5.15, 5.16 are determined by minimizing chi-square in the MINUIT

analysis package,

X =, NP(j) (5.22)
j=1 NP(xj)

where f(x) is the observed frequency distribution of possible observations x, and NP(xj)

is the proposed distribution function [Bev69]. For kaon data with very limited statistics,

a log-likelihood function is used instead to determine A and T[Bak83].

The values for A and T are determined for each rapidity slice (see appendices).

5.4 Data Quality

5.4.1 Track Statistics

CSPAW carries event and track statistics that give a reasonably good indication of the

quality of the run. Table 5.4 shows one of the early oxygen runs and a listing of infor-

mation, including the number of particles, triggered events, and other track statistics.

In this work, only TRED status tracks, status > 120 (see Table 5.3) are used. All

tracks must be reconstructed with particle identification. Status 120 and 126 tracks

are closely monitored and runs are not included in the analysis whenever status 120

tracks represent more than 10% of the identified tracks (typically at the most forward

spectrometer setting). Most of the analysis did not use the most forward spectrometer

setting and therefore this was never a major concern. Runs where the number of 126

status tracks were greater than 25% of the 255 status tracks were were not included in

the analysis.
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Run Summary for #5950 , 160 + 197 Au run

NEVENT
FOLLOWS
N Beam Triggers
TMA Events
PB2 Events
CC Events
# Pi+
# Protons
#K-
N Good Tracks
N Track Events
120 Track Ratio
88 Track Ratio
Mean Target Y
Average Track P
Sigma Mass Pi+
Sigma Mass Pi-
Sigma Mass K+
Sigma Mass K-
Sigma Mass P
Mean TMA X Pos.
Avg TMA Eta Bin
7% Tma Trig
10% ZCAL Trig
10% ETOT Trig
10% ET Trig
N TMA Pass EVT
N PB2 Pass EVT
N CC Pass EVT
N Int noFOL EVT
N PB1 noFOL EVT
N Spec noFOL EV
N SPC2 noFOL EV
Avg int bulseye
Avg INT ZBTOT

= 23104
= 5447
= 943
= 10408
= 5845
= 344
= 1834
= 3239
= 97
= 8094
= 8484
= 0.5325
= 0.1782
= -0.0545
= 1.8094
= 0.0713
= 0.0803
= 0.0737
= 0.0943
= 0.0570
= 0.0677
= 1.8870
= 130.0000
= 5.3000
= 16700.0000
= 4900.0000
= 7883
= 4439
= 269
= 7124
= 4473
= 0
= 0
= 2.9872
= 7.97838

(2)
(4)
(6)
(8)
(10)
(12)
(14)
(16)
(18)
(20)
(22)
(24)
(26)
(28)
(30)
(32)
(34)
(36)
(38)
(40)
(42)
(44)
(46)
(48)
(50)
(52)
(54)
(56)
(58)
(60)
(62)
(64)
(66)
(68)
(70)

N Passed Events
ZCUT Events
INT Events
PB1 Events
SPEC Events
SPEC2 Events
#Pi-
#K+
N Beam with INT
N Gd Trk Events
N Trip Events
126 Track Ratio
Mean Target X
Mean tof SLAT
Mean Trck Theta
Mean Pi+ Mass
Mean Pi- Mass
Mean K+ Mass
Mean K- Mass
Mean P Mass
Mean TMA Y Pos.
Avg TMA for INT
Av ZCAL for INT
Av ETOT for INT
Avg ET for INT
N Int Pass EVT
N PB1 Pass EVT
N Spec Pass EVT
N SPC2 Pass EVT
N TMA noFOL EVT
N PB2 noFOL EVT
N CC noFOL EVN
Avg bm bullseye
Avg INT ZBtof
Mean track Phi

= 17331
= 513
= 9331
= 5845
= 0
= 0
= 1272
= 261
= 48
= 6032
= 0
= 0.0216
= -0.3789
= 78.3818
= 0.3364
= 0.1420
= 0.1452
= 0.5109
= 0.5018
= 0.9625
= -0.0334
= 45.7834
= 121.1783
= 6706.9937
= 1930.3737
= 6884
= 4439
= 0
= 0
= 7953
= 4473
= 274
= 7.7483
= 8.0018
= -0.0052

Table 5.4: A typical list of run information for a June 88 160 + 197Au run at 0Spec=14 o
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(7)
(9)
(11)
(13)
(15)
(17)
(19)
(21)
(23)
(25)
(27)
(29)
(31)
(33)
(35)
(37)
(39)
(41)
(43)
(45)
(47)
(49)
(51)
(53)
(55)
(57)
(59)
(61)
(63)
(65)
(67)
(69)



5.4.2 Accuracy of the Measurements

The overall accuracy of the measurement for E802/E866 has been a topic of discussion

since the early results of E802 were first presented. Particle yields, d2 N/2rptdptdy, are

determined from three measured values, the yield, the momentum, and the rapidity,

N (yield of particles for a given number of events);

p(tof,d), d = path length;

y, rapidity.

The greatest uncertainty in determining the yield is in measuring N. When statistics are

low, it is very difficult to determined the actual yields of particles. On the other hand,

the overall accuracy for measured path length and time-of-flight are excellent, giving an

accuracy of about 1%. Likewise, the uncertainty of the measured polar angle is about 2

- 4% at worst. The uncertainty in rapidity measurement is about 1 - 2%. Below is a list

of sources for systematic errors in the analysis;

* BEAM Beam events are counted with scaler counters and a small fraction of the

events are written to tape. The overall uncertainty of BEAM counting is small,

less than 1%.

* INT The interaction trigger, the bull's-eye counter, does not measure the "total" in-

elastic cross-section. An unresolved single charge knockout for an interaction makes

the determination of the total inelastic cross-section impossible. Event yields, not

cross-sections, are determined in this analysis; therefore, the inaccuracies of INT

do not present a great problem.

* ZCAL Particle yields are determined for various ranges in centrality of a collision.

Particle yields do not rapidly vary with the number of baryon participants. Pion

yields for oxygen and silicon projectiles range from 5 to about 50. A one nucleon

resolution for oxygen and silicon running, for example, results in an inaccuracy of
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pion yields of 2 - 10%o. For central collisions, an inaccuracy as large as of 20% may

occur.

* Reconstruction Efficiency. There are 5% uncertainties in determining reconstruc-

tion efficiencies [Roth94], [Hua90].

* PID Efficiency. Measured pions in the range 0.7 GeV/c < p < 1 GeV/ may be

mistaken for electrons, 1 to 3% of the time [Par92]. Kaons measured in the range

p < 2.2 GeV/c may be mistaken for pions < 1% of the time.

* Cross-Section (mt vs. pt). There is on average a 5 - 10 % systematic difference in

yields that are determined by using mt or pt exponentials. In some cases, mt and

pt exponentials fit the data equally well and we rely on current work (E859) to

determine the best form.

The various uncertainties contribute to an overall systematic error of the measured

yields. In summary, the overall sensitivity of the minimum bias data set is about 10 -

15%.

5.4.3 Summary of Fixes.

Data from E802, E859 and E866 have been the subject to ongoing corrections and re-

analysis over the past several years. Many of the most recent corrections to the E802

data set that also apply to E859 and E866 data sets may be found in Chuck Parson's

thesis [Par92]. Eighteen separate data corrections were recorded in his analysis for the

silicon and proton data. All appropriate corrections have also been taken into account

in this work. Some of the important corrections that have been done specifically for the

oxygen and gold analysis are mentioned below.

1. Time-of-flight calibrations were redone for the June 88, oxygen data set.

2. Geometry changes have been incorporated in the E802 data as well as the E859

and E866 acceptance. The experimental positioning errors have been determined
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to an accuracy of at best 1 - 2 mm. George Stephans is primarily responsible for

the work on geometry correction routines. The procedure for the self-consistent

geometry correction routines may be referred to in the E802 memo [E802-54]. The

self-consistent geometry corrections were done early in the data analysis stage for

both the oxygen and gold data sets. A similar geometric correction was also done

by Chuck Parsons for the silicon data.

3. Dead TOF slats have been corrected for in the oxygen and gold analysis similar to

the silicon analysis. Fig. 5-1 shows the dead TOF slats for the oxygen and gold

runs over their respective running periods. Inefficient TOF slats (some as much as

25% inefficient) have been corrected for. An overall correction of 3 to 4 % in the

yield has resulted. The reader is referred to [PZ,91] for the procedure to correct for

dead TOF slats.

5.4.4 Inelastic Cross-Sections.

Data over three projectile running periods have been analysed and must pass consistency

tests in several categories. The inelastic cross-sections of data from different targets are

shown as a function of run number in Fig. 5-5. Only runs in the oxygen and silicon data

sets that were analyzed in this thesis work are shown in the figure.

There were also numerous instrument problems in the first gold runs. These runs

were not included in the analysis.

5.5 ZCAL Software Cuts

The forward calorimeter provides excellent event characterization, selecting events of

varying centrality (and hence impact parameter). Particle yields may be measured as

a function of collision size. In this section, we summarize the cuts made with the zero-

degree calorimeter for various collision systems. Tables 5.6 and 5.7 list the energy limits

for all software cuts for 160 + A, 28Si + A, and 197Au + 197Au collisions.
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Inelastic Cross-Sections: O,Si,Au +A
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Zero Degree Calorimeter Cuts
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Figure 5-6: Raw ZCAL spectra for 160 + A,28Si + A, and 197Au + A reactions. ZCAL
energy ranges are shown for 197Au + 197Au reactions. ZCAL ranges for 160 and 28Si pro-
jectiles may be found in Table 5.5. Note the large contribution to the cross-section for
197 Au + 19 7Au events beyond the beam peak. This contribution is largely due to target
out events; see Figure 5-7.
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ZCAL Target-Out Comparison
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Figure 5-7:

ZCAL (GeV)

Target-out ZCAL comparison spectra for 160, 28Si, and 197 Au projectiles
superimposed on gold target spectra.
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INELASTIC CROSS-SECTION AND INTERACTION RATES
System inel (millbarns) INT Rate

(target out subtracted)
160 + 27A1 1182 ± 76 .0210 ± .0016
160 + 64Cu 1799 + 133 .0240 ± .0016
160 + 197Au 3378 + 306 .030 ± .002
160 (empty) - .0067± .002

2ssi + 27A1 1386 ±444 .025 ±.007
28Si + 64Cu 2127 +51 .028 +.001
28si + 197Au 3844 ± 831 .034 +.007
28Si (empty) - .0110 ±.0004

197Au + 197 Au 6249 +818
.017±.001

197Au (empty) - .026±.001

Table 5.5: Mean cross-sections and target-out subtracted interaction rates measured for
p + A,160 + A, 28Si + A and 197Au + 197Au data used in this analysis.

Figures 5-6 and 5-7 show the ZCAL spectra for 160 + A,28Si + A, and 197Au +

197Au. A few remarks concerning the selection of the offline calorimeter triggers are

needed before proceeding to the discussion of the data and the participant analysis.

* Oxygen and Silicon Software Triggering. The 160 + A centrality triggers were se-

lected with two primary considerations. First, the most central cuts were generally

made to form a small fraction of the inelastic cross-section. These data, though

shown in the analysis, are potentially more difficult to interpret because both the

oxygen and silicon projectiles are completely occulted by their larger targets (see

Fig. 4-2). Apart from the most central cuts, the 160 and 28Si data were divided

into rather broad centrality ranges. These regions have statistically significant pion

and proton yields and more marginal kaon statistics so that particle-to-particle

comparisons may be made. Symmetric collisions are ideal for analyzing with the

calorimeter since some forward projectiles are always deposited into the calorimeter

and therefore event characterization is not ambiguous.
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ZCAL ENERGY CUT INFORMATION:160 + A and 28Si + A
System Software Cut Energy Range of ZCAL Cut Name

160 + 27A1 0 - 45% inel 10 GeV < EZCAL< 120 GeV CENT2
40 - 75% Oinel 120 GeV < EZCAL< 175 GeV MID
75 - 100% O ,inel 175 GeV < EZCAL< 210 GeV PERP1

160 + 64Cu 0 - 5% inel 0 GeV < EZCAL< 10 GeV CENT1
5 - 45% oine, 10 GeV < EZCAL< 100 GeV CENT2
45 - 70% inel 100 GeV < EZCAL< 160 GeV MID
70 - 100% oinel 160 GeV < EZCAL< 210 GeV PERP1

160 + 197Au 0 - 15% rinel 0 GeV < EZCAL< 10 GeV CENT1
15 - 40% inel 10 GeV < EZCAL< 70 GeV CENT2
40 - 65% inel 70 GeV < EZCAL< 130 GeV MID
65 - 100% oinel 130 GeV < EZCAL< 200 GeV PERPI

28Si + 27A1 0 - 10% ainel 0 GeV < EZCAL< 100 GeV CENT1
10 - 40% ainl 100 GeV < EZCAL< 200 GeV CENT2
40 - 90% inel 200 GeV < EZCAL < 340 GeV MID
90- 100% oinel 340 GeV < EZCAL< 370 GeV PERP1

28Si + 64Cu 0 - 5% Oinel 0 GeV < EZCAL< 30 GeV CENT1
5 - 45% inel 30 GeV < EZCAL< 170 GeV CENT2
45 - 70% ainel 170 GeV < EZCAL< 280 GeV MID
70 - 100% inel 280 GeV < EZCAL< 370 GeV PERP1

28Si + 197Au 0 - 15% inel 0 GeV < EZCAL< 30 GeV CENT1
15 - 40% inel 30 GeV < EZCAL< 140 GeV CENT2
40 - 55% inel 140 GeV < EZCAL< 240 GeV MID
55 - 100% rinel 240 GeV < EZCAL< 360 GeV PERP1

Table 5.6: Table of energy ranges for the oxygen and silicon projectiles.

ZCAL ENERGY CUT INFORMATION:197Au + 197Au
System Fraction of oinel Energy Range of ZCAL Cut Name

197Au + 197Au 0 - 4% inel EZCAL< 240 GeV ZCALBAR
0 - 10% rinel 0 GeV < EZCAL< 400 GeV CENT1
10 - 30% inel 400 GeV < EZCAL<1100 GeV CENT2
30 - 50% inel 1100 GeV < EZCAL<170 0 GeV MID
50 - 70% ainel 1700 GeV < EZCAL<1900 GeV PERP1
70 - 90% inel 1900 GeV < EZCAL< 2 100 GeV PERP2
90 - 100% 'inel 2100 Gev < EZCAL PERP3

Table 5.7: Table of energy ranges for the gold projectile.
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* Gold Software Triggering. The 197 Au + 197Au system is ideally suited for the calorime-

ter analysis. The symmetric system allows the forward projectile remnant to be

detected in the calorimeter for all collision impact parameters and therefore distinct

event characterization may be made. Because of the large pion multiplicities, com-

parable statistics to 160 and 28Si data were achieved over a much shorter running

period. The large dynamic range of the ZCAL for the gold projectile also allowed

the data to be divided by ZCAL cuts into slightly finer bins than the 160 and

28Si data sets.

5.5.1 Participants

This section tabulates the event information. Experimentally measured number of partic-

ipants are tabulated for each collision system. All quantities for 160, 28Si, and 197Au sys-

tems are found in Tables 5.8 and 5.9. Participants were determined by a "clean-cut"

collision of two nuclei.

5.6 Summary

We have outlined the steps in producing invariant cross-sections and differential yields in

this section. Event characterization using the forward calorimeter has been used to select

data at various centrality ranges by measuring the forward projectile spectators. Mean

values of ZCAL for each range have been tabulated and are used in the following chapter

to determine the particle yield as a function of collision participants. This analysis will

naturally lead to a discussion of scaling variables in the upcoming chapters.
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TABLE OF MEAN NUMBER OF PARTICIPANTS: 160 and 28Si IONS

System Software ( ZCAL )
Cut (GeV)

160 + 27A1

0 - 45% ain, 83
40 - 75% ainel 153
75 - 100% ainl 187

160 + 6 4 Cu

0 - 5% inel 5
5 - 45% inel 40
45 - 70% ine 140

70 - 100% ainel 185
160 + 197 Au

0 - 15% rinel 5
15 - 40% inel 30

40 - 65% ainel 100
65 - 100% inel 165

28Si + 2 7A1

0 - 10% 0ainel 66
10 - 40% ainl 150
40 - 90% oinel 293
90 - 100% ainel 355

28 i + 64CU
0 - 5% ainel 15
5 - 45% ainel 100
45 - 70% ain, 225
70 - 100% Oainel 325

2 8 si + 19 7 Au

0 - 15% inel 15

15 - 40% ainel 85
40 - 55% inel 190
55 - 100% inel 300

Ntarg Nproj Ntot b
part part part b

(fm's)

11.6± 5 9.8 ±3 20.9 8 2.7
3.9± 2 3.7 ±2 7.2 3 4.6
2.3± 1 2.2 ±1 4.0± 2 5.6

32.4 ± 4 16.1±1 48.0± 4 1.
18.1 7 12.1±3 29.7 9 3.4
6.6 3 5.6±2 11.7± 4 5.4
1.6 ±- 2 2.9±1 5.6 3 6.5

48.6± 7 16. .2 64.6 7 2.3
31.3± 7 15. ±1 45.5 8 4.8
15.8± 5 10.4±3 25.8± 7 6.6
5.8± 3 4.8±2 10.1± 5 8.2

21.0+ 2 21.3±3 42.3± 4 1.4
12.7 4 12.8±4 25.4± 7 3.2
4.1 ± 3 4.1 3 6.3 4 5.3
1.5 ± 1 1.5 1 3.5± 2 6.2

41.6 : 5 26.5±1 68.1± 5 1.1
23.0 ± 8 18.2I5 41.1± 13 3.7
7.4 ± 4 6.8±3 14.2± 6 5.9
3.1 2 3.0±2 6.3 3 7.0

67.0± 9 27.8 1 94.5± 9 2.5
41.0±10 23.7± 3 64.0± 12 5.
22.5 6 16.4± 3 38.6 7 6.7
8.6 5 7.0± 4 15.7± 9 8.5

Table 5.8: Table of mean number of participants for the various collision combinations for
160 and 28Si ions. The entire set of numbers are determined by counting the interaction
events from EZCAL= 0 to the desired ZCAL value, represented by the fraction of the
inelastic cross-section in the second column. The impact parameters for the range of
collisions in this analysis are also shown and are determined from FRITIOF simulation
(see Fig. 4-6).
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TABLE OF MEAN NUMBER OF PARTICIPANTS: 197Au + 197Au
Software Cut Mean ZCAL N Np' N t t (b)part part part

Value (GeV) (fm's)
19 7 Au

0 - 4% oinel 160 183.8±5 183.8±5 364. 10 1.6
0 - 10% o 'inl 266 172.3±10 172.3±10 345.5±23 2.2
10 - 30% oine,, 750 123.24±31 123.2±31 246. 42 5.
30 - 50% 0

inel 1400 65.9 ±18 65.9 ±18 132. 37 8.1
50 - 70% 0 'inel 1830 31.4 ±12 31.4 ±12 63. 19 10.2
70 - 90% inel 2030 5.2 ±7 5.2 ±t7 10. 13 12.5
90 - 100% Orinel -

Table 5.9: Table of mean number of participants for 197Au + 197Au reactions. The
numbers are determined by counting the interactions events from EZCAL= 0 to the desired
ZCAL value represent by the fraction of the inelastic cross-section in the second column.
The simulated impact parameter range for each cut is also shown (see Fig. 4-6).
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Chapter 6

Results

We summarize the analysis for the 160, 28Si, and 197Au data sets. These three data

sets represent an enormous compilation of data taken over the E802 and E866 running

periods and therefore the emphasis in this chapter will be on highlighting the results.

The complete data sets are shown in the appendices. A discussion of the data will be

made in three primary areas:

* Particle differential yields and the appropriate fitting functions will be described.

The 197Au + 97Au collisions, which produce a larger "fireball", will be discussed

in greater detail. These collisions present the best opportunity to see "collective

effects" in heavy-ion collisions.

* Integrated yields for the three reaction systems provide a comparison of physics

quantities over a large range of collision participants. Some of the data sets have

insufficient statistics, however, for trustworthy functional fits to be made. In these

cases rapidity distributions must be integrated in a defined range. This restricted,

fiducial range is defined as Y= (dN/dy)Sy, where yl and Y2 are minimum and

maximum rapidities. The integrated yields for all systems will be discussed and

compared.

* The inverse slope parameter will also be compared and discussed for all systems.
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6.1 Particle Differential Yields

The complete presentation of all differential yields, rapidity spectra and inverse slope

parameters for the three data sets are given in the appendices. In this section, we

highlight the data. Figures 6-1 through 6-4 show spectra of five particle species. For

each collision system, the differential yields are shown in slices of rapidity, .2 units in

width at or near y,,. For brevity, only central reactions are shown in the comparison.

These comparisons cover the full range of collision size and are sufficient to show trends

of the data sets. This presentation will also provide the context for a discussion of general

observations.

* Pions Both r+ and Ir- momentum spectra are well described by an exponential

parameterization of the form A e- pt/B. This parameterization works well for the

smallest (160 + 27A1 ) to largest (19 7Au + 197Au ) systems. The measured mo-

mentum range is .12 GeV/c < pt < .75 GeV/c. The inverse slope parameters are

similar, but not identical, B m 160 MeV for 7r+ and range from 140 to 150 MeV for

7r- data. There is a very slight trend towards smaller B as the system size increases;

however, inverse slope measurements for all systems fall within 1 error of 160

MeV.

* Kaons The statistics 'for K+ are poorer than for the pions and are even worse for

the K-. Some general observations may still be made for kaons. Differential yields

for K+ over a range .27 GeV/c < pt < 1. GeV/c. are fairly similar. The inverse

slopes measured in this comparison are very similar. Kaon differential yields can-

not be distinguished by exponentials in either mt or pt. Insufficient coverage at low

momentum in this data does not allow a distinction between the two parameteri-

zations.

* Protons The proton data have good statistics for all reaction systems. Protons are

generally not produced in these collisions (protons are created at the same rate as

anti-protons and their yields are a factor of 10-3 smaller than proton yields). The
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momentum spectra of protons are therefore not expected to behave similarly to

pion and kaon spectra. Protons are well fit by both exponentials in mt as well as by

Boltzmann functions in mt. Proton data are compared in Figure 6-4. Protons are

measured in a momentum range .5 GeV/c < pt < 1.8 GeV/c for oxygen and silicon

data and in a range .4 GeV/c < pt < 1.6 GeV/c for gold data. Protons measured

in 197Au + 197Au collisions show a statistically significant greater inverse slope

parameter than for protons from lighter-ion reactions. This is especially true for

comparisons with the smallest collision systems (mid-cut) 160 + 27A1 where B=158

+ 10 MeV determined with an exponential fit in mt. Measurements of 197Au +

197Au proton inverse slope parameters near y = ynn (y = 1.45) show exceptionally

high inverse slope parameters, B = 320 ± 40 MeV. These inverse slope parameters

are the highest measured for any particles of any collision system at AGS energies.

6.1.1 Pions: Ratios and Multiplicity Dependencies

Pion ratios r+/r - for central collisions are shown in Fig. 6-5 as a functions of transverse

momentum. These ratios provide another way to compare data sets and look for Coulomb

effects in heavy-ion collisions. Pion ratios measured in oxygen and silicon reactions are

typically flat and have a ratio near unity. There are initially an equal number of protons

and neutrons in the lighter-ion collisions. Isospin conservation dictates that a net increase

of r- (isospin -1) occurs for the neutron rich collisions. The gold nuclei have a large net

negative isospin, p/n=79/118 = 0.66 or Itot = -19 1/2. This net negative isospin will

enhance a net 7r- production. Not surprisingly, we see that the 7r+/7r- ratio is down by

about 20 - 30 % from unity at small momenta. A line representing these isospin ratios is

drawn for comparison with the data.

At small transverse momentum, there is generally good agreement with this ratio.

At high pt, the r + /r- ratio typically becomes unity. Another reasonable explanation

for r- excess at low momentum is Coulomb attraction of the r- . Similarly there is a

repulsion of r+ from the large positive baryon participant source. Both effects are on the
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Comparison of r + spectra for y = Ynn

Slope Parameters
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, Au+Au: ZCALBAR x 10+5

o Si+Au: CENTI Cutx 10+4

o Si+Cu: CENTI Cutx 10+3

· Si+Al: CENTI Cutx 10+2

· O+Au: CENT1 Cutx 10+1

· O+Cu: CENT1 Cutx 10-0

* O+Al: MID Cut x 10-1

P, (Ge V/c)

Figure 6-1: Comparison of differential yields for 7r+ at y,, in 160 + A, 28Si + A, and
' 97Au + A collisions. All systems are fit by exponentials of the form Ae-mt/B (dashed)
and Ae - P t/B (solid).
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Comparison of 7r- spectra for y = Ynn

Slope Parameters
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A O+Au: CENT1 Cutx 10+1

0 O+Cu: CENT1 Cutx 10-0

* O+Al: MID Cut x 10-1

P, (GeV/c)

Figure 6-2: Comparison of differential yields for r- at y,r in 160 + A, 28Si + A, and
197Au + A collisions. All systems are fit by exponentials of the form Ae - mt/B (dashed)
and Ae- Pt/B (solid).
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Comparison of K+ spectra for y = 1.5
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A O+Au: CENT1 Cutx 10+1

· O+Cu: CENT1 Cutx 10-0

* O+Al: MID Cut x 10-1
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Figure 6-3: Comparison of differential yields for K + 's at y = 1.5 in 160 + A, 2 Si + A, and
97Au + A collisions. All systems are fit by exponentials of the form Ae- mt/B (dashed)

and Ae -PtB (solid). Rapidity slices were combined, due to insufficient statistics.
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Comparison of Proton spectra for y = 1.3

-

frl

106

10
5

10
4

10

1ea~, e
10

1

0.3

0.275

0.25

0.225

0.2

0.175

0.15

0.125

0.1

Slope Parameters

System

, Au+Au:ZCALBAR x 10+5

o Si+Au: CENT1 Cutx 10+4

o Si+Cu: CENT1 Cutx 10+3

, Si+Al: CENT1 Cutx 10+2

A O+Au: CENT1 Cutx 10+1

· O+Cu: CENTI Cutx 10-0

* O+Al: MID Cut x 10-1

0 1 2

Pt (GeV/c)

Figure 6-4: Comparison of differential yields for protons at y = 1.3 in 160 + A, 28Si +
A, and '97Au + A collisions. All systems are fit by exponentials of the form Ae -m /B.

Note the exceptionally high inverse slope parameters for central ' 97Au + 197Au collisions.
Inverse slope parameters for y=1.5 are even higher in this reaction system (B = 320 ±
40 MeV at y = 1.5).
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order of 10 MeV.

Are there interesting collective effects occurring in central ' 9 7Au + 197 Au collisions

that may be observed in r + and 7r- yields? To check this, a simple multiplicity depen-

dant comparison of 7r+ and r- was performed for central 197Au + 197 Au collisions. If

there are regions of quark gluon plasma being formed in the large gold reactions, entropy

is expected to be higher in these regions. Perhaps copious pion production would occur

at low momentum as these systems hadronize. If this were the case, we might expect

to observe anomalously high r+ and 7r- yields at low momentum for events with large

multiplicities. A crude multiplicity measurement was done comparing central 197Au +

197 Au collisions with central collisions when at least two pions were detected in the spec-

trometers, (see Fig. 6-6). There does not appear to be statistically significant differences

in momentum spectra for either r+ or 7r- . A similar test was done for 3 pions in the

spectrometer (again of either sign) and with poorer statistics. Again, no difference was

found in comparison to the unbiased central data.

6.2 Rapidity Distributions

We would like to understand trends in particle yields with the size of the "fireball"

produced in the collision for each particle species. We reach this goal in several steps.

First, we construct the transverse momentum distribution for each particle species. We

next obtain integrated yields for each rapidity slice. We first discuss the particle yields

of separate particle species and then discuss r+ /K+ ratios.

There are some differences that need to be noted in this analysis in comparison to

earlier work. This work has used the calorimeter as the event characterizer. Most central

data presented in earlier publications are TMA triggered data (events of high multiplic-

ity). Some differences in rapidity spectra will be noted, as appropriate in the discussion.

Most differences are small and fall within systematic errors of the measurements. Figures

6-7 through 6-12 show complete rapidity distributions for r , K, and protons. These
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r +/r- Ratio for y = Ypart
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Figure 6-5: 7r+ /r - ratios for central collision data as a function of pt for 160 + A, 28Si +
A,and 197Au + A collisions. All data are taken at mid-rapidity in a rapidity slice, Ay=.2.
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Multiplicity dependant 7r cross-sections: Y=ynn
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Figure 6-6: r± multiplicity comparison. Pions at Ynn measured when there were at
least two pions in the spectrometer (either charge) are compared to the unbiased central
(ZCALBAR: 4% 0 ine ) 197Au + l97Au pions. There are no striking differences in shape
of the two spectra.
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distributions are created by integrating the differential yields in each rapidity slice.

Pions Both 7r+ and r- rapidity distributions are displayed for all offline software cuts

on minimum bias data. Oxygen data sets are shown with TMA triggered data. 28Si +

27A1 and 197Au + 197Au data sets have been reflected about mid-rapidity as they are

symmetric systems. Some general observations may be made.

* 7r yields increase with centrality for all systems.

* Most r distributions are Gaussian-like in shape.

* The 7r yields from the most central cuts for lighter-ions are Z 10 times greater than

the most peripheral cuts. Pion yields from central 97Au + 197Au collisions are 100

times greater than pion yields from peripheral 160 + 27A1 collisions.

* More peripheral offline cuts are flatter and non-Gaussian in shape when compared

to the more central data sets. Part of this effect may be due to poorer determina-

tions of yields with fewer statistics in peripheral cuts. We probably can rule out

a difference in shape attributed to less kinetic randomization of 7r's in peripheral

collisions. Pion yields from pBe reactions, for example, are also Gaussian in shape

[Abb92a].

* The yields for 7r's from mid-central and peripheral offline cuts of data do not drop

around rapidity y m 1.8 - 2.0 as do the central data. There is no known reason for

this as fits to the momentum distributions appear to be good, despite the smaller

lever-arm in pt range. The pt coverage is typically 200 MeV < pt < 600 MeV for y

= 1.8 - 2.0 for lighter-ion data. Any small systematic errors in fitting this limited

distribution range may preferentially distort the yields.

It would be interesting to further study non-central r production in "shadowing"

experiments with large asymmetric 197Au + A, A < 197 collisions, where there are great

abundances of non-participant matter to distort the pion distributions.
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Figure 6-7: Full dN/dy comparison for r + in 160 + A, 28Si + A, and 197Au + A colli-
sions. Exponentials in pt are fit to the momentum spectra and integrated to give dN/dy.
Horizontal error bars represent rapidity bin widths. Tables 5.6 and 5.7 give values for
the fraction of ainel for offline calorimeter cuts. The open points are reflected data about
Ynn 

126

O+Cu

- W*

_lt-

Si+Cu
4-

+ -A--A--A--A--A--A- -A-

X v A rW-

10

IO

-I-110

10

I

-1
10

0

O+Au

*)- W

-A-
m~ --UW 

Si+Au
-*- -*-

.----
--- S--S--

tW_

_ -4-- & 4-A--A- A-.

---- -A--A-

*. -

* Au+Au

,, ,I , , 1, .I

2

10

Rapidity
0 I 2 3

- - l

li l l l l l l ll.l . . . . Illlll ll. .. .. Il I l l l l l l l l 

l l l l l l l l lllllll lllll ' I'',llllllll

-A--- -A
_,a

.. . I . . . . i

. I . . I , .



dN/dY Summary:
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Figure 6-8: Full dN/dy comparison for ir- in 160 + A, 28Si + A, and 197Au + A colli-
sions. Exponentials in pt are fit to the momentum spectra and integrated to give dN/dy.
Horizontal error bars represent rapidity bin widths. Tables 5.6 and 5.7 give values for
the fraction of inel for offline calorimeter cuts. The open points are reflected data about
Ynn -
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dN/dY Summary: K+
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Figure 6-9: Full dN/dy comparison for K + in 160 + A, 28Si + A, and ' 97Au + A
collisions. Exponentials in mt are fit to the momentum spectra and integrated to give
dN/dy. Horizontal error bars represent rapidity bin widths. Tables 5.6 and 5.7 give
values for the fraction of i,nel for offline calorimeter cuts. The open points are reflected
data about ynn.
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dN/dY Summary: K-
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collisions. Exponentials in mt are fit to the momentum spectra and integrated to give
dN/dy. Horizontal error bars represent rapidity bin widths. Tables 5.6 and 5.7 give
values for the fraction of inel for offline calorimeter cuts. The open points are reflected
data about ynn.
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dN/dY Summary: Proton
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dN/dY Summary Central 197Au + 197Au
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Pions from central and middle cuts (CENT1 and MID) for 28Si + 27A1 collisions

roughly match the fractions of inelastic cross-section for cuts made in recent E802 pub-

lications. Pion yields from central (upper 7% TMA) and peripheral (lower 50% TMA)

collisions are consistent to'the 5% level with pion yields measured in this analysis with

CENT1 (upper 10% aine, ) and MID (40 - 90% rine1 ) collisions. Pion yields in central
28Si + 64 Cu and 28Si + 197Au collisions are also consistent to the 5% level with pion yields

of recently publishes E802 28Si + A results [Abb94].

Kaons Kaon rapidity distributions are shown in Figures 6-9 and 6-10. Some general

observations are made for the kaon data.

* The kaon yields from the most central cuts for lighter-ions are - 10 times greater

than the most peripheral cuts. Kaon yields from central 197Au + 197Au collisions

are 100 times greater than the kaon yields from peripheral 160 + 27Al collisions.

* Both K + and K- yields increase with the size of the system and with the centrality

of the collision.

* Only rough comparisons can be made with the K- data sets because of very poor

statistics. Current work with K- triggering for 197Au + 197 Au data (as well as with

lighter-ions) will better determine the centrality dependence of K-.

Yields for K+ are about 5 times greater than for K-. Most of the difference is

accounted for by the different production mechanisms available for the two particles.

Associated production of K+ has a smaller threshold than has pair production for K-.

Typical production reactions include,

K+: NN -- K + + K -+ N + N

NN-- K+ + A + N

K-: NN -K + + K- + N + N

Protons Figure 6-12 shows the complete proton data set. Proton data have good
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statistics, even for the most peripheral cuts in ZCAL. Very different rapidity distributions

are seen for protons.

* Asymmetric lighter-ion proton data are characterized by decreasing yields, falling

nearly exponentially in rapidity. This decreasing trend is apparent in both central,

mid-central and peripheral data sets. The symmetric central 28Si + 27Al system

does show a flatter dN/dy distribution, compared to the other lighter-ion data sets

and are similar to proton distributions from central TMA data sets.

* Mid-central and peripheral 28Si + 27Al protons are more characteristic of the asym-

metric lighter-ion data sets, where yields are high at target rapidities and low at

central rapidities.

* Mid-central (30-50 %4inel ) and peripheral (70-90%oinel ) 197Au + 197Au protons

are flat and decreasing towards y,n, much like central and peripheral lighter-ion

protons.

Protons from central 28Si + 27A1 collisions are in agreement within statistical errors

with proton yields from TMA triggered data presented in a recent E802 publication

[Abb94]. Proton yields from central 28Si + 64Cu and 28Si + 197Au collisions are also in

good agreement (at the 5% level) with published results.

The central 197Au + 197Au protons rise at mid-rapidity. This is the only system that

displays proton yields that are peaked at Ynn. Figure 4-4 shows a RQMD simulation of

minimum bias 197Au + 197Au data. The contribution to the mean number of binary col-

lisions changes dramatically for y < 7 . This corresponds approximately to the upper 30

- 50 % Oin,l range, see Table 5.7. The protons observed in this range exhibit peaking dis-

tributions at ynn. Contributions from secondary collisions with pions and other baryons

are probably responsible for shifting protons from the original y=0 (target rapidity) and

y=3.2 (beam rapidity) to central rapidities.
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K+/7r+ RAPIDITY DEPENDENT RATIOS
System Trigger Ratio
160 + 27A1 TMA .14 1.05
160 + 64Cu TMA .145 1.05
160 + 197Au TMA .175 .04
28Si + 27A1 CENT1 .105 1.02
28 i + 64Cu CENTI .178 1.04
28Si + 197Au CENT1 .195 .03
197Au + 197Au ZCAL .22 + .04

Table 6.1: Summary of 160, 28Si, and 1
97Au K+/7r+ ratios using central (TMA) oxygen

data and central (CENTI) 28Si data. Comparisons are made with central 197Au data.

6.2.1 K+/r+ Ratios

Several features of heavy-ion collisions may be learned from studying the rapidity de-

pendant K+/ir+ ratios. Figure 6-13 shows K+/r+ ratios for 160 + A, 28Si + A, and

197Au + 197Au central collisions. One of the more significant features of the comparison

is the increasing ratios for larger collisions. The ratio almost doubles from the smallest

to largest collisions and all values are enumerated in Table 6.1. Furthermore, the K+/r+

ratios are relatively flat in rapidity for all data sets. The K+/7r+ ratios of central 28Si +

A reactions are consistent with ratios from recently published results [Abb94].

6.3 Inverse Slope Parameters.

Before discussing integrated yields, we look at the inverse slope parameters for the various

collisions. Exponential fits are determined by minimizing x2 for the parameters A and

B as in the form Ae- Pt/B. We use exponentials in pt for pions and exponentials in mt

for kaons and for protons. Some general observations are made for the comparisons in

Figure 6-14 .

Pions

* Both 7r+ and r- inverse slope distributions have a similar rapidity dependence,

very broadly peaked and Gaussian-like in shape. This is true for all targets and
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K+/ir+ Ratio
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Figure 6-13: K+/7r+ ratios for 160, 28Si, and 97Au + A collisions. Distributions are flat
in rapidity and systematically increase from about 12 - 23 % from 160 + 27A1 to 197 Au +
' 97Au collisions.

135

0.4

0.3

0.2

0.1

0.4

0.3

0.2

0.1

0

+
I

0.3

0.2

0.1

c�2EK¼

Au+Au

3

-

, , , , , , , , , , , , , !

_



Slope Parameters: Central Events

0.3

0.2

0

0 0.3

0.2

0.1

Rapidity
0 I 2

Figure 6-14: Inverse slope parameters for r+ , r- , K+, K- and protons in central 160 +
A, 28 Si + A, and ' 97Au + A collisions. 160 + A central data sets are defined with the
TMA and the 28Si + A data sets are defined with an offline CENT1 cut. The 197Au +
19 7Au data points are measured using hardware ZCAL data.
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centrality ranges for data shown (see appendices). This Gaussian-like distribution

is expected from the thermal emission of a hot fireball.

* Pion inverse slope parameter distributions are similar from peripheral 160 + 27A1 to

central 19 7Au + 197Au collisions.

* Pion inverse slope parameters have a weak rapidity dependence.

Pion inverse slope distributions from central 28Si + A reactions are all consistent (to

the 10% level) with recently published TMA results [Abb94].

Kaons

* Kaon inverse slope parameters are more sharply peaked than pion inverse slope

parameters.

* Kaon inverse slope parameters range from - 160 MeV for peripheral 160 + 27A1 col-

lisions to 180 MeV for central 197Au + 197Au collisions.

* Statistics for K- are too poor to make any definitive statement with these data.

Protons

* Proton inverse slope parameters are more sharply peaked than either pion or kaon

inverse slope parameters.

* Proton inverse slope parameters range from a peak value of 200 MeV for central

160 + 27Al collisions to 320 ± 40 MeV for central 197Au + 197Au collisions.

The effects of multiple scattering and rescattering are once again evident in the com-

parison. Figure 4-4 gives evidence of the number of collisions for 28Si + 27A1 and ' 9 7Au +

1
97Au reactions. A proton from a central 28Si + 27Al collision undergoes about 100 to

120 /53 or about 2 3 total collisions. A proton from a 197Au + 197Au central collision

undergoes about 2000/394 5 collisions on average. Protons in the center of the collision
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will undergo many more than this. The net effect is that protons "heat up", or more

quantitatively, their average transverse momentum increases with the number of binary

collisions [Blo90], [Par92].

6.4 Integrated Yields

We integrate dN/dy distributions to determine a single yield for each collision system.

Yields of r+ , 7r- , and K+ are determined and plotted as a function of participants in

the collision. We choose two methods to determine the participants in the collision; (1)

integrated yields are plotted in terms of a mean experimental participant number defined

as

(TOTAL BEAM ENERGY - (ZCAL))
(KINETIC ENERGY PER NUCLEON)' (6.1)

and (2) integrated yields are plotted in terms of a mean number of participants as de-

termined with "clean-cut geometry" (input to FRITIOF). We emphasize the comparison

between 28Si + 27A1 and 19 7Au + 197Au pions and kaons using the two methods and then

discuss a comparison of results with the RQMD and ARC models.

Fiducial yields are defined as (= fy2 (dn/dy)dy ) and are examined first. Total

yields are also determined by parameterizing the yields with a Gaussian distribution.

Figures 6-15 and 6-16 show the fiducial yields for pions from 28Si + 27A1 and 19 7Au +

197Au systems.

Comparisons are made with 5000 minimum bias RQMD and 10000 ARC events. The

ZCAL acceptance is used to determine projectile participants in a similar fashion for

measured data. Integrated pion yields are determined by parameterizing the simulated

yields using exponentials in pt in the experimental acceptance. Pion yields from RQMD

are 30 to 40% larger than measured yields for the most central gold collisions. Yields

from 28Si + 27A1 collisions and more peripheral 197Au + 19 7Au collisions better match
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Fiducial
(Silicon

Yields
Projectile)

7r + and Tr-

300 10 20 3 10 20
<PROJ. PARTICIPANTS> (Measured)

300 10 20 3I 10 20
<PROJ. PARTICIPANTS> (Glauber Geometry)

Figure 6-15: Fiducial yields for r + and 7r- in 28Si + 27A1 collisions. Yields are defined in
a fiducial range, with ymin = 0.4 and y,,, = 3.0 (reflected value) for 28Si + 27A1 data.
The abscissa for the top two panels are experimentally determined projectile participants.
Projectile participants for the bottom panels are determined with a Glauber calculation.
Comparisons are made with the RQMD and ARC models. (data: solid line), (dashed
line: RQMD), (dotted line: ARC)
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Fiducial Yields e + and ir-

0 50 100 150 200 50 100 150 200
<PROJ. PARTICIPANTS> (Measured)

50 100 150 200 50 100
<PROJ. PARTICIPANTS> (Glauber Geometry)

Figure 6-16: Fiducial yields for r+ and 7r- . Yields are defined in a fiducial range,
with Ymn, = 0.4 and Ymax = 3.0 (reflected value) for 28Si + 27A1 data and Ymin = 0.4
and Ymax = 2.8 (reflected value) for l97Au + 197Au data. The abscissa for the top two
panels are experimentally determined projectile participants. Projectile participants for
the bottom panels are determined with a Glauber calculation. (data: solid line), (dashed
line: RQMD), (dotted line: ARC)
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the measured yields.

In recent conferences, pion yields from the RQMD model were compared with 28Si +

197Au data at AGS energies [HIP93-sor]. The comparisons have shown that predicted pion

yields are higher than measured pion yields by 20 to 30 %. Comparisons with measured

pion yields show good agreement for a small number of participants. The RQMD yields

grow increasing greater than measured yields with the number of participants. The

results are plotted in Figures 6-15, 6-16 and 6-17.

ARC calculation agree well with pion data for both 28Si + 27A1 and peripheral 197Au +

l97Au collisions. The results are plotted in Figure 6-15, 6-16 and 6-17 ARC calculations

give larger pion yields for central 197Au + 197Au data.

Corrections are also made for the differences in incident beam energies of the silicon

and gold beam. Studies with pp reactions at various energies show that an empirical

relationship for the VJs behavior for the production of charged mesons[Ant73] can be

written as

(n,+) = -1.7(+.3)+ .84(+.007)ln(s) + 1.(+.5)/s1/2, (6.2)

(n_ ) = -2.6(+.2) + .87(±.005)1n(s) + 2.7(+.4)/s1/2, (6.3)

(nK+) = -0.5(.003) + .13(±.001)ln(s) + .65(±.05)/s /2 . (6.4)

The energy corrected values are plotted for comparison with the uncorrected values in Fig.

6-21. Both 7r+ and 7r- yields exhibit linear dependency with either the experimentally

measured participants or the participants determined with a Glauber model.

Not surprisingly, similar trends in pion behavior are seen for total integrated yields,

determined by fitting a Gaussian function to the pion yields. We expect these similarities

because the fiducial yields encompass most (80 to 90%) of the pions once the data are

reflected about yn. Table 6.3 shows the fit parameters and yields for these two data
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SUMMARY OF INTEGRATED YIELDS FOR 19 7 Au + 197Au DATA
Yield

0-4% 0-10 % 10-30 % 30-50 % 50-70 % 70-90 %
Type Part. 0inel 0

inel 7
inel t inel oinel 0

inel

Data r + 120 4 101 3 73. 4 39. 2 15. i 1 12. ± 1
7r- 159 5 131. 3 99. 2 51. ± 1 20. ± 1 16. ± 1

RQMD* 7r+ 184±7 159. ±4 109. 2 51. 2 24. ±2 8. 2
7r- 215±8 193. ± 5 127. 3 62. ± 2 27. ± 2 13. 2

ARC* 7r+ 152 5 141 ± 3 93 2 44 2 23 2 6 1
7r- 182 5 174 ± 3 117 2 60 2 28 2 21+ 13

Table 6.2: Summary of Gaussian fits to 197Au + 197Au data. Comparisons are made
to the RQMD model run with 5000 197Au + ' 97Au minimum bias events. * Acceptance
corrected simulated data.

sets.

A pion production function can be determined from the total integrated yields. A

best linear fit to the pion yield in 28Si + 27A1 collisions is

n,+ = .9(±.05) x PROJ. PARTICIPANTS (6.5)

n- = .9(±.04) x PROJ. PARTICIPANTS. (6.6)

Similarly, a pion production function can be determined from the total integrated

yields. A best linear fit to the pion yield in 197Au + 197Au collisions is

n,+ = .6(±.07) x PROJ. PARTICIPANTS

nr- = .8(±.04) x PROJ. PARTICIPANTS.

(6.7)

(6.8)

Assuming that r ° = (+ + 7r- )/2, the average pion production for I 97Au + 197Au colli-

sions is (1.1 ± .05) r/(participant).

Kaons are also plotted in a similar fashion. Kaon yields vs. participants are deter-
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Integrated Yields 7r + and 7r-

- Si Al
*Au + Au: Offline Cuts _

_ AAu + Au: ZCALBAR O.-

91

50 100 150 200

' ' I ' I

50 100

: 1 I I . . . . . . . . . . . . . .

T-+ 
, _

150

DAu t Au: RQMD ' _
~,Au + Au: ARC O,_

I I I I I i i I i i_

50 100

- 'V-

- I I I ~ ~ -Ck

200 50 100
<PROJ. PARTICIPANTS> (Glauber Geometry)

Figure 6-17: Total integrated yields for 7r+ and 7r- for 28Si + 27A1 and 197Au + ' 97Au data.
Rapidity distribution are fit to a Gaussian parameterization and then integrated from y
= -1 to y = 4. (data: solid line), (dashed line: RQMD), (dotted line: ARC)
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Summary Integrated Yields ir+ and 7r-
(Oxygen and Silicon comparison)

40 60 80 100 120 140

its

20 40 60 80 100 120 140

<TOTAL PARTICIPANTS> (Glauber Geometry)

Figure 6-18: Total integrated yields for 7r+ and 7r- for 160, 28Si, and 9 7Au data.
Rapidity distributions are fit to a Gaussian parameterization and then integrated over
rapidity.
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GAUSSIAN FIT PARAMETERS
System Cut A Yo a
28Si + 27A1 CENT1 7.8 1.72 1.25

CENT2 4.5 1.72 1.04
MID 2.3 1.72 1.02
PERPI 1.3 1.72 1.01

19 7 Au + 1 97 Au ZCAL 63.6 1.6 .85
0 - 4 % i,nel 60.1 1.6 .80
0 - 10 % 7inel 49.2 1.6 .82
10- 30 % inel 37.1 1.6 .78
30- 50 % 'inel 19.6 1.6 .79
50- 70 %o ine 7.2 1.6 .83
70- 90 % aine, 6.4 1.6 .78
90- 100% aOinel - 1.6 -

Table 6.3: Fit parameters for total integrated yields for 28Si + 27 Al and 197Au + 197Au col-
lisions using a Gaussian function.

mined with both linear and quadratic fits. The poor K+ statistics do not allow Gaussian

fits to be performed on rapidity distributions. We expect a similar dependency with pro-

jectile participants since kaon fiducial yields capture most of the kaons. Kaon yields grow

with a linear dependency with projectile participants for a large range of participants.

Kaon yields from RQMD and ARC 28Si + 27A1 collisions are in good agreement with

the data. Kaon yields from RQMD and ARC 197Au + 197Au collisions increase faster

than a linear dependency. The RQMD and ARC models both show integrated kaon

yields that are smaller than measured yields for 197Au + 197Au collisions.

Both pion and kaon fiducial yields are divided through by the measured projectile

participants. This normalized fiducial yield is plotted in Figure 6-21.

The measured kaon yields have a linear dependency for a large range of projectile

participants (from 50 to 180 participants). The linear and quadratic fit parameters are

listed in Table 6.4.

K+/r+ ratios are shown in Figure 6-22. The ratio increases for 28Si + 27A1 data but

remains flat for 197Au + 197Au data. Both the RQMD and ARC models show increasing

K+/7r+ ratios.
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Fiducial Yields K+
(Silicon Projectile)

. .~ ,l . . .- . . . . . . . , . . . ....
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- oSi +Al

- f"lP) ,fn I

- OARC

_~~~

,I I I I , , I IIII, I II I I I I ,
0 2.5 5 7.5 10 12.5 15 17.5

<PROJ. PARTICIPANTS> (Measured)

0 2.5 5 7.5 10 12.5 15 17.5 20

<PROJ. PARTICIPANTS> (Glauber Geometry)

20 22.5 25

22.5 25

Figure 6-19: Fiducial yields for K + in 28Si + 27A1 collisions. Yields are defined in a
fiducial range, with Ymin = 0.4 and Yma, = 3.0 (reflected value). The abscissa represents
an experimental measurement of the projectile participants. Comparisons are made with
the RQMD and ARC models.
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Fiducial Yields K+

<PROJ. PARTICIPANTS> (Measured)

0 20 40 60 80 100 120 140 160
(PROJ. PARTICIPANTS> (Glauber Geometry)

180 200

Figure 6-20: Fiducial yields for K+. Yields are defined in a fiducial range, with yi =
0.4 and Yma, = 3.0 (reflected value) for 28Si + 27A1 data and Ymin = 0.4 and Yma, = 2.8
(reflected value) for 197Au + 97Au data. The abscissa represents an experimental mea-
surement of the projectile participants. Comparisons are made with the RQMD(dashed
line) and ARC(dotted line) models. Linear and quadratic fit parameters are shown in
Table 6.4.
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Normalized Fiducial Yields r+, ir-, and K+
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Figure 6-21: Normalized fiducial yields for r+ and r- . The top three panels show 7r±

and K+ data as a function of projectile participants and normalized by the number of
projectile participants. Gold data in the bottom three panels are multiplied by correction
factors from equations 6.2 to 6.4.
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K+ / r + Ratio
(From Fiducial Yields)

- *Si + Al O RQMD
*Au + Au: Offline Cuts © ARC
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Figure 6-22: K+/7r+ Ratio for 28Si + 27A1 and l97Au + l97Au data obtained from fiducial
yields.
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FIT PARAMETERS FOR FIDUCIAL YIELDS
Particle a + bN'' abNProJ -cN 2proj 2 X2

Particle a - part (N-2) a- part Cpart N-2)

a b (linear) a b c (quad)
r+ .54(.56) .54(.02) .86 1.1(.6) .49(.05) 3x10-4(3 x10-4 ) .24
r- 0.(3) .66(.06) .14 .08(1.1) .64(.05) 8.x10-5(3. x10- 4) .17

K + -.5(.12) .11(.01) .23 -.25(.19) .07(.02) .0003(.0002) .17
7r+ (ARC) -.2(.6) .61(.02) .81 1.9(.7) .36(.05) .002(.0004) .28
7r+ (RQMD) -1.3(.6) .79(.02) .31 .31(.8) .58(.07) .002(.0001) .1
r- (ARC) -.94(.5) .74(.02) 1.0 1.15(.6) .46(.05) .002(.0003) .26

7r- (RQMD) -1.9(.5) .93(.02) .61 -.06(.7) .65(.07) .002(.0005) .16
K + (ARC) -1.6(.4) .10(.005) 1.4 .04(.1) .04(.01) 5x10-4(.5 x10 - 4 ) .3
K + (RQMD) -1.9(.22) .19(.002) 1.4 -.06(.1) .04(.01) .003(10- 4 ) .14

Table 6.4: Fit
197Au + 197Au

parameters for normalized fiducial yields
collisions. Errors to fits are in parenthesis.

vs. projectile participants for

We are now ready to use the particle yield results of this chapter to investigate energy

and baryon densities in heavy-ion collisions at the AGS.

6.5 Summary

In this section we have presented a summary and comparison of 160 + A, 28Si + A and

197Au + 197Au data. Integrated yields of pions from the various reactions allow one to

determine pion production as a function of the number of participants.

Inverse slope parameters are also shown for r+, K+, and protons for central collisions.

Pion inverse slope parameters are very similar for all systems and fairly flat over rapidity.

Light pions are more easily spread in momentum than the heavier kaons and protons.

Pions are created in decaying resonances (for example, A+ -+ N7r) and receive most of

the kinetic energy from the parent particles.

Proton inverse slope parameters, on the other hand, change on the order of 150 MeV,

(ranging from 170 MeV to 320 MeV) over the range of collision reactions. Kaon inverse

slope parameters measured at mid-rapidity range from 150 to 200 MeV over the range

of collisions.
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There is a linear dependency of 7r+ and 7r- production with projectile participants.

Pions yields for 197Au + 197Au collisions from RQMD calculations are consistently higher

than measured yields. Pion yields for 197Au + ' 97Au collisions from ARC calculations

are in agreement with the data for peripheral collision but are larger by about 10 - 20%

for central gold collisions.

Production of K + is also examined. The limited statistics for K+ force making fiducial

cuts in rapidity. Kaon yields are linear with the number of participants for a large range

of participants (from 50 to 180).

Strange to non-strange meson ratios, K+/r+ , are determined for the 28Si + 27A1 and

197Au + 97Au reactions. The K+/7r+ ratio increases for 28Si + 27A1 data and then is flat

over a large range of participants. The most central l 97Au + 197Au data point gives a

K+/I + ratio of .26 + .05.

Protons, although not produced in the collision reactions, provide much information

that describes reaction violence and homogeneity. Protons from central and peripheral

160 + A, 28 Si + 64Cu, and 28Si + 97Au data are peaked in dN/dy at target rapidities.

The symmetric 28Si + 27A1 central collisions show flatter proton distributions, where

larger 28Si + l97Au central proton distributions are peaked towards y=O.

Protons from 197Au + 197Au collisions show a very different behavior. There is a

gradual change in the shape of the proton rapidity distributions from peripheral to central

collisions. Proton distributions from central 197Au + 197Au collisions may show evidence

for "stopping". Proton distributions from the upper 50 % 0 ai,,, become peaked at mid-

rapidity in 197Au + 197Au collisions. In these ranges of centrality, the cascade model

RQMD shows very large contributions for multiple scattering and rescattering and may

explain qualitatively the increasing yields at mid-rapidity for protons in central ' 97Au +

197Au collisions.
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Chapter 7

Density

How do particle yields contribute to energy and baryon densities in heavy-ion collisions?

We continue the discussion of thermal models from Chapter 2 and approximate the

densities in these collisions. Densities are calculated as a function of collision participants.

A simple model for a Coulomb correction to a particle's kinetic energy is also discussed.

Finally, we make comparisons to the thermal fireball models.

7.1 Energy and Baryon Densities

Recalling Equation 2.31, densities are determined by summing over the phase space for

a particle species and weighting it with the correct quantum statistics. From Chapter 2,

the number density for particle species i is

gi f 27rptdptdp (7.1)
(2r)2h3 e(E - l) / T i 1'

where i are used appropriately for fermions and bosons. There are two principle steps

in determining p. First, the chemical potential, #, and temperature, T, must be deter-

mined. Secondly, we must determine E in terms of transverse momentum and include a

reasonable Coulomb correction. Coulomb corrections are especially important for slow

protons where the magnitude of the Coulomb correction is on the order of the kinetic
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energy of the proton.

We divide this discussion into two parts. We determine the contribution to the

meson densities by determining the number densities for pions and kaons. Likewise,

we determine the baryon densities by measuring the proton densities. Since we do not

measure neutrons is this experiment, reasonable assumptions must be made in order to

estimate the neutron densities and hence, total baryon densities.

Each density must be determined with the appropriate Coulomb correction and quan-

tum statistical form. First, we fit the temperature and chemical potentials to the particle

spectra in a thermal model.

7.2 Thermal Fits

The comparisons of particle yields to thermal models dates to the beginnings of the field.

We determine densities for several particle types, for r±, K+, and protons. Particle

spectra may be fitted with Bose (for r 's and K's) or Fermi (for protons) fits. Figure 7-1

shows fits for r±, and proton data in central 197Au + 197Au collisions.

The pion momentum spectra are first normalized by a Boltzmann fit. The low momen-

tum enhancement is clearly seen in Fig.7-1. Next, a Bose function is fit to this spectra.

The temperature and chemical potential are then extracted. Protons are similarly fit to

Fermi functions.

There is evidence indicating that protons are thermalized in central 197Au + 197Au col-

lision:

* Proton momentum spectra are well fit by Boltzmann functions (see Appendix H, O,

and R). Protons in thermodynamic equilibrium are fit by d2N/m tdmt mte- mt/T

[Nat92-He].

* Proton rapidity sectra are well fit by a Gaussian function. Rapidity distributions

of protons in thermodynamic equilibrium are described by, dN/dy - e- ( Y- YF) 2/2T

[Nat92-He].
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Bose and Fermi Fits to Central Au +Au Data
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Figure 7-1: Thermal fits r± and protons in central 197Au + l 97Au reactions. This invari-
ant momentum spectra has been divided by Boltzmann fits and refit using appropriate
statistical functions. All fits have been Coulomb corrected.
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* Protons are peaked at mid-rapidity in central 97Au + 197Au collisions. This ra-

pidity distribution suggests stopping of the beam projectile with the target nuclei.

The peaking at mid-rapidity also suggests that protons from target and beam nu-

clei suffer at least 2 collisions. We expect that each collision shifts the rapidity by

about 2 units of rapidity from pA studies [Bus88].

* Cascade models show that protons in central 197Au + 197Au collisions suffer as

many as 5 - 6 collisions (see Fig. 4-4) .

Even if protons are really thermalized in 197Au + 197Au collisions, there remains

difficulties in interpreting their spectra. The proton temperatures are different than the

kaon and pion temperatures. Some possible explanations for these differences include:

* Some fraction of the protons come from A resonance decays according to the ARC

model [HIP93:-ka]. The decaying A's impart most of their momentum to the pro-

tons. There will be distortions to the proton momentum spectra because some

of the momentum will be carried off by the pions from the decay. Therefore, the

temperatures determined using the protons may not reflect the parent resonance

temperatures. Monte Carlo studies have shown that Deltas at a rapidity of 1.6, for

example, decay to protons with smaller inverse slopes[Sun]. Delta's with inverse

slopes of 200MeV give proton inverse slopes of 170MeV.

* Hydrodynamic expansion of a thermal gas will also distort the proton temperature.

* The densities determined from thermal fits are very sensitive to the proton behavior

at low momentum. Figure 7-2 shows several fits and the resulting temperatures and

chemical potentials. The proton numbers are given in Table 7.1.

The first two of these contributions distort the proton momentum spectra and all

three contributions make the interpretation of the actual proton density difficult. We

conclude that the density is very sensitive to the low momentum behavior of the proton.

Table 7.1 shows the ranges of densities for various temperatures and chemical potentials
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PROTON DENSITIES AND SENSITIVITIES TO AND T
Rapidity /(fixed) T nprot X2/(N-2)

(MeV) (MeV) fm- 3

1.5 200 262 ± 10 0.1 : .06 .110
1.5 1000 210 ± 10 1.2 ± .06 .110
1.5 1100 190 6 1.6 ± .05 .110
1.3 150 204 ±- 4 .02 ± .04 .040
1.3 200 188 ± 4 .02 ± .04 .043
1.3 500 209 ± 4 .16 ± .04 .047
1.3 1100 187 4 1.6 ± .04 .108
1.1 500 198 2 .13 ± .01 .035
1.1 750 191 ± 2 .42 ± .01 .040
1.1 900 182 ± 3 .80 ± .01 .040
1.1 1000 182 3 1.1 ± .01 .060

Table 7.1: Sensitivity of Proton Densities to and T.

for protons of central 197Au + 97Au collisions. Though the density is sensitive to the

low momentum proton behavior it is insensitive to the rapidity. Protons, on the other

hand, contribute most to the overall density. Protons also need to be treated with more

care as the correction to their momentum due to Coulomb effects can become large.

Kaons are also treated. These particles also freeze out at a different, typically smaller

source radius than protons or pions [Morr90], [So194], [Cian93] and therefore the density

measured should be a better indicator of the conditions at the hot center.

7.3 Coulomb Corrections

We model a classic Coulomb correction to central A + A collisions using energy conser-

vation, [Gyul81], [Goss78]. Energy conservation dictates that for particles escaping from

the participant matter

(Eob.) = (EK.E.)init + (Ecoul). (7.2)

We rewrite this as
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Au +Au Protons
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Figure 7-2: Sensitivity to thermal fits for 97Au + 197Au protons. Various values of chem-
ical potential are chosen and the temperature is fit for y=1.1, 1.3, and 1.5. Temperature
is not very sensitive to changes in chemical potential in these fits. However, the number
density is very sensitive to particle yields at low momentum.
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-pf p + . (7.3)
2m 2m ri

In this model, ql = 1, as appropriate for pions, kaons or protons escaping from the

positive charge source potential, q2. The modification to the Coulomb cross-section

becomes

a = o(r)eEcol'/T(1 mE (7.4)
p2

where

Ecou = kqiqpart with k = 1.44 MeV-fm. (7.5)
r

We model the correction for charged particles emitted from a spherical distribution, with

qpart, defined as the charge of the participants in a Glauber model for central 160 + A,

28Si + A, and 9 7Au + 197Au collisions. We allow the comoving positive charge to be

moving forward at y = Ypart. Furthermore, we assume that emitted particles originate

at some radius and use measured radii when avaliable from correlation studies. The

Coulomb corrections for pions are negligible, since the freezeout radius is large, ranging

from 3 - 6 fm. The more massive protons are typically non-relativistic and have smaller

kinetic energies. The most complete correction for protons must be a time-dependant

correction, applied throughout the collision. This analysis is beyond the scope of this

work. The corrections ECO,, at freezeout are shown in Table 7.2.

7.4 Densities and Participants

Finally, we calculate the densities in central A + A collisions using the thermal model

described in the previous section. The particle number densities n ,nK, and nprot

are very dependent on the behavior of particles at low momentum. The difficulty in

measuring particle yields at low momentum contributes to the overall uncertainty of
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DENSITY CALCULATIONS FOR MEASURED SPECIES
Particle System y - * T** Coulomb n

(MeV) (MeV) (MeV) (1/fm3 )
r + 160 + 27A1 1.66 111 125 11.7 .07

a'- 160 + 27A1 1.66 113 127 11.7 .07
Kaons 160 + 27Al 1.66 656 173 11.7 .08
Protons 160 + 27A1 1.66 653 182 9.6 .22
r + 160 64CU 1.18 151 135 21.3 .16
7r- 160 + 64Cu 1.18 109 129 21.3 .07
Kaons 160 + 64 Cu 1.18 257 146 21.3 .08
Protons 160 + 64Cu 1.18 275 181 13.2 .24
7r+ 160 + 197Au 0.81 127 139 30.9 .10
7- 16 0 + 197Au 0.81 128 124 30.9 .07*
Kaons 16 0 + 197Au 0.81 494 173 30.9 .08
Protons 160 + 197Au 1.3 500 171 13.1 .37*
r+ _ 28Si + 27A1 1.72 105 124 11.1 .06
t- I 28Si + 27A1 1.72 140 129 11.1 .11

Kaons 28Si + 27A1 1.72 173 153 11.1 .05
Protons 28Si + 27A1 1.72 775 174 11.7 .39
7r+ 28Si + 64 Cu 1.41 115 129 18.9 .07
7r- 28Si + 64Cu 1.41 142 134 18.9 .13
Kaons 28Si + 64Cu 1.41 260 180 18.9 .09
Protons 28Si + 64Cu 1.41 591 185 15.1 .18
7r+ 28 si + 197Au 1.27 145 132 25.9 .17
7r- 28Si + 197Au 1.27 127 131 25.9 .09
Kaons 28Si + 197Au 1.27 260 173 25.9 .09
Protons 28Si + 197Au 1.1 750 171 14.2 .33*
7r+ 197Au + 97Au 1.6 158 137 44.3 .18
7- 197Au + 197Au 1.6 161 140 44.3 .13
Kaons 197Au + 197Au 1.6 340 161 44.3 .10
Protons 197Au + 197Au 1.6 998 184 44.3 1.1
Protons 197Au + 197Au 1.3 835 204 44.3 0.66
Protons ' 97Au + 197Au 1.1 906 186 44.3 0.79

7.2: The energy and proton n
projectiles on various targets.

umber densities measured for 160,
All densities are Coulomb corrected.

statistics forced larger binning of data in order to determine these fits.(**) Fit errors to
p and T are on the order of 5-10%. All densities are very sensitive to low momentum
behavior. The best estimate of the systematic error of the density is - 20%.
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MESON DENSITY SUMMARY
SYSTEM Ypart nmeson (mt)7r (mt)K+ emeso,, = Eni((Ei))

(1/fm 3 ) (GeV) (GeV) (GeV/fm 3 )

160 + 27Al 1.66 .29 .32 .71 .12
160 + 64Cu 1.18 .42 .32 .67 .17
160 + 197 Au .81 .33 .33 .71 .16
28Si + 27A1 1.72 .30 .32 .68 .12
28Si + 64 Cu 1.4 .39 .33 .73 .14
28Si + 197Au 1.27 .48 .33 .71 .19
197Au + 197Au 1.6 .56 .34 .72 .23

Table 7.3: Meson Density Summary.
systems. Note that ypart = YFB-

Statistical errors for the densities are 5-10% for all

these calculations.

Figure 7-3 shows the trends of meson and baryon densities for nuclear matter using

the fireball model and the thermal model discussed here. The meson number densities

for 160 + A and 28Si + A reactions range from (0.29 ± .03) - (.48 ± .05) /fm 3. The

meson number density for the ' 97Au projectile is .56 ± .03 /fmn3. Energy densities are

also calculated using a mean energy per particle species. The mean energy in the frame

of the fireball is

(E) = (mt)cosh(y - YFB). (7.6)

With exponential parameterization of the differential yields, Ae- ' /T, we may analyti-

cally determine (mt),

(m ° /T)2 + 2(m,/T) + 2
(mt) = T 1+ (mT) (7.7)

With this expression, a mean energy density is determined for mesons,

Emeson = ni((mt)i) (7.8)

We sum over pions and K + to determine a total energy density. We do not include the
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Meson and Baryon Densities
Central O,Si, Au Collisions

*
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Figure 7-3:
Results of n,nK, and npot vs. participants. The lines at the bottom of the picture
represent approximate nuclear (solid) and proton (dashed) densities in normal nuclear
matter. We use a proton radius of .8 fm and nuclear density p, = .17/fm3 The cluster
of points at the left, represent central 160 and 28Si collisions. See Section 2.2.3 for fireball
calculations.
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BARYON DENSITY SUMMARY

SYSTEM Ypart nprot (mt)prot Eprot = nprot(Eprot) eB = ,prot (ZArg+Ap,o 1))
(1/f3 /f3 /f3 (Ztarg+Zpro,))

(l/fm3 ) (GeV) (GeV/fm3 ) (GeV/fm3 )
160 + 27Al 1.66 .22 1.15 .68 .48
160 + 64Cu 1.18 .24 1.15 .49 .57
160 + 197Au .81 .37 1.14 .56 1.0
28Si + 27A1 1.72 .39 1.14 1.2 .74
28Si + 64Cu 1.4 .18 1.18 .64 .55
28Si + 197Au 1.27 .33 1.18 .72 .88
197Au + 197Au 1.6 1.1 1.15 3.2 3.1
197Au + 97 Au 1.3 .66 1.17 1.53 1.2
197Au + 19 7Au 1.1 .79 1.15 1.52 1.2

Table 7.4: Baryon Density Summary. Statistical errors for the densities are 5-10% for all
systems. Note that ypart = YFB-

contribution of K- in these calculations. Table 7.3 gives the values of (mt) and Emeson

for the various collisions. Energy densities from mesons range from (.12 ± .02 ) - (.23 q-

.02) GeV/fm 3 .

Baryon number densities are also determined. Proton number densities range from

(.18 i .02) - (0.39 ± .04) /fm3 for 160 and 28Si projectiles. A larger proton density

is determined for ' 97Au + 197Au collisions. Calculations where fits were reliable (y =

1.3) give a proton density of (.66 ± .07) /fm3 . Proton densities are determined in a

similar manner as the meson energy densities. Baryon densities are determined using

EB = Eprot(A/Z). Baryon densities are determined for 160 and 28Si projectiles and range

from (0.48 ± .05) - (1.0 + .1) GeV/fm 3. A baryon density of (1.2 ± .2) GeV/fm3 is

determined for central 197Au + 197Au collisions.

There are a number of caveats that need to be discussed with these calculations.

First, the thermal model as presented assumes that all particle species are at the same

temperature. This is not the case. The temperature determined for protons is higher than

the pion temperature. The number densities are determined only using the temperature

and chemical potentials.

There are a number of possible explanations for the different proton temperatures.
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TOTAL ENERGY DENSITY SUMMARY
SYSTEM etot = meson + EB

GeV/fm 3

160 + 27Al .6 ± .06
160 + 64Cu .74 ± .07
160 + 97Au 1.2 ± .2
28Si + 27A1 .86 ± .09
28Si + 64 Cu .69 ± .07
2 8sSi + 197Au 1.1 ± .1
197Au + 197Au 1.4 + .1

Table 7.5:

One possible explanation for the differences in pion and proton temperatures is hydrody-

namic expansion of a thermal source. Hydrodynamic expansion may distort the particle

spectra [Hein89], [Lee88] and yet keep the thermal properties of the source. A simple

"blast wave" mechanism has been studied [Cos90O]. This mechanism distorts the expo-

nential momentum spectra and may be written as

d3N r -E T sinhc T

dp3 Ivoam rE )a 7E

where A is a constant. Pion, kaon and proton momentum spectra have been fit by J.

Costales using this blast wave form for 28Si + 27A1 and 28Si + 197Au collisions. Pion

temperature were determined to be 75 to 80 MeV at ypart. Proton temperatures were

determined to be 90 MeV. Protons from central 97Au + 197Au collisions were fit with this

functional form and resulted in temperatures of 123 MeV. This mechanism was used to

fit the momentum spectra of the above particle species. This method did not give similar

temperatures for all species. The blast wave mechanism does determine temperatures

that are significantly lower than the temperatures determined from simple exponential

fitting.

Approximately 1 pion is created for each baryon participant according to Figure 6-17.

If the source size for pions is about the same as protons then we expect that n, z nB.

We do not see this result. We measure a baryon number density that is approximately
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twice the meson number density. This discrepancy indicates that this model cannot be

used reliably, that perhaps collective effects are present.

There are other limitations to this analysis. The thermal calculations presented in

this chapter assume that the source is time invariant. The measured "temperature" is

really a weighted average of temperatures of particles that originate from many different

regions of the collision at different times. The calculated densities are at best only an

average quantity.

On the other hand, we assume that pions, for example, freeze-out at a critical den-

sity. Therefore, it may be irrelevant that we are measuring particles that originate from

different points and from different times along the history of the collision.

In summary, this technique provides a method for seeing trends in the number den-

sities and is insensitive to the details of the collision geometry and the history of the

collision. However, the analysis yields inconsistent results.
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Chapter 8

Conclusion

We now address the following questions: What have we learned about particle yields in

heavy-ion collisions? Does particle production scale with the number of participants?

Do secondary collisions play a role in these collisions? What densities do we achieve and

how do they depend on the size of the target and projectile? To begin, we look at a

comparison of differential yields.

Differential Yields

How do differential yields compare between A + A collisions in heavy-ion reactions?

We have made comparisons of the most abundant particle species with good statistics

in 160, 28Si, and 197Au reactions. The good statistics of pions and protons near mid-

rapidity in these reactions allow one to parameterize the momentum distributions. We

choose exponential parameterization in pt to describe the pions and exponential param-

eterization in mt to describe the protons. Pion inverse slopes are similar, independent of

rapidity, target size or projectile size. All pion spectra exhibit very similar inverse slope

parameters, 145 MeV < B < 155 MeV, obtained with exponential fitting in pt.

Positive kaons are also measured in this analysis. Kaon differential yields can be

described as exponential in mt or pt. Insufficient coverage at low momentum in this data

does not allow a distinction between the two parameterizations.
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Proton momentum distributions are parameterized by exponentials in mt. Proton

inverse slope parameters increase with the reaction size. Proton inverse mt slope param-

eters range from (160 ± 8) MeV for 160 + 27A1 collisions to (320 ± 40) MeV for central

' 9 7 Au + 197 Au collisions. This is a dramatic increase and likely reflects a substantial

increase in secondary collisions in central 197Au + 197Au collisions.

Rapidity Distributions Rapidity distributions are determined for r + , K ± and protons.

Pions are measured from 0.3 < y < 2.0 for the minimum bias data and from 0.3 < y <

2.5 for the TMA data. All measured particle species show increasing yields for reactions

of increasing centrality. Pion rapidity distributions are well parameterized by Gaussian

functions.

Proton rapidity distributions change dramatically over the range in reaction sizes.

Proton distributions generated in 160 and 28Si reactions show decreasing yields towards

central rapidity. Distributions from symmetric 28Si + 27A1 data show flatter proton

distributions but still decrease at mid-rapidity. Protons from the most central 1 97Au +

197Au collisions are peaked at mid-rapidity, consistent with large shifting of rapidity of

target and projectile protons due to secondary collisions (see Figure 4-4).

Integrated yields We measure both pion and kaon integrated yields in a fiducial range

of rapidity over a large range of collision participants. Yields of both 7r+ and 7r- increase

linearly with the number of participants. Detailed comparisons were done with sym-

metric systems. Particle yields may be plotted against either projectile, target or total

participants since Ntot = 2NPro = 2Ntar . Measurements of K + show that their fiducial
' pa rt --' · p ar t - ~ ~p a r t

yields may increase faster than a linear dependence for the 28Si + 27A1 system. A linear

increase in yield with projectile participants is seen in 197Au + 197Au collisions.

Total integrated yields of pions were determined using Gaussian functional fitting in

160 + A, 28Si + A, and 197Au + 97Au collisions. A linear dependence was measured for

pions in 28Si + 27A1 collisions with the form:

166



nr+ = .9(±.05) x PROJ. PARTICIPANTS, (8.1)

nr- = .9(±.04) x PROJ. PARTICIPANTS. (8.2)

A linear dependence was measured for pions in 197Au + 197Au collisions with the

form:

nr+ = .6(±.07) x PROJ. PARTICIPANTS, (8.3)

n- = .8(±.04) x PROJ. PARTICIPANTS. (8.4)

Total pion production may be estimated from the above 97Au + 197Au reactions.

Summing the pions, r° = 1/2(r+ + 7r- ) there are (1.1 ± .05) 7r's/participant.

Kaons are also measured, albeit with wider rapidity binning, and integrated over a

fiducial range. K+/7r+ ratios are determined measuring fiducial yields for pions and kaons

in a rapidity range y E (.4,3) for 28Si + 27A1 and y E (.4,2.8) for 197Au + 197Au collisions.

Kaon production increases linearly with the number of participants. The fiducial yields

vs. the number of participants gives

nK+ = .1(±.02) x PROJ. PARTICIPANTS. (8.5)

K+/r+ ratios are also determined as a function of participants. We find an increasing

ratio for 28Si + 27A1 reactions, ranging from (.07 ± .02) to (0.14 ± .05). We find a

constant ratio for 197Au + 197Au reactions, 0.2 ± .04.

Densities Densities are determined for A + A collisions using a thermal model. Tem-

perature and chemical potentials are extracted via thermal fits to the data. The cal-

culated densities are compared to the number of participants in the collision. Meson
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number densities range from (0.29 i .03 ± .04) - (.48 ± .05 ± .06) /fm3 for oxygen and

silicon projectiles. The meson number density for the gold projectile is (.56 ± .03 ± .04)

/fm3. Proton number densities for oxygen and silicon central collisions range from (.18

± .02 ± .03) - (0.39 ± .04 ± .06) /fm3. The proton density for the gold projectile is (.66

± .07 ± 0.1) /fm3 .

Energy densities are also determined. Meson energy densities range from (0.12 ± .02

± .03) - (0.19 ± .02 ± .03) GeV/fm 3 for oxygen and silicon projectiles and (.23 ± .02

+ .03) GeV/fm3 for the gold projectile. Baryon energy densities are also determined

and range from (0.48 ± .05 ± .08 ) - (1.0 i .1 ± .2) GeV/fm 3 for oxygen and silicon

projectiles. Baryon energy densities are (1.2 ± .2 ± .3) GeV/fm3 for the gold projectiles.

These large baryon number densities, 4 n,,,, are difficult to interpret. A stationary

fireball model does not explain the AGS collisions. Each particle species has a different

temperature and therefore other mechanisms, for example, some form of hydrodynamic

expansion, may need to be invoked to explain these differences.

One of the most prominent signatures for the QGP is increasing kaon production,

possibly increasing in a non-linear fashion with collision participants. We have not seen

any non-linear (K+) production for 197Au + 97Au reactions.

Two immediate analysis efforts would greatly enhance the reliability of this result.

First, a more detailed analysis of kaon yields (both K + and K-) as a function of partici-

pants is needed. This particular analysis will be pursued with online particle-ID triggering

(level II triggering) and an improved coverage at the most central rapidities. A forward

spectrometer is currently being used with E866 and will greatly enhance the confidence

of measuring particle yields at the most forward angles, ,p, < 14 . The restacking

of the ZCAL scintillator plates should also improve the measurement of participants in

current E866 data.

There are no striking signatures that show the onset of a QGP at this stage. We expect

a K+ yield increasing faster than linear dependence with the number of participants. This

is not seen in the data. Kaons increase with a linear dependence with the number of
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projectile participants for 197Au + 197Au collisions. This linear dependence with projectile

is contradictory to the current models for kaon production in heavy-ion collisions.

Meson densities are determined from a thermal model and remain fairly constant for

160, 28Si, and 197Au collisions. Large proton densities are seen in the ' 97Au + 197Au colli-

sions. Densities are very sensitive to small changes in the yields at low-momentum. Much

better coverage is needed to determine the proton density for gold data. Furthermore,

a better understanding of resonance decays is needed to interpret the "temperature" of

the protons in central gold collisions.

We conclude that if a deconfined plasma is created in 197Au + 197Au collisions at the

AGS, the measured particle yields are insensitive to any known signature. We are left

at the moment with no striking signs of the QGP onset from these first measurements

of 197Au + 197Au collisions. Detailed studies of particle production in gold collisions is

currently underway. Regardless of the creation of a deconfined plasma, this new area of

research has provided some surprising results.
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Appendix A

Yield Summary: 160 + 2 7A1: 

We summarize the differential yields for 160 , 28Si , and 197Au reactions. Differential

yields are plotted vs. pt and fits are made in exponentials of pt, f e- ptl/B and mt,

f e - " '/B for pions and kaons. Protons are fit with exponentials in mt and Boltzmann

functions in mt, f - mte-mt/B.

Iuverse slope parameters and yields are shown for each particle species and slices in

ZCAL.

The quality of the fits for each rapidity slice are shown for each summary page in

terms of X2 /(N - 2), where N=number of points for each fit (see Section 5.3.4).

Momentum bins that have only one count in them are indicated with an arrow that

points down. Empty bins are indicated simply by an arrow pointing down, originating

from the curve.
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Appendix G

Yield Summary: 160 + A Protons
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Appendix H

Yield Summary: 28Si + 2 7A1: .
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Yield Summary: 28Si + 2 7A1 0 Kaons
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2 8Si + 6 4Cu
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Yield Summary: 197 Au + 1 97Au: r
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Appendix Q

Yield Summary: 197Au + 1 97Au:

Protons
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We Higsters come in sizes large and small,
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Mere cosmics he did scornfully disdain,

"Go Heavy Ions!" was his new refrain.

Small oxygen, he also found restrictive.

Soon, hefting bigger beams became addictive.

Low kaon stats made careful technique crucial.

The clever answer, study yields fiducial.

If we approach a thermaliz'ed state,

Should kaons over pions saturate?

With energy and matter concentrated,

The QGP (our Grail) is contemplated.

The CERN Pb-beamers must be getting tense,

To see our protons piling up so dense.

With Dan, the Midas tale reverses pieces.

He put his touch on gold and made a thesis.
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