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UNSTEADY THREE-DIMENSIONAL FLOW IN A COMPRESSOR CASCADE

WITH INLET FLOW DISTORTIONS

by

SAEED FAROKHI
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October 1979 in partial fulfillment of the requirements of the Degree

of Doctor of Philosophy.

ABSTRACT

An unsteady three-dimensional theory is developed to calculate the
response of a moving blade row to general inlet flow distortions. The
theory is applied to the flow of perfect fluids in a rectilinear cascade,
the blades of which are "flat-plates" and are set at the mean-flow
incidence angle of zero. For the purpose of |inearization, the amplitude
of the disturbance velocity field is assumed to be small in comparison
to the mean flow speed. Without any loss of generality, the fundamental
harmonics of the flow non-uniformities in both pitch and spanwise direc-
tions are considered. It is demonstrated that the streamwise component
of vorticity in the wakes is responsible for the three-dimensional
response of the blades in the presence of the three-dimensonal disturbances.
The inviscid wakes described above are concentrated in "thin'"~sheets,
emanating from, and aligned in the direction of, the blades' trailing-
edges and are assumed to be convected with the mean flow speed, as part
of the linearization procedure. The governing equations are solved via
a perturbation analysis. The Clebsch -Hawthorne formulation is utilized
to represent the rotational perturbations throughout the flow. The advan-
tages of the Clebsch-Hawthorne representation, instead of the "usual"
vector potential azpproach, are discussed in a separate appendix while the
physical arguments, based on the use of the Clebsch-Hawthorne formalism
are developed in the analysis of the flow (Section 3.1.2).

Numerical examples are worked out for the unsteady |ift coefficient
in the Iimit of two-dimensional flow and the results of +the present
theory are compared with Whitehead's inlet distortion analysis. Both the
magnitude and the phase angle relationship between the present analysis
and the Whiteheads' are generally in good agreement. A few examples of
low solidity (1/2 and 1/3) cascades are compared with the isclated airfoil
theory developed by von K&rmdn and Sears. For the reduced frequency range
between 1.0 and 2.0, the response of the low~solidity cascades approaches
the Sears' results. In the lower range of the reduced frequencies, Sears
predicts the isclated-airfoil 1ift coefficient while the present theory
approaches the cascade |ift coefficient in quasi-steady flows. The effect
of the blade height on the cascade response is studied and a2 maximum of 5%
variation in the magnitude of the force and an average of 25% in the phase
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angle are observed between aspect ratios of 3 and 1/3. The magnitude of
the response is somewhat damped in The presence of "stronger" three-
dimensional flow effects (i.e. the stronger the strength of the trailing
streamwise vorticity the weaker the unsteady response of the airfoil).
On the other hand, the phase angle of the unsteady component of lift is
significantly different, as a result of three-dimensional effects, in
the case of aspect ratio of /3 as compared with AR = 3.
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v
CHAPTER |

INTRODUCT | ON

It is generally recognized by the designers in the field of turbo-
machinery that the fluid flow phenomena, in such devices, are inherently
unsteady. However, the approach to the design and development of turbo-
machines has always relied heavily on both the use of extensive empirical
correlations and the employment of quasi-steady analysis in order to gain
some insight To the feafures, peculiar to the fully unsteady flows.

Some basic problems associated with the unsteady flows, in turbomachines
are in the areas of the forced and the self excited vibrations of the com-
pressor blades, which leads to structural failure if left unchecked. A
better understanding of those features, of unsteady flow, which contribute
to the self-excited instabilities, i.e. flutter, would enable the designer
to defermine the compressor flutter boundaries more exactly and consequently,
could then modify the blade structural reguirements (probably relaxing
them) to meet the safe operational limit within the stable regime, on the
compressor map. Another area of major concern to industrial societies,
associated with the unsteady flows, is the problem of noise radiation from
operating jet engines. The wakes of the upstream blades, as regions of
retarded flow, present the blades with a larger incidence angle than the
mean-flow. Thus, the presence of the flow non-uniformities, of the type
caused by the stagnation pressure distortions, in the upstream region of
any blade row, as in wakes, creates a fluctuating component of the airfoil
lift. I+ is this component of blade force (i.e. fluctuating in time)
which acousticianers model by pressure dipoles and calculate the radiated

sound field fromthem. The limitations set for the allowable noise radiation
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from the jet engines, caused primarily by the rotor-stator interactions in
compressors, at present are met by such "fixes" as acoustic liners and
other absorbers which significantly increase the weight and the size of
the engines, and thus lead to an increase of the fuel consumption rate.
Thus, it became clear that the levels of noise radiation can not be effec-
tively reduced, without the penaity of weight and size, until the amplitude
and phase of the unsteady lift, in a blade row, as a function of geometri-
cal, i.e. solidity, aspect ratio and stagger, and physical parameters,
i.e. reduced-frequency and intra-blade phase angle, are known to the
compressor designer, who would then attempt to reduce the radiated noise
fevels by minimizing the component of fluctuating 1ift,

The area concerning the impact of the unsteady wakes on the compressor

stage efficiency, is somewhat ambiguous. Theoretically the kinetic energy

Joss in the wake of a two-dimensional non-stationary airfoil in transverse

gusts is calculated to be about 1%, by HawThorneS8 and slightly less by

von Karman and SearsS. Based ontheir results, one may conclude that
unsteadiness causes a drop in efficiency. However, a series of experiments
were performed and the results of which were reported by Mikolajczak45
which showed a gain in the adiabatic efficiency with the reduction of the
axial distance between succeeding blade rows, which has the effect of
strengthing the unsteady wakes, and seems to contradict the above mentioned
findings. Therefore the question of efficiency in regard to unsteady
effects, inherent in turbomachines, needs to be examined in detail, and
with caution. It needs to be stressed, however, that even with "favorable"
results reported by Mikolajczak, he has point ouT?5 that significant

progress in improving the performance and reliability of turbomachines
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(in addition to the reducing the development cost), can be made through
understanding of the unsteady flows and application of this knowledge
to design.

Due to nonlinearity in the governing equations, (analytical) freat-
ment of unsteady flow problems, in practical machines, is beyond the
present state of our mathematical capabilities. To simplify the task of
analytical development the equations of motion are linearized, via the
smal l-perturbation assumption, i.e. the perturbations produced by the
blades in the course of their interactions with non-uniform flow conditions
are assumed to be small as compared with the mean (i.e. time~-averaged)-
flow quantities. This type of idealization inevitably limits the
practicality of the problems under consideration. Some common assumptions,
in this regard, are two-dimensionality of the flow, inviscidness of the
fluid, and smal!l incidence angles (fo the blades), which none are satisfied
in a practical, present-day, turbomachine. The aircraft industry demand
for less weight and compact size, for the jet engines, has decreased the
number of compression stages, as a result of which, the load or the
pressure ratio per stage has increased fremendousiy. These high-perfor-
mance compressors produce bigger compression ratios by essentially higher
wheel speeds, larger overall turning angles, and an increase in the
incidence angle to the blades. In addition to the above-mentioned
performance criteria (which are desirable), some inevitable sources of
three-dimensionality are also inherent with those criteria which may
affect the performance and reliablility of such devices, by a considerable
amount. The vortex filaments in the casing boundary layers stretch around

the blade-channel-bend and produce a component of streamwise vorticity,
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the so-called secondary vorticity, which is responsible for inducing a

secondary flow, in the direction of normal to the primary flow direction.
There are other sources of three-dimensional flows induced by viscous
effects, namely scraping-vortex, from the blade-tip-casing boundary layer
interaction, separation of boundary layers caused by adverse pressure
gradients or interactions with impinging shock, etc. The inviscid source
of three-dimensional flows in turbomachines is clearly demonstrated by
the works of McCune and Haw+horne§4, Chen and McCuneBB, Cheng37, Tan35,
and Adebayo36 to be due to the presence of trialing vorticity in the wakes
of non-uniformly loaded blades; the strength of the wake is proportional
to the slope of the circulation variation along the blade span and the
axis of the tratling (wake) vorticity is aligned in the streamwise
direction.

In this Thesis, we intend to treat the problem of an isolated rotor
interacting with general inlet flow non-uniformities, such as caused by
total pressure disfortions, in both pitch- and spanwise directions, from
an analytical point of view. To this end, we have made some simplifying
assumptions regarding the compressor geometry and the inlet flow distor-
tions. Compressor cascades of very high hub-to-tip ratio are considered
such as to allow the analytical development to be performed and formulated
in a rectilinear geometry, as a limiting case of an annular configuration.
This assumption, automatically, removes the problems associated with the
effect of rotation on the disturbance modes within the compressor, as
originally pointed out by Kerrebrock46. The blade~setting angle to

receive the mean, i.e. time-averaged, flow at zero incidence constitutes

our second geometrical assumption, whicle zero-camber, i.e. flat-blades
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restriction provides the last of The geometrical constraints imposed on

our cascade. The inlet flow is described by the sum of a uniform-parallel
flow and a spatially varying flow of small amplitude (in comparison to

the mean) In the pifch and spanwise directions, at large distances from
the cascade. Small magnifude of The shear in the upstream region, con-
stitutes our linearizing assumption. The pitchwise component of the inlet
flow distortions creates a time-wise fluctuating vorticity to the induced
at the position of the blades, while the spanwise shear, in the incoming
stream, imposes a spanwise dependence upon the bound-vortices, over the
blades. Finally fthe fluid is assumed to be perfect, i.e. inviscid and
incompressible.

Within the limitations described above, we can utilize the linearized
small perturbation theory, where in this problem, basically, centers
around determination of an unsteady perturbation flow which meets the
boundary conditions (i.e. walls and blade surfaces) and satisfy the
kinematical as well as dynamical equations of motion. The description of
zero-mean-incidence, uniformly determines the nature of the mean-flow
throughout the compressor, as being steady-irrotational and exactly defined
by the average of the flow at large distances upstream of the cascade.

Our assumption of the inviscidness of the fluid in addition to The uniform
mean flow "freezes" the vorticity vector to each fluid particle along
their frajectories in the flow. Thus, the shear, described at the inleft,
is convected towards the cascade, unaltered in magnitude and direction.
Thence, the perturbations in the upstream flow are oniy the potential
disturbances caused by the rotor blades plus the original shear introduced

at the inlet*.

*This and other related points are discussed in Chapter 3 in more detail.
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The method of splitting a vector field, to analyze its components,
is utilized here, but instead of the "usual" vector potential approach,

i.e.

V=V + A (1.1

where ¢ describes a potential perturbation and A is the vector potential,
which in the classical description is defined as a solenoidal field, we
represent the perturbation velocity field by the sum of a potential, 9,
and a rotational disturbance , oVt, which was originally suggested by

Clebsch47 and later developed by HawThorneal’48

V= Vo + oVt (1.2)

The great advantages of the Clebsch-Hawthorne method are physically demon-
strated in Section 3.1.3 and Appendix B. The three unknowns in (1.2},
i.e. &,0, and 1, are then determined from the continuity of incompressible
fluids and The conservation of momentum equations. Finally the response
of the blades to the inlet flow distortions is calculated, by the blade
surface boundary condition, of no flow penetration into solid surfaces,
which determines the strength of the bound-vorticity, i.e. the integral

of which over the chord is proportional to the local force.
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CHAPTER 2

REVIEW OF LITERATURE

The era of the classical unsteady airfoil theory may be considered
to have been started by the analysis of Wagner] in 1925. Wagner's
analysis concerned the study of the growth of lift of an airfoil set in
motion impulsively, in an incompressible fluid, interacting with the
starting vortex shed~off itfs sharp trailing edge in reconciliation of
the circulatory flow generated around the airfoil. Wagner's result is
expressed in terms of a real function, the argument of which is s = Vt/b
where T = time, v = fluid speed, and b = half-chord length. (N.B., "s"

can also be thought of as an inverse-reduced frequency, described later.)

LCT) = 2ZmbpVWK, (s) (2.0

I
In (2.1}, W =Vsina, o= angle of attack, and

- 2
= ' i o~ - =
KI(S) Z Wagner's function = | yr (2.2)

An analytic expression for Kl(s) is not yet known, however to within 2%
of the entire range of s, (2.2) approximates the response function of an
airfoil fo an impulsive start. In 1929 GlauerTZ published a paper on
the forces and moments acting on an oscillating airfoil, which was based
primarily on Wagner's analysis. Theodorsen3 laid the ground work for
the general theory of aerodynamic instability and mechanism of flutter,
now a famous theory, published originally in a NACA report in 1935. The
method he employed drew heavily upon potential theory and, as its fool,
conformal transformation. Theodorsen's analysis led to a very simple

and compact expression for the unsteady 1ift and moment generated on an
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oscillating airfoil at a small angle of attack with uniform velocity V,
via a complex function, C(v), known as Theodorsen's function, (or "cir-
culation function") whose argument is v = @?, the so-called "reduced
frequency" which is the non-dimensional parameter governing the response
of an aerodynamically |ifting-surface to unsteadiness in flow conditions
or blade vibrations. (N.B. Vv is the ratio of two time scales, namely,

the fluid convection time over the chord length to the period of oscilla-

tory disturbances.)
L(t) = 2mbpW(T) C(v) (2.3)

where W(t) denotes an arbitrary motion of an airfoil normal to its flight
direction. KUssner4 studied the response of an airfoil penetrating a
region of vertical gust in 1936, however as pointed out by Von K&rmén

and Sears, Klssner had a (minor) mistake in his analysis due to the sign

of e'w1L

which forced the gust to travel from the trailing edge towards
the leading edge of the airfoil, as opposed fo the stated problem of an
airfoil penetrating into a vertical gust. Another contribution by
Kissner may be in his theorem that the line of action of the force, on
an airfoil, passes through the quarter-chord point of the airfoil, even
in unsteady regimes. Kussner's theorem was later proved fo be correct
by Von K&rmén and SearsS, who developed a very systematic approach to the
airfoil theory for non-uniform motion, in 1938. Their resulting expres-
sion for the |ift and moment fluctuations of an airfoil in transverse
gusts, of arbitrary shape (including the sharp-edged gust) was elegantly
short and compact, involving a complex function, similar to that of

Theodorsen's, later known as Sears' function, S(v)
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L(H) = 2mpbV W(Tt) S(v) (2.4)

where b = half-chord, W(t) = W ein, transverse-harmonic-gust speed.

The analyses described in the previous paragraph had (or shared)
the limitation of two-dimensionality and incompressibility of the fluid.
The effects of viscosity and the airfoil camber was also ignored. Their
method of analysis relied heavily on the classical potential flow theory
and the method of conformal ftransformation. Furthermore, in view of two-
dimensional ity of the problems studied, the Biot-Savart law of induction
was readily utilized and [provided the "pbest" (i.e., most convenient)
tool for calculation of the vortex-induced velocity field) thus the
problem of bounding walls, which provides images for the vortices in the
flow, was not encountered. However, the ground work was laid in this
period for the application of non-stationary airfoil theory to the

analysis of inherently* unsteady flows in turbomachines.

*R. C. Dean28 showed the necessity of unsteady flows in turbomachines,
for the transfer of energy [p(Dh+/D+) = - 9p/3t) from the working blades
to the fluid, however by choosing an "appropriate" coordinate system,
e.g. in the case of an isolated rotor, operating in uniform flow condi-
tions, in the coordinate fixed to the rotor, the flow is steady, or

tht -
D hT/DT 0

where D'/Dt is the Eulerian derivative in relative (rotor-fixed) frame,
and h! is total enthalpy in relative coordinates, and since the flow is
steady in the moving coordinates

-[l‘-:a L] ': .'

pf ~af TRV =NV
or W= V' hl = 0, which points to the familiar result that h! is constant
along the s¥ream|ines of the relative flow. But in the case of inherently
unsteady flows, as in the mutual interference problem of neighboring
blade rows orblade vibration, etc., the flow remains unsteady as viewed
by all observers, moving or stationary.
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Kemp and Sears utilized the theory by K&rmé&n and Searss, and Sears6

in their study of aerodynamic interference between the blade rows in
relative motion. Their first paper7 in 1953 dealt with potential inter-
actions of neighboring blade rows, one stationary and the other moving.
The problem of the so-called mutual interference was of sufficient
difficulty to exclude three-dimensionality and compressibility, camber
and viscosity, at the time when Kemp and Sears undertook its study. The
fluctuating |ift force, derived by Kemp and Sears was thus expressible

in an analytical form, very much similar to the Sears formula, except

t

for the modification of the Sears function S(v} to S(v,)) where A =

HE

kwb/V and k = characteristic decay parameter of disturbance and V
mean relative speed. However, in view of their use of single-airfoil
theory results in cascades, they neglected the effect of the unsteady
vortices in the redistribution of the vortices on neighboring blades,
i.e., the so-called unsteady blade-to-blade effect was ignored. The second
paper by Kemp and Sear58 attempted in mode!ling and estimating the
unsteady forces due to viscous wakes in turbomachines (1954). [t assumed
an inviscid-shear flow interacting with a moving blade row where wake-
modelling of Silverstein, Katzoff, and Bullivanfg was utilized in the
description of the shear and its tie with the profile drag coefficient
of the upstream blade row.

The blade vibration as another prominent source of unsteady flows

10,11,12

was treated by Whitehead extensively and prior to him by a host

of investigators |ike Lane and Wanglj Lilleyl4 SisTolS and Eichelbrenner!6

Whitehead's method of analysis (similar-to Lane and Wang's and Lilley!'s)
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distributes vortices on the airfoils and the wakes, where the strength
of the vortex sheet is linked fo the unsteady behavior of the airfoils
(i.e., "bound-vortices") according to the Kelvin's circulation theorem
in inviscid flows, and then via Biot-Savart law the appropriate upwash
induced by all vortices (o satisfy the blade surface boundary condition)
leads 1o the calcuiation of the blade forces and moments, from the
strength of the bound-vortex distribution. However, the response of the
cascade, in Whitehead's analysis, is not expressible in a closed-form,
analytical expression as in the Kemp and Sears analysis. This is basically
due fo the inclusion of unsteady blade-to-blade effect in Whitehead's
analysis while Kemp and Sears neglected its confribution in their study.
Whitehead's analysis as well as most others before him, shared the same
[imitations namely two-dimensionality and incompressibility of the fluid.
Horlock|7 shed |ight upon another aspect of the non-stationary air-
foil theory, in his paper of (968, where he derived the response of an
airfoil, at an angle of attack with respect to the undisturbed flow, to
chordwise velocity fluctuations. This effect was previously ignored,
presuming its negligible contribution fto unsteady blade forces in compar-
ison to the transverse gust contributions; but Horlock showed dominant
lift and moment fluctuations due to the chordwise gust in low-stagger
cascades and vice versa in the case of high-stagger cascades. Thus the
additional feature of the gust interactions with cascades of blades was
brought into focus by Horlock. Again the expression for |ift fluctua-
tions of an airfoil in streamwise gust was represented elegantly via a
complex function, similar to Sears' and Theodorsen's, called the Horlock

function, T(v).
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L) = 2mpbVad e T T(v) (2.5)

where V = mean flight speed, b = half~chord length, o = angle of attack,
and V is defined to be the amplitude of the chordwise gust. |In an attempt
to apply Horlock's airfoil theory to cascades of airfoils Holmesl8 was
able to derive an analytical expression for |ift fluctuations in a cascade
of flat plates (two-dimensional) interacting with chordwise gust and
calculated a cascade response function T(v,X) which is known as the modi-
fied Horlock function, in much similar way as Kemp's cascade response
function S(v,A) to transverse gusts (where S(v,A) is known as the modified
Sears function).

The effect of camber, on the response of single airfoils to chord-
wise gust was also sfudied by Holmes, as reported by Horlockl7. An air-
foil of parabolic camber, at zero incidence, with streamwise fluctuation
of velocity was considered by Holmes, whose resulting expression for |ift
fluctuation is in fterms of another complex function, named Holmes'
function, T'(v). The application of cambered-nonstationary-airfoil
theory to furbomachines, however was not attempted by Holmes, and Naumann
and YehI9 were apparently the first to try to apply their single-cambered-
airfoil theory in unsteady flows (under periodic gusts, both transverse
and chordwise) to the cascades of airfoitls, with finite (but small) camber
and incidence. However as pointed out by Horlockl9 the unsteady blade-
to-blade effect was neglected in Naumann and Yeh's analysis, thus limiting
their results to the cascades of low solidity. Thus as it stands, the
full unsteady flow analysis, including the blade-to-blade effect, similar

to Whitehead's analysis for flat plates, is still not done for two-
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dimensional cascades of cambered airfoils.

The compressibility effect and the influence of three-dimensionality
on the flow characteristics and blade response, in unsteady regime, may
be considered a modern outlook to the non-stationary flow problems. An
early concern on the effects of compressibility was expressed by Lane
and Friedmanzo who theoretically investigated the aerodynamic response
of a subsonically oscillating blade row, in 1958. A host of authors who
investigated subsonic and supersonic unsteady flows through cascades are

fisted in Car‘ra‘szl

Chapter entitled, "Aeroelasticity and Unsteady
Aerodynamics," in the "state-of-the-art" publication of the U.S. Airforce,
"Aerothermodynamics of Aircraft Gas Turbine Engines," (1977). Also the
"elassical" work of Bisplinghoff, Ashley, and Hoffman22 can be sighted

as an excellent (and extensive) source of references on all aspects of
unsteady aerodynamics. The earliest account on the investigation of the
unsteady flows over finite wings, with variations of circulation in
spanwise direction, which resulted in the "Prandt!|-type" trailing
vortices, in addition to the spanwise vortices shed due to local temporal

25 in 1938, In this

behavior of circulation, seems to be due to Sears
paper, Sears relates the two component of vorticity in the wake to the
time and spanwise variation of the bound vortices over the wing. With
the inclusion of three-dimensionality, Sears had no longer the power of
conformal transformation and thus his expressions for the 1ift and moment
of the finite wing in unsteady flows are in terms of integrals amendable
only to numerical evaluation. Perhaps due to this reason, Sears!' contri-

bution to non-stationary finite wing theory was never applied to three-

dimensional unsteady flows through cascades. As a "substitution" to
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fully three-dimensional unsteady flows many recent investigators
focussed on the problem of yawed-infinite-airfoils interacting with

transverse gusTs.24’25’26

However, the application of such theories to
turbomachines would inherently exclude the unsteady blade-to-blade effect,
which is an integral part of the cascade flow,

Namba27 investigated the unsteady compressible flow through annular
cascades (of infinite axial extent) with radial variation of inlet flow
distortion, from an acoustician's point of view. The blades, in Namba's
analysis, are represented by distribution of pressure dipoles (i.e.,
pressure singularities associated with The pressure field of an elementary
horse-shoe vortex of infinitesimal extent); and thus vortices and their
induced effect in Namba's analysis are accounted through implicit means
{(pressure calculations). Aerodynamicists, on the other hand, are
interested in tracking wakes of vortices and explicitly relating their
strengths to the spatial and temporal behavior of the bound-vortices,
and thus derive their insight of the development of the fluid flow
phenomenon primarily by the vortex approach.

In recent years a powerful mathematical tool has found its way in
the areas of pure and applied sciences which is based on the introduction
of a class of functions, called Generalized Functions; originally intro-
duced by Dir‘ac%9 and l|ater developed by Temple30 and Lighfhill'?I In The
analysis of the flow in turbomachines, the generalized functions were

32,33,34 and his sfuden+s?5’36’37 who applied its

used heavily by McCune
theory to steady and quasi-steady flows through compressor cascades. In
applying this relatively modern mathematical tool to the study of the

unsteady fluid flow phenomena in turbomachines, HawThorne38 is a pioneer.
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Hawthorne developed the use of the generalized functions in the analysis
of the potential, two-dimensional and incompressible flow past (steady
and fluctuating) singularities representing stationary and moving

fifting lines (1973). The present work is an extension of Hawthorne's
theory from fluctuating lifting lines in ftwo-dimensional flows to [ifting
surfaces in three-dimensional space, interacting with an intet flow

distortion.
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CHAPTER 3

FLOW ANALYSIS

3.1 Analysis of the Flow in the Upstream Region

3.1.1 Kinematics

The flow upstream of the cascade is characterized by non-uniform
velocity distribution in the span and pitchwise directions.
The description of the flow at distances far upstream of the cascade is
known a'priori

v o= [\7+ v(z) e”‘q.? (3.1)

-Q0

where

Vv tangentially-mean uniform flow speed in the axial (or x)

direction, in the absolute frame (i.e. duct-fixed coordinates).
v(z) = small perturbation to the mean absolute flow in the spanwise
direction, at x = —» ,

k

the wave number of the perturbation flow in the pitchwise

direction.

HI

2w/X, where XA is the wave length of the inlet flow distortion
in the azimuthal direction

Y = the ordinate with The absolute frame (in the pitchwise
direction), and

~

1l

the unit vector, in the axial direction, in the absoulte
coordinates.
Mathematically, v(z) e'kY in (3.1) represents any general perturba-

tion in the z-direction while accounting for only the fundamental

harmonic of the distortions in the azimuthal sense. However, due to our
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linearizing assumption of

v(z)
y

<< | (3.2)

we can superimpose other harmonics of the pitchwise disturbance via
Fourier analysis of the inlet distortion flow, and thus (3.1) does not
pose as a restriction on our theory. Similarly v{z) as a general
spanwise distribution of perturbation velocity can be harmonically
analyzed and, for simplicity, only the fundamental harmonic be kept,
knowing wel | that the effect of all other Fourier components of the
radial perturbation can be summed up, in a linearly independent fashion,
to represent (or create) a net effect, since the superposition principle
in our linear theory holds. Thus, without any lack of generality, we

propose the study of the effect of

ikY

| =<2

cos (BF) e (3.3)%

=V h

0

-CO

as the description of the fundamental harmonic of the infet flow distor-
tion on the unsteady interactions with a set of moving blade row, where
blades are essentially "flat-plates" in relative motion to the inlet flow.
In (3.3), Yo is the small amplitude of the distortion wave and h is the
ratio of the blade height fo the chord, which, for normalization purposes,

we have defined the chord length fo be unity, i.e.

cC =1 (3.4)

*Vectors are denoted by an underline, e.g. V. All the flow variables
with a bar over them, i.e. ( ), signify the pitchwise-mean flow quantities
while (T)represents the perturbation component.
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and thus

- blade height

h = blade chord

= Aspect ratio (3.5)

Associated with (3.1) is the vorticity field described at distances

far upsfream of the cascade, defined

Q@ zZcrlV =vxiVi+vxi (3.6)

-0 —00 -0

But since the mean-inlet flow ts defined +to be uniform, then the mean-

1

intet vorticity is zero (R 2V x V = 0) and

ik

vi(z) e TkY

Q =vxy T3 - kv & N R (3.7)

-0 =00

il

where v'(z) = dv/dz, which measures the strength of the spanwise shear
in the upstream fiow, and j and K = unit vectors in the pitchwise and
spanwise directions, in the absolute coordinates, respectively.

From (3.7), the strength of the perfurbation vorticity would remain
small * if v(z) does not undergo an abrupt change in magnitude, in the
z-direction, i.e. where dv/dz has no singularities. Due to the neglect
of viscosity¥ the vorticity described by (3.7) is "frozen" to the fluid
particles, along their trajectories, in the upstream flow region.

Whence

Qupsﬂ"eam

ol =9 (Zero Viscosity) (3.8)

—-C0

The total perturbed-velocity field, in the upstream region, can be

thought of as being caused by: |) disturbed shear in the fiow, and 2} the

* small vortex strength means: the vorticity-induced velocity is small
compared to the mean-fliow speed i.e. IQ_ | * L/V << |, L = characteristic
length scale. -

**In addition to the mean-flow velocity which is uniform.
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potential field induced by the cascade. Since the blades are aligned

in the direction of fthe mean flow, and via (3.2) the distributed shear
velocity is prescribed to be of 0(e}, we can conclude that the inter-
actions of the inlet distortion with the moving blade row only induces

a "bound" vortex strength of 0(g) at the blade locations. Thus, the
potential field induced by the cascade has a velocity component of O(e),
in comparison to the mean-flow speed, in the upstream region. Hence the
description of the inlet flow, in addition to the blade setting angles,
enable us to make use of the linear-small perturbation theory. In the

"standard" form we can write

(3.9
where

vi/|V] << | (Linearizing Assumption) (3.10)

and E»E the reference, steady, "base" flow, upon which 29 is superimposed.
The nature of the perturbation velocity field in the upstream region, as

described above, suggests:

Vo= gt o+ B (3.11)
where 5“ = upsfream, perturbation velocity potential. EH = the rotational
component of the upstream perturbation velocity field, the so-called
"'vector potential.

In employing the Clebsch-Hawthorne representation of EF, we introduce
two, as yet unknown, scalars o' and ¥ o, effectively, replace the three

components of ﬁy, i.e. we let
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A = oYyt (Clebsch-Hawthorne) (3.12)

The operation of "curi"™ on (3.11) leads to the upstream perturbation

vorticity,

= curl EP = VXA (3.13)

02
H

or, via (3.12)

u

' = v x (o'vt!) = W x 7 (3.14)

The continuity of the incompressible fluid, in the absence of sources

or sinks, demands
VeV =20 (3.15)

Upon substitution of (3.9) in the above equaticn, we get

<<t
H
o

VeV (3,16)
Since

veilzo (3.17)

Expanding (3.16) in components of EH as described by (3.11) and (3.12),
we arrive at the Poisson equation governing the perturbation potential

o, i.e.
L A (3.18)

The "driving" terms in (3.18) are vector operations on the Clebsch-
Hawthorne scalar parameters, OU and Tu, which are determinable from The

dynamical equation of motion, in addition o the description of the up-
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stream vorticity field. The physical meaning of the "driving" terms are
discussed, at length, in the following section, "Solution of the Poisson

. ~Uu
equation for ¢ ".

3.1.2 Dxnamics

In the absence of viscosity and body forces, the Euler momentum
equation describes the relation between the total fluid particle acceler-

ation and the pressure forces acting on it, in the following form

v
= = 5 vp (3.19)
where
D _
oF = 5% +V eV (3.20)

By substituting (3.10) into (3.19) and collecting terms of the same order

of magnitude, we get

LI I
-ﬁ+V§;l~-5Vp Locn] (3.21)
and
a'hvavw w=-Llw [oc (3.22)
Fi EERARNR A Sl €)] .

The mean-momentum equation, i.e. (3.21), is ldentically satisfied by our
definifion of the mean quantities. However, the perturbation-momentum
equation, i.e. (3.22), is as yet unsatisfied. Since our description of

XP involves unknown scalars ¢" and T". Expanding (3.22) in 5u, ¢" and

" and utilizing some vector identities (given in Appendix A), we get

D.t" Dou pu-5 ~u u
O ol - & ytoy |20 Oy B9, U T (3.23)
p ot at

Ot Dt
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where
%0 _ a2 - b
57 = §?<+ V-Ez {mean-Eulearian derivative) (3.25)
and
_ | 2
PpEP* 3 ol V| ( steady -total pressure) (3.26)

The expression in the bracket, on the r.h.s. of (3.24), resembles a
Bernoul|i - constant , in this more generalized flow problem, with the
inclusion of unsteadiness and the distributed shear, |t is this "resem-
blance" which suggests the following choice for ou, eventual ly leading o
the statement of the preservation of g along the mean-fluid paths.* We

can define, without loss of generality

u - ~
u_P0 " Poy, B9, u ot

o 5 T + a -7 (3.27)
and (3.24) reduces to
u u
D.T Do
0 u 0 u _
[ e I] Vo T o Vi- =0
Now, & post-cross product of v with (3.28), yields
DOTu u u
B I} Voo x vt~ =0 (3.29)

(Since vt x yr!

= 0.

We can recognize v x vi¥ as ée, the magnitude and direction of
which is dictated by the geometry of the inlet shear, thus (3.29) is
satisfied by

—_ -] =0 (3.30)
(Since gf # 0).

*¥This choice for ou, was originally suggested by Lamb, Hydrodynamics,
p. 248-249,
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A post=cross product of (3.28) with Vo' and a similar argument, as

presented above, leads to the following governing equation for oY,

u
DOU

Dt

=0 (3.31)

The equation (3.30), in the area of fluid mechanics is considered a
classical equation which was, originally, solved by Darwin39, expounded
upon by LighThilI4o and utilized in the most revealing fashion, in the
study of secondary flows, by Hawfhorne4l. The parameter in the Darwin-
Lighthi|l-Hawthorne equation, Tu, is known as the "drift function”™ and
measures the Time taken by a fluid element to move (or "drift") from a
reference point, in the fluid, fto another point along its trajectory.
Thus T measures an O(1) quantity. In steady flows, The solution to

(3.30) can be writfen as

S *

u

S
- dg _ dé
'I.'S_i_eady = -[\Zr- J m"*‘ 0(e) (3.32)

ref Sref

where S‘is the coordinate in the tangential direction to the fluid path.
However, in the presence of fluctuating vortices in the flow, the
strengths of which are of 0(g), the fluid particle departs from its
steady course and follows a sinusoidal path which winds around the steady
course. And since the strength of the bound~-fluctuating vorties are of
0(e), thus the induced amplitude of the perturbed path is of 0(g) as

well (i.e. compared to other length scales of the problem).

*0(e) appears since |V| has replaced |V| in the denominator of the
integrad in (3.32).
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Steady fluid path in the presence
of fime-independent vortices.

\\

Fluid parficle path
induced by harmonical ly
time-dependent vortices
of small strength.

Thus, we can conclude that in the strictiy*-linearized flow theory

TunsTeady - TSTeady + 0(e) (3.33)

provided the drift-times are measured with respect to the same reference

point (or plane) in the flow field. From (3.32) and (3.33), we deduce

X
X~ Xref

v

U'- pcd
T 7 Tunsteady j

ref

+ 0(e) = + 0(g) (3.34a)

a
<l Im

and for simplicity we choose Xref 0, i.e. at the face of the cascade,

or
= §+ 0¢e) (3.34b)
From (3.34b) it immediately follows that
é%;-= 0(e) (3.35)

*Here it applies to the cases where the induced velocities by the "bound"
and free vortices are small compared to the mean-iniet flow speed, i.e.

Iy—inducedl/l-\f-I << .
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and since o = 0(g), according to our description of (3.27), we conclude

u
u ot _ 2
-—B?— 0(e™) (3.36)

which is a second order effect and thus, in the |inearized sense, is

neglected from (3.27), i.e.

Py~ P
gtz 0 0w 3¢ (+ 0(52)] (3.37)
0 ot

which is indeed a constant of the motion according fto Kelvin's theorem
(or generalized Bernoutli theorem), i.e. o is a preserved quantity for
a fluid particle as it moves along its Trajectory in an unsteady stream,
|t is also noted that (3.37) reduces fo the more familiar Bernoulli-
constant for steady flows. Upon substitution of Tu, from (3.34b), in
(3.15) and equating the upstream perturbation vorticity to the known

intet vorticity (at X = -»), we obtain the following expression for "

u kY ﬁz} e|kY (3.38)

o = VYv(z}) e = VvO cos (TT

{note that " = 0(e)).

Now, to Order €, the dynamical equation of motion is satisfied and
we have determined the Clebsch-Hawthorne parameters in the upstream flow
region. Therefore, the Poisson equation for $u (resulted from the kine-

matics) can now be solved with the description of o" and 1.

3.1.3 Solution of the Poisson Equation for §"

It will prove advantageous to solve the governing equation for the
upstream perturbation potential, éu, in the moving (i.e. relative) frame,
as we have to match tThe upstream flow with the flow inside the moving

cascade in order to achieve a unified flow picture. The relationship
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between the moving frame attached to the cascade, in the direction of
and normal to the blades and the stationary frame the axes of which are
rotated in tThe clockwise direction by the angle of blade setting o (i.e.

stagger angle are as follows:

Y =y - Ut (3.39)
y = x'" sin o + y' cos o (3.40)
x =x'" cos a -y' sin a (3.41)
t o= 1

where
U = blade speed, in the pitchwise direction
Y = coordinate in the gapwise direction in absolute frame

X Z coordinate in the axial direction in absolute frame

y = coordinate in the pitchwise direction in relative frame

x'= coordinate along the reference blade chord in relative frame
y'= coordinate normal to reference blade chord in relative frame
o = blade setting angle, or cascade stagger angle

T = time measured in absolute frame (= t+' In relative frame)
The upstream velocity field, expressed in the relative (blade-fixed)

frame is
W= W+ Vet 4 gty (3.43)%

where, we have fixed the blade speed (or the blade setting angle, @) such

that the mean-relative velocity, E) is aligned in the direction of the

*All dashed-quantitfies, i.e. )V, express Those quantifies in the
relative (blade~fixed) frame,
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chord line, 1.e. the blades receive the mean-flow at zero incident

angle, thus

W=+ U] (3.44)
and
W=V secad, (3.45)
In (3.43),
v'zé‘x,%+é‘y.£—r+£a—z (3.46)
o' = VVO cos f%%} explik (sin a x' + cos o y' - UD)] (3.47)
and
T
o XT38 ey e (3.48)
W W

The governing equation for the $‘u can be written via the application of
continuity of mass flow equation (in tThe absence of sources and sinks) to

(3.44), i.e.

2

v?2$|u = "'V'O"u . v"'[_"u - o"uv' '['u (3-49)

By applying (3.46), (3.47), and (3.48) to (3.49), we can show mathemat-
ically, that the r.h.s. of the Poisson equation governing &'u, (3.49),
identical ly vanishes and thus reduces to Laplaces equation for 5'u. The
physics behind this "drastic" reduction (from Poisson's to Laplace's) is
quite interesting and can be explained in two ways, |) due to our des-
cription of the perturbation velocity field, The shear in the upstream
velocity is purely convected by the mean flow and hence there are no

regions of concentrated vorticity so as fo create a net induced velocity



34

field contributing to ¢'Y, i.e. the inlet shear does not "enhance" the
perturbation potential in the upstream region, but rather accompanies it
in an independent manner, 2) a'Y = constant depicts a generalized
Bernoulli-surface initially starting as planes parallel to the hub and
casing at distances far upstream, to the cascade, and v'o'Y is a normal
vector to that surface. t'“ = constant, on the other hand, depicts a
"drift" surface which to O(e) is convected by the mean flow and V't'Y

is a normal To the "drift=-surface",

\’ J Bernoul | i=Surface
ACA /
o! = consTanT groert

Initially, ot" = constant and T'" = constant (i.e. at x' = —o ) are
orthogonal to each other, i.e. V'o'" » ¥'1'Y 20 at x' = - . However,
the perturbations fo the Bernoulli-surfaces, as they approach the cascade

of blades, are of O(g), i.e. proportional to the strength of the bound-
vorticity. While 'Y maintains its shape to 0(e) as well, thus the angle

between V't'" and V'o'" differs from m/2 by €, Thence
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V'U'u . vlTYu

[viat]|v't'Y] cos (g + EI

il

[v'ar] | v'etY| (5 sin €)

3

!

Im

Vit |vietY | et &5 L) = 0(e?) (3.50)

Ln

and as a second order effect, it is neglected in our linearized theory.
Again, by constructing arguments based on the geometry and kinematics
of the flow-surfaces, we can identify the reason for zero contribution

of G'UV'ZT'u to the perturbation potential $‘u. We note that

yr2ptY = Ve (V''Y) = Efflux of ¥'t'Y-vector from any control
(3.51)
volume in the (upstream) flow
which according Tc our theory, 'Y = constant surfaces are convected by
the mean-flow to 0(e), thence V'T‘u, as a normal vector to t'" = constant
surface, always maintains its magnitude and direction to O(g), thus
"accumulation” of T'"-surfaces (i.e. drift surfaces) in any control

volume, completely submerged in the upstream flow, would be of 0(g),

the contribution of which to "driving" the %,u is measured by

a2l - oed) (3.52)

which again is neglected in our linearized theory.

[T is important to note here that the second physical expanation
offered for the reduction of the Poisson's equation as governing the
perturbation potential, in the upstream region, to the Laplace's equation

was only made possible by the use of the Clebsch=Hawthorne methodology.
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Thus the governing equation for %,u is
vt = o (3.53)

The solution to the above equation, in terms of Fourier series can be

written, in the moving frame attached to the reference blade, as

400
~ ' H + t 1 . H
o't = C; et . g1 (2mmEBlY /st cos(%%} — (3.54)
m:_oo
where
C; = Fourier coefficients in the upstream region
2mm+ 2 T2
Am = ( ~ ] + {ﬁ] = Axial decay parameter (3.55)
B = Inter~-blade phase angle = 2%5 (3.56)
_ . , _2my
w = Angular velocity of fluctuations == (3.57)
s' = s cos a, the normal distance between adjacent blades (3.58)

with the following considerations:

l. a‘u decays fo zero as x' = - ("Elliptic-field" solution)

2. 5,u is phased-periodic in the y'-direction

3. 5'” is harmonic in time, with the frequency of the blade inter-
actions, with the inlet flow distortion, U/A

4, aé'“/az vanishes at both inner and outer shrouds to satisfy
the solid wall boundary condition.

The decaying nature of %,u is demanded by the governing partial
differential equation, which is elliptic, and requires the disturbances
to decay at distances far from the "source". The phased periodicity of
g,u is expected due To the nature of the driving-sources,. 1i.e. the

vortex distribution on the blades are different from one anocther by a
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common phase angle 2ws/A. We further expect all perturbation quantities
(including ¢’u) to be harmonic functions of time with the frequency of
the blade interactions with the inlet flow distortions. And finally the

solid wall boundary condition, T.e. of no fluid penetration,

W v'y! =0 (3.59)
hub,tip

where P! = the relative stream function, in our problem ¢' = P'ix',y',z,1),

and V'$' depicts the normal vector to the stream surfaces and at hub and

Tip,
vl .
TV_‘UWJ_'Tzez at z =0 and h (3.60)
demands
~ a~yu
wz=wz=-%lz—zo at z = 0 and h (3.61)

which is identieally satisfied by (3.54), The Fourier coefficients,
C; will be determined by matching the perturbation flows of the upstream

and the inter-blade region at their common plane of interface.

3.2 Analysis of the Flow Inside the Blade Row

3.2.1 Kinematics

In this region besides the convected upstream vorticity, which is of
distributed nature, vortex sheets of "hound" and free kind also exist
periodically representing blades and their wakes. |nteraction of the
disturbed-inlet flow with the cascade of blades induces "bound"-vortex
sheets at the location of the blades. Due to the relative motion of the

blades with respect to the inlet flow distortion, the induced "bound"-
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vorticity fluctuates, in Its strength, harmonically in time. Further-
more, due fTo spanwise dependence of The inlet disturbances, the
induced "bound"-vorticity exhibits a spanwise (or radial) dependence as
well. Thus, it may be concluded that in the region within and including
the blades, besides the upstream convected vorticity, "bound"-vorticity
is induced at the location of the blades, the strength of which is both
a function of +ime (harmonic) and the spanwise location. |t is classi-
cally known that such a "bound"-vortex structure sheds free-vorticity
in the spanwise direction, due to its temporal behavior, and also a
wake of trailing vortices in the streamwise direction as a result of its
spanwise dependence. These results concerning the wakes of free-vortices
are both observed via fluid mechanical experiments and also their
existence are proved, theoretically, by invoking Kelvin's circulation
theorem for inviscid-haratropic fluids, and Helmholtz vortex theorems.
To describe the induced effect of these complexly-structured
vortices, we again utilize the linear-small perturbation theory, with
the rotational contribution of the perturbation term represented by the

Clebsh-Hawthorne scalars o and T, in oVt format, i.e.

W B W, /)R] << (3.62)
where
A=+ U] (=@, mean-relative velocity (3.63)
and
Wz vgl 4 ottt gl (3.64)
where
' = the perturbation potential inside the blade row,
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a'"vit'Y = the convected-inlet disturbance velocity (known from
the upstream field), and

OIV'Ti = the rotational=-perturbation inside the blade row.
However, due to distinctly different origins for the concentrated
vortices in the sheets, it is found desirable to represent their rota-
tional-induced effects by two different tferms in the Clebsch-Hawthorne
transformation, i.e. we propose to employ a multiple Clebsch-Hawthorne

representation.

Wz vl 4oty s glore kst (3.65)

where

REAR S The rotational contribution of the "bound" and free-

vortices in the spanwise direction, to the perturbation velocity field
inside The blade row.

s'V'T' = the rotational contribution of the free-streamwise
vortices, to the perturbation velocity field inside the blade row.

The prevailing vorticity field within and including the blades can

be represented in terms of the Clebsch-Hawthorne parameters as follows:

_Q' = curl y} = curl ﬂf + curl ﬂf (3.66)
where
& =curt &' =0, via (3.63) (3.67)
and
~i —_ ~| — 1 'U ] 'U (] E t i ] i t i
2 Zcurl W = Vo x V't + Vo' x V't + ¥'s x ¥'T (3.68)

From the above description, we intend to represent the "bound" and free-
vorticity, in the spanwise direction, by Vo' x V't' and the free-stream-

wise vorticity via V's' x V'T' and the upstream-distributed vorticity, as
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it convects inside the blade channel, by Vot x prot, Recalling the
neglect of viscosity in our analysis, the free-vortices over the blades,
remain inside the plane of the blades and thus remain undiffused, in
"thin"-sheets, eventually emanating from the blades' trailing-edges as
inviscid-wakes.

As the |ifting characteristics of the blades in the cascade are of
intferest to us in this analysis, the problem of thickness, which involves
distribution of mass-sources and sinks, is then neglected when we apply
the law of conservation of mass flow, to the region within the blade

row, i.e.
VAR ﬂf = 0 (incompressible fluid) (3.69)

Via substitution of (3.62) and (3.65) in (3.69), we get

Ve i

=1

= 0, mean-incompressible flow (3.70)

and

~s
|

vyl = —yrgty . grerd

R AL TN 17 B T R P

sl . oyrrt - glpZpd (3.71a)

Since the contribution of the first two terms on the r.h.s. of (3.71a)

is shown to be of order 62, in Section 3.1,3, then (3.7la) reduces to

~
|

v = ewel - v Sl sl L gl gl 2pd (3.71b)

where we observe that the perturbation potential %i is driven by the

free and "bound" vortex sheets, the contributions of which appear on the
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r.h.s. of (3.71b). However, the Clebsch-Hawthorne scalars in The
Poisson equation (3.71b) are as yet undefined and thus we propose to
determine their description by applying the dynamical equation of
motion to the fluid inside the blade row, including the effect of the

blades, i.e. concentrated force fields.

3.2.2 anamics

The region, within and including the blades, is dynamicalliy
characterized by the presence of continuous and discontinucus pressure
fields. The discontinuity of the pressure is sustained by the "bound"
vortex sheets, while the continuous pressure field prevails over the
fluid elements (potential and rotational) in the region in between the
blades. Thus, the inviscid momentum equation (i.e. Euler's equation)
with the blades' forces expressed in terms of body-force singularities,
now represents the governing dynamical equation, to be satisfied in the

intferblade region, i.e.

o'W R
—— 2 v‘ + 3.7
5 o V'P 5 (3.72)
where
Do, Wl V', Eulerian derivati i lati (3.73)
S it W , ian deri ive in relative .
frame
and
F'= the blade force (3.74)

The perturbation analysis of (3.72) leads tfo



Bw { B "i ] '_ Ei
F—+W —g;(-,-_\/i —"'E)'VP +F (3.75)
and
£+WI—B—W+<W-v')wi=-iv'~‘+-wf-i (3.76)
37 > L TR = AL ’

The equation (3.75) is Tthe mean-momentum equation which is identically
satisfied, since @} is time and space invarient thus the left~hand=-side
of (3.75) identically vanishes and similarly Ei is space invarient, by
definition, therefore its gradient is null, and finally F defining the
mean-specific blade force is zero since the blades are "set" at zero-

mean angle of attack (or incidence),

i
o

F' (3.77)

Expanding the perturbation momentum equation, i.e. (3.76), in the Clebsch-

Hawthorne scalars and ¢', we get¥®

yor U 11U ol v il 1!
DDT+ Vo't - D§+ vt 4 DD;E' Vo - DD:E vl DD‘Fr Vs’ - DDi v
= ~ . . ~i
POPo-w 3¢’ u ar'" i ot i ar' £
= 7! 1 — - —
v[ St t ol S to Spts 5 (3.78)

From the knowledge of the kinematics of the upstream flow,

D'o'” _ D't
Dt DF -

and

*Vector identities utilized in this derivation are summarized in Appendix
A.
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1
U BBT = 0(e?)
Thus (3.78) simplifies to
i . i \ i i .
p U D't ooy T Dol oy D'T oy _D's oini _
Viag'" + o Vg —Eﬁ—-v T + o7 Vs T v'r
pi_ﬁ .. i i }i (3.79)
0 "0- | 3¢ i ot i or
L] Pl ———— -
Vi "3T9 STt T TS

It is important to point out, briefly here, that one of the Clebsch-
Hawthorne scalars, in a oVr type of presentation, can be chosen, based
on the physical arguments fto simplify the dynamical equation of motion,
without any loss of generality so long as Vo X VI represents the
prevailing vorticity field in fthe flow, or in our multiple Clebsch-
Hawthorne representation Vo x Vt must be able to represent a_component
of the prevailing vorticity in the flow. Appendix B deals with this
concern in detail.

Since, we wish to represent the streamwise vorticity by V'si X V'Fi
and V‘si, mathematical ly, represents a normal to the surface si =
constant, then if we imagine that the time-dependent streamwise vortices
lie on the mean (i.e. Time-averaged) Bernoulli-surfaces, where steady-

streamwise vortices lie, to 0(g), then

st =2 + 0Ce) (3.80)
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since the mean-Bernoulli-surfaces* are z = constant planes parallel to
the hub and tip casing. In Appendix C, by invoking Helmholtz vortex
theorems, we have shown that the strength of the trailing vorticity,
in the wake, is relafed to the spanwise gradient of the "bound"-vortex

distribution via the following relation

XY
Yy
Yoo = - - (£,z,1) i d§ (3.81)
0 t=t-(x"'-&) /W

where (x'-£)/W is the "convection-time" for any free vortex element
generated at the chordwise station £. From (3.80) and (3.81), we can

deduce that

XY

i d iw(t=(x"=£) /W

r =3—ZS Yy(E,2) e (-t -82/W) ¢ Ho(y") (3.82)
0

where w = the angular velocity of fluctuations, 2mJ/X and, Hp(y')
the periodic-Heaviside function, "jumping" in steps of unity at the
blade locations (see Figure 9).
Incorporating (3.80) into (3.79), we get
p't' i Do i ot
Dt

1 - 1] =
via 5 VT T8,

vrgvu +
(3.83%)

- . .
PA=P [ ol .
1| 20 0= 3¢ . i 37T i or
v R A T v

From the description of o' we can transform (3.83) into the following

*A. Bernouyt li-surface, in a steady flow, is any fluid surface where

(p/p + V2/2) Takes on a constant value, the so-called Bernoul |1 constant.
A generalized Bernoulli-surface which includes the effect of unsteadiness
in the flow is defined here as any fluid surface upon which (p/p + V</2 +
3$/31) remains constant.
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1 . 1
DDi Ve - SVt o+ DD£  , *
(3.84)

i u
(pr=pPa) ~ ~ . i . i IS
00 P i u i o1 i ol L
1 9 - ot oL =
v 5 Tar ¢ -9 o mp s S -5

Note that (pé - pg) is also a perfurbation quantity, i.e. 0(g) since

i ~1

Po = Pome * Pgr Po/Pgoce << |

u_ = ~U ~U
PO - po__oo + pO, pO/pQ—OO <<

Due to the presence of the solid surfaces, represented by "bound"-

vortices, we expect the perturbation pressure field to exhibit a

continuous  behavior in the blade-core flow region and a discontinuous

behavior at the position of the blades, i.e. |ifting surfaces, this can

mathematical ly be represented as:
- :'_ +—— 1
P Poow = Pe = P Ap Hp(y ) (3.85)
where

i
C

P The continuous pressure field

Ap = the amplitude of the pressure discontinuity.

From (3.84)
i _ = _ o0 =~ 2, . 1 =" _— '
Po =~ Pheso — P Pt pW(bx' + 0(g™) Pe " P ¥ de)x‘ + Ap Hp(y_ )
(3.86)
where

o2
11
Q
X_lcu
¢
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We can also choose either Gi or Ti, as expressed before, without any loss
of generality, so long as V'oi X V'Ti represents the "appropriate"
vorticity component in the flow. Due to the nature of the freely-
convected shed vortices, we expect Ti to depict the drift-time
associated with TheymoTion of the spinning-fluid particles in the

interblade region, i.e.

D't _
o | (3.87)
or
i t
! = §7-+ O(g}, on the reference blade (3.88)
W

Substitution of (3.86), (3.87), and (3.88) into (3.84) yields

: A . i u
. I8 i P —p — .
10D TxY DT A o] e ;. AP ' = 3 ~u
Vo BT T + 5T €, v 5 5 Hp(y ) + oW (¢X, ¢X,)
J ,xi ~u i BPi E
+ 5¥-(¢ -¢ ) + =7 5- (3.89)
The y'-component of (3.89) is
0 > \PePe Ty soept A | g
oy'! oy' p o P Y O o ot ot ) '
where
_ u
Pe 2P, P (3.91)
and
o' =9 - ¢ (3.92)

and have recognized

‘) &, (3.93)
X
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In the limit of negligible fluid viscosity, the streamwise component of
the blade force is negligible (identically zero, for inviscid fluids,
D'Alembret's paradox), but however a second order tangential force
exists due fto the presence of the finite leading-edge vortex, ("nose"-
vortex), the so-called leading-edge suction force, to render the total

inviscid-force acting on the blade, normal to the incoming stream.

4

S

NOSE
an. | VORTEX

n
+ T

Furthermore we recognize that the component of force normal to the blade
surface is created by the "jumping" behavior of the pressure across the
biade and in fact identically balances the jump of fluid pressure across

its pressure and suction surfaces, i.e.

F&, =1~ Sply") é‘y, (3.94)

yl

Note that (3.94) is dimensionally consistent, remembering

[85(y1] = [{] and [&P] = [L_sz, (6, 0y'1] = E{g] ,
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i.e. force density, consistent with the dimension of the I|.h.s. of
(3.94). Substitution of (3.94) into (3.92) identically cancels one

term in the bracket, reducing (3.92) to

i P.~P ~ ot ; i
o0 _ 9 C "m0 =T 99 i ol
T By [ + Wo!, + +s = (3.95)

~ inl
0 x! * ¢+ *s FT

+ g(x',z,1) (3.96)

where g(x',z,t) is a general function as a result of partial -integra-
tion of (3.95). However, since we intend fo determine the vorticity
field exclusively by si, Fi, Gi, and Ti, thus any general function can

be ignored since its combined effect may be assumed to have been included

in The perturbation potential ¢', i.e.

(3.97)

Comparison of the x'~-derivative of (3.97) with the x'-component of (3.92)

results in
i j —
le] 1l 9o _ _ 3 AP '
e + = o7 o &i# Hp(y ) (3.98)
where
AP F _ ' ' _ ' jwt
BW- SW-_ YBOUND (x',z,T) = YB(x L2) e (3.99)

and Yy = The strength of the "bound"-vortex sheet.

The solution of (3.98), in terms of Ygs €an be written as:
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. _ x! . oty
o =~ ¢§¥~ [ Yy (E,2) o0t -(x 5)/W)d%} H (y')  (3.100)
% 0 p
or via lLeibniz-rule
Xl
- —- - . - '_ - .l
g = -0 YB(X':Z) em)“f - g-elw(+ xYW) YB(E,Z) e (WED /W dg(H (y")
W 0 P

(3.101)

The vorticity field inside and including the blades is now known to

be o .
2 =a'+ g (3.102)
btlade
where
QU = yrgtt x grord
and
é_ =o' x v+ s x ynl =
blade
~ . Lo TS . =
2 - YB(X',Z) e|m+ _ Lg_elw(T - x'/W) YB(E,Z) e((wE)/wdg é(y‘)ﬁ
ref. 0
blade
iw(t -~ x'/W) 3 CTwE) /W ~
-V x'/ = Yg(&,2) e twg)/ g sy 8, (3.103)

0

The first term on the r.h.s. of (3.103) is the fluctuating "bound"-
vorticity, concentrated at the reference blade, the axis of which points
in The spanwise direction. The second term in the bracket in (3.103), is

the freely-convected shed vorticity in the spanwise direction. These two
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terms are consistent with the classical results, with the exception that
the "bound" and free shed vorticity here are functions of span as well.
The last term on the r.h.s, of (3.103) is indeed generated due to the
spanwise dependence of the "bound"-vorticity and depicts the trailing
vorticity strength in the streamwise direction, the strength of which is
proportional to BYB/BZ.

The vorticity induced on the m-th blade posesses a phase relation
with respect to the reference blade, via a constant intra-blade phase

angle, B, i.e.

" img
0,78 ¢ © (3.104)

where
B = Z§5 (3.105)

(3.104) and (3.105) imply that the vorticity distribution on two adjacent
blades would be in phase only if the blade spacing is an integer multiple

of the disturbance wave length, or
s = ki, k=1,2,3...

With the infroduction of the generalized coordinates x% and y% we can

write @ as follows:
=

. fwlt - x'/W) x! i w/WE
.|. FaY
= |ygix!,2) &' m Som Y5l ,2) e " dg |8y ik

W

it - x%/W) iw/d £

d o m
- _— ! a
e 37 5 Yglg,»2) e dg  Slyn) € (3.106)
0

X'
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where

I

x% = x'-ms", s" =Zs sinag (3.107)

and

Yp S y'-ms', s' =s cos o (3.108)

T is interesting tc note that by modifying the perturbation
potential, in the manner described as follows, we can reduce the multiple
Clebsch-Hawthorne representation of the rotational perturbations in a
single representation of the same type. This reduction simplifies the
mathematical analysis of the Poisson equation considerably. First,

making use of the following vector identity
vis'th = s’y + pigrs! (3.109)

we can define a new potential ¢l, where
o' =¢' +s'T (3.110)
and re-express the perturbation velocity field in terms of the newly

defined potential as follows:
W= gl 4oty y oyt - plgrsl (3.011)

. . i i
From our previous description of the Clebsch-Hawthorne scalars o', T, s ,

and T', we note that

- Hp(y') [ex|

H (y') ¥!
ptY Q

o'yt~ rlyrs!

o
XIQ)
+
>
|
' 1
'\""X
3
<
B e
P
yy
3
-
N
0]
Q.
¥y
=

(3.112)

i
m
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where ! _
: m fwft - -8 1/H)
Qn = ~'j Yol 2) e dg (3.113a)
0
or
X'

iw {t - (x"-E)/W :
) dE « o'MB (3. 113b)

<
11

m
n —j Y&EJ)@
0

Thus, the perturbation velocity field is now expressible as

{ YU

W= vyl 4 gty g (v 7'Q (3.114)

i
m
Now, via the application of the continuity of the mass flow equation,

for incompressible fluids, To (3.114) we get the Poisson's equation

governing the perturbation potential ¢'

vl = - gty . gl o g2l Hoty') Vol - Hp(y')V'ZQ% (3.115)
But, we have shown in the previous section that the first two terms on the
r.h.s of (3.115) are of second order, and presented physical arguments

for the mathematical elimination of these terms. Therefore, (3.115)

reduces to

|2 = - t . 1 l - 1 !2 |
Ve = V'Hp(y ) ¢V Qn Hp(y )y v Qn (3.116)
Again, by modifying the potential ¢', via the following definition
=io- i i '
» =¢ + Qm Hp(y ) (3.117)

(3.116) transforms to
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27 2 2 2 i
t = gyt 1 ' 1
Vel = VYT £ QVITH (v + H TG

It

- ! I.'i l|2 !
PHL 'Y e VI + QTR Gy (3.118)

The first term on the r.h.s. of (3.118) is the scalar (dot) product of

two orthogonal vectors, having zero-projection upon each other thence,

250 _ al oy ,
VAR Q, Sp(y ) (3.119)
where
VPH (y1) = 81y = =S T8y ] (3.120)
p p dy p

In terms of the new perturbation potential %', the disturbance velocity

tield is then written as

w |

= 713 + gty - Q%V'Hp(y'> (3.121)

3.2.3 Solution of the Poisson Equation for (3

The complete solution for the perturbation potential 5', in (3.119),

is composed of a homogeneous solution, Eg, satisfying the Laplace's

equation
V'Z@A =0 (3.122)
. » Ni - . - - '
and a particular solution, ®inhomogeneous’ which satisfies The Poisson's

equation, (3.119), identically. The homogeneous contribution to the

. . P I ; . .
perturbation potential &, in ferms of Fourier series can be written as
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. R S W U DR Do .
9 = cl e ™+l o o (ZMMHEIYI/ST o (T2) 14T (3. 123)

m:—OD

where C% and q%z are Fourier coefficients, and A, 1s The axial decay
I
V7 2
parameter = CJggiﬁ} + ég}z .
In attempting to "guess" an inhomogeneous solution To (3.119) it

will prove useful to Fourier analyze its “driving"-term, i.e.

v
r.hos. of (3.119) = Q. Spy') =

X! (3.124)
, oot too
- YB(E) e'vgdi . oTIVXY, e'wT° cos (%%}- e'mBS'(y'—ms')
O m==w
where
(3.125)

<
1
=1e

is the reduced frequency, a nondimensional parameter controlling the

response of the blades to unsteadiness in the flow, as will be shown in
this section. Note that all lengths are nondimensionalized with respect
to the chord, C = |, therefore v = w/W is the ratio of two time scales,

one, the period of oscillation, T = 2n/w and two, the mean-particle-
convection time over the blade chord, C/W. The right-hand-side of (3.124)

is written, making use of the following relation

me YB(E) * Cos fié} eimB (3.126)

YB(im,z) = YB(g,z) e F

The series in (3.124) is summed over all the phased-periodic singularities,

i.e. vortex sheets in the cascade. By utilizing the following Fourier

expansionsBB’BI
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+o0 gy T
:E: e'mB ' (y'-mst) = EQT- e'By /s é(y'—ms')] (3.127)
- Y -
m——DO m—-—OO
and
+o0 +o0
| i2 t/gt
2 . Sly'-ms') = o Z ol 2mmy!/s (3.128)
m=—00 m:_oo
The series on the r.h.s. of (3.124) can be written as
2 img i i (2mmR)yt /s
E : e "8§'(y'-ms') =-e77 E e (3.129)
m=-co s'T mE—

[t is important to note that the convergence of the above series is only
in the sense of the generalized functions, i.e., the series "converge" to
the generalized functions they represent, but otherwise by "classical"
tests for convergence of series, the above summations are divergent.
However, we note that Dirac's delta=function is characterized by a
singularity in the space and all of its derivatives are higher order
singularity-functions in the space. Thence, it is only in the sense of
these signularities that the above summations do converge.

The inhomogeneous solution to (3.119) can now be assumed to have
the following form: |

+co
P i2mm+g) y'/s' | rz| . dwt
®I = E Dm e cos | o= fm(x') e (3.130)

m==00

via substitution of (3.130) into (3.119), we get

D= -i(2mm + 8) /s'? (3.131)

and
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t

. X
1y 32 1y = o—iux! ' ivg = 1
fEX) - A f ) = e S Yg(x') @' % dE = F(x") (3.132)
0

The method of variation of parameter can be employed to arrive at

!

- x! X AE Axt & “)\E
fx) <o I F(W‘E’ e™ g-oM j F(Vj:) e ™4 (3. 133)
oo -0
where
W = the Wronskian = = Zlm (3.134)
and F(E) is defined in (3.132). Therefore
. x! o
A x! A& A x! -\ £
fm(x')=-—2-)l\——em JF(E)emd£+em SF(i)emdS
m '

(3.135)

Now, the total perturbation potential inside the blade row is the [inear

~ T ~ T

i . i X .
sum of the homogeneous, @h, and inhomogeneous, ®i’ solutions, i.e.

- e LA X! CA =D
¢ =j§: C e + C e
™ M

H 1 1 1 - I
_ [(Zmﬂ+8) Fm(x') el(zmﬂ+8) y /S . cos [ﬁé} . ele (3.'36)

25‘2 A h
m
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3.2.4 "Bound"-Vortex Distribution and the Kutta Condition

For the chordwise distribution of "bound"-vorticity, we follow the

classical Glauert's method applied to thin airfoils, i.e.

[oe]
YB(Q) = 3, cot g- + a. sin ro (3.137)

r=1
where

6 = cos™! (1-2x") (3.138)

The first term in the Galuert's expansion, i.e. aO cot 6/2, represents
the "bound"-vorticity distribution on a flat-airfoil inclined at a

small|l angle of attack with respect to the stream. At the position of the
leading-edge, i.e. 6 = 0, cotangent diverges, depicting the leading-edge
singularity associated with the nose-vortex of a filat airfoil at an
incidence. The series summation in Galuert's expansion represents the
strength of a cambered vortex sheet at zero inclination (or incidence)
with respect to the stream. The |inearly combined vortex sheet strengths
represents the "bound"-vortex distribution on a cambered airfoil at an
angle of attack. The representation of (3.137) can still be applied to
the nonstationary thin airfoils of zero-camber via the following rational.
An airfoil in a periodic gust experiences a fluctuating incidence angle,
thus the instantaneous "bound"-vortex distribution creates a leading

edge singularity, and in addition satisfies the Kutta condition, stated
as the continuity of the static perssure at the trailing edge. These
requirements are both met by the first term of the Glauert's expansion.
Furthermore, the airfoil in disturbed stream experienced an up and down

wash convected over its chord, posing as an "effective"-camber to the
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airfoil, and thus the necessity of the series summation of the Glauert's

method.

As stated above, the Kutta condition is the statement of the
continuity of static pressure at the Trailing edge of an airfoil, in
both steady and unsteady streams. We have related the pressure "jump"
across the cascade blades to the strength of the "bound"-vortex sheet

via

218

(x',z) = YB(X',Z)

At the Trailing edge, i.e. x' =1, or § = m, Kutta condition may be

expressed as

Ap = 0 (3.139)
T.E.

Thence

18
o

g (3.140)

T.E.
which is noted to be satisfied in (3.137).

3.3 Analysis of the Flow Downstream of the Cascade

3.3.1 Kinematics

The region downstream of the cascade is kinematical ly characterized
by the presence of periodic wakes, emanating from the blades' trailing-
edges. The neglect of viscosity, in our analysis, forces the wakes to
remain in thin sheefs, with zero |latteral diffusicn. The absence of body
forces, in the downstream region, facilitates the free-convection of the

shed vortices into the wakes. The shear in the upstream region is super-
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imposed upon the potential region in between the vortex sheets. The
vorticity vector in the wake can be decomposed into two different compon-
ents, each arising from distinctly different origins, namely temporal
behavior and spatial dependence of the "bound"-vorticity causes the span
and streamwise vortices to be shed, in the wakes, respectively. Even-
though, the vortex structure in the downstream region, being made of

free vortices, is simpler fo physically model and to mathematically
represent than the region within the cascade, yet we propose to formulate
the downstream problem, both kinematically and dynamically, in the same
manner as described in The blade-channel region. Smali perturbation
method is utilized to linearize the governing equations of motion, and

thus the relative velocity field is assumed to be representable as:

A S A [ VA V7 NP (3.141)
where
IR VR R e (3.142)
and
W= vgd + orlyrort y gdyrgd 4 dprpd (3.143)
where
¢d = the perturbation potential in downstream region

ativtetY = the convected-upstream distortion velocity field
GdV'Td = the rotational contribution of the free-spanwise vorticity
in The wake to the perturbation velocity field.
doy d

sV'T" = the rotational contribution of the free-stream vorticity in

the wake to the perturbation velocity field.
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The application of the incompressible-continuity equation to the
fluid downstream of the cascade results in the Poisson's equation for
the perturbation potential éd where the Clebsch-Hawthorne parameters do
contribute to $d appearing as the driving-terms of the Poisson's

equation, i.e.

v euwd-o (3. 144)

(incompressible fluid in source-less flow)

or
v -1 z0  (by definition (3.145)
Thence
v 9= 0 (3.146)
or
Vg9 = - g2 _ogrgd . ogred D gdpe2pd L ogegd L pipd (5 447)

The contributions of the upstream-distributed-shear to the pertur-
bation potential is null, as was shown in Section 3.2.3, both mathemat-
ically and physically. The anture of the driving-terms in (3.147) are

determined by the dynamics of the downstream flow.

3.3.2 Dynamics
The Euler momentum equation, with no body forces, represent the
governing flow equation, in the dynamical sense, in the downstream

region, i.e.

n'wd

1 d
Ot P

Vip (3.148)

which upon linearization yields



o d 9 =d | d

=+ W W o= — 1y

3T + W Wﬂ_ o Vp (3.149)
_d :
aw -d 8 ~d . ~d md | oy
st U e W +K-Vﬂ—ea\7p (3.150)

The mean-inviscid-momentum equation, (3.149), is identically satisfied,
since Ed is both space and time invariant and furthermore Ed, by definition
is independent of space. The perturbation momentum equation is, however,
as yet unsatisfied. We propose to proceed, in solving (3.150), in the

same manner as in the blade~channel region, except for the change in the
behavior of the pressure field, namely the static pressure exhibits a
continucus variation in the downstream region, as opposed to the "jumping"-
characteristic of the static pressure field inside the blade row.

Mean-Bernoulli surfaces in the downstream region continue to be
z = constant
planes, Thus in the same spirit as in the bladed region, we suggest
d

s Tz + 0(eg) (3.151)

and from the strength of the free-streamwise vorticity in the reference

wake
{ -
d _ _ 3 ivg . el - x'/W)
Yot = 5 j; YB(g,z) e dg e (3.152)
we can deduce
| . . t i
Fd _ Sg_ f YalE,2) elvE g - elw(+ - x'/W) H(y') (3.153)
z % B

ref.
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while a generalized Td, i.e. Fs on the m-th wake with respect to the

reference wake, is

rd o pd . oMy Copsty (3.154)

Vector operations, given in Appendix A, performed on the perturbation-

momentum equation yields

%ﬁj— vigd - DBer yred 4 Dl;fr‘d 8 = V'[E——L+ pwq> e &r + sdrd}
(3.155)
From (3.153),
Eégi =Q (3.156)%*

which is the statement of the Kelvin's Circulation Theorem for inviscid-

baratropic fluids.

From the y'-component of (3.155), we get

R B e S 3, + sdrd (3.157)
57T ay' o ¢x' 1 s 1 )

where we have assumed that, T, in the downstream region continues to

depict the drift-time of the fluid particles, i.e.

d
1
2 - (3.158)

or to 0(e)
d o
W
(x'=reference is taken at the x' = 0 plane).

*Note that (3.156), due to the, ;Presence of "bound"-vorfices, does nof hold
in the bladed region, i.e. D'T'/Dt # 0.

(3.159)
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Integration of (3.157) along y'-axis, results in

PPy  _~ ~
Od = + dei + hix!,z,T)

©
b g
-+

where h(x',z,t) is a general function, we can assume the contribution of
which is "lumped” with the perturbation potential as explained in

Secticn 3.2.2, i.e.

g4 PP ~ d
g = +W¢xv+¢.|.+5

d
5 FT (3.160)

Comparison of x'-derivative of (3.160) with the x'-component of (3.155)

results in
A (3.161)
X W T
the general solution of which is
o9 = odixt - Wh (3.162)

But, however, by drawing analogy with the blade-channe! flow we can deduce

that

Jult = x'-5) /W)

Q
i
I
=)
Q2
¥J°,
—
<
w
~~
o
N

dgy H (y")
Epy

|
= jetWlT=x'/H) .[ Y(E2) &8 ag o &) (3.163)
0

and note that it satisfies the property of the general sclution (3.162) by
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which trails downstream of the reference blade) and

o4 - g

m ref

. oMBseytoms ) (3.170)

Again, as in the bladed region, we can reduce the multiple Clebsch-
Hawthorne formulation of the perturbation velocity field, to the single
representation of the same type, by modifying the perturbation potential,

details given in Section 3.2.2. We finally arrive at

d

wd = vred 4 gttt C gd gy (yn (3.171)
m ' p

where |

d
Qm - J YB(E,Z) e
Q

it - (x'=E) /W) | im8

g - e (3.172)

~

The Poisson's equation, governing the perturbation potential @d, is now

expressible as

yr2gd - Qﬁ §1y") (3.173)

P

~

3.3.2 Solution of the Poisson's Equation For @d

~ ~]

Due to the similarity of the governing equations for @d and @, we
propose to utilize the same technique in representing the perturbation
potential Ed as that which was developed, in detail, in Section 3.2.3.
Thus the fotal solution is the linear sum of the homogeneous and partic-

ular (or inhomogeneous) parts i.e.

39 = ég + 6? (3.174)

where



=0 (3.175)

and

2%d

d
1 — 1 1
Vites = Q Sp(y ) (3.176)

The solution to (3.175), in terms of the Fourier series representation,

is
N to - (x'=1) . Lo .
39 = e ™ o (ZmmHB) YI/ST (‘T‘E'l YT (3,177
h - m h
mM=—-0
where
Cg = Fourier Coefficients
and
2 2
A ?V/ Zﬂl;ﬁ + Fq s The axial decay
m s h
parameter

The "guess" at the inhomogeneous solution is facilitated by the Fourier
series expansion of the periodic-generalized function, on the r.h.s. of
(3.176), details of which is given in Section 3.2.3. Thus, without
repitition, we can write

N too o v :
d | C2mr4BI T —fvxt | T(Zmm+B) y'/s?, cosf%%} clut

o] = (3.178)
M=w=co s‘Z(Ai+v2)

where

gl .
r _z_g Yg(&) o VeaE (3.179)

and the total perturbation-potential in the downstream region is
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5 to | (x'-1) ST I .
39 - zij Cﬁ e M N l(gmnzs)zr x| TQmmg) y'/st C%%}' ol 0F
m==c s'v(km+v )

(3.180)

3.4 Matching Conditions

The disturbance velocity fields in the upstream, within the blade
row, and the downstream regions are not yet fully determined, as the
Fourier coefficients in the descriptions of the perturbation potentials
are as yet unknown. A set of compatability conditions, steming from
the kinematics and dynamics of the fluid flow, are to be imposed at the
planes of the interfaces, in order to establish a unified flow field.

One of the compatability conditins to be imposed is

) (3.181)

1]
|=¢

W8, "

. - ] +
interface interface

which is the statement of the continuity of the mass flow at the inter-
face (x'=0 and 1), a kinematical condition.

The condition (3.182) requires

oLt =9, (3.182)
x'=0 x'=0"
and
3, = o, (3.183)
x'=]" x'—l+

The other matching condition at the interfaces is the continuity of

the spanwise velocity, since the radial component of the blade
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forces, in axial turbomachines in general, is negligibly small (due to
nearly radial blade shapes), and in our problem, in particular, is

identically zero, (3.93), i.e.

(F

il
o

bladelz (3.184)

Thus, via dynamical considerations, we impose the continuity of the radial

velocity perturbations at the interfaces, i.e.

i - =¥ -k (3.185)
interface interface’
which again implies
ik = ¢ (3.186)
Z z +
x'=0 X' =0
and
3 = 39 (3.187)
z _ z N
x'=| x'=1

The relations (3.182), (3.183), (3.186), and (3.187) provide the,
Kinematical and dynamical, |linkage between different regions of the flow
field. In fwo-dimensional problems, involving vortices, the application
of the Biot-Savart law of induction, which integrates over al!l vorticity
fields does not devide the space into subspaces and thus the compatablility
conditions are not needed. However, in three-dimensional problems, where
vortices are encountered in confined -spaces, the strict application of

*
the Biot-Savart law leads to paramount difficulties. Thus, since in our

*¥Since each vortex produces images with respect to the bounding walls, and
in furn those images produce further images, ad infinatum.
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method of analysis, we have fo divide the flow space into three charact-

ertistically distinct regions, and solve the governing equations region-

ally, each solution still remains "unaware" of other solutions, until

the regions are communicated both kinematically and dynamically via the

compatability conditions.

This is basically due to the fact that the

potential regions in any part (say, within the blade row) are partially

driven by the distant vortex fields (oufside the designated region) and

the necessity of the communication is apparent,

The application of (3.182), (3.183), (3.186), and (3.187) yields

the following Fourier coefficients and thus render our solution completely

known in terms of the "bound™vortex distribution,

lJ—
Cm =

where

and

and finally,

Xi+v2 A 2s

(2mm+R) T eV (AL + i] 2 e— m _ i(Z2mm+B) 7

) - ) E
FI =z - fj F(E) o dg
0
_ Ap ! o
F, = - ZJF(E)e dg
0
¢ =0
m

ol . 2mmig ™'Y (v Lot iy
B 2 \,2,. 2 Ty T2
My 25t A+ m A

~

d _ Zmu+B Fe_lv flL _ i]

C =
m 25'2 . Ai+v2

(3.188)

(3.189)

(3.190)

(3.191)

(3.192)

(3.193)
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3.5 Boundary Condition On the Solid Surfaces

At the position of solid surfaces, i.e. inner and outer shrouds,
and the blades, the condition of no fluid penetration, in general, is

expressible mathematical ly as

Df

=9t L. -
oF = 3 + V-V f=0 (3
where
fix,y,z,t) = constant (3

represents the equation of solid surfaces, as a function of space and

.194)

.195)

time, in the same frame of reference in which D/Dt of (3.194) is expressed.

The equations of the hub and tip surfaces, in our problem, are

z=20 (3
and
z = h(= constant) (3
and thus (3.194) demands that
We*k=0 onz=0andh (3
which implies* that the normal component of the relative perturbation
velocity field is zero at the casings, i.e.
W+k=0 onz=0andh &

The consequence of (3.199) is

3.196)

. 197)

.198)

.199)

*Since, the mean-flow has no compopent in the z-directlon, T.e.
Wek=0
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~u,i,d u .
a(b ? 'U BT‘ _ I,d....a..-. " = —
v + 0 5 Qm 57 Hp(y.) Q onz=0andh (3.200)
in which
oz
and
B t =
Thence
5;"’d =0 (3.201)
z=0 and h

which is identically satisfied by The perturbation potentials described

in the up, within and downstream of the cascade, i.e., since

guri»dn, c05f%§] (3.202)
then
52"’d ER (3.203)
z=0 and h

The equations of the btade surfaces in the moving frame, attached to

the referenced blade, are*

y'' =ms', m=0Q, £, 22, .., (3.204)

where m = 0 depicts the reference blade. Thus application of (3.194) and

(3.204) to the flow in The bladed region yields

*Note that the blade surface equations are time-independent in fhe rotor
frame due to the non-vibrating nature of the blades in this problem. How-
ever, in general, y' = y'(+) = ms', where y'(+) describes the displacement
of the blades' vibrational mode as a function of time in the relative frame.
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W e, = 0 on y!' = ms! (3.205)
|
or
@f . éy =0 ony'=ms! (3.206)
7
(Since E} -5 =z0).

Y
|
We apply The condition (3.206) to (3.114) i.e.

i W a0
g$7'+ o' §§VT-+ Hp(y') 5V$ =0 ony'=ms'
Since the last term, i.e.
BQi
m
r
Hp(y ) T

identically vanishes, due to Q* # Q;(y'). Thus

i YU
%%T’= - o't E%#q- on y' = ms' (3.207)

The righft-hand-side of (3.207) acts as the driving -source and is the
normal downwash component of the inlet flow distortion, convected through
the bladed region by the mean-flow. The left-hand-side of (3.207) is the
normal velocity field, in the upwash direction, induced by the vortex
sheets, to render the solid. surfaces impenetrable.

Equation (3.207) is the basis for determination of strength of the
"bound"-vortex sheets, as explained in the next Chapter, on the evalua-

tion of the unsteady lift.
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CHAPTER 4

EVALUATION OF THE UNSTEADY LIFT

4.1 Expression In Terms of the Bound-Yorticity

The theoretcial analysis presented in Chapter 3 describes the static
pressure (or the velocity) field inside the blade row as the sum of a
continuous and a discontinuous field. The jump in the static pressure
(or the velocity) field within the bladed region occurs at the blade
locations, where the bound-vortices represent this character of the static
pressure and the velocity fields. |t is however the discontinuous behavior
of the pressure, across the blades which generates a net resultant force,
in the direction of the normail o the blade surfaces, which is related

to the bound-vortex structure via (3.100),

WE,2,1) = ol vy (£,2) ol wt

on the reference blade. The integration of AP(§,z,t) over the blade
chord yields the unsteady fluctuating force, as a function of span and

Time, i.e.

Flz,t) = Flz,N) éy, (4.1)
and
I ———
F(z,t) = - f P(E,z,T) dE
0
| .
= - pr Ygt€,2z) dE otut (4.2)*
Q

*Qur definition of the bound-vorticity is in the clockwise sence which makes
a positive pressure jump from the pressure to suction side, [AP Hn(y")], (as
opposed to a negative-step in that direction). Thence, the sign in (4.2)
stems from our convention (or definition) of the bound-vorticity.
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The unsteady lift is Thus expressible in terms of the bound-vortex
structure on the blades, via (4.2), but however the yY-Bound as expressed

by the Glauert's expansion series (3.138)

o

8 .
cot = + ar sin ro

YB(6) = a, 5 |
r':

where

8 = cos”| (1-2x")

possesses unknown coefficients, g By B ere By eee . The method

for their determination is presented in the following section.

4.2  Determination of the Glauert-Coefficients

As explained in the section on the solid-surface boundary-conditions,
3.5, the condition of no flow through the blade surface requires that,
(via (3.207))

- _g¥ ar 'Y

T O gy !

which is a balance between The convected downwash, from the upstream
distorted velocity field, and the vorticity-induced upwash at the blade
surfaces. By satisfying the blade surface boundary condition at R points,
along the chord, we will generate a matrix equation in R unknowns in the
Glauert coefficients as, ags @ys s .- p, which provides an R-term
approximation to the infinite series describing the bound-vorticity.

[T was original ly shown by Whitehead that a six-term truncation of the
Glauert series approximates the unknown coefficients to within four-digit

accuracy, unless for the cascades of high solidity which the convergence rate
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was poor. Whitehead equally spaced the six points along the reference
blade chord, including the leading and trailing edges; and then evalu-
ated the [ift by the application of the trapezoidal-rule to the points
midway in between the six points which satisfied the blade surface
boundary conditions. The numerical evaluation of the Glauert coefficients
in our analysis was formulated on the IBM 370/168, in the Information
Processing Center of M,|.T., and utilized LEQTIC, a highly accurate
subroutine in the IMSL (International Mathematical and Statistical
Library) which inverted the complex coefficient matrix and produced a set
of the Glauert-solutions. In the examples studied, the convergence of
the coefficients fo within three-digits accuracy was accomplished with

an eight-term expansion of the series solution. The first point along
the blade chord, in our numerical evaluation was slightly removed from
the leading-edge position, since the L.E. is located on the boundary
dividing the upstream and the bladed region (a singular point). However,
the convergence rate of the perfurbation potentials improves exponentially
as the point of interest is removed further from the singularity. A
sensitivity study was performed on the value of the force coefficients
(defined in the following section) resulting from varying the position of
the leading point, and a reasonable accuracy* was obtained by positioning
the first point, on the chord, at 5% of the leading-edge. Other points
were equally spaced from each other along the chord and the last point

was positioned at the trailing-edge.

¥+ should be noted that points closer to the leading-edge, say within 1%
of it, even though They predict the unsteady |ift to a better accuracy but
however require an unreasonable number of terms in the summation of the
perturbation potential series.
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4.3 Unsteady Force Coefficient

We have defined a complex force (or |ift) coefficient as

fwt (4.3)

where
F =the complex, reference blade force, and

~

Wd =the amplitude of the inlet-convected downwash.
Dimensional ly, CF has The units of force per unit spanwise length and if
thus represents a two=dimensional lift coefficient, normalized in the
classical manner.
The magnitude of the force coefficient is defined as
1/2

| = ———l—:—-(FZ + F2 ] 4.4)

|C
moCl W, REAL | MAG.

F‘

while the phase angle between the |ift and the disturbance velocity field

at the leading-edge is

I

¢ = tan ' ( / ) (4.5)

Fivac’ FreaL

and the phase angle between the unsteady |ift and the steady response of

the cascade to inlet distortions is

¢L.E. =¢ -7 (4.6)

*¥Since there is a m-phase lag between the steady 1ift and the disturbance
velocity field at the L.E.
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The purpose of normalization of the blade force by TECH Wd e

iwt
stems from our desire to compare the present theory results fo well-
established, two-dimensional, theoretical results, namely Whitehead's
and Von K&rmédn - Sears. The results of the comparisons, including some

three-dimensional study in the aspect ratios are discussed in the follow-

ing Chapter.
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CHAPTER 5

RESULTS, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE WORK

5.1 Results and Conclusions

An unsteady, three-dimensional vortex theory is developed in Chapters
3 and 4 to calculate the component of unsteady |ift in compressor cascades,
with inlet flow distortions. The results of these calculations are
reported and briefly discussed in this section, while suggestions for
future work are given in the latter part of this Chapter.

Some numerical examples are worked out in the limit of infinite aspect
ratio (h =+ « while C remains constant, C = |) as a check on validity of
our numerical results versus the well-established two-dimensional theories.
The theory by Whitehead, on the force and moment calculations for a vibrat-
ing cascade, has the capability of predicting unsteady response of rigid
blades to inlet flow distortions, which we have utilized for the purpose
of fwo-dimensional cascade comparisons. The theory developed by von
Karman and Sears to treat the interaction of an isolated airfoil with
transverse gust is used for the purpose of comparison between the low-
solidity cascade results of the present theory and the isolated airfoil
theory. In order to achieve a meaningful comparison between different
theoretical results, we have non-dimensionalized* the unsteady response of

the blade force, FZD(T), by a group of parameters commonly accepted in

|w+, where Wd is the

the literature on unsteady flows, namely mpCW Wd )
amplitude of the convected-downwash in the incoming stream. In Figure

Il we have represented the magnitude of the unsteady |ift coefficient,

*The (C.) is the value of the force coefficient per unit span.
F2n i
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FI » versus the reduced frequency, v, ranging fromv > 0 to v = 2.0,
2D. ' '
In approaching the v - 0 limit, we have kept the ratio of the inter-blade

|c

phase angle to the reduced frequency constant, i.e., B/vV = constant, as
proposed by Horlock et aI43 as the "proper" approach to v + 0, in the
analysis of inleft-distortion problems. The example of Figure W considers
a cascade of unit solidity (i.e. C/s = 1) and the blade setting or stagger
angle of 45°, as typical values for compressor cascades. The present
theory predicts the results of Whitehead reasonably well. There is a,
generally, a difference of 7.5% between the theoretical predictions of
Whitehead and the present theory. The small discrepancy between the two
results is helieved to be caused by the numerical evaluation of the
unsteady response in the present theory, which neglected the contribution
of the leading-edge in the calculation of the unsteady [iff. In evaluating
the Iift, the lower limit of the integral over the bound-vorticity distri-
bution was set at five percent - chord position downstream of the leading-
edge®, i.e. x' = 0.05, since the potential, i.e. the homogeneous part of
The, solution of the Poisson's equation, in both the bladed and upstream
regions diverge at the position of x' = 0,** {,e, at the boundary dividing
the regions. In order fo avoid this problem, one method is to take the
principal-value (P.V.}, or the average of the disturbances "just"-upstream
(i.e. x' = -, 0 < e << |) and immediately downstream, i.e. x' = + ¢, of

the boundary point. This method effectively removes the singularity, i.e.

*A sensitivity study was carried out for positioning the leading point along
the blade chord and 5% proved a sensible choice. This point is discussed in
more detail in Chapter 4.

**¥See Eqs. (3.54) and (3.123). Both homogeneous solutions show decaying char-
acteristics up— and downstream of x'=0 point respectively and diverge at
x'=0 identically.
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at x' = 0.. The second method is fo evaluate the disturbance a finite,

but small, distance downstream of the point of singularity, i.e. where the
solutions decay. The second method is less exact, but simpler than the
first technique, in application, as far as the numerical evaluations are
concerned. We have chosen the latter, more approximate, method, since

the purpose of cross-checking the ftwo theories has been in assessing the
validity of our numerical calculations (and not necessarily on "perfect"
matching of the two theories); and we believe Figurell alludes to this
point. At the lower half of Figure |l the phase angle between the unsteady
component and the steady |ift* is plotted versus the reduced frequency. A
fairly good agreement, in the phase angle, is observed between Whitehead's
results and the present theory.

The response of a rectilinear cascade of solidity 0.5, or gap-to-
chord ratio of 2.0, and the blade setting or stagger angle of 45°, to
inlet disturbances is plotted versus the reduced frequency, in Figure 2.
The results of the present theory approaches Whitehead's in the range of
0 <V < |.] and approaches the Sears theory for v > |,|. The behavior of
approaching the isolated-airfoil result (i.e. Sears S/c = ®) by the low-
solidity cascades is expected since the aerodynamic interference, between
the blades, or equivalently The blade-to-blade effect is reduced as the

ratio of gap-to-chord is increased. At v = 0, Sears result predicts the

classical isolated-airfoil |ift coefficient in steady flows (i.e. Sears
result reduces to CL = Zwl, where i = angle of attack for a zero-camber
airfeil inclined at an angle | with respect to the stream), while both

*The phase angle between the steady component of [ift and The inlet distur-
bance veloclty field is w (180°), thus

Oe. - T LFinag/Freqd - 180
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Whitehead's and the present theory's results approach the quasi-steady
cascade |ift coefficient, which has The same magnitude as the steady Iift
coefficient for cascades, but its' phase angle lags the steady |ift by
nearly 45°42’43.v The comparison of the phase angles in Figure 12 s,
otherwise good over the range of the plotted reduced frequencies, (i.e.
good except for v = Q).

In Figure |3, two gap-fo-chord ratios of 2.0 and 3.0 are compared
with the isolated-airfoil theory of Sears. Within the reduced-frequency
range of 1.0 to 2.0, the three results approach each other considerably
(i.e. in the fully~-unsteady regime), while maximum deviation occurs at
reduced frequencies corresponding to quasi-steady |imit. The phase angle
plot shows that the cascade solidity of |/2 compares closer to the isolated
airfoil case for v > 0.85, while for the reduced frequencies up to nearly
0.85, the lower solidity cascade (i.e. S/c = 1/3) compares better with
Sears phase angle.

The comparison of the cascade response'in different gap-to-chord ratio
configurations (in the two-dimensional |imit) suggesfs44 that at lower
solidities the magnitude of the unsteady |ift undergoes a more noticeable
variation, while in the higher solidity cascades the response is somewhat
less noticably varying, with respect to the reduced-frequency. The
implication of this result finds immediate use in simplifying the analysis
of the problems involving the interaction of high-solidity cascades with
inlet disturbances, which allows for a quasi-steady analysis to be per-
formed {i.e. v = 0 and B/v = constant), with the condi+ion of constant
leaving angle imposed at the cascade trailing-edge.

The effect of the aspect ratio is studied in Figure 4. Three
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examples are worked out for the cascade solidity of one and stagger
angle of 45% (as "typical" cascade parameters) with three different
blade heights, keeping the chordiength ccnstant (Z1). We have plotted
the magnitude and the phase angle response (of the blades) versus the
reduced-frequency in Figure 14. The magnitude of the unsteady Iift,
for all examined aspect ratios, (i.e. AR = I/3, | and 3], in general,
run parallel to each other. The magnitude of CF is slightly damped as
the aspect ratio is decreased fro the cases studied. A maximum differ-
ence of nearly 15% between the aspect ratios of /3 and 3 can be
observed, while only 6% difference between aspect ratios of | and 3

exists. An explanation offered44

for the minuteness of the magnitude
change of the blade response, due to three-dimensional effects, which
suggests that the change of the blade height (i.e. h) even though changes
the strength of the shear in the upstream flow, locally, and consequently
the strength of the streamwise vorticity in the blade wakes (i.e. in

the downstream region), it yields the same integrated effect, induced
over the blades by, the trailing vortex sheets. This is, basically due
to the fact that the functional form of the inlet spanwise disturbance

is kept fixed in all cases ~cos (¥z/h). The minor change in the magnitude
of the response is, however, caused by the invariance of the blade chord
length, in the cases of different aspect ratio studies, which effectively
displaces the trailing wakes either closer to the blades (high AR) or
removes them further from the blades, in the case of low AR. The plot

of the phase angle in Figure 14 shows small deviation between AR of 3

and |, while the aspect ratio of |/3 differs by nearly 10° (or 25%) with

respect to the phase angle corresponding fo AR = 3. In order to view the
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comp lex blade response at different blade heights, in a unified manner,

we have ploftted the real component of C_ versus its imaginary component

F
in a phase-diagram, Figure 5. In this Figure, we can observe a
general (and gradual) migration of the response-loops from higher

(CF) , components towards lower (CF) levels as the blade height-
imag. imag.

to-chord ratio is decreased. The implication of this trend of migration,
points to the importance of three-dimensional effects on the development
of the phase angle and to its rather minimal (or unimportant) contribu=-
tion to the magnitude of the three-dimensional unsteady |ift coefficient,
as the response loops maintain their range over the real axis.

The conclusions reached in this analysis, regarding the ftwo- and
three-dimensional response of cascades to inlet flow distortions, can now
be summarized as follows:

i)  The three-dimensional effects are most pronounced and important
in changing the phase angle of the unsteady lift.

i1) The three-dimensional effects are minimal, as far as the
magnitude of three-dimensional response is concerned, within the assump-
tions of the present theory (the most important of which, zero-loading
and small shear).

iii) The lower solidity cascades develop a wider response fo the
inlet flow non-uniformities and thus unsteady analyses should be
performed in estimating the fluctuating lift coefficient for such config-
urations.

ivl The higher solidity cascades tend fto behave more according to
the quasi-steady limit, even in the upper ranges of the reduced-frequency.

Therefore a quasi-steady analysis with the constant-cascade-leaving-angle
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assumption provides adequate approximation for the force cocefficient.

5.2 Suggestions for Future Work

The development of the present theory, hopeful ly, has demonstrated
new potentials for the analytical formulation of the more difficult, i.e.
the more practical, problems in the unsteady fiows in turbomachines.

A few of the following suggestions, however, are immediately
in the light of the present theory, namely, the study of the three-
dimensionally vibrating blades driven into self-induced instabilities
by the working fluid, i.e. flutter, within the same |imitations as the
present theory. We believe the conclusion (i) reached in the last
section, (the rather large change of the three-dimensional unsteady
phase angle response to inlet disturbances, may have important effects
in altering the compressor stage flutter boundaries, by sufficient
margins, as to warrant a fully three-dimensional study (as opposed to the
currently used Strip-theory). This problem of vibrating blades (with
common infro-blade phase angle) of general mode shape is analytically
formulated by the author and will undergo numerical studies shortly.

In order to isolate the effect of three-dimensionality, and study
its effect, we need to compare tThe results of the present theory with the
Strip-theory. In both the above mentioned suggestions the higher solidity
as well as the larger stagger angles to the cascades need to be studied
in detail.

As explained in the Introductory Chapter, the aim of the present
theory has been in developing a rather "unfamiliar" and yet very powerful
method of analysis which allows for the eventual generalization fo the

problems of practical importance. To this end, new parameter spaces need
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to be explored, with emphasis on the finite-blade-camber and large, over-
all, turning cascades, first in the rectilinear gemetries. Then by
imposing a "gravitational-type'" acceleration fieldl,]'5 as a function of
blade span, try fo simulate some of the effects of annular geometry.
Finally, the compressibility of the fluid needs to be taken into
account, however it doesn't seem to be of immediate concern. It is more
desirable to remove the small-inviscid-shear assumption from the present
theory and explore the problems with inlet flow distortions described by
11 large-inviscid-shear, ii) small-viscous-shear, and iii) larger-viscous
shear. However, it is believed that exploring new parameter spaces, as
diversified as described above, require ingenuity and by no means they

are achieved by straight forwared application of the present theory.
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APPENDIX A

VECTOR [DENTITIES APPLIED TO EQUATION OF MOTION

One of the major steps in our analysis is the vector manipulation
of the dynamica! equation of motion, which lead to derivation of key
equations (3.23) and (3.78). In this Appendix the vector identities
and operations are listed according to the order in which they are used
in the following derivation.

The inviscid-momentum equation

Dy | £
—DTF——E)'VP"‘E (A. 1)
can be written as
oY . _ A
-é'-_F+ (_y. V)l = 'p- Vp + -5 (A.2)
via vector identity
V2
(V« V)V =V = - Vx (VxV) (A.3)
(A.2) becomes
2 F
oY _ p .V _
a7 L X8 v [p + 'f} iy (A.4)
Now, upon linearization of (A.4), via
V=93, |v /¥ << (A.5)
p=p+tP, B/p << (A.6)
Q=02+8 (A.7)
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F=F+F (A.8)
where
V = mean-velocity field, in our problem z_is steady and irrotational,
i.e .Q = 0, and
V=V + ovr (A.9)
we get
N yxa=-vRs W +E+0(2) (A.
?F_— Q—" —p" '5 £ L0
where
Q= curl V=Vox Vr (A1 D)
By making use of the following vector identity
Ax(BxC=(A-CB-(A-BC (A.12)
we can write
VxQ=Vx (Voxv) = v - (V- Vo)vr (A.13)
Furthermore
A wrov 2y Y+ 2 ovn (A.14)
ot ot B ot ot ’
and
3 - 90 _ 9T otT
5;-(0V1) = 5?-VT AT Vo + V(o =7 (A.15)

Thence
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BY 3 3 Dt ot
5 =V LBTL + = 5 vVt §$-VG + 9 (o BT) (A.16)

The inclusion of (A.13) and (A.16) into (A.10) yields

8¢ e oT oT, . . -
Vigp) + 55 VT - 5p Vo +V (0 51 - V.« VIV + (V + Vo)VT =
5o~ B, |
- V(E-+ W) + S—+ 0(e™) (A LT7)

Rearranging (A.17) results in

~

do . _ o . I 2% ot , E 2
(G + Y- Vv - (g + V- VW v [p - s+o 31] t =+ 0(e)

By recognizing the terms in the parentheses as the Fulerian derivative

of ¢ and T (in the linearized sense) we conclude that (A.l) is reducable

to

D.o D.T ~ -

O o 0w - _vlR 3¢ £ 2

ST vt BT Vo Y [p + VV + T3 + o BTJ + 6—+ 0(e™) {(A.]8)
where

9

2|
11l
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APPENDIX.B

ON THE CLEBSCH-HAWTHORNE PARAMETERS AND THE DEGREE OF ARBITRARINESS

The idea of representing a vector field by the sum of a potential
and a solenoidal field is a sound mathematical idea which has found
extensive use in the classical field theory, and more recently in fluid
flow problems with vorticity,

In the same spiri+; we decompose the velocity field, inside a turbo-
machine, info a potential and a "rotational™ contribution, where the
vector operation of "curl" on the rotational term(s) describes the

pertaining vorticity field in the flow, i.e.,

Y =W+ A (B.1)

where

i

curl ¥y = Vx A (B.2)

But, however, we note that the governing equations of motion, i.e. linear-
momentum equations, continuity of the mass flow, the energy equation and
the equation of the state, are unable fo fully determine the velocity
field represented by (B.1). Since the system of equations, i.e. three
momentum, one continuity, one energy and one state equation, can simultan-
eously be solved for six unknowns, in general, while the number of
unknowns, with (B.l) representation of the velocity field, is seven, i.e.
¢, A, A, AZ, P, p, and T. However, if A were to be described as a

X Y
solencidal field, then

(B.3)

<3
-
| 2=
1t
(]
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which would have supplied the seventh equation.
The Clebsh-Hawthorne formulation of the rotational perturbation

term
A= oVt (B.4)

reduces the number of unknowns in A from three to two unknowns ¢ and T,
i.e. via the Clebsch-Hawthorne technique, we no longer need to specify
that the non-potential perturbation is solenoidal. However, if we wish
to represent the rotational perturbation term by multiple Clebsch-
Hawthorne type contributions, as we did in Section 3.2, then we have
infroduced more parameters than the governing equations can determine,
which leaves a degree of artibrarieness in choosing certain parameters
of the rotational perturbation. For example, in the bladed-region or

downstream of the cascade, we represented the perturbation velocity field

by
V=V + oVt + SV + oUyc! (B.5)

which had a total of five (5) unkmowns¥ instead of the three components

~

of V, i.e. in order fo determine the three components of E, we need ‘o
calculate five parameters ¢, g, T, S, and T. Therefore, in rendering
the problem soluable, we choose to specify S and T, based on the physical
arguments, fo represent the mean-Bernoul |1 and "drift"-surfaces, in the
flow, respectively. |t is clear however that why our choice is |imited
to one parameter from each Clebsch-Hawthorne perturbations as opposed to

choosing both parameters from the same Clebsch-Hawthorne perturbation.

The. latter choice, even though leads to @ dynamically consistent flow, but

*6Y and Y were known from the upstream flow
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however the flow structure may be kinematically inconsistent, since

Q =Va x Vr + Y5 x VI (B.6)
“blade ‘

and our choice of o and f (or S and I'l may produce an "extraneous"
component for the blade vorticity.

Thus, it may be concluded that, in a double Clebsch-Hawthorne
presentation of the rotational perturbations we have the freedom of
choosing a single parameter from each Clebsch-Hawthorne perturbation,
provided that our choice does not lead to a kinematically inconsistent
flow, or in other words (B.6) should only contain the components of

vorticity dictated by the nature of the flow problem.
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APPENDIX C

RELATION BETWEEN THE STREAMWISE VORTICITY AND THE

SPANWISE DISTRIBUTION OF YDOUNDAJN UNSTEADY FLOWS

Consider a bound-vortex filament in a steady flow. |If the strength
of this vortex tube varies along its axis, then by considering the
following contour wrapped around the filament, we can deduce that a

shear flow along the axis of the tube exists, downstream of the filament.

- T +'§§ 8z +....~}.*,- (Z:::
8z
(12
; b

-—Vortex Filament

- e jiy

5
Sy .
V e dl =0 (C. 1)
./_
C
dl _
I+ s §z - T + (v|-v2) §z =0 (C.2)
dal _ _ _
iz (VJ v2) (C.3}

From the kinematics of free-vortex sheets, the local jump in the

tangential velocity is equal to the strength of the sheet
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Free vortex sheet,
in the streamwise direction

From identity,

Y v dh = -0eszee (C.d)
we get A
(vl-vz) 8z = -8z
and
- ¢ = Ysheot (C.5)
in the clockwise direction
thus
YI'T VY2 T Yeheet (c.6)
From (C.3) and (C.6), we can deduce that
dar _ _
dz = YSh..ee‘l‘ (C.7y%

and since the axis of the trailing vortex sheet is in the x-direction we

can rewrite (C.7) as

*Note that the minus sign signifies an inverse relationship between the
slope of I'(z) and the direction of the axis of the trailing vorticity,
i.e. if :

AT _ T'(z+Az) - T(z)
Az~ Az

then the streamwise vorticity points in the nedgative x-direction and
viseversa,

.>O
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- = = (y 1 (C.82

Now, we can replace the circulation around the vortex filament, T, by
the integral of the elemental circulations around a distribution of

bound vortices (say, over the chord length, C)

C N
r =£ Y5(€,2) dE (c.9)

Thus the strength of the trailing vortex sheet via (C.8) and (C.9) can

be written as

C C oy
= . d = - B
(y,) -2 [ e @~ <2 e e oo
sheet Q Q

(differentitation via Leibniz rule).

The shear in the downstream region, created by the trailing vortex
sheet, is convected by tThe mean flow; and associated with this convection,
there is a finite time for an element of free-streamwise vorticity to move
from its point of creation, £ on the chord, to any point in the wake, x,

that is

Free Convection - Time = = - & (C.11)
v

wake (free-vorticity)
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Since the mechanism for generating the Prandt|-type streamwise

vorticity is totally based on the variation of bound-vorticity strength

along its axis, the femporal behavior of YB‘enTers (C.10) by introducing

the convection-time lag of (C.I1) i.e.

C ayB
v (x,T) = - J — (&,z,1) d§
X 0 9z

wake t=t - (x-£)/V

[f fthe point x is located on the chord, then

X BYB
yxcx,ﬂ‘ = —f 5 (&,2,T) dE
blade 0 t=t - (x=£)/¥

And finally for a harmonic fluctuation of Yg in time, i.e.

_ it
YB(E,Z,T) = YB(E,Z) e

YX(X,T) A *—a—z—' (E,z)
wake,blade

i _.IC'X Mg Jiult - e8)/M),

£

(C.12)

(C.13)

(C.14)

(C.15)
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Figure 5. Interaction of a spanwise shear with a blade row, in steady flows.
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