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ABSTRACT

A finite element model has been constructed for numerical
analysis of the dynamic response of mooring cables. The model
is non-linear, taking into account the velocity squared
dependence of the drag force, large deviations away from
equilibrium and the effect of tension variation in the equa-
tions of motion. The solution method is deterministic in
the time domain and is intended for analyzing transient
phenomena. The equations of motion are formulated in matrix
form. Normal modes are defined for small amplitude oscilla-
tions about equilibrium, and the equations of motion are trans-
formed to normal coordinates.

A new (to our knowledge) method for integrating approxi-
mately the coupled equations of motion numerically was
developed as a variation of Newmark's method. The coupled
force terms are decoupled by assuming each as a function of
- time only over short intervals of time and a trial and error

process is used to estimate the state at the end of the
interval.

The mode of excitation particularly studied here is that
of a forced motion of one end of the cable (the upper point
of fixation to the moored vehicle). Several examples are
analyzed. Some of these are of a theoretical nature, allowing
correlations with analytical solutions. Finally two examples
of mooring lines are analyzed, under transient pull from rest
in equilibrium and under harmonic forced motion of the upper
end.
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CHAPTER 1. Introduction.

1.1 Technical Background.

Mooring is technically a method for keeping a vehicle
(platform) on station at or below the sea surface. Another
method developed for this purpose in recent years is dynamic
positioning. From a technical point of view, mooring may
look like the simpler method, requiring basically only a
mooring cable and an anchor, while dynamic positioning utilizes
a system of thrusters and is controlled by a sophisticated
computer system. However, a comparison between the two éystems
should be more detailed in specifying operational parameters
like accuracy requirements of position, convenience in relo-
cating, cost of operation, and desired lifetime.

One can assume that a vehicle, e.g. a mineral or petro-
leum production platform, which is required to remain permanently
at a specific location, may favour the mooring concept. A
vehicle, e.g. a drilling ship, which is required to shift posi-
tion from time to time, sometimes even on short notice, may be
more likely to choose the dynamic positioning concept.

One can distinguish two important aspects of the dynamic
‘behavior of a moored system. One is the so-called slow drift
motion, connected with the horizontal, low frequency forces
impdsed upon the vehicle by the momentum content of the irregu-

lar waves. In an irreguldr sea these forces have a period of



9

variation several times the wave period. When the vehicle is
restrained by mooring lines, we have an oscillation system
moving under these slowly varying forces. For a heavy body
with long mooring lines will the vehicle-mooring system have
a relatively long natural period and under certain circum-
stances can the slow drift forces give a resonance excitation
of the system. See e.g. [20]* for a discussion of slow drift.

The other aspect is the more rapid oscillatory behavior
" of the body among the waves. This corresponds to the phenom-
enon normally treated in Naval Architecture as the sea-keeping
problem. It appears to be accepted engineering practice to
assume that the wave motion of heavy vehicles is practically
not influenced by the presence of the mooring lines. For
lighter bodies, e.g. buoys, is the mutual coupling between the
cable and the vehicle more important.

It also seems to be accepted practice to treat the two
phenomena of slow drift motion and wave motion as uncoupled.
This implies that in analyzing the slow d;ift metion, the re-
sponse of the mooring cables can be assumed to be practically
static, so that the non-linear restoring force as a function of
displacement can be estimated by a statical analysis. 1In
analyzing the response of the cable to the rapid excitation, a
more detailed consideration must be made of the forces acting
on the cable,.particularly the interaction between the tension,

drag and inertia forces in determining the motion of the cable.

*Numbers in [] refer to References at the end.
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One should also be able to determine the response of the cable
to transient conditions, e.g. as due to a single, large wave
imposed upon the vehicle.
The main aspect of the present thesis is the analysis of
a mooring cable to a given time dependent excitation of the

upper fixation point to the vehicle.
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1.2 Review of Literature.

1.2.1 Survey of methods of analysis.

An early formulation of a dynamic model of cables and
chains was given by E. J. Routh [5]. Consider a small seg-
ment ds of the.cable, whose parametric trajectory in terms of
cartesian coordinates x,y,z is x(s), y(s), z(s) where s is
the trajectory curve length. Let do be the unstretched length
of ds, so that ds = do(l+e), where ¢ is the local strain. R
is the tension at the lower end of ds, and the fesolved com-

ponents along x,Y,z axes are

Let m be the mass per unit length of unstretched cable, and
X,Y,2 external force components per unit of unstretched length.
Further, let u,v,w be the components of the segment velocity.

Then the equations of motion can be written:



Ju _ 9 aX
(1.2.1) ms_t'—%-(Ra_s)"'Xl

with corresponding equations for the y and z directions. t
represents time. For the cable in water, the hydrodynamic
forces are included in X,Y,Z.

For two-dimensional problems, the equations may be
expressed in terms of local tangential and normal components

in the form

du_ B, _ ., ., oT
mag -~ V) =P+ 35
(1.2.2)
av , 9y _ T 9s
mmg tugp) =Q+ 553

where P,Q are tangential and normal components of the external
force, u,v represents the tangential and normal velocities and
¢ is the angle between the tangent and the horiiontal plane or
some other fixed direction in the cable plane.

Although Routh does not refef specifically to moorings,
the fundamental equations (1.2.1) or (1.2.2) form the basis
for many later attempts at an analytical solution for the
dynamic behavior of cables.

In a recent survey paper Choo and Masarella [25] make the
following classification of current analytical and numerical

methods for solving the equations of motion:
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1. method of characteristics,
2. finite element methods,
3. linearization methods,

4. other methods.

The methcd of characteristics is a direct mathematical solu-
tion of equations of motion of the form (1.2.1) or (1.2.2),

by integrating the partial differential equations along charac-
teristic lines in x,y,z,t-space. Although the method gives
exact analytical solutions for simple examples like straight
strings, real mooring problems require a stepwise computerized
solution method. With this method, the equations of motion are
"exact", but some approximation is normally involved in the
mathematical solution. Patton [13] has given an extensive
account of the formulation and solution of cable problems in
terms of characteristics.

Under the concept of finite element methods, are classi-
fied several schemes for conceptually modifying the physical
system before the mathematical formulation. Some examples of
finite element models are shown in Fig. 1.1.1. a) represents
a model of an inelastic cable where the mass of the cable is
assumed lumped at several nodes, which are assumed connected
by massless and inextensible strings. Such models were used
by Walton and Polacheck [26] and Dominguez and Smith [12]. 1In

type b) the connecting segments are represented as springs, so
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Discrete Element Types

that elongation can be taken into account. In type c) the

cable is modeled as a series of straight bars with distri-

buted mass, which are connected by joints at the nodal points.

Equations of motion can be formulated for each element. 1In
the general three-dimensional formulation, six equations are
required for each element. Alternatively, as will be done
in this thesis, one can reduce the element properties to
equivalent nodal properties and formulate the equations of
motion for each node. In the former case, one must solve a
number of simultaneous differential equations, while in the
latter case, the problem can be approached by the methods of
matrix algebra. Element type d) is similar to c) with the
addition of internal curvature so that slope continuity can
be represented in the model, while in c) the slope varies
discontinuously at the nodes. A more detailed discussion of

finite element methods will be given in Sec. 1.2.2.
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With the linearization method, the‘equations of motion of
cable-vehicle systems are linearized in order to study stability
and frequency response. The motion of the system is assumed
to consiét of small deviations from the state of equilibrium.
Then the non—lipear partial differential equations are reduced
to linear partial differential equations with curve length s
or ¢ as the space variable. Usually the perturbations are
assumed fo be harmonic oscillations with frequency equal to
some excitation frequency. Then the time derivatives may be
eliminated from the equations, which become ordinary differen-
tial equations in s. The equations are still not easy for
explicit solution in the general case, but may be solved for
certain special cases. Examples of this type of formulation
are Reid [14] and Hoffman, Geller and Niederman [15].

One problem in connection with the linearization method
is to what extent solutions to the linearized equations are
representative of the real physical problem. This question
comes up in view of the non-linear dependence of the drag
force on velocity.

A different approach, which does not approach the problem
via equations of fhe form (1.2.1) or (1.2.2) is given by Tsai
[16]. He formulates the problem by the bond graph method in
terms of power and energy variables and.accounts'for energy
supply, storage,'and dissipation throughout the system, based

on fundamental physical conditions.
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1.2.2 Previous work using the finite element method.

The finite element concept discussed in Sec. 1.2.1 is
slightly more general than what is usually understood by
the finite element method (see e.g. Zienkiewicz [9]). In
+he displacement method, a structure is modelled as a con-
tinuous system, but the total displacement field is assumed
to be described by the displacements at a finite number of
nodes. At internal points, interpolation rules are used to
describe the displacement field. By this description stresses
and straiﬁs are normally not continuous across the boundaries
between elements. |

If the model displacements are interpreted as generalized
coordinates, corresponding generalized forces may be defined
in terms of the real forces on the structure by using the prin-
ciple of virtual work. The total analysis of the structure
can thus be reduced to a system with a finite number of degrees
of freedom.

Some attempts have been made in recent years to formulate
finite element models, and this section will review some of
these. These models are similar in the formulation of the
equations of motion, but the solution methods differ.

Dbminguez}and Smith [12] used a set of n equations of

motion, for a system with n degrees of freedom, of the form

(1.2.3) mi + c§ + kg = £(t)
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(1.2.6) (U - AD)p = O,

where A=a"' and ¢ are either real or complex quantities and

where a = k~! is the flexibility matrix. Equation (1.2.6)

can be solved for 2n eigenvalues A and corresponding eigen-

vectors ¢.

When a,m,c are symmetric, a linear transformation matrix

T may be constructed from the eigenvectors, such that in

terms of new coordinates §{ given by

£

E:

13

the equations (1.2.5) become uncoupled.

This method seems to give a good method for analyzing
cables. However, a few seeming restrictions should be men-
tioned. From (1.2.3) it seems that the damping is assumed to
be linear and also that the forcing function f£(t)is a given
function of time. Hence the effect of velocity squared damping
has not been taken into account.

In [17] Leonard and Recker use a solution technique,
based on the theory of incremental deformations. The governing
non-linear equations are reduced to a system of quasi-linear

equations, which are dependent on the prior history of the
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system. To reach its current position, the cable is assumed
to have under-gone non-linear displacements from its initial
configuration ° to its present reference configuration FI
and then further small displacements to its current position
J

™. The relation between the various configurations is shown

in Fig. 1.2.2. With the cable in configuration FJ, it is

Fig. 1.2.2

Configurations for Incremental Integration

assumed to be divided into N elements. A simple linear varia-
tion of the displacement field over the element is assumed,
although more complex variations could have been admitted if
more nodes or nodal variables had been defined. From PI, con-
sidered as a reference configuration, the solution is proceeded
in a short time increment, and the configuration after this
step is then taken as reference configuration for the next
increment. The equation of motion for the current configura-

tion PJ, referred to FI, is derived by Hamilton's principle.
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In this way non-linear behavior is modeled as a sequence of
quasi-linear steps by successively updating the reference
configuration for a subsequent period.

In [18] Leonard extends the work in [17] by allowing ele-
ments to have internal curvature and slope continuity at the
nodes. With this formulation, a smaller number of elements
may be used for the same accuracy than by using straight ele-
ments.

In [17] and [18] the element model may be changed for
each new reference configuration.

Webster [19] obtains an equation of motion of the form

_M i + E(S,I_f_)g = _f_(g.lgrt) '

where the stiffness matrix K may depend on the current con-
figuration g and the force f. For solution he uses an itera-
tive technique based on Newmark's method [29], but a linear-

ized incremental technique, similar to [17], may also be used.
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CHAPTER 2. Forces and Equilibrium of a Cable Segment.

2.1 Geometric Relations.

2.1.1 Coordinates.

pos. d,;.rlof
=~/ proqression ds»> o0

~ . ~
?“ cable {ra_,ectonj

R

Fig. 2.1.1

Geometry of Cable

We consider the cable embedded in a cartesian coordinate
system xyz with unit vectors I,},E along the axes, Fig. 2.1.1.
Using the cable trajectory length s as parameter, points on
the trajectory can be represented by the radius vector ?(s),
or ?(s,t), if the configuration is dependent on time t.

When the trajectory is time dependent, it is useful to
label points on the trajectory Euch that an individual par-
ticle in the cable always has the same coordinate. We then
introduce the Lagrangian coordinate Sy which can be inter-
preted as the trajectory length parameter in some'standard
situation, e.g. in a completely unstretched state or under

some given state of tension, e.g. in equilibrium. In terms
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of Sq the length L0=fdsO is independent of the state of the
cable, while L=fds represents the total cable length and

is time dependent. 1In terms of s a particle may have a
variable coordinate value under dynamic conditions.

For a short segment dso, strain is defined by

ds-ds
o)

(2.1.1) € =T- .
(o}

For a simple elastic material there is a relation between

tension and strain

Most materials have some internal damping, which can most

simply be expressed in the form

(2.1.2b) R = R(e,e),

depending also on the time rate of change of strain, €.

The relation between so and s can also be expressed as
ds = dso(1+e).
Hence we can also then write the cable trajectory in the forms
-> ->
r(so) or r(so,t) .

Instead of using the cartesian coordinates xyz, it may be
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convenient to express various parameters of the cable, e.qg.
displacements away from equilibrium or forces acting on the
cable, in terms of directions tangential and normal to the
local cable direction. We can do this by using the theory of
space curves (Hildebrand [3], ch. 6). We start from the

parametric equation of the trajectory
r(s) = x(s)I + y(s)g + z(s)K.

The tangent vector is

e d; dx + dy = dz » > >
t =395 gs ! t+35 3t 5 k = a1 + ay) + a3k,
The principal normal vector is
—>
> _ dt _ d’x =+ d’y + , d%z p, _ +
n=pgg T P(geT it ger It gz k) = ByivRyIe5k
where p is the local radius of curvature
2 2 2 2 2 2
-1/2
o= (E &+ &2
> > > dE 1> -»
Since t-t=1, it follows by differention that t-ag = at-n =0

i.e. that £ and n are normal, assuming n#0. We can finally

define the bi-normal vector b by

- > > -+ -+ >
b = txn = ‘Yll +Y,] +) 'y3k '
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so that the triad %,H,B defines a right-handed orthonormal
intrinsic coordinate system at each point of the trajectory.

In general E,n,B are functions of s (or so). For a
two-dimensional confiquration £ and 1 lie in tﬁe cable plane,
so that b = const represents the normal to the cable plane.
In the subsequent theoretical treatment the general three-
dimensional case will be discussed.

In the relations

> > -+ >
t = 0,1 + ay] + a3k
> > + >
(2.1.3a) n = Bll + B,] + B3k
b 1+ v,9 b vk
= Yll 72] ) 'Y3
3 3 3
we have £+ = I a,2=1, B = I B;2= 1, BB = 3 v;%= 1,
i=1 * i=1 i=1
3 3 ] 3
t'n= I a.B, = 0, t*b = I @ y; =0, aeb = & B;v; = 0.
j=1 1 i=1 i=1
Then we can form the inverse relations:
i=3FHE+ Tnd+« 3-B)b = a1€ + elﬁ +.ylg

> > -
(2.1.3b) j = azt + an + Y2b

=¥
Il
Q
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2.1.2 Transformation of vector components between cartesian
and intrinsic coordinates.
Let 3(?) be a vector defined at point r (e.g. displace-
ment or force) with cartesian components u,v,w. Using

(2.1.3a,b) we get

> + >
uir + vj + wk

o+
1

-»> -+ . =
(ua1+va2+wa3)t + (u81+v32+w83)n + (gyl+vy2+wy3)b

= ¢t + nn + b,

where §,n,; are the intrinsic components of 3. The relation

between u,v,w and £,n,z can be represented on the matrix

form
£ ;03 Gy Og. {u\
n)= By B, 83}{\\')
or
£ = Au

where £ and u are matrix column vectors, A is the transforma-

tion matrix. From the relations satisfied by the coefficients
@;sB;vY;s We see that aaT=1, aT=a"11=a"!, where AT is the

transpose of A.

Hence the inverse 5f1=§? and 3?5_15?5?5.
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2.2 Forces on an Infinitesimal Segment of a Continuous Cable.

Equilibrium Relations.

v

R

h+é$—‘fds\|

. ¥

h pdh g,
hnijsd)

Fig. 2.2.1

Geometry of Cable Segment

We consider the situation shown in Fig. 2.2.1. The
infinitesimal segment of length ds and cross section A at
length parameter coordinate s is considered cut from the
cable. The forces on this segment are to be determined.
Several parameters contribute to determine the forces.
Geomeﬁric parameters of the cable are cross sectional area
and shape. Physical properties of the cable are density,
elastic modulus, and internal viscous coefficient. Configu-
ration and state of motion are represented by the cable direc-
tion, velocity and acceleration. The properties of the

surrounding water are determined by the density, velocity
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and acceleration. The interaction between cable and water

is described by the normal and tangential drag coefficients
and the hydrodynamic mass coefficient. The state of deforma-
tion is given by the strain ¢ and strain rate‘of change €,
the state of stress is given by the tension R. Further the
properties of the trajectory enters via the tangent direction
t and the curvature « . Further parameters are the accelera-
tion of gravity and the depth below the surface. .

We make a somewhat arbitrary distinction between static
and dynamic forces, the former including the forces that
occur when the cable is static, while the latter are the
forces which occur only in a dynamic situation. Of course,
the forces classified as static also occur in dynamics, but

may have different expressions.

In Fig. 2.2.1 the following symbols are used:

$w: water velocity

Zw: water acceleration
3c: cable velocity

gc: cable acceleration
Pyt water mass density
Pt cable mass density
>

g=-g§: ‘acceleration of gravity

h: segment depth below surface
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5-

-

and acceleration. The interaction between cable and water

is described by the normal and tangential drag coefficients
and the hydrodynamic mass coefficient. The state of deforma-
tion is given by the strain ;.and strain rate of change €,
the state of stress is given by the tension R. Further the
properties of the trajectory enters via the tangent direction
t and the curvature k . Further parameters are the accelera-
tion of gravity and the depth Below the surface. .

We make a somewhat arbitrary distinction between static
and dynamic forces, the former including the forces that
occur when the cable is static, while the latter are the
forces which occur only in a dynamic situation. Of course,
the forces classified as static also occur in dynamics, but
may have different expressions.

In Fig. 2.2.1 the following symbols are used:

- .

V! water velocity

> .
a,* water acceleration
-»> .

A cable velocity

-> .
a.: cable acceleration
Pyt water mass density

p 2 cable mass density
3=-g§: acceleration of gravity

h: segment depth below surface
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2.2.1 Static forces.

1 .P ‘.‘,.'. ‘:n\ ('.
/;Rqa;:)(* ::1%.‘“

o

Static Forces on Cable Segment

The static forces acting on the segment are shown in
Fig. 2.2.2:

i) Tangential friction drag force ftds, due to the

. +=+.+-)- >

tangential component V.. (vw t)t of v,.

ii) Normal drag force fnds, due to the normal component
-> _++ f+
Von = Vw th of V.-

iii) Buoyancy force, ﬁgds, due to the hydrostatic pressure
on the segment. Since the pressure acts only on the sides
of the element and not on the end faces, the buoyancy force
is not in general vertical.

iv) Gravity force, ﬁds, due to the weight of the segment.

v) Tension forces tRE on the end faces. This is assumed

to be the only force transmitted between neighboring segments
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in the model of a completely flexible cable, so that shear
forces and bending moments are disregarded. This assumption
must be dropped for a cable with significant bending stiff-
ness. Because of the curvature, the resultant of the end
forces will not be in the tangent direction.

Writing the forces ftds, fnds, etc., we relate the
force density to. the current segment length ds. We can
also relate force densities to the Lagrangian segment length
ds0 by writing Ftds = ft(l+e)dso = Ftodso, et., so that the
Lagrangian force density becomes Fto = ﬁt(1+e), etc. For
dynamic problems this is advantageous, since the mass den-
sity of the cable is constant in terms of Sy but not in
terms of s. However, for many practical moorings, e.g.
steel wire ropes, € is usually small compared to 1, so that
the distinction in such cases is not of large practiCal impor-
tance.

In the subsequent expressions, we assume that %,E)B are
known in terms of I,?,E, i.e. egs. (2.1.3a,b). We further

use the symbols:

Cyt normal drag coefficient
Cp tangential friction drag coefficient
4a: .effective diameter of cable segment

K Local cable curvature, p = K_l: radius of

: curvature.
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i) Tangential friction drag force.
: . . > > > >
Tangential water velocity component 1is Vi =(vw-t)t.

The friction drag force is then:

nd|3wt|3 ds

(2.2.1) F_ds ot

-1
t 2 PwCr
If the cross section is not circular, e.g. in the case of
a chain, md can be considered as the effective circumference,
upon which the value of Cr is based.
ii) Normal drag force.

Normal water velocity component is v, The

wn Yw Vwt®

drag force is then:
(2.2.2) ¥ ds = 3

If the cross section is not circular, d can be considered as

the effective diameter for the value of Cn*

(iii) Buoyancy

We now consider a segment with a simple cross section,
normally approximately circular. Slightly different reasoning
must be used in the case of e.g. a chain.

If we use Archimedes' principle for the whole volume Ads,
we must subtract the pressure integral over the end faces,

which are not in contact with the water, to get the correct
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pressure integral over the sides.

_ + 1 dh >, 1 at
(2.2.3) 'ﬁgds = p,9AdsI+p gA(h+ 5 Go ds) (E+ 5 )
- p..gA(h- 1dn ds)(%- L QE ds)
w 2 ds 2 ds
=p gAds(§+ dh t+h QE)
w ds ds
= p,Ads (-Ex(gxt)+gh k 1) ,
. dh > > R 5> > > -+ e .
since g 7= = gt and tx(gxt) = g—(g-t)% = g, where 9, is

the component of E normal to t. This expression gives the
buoyancy force as the sum of one component along —En and
one component, involving the curvature K, along n. §n is
always in the vertical plane, while generally n can have

. . . . + .
any direction. The term involving hK n expresses a contri-
bution due to the absolute pressure pwgh=p and the curvature
K . In any case, ﬁg has no component along t. In a two-

dimensional cable in a vertical plane, an and n will have

the same or opposite direction.

iv) Gravity force.

This can be expressed as

- ->
(2.2.4) ngs = pcAdsg .
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v) Tension force.

At the upper end the tension force is:

+
_ 1 4R 2. 1 dt
ﬁl = (R+ 5 3g ds) (E+ 5 T ds)

where R is the tension at the segment midpoint, t is the

tangent at the segment midpoint. At the lower end we have:

ﬁ 1l dRrR

, = -(r- 2 L as) -3 £ as) .

&le

Hence, the net tension force on the segment is, neglecting
terms small of second order ds?:
at (4R
d

] +_++_d_[_{_+___++
(2.2.5) FRds = R1+R2 = (ds t+R dS)ds = S t+RK n)ds.

2.2.2 Dynamic forces.

The following symbols are introduced:

ot relative water velocity to the cable

py <¥
I
<+

>
-V
a
w C

H relative water acceleration to the cable

hydrcdynamic mass coefficient of the cable

@]

Modulus of elasticity

Q o™

Internal viscous coefficient of the cable.
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V and a have tangential components Gt=(§-€)g and §t=(§-g)g.

5> >

The normal components are Vn=§—§ and 3n=a—a

t t°
When the cable is moving, the tangential drag and nor-
mal drag forces can be expressed by (2.2.1) and (2.2.2),
when'ir*wt and $wn are replaced by the relative velocities
vt and Vn. The buoyancy, gravity and net tension resultant
remain unchanged. Tension here means elastic tension.
In dynamics we must also consider the following forces:
i) Inertia reaction of the cable, fc' due to the
acceleration gc.
ii) Inertia reaction of the water, fw' due to the rela-
tive acceleration, —3, of the cable, relative to the water.
iii) When there is acceleration of the water, an additional
pressure gradient will exist. This produces an unsymmetric
pressure distribution over the cable sides. This can be
represented by a fictitious (by d'Alembert's principle) force
field -pwgw, similar to the gravity force pwa. A correspond-
ing fictitious buoyancy force Ew is induced by this pressure
field. The details of this fictitious buoyancy is discussed
in Batchelor [4], ch. 6.
iv) If the cable is assumed to have a longitudinal force,
dependent on the rate of change of sfrain, this force V
can be represented in an appropriate viscoelastic model.

The various forces are again taken as they act on the

cable, the inertia forces being defined by d'Alembert's
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principle. The dynamic forces are shown in Fig. 2.2.3.

- dt"
/(v+§3{d=)(**é;ud=3

-
-(v- "'d!ds)(t -5
Dynamic Forces on Cable Segment

i) According to d'Alembert's principle, the inertia

reaction of the cable segment is:

> >
(2.2.6) chs = -pcAdsac .

ii) We take the inertia reaction, fw, of the water as
proportional to the normal component of the cable accelera-

zion relative to the water, i.e. -gn’ and as opposing this

relative acceleration:

+> -+ >
(2.2.7) 'fwds = —cp Ads(-a) = P Ads (B, -a )

. . +.+++_+_+.++
with the normal components a__ =a. (aw t)t, a3 (ac t)t.
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iii) According to Batchelor [4], (2.2.7) describes the
inertia reaction as seen from a coordinate system accelerating
3 0 -)
with the water acceleration a,. The effect of the ficti-
tious force field _pwgw can be expressed, similarly to the
buoyancy force ﬁg in (2.2.3), by the fictitious buoyancy

ﬁw‘ We substitute —Ew for ?5 in (2.2.3):

(2.2.8) B ds = p Ads(Ex(@ x¢)) =

> -+ >
prds(aw—(aw-E)E) = p Ads3_ .

The effect of curvature can also be included by substituting
the absolute pressure p for pwgh in (2.2.3).
Adding (2.2.6), (2.2.7) and (2.2.8), we get the total

inertia force .

Tas = (Ic+fw+§w)ds = -ads[(p*c )Ecn+pc30t-(1+cm)p a 1,

Mpw w wn

where gct=(3c-t)€ is the tangential component of the cable

> >
=a_-—a

. -> .
acceleration,a, =a_ is the normal component.

ct
Contributions can also be written for inertia reactions

of the water to longitudinal acceleration of the cable.
However, these forces are considered practically negligible,
compared to the e.g. the tension force.

iv) The simplest model to represent a strain rate of

change dependent force is the Kelvin (or Voight) viscoelastic
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model, as shown in Fig. 2.2.4. This is represented as a

. ‘{~ Ir— .
- L -
| R
Xy X, I_;:v:(a
Fig. 2.2.4

Kelvin Viscoelastic Model

parallel coupling of a linear spring k and a viscous dash-
pot c. When xl,x2 are the end point displacements, il,iz

the velocities, the force F is

F = k(xz-xl)+c(i2—x )

1

For an infinitesimal segment dso, we make the correspondences
Xy=Xy > edso, Xy~Xy = edso .

For a linear elastic material we have k(xz—xl) + EAe. Further
the linear viscous force can be represented by c(iz-il) > CVAé.
Hence we can write the force over the viscoelastic cable seg-

ment:
F - EAe + ché

'Hence the net visco-elastic force on the segment ds is

. >
(2.2.9) Vds = %5 (cyAit)ds = CVA(%%-E + é%%)ds.
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The elastic force is (cf. (2.2.5)):

¥
= - 9 - JE > ﬁE
(2.2.10) FRds = a3 (EAFt)dS EA(—— t + as)ds.
(2.2.9) and (2.2.10) are constitutive relations for the
cable, relating internal forces to displacements. Above
we have used the name tension only for the elastic part

of the axial force.

2.2.3 Equilibrium relations.

We are now in position to express the conditions for
equilibrium for the segmenf. We consider dynamic equili-
brium first and specialize to static equilibrium afterwards.

Setting the sum of all forces (2.2.1-9), we get the

condition of dynamic equilibrium:

O O T S R S

(2.2.11a) F +F +Bg+Wg+FR+IC+IW+Bw+V =0

If we transpose all the inertia terms I-IC+TW+BW, we have

the form:
+
{(2.2.11b) A[(pC+CMpw)acn+pc ct -(1+4C )pw Wn]
= F+F 4B _+W_+F 4V
T "t 'n g g ’
In the static case 3c=§w=$c=0, é=0. We then have the static

relation:



(2.2.12) P 4+F +B +W +F_ = 0

This can also be written in terms of components along the

E,H,g directions. We write §t=Ft€.

Tangential direction:

+pcA§°€ + dr _ 0

(2.2.13a) F 35

t

Normal direction:

(2.2.13b)  F_-n+ghhgr (p~p )Ag"D + Rk = 0,

Binormal direction:

5> > > >
(2.2.13c) Fn-b + (pc-pw)Ag°b‘— 0.

2.3 Forces on a Finite Element.

In this section the force expressions and equilibrium
relations are adapted to a form suitable for the finite
element method. The analyses here will be concerned with
one single element, deferring the treatment of a total sys-
tem to Ch. 5.

In the present treatment a finite element will be assumed

as a straight segment of finite length L, extending between
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terminal nodes i and j. Each node has thrce displacement
degrees of frcedom, hence a total of six degrees of freedom
for each element. More general formulations can be obtained
by using elements with additional internal nodes and/or
with more degrees of freedom at each node. Although one
can obtain results of the same accuracy with fewer elements
by using more complicated element structures, it is not
obvious that a saving can be obtained in computational
effort, since the amount of computation is related to the
total number of degrees of freedom, rather than the number
of elements.

After defining the nodes, one needs to define the
internal structure of the element. This is done by inter-
polation functions, which express the position of any point
in the element in terms of the nodal positions. 1In the
present formulation the interpolation to interior points
will be linear functions between the nodal positions. 1In
addition to position variables, and hence also velocity and
acceleration, other variables may be specified as nodal values
and interpolated linearly to internal points, e.g. water

current and force densities.

Remark about notations.

In expressing relations for a finite element, both matrix

algebra and vector algebra are used. Two different notations,



40

which are used to represent various variables, should be
pointed out.

Vectors, like position ¥ and force T, represent three-
dimensional variables in space. 1In a cartesian frame,
these vectors can be expressed in terms of their orthogonal

components along the x,y,z directions, e.g. r ,ry,rz and

X

the basic unit vectors I,ﬁ,f, thus

4

+r3+rk.
x y z

However, the components rx,ry,rz can also be compiled into

a column matrix (3x1):

r is denoted a matrix vector or sometimes only a vector. Since
T and r belong to different branches of mathematics, it may be
misleading to use the name vector for both. We shall here use
the name vector (or possibly space vector) fo} ¥ and matrix
vector or column vector for r.

A general matrix is denoted by A. ég may be used to

stress that A has n lines and m columns.
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Equivalent nodal forces.

Fig. 2.3.1

Distributed@ Force on Finite Element

Consider the straight element shown in Fig. 2.3.1,
extending from node i to node j. The element has length L.
If s is the length from node i to a point of the element,
we define the dimensionless coordinate £=s/L. t is a unit
vector along the element from node i to j.

a(s) is some force distribution along the element. We
reduce this force distribution to nodal forces %ai and faj’
which are "equivalent" to %. Two methods can be used for
this:

i) By the principle of virtual work, we consider virtual
displacements Ki and Kj of the nodes. The virtual work awl
by the forces fai and faj is then equal to the work GWZ of a.

ii) Using a simple static reasoning, we determine fai'

faj such that their resultant and moment are the same as
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those of &.

We consider both methods.
i) Under the virtual displacements gi and gj’ the vir-

tual work of f . and f . 1is
oi aj

At the point £ of the element, the corresponding virtual

displacement is 3(5) = gi(l-g)+32§. Hence the virtual work

of a is
1 1 1
W, = I o $Ldg = (j &(1-5)Ldg)-3i+(j&ngg)-3j
0 0 0
To have GWl = 6W2 for erbitrary 31'3j' we must have
A 1
fai =L JE-(I-&)dg
0
(2.3.1)
1
aj = L J QEAE
0

ii) Statical equivalence of the resultant requires:

1
F. o+ F . = J aLdg

ai aj
‘ 0
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Equivalence of moments about node j:

1 1
(LE)xfai = J L(1-£) ExaLdE = (LE) x I (1-£) aLdE
0 0

Provided the integral is different from 0 and txaz0, we

must have

t . -1

wi 3 (1-£)de

e

The other expression in (2.3.1) can be derived similarly
by taking moments about node i.

This static reasoning cannot be applied to forces 1
parallel to the element direction.

To derive expressions for the equivalentbnodal forces,
we use the expressions derived in Sec. 2.2. We assume that
the element properties are homogeneous over its length. We
follow the classification of Sec. 2.2, distinguishing between
static and dynamic forces.

We assume that the water current velocity and acceleration

-+ -+

are given by their nodal values v i and inter-

->
V. .,Q .4 .
wi’ ‘wi’'“wi’ wj

polated linearly to interior points.
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2.3.1 Static Forces.
i) Tangential friction force.
The tangential velocity component of the relative water

velocity at £ is:
- _ i _ > +‘a.+‘+= _ >
Vo(8) = (V,-8) (1 O (Vi By EE= (v (1-0)+v 00 E

Force on segment ds = Ldg:

P

> 25
$F(E)Ldg = t5 chTndletI tdg,

with + if V -€>0, - if Vt-€<0. Substitute for Vt

t
b = 1 pocondL(VE, (1-£) 242V, -V . (1-8) £+02.£2)¢
F~ *7 PuCr ti ti” 'tj tj )

To compute the equivalent nodal forces, we must consider
two cases, dependent on whether $F change direction over

the element or not.

Case I: direction of $F is the same along the element.

Direct integration according to (2.3.1) gives:

1
By = b | $p0-0ag -
0

1 1 2 re
i+ 3 vV,.V V.t

1 12 1
(2.3.2) tz pwcTﬂdL(4 Vt i tj+ 17 Ve;
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cpmdL (V2 + ViVt TV E

with + if Vti'vtj>0’ - if v i,V 0.

ti’ Ve <

Case II: direction of $f changes over the element.
This case occurs if the signs of V,i and th are different.

Vt is zero at

_ lvtil

Ivti |+|th l

o

We can now write the nodal forces in the form

p 1
t; = L[J $p(1-g)act j $p (1-p)acl,
0 Es

where the sign of $F is different in each integral. Carrying

out the integrations, we get:

Boi = +3 pyCpmaL V2, (1-2(1- ) %)

2 4,5, 4 1 o0 2.3 1,4 1 0>
* 2V V5 (Bom3Ea Rt T HVE 5 (5ESFEe T 1T

(2.3.3)

- .1 2 2_ 4,3, -0 1
Epj = t3oycpmdLIvE, (62-36243e8 1)

2,3 1 .4 1 .1, y_1y13
2V iV (385 138071 taVey (255710 1.
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Here we take the upper signs if vti>0’ th<0, lower

signs if Vv o, Vt.>0.

, <
t1 ]

ii) Normal drag force.

a. General case.

Normal relative water velocity component:
v e =V - Ve

= (Vi—Vti)(l-g) + (vj-vtj)g =V .(1-g)+vnjg.

nl

Force on segment ds=Ld:
$.LdE = 2p c dL|¥ [T ac
N 2"W'N n''n

Since the direction of Vﬁ may change along the element,
we decompose into two directions defined as follows: con-
struct a vertical plane through the element. Let normal
direction Hl lie in this plane and normal to %, while the
normal direction 32 is defined by 32=fx31. 31 and Hz are
unit vectors, which can be expressed in terms of the cartesian

. > > >
unit vectors 1i,j,k.

We now decompose Vn, ﬁhi, and an along the directions

- ->
n n1i1 * Vhots
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- -
ni = Vni1™ t Vhia")

<t

e > -+
Vni T Vaj1t1 t Vpj2ts v

where an = Vnil(1-£)+vnjlg, Vn2 = Vniz(l—£)+vnjzg
Also [V | = (v2,+v?2 y1/2
n nl "'n2

Decompose $N into components $N = ¢Nlﬁl+¢N232'

Hence

1

7PwN Ldg

> >
dL|Vn|Vn1d£n1 =

->
¢y LdEny a1

I
It

>
dL|V_|v_,ded, Ldg

> 1
Ldén, = 3P4y 2

N2

We hence find the expressions for the nodal forces:

1 1 1
fy; =L J$N(1-£)ds = L[(j¢Nl(1—5)dg)ﬁl+(J¢N2(1—e>d£)321
0 0 0
1 1 S 1
£y =L I$N£ds = L[(J¢ledswﬁl+(j¢N2£da)321
0 0 0

In the general three-dimensional case, where Vnil’vniZ'anl’

vnj2
$N2 become complicated and not explicitly integrable. One method

may have arbitrary values, the expressions for $Nl and

to avoid this is to use numerical integration, the other is

to simplify by assuming that $N has a linear distribution
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along the element. The latter approach is not completely
consistent with our approach of assuming a linear distri-
bution of velocity along the element, but may still be
sufficiently accurate for practical purpcses. 1In a two-
dimensional formulation the expressions are simplified and
can be explicitly integrated.

We assume a linear distribution of $N along the element.

At the nodes k=i,j we have

_ 1 2y
Sk = 7Pwend V| 8y

where Ek is a unit vector in the direction of vnk' Then at §&:

By lE) = gy (-0 +dy5-E-

The equivalent nodal forces become:
1

=L f[(1-£)2$Ni+(1-5)£$Nj1da
0

L
= g2y Ny

(2.3.4) 1
Bey = b [lea-ndy rerdygas
0

_ Lt
= gy +2dyy)

For a two-dimensional cable in a vertical plane, there

are no forces in the direction of 32, so $N=$Nl' Then we
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can integrate the force distribution for $N bascd on the

linear velocity distribution. We use V_ .=V ..n,, V .=V ..n4
ni ni 1 nj nj 1

_ l = 2 _ l _ o>
by = tZouCyd |V 28] = #5 ppcpa(v (1 E)+V 8 *ny,
with + sign if Vn-ﬁl>0, - sign if Vn-ﬁl<0. We must consider

two separate cases, dependent on whether $ changes direc-

N

tion over the element or not.

Case I: the direction of $N is the same along the element.

1
by - | dyamoa
0
= l l 2 l l_ 2 >
= £7eC AL (V0 * §VniVny ¥ 13Vni' ™1
(2.3.5) 1
Ny = L J $yEde
0
= l l_ 2 1, 'l 2 V&
= 1500\ AL(T3Vhi * §VniVng t Va5 1
. . f g _ _ > .+
with + if Vni-n1 = Vni>0, if Vni nl<0.

Case II; the direction of $N changes along the element.

-5
We have V= Vni(l-g)+vnjg = 0 when

|Vhil

Vg 117,51

o
Il

g0
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to 1
fNi = ;pr daL {l $N(1—g)dg+ [ $N(l—g)dﬁ]
E0
to 1
Bos = Joucydl | [ysaer [ #yeacr
0 £,

. . . -+ .
where different signs are valid for ¢y 1n [0, £,> and <g

Carrying out the integrations, we get:
(2.3.6a) . = top CydL {FVZ, (1-2(1=E ) ")
T Ni *2Pw-N o

+ 2V V5 (85T 3 o 2€o 12) +VE3 (353 253’I§)}ﬁ

ni nj
. . s~ 3 g > = . .~ =
with + sign if ﬁni-nl>0, an-nl<0, - sign 1if ﬁnicﬁl<0,
-
§nj-n1>0.
Correspondingly at node j N
_"l 2 2. 3_
(2.3.6b) fNj = ¥ 5p,CydLiV2; (E2-3 g +5E0- 12
2 4o 3
+ 2vnlvnj(3g go 12)+ v (Zgo 1)}n1,
with - sign if V >0 V -n <0, 4+ sign if Y ni® 1<0,
an-nl>0.

1].

b. Linear drag force for small cable velocities in current.

It will be useful to have an expression for the linear
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deviation of the drag force, due to small velocities of the
cable. Gw is the non-vanishing water velocity and GC is
the cable velocity. The relative water velocity §=$w—$c

has normal component V =v _-v We assume |v__|<<|¥V
p n - wn cn M

cn’ w I‘

For simplicity we also assume that $cn and Gwn lie in one
plane through the element, i.e. we consider a plane configura-
tion.

The normal drag force on a small segment ds=Ldf is:
__1_ > o 2 >
$y(e)Lde = spcpdlv, -v_ |*dEe,

where is a unit vector in the direction of ﬁn' In equili-

brium c=0, so the corresponding force is:

fo) _ 1 > P
$N (E)LAE = 5p,CydL |V, |2dEE.

We look for the deviation of the drag force due to 3cn, $N-$No.

This may be expressed as

o _ 2Lz l—)-
(¢N-¢N)Ld£ = prNdL( v v__+ 2|v

24y
e
wn cn n | )

(o]

Neglecting the term |$cn|2, we have the linear deviation force

>

+> > >
nf{g)Ldg = -prNdL(vwn-vcn)e

This equation shows that ﬁ is always in the opposite direction

of zcn' By linear interpolation we have
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<v

-> -+
(1=-E)+v. L€
wn vwn:L(l 2 an]' !

<4

> ->
cn Vcni(1_£)+vcnjE :

Hence

.+ _ 2 - .—> s .-)- _
Vcni(l £ +(an' VenitVwni Vcni)(l £) &

- -
n(g)__pWCNdL[an' i “enj ‘wnj

1

-5
+ VvV __.ev__.E2]e .
wnj cnj

The nodal forces are then, assuming unchanged direction of e:

1
t. =L f n(l-g)dg =
0

-5

— 1+ L] l___). . ——" L
B pWCNdL[4vwni Vcni+12(vwn1 cnj wnj cni)+l2vwnj an]e
1
-
ij = L J nede
0
_ 1 > - 1 - V> -+ = l—r = >
= PNt 13V0ni" Venit T2 Vuni VenitVuni Veni) 2 wni Vcnj]

iii) Buoyancy force.
Since the element is assumed straight, we get directly
from (2.2.3), with k =0, the buoyancy force on the small seg-

ment LdE,
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Agx(§x€)Ldg,

$BLdE = =Py

and the nodal forces:

(2.3.8) Iy, =0 = - 5 o ALEx(Exd)

iv) Gravity force

We have for the segment Ld¢ from (2.2.4)
$,LdE = p AJLdE,
w c

and the nodal forces

- =1
(2.3.9) %Wi = fwj = 50 ALY

v) Tension force
Different assumptions can be made about the tension
force. It may be assumed to be constant, R, in each element.
In this case there will be a tension discontinuity at nodes
between adjoining elements in a total model. Alternatively,
the tension may be assumed to have nodal values Ri and Rj'
Since we are considering forces as they act on the

nodes, we have the nodal forces

(2.3.10) fRi = Rit, ?Rj = —RjE ,
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where Ri=Rj=R if the tension is taken as constant in the

element.

2.3.2 Dynamic Forces.

We use the notations{

-»> -> N . . . .
vwi'ij : water velocities at nodes i,j. The tangential
-+ >
components are . .
po vw1t'vw3t' normal components
> > '
V . sV .
win’ 'wjn
- - . o N N
ci,vcj : cable nodal velocities, with tangential components
v v normal components v v
cit’cit’ ponen cin’Vcjn®
-+ -»> > > -+ . c g e
V.=v .- ¢ V.= -V_.: relative water velocities at the

iVwiVei j- wj cj
nodes, with tangential components Vit,vjt,

o
normal components vin’§jn'

o+
+

water accelerations at the nodes, with tangential

Y- S

wi’ wj

coO nents 3 3 normal components 3 a
mpo wit’“wjt’ p win’“win’

gci'ECJ : cable nodal accelerations, with tangential components
a a normal components a a
Acit’%cit’ po cin’“¢cjn*’

> > . , .

ai,aj : relative water acceleration at the nodes, with tan-

gential components ;it';jt' normal components

a, ,a
in’“jn°



i) Inertia reaction of the cable.

At point { the cable acceleration is
> > -+
aC(E) = aci(l-€)+acj5
For segment Ld{ we have from (2.2.6) the inertia force:
+
C = - T
$ILd“ pCALdHaC

Hence the nodal forces are:

1
> _ _ __l -> >
fIi =1 J (1 E)$Id€ = GpcAL(Zaci+acj),
0
(2.3.11)
___]:_ > >
%Ij = 6pcAL(aci+2acj).

ii) Hydrodynamic inertia reaction.
At £ the normal component of the relative water

acceleration is

-+ + ->
an(E) = ain(l—E)+ajn£

From (2.2.7) we have the hydrodynamic inertia reaction on

the segment Ld§
. -
$HLdg = Cp,ALdEa .

Hence, the nodal forces are:
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- _]_‘ » >
in = EQMprL(2a1n+ajn)
(2.3.12)
_ 1 - >
?Hj." chpWAL(ain+2ajn)
iii) Fictitious buoyancy force.

The normal component of the water acceleration at £ is

->

-+ -
a =a ., (1-¢)+a . £
wn win w

n

According to (2.2.8) we have the fictitious buoyancy force

on segment Ldg.
$.LAE = p ALdEa
A WP wn

Hence, the nodal forces become

_ 1 >
fAi T 6 wAL(zawin+awjn
(2.3.13)
1 > >
fAj B GDWAL(awin+2awjn)‘

iv) Internal friction forces.

. > _ >
The nodal tangential cable velocitles are Vcit_vcitt’

-5

cht=v .. £. Hence the rate of change of strain is:

cjt
- _ VejtTVeit
L L]
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According to Sec. 2.2.2 iv, we have the nodal forces

f.=na 'E’—ACV(* -V )
vi = BCEt T T Wit Veit
(2.3.14)
S i AT SR S
vy vt T L cit Veit’ !

where cy is the internal viscous coefficient per unit area.
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CHAPTER 3. Static Equilibrium Configuration.

Before starting on a dynamic calculation, it is necessary
to know the statical initial configuration. 1In many cases
this can be approximately determined analytically. This is
in particular the case with a heavy cable with a two-dimen-
sional configuration in a vertical plane. If there is no
current, the equilibrium is given approximately by the
catenary. With current, a good approximation can be obtained
from Pode's tables [10]. Several methods to estimate equili-

brium configurations are described by Berteaux [11].

3.1 General Method.

Here we shall indicate an approach which is applicable
in the general three-dimensional case, connecting directly
with the finite element model described in Chapter 2. The
method is iterative, since, in addition to satisfying
equilibrium conditions at internal nodes, we must also sat-
isfy certain boundary conditions at the upper and lower ends.

The solution then consists of assuming certain conditions
at the upper end. Such conditions may be tension and direc-
tion of the cable. Then one proceeds down the cable by
calculating the tension and direction of each element from
equilibrium conditions at the internal nodes, until the bottom
is reached. Then the computed conditions at the bottom are

compared with the imposed restrictions. Restrictions a. the
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bottom may be a maximum tension at the anchor, a maximum angle
of attack or a maximum horizontal distance (excursion) between
the anchor and the float. In some technical appiications the
design of the anchor requires a horizontal pull force, which
is achieved by having a certain length of cable (or chain)
lying on the bottom up to the anchor. In particular applica-
tions, other restrictions may also apply.

If the restrictions at the bottom are not satisfied, it
is necessary to make a new iteration by choosing new trial
conditions at the upper end. A systematic method must be
used to modify these conditions in a direction which tend to
better satisfy all boundary conditions. A systematic approach
for dealing with the static configuration of a multileg system
is the method of imaginary reactions, developed by Skop and

O'Hara [24].
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3.2 Equilibrium Conditions at the Nodes.

The main analytical problem in this connection is to
determine the configuration down the cable from the assumed
upper end conditions. This can be done by a sequence of

nodal equilibrium considerations. Consider the two adjoining

vl.:d' 1 \‘

ity i1
© Fig. 3.2.1

Two Adjoining Finite Elements

elements i-1 and i in Fig. 3.2.1, with nodes i-1,i,i+l. The
element tensions, assumed constant in each element, are Ri—l
and R, and the direction vectors are gi—l and gi' The

Gy . > .
current velocities at the nodes are Vio1'VirVi4yys We can
compute the total equivalent nodal forces for each element,

according to Section 2.3, i.e. fi_l, f;-l, fi, f; . Hence we

can write the equilibrium condition at node i



» > i-1 . gi
Ri_qti_q + RE, + 32 + fl =0,

which may be solved w.r.t. Ri—l or gi—l' In the former case

we scalar multiply the equation by Ei'

2i-1 21, -
R+ (FX7 484 .2,
(3.2.1) R, , =+ 2 1 i

(3.2.2) t

i-1

These equations are valid when all parameters are known. In
progressing down the cable, the state of element i is known,
and it is required to determine the state of element i-1.
(3.2.1) and (3.2.2) can then be used as basis for iteratively
determining the state of element i-1. We start by assuming
%i_1=%i and estimate R, _; from (3.2.1). Next we‘use (3.2.2)
to estimate Ei-l' In this case the equation should be slightly
modified

. R
(3.2.2a) t.

i-1 ~ '
i-1

where ¢ is a factor to ensure that En-l is normalized,
lfi_l|=1. For many practical purposes, this first approxima-
tion is sufficient, since the direction change between adjoining

elements is small. Otherwise, the state of element i-1 can
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be computed iteratively using (3.2.1) and (3.2.2a)

In this iteration process, properties of element i-1
must be known. In particular, the element length (e.g. in
terms of the unstretched length LO) and the elongation-tension
properties R(e). Hence, when the tension has been estimated
as R, the corresponding strain is e and the length is
L=L0(l+e). If ;i is the known radius vector to node i, then

the radius vector ;i—l to node i-1 is determined by

->

Ti-1

=7, - Lt
-t i-1°
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CHAPTER 4. Forces Due to Deviations from Equilibrium.

In this chapter we make further developments of the
tension and inertia forces, by expressing them in terms
of the amount of deviation from equilibrium. In this manner
the total forces can be expressed as an equilibrium value
pPlus a contribution due to deviation from equilibrium.
The deviation contributions can acgdain be decomposed into
a linear deviation term and a term expreséing the effect of
deviation from linearity. The linear deviations are

expressed in terms of stiffness and mass matrices.

4.1 Tension Force Variations.

Qg k]

A0
M

P'(X'."-J"-E:) .
o Py )

Fig. 4.1.1

Displaced State of Finite Element

Consider the element ij shown in Fig. 4.1.1. 1In equilibrium

the nodal coordinates are P(xi,yi,zi) and Q(xj,yj,zj), and
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the tensions arc Ri'Rj' Ri=Rj=R if the tension is assumcd

constant in the element.
We consider the situation when node i is moved to point

L} 1 1 1 > L ] ] [ ] N
P (xi 'Y ,zi ) and node j to Q (xj ,yj ,zj ). We write

the nodal displacements

> _ T . ¥ ' e ‘L T ' >
r rxil+1yij+rzik (xi xi)1+(yi yi)3+(zi zi)k

(o)
2 r T PF_ ' T ' @ - o
rj rxj1+pyi3+rzjk (xj xj)1+(yi yi)3+(zj zj)k

We also have the longitudinal unit vectors:

> + +_l _ > _ g _ >
t—txl+tyj+tzk—L((xj xi)l+(Yj Yi):l+(zj z.)k)
(B}
T 7 i1 l+=_1_ v _ T ' _ T " _ 7
t'=t 1+ty I+t k=5 ((xj X4 )1+(yj Y, )j+(Zj z, )k,
- - 2 - 2 - 2y1/2
where L—((xj xi) +(yj yi) +(zj zi) )

(v -
1/2
" — " _ 1y 2 " 2 [ 2
L —((xj X; ) +(yj ¥3) +(Zj Zi) ) .
Further, in the displaced position, the elastic tensions at

the nodes are Ri' and Rj', which can be expressed by the

linear elastic relations:

' o =R'-R.=
Ri Ri RJ R] AE T,
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We shall also use matrix notation to represent the displace-

ments by the 6x1 matrix vector:

(S) r=

l
H R K R =X

zj

In equilibrium the forces acting from the element on the
nodes are

o _ e o _ o7
£ = RE, ij R,E,

and in the displaced position

— pi'en — _pip
fRi = RiE', ij = -Rit

We consider first the case of small displacements and there-

after make some remarks about large displacements.

4.1.1 Small Displacements. Stiffness Matrix of a Straight

String Element.
We can express the element length in the displaced posi-

tion, according to egs. (a) and (v)
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2 _ _ 2,1/2
r i) +(zj zi+rzj r .) 1]

'= =X, 4T =T L) 2+ (y.-y. .-
L [(X] xl rXJ rx1) (YJ yl+ry3 Y Zz1l

r .-r . r .~-r. . o
xj "xi %] xi,
L L

2

=L[l+2tx + terms in y,z]l/

-r .
Xl) 2

r_.
Under small displacements, we can neglect the terms (_Elf——- ,

etc. and hence

rxj rxi rxj_rzi rzj rzi
'z + —_ —_—
L'=L(1 tx T +ty T tt, T )

_ ]_+. >
=L(1+ T t (rj ri)).
Hence we have the strain:

_ _l__+.+_+
(e) e= 5— =1t (rj ri)

14

i.e. proportional to the tangential component of the relative

displacement ;j_;i'

Hence we can express the direction unit vector in the

displaced position, according to eq. (B):

>, l _ _ -> - _ + _ _ >
t'= L'((xj xi+rxj rxi)1+(yj yi+r ryi)3+(zj zi+rzj rzi)k)

Y]

j Ti S

We can decompose ;j-;i into components parallel and normal to

t. The parallel component is
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» ’ = ) ££
rjt rit = rj ri v

the normal component is

., -F, = %.-% (r. -T.,)
in7Tin = 37T - Tye7 ¢! -

R -
Hence we can write for t':

' I_,_ -+ l 3 > i _
t'= L,t + L,[(rj ri) tt+(rjn rin)]

_ =+ 1 - _z

For small displacements €<<1 and we have L'xJ,. Hence we

have to e¢2:

r 4 l__-r_
(¢) t'=¢t + i (rjn r.).
Thus £'-¢ is essentially normal to ¢,
Finally we express the nodal forces fRi' ij:
- ptZr _ +£+_+
fRi- RIE' = (R;+AR) (E+ 2 (F5p-E;0))

_ lo) > .l+_->
= fRi +ARE + R;+T (rjn r, )+AR

Hl=
it
]

For small displacements
r. -t
rjn in

AR<<R, <<]1

so that the last term can be neglected as small.

Correspondingly we have
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~ F O _ > l >
ij = ij ARE - Ry & (Fy -r ).

We now write the differences

to.-t

o—
Ri "Ri i i i

Rj "R] ] J J
where Ui’Uj’ etc. are the components of the force deviations.

We also use the force matrix vector

(6) f=

S < a5 < c

U e e e e e

From the above we can write for the tension increase:

= - BE
AR = AEe = [t (r,.

I J-rxi)+ty(ry.-ryi)+tz(rz.—r )1,

J J Z1l

and for the relative normal displacements

> > > > -> > >
rjn—rin = (rj-ri) - (rj-ri)-tt =
—’-
[rxj—rxi - ((rxj—rxi)tx+(ryj—ryi)ty+(rzj-rzi)tz)tx]1
+
.- .- .- . .- . + .- .
+ [ryJ ryl ((rxJ er)tx+(ryJ ryl)ty (rz:| er)tz)ty]j

..).
zj rzi-((rxj—rxi)tx+(ryj-ryi)ty+(rzj—rzi)tz)tZ]k
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Hence, we can write, according to egs. (6), (n) and (0):

(4.1.1) = (§E+§G)

|Hh
Il
LT < £ ¥ < £
e e e e e e
R H R R R K

where the elastic stiffness matrix is:

2 - 2 - -
t, txty t.t, t txty t t,
t.t 2 t t -t t -t 2 -t t
Xy Y Yy 2z X'y y 2z
2 - — _ 2
t t, tytz t, t.t, t t, t
_ EA _y 2 _ _ 2
kg = ¢ t, t t t.t, t txty t t,
-t t -t 2 -t t t t t 2 t t
Xy Y z y y z
- - - 2 2
t t, tt, t, t t, t t, t,

and the geometric stiffness matrix:

2 2 - - —t2__42
€2+t £t ot £2-£2 £ttt
R.{-t_t t2+t -t t R.lt t -t2-t2 t t
il TxTy X -z Y 2 | il xy x "z y'z
- - ¥ —+2.
1 t ot tt,  tpkes tet,  tt, €2t
—GL —t2-t? ¢ t £t €242 -t t -t t
y 2 Xy X z y 'z X X z
R.(txty —thmth et ), Ri(—txty ettt
- 2_ 2 - - 2 2
t t tyt, t2-t? o
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The elastic stiffness matrix KE represents the addi-
tional forces introduced by the elongation of the element,

while the geometric stiffness matrix EG represents the

effects of changing the element direction. We see that

EE and EG are symmetric.

From these relations, we can write the nodal forces in

the displaced position under small displacements:

_ o =+ =+ &+
fRi = fRi + U3+ VT o+ Wk
(4.1.2)
_ (@) P g =+ >
ij = ij + Ujl + Vj] + ij
. _ > + >
Writing fRi = fRixl + fRiyj + fRizk ’
_ + + >
ij = ijxl + ijyj + ijzk and
fRix
fRiy
£R - fRiz
Rix
f_.
RJy
ijz

We can write briefly

_ g0
(4.1.3)  f£p = £ + (kgtko)r.
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4.1.2 Large Displacements. Deviations from Linearity.
In the general case of large displacements, the force

deviations are:

$, = ¢ixI+¢_ 3+¢izk = fRi_fRi = Ri%'—R.E

$. = ¢, T+0. J+o. Kk =F_.-F 9 = —RBE'+Rj%

Define the matrix vector

ix

jy

te-
0
i
- - < S =g <
. |-J- .
N

jz
Then we can write

where Af_ expresses the deviation of ¢, from linearity.

Hence we can finally write the nodal forces:

_ £° :
(4.1.4) £ = fg + (kgtkg)r + Afp
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4.2 Inertia Forces.

As mentioned in Sec. 2.3.2, we must account for two
contributions to the inertia forces when the cable is
accelerating: the inertia of the cable itself and the
inertia of the surrounding water.

With given nodal velocities é and accelerations I,
the velocity and acceleration distributions along the
element are given by linear interpolation. We can use two
methods to derive expressions for the inertia forces on
the element:

i) Derive an expression for the kinetic energy T of
the form T = 1 i?ME' where M is a mass matrix. Considering

2
the components i of r as generalized coordinates, the corre-

sponding generalized momenta are

= = r = 3! r
P; °F (%5)1 i'th component of Mr ,

provided M is symmetric. Hence the matrix vector of momenta

is:



ii) I'rom the acceleration distribution 3(&), we can
determine the distribution of inertia force $I(£), as in
Sec. 2.2.2. Then the equivalent nodal forces are computed.

The first method assumes that it is possible to derive
an expression for T. 1If the cable is assumed to be immersed
in an infinite body of water with non-vanishing water velo-
city, a direct calculation will give an infinite value of
the kinetic energy of the water. If we use the device of
describing the motion in a coordinate system moving with
the local current, we may still have difficulties if the
current is non-uniform.

In the éubsequent treatment the inertia forces of the
cable itself is derived by method i), while the inertia
forces of the surrounding is calculated with method ii).

The element is sketched in Fig. 4.2.1. The nodes have

Q(x; .y 25)

P(X., Y. %)

Fig. 4.2.1

Dynamic Variables
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coordinates P(xi,yi,zi) and Q(xj,yj,zj). The velocities are

3 3
Ly rj. The velocity at £ is:

(6) = ¥;(1-6)+F €.

Hence the kinetic energy of segment Ld{ is

ar p AT?LdE = % pcA[§i2(1-g)2+2§i-¥jg(1—g)+§j2g2]Ldg.

N

Integrating over the element:

_1 > o, > .; >,
T = 3 pCAL(ri +ri rj+rj )

When we substitute for the components of ;i';j’ according

to eq. (§), we can write

1.7 .
T=zrmr .
where 1 0 0 1/2 0 0
' _m 0 1 0 0 1/2 0
- =3
= o 1 o 0 1/2
i/2 0 0 1 0 o0
0o 12 o 0 1
o o0 1/2 0 0 1

is the cable element mass matrix and m = pcAL is the total
element mass.

We get the nodal forces
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£ -m_ ¥ .
_C _C__.

To compute the hydrodynamic mass matrix, we use the
expressions from egs. (Z.3.12), with zero water accelera-

tion,

_ l 5 e
in = 3 CMprL(Zrin+rjn)
t. . =-1c¢ L(T. +2%. )
Hi = ~ & SMPwhl{Tintery,) o

where ;in';jn are the normal components of the nodal

accelerations. We can now write

L. = Lot B8 = (P, -(F. t +F. t +F. t )t )T+
in i i ix ix x iy y iz"z’' "x

ae . . . -+ . . . . >
(riy (rixtx+riyty+riztz)ty)J+(riz (rixtx+riyyz+riztz))k,

o >
where r._ ,r. ,r._ are the cartesian components of r,. We
ix"Tiy' iz i
can write a similar expression for rjn' Substituting into

the expressions for t and ij and defining the matrix

Hi

vector f  from the components of in,f » We get

Hj

Ty = ~mylyE

where
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l-—t; ' -txty. ~t t, —;—(l-t; ) —%—txty -%txty
—txty l—t; —tyt 2 —%txty %(l—t; ) —%tytz
-t t, —tytz' l—t; —%txtz -%—tytz %—(1—1:;)
? - %CMmW %(l—t;) _%txty _%txtz 1-t$ -txty _txﬁz
—%txty %(l—t; ) -%—tytz - txty l-t; - tytz
-%1:}{tz —%tytz %(l—t;) —t t, “tot, 1-t2

is the hydrodynamic mass matrix and My = oyAL is the water
mass displaced by the element.

m, is independent of position, while m depends on posi-
tion ;ia the components of £. If we write—mﬁ for the hydro-
dynamic mass matrix in equilibrium, we writ; for a general
position m, = mﬁ + AmH.

For the total inertia force we have:

Iy = oty = -(mgimp &
T lmetm) Bl m) E - onE g

o _ o) . .
where m- = §C+EH . We have written EI as the sum of a linear

term, corresponding to the equilibrium configuration, and a

term representing the effect of deviation from equilibrium.
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4.3 Other Forces.

Consider an arbitrary situation, where the state of the
element may be different from that of rest with the cable
in the equilibrium configuration. Any of the force contri-
butions in Sec. 2.3 can be computed from knowledge of the
displacements r, velocities é and accelerations i and the
water velocity $w. Let us call the corresponding force
matrix gx for any force contribution. - At rest in the'equili—
brium configuration of the cable we have the corresponding

29 s . (@) .
equilibrium f . Hence we can write

_ O
(4.3.1) £ = fo + Af, ,

where Af = £x_£§ represents the effect of deviation from
equilibrium.

Most of the forces will have A;x#o, except the gravity
force on the cable. The tension force £R and inertia forces
EC and £H were given a special discussion in Secs. 4.1 and
4.2. For the other forces £x can be computed from a given
state and Af found by subtracting 52.

Since the f are the real forces on the system, this
way of separating the equilibrium and deviation forces
allows us to include quite general relations between the
dynamic state and the corresponding forces. E.g. if the

elastic properties of the cable are non-linear, the deviation

from linearity will contribute to AER in (4.1.4).
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CHAPTER 5. Finite Element Model for Total System

This chapter will describe the structure of a total model
to represent a cable. Boundary conditions are discussed.
Further the equations of motion for the free degrees of free-
dom are transformed to a normal mode formulation, where the
normal modes are defined in terms of undamped, small ampli-

tude oscillations of the cable about its equilibrium state.

5.1 The Total Cable System.
Fig. 5.1.1 shows a finite element model of a cable,
modelled with 5 straight elements. Nodes and elements are

identified by numbering systems. If we assume that all nodal

AN

5 /6

Voo
AR

>

Fig. 5.1.1

Total Finite Element Model

coordinates (xi,yi,zi) are known, then the cable geometry is
defined. If we also know the nodal velocities (ii,§i,éi),

accelerations (ii’yi’éi) and the water velocity $wi and
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acceleration ;wi at all nodes, we can compute nodal forces
for all elements by the results of Sec. 2.3.

At any node there are two adjoining elements, except at
the upper and lower ends. The total forces at each node will
be given by summation of contributions from each adjoining
element.

We introduce column vectors, R,F, to represent the total-
ity of nodal displacements and forces for the total model,
corresponding to the element column vectors r,f defined in
Ch. 4. Hence if there are N nodes, each of 3 degrees of
freedom, R and F have dimension 3Nxl. Reduced versions of
R,F will be used later.

In an arbitrary dynamic state, we can write the nodal
forces, f., in the form indicated in eq. (4.3.1) as the sum
of the equilibrium value g; and a contribution due to devia-

tion from equilibrium, AEF. By summing all force contribu-

tions, we can write the total force matrix vectors:

Tangential friction force: Fgq = E$ + AFq,

Normal drag force: Fy = g; + AFy
Buoyancy force: Fg = gg + AE?

Gravity force: Fy = E; ; AEW =0
Tension force: Fp = gg - (§E+§G)E+AER
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Cable inertia force: Fo = —§8§
Hydrodynamic inertia force: EH = —(¥H+Agﬂ)é
Fictitious buoyancy from

water acceleration: EA

Viscoelastic internal force: Fy

The total stiffness matrices EE' KG and mass matrices

EC’ gﬂ are formed by a merge process from the corresponding
element matrices EE'EG'gC'gﬁ in Ch. 4. The merge is essen-
tially the result of expressing relations between tension
forces, F, and displacements, R, similarly to sec. 4.1 to

find EE' EG' and relations between inertia forces F and

accelerations, é, similarly to sec. 4.2, to find ﬂC’MH'
Details of the ;focess are discussed in Zienkiewigz Tll].

The components of R represent displacements measured
from equilibrium. 1In Secs. 4.1 and 4.2 the stiffness and
mass matrices were derived relative to cartesian X-,y-,2~
displacements, and in the merge process this is also assumed
to be.the case. As indicated in Sec. 2.1, the displacements,
and also the corresponding forces can be transformed to local,
intensic coordinates E,ﬁ,g at each node, when nodal E,H,g
have been defined. Corresponding to these displacement and

force transformations, the stiffness and mass matrices must

also be suitably transformed. There is no computational
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gain in transforming to intrinsic coordinates, but the
transformation may simplify the interpretation of final
results. The subsequent treatment is independent of whether
the degrees of freedom have been transformed or not, so long

as there is consistency between E’E’EE’EG’MC’MH'
In addition to the forces listed_ébgvej iz may for

particular problems be necessary to include other forces.

One particular example is the presence of concentrated masses

on the cable, e.g. instrument packages. These must be assumed

positioned at nodes in the model. The most convenient way

to include these is to incorporate them directly into the

finite element model. By specifying their mass and hydro-

dynamic mass properties, these can be incorporated directly

into the mass matrices EC

and ﬂﬂ. The weight can be inclu-
the buoyancy into Fp and the fictitious buoyancy

ded into F.,

due to water acceleration into F,. Such concentrated masses
can be assumed to give no stiffness contribution.
For completeness we shall also include among the forces

a miscellaneous force F which is not among the forces

__M’
described earlier, and whose nature will depend on the par-

ticular problem under study. In an arbitrary state we write

+AF

F = —M L

(o}
M EM
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5.2 Total Dynamic Equilibrium.
A total dynamic equilibrium relation for the system can
be written:
+ + e N =
Bt tEg tEy Bt EGHE F 4B 4F, = 0.
Separating out the equilibrium forces and introducing the

stiffness and mass matrices, we can write

.- _ 20 o o O, O
(5.2.1) MR+KR = Fo+AF +F AR HFR T +AF4F +F THAF

N W R

.. O
T AMyR HFp+FHF CHAF,

Il
|

= A§T+A£N+A§B+AER—AgHR+§A+EV+A§‘_M

since in equilibrium

Fp +Fy +EO+E O+F O+F © = 0.

N W —R =M

We have written M = M %M ® and K = KptKg for brevity.

Eg. (5.2.1) is the equation of motion, upon which the
time integration will be based. If the state of the cable
at time t, expressed as g,é,é, together with the state of the
surrounding water, $W’;W are known, all forces on the right
hand side can be computed according to Sec. 2.3.

Before proceeding to the time integration, we have to



83

introduce boundary conditions into the problem. Further,
we will simplify the mathematical problem by transforming
the equations to normal coordinates. By doing this, the

left hand sides of (5.2.1) can be decoupled.

5.3 Boundary Conditions.

Since M can be interpreted as a matrix of coefficients
of a homoge;eous quadratic form for the kinetic energy T,
we conclude that M must be positive definite. However K
is not generally gﬁsitive definite, since we can make t;éns-
lational rigid body motions of the whole system, without
disturbing the state of equilibrium.

To make the system determinate, we introduce boundary
conditions. Normally these will specify the displacements of
the bottom node to be zero, i.e. fixed, while the upper node
has given displacements as a function of time, given by the
motion of the moored vehicle. Other types of boundary con-
ditions may also apply. These may be dynamic relating reac-
tion forces to accelerations, or elastic, relating reaction
forces to displacemrents.

Let us assume that we have specified a sufficient number

of degrees of freedom. We identify these displacements as

Bs' The other degrees of freedom are considered as free in



84

the sense that they will take whatever values the laws of
dynamics dictate. We identify these as Re.

If we call the right hand side of (5.2.1) F, we can
make a corresponding differentiation for the components of
F, by writing Es and Ef for the forces corresponding to
respectively the specified and the free degrees of freedom.
_gs will represent the support réactions.

By rearranging the degrees cf freedom, we can write

for R and F

By making corresponding changes in K and M, we can write

for (5.2.1)
/ %ss %sf 555\ 'gss %Sf\ + Ry Fs
(5.3.1) \ ; ) + - \_
\" - b :
Mes Mee/ \Be \Keg  Keg/ \Rer L Egl

with the submatrices %ss’%sf""etc' If there are N, speci-
fied degrees of freedom and N free degrees of freedom,
where N = Ns+Nf is the total number of degrees of freedom,
Bs’gs have Ns components and Bf,gf have Nf components.

Eq. (5.3.1) can be considered as representing two sets
of equations. In the first set, represented by the upper

Ns specified degrees of freedom, we consider the displacements
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R.and accelerations ES as known and the reaction forces
ES as unknown. In the second set, corresponding to the

lower N_. free degrees of freedom, Ef are considered as known

f
while R and E are unknwon. The two sets of equations can
be explicitly written:

(5.3.2a) Mssgs+¥_sf5f+§ssgs+—§-_sf5f =E

—S

(5.3.2b) f‘__jl_-ff_lif"‘f(__ffﬁf = Ef_ (D:d..fsgs*-_g_fsgs)

The term

P = _(§f555+§fsgs)

represents the interaction from the specified on the free
degrees of freedom. (5.3.2b) is the equation of motion for
the free degrees of freedom.

The nature of the interaction term F_ can be compared

to that of the simpler linear system of Fig. 5.3.1. The

%o X
— -
F, R F
L - m, FWMJ m, —=
.______:n::iIE:MW"“EIEr;cEtmu“_m.m_w_
Fig. 5.3.1 |

Analogous Two-Mass System
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equations of motion for this system can be written in the

matrix form

If we have specified xo(t) and consider x, as free, we have

the equation for K

“where kxO is the interaction term. Since kfs=—k, we have
the interaction term _kfsxo' which is similar to Ex’
except that in this case there is no inertia coupling,

Mfs=0.

5.4 Eigenfrequencies and Mode Shapes.
If we set the right hand side of (5.3.2b) equal to zero,

we get the equation

This equation is an equation of motion for free, undamped

small amplitude oscillations of the cable about its equili-
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brium configuration and with the end points fixed.
By determining the eigenfrequencies and corresponding

mode shapes, we can achieve two goals:

1) the eigenfrequencies are usually important parameters
for the dynamic behavior of a mechanical system,

2) we obtain transformation matrices to transform the

dynamic problem to normal coordinates.

The latter is the most important here.

Assume R to be a harmonic function of time

E - qelwt

where w is the frequency and q is a vector of amplitudes,
describing the mode shapes. Substituting into eq. (a) and
dropping the suffices of ﬂff'gff' we get the eigenvalue

problem

(5.4.1) (K-w?M)g = 0

with the eigenvalue X=w? and eigenvector gq.

Here M is positive definite and symmetric, K is at least

positive semidefinite and symmetric. The symmetry of M and

K comes from the symmetry of the corresponding element matrices
in Sec. 4.1 and 4.2.
The theory of this class of eigenvalue problem is dis-

cussed e.g. in Zurmihl [8] and Gantmacher [2]. From [8] we



88

get the following properties, when n=Nf is the dimension

of the problem.

2 are real and positive.

1) All n eigenvalues Ai=wi

2) There exist exactly n linearly independent eigen-
vectors q;-

3) The eigenvectors satisfy the generalized orthogon-

ality relations:

T

q; =0 if i # j

&

J
#0 if i = 7.

By proper normalization of d;r We can satisfy

T : _ C e .

(5.4.2a) f %gj = Gij 0 if i # 3
=1 ifi=3,

where Gij is the Kronecker symbol. With this normalization

we also have

(5.4.2b) gingj = A835 =0 Qf i #j

A, if i o= 3.

Let us collect all n eigenvectors into the square matrix Q.

9_ = (g_llﬂzlo..gn).

Because of the linear independence of the g., Q is non-

singular. Thus for a given R, the equation
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=R

g

has a unique solution

Y1\

Yo
(5.4.3) y =

| = o"mr.
yn

From this follows that we can write uniquely

(5.4.4) R

It

Il ac =]
]
Q

as a linear combination of the eigenvectors g with the
components Y; of y as coefficients. The coefficients Y;
are the normal (or modal) coordinates of R, relative to
the eigenvectors Q. Hence there is a one-to-one correspon-
dence between the—hormal coordinates y and the global
coordinates R.

If we use less than all normal coordinates, Yyr¥yeee¥y

where m¢n, and dy--+9,s We can still use (5.4.3) to find

Yyre--¥Ypy for arbitrary R. However, the correspondence between

y and R is no longer one-to-one, since more than one R will
give the same coefficients Yyreee¥p- However, for given

Yyre Yo the corresponding R can be uniquely found

mm
R" = 1
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5.5 Normal Form of the Equations of Motion.
Consider eq. (5.3.2b),writing.§ff§x;§ and dropping

suffices

(5.5.1) MR+KR = F ,

where F depends on the states of motion B,B,E and the
properties of the water. For the latter variables we use

the symbol V. Hence

F = F(R,R,R,V).

Premultiply (5.5.1) by g? and substitute R=Qy. Further

use'(5.4.2):

(5.5.2a) §+iy = Q'F = £ ,

where A = diag(Ai) is a diagonal matrix with the eigenvalues

Ai on the main diagonal. £ = g?g represents the transformed

forces and can be interpreted as representing force com-
ponents along each of the normal coordinates.

(5.5.2a) represents n equations of the form:

(5.5.2b) §i+xiyi = £, 5 1i=1,2,...n.

Hence the transformation has separated the left hand sides
eqgs. (5.5.2b), while the right hand sides normally remain

coupled. (5.5.2b) are the normal equations of motion.

of
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If we use only m<n of the normal modes, we will get

m of the equations (5.5.2b) from knowledge of m eigenvec-

tors Qyres-Qpe

5.6 A Linear Damping Term.

Inspection of eq. (5.5.2b) shows that the left hand
sides have the same form as the equations of motion for
an harmonic oscillator without damping. Since cables will
have damping, the damping terms are contained in the right
hand sides fi in the form of drag and internal viscous
damping.

However, it is possible to include linear damping terms
into the left hand sides. This can be done approximately
by the following reasoning. Consider the case of the cable
moving in one of its normal modes, say the r'th. Then
yr(t)#o while all others yiso; i#r. If we consider the
situation when yr=0, §r=l, the cable is in the equilibrium
configuration and moving with velocity Bél-gr, where d, is
the r'th eigenvector. For this state we compute the linear
drag force, g;, aécording to Sec. 2.3.1,iib, and the internal
viscous force Er, according to Sec. 2.3.2,iv. We next

Vv

transform _F_‘_r+Fr

1, ¥Ey to normal coordinates by

r_ . T,.r,.r, .
£'= Q9 (Fp+Fy).
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The r'th component of £r,f§, gives the component of

EL+EV along the r'th mode. Since the modal velocity

9r=l, we have a first approximation to the damping by
writing cr=—f§ and setting the linearized modal damping
force cr§r' By adding the term crir to both sides of
eg. (5.5.2b), we can write the equations of motion

LX) . — — '
(5.6.1) yr+cryr+)\ryr = fr+cry = £ '.

The equations (5.6.1l) are equivalent to (5.3.2b), since

they have been deduced by mathematical manipulations.
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CHAPTER 6. Integration of the Equations of Motion.

In this chapter, the integration over time of the normal
mode equations of motion is discussed. 1In Ch. 5 we developed
two equations of motion, egs. (5.5.2b) and (5.6.1), which can
both be integrated approximately.

We discuss first some general requirements to solutions
yi(t) of the equations of motion. Then some methods in
current use for integration of this type of equations are
discussed briefly. Finally the method adopted in the present

work is described.

6.1 General Requirements to Integrals.

Since egs (5.5.2b) and (5.6.1) are deterministic, there
will exist functions yi(t) satisfying these equations. If
we knew these functions, we could substitute into the right
hand sides to determine the forces fi or fi' as functions of
time only. Then the equations would separate into n indepen-
dent equations.

A solution yi(t) must satisfy the following relations of

dynamics and kinematics:

1) The equations of motion (5.5.2b) or (5.6.1) must be

satisfied at any time.

2) The kinematic relations between acceleration, velocity,

and displacement must be satisfied:



yi(t) = yi(tl) +

|
<
~

y; ()

An approximate solution should satisfy these conditions as

closely as possible.

6.2 Various Metheds in Use.
Several techniques are possible for integrating approxi-
mately the equations of motion (5.5.2b) or (5.6.1). One

method is to transform the equations to the form

(6.2.1) y; = fi-ciyi—)\iyi = fi-A.yi ;7 i=1,2,...n,

in which case there is no use of the linear damping coefficients
C,- This is used in the method by Newmark [29]. Argyris and
Chan [27] and Argyris et al. [28] utilize similar transforma-
tions on the global equations of motion (5.3.2b). Newmark's
method has gained some recognition and some discussion should
be made of this method.

Let us consider the system at some time t which is con-
sidered as the initial time. We suppose known the force fi(tl),

the displacement yi(tl) and the velocity §i(tl), and we want
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to determine the state at some later time t2=t1+h, where h
is the time step. Since the force fi(t) is not known in

the interval t1 to t2, it is not possible to integrate the
equation by elementary methods. Newmark's method now makes
the following reasoning: at time tl, we can directly com-
pute the acceleration §i(tl) from (6.2.1). If a, is the

value of the acceleration §i(t2) at time t2, the following

formulas are adopted to estimate the velocity, v and

2I

displacement, u,, at t2:

v, = 91(t1)+(1—y)§i(t1)-h+ya2h

<.

(6.2.2) . T -
U, = y; (t)+y; (ty) -h+(5-B)y, (t,)h*+Ba,h?,

where B and. y are constants. The notations a,:1Vy,u, are used
for §i(t2), §i(t2), yi(tz) to indicate that these values
are possibly only trial values in an iterative calculation.
It is shown that if v# %, a spurious damping is introduced,
which may be negative and introduce a self-excited vibration
from the numerical procedure. Thus one takes y= % .

Provided B#0, the following general procedure may be
used to iteratively obtain the state at time t,.

1) Assume values of the accelerations a2i~§i(t2) at t2.

(The symbol ~ is here used meaning "corresponding

to".)
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2) Compute the velocities v2i~§i(t2) and displacements
u21~yi(t2) from (6.2.2), with a chosen value of §.

3) Transform a,;1Vy;rl,y; tO nodal accelerations
§2~E(t2)' velocities !2~E(t2) and displacements
g2~5(t2), as shown in eq. (5.4.4).

4) From 52,!2,22 and the water properties V, we can
compute forces 22~E, as in eq. (5.2.1). 22 can be
transformed to normal coordinates by eg. (5.5.2a),
giving the values Ez~£2 for the modal forces. We
can now substitute in eq. (6.2.1) Uy, for Yi(t2)
and f2i for fi(to) to compute a new value aéi~§i(t2).

5) Compare the derived accelerations aéi with the

assumed a, If they are sufficiently close for

i
all modes i (or at least a representative selection)
we can assume that we have found the best possible
approximation. We then set as initial values for the
next time step &i(t2)=v2, yi(t2)=u2. If the values
are not sufficiently close, the calculation must be
repeated from step l., using a new value of ayy-

al. for the next itera-

It is usually best to set a,i=85;

tion.
A crucial point of this method seems to be the formulae
(6.2.2), whose kinematical interpretation may be somewhat
obscure. If B= % , it corresponds to assuming a constant

acceleration equal to the initial ?i(tl) for the first half
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interval and constant equal to the terminal value a., for
the second half interval. If B= % , a linear variation of
acceleration between yi(tl) and Ay, is assumed. If B=% ,

a constant acceleration equal to the mean over the interval
is assumed. 1In general, a simple kinematical interpreta-
tion is not possible for arbitrary values of R.

Two questions relating to this stepwise tfial and error
integration are the choice of the time step h and the ques-
tion of convergence. If the variable Y; has a period Ti' h
must certainly be less than T. With the special kinematic
‘interpretations for B¥ %, %, %, one could expect that h<§ ,
since it is difficult to approximate, e.g. a sine curve by
a straight line over an angle larger than % . Newmark

B,

gives convergence limits, which depend on varying from

h<0.551T for B= 1—2 to h<0.381T for B= % . These values
allow h>%.

The question of convergence has two aspects: whether
the procedure will converge at all and, if it converges,
whether it will converge to a correct result. The latter is
not an obvious consequence of the former. Correct here
means that the computed state at t2 is the same as would be
obtained by an exact integration of the equations of motion,
if this were possible.

As an example, consider the equation for y(t):

y" +y=1; yl(0)=y'(0)=0
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The exact solution is y=1-cost. We compare this exact
solution for the time interval 0 to w/2 with the result of
using Newmark's procedure. The exact values are y(m/2)=1,
y'(n/2)=1, y"(n/2)=0, y"(0)=1.

We take ¥»=1/2, B=1/6. Assume a2=y"(n/2)=0. From

(6.2.2) we get

Vs 0.875 ~ y'(m/2) = 1.0

0.822 ~ y(n/2) = 1.0

s

From the differential equation we get the derived acceleration.

ay = l-u, = 0.178 ~ y"(7/2) = 0.

2

Thus, when the correct value f(“/Z) is taken for ay, the
derived state becomes different from the correct, when the
step size is T/4. The process eventually converges to
v2=0.884, u2=0.874, aé=0.126 after about six iterations.

This example points out a possible deficiency of Newmark's
method, that converygence may be obtained, but to a wrong
result if the steb size becomes too large. The reason for
lthis may be attributed to the nature of the kinematical rela-
tions (6.2.2), which attempts to approximate a curved accel-
eration curve by straight lines.

A slightly different approach is used by Argyris and

Chan [27] and Argyris et al. [28]. They assume exonlicitly
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that the acceleration can be approximated by a third degree
polynomial in time and consequently the displacement becomes
a fifth degree polynomial. A trial and error iteration
process is employed tc determine the state at the end of

the time step. The kinematics here seems clearer than in

Newmark's method.

6.3 The Present Method.

For problems of cable dynamics, like other dynamical
systems, there is usually some characteristic period TC
for variations of the state. If the cable is being peridi-
cally excited, for example by the forced motion of its upper
end, the excitation period will be the characteristic
period when the system has reached a steady state of oscilla-
tion. If the cable is executing natural motion, in general
all modes are excited. But each mode contributes different
amounts to the total motion, and usually there will be one
or more modes which dominate the motion. In this case the
period of the lowest significant mode will represent the
characteristic period.

In the previous finite element model for the cable, the

tension variations are computed from the cable elongations,
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which are again determined by the displacements of the
longitudinal modes. These will normally have low natural
periods compared to the transverse modes and the excitation
periods. It was considered useful to have a method of inte?.
gration, which allowed the use of time steps larger than
some of the natural periods in the system. We hence tried
to develop an integration method allowing this. It was
intended that this method should be applicable under non-
steady, i.e. transient, conditions.

The essential features of the method developed can
be summarized as follows: It is assumed that there is
some characteristic period To for variation of the signi-
ficant contributions to the state of the system and hence
also for the forces on the system. Choose a time step h
much smaller than T,, say h<§% . h must be such that it
is legitimate to assume that the forces on the system,
i.e. F in (5.5.1), £, in (5.5.2b) or f; in (5.6.1), have a
linear variation in the interval. Based on a known initial
condition at tl' the solution is proceeded to t2=t1+h, by
solving the differential equations (5.5.2b) or (5.6.1)
exactly with linear right hand side, i.e. as a sum of a
homogeneous and a particular solution., A systematic trial
and error process is done for the final state, until a
satisfactory agreement is found. This trial and error process

is similar to Newmark's method. The present approach differs
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from Newmark's in assuming a linear variation of forces
instead of certain variations for the accelcrations.

Assume known the dynamic state at tl’ i.e. displace-
ments yi(tl), velocities Yi(tl) and accelerations yi(tl).
Together with knowledge of the water parameters VvV, we can
compute the forces fi(tl) in (5.6.1). We now make a guess

5 ~ L]
as to the forces on the system at t2, i.e. ¢12 fi(tZ)'

Then we assume the linear distribution

) — .

—f1 = Y-N . .
where ai—fi(tl), Gi (cbi2 fi(tl))/h. With these expressions
for_fi, the eqs. (5.6.1) become decoupled. We solve each
equation by writing yi(t) as a sum of a particular, yip(t)’

and a homogeneous, yih(t) solution:

yi(t) = yip(t)+yih(t): tlititz-

The general solutions of the homogeneous equations are

C.
1

7 T . . €i

(6.3.1) Yih(t) = e (AicosmiT+Bi51nmiT) if Ai>;—
Ci

3 T . €i

= e (Ai+BiT) if Ai—z—
€

—n—T C.

= e 2 (A.e%iT4+p,e""iT) if A<=

i i i 4
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where T=t-tl,

= (.- 22y i
w; = (Ai ) ) if Ai>4

c.? c.?

_ i 1/2 . i

(E— Xi) if Ai<z—

Ai'Bi are integration constants, determined by initial condi-
tions at t;-

The particular solutions are of the form:

Yip(t) = aj+b;t
B B,
_ 1 - 1 = _1
where a; = X.(ai ci T ), bi o
i i i

The constants Ai,Bi are determined from the initial conditions

at tl' With these relations we can estimate the state at

t, and also the forces ¢i2 ~ fi(tZ)' Comparing ¢i2 with

the assumed ¢i2' we can determine if the approximation is

sufficiently close. If not, we can repeat the calculation

with the new ¢12=¢i2’ until sufficient agreement is reached.
An alternative approach is to repeat the calculation

with fi(t2)=¢12 and then compare the new state with the pre-

vious calculation. When two successive calculations are

sufficiently close, we can assume that the best accuracy

has been obtained and terminate the calculation for the time

step. This convergence must be obtained in all (or at least

in some representative selection) modes. The final state
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is the estimated state at time t2 and the initial state for
the next step.

Instead of using the linear interpolation (o) for
fi(t), it is possible to use higher degree interpolation
polynomia®s. E.g. if the time derivative of fi is known
at t1 and t,, a third degree polynomial can be constructed.

Some improvement in accuracy may be obtained by this.
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CHAPTER 7. Computer Program.

A computer program based on the previous theory for
dynamic analysis was made for the IBM360/168 computer of
MIT's Information Processing Center. The program is experi-
mental in the sense that it was designed to obtain a first
assessment of what can be obtained by application of the finite
element method, rather than trying to fully explore all
possible applications.

The program was designed for analysis of a two-dimen-
sional configuration. As boundary conditions, the cable
was assumed to be fixed at the lower end, while the upper
end was assumed to have a given displacement as function of
time. The current may be given an arbitrary distribution
in the vertical direction. The number of normal modes
included is specified as input, but experience indicated
that the best results were obtained when all modes were in-
cluded. The elongation and tension changes are represented
by the longitudinal modes, so at least some of the longi-
tudinal modes must be included. Little advantage in com-
puting time is gained by using less than all modes.

Fig. 7.1 shows a macro flow chart of the main computa-

tion steps and Fig. 7.2 is a flow-chart outlining the compu-
tations involved in the stepwise, iterative time integration.

The time integration method is outlined in Sec. 6.3. 1In
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Appendix A we give the listing of the FORTRAN MAIN program
and the subroutine TIMINT, which controls the time integra-
tion. These two are the essential parts of the program.
Other subroutines are concerned with reading data, per-
forming matrix operations or calculating forces according
to Sec. 2.3.

The program utilizes IBM library subroutines for the
general eigenvalue problem (5.4.1). These routines use
the method of triangular decomposition (Cholesky) together
with Householder tri-diagonalisation to determine the eigen-
values and eigenvectors.

In constructing the program, it was found convenient
to transform the global description of the displacements
from cartesian x,y coordinates to local intrinsic t,n
coordinates, according to Sec. 2.1. This facilitated the
interpretation of output when results were referenced to
the t,n directions. However, this feature is not essen-
tial to the method.

Input data consist of element properties, environment
properties and specification of the displacement of the
upper end as a function of time at discrete instants, ti'
The element properties are equilibrium nodal coordinates,
cross sectional area, tension, elastic modulus, density,

drag and mass coefficients and internal viscous coefficient.
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The environmental data consist of water density and current
distribution. For the upper cnd, displacement, velocity
and acceleration are specified at instants ti.

No parameters of the system are given a priori values
in the program, and hence any consistent set of units can
be used.

Certain simplifications were made in the program, com-
pared to the previous theory. 1In particular, the variations
of some force contributions from their equilibrium values were
assumed of only minor significance and not taken into account.
Referring to eq. (5.2.1), the forces AF

-7

included. Further, the effects of water acceleration were

and AEB were not

not included, so §A=g.

- To éétgméte the consumption of computer time, a typical
long run is reported. A cable with 10 elements and 18
degrees of freedom (Sec. 8.5) was analysed for a simulated
real time of 70 sec, with a time step mostly of 0.25 sec.

The total number of steps was 286. Total IBM 360/168 CPU

time was 0.361 min and total cost was $9.86.

Average cost per step: 3.6 c/step.
CPU/real time ratio: 0.309

Average cost per real time second: 14.1 c/sec
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Some features which were not included in the present
version, can be recommended for expanding the program into
a workable design program.

1) To incorporate a statical analysis prior_fo the

dynamical analysis may be advantageous, particularly
if there are strong currents.

2) To take into account the effect of waves in modifying

the current distribution will give a more realistic

representation of the interaction between cable
and water.

3) It may be advantageous to aliow a more complicated
topology than the single cable assumed here, i.e.
to be able to model cable nets or complete mooring
systems involving several mooring lines.

4) The program does not take into account the varia-
tions of element parameters which occur in the real
system, e.g. variations of cross section A with
strain, of drag coefficients CD with relative velo-
city or a non-linear elastic tension-strain rela-
tion. If laws for such variations are known, one
can incorporate such features into the program.

5) It should be possible to include the effect of
cable resting on the bu.tom. This may possibly be
done by having a spring or spring/damper to repre-

sent the bottom boundary condition.
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CHAPTER 8. Calculation Examples.

In this chapter, we give some calculation examples

made with DYNLIN.

Sec. 8.1 Natural vibration of vertical cable in

air suspended in one end.

Sec. 8.2 Propagation of an undamped, transverse

wave on a straight string.

Sec. 8.3 Dynamic response of an initially straight
cable, when a current is suddenly applied

at t=0.

Sec. 8.4 Propagation of a transverse wave with

damping.

Sec. 8.5 Analysis of mooring cables under forced

excitation of the upper end.

The first four examples are of a theoretical nature,
for which analytical solutions can be used for comparison.
The last example simulates the case of mooring cable on

a large vehicle.

s -
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8.1 Natural Vibrations of Cable Suspended in One [nd.

The case of a hanging chain or cable can be analyzed
theoretically ([1]1,([5]1), to compare with the finite element
calculations. Consider a cable in air of weight density w |
per unit length. The cable length is L. Let coordinate
s be measured vertically downwards, and let the transverse
displacement be y(s,t), while the longitudinal displacements
are assumed negligible. The tension at x is R(s)=w(L-s).
For the transverse motion we can formulate the differential

equation:

3y _
ot?

3y

Gl

= L

where m=w/g is the mass per unit length. Expanding the

right hand side gives

3%y

[R as?

+

w

=a
2

Introduce the new variable £ by £2=L-s. The differential

equation is then transformed to:

2

EZ

Q

M
@

3%y _

ot? (

QL

=Q
@

1 9y
* % 3¢

Assume harmonic, free motion of angular frequency w=pc,

y(g,t) = u(g)sin pct,

where c?=g/4, p is the frequency factor.
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Substitute

2
£2

Q
c

+

o))
C'*'T' —
Q-I o
™Y e
+
o

The solution of this Bessel equation which is finite at

£€=0 (s=L) is:

u(€)=C_ (pé)

where JO is the zero order Bessel function. The frequency

factor p is determined by uls=0 =0, i.e.

Jo(p/f) =0
This gives the following expressions for the four lowest
values of p [6]:

p/L = 2.4048, 5.5201, 8.6537, 11.7915,

where the right hand numbers are the zeroes at Jo'
The model analyzed has L=1000 m. Substituting this,
we find for the four lowest natural modes, where the fre-

quency is given by f=pc/2mw: _—

fl = 1.895-10"? Hz
f, = 4.351+107? Hz —
£, = 6.821-10"2 Hz

9.294-1072 Hz ,

Hh
-
It
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For modes higher than the first, there are other zeroes

than at s=0. These are given by

J_(p;i,)=0 i=2,3,4,...

p.FO = 2.4048, 5.5201, 8.6537, 11,7915,

To analyze the same system with the finite element
method, several models were used, differing in element defini-
tion, as shown in Fig. 8.1.1. Models I, II and III have ten

elements, model IV has five elements.

_.??u ¢ . m«I— ﬁf
lo¢ TL 150 m ) 4
1 4
L

[ 10 2Z00m

#q

{8

150 m

¢ 7 - g ]

4L 3 So m]—? 4

® 2 1 l
L1 1 ) i
Model I Model IT Model T Model TV
Fig. 8.1.1

Finite Element Models



The cable data are:

Cable length:

Cross section area:

Density:

Weight per unit length:

Gravity acceleration:

Table 8.1.1 compares the natural

lowest modes from the analytical

finite element models.

114

L=1000 m

A=1 cm?

p = 7.8:10° %P
w=1.78 %E
g=9.81 27

NATURAL FREQUENCIES IN HZ.

frequencies for the four

solution and the four

Mode Analytical Model I Model II Model III Model 1V
1 1.895+10-2 1.896-10"% 1.897-10"° 1.896-10"2 1.898°10"°
2 4.351-10-2 4.393-10-2% 4.404-10"° 4.441-10"% 4.504-10"°
3 6.821-10"2 7.069°10~2 6.976°10"2 7.313-10"%2 7.644-10"7?
4 9.294-10"2 10.03 +10-2 9.865-10-2 10.67 -10~2 11.76 -10~?

TABLE 8.1.1

It is seen that all models give good results for the

first mode.

Model I gives the best approximation to mode 2,

while model II gives the best approximation to modes 3 and

4. The latter observation is as expected, since the shorter
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elements in the lower part can better represent the larger
curvatures which occur. Naturally, model IV is inferior
to the three others.

In Fig. 8.1.2 are sketched the calculated mode shapes
for model I. The analytical mode shapes are also shown
for comparison. The difference becomes appreciable only
for modes 3 and 4. 1In Table 8.1.2 is a comparison of the
zeroes apart from £=0 in the analytical model and model I.
soi is the i'th zero measured from the upper end, measured

in length unit meter.

POSITION OF ZEROES OF MODEL I AND ANALYTICAL SOLUTION

Mode 2 3 4

Analytic Model I Analytic Model I Analytic Model I

sol 810.2 809 593.1 581 461.4 439

302 922.8 917 780.8 755
3

S, 958.4 942

TABLE 8.1.2
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Fig. 8.1.2
Natural Mode Shapes of Model I

and Analytic Solution
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8.2 Transverse Waves on a Straight String.

"'-‘"—‘— :;-— \\‘\\-
- |9(! ) . ~. R

o . 7

Fig. 8.2.1

Taut, Straight String

For a straight string of length L with constant tension
R, the differential equation for small transverse displace-

ments y(x,t) and no external force is the wave equation

2 2
_B_X-%.Tay=0,

9x?2 ot 2
_ ,R/1/2 . .
where c = (E) is the transverse wave velocity,

m is the mass per unit length.
It is here assumed for simplicity that the string is
vibrating in air. A solution can be found by separation of

variables; satisfying y(0,t)=y(L,t)=0:

y(x,t) =
n

Il o~ 8

sin k x(A cos w t + B_sin w_t)
1 n n n n n

nmw w_ = ck_, An,Bn are constants to be determined

where kn =1 ¢ W n

from the initial conditions. The w ~are the natural frequencies
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of the string, with corresponding mode shapes sin knx.
The initial conditions at t=0 are given displacements
and velocities, y(x,0)=u(x), %%(x,0)=v(x). Hence we find
[4

the coefficients An,Bn:

L
_ 2 .
An =T J u(x)sin knx dx
0
L
_ 2 .
Bn = =1 [ v(x)sin knx dx
"9

If initially the string is at rest, v(x)=0 and Bn=0' In

this case we can write for y(x,t):

o

(8.2.1) yix,t) = nil An51n knx cos mnt

. + . _
An(51n(knx mnt)+51n(knx wnt))

l
N
o2

n=1

This shows that the initial shape u(x) is separated into
two waves of equal amplitude, moving in respectively nega-
tive and positive directions.

We choose as initial condition a half sine wave
situated symmetrically about x= % and of half wave length

a:

8 sin L (x- L-a,. L-a . 4 < E%i

u(x) a = A3

=20 ; otherwise,
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where B8 is the amplitude. The coefficients An are:

1

n,?2 ,1
() -(5)

| =

ap
L

”
Hh
l
.S
o |-

A= -
n

ol

T

A finite element model with 11 elements, L=1000 m,
R=20000 kp was analyzed for comparison with the analytical
solution. The model, with imposed initic¢l displacement, is

sketched in Fig. 8.2.2. The analytical initial condition

[} 6. -~ _unalﬂhc inttial cond.
i\ 7 I'm ‘</\
Iz 3 4 ¢ 5 ¥ ] 1o 1 1z
..A_ ’ * Q_3 4 —— . - _A_
h__w;JE’”
I‘. ) L= HO0C m _|
Fig. 8.2.2

Initial Conditions

is also shown for comparison. The half wave length of the
sinusoidal initial condition is a=300 m, the initial trans-
verse displacement of nodes 6 and 7 are 1 m, and the corre-
sponding amplitude of the analytical initial condition is

B = (sin %)_1.‘ The string has a weight per unit length

mg = 3.12 kpm~!.
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In Table 8.2.1 are listed the calculated eigenfrequencies
vi[rad s~ '] for the finite element model and the analytical

frequencies UE.

i 1 2 3 4 5 6 7 8 9 10

vy 0.719 1.452 2.215 3.022 3.886 4.818 5.807 6.813 7.743 §.429

Wy 0.716 1.432 2.149 2.865 3.581 4.297 5.013 5.730 6.446 7.162

TABLE 8.2.1

It is seen that the v, are fairly close to Wy for the
lower modes but the differences become larger for the higher
modes. The mode shapes fit fairly well the theoretical sinu-
siuds, and are not shown.

To transform the initial condition to normal coordinates,
we use the results of Sec. 5.4. 1If the vector v(t) repre-
sents the transverse nodal displacements, we have v6(0)=v7(0)=1
and all other components of v(0) are zero.

If the matrix Q is the matrix of eigenvectors, we have

according to (5.4.3) for the initial modal displacements y(0):
y(0) = MQv(0)

Since we have assumed the string is vibrating in air, there

is no damping, so that the equations of motion (5.5.2b)
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are homogeneous, uncoupled single degreec of freedom

equations. Hence for each transverse mode we may write
yi(t) = yi(O) cos vit ; i=1,2,...10,

and the total time evolution for the transverse displace-

ment vj(t) of node j is:

1

I o

(8.2.2) vj(t) = jSyi(O)cosvit;

i=1

where jS is the transverse displacement of node j in
mode i. This equation is similar to (8.2.1) for the
analytical solution, when it is taken into account that
jS, for fixed i and variable j, represents the i'th
eigenvector, which is approximately of the form sin kix.
The frequencies Vi are generally different from the W,
and there are finitely many modes for the finite element
model but infinitely many for the analytical model.
Numerical calculations were done for three cases:
a) The finite element model, using the computer prbgram
b) The analytical model (8.2.1) using 10 modes
c) The analytical mode, using 100 modes.
c) is assumed to represent the analytical solution with
sufficient accuracy. The differences betweeﬁ b) and c)

were usually small, so that only the results of c) are

reported. The comparison between a) and c) is shown in
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t = 5.0 sec
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Fig. 8.2.3b

String Shape as Function of Time
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Fig. 8.2.3. It is scen that, for the first 3-4 seconds,
the analytical shape of the can be recognized in the finite
element results, for longer times the f.e.m. results becomes
diffused compared to the analytical solution.

From the shape at t=1.0 sec, we can estimate a dis-
tance between peaks of 550 m, corresponding to a wave
velocity of 275 ms~!. The analytical wave velocity is
c=(R/m) */%=250 ms~?, i.e. a difference of 10%.

We believe that the basic reason for the difference
between the analytical and f.e.m. results is the difference
in eigenfrequencies ws and vy Hence, if one used a finite
element model with 110 elements instead of 11, one could
expect the f.e.m. calculation to represent the 10 first
eigenfrequencies with almost the same accuracy as the
present model represents the first frequency. 1In that case
a much better correspondence with the analytical solution
would be expected, since by using 10 modes, we essentially
repeat calculation b), which.was found to correspond well

with c).

8.3 Response of a Taut String with Current Suddenly Applied

at t=0.

Consider a straight string of length L under constant

tension R°. The two ends are assumed fixed, Fig. 8.3.la.
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Fig. 8.2.3. It is seen that, for the first 3-4 scconds,
the analytical shape of the can be recognized in the finite
element results, for longer times the f.e.m. results become
diffused compared to the analytical solution.

From the shape at t=1.0 sec, we can estimate a dis-
tance between peaks of 550 m, corresponding to a wave
1

velocity of 275 ms”™ The analytical wave velocity is

2_750 ms~!, i.e. a difference of 10%.

c=(R/m)l/
We believe that the basic reason for the difference

between the analytical and f.e.m. results is the difference

in eigenfrequencies W, and v, - Hence, if one used a finite

element model with 110 elements instead of 11, one could

expect the f.e.m. calculation to represent the 10 first

eigenfrequencies with almost the same accuracy as the présent

model represents the first. In that case a much better corre-
spondence with the analytical solution would be expected, since
by using 10 modes, we essentially repeat calculation b), which

was found to correspond well with c).

8.3 Response of a Taut String with Current Suddenly Applied

at t=0.

Consider a straight string of length L under constant

tension R°. The two ends are assumed fixed, Fig. 8.3.la.
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Fig. 8.3.1

String in Homogeneous Current

For times t<0, the current of the surrounding water
is zero. At t=0 a homogeneous current of velocity V is
suddenliy applied normal to the string. It is required to
analyze the subsequent motion of the string to a new
equilibrium configuration under the drag force, see Fig.

. 8.3.1lc.
When the string is essentially normal to the current,

the drag force per unit length is given by

£fo= X

4 2
D 5 pWCDdV R

where Pw is the water density, CD is the drag coefficient,
d is the diameter. For small displacements, we find from
Fig. 8.3.1b in the new equilibrium:

dt _ R

Y = 5T T F -
a4 - f,
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where r is the radius of curvature, which is assumcd constant.
lience, from Fig. 8.3.1lc, the angle « spanned by one half

of the string length is

sino = L_
2r

and the transverse displacement of the midpoint m is:
§ = r(l-cosa)

The elongation of the string from the first to the second

equilibrium is
AL = 2r (a-sina)

Following this elongation, we get an additional elastic

tension:

AR

I
|
=
>

where E is the elastic modulus, A is the cross section area.
A first approximation to § can be found by assuming that
R does not change, i.e. R=R®. 1In this case & can be computed
directly from the above formulas. A better approximation is
found by taking into account the change of tension R. 1In
this case § cannot bevcomputed directly from the above
formulae, so some iterations must be made to arrive at a

consistent result.
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The computer program was used to simulate dynamically

the evolution from the first equilibrium to the second

under both the above assumptions. The following data were
useaq:
L = 1000 m
V=1ms""!
Cp = 1.4

A= 4.54:10"%m?
d =7.60:10"%m
E = 5.12-10%kpm™2

R°® = 100,000 kp

Under constant tension the above formulae give the displace-
ment 61 = 6.780 m. Taking into account the variable tension,
we get 62 = 6.602 m and the additional tension is
AR, = 2700 kp.

The finite element model was constructed with 10 ele-
ments of equal length. In Fig. 8.3.2 are sketched the
time evolution of the modal coordinates Yyi i=1,3,5,7,9 and
the displacement of the string midpoint m(node 6), under
the first calculation alternative (R=RO). Due to the
symmetry, the responses in modes 2,4,6,8 are vanishing.

For the second calculation alternative the time evolution

was similar, except for different limiting values.
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It appears that mode 1 behaves like an overcritically
damped degree of freedom, while the higher modes cxecute
several oscillations before settling down to constant values.
The midpoint displacement also behaves in an overcritical
manner, which is a natural consequence of mode 1 giving the
largest contribution to this displacement.

After the 50 second segment for which the calculation
was carried out, the midpoint displacement had not com-
pletely reached an equilibrium state. Trying to extrapolate
the computed results, we assume that the midpoint displace-

ment 6 follows the exponential law:

§ = a(l-e K

where a is the asymptotic displacement and k is a time
factor. We estimated a and k from the calculated data
at four times 35,40,45,50 sec.

For the first calculation (R=R®=const.) the result
was kl=0.09527s’1and a; = 6.804 m. This value of a,; com-
pares fairly well with the previously calculated value
§, = 6.780 m. In the second case (R variable) k2=0.103305'1
a2=6.618 m. The value of a, corresponds fairly well with
6,=6.602 m.

In the first case only the transverse modes were used

and consequently only transverse displacements were taken
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into account. The computed additional tension in the final
state varied from 7000 kp at the ends to 80 kp in the middle.
In the second case both transverse and longitudinal modes
were used in the calculation. In this case the additional
tension had a fairly even distribution over the string
length, e.g. at 50 sec, it varied between 2651 kp and 2655
kp, with an average of 2553 kp. Extrapolating the tension
in the same manner as displacement, we estimate a terminal
value 2668 kp, with fair correspondence with AR2=2700 kp

from the analytical solution.

8.4 Wave Propagation on String with pamping .

consider a horizontal straight string of length L,
@assrperrunit length m and tension R. We also assume that
there is a transverse viscoﬁsraaméing force —c&, where Yy
is the transverse displacement. The right end (x=L) is
assumed to have a forced harmonic motion Asin wt in the
transverse direction, while the left end (x=0) is fixed.

The differential equation for this string is

m gil + C 3y . R gil = 0.
at? ot ax?

Dividing through by m and writing c/m=2f, R/m=v? where v

is the wave propagation velocity of the undamped string,
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we have the differcential equation

N D “w 2
(8.4.1) Y 4 0 d¥ _ 2 3y _
ot 2 ot ax?

The boundary conditions to be satisfied are

Y(Ort) =0

y(L,t) A sin wt

As we look for stationary solutions expressing the forced
motion, we can assume solutions of the form (see e.g. Routh

[(51):

v(x,t) = Mekx+at+Y

where M, k and o are constants to be determined and y repre-
sents a phase angle. To have the right time dependence at
x=L, we must have a=tiw. Substituting into (8.4.1) we get

the condition

—w?+2ifw-v2k? =0

or

2493
k2=(a+ib)? = —w'*2ifw .

v?2
For the real, a, and imaginary, b, parts of k we have

2

a?-p? = - , ab = +fu

<:m IE



133

Solving for a’ and b” we find

2 ) h .“2

(8.4.2a) a2 =9 ( h+3E 1y
2v? w?
2 2

(8.4.2b) b2 = 2 (\1i+ £ 41
2v? w?

Taking only a=+iw, we find on substituting into the assumed
expression for y:

\ . ot 4

y = Me (a+1ib) x+iwt+iYy

or taking only the real parts

a

1 (8.4.3) y=Mleax cos(mt+bx+yl)+M2e_ xcos(mt—bxﬂ-yz)

where Ml and M2 are constants and»\i and Y, are phase

angles. To apply ‘he boundary conditions:
At x=0, y(0,t)=0, i.e. M1+M2=0,:yl=72
At x=L, y(L,t)=Asinwt.

Asinwt = Ml(eaL(coswtcos(bL+yl)—sinwt sin(bL+yl)

- e 2 (cosut cos(—bL*yl)—sinwt sin(-bL+ v )))

From this it can be shown that Ml and Yy must fulfill the

relations (cf. Routh [5]):
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oaLl_ -aL
tan Y tan bL = m
e +e

2

(%) - e2aL+e-2aL
1

-2cos 2bL.

e
' 1
wave traveling in the negative x-direction and the ampli-

In (8.4.3) the term with M xcos(wt+bx+yl) represents a

tude Mleax decreases in the propagation direction.

The term Mle-axcos(wt-bx*Yl) is a wave traveling in

the positive x-direction, again with decreasing amplitude

-ax
Mle

considered, the positive wave is the reflected wave at x=0

in the propagation direction. With the excitation

of the negative wave. If the damping is sufficiently
large, .the amplitude Ml of the negative wave at x=0, is

L

small compared to A=e?"M In this case practically speaking

1°
only the negative wave is being propagated while the
positive wave becomes negligible.

This problem cannot be exactly simulated with our com-
puter program, since it is based on velocity squared damp-
ing in the transverse directinin. It would, of course, be
possible to include a linear damping contribution in the
program, but usually linear damping is not representative
of a mooring line, so this feature would not be useful.

However, an approximate simulation can still be made,

based on the following reasoning. Let a current V be
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applied in the transverse direction. (Fig. 8.4.1). When
the transverse velocity of the string is y, the drag force
is proportional to (V-y)|V-y|. We assume that in equili-
brium the string is straight under the current V. Referring
to Sec. 8.3, this is not a true equilibrium where tension
forces are in balance with the drag forces. However, we
can think of some external constant force applied which
exactly balances the drag force in equilibrium. This
imagined force must be proportional to -Vv? and be assumed
to act at all times. Then the deviation force due to drag
is proportional to (V—§)|V-9|-V2. Further assume that
|y|<|v|. Then the forces (V-§)|V—§| and V? are positive in
the direction of V and we may write the deviation force per

unit length

- l o) 272y — l
Fo = 2PwCc VYTV = 9%

d(-2vy+y?),

where Pw is the water density, CD is the drag coefficient
and d is the string diameter. It is seen that Fy has two
contributions, one proportional to —V&, acting oppositely
to 9, and one proportional to &2, always in the direction
of V. The term proportional to —V& has the form of a vis-
cous damping opposing the velocity § while the term propor-
tional to 92 can be considered as a drift force in the

direction of V with time average y?2>0.



136

The computer program was used to analyze the following
problem. A taut cable (string) of length L=1100 m, density
m0=0.318kps2m'2, tension R=60000 kp, cross section area
4-10"“m?*, drag coefficient Cp=1.2 and immersed in a trans-
verse water current of velocity v=0.5ms” 'was excited at
the right end with displacement Asin&t, where A=0.25 m,
w=1.257 rad s-!, i.e. period T=5 sec. The velocity ampli-
tude at the right end was Aw=0.31ms~!, which is less than
v=0.5ms~!. The element model used 11 elements, each of
length 2=100 m. Only the transverse normal modes were
used in the calculations. The parameters were adjusted so
that the wave became practically completely dampened after
traveling from the right end to the left, and hence the
reflected wave at x=0 is negligible.

Starting from rest, the analysis was done for a period
of 40 sec. The system seemed to reach a steady state after
about 20 sec, after which time the displacements were
exactly repeated to four digits with a period of 5 sec.

In the steady state the displacements were not exactly
symmetrical about equilibrium, the displacements being
larger in the direction of the current than in the opposite
direction. This effect is ascribed to the drift force given
by y?. At every point the velocity amplitude y o was
smaller than V, where Y is the displacement amplitude

about the mean position of the steady state vibration.
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Table 8.4.1 summarizes the results of the steady state,
where +a, denotes the maximum positive displacement (i.e.
in the direction opposite the current, since the current
was assumed in the negative y-direction, -a, is the maxi-
mum negative displacement, Y= %(al+a2) is the oscillation ;
amplitude and d=a1-a2 is the mean position. The results
are given for each node, as they resulted from the calcu-
lations. Y is plotted in Fig. 8.4.2.
If we consider only the damping term proportional
to —2V}, we can associate a viscous linear damping coeffi-

cient per unit length

- kg-s
L prDdV 1.380 gy

The effective mass of the string must include the hydro-

dynamic mass m, = 0.0408kps?m~? of the surrounding water.

The virtual mass per unit length is thus j

- — 2 =2
m = mo+mh = 0.3588 kps‘m

60000

o 1/2 -
The undamped wave velocity 1is: V= (O 3588) =408.9ms |

The reduced linear damping coefficient is

CL
2f = = = 3.847 s—!

Then we can compute the coefficients a and b

from the expressions (8.4.2) {

_—i_‘.‘u.
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3.238-10" *m™!

i}
I

= 4.464-10" *m~!

op
i

With b we can estimate the wavelength

- 2T _
A= g— = 1407.6 m,

and the wave velocity:
v = w/b = 281.5 ms™!

From the results in Table 8.4.1 we can compare with
theoretical predictions from the linear aamping model. We

assume a decay of the amplitudes Yo of the form

(8.4.4) y_(x) = aeb (x~L)

’

where B is a factor corresponding to a in (8.4.3). Based

on the amplitudes Yo at the nodes, we can compute values of

B at the nodes.

The results are shown in Table 8.4.1. The values B range
between 3.02°10"°m~ ! and 3.42°10-%m~!, which corresponds
well with the analytical value a=3.24:10"°m~'. This
correspondence can be taken as confirming that the linear

damping contribution -V§ is dominant to the &2 contribution.
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We can also try to test the hypothesis that the averaqe
displacements dm can be ascribed to the forces given by &’.
To some apprcoximation this may be done by the following
simulation: If we assume that the displacement y varies
harmonically with amplitude Yo the velocity will also have
a harmonic variation of amplitude Yo The average value
of y? over one period is then % yéwz, which can be inter-
preted as giving rise to a drift force in the direction of

V, with time averaged magnitude

N =

" 3. 1 2,2
Fa PuCpd® (3 ¥, "0)

Thus if we subject the string to a transverse current of
velocity Vs=ymw//5 ,‘we have essentially a constant force
equal to the average drift force Fj- This simulation was
done by a calculation similar to Sec. 8.3, imposing the
current V_ at each node according to the oscillation ampli-
tude of the node, and starting the system from a straight
configuration of rest with no current. The current was
started at t=0 and the final equilibrium displacements dS
were computed dynamically. The distribution of Vg is shown
in Table 8.4.1.

The resulting displacements of the nodes are given in
Table 8.4.1 and a comparison between dm and ds is shown in
Fig. 8.4.2. It is seen that dj and da, 6 are of the same order

of magnitude, but the relative differences are fairly large.
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However, it should also be taken into account that the
average displacements are of the order 1 cm, compared to
the imposed displacements at the right end of 25 cm and
the total cable length of 1100 m. We can compare the

' and wave length

analytical wave velocity‘v=281.5 ms~
A=1407.7m with the computer calculations.

In Fig. 8.4.3 is drawn the string shape at ten times
with a time difference of 0.5 sec, i.e. over one excitation
period. If we follow the wave peak, which at 25.0 sec is
located at x=877 m, it is seen to have displaced to x=370m
at 27.0 sec. Hence we can estimate a wave velocity of
254 ms~!. A similar analysis for the interval from 27.5
sec to 29.5 sec gives a wave velocity of 302 ms~'. The
average is 278 ms~!, which corresponds well with the analyti-
cal 281.5 ms~!,

From the distance between the peaks, which corresponds
to one half wave length, at 25.0 sec, we estimate a wave-
length of 1386 m. At 27.0 sec we get 1330 m, at 27.5 sec
we get 1212 m and at 29.5 sec we get 1504 m. The average

of these four values is 1358 m, which is a fair correspondence

with the analytical 1408 m.
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8.5 Analysis of Mooring Lines.

In this section an attempt to analyse two mooring lines
is reported. Tle analysis aimed at computing the forced
tension variations and displacements in the line as func-
tions of time, when the upper end point is subjected to
given displacement as function of time. A problem in this
connection is the lack of experimental data relevant to
the kind of analysis undertaken, i.e. measurement of the
time dependent tension variations under known upper end
displacement. One other analysis of the same scope was
known.’ Some results were kindly furnished to the author
by E. Furuholt of the Ship Research Institute of Norway.
His analysis applied the finite element method. Other
analyses and measurements often report their results in a
statistical form, which make them difficult for comparison
for the present analysis, which is nonlinear. In our view
this kind (i.e. deterministic} of analysis is important
for practical purposes, since it allows one to estimate the
effect of transient ioads, e.g. a single large wave, im-
posed on the vehicle.

. Before starting the analysis, it is interesting to try
to estimate qualitatively the kinds of results one will get
and also single out those features which are essential, so
that the main results do not get lost in details. Under

steady harmonic excitation, one can expect there will exist
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a harmonic response, of the same frequency as the excitation.
If the system cannot be given an initial condition whitch
corresponds exactly to this steady state, there will be

some initial transient motions in the system which will

die out with time, so that‘only the forced motion remains.

As follows from the example in Sec. 8.4, one cannot always
expect all points of the system to move in the same phase
Qith respect to time, since there is a finite time for
propagation of impulses within the system. However, in

Sec. 8.4 the only mode of propagation in the cable was trans-
verse displacements, but for a mooring cable the propagation
mechanism is more complicated. Both longitudinal waves
(stress waves) and transverse waves will exist at the same
time, with the longitudinal wave velocity much larger than
the transverse wave velocity. The longitudinal and trans-
verse displacements are not independent due to the sag of
the cable. 1If the teqsion is changed, there will be corre-
sponding transverse displacements to change the sag.

The dampening of the initial transient is effected
partly by the water drag, for the transverse modes, and
partly by the internal friction of the cable, for the
longitudinal modes. As the present analysis is concerned
with a steel cable and data on viscous properties of steel
cables were not known when doing the analyses, values for

the internal viscous coefficient had to be assumed. When
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the excitation is harmonic with periods corresponding to
real sea states, i.e. 8-20 seconds, the responses in the
longitudinal modes, with low natural periods, are effec-
tively static in the steady state. Then the viscous forces

will be small compared to the elastic tension forces and the

internal friction is expected to have only little influence on

the steady state response.

8.5.1 Description of the lines

A typical mooring for an off-shore platform is shown
in Fig. 8.5.1. It is seen that a certain length of cable
or chain is lying on the bottom from the anchor in order
to give a horizontal force and tc reduce possible shock

loads on the anchor. This part is not included in our model.

- 2 T{IENSION)
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LINE WEIOHT AND
ELASTICITY

WaTER DEPTH
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Fig. 8.5.1

Mooring Configuration
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In our analysis we considered two examples of mooring
lines. One represented a mooring in 500 m depth of water,
the other in 200 m of water. The mooring cables were taken

to be wire rope of the following characteristics:

Cross section: A=4.54+10"3%m?
Diameter: d=0.076 m
Weight density: y=5.44+10°%kpm™?

Weight per unit length: . yA=24.70 kpm™'

Drag coefficient: CD=1.4
Mass coefficient: CM=1.2
Elastic modulus: E=5.12:10%kpm™?

Internal friction (assumed values):

500 m depth: CV=4.72-10"kp-s-m_2
200 m depth: CV=2.30-107kps m™?
Breaking strength: B=294000 kp

Equilibrium tension at upper end:

500 m depth: R=98000 kp |

200 m depth: R=57000 kp
Equilibrium length:

500 m depth: L=2145.0 m

200 m depth: L=1043.4 m
Theoretical wave velocities:
Transverse waves:

500 m depth: v, =179 ms™!

200 m depth: v, =136 ms~!
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Longitudinal waves: v,=3039 ns~!

The selection of these data is based on the communica-
tion with E. Furuholt, except for the internal friction
coefficients, which are assumed values. The equilibrium
configurations were assumed to be catenaries under a sub-
merged weight of 20.2 kpm™'.

It should be noted that the same equilibrium configu-
ration was assumed with current and without current.
Theoretically, this cannot be completely correct, since
imposing a current would displace the equilibrium. To
check the effect of imposing a current an analysis was made
on the 500 m depth cable with current 1 ms~!, similar to
Sec. 8.2. This gave additional transverse displacements
of 0.35 m in the upper part and a tension increase of 365 kp.
These changes are small compared to the total values. Since
our analysis is concerned with changes from equilibrium, we
can assume that the effect of the difference in equilibrium
state is not important.

In Figs. 8.5;2 and 8.5.3 are shown the equilibrium
configurations for the two cables together with the tension
variations. For both cables 10 finite elements of equal
length were used. The figures also show the definition of
tangential and normal directions on the cable.

Regarding the choice of internal friction coefficients
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no data was known for steel wire cables when the calcula-
tions were done. In [21] is reported a value cv=2.79-109
kps m~? for nylon. Hence our assumed values of cv=4.72-10“
kp*s*m~ 2 for the 500 m depth cable and cv=230-107 kps sem~?
for the 200 m depth cable are smaller than the value for
nylon. After the calculations had been done, values were

found [23]

for steel wire ropes of the order of magnitude
cV:l.S-lo6 kp*s°-m~%2. Hence our assumed values are larger
than this. It was assumed that, for a steady state of vibra-
tion, the excitation periods would be much larger than the
natural periods of longitudinal vibration, so that the
longitudinal modes would be excited in an essentially quasi-
static manner. In that case, the value chosen for the
friction coefficient would have only a minor influeéce on
the steady state response. Control calculations with

lower values of the viscous coefficient seemed to confirm
this assumption.

Technically, there is another damping mechanism in most
real cables, which is not included in the model. That is
the part of the cable resting on the sea floor up to the
anchor. It is difficult to assess the effect of this in
damping, but it can be assumed that in a real system longi-

tudinal transients will be damped faster than predicted by

internal friction alone.
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Natural periods [sec]

500 m depth 200 m depth
Mode 1 ~cable cable
1 12.4 7.8
2 11.1 6.7
3 7.7 4.8
4 5.9 3.7
5 4.5 2.8
6 3.6 2.3
7 3.0 1.9
8 2.6 1.6
9 2.3 1.5
10 1.4 0.68
11 - 0.69 0 0.34
12 0.45 0.22
13 0.33 0.16
14 0.26 0.12
15 0.21 ~0.10
16 0.17 0.083
17 0.15 0.071
18 0.13 0.065

Modes 1-9 are essentially transverse, modes 10-18 are

essentially longitudinal for both cables.

TABLE 8.5.1
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8.5.3 DPull tests.

In order to get a first picture of the dynamic response
of the cables, they were analysed in pull tests, in which
the upper end was pulled a certain distance under constant
velocity in 2 seconds and then held fixed in the extreme

position. The extreme position had x-displacement x,=1.414m,

1
y-displacement y1=2.5m, i.e. a total linear displacement
zl=2.87m.

The analyses were done with different current states.
For the 500 m depth cable three states were used: one with
no current, the two others with currents linearly varying

=! and 2 ms~! at the upper end to

from respectively 1 ms
zero at bottom. For the 200 m depth cable, there was one
state with no current and one linearly varying from 2 ms™!
at the upper end to zero at the bottom.

Since there were some transients present in the cable
during the pull, element no. 6 seemed to be most representa-
tive of average values in the cable. Some results are shown
in Figs. 8.5.5a,b, where the elastic tension deviation AR6
in element 6 and the normal displacement Ve of node 6 are
drawn as functions of time for the 20 sec. periods for
which the analyses were made. The diagrams show a rapid

increase of tension in the pull period (0-2 sec). After

2 sec. the tension is relaxed towards equilibrium values.
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The peak tensions after 2 sec. seemed almost independent of
the magnitude of the current, while the relaxation occurred
somewhat more rapidly with no current than with current.

' The equilibrium tensions can be estimated from the
diagrams to about 4200 kp for the 500 m depth cable and
about 8100 kp for the 200 m depth cable. Separate manual
calculations with the catenary gavé the results 4150 kp,
respectively 8010 kp.

The limiting values of the normal displacements Ve
may be estimated from the diagrams as about 6.2 m for the
500 m depth cable and 7.4 m for the 200 m depth cable.

The manual calculations gave respectively 6.4 m and 7.5 m.
From the diagrams it also appears that the peak tension
deviation for the 200 m depth cable (about 35000 kp) is
larger than for the 500 m depth cable (about 21000 kp).
This indicates that the shorter cable is more likely to
get large transient tensions due to suddenly applied loads,
but it should be noted that the static tension increase is
also larger.

To check the effects of internal damping in the cable,
the 500 m depth cable without current was subjected to the
pull test with an internal damping 0.01 of that used pre-
viously. The results showed that the tension had an oscilla-
tory, high frequency variation about the values in the

diagram, while the normal displacement of node 6 was prac-
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tically the same as in the diagram. From this one can infer,
as would be expected, that the longitudinal transients arc
mainly influenced by internal damping, while the normal
displacements, particularly in the relaxation phase, are
guided by drag forces. It also indicates that the value
chosen for the internal damping ccefficient does influence
the high frequency, transient longitudinal oscillations,

but not, or at least only to a small extent, the average
relaxation of the system towards equilibrium.

In this pull test of the 500 m depth cable with no
current we also studied the initial motion in the period up
to 3 sec in more detail. From the transverse displacements,
Ver of node 6, the velocity 06 and acceleration 06 were
estimated by computing first and second differences in
time with a time interval h=0.2 sec. From the acceleration,
the inertia force (I) was estimated and from velocity, the
drag force (D) was estimated. Also the curvature could be
estimated and the corresponding transverse tension force
(A) was computed. All forces were estimated per unit length
around node 6.

The results of this analysis are shown in Fig. 8.5.5c.
It is seen that for the initial time up to about 1.2 sec,
‘the transverse_inertia force is larger than the drag force.
After 1.2 sec the drag force dominates the inertia force

and the latter becomes negative after about 2.5 sec. The
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tension force was corrected for the assumed strain rate
dependence of the axial force, and in the diagram the trans-
verse tension component is approximately equal to the sum
of the inertia and drag forces.

Hence, we can conclude that the tension increase
during the pull phase is caused initially by the inertia
of the cable and later by the drag resistance to transverse
motion. Part of the tension increase is also due to the

change of equilibrium tension.

8.5.4 Response to forced harmonic excitation of the upper
end.
The cables were excited at the upper end by given

horizontal and vertical displacements:

— . m
X, = ax51n(wt+ 4)

Y aysin wt,

o

with horizontal amplitude ax=2.0 m, vertical amplitude
_ay=2.5 m and with the horizontal displacement 45° before
the vertical in phase, see Fig. 8.5.2. The excitation
period Tc=2w/m was varied while the amplitudes were held
fixed in the basic series of calculations. Other calcula-

tions were performed with variations of excitation amplitudes,

current and internal damping of the cable material. The
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time step used in the integration was normally 0.25 sec.

We present first some time dependent results for a
specific calculation. Fig. 8.5.6 shows some features of
the resulting response for the 500 m depth cable with
excitation period Tc=10 sec and no water current. The
first diagram shows the excitation displacements X rY -
The second diagram shows the normal displacements vii
i=3,6,9,11], for nodes 3,6,9,11 in the time segment from
20 to 35 seconds. The third diagram shows the elastic
tension variations AR6 for element 6.

The second diagram shows that the phase differences
between the nodes 3,6,9 are small. Similar time functions
were found for the other nodes except near the upper end,
where the phase differences are somewhat larger. The
differences cannot be accounted for as a result of trans-
verse wave propagation, since the velocity of transverse
waves, disregarding damping, is about 179 ms~!, while the
distance between nodes 3 and 9 is more than 1200 m. Further,
node 3 is before nodes 6 and 9 in phase. We can interpret
this result as transverse displacements being caused by
the tension variations. The delay of displacements, com-
pared to the tension variations in the third diagram, is
then the result of hydrodynamic damping.

By comparing the tension variations in the third dia-

gram with the excitation displacements x_.,Y, in the first
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diagram, we see that the tension variations are practically
in phase with the horizontal displacements X - This might
have been expected, since the angle between the cable and
the horizontal is about 26° at the upper end.

In Figs. 8.5.7a-d are sketched the modal responses as
functions of time. The ordinates are the modal coordinates
y; (t) defined in Sec. 5.4. It appears that mode 1 has not
completely reached a steady middle position after 35 sec.

The other transverse modes (2-9) seem to have reached steady,
periodic motions after at most 15 sec. The repetitive pattern
with a period of 10 sec is good. For the higher modes (6-9)
the deviations from sinusoidal shape become appreciable,

but the amplitudes are small.

The longitudinal modes (10-18) are all practically in
phase with the imposed X displacements and have no apparent
distortion of the sinusoidal shape.

In Figs. 8.5.8 and 8.5.9 are shown the elastic tension

amplitudes AR6 in element 6 for various excitation periods

Tc for the—SOO_m"andfﬂOO“mﬂdepthwcableS“respectively;' The
excitation amplitudes are kept constant. The analyses showed
a tendency for the tension to increase with reduced T.- The
resonance periods showed merely as small deviations from the
general trend, giving "hollows" in the diagrams. This indi-
cates that the mass forces are insignificant compared to drag

and tension forces for these cables with the excitation
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periods and amplitudes used in the analyses. Because of
the square dependence of drag forces on the velocities,

one can expect the mass forces to be relatively more impor-
tant with smaller excitation amplitudes.

For éohbéfiédn; the meﬁtioned communication from
E. Furuholt showed a tension amplitude of 46300 kp for the
200 m depth cable at T2=9.3 sec. Our result from Fig.

8.5.9 is 54000 kp, which is 17% higher.

In the figures are also shown some results, reflecting
the effect of currents. With zero current, the positive and
negative variations of the tension were approximately equal.
This was nct the case with current. For the 500 m depth
cable the current applied was linearly varying from 1 ms™!
at the upper node to zero at the bottom, for the 200 m depth
cable the current was 2 ms~2 at the upper node. A positive
current is moving in the positive x-direction, cf. Figs. 8.5.2
and 8.5.3. It is seen that the presence of the (positive)
current will increase the positive tension variation and
decrease (numerically) the negative tension variations. This
is assumed to be caused by a non-linear effect, similar to
the average drift force in Sec. 8.4, except in this case we
have not always |y|<V, especially near the bottom.

Fig. 8.5.9 indicates that for excitation periods of
9 sec. or lower and without current, the negative tension

variation becomes numerically larger than the static tension,
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which is 54000 kp for element 6. This predicts the possi-
bility of a slack occuring in the cable under excitations

of the assumed magnitude. 1In its present version, the com-
puter program has no provision for realistically representing

the occurrence of negative total tensions.

Variation of Excitation Amplitudes

An analysis was made to study the effect of varying
the excitation amplitudes. Two cases of current were
studied for the 500 m depth cable, one with zero current,
the other with a current linearly varying from 2 ms~! at
the upper node to zero at the bottom.

Fig. 8.5.10 shows the results. The excitation ampli-
tudes were varied by the factor a compared to the basic
calculation, and the diagrams show the tension variation

amplitude AR, in element 6 and the transverse displacement

6

amplitude v6-of node 6 as functions of o. In the case of

zero current AR6 and Ve varied approximately symmetrically
about zero. With current, the positive (AR;, v6+) and nega-

tive (ARE, vg) arplitudes were different and the mean ampli-

tudes of Ve are shown in Fig. 8.5.10. The negative displace-
ment amplitudes were larger than the positive.

It is seen that the tension variation is practically

proportional to o, while the displacement varies less than
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proportional to a. This indicates that the tension variations
are mainly determined by the upper end displacements. The
transverse displacements are largely controlled by the drag
forces, and hence varies less than proportional to a.

Some improvement of linear behavior of Ve can be observed
as a result of the presence of a current for a<0.1l. An
explanation for this small range may be that over most of
the cable is the local current velocity less than 2 ms—'!, and

the component normal to the cable is still smaller, due to

the decrease of current with depth.

Accuracy of Longitudinal Displacements

In order to get a good representation of the tension
variations in the cable, it is necessary to have a good
accuracy in the longitudinal displacements. In the steady
state oscillation one can expect the tension variations to
be almost evenly distributed along the cable, since an
uneven distribution would set up longitudinal stress waves
tending to equalize the tension variations. This would be
a rapid process due to the large velocity of longitudinal
waves of 3039 ms™!.

The longitudinal stiffness of one element of the 500 m
depth cable is AE/L=1.08-10° kpm~!. This indicates the sensi-

tivity of the analysis to errors in longitudinal displacements.
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An error in the relative longitudinal displacements of the
two nodes in an element of 1 cm would result in an error

in element tension of 1080 kp. For the 200 m depth cable the
sensitivity of tension to errors in relative longitudinal
displacementsof the nodes is 2.23-10° kpm~'.

In the steady state the tension along the cable varied
generally by less than *5% of the maximum. In a typical
case, the 500 m depth cable with excitation period 10 sec,
the maximum tension deviationin element 6, 29380 kp, as
recorded in Fig. 8.5.8, occurred at time 31.5 sec. At
the same time, the distribution of tension over all elements

varied between 30130 kp and 28310 kp. The following table

shows this distribution.

Element 1 2 3 4 5 6 7 8 9 10

AR[kp] 30130 30080 29970 29820 29630 29380 29060 28690 28310 28440

TABLE 8.5

Effect of Internal Viscosity

Some calculations were repeated with lower internal viscous
damping. The main effect of this was to increase the time
required to reach a steady state of vibration, while the ten-

sions and displacements in the steady state were only little
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changed.

In a repeated calculation for the 500 m depth cable
with internal friction reduced by a factor 0.1 and
excitation period Te=10 sec, the tension seemed to have
approximately reached a steady state after about 20 sec.
The calculated tension amplitude in element 6 was 30300 kp,
compared to 29380 for the basic calculation. The trans-
verse displacement amplitude of node 6 at 24.5 sec was
1.95, compared to 1.93 in Fig. 8.5.6.

With damping reduced by the factor 0.01 of the basic
value, an attempt was made to "smooth" the transition

from the initial state to the steady state excitation

durihg awperiod of 2 sec. 1In this case an approximately
steady response was reached after about 50 sec. The steady
state tension amplitude was about 29950 kp and the maximum
transverse displacement of node 6 was 1.90 m. There was no
current with these calculations.

In view of the uncertainty associated with values of
internal damping, it seems fortunate that the steady state
results seem relatively insensitive to the value used.

We can estimate the maximum viscous force occurring
during a cycle. For the 500 m depth cable with excitation
period T =10 sec, the maximum strain is émax=l.2-10‘3, hence
the maximum strain rate of change is émax=0.7-10"3s“. The

maximum friction force is 1550 kp, with the basic viscous
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coefficient cv=4.72-10"kps m~?. This force is about 5% of
the maximum elastic tension, and there is a 90° phase
difference in time between the friction force and the elas-
tic tension.

In view of the finding of experimental data on internal
damping of wire ropes after the calculations were done, it
appears that it is not practical to calculate the transient
response for a real time of up to maybe 100 seconds before
a steady state is reached. A practical solution to this
problem would be to design the computer program such that
a steady state is reached in a relatively short time with a
large coefficient of viscosity, after which a lower viscosity
is used in the firal calculation. This would be a method to
approximately produce a realistic initial condition for the
harmonic responrse.

Both for the pull tests and for the harmonic response,
the use of large values of the internal damping coefficients
tended to smoothen out the results, compared to using lower
damping coefficients. The drawback of this is that transient
tension peaks may not be sufficiently well described. On the
other hand, by ffeeing the results of transients, one can
describe the "dominant" response to the given excitations.

If one is interested in analyzing for possible transient
peaks, a realistic value for the internal damping must be used.
One must then also account for a possible dissipation at the

lower end, due to cable resting on the sea floor.
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8.5.5 Enerqy balance.

We can make an overall control of the analysis by
computing the energy transport into and out of the system.
The enrgy input is the work done by the reaction force at
the upper end. The output is the energy lost due to the
external drag force and the internal viscous forces in the
cable.

The check was made for the 500 m depth cable with
excitation period Te=10 sec and no current. The data used
are extracted from the computer output and some approxima-
tions are necessarily made in the manual analysis. It is
assumed that in the steady state the transverse displace-
ment of each node is varying harmonically between extreme
values +al, -a, with amplitude A= %(al+a2) and with excita-
tion period Te=10 sec. The time interval from 25 to 35 sec
was chosen for analysis. The vibrations were not completely
symmetric about equilibrium, so that the extreme values ajra,
are usually different, as also appears from Fig. 8.5.7.
Typical values are a1=+l.88m, -a2=-l.74m (node 6).

The energy output from the system comes from the effects
of drag resistance to the transverse motion (WD) and the
internal dissipation due to internal friction (WI). The
drag losses were computed from the calculated transverse
oscillations of the nodes. These calculations were done for

each element, and the effect of the phase differences between
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neighboring nodes was disregarded. The energy loss from drag
is proportional to the amplitudes to the third power.

The energy input is due to the work of the reaction
force at the upper end. This reaction force is composed of
contributions from the elastic tension and viscous force of
the upper element and also the reaction force against the
drag on the upper element. The draqg forces of the other
elements are transmitted to the reaction via the tension.
(R%AR)% is the elastic tension, vt is the viscous axial
force, Nn is the reaction force at the upper node from the
drag force of the upper element, where E,H are directions
tangential and normal to the upper element. Hence the total
reaction force is fR=(R4AR)E+V€+NK. When v is the velocity

of the upper node, the work of the reaction force is
T T T T

2 2 2 2
W, = J ER-3 dt = J(R9+AR)€-$dt+ J VE. vdt+ J Nn- vdt .
Ty Ty Ty Ty

where Tl=25 sec, T2=35 sec.

Let £°2,n° be the tangent and normal directions in
equilibrium. Since t and n vary with time, we can write
E=E°cosw + Kosinw and ﬁ=-€°sinw +H°cosw, where yY(t) is
the angle between t and t°. Hence we set:

Ta - Ta |

I (R+AR) £+ vdt = J (R®+AR) cosyte vdt + J(R°+AR)sin¢H-$dt

T1 . Tl
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T

As cosyx1l and R°%=const, szocoswzdt=0. Then we have the

work against R:

where

can be interpreted as work against the elastic stiffness

forces, and

WG = I (R°+AR)sinwﬁp-3dt
T

as work against the geometric stiffness forces.

The work against the viscous fcrces

can be treated similarly.

The drag force reaction work is
W' o= T2N+-+dt
D - n V .
Ty

In carrying out the integrations to find Wer Ws and Wyr

Simpson's rule was used with time interval 0.5 sec.

Values



183

for the integrand were taken from the computer output. The

following results were obteined:

Energy input:

Work against elastic stiffness: Wp = 76032 kpm
Work against geometric stiffness: Wo = 2561 kpm
Work against viscous force: Wy, = 13077 kpm
Werk against drag force reaction: WL = 3496 kpm
Total input: W1 = 95166 kpm
Energy output:

External drag losses: WD = 87115 kpm
Internal viscous losses: WI = 13423 kpm
Total output: W2 =100583 kpm

The calculated difference between input and output is
about 5%. Part of the difference may be explained as a
result of disregarding phase differences in computing the
external drég losses. Another possible error source is the
assumption of harmonic variation of the transverse displace-
ments. However, it is not easy to predict in which direction
this error works, since the displacements recorded in Fig.

8.5.6 show no appreciable deviation from harmonic.
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Due to the large value used to the internal damping,
the contributions WV and WI have become artificially large.
However, the two contributions are approximately of the
same magnitude, and hence using different values for the

internal damping would not be expected to change the balance

between energy input and output.
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CHAPTER 9. Summary and review.

9.1 Review of Calculation Model.

The present work is aimed at obtaining a numerical model
for dynamic analysis of cables, with a special view to mooring
systems. We have the view that the particular nature of the
dynamic cable system makes it different in some respects from the
classical linear, low damped vibration problem. Some established
truths for such systems had to be .reconsidered.

The method in itself has a large degree of flexibility in
varying the cable parameters in dependence of the state of the
system. For example, the cross sectional area may be considered
as a function of the instantaneous tension (or strain), or the
drag coefficien£ may be considered as a function of the instant-
aneous local velocity.

The cable is to a first approximation considered as a linear
system, according to ed. (5.6.1), with corrections due to non-
linearities included in the "force" term of the right hand side.
Both transverse and longitudinal displacements are represented
in a coupled system. The integration over time is done stepwise
with a systematic trial and error iteration process to estimate
the state at the end of each step. 1In this process displacements,
velocities and accelerations are expressed first in terms of the
normal coordinates. They are then transformed back to global
coordinates for calculation of forces. The forces are again

transformed to the normal coordinates for use in the equations of
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motion. Thus there is a continuous transformation between global
and normal coordinates during iteration.

The normal coordinates y in Ch. 5 were defined i terms of
the normal modes of free oscillations of the undamped, linearized
natural vibration problem. It is, however, important to note
that because of the mathematical properties of the solutions of
the eigenvalue problem (5.4.1), we can interpret the relation
(5.4.4) as defining Y as a new set of generalized coordinates
for the n-dimensional vector space of displacements R, relative
to the eigenvectors d; as basis. 1In this sense, the normal

coordinates are independent of the eigenvalues Ai= w.z. For

i

numerically computed eigenvectors, the criterion of accuracy
is the mass orthonormality relation (5.4.2a). These eigen-
vectors represeﬁt the best that can be obtained within the given
finite element model. This normal coordinate description is
mathematically equivalent to a description in terms of the
global coordinates R, provided a satisfactory accuracy has
been obtained according to (5.4.2a). Naturally, the reason for
choosing these generalized coordinates is the simple form
obtained for the transformed equations of motion (5.5.2b) or
(5.6.1).

For design purposes, it may be desirable to take into
account the dependence of the drag coefficient on the instant-

aneous velocity. Such an improved hydrodynamic model may be

obtained by assuming the drag coefficient to be a function of
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Reynolds number, in a similar manner to the drag coefficient
of a stationary body in a constant current, see e.g. Newman DQ].
This approcach was used by Webster [lﬁ and also suggested by
Williams pZ]. However, most experimental data for the drag
coefficient as function of Reynolds number are based on the
assumption of a fixed body in a constant current or a body
executing small amplitude oscillations in a constant current,
i.e. steady conditions. This assumption is not satisfied for
a cable executing large oscillations, since the cable velocity
is continously varying. For a more refined analysis, one can
also take into account vortex shedding effects (strumming), i.e.
the dependence on the Strouhal number. Some efforts to treat
these effects may be found in Griffin [31] , but again
considerations ﬁust be made of the unsteady conditions around
a cable with varying velocity, as well as the different surface
conditions of a relatively smooth wire rope and a chain. 1In
the example shown in Fig. 8.5.6, Reynolds number varies
between zero and 105 in a time interval of 2.5 sec.

For many real moorings is the boundary condition at the
lower end more complicated than has been assumed here, as there
is a length of cable (or chain) resting on the sea floor leading
up to the anchor. During motion, part of the cable will be
lifted from or laid down to rest on the sea floor. The detailed
mechanics of this is complicated and some approximation may be

necessary to represent it. One can either try to make a
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dynamical model of this part, included in the cable nodel, or
try to simplify by constructing an approximate spring-damper
model to represent this lower end boundary condition.

The examples in Sec. 8.1-4 are intended to give an
impression of the accuracy of results obtained by the model.

In Sec. 8.1 and 8.2 it was found that the accuracy of the calcu-
lated natural frequencies decrease with the higher modes, the
error in the highest transverse mode in Sec. 8.2 being about 18%.
As a consequence of these frequency errors, the computed time
evolution of the system in Sec. 8.2 deviates more and more

from the analytical with time. On the other hand, in Sec. 8.4
all normal coordinates execute forced motion of the same period.
In this case the periodic repetition of the motion is good, and
the wave speed and wave length correspond well with linearized
theory. The example in Sec. 8.3 shows that the effect of
tension increase due to large transverse displacements is repre-
sented wiﬁh good accuracy.

These results indicate the tentative conclusion that forced,
steady motions are represented with better accuracy than free or
transient motions, since the period of motion is determined by
the excitation period and is independent of the eigenfrequencies,
which may be erroneous for the higher modes.

In Sec. 6.3 the general rule about the selection of time
step length was given that it should be small compared to the
smallest.dominant period Tc of the motion, say less than TC/16.

This rule seems fairly straightforward in a steady state forced
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motion, when the system is oscillating with the excitation
period and no transient, free motion remains. However, in
situations where transient phenomena are involved, the concept
of dominant period‘is not clear. 1In that case the time step
length must to some extent be chosen on the basis of experience.
If convergence is not obtained with one time step, one must try
smaller steps until convergence is obtained.

The importance of choosing the time step lies in the
convergence of the iteration process to determine the state at
the end of the time step. Essentially, as outlined in Ch. 6,
this iteration assumes a certain state at the end cf the Step,
and, based on the displacements, velocities and accelerations
in this state, the corresponding forces are computed. These
forces then give the right hand sides of eqgs. (5.5.2b) or
(5.6.1). The assumed state is then cﬁecked for kinematical
and dynamical compatibility with the known initial state of
the time step. For the equations of motion the "force" terms
are assumed to vary linearly in the time interval of the step.
The equations of motion are integrated by finding the homo-
geneous solution, representing the free motion, and the parti-
cular solution, representing the forced motion. The constants
of integration are determined from the known state at the

beginning of the step. The criterion for compatibility is

“wthat_themnewwdérivedwstate~15wsufficientlyfclose”tO’the assumed

state, and this condition is to be satisfied simultaneously
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for all normal coordinates used. If sufficient compatibility
is not achieved, a new iteration must be made with a new
assumed end state.

The easiest choice for the new assumed state is the last
derived state. This was recommended by Newmark [29] , see Sec.
6.2. However, a modified method was also tried, where the new
assumed state was taken as the average of the derived states
of the two last iterations. This modification tended to
improve the convergence of the iterations. The most important
reason for slow convergence, Or even divergence, was found to be
the sensitivity of the tension force to errors in the longi-
tudinal displacements.

It appears that the crucial point of the iteration is the
determination of the new assumed state. Hence, if improved
methods can be developed to find the new assumed state, this
may allow the use of larger time steps.

For the cables analyzed in Sec. 8.5 the general time step
was 0.25 sec, except for the starting phase, when steps down
to 0.01 sec were used. A time step of 0.50 sec was also tried,
but this resulted in divergence of the iterations. It was
also tried to repeat a calculation with the shorter time step
of 0.10 sec for some time period. This resulted only in small
changes in the results. It was also experienced that the
iterations conQerged more rapidly with the shorter time step.

No systematic investigation into the effect of using different



191

time steps were made, so the conclusions made are only
indicative.

The cables analyzed in Sec..8.5 are fairly large by
present-day technoiogy and were selected because data were
available for comparison. It can also be noted that these
cables have a relatively small initial curvature. We find
that the models used with ten elements and a general time step
of 0.25 sec seem to give a satisfactory representation under
the steady state conditions considered.

For other mooring cables the conditions will differ. The
factors influencing the choice of finite element model are
tension, length and initial curvature. The practical choice
is a matter of experience, similarly to other applications of
the finite element method. Since curvature is an important
parameter, and the continuous curvature of the cable is repre-
sented by the discontinuous changes of direction between
adjoining straight elements, it is reasonable to assume that
'a finer model, i.e. with more elements, should be used to
represent a cable with larger initial curvature.

Also the form of excitation may influence the choice of
model. 1In the ocean environment, the steady excitations
considered typically contain periods from about 5 sec’ upwards
to around 20 sec. Real mooring cables may have linearized
natural periods in this range, as illustrated by the examples
in Sec. 8.5. However, the longitudinal natural periods are

usually below this range. Whether resonances occur, depends



192

on the amount of damping. For the examples in Sec. 8.5 it was
found that the damping is sufficiently large to suppress
resonances with excitation amplitudes of about 2 meters. We
feel that under such steady, long period excitations should
normally the excitation period not influence the choice of
model, and the representation of geometry is the most import-
ant consideration.

Some cases of non-steady excitation may also be of interest.
For example, one may be interested in the effect of a single,
large wave in a train of smaller waves. The transient response
of the moored vehicle will be given as input for calculation
of the transient mooring cable response. The pull tests
analyzed in Sec. 8.5 show crude examples of such transient
analysis and indicate that the transient tension peak may be
larger than would be predicted by a quasistatic analysis. 1If
there are significant high frequency components in the trans-
ient excitation, the mbdel should be such that natural periods
of the cable close to such significant excitation periods have
a reliable representation. 1In general, analysis of excitations
witﬁ low period components can be expected to require a finer
model than long period, éteady excitations.

In the caiculation examples of Ch. 8 a large number of
normal coordinates were generally used. This may seem contrary
to common practice for dynamic analysis, where it is assumed

that a sufficiently accurate representation of the response can
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be obtained in terms of a limited number of normal responses.
This is usually a cuestion of the accuracy required. It seems
obvious that bettep accuracy is obtained by using more modes.
This may be understood from the interpretation of the normal
coordinates as new generalized coordinates, provided the mass
orthonormality relation (5.4.2a) is satisfactorily fullfilled
for all eigenvectors considered.

The particular case of the mooring cable of Sec. 8.5
also presents some additional particlular problems in this
respect, because the tension wvariations are represented in
terms of the relative longitudinal displacements between the
nodes. Hence, it is necessary tc include at least some of the
longitudinal mcdes. Furthermore, since the forces in the
system depend on the displacements, velocities and acceler-
ations, it is necessary to have a good representation of the
displacements, velocities and accelerations. This is especially
the case with regard to the tension force, which is sensitive
to errors in the longitudinal displacements. Also it should
be considered that the normal coordinates are coupled, such
that by excluding one coordinate_the response of the others
may be changed.

To comparé the present method with other, similar analyses,
one should have detailed information about the mathematical
methods as well'as the technical problems encountered in

implementing and applying the method. The work most closely
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related to the present is, to eur knowledge, that carried out

at the Ship Research Institute of Norway by E. Furuholt.

That model takes given displacements of the upper end as

boundary condition énd calculates displacements and tension

as functions of time. We repeated one of these analyses

(Sec. 8.5) and got tension deviation amplitudes 17% larger.

One reason for the difference may be that the work of Furuholt

takes into account lifting of the bottom segment of the cable.
Websters [19] work is not in particular concerned with

mooring problems, so a direct comparison of results is not

possible. ile uses a direct integration method. In our judge-

ment his method is equivalent to ours. The differences may lie

in technical details, like potential applications or the time

step required by the integration technique. It should also

be noted that the calculation examples given do not show the

tension variations, which we believe to be the most difficult

part of theAanalysis. More information for comparison will

be obtained when more experience has been gained in using the

methods.

9.2 Review of Calculation Results.

Some surprising results were obtained for the cables
analyzed in Sec. 8.5. 1In particular the following points
should be given some further discussion: 1) the ordering and

mode shapes of the two lowest transverse mode shapes in
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Fig. 8.5.4a, 2)}the lack of resomance behaviour in Fig. 8.5.8
and 8.5.9, 3) the almost sinusoidal transverse motion of the
cable in Fig. 8.5.6, in spite of the velocity squared
dependence of the transverse drag force.

In Fig. 8.5.4a the lowest frequency mode shape has one
node near the middle (S-shape), while the mode shape most
similar to the lowest mode of a straight string under constant
tension (U-shape) has the next lowest natural frequency. In
order to estimate the influence of elasticity on the natural
mode shapes, we made one calculation, where the elastic modulus
was arbitrarily increased by a factor of 1000. In this case
the U-shaped mode had its frequency increased by a factor of
about 30, while the other transverse modes had much smaller
changes. The U¥shaped mode now had the highest frequency of
all transverse modes. Hence we made the conclusion that the
higher frequency of the U-shaped mode was caused by the initial
curvature of the cable, necessitating extension of the cable,
while-all other transverse modes also have compensating
longitudinal displacements and thus less extension and are
consequently less influenced by the cable elasticity.

Compared to the simple, straight inelastic string
under constant-tension, the cable has at least three addi-
tional parameters which influence the mode shapes: initial
curvature, variable»tension and longitudinal elasticity.

These factors make it difficult to anticipate the mode shapes.
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According to Sec. 5.4 the mode shape matrix Q should
satisfy the mass orthonormality condition ng Q = I = unit
matrix, when the eigenvectors are properly normalized. By
normalizing the eigenvectors such that the diagonal terms of
the triple matrix product were all 1, the off-diagonal compo-
nents were of the order 10-12 or smaller in our calculation.
This mass orthonormality check is taken as a verification of
the correctness of the eigenvector calculation.

The lack of resonance appearance in the tension vs. excita-
tion diagrams in Fig. 8.5.8 and 8.5.9 indicates a strong non-
linear damping on the cable, such as to suppress resonance
behaviour even close to the natural periods for the linearized
system. This indicates that the motion is dominated by the
tension and drag.forces under these excitation amplitudes,
while inertia forces only play a minor role. As a comparison
Fig. 8.5.5c also shows a strong drag force compared to the
inertia force after the system has been.set into motion. It
can also be noted that for a linear system does resonance
amplification only occur for low damping.

As the drag force is assumed to have a square dependence
on the cable transverse velocity, one may expect to obtain
some degree of resonance behaviour with smaller excitation
amplitudes, when the drag is less dominant over the inertia
force. 1In testing the program we made some calculations

on the 500 m depth cable with smaller excitation amplitudes.



L h
1 T N ., -
] ! ' aipdiniaels
1 1 o+ 171!
T T
Mt e it
] HHTHAT

> = 1
.y
T
I
1
1
1
T

: s
I ] Bl ﬁ T LTI IT 10 111 [

Figo 9-2.1 :
Tension response for different excitation amplitudes.

[ [ sesin; 1 s H ! 10 { 5 |
[ 1 L . 1 ] i i i
"_‘ HHHHH H Bagl HEHH 1 H H 1 H 4 ;
HitH 1 I L] HIEHHHT T i i 1 i HHIHI L
. 1T [ ST TR L HH T
i i niti gighn ! M
| HIHH{H " U ‘
[ !
e == n
" LT T
1 L 1 H HH H H =s HH HH
ety hnln " ! | HHH T i |
H H{+H H H H1HH H H - 11 H 4 HH 4
H{l I il { [HiH I HHIH{HY 1 H HHH
1 H 1 U HHH
i ahngiedl H ] H [ i HTEHT e i H H 4 H4
it it ittt i
spidiant biaes I 18 il ! 1
I 1 s L-J, TE LA i H nipim 1 [ i
N
-».L H H H ¢ i
| J i
HHHRTH L H N
fhin Hiklia 1 T i I
1 N
il *—l»!».}.'}-!
HH HHHT
i THIHIT dinptpe
T ] TR A In § I}
rq 1 1 H HHHH H 1 . ";T"
: HH T H i i HUHHE
. M ' 1T TR 3R
! H




198

With the amplitudés decrzased by a factor of 10 ( a=0.1 ),
the behaviour around the natural periods of 11.09 sec and
12.42 sec seemed to have a similar character of Fig. 8.5.8
with no resonance aépearance. With the excitation amplitudes
decreased by a factor of 100 ( 0=0.01 ) there appeared a weak
resonance amplification around the natural periods. Finally,
with the excitation amplitudes decreased by a factor of 1000
( @=0.001 ) a still larger amplification appeared around the
natural periods. The magnification was largest at the second
natural period (11.09 sec ). The corresponding normal coor-
dinate has the largest response amplitude, cf. Fig. 8.5.7a.

A comparison for the various excitation amplitudes is shown
in Fig. 9.2.1.

Fig. 8.5.6 shows the time dependence of the transverse
motion at some selected points along the cable. It is some-
what surprising to find that this motion seems to be practi-
cally sinusoidal when the drag force varies as the square of
the transverse velocity. A complete consideration of this

question must include the tension variations, which are

shown in the lowest diagram of Fig. 8.5.6. It appears that the
tension deviation goes through zero from negative to positive
at about 18.5 sec and has a maximum at about 21 sec. The
transverse displacements go through zero from negative to
positive at about 21.5 sec. Hence the tension deviation is

almost at a maximum when the transverse velocity, and conse-
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quently the drag force, is a maximum. This tension deviation
(i.e. the transverse force component) acts in opposition to
the drag force.

An analogous system to this transverse motion is a simple

oscillator with velocity squared drag resistance, see Fig. 9.2.2a.

| x, X
/ Rx t
2~—dzw—t- mx0 +——j¥;)
7 ==
o ex|x
Q

1. 1

Sh)t K(&) /
e

.54
0 + -
1 2

ﬂgﬁ

Fig. 9.2.2
Simple oscillator analogy to transverse motion.

The eqﬁation of motion for this system may be written

mX+ck |&kx-£f(t)=0.
We let f(t)=sin t and put for simplicity c=k=1l. We also assume
the inertia forces to be negligible, m=0. Starting from the
initial condition x(0)=0, a numerical integration.up to t=8 sec
gives the response shown in Fig. 9.2.2b. It is seen that the

response x(t) has avéinusoidlike shape.
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9.3 Suggestions for Further Work.

As the application computer program used in this work was
made simple in order to concentrate on the elementary parts of
the mechanical finite element model, several improvements must
be made in order to expand it into a design program.

A better hydrodynamic model should be implemented, repre-
senting the variation of the drag coefficient with the relative
velocity between the cable and water. This will involve studying
drag forces under non-steady conditions and for complicated
cross sections like a chain.

The accuracy obtainable should also be assessed, dependent
on the fineness of the model and the time step used in inte-
gration. For this one can find some useful results from
accuracy studies.of other problems analyzed by finite elements,
see e.g. Zienkiewicz [9] . The accuracy estimates must be
based on comparison with solutions obtained by other, more
exact methods. The calculations in Sec. 8.1-4 are examples of
such comparisons. Comparisons for simple systems, like the
straight string under constant tension, may be taken as indi-
cative of more complex systems, like the mooring cable with
initial curvature and variable tension, where exact solutions
are not known. |

As the computer program was limited to two-dimensional
configurations,.an extension to three-dimensional analysis

may be useful. The programming principles will be similar, but
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the computational efforts will be larger, due to the larger
numkter of degrees of freedom.

One may further investigate whether it is feasible to
expand the method, hére employed for analyzing a single cable,
into a complete analysis of a total mooring system. The
results obtained from such a model may contain too much detail
for practical purposes, so methods should be devised to sim-
plify the analysis to the degree of accuracy needed in design.

Also the interaction between the velocity and acceleration
fields of propagating waves and the cable should be included.
This will involve adding the velocities induced by the waves to
the current velocity for calculation of the drag force, and
calculating the forces induced by water apceleration according
to Sec. 2.3.

A better representation should be ﬁade of the boundary
condition at the lower end in many practical cases, where a
length of cable (or chain) is lying on the sea floor up to the
anchor. It was suggested before to try to represent this by
means of a spring-damper system.

On the programming side, the number of elements should be
increased, say to 50 or 100, and it should be possibie to include

concentrated masses, e.g. instrument packages, on the cable.
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APPENDIX A

Listing of MAIN program and subroutine TIMINT.
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DIMENSION EK(24026) ¢GK (26026) oMM (26426) «X(12)9Y(12) oFK(26424)
DIMENSION FM(24024) sHK(210) ¢HM(210) ¢ AUX (600) ¢+D1(20)9D?(20) 4RO (20)
DIMENSION Q] (2,2) sR2(2e2) o881 (202) +HB2(2+2) sRT1(242) sRT2(22)
DIMENSION RL(11)eRMI11)4T1(2)eT2(2)+T3(2)+EV(204+20)+IND(20)
DIMENSION COS1(12) «COS2(12)9XVI(12)4YVI12)4XVO(12)4YVO(1E)
OIMENSION RT(11)¢AR(11)+ER(11) 4RV (11)+sCM(L11)CD(11)eDN(1])
DIMENSION RO(11)eWAV(4N) eMP (2) ¢NMG(10) eNML (10)

DIMENSTION RMG (70) ¢RML (70) «NC(11}}

 DIMENSION XV1(12)eYV1(]12)¢XACC(12)+YACC(12)FRO(24)eFB(24)

10
17

16
1

EPS1(20) +FDT15(20)
DOUBLE PRECISION HKoHMoAUXeD1eN2sROJEVEPS
DOUBLE PRECISION R1sR2sRTLeRT2eFKeFMRL 4RM
DOUBLE PRECISION EKeGKMUeT]14T2¢73eR1+92
1DCH=0
REAN(S«10) NEL. ITRANSoQOdoMLo“HoEPSouﬂlVoIPMIol’ﬂ?oNTIM
FORMAT (214 4FB.2¢21402FAR.24514)
READ(S417) IDRACIDIS«NWAVINULLODEPTH
FORMAT (414 FB.2)
HP (1) =]PM]
MP (2) =]PM2
NNOD=NEL *1
WRITE(6415) NEL.NMOD.QOUoﬁQlVolﬂﬂlol’"zonLoNHoNTlM

1S FORMAT (SXe]16H GENERAL DATAL 9/7/¢SNke
1] 28X NUMBER OF ELEMENTS? e1Le/eSXoe
! 2 284 NUMBER OF NNDES? e16¢/7e5Xe
3 ‘28H WATER WEIGHTS o€10:3e¢/745%,
6 26H GRAVITY ACCELERATION: oFB.2¢/45X,
, s 294 NO, OF GLOBAL POINT MASSESSelke/eSXe
. 6 2AH NO, OF LOCAL POINT MASSES? o¢14e/+SXe
i 7 284 LOWEST EIGENFHEQUENCYS ol&e/e5Ke
| 8 284 HIGHEST EI1GENFREQUENCYS 2169/7¢5K,
: 9 26M NO, OF TIwE STEPS? o16)
- Hﬂl'c(ﬁclb) INRAIDISNIAVDEPTH
5 16 FORMAT (SX2RH DRAG INCLUJED. INRAs s16e/e5X,
: 1 2RH LARGE DISOLACEMENTS, 1J21S=  ol&e/eS¥e
2 PAH NUVAER OF #AVES: NWAV= 016e/25Xs
3 28H NEPTH TO NRIGINS +E10.3)
NDOF =2#NNON -
© N1s2°NNOD

D0 20 I=1.N1
00 20 J=1l.M1
EXK(1¢J)=20,D0
GK(1+¢J)20.N0
FK(1+J)=0.,00
FM(I+J)=0,00
MM([eJ)20.D0

© COMPUTE. STIFFNESS AND MASS MATRICES.

WRITE (6514) : _
FORMAT (/7+16H ELEMENT oatns o/e117H N1 w2 x1 14
X2 . Y2 TENSION AREA olAwl e-noo. DENSITY c™
: co 0cC o/) ‘
ROW=ROW/GRAV .

CALL ELEHAT(XoYoﬂLQRTolﬂ'ﬂ"otﬂoEKOGKQHHQNELQROVQROQGRAVOCH.CDODC'
1IF (1IPM]) 100o!°0|80

L=l ‘

DO 90 lllolpﬂl

!H-!L06 p
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READ(S5¢81) NMG(I) s (RMG(N) sNaNL ¢NH)
81 FORMAT(1847FB8.2)
WRITE(6452) NMG(1) ¢ (RMG (N) ¢ NeNL «NH)
82 FORMAT (20H POINT MASS AT NOOE: +1602XeSH RMG= ¢2XeT(2XeFR.2))
11=2*NOD-1
MM(IlsIl)= XHIGPAVONN(lIoll)
I1=11e1
MMT2eI1)=YW/GRAVeMM(TIL,I1)
90 IL=ILe?
100 CONTINUE
00 150 J=1.NDOF
00 150 1=J.NDOF
EK(ToJ)=EK(Js])
GK(1+J)=Gr(Js])
MM(TeJd)=MM{Je])
150 CONT INUE

TRANSFORM TO INTRINSIC(LOCAL T=N) CABLE COOPDINATES.

0060

CALL MATTRA(XoYoRLeT1eT29T30BleA2EKoGKoMMoFKoFMoRT1sRT29R]14R2¢
1 CNS1.COS2eNEL +NDOF) )
IF (1PM2) 390,390,370
370 NL=1
D0 380 I=1,1PM2
 NHaNL 6
aFan (S.371) NﬂL(l)o(P“L(N)oN-NL.NH)
371 FORMAT (1B847FB8,2)
WRITE(6:s372) NHL1l)ol°HL(Nl oN=NL oNH)
372 FOPMAT (2X«204 POINT MAGG AT NODE: +I1642XeSH RML= oZX.TlZXeFIO 4))
11=22°N0D-1
FMIT1eI1)=TW/GRAVeFMITIL 1])
11=11l+1
FM({Tle11)zRuW/GPAVeFM(TLID)
380 fL=ILe7
390 CONTINUE
00 385 I=1¢NDOF
DO 385 J=1,1
385 FM(TeJ)z=FM({Je])
351 FORMAT(GH FKK=,10(2XeD10,2))
352 FORMAT(4H FMze10(2X¢D10,2))

COMPUTE EIGENVALUES AND MODE SHAPES.

000

CALL EIGCAL(HK.HN.FKeFMoAUXOOloDZoRﬂoEVclNDvNNOOvHLoHH'
Co IF (NTIM) 100041000.4R0
480 CONTINUE
NEVEMH=MLe+]

c A
¢ DO TIME INTEGRATION.

CALL '!“lNT‘lUl(li0‘U!(?l)o‘Ul|“l'olJl(Gl).AUX(S')oﬂux(soi)o
AUX (521) s AUX (541) o AUX(5A1) o X9 YoAUX(103) e

AUXTI0S) s AUX(10T) sAUX(13) e .
AUX (139) +AUX (145) AUX(151) s AUX(157) sAUUX(167)
‘Ui‘llq’OlUl(log,oﬂlQlUX(IQQ)OAUX(|7I,OEK.GKoNMO
‘FRoFMoMP gNMG o NML ¢ RMG s RML 9 AUX (173) 9 AUX (183) o

AU (193) o AUX (233) ¢AUR(2ST7) o
AUX(203) e AUX (441) yEVIR0¢I])eD2+HK9COS1.COS2¢
AVoYVeXVOeYVOeXV1aYV]1eXACCeYACCo

BNCAPWUN-

i
i
o
{
{
H
|
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WAV AUX (2811 ¢ AUX(377) «FRO»FBFD1ISe

AUX(60]1) o AUX(42]) ¢RLIRMoRT3yRVIARIDNERIRDCM
CD+DCoROWIGRAVIEPTHIEPS1 9 IDRA, IDIS,
NNOD¢NEVoNTIYeNWAV,e IOCH)

N=~QO P

1000 CONTINUE
END

SUBROUTINE TIMINT(YOsYDOYDDOsY)eYD1oYDN1oY2+YD2,YDD24X104Y10,
UsUN DD XGoeYG o XY o XD1eXDD1eY114YD114YDD11eRs
ZeZGoFXeGXaMMoFKoFMeMP ¢ NUG ¢ NML o RMG o RML o
FYFPFeFDRFDXOFNLFMN2,
EVeRNeXeXDeXNDeCOS)oCOS2eXVeYVeXVOeYVODe
XV1eYVIeXACCoVACConAV,
FYFMAIFBOFRIFDIGSoAICIRL RMIRT RV ARDON
EQReROCHMeCDeNCIROWIGRAVIDFPTHIEPS
1024 1DISeNNND eNEVeNTIME s NWAV ¢ [NCH)
OIMENSION VYO0(1)sYDO(1)oYDNO(L) Y (D)o YDL (LY aYNNL(L) W
Y2(1)eYD2(1) e YDD2(1)eX10(1) eY10(1)eU(L1)eUD(L)
UOD(1) sRL 1D o T(L) oAC1) aCCLD)aBL262) X)) eXN(1)XDD(1)
DIMENSION FK(26¢24) oFM(24e24) ¢FV(1)eFP{1)eF (1) eFNL1IL1)eFNZ2(]),
FVI20e20) oP3 (1) eCOSLI(1)eCIS2(1) RV erR(1)
ON(1) oER(1)ePM(E) eZ2(2)e2G(2)eCHM{1)oeCOILIFNR(]) 0
FOROD (1) oFMA(1? eRT(1) o WAV (L) oMP(]) o
‘ NMG (1) oNML (1) sRMG (1) +RML (1) «DC(]11) oFNESIY)
DIMENSION X2 (1)oxXDI (1) oYL (1) eVDIL(1)eXDD1 (1) oYDDYIYI(1),
AV (1) e YV 1) o XG (L) o ¥H (L) oFT (1) e XVO(L)eYVOI(])
DIMENSION EX (24024) ¢GK (26024) oMM (24 e26)
DIMENSION XVI(1)eYV]I(1)¢XACC1)oYACC (1) oFBO(1)+FBI(1)EPSI()
DIMENSION TIM(S) ¢IPRT(S)sCV(20)+CW(20)«ND(20) OM(20) - ‘
DOURLE PRECISION FRoFMeEVeRNoRL sRMeFToARGoCNSToSINTeR19R24AND
DOUBLE PRECISION FACIFKoIK oUMoOM
DOURLE PRECTSION Y0 osYDOYDDOoY1oYD1,YDD1+Y2,YD2+YND2
RaFAO(]1)
R=FA(1)"
NMAX=50
1sToP=0
NDOF =2 (NNOD=2)
Ti=0.
00 20 I=1eNEV
Y1(1)=0,00
YD1 (1)30.00.
YOD1(1)=0,00
Ctl)=0.
EPS(1)=041
20 FN2(I)=0.
IF (1ID1S) 24424923
23 CONTINUE
CALL . TEFNUL (X109 Y10+FT(25) ¢ RL«RT¢NNOD)
GO 70 26 -
24 DO 25 I=1.NDOF
. FMA(Ll)=0. -
25 FT(1)=0,000
26 CONTINUE: o
- 1F C1DRA) 2T7e27¢2

BDNCNS W N

N =

- AN




27
28

29

485

S01
500
©90
Slo
S20
491

492
493

16

15
16

17
18
19

503

S04
3l
2

36

&01 .
36
7
42

1
CONT INUE
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00 28 1=1.NDOF

FOR(1)=0.

GO 70 31

CONTINUE

NTIM=NNOD/S

IREST=NNOD=55NT IM

NL=]

IF (NTIM) 490,490+485

CONTINUE

D0 S00 I=1.NTIM

NH=NL ¢ &

READ(S5+501) ((XVO(J)sYVO(J)) oJ=NL ¢NH)

FORMAT(10(FR,2))

NL=NL S

CONTINUE

1Ff (IREST) 520.520.510

WHENL ¢ IQEST=]

READ(S¢501) ((XVO(J) e YVO(J)) o IENL oNN)

CONT INUE

WRITE(6,491)

FORMAT(/+472H WATER VELOCITIES AT NODES IN EQUILIBRIUHMS

WRITE(6¢492) (XVO(1)eT=1eNNDD)

WRITE(6+4493) (YVO(TI)«1=1eNNOD)

FORMAT (SH xV0= o11(2XeFRe2))

FORMAT (SH YVO0= ¢11(2X4F8.2))

NL=]

IF (NTIM) 16¢16¢14

CONT INUE

DO 1S I=loNTIM

NM=NL, o6 ] :

READ(5¢501)  ((XV]1(J)sYV]1(J)) e J=NL oNH)

NL=NL ¢S

CONTINUE

IF (IREST) 1R.18417

NH=NL ¢ IREST=1

READ(S9501) ((XV1{J)eYV] (J)) o JuNL oNH)

CONTINUE

WRITE(6419)

FORMAT (/+2RH WATER VELOCITIES AT NODZSS /)

WRITE(6:503) (XV](J)eJ=]eNNOD)

WRITE(6+504) (YV](J) eJ=]eNNID)

FORMAT (SH XV1= +11(2XeER.2))

FORMAT (SH YVim +11(2XsFR.2))

CALL ORFNUL (X10e¢Y10eXVOeYVOeFDRO ¢MP o NG oNML ¢y RMGoRML »
© 2e7GeRLeCNAR:DNROWINNDD)

IF (NWAV) &&oebbe3)
NTIMaNWAV/S - ‘
IRESTaNWAV=SSNT M

NL=] : .

IF (NTIM) 37437436

CONT INUE

DO 36 N2l NTIM

NHsNLe9

READ(S5+401) (WAV(I)s1=NLINH)
FORMAT (10€R,.2)

‘NL=NLe+10

IF (IREST) 4J¢43442
NHSNL+2*IREST

o/)
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READ(6+401) (WAV(I) ¢ I=NLNH)
43 N1z=2°NWAV

WRITE(6+402) (WAV(I)eI=10eN1) .
402 FORMAT(12H TIMINT:WAV= +10(1XeEL10.4))
GO Y0 46

44 DO 45 N=]1.NNOD
XV (I(N) =XV (N)
45 YV(N)=YV1(N)
46 CONTINUE
NEL=NNOD~-1
Ivis=0
DO 48 1I=1eNEL
IF (DC(1)) 4B46B447
47 1vis=1
GO TO 69
48 CONTINUE
N1z=2°®(NNON=2)
D0 481 I=1.N1
481 FVIT1) =0,
49 CONTINUE
DO 482 I1=1,NEV
482 CVi(l) =0,
IF (IVIS) 29542954297
293 CALL VISCOF(CVeXD1leYD11eX10eY10eEVeRL sRO+FDReFN2+C0S1+COS?0
1 Z2¢2GeReDCoaNNODNEV)
295 CONTINUE
1IF (1DRA) 605+¢605:604
606 CALL DRACOF (CWeX10eY104201 YD1 oXVeYVIEVICOS1+COS2+BeFNRIFN24RN,
1 ZOZGOXIolﬂoVBOQLOCDOAQOD“CQOHONFVONNon)
NO 294 1=1.NEV
296 CVIII=CVI(])eCW(T)
60S CONTINUE
: WRITE(6+651) (CV(I)eI=1,4NEV)
651 FORMAT(/e61H TOTAL LINEAR MODAL DAMPING COEFFICIENTS14/9
1 10(1XF10,4))
: DO S96 1=1.NEV
5§96 FVI(1)=CviI)/(22R0(]))
WRITE(6¢597) (FVII)eI=1.NEV)
€97 FORMAT(/+S0H TOTAL RELATIVE LINEAR MIDAL DAMPING COEFFICIFNTS?,
1 /7¢1012XeE10,4))
DO 620 13]eNEV
ARGSRO (1) *RO(]1)=CV(1)*CVI(I) /6
IF (ARG) 612¢6114510
610 ND(I)s=])
OM(1)=DSQRT (ARG)
GO 70 620
611 NB(I)=2
. OM(1)=0,
GO0 TO 620
612 NO(1)=)
ARG==ARG
OM(I)=DSQRT (ARG)
620 CONTINUE - )
" DO 705 I=1.NEV
FN1(I)=0. -
705 FN2(1)=0.
17=0 :
' 'L-o L] .
DO 200 NITs1.NTIME
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READ(S¢301) LTYPPERsAMIsFI1oAM2eF12+0FACINSTEP
301 FORMAT (IB.6FB8.2+18)
1F (DFAC) 29102904291
290 DFAC=1,
291 CONTINUE
WRITE(6+4302) LTYPDFACINSTEP
302 FORMAT (//+6H LTYP=lGe6H DFACZo1XesE10.4014H NO, OF STEPS:,14)
IF (LTYP=1) 31243114312
311 OME=6,2B31RS3I/PER
WRITE(64303) PFROMEsAM] oF 11 ¢AM24F12
303 FORMAT (/994 PERIOND= osE1Ne%el2Xe7H FREQ2= 4E10,4e2XsARH X=aMP| = ,

1 Fl0.4010H X-PHASE= o«Fl0,4016H (NEG) Y=AMPI = oF10.4s
2 2XKe10H Y=PHASE= Fl0.4e6H (DES))

FIl1=F11/57,29578

F12=F12/57.29578

IRE=6

312 CONTINUE
00 200 11T=1.NSTEP
1T=]Te]
1F (IT7=31) 310,3054.310
305 DO 306 I=1.NEV
306 EPS(1)=0.1%FPS(ID)
310 CONTINUE
NUMA=D
00 30 I=]eNEV
vyo(li=v1l(])
YyDO(I) =YDl (1)
vy0DO (1) =YODL(])
30 FN1(I)=FN2(])}
s IF (LTYP=1) 364043214330
321 IF (IRE=6) 123,322.322
322 READ(S¢304) ((TIM(I)IORT(I))el=m]eS)
304 FORMAT (S(FA,2.18))
IRE=1
323 T=TIM(IRE)
1PR=IPRT (IRF)
IRE=IRE.1
DELT=T=-TL
IF (11T=NSTFP) 702,701,701
701 TL=T :
702 CONTINUE
CALL OISGEN(DELTOMEsAML oFI1¢AM24FI2+UeUDUDD)
GO T0 335
330 1F (LTYP=2) 33143314340 )
331 READ(S.10) To(U(l)ol’lo?lo(UDl!)ol=|oZ)o(UDD(!)oI=loZ) o0
10 FORMAT (F8,7¢6EB8.2+14)
335 GO0 TO 342
360 WRITE(60341) LTYP
341 FORMAT (/964 LTYP=e14¢37H IS NOT ALLOWED, CALCULATION STOPPED,)

stToP
342 CONTINUVE
WRITE(6411)
11 FORMAT(/+101H TIMESTEP TIME - XDISP YDISP XVEL
| YVEL XACC YACC IPR )

WRITE(6012) ITeTotUII)oIm=]192)e(UD(TI)el=102)o(UDD(I)eInle?) IPR
12 FORMAT (16¢3XeT(2XsE10,6) 03Xs13)

OT=T=T1 :

TisT : _

Xii1)=x10¢1)
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viltl)sylo(1)
X6(1)=0.
YGtl)=0.
xD1(1)=0.
YyD11(1)=0,
x0D1(1) =0,
YOD1l1l (1) =0,
X1 (NNOD) =U (1) «X 10 (NNON)
Y11 (NNOD)=1)(2) Y10 (NNOD)
XG (NNOD) =U (1)
YG (NNOD) =1)(?)
XO! (NNOD)=uD(1)
YD11 (NNOD} =D (2}
XDD1 (NNOD) =UDD (1)
YOD11 (NNOD) =UDD (2)
CALL DISFOR(FKFMsFDIS+UsUDDNNOD)
40 CONTINUE
IND=0
IF (NUMB) 4leble14]
61 CALL TIHSTP(YOQYDOQYODO.YZ.YDZ.YOOZ.C'FNIofNZQROQPVQOHoDT ¥ .NEV)
GO 10 149
143 CONTINUE
D0 SO I=).NEV
vye(1y=vi(n
yD2(1)=YDY (1)
S50 vDD2(1i=YDCI(I)
149 CONTINUE
Iw=z0
CALL NEUPOQ(1qVZQIOOVO?oIODDVDOZOEVolGOVGOIlo.Y‘o.cos‘oCOQZcZo?ﬁO
1 BeX1eY110XD1oYO1l1exXOD1eYID11oNNODGNEV,IW)
CALL ELEVEN(RTRV.ARFRAL ¢AMeX10eY10eXGeYGeNNGCD e TW)
IF (1DRA) 52:52+51
$1 CONTINUE
IF (NWAV) S4e¢54+53
53 CALL WATVEL(X1eY11eXVeYVeXV1oYVIeXACCeYACCoT+GRAV,DEPTH,
1 WAV +NNODoNWAY)
§4 CONTINUE - .
CALL ORAFOR(X1eY110XD1eYD11 o XVeYVoMPoNMGoNUL ¢ RMG oML o
1 C0OS1¢COS2+ReFORIFNRO2¢2359RM9CDcARsDONeROWsNNON)
52 CONTINUE
IF (IDIS) 57¢57.56
56 CONTINUE
CALL TENFOR(X1eY11eXGeYGoCOS14CNS29ReFTFT(25)FT (69
1 FT(T3) sRMRTIRVIEKGK 924 2ZGsNNODLIDIS)
CALL MASFOR(X16Y11eXDNYoYDD1]l eMMoMP 4 NUYGoNML yRMG RV ¢+CNS14COS2y
1 BeFMAIFT(469)osFT(61) ¢Z+2GoRLIRMeCMyARyRPONW RO NNON)
57 CONTINUE :
IF (IVIS) S9.59,58
S8 CALL VISFORUX1eY119XD14YD11+C0S1+C0S29B+FVoRM,DCo
1 292G+ NNOD)
59 CONTINUE
00 60 I=1.NDOF
60 f(l).FT(l)OFDR(I)0FHA(I)‘FV(I)*FDIS|])
CALL TRAFOR(EVF ¢FN2«NNODNEV)
00 61 Izl NEV
€1 FN2(1)aFN2(T)eCV(II®YD2(])
CALL TIMSTP(YOeYDOeYDDOoY1oYD1oYDN19CoFNL19FN2sROsCCVeOMDTNDINEV)
00 90 I=ml NEV
SUMsDABS((Y2(1)>Y1(1))/2.)
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75
76

17
78

80
90

120
140

189
161

190
191
192

194
195
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DIFF=DABS(Y2(1)=Y1 (1))

IN=NUMR/2

IRES=NUMB->¢e]N

1IF (IRES) 75475474

CONTINUE

YI(T)=0.5%(Y1(I)eY2(1))

YD1(I)=0.5%(YD1(I)eYDP(T))

YOD1(1)=0,52(YDD1(1)svyDN2(I))

CONT INUE

IF (DIFF) 76476477

QuOT=0.

GO 10 78

QUOT=DIFF/SUM

CONT INUE

IF (QUOT=EPS(1)) 90.90,R0

IND=)

CONT INUE

IF (IND) 190.190.,120

NUMB=NUMD « |

IF (NUMB=NUYAX) 4044041640

1STOP=[S5TOPs]

If (1STOP-S) 190.190.1R9

WRPTITE(6elG]) ITeT NUaAX,1STOP

FORMAT(/7410H TIMESTEP o4 e2XebH TIMII oI XsFA e/
104 MORFE THAN.T4«254 [TEQATIONS HAVE OCCURPEDsIG,

1
2 28M TIMES, CALCULATION STOPPED.)

sTOP

CONTINUE

WRITE(6419]1) [T.NUMA

FORMAT (11 TIMESTEP: +14612Xe22H NUMBER OF ITERATINNS: ,14)

WRITE(6192) (Y1(I)eIxm1l,NEV)

FORMAT (4H Y1=410(2X¢D10,4))

IF (IPR) 195.194,195

{PR=z]

1w=1PR

CALL NEWPOS(XeY1eXDeYDeXDDoYDO1+EVeXGe¥YGeX10eY104COS1
CO0S2¢2425eReX1oY11eXD1sYD11eXDD1eYON1 1 oNNODINEV, IW)

CALL ELETEN(RT¢RVIARIFR ¢ 9MeX200Y10eXGeYGeNNODo I W)

CONTINUE

RETURN

END
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