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ABSTRACT

A new calculational scheme for unitarizing S-matrix
amplitudes in the high-energy limit is applied to a Yang-Mills
theory with SU(2) symmetry. The vector-meson-vector-meson
elastic scattering amplitude is calculated through the eighth
order in the coupling constant and it is shown that the result
can be expressed in the exponential form S = exp(iV), where
the potential V is an infinite-dimensional hermitian matrix
whose individual entries are of the Regge-pole form. This

result is explicitly unitary in all channels.
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I. Introduction

There are two general methods that have been used in
the past to study high-energy scattering. These are model

building and calculations in field theories. Examples of

models are the Regge-pole model,14 15

16

the droplet model,
the parton model, and multiperipheral models.17 The
procedure is to start with some assumptions which are
motivated by a variety of physical reasons and to see what
consequences can be deduced. One advantage of this method is
that it is often possible b0 make definite physical statements
that can then be compared with experiments. The disadvantage
of the method is that the starting point is an assumption --
it may be plausible but it is not on a firm theoretical basis.
And if it is not true, the whole structure built on it
collapses. For example, the Regge-pole model and the droplet
model are based on generalizations from non-relativistic
potential theory. And since we believe that the strong
interactions are properly described by a fully relativistic
quantum field theory, it is questionable how valid the
starting points in these models are.

The other general method for studying high-energy
scattering, which is the one that is used in this thesis, is
to do a calculation in field theory. Over the last decade
very extensive computations have been done in two field theories:

quantum-electrodynamics (QED)l and Yang-Mills theories.?’ 3
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The advantage to such an approach is-that we really believe in
the starting point. 1In particular, QED has had very impressive
successes both theoretically and experimentally, and
Yang-Mills theories provide the general framework for most
present day fundamental work on the weak, electromagnetic
and strong interactions.

18 are based on the idea of

The Yang-Mills theories
generalizing local gauge invariance to non-Abelian groups.
From this principle it is possible to deduce the existence
of gauge vector mesons. One outstanding success of the
Yang-Mills theory is the unification of the weak and
electromagnetic interactions based on the coupling of the
weak and electromagnetic currents with these gauge vector
mesons.19 It is also believed that a Yang-Mills theory
involving an octet of colored gauge mesons accurately
describes the strong interaction. And it is hoped that future
theoretical progress will succeed in unifying all three

interactions in terms of a single Yang-Mills theory. Other

advantages of Yang-Mills theories are that they are

20 21

renormalizable, that they possess asymptotic freedom,
and that they can account for Bjorken scaling.

In the high-energy realm many physical features are
realizdd in Yang-Mills theories: the approximate conservation
of helicity, the fact that the amplitudes for quantum number

exchange processes are much smaller than the amplitude for

no exchange of quantum numbers, and the fact that the real
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part of the scattering amplitude is small. This last feature
implies that the one-vector exchange amplitude, which is real,
is forbidden, and hence that the vector meson involved
carries some forbidden quantum number, such as color.

Finally, the near constancy of the total cross-section
suggests that the diffractive process is mediated by a vector
meson.

The disadvantages of doing a perturbative calculation
in field theory are first, that there are certain non-
perturbative effects which may not be accurately accounted
for, and second, that it is necessary to assume that the sum
of the terms ignored, which are individually large, is
small compared to the sum of the terms kept.

It is very difficult to do these calculations, and,
once done, to deduce physical consequences from the
calculated scattering amplitude. However, this cannot be
considered a flaw in field theoretic calculations themselves --
rather, it is a difficulty inherent in nature. These calculations
are perturbative calculations in powers of the coupling
constant g, which is assumed to be small. But unlike
standard perturbative calculations in quantum mechanics,
for example, we cannot get a good approximation by taking
just the first few terms in the expansion. The reason is
that the scattering amplitude is a function not only of g,
which is small, but also of the energy of the system,

which is large. And so the perturbative expansion is really
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a double power series in both of these variables.

In these computations the most difficult general
principle to satisfy is unitarity. It is not hard to
understand why. Dispersion relations are automatically
incorporated into individual Feynman diagrams, and crossing
symmetry can be satisfied by including crossed diagrams.

But the unitarity condition interrelates the amplitudes of

an infinite number of Feynman diagrams. And any approximation
scheme which includes one Feynman diagram must include all
others related to it, if the scheme is to be unitary. 1In
both QEDl and Yang-Mills 1:heory3’br it has turned out that

the amplitudes in the leading logarithm approximation violate
the Froissart bound,5 a limit placed on the size of the scattering
amplitude by unitarity. In particular, for an SU(2) Yang-
Mills theory with an isospin-1/2 Higgs doublet, Fadin, Kuraev
and ﬁiB&vau and Cheng and Lo3 have separately found that for
elastic scattering, W+ W-> W + W, the sum of the leading
logarithmic terms violates the Froissart bound in the I = 0
¢hannel (no exchange of isospin).

Therefare it is necessary to develop a calculational
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scheme which goes beyond the approximation of summing leading
terms and which includes a larger set of Feynman diagrams.
Of course, the choice of which dlagrams to include and which
to exclude cannot be arbitrary but must be consistent with
the general principles of unitarity and crossing symmetry.
In a previous series of 1ettersé’7 Cheng, Lo, Olaussen,
Yeung and the present author have formulated a new approximation
scheme for high-energy scattering in both QED and Yang-Mills
theories. A procedure was developed which incorporates
s-channel unitarity and t-channel unitarity at every step and
which treats elastic and inelastic scattering processes side
by side. Here we will explicitly show that for a Yang-Mills
theory with an isodoublet of Higgs bosons, using the
approximations discussed below, the high-energy elastic
scattering amplitude agrees, through the eighth order in the
coupling constant g, with the Taylor series expansion of the
matrix elements of i(1l - eiv). The potential V is a hermitian
operator whose matrix elements for a given process are the
sum of the lowest order amplitudes with the propagators
of the exchanged mesons replaced by Regge-poles. This result
is explicitly unitary in all channels. The scattering
amplitude may equivalently be written in the eikonal form in

impact-distance space (B) space

77?/; = Zsjd’f;: luﬁ.z; i(] 'xiu(&'S)){z) (1.1)
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where U(B,,s) is defined by

V?i — (Zﬂdy 5ﬁ0(3"'§0 Z'Jﬂ{QZ,Liji”h

(U, sy, o

where s is the square of the center-of-mass energy, ZL is the
transverse momentum transferred to one of the incident
particles, and where Pi and Pf are the sums of the initial
and final four-momenta. This will be discussed more fully
below.

In any approximate calculation in perturbation theory,
the crucial question to be answered is: "Which terms from
the amplitudes of which Feynman diagrams are to be included in
the calculation and why these terms and not others?" 1In
the leading logarithm approximation (which is a weak coupling
approximation) real terms of the order ggs(gecn s)n and
imaginary terms of the order igus(geLn s)n were kept and
terms with extra positive powers of g were neglected.* As we
shall see below, such a scheme can never satisfy unitarity.
In order to determine which scheme will, we must look at the
unitarity condition itself. The scattering matrix S and the

scattering amplitude M are related according to

S= 1+ zazf)u(“(a—g;)-—% (1.3)

n

»* Whenever we write 4n s we really mean Ln(-s-é) where A is some
A
appropriate mass scale, such as the mass of the vector-mesor

Likewise, s~2 really means (J%)’a.
A
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where

E
7? for a fermion with energy En and mass m,

2En for a boson.

The product JIf, in (1.3) is over all external particles. 1In

terms of M, the unitarity condition is

*

dn M = £ 7 07'5(a-1) —#T-]_—’-’f—- (1.
fr

where Pi and Pn are the total four-momenta of the incoming
and intermediate states respectively and where there is a
kinematic factor fm for each particle in the intermediate
state.

As a starting point, let us take the leading lowest
order amplitudes for each process, elastic and inelastic,
in which, in the center-of-momentum system, two incoming and
two outgoing particles h: ve extremely high energies and all
other particles have much smaller (although perhaps still
large) energies. The justification for considering these
processes that contribute to the creation of intermediate
energy particles in the CM system (pionization products) is
that they give the dominant contributions to the total
cross-section and to the imaginary part of an amplitude
calculated via unitarity. The amplitude for 2+m particles
going into 2+n particles is then of the order g2+m+ns.
Amplitudes with extra positive powers of g or with smaller
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energy dependence are dropped. Thus we are considering the
weak coupling limit. Examples of diagrams kept and diagrams
ignored are given in Fig. 1. (These diagrams are all evaluated
in the Feynman gauge and all extremely energetic particles
are transversely polarized. By convention, the extremely

energetic particles are at the top and bcttom of each graph.)

N

g23 833 835 833 gs g8 ghs

3 3
(a)
"<:)“F“' // j : -
gus gus gus gzso gQSO
(b)
Fig. 1

(a)Examples of diagrams kept. (b)Examples of diagrams dropped.
The order of each diagram is indicated.

If we put these leading lowest order amplitudes into the
right-hand side of eqn. (1.4) then the leading imaginary parts
of a new set of diagrams are generated. A subset of these diagrams
which contribute to elastic scattering are shown in Fig. 2;

these are the so-called tower diagrams. The imaginary parts



igus igus(getn 8) igus(ggtn 8)2

Fig. 2
'The size of the imaginary parts of the amplitudes is indicated.
The real parts are in fact larger by a factor of 4n s.

of the amplitudes of these tower diagrams are all of the order
1gus(g2Ln s) for some n. These amplitudes must be included
in any scheme which is to satisfy the unitarity condition,

and they are included in the leading logarithm approximation.
However, if we iterate once more by putting these amplitudes
into the right-hand side of eqn. (1.4) we get amplitudes

whose imaginary parts are of the order ig8s(g2Ln s)n

(the corresponding diagrams are indicated in Fig. 3 == of
course there are other unitarity cuts which also contribute

to the imaginary parts of these diagrams). These amplitudes

Fig. 3
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are not included in the leading logarithm calculation and we
must keep them in order to get a unitary answer. But we have
already dropped terms of the same order of magnitude! For
example, in the tower diagrams, unitarity dictated only that
we keep the leading terms of order 1gus(g2Ln s)™ but that
terms with extra positive powers of g could be dropped. The
way out of this paradox is to realize that the diagram in
Fig. 3 has more vertices on the top and bottom horizontal
lines (representing the extremely energetic particles) than
the tower diagrams in Fig. 2. If we consider the extremely
energetic particles to be carrying a "charge" T, then the tower
diagrams are of the order (gT)4 and the diagrams depicted in
Fig. 3 are of the order (gT)°. Thus, if gT~ 1 and g2 << 1
it is consistent to keep the terms from the diagrams in Fig. 3
and drop the non-leading terms from the tower diagrams.

In Yang-Mills theories there is a natural candidate for
the "charge" T -- namely, isospin. Each scattering amplitude
M is the product of an isospin factor I and a space-time factor
M (which is independent of isospin), M = M:I. If the two
extremely energetic particles have isospin T then the isospin
factor for any Feynman diagram is a polynomial in T whose
degree is at most the number of vertices on the high-energy lines.
Therefore, in the anticipation that it gives a unitary result
(it does), we adopt the following calculational scheme for
elastic scattering: terms of the order (gT)ms(gacn s)™ are

kept and terms with extra positive powers of g are neglected.



Mathematically, the region where this approximation is valid

is one where

gT ~ 1, (1.5a)
g?tn s ~ 1, (1.5b)
and o

2 is small and 4n s and T are large. All

In other words, g
terms in the leading logarithm approximation are included in
the new approximation. This is because, as will be apparent
below, all the leading logarithm real terms are of the order

T2 and all the leading logarithm imaginary terms are of the

order Tu. Since the potential U in egn. (1.1) is of order T2,
this means that the leading logarithm terms are just the first
two terms in the power series expansion of i(1l - eiU). Since
successive terms in this expansion are larger and larger and
the series is divergent it is clearly not a valid approximation
to truncate it after any finite number of terms.

We emphasize that we calculate all diagrams by Feynman
rules, keeping or discarding terms according to the above
prescription. The above discussion of the unitarity condition
is heuristic -- its purpose was to deduce a scheme which will
give a unitary answer, not to actually calculate that answer.

Before writing down the explicit form of the potentiai
we need some preliminaries. In the center-of-momentum system,
where the total energy is J:; = 2w, 8 »> o, precisely two
particles have energies ~ w, and any other particles have much

smaller energies. Thus the extremely energetic particles
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have approximately equal and opposite momenta of magnitude ~ w.
Let these momenta be oriented predominantly along the z-axis,
and for an arbitrary four-vector k = (ko’kl’kz’k3) define

Then one of these extremely energetic particles

kt = k, + k

0] 3°
has + momentum ~ 2w and — momentum O(%), and vice versa for the
other one.

At high-energies, the helicities in the CM system are
conserved. Let €5 ¢, (‘1t"21) be the polarization vectors
for the incoming (outgoing) extremely energetic particles.
If the W~-mesons are transversely polarized, then in each
amplitude there is a factor of (’31; '31,*)(':2*-'32,+~), which
will hereafter be suppressed. For each pair of W-mesons which
are longitudinally polarized, the 31-11 factor is replaced
by a factor of 1/2. We will treat the case where the W-mesons
are transversely polarized since when there is longitudinal
polarization the calculations are complicated by the fact that
many more diagrams contribute in the Feynman gauge.

The conclusion of the calculation is that in the high-

energy limit, at least for elastic processes through the

eighth order, the scattering martix can be written in the form

§ = .Y (1.6)

where

) (1.7)

V= @15 (r-p)

n

4
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and where the matrix elements of 7l are given below. Consider
scattering from a state with m+2 particles to a state with
n+2 particles. Let Ki’ i=1,2,...,n+m be the momenta of the
n created and m annihilated particles, ordered so that
ky_ > k;_ 1f 1 > J, and let By and B, (B,, and B,,) be the
momenta of the incoming (outgoing) extremely energetic particles
with large + momentum and large - momentum respectively.
(The states are normalized so that @Iﬁ? = (211)36(3) (k-k').)
Then the M matrix element for this process is (suppressing
isospin indices and the polarization vectors of the extremely

energetic particles)

CFopon| A puBymy

. nem -O((A S d(dhﬁmu)
s T = g oy k)| 2 T
Zj (=l A_ +A 2 V( l ) Z:.‘m,‘"’ ’\1 4.
(1.8)

In the above equation A is the mass of the W-meson,

Al = pl - pl', (1.9&)
A.~k, if the i particle is created,
i
Biyy = th (1.9b)
Ai+ki if the i particle is annihilated,

1=1’ 2, ¢ .,n-Hll

sy = (P, + k1)2~wkl_{ (1.10a)
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2
Snem+l = (kn+m + p2,) '“'wﬁh+m+, (1.10p)
and

S

i+l

= (k, + k)%~ Ky Kgege (1=1,2,...,m4m-1)  (1.10c)

are the squares of the energies of various pairs of particles

in their respective CM systems;

) = (0 [ 15 J © (111
«(8) - (80 | g Gl - O

and

P(,6) ) = 5-(BaT,)- 2k (- D)
+Z k+ (’;{:" %:—:\‘-;-) (1.12

with n = +1(-1) if a W-meson is created
(annihilated),

Vs, 8,4)=

—3A for a scalar Z, (1.12p)

where for a created or annihilated vector-meson e¢(k) is one of
the three polarization vectors such that e(k)-k = O,

¢2(k) = -1. I in eqn. (1.8) stands for the isospin factor

and is the same as the isospin factor of a tree diagram with all
externel particles represented by horizontal lines ordered
vertically according to their — momenta and all exchanged

mesons represented by vertical lines. An example is given in
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Fig. 4. The form of the vertex factor (1.12) is based on the
calculation of the two-body to three-body scattering

amplitude.u’8

Note that it is gauge invariant, that is,
Tex = 0. Eqn. (1.8) is also the matrix element when any
number of intermediate energy particles pass through without

interacting (see Fig. 4 for an example).

P 4, v ’,1,’!
S it k|=dl’Az

N
v

>— k= 4,4
by -
P P

Pig. 4

An example of a matrix element of 7. 31"32"?1’%3 I'ﬁlfl,fe,f2>

= asgsi?(si"“(zix)(Aif+12)'1)(-X)T(AQ,A3, 2)

xP(A3,A4,k3)-c(k3) I. The isospin factor I is represented

kg)-c(k

diagrammatically by precisely this diagram. Solid lines represent
W-mesons and the dashed line represents the scalar Z.
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A NOTE ON THE MANNER OF PRESENTATION

When this calculation was originally done, in
collaboration with Hung Cheng and with the assistance of
C. Y. Lo and Kaare Olaussen, the momentum dependence of
the Feynman diagrams was calculated using the infinite-
momentum technique and momentum-flow diagrams and the
contribution of each diagram to the different isospin
channels was calculated in terms of polynomials of the
isospin generators. Subsequent to that, C. Y. Lo redid
the isospin calculation??, expressing the isospin factors
in terms of diagrams?®. This method makes the presentation
clearer and has the additional advantage that it automatically
verifies the eikonal form for all possible values of the
t-channel isospins I, whereas previously this was
established only for I =0 and I =1 . However, only
the I =20, 1, or 2 channels have any physical relevance,
since in the scattering processes under consideration all
external particles have isospin % or 1 . The diagram-
matic representation of isospin factors is used in this

thesis.
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IT. The Feynman Diagram Calculation. Second Through Sixth Orders

The calculation via Feynman rules has already been done
through the tenth order in the coupling constant g -- but only
in the leading logarithm approximation, which corresponds

2

to the real T“ and imaginary Tll terms of our new scheme. It

is obvious that there are no imaginary T2 terms, but 1t is
not at all obvious what happens to the real T"L terms. It is
an important result of this calculation that the real T}'L terms
cancel identically. Likewise, we will see that the T6 terms
are purely real and the T8 terms are purely imaginary. This
is clearly a necessary condition for the exponential form to
hold, since successive terms in the Taylor series expansion
of i(1 - eiv) are alternately purely real and purely imaginary.
The necessary Feynman rules for the Yang-Mills SU(2)
theory with an isodoublet of Higgs bosons are given in
Appendix I. The calculation will be done using the
infinite-momentum technique throughout. For a background

discussion of this technique and some sample calculations see

Appendix II.

i) The Isospin Calculation

The isospin factors will be calculated diagrammatically.
This prbcedure has the advantages of i) easy comparison with
the exponential result, ii) not having to separately check the

I=20,1,2,... channels of isospin exchange, and, most important,
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1ii) being generalizable to other gauge groups, since most
of the manipulations of the isospin diagrams involve the
Jacobi identity which is valid for all such groups.

The isospin factor associated with each Feynman diagram
can be represented by precisely that diagram. Each line then
carries an isospin index and the indiceés corresponding to all
internal lines are summed over, from one to three. Each
external line also has an isospin wave function, denoted X o
And each vertex has a numerical factor associated with it,

as shown in Fig. 5. There, Ti are the isospin matrices which

k 4

;e /
"(Tim)dk ( T:.m) jk (& J‘k di i
(a) (b) (e) (d)

Fig. 5

(a)Top high-energy line, (b)bottom high-energy line, (¢)internal

three-vector-meson vertex, (d)internal vector-meson-scalar vertex.

satisfy the commutation rule

[Ti, TJ.] R UPLY (2.1)

and where

(T3T3) g = T(T + 1) e (2.2)
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In eqns. (2.1) and (2.2) and in the sequel a sum (from one to

three) over repeated indices is assumed. If T = 1,

(Ti)jk = 'i‘ijk' Then the assignments given in Fig. 5(a,b,c)

are all consistent.

As an example, the isospin factor corresponding to the

diagram in Fig. 6 is

(2 Tf"X,) (X; TY X, ) (2.3)

2 2’
Fig. 6

and is, of course, O(Te).

The diagrammatic expression of eqn. (2.1), whieh is
called the Jacobi identity, is given in Fig. 7. Another

¢ j ¢ | J ¢

FPig. 7

/
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useful identity, derived from (2.1), is
ngjk Ta_f:,' = -%_-Ciejk (TJ] - 73'!})= —i—cfajlg (c‘fsz 7}) ‘-‘-'_E( (2.5)

This is expressed diagrammatically in Fig. 8 and is called the
triangle contraction. Both of the identities in Figs. 7 and 8

1l

Fig. 8

can be turned upside down and remain valid.

ii) The Second and Fourth Order Calculations

The space-time amplitude for the second order diagrams

(see Appendix II) is
|

Zsz 3R (2.5)

and the isospin factor is represented diagrammatically by the

diagram in Fig. 6. The two fourth order Feynman diagrams

which contribute in the high-energy limit are shown in

Fig. 9(a) and 9(b). Call their space-time amplitudes M and

Mb respectively. Using the isospin identities of Figs. 7 and 8,
the isospin factor of the diagram shown in Fig. 9(b) can be
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(a) (b)
Fig. 9

expressed in terms of the isospin factors of Figs. 6 and 9(a).

See Fig. 10. This identity exemplifies the general procedure

~

X . _

i

Fig. 10

to be used in this calculation. All isospin factors will be
represented as linear combinations of isospin factors whose
corresponding diagrams have only vertical and-horizontal lines;
for purposes of future identifiecation these isospin factors will
be called "box" factors. The advantage in this procedure is
that the isospin factors generated from the exponential formula
are all of this form and so the result of the Feynman diagram
calculation can be easily compared with the result from

exponentiation. Now the sum of the fourth order amplitudes

(/4,_+ Mt) - M L (2.6)

using an obvious notation for the isospin factors. From

equals
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Appendices II and IV,
My ~ Zj‘s j;—/;‘é A (2.7)
and
Mo+ My ~ 52'/5 I (2.8)

where

K = /‘Zl [ _
@7 (73+A‘)[(L-]'1)‘4,\‘] (2.9)
The integral K can be represented diagrammatically by a

"transverse-momentum" diagram as shown in Fig. 11l. See

Appendix IIT for details. As claimed above the T2 terms

Fig. 11

in (2.5) and (2.7) are real whereas the TLl term in (2.8) is

imaginary and contains no real terms proportional to s.

iii) The Sixth Order Calculation

The first step is to express the isospin factors of all
diagrams which contribute in the high-energy limit in terms

of the "box" factors. For the twenty contributing sixth order
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Caption to Table I: In the left column are the twenty
contributing sixth order Feynman diagrams (or equivalently,
their corresponding isospin diagrams). The isospin
factors are expressed as linear combinations of the box
isospin factors with coefficients given above. (Diagrams
5a and 5b (€a and 6b) :are topologically equivalent but
have different flows of the extremely energetic particles
which by convention are represented by the top and
bottom horizontal lines.)

Feynman diagrams this is done in Table I. Then, for each box
isospin factor, the sum of the space-time factors multiplying

it is evaluated to the appropriate order in g2&n s. From

Table I, the amplitude of the T2 terms is

(— Mo=Hy- My Ho- MMt M"') ]E

From the previous leading logarithm calculation it is known
%tsz 2 ‘f
M~ -3 a‘lz_”_ 2 +AD T , (2.11a)
- ;1—-—— 2.11b
M‘t 77\ )

MIINMW." Maz""Mw” - “'z"jls éﬂ%’,"g—y 8-) (2.11c)

and

that

O(ﬁﬂ) (2.114)
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so that (2.10) becomes
j S( 27 I (2.12)

(See Appendix ITI for a discussion of the meaning of the

transverse-momentum diagrams.) Notice that the divergences
in the transverse-momentum integrations cancel out exactly
and that the T2 terms through the sixth order, from (2.5),
(2.7) and (2.12), are exactly equal to the first three terms
in the power series expansion of

1.(4‘4‘\1 ..L —
255" % *A‘ 57 L. (2.13)

This indicates that the vector-meson Reggeizes.

Next consider the Tu terms. From Table I, one such

term is

(Mt WMo M=M= Moy + Mot Mg ¢ y,) (2.1

Using the methods of Appendices II and IV, and especially the

identity

| + | - -—26775(2—), (2.15)

Z.+f2 —;,+m

we find that

M*M""‘"‘jS (7_8+,\8 48)(216)

Notice that separately Mi and M2 each contain real terms

proportional to ans and 4in s but they cancel out in the sum.

Likewise, using (2.15) again, we find that
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/47541‘//55”/%@1‘//45 ~ ijfs ;'z—'&,;‘s‘ 8 (2.17)

MSa’MSb’M6a and M6b each separately contain real terms

proportional to 4n s but, as above, they cancel out in the

sum. The divergent parts of (2.16) and (2.17) also cancel.
Now consider the sum of the space-time amplitudes of

diagrams 16, 19 and 20. Using the notation of Fig. 12,

o o (O 2y S o o Ny iy ol oy By O
/6 /9 20
Fig. 12

Mu, +Ml‘i +My, ~ Q'UH‘ ! ‘ —;ﬁ T:«%{‘—' #
*@md (2 q) @m)d i ) €25) |
(2 - ) ( ( v ) € ?'* P s (.3“ Z,,m]

x(:lir ’Z& Z -’- ?ir-,\uﬁz) { gﬁ,;)l(?s_%_h;j

| |
i @"‘“"(73—"' l—'H.i'J i gz-ﬁ'i) (71_47 j[i)f . (2.18)
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From Appendix IV,

(E )| s i e scis - o)l Hpg V) o

isf
This means that there is only one non-zero momentum-flow
diagram corresponding to the integrals in (2.18) it is given

in Fig. 13. It can be evaluated using the standard techniques

—)

~
N

Fig. 13
The circle on the line means it carries no — momentum.

explained in Appendix II; the result is

Ml(o'l' M(q *M;a ~ ij‘/S 9‘3%5‘ @ . (2.20)

Therefore (2.14) becomes

s #m (-8 -2 820

And again there is no real part.

The other term proportional to Tu is
(Ms*”'(*”sd/’fﬂ* Mt Mes M+ Mg+ My tMio
Mt M F M/; + My - 3”/6"/%7"/%9_2/4/1"2 MZO)

Using (2.15) we readily find that
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M+ M, ~ -'7—_-c'g‘/5 ;ziéf—é A 8 (2.23)

: s
Mf‘”u”Mg"M,Z”MQ+M¢3”‘M¢°+M.,” ""2' ‘jqf ?%f 8 (2.24)

From Fig. 14 it is clear that

=3 M= Mq=HMg=2Ma-2 Moo ~ €)l+6+7 7 ' jﬂ-—i%_

<io2m

xjﬁ'ﬁf— '{T—?L— Qif)é—(%;w) Zﬂ) J(izc) 65 m) _Z __Zum)
X 'fT —— -
= ?“7 ; —A\H { gs—'“"}{;s +; _+1¢) (Z' g 47‘_41{)

-] -2 7
+ q"ﬂi)(%._ﬂ' 23.-”5) T (;3_+,-;)(?3,+ ,_m 7 m](; 473 H }

(2.25)

From Appendix IV,

g(gzv) { ém wn ﬁﬂaét{: in ,e,;,, (z,zg)i.—.-.

3-*/T

(—-Zm)( for (z 7,_(;{; )J/f} _J._J(i,+]) y

(2.26)



/19 20
Fig. 14

The only term in (2.26) which leads to a result proportional
to 4n s is (—er“) 3:-“." J(33_+z,_\) J(Z,..)J- the flow diagram is the

same as the one in Fig. 13. Thus (2.25) becomes

Wy Mot~ 22, ~ = 2ig's s (), (em

And, from (2.17),(2.23),(2.24) and (2.27), (2.22) becomes

gis 4 (£28-2Q) [ [ e

Once again the divergent terms and real 4in s terms cancel out.

Finally we consider the T6 terms. From Table I they are

(M5+Mlo+Ml1+Mlt*M11+Mzo> . (2.29)
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Using the methods of Appendix IV, (2.29) becomes

- gbs (D . (2.30)

which is pure real as expected. This completes the calculation

through the sixth order. Note that in the leading logarithm
approximation, the amplitude in (2.30) is dropped. This is
the first (non-zero) difference between our present scheme

and the leading logarithm calculation.
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IITI. The Feynman Diagram Calculation. Eighth Order

We showed above that all divergences from integrations
over the transverse-momenta cancelled exactly through the
sixth order. And it has been previously shown that these
divergences also cancel in the eighth order of the leading

9 Since there is no ambiguity in

logarithm calculation.
extracting the convergent terms from any amplitude we will
henceforth simply assume all divergences cancel and ignore
divergent terms whenever they appear.

There are four general classes of diagrams that contribute

to the convergent part of the amplitude in the eighth
order. They are indicated in Fig. 15. All other diagrams

Fig. 15

formed from those shown by up-down inversion, by replacing a
horizontal vector-meson line by a scalar or by a four-vertex,
by rearranging the order in which the mesons attach to the
high;energy lines, or by any combination of these processes

also contribute.
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i) Type Diagrams

We will first calculate'the contributions from the
tower diagrams of which there are eight in the eighth order.
These are shown in Table II, where their isospin factors are

decomposed into box factors. From the table we see that the

2

T- amplitude is

— (M;*f M, +M, + Mg) | (3.1)

From the leading logarithm calculation we know that (discarding

Aivergent terms)

M, ~ Jz'jzs %T(gjzé‘fi):s (4@: t 4/\1%-}- A"@)}B.z)

My ~ Jf?ls'é-.r( ;J‘)s (’\4 (8,) (3.4)

Thus (3.1) becomes

-4 s (g T (5-5)

No other eighth order diagrams contribute to the T2 terms.

The amplitude in (3.5) is also the fourth term in the
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Table IT
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expansion of (2.13).
The T4 contribution from these diagrams is, from

Table IT,

(M‘-PM;) -+ (M3+M1+M5*Mb) - +(M_’+.MX)

(3.6)
Using the methods of Appendices II and IV,

M+M, ~ ;-ejvs/%f,“—‘)l(‘i ‘A +4/\”§ +/\"§)J (3.7)

Mt Myt M pf,~ - I 2"5 @%ﬂjf( 2 Al'g' + ! g )J (3.8)

and

Myt Mg~ g% ) (/\"g). (3-9)

ii) Type Diagrams

Next we consider the diagrams shown in Table III. First

we note that

(Mw* Mm f 20) 1 = O(Sl’\ls) ]_ (3.10)

2

so that these terms do not contribute to the T~ amplitude.
There are three other box isospin diagrams in Table III.
The sum of the space-time amplitudes multiplying each of them

is of the form (see Fig. 16)
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Table III

In diagrams 15 - 20, uUse has been made of the polarization to
eliminate one of the three terms from a four-vertex.
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where N is the numerator factor from the three vertices on the
horizontal line in the middle of Fig. 16, where o runs over
the appropriste Feynman diagrams, .and where I, is the
appropriate isospin factor as given in Table III. The a,
integration has already been performed, with q_ = 0(5i:).

N is calculated in Fig. 17 where the contribution from
each polarization of the internal lines is shown sebarately.

The result is

N~ 27 { ( z-—Zk.ka,.)[ kot )~ (8- K- E;)l'v\‘]
gt ) ke R4
(gt 20 b= R ]
* 3L (oen) 3 aPe) ¢ o) 3 (e
3 (ERART ) - 4A'I‘~7A‘]
ke [ a fumtion of the Drnsonse movnts]
th[ o fondin o the tiacsonse mmas], (532

Consider the term

(iL Mo+ 27 Mz) (3.13)

= (=I5
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Fig. 17
The contribution to the numerator N from each polarization
of the internal lines.
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The isospin factor in (3.13) appears to be O(Ts) -- but in
fact it is only O(Tu). This can be seen by the isospin
manipulations in Fig. 18(a), where we have used the isospin
identity (valid for our SU(2) model)

(ie 8

which is illustrated diagrammatically in Fig. 18(v).

U U
- f- - ot - +
(a)
b d b 4 b d
R,
()
Fig. 18

So in order for the amplitude given by (3.13) to contribute,

the sum of the spacertime amplitudes must be as large as

s&nzsu Using the methods of Appendix IV,

(ch )ZIr (k.-(.\ ;“)( , = (-ZM)‘J(IG-)J(&:—)J(/G—) (3.15)

! kr(t)-"'krm-“.‘)

In N the terms proportional to q_2kl+ and q_2k2+ cancel

exactly, so that NWh'q_x( a function of the transverse-
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momenta ). Thus the s dependence of (3.11) is
B dy.
S/ —;' Z /"S (3.16)
-
and consequently (3.13) does not contribute at all.

Next we calculate

(Wb tHy+ Wy #2000 +206,)

Using the methods of Appendix IV we see in this case

(3.17)

LJ

3 | - [
J(L'Zf- ki')ZIr (kﬂui-+“‘)(l(¢tl)-+krh)—+ (‘) ( " ) ky- 12 (k- /(-) J{/(z-)

(3.18)

Therefore there is only one non-zero flow diagram and it is

illustrated in Fig. 19. The terms in (3.12), such as

?I
P

- > 2 2
q_(kl_kl+ - kl; - A°), which cancel propagators from the
dencminator are all divergent in the transverse-momentum
integration, so they are dropped. The terms like q_(a§_+ 12)

are also divergent and are dropped. Thus N becomes

N= + Z (4( B+ 4y - 3)&) (3.18)
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where the double arrow indicates divergences have been ignored.

hnd (3.12) becones
gsf 7 ?/zfu w”ﬁ ‘f/ £ R ﬂ((i,-lzcruﬂ(m
l
ke (7.-1# e 7":“““)%.1“ o bl N GBS
g (- 4(Ew)-3). (3.19)

- '—

Evaluating this, (3.17) becomes

s (B30 8)H . o

Now we consider the amplitude (see Table III)

- (Mo*”n + 2M 4 2Mis t3My Mot My +3H43Hp +SHy *5//za)H [(3-21)

For this particular sum,

(Zkt-) Z L Gw) ‘i)(klu)-+kf(1]'+ ig) 6-27[){,‘ I 3-”( & 2—)

kz, k‘)Jk" -E;L—J(/(JJ’ z—)ﬂk;-)} , (3.22)




4o

as shown in Appendix IV. The leading contributions from

k *lt (kﬁk,_) (!(3) and —E—L;;J(kz__-rkz_) J([(‘,) are divergent and are

dropped. This leaves only the }théﬁtherm. As before,

k 45
2 2
numerator terms of the form q_(kl_k1+ -'ﬁlL - \°) or

q_(ﬁli.+ 12) or q_(3§'+ xe) lead to divergences. Again the
only flow diagram is given by Fig. 19 and N is given by (3.18).

Thus (3.21) becomes

(9's (fv’é'—> (‘8" + %Az 8) . (3.23)

Thus (3.20) and (3.23) give the complete contribution from

the diagrams of Table III.

Now consider those diagrams given in Table IV, which are
similar to those in Table III except that a scalar line
replaces one of the vector-meson lines. Egn. (3.11) still
applies if we make two modifications due to the scalar

2

propagator: M2 replaces A\~ in that propagator and there is an

extra overall minus sign. The T2 terms

———

(— Mn_Mzs* Ms; t Mgz) A (3.24)

do not contribute since they are not as large as sLn3s. The

'1‘4 terms proportional to the isospin diagram :I[i are

(M72+qu 2‘+M23 M30 M32> (3.25&)

and

(MZI * Mz's - M25 *Mn "qu"le) . (3.25b)
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Table IV
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From Appendix IV, for the amplitiude given in (3.25a),

3 | 1,
5(% e z I (kety-#i5){ kety- +l(r(zj—“'li = o) {—.- k) .

kz +is J(k -t :-) (k:-)} (3.26)

This leads to a contribution proportional to sin s, not sLngs,

so is dropped. Likewise, the amplitude in (3.25b) is too
small. Finally, the amplitudes proportional to the isospin

diagram are

(“ Moy + /’30) (3.27a)

and

("MB + qu) jE[ . (3.27Db)

We easily establish the following facts about the amplitude
in (3.27a): first,

2k~
N~ S5F; (3.28)

second, from Appendix IV,

i) 2T, ( '

kd‘(ll~+li) ketn- ""kc'(zj hz)

- ) -l - o i)

(3.29)
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third, only the second term on the right-hand side of (3.29)
contributesi and fourth, the only flow diagram is shown in

Fig. 19. Thus (3.27a) becomes

cj ( ) At 8 o (3.30)

Likewise, the amplitude in (3.27b) gives a contribution equal
o (3.30).

To summarize, the total contribution from the diagrams of

Tables I1T and IV plus the contribution from the diagrams
formed from them byvan up-down inversion (this leads to a

factor of two) equals, from (3.20), (3.23) and (3.30),

cj"s(m) 2‘8' Z X 8)
+ig's gij;_f)‘(z% TN 8)
rsff (R E)H. e

This result can be manipulated using the isospin idzntity

shown in Fig. 20 which itself can be established by using the
identity of Fig. 18(b). Then (3.31) becomes

i

0

— + -fZl —

Fig. 20
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s (2] (28 + 5 @) (H+H)
rigs (2] 2 & (H - 1)
*;"S(Zyrs) 8T

o { lom in Suckits abon]. (332

In (3.32) the term proportional to the isospin diagram :I:

has been dropped since it is of the order ge(gT)Qs(gQLn 8)2.

iii) Type Diagrams

Table V lists the diagrams of this type which have no
four-vertices or scalar propagators. The letters A,B or C
+n the diagrams' names refer to whether the internal horizontal
vector-mescn line connects the first and second. the second
and third, or the first and third lines emerging from the
bottom high-energy line, respectively. The three digits in the
name refer to the order in which these lines attach to the top
high-energy line. A bar over the letter of the name refers to
the same diagram but viewed as if it had been rotated 180°

so that the top and bottom are reversed. The table expresses
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so5pin
St HI E
d@gmuns

A3 8123 !
Al32 213 | ~/
A3 BBl |

AR | -/ /
A2l A3 R | 2
A312, A312 ] ! ] =2
B123,A123 |
B3z IR )
Bascsz | -/
B231, B23I [ [ -2
B3 BRI A | [ =2
B32,C32 . | -/ I
€123,T123 I - /
B3 B |
c213, A32 [~
TN PETILY S /
e 1 o - - 3
ca, By 1 -l |

Table V

Blank entries stand for zeros.
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the isospin factors of each diagram in terms of box isospin
factors.

For each of the diagrams in Table V the horizontal
vector-meson line can be shrunk to a point so that the two
lines which it connected are fused to form a four-vertex. There
are nine such diagrams with four-vertices. The isospin factor
of each of these diagrams is the sum of two terms which are
themselves precisely the isospin factors of the two diagrams
from Table V which, when the horizontal vector-meson line is
shrunk, reproduce the four-vertex diagram. This is illustrated

in Fig. 21. (According to the Feynman rules for a four-vertex

+ 1
Il
~+

Fig. 21

there should be a third isospin diagram on the right-hand side
of Fig. 21 -- but because of the polarization of the lines
emerging from the high-energy lines, the coefficient in front
of this third isospin diagram is zero.) Therefore there is a
one-to-one correspondence between the isospin factors of the
diagrams in Table V and the isospin factors of the fodr—vertex
diagrams. So the amplitudes of the four-vertex diagrams can

be taken care of by simply adding together the space-time
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amplitude of a diagram in Table V and the space-time amplitude
of the corresponding four-vertex diagram. (This is precisely
what was done in the treatment of the diagrams of Table IIT.)
In other words, always treat the space-time factors shown

in Fig. 22 together, as a unit.
l———'+\>c<
4
Fig. 22

The T6 term from the diagrams in Table V is then

{zf/w stm ?/ bl space-Time amplibudts cn Jablh ]Z'ﬂ,é;wf/[
Lhoin /mrw/@c conthibudsins f HI (3.33)

This is calculated in Appendix II and equals

j‘s %ﬁ—‘('@ t = /\7‘8)) (3.34)

The terms proportional to the isospin diagram

are

= (cin3+¢I32 ¢€2134 231 +C321 +¢312) (3.35)

where we have used Cl23 to stand for that diagram's space-
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time amplitude, etc. Using the methods of Appendix IV it is
clear that in (3.35) the sum of the propagators on the top
high-energy line is a product of delta functions in the
— momenta of the three lines attaching to the top line. The

corresponding flow diagram is given in Fig. 23. 1Its amplitude

~/

Ny
?

~
v

Fig. 23

is O(stn s) so is too small. Likewise the terms proportional

to the isospin diagram _[] are ail of the C type and are

again too small.

Those terms proportional to the isospin diagram :[[

are, from Table V,

- [ (A213 +4231 +A321) + (B324B321 +B312) + [ 231 4 C521+4 63'2)) il

= - [ A(zﬂ) + B(3>2) + C(Sﬂ)J ) (3.36€)

in an obvious notation. The C type terms are of the form

(see Fig. 24)
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"jﬁ‘% ;ngl 6'1};,: J’L 4;]"— Zﬂor(ﬂ,-f ,,471..) Z”J('}F{-Zs-—zi_,jx,_)

\ I

x(Z ?rm-*'i zm (j"'- m)(u 3“7( 3‘* A+lz) 0”2 7&—, Hs

‘ | N (3.37)
?u 73 ~ﬁ ——,\ g (K‘_,Z,_ J(ﬁ' _7',*)__%’7&)1_ s .

where N is the numerator factor (with a change of notation it

is given in Appendix II, eqn. II.26). From Appendix IV, for
c(3>1),

) L
J(«’Zt: / W‘—"‘ZI @o‘u-*“)(?m ety 1) = 2”—) Z i HE J(s-‘j )JC?')

(3.38)
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and the oniy non-zero flow diagram is given in Fig. 25.

There are corresponding flow diagrams for the A and B type
terms but they are all zero! For example, for the A(2>1) terms,
some potential flow diagrams are shown in Fig. 26 (where

A3 = 3, + 4y _ = 0).

\U4

16

WV
v/

Fig. 26
The loops which integrate to zero are indicated.

The contributing region in the flow diagram of Fig. 25
is pe_ >> ql_ >> ql'_ >>P1_: 50

N=> 2( (3‘,17-;‘3%,\‘) + )" (3.39)

and (3.36) becomes



g @) (B + £20) L. o

Next consider the terms in Table V proportional to the

isospin diagram

( A321+ K312 +823) 48321 - 521) H.

= { (4123 ¢A132 +A231 ¢ 4321 +A312 + A213)

+ (A3 + A213 +B231 + B32/ +C1324C312)
~ (A3 +Au3 +c3i2) = (A123+A213+¢132)

— (AI32+A231 +B213 + B312 + €123+ €32/)

+ (B2/3 + 8312 +c123)} H

= ( A+ B- E(,‘>z)~§(l>3)—-5+ 5(!72)) (3.41)

where A 2 A(1>2) + A(2>1) stands for the sum of all six A type
space-time amplitudes and so on. As before the A, B and T
terms are proportional to sin s at most and so a2re dropped.

As above, the B(1>2) type terms have no non-zero flow diagrams,
so they too are dropped. The B(1>3) type terms do have a
non-zero flow diagram, shown in Fig. 27, but the s dependence

is (using N given in eqn. II.26 of Appendix II)



{ to & (rode B (Goro)]
- - 33
f Eé/-/ ’j— Zs- 7:— \ 31’ Ml +3, * ,\‘) ( j" (z_:f?j:i—)'h\t + 7—;{ + /\1>

= O(S/ns) + /mvymf lotans (3.42

so these terms too are dropped. This leaves the C(1>2)
terms for which (3.38) is replaced by

3 l g,
J(PZ' ?““')Z @m\f“‘ (;a-m ety ”‘) - )7 ‘J' 711)JZ

and the contributing flow diagram is shown in Fig. 28. The
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dominant contribution comes from the region

p2_>> Q. >> 4y, >> Py and N is given by (3.39) so that
(3.41) becomes

z;”s(}é‘—) <‘@ + —'2-,\18» = G

The terms proportional to isospin diagram ]5[ are

treated similarly:

( A23) -2 (A321)~2(4312)~2(B231)~2 (B321) + B312 +C123 +C23/
+3(c321) + cz/z)

- { (A123+A132¢ A213) =2 (ASZ/ +A3I2+8123+8132+C213¢C7 3)

+(8123 +Bi32+ C231) + (Biz3 + BI32 +B213)
"Z(Aizz +A213 +B23) + B32/ +(132 +c3/2) (A123+A213+ cs/z)
+2(cl23+C/32 oz L2314 32+ C312)

( Ai32+ A231 +8213 + 8317 +C/23 +c37/) (,4/32 +Bz/3+(_/23) ]

— (A(pg)—-ZZ-&—Z(D?) +B(|>3)—ZE+§(|72)+?£+E—ZZ()>3)) H.
(3.45)

And, as before, the only contribution comes from the C(1>3)

terms. The answer is

_zajv,(a‘l;—f;‘—‘)z ( @ + =N 8)) . (3.46)
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The eighteen diagrams with scalar propagators are shown
in Table VI. (3.37) holds with an extra minus sign (due to the
sign difference between the scalar and vector-meson propagators),
with M2 replacing x2 in the scalar propagator, and with the

numerator N = xe. Then the T terms are

~Lgls ’/’“ \ 8) ‘ (3.47)

The Tu terms proportional to the isospin diagram are

( Ao + 8o (7))
~ 7 ig's (v?—é'—) A‘8> . (3.48)

Finally, the terms proportional to the isospin diagram are

- ( Al32 +A213 + 2(A231) +3(A32/) t 2(A3/2)
+BI32 + B2/3 +2(B231) + 3(8321) + 2(8312)
tC132 + a3 + 2 (e #3(c32) + 2(c3r2) | IL

= (=34 + M(172) +A(>3) + H2>3)
—3B + B(122) + B(1»>3) + B(2>3)
=3¢+ C(P2)+ C(P3)+ ¢(223) ) 1L

= ""'L; (%’) A @ 1T . (3.49)
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In summary, the total amplitudes from the diagrams in

Tables V and VI are:

s 57 (

._.%965

1 _¢. g4ns 1 \z
~Sgs 57 (B + 40 D) (BL+HL» )
L 6 %28>
— e .90
> quz”—A (3.50)
(since the differences between the isospin diagrams s lqi
and are O(Th)b and to order Tu, from (3.40), (3.44),

(3.46), (3.48) and

[j":(a?;—f}s
*—'z-ij"s ;‘,4,'5)1)”8)(—— H +H 21T
~ i O (-2 H+ )

where the 1sospin identity of Fig. 20 has been used.

3+ +r8)

%ﬁ—"—‘#@ﬂ

to order T6, from (3.34) and (3.47),

(3.49),

fO(m-2H+H)

=I)

(3.51)
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iv) Type Diagrams

The twenty-four four meson exchange diagrams are shown
in Table VII along with their isospin decompositions into box
isospin factors. The sums of the space-time amplitudes which

multiply these box isospin factors are of the form (see Fig. 29)

B Pogon Bepewtgen Pt Dgen B

i O
vttt o e
P > > .

PI’Z' P"?l '7» Pz"z/. ‘7-'71 7;"

Fig. 29

(_L.)Hsuo;x(_zs) b ]’3 2, ?(#/ﬁi’%{t (Z”)J(j_"
49:- |
/ ﬁ 2770r j") (—?anj Z“—?zmz)(-?,, 7u7,,,+:z)

(f,r ?” Z A +r£) (ZI (}m it zm-’rjmf-*” 7ﬂﬂ—7m"7”” m))

(3.52)
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ﬁymmu
Aﬁyuun

/734
432(
1243
3921
2134
9312
/324
4231
/423
324/
[342
243/
231%
4132
3124
42/3
/432
239/
3214
4123
2143
3912
29/3
3142
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|
:
:
l
l
1
l
f
l
:
t
1
l
!
l
l
1
l
l
l
1
l
l
I

X

N o~ =)

-

-/
ol

Table VII

Diagrams are referenced by numbers which refer to the order in
which the exchanged mesons attach to the top line.

—

N
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where Ia is given in Table VII. For the T8 terms I; = 1 for
all twenty-four permutations and, as can be shown using the

methods of Appendix IV, (3.52) becomes

"7'5:‘3 () . (3.53)

In Appendix IV it is shown that, for the term proportional to

the isospin factor

(z3)Z T |

r (fa'(.;-+t't)(;,.(‘,_{-?m)_ﬂ‘s) ( g Z 1i)- +(£)

= (’2775) ( Zq- 72,)07( J(;,) (z, +Z,)J(Z )J(z )
73 +E 5(73—170 )J(7 )J(Zv )) (3.54)

and that for the term proportional to the isospin factor FT—F,

(Z4)Z 1T, |

(Zﬂ"_ﬂi ?r(c) +Zm‘ +(£J ( 2 7,{ - Hi)

&
(om ( 7,,: 3 IR + =l Vi V)
+?z- ) J(Zt’) J&‘l’)

7,_ J/Zr )Ji (Z,.) +

7,- m
J(?v 7 SJ(Z,.)J( 3—)

)94

(3.55)

"y
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In either case the only non-zero flow diagram exists for the
terms proportional to 6(q1_ + qu_)a(qe_)b(q3_» this flow
diagram is shown in Fig. 30. The resulting amplitudes are then

A\
4
DK
>
a4
X

/

( t e+ ) (3.56)

and

s 2@ T

For the term proportional to isospin diagram s

it is shown in Appendix IV that

o . 1- - /. ‘.y_i__ ‘ L
J(Z:“ ') Z ( z,.,,l_u'g)( ﬁ‘;‘zml_ﬂ'z)( ‘th;m-]_ﬂ't) ( 2”) 7,,,4-4'6. J{Zq' Z —)J(ZP) J{K")
' (3.58)
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so that this amplitude is proportional to gz(gT)u(gaLn s)
which is too small and is dropped. By symmetry, the terms

proportional to isospin diagram l are too small and are

dropped.

Now consider the terms proportional to isospin diagram

. In Appendix IV it is shown that in this case

J

I.‘
(kg

[ l
?c‘*) Z L, (Zﬂ,,,+(i)(7¢,,,_+?¢m-+w)( % er-”‘)

= ¢ ! +9,_+
627,){ (?3,+n)(7,,+],,+¢'zj J(Z" P ] ’)J{Z")

- | +9, + N g _+
ooy o) - B PRI o A

1 + l
i @"‘HA %"‘7"”9 J(ZM?I- ZPWFJ i ( ?q-h‘sJ (Z'M?!-ﬂ‘i) J(Z"'%JZ —V/Z,_)

l [

71")”_1 J(? #9) Z‘:”" J(Z'JZ"} + P 5(7,_7,,) =P J/?,, %)

+

- e Lyt e )]

(3.59)
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Of the first five terms on the right-hand side of (3.59) only
the second and the third (both are proportional to
6(q1_+-q3_4-q4_)6(q2_)) contribute. They share the same flow
diagram, shown in Fig.‘31, and they give rise to the space-time

amplitudes
4 Q
~ig's (%7) (3.60)
and

i;‘/s (;}—ﬁ—g)z @ (3.61)

!

respectively. Of the last four terms on the right-hand side

Y

PP BFRR P

Fig. 31

PP

of (3.59) only the last two contribute; they share the flow:

diegram shown in Fig. 32, and give rise to the space-time

~ 9% %ﬁ)z @ | (3.62)

2775 (3_2‘_?5)2 @ (3.63)

amplitudes

and
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v

—
P Pz—?' P’-'?l'zl PI‘?l’ix 73 fz’

Fig. 32

respectively. Thus the total contribution proportional to

isospin diagram is

g (52) O II. X

The amplitudes proportional to the isospin diagrams

and cannot be dealt with so simply. The reason

is that the sums

5(Z 9:) 2 T. l 368
(‘—,, Z ) - ( Zm_ﬂ‘i)[ Zl‘(d-*?@'(ll'“i) ( g:;qd_ﬂ'z) ( )

are not proportional to a product of two delta functions. For

example, in the case, neglecting momentarily the ie

terms in the denominators, we find that (3.65) becomes

l
+
7,,, ( 7,,,473-) (71-" f- *72-) 7 (73—*77—) ( 7:- "7!' 7")

d ( 3"& Z’JZ"*Z"')
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+ | u

+
7‘!— (7:(—*73—) (74-1‘ -+ l’) Z‘I' z- 7:: +7z—+73—) 23- (7,,7,,_) (23,7'.7,)

= 9( 9,49, +%.+%. | . 3.66
P w) e

Real terms as large as sLn3s and s&nes can result! But, as we

will show below, when all terms from all flow diagrams are
added together, these real terms cancel exactly. We will then

calculate the (non-zero) stn®

s contribution from the imaginary
terms; these terms come from the vanishing of one of the
denominators in (3.65). (Real contributions to (3.65) can also
occur if two denominators vanish, but then the amplitude is
proportional to stn s at most, so is dropped.)

Plugging (3.66) into (3.52) we find that there are three

flow diagrams. They are drawn in Fig. 33. (Note the different

4+ 7: Hia Iz

TN

Fig. 33(a)
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PV

I o
(o)

(c)

Fig. 33

notation on each diagram; this insures that all the a-'s are
positive.) The contributions corresponding to the flow
diagrams in Fig. 33(a), (b) and (c) are respectively

~/ 59 ] % (1 o J ! |
=? (Zﬂ ’1 2 ” (’7:-)(’?3—)( 47.‘,) Q, ay 9, ?3 ( ¥ L1 + 2 ay \[ 43 . f’_".
31 Z;' 7,,, »P’ 7 ? 1- Zl' z‘l')( 73- 34— )

(3.67a)
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..253 j ﬂ—(m, /‘1?'7?”— zﬁ(j, 4, Z,,)
P

-t (z:- )

wy 3*73'(’37— + ___)(;: “;7:'-) (3.67p)

and

..Zs; jm?%jn—_;r‘: | - ),

2' (-“ G g [Ty D), A Ay
PO R S S

where

=234, (3.68)

It is easy to see that the regions that contribute to the

3 .
stn s term are gq, >> a3 >>a,_ in (3.67a), q,_>> 4, ,93. in
(3.67v), and q,_ >>a, > q3'_: in (3.67c) and that these terms
cancel.

Under the transformation
oty -3
zu > 7"1
B,

g < e

and 71- < ;3.-

(3.69)
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(3.67a) and (3.67c) are transformed into each other, so the
sum of (3.67a), (3.67b) and (3.67c) equals

) j T dgi- T
j = (2”, -ﬂ--}fr— X Qa,%y (3.708)
f"/ 72-, #s-77Pi-

with

"R #) ( Gop)(5e 5 2)

|

+ a3 o (3-70b)
b1 % )
— _

In the second term of (3.70b) it is assumed that q,_+aq, > 43 .
The strategy now is to divide the q_ space into six
regions where the — momenta are ordered and to isolate the

divergent terms from each region. In region A, Q_ >q2_ >q3_.
Define 1=
X= Vs 0< X<] (3.71a)

I

J = 1735‘ %?‘ 0«1 (3.71b)
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] dz,,dg,,/g,, = /ﬁ—r‘;/z,, /o N /0 | iy kg, G

so that

and

KT =+ ; N '
- - Xg(@l““l) (“xg)(xga,afga,mgj ({—xg)(aﬁ__’.‘ﬁ.__ q,,) .

[+X-XY
(3.73)

The integration over q,. will give a contribution proportional
to 4n s which by itself is too small. However, . other factors
of 4n s can come from the integrations over x and y if these
integrations are divergent. This is because in our

approximations there are really cutoffs that must be imposed --
q Py_

2- >> 1 .
q,_ q,_
over the x and y integrations cancel when the contributions

for example, x =

We will show that the divergences

from the six regions are added together. Egn. (3.73) can lead
to divergences when x~ 0 or y ~ 0, but there is no divergence
coming from the vanishing of the 1 - xy term in the denominator.

Next consider region B, where ql_ >q3_ >q2_. Define

X = —23—: 0« X‘l (3.74&)
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so that (3.72) holds. Here

2 T o | 2y B l
i Bi- X4 (xyr) {(I*X) (g eantgns)  (hi)(ast iz )| -
(3.75)

Divergences come from the regions x ~ 0, y~ 0O, and x~ 1.

In region C q2_ >q1_ >q3_, so define

X = _?_'E } 0<x<] (3.76a)
and
y= }?5‘_; - —Z;t’ 0<y<{ (3.76b)
so that
/o/f /7,473_ ﬂl/?z_/:é(l% )(7:) (3.77)
and

v 2 _ 1
X?kj ?z—}(“l*x‘ﬁ) {(l’;'f)(gﬂﬁxj“zmz) (1-y)(a + Xf,j_xy » }

(2.78)

Divergences come from the regions y ~ 0 and y~ 1.

In region D, where q2_ >q3_ >ql_, define



-70-

X'—-’-j};, O<)X<«] (3.79a)

I
Y= 3?—'31- = ;%'; ) 0<g41 (3.790b)

and

-

so that (3.77) holds and

L T - | g 24 + /
X 72— 71- e X98s | (441) (a3 t4ya) (-3} (s + }";:7}47)
(3.80)

Divergence comes from the second term on the right-hand side
of (3.80), from the region y ~ 1.
Region E is defined by q3_ >q1_ >q2_. There define

Y= d=  ocxet (3.81a)
P
and
Y= P = P 0eyed (3.81p)
-
so that

_/a{i’#'{i“ - 4’&%{;-/&,&[% Xf;., (3.82)
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Thus
2 _ [ 2X + |
X?s- T ?3- (#a,mz) (H-)()(}d,-f-dzl-X;ﬂg) y(l'xJ(43+)(*lXﬂ-l q,)
(3.83)

where x + Xy > 1 in the second term on the right-hand side.
The only divergence comes from this second term on the right-

hand side.
Finally, region F is given by q3_ >q2_ >ql_. Define

X= F= 0<x<1 (3.84a)

and

Y= = = Jo 0yl (3.84b)

so that (3.82) holds.

X732 1= ¢ _LXy + !
- asay (xwd[wyﬂt*{?"f) (/-)yJ/ 4t ;;,'ﬁ',
(3.85)

where xy + x > 1 in the second term on the right-hand side.
There are no divergences from (3.85).

In region C, when y~ 1,
- |
73—6%*1“&)&@45&@)0&5)

(3.86)

X7,3 1~



-T4-

And in region D, when y ~ 1,

2 l
X?z- ID ~ ) (3'87)
9o (440, (a5t Aas) (I-y)
so these two divergences cancel each other. From the second
term on the right-hand side of (3.75) (Region B) and the
second term on the right-hand side of (3.83) (Region E) we

get (suppressing the éL dependence, which, by a change of

variable is the same for all these amplitudes)

[ -
Z /’kl % X}(Xga,fﬂz)(j")(}{dsf' da) / / ﬁ/(mﬁﬂz 5[/"‘)(@

xm / )

l
/ /6? (xg (X%,Mz)(/ ) (a5 444~ /(47) 9(9845)(1-x) (a+ Gy )

[
i f dx[ é({%,faz Y302 (a + ) 4l ar+ 5] )

- ﬁ%} / ow/x - ﬂ(ﬂa,m)(/-/xJ (a5+ Gay)

[ Jx ] 0? Y(xt)) [+ X4-X) a3 + Y (14 X9-X )4;4;*—[ X% XY +9J4,g, f [/qudl%,
XY (X9a,+a,) (%,+4) (% vay) ( (1+X9-K)a, +)(44,)

Lol 1
— ( / *y)ﬂ _ [ I |
+/%AJL;(669 I(90,t4,) (40 1ay) Z( Xexy-1)as y) lé//z( (Yaa:)(1-3) (Yasay) *

(3.88)
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Both of the last two integrals in (3.88) are convergent, so

their contributions can be ignored. The first integral in

(3.88) can be divided into parts

_A 4y
/ f Y4 o (X1, 14s) (0y9,) (923 403 ) ((1129-102 £y

_ [ ' f ﬂ?/ 9 () (1x9-x)a%3 # (1+h9-Xazas ¢ (94K 9¢1)nay + Kasay
X (X924, (0,44, (93 14y ((#x4-X) 25 + Ny )

::-J[aajfl 4&@1 .
A % X9 (X9a,+a2) (%, +43) (935 tag (11 19325  Nay)

JX Jd,43 +:43 + 4, ay ' (3.89)
/ / ? Xa, { ”4/*4:)/743*44‘)43 ! wnm;wf s

From the first term on the right-hand side of (3.75) (Region B)
we get

l%{é /”?’ X (x9a,ta,) {ix) (194,44, +945)

ol
-‘l},(]o‘lpﬁ Xa, (dzyl';,ﬂg) 4 CMW%’"{ Topes

=llé( Xiz‘b /é'l {/* %) + ga;wpylmf m: (3.90)

The divergent term from the y ~ O region in (3.78) is



R i 4(/ ) e

Finally, region A gives the contribution (from (3.73))

/ ;& /I = XI(pexs) (=X}, = 914X 5 1ex -x8)ar, # (13 x9) 14 X=X} 2y t2xy (I-xylay
ﬁ X9(1ex9)(1-x9)( oy +4,) (190, + 4 tag) ((14x-X 4}y hf.%zd

_ (s [l a
B _/o /x[) 6? X9 (1tx4)(1-x4) (xa, ra;)?L)wa, + 0, 14y { (1£X-X9)a; +[74,)

+l %(/a% 5(Xa,+az)l(/+x}dg —Ja%‘«é% X/gﬂ::ﬂg}qj ? conger ¢ Lovms

N j %‘f I‘? X9 (1+x9)(1-x9)(xa m)?;.‘l
o o #ais) (X44, + Ya, 445) (/+)(-xe)4,+)(y47)
+,/o%( )(431(4,—4,) (j" {/f %‘z-)ﬁjﬂz)
- fol/"
The sum of (3.89) and the first integral in (3.92) is

/%‘/ % A a3 2y ‘fﬂz@i‘-ﬂl‘ﬂq + ﬂ/ﬂg_z
o o

Xa, a3 (49,44, ) [ Ja, MIJ[ J4s *"‘/)

-'-‘/%/% d;dq Zﬂgﬂ; ﬂjﬁl "ﬂ[ﬂ_}X
0 Jo

74143 {/*X (Xﬂz*ﬂzJ /,{’/4,— 3)*”3)

Xﬂ’zag /n(/v‘ —f—g—) + cowagmt Tetms (3.92)
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/ijéﬁ a0 tasag t iz consnt s, (3.9

X 4143 (0,1, )( Yastay)

Decomposing the integrands into partial fractions and dropping

the convergent terms, this becomes
]%// 4 ( 4y _ _ _ 4
0 0 ? X“l (ﬂ,dj"ﬂ;’) jﬂ,‘/"ﬂ; .%iz-tdg

+ d;'..ﬂzﬂl[( a, . d, + az | ﬂ;
Xas Jo,t &y (51143"”17(4/”1'“’45) 94, +4; é"@@)(dﬁy“"; )

as _, a5 )
Jastdy G, 43—4,44)(43’——424,,)

+ Ay~
»/ /x/ é {)(az (4,43 m,d,—d,qy) ( 5ﬂ/+ﬂz 7 (2 "“SJ"‘ 43 )

+ y=2 ( [ 4 a . 4

+ X4 Ay A3 )
s (10, - 20,002, (g ~25)

__j%(ﬂ? ay 4 Gdy / a__ _ _a
o Yo Xaya; ( 943*41) Xayay [4/47"4:43) Jatra,  Jast+ay
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=jlaé({ Xa, (M,—a}) (jn/ﬁ /"/H ))

+ dngﬂz 04/

4 ) P S | A
X4 (ﬂ/ a3 -a,‘j (‘?/44/"4243) At (/+ % Kaz a4 ’é'//f %)
/ﬂ ( /* ) n / /+ 2")

)«b¥§'4 )

Xﬂ; [4,43 1“4243 “ﬂ;dq)

i /jm" ~hay) * X«;(ﬂ, )Az

/rﬂz /4fﬂ3 1“4;43—42 ﬂy)

4QIZW‘WZ%J
Xd.? (0/'41) (d/ﬂjv +ﬁzdj‘"42 ﬂf)

+

ol 3t e g anan] ot

%, 4y ~a,4y ~a43)

X:a; @ L1+ 2) - 4,44 D)+ s 4t //

X a4, az ( 4, 4y "4243) Naya; (4,4., -ﬂzﬂsJ

-_-_['ﬂ/x {ﬁq/ﬁ%‘,) =Y /.3y

——

df p

X 45‘?(4'4J X M a3

+ Aﬂ‘l-ﬁ'fﬂg_ / # ,4!2 "
Thus the sum of all the divergent terms, from (3.90), (3.91),
the second and third terms of (3.92), and (3.94) equals

[hd |- blied) _, ble%) | hle%), , b2 1}

Y] Ay a3 .43 @, 43

+£a‘x—)’( b= (3.95)

a, 43
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From (3.70a) there is a factor of

2 which multiplies all of

a
174
the above terms, so they all cancel. Therefore the real terms

of the space-time amplitude multiplying the isospin diagram

are O(stn s) and can be dropped.

We will now show that the same holds for the spacexstime

amplitude multiplying the isospin diagram . Denote the

isospin coefficients in Table VII for isospin diagram

by Ia and for isospin diagramE by Ic',. Then

y 1
J (7,_ +7z-* fz—*?‘l-) Zc_-_- (I"' 3 I’) (3,.,,,,'«'{) ( },-,,,_*'7,(,, ."t't) ( g 7rm—“")

= — /
(74. +:‘zJ (Z,,J-j,,m)(%,,4%;,_4;:‘:) ¥ g?” ,;J(;z_f . +1'z) ( 4 it 7"' +/'z)

[

s /
( 7,,,+i£ ) [ 7,,, 17’, +E ) (7,,, + ﬁ,-fﬁ_h'i) ( 73_#:? ) ( Zz_f?,_ Ht){]} + Z,,_ + j_ +Z )

and dropping the ie¢ terms from the denominator

= | + /
%- (gq. i) (74»‘71—"7‘-) %- (7,,17,,)( 544 7,,)
| | _
' 74’(;7y51%h)(7ﬁ—) i j@-(j@—*;%)(;7rJ CE

(3.96)

and we are done.
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Now we shall calculate the isans contributions. First

consider the isospin diagram contribution. Since

j-,*"‘ = ?'%’_‘ —-c‘77J(7-) | (3.97)

the leading imaginary term coming from the diagram (4321)

(see Table VII for the notation) comes from

(?1-""")(71-*73-* ‘.T'J (74-*73—‘71—"“)

=5 7 / J j«r)
@‘/' *73-') (7«— *73—*7:)

+ ;(?4-"?1—) 4 J{ﬂ— ’j}-*jz—J ) (3.98)
7‘/« ( 31—{73-—* z—) 74" ( 7"'*7")
However, none of the terms in (3.98) has a non-zero flow

diagram. Similarly, there is no contribution from diagrams

(3L421), (4312), or (4231). For diagram (3412),

, Ji
7 ( {j3—+71—)(73_+7//.- )

+ Olos= 90 Ig. '+") 3.99
w ey e

The first and third terms on the right-hand side of (3.99)

|
('33-" fi’( z,-f 7,,.}4'&) (73‘ *7" _{-7 | -ﬂ'i)

have non-zero flow diagrams which are shown in Fig. 34(a,b).

Each leads to a contribution equal to
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g
Y

(a)

v
Y

(b)
Fig. 34

-12- [275 (5;—/””—5)L @) (3.100)

so that the total amplitude proportiomal to the isospin

diagram is
s |}
cy"s(v%.,—)@ -1 . (3.101)
For the isospin diagram contributions, by the

above, the (3412) diagram gives a contribution equal to

~2i 9" /%‘) ’ (3.102)

For diagram (2341), there are two contributing flow diagrams,
one shown in Fig. 34(b) and the other shown in Fig. 35. They
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V4
v
y

'Iz'éjq‘v @_;%{)1 @ (3.103)

- L 5(;22_/_”5) O (3.10%)

respectively. And for diagram (4123) there are again two non-

and

zero flow diagrams, one shown in Fig. 34(a) with a contribution
given by (3.103), and the other shown in Fig. 35 with a
contribution given by (3.104). Thus the total amplitude

proportional to the isospin diagram :E{ is

—‘ch‘/s( ) @ ﬁ. (3.105)

To summarize, the total contribution coming from the

eighth order multi-meson exchange diagrams is, from (3.53),

(3.56), (3.57), (3.64), (3.101) and (3.105),

7 | -%q %" + T+
s QIIL - %5 £ Q|
+;"-<v"2/”75 @ v igts (9] @
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s BT QE 255 Q. oo

This ends the calculation by Feynman diagrams of the
scattering amplitude through the eighth order in the coupling

constant.
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Table VIII

The amplitudes in the right-hand column come from the prototype
Feynman diagram and all others related to it by up-down

inversion, by replacing a vector-meson by a scalar or by a
four-vertex, or by any combination of these processes.
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V. The Calculation from Exponentiation

The high~energy scattering amplitude 7, calculated
through the eighth order in the previous section, is the sum
of infinitely many terms coming from infinitely many Feynman
diagrams. We believe that this summatio- can be performed
and the result expressed in closed form: that is, M can be

1
simply expressed in terms of the operator exponential formula

erf s n-r)m = VTf (1-2Y) (5.1)

where V is given by (1.7). (For the elastic scattering of
boéons, \ﬁﬁ: =3 .) To demonstrate that this is so, we will
expand (5.1) as a power series in g and show that it agrees
term by term (through the eighth order) with the Feynman
diagram calculation.

As an illustration of the techniques involved we will
calculate the (gT)6(g2Ln s) term from (5.1). Because there is
2 v . term from the

power series expansion of eiv contributes. Besides the g6

factor associated with the T6 factor there is an extra g2

a factor of T~ from each V, only the

factor which can come either from the Reggeization of one of
the exchanged vector-mesons or from the creation and
subsequent annihilation of a W-meson or Z-scalar.

Suppose first that one of the exchanged mesons Reggeizes;

the isospin factor for this process is » and the space-

time amplitude is (see Fig. 36)
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where we have used

j”’?s d ( V?S‘T’b\‘ H gt — V7;+?1‘+,\‘ - V(ﬁ,*f;—?)li‘f\‘} ~ -—é—
5

(5.3)

Keeping only the g8 terms in (5.2), we get, with A = Py - Py

3s. wl gis Lk, Jh,
30 QWJ’J(”[WP,—;J,’-;J/J (Zj Y= 7 o7 E;f‘ o

l . -
(AL’EJ_' Fl; 14')1 4_1&_31_ |
(st (o 48 (BT To) ) ( ) oy (e 00 ((B-l T, %)

= @) I pepepips) §s =)@ e

Notice that we started with a three-Reggion exchange term
(i.e. V3) and generated a four-meson exchangs term by

expanding the Reggeized vector-meson propagator. This series

expansion
-« (%)
> = gt //“‘L |
Alu,\l— a:u-’\\- fﬁ_ d—% {'Izﬁ\"J((ﬂl—i,)’%\‘) f...

(5.5)

may be expressed diagrammatically in terms of transverse-
momentum diagrams, as shown in Fig. 37(a). The elastic part
of the three-Reggion exchange can then be represented as an

infinite sum of transverse-momentum diagrams as shown in Fig.37(b).
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Suppose now that a vector-meson or scalar is created and
then annihilated. There are three ways this can happen, as

illustrated in Fig. 38. The amplitude for the process shown
in Fig. 38(a) is

- -4-—3— /3—‘” /% /3—. /3-‘0 &{
T ; ?z_g"'éﬁ’(’z#@f? e
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Fig. 38

The double line stands for either a vector-meson or a scalar.
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where E = Jk32 + ﬁf + xz, where the sum in i (i=1,2,3) is over
the three independent polarization vectors ci(k), and where

only the g8 term has been kept (so that si'“(zii) has been set
equal to unity).

We make an aside to calculate the product of the vertex

factors for the W-mesons (see Fig. 39),

gﬂ(Aqu)'i"(k)l‘z(.’,n{) k) = Z Dy 282

= DTy (~guvt Kel) = —op = LR p 400 T T]

1l
(5.7)

where we have used the gauge invariant property of the vertex

function, Tek = 0. This equals

Apf A{
r > > n
d k=44, kb4t L
Fig. 39
-4 ()~ B () (- Eat)

(G5 Eopen (o) + (Ben) = (R =2((B ol frrt) - 22
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AM*""I]:.L"l E*’}Au ’\1
ZL )\){ Ak)zfl\,’A( t __2[(3'“:,’& {_/\] A

(5.8)

The only dependence on the longitudinal momentum k3 in

(5.6) is therefore through E, and

2w
dis 1 (Tdk 1 _ 1 s (5.9)
w22 ) Wk T T am '

Therefore, the amplitude in (5.6) becomes, with A = p; - p,,,

2 “) I Ik,
37T @7)'d (7’”‘7’1’7""7’1’) _,_;‘_ z(z;) Tf e (E;‘Imbv)

» I
(R )G fer) (85 o)

x ( (e (( e S e3) e (G ) 24 12
(oo, )+ X

-2 E;ff,\") —A‘) + X }
= Q1) 5 (paps-po pv) j"' 7 {( L @ +2 @
-7 @ _ /\18) FRY 8} :UI} (5.10)
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The amplitudes for the processes shown in Fig. 38(b,c) are
also given by (5.10), with the isospin factors appropriately
adjusted.

Eqn. (5.8) which represents the product of two vertex
functions can formally be represented in terms of transverse-
momentum diagrams as illustrated in Fig. 4o. In that figure,
glashes on a line mean that the corresponding propagator is
absent and the two vertices at either end of the line are to

be fused together into one. An example is given in Fig. 4y,

o = -2 % -2 X

@] =

Fig. 40

,,__‘@L_ ® 3 —

) @ ' Z,'@ - 28— x>
=Z*@! +P4@=—-2 8’)—A"8>

Fig. 41
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From the above example, it should be clear that the
following rules apply when calculating the terms proportional
to T2 in (5.1) via exponentiation:

i)There is an overall delta function which expresses

energy-momentum conservation: (2m) s(u)(Pi - P )

n-1

ii1)There is an overall factor of =——;

iii)There is a single factor of } E fm from (5.1) and
1

VB

are over the incoming and outgoing particles in the

n factors of from (1.7), where the products

appropriate initial, final or intermediate states;
there is a factor of 2s from each of the n potentials;
and there is a factor of 1/2 from each of the n-1
integrations over the delta functions in the energies
(see egqn. (5.3)). The net result is a factor of

28-?T%EIT— where the produqt is over all intermediate

state particles which are created and then destroyed;
iv)These energy factors are integrated over the

longitudinal momenta to give a factor of
W
Aiz &-—‘—'N jzwjk" ——_L(%S)
d Jow 2 2E j (27)(2k-) 2 ézﬂ ‘
(If the — momenta are ordered there will be additional

factors, as the -%7 in

2w 2
y u[. n Zla- / f szr 2Ur.- —2% U‘Z(ZﬂJ 5

‘
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1
v)There is a factor of sp——5 for each of the
Ly + A
exchanged mesons in a potential V, and an integration

4?& over the transverse-momenta of each closed loop;
enp?
vi)From the Reggeization of a vector-meson there are
factors of _.ES#E.E times the appropriate transverse-
momentum integration (see Fig. 37);
vil)The squares of the vertex factors are given in
Fig. 4o.
The results of the calculation from exponentiation
through the eighth order are given in Table IX. They agree

with the results of the Feynman diagram calculation as claimed.
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Table IX
Reggeization in the potential is indicated by multiple lines.
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VIi. The Eikonal Form in Impact-Distance Space

The potential V as given by (1.7) and (1.8) - (1.12) may

be written

V= @nf3e-g) (- T T} { [4h. 2 s g Aw)

d'zA, 14, JI( [ 3] 243 ] - J:L
(2”)" (71) (2”13 r’ 627’) J( (A'-L E’ 2&)@1’-,)(524_’\1) S:

(;::[i’* (B+8,) - 2% k(J- Aéﬁ:\\;) 1%l (-‘2- %ﬁ;ﬁij)i@l T:)czyxz
-\ 'b+(E)JiJ‘> A(tﬁ)

) 5""‘(1;1)

dQﬂ.'diZ: dk _| )/ 7 .Zﬁf —0(3;) —@(JZ)
+ L 2 y2) B
@ o e om C07 (BuekE) (L) @)™

(3 tand-eele- B2 bl B et

-—Aﬁ{E)Jg)A(A;) t... } (6.1)

In (6.1) E = k, = Vf- \° 1is the energy of the created or
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destroyed particle; A(le) is an operator which changes the
transverse momentum of the large + momentum particle by the

amount'zl*:
A(3,)2) = |B,+8.7; (6.2)

aik(ﬁ) (aab(ﬁ)) creates (destroys) a vector-meson with

momentum ﬁ, polarization & and isospin ¢
+ E- ’
aut (K) K0 (6.3a)

a«z(FHO? = 0 ; (6.3b)

>
and b+(k) (b(k)) creates (destroys) a scalar Z with momentum

k
b(&)lor = [K7, (6-4)

b(K)Ioy = o. (6.4b)

ld?’ is the state with no intermediate energy particles (i.e.
only extremely energetic particles) and the states are

normalized so that

(B(&) = erfs™(L-8), (6.9

< IE'«’I) J«r«furam’i‘”(ﬁ—ﬁ”)j (6.6)

etc.
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If we define U(PL,s) by

—V —‘, E; JF Ivl P'IP’J b /)?7
= en*(n-2) Z/J‘Z‘z A e R SR, k)

(6.7)

where 731_ = ila. - 31,4-, then

- T « (&)
- /d; -( Ap £ (1) .(Zl 1 l o
u(é“ S) - Qﬂ;; ' ( T‘ 7; ) j A'::‘,,,\l- JJ

b -(eT)<d)
I8, &% (o0 /’ At 2 ~
+j'[(z) (zer( 8 Ek-L) Lig 2T L4

"(‘%’%"7')0‘{[;4\ A—»
(i[?}[ﬂ;* ) Z+£ VFA—‘("’ p*ﬁi\»)

X XL -
j:’JrA‘ o=

4

VEer Z:“‘ S~ (ate (ks )~ Atk '7)
+ 2% lT kfﬂl (JZ— th\z IZI ( a J,TYT J ) ZJI

— {,’f(ﬁ.f)\}‘z_ﬁ(- L T) J.‘j) + } -(6.8)

where

To = /ns) (6.9)



) (6.10a)

(6.10b)

(6.10¢c)

and where the creation or annihilation operators a;L(i*,T),
aab(i*,T), bf(i*,T) and b(i‘,T) create or annihilate a

vector-meson (polarization &, isospin %) or a scalar Z

with transverse momentum'ﬁx and rapidity Tv. Note that

) (6.11)
W ”%73

(6.12)
etc., and the states are normalized so that

Rir[k,ry = GrP dP(k-K) §(r-7).

(6.13)

In the higher order terms in (6.8) the rapidities of the
created and annihilated particles are ordered. U(ﬁ‘,s) is
explicitly hermitian.

From (6.7) it follows that
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F‘:d IILVIP‘/P’) ;m>
= (Zﬂ,\”af‘”’(k--i;z) 2 /z/’ﬁfz" . ‘(n/x"um”)}m} (6.14)

and (1.1) follows easily.
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VII. Conclusion

There are important differences between the eikonal
forms in QED and Yang-Mills theory. In QED, the potential U
may be thought of as a generalized static field (elastic and
inelastic) due to the target electron, so that eiU is then
the amplitude for the scattering of the projectile electron
from this potential. Such an interpretation is possible because
the target electron remains an electron after the emission
of any number of photons. In Yang-Mills theory, however,
the W-meson carries isospin and its charge state changes as
it interacts with the scattered meson. Thus the concept of
a .static field no longer applies.

In QED the potential consists of the lowest order
diagrams for each process. In particular the elastic part
of the potential represents the exchange of a photon and is
related to the Coulomb (or Yukawa) potential between the two
high-energy electrons. The counterpart of this term in the
Yang-Mills potential is not the exchange of a W-meson, but
rather of a Regge-pole on which the W-meson lies. Thus the
potential U (see eqn. (6.8)) is a function of the energy of
the projectile.

In the diagrammatic calculation in Yang-Mills theoxy,
it is possible to identify those terms which have counterparts

in QED. These are the ones in which the order cf T is
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correctly given by counting the number of vertices on the
high-energy lines. The QED counterpart of the Yang-Mills
isospin T is the charge Z of the incident electrons. In
diagrammatic calculations in QED, the power of Z is always
equal to the number of vertices on the high-energy electron
lines. But in Yang-~Mills theory the non-abelian nature of the
isospin means that there are many more terms present (see
Table VIII). (For example, the T2 terms come from not only
the one meson exchenge diagram but from t.ie tower diagrams
as well.) Physically, these terms represent the effect,
mentioned above, of the changing charge state of the target
particle.

There are two major advantages of the eikonal form.
First, it is explicitly unitary. Second, it is in closed
form -- that is, it is not an infinite (and possibly divergent)
series. For example, if we were to expand i(1l - eiU) in a
power series the result would still be unitary, but such an
expansion is not useful because successive ‘terms become
larger and larger.

The major criticism of our calculational procedure is
that we have ignored terms which, individually, are larger than
the sum of the terms kept. From each set ot diagrams we kept
only the most divergent terms and dronped the non-leading
terms. In order to preserve the Froissart bound there must
be extensive cancellations among these non-leadirng terms, but

we can only hope that their sum represents 2 small modification
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of our result, at least in some energy region. Physically,
the terms we have dropped account for the structure of the
particles and for the interactions between pionization
products.

The generalization from boson-boson scattering to
fermion-boson or fermion-fermion scattering is trivial. For
each fermion replacing a W-meson the space-time factor is
é%, where m is the fermion mass.
This is because the numerator factor associated with the

multiplied by a factor of

large + momentum line, for example, is

E'L(p)—% (}/m)%: (p’m) % u(p) ~ (Z\}{Z_;_) ﬁ (7.1)

where n is the number of fermion-fermion-W vertices, whereas
the corresponding numerator factor for W-W scattering is (Z )ﬁ
The generalization to groups other than SU(2) is
also presumably simple, since the majority of the isospin
manipulétions involved only the Jacobi identity.
In conclusion, it is our hope that by studying the

consequences of eikonalization we can get a realistic idea

of the actual high-energy behavior of field theories.
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Appendix I. Feynman Rules

The relevant Feynman ruleslo for the SU(2) Yang-Mills
theory with an isodoublet of Higgs bosons are:
i)an overall factor of -i;
ii)a factor of -i for each vertex;
Sy s 2 2
iil)-lbabguv/(k -

(here a and b are the isospin indices and 4 and y are

+i€) for the vector-meson propagator

the space-time indices);
iv)i/(k2 - M2 +i¢) for the scalar propagator;
v)g(iegne) ((ky = k) g, + (ky - k3) g+ (kg = Ky) g )
for a three-vertex;

2¢/s

+ (1eead)(ieecb)(gupgva - guvgpo)

for a four-vertex; and

vii) -gkéabguv for a scalar-vector vertex.
The vertex factors are illustrated in Fig. 42. Note that the
four-vector vertex consists of three terms, corresponding
to the three ways it can be "unfused" to make two three-vector

vertices.
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Fig. 42
(a)Three-vector vertex. (b)Four-vector vertex. (c)Scalar-
vector vertex. The s80lid lines are vector-mesons and the
dashed line is the scalar. For the four-vertex, the isospin

factors are given diagrammatically,
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Appendix II. On the Infinite-Momentum Space Technique

and Momentum-Flow Diagrams

When the Feynman rules are applied to calculate the
amplitudes of diagrams, multiple integrals appear. The
standard way to evaluate these integrals is to introduce a
Feynman parameter and then take the high-energy limit (s>,

t fixed). However, this technique becomes very cumbersome, if
not impossible, for diagrams with six or more vertices. 1In
order to evaluate higher order diagrams it is necessary to use

11

the infinite-momentum space technique and momentum-flow

12 The basic idea of the infinite-momentum space

diagrams.

technique is to make the high-energy approximations in the

integrand and then evaluate the integrals over the longitudinal

momenta by contour integration in the complex planes of the

+ or - momenta. Momentum-flow diagrams are used to keep track

of which poles are enclosed by the contours. Several examples

will now be giver: to illustrate how to use these techniques.
First we give some general high-energy approximations

and notation. Let P, and P, be the four-momenta of the

incoming particles and P4 + A, p2 - A be the four-momenta of the

outgoing particles. The kinematic region under consideration is
S » {Azl) /\1) M? (I1.1)

where s = (p1 + pa)2 is the square of the center-of-mass energy
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of the incoming particles, A is the vector-meson mass and M

is the scalar mass. For an arbitrary four-vector p define

PE= TPt BT (1. 28)
and

d"P = —‘i'o(pJp_fﬁ _ (II.2b)

{The metric is such that p2 = P02 - 32.) If p= (p+,P-,B;)

then in the CM system with the momenta of the incoming particles

in the z direction,

P = (FH’, 'Z}\S:T;J 0)J (IT.3a)

b= (3 0 1130

where

Py =P ~ Vs . (II.3c)
It follows that

ZP,-;Dz ~ S (II.4a)
and J.:L (I1.4p)

Now consider the second order elastic amplitude. When
the external particles are transversely polarized only one
diagram contributes. It is shown in Fig. 43. Its amplitude
is M = M<I where M is the space-time factor and i is the
isospin factoe. Here we will calculate M only. From the

Feynman rules (Appendix I)
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|
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42+
M= ed"”gzz,uf,fyzz.(rm

” ( 2{’:“1)/0 dﬂmf *("PFZAJA« ;zfo t( A‘[)ejrjif)

x ( (P:.*A)‘d;«a({o + (Pz’zajxjf/g t ('ZP;+AJ/°(?«9. (II.5)

M will turn out to be proportional to s, with a factor of Vs;
coming from each vertex. Since e;+p, = el,-(p1 + A) = 0, it

follows that e, (-py - 24) = -€;+4 and that e, (& - py)

u
= 261,-A. Because neither of these last two terms is proportional

to /S, they will be dropped. Likewise the (9, + A)B and
(p2 - 2A)a terms from the other vertex factor do not contribute
to the leading order and will be dropped. Finally,

-

> ->
€ = (o,o,ell), ete., so that €1°€q, = '51"elﬂu: ete. Thus,

using (II.3) and (II.4),
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- =
M~ 2(?25 —E’,‘:Aj (Zu-f,i)(z"jl.z"’;i). (11.6)
(Since the polarization factors (Zl*-zl,‘)(-égﬁ'éz,‘) are
common to all the amplitudes calculated in this paper, they
will hereafter be suppressed.)

It is simpler to calculate this and all other diagrams
using the (+,-,4) notation throughout. In the product puqu
the sum over the four space-time indices can be replaced by
the sum of the three terms on the right-hand side of (II.2a).
This is represented diagrammatically by notating each line
of a Feynman diagram with one of the pairs (+,-), (-,+) or
(4,4+), with one sign near each of the two endpoints of the
line, as shown in Fig. 44. Each line can have any of these

+

n
..

— —H

Fig, 44

three polarizations, and all possibllities for all internal
lines are summed over. Each three-point vertex then has three
signs associated with it, one corresponding to each line.
Since a + component always multiplies a - component and a

4. component always multiplies a Jl component,

(11.7)

;-H-:j/-- ""j.u» "= Ju- “FL T .
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With the convention that a longitudinal (i.e. + or -) component

——

|
is always multiplied by an extra factor of Yi-’

jr-=gerel ol gl -8

so that the product of two longitudinal components will
reproduce the factor of 1/2 in (II.2a) and the product of
two transverse components will reproduce the factor of -1 in
(I1.2a). The advantage of this notation is that all lines
emerging from the lines representing the extremely energetic
particles are longitudinally polarized; in particular, if the
line emerges from a large + (-) momentum line, then the sign
on the emerging line associated with that vertex is + (-).
This is equivalent to the apprcitimation of dropping all those
terms in a vertex on a high-energy line which do not give a
contribution proportional to that energy. This was illustrated
above in dropping the (—p1 - 2A)u and (A - pl)v terms from
(I1.5). Using this method, the two vertex factors in (II.5)
become 2%! and —%:, so that their product is approximately
-2s, as above.

As the next example, consider the fourth order diagr a
in Fig. 45. (The pclarization of the particles is shown.) Its

space-time amplitude is

oo g o L ds. do. /‘771 _ [
M~ i) J (25) 2 f ?ii ?Z_ e ¢“,A(ﬂ_7__)7'j-,\‘ni

X ! | .
@Zf—g*‘ (Pz—’z—) - (ﬁr?‘;)‘—-,\lﬂi (?‘ Z" - Z‘}, A% I'i)( ?4 _ A;)( Z’— A-)’ (il,z.: ) L yn /-[)

(I1.9)
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h -

Fig. 45

(Note the fuctor of 1/2 coming from (II.2b).) The numera‘or
factors have already been approximated in the high-energy limit.
The q; integration will be performed by contour integration.

To simplify matters, set A = O. Then the poles in the complex

a, plane occur at

(I1.10a)

=2 T
— tAT—(

and

S Y
7+ = il (fm‘a.) . (II.10¢)

If a. < =Py_ then all the poles are in the upper-half-plane
and the contour can be closed in the lower-half-plane to give

zero. Likewise, if q_ > p,_ all the poles are in the lower-
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half-plane and the contour can be closed in the upper-half-
plane to give zero. A non-zero answer can occur only if

either

or
047 2_ . (II.11b)
2
If (II.1la) holds, the region of integration is of width P

1--
and can be shown to be tuo small’to contribute to ‘he

leading term. If (II.1lb) holds, the contour can be closed in
the upper-half-plane to enclose the pole given by (II.10D).
Then (II.9) becomes

~ — Dt | I
M 2; / [ z;, (P Z) (P‘ 4P Zﬁi\(" ) 711,,‘,\”,:
I

X : 7 (II.12)
[ B 4]

The dominant contribution to the q- integration comes from

the region where

047_. << F") (I1.13)

so that (II.12) becomes

B

N-Z"S‘jd’?‘ _’__}a,-
W) o L S

o (IT.14)

|
P lp-4g) 77~ i
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The q. integration in (II.1l4) is

B—J’ P
[ % v = i blwped]

~ 3;/_‘—?; (AS ,.(7) (II.15)

where the leading real and leading imaginary terms have been
kept. This answer is consistent with (II.1l3) because the
upper limit of integration in (II.1l5) could be replaced by
CP,_ for any c¢ of order one and only non-leading terms would

be affected. Now

MN —Zj"s %S—cif /_%1 (f;’“‘ . (1I.16)

If A # 0, then the integration over the transverse momentum

is replaced by K (see (2.9)).

When calculating the crossed diagram given in Fin.46,
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the only difference is due to the propagator on the top line;

and so (II.15) is replaced by

P-4y ‘ l (II.17)
J[ ;j%’ '7m’z;'i? ~o- 25%;; ZZWJ.

Notice that there is no imaginary amplitude, which is as it
should be since there is no unitarity cut.

In order to streamline the calculation in higher orders,
all g4+ integrations will be implicit. They will be done by
contour integration, with momentum-flow diagrams used to
indicate which poles in the complex q, plane are enclosed by
the contour. Momentum-flow diagrams are similar to Feynman
diagrams, except that the arrow associated with the momentum
of each line has a special meaning. For a line carrying
four-momentum q, the arrow points in the direction of positive
Q.. There may be several momentum-flow diagrams corresponding
to each Feynman diagram. For each closed loop, if all the
arrows point in the same direction of flow, whether
clockwise or counterclockwise, the q, integration is zero.

If arrows of a given loop point in both directions, then
specify one direction} contributions from all the poles
corresponding to lines with arrows pointing in that direction
must be added together. The two choices of direction correspond
to closing the contour in the upper or the lower half of the

4+ plane. If there is only one pole, the line corresponding

to it in the flow diagram will be marked with a cross (x).

If there are two or more poleé, the corresponding lines will
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be marked with double slashes (//). Each integration over

1

Xd; ¥ B F 1< introduces a factor of

a pole of the form
-2Mi

For example, if A =0, there are two (non-zero) flow
diagrams which correspond to the Feynman diagram shown in

Fig. 45 -- they are drawn in Fig. 47. The flow diagram in

- rToXTr
A Y 4

~
a4

L
L4

Y
v
v

(a) (o)

Fig. 47

Fig. 47(a) corresponds to the region (II.1llb) and, as indicated
in the diagram, the pole is given by (II.]lOb). The flow
diagram in Fig. 47(b) corresponds to the region (II.lla), and
does not contribute to the leading order. If A # O, there

are still other flow diagrams none of which contribute to the
leading order. In any calculation the flow diagram or

diagrams which do contribute are always those which include the
region where q_ >> p,_ -~ 8O only such diagrams will be
considered in the sequel. This is equivalent to assuming that
the high-energy line at the top of a diagram carries no

- momentum,.

As an illustration of the flow-diagram technique,
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consider the Feynman diagram in Fig. 48, The only contributing

oL . 1L 4
el | B
7,‘#\ V?-,—A

=0
g
Vot
pd
<
m_\h
\
(>

Fig. 48

flow diagram is the one with the arrows as given in that

figure. The space-time amplitude is

M~ i) |+e+7 c.l—(Z)f(z—-Z—]‘; /%’f;—ﬁ"

l |
D L e il e B
l
(7:»3,.- (7:5'4; ‘H’)((ju'ﬁ*) ; 71 )"f‘ - ;‘ X Ht)([?‘ 7,,)(}),,7,4 ) ¥ - ﬁf)

(11.18)

X

where the numerator
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N~ oo rm) + gl Gpge)
t (—2-7%:;';1 (_7211{’2;2’1\1 . (I1.19)

Closing the contours as indicated in the figure we find,

assuming @;_ &L Py that

Zu =0 (T:(';) (II.20a)

o~ — !Zy_j_u)*_’\: (1I.20b)
so that 7 Zz—

- [ 5[ %Mﬂ T

T .@_@_7,7,,1[ GR g

and

(11.21)

L) [{rz‘u—&)‘—A’]

The leading contribution comes from the region

pl_ <L q2_ <L ql_ << p2_) so that
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/W'V GSZ,J;:\]nJLa 43§L N
J° ) b o (e (g AP o) (7. A7)

i J 4
X =1 2 - | Aﬁ_
.}o‘ 2;;‘— Z"' 0 7[ })1*7 ',7;}1,_(-1 (1I1.22)

with

= = o)~ e [ (o] -[Gayes]

F2 (BH ) + AT (1I.23)
Finally,
6 ,é:'f- —_ 7/’.@ 2
i gt (b5 o 8)(-1@ 2§ +2g)
(T1.24)

If we had calculated the crossed diagram (see Fig. 49) instead,
~pt -4
( ¢
(
fdl f

prt

I \(7"4

g >
P P pd
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the only difference would have been the propagator on the top
horizontal line and this would lead to an extra minus sign and
the lose of the imaginary part (see (2.11la)).
Now we will calculate the sum of the space-time
amplitudes of all of the diagrams in Table V together with
their four-vertex contributions. This equals (see Fig. 50

for notation)
a )Iwﬂo 8{-2 ,: “ZL jfjﬁ 72_%‘ _ézljg_i %
(2[)2} (u*i;t 734 >(2”J1J( u(?'Lf?‘u'-j,rL—-—;g)
’ / 3{?,'} ”li,i "{5;,— /Zj; ‘{}}i 2150049 2190 4= %)
" f ‘-@; ‘% ”%— 4 %ﬁ’;‘; 21 495 zﬁ(g:-j-’;u—jx—)

3

| | | ,
e e e

X

_% (Z é«-(.'n—ﬂ'z)( ?«n—*ﬁw—“i)) ( Z: éi'rm++[£X"7'vl4»7ﬂﬂ++ﬂ)) N

(1I.25)

In (II.25) N is the numerator factor coming from the internal
vertices plus the four-vector contribution (see Fig. 22)

and equals
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P' P *}rtt) ‘P,i-i.r( ytdens E,fA

Zr(l)'*\ 70-(1)'{\1’ r(;)'l“t- ’

" ¥t
AT ?’T

l’ﬂ'{j fm/l‘ (I
P Pz 37(0 P,—-Z«,, ,, F‘

Fig. 50

~(ppop) Yt PR
i 4% 7?'—%?' + (7"—7"'3(7”7’*3-/Z-:"f"y"‘l

= 7» Zo'— ”7z¢ 7,/.. - Jz' 3;4— 7,'. - Jj’ Z’H. Z,_ + -‘z—iu Z" .-7”21,__ ¥ -%_7',+ 72,_
— (o)~ (o) = (3] ~(Hin) +2 [ (z:ﬁju)"h\{[ PN

(II.26)

Each of the permutations ¢ and T in (II.25) runs over the 3!

ways of attaching the mesons to the high-energy lines; and
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there is the product of the appropriate propagators from the
high-energy lines for each permutation. Since 3 3l = 36,
each of the 18 diagrams has been counted twice. To compensate

for this there is an "overcounting factor" of 1/2. From

Appendix IV,

J(z'-7'7 3 7«-(!)—'“£ r(u)~"7¢hl""i 62”‘ Js Z —% J(ZZJ (5-272)

J/zu*?; 7“) = ‘ = (-Zlﬁ‘jti{z,f)ﬂzu) J(Zy).(n.wb)

n.,mz ’jﬂ'»’jmu“i

Thus (II.25) becomes

o[RBT

l
Tr 7—%4»-\L — Ay, Z‘_ (? 7‘1 ’\» N

s[5 B (It )

P"”j [)P,-
= 265 ;A;;S (@ + _li_>\z g) (II.28)

where the divergent terms have been dropped.
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Appendix III. Transverse-Momentum Diagrams

Transverse-momentum diagrams stand for integrals over
the transverse momenta. FEach diagram consists of a series
of vertices arranged vertically connected by line segments.
Transverse momentum Zl_flows into the bottom vertex and out
of the top vertex; and in between the momentum is conserved
at each vertex. The integrals which the diagrams stand for
are determined by the following rules:

i) a factor of :q?JL——ﬁ for each line segment carrying

> az + \
momentum Qu4, unless there is a horizontal bar through
that segment, in'which case there is no factor;
Ak
ii for each closed loop, and
) f enp =4
iii) for each horizontal bar thiough a vertex, a factor
of (EE + xe) where 4, equals the sum of the momentum
coming into the vertex from below.

We give three examples in Fig. 51 which stand for

l
f *‘h\‘) [( /lljjl)‘*f\‘] )
L d L 1y / 2 ’
£.+5) f '(3%; 7%” @‘.}h\ﬂfﬂ}?ﬂlﬂ\f} [50]

, 45 7*2?:*) LY
f y (?\. 1 z *«\‘J 73:*'\‘)[ (7)1” 21'72y4’\] [ (Z Zu 7’1J b\j
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respectively. Note that the second integral above is

divergent.

O

Fig.51
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Appendix IV. Identities Involving Sums

of Products of Propagators

In this appendix we will prove various formulas which
express the sums of products of propagators on the high-energy
lines in terms of delta functions. These sums are over various
ways in which the exchanged mesons can be attached to the
high-energy lines, weighted according to their isospin
factors. The simplest example is when all diagrams have
the same isospin factor so that their space-time amplitudes

may be added together. 1In this case we wish to evaluate

; | ! v I Iv.
X(Z;-?,,)Zr: (?rw “.1) (Zo‘(d*ja‘(z}f(t) (f%fl¢'l+"i) (1v.1)

¥

where o is the permutation of the integers {1,2,...,n} which
takes i into o(i), and the sum in (IV.1) is over all n!
permutations. Consider the Fourier transform of a single

term in (IV.1),

n n ——t'ki,; "
EJZ; Ty 7;(?7 7)

=

: [ I
3.*“ Gifatit 3'7‘*"'7“"“

- hel .—(( l(t"knjic' | [
—_ A N ‘ , tee 4 *
f]:r Z :g-ﬂ 7,-“1: j‘-}j{ll ?,+ZI+...+74 1L

(IV.2)
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If kn > kn—l the contour may be closed in the upper half of the
complex qn-l plane to give zero; and if kn-l > kn, by closing
in the lower-half-plane, (IV.2) equals

r-l i —t(krkm)f [ [ . ‘
mf i P

(1IV.3)

Continuing in this manner we find that (IV.2) equals

\n
C276)7 1t k) > Ry vee> K > Ky

(IV.4)
() otherwise.

Therefore, summing over all permutations,

ik , L )
Jm E 75(2332 Jotn it g?ﬂaﬂ‘z - ('27) '

e (1v.5) ’

and taking the inverse Fourier transform, (IV.l) equals
hl
(2my™ T z) (1v.6)
(=l

This identity was first established by Cheng and Wu13 to show

that the multi-photon exchange amplitudes in'QED eikonalize.

Particularized to the case n = 2, as in (2.15), it was used
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above to show that the amplitudes in (2.8), (2.16), (2.17),
(2.23), (2.24), (3.7), (3.8) and (3.9) are purely imaginary
in the leading order.

Next we evaluate

[
e 7) ( (?3‘!'12] (73 "’?1«“"5 (ZB i) ( Pt 71'”.2) (Zz*"") (g 73 tie) )

(Iv.7)

If we define

1 ir ky >k, >eeid> Ky

(k,l‘z“‘ kh) = (1v.8)

O otherwise

then the Fourier transform of (IV.7) im

Camf (pa)+Gr)+ @) = €21 (3. v

And the inverse transform of (IV.9) is

(,__ 27[:) dll aalt J[ts ¢{(3+¢ll;g H'I(g?s

= (—2rm) —?',,Tz' o % +7,)J (f;),

k3>k (IV.10)

thus verifying (2.19), (3.18) and (3.38). This illustrates
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the general idea: transform to k-space, simplify and transform
back to q-space.

As another example, the Fourier transform of the term

on the left-hand side of (2.26) is
(Lzm-)‘(-z(sz:) -(213)—-(132)—2(3:2)—2(23:))
= ) (-—(z:]—(slj-(zz]), (Iv.11)
Inverting the transform verifies (2.26) and (3.22).

Other identities valid in the Fourier transform k-space

are:

(123) +(132)  (312) ~(213) = (231) — (321) = (12) ~(21) (1v.12)
thus verifying (3.26);

(230-(132) = (23)-(13) (IV.13)

thus verifying (3.29b

4ly320) + 4 (3921) + 44302} +4(9231) + (1923) + 3(329/)
+(1342) + 3(2431) + (23) + 3(4132) + (3124) + 3(4213) # [1432)
+3(234) + (3204) + 3(123) + 4(3412) + 2(2413) + 2(3142)

= (42) + (31} + 2(41) (IV.14)

thus verifying (3.54);
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=6 (4321) = (1243)~ 5 (3921)(2134) - s(y302) ~(1324) S 423/
— 2(m23) - 4(3291) - 2 (1342) ~ 4 (24%1) -2 (23m) - 4 (32) =2 (3124
— 4 (4213) - 3(m32) ~3(23491) - 3 (3214} ~3(4/23) =2 (243) - 4(3412)
~3(2413) - 3(3142)
= —(u)-(31)-(41)—(22)~(92) - (43) (1v.15)

thus verifying (3.55);

— (4321) —(3921) = [4312)- (4231 —[3241) —(431) ~ [4132) - [9213)

— (2341) — (4123) = (3912) — (413
= - [q/) (IV.16)

thus verifying (3.58); and

7(432) + 4(3921) +4(4312) + Ylu231) + 2(3291) +2(2431) +2(9/32)
+ 2(4203) + (#32) # (32r4) + (2143) + 2 (3912) # (2913) # (3192
= (321) = 391) - (913) # (421) + (432
Fa1)(43) + (31)(92) + (31)(23) +2(41)(32) (IV.17)

thus verifying (3.59).
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