Deadlock Detection in Computer Networks
by

Barry Goldman

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREES OF
BACHELOR OF SCIENCE
and
MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1977

Signature of Author

Department of Electrical Engineering and Computer Sclence
March 1, 1977

Certified by

m_.A’;W_:;?_ ThesIs fup#rvisor (Academic)

Certified hy.

Thesis Super¥{IaoF (Honeywell JWTormatlon Sv¥tems, Tno.) "

Accepted

y e _
Chafﬁg;n, Bepartmental Committse 3n Graduate Students

(JUN 29 1977

Neadlock Detection in Computer Networks
by

Rarry Goldman

Submitted to the Nepartment of Flectrical Fngineering and Com-
puter Science on March 1, 1977, in partial fulfillment of the
requirements for the Deprrees of Rachelor of Science and Master of

Science.

ABSTRACT

The problem of detecting process deadlocks is common to
transaction oriented computer systems which allow data sharing.
Several pgood algorithms exist for detecting process deadlocks in
a sinpgle location facility. However, the deadlock detection
problem hecomes more complex in a geofiraphically distributed
computer network due to the fact that all the information needed
to detect a deadlock is not necessarily available in a single
node, and communications delays may lead to synchronization
problems in getting an accurate view of the network state.

Tn this Thesis, two published algorithms dealing with
deadlock detection in computer networks are discussed, and exam-
ples demonstrating the failure of these algorithms are given.
Two algorithms are then presented for detecting deadlocks in a
computer network which allows processes to wait for 1) access to
a portion of a database, or ?) a message from another process.
The first algorithm presented is hased on the premise that there
is one control node in the network, and this node has primary
responsibility for detecting process deadlocks. The second, and
recommended, algorithm distributes the responsihility for
detecting deadlocks among the nodes in which the involved pro-
cesses and resources reside. Thus a failure of any single node
has limited effect upon the other nodes in the network. A com-
puter model of the "decentralized" (second) algorithm was de-
signed and it is described in the Thesis.

THESIS SUPERVISOR: Stephen A. Ward
TITLF: Assistant Professor of Computer Science and Fngineering

Acknowledgements

As a participant in M.I.T.'s VI-A (Electrical Fngineeringp
and Computer Science Co-operative) Program, I was able to write
this Thesis based on research that I conducted while working in
the Advanced Systems Fngineering Group of Honeywell Information
Systems, Inc. (Rillerica, Mass.) T would like to thank Charles
W. Pachman, who acted as my supervisor at Honeywell. He
suggested the Thesis topic, and gave me valuable advice through-
out various phases of the project. T would also like to thank
others in the group for the help they gave me in conducting the
research and in the writing of the Thesis. They are Mike Canepa,
William Helgeson, Reth Lang, Maxine Meil, Charlotte Reiley, Mario
Trinchieri and Paul Wood.

Additionally, thanks go to Steven Taylor, who provided me
with some feedhack in the early stages of my research after
introducing me to Mr. Bachman. Finally, I would like to thank
Professor Stephen Ward for his work in the supervision of the
Thesis, and John Tucker and Lydia Wereminski for running the VI-A

Program.

TABLF. OF CONTENTS

ABRSTRACT
Acknowledpgements
I. Introduction
1.1 The Interference Problem.
T.? Deadlock Prevention
1.3 DNeadlock Avoidance
I.4 Deadlock Netection
T.58 Structure of the Thesis
JI. Proposal of Chandra, Howe and Karp
T7T.1 Chandra, Howe and Karp's Proposed Solution
T1.27 A Fault in the Proposed Solution
Figure TI.1 '
ITT. Proposals of Manmoud and Riordon
ITT.1 Mahmoud and Riordon's Centralized Control Approach
ITI.? Mahmoud and Riordon's Distributed Control Approach
TIT.? Some Comments about the Proposed Schemes
Fipure III.1
IV. Introduction to Proposed Solutions
IV.1 Descriptions of Resources
IV.2 Access to Resources and the Blocking of Processes
1V.3 Creation and Expansion of an OBPL
V. Centralized Approach to Deadlock Detection
V.1 Allocation of Resources
V.? Deadlock Detection
V.3 Issues to be Resolved
V.4 Reasons for not Refining the Algorithm
VI. Decentralized Approach to Deadlock Detection
ViI.1 Allocation of Resources
V1.2 DNeadlock Netection

VI.3 Fxplanation of Steps in the Deadlock Detection Alporithm

VI.U4 Verification of the Algorithm
VT.5 Some Properties of the Algorithm
VII. ADT Model of the Decentralized Algorithm
VII.1 Data Structure Diagrams
VII.2 Architectural DPefinition Technique
VII.3 The Deadlock Detection Model
VII.4 Test Cases run on the Model
VITI. Suggestions for Further Research
VITT.1 The Rollback/Retry Probhlem
VIIY.? Optimization of the Necentralized Algorithm
VIII.3 Types and Probahility of Deadlock
VIII.4 Refinement of the Centralized Algorithm
IX. Conclusions
References
Appendix I
Appendix II
Appendix TII

N7

L9
52
60
63
63
Al
66
72
74
T4
T7
79
79
80
83
84
92

146

I. Introduction

A simple example of deadlock (or "deadly embrace") occurs
when a process P1 is blocked while waiting for access to resource
R2 which is controlled by process P2, and P2 in turn is blocked
while waiting for access to resource R1 which is controlled by
P1. A deadlock may involve more than two processes. For exam-
ple, process P1 may be waiting for access to resource R? thch is
controlled by process P2, P2 may be waiting for access to
resource R which is controlled by process P3, ..., process
P[n-11 may be waiting for access to resource Rn which is con-
trolled by process Pn, and Pn may be waiting for access to
resource R1 which is controlled by P1.

Multiprocessing and data sharing are commonly used in a
single location transaction oriented computer system. In the
future they will be common to transaction oriented, geographi-
cally distributed computer networks. In this Thesis an algorithm
is presented that can be used to detect deadlocks involving pro-
cesses walting for access to a shared portion of a database or
waiting for a message from a process with which it is
communicating within a computer network. It is possible that a
process can be either computerized or manual, although a manual
process (i.e. a person at a terminal) can not directly request
access to a portion of a database, as it is restricted to only
communicate with computerized processes by the use of messages.
Throughout this paper, the word "operator" will bhe used to refer

to a manual process.

Much has been written dealing with deadlock detection,
avoidance and prevention in computer systems. However, most of
the literature discusses a single location facility where the
status of all processes and resources are availahle in a single
local tahle. (For a good discussion, including a graph model of
computer systems which can be used to detect deadlocks, see "Some
Deadlock Properties of Computer Systems" [7]1.) Very few articles
have been published that are concerned with the deadlock prohlem
in a computer network (geographically distrihuted computer
system).

When dealing with a computer network as opposed to a single
location facility, the deadlock detection problem bhecomes more
difficult due to the fact that all the information needed to de-
tect a deadlock is not necessarily available in a single node,
and communication delays may lead to synchronization problems in
petting an accurate view of the network state. Some reasons for
restricting access to portions of a database (even though the
result of blocking processes can lead to deadlock) and some rea-
sons why the common deadlock prevention and avoidance algorithms
are not well suited to the networks under consideration will be
discussed. Several deadlock detection schemes for computer net-
works (some from recent literature, some designed by this author)
will be presented, and they will be followed by a discussion of

some of the bhenefits of using the various schemes.

I.1 The Interference Problem

Given two or more independent processes, interference is
said to have occurred if the results produced by their concurrent
execution would not have been obtained by running these processes
one at a time in any order (i.e. nonconcurrently).

A simple example of interference is the following. Let two
processes, P1 and P2, read the contents of datahase record R1.
Then let P1 add 5 to the value and let P2 add 10 to the same
value. Now let each process alter the contents of R1 to contain
the value computed hy that process. Depending upon the order of
update, the contents of R1 will be either 5 or 10 greater than
the value that was contained during the reads. We have a case of
interference because the value of R1 would have heen 15 greater
than the value contained at the time of the first read if P1 and
P2 had heen executed sequentially in either order.

Another case of interference occurs when a process, in pro-
cessing one transaction, twice alters the contents of the same
databhase object and in hetween the two writes, a second process
reads the contents of that database object. In some cases a
process which is only reading the contents of a datahase object
may not care if there is any interference; in which case it may
request "dirty read" access to the databhase object. (A process
that is only reading the contents of a database ohject can not
interfere with the values produced by another process, although
other processes can interfere with the values produced by the

"reading" process.)

When maximum concurrency among independent processes is de-
sired, a process must he allowed to read and alter the contents
of a datahase object whenever it wants to. (This type of access
to data has been called "shared read/shared write".) In order to
detect interference, records must be kept about the type of use
(read or write) of each database ohject, and what processes (and
when they) used it. An algorithm to detect interference when
this information is kept is presented in "On Managing Interfer-
ence Caused by Database Sharing"” [10]. A more thorough discus-
sion of interference is also given. After an interference
situation is detected, at least one of the involved processes
must be forced to rollback to a previous state in order to cor-
rect the interference condition. ~

Most systems, in order to avoid interference and guarantee
that a process will see a consistent state of a database,
restrict access to data by a system of locks. If a process wants
to change the contents of a datahase object, it must request ex-
clusive access to that datahase object, thus temporarily (for the
duration of the lock) preventing all other processes from
accessing that database object. If a process only wants to read
the contents of a database object, it can request shared read
access to that databhase object, thus temporarily (for the dura-
tion of the lock) preventing all other processes from altering
the contents of that database object. If a database object can
he shared among several readers, the method of access is called

"shared read/exclusive write", whereas if there can be only one

reader, it is called "exclusive read/exclusive write".

When a request for access to a database ohject (resource)
can not be graﬁted due to the existence of a lock on that
datahase object, the requesting process must be blocked until the
resource becomes availahle. Due to processes waiting for access
to resources, there exists the poésibility of deadlock among the

processes in a computer system.

T.7 Deadlock Prevention
Deadlock prevention schemes place constraints upon system
users in order to ensure that deadlock will never occur. Thnere
is little operating system overhead involved when using
prevention methods. There are several deadlock prevention algo-
rithms that are widely known:
1. FEach process must request all needed resources at one
time and will remain blocked until all requests can bhe
granted simultaneously. (This is often referred to as

"static" allocation.)

2. All resources are given a unique number and processes
must request resources, one at a time, in numerical or-
der.

3. When an active process requests a resource that is con-
trolled by a blocked process, the blocked process must
release the resource so that it may be allocated to the
active process. A process will go from the active to
blocked state only if it requests a resource controlled
by another active process.

The unpredictahility of resource usage in a transaction

oriented system, plus the loss of productivity that results from
tving up resources unnecessarily or forcing processes to release

resources and request them later (which often results in some

redundant computations due to a process having to repeat some
operations to maintain a consistent database) make prevention
algorithms undesirable for use in the systems under considera-
tion. In a multiprocessing environment which considers
inter-process messages as resources, it is impossible to have an
advance knowledge of all the resources that will be needed by a
process. Thus algorithm 1 can not be used in this type of sys-
tem, whether it is a single or multi node facility. Algorithm 2
is unsuitable for the systems under consideration bhecause al-
though it may be possible to give a unique number to each
inter-process message, a process must be “allocated" each message
that it will send to another process, which can result in many
difficulties when two processes are sending several messages to
each other. Algorithm 3 can not be used because it implies that
all resources must he pre-emptable (i.e. they must be able to be
released hy a process upon the demand of the system), which is an

impossible situation when messages are treated as resources.

1.3 Deadlock Avoidance

Deadlock avoidance algorithms calculate safe paths for com-
pletion of all processes. Before a resource is allocated to a
given process, the operating system checks if there would be at
least one path via which all processes can run to completion
after the allocation is made. If no such path exists, then the
requesting nrocess must wait until a time when the resource can

be safely allocated to the process. Avoidance algorithms thus

10

force processes to wait unnecessarily in order to be certain that
- all processes will be able to run to completion without the
threat of deadlock.

In "System Deadlocks" [5] it is stated tﬁat "to avoid
deadlocks in a multiprogramming system in which the necessary
conditions for deadlocks can exist, it is usually necessary to
have some advance information on the resource usage of tasks."
When portions of databases are considered resources, and they are
Jocked at a level lower than a file (page, record, field, etc.),
it is difficult to determire in advance what database objects
will be needed. In addition, due to the unpredictability of
proceéses in a transaction oriented system, it is impossible to
have an advance knowledge of all the inter-process messages that
will be requested by a process. Therefore, deadlock évoidnnce
algorithms can not be used in a single or multi node transaction

system which permits inter-process communication.

I.4 DnNeadlock Detection

Since it seems that deadlock prevention and avoidance algo-
rithms are unsuitable for the distributed systems under consid-
eration, deadlock detection methods must be examined. When
employing a deadlock detection algorithm, requested resources are
usually assigned to the requesting processes whenever possible,
and processes are blocked only when desired resources are
unavailahle. Fither the operating system of a system user must

occasionally check for a deadlock situatibn, and if one is found,

11

must rollback (backup) and retry at least one process in order to
break the deadlock. (It is hoped this will force a new sequence
of access to resources.)

From the implementor's viewpoint, the easiest stratepy to
adopt is that where one assumes deadlock occurs infrequently. In
this case someone (an operator) external to the network would
have the responsibility for detecting the deadlock and deciding
what process should he forced to rollback to a previous state.
With this approach the only overhead involves the temporary
inability to access the resources controlled by the deadlocked
processes and the cost of rollback/retry of some (or all) of the
deadlocked processes. (This cost may he large for each deadlock,
vut if there are few deadlocks the overall system cost may be
less than it would be if there were a "deadlock detector" that
was constantly chécking for deadlocks.) One could also assume
that if a process has been blocked for 'X' units of time, then it
is deadlocked and the operating system should force it to
rollback to a previous state, although this strategy may result
in some unnecessary redundant computations because some processes
that will be retried may not have been involved in a deadlock.

At least two articles have been published which propose
protocols for allocating database objects in a computer network
in a manner such that deadlock can he detected at the time a
'request for access is denied. Iﬁ designing'an algorithm to bhe
used to detect process'deadlocks in a transaction oriented com-

puter network which allows process to process communication, it

12

1s necessary to allow for the possibility of a process waiting
for a message from another process (which may be manual or
computerized). Additionally, a8 process must he allowed to wait
for access to a datahase object which has heen allocated to at
least one other process.

Any algorithm that will be implemented as part of an oper-
ating system should he as efficient as possible. Therefore, in
the algorithms proposed by this author, an attempt was made to
minimize the number and size of internodal messapres involved in

the detection of deadlocks.

1.5 Structure of the Thesis

Chapters IT and III contain descriptions and comments
(including some examples pointing obt deficiencies) relating to
two papers that have been published proposing protocols for
allocating datahase objects in a computer network such that
deadlock can be detected at the time a8 request for access to a
database ohject is denied. Chapter IV presents an introduction
to the two schemes for detecting deadlock in a computer network
“hat. are proposed by this author in Chapters V and VvI. The two
schemes differ in that one (Chapter V) places the primary re-
sSponsibility for detecting deadlock anywhere in the network on
one control node, whereas the other totglly distributes the re-
Sponsihbility throughout the network. Chapter VIT contains a
discussion of a functional model of the algorithm proposed in

Chapter VI, The Appendices contain a description and demonstra-

13

tion of the model, in addition to containing the PL/I code for
the model itself. Chapter VIII contains some supggrestions for
future research, and Chapter IX contains a comparison of the
various algorithms presented in Chapters 11, 111, V and VI, pnlus
some concluding remarks.

Tf one only wants to read about the algorithm that is
recohmended by this author, it is'possible to read Chapters IV
and VI with no loss of understanding. Chapter VII can also he
understood after reading Chapters IV and VI: as can the Appendi-

ces and some portions of Chapter VIII.

14

II. Proposal of Chandra, Howe and Karp
In "Communication Protocol for Deadlock Detection in Com-
nuter Hetworks" (3], a scheme is presented which the authors call
"a novel solution to the deadlock problem in the network
environment." Their "solution" is described below, and the de-
scription is followed by an example where the scheme allows a

deadloack to go undetected.

TI.1 Chandra, Howe and Karp's Proposed Solution

The authors propose that each installation (node) maintain a
resource tahle (RT) which contains information about which pro-
cesses have heen allocated local resources, which processes have
heen queued (waiting for access) for local resources, which local
processes have heen allocated remote resources and which local
processes have been queued for remote resources. The type of
access requested by each process is also recorded. The authors
claim that in a single node facility, there are several well
known algorithms for detecting deadlocks using the tables
mentioned above. They then state "it is believed to be obvious
that these same algorithms would suffice in the multiple instal-
lation case provided that the resource table were to be expanded
to include the pertinent information from the remote sites." A
scheme to expand the resource tahle in a node is given in the
paper.
| The authors believe there are three types of requests for

resources that can lead to deadlock. (In all cases, "it is as-

15

sumed that the requested resource is not available, because, if
it were, the allocation would take place immédiately.") The ac-
tion taken for each type of request is the following (as stated
in the paper):

Case 1

A process requests a local resource, which is allocated
to a local process, and all of the processes which are
queued for this resource are also local processes. All of
the necessary information is contained in the local RT, and
the request is resolved locally.

Case 2

A process requests a local resource, which is either
allocated to a remote process or one or more of The pro-
cesses that are queued for this resource are remote
processes. In this case, all of the RT's must be obtained
by the local installation since deadlock may occur. Once
all of the RT's have bheen obtained, the
deadlock-determination algorithm can be applied to the
expanded RT which contains all of the resources and pro-
cesses in the total community of installations.

Case 3

A process requests a resource at some remote installa-
tion. In this case, the requesting installation forwards
the request and its RT to the installation which has the
requested resource. This installation then determines if
the request can be honored immediately or if all of the RT's
must he first obtained. In the case where the requested
resource is allocated to or queued by only processes local
to the two involved systems, the request can bhe honored im-
mediately. Otherwise, this installation obtains the RT's
from the remaining installations and then resolves the
request.

In all of these cases, the RT's that are involved in
the decision procedure must be locked until after the deci-
sion has heen made. If the decision involves the RT's of
the other installations in the community, these ins=talla-
tions must be notified after the decision is made and their
table is then released. In Case 3, the updates to the RT
must be returned to the requesting installation while all
other tahles can be discarded and a simple release notice
returned.

16

A description is pgiven of the actions to be taken when "two
or more installations may simultaneously request the various RT's
in order to make an allocation for two or more independent

requests."

II.2 A Fault in the Proposed Solution
There are some resource requests which fall under Case 1,
and result in a deadlock for which the local RT does not contain

enough information to detect. Consider the following example:

Let the network consist of two nodes, A and R. Let
processes P1 and P2 and resource R1 be local to A, and let
processes P3 and P4 and resources R2, R3, and R4 be local to
R. Assume the following state of the network. (Figure
IT.1a contains a diagram of this "intermediate" state.) P1
has exclusive control of R1 and is queued waiting for access
to R4, P2 has exclusive control of R2 and is queued waiting
for access to R1, P3 has exclusive control of R3 and is
aueued waiting for access to R2, and P4 is active
(non-blocked) and has exclusive control of R4. 1In this
state there is no deadlock. MNow let P4 request access to R3
and be queued for the resource. A deadlock now exists (see
Figure TT.1b) involving all four processes and all four
resources. With the tahles as described in the article,
this deadlock could not he detected unless node A sent node
R its tables, but this does not take place because the

request falls into Case 1 (since P4 is local to B, as are P3

17

and R3). Therefore the deadlock goes undetected.

Similar examples (for networks consisting of three or more
nodes) exist where requests falling under Case 3 result in
undetected deadlocks. RT's from 3 or more nodes may be needed
even if "the requested resource is allocated to or queue& by only

processes local to the two involved" nodes.

18

Mode R

- B

Intermediate State Diagram

Figure II.1a

KEY

(:) Represents

[] Represents

E:}—+<:> Represents
O.-.,L__] Represents

Final State Diagram

Figure II.1b

process
resource
process having exclusive use of a resource

process waiting for access to a resource

19

T1T. Proposals of Mahmoud and Riordon

In "Protocol Considerations for Software Controlled Access
Methods in Distributed Data Rases" [8], two schemes are presented
for allocating database files in a network environment. The
authors (Professors at Carleton University, Ottawa, Ontario,
Canada) claim that with their schemes, by using the graphic rep-
resentation as described in [9], deadlocks can be detected at the
time an allocation decision is made. The two schemes are de-
scribed helow, and a brief discussion about the schemes follows,
including an example where one of the proposals allows a deadlock
to go undetected.

The first approach described requires that all deadlock
tests he made hy one node, whereas with the second approach each
node must test for deadlock resulting from different processes
accessing its files. Fach node in the network will confain a
Nistributed Data Rase Management Facility (DDBMF) which will
communicate with the other DDBMF processes in the network for the

purpose of handling requests for local and remote processes.

III.1 Mahmoud and Riordon's Centralized Control Approach

In the centralized approach, one node, called the control
node, will make all the déadlock tests'and handle all file
allocations. 1If é process running at node i would like access to
a file in node j, a request is sent to the DDRMF in node 1, which
then relays it to the central DDBMF, even if node i and node j
are the same. Since the central DDBMF makes all the file

20

allocation decisions, it has an overall picture of the globhal
network status, and can therefore decide if the request can

safely (without deadlock) be placed on the file queue.

IIT.2 Mahmoud and Riordon's Distributed Control Approach
In the distributed approach, the DDBMF at each node will
have full control over all access to the files located at its
node. As a result of this, the authors state that "each node
DDBRMF will be responsible for handling job interference
(deadlock) problems that may arise while different processes are
accessing its files." 1In order to avoid or detect deadlocks
involving processes and files located at two or more nodes, "each
fndividual DPDBMF must obtain information from other DDBMF pro-
cesses indicating the status of their files and queue tables.
The information will be used ... to construct a global picture of
the network and thus enable each individual DDBMF process to make
the correct decisions."
A11 active user processes are separated into two classes.
In the authors' own words,
The classification is based on the localities of the files
requested by the process and the type of access to each of
these files:
Class 1: each process belonging to this class has the fol-
lowing properties: ;
1) A1l files accessed by the process during its active
session are located in a single node.
2) All files being updated by the process are single-copy
files in the network (i.e. only a single copy of each
file exists in the network). .
Class ?: each user process belonging to this class has the
following properties:
1) Files that are accessed simultaneously by the process

21

during an active session do not all exist in a single
computer system and/or

?) Any one of the files heing updated by the process has
multiple copies in the network.

It is obvious that the two classes of processes are
mutually exclusive.

The authors sugpest using a graph representation in order to
detect deadlock, and they describe how a DDBMF gets information

from the other DDBMF's in the network and when it should check

for deadlock:

Assume that there are n nodes in the network, i.e., n
individual DDRMF processes. FEach process will transmit
(n-1) identical messages simultaneously, with one message
addressed to each of the remaining DDBMF processes. Fach
message contains the most updated information about the
status and queues of files at the node in question. The
messages will be transmitted periodically at the onset of
synchronous clock intervals. Similarly, each DDBMF process
will receive periodically (n-1) messages from the other
processes. Now assume that a DDBMF process receives a
request for access to one of the files under its control
from a local or remote user process. If the requesting
process helongs to class 1, the DDBMF will respond immedi-
ately to the request. Otherwise the DNDBMF will delay action
until the next time interval, i.e., until receiving updated
information about the status of the network files from other
DDRMF processes. The request is then checked against any
possihle interference (deadlock) and the user process is
notified once a decision is made.

Requests which can not he acted upon until the next time

interval are placed in a pre-test queue.

At the heginning of a clock interval, each processor
receives information from other processors including the
contents of the file queues and the pre-test queue. The
processor extracts the contents of the pre-test queues and
comhines them to construct a global pre-test queue which
includes all the requests for file access received by all
processors during the previous time interval. The file ac-
cess requests on the global pre-test queue are tested for
deadlock conditions and decisions are then made.

To avoid deadlock situations caused by critical race
conditions, the file access requests on the global pre-test

22

queue must be arranged in the same order in all

processors... All processors must then follow a predefined

routine in constructing the global pre-test aqucue. The
resulting versions of the global pre-test queue will bhe
identical in all processors at the beginning of every clock
interval.

I11.3 Some Comments about the Proposed Schemes

The authors state that their schemes will work if records,
or other units serve as the identifiable unit of object data,
rather than files, which were mentioned throughout the paper.
When records are allocated individually, there will be more mes-
sage traffic due to additional message requests for access to
datahase ohjects. Nowhere in the paper is the problem of message
conpgestion at the control node (when using the Centralized
approach) discussed. With all requests for access to database
ohjects bheing handled by the central DDBMF, there exists the
possibhility of a message bottleneck at the cbntrol node, which
would degrade network perfdrmance due to slow response to the
requests.

Tt is mentioned that failure of the control node (when using
the Centralized approach) can "paralyze the operation of the
whole system," although all the DDBMF's can send all their in-
format.ion to another DNRMF, thus recreating the glohal picture of
the system at a newly desiénated éontrol node. Although the
aunthor's Centralized approach may he "inefficient," it can be
used to successfully detect‘all process deadlocks when only waits

on database ohjects are involved.

The Decentralized approach, as described in the paper, does

23

not detect all deadlock situations when only process waits for

databhase ohjects are involved. Consider the following example:

Let the network consist of two nodes, A and B. Let
processes P1 and P2, and files F1 and F2 be local to node A,
and let processes P3 and P4, and files F3 and F4 be local to
node R. Assume the following sﬁate of the network. (Figure
II1.1a contains a diagram for this "intermediate" state.)

P1 has exclusive control of F1 and is queued waiting for
access to F4, P2 is active (non-blocked) and has exclusive
control of F2, P3 has exclusive control of F3 and is queued
waiting for access to F2, and P4 is active and has exclusive
control of F4, P1 and P3 belong to class 2, as defined by
Mahmoud and Riordon, and P2 and P4 both belong tokclass 1 as
long as each does not request access to a file located in a
node other than the one in which the process resides.

Vow, within the same time interval, let P2 request ac-
cess to F1 and let P4 request access to F3, thus creating a
deadlocR because neither file cén become available. (Figure
I7I.1b contains the final state diagram for this deadlock.)
P2 and P4 remain class 1 processes, and therefore these
réquests should be acted upon immediately and each node will
check for deadlock using the information that it has. WNo
deadlock will be detected because neitﬁer node has the in-
formation about the recent request in the other node, and no

provisions are stated in the article which imply that

2h

deadlock involving P2 or PU will be checked for at the onset

of the next synchronous clock period.

The authors believe that class 1 processes do not contribute
to deadlocks that involve processes waiting for files located in
more than one node, and therefore deadlock can bé checked for
using only the information located at one node when a class 1
process requests access to a file. It is this assumption that
leads to the downfall of their Decentralized approach, because it
is possible that a class 1 process will request access to a file
controlled by a class 2 process, resulting in a deadlock (as
shown in the previous example) involving processes which are
collectively waiting for access to files located in two or more
nodes. Note that this is similar to the flaw in the protocols

for deadlock detection proposed by Chandra, Howe and Karp.

25

Intermediate State Diagram

Figure IlI.a

Final State Diagram

Figure III.1b

Represents a process
Represents a file

Represents a process having exclusive use of a file

72003

Represents a process waiting for access to a file

26

IV. TIntroduction to Proposed Solutions

The deadlock detection schemes that are presented in
Chapters V and VI are hased on the creation and expansion of or-
dered hlocked process lists (OBPL's) and the restriction that a
process may only have one unapproved outstanding resource request
(and therefore be waiting for at most one resource at any
instant). A resource may be any non-ambiguously defined portion
of an obhject, whole ohject, or collection of objects which are
requested as an entity and released as an entity by all users.
(The case where there are several equivalent resources like tape
drives is not considered. A discussion of physical devices oc-
curs later iﬁ this chapter.) An OBPL is a list of process names,
each of which (with the exception of the last process in the
1ist) is waiting for access to a resource that has been assigned
to the next process in the 1ist. FEach process name in the list
is often referred to as a process entry in the ORPL, and when an
_ ORPL is sent between nodes, a resource name is inserted into the
single resource identification portion of the OBPL. The last
process to have an entry in the ORPL is either waiting for access
" to the resource named in the resource identification portion, or
it already has access to that resource. In the former case, it
must be determined what process controls the resource, whereas in
the latter case, the state of the last process in the OBPL must
he determined.

Tt is assumed that at each node there is a process manage-

ment. module (PMM) which will handle deadlock detection and

27

resource allocation. It will maintain local state tables which
will contain information about local resources (resources which
are located in that node) and local processes (processes which
are running in that node). If a PMM is checking for deadlock,
and it is examining the ORPL with process entries P1, P2, ...,
PN, then it knows that each process in the list (with the
exception of PN) is waiting for the next process in the list to
release a desired resource. If PN is not blocked, there is no
deadlock and the ORPL can be discarded. If it is blocked, then a
PMM must find out what process has been allocated the resource
for which PM is waiting. If this process alreédy has an entry in
the ORPL, there is a deadlock, otherwise a PMM must append the
process name to the OBPL and repeat the above. The schemes that
are being proposed differ from each other in the way the OBPL's

pet. expanded.

TV.1 DNescriptions of Resources

There are three types of resources that a process may wait
for where the blocking of the process can result in a deadlock.
They are databhase ohjects, message‘text from other computerized
processes, andlmessage text from operators (manual processes). A
distinection is made between message text from processes and mes-
sape text from operators hecause a deadlock which involves no
operator messages can be detected without operator interaction,
whereas if a process is waiting for message text from an opera-

tor, a deadlock can not be detected without the operator stating

28

what. he/she is waiting for. The reason for the’latter point is
that an operator typically does not type in "receive message"
statements, but accepts output as it is given. 1In the algorithms
nresented, it is assumed that an operator can only wait for a
message from a process with which he/she is communicating (a
discussion of operator and process communication is given later
in this section). This restriction can be relaxed, and it is
discussed in Chapter VIII.

NDatahase obhjects, as discussed in this paper, can he fields,
records, files, or any other logical or physical component of a
databhase. Tt is important that all processes treat the same
portion of a datahase identically for the purposes of allocation.
The level of granularity (which may vary for different databhase
objects) at which databhase objects are allocated is unimportant
for the detection of deadlock: it does however, affect the
frequency of deadlock and, conversely, the burden of maintaining
information ahout resource allocation.

Message text must be treated differently from database ob-
jects hecause once a message text has heen assigned to a process,
it is not availabhle to any other process. In this sense, once a
messape text has been assigned, it no longer exists for future
assipnment. To ensure that a process receives the proper messapge
text, the sending and receiving processes must create a unique
connection over which message text between the two processes may
nass. When a process would like to Eeceive messape text, it must

state over which previously estahlished connection the text

29

shonld come. Similarly, when a process wants to send message
text, it must give the messapge text and name the connection over
which the text should pass. A1l messages that are sent and
received over a given connection will be feferred to as text
within a specific message group.

thn message text is sent by a process, it is queued for
receipt at the proper destination end of the connection. A pro-
cess may send several items of message text over a given connec-
tion hefore any messages are requested by the other process as-
sociated with the connection. In this case the items of message
text are queued for receipt in a first in, first out manner. It
i{s assumed that message management has infinite queueing
capacity, and therefore the possibility of a.deadlock involving a
process which wants to send a message but is hlocked because
there is no place to put the message text will not be dealt with.

linlike process to process messafes, which may be sent be-
tween nodes, when a process and an operator communicate, they
must be located at the same node. Similarly, however, an
"operator connection" must be established between the operator
and process hefore messare text can be sent over the connection.
The operator counection must be specified when messapge text is
sent or received over the connection. When messapes are sent
from a process to an operator, theylare,usually printed immedi-
ately at the operator's terminal. However, messages that are
sent from an operator to a process are queued for receipt in the

same manner as process to process messages.

30

A1l of the resources described above are uniquely identifi-
able, and are allocated dynamically (i.e. during the execution of
the process réﬁuesting access to the resource). None of them are
physical devices (tape drives, printers, etc.), which are often
not uniquely identifiable (there may be N of a kind). Physical
devices are not considered by the algorithms that are being pro-
nosed hecause they are typically allocated to a process hefore
execution hegins and the known networks restrict processes to
requesting physical devices at the same node. (TIf a process
wants to control a physical device at another node, it must do so
indirectly through a process located at the same node as the de-~
sired device.) Additionally, transaction oriented processes

typically do not use dedicated devices.

TV.2 Access to Resources and the Blocking of Processes

A process may get blocked when it requests read only
(shared) acéess or exclusive (read/write) access to a database
object. While one process has exclusive access to a specific
database ohject, all requests for access to that database object
result in the requesting process being blocked. While at least
one process has shared access to a specific database object, all
requests for exclusive access to that database object result in
the requesting process being blocked, and requests for shared
access to that database ohject will result in the requesting
process heing hlocked or being granted access to the desired

resource (depending upon the resource allocation scheme in use).

31

Recause data values are not changed when a process only reads a
datahase obhject, any number of processes may be allowed to have
concurrent read only access to a database obhject. When all pro-
cesses that had shared access to a given database ohiect have
released it, or when a process releases a datahase ohject from
exclusive use, at least one process will be awakened and granted
access to the newly released database object, if any were waiting
for access to it.

NDnce a process has been granted shared access to a specific
database object, subsequent reaquests by that process for exclu-
sive access to that database object are rejected. This restric-
tion nrevents a process from getting blocked waiting for a
database ohject that it already has access to, and implies that a
process must declare its most restrictive use when it requests
access to the database obhject. (It must request exclusive access
if there is any éhance that the process might change the contept
of the database object.) In order to ensure that a process has a
consistent view of the databasé, and that processes may be rolled
hack to a previous state (when necessary), no database objects
will he released by a process until that process has reached a
"commitment point", at which time all the database objects that
the process had access to are released. A commitment point is
always reached at process termination. (When a process continues
processing after reaching a Commitment point, for purposes of
detecting deadlock, a PMM can treat it as a new process because

it released al)l its database resources, and notified all pro-

32

cesses to which it could send messages that no more messagfes are
forthcoming. The external effects of a process, including
datahase updates and message text sent, can not be cancelled
after commitment. Process commitment points are synchronized,
which is to say that after a process reaches a commitment point,
it does no further processing until all processes with which it
has estahlished connections over which it can receive messages
have also reached commitment points.)

If a process attempts to receive messape text over a speci-
fic connection, it will be given one message if any are queued
for receipt at that process'es end of the connection. If no
messages are available, the process is blocked until message text
arrives. Upon arrival of a message, the process will be
awakened, because the receiving process is uniquely identified by
the connection over which message text is sent. Steps must be
taken to ensure that the receiving process and the sending pro-
cess of a message treat the same text as one message. (One pro-
cess can't treat a line as a message when the other process

treats a group of sentences as a message.)

TV.3 Creation ahd Fxpansion of an ORPL

When a PMM wants to check whether a given blocked process is
involved in a deadlock, it creates an OBPL and inserts the net-
work unique name of the process aé the first process entry in the
ORPL.., (Tt {is assumed that operators, processes and resources

have unique names within a node, and these names can he made

uniaque within a network by qualifying them with the name of the
node in which they reside. Throughout this Thesis, operator,
nrocess and resource names are assumed to be network unique.)
Call this process P1. Let R1 be the resource to which P1 desires
access. R1 is then inserted into the resource identification
portion of the ORPL. A PMM (which PMM depends upon what scheme
is heing used to detect deadlock, and whether P1 and R1 are in
the same node) then determines what process controls R1. If R1
is a datahase object, then the process that controls R1 is the
nrocess that has access to it. (If there are several shared
readers of R1, then it is said that each reader controls R1 and
the ORPL is copied enough times so that there is one list for
each reader of R1, and a different copy of the ORPL is used for
each reader.) TIf R1 is message text in a message group, then the
process that controls R1 is the process that can send the desired
message, and if R1 is message text from an operator connection,
the process that controls the resource is the human operator that
can send the message. If R1 is message text over a connection to
which no nrocess other than P1 has associated itself, the PMM
saves the ORPL so that after another process or operator associ-
ates itself with the connection the needed information will be
availahle and the OBPL can he expanded further. It is assumed
that no deadlock can exist unless two processes are associated
with the connection over which the desired message text can be
received.

Let PK he the process that controls R1. A PMM then checks

34

if P¥ already has an entry in the ORPL that is being examined.
If it doesn't, the PMM adds its name to the ORPL and then lets
some PMM determine if PK is active. If PK had an entry in the
repL, the PV¥M has detected a deadlock, and should take the ap-
propriate action. Note that the entry for éK can be anywhere in
the NRPL, as it is possible that a process not involved in the
deadlock may he waiting to access a resource controlled by a
process that is involved in the deadlock. If PK is active, then
there is no deadlock and the ORPL can be discarded. If PK is
hlocked, then the ahove procedure should be repeated, except PK
should be used instead of P1 and a PMM determines what resource
PK is waiting for. If PK represents an operator, then the PMM
must. save the ORPL until information about the status of the op-
erator becomes available. A message is sent to the operator
stating that this state information is desired. If the operator
sends message text to a process, or if the operator responds that
he/she is active, then all OBPL's that needed state information
about this operator are discarded since there is currently no
deadlock. If the operator states that he/she is waiting, then
the operator connection over which the operator is awaiting a
message must also be stated. The process that can send the op-
erator the desired message is determined from the connection
name, thus the PMM now knows what process controls the resource
the operator desires, and this information is used to further
expand all the ORPL's that needed state information about the

operator. T1f no OBPL's needed this information, and the operator

35

volunteers the information that he/she is bhlocked, then an ORPL
is created with the first process entry representing the opera-
tor.

Tn order to ensure that a PMM sees a consistent set of state
tahies. no resources get allocated or released in the node of the
PMM yhile the PMM is examining an OBPL. (The PMM holds exclusive
use of the state tables in its node. The reason for this re-
striction becomes apparent in Chapter VI in the verification of
the decentralized algorithm.) There is no chance of a PMM itself
heing involved in a deadlock because it is the only process that
has access to the state tables in its node, and it does not wait
for any messapes or request access to any other datahase objects.
Resource requests and OBPL's arriving from other nodes result in
subroutine calls to the PMM, These calls are handled in a FIFO
sequence. In addition, when a process or operator associates
itself with a connection, a PMM is called to check if any ORPL's
have heen saved waiting for this information. Furthermore, when
an operator sends message text to a process or states that he/she
is active or blocked, the PMM at that node checks if any QBPL's
have been saved waiting for state information about the operator
and takes the appropriate action.

The time at which an OBRPL gets created depends upon the
optimization of the deadlock detection scheme, and which PMM
creates the ORPL depends upon what scheme
(centralized/decentralized) is used. An OBPL can be created as

soon as a process hecomes blocked, or it can get created after

3h

'X' units of time have elapsed without the process gaining access
to the desired resource. The latter approach will be used with
the expectation that normally the process will be granted access
to the desired resource within 'X' units of time because deadlock
does not exist. Thus the overhead involved in creating and
expanding an ORPL will usually be avoided. However, within the
body of this paper, in the interest of clarity it is assumed that
an ORPL is created immediately after it is determined that a de-
sired resource is currently unavailable. It should be understood
that the removal of this assumption, and the imposition of a
delay before the ORPL gets created, does not impair the
effectiveness of the algorithms because once a deadlock occurs,
it exists until some type of recovery action is initiated.
Certain information must be availahle to the PMM's if the
ORPL's are to he properly expanded. The PMM at each node will
maintain a table which has an entry for each process in its node.
Associated with each process entry will he a list of all the
resources to which the process currently has access, and the name
of the resource to which the process desires access (if the pro-
cess is waiting). For each resource at the node, the PMM must
keep information stating what process or processes currently have
access to that resource, and what type of access they have. 1In
addition, a 1ist of all processes that are waiting for access to
that. resource must be maintained. (The latter information is
necessary so that the resources will be properly allocated when

they become availahle.)

37

V. Centralized Approach to NDeadlock Detection

p "centralized" approach to deadlock decection in a computer
network is hased upon the premise that one node (the "control"
node) in the network will act as the center of activity for glo-
hal resource allocation and deadlock detection. 1In order to re-
duce overhead, any requests for resources or checks for deadlock
that can he handled entirely by one node should not request the
service of the control node. For reasons that will be explained
later, the following description has not been refined, and should
not he viewed as a working algorithm. The description presents
some ideas that could form the basis for a practical centralized

approach to deadlock detection.

V.1 Allocation of Resources

A process management module (PMM) will have responsibility
for granting access to a local resource as long as no remote
processes have heen allocated the resource nor have been queued
for it.. WYhen these conditions do not hold, the control process
manacement module (CPMM) (located in the control node) will have
responsihility for granting access to the resource. Thus when a
nrocess desires a remcte resource, the request must go to the
CPMM. When a process requests a local resource, the request must
go through the CPMM only if that module currently has responsi-
hility for granting access to the resource, otherwise the request
will he handled by the local PMM., The set of resources for which

the CPMM prants access changes dynamically. (As soon as a pro-

38

cess requests a remote resource, that resource hecomes a member

.of the centrally managed set if it isn't already a member, and

when the conditions above are satisfied again, the resource is

removed from the set.) For each resource in the set, the CpPMM

maintains a list (in the global resource control tahle) of all

processes queued for that resource plus the name of the process

or processes (in the case of shared access) that have been al-

located the resource.

There are essentially three classes of resource requests in

this type of network. The following is a list of the resource

reocuest classes and the proper response to each type of request:

1.

A process requests a resource at the same node as the
process, and the local PMM is responsible for granting
access rights £o the resource: The PMM can block the
process or give it the resource. In either case, the
PMM can update the appropriate tables.

A process requests a resource at the same node, and the
CPMM has been given responsibility for granting access
rights to the resource: A message containing the
resource request must be sent from the local PMM to the
CPMM. The local PMM will block the process until it
receives notification from the CPMM that the desired
access nas heen granted. Upon receipt of the resource
request, the CPMM will either grant the process access
to the desired resource, or keep it blocked. 1In either
case, the CPMM updates its tables to reflect the state
after this request has bheen processed.

A process requests a resource at another node: A mes-
sage containing the resource request must be sent from
the local PMM to the CPMM, The local PMM will block the
process until it receives notification from the CPMM
that the desired access has been granted. Upon receipt
of the resource request, the CPYM, if it had the re-
sponsihility for granting access to the specified
resource, will either grant the process access to the
desired resource or keep it blocked. If the CPMM did
not have such responsibility, it will demand it from the
PMM that does, and then the CPMM will process the
request. After the request has been processed, the CPMM

39

will update its tables appropriately.

When a process reaches a commitment point, the local PMM
will release all the resources that the process controlled. The
PMM can then grant other local processes access to the resources
that were released and for which i% has responsibility for
pranting access. If any resources which were under the CPMM!'s
control were released, the CPMM will be notified of the reaching
of a commitment point by the process, and it will then grant
other processes access to the resources if any are queued for
them and the rules for resource allocation permit the new
assignments. If possible, following a resource release, the CPMM
w111 return responsibility for granting access to a resoufce back

to the PMM in the node where the resource resides.

V.? Deadlock Detection

When a PMM denies a request for a resource and blocks a
process, it then creates an ORPL. with a process entry for the
hlocked process. It then expands the ORPL until 1) a deadlock is
detected, ?2) it is ascertained that there is no deadlock, or 3)
the PMM does not have enough information to expand the ORPL fur-
ther (because an involved process is waiting for a global
resource, or a local resource is controlled by a remote process).
In the latter case the PMM sends the ORPL to the CPMM, which wiil
complete the expansion of the ORPL. When the CPMM denies a
request for access to a resource, it creates an ORPL with a pro-

cess entry for the blocked process and then expands the ORPL un-

40

til a deadlock is detected or it is ascertained that no deadlock
exists.

To expand an OBRPL, a PMM uses its state tables that were
descrihed in Chapter IV, and the CPMM uses its global resource
"tahles and those of the PMM's in the network. (How it obhtains
copies of these tables is discussed later in this chapter.) The
method by which the PMM's expand an-.OBPL will be described first,
and it will be followed by the method which is used by the CPMM,
After a PMM has created an 0OBPL, it acts as if it were in step 2
helow, with PN set to the name of the process which was just
hlocked, and RN set to the name of the resource for which PN is
waiting. The following is a list of steps taken by a PMM when
expanding an OBPL:

1. Let PN be waiting for resource RN. If RN is a local
resource, go to step 2, otherwise go to step 6.

2. If RN is controlled only by local processes, po to step
: 3, otherwise go to step 6.

3. Let PX be the process controlling RN. 1If PX is blocked,
go to step 4, otherwise there is no deadlock and the
ORPL can be discarded. (If there are J shared readers
of RN, repeat this step once for each reader.)

4, 1If PX is already contained as a process entry in the
OBPL, there is a deadlock and the PMM must take appro-
priate action. If PX is not in the OBRPL then go to step
s.

5. Append PX as a process entry in the OBPL and go to step
1, where PX is used in place of PN.

f. Place RN into the resource identification portion of the
ORPL and send the ORPL to the CPMM, Halt.

.The CPMM will create an ORPL when it denies a request for

access to a resource. The only process entry in the newly cre-

b1

ated ORP[, is for the process whose resource request could not
currently be honored. After a CPMM has created an ORPL, it
starts in step 1 helow, with RN set to the resource whose
unavailability resulted in the OBPL being created. If the CPMM
receives an NOBPL from a PMM, it sets RN to the resource that was
placed in the resource location of the OBPL, and sets PN to the
last procéss'to he inserted into the OBPL. The CPMM verifies
that PM is still waiting for RN (if it isn't, either RN has al-
ready heen allocated to PN or the CPMM has not yet received the
request hy PN for access to RN, so there is currently no deadlock
and the ORPL can be discarded) and then starts in step 1 below.
The following is a list of steps taken by the CPMM when expanding
an ORPL:

1. Let PX he the process controlling RN. (If there are J
shared readers of RN then repeat this step once for each
reader.) To find PX, the CPMM first checks if RN is in
the global resource tahle. If it is, then this table is
used to get PX, otherwise the copies of the local tables

for the node in which RN resides are used by the CPMM,
Go to step 2.

2. If PX is blocked, go to step 3, otherwise there is no
deadlock and the ORPL can be discarded. (First check if
PX is waiting for a global resource, and if it isn't,
then check the copies of the local tahles for the node
in which PX resides in order to find out if PX is
blocked or active.)

2. 1If PX is already contained as a process entry in the
ORPL. there is a deadlock and the CPMM must take appro-
priate action. If PX is not contained in the OBPL, go
to step 4.

b, Append PX as a process entry in the OBPL and go to step
5, where PX is used in place of PN.

K. Let PN he waiting for RN. (If PN is waiting for a glo-
bal resource, use the global resource tahle to determine
RN, otherwise use the copy of the local tahles for the

42

node in which PN resides.) Go to step 1.

V.3 TIssues to be Resolved

There are several problems with the algorithm as described
in the previous section. A major problem is determining how the
CPMM maintains its copies of the tables helonging to the PMM's in
the network. One possibility is to have each PMM send a copy of
its tahles to the CPMM every 'X' units of time. Another is to
have the CPMM request a new copy of the tables that it needs if
'Y' units of time (Y may equal 0) have elapsed since it last
received a copy of the desired table. In either case, once a
deadlock has bheen detected, all the tables of the nodes whose
processes and resources are involved should again he requested by
the CPMM in order to verify that the deadlock exists and that th;“
CPMM's detection was not a result of the CPMM looking at an
inconsistent state of the network. (Due to the fact that the
list of resources that are kept in the global resource table
changes dynamically, and the CPMM does not always have an up to
date copy of the local tables, it is possible that some needed
informat.ion may he incorrect and could cause problems for the
CPMM.) Tt is probabhle that there are better and more reliable
methods of maintaining the copies of the local tables in the
CPMM, |

When the CPMM is expanding an OBPL, and encounters a process
waiting for message text from an operator, it can be difficult to

ret the needed state information. A method is needed whereby the

43

CPMM can save the OBPL.and notify the PMM at the node in which
the operator resides, that thié state information is desired.
The PMM must then query the operator and send the CPMM this in-
formation alonpg with its latest state tables.

Another problem that must be resolved occurs when related
messages cross between two nodes. An example of this is that the
CPMM may return the rights to grant access to a resource to a PMM
at the same time that the PMM under discussion sends a request to
the CPMM stating that one of its processes would like to access
that local) resource. Care must be taken when designing the
resource allocation scheme to ensure that cases like this will be
detected and the desired action (which in this case is granting
the process access to the resource) will occur. In addition,
steps must he taken in the deadlock detection algorithm to ac-

count for and detect similar problems.

V.4 Reasons for not Refining the Algorithm

Several factors led to the decision not to refine the ahove
algorithm to the point where it could easily be proved to work.
Tt was felt that with all remote resource requests going to one
node, there would be message conpestion at that node, plus there
would he an extra delay due to the fact that a request must go
through the central node rather than going directly to the node
in which the desired resource resides. Another factor that in-
fluences message congestion is the size of the tables that will

get sent from the PMM's to the CPMM, Since database records may

hy

be considered resources, these tahles can get quite large, and it
would be preferable to only send the CPMM parts of these tables,
hut then there is the problem of deciding which parts should be
sent, and what the CPMM should do when it was not sent enourh
information.

When one node is used as the center of activity in a net-
work, the network hecomes only as raliable as that node. Tt
would bhe possihle to have another node in the network serve as a
hackup to the CPMM and maintain copies of the CPMM'S tables.
There would be a delay in updating this duplicate copy, and it
would have to be decided how often the copy should be updated.

(A great deal of overhead is involved if a messape is sent to the
"hackup" node every time the CPMM changed its tables.) It would
also he possible to reconstruct the CPMM's tahles at another node
by requesting information from all other nodes in the network,
thus saving the overhead involved in maintaining the duplicate
copy at a cost of added delay if the control node were to bhecome
inoperable for some reason. In a computer network it is desira-
Sle to distribute the computing and to minimize the overall net-
work problems when one ﬁode crashes. This was the major reason
it was decided not to spend time refining an algorithm for

deadlock detection which relies upon one node in the network.

45

VI. Decentralized Approach to Deadlock Netection

A "decentralized" approach.to deadlock detection in a cor-
puter network is hased upon the premise that there should be no
central or control node and that all nodes in the network will
share the responsibility for detecting deadlocks. 1In addition,
the failure of one node should only affect the processes of that
node and the processes of other nodes which are accessing that
node's resources. Thé amount of duplicate précess and resource
state information among the various nodes in the network will he
kept to a minimum, and each node will be requested to help check
for a deadlock only when at least one of its processes or

resources is involved.

VI.1 Allocation of Resources

A process management module (PMM) located at each node will
always have responsihility for granting access to resources lo-
cated at that node. Whenever a process requests a resource, the
reocuest will be processed by the PMM at the same node as the
process. This PMM wil) determine if the desired resource is lo-
cal or if it is located at a differént node. (Message text
should he treated as local to thé node of the sending process.)
Tf it is a local fesourc&, then the PMM can immediately determine
if the desired access may be granted or if the process must be
hlocked waiting for the aﬁailahility of the resource. If the
'request is for a remote datahase object, then the PMM must block

the process and send a remote database object request (RDOR) to

46

the PQM in the node which contains the desired resource. lpon
réceipt of an RDOR from another node, a PMM will determine if the
requesting process must remain blocked or if it may be pranted
access to the desired resource. If access is granted, a remote
datahase ohject assignment (RDOA) is sent‘to the PMM in the node
in which the reduesting process resides. Upon receipt of this
RDNA, the PMM will awaken the bropef process and notify it of the
resource assignment. If the process must remain blocked, no
message is sent to thé node In which the pfocess resides. The
details of implementing this feature are not described, as they
are not relevaht to the scope of this Thesis.

When a process reaches a commitment point, the PMM at its
node will release all the datahase resources that the process had
access to and notify the necessary processes that no more mes-
Sages are forthcoming from the specified process. All local
resources can he immediately allocated to other processes in ac-
cordance with the rules for resource allocation, and messapes
must he sent to all nodes which had resources allocated to the
process, informing their PMM's of the reaching qf a commitment
point. Upon receipt of such a message, the PMM will
appropriately update its tables and assign the resources to other

processes in accordance with the rules for resource allocation.

V1.2 DNeadlock Detection
When a PMM determines that a resource at its node can not

currently be allocated to a process that requested it, the PMM

47

creates an ORPL (ordered blocked process list) with a process
entry for the blocked process. It then expands the OBPL until 1)
a deadlock is detected, ?) it is ascertained that there is no
deadlock, or 3) the PMM does not have enough information to fur-
ther expand the ORPL. (Note that if a datahase object has been
requestéd, the ORPL. i created in the node where the database
ohject resides; whereas if message text has heen requested, the
NRP|, is created in the node where the requesting process
resides.) The PMM starts expanding the newly created ORPL in
step 10 below. When a PMM receives an ORPL from another node, it
starts in step 1 below in an attempt to complete the expansion of
the ORPL. The reasoning behind each step is contained in the
next section,~and these explanations shiould be read hefore one
attempts to verify the correctness of the algorithm. It should
he noted that witnin the algorithm, PX and RX are names of vari-
ables whose contents represent processes and resources, respec-
tively, even though they are sometimes used as though they were
process and resource names themselves.

1. Set RX to the value contained in the resource
jidentification portion of the ORPL. If RX represents a
resource which is local to the node expandinpg the ORPL,
then go to step ?, otherwise go to step 8.

?. Verify that the last process added to the ORPL is still
waiting for RX. TIf it isn't then discard the ORPL and
halt, otherwise go to step 3.

2, Let PY be the process controlling RX. (If there are J
shared readers of RY, then repeat this step once for
each reader.) If PX already has a process entry in the
ORPL, then there is a deadlock and the PMM must take the

appropriate action. If PX is not in the OBPL then go to
sten U,

LR

10.

1.

Tf PX represents a process which is local to the node
expanding the ORPL, then go to step 5, otherwise ro to

step 7.

If PY is active, there is no deadlock, so discard the
ORPL and halt. Otherwise yo to step 6.

Append PX as a process entry in the ORPL and go to step
10,

Append PX as a process entry in the ORPI.. Place RX into
the resource identification portion of the ORPL and send
the ORPL to the PMM in the node in which PX resides.
Halt..

Verify that the last process added to the OBPL still has
access to RX. If it doesn't, discard the ORPL and halt.
Otherwise go to step 9.

1f the last process added to the ORPL, is active, there
is no deadlock, so discard the OBRPL and halt. OCtherwise
fo to step 10,

Get the name of the resource for which the last process
added to the ORPL is waiting and call it RX. If RX
represents & resource which is local to the node
expanding the ORPL, go to step 3, otherwise go to step
1.

Place RX into the rescurce identification portion of the
ORPI. and send the ORPL to the PMM in the node in which
RY resides. Halt.

VI.2 Fxplanation of Steps in the Deadlock Detection Algorithm

The following is a description of the reasons for including

each step in the deadlock detection alpgorithm described in the

previous section. Fach numbered paragraph below corresponds to

the step with the same number in the previous section.

1.

An ORPL will bhe sent to a node when it must be deter-
mined what process controls a given resource, or what
state (active or blocked) a given process is in. If the
resource that was named in the resource identification
portion of the ORPL is local to the node that just
received the ORPL, then in order to expand the ORPL the
PMM needs to know what process has access to that
resource and it goes to step ?, otherwise it goes to

49

step 8 in order to check the state of the last process
to he added to the ORPL.

It must be verified that the last process added to the
ORPI. is still waiting for RX because it is possihle that
while the ORPL was sent from the PMM in the node con-
taining the process, the PMM in the node containing RY
sent a message stating that the process has been granted
access to RX. If this process is no lonper waiting for
RY, the state that was assumed when the OBPL was sent no
longer exists, and the OBPL can be discarded.

If RY represents a database object, then the last pro-
cess added to the OBPL is '8till waiting for RX if it is
still queued for access to the database object. If RX
represents a message in a message group, then RX is
qualified by the sequence number of the message within
the message group that is desired. (If the process has
already received N messages over .the specified connec-
tion, then it is waiting for message number N+1 in the
messape group.) The process is still waiting for the
specified message only if the number of messages already
sent to it over the given connection is less than the
number that qualified the message group name.

If PY already has a process entry in the ORPL, then
there is a loop of processes each waiting for a resource
that is controlled by the next process in the loop, so a
deadlock has heen detected. If PX does not have a pro-
cess entry in the ORPL, go to step 4 in order to expand
the OBPL further if PX is not active.

If RX is a database object which has J shared readers,
then a copy of the ORPL must be made for each of these
readers because the process that requested access to RX
will not be able to access RX if the process is in a
deadly embrace loop involving any one of the J readers.

If PX is local to the node which is expanding the ORPL,
then the PMM can immediately check the state of PX, so
it poes to step 5. If PX is not a local process, the
ORPL must be sent to the node in which PX resides, so
the PMM goes to step 7.

If PX is not currently blocked waiting for access to any
resources, there can bhe no deadlock currently involving
PX. If PX represents an operator, the OBPL must be
queued waiting for state information about the operator.
The PMM will then ask the operator to enter information
ahout his/her state. The acceptable operator responses
are 1) that he/she is waiting for a message over a given
operator connection, 2) that he/she is active, or 3) a

50

10,

regular message over an operator connection. If the
onerator sends a regular message, or states that he/she
is active, then there is no deadlock and all the OFPL's
that are queued for state information ahout this opera-
tor will he discarded. 1If the operator states that
he/she is waiting for a message, then the PMM can (by
the use of the given operator connection) determine what
process can send the message that the operator desires,
and the PMM can then further expand the ORPL. Tt may be
desirable to "time out" a non-responsive operator, as
operator inaction can stall the system and perpetuate an
undetected deadlock.

PX is blocked, so insert it as the last entry in the
OBRPL and then go to step 10 in order to further expand
the ORPL. '

Insert PX as the last entry in the ORPL even though the
PMM does not know the state (active or blocked) of PX.
(This will be checked by the node that will receive the
ORPL.) Place RX into the resource identification
portion of the ORPL to indicate that PX currently con-
trols RX, and the state of PX is needed information. 1If
RX represents a message within a message group, it is
qualified hy the sequence number of the message within
the message group that is desired. The PMM therefore
sends the ORPL for further expansion to the PMM in the
node which contains PX,

It must be verified that the last process added to the
ORPL still has access to RX because it is possible that
while the ORPL was sent from the PMM in the node con-
taining RX, the PMM in the node containing the process
sent a message stating that RX has been released by the
process. TIf the process no longer has access to RX then
the state that was assumed when the ORPL. was sent no
longer exists, and the ORPL can be discarded.

If the last process added to the ORPL is not currently
hlocked waiting for access to any resources, there can
be no deadlock currently involving the process. 1If the
process is bhlocked, the PMM goes to step 10 because the
process already has been inserted as the last process
entry in the OBPL.

Step 10 can he reached from step 6 or step 9. In either
case, the last process added to the ORPL is local to the
node which is expanding the OBPL, so the PMM can find
out what resource the process desires access to. Set RX
to the name of this resource. If RX is local to the
node that is currently expanding the ORPL, the PMM can
continue to expand the ORPL, so it goes to step 3,

51

otherwise it goes to step 11.

11. To further expand the ORPL, what process has access to
RY must he known, so the PMM sends the ORPL to the PMM
in the node in which RX resides. Place RX into the
resource identification portion of the ORPL to indicate
that the last process added to the OBPL is bhlocked '
waiting ror access to RX and what process controls RY is
needed information. In the case where RX represents a
message within a message group, it is qualified by the
sequence numher of the message within the message group
that is desired. Cend the OBPL for further expansion to
the node in which RX resides.

VI.4 Verification of the Algorithm

There are two parts in the verification of the correctness
of the decentralized algorithm for deadlock detection. The first
and most important part is to prove that all deadlocks get
detected. The second part is proving that a deadlock is not

ndetected" when (except in a special case discussed later) one

does not exist.

Part 1

To prove that all deadlocks ggt detected, it will be
shown that once a deadlock state is reached, an ORPL will be
created that will be passed among nodes which will expand it
until the deadlock is detected. There are two assumptions
that are required for this proof: 1) All internodal mes-
sages eventua11§ get received by the proper nodes (and
therefore no OBPL's are "lost" in the transmission hetween
nodes), and 2) while the ORPL is being expanded, none of the
processes involved in the deadlock are aborted (which would

break the deadlock before it is detected) or rolled hack to

52

a previous state (which would imply the deadlock has been
detected by the expansion of another ORPL).

l.Let a deadlock consfst of processes P1, P2, «eey PN,
with P1 waiting for a resource controlled by P2, ..., and PN
waiting for a resource controlled by P1. (Process names are
unique within a node and they can be made network unique by
qualifying them with their nodé& names, so throughout this
proof, assume the Pi represent distinct processes.) When
each process, Pi, involved 1n the deadlock was denied access
to a resource controlled by another process in the déadlock,
an ORPL was created with the first process entry represent-
ing Pi. ONne of these OBPL's must have'been the last (in
time) to bhe created, thus the deadlock existed at that time.
(Tf two or more of these OBPL'S were created simultaneously
and they were the last to be created for processes involved
in the deadlock, then any one in this "last proup" may be
arbitrarily selected as the last to be created. The
important point is that the deadlock existed at the time the
ORPL. was created, and all the relevant tables collectively
contain the information showing each process in the deadlock
waitinpg for a resource controlled by another process in the
deadlock.) For simplicity, assume that‘this last ORPL con-
tains P1 as its first process entry. Additionally, in the
ensuing discussion, a message from an operator to a
computerized process will not be treated as a special type

of resource bhecause it is assumed that operators will state

53

what they are waiting for when asked to do so by a PMM,
After P1 has heen inserted as the first process entry
in this "last" ORBPL, the PMM which will begin the expansion
of the ORPL will be in step 10 of the algorithm. If P1 is
waiting for access to a resource local to a different node,
then the PMM executes steps 10 and 11, and another PMM
(after receipt of the ORPL) executes steps 1 and 2, then
goes to step 3, otherwise the PMM exeéutes step 1N and goes
to step 3. (Since there is a deadlock, the ORPL will not be
discarded.) Now, no matter what P1 is waiting for, it can
he assumed that a PMM is about to start step 3 and it can
(i.e. it has the information in its tables) determine what
process (in this case, P2) controls the resource P1 has re-
quested. There are two ways (depending on whether P2 i3
local or global to the node in which the OBPL is currently
located) in which a process entry for P2 will be inserted
into the ORPL.
Case A: P2 is "local".
Steps 4, 5 and 6 are executed, then step 10 will be
executed. The PMM wil) then be ready to execute step 3
or it will execute step 11 and another PMM will execute
steps 1 and 2, and will bhe prepared to execute step 3.
Case B: P2 is "global". ' |
Steps 4 and 7 are executed, then the PMM which then
receives the ORPL will execute steps 1, 8, 9 and 10.
It will then he ready to execute step 3 or it will ex-
ecute step 11 and another PMM will execute steps 1 and
?, and will be prepared to execute step 3.

This "last" OBPL now has process entries for P1 and P2,

and a PMM is ahout to execute step 3 to continue the

54

expansion of the ORPL. A PMM is now essentially in the same
position some PMM was in shortly after the ORPL was created.
The only difference is that now two processes have entries
in the ORPI., and RX is set to the resource for which P2 is
waiting, rather than the resource for which P1 is waiting.
Ry repeaﬁing the above procedure as many times as necessary,
the ORPL will be expanded to irclude process entries for
processes P1, P2, ..., PN, At this point, when step 3 is
executed, it will be determined that P1 controls the
resource PN has requested, and the deadlock will be
detected.

OFD Part 1.

Part 2

To prove that evefy deadlock that gets "detected" ac-
tually is a deadlock, it must be shown that an OBPL will be
discarded whenever there is a change in the state that was
assumed when a process entry was made in that ORPL. (The
one exception, which is ignored in the ensuing discussion,
is the case where the assumed state changes due to the
ahorting or rolling back of a process, rather than having
the state change due to a waiting process being awakened and
granted access to the resource for which it was waiting.)
This condition is sufficient because if a deadlock is
"detected" when expanding the OBPL containing (in order of

insertion) process entries for P1, P2, ..., PM, PN, and

55

there has heen no change in the state that was assumed when
each process was entered into the OBPL, then P1 is still
waiting to access a resource controlled by P2, ..., P* is
still waiting to access a resource controlled by PN, and PN
is still waiting to access a resource cqptrolled by PJ,
where PJ appears earlier in the OBPL. Thus a deadlock ac-
tually exists if one is "detected" and there has been no
change in the state that was assumed when the process en-
tries were inserted into the OBPL.

.Assume that a PMM is expanding an OBPL with process
entries (in order of insertion) P1, P2, ..., PK, PL. 1If the
algorithm is corréct, then P1 1s.waiting for access to a
resource controlled by P2, ..., and PK waiting for access to
a resource controlled by PL. Now assume that this state
does not hold. That is to say, for some Pi, Pj with adjac-
ent process entries in the OBPL, either Pi is not waiting
for access to the same resource (say RO) for which it was
waiting when it was ascertained that Pi was blocked and that
Pi should have an entry in the OBPL, or Pj no longer con-
trols RO, It will be shown that whenever this situation
ocecurs, it will be detected and the OBPL will be discarded.

Tt cah he assumed that Pi and Pj are PK and PL respec-
tively, because if the state has chanpged from what was as-
sumed when Pi was inserted into the ORPL, then it either
chansed hefore a PMM checked to see what Pj was waiting for,

Pj was not blocked, or the state changed after there was a

56

similar state change involving Pj and the next process in
the list. (The latter claim can be made hecause if Pi was
waiting for access to RQ which was controlled by Pj, and Pj
controlled PQ and was blocked at the time that it was
decided to further expand the 0OBPL, the only way the assumed
state could change would he for Pj to incur a state chanpge
and he awakened so that it could release RQ.)

ITn order to show that PK is still waiting for RO, and
that RO is still controlled by PL whenever it is decided
that another process should be added to the ORPIL, two cases
must he considered. 1) PL, PK and RO are all located in the
same node, and 2) PL, PK and RO are located in two or three
different nodes in the network.

Case 1,
Due to the restriction that operators can only
communicate with processes, there are three possible
comhinations of the types (process or operator) of PL
and PK. (The resource type of RQ is either unimportant
or uniquely determined by PK and PL.)

Case A: PK and PL are both processes.

Once PK has been inserted into the ORPL, and the

PMM in the node in which PK resides is expanding

the ORPL, the PMM determines that PK is waiting

for access to RO and that PL controls RN. It then
inserts PL into the OBPL if PL is blocked and
discards the ORPL if PL is active. Since the PMM
has exclusive use of the state tabhles in its node,
there is no way the assumed state will change un-
til after the OBPL is discarded, sent to another

- node or queued waiting for state information about
an operator (in which case the state can not
change until after the operator states that he/she
is active or sends a message to a process, both of

57

which result in the ORPL being discarded).

Case B: PK is an operator and PL is a process.
PK is not inserted into the ORPL until the opera-
tor states that he/she is waiting for a message
over a given operator connection (RO). The PMM in
the node in which PK resides then determines that
PL is the process that can send the desired mes-
sage. If PL is blocked, it is inserted into the
ORPL, otherwise the ORPL is discarded. Since the
PMM has exclusive control of the state tables in
its node, the assumed state can not change until
after the ORPL is discarded, sent to another node,
or queued waiting for state information about an
operator.

Case C: PK is a process and PL is an operator.

Pl. is not inserted into the OBPL until the opera-
tor states that he/she is waiting for a message
over a given operator connection. PK is still
waiting for a message from PL because the ORPL
would have been discarded if any message text had
been received from the operator since the ORPL was
queued waiting for state information about the
operator. (Note that it is possible that the de-
sired message may have been sent by the operator
hefore the ORPL was queued, but it has not been
given to PK because calls to the PMM are processed
in a first in, first out fashion. In this case
though, the OPPL will he discarded before any
state message from the operator is processed, be-
cause the desired message text was sent hefore the
operator state message.) The OBPL will then ei-
ther be discarded or have another process entry
added to it, because an operator can only wait for
a message from a process located at the same node.

Case 2.
Whenever an ORPL is sent’betwgen nodes, it must be
verified that the state that was assumed when the ORPL
was sent is still valid. Operators do not cause any
ORPL's to be sent between nodes (because they only
communicate with proéesseskat their own nodes), thus in

this discussion PK and PL are always processes. There

58

are four comhinations of the resource type of RO and
the locations of PK, PL and RO.

Case A* RO is a database object located in the same
node as PK, but different from PL.
After it is ascertained that PK is blocked waiting
for access to RO, it is determined that PL con-
trols RO. PL is then inserted into the OBPL
(after the entry for PK) and the OBPL is sent to
the PMM in the node in which PL resides. When the
PMM receives the OBPL, it first verifies that PL
still controls RQ. 7If it doesn't, there has been
a change in the assumed state (PL has released
RQ), and the ORPL is discarded. Note that the
ORPL is also discarded if it is determined that PL
is not blocked.

Case B: RO is a datahase object located in the same
node as PL, but different from PK.
After it is ascertained that PK is blocked waiting
for access to RO, the OBPL is sent to the PMM in
the node in which RO and PL reside. Ilpon receipt
of the ORPL, this PMM verifies that PK is still
waiting for access to ROQ. If it isn't, there has
heen a state chanpge (PK was granted access to RQ),
and the OBPL is discarded. The OBPL is also
discarded if it is determined that PL (which con-
t.rols RO) is not hlocked.

Case G+ RO is a datahase object located in a node
which contains neither PX nor PL.
After it is ascertained that PX is blocked waiting
for access to RO, the OBRPL is sent to the PMM in
the node in which RO resides. Upon receipt of the
ORPL, this PMM verifies that PK is still waiting
for access to RQ. If it isn't, there has heen a
state change, and the ORPL is discardeo If PK is
still waiting for access to RQ, then the PMM in-
serts PL into the ORPL (since PL controls RO) and
sends the OBRPL to the PMM in the node in which PL
resides. After the ORPL is received, the PMM then
checks that PL still controls RO. TIf it doesn't,
there has heen a change in the assumed state, and
the ORPL is discarded. The ORPL is also discarded
if it is determined that PL is not blocked.

Case ND: RO represents message text and PK and PL are
located in different nodes.
After PK is inserted into the ORPL bhecause the
process is waiting for message text in message
proup RO, RO is qualified by a message number.

59

The ORPL is then sent to the node in which PL
resides. PL will only be inserted into the ORPL
if it is blocked and the specified messape has not
been sent (which implies PK is still in the state
it was in when it was inserted into the ORPL),
otherwise the OBPL will be discarded.

Tt has been shown that whenever the relevant portions
of the overall network state differ from the state that was
assumecd when process entries were inserted into the ORPL,
the situation is detected and the OBPL is discarded.
Therefore it is impossible to detect anythinp but deadlocks
since a deadlock is never "detected" unless a PMM wants to
insert a process into an ORPL when there is already a pro-
cess entry in the OBPL for that process. It has thus been
nroven that the decentralized algorithm only "detects"
deadlocks.

OFD Part 2.

NOFN Necentralized Algorithm.

VT.5 Some Properties of the Alporithm

Tt should be noted that all references to processes in the
previous sections actually referred to process "commitment units"
(the period hetween commitment points), and the fact that
commitment units within a process are network unique allows a
deadlock to he detected at a node different from the one which
contains the process that was found to already have a process
entry in an ORPL. This situation can arise if the process under
discussion controls a remote datahase chject, and the PMM at the

node in whiech the datahase object resides wants to insert the

60

nrocess into the ORPL due to its controlling the ahove mentioned
datahase ohject. The ORPL need not be sent to the PMM in the
node in which the process resides to verify that the process
sti11 controls the datahase ohject, hecause the process has not
reached a commitment poiht (by virtue of the fact it already has
an entry in the ORPL) and therefore has not released any database
ohjects.

A11 resource requests will be handled with minimal delay
hecause, for any request, the only nodes involved are those which
contain the associated process and resource. (No information is
needed from any other nodes to process the request.) The algo-
rithm will function properly regardless of the resource
allocation scheme in use, since the needed information about a
resource is what process (or processes) currently controls it,
not the order in which processes will be granted access to the
resource in the future. (The latter information is necessary
only for deadlock avoidance algorithms.5

While a PMM is expanding an ORPL, all other PMM's may be
processing resource requests and releases. A PMM need only see a
consistent state within its own node in order to expand an " ORPL.,
The restriction that a PMM can not process resource requests and
releases while it is expanding an ORPL can be removed if the
decentralized algorithm is modified slightly. In step 10 the
hranch to step 2 would be eliminated (and therefore alwavs ro to
step 11 after step 10), and then in step 11 a PMM may send an

ORPL to itself. The new restriction would be that no resource

A1

requests or releases can he processed while a PMM is executing
steps 1 through 11, althouph resource requests and releases could
be processed hetween the execution of step 11 and step 1.

The same deadlock can be detected more than once if pro-
cesses and resources located in two or more nodes are involved.
This situation will occur if two or more processes request
request resources at approximately the same time, resulting in
ORPL's heinp created starting with different processes in the
same deadlock loop. It is important to note that no matter how
long it takes for ORPL's, remote resource requests, remote
resource assignments, message text in message groups, and noti-
fication of a remote process termination to travel between nodes,
the a1gorithm still functions as expected dué to the verification
steps that are included and the fact that once a deadlock exists,
it will not be broken until after it is detected and recovery

action is initiated.

62

VTITI. ADT Model of the Decentralized Alporithm

A functional model of the decentralized alporithm described
in the previous chapter was designed and created using the
facilities of the Architectural Definition Technique (ADT). The
mode) was designed so that the algorithm could he easily tested.
Additionally, by designing the model at the same time that the
algorithm was being refined, several deficiencies of early ver-
sions of the algorithm were detected and corrected. (See section
VIT.? and [11 for information about ADT.)

The model was written in PL/I and runs on the Honeywell
Multics timesharing system. It was coded for ease of use and
readahility, and is not intended to suggest the most efficient
way of implementing the algorithm in a computer network. A pre-
requisite to the use of ADT is an ability to understand the con-

cept behind Nata Structure Diapgrams.

VIT.1 Data Structure Diagfams

An information structure can be described by a Data Struc-
ture NDiagram. A particular object in an information structure is
referred to as an "entity", and an entire group of similar enti-
ties is called an "entity-class". (They are characterized by a
nrototype called an "entity-type".) The grouping that associates
one or more entities of the same entity-class with one entity of
a second entity-class (same or different type) in a subordinate
relationship is known as an "entity-set". 1In a Data Structure

Niagram, a block is used to represent an entity-type (the

63

entity-tyne name is written inside the block). A "set-class" is
a’qo1Jection of similar entity-sets. (They are characterized by
a prototvoe called a "set-type".) An arrow represents a
set-tvpe. Tt designates (by pointing from) the entity-type that
"owns" the set-tvpe and designates (bhy pointing to) the
entity-tvpe that serves as the "members" of the sef.

There is a 1 to n relationship between the owner and members
of an entitv-set: n may be zero, one or more. For each owner
there mav he any number of members, but for each member, there is
onlv one owner in any set occurrence. A dashed arrow is used to
represent a set-type where the member relationship may or may not
exist. This is called a "sometime" memher relationship. When
there can he only one member in an entity-set, a line (rather
than arrow) is drawn between the owner entity-class and member
entity-class. A dashed line is used when there can he a sometime
one-to-one relationship.

A situation can arise where a set-type can have more than
one type of entitv in the memher role. In this case a multihead
arrow is used to represent the set-type. Similarly, a multitail
arrow is used to represent a set-type where more than one type of
entity can assume the owner role (although each member has only
one owner). A more detailed exnlanation of Data Structure

Nfagrams can be found in [21.

VTT.? Architectural Nefinition Technique

ADT is an approach to arriving at a complete, concise,

6l

non-amhiguous functional specification of a software or hardware
svstem which is totally independent of packaging considerations.
To use ANT, one must describe the system state variahles in terms
of occurrences of entity-types, attrihute types and set-types,
and create a user interface as a set of machine processable
function definition algorithms.

An example of an entity-type is "node" in a computer net-
work. Fach node in the network must have a name, which is an
attribute of the entity. The entity-type and its attributes must
he declared. In addition, all entity-sets which a node may
helong to as a member or owner must he declared, and the rela-
tionship ("member", "owner", or "pecursive”) must he stated. A
node is a member of the set of all nodes in a network, but it is
the owner of various resources and processes located at that
node. The manner in which entities and their attributes and set
relationships are represented in the machine‘is irrelevant to the
poal of achieving a functional specification. Therefore the ADT
user is relieved of this burden.

A function definition algorithm is a body of code which
specifies what action should take place in response to a given
external stimulus. A function definition algorithm has several
responsibilities. 1) It must validate the input parameters, 2)
Tt must execute the logic of the functioﬁ, 3) It must access the
system state tables and update them aporopriately to reflect the
action taken, and 4) It must provide an external response repre-

senting the action (or lack thereof) that has taken place. A

65

function definition algorithm usually includes a series of calls
to the ADT modelling subroutines.

fne intepral part of ADT is a set of procedures which faci-
1itate the modellinm of the "system state". These procedures
nrovide the capabhility to create and maintain a network
structured database which holds the entities, attributes and re-
1ationshins used to model the system.

A functional model created using ADT can be exercised and
"yalidated" hy the creation and execution of a sequence of
commands. (Calls to the various function definition alporithms.)
Any numher of commands can bhe executed so that the model can bhe
ohserved in order to determine if it acts in accordaﬁce with
expectations.

Facilities are furnished in ADT to save these sequences of
commands (scenarios) and to automatically execute them. There
are also facilities so that the system state can he saved and
restored. Nisplay facilities are provided which permit a de-
tailed examination of the system state without altering it.
llsing these facilities it is easy to construct experiments, alter
them and examine the results at any time.

ADT is.a deterministic system, and the machine is always in
a stahle state during the period hetween calls to the various

function definition algorithms.

VTT.3 The Deadlock NDetection Model

The deadlock detection model which runs using ADT was de-

A6

signed to he driven entirely by the user of the model. All the
nodes in the network must be created by the model user, as are
nrocesses and database resources located at each node. In addi-
tion all operators at each node must he declared. Fach node in
the network must have a unique name. Operator names and process
names appear together in the same name space and must be unique
within each node. They are qualified by the node name to make
them unique in the network. DNatabase ohjects must also have
unique names within the set of database ohjects at a node.
Process wait situations may arise as a result of requests
for message text in a messape group or over an operator connec-
tion, or requests for access to a database ohject, but operator
wait situations are not forced by the system because operators do
not request message text, they only take it as it comes over an
operator connection. All requests by processes for resources
must he entered by the model user. The model will process the
requests, and allocate the desired resources, if possihle,
otherwise the requesting process will be blocked. When messarge
text is reaquested, the message froup name (in the case of process
to process communication) or operator connection name (for oper-
ator to process communication) mﬁst be given. With the model,
hefore messafe text in a message froup can be received by a
process, the message group must first he initiated by the process
whieh can send the messages, and then be accepted hy the process
that will receive the messages in the message group. (The model

nser specifies when this takes place.) Actual systems may allow

67

messare proups to he accepted by a process before another process
initiates it. An operator connection must he estabhlished (by the
model user) between an operator and a process at the same node
hefore a orocess can receive message text over the operator con-
nection. This model does not support the sending of messares
from a nrocess to an operator over an operator connection hecause
typically messages from a process to an operator are not queued
for receipt hy an operator, they are simply printed at the
operator's terminal without an explicit operator request.

In order to make the model easier to use, it was decided to
make messase group names. and operator connection names unique
within the network.

Tn a computer network it is probable that messape text may
he sent hy either process involved in a connection through which
they are communicating. (This is a two-way connection.) The
model only allows the initiator of a message group to send mes-
sape text over the assnciated connection because a two-way con-
nection can he simulated using two one-way connections, with each
nrocess involved being the initiater of one of the messare
groups. The sender and receiver of message text in a message
e¢roup are thus uniqﬁely determined by the message group name,
therefore the model user need not type a process name when
causing action to be taken to simulate the sending or receiving
of message text. (Sim11arly, the sender and receiver of message
text over an operator connection are uniquely determined because

the mode) only allows messapge text to go from the operator to the

6R

associated process.)

Fach node will need to maintain some information about the
other nodes in the network. (It needs to know ahout remote pro-
cesses that have requested access to at least one of its
resources, and it needs some information about remote resources
that have heen requested hy at least one of ‘its processes.) The
model is designed to create a setvdf node tables (one tahle for
each node in the network) at each node in the network. Fach node
will use its set of node tables to maintain the information it
needs ahout all the nodes in the network.

Control messapes are used by the model to simulate the
transmission of most types of internodal messages. When a mes-
sage must bhe sent betwéen nodes, the model will cause text to he
printed at the model user's terminal giving the model control
message number and stating the destination node and what the
message represents. At the time the model user would like the
destination node to receive the message, he/she must issue a
command to the model to receive the associated control message.
ORPL's, messape text within message groups, and resource
allocation messages are all sent hetween nodes via control
messages. This mechanism was selected so that the effect of
internodal messages bheing delivered.with varying delays could be
simulated. The only internodal message that the model allows to
be processed without user intervention is thé one that would be
associated with the initiating of a message group. There is no

need to model the delay of a message for this because the node in

69

which the accepting process of the message Rroup resides must be
aware of the initiation before any checks for deadlock involving
that message group will be made.

The types of resource allocation messapes that may pass be-
tween nodes are 1) reauests fbr access to remote database
ohjects, ?) notification that a process has been granted access
to a previously requested datahase object, and 3) notification
that a process has released a datahase object. If the model user
enters a process request for a remote datahase object, the model
will block the process and send a control message (representing a
remote resource request) to the node in which the desired
database object resides. (Since deadlock detection is being
modelled, and resource allocation need not be completely
simulated, the model first looks across nodes to verify that the
requested database object exists before it sends the control
message.) After this control message is received and the desired
datahase obhject can be allocated to the aforementioned process, a
control messapge stating that the process has been allocated the
desired‘resource {s sent to the node in which the process
resides. When this new control message is received, the process
will he awakened. Althdugh the release of datahase objects is
not necessary to test an algorithm for deadlock detection, a
command to allow a process to release a single database ohject
was included in the model for debugging purposes. Wwhen a process
releases a remote datahase object, a control message is sent to

the node in which the database-object resides. The model does

70

not simulate the automatic release of all resources controlled hy
a process at the time the process reaches a commitment point.
This is a feature of process and resource mahagement, and is not
relevant to the simulation of a deadlock detection algorithm.

In order to creatg deadlock situations, processes must be
ahle to gain control of some database objects. The model uses a
first-in-first-out allocation scheme for database objects. A
process will be blocked if 1) it requests any type of access to a
database ohbject that has been exclusively assigned to another
process. ?) it requests any type of access to a datahase object
which already has other processes waiting for access to it, or 3)
it requests exclﬁsive use of a database ohject and some process
currently has access to the desired database object.

In order to adhere to the belief that the model should be as
simple as possible, the model, in expanding an OBPL, does not use
the decentralized algorithm exactly as described in the previous
chapter. In step 10, the branch to step 3 was removed, thus step
11 is always executed after step 10. When step 11 sends an OBPL
to the node in which it is already located, further expansion
takes place immediately. Steps 1 and ? then get executed
unnecessarily because RX is properly set in step 10, and the
state tables have not heen changed during the expansion of the
ORPL so the last process to be inserted into the GRPL is still
waiting for RX. This implementation was chosen to simplify the
coding of the function definition algorithm used to expand

ORPL's.

71

Anpendix T contains a Data Structure Diagrém for the
deadlock detection model, plus a description of the entities and
relationships shown in the Diagram. Appendix II contains a brief
description of all the user visible functions in the model, fol-
lowed hy the PL/T code of the function definition alpgorithms

which define the model.

VIT.4 Test Cases run on the Model

ising the model, several deadlock and near deadlock
situations were entered to demonstrate varicus features of the
deadlock detection algorithm. A feature of the ADT system allows
a user to save a series of commands in a file, and then type
wgcenario <file name>" to have the commands executed in order.

In each of the cases given, after the system was‘reinitialized,
but before the commands'épecific to eacﬁ example were executed,
the commands in file ndemo0" were executed. The files, along
with the output that resulted from the commands in the files,
appear in Appendix IIT. The scenarios are well annotated, and it
should he noted that commands to the system appear flush with the
margin, whereas output from the Deadlock Detection Model is
iadented.

The deadlocks created range from one involving two processes
and two resources located in a single node, to some involving
more than five processes or operators and more than four
resources located throughout a three node network. By creating

the same deadlock, but altering the order in which processes get

72

hlocked and the order in which irternodal messapes are allowed to
arrive, it is shown that the number of times the same deadlock is
detected depends on how close (in time) some processes in the
deadlock get hlocked, and on the locations of the various pro-
cesses and nodes. (The model works properly regardless of the
"simultaneous" processing of commands at yarious nodes.) Appen-
dix TTT also includes state diaprams for the test cases which
apnear in that Appendix. For the cases where a deadlock is cre-
ated, only the final state is drawn (a key to understanding the
diasrams is included), wﬁereas for the cases where there is no
deadlock, an important interim state is included in addition to
the final state.

The restriction stated in Chapter 4 that a process can not
pain access to a datahase ohject, release it and request it again
hefore reaching a commitment point, was included to rule out the
situation that is shown in "demo bug". (The scenario was

included for demonstration purposes only.)

VITI. Suppestions for Further Research

After a deadlock is detected, at least one involved process
must. he forced to rescind its request for a resource that is
controlled hy another process involved in the deadlock. Some of
the problems involved in breaking a deadlock (in particular when
the deadlock is detected using the decentralized algorithm
presented in Chapter VI) are discu§sed helow, as are some issues
that may lead to modifications in the schemes presented in

Chapters V and VI.

VITI.1 The Rollback/Retry Problem

In order to break a deadlock situation, at least one process
involved in the deadlock must be selected and be forced to
rollback (backup) to a state prior to the time at which it re-
quested access to the resource for which it was waiting when the
dead]ock‘was detected. If the algorithm‘presented in Chapter VI
is being used to detect deadlocks, then (due to the restriction
that a process cannot release a database object when it is be-
tween commitment points) the process selected for rollbhack must
he returned to its most recent commitment point. In rolling back
the process, the external effects created since the last process
commitment point must he cancelled.

To accomplish this rollback, it is necessary to undo all
datahase object updates thaf the process performed within the
scope of its current commitment unit (the period since its most

recent. commitment point), and then release all the database ob-

74

jects that were assigned to the process. In addition, all items
of messape text that were sent hy the process in this commitment
unit must bhe taken back, and all items of message text that were
received hy the process in this commitment unit must be requeued
over the proper connections so that they may again be properly
received after the process resumes execution. When takine an
ijtem of messape text back, if it had already been received by the
destination process, this destination process must also be rolled
back to its most recent commitment point.

Research needs to be performed to determine an efficient
method for rolling bhack a process. It is possible that some
constraints may have to he placed upon communicating processes in
order to simplify the rollback problem and lessen the amount of
information ahout a process that must be retained between
commitment points. Some papers have been published that deal
with the prohlem of rolling-back a database to a previous state.
(See TU1 for one example.)

lse of the deadlock detection algorithm described in Chapter
VI can result in the same deadlock being detected more than once.
Tt therefore may be useful to develop a deterministic algorithm
for deciding which process should bhe rolled back, so that addi-
t.ional processes are not. rolled back unnecessarily. Note that if
ORPl.'s are created immediately after a process gets blocked, then
every deadlock will be detected with an ORPL that contains only
the involved processes. Thus even though a process not. involved

in a particular deadlock may be waiting for access to a resource

75

which has been assigned to a process in the deadlock, no action
need he taken when the deadlock is detected usinp an ORPL. which
contains more than the involved processes. One possihbility is to
impose an arbitrary ordering on the nodes in the network, and
always rollback a process in the lowest numbered node that is
involved in a given deadlbck. This method is unfair in the sense
that processes in the higher numbered nodes will rarely be forced
to rollback to a previous state. Perhaps a fairer method is to
attach a cost factor to each process entry in an ORPL. This cost
factor will represent the cost (for the associated process) of
comput.ation to date in that process commitment unit. The process
with the lowest cost factor will be rolled back with the hope
that this minimizes the overall network cost of hreaking the
deadlock. It is also possible that when the same deadlock is
detected more than once, it may be cheaper (from the overall
network cost viewpoint) to rollback an extra process
occasionally, than to add the extra overhead that is needed for
the methods mentioned above. This is a topic which needs to be
studied further.

Another related topic which can be investigated involves
relaxing some of the‘restrictibns dealing with the release of
datahase ohjects so that a process can be rolled back to a state
somewhere hetween th; previous commitment point and the deadlock
state. This may involve slikht modifications to the algorithm
describhed in Chapter VI, bhut may be ﬁseful bécause less code will

have to he reexecuted after rollback. (It may be particularly

76

worthwhile when a nrocess {s executing a section of code where it
is sequentially requesting access to several database obiects
hefore reading or updating any of thém. Thus a partial, and
nerhaps sufficient rol]back could be accomplished by the release

of some of the database obhjects.)

VIIT.? Optimization and Expansion of the Decentralized Algorithm

If ORPL's are created after a process has been hlocked for
"Y' units of time (with 'X! greater than 0), then it may be pos-
sible to occasionally eliminate the need to create an 0OBPL after
a piven process has been blocked for 'X!' units of timé. When a
nroéess is inserted into an ORPL nefore it has been blocked for
'Y' units of time, the need to create an ORPL with this process
as the first entry is eliminated. (Additionally, the process may
he pranted access to the desired resource before 'X' units of
time have elapsed, also eliminating the need to create an ORPL.)
This type of implementation would affect ﬁhe scheme used to break
deadlocks, as there would no longer be the guarantee that each
deadlock would he detected with an ORPL that only contains pro-
cess entries for the involved processes;

A restriction presented in Chapter IV prevents a process
from requestinuishared access to a database ohject and then
request.ing exclusive use of the same database object. Tt may be
possinhle to allow this situation will little modification to the
decentralized algorithm.

The algorithm presented in Chapter VI requires that all

77

resources he uniauely identifiable. It may be desirahle in some
applications to allow processes to wait for any one of N
identica) and interchangeahle resources. Inclusion of this
property would necessitate a change in the use and expansion of
ORPL's. Preliminary study shows that it would he necessary to
place control of the expansion of an ORPL with one node (which
may he different for each ORPL), since notification would be re-
ouired after it is ascertained that a loop exists in an OBRPL or
that an active process has been encountered. This notification
is needed hecause there is a deadlock involving M identical
}esources only if every process that controls one of these
resources is involved in a loop in an ORPL. (This is in contrast
to the situation where there are N readers of a piven datahase
ohject and a deadlock exists if any one of these readers is
involved in a loop in an ORPL.) Rather than passinpg an ORPL from
node to node, the "controlling" node may request other nodes to
exnand a section of the ORPL and return it to the "controlling"
node. Further study is reauired to_determine exactly how the
decentralized alporithm can be modified to include the above
mentioned feature.

In addition, it may be worthwhile to study the possibhilities
of allowinpg human processes to wait for events external to the
computer system (i.e. a phone call or a message from a fellow
worker, rather than only wait for a messape from a piven process)
and/or the nossibilities of allowing a process to wait for more

than one resource at a time.

TR

VITT.? Types and Probability of Deadlock

In order to ret a valid estimation of the cost of using the
Aeadlocl detection alpgorithm presented in Chapter Vi, it is nec-
assary to‘pet estimations as to how many processes in how many
different nodes are typically involved in a deadlock, and how
frequently deadlock can be expected to occur. Some research has
been performed dealinp with the probability of deadlock in a
computer system (see A1), but to this author's knowledpe, no
work ﬁas heen performed dealing with the types (i.e. how many
processes in how many different nodes) of deadlock that can he

expected in a computer network.

VITT.4 Refinement of the Centralized Algorithm

The scheme presented in Chapter V was not studied
extensivelv. It is possible that it can be refined to a point
where 1ittle, if any. unnecessary processing takes place in order
to determine if a deadlock exists. Due to reliability factors
and communications delays, it is not recommended that a
centralized scheme he used exclusively in a network. However, a
hybrid model of the centralized and decentralized algorithms may
prove to he more cost effective than the decentralized algorithm
alone. This hybrid model could possibly be constructed by using
the centralized scheme for small groups of nodes located within a
specified distance of each other, and then using the
decentralized scheme between the control nodes for each of the

aroups using the centralized scheme.

79

IX. Conclusions

The schemes presented in Chapters IT and TITl were designed
to he used to help detect process deadlocks in a computer network
where the only allowahle wait condition is for the availability
of datahase resources. Many systems only allow this tyne of
process wait, so there is a need for algorithms which solve the
prohlems that the schemes of Chapters IT1 and III attack.
However, some alterations must bhe made to the scheme of Chandra,
lowe and Karp and to the decentralized scheme of Mahmoud and
Riordon before they can be used to solve the problems they
address. It seems that these two schemes, when modified, would
result in essentially the same algorithm. This new algorithm
would require each node's resource tables to be sent to one node
in the network, which will then process all the outstanding
requests for access to datahase objects. (In the case of Mahmoud
and Riordon's scheme, perhaps each node would still examine all
reouests.) The major difference from the original schemes is
that no resource allocations would be performed without examining
the entire network state. (i.e. requests for access hy a process
to local resources must still wait for information from other
nodes) With or without modifications, the two schemes are
1neffic1ent'in that they require large tables (when the database
is Jocked at the record level) to he passed between the nodes.
Additionally, each.node must be capable of processing requests
which‘require the presence of every node's tables in that node.

This is an undesirable constraint, because it requires

R0

minicomputers which serve as nodes within the network to have the
capacity to store (in main memory or secohdary storafge) the
entire network state at one time. Although only minor modifica-
tions are required to the schemes so that they will work, they
may require some major modifications before they can bhe used in a
peneral scheme for detecting deadlock in all types (i.e. any size
computers and any number of nodes) of computer networks.

The two "centralized" schemés presented in Chapters III and
V¥ can both result in message hottlenec ' at the control node, and
if the control node fails, both result in a significant delay
while a new control node is established.r Additionally, if the
network is peographically spread out, there can be an undesirable
delay in some cases when a process requests access to a local
datahase ohject. It is recommended that neither scheme bhe used
exclusively in a network which covers a large (geographically)
area or consists of a large number of nodes.

The decentralized algorithm presented in Chapter VI reaquires
each node to only maintain information relating to its processes
and resources. Thus the amount, of storage‘required at each node
to support the alporithm is proportional to the total size of the
system at that node. Additionally, there is little, if any,
delay in pranting a process access to an availahle resource.

Thé size of messages (0OBPL's) passed hetween the nodes is
directly proportional to the number of processés involved in a
chain, where each process is waiting for é resource controlled by

another process in the chain. It is felt that these chains (and

R1

therefore hRPL'sﬁ each involve only a few processes, and by
delaving the creétion of ORPL'S until after a process has been
h)Jocked for 'X' units of time, the number of ORPL's that must be
nassed hetween nodes will be minimal. It should be noted that
the decentralized alporithm presehted in Chapter VI will work
repardless of whether or not processes are allowed to wait for
messages which must he sent from ofher processes within the nef-
work.

Wwith the optimization feature discussed earlier, the algo-
rithm presented in Chapter VI is efficient and can he use

regardless of the size and composition of a computer network.

e

p2

1no

References

Pachman, Charles W.: Rouvard, Jaques: and Reeves, Raymond
1.n. wapchitecture Nefinition Technique: Tt.'s Objectives,
Theory, Process Facilities and Practice", Internal “emoran-
dum, Honeywell Tnformation Systems, Rillerica, Mass., Yo-
vemher 26, 1976, (An earlier version appeared in the
Proceedings of the 1072 ACM SIGFINDET Workshop, Movember
1072.)

Pachman, Charles W. "Data Structure Diagrams", Nata Rase, A

Nuarterly of SIGRNP. Vol. 1, No. 2, Summer 1060 “pp. U=10,

Chandra, A.M.: Howe, ¥V.G.- and Karp, ND.P. "Communication

Protocol for Deadlock Detection in Computer Metworks", oM
Technical Nisclosure Rulletin, Vol. 16, Mo. 10, March 19714,
pp. 3INTI-IMRT, -

Chandy, ¥. Many: Rrowne, James C.: Dissly, Charles Y.: and
lhrip. Yerner P. "Analytic Models for Rollbhack and Recovery
in Nata Pase Systems", IFFF Transactions on Software
Fheineering, Vol. SF-1, No. 1, March 1975, pp. 100-110.

Coffman, F.G.: Flphick, M.J.: and Shoshani, A. "System
Neadlocks", Computing Surveys, Vol. 3, Mo. 2, June 1971, pp.
ﬁ?-?ﬂo

F}1is, Clarence A. "Probahilistic Models of Computer
Neadlock", Report #CU-CS-0N1-7H4, liniversity of Colorodo,
April 107h, : :

HWolt, Richard C. "Scme Deadlock Properties of Computer
Systems", Computing Surveys, Vol. 4, No. 3, Septemher 1972,
pp. 1702106, '

Mahmoud, Samy: and Riordon, J.S. "pProtocol Considerations
for Sfoftware Controlled Access Methods in Nistributed Nata
Pases", ggpceedinas of the International Symposium on
Computer Performance Modeling, Weasurement and Fvaluation,
"?rvazd iiniversity, Cambridpge, Mass., March 20-31, 1478, pp.
PN 1=DRN, ' ’ '

Murphy. J.F. "Resource A)location with Qystem Tnterlock
Netection in a Multitask System", Fall Joint Computer
fonference Proceedings, Vol. 33, 1968, pp. T1RO-TI7AR.

Trinchieri, Mario. "0On Manaring Tnterference Caused hy
Natahase Sharineg", Alta Frequenza, Vol. XLTY, Vo. 11, 1075,
pp. FN1-ARO,

R3

Appendix I

resource
System request
) ~resource
grant
Node
resource
"|release
(Init) Node
Tables ad
(Accept)
. |message
text
OBPL L - - -~ —{ORPL
Pass - >
|
C operator |— !
Ny |connection ' 4
I |oBPL
| Process
| Entry
|
Operator|[~ e ﬁ """"" .
\
message process/
group (Send) process
< commitment
(Receive) it
P t
4
C \ Database
- —-—— Object
Database
Object
Shared
Assignment

Data Structure Diagram for the ,ADT

- 84

Deadlock Detection Model

Appendix I Entity Descriptions

This section describes the entities which are used in the ADT Deadlock
getecgion gogel. Each entity is described in basically the same manner, The
ormat used is: ‘

<ENTITY NAME>
<t

ex e 00000000 00

ee 0 e0 o0 s 0O 0

entitz attributes:
<attribute name>
<text'....l‘0..

9000000008000 00

entity owner roles:
<name of set owned by entity>
<text00‘....0..

entity member roles:
<name of set where entity is a member>

The sets are named in the following way:

owner_name->member_name
Both owner_name and member_name are the names of entities. A qualifier is
used to distinguish between two sets which have the same entities as owner and
member:

ownen_name-)memben_name(qdalifier)

If there are alternate owners or multiple members, the notation used is:
owner_name/owner_name/ . . .->member_name/member_name/... Where attribute
names are used, they correspond exactly to the names (which include abbrevia-
tions for the entities they represent) that are used in the PL/I code of the

Model.

DATABASE_OBJECT
This represents an object within the database which is subject to exclusive
(read/write) or shareable (rea? only) access control. The object may be of
various levels of granularity (file, gage record, or item of record). The
only requirement is that the entire object is treated uniformly in regard
to assignment to a process and subsequent release.

entity attributes:
dbo.name
The unique name for the database object at the node in which it
resides.

entity owner roles:
database_cbject->database_object_shared assignment
The set of shared_assignment entities for a database object defining
the number of processes currently sharing the database object on a
read only basis.

database_object->process

gg:taet of processes waiting on the availability of the database ob-

(see node_table/dbo/message_group/operator_connect ion->process)

85

Appendix 1 ‘ Entity Descriptions

entity member roles:
node_table->database_object

process->database_object

DATABASE_OBJECT;SHAREQ_ASSIGNMENT
The mechanism for recording the shared assignment of a database object to a
process for read only purposes.

entity attributes: (none)
entity owner roles: (none)

entity member roles:
database_object->database_object_shared_assignment

process->database_object_shared_assignment

MESSAGE_GROUP
The string of text elements which are sent from one process to another over

a specified connection.

entity attributes:
message.name
The network unique name for the message group.

message.numben_%d

The number of messages in the message §rou€ that have been received
by the acceptor of the message roug plus the number of messages that
are currently queued at the destination end and have not yet been

received.

message .number_rcvd
The number of messages in the message group that have been received
(read) by the acceptor of the message group.

message .number_sent
The number of messages in the message group that have been sent
regardless of whether or not thez have currently reached the desti-
nation node) by the initiator of the message group.

entity owner roles:
message_group->process
The set of processes waiting for text in the message group. The na-
ture of exclusive assignment of a message group to a process
prefludes more than one process to actually be waitine for text.
see node_table/dbo/message_group/operator_connection->process)

entity member roles:
node_table->message_group(accept)

node_table->message_group(init)

process->message_group(receive)

process->message_group(send)

system=>message_group

MESSAGE_TEXT

This represents one message within a messaﬁe group when the initiator and
acceptor are located in different nodes. No actual text need be
transmitted, because for the purposes of deadlock detection, the content of

the messages is unimportant, and it is only necessary to know how many
messaces are sent and received.

86

Appendix I Entity Descriptions

entity attributes:
msg.mg_name
The message group name to which the "simulated message" belongs.

entity owner roles: (none)

entity member roles:
system->message_text

NODE
A processor in the network which includes a Process Management Module for

the purposes of resource allocation and deadlock detection.

entity attributes:

node.name
The network unique name for the node.

entity owner roles:
node->node_table
The set of tables used by a node to maintain all needed information

about the nodes in the network.

entity member roles:
systen->node

NODE_TABLE
A table used to maintain needed information about operators, processes and

resources located at a given node.

entity attributes:
node_table.name .
The name of the node about which this table will maintain informa-

tion.

entity owner roles:
node_table->database_object
The set of database objects located in the node "referenced" by the
node table, and for which the node in which the node table resides

needs information.

node_table->message_group(accept)
The set of message groups that have been initiated with the accepting

grooesa declared to be located in the node which is "referenced" by
he node table, and located therein. (If a node table does not
"reference"” the node in which it is located, then this set is empty
for that node table.)

node_table->message_group(init)
The set of message groupa that have been initiated b{ grocessea lo-
cated in the node which is "referenced" by the node table, and lo-
cated therein. If a node table does not "reference" the node in
which it is located, then this set is empty for that node table.)

node_table->operator
The set of operators declared to exist at the node "referenced" by

the node table, and for which the node in which the node table re-
-sides needs information. (A node only needs to know about the oper-

4 its own node, therefore if a node table noes not "reference"
n which it is located, this set is empty for that node

- located in the node "referenced" by the node
the node in which the node table resides needs

87

Appendix I Entity Descriptions

node table/dbo/message_group/operator_connection->process
The set of processes in a particular state. If the owner is a
node_table which "references" the node in which it is located, then
the process is in the ready or running state. If the owner is a
database obiect, the the process is waiting for access to that
database object. If the owner is a message %roup or operator con-
nection, then the process is waiting for text in that message group
or over that operator connection.

entity member roles:
node->node_node_table

OBPL
An ordered blocked process list used to detect deadlock.

entity attributes:
obpl.res_name
The name of the resource for which the most recently inserted process
into the OBPL is waiting.

obpl.res_node_name
The name of the node in which the above mentioned resource resides.

obpl.res_type
The type (database object, messa%e in a message group, or message

over an operator connection) of the above mentioned resource.

obpl.msg_numb
If the above mentioned resource is a message in a message group, then
n

this attribute contains the number of the message (with he message
group) that is being waitied for.

entity owner roles:
ORPL->ORPL_process_entry
gggbset of processes and operators that have been inserted into the

entity member roles:
0BPL_pass->0BPL

operator->0BPL

OBPL_PASS
This is used to pass an OBPL from one node to another, where it can be
further expanded.

entity attributes:
obpl_pass.des_node_name
The name of the node to which the OBPL is being sent for further
expansion.

entitg owner roles:

Lﬁgass->OBPL
This is a one-to-one relationship with the member being the OBPL
that is being passed from one node to another.

entity member roles:
system->0BPL_pass

ORPL_PROCESS_ENTRY
This represents a ppocess that has been inserted into an OBPL.

entity attributes:
proc_entry.node_name
The name of the node in which the process that has been entered into
the ORPL resides.

88

Appendix I Entity Descriptions

proc_entry.process_name
The name of the process that has been entered into the OBPL.

entity owner roles: (none)

entity member roles:
OBPL->0RPL_process_entry

OPERATOR
This ‘entity represents a person that has been declared as an operator at a

given node.

entity attributes
operator.name
The unique name for the operator in the node at which he/she is lo-

cated.

entity owner roles:
operator->0BPL
The set of OBPL's that require state information about the operator

before they can be further expanded. :

operator=->operator_connection
The set of operator connections over which the operator may

communicate with processes.

entity member roles:
node_table->operator

OPERATOR_CONNECTION
An entity via which messages are sent from an operator to a process. -

entity attributes:
op_con.name
The network unique name for the operator connection

op_con.number_ad
The number of messages that have been sent by the operator but have

not yet been received by the process over this operator connection.

entity owner roles:
operator_connection->process
The set of processes waiting for text over the operator connection.
The nature of exclusive assignment of an operator connection to a
grogess precludes more than one process to actually be waiting for
ext.
(see node_table/dbo/message_group/operator_connection->process)

entity member roles:
operator->operator_connection

process->operator_connection
system->operator_connection

PROCESS (PROCESS COMMITMENT UNIT)
This represents a process which is executing within a process commitment
unit (the period between process commitment points). rocesses are unique,
as are process commitment units, therefore the model treats them as one

entity.

entity attributes:

process.access_type
the process is waiting for access to a database object, this at-
tribute denotes the type ("shared" or "exclusive") of access desired.

89

Appendix I Entity Descriptions

process.name
The unique name of the process within the node in which it resides.

entity owner roles:
process->dabatase_object :
The set of database objects currently exclusively assigned to the
process for read/write purposes. If a database object is not
inserted in such a set, and its
database_object->database_object_shared _assignment set is empty, then
it is available for exclusive assignment.

process->database_object_shared_assignment
The set of database_object_shared_assignment entities representing
database objects assigned to a process on a shared (read only) basis,

process->message_group(receive)
The set of message groups which have been accepted by the grocess.
(The process can receive messages in these message groups.

process->message_group(send)
The set of message groups which have been initiated by the process.
(The process can send messages in these message groups.)

process->operator_connection
The set of operator connections over which the process can receive
messages from operators.

entity member roles:
node_table->process

node_table/dbo/message_group/operator_connection->process

RESOURCE_GRANT
The internodal message granting a process access to a database object lo-
cated at a different node.

entity attributes:
res_grant.proc_name
ghetname of the process that is being given access to a database ob-
ect.

res_grant.proc_nodde_name
The name of the node in which the above mentioned process resides.

res_grant.res_name

he name of the database object which the above mentioned process is
gainig access to.

res_grant.res_node_name

The name of the node in which the above mentioned database object
resides.

entity owner roles: (none)

entity member roles:
system->resource_grant

RESOURCE_RELEASE

The internodal message stating that a given database object has been re-
leased by a specified process.

entity attributes:
res_rel.dest_dbo_name
he name of the database object being released.

res_rel.dest_node_name
The name of the node in which the released database object resides.

90

Appendix I Entity Descriptions

res_rel.rel_pnode_name
The name of the node in which the process releasing the datahbase ob-

ject resides.

res_rel.rel_proc_name
The name of the process releasing the database object.

entity owner roles: (none)

entity member roles:
system->resource_release

RESOURCE_REQUEST
The internodal message in which a process requests access to a database

object located at a different node.

entity attributes:

res_req.access_type
The type of access ("shared" or nexclusive") that has been reguested.

res_req.dest_dbo_name
The name of the database object to which access has been requested.

res_req.dest_node_name
The name of the node in which the desired database object resides.

res_req.req_node_name
The name of the node in which the requesting process resides.

res_req.req_proc_name
The name of the process requesting access to the above mentioned

database object.
entity owner roles: (none)

entity member roles:
system->resource_request

SYSTEM
The computer network.

entity attributes:
system.last_cont_msg
The number of internodal control messages that have been sent in the

network.

entity owner roles:
system->message_group
The set of message groups that have been initiated throughout the

network.

syatem->measage_textIOBPL/pass/resource_grant/resource_release/
resource_request
The set of control mesaa%es that have been sent, but have not yet
been received by the destination node. The t{ge of control message
represented is uniquely determined by the entity type of the member.

system->node
The set of nodes in the network.

syatem-)ogeraton_connect1on
Th: sek of operator connections that have been declared within the
network.

entity member roles: (none)

91

Appendix II

The ADT Deadlock Detection Model consists of seven PL/I procedures, each
of which contains multiple entries. A description of the Deadlock Detection
Model user visible functions begins on the next page. Included in the de-
scription of a function is the name of the procedure in which that function
appears. The seven PL/I procedures follow the function descriptions, and
these procedures are followed by the two PL/I include files which are used by
the various procedures. File DDM_serv_routines contains declarations of
Deadlock Detection Model functions which are called by other functions within
the Model, and file ADT primitives contains declarations of the ADT system
functions.

The following is an index to the PL/I procedures and include files.

ADT _primitives 144
DDM 35
DDM_serv_routines 143
MSG 109
OBPL 122
OP_CON 1

RCV_CM 122
REL 138
REQ 104

92

Appendix II User Visible Functions

USER VISIBLE FUNCTIONS
ADT Deadlock Detection Mechanism

acceptmg(p_mg_name, p_accept_node_name, p_accept_proc_name)

Declares process "p_accept_proc_name® located in node
"p_accept_node_name" as the only process that can receive messages in the
messagre aroup specified by "p_mg name". acceptmg is located within procedure

.~ .

cdbo(e node_name, p_dbo_name)

Creates" a database obgect at the node specified by "B_node_name". The
database object has a "local®™ name specified by "p_dbo_name®. cdbo is located
within procedure DDM.

cnode(g_node_name)
"Creates" a node with the name specified by "p_node name". cnode is lo-
cated within procedure DDM.

copcon(p_con_name, p_con_node_name, p_op_name, p_process_name)

"Creates" an operator connection between operator "p_pg name" and process
"p_grocess name", both located in node "p_con_node_name". he operator con-
nection will have the global name specified by "p_con_name". copcon is lo-
cated within procedure OP_CON.

cproc(p_node_name, p_process_name)

"Creates" a process with the name specified by "p_process_name" and lo-
gatedb%a the node specified by "p_node_name". cproc is located within proce-
ure .

dclop(g_og_node_name, p_operator_nane)
"Declares" that an operator with name "p_operator_name" exists at the
node with name "p_op_node_name"™. dclop is located within procedure DDM.

initmg(p_mg_name, p_init_node_name, p_init_proc_name, p_accept_node_name)
Declares process "p_init_proc_name" located in node "p_init_node_name" as

the only process that can send messages in the message group specified by

"E_mg_name". All messages in the message group will be sent to a process in

g e nggg specified by "p_accept_node_name". initmg is located within proce-

ure .

opmsg(g,con name)
"Sends® a message from the operator to the process in operator connection
"p_con_name". opmsg is located within procedure OP_CON.

opstat(p_op_node_nane, p_op_name, p_state, p_con_name)

States that operator "p_op_name" at node "p_op_node_name" is either
“"active" or "waiting" (specified by "p_state"). If the operator is waiting,
it would like to receive a message from the process in operator connection
"p_con_name". opstat is located within procedure OP_CON.

rcvem(p_cont_msg_numb)

Causes the control message with number specified bg "p_cont_msg_numb" to
be received b{ the aﬂgropriate node and the required action then takes place.
rcvem is located within procedure RCV_CM.

rcvmsg(p_mg_name)

auses a message to be "received" in message group "p_mg_name". If no
messages are queued, then the receiving process is blocked. rcvmsg is located
within procedure MSG.

rcvopmsg(p_con_name)

Causes a message to be "received" by the orocess in operator connection
"p_con_name". If no messages are queued, then the process is blocked and we
request the status of the orarator involved with this operator connection.
rcvopmsg 1s located within procedure OP_CON.

93

Appendix II User Visible Functions

rldbo(p_prroc_node_name, p_grocesa_name. p_dbo_node_name, p_dbo_name)

Causes the database object "g_dbq_name“ Tocated in the node specified by
"n_dbo_node_name" to be released by process "p_process name" in node
"p_proc_node_name". If additional processes are queued for the database ob-
ject, they may be removed from the queue in accordance with the rules for
resource allocation. rldbo is located within procedure REL.

rqdbo(p_accegg_type,)p_proc__node_name, p_process_name, p_dbo_node_name,
p_dbo_name

Handles a resuest by process "p_process_name" (located at node
"p_proc_node_name®) for access ("shared" or Wexclusive" as specified b

"p access_type") to the database object seecified b{ "p_dbo_name" and {ocated
s

%gothe node specified by "p_dbo_node_name". rqdbo located within procedure
sendmsg(p_mﬁ,name)
"Sends" a message in the message group specified by "p_mg_name". sendmsg

is located within procedure MSG.
sysgen

"Creates" (initializes) the system. sysgen is located within procedure
DDM. Internally it also has the name "csys".

94

Appendix II Procedure DDM

DOM: procedure:

/% This procedure is a collection of subroutines which either
creates entities needed to model the deadlock detection algorithm proposed
by Barr¥ Goldman or performs services for other routines used in the model.
The following user visible functions are included:

CREATE DATABASE OBJECT

CREATE NODE

CREATE PROCESS

CREATE SYSTEM

DECLARE OPERATOR
The followiné augport routines are included:

DECLARE DATABASE OBJECT

DECLARE DATABASE OBJECT SHARED ASSIGNMENT

DECLARE CONTROL MESSAGE

DECLARE NODE TABLE

DECLARE OBPL

DECLARE ORPL CONTROL MESSAGE

DECLARE PROCESS

DECLARE PROCESS ENTRY

DECLARE REMOTE RESOURCE GRANT

FIND ENTITY LOCATION

INITIATE OBPL ®/

95

Appendix IIX

cont_msg_numb
dboref
eos
exp_obpl
messafe_numb
mgref
noderef
no_more_nodes
obpl_passref
obplref
opref
p_attr_class_name
p_cont_ msq_numb
p_dbo_name
p_dbo_node_name
p _dcl_cont_msg_numb
p_decl_ dbo name
dcl entl t{ _class_name
dcl node_ abl_name
p —dcl_proc_name
p_decl_ref
p_dest_node_name
p_entity_name
p_entity_ref
p_node_name
p_obplref
p_operator_name
p_op_node_name
p_ownerref
p_process_name
p_proc_node_name
p._res_name
p_res_ node name
p_res_ {
proc_entryref
procref
proc_termref
p_send_node_name
p_set_ ‘class_name
res_grant_ref
sec_node_name
sec_noderef
tableref
temp_name
temp_ref
write_list_

del
Sinclude ADT_primitives:

96

Procedure DDM

fixed bin;
gix bin(17)

t(1
entry fixed bin(17), char(12)):
fixed b
fixed bini 17;
fixed bin(17
bit(1
fixed bin 17 :
fixed bin(17
fixe b}n 17):
char
fixed bin;
char(%*):

fixed bin (17):

r(12):
fixed bin(17):

ar(®
) n(17):

fixed bin
char(12 ,
char(20
fixed bin (17):

char(12

fixed bin§1

fixed bin(17

char(12)

fixed bin(17)

entry options(variable):

Appendix II Procedure DDM

/% CREATE DATARASE OBJECT 5/21/76 %/
create_database_object: cdbo: entry(a_node_name, p_dbo_name):
if figg_engity_foc noderef, "sys->node", SYS REF, p_node_name, "node.name")
en do-
call write list_("Invalid node name. ", p_node_name,
fdoes not exist."):
return-

end:
eos = find_entity loc(tableref, "node->node_table", noderef, p_node_name,
. node_ ablf.name”):
ifr g%nd_gntity_loc dboref, "node->dbo", tableref, p_dbo_name, "dbo.name")
en do:
call write_list_("Duplicate database object name")-
return:

end:

call dcl_dboidboref. _dbo_name) :

call insert (dboref, "node->dbo", "first", tableref):

call write_Tist_("Database object ", p_dbo_name, " created in node ",
p_node_name):

return:

/® CREATE NODE 5/19/76 */
create_node; cnode: entry(p_node_name);
if * owner_(SYS_REF, "sys->node")
then do:
ca%l write list ("Illegal request, system has not been created.");
return:

LY

end:
call find_first_(noderef, "sys->node", SYS_REF, no_more_nodes):
do while " no_more_nodes);
if extract_(noderef, "node.name") = p_node_name
then do:
call write_list_("Duplicate node name"):
return:

end:
caél find_next_(noderef, "sys->node", no_more_nodes):
end-
call create_entitg_(noderef, "node"):
call create_attribute_(noderef, "node.name", "field", 12 p_node_name) ;
call create_relationship_(noderef, "sys->node" "member")
call insert_(noderef, "sys->node", "first", SYS REF):
call create_relationship (noderef, "node->node_table", "owner"):
call del_node_table(tableref, p_node_name);
call insert_ (tableref, "node->node_table", "first", noderef):
/% We will now make this new node "aware" of the existence of al
other nodes, and make all other nodes "aware" of this new node. .
sec_noderef = noderef:
call find_next_(sec_noderef, "sys->node", no_more_nodes);
do while (" no_more_nodes):
% First create a'table entity for the new node to be used by

1
/

another node, %/
call del_node_table(tableref, p_node_name);
call insert_(tableref, "node->node_table", "first", sec_noderef);
/% Now crgate a table entity for an existlng node to be used by the
new node.
sec_node_name = extract_(sec_noderef, "node name"):
call dcl_node_table(tableref, sec_no&q_name):
call insert_(tableref, "node->node_table", "first", noderef):
call find_next_(sec_noderef, "sys->node", no_more_nodes);

end-
ca%l write_list_("Node created: ", p_node_name):
return*

97

Appendix II Procedure DDM

/% CREATE PROCESS 5/21/76 %/
create_process* cproc: entry(p_node_name, p_grocess,name)r
ir figﬁ_englty_loc noderef, "sys->node", SYS_REF, p_node_name, "node.name")
en do:
call write_list_("Invalid ?ode name. ", p_node_name,
Wdoes not exist"):

regurn'
end*
eos = find entit{_loc(tablegef, "node->node_table", noderef, p_node_namre,
. "node_table.name"):
if * find_entity_loc(progcref, "node->process", tableref, p_process_name,
"process.name"
then do:
call write_list_("Duplicate process name"):
return*

end:

/% If an operator with the same name has been declared at the node,

print an error message and return %/

if “find_entity_loc(opref, "node->operator", tableref, p_process_name,

"operator.name"
then do:
call write_list_(p_process _name, "has been previously declared",
¢ Was an operator at node", p_node_name):

return:

end:
call decl_process(procref, p_grocesa_name):

call insert_(procref, "node- grocesa", "rirst"‘ tableref);

call insert_(procref, "node/d o/mg-)process"ﬁ first", tableref):

ca%l write_list_("Process", p_process_name, "created in node", p_node_name):
return:

/* . gREATE SYSTEM . 5/18/76 %/
create_syst: csys: sysgen: entry:
P SYSTREF = 0) ysB i
then do:
call write_list ("System already created"):
return:

end:
call create_entity_(SYS_REF, "system");
call create_attribute_(SY REF ”system.last_cont_msg"* "field"™, 10, 0):
call create relationship_(SYS REF, "sys->node", "owner®):
call create_relationship_(SYS REF, "sys->msg grp", "owner");
call create_relationship_(SYS_REF, "sys->control_message", "owner"):
call create_relationship_(SYS_REF, "sys->message¥, "owner%):
call create_relationship_(SYS_REF, "sys->op_con", "owner"):
ca%l write Tist ("System crea-ed"}:
return:

/% DCL DBO 5/727/76 %/

dcl_dbo: entry(p_del_ref, p_dcl _dbo_name):

/% This procedure creates an ent ty¥ for a database object with name specified
bv "p_dcl_dbo_name™ and creates the necessarx relatlonships. A reference
to the entity is returned via "p_dcl_ref". /

call create_ent tg_(p_dcl_ref, "dbo%):

call create_attribute_(p_dcl_ref, "dbo.name", “field"* 12, p ?cl_dbo,name):

call create_relationship_(p_dcl_ref, "process->dbo", member™) :

call create_relationship_(p_dcl_ref, "node->dbo", "member"):

call create_relationship_(p_dcl_ref, "dbo->dbo_sh_asmt®™, "owner"):

gaélrcreate_relationship_ p_decl_ref, "node/dbo/mg->process", "owner"):

eturn:

98

Appendix II ' Procedure DDM

/% DCL DBO SH ASMT 5/27/76 %/

del dbo_sh_asmt: entry(p_dcl_ref):

/% This procedure creates an entit{ for a database ob;ect shared assignment
and returns a pointer to it via "p_dcl_ref" /

call create_entitX_(p dcl_ref, "dbo_sh_asmt");

call create_relationship_{p_del ref, "process->dbo_sh_asmt", "member"):

ca%l create_relationship_(p_del_ref, "dbo->dbo_sh_asmt", "member"):

return:

/t DCL CONTROL MESSAGE 5/27/76 %/

decl_control_message: entry(g del_ref, p_dcl_entity _class_name,

p_dcl_cont_msg_numb):

/% This procedure will establish an OBPL, a remote_resource request or a
remote resource release as a control message. It will generate a control
message number (which becomes an attribute of the entity specified by
"p_del_ref") and change the "system entity so that it is aware of the
new control message number. This control message number is returned via
"n del_cont_msg_numb"

p_dcl_cont_msg_numb = extract_(SYS REF, "sxstem.last_cont_msg") + 1

call alter_ (SYS _REF, "sxstem.Tast_cont_msg , p_del_cont_msg_numb):

call create_order_(p_dc ref‘a g_dcl_entity class_name, "control_message"):

c

call create_relationship_(p ref, "sys->control_message", "member"):

call create_attribute_(p_dcI_ref, "control_message.number", "field", 10,
p_dcl_cont_msg_numb);

return:

/% DCL NODE TABLE 5/2T7/76 %/

del_node_table: entry(p_dcl_ref, p_dcl _node_tabl_name);

/% This procedure will create an entity for a node table and creates the
neceasary relationships. The entit{ is also given the name specified by
"p del_node_tabl name®. A pointer to the new entity is returned via
"n_del_ref", ®

call create_entity_(p_decl_ref, "node_table"):

call create_attribute_(p_dcl_ref, "node_table.name", "field", 12,

p_dcl_node_tabl_name);

call create_relationship_(p_dcl_ref, "node->node_table", "member"):

call create_relationship_(p_dcl_ref, "node-d>operator", "owner"):

call create_relationship_(p_dcl ref, "node->process", "owner"):

call create_relationship_(p_dcl_ref, "node->dbo", "owner"):

call create_relationship_(p_dcl ref, "node/dbo/mg->process", "owner"):

call create_relationship_(p_dcl ref, "init_node->message", 'owner"):

ca%l create_relationship_(p_dcl_ref, "accept_node->message", "owner"):

return:

99

Appendix II Procedure DDM

/% DECLARE OBPL 6/24/76 #/

del_obpl: entry(p_obglref, p_res_node_name, p_res_name, E_rea_type):

/% This procedure will create an entity for an OBPL. Inc uded in this
entitx will be attribute fields which give the name, type and node name
for the resource that the most recentlg inserted prccess into this OBPL
is waiting for. The location of the OBPL entity is returned via the

arameter "p_obplref"

call create_en Tt{_(p obplref, "obpl"):

call create_relationship_ p_oﬁplref, "obpl_pass->obpl", "member"):

call create_relationship_(p_obplref, "operator->obpl", "member") ;

call create_relationship_(p_obplref, "obpl->proc entrX" "owner®):

call create_attribute_(p_obplref, "obpl.res_name®, "f eid", 12, p_res_name):

call create_attribute (p_obplref, "obpl.res_type", nfield", 7, n_res_type);

call create_attribute_ 1e1d“, 12,

p_res_node_name):

/% Create an attribute (to be altered only when the resource 1s a message)
to indicate the message number within a message group that is being
waited for %/

ca%l create_attribute_(p_obplref, "obpl.msg numb", "field", U, won):

return

p_obplref, "obpl.res_node_name", "f

/% DECLARE OBPL CONTROL MESSAGE 6/25/76 %/

del_obpl_cont_msg: entry(p_obplref, p_dest_node_name, p_send_node_name) :

/% This procedure creates a control message used to pass the OBPL pointed
to by "p_obplref" from the node specified by "p_send_node_name" the the
node specified b¥ "p dest_node_name" #

call crea q_entitﬁ_ obpl_passref, "obel pass");

call create attré ugg_(g pl_pa?sref, obpl _pass.dest_node_name", "field",

, p_dest_node_name):

call create regat1onship_rbbpl_passref, "obpl_pass->obpl", "owner"):

/% Insert the OBPL into this control message ¥*/

call insert_(p_obplref, "obpl_pass->obpl", "first", obpl_passref):

/% Declare the "o pl_pas?" as a control message %/

call decl_control _message obel_passref. "obpl_pass", cont_msg numb):

call insert_(obpl gassrer, sys->control_message", "last®, SYS REF);

call write_Yist_(¥Control message number®, cont_msg numb, "sent from*,

p_send_node_name, "to", n_dest_node_name??
ca%l write Tist_(" representing an OBPL");
return*

100

Appendix II Procedure DDM

/% DECLARE OPERATOR 7/13/76 */

dclogt entry(p_on_node_name, p_operator_name):

/% This procedure will create an entity for an operator with name specified
by "p_operator_name" and located at the node specified by
"p_op_node_rame" %/

/% If the node specified by "p_op_node_name" does not exist, print an
error message and return %/

if find_entity_loc(noderef, "sys->node", SYS REF, p_op_node_name,

"node.name")
then do-
call write_list_("Inmalid node name:", p_op_node_name,
Tdoes not exist"):
return:
end-

/% Get the location of the node_table for "p,og_node_name" */

eos = find_entity_loc(tableref, "node->node_table", noderef,
P_op_node_name, "node_table.name"):

/% If "p_operator_name" was greviously declared as an operator, orint an

rror message and return %/

if “find_entity_loc(opref, "node->operator", tableref, p_operator_name,

"operator.name"
then do-

call write_list_(p_operator_name, "has been previously",

N "declared as an operator at node", p_op_node_name):
return:

end:
/% If "p_operator_name" was Rreviously declared as a process, print an
error message and return %/
if “find_entity_loc(procref, "node->process", tableref, p_operator_name,
"process.name")
then do:
call write_list_(p_operator_name, "has been previously declared",
Was a process at node", p_op_ncde_name):
return:
end:
/% Create an entity for the operator and declare the necessary
relationships and attributes #/
call ereate_entit*_(oprer, "operator"):
call create_attribute_(opref, "operator.name", "field", 12, g_operatornname):
"y.

call create_relationship_(opref, "operator->op_con", "owner
call create_relationship_(opref, "operator->obpl", "owner"):
call create_relationship_(opref, "node->operator", "member"):
call insert_(opref, "node->operator", "first", tableref):

call write_list (p_operator_name, "has been declared as an operator",
. at node", p_op_node_name);
return:

101

Appendix IT Procedure DDM

/® DCL PROCESS 5/27/76 %/

del_nrocesas: entry(g del_ref, p_del_proc_name):

/% This procedure will create an entity for a process, give it the name
specified b{ "p del_proc_name" and create the necessary relationships #/

call create_en 1tg_(p;acl_rer, "process");

call create_attribute_(p_dcl_ref, "process.name", "field", 12,

p_del_proc_name):

call create_attribute (p_dclaref, "process.accesa_txpe", "field™, 10, ""):

call create_relationship_(p_dcl_ref, "node-)grocess , "member"%):

call create_relationship_ (p_decl _ref, "node/d o/mg-)process"& "member")

call create_relationship_(p_dcl _ref, "process->dbo", "owner");:

call create_relationship_(p_dcl_ref, "process->dbo_sh_asmt", "owner");

call create_relationship_(p_decl_ref, "procesa-)og_con , "owner"):

call create_relationship_(p_dcl_ref, "send_proc->message", "owner"):

ca%l create_relationship_(p_dcl_ref, "rcv_proc->message", “owner"):

return:

é'l DECLARE ERO%ESSbEngg q 6/25/76 %/ |

cl_proc_entry: entry(p_obplref, p_proc_node_name, p_process_name);

/% Tgia procedure inl create an eﬁgity for a process entry in an OBPL.
The entity will be inserted into the OBPL pointed to by "p_obplref"
and its process and location of the process will be specified by
"p process_name" and "p_proc_node_name®, respectively *

call create_entit¥_(proq_entryref "proq_entrX" H

call create relationship_(proc_entryref, Mobpl->proc_entry", "member"):

call create_attribute_(proc_entryref, "proc_entry.process_name", "field",

12, e_procesa_name):
call create_attribute_(proc_entryref, "proc_entry.node_name", "field",
12, o_proc_node_name);

ca%l insert_{proc_entryref, "obpl->proc_entry", "first", p_obplref):

return:

/% DECLARE REMOTE RESOURCE GRANT 6/17/76 %/
del_rem_res_grant: entry(p_dbo_node_name, p_dbo_name, p_proc_node_name,
p_process_name, p_codf;msg_numb):
/% This procedure will create an entity for a remote resource allocation and
then declare it as a control message. The resource represented by
"y dbo_name" at the node represented by "p_dbo_node_name" will be
alTocated to the process represented by "p_process_name" at the node
represented bg "n_proc_node_name®™. The control message number will be
returned via the parameter Wp_cont_msg_numb"., #
call create_entity_(res_grant_ref, "res grant"):
call create_attribute_(res_grant_ref, "res grant.res_node_name",
"field", 12, p_dbo_node_name):
call create_attribute_(res_grant_ref, "res_grant.res_name",
"field", 12, p_dbo_name):
call create_attribute_(res_grant_ref, "res_grant.proc_node_name",
"Field", 12, o_proc_node_name):
call create_attribute_(res_grant_ref, "res_grant.proc_name",
"field", 12, p_process name):
call dcl_control_message(res_grant_ref, "res_grant",
_cont_msg_numb) :
ca%l insert_(res_grant_ref, "sys->control_message", "last", SYS_REF):
return:

102

Anpendix II Procedure DDM

/* FIND ENTITY LQCATION 5/19/76 %/

find_entity_loc: entry(p_entity ref, p_set_class_name, p_ownerref,

p_entity_name, p_attr_class_name) returns(bit(17):

/®* This procedure determines the database address of the entity with name
"p_entity_name" (specified by the attribute "p_attr_class name") which
is a member of the set occurrence (designated by the parameter
"n_set_class name") owned by the record occurrence desigriated by
"p_ownerref",

If the desired named entity does not exist, a true value ("1"b) is
returned and "p_entity _ref" is unchanged. Otherwise a false value ("0"b)
is returned and "p_entity ref" is updated with the database address of
the desired entity. ¥/
g?l; find_first_(temp_ref, p_set_class_name, p_ownerref, eos);
eos
then do-
temp_name = extract_(temp_ref, p_gttn_clasa_name):
do while (" eos & (p_entity_name "= temp_name)):
g?ll find_next_(temp_ref, p_set_class_name, eos):
eos
q then temp_name = extract_(temp_ref, p_attr_class_name):
end-

end*
if © eos then p_entity_ref = temp_ref:
return (eos):

/* INITIATE ORPL 6/25/76 */

initiate_obpl: entry(p_proc_node name, p_process_name, p_res_node_name,

p_res name p_res_t{pe :

/% This procedure wiil initiate the creation and expansion of an OBPL. The
first process to bYe placed on the list is specified by "p_process_name"
and is located in the node specified bg "P_proc_node name"™. The process
is waiting for the resource specified by '¥_res_name'W and located in
the node specified by "p_res_node_name". he resource type ("dbo" or
"message") 1s specified by "p_res_type". #/

/% Create the OBPL entit¥ and have it initialized with the resource and
process information given by the parameters. #

call decl_obpl(obplref, g_rea_node_name, p_res_name, p_res_type):

call del_proc_entry(obplref, p_proc node_name, p_process_name):

/% If the process is waiting for a message, then we must find out the
messaze numher (within the message group) that is desired and put this
information into the OBPL. In addition, if the process and the sender
of the message are in different nodes, then we must send the OBPL to the
node which initiated the message group rather than try to expand
the OPPL riecht away #/

if p_res_type = "message"

then do:
/% Get the location of the entity for the message group */
eos = find_entity_loc(mﬁref, "sys->message", SYS_REF, p_res_name,
"message.name"):
/* Get the number of the message desired */
message_numb = extract_(mgref, "message.number_qd"; + 1
call alfer_(obplref,h"obp .msg_numb™, message_numb):
if p_proc_node_name "= p_res_node_name
then do:
call dcl_obpl cont_msg(obplref, p_res_node_name,
p_proc_node_name) ;
return:
end-

end:
/® FExpand the OBPL as much as possible in this node #*/
call exp_obpl(obplref, o_res_node_name):
return-
end DDM:

103

Appendix II

REQ: vprocedure:
/%

Procedure REQ

This procedure contains the subroutine which allows processes

to request database objects for shared or exclusive use. The following
L4

user visible function is included:
REQUEST DATABASE OBJECT

del cont_msg _numb
del dbo_noderef

decl dhoref

del dbo_tableref
del eos

del exc_ownerref
del ndm_proc_ownerref
del p_access_type
del p_dbo_name

del p_dbo_node_name
del pnoderef

del p_process_name
del p_proc_node_name
del procre

del ptableref

del res_req_ref

del sh_asmtref

del write list_
4include DDM_serv_routines:
$include ADT_primitives:

104

fixed bin:

fixed bin21 ;:
fixed bin(17):
char(%*):
char(#®):
char(®):

fixed bin(17):
char(#*):

char :

fixed bin(17);
fixed bin{(17):
fixed bin

17):
fixed bin(17
entry options(variable):

.
.

Appendix II Procedure REQ

/% REQUEST DATABASE OBJECT 5/726/76 %/
request_dbo: radbo: entry(p_access_type, p_proc_node_name, p_process_name,
E_dbo_node_name, p_dbo_name):
/* Verify that the node specified by "p _proc_node_name" exists */
if find_entity_loc(pnoderef, "sys->node", SYS_REF, p_proc_node_name,
"node.name")
then do-
call write_list ("Invalid process node name. ", p_proc_node_name,
does not exist.h):
return:

end:
/% Verifx that the process specified by "p_process_name" exists at node
p_proc_node_name" #/
eos = find _entity_loc(ptableref, "node->node_table", pnoderef,
pIgroq_node_name, "node_table.name™):
if find_entity_loc(procref, "node->process", ptableref, p_process_name,
"process.name")
then do:
call write_list_("Invalid process name", p_process_name, "at node",
. p_proc_node_name, "does not exist."):
return-

end:
/* Verify that access type is "shared" or "exclusive" #/
if (p€ﬁccegs_type = "exclusive") & (p_access_type = "shared")
en do-
ca%l write_list_("Invalid access type, request not processed"):
return:

end:
/* Check if the process is blocked #/
cail find_owner_(ndm_proc_ownerref, "node/dbo/mg->process", procref):
if en%%ty_glasa_name_(ndm_proq_ownerref) = "node_table"

en do:
call write_list_("Invalid request, process", g_process_name,
¢ at node", b_proc_node_name, "is not active. "):
return:

end: .
/* Check if the process and resource are at the same node. #/
f p_proc_node_name = p._dbo_node_name
then do: /* Process and resource are at the same node */
/*Verify that the database object specified by "p_dbo_name"
exists at node "p_dbo node_name" #/
if find_entity_loc(dboref, "node->dbo", ptableref, p_dbo_name,
"dbo.name")
then do:
call write_list_("Invalid database object name.",
_dbo_name, "at node", p_dbo_node_name,
'does not exist."):
return:
end:
/%*Test to see if the dbo has already been assigned to the process#/
if inserted_(dboref, "8rocess->dbo"¥
then do: /%Check if the process has exclusive control
of the database object #/
call find_owner_(exc_ownerref, "process->dbo", dboref):
if procref = exc_ownerref
then do;
call write_list_("Invalid request. Process",
p_process_name, "at node",
_proc_node_name, "already has",
‘exclusive control of", p_dbo_name,
"at node", p_dbo_node_name):
return:
end:
end:
else do-
/%Check if the process has shared access to the dbo */
if empty,interaection_(procref, "process->dbo_sh_asmt",

105

Appendix II Procedure REQ

dboref, "dbo->dbo_sh_asmt")
then do:
call write_list_("Invalid request. Process",
p_process_name, "at node",
B_proq_ndae_name, "already has",
access to", p_dbo_name, "at node",
p_dbo_node_name) :
return*
q end:
end:
/% Check if the database object miﬁht be available for assignment */
if inserted_(dboref, "process->dbo") | " empty_(dboref,
"node/dbo/mg=->process")
then do:
/%Block the process if the database object has been
assigned to another process for exclusive use or
if other processes are currently queued for the
database object ®
call alter_(procref, “process.access_type",
p_access_type):
call remove_(procref, "node/dbo/mg->process"):
call 1nser§ prg?ref, "node/dbo/mg->process", "last",
oref):
call write_list_("Resource not available,",
grocess blocked.");
call initiate_obpl(p_proc_node_name, p_process_nanme,
p_dbo_node_name, p_dbo_name, "dbo"):
return:
end:
/% Check if the request is for shared access %/
if p_access_type = "shared"
then do: /%Give the process shared access to the desired
database object #
call del_dbo_sh_asmt(sh_asmtref):
call insert_(sh ?smtref, "dbo->dbo_sh_asmt", "first",
oref):
call insert_(sh_asmtref, "process->dbo_sh_asmt", "first",
procref):
call write_list_(p_process _name, "at node",
p_proc_node_name, "granted shared access to",
. p_dbo_name, "at node", p_dbo_node_name):
return:

end:
/%The next if statement will be executed if the request is for
exclusive use of the database object #/
/® ngcktiglany process has shared access to the desired database
ec
if ? empty_(dboref, "dbo->dbo_sh_asmt")
then do:

/%Queue the process for exclusive use of the database
object because at least one other process currently
has shared access to the database object. #/

call alter_(procref "Brocess.accesa_type", "exclusive"):

call remove_ procref, node/dbo/mg->process"):

call 1nserg prggref. "node/dbo/mg~->process", "last",

oref):

call write list_("Resource is not currently available"

Wfor exclusive use, process", p_procesa_name’:
call write_list_ (" at
Wis blocked."):
call initiate_obpl(p_proc_node_name, p_process_name,
e,

node", p_proc_node_name,

p_dbo_node_name, p_dbo_nam dbo"):
return:
end:
else do- /%Grant the rrocess sxclusive use of the desired

~ database object.
call insert_(dboref, "process->dbo", "first", procref):

106

Appendix II Procedure REQ

call write_list_(p_process_name, "at node",
_proc_node_name, "is granted exclusive use"
'of", p_dbo_name, "at node", p_dbo_node_namef:

return:
end:
end:
/* The next section will be executed when a process requests a remote

resource

/* Verify that the desired database object exists */

if find_entity_loc(dbo_ncderef, "sys->node", SYS REF, p_dbo_node_name,
"node.name")

then do:
call write list_("Invalid database object node name. ",
. p_dbo_node_name, "does not exist."):

return:

en
eos = find_entity_loc(dbo_tableref, "node->node_table", dbo_noderef,
p_dbo_node_name, "node_table.name"):
if figg_engfty Toc(dboref, "node->dbo", dbo_tableref, p_dbo_name, "dbo.name")
en do:

call write list_("Invalid database object name. ", p_dbo_name,
¢ at node", p_dto_node_name, "does not exist."):
return:

end-
eos = find_entity_loc(dbo_tableref, "node->node_table",-pnoderef,
_dbo_node_name, "node_table.name"):
/* Check if the node containing the process is aware of the existence of
the desired database object. *
if find_entity_loc(dboref, "node->dbo", dbo_tableref g_dbo_name, "dbo.name")
then do: /% Create local information about the remote resource and
block the process.
call del_dbo/*boref, p_dbo_name): ,
call insert_(dboref, "node->dbo", "first" dbo_tableref):
call alter_(procref, "process.access type", _access_type):
call remove_(procref, "node/dbo/mg->process"):
caél insert_(procref, "node/dbo/mg->process", "last", dboref):
end;
else do: /% Check if the database object has already been assigned
to the process. If it has, print an error message,
otherwise block the process. /
if inserted_(dboref, "process->dbo")
then do:
call find_owner_(exc_ownerref, "process->dbo", dboref):
if procref = exc_ownerref
then do:
call write_list ("Invalid request. Process",
p_process_name, "at node",
R_proq_node_name, "already has",
exclusive control of", p_dbo_name,
"at node", p_dbo_node_name);
return-
end:
end-
else g?:“ ty_int i (v
empty_intersection rocref, "process->dto_sh_asmt"
dboref, "db04$dgo_sh_asmte) '
then do:
call write_list_("Invalid request. Process",
p_process name, "at node",
_proc_node_name, “already has",
'shared access to", p_dbo_name,
"at node", p_dbo_node_name):
return:
end:
end:
/% Legal request, "block" the process. %/
call alter_(procref, "process.access_type", p_access_type):

107

Appendix II Procedure REQ

call remove,iprocref. "node/dbo/mg->process"):
call insert_(procref, "node/dbo/mg->process", "last", dboref):
end:

call write list ("Process", p_process_name, "at node", p_proc_node_name,
Wis blocked while a request is sent to"):

call write_list_(" the node containing the desired resource"):

/% Create an entity for a remote resource request and then declare it

as a control message

call create_entitg_(res_req_ref, "res _req"):

call create_attribute_(res_req_ref, "res_req.access_type", "field", 9,
p_access_type):

call create_attribute_(res_req_ref, "res req.req _node_name", "field", 12,
p_proc_node_name) :

call create_attrIbute_(res_req_ref, "res_req.req_proc_name", "field", 12,
p_process_name):

call create_attribute_(res_req ref, "res_req.dest_node_name", "field", 12,
p_dbo_node_name):

call create_ggtribut?_(rea_req,ref, "res req.dest_dbo_name", "field", 12,
p_dbo_name):

call del_control_message(res_req ref, "rea_req"{ cont_msg_numb):

call insert (res req_ref, "sys->control_message", "last", SYS_REF):

call write_Yist_{"Contro message number", cont_msg numb, "sent from",
t_proc_node_name, "to", p_dbo_node_name):

call write_list (" representing a remote resource request") -

return-

end RFO-

108

Appendix IT Procedure MSG

1‘.
MSG* procecdure:
/% This procedure contains the aubroutines which perform the
messare management functions for process to process communication within
a network. The followine user visible functions are included:
ACCEPT MESSAGE GROUP
INITIATE MESSAGE GROUP

RECEIVE MESSAGE

SEND MESSAGE ®/
del accept_node_name char(12):
decl accept_node_tableref fixed bin(17):
del accept_proc_name char(12):
del accept_procref fixed bin(17):
del cont_mse_numb fixed bin-
del eos bit(3):
del init_node_name char(12):
del init_node_tableref fixed bin(17):
del init_proc_name char(12):
del init_procref fixed bin(17):
decl messageref fixed bin(17):
del meref fixed bin(17):
del ndm_proc_ownerref fixed bin(17)"
del noderef fixed bin(17):
del p_accept_node_name char(®):
del p_accept_proc_name char(®*):
del p_init_node_name char(®):
del p_init_proc_name char(¥):
del p_mg_name char(%*):
del procref fixed bin(17):
del rev_use_numb fixed bin-
del send _msg_numb fixed bin:
del write_list_ entry options(variable):

Yinclude DDM_serv_routines:
2include ADT_primitives:

109

Appendix II Procedure MSG

/% ACCEPT MESsSAGE GROUP T/1/76 %/

acceptmg: entry(p_mg_name, p_accept_node_name, p_accept_proc_name):

/% After this procedure is executed, the process specified by
"n accept_proc_name" (and locateé at the node specified bg
"p_accept_node_name") will be able to accept messages in the message
roup specified by "p_mg_name" */

/* If the message group specified by "p_mg name" does not exist, print
an error message and return %/

if find_entity_loc(mgref, "sys->message", SYS_REF, p_mg_name,

"message.name"}
then do:
call write list_("invalid message group name: ", p_mg_name,
W does not exist"):
return:
end:

/% If the message group has already been accepted by a process, print an
error message and return
if inserted_(mgref, "rcv_proc->message")

then do:
call write list ("Invalid accept message group. "* p_mg_name,
. ¥ has already been accepted by a process)
return:

end:
/% If the node specified by "p_accept_node_name" is not the accepting
node that was specified when the message group was initialized,
print an error message and return */
call find_owner_(accept_node_tableref, "accept_node->message", mgref):
if p_ggcepg.node_name = extract_(accept_node_tableref, "node_table.name")
en do:
call write list_(p_accept_node_name, " is not the node that was ",
Wspecified to accept ", p_mg _name, " when the message"):
call write_list_(" group was {nitialized. The acceptmg",
W pequest is rejected");
return:
end;
/% If the process specified bx "p_accept_proc_name" does not exist
at the node specified by "p_accept_node_name", print an error
message and return %/
if find_entity_loc(accept_procref, "node->process", accept_node_tableref,
p_accept_proc_name, "process.name")

then do:
call write_list_("Invalid process name: " p_accept_proc_name,
Tdoes not exist at node ", p_accept_r.ode_name):
regurn:
end:

/% If the process acceeting the message group is not active, print an error
message and return %/
call find_owner_(ndm _proc_ownerref, "node/dbo/mg->process", accept_procref):
if en%%ty_glass_name_(ndm_proc_ownerref) = "node_table"
en do;
call write_list_("Invalid acceptmg command. Process",
p_accept_proc_name, "is not active"):
return:
end:
/% If the process accepting the message group is the same one that
initiated it, grint an error message and return *®
call find_owner_(init _node_tableref, init_node->message", mgref);
if in%g_noge,tableref = accept_node_tableref
en do:
/* The initiating ard accepting nodes are the same. See if
the initiatin? and accepting processes are the same %/
call find_owner_(init_procref, "send_proc->message", mgref):
if init_procref = accept_procref
then do:
call write_list_("Initiating and accepting processes",
"are the same for message group ", p_mg name,
nacceptmg command rejected"):

110

Appendix II Procedure MSG

return:
end:
end-
/% Insert the messaze group entity into the accept set for the process
specified by "p_accept_proc_name" #
call insert (mgref, "rcv_proc->message", "first", accept_procref):
call write 1ist_(p_meg_name, " has been accepted by ", p_accept_proc_name,
. W at node ", p_accept_node_name):
return

/% INITIATE MESSAGE GROUP 7/1/76 */
initme: entry(p_mg_name, o_init_node_name, p_init_proc_name,

p_accept_node_name):
/* This procedure will create a message eroup with the global name
specified by "p_mg_name". The only process that can send messages
in this message group is specified by "p_init_proc_name" and is Yocated
at the node specified by "p_init_node_name". The process that will
receive messagzes in the given message group is located in the
node specified by "p_accept_node_name". The specific process that will
accept the messazes will be given in a subsequent call to "acceptmg"
b¥ the user.
/% If we have a duplicate message group name, we must print an error

messaze and return *
if f%gd_egtity_loc(mgref, "sys->message", SYS_REF, o_mg_name, "message.name")
en do:
call write_list_("Duplicate message group name. initmg",
. "command rejected")-
return:

end-

/% If the node specified by "p_init_node_name" does not exist, print
and error message and return #*/

if find_entity_loc(noderef, "sys->node", SYS REF, p_init_node_name,

"node .name"
then do:
call write_list_("Invalid node name: ", p_init_node_name,
" does not exist"):
return:
end-

/% Get the location of the node_table for "p_init_node_name" #*/

eos = find_entity_loc(init_node_tableref, "node->node_table", noderef,

p_init_node_name, "node_table.name"):

/% If the process apecIfied by "p_init_proc_name" does not exist at the
node specified by "p_init_node_name", then print an error message
and return %/

if find_entity_loc(procref, "node->process", init_node_tableref,

p_init_proc_name, "process.name"
then do:
call write list_("Invalid process name: ", p_init proc_name,
does not exist at ", p_init_node_name):
return:
end:

/% If the process specified by "p_init_proc_name" is not active, print
an error message and return %/

call find_owner_(ndm_proc_ownerref, "node{dbo/mg-)grocess“, procref):

if en%%ty_glass_name_(ndm_proc_ownerref) = "node_table"

en do:
call write_list_("Invalid initmg command. Process ",
. p_init_proc_name, " is not active"):
return:

end:
/% If the node specified b{ "p_accept_node_name" does not exist, print
an error message and return %/
if find_entity_loc(noderef, "sys->node", SYS_REF, p_accept_node_name,
"node.name")

1M1

Appendix II Procedure MSG

then do-
call write list_("Invalid node name: ", p_accept_node_name,
W does not exist"):
return:
end:

/® Get the location of the node_table for "p_accept_node_name" %/
eos = find_entity_loc(accept_node_tableref, Wnode->node_table", noderef,
p_accept_node_name, "node_table.name"):

/* Create an entity for a message group, create the necessary relationships
and attributes, and insert the entity into the appropriate sets */

call create_entity_(mgref "messaﬁe"):

call create_relationship_(mgref, Wsys->message", "member"):

call create_relationship_(mgref, "init_node->message", "member"):

call create_relationship_(mgref, "accept_node-)message“& "member") :

call create_relationship_(mgref, "send_proc->message”, member"):

call create_relationship_(mgref, "rcv_proc->message", "member")

call create_relationship_(mgref, "node/dbo/mg->process", "owner"):

call create_attribute_(mgref, "message.number_sent", "field", 4, "O"):

call create_attribute_(mgref, "message.number_qd", "field", ﬁ, o"):

call create_attribute_(mgref, "message.number_rcvd", "field", U4, "O"):

call create_attribute_(mgref, "messaﬁe.name”, "field", 12, p_mg_name):

call insert_(mgref, "sys->message", Yfirst", SYS_REF):

call insert_(mgref, "init_node->message", "first" init_node_tableref):

call insert_(mgref, "accept_node-)message"{ "firsé", accept_node_tableref):

call insert_(mgref, "send_proc->message', "first", procref):

ca%l write_1ist_("Message group ", p_mg_name, "has been initiated"):

return:

112

Appendix IT Procedure MSG

/% RECEIVE MESSAGE 7/1/76 */

revmse: entry(p_mg_name):

/% this procedure will simulate the receiveing of a message in the messare
group specified by "p_mg_name"

/% If the messaze eroup specified by "p_mg name" does not exist, print
an error message and return %/

if find_entity_loc(meref, "sys->message", SYS _REF, p_mg_name, "message.name")

then do:
call write list_("invalid message group name: " p_mg_name,
" does not exist"):-
return:

end:
/% If no process has accepted the messame Rroup, print an error message
and return */
if “inserted_(mgref, "rcv_proc->message")
then do:
call write_list_("Invalid rcvmsaz command. Mo process has",
Taccepted messarge group ", o_mg_name):
return-
end:
/% Get the name and node of the process that should receive the message ®/
call find_owner_(accept_procref, "pev_proc->message", mgref):
accept_proc_name = extract (accegt_procref, "nrocess.name"):
call find_owner_(accept_node_tableref, "accep _node->messaee", meref):
accept_node_name = extract_(accept_nod& tableref "node_table.name"):
/% If the process specified by "accept_proc_name® is not active, print
an error message and return %/
call find_owner_(ndm proc_ownerref, "node{dbo/mg-)process", accept_procref):
if en%ity_glass*name_(ndm_oroc_ownerref) = "node_table"
nen do:
call write_list_("Process", accept_proc_name, "at node",
accept_node_name, "is not active. No messape can be') -
call write_list (" received in message group", p_mg_name):
return:
end:
/% Find out if the message can be received, or if the process must
be blocked %/
rev_mse_numb = extract_(mgref, "message.number_rcvd") :
if rcgﬁmsganumb < extract_(mgref, "message.number_qd")
en do-
/% Allow the process to receive the messace */
rcev_msg_numb = rcv_msg numb + 1:
call alten_(mgrefﬁ "message.number_rcvd", rcv_mse_numb):
call write 1list_("Process", accept_proc_name, "at node",
accept_node_name, "has received"):
call write_list_(" a message in message ¢roup", D_me_name)
regurn'
end-

do*

/* Plock the process */

call remove_(accept_procref, "node/dbo/me->process") "

call insert (accept_procref, "node/dbo/me->process", "first",

else

mgref)
call write_list_("Process ", accegt_proc~name, "at node",
accept_node_name, "is blocked waiting for a"):
call write_list (" message in message group", D_mg_name):
/% Get the name of the node that initiated (or "owns") the message
group

call find_owner_(init_node_tableref, "init_node->message", meref):

init_node_name = extract_(init_node_tableref, "node_table.name"):

/% Check for deadlock #*/

call initiate_obpl(accept_node_name, accept_proc_name,
init_node_name, p_me_name, "message"):

regurn:

end:

113

Appendix II Procedure MSG

/% SEND MESSAGE 7/1/76 %/
sendmseg: entry(p_mg name):
/% This procedure will simulate the sending of a message in the message

zrougespecified by "p_mg_name" #/

/% 1f ¢t message group specified by "p_mg_name" does not exist, print
an error message and return %/
if figg_engity_loc(mgref, "sys->message", SYS_REF, _mg_name, "message.name")
en do:
call write list ("Invalid message group name: ", p_mg_name,
"does not exist"):
return-
end:

/% Verify that the process that should send the message is active ®/
call find_owner_(init_procref, "send_eroc-)message", mgref):
call find_owner_(ndm_proc_ownerref, node/dbo/mg->process", init procref):
if ent%ty_glass_name_(ndm_proc_ownerref) = "node_table"
then do:
/* The process that should send the message is not active. Get
its name and node and print an error message. #
call find_owner_(init_node_tableref, "init_node->message", mgref):
init_node_name = extract_(init_node_tableref, "node_table.name"):
init_proc_name = extract_(init_procref, "process.name"):

call write_list ("Process ", init_proc_name, " at node ",
nit_node_name, " is not active. No message can be ")

call write_ list (" sent in message group ", p_mg _name):

regurn:

end:

/* Add 1 to the number of messagzes sent in this message group */
send_msg_numb = extract_(mgref, "messa e.number_sent") + 1:
call alter_(mgref, "message.number_sent", send_msg numb):
/% Find cut if the message must be sent between nodes
call find_ownen_sinit_no e_tableref, "init node->message", m ref):
call find_owner_(accep} node_tableref "accept_node-->message®, mgref):
if 1n%§_noge_tdsleref = accept_node_tableref
en do:
/% Send a control message stating that a message has been sent in
the message qrou? specified bx "p_mg_name" #*/
call create_entitg_ messageref, msgﬁ);
call create_attribute_ (messageref, "msg.mg _name", "field", 12,
p_mg_name);
call del_control_message(messageref, "msg", cont_msg_numb) :
call insert_(messageref, "sys->control message", "last", SYS_REF):
/% Get the names of the nodes involved */
init_node_name = extract_(init_node_tableref, "node_table.name"):
accept_node_name = extract_(accept_node_tableref,
"node_table.name"):
call writeﬁlist_(”Control message number ", cont_msg numb,

sent from ", init_node_name, " to ", accept_node_name):
call write_list_ (" representing a message in a message",
igroup"):

regurn'

end:

/® If the next section of code is executed, then the message should be sent
between processes at the same node %/

/% The number of messages queued eguals the number of messages sent because
there is no delax across any node %/

call alten_(mgrefﬁ message .number_qd", send_msg numb):

call write_list_("A message has been sent in message group ", p_mg_name) ;

/% If no process has accepted the message group, return rather than see ir
a process should be woken up *

if “inserted_(mgref, "rcv_proc->message")

then return:

/% If a process is waiting for this message, wake it up and let it "receive"
the message

call find_ownen_iacceptﬁprocref, "pov_proc->message”, mgref):

call find _owner_(ndm_proc_ownerref, "node/dbo/mg->process", accept_procref):

if ndm_proc_ownerref = mgref

114

Appendix IT Procedure MSG

then do-
/% Wake up the prccess pointed to by "accept_procref" #/
call remove_saccept_procref, "node/dbo/mg->process"):
call insert_(accept_procref, "node/dbo/mg->process", "first",
accept_node_tableref):
/* "Receive" the message #*/
rev_mse_numb = extract_(mgref, "message.number_rcvd") + 1°
call alter_ (mgref, "message.number_rcvd", rcv_msg'numb)r
/® Get the name of the process that was awakened */
accept_node_name = extract_(accept_node_tableref,
"node_table.name"):
accept_proc_name = extract_(accept_procref, "process.name"):
call write Tist_("Process", accept_proc_name, "at node",
accegt node_name, "has been awakened upon"):
call write list (" receipt of a message in message group",
_meg_name) *
end-
return:
end MSG*

115

Appendix II Procedure OP_CON

%.

OP_CON: procedure-

/* This procedure contains subroutines which create an operator connection,
allow the operator to send messages over the connection, allow the
operator to receive messages over the connection, and allow the
operator to report its status (active or blockedi with respect to the
operator connection. The following user visible functions are included:

CREATE OPERATOR CONNECTION
OPERATOR MESSAGE
OPERATOR STATUS

RECEIVE OPERATOR MESSAGE L
del con_opref fixed bin(17):
del eos bit(1):
del ndm_proc_ownerref fixed bin(17)"
del noderef fixed bin(17):
del node_tableref fixed bin(17):
del number_ad fixed bin-
del obplref fixed bin(17):
del op_conref fixed bin(17):
del opref fixed bin(17):
del p_con_name char(®*):
del p_con_node_name char(®*):
del p_op_name char(#*):
del p_op_node_name char(®
del p_process_name char(¥)-
del process_name char{(12):
del proc_node_name char(12):
del procref fixed bin(17):
del p_state char(#):
del tableref fixed bin(17);
del write_list_ entry options({variable):
¢include DDM_serv_routines:
$include ADT_primitives:*
/% CREATE OPERATOR CONNECTION “7/9/76 %/

concon* entry(p_con_name, p_con_node_name, p_ai_name, p_process_name):

/% This procedure will create a connection b-.ween the operator s ecified
by "p_op_name" and the process specifie: by "p_process_name", both
located at the node specified by "p_op_node_name". The connection will
te gziven the name specified by "p_con_name" &/

/% If we have a duplicate operator connection name, print an error message
and return ¥/

if “find_entity_loc(op_conref, "sys->op_con", SYS_REF, p_con_name,

"op_con.name
then do:
call write_list_("Duplicate operator connection name.",
. "Command rejected"):
return:

end-
/* If the node specified by "p_con_node_name" does not exist, print an
error message and return %/
if find_entity_loc(noderef, "sys->node", SYS_REF, p_con_node_name,
"node .name")
then do:
call write_list_("Invalid node name:", p_con_node_name,
Wdoes not exist"):
return-
end:
/% Get the location of the node_table for "g_con_nodq_name" &/
eos = find_entity_loc(node_tableref, "node->node_table", noderef,

116

Appendix I Procedure OP_CON

p_con_node_name, "node_table.name"):
/* If the node iIs unaware of the existence of the operator, print an
error messaze and return #
if find_entitymloc(opref’ "node->operator", node_tableref, p_op_name,
"operator.name®)
then do:
call write_list_ ("Invalid operator name:", p_op_name,
Wdoes not exist at node", p_con node name):
return:
end:
/% If the process specified by "p_process_name" does not exist at the
node specified by "p_con_node_name", print an error message and return %/
if find_entity_loc(procrefﬁ "node->process", node_tableref,
p_process_name, "process.name")
then do:
call write_list_("Invalid process name:", p_process name,
¢ "does not exist at node", p_con_node_name) ;
return-

end:

/* If the process specified by "p_process_name" is not active, print an
error message and return %/
call find_owner_(ndm_proc_ownerref, "node/dbo/mg->process", procref):
if en%%ty_glass_name_(ndm_proq_ownerref) = "node_table"
en do-
call write _list_("Invalid copcon command. Process", p_process_name,
Wis not active"):

return:

end:
/* Create an entity for an operator connection and insert it into the

groper sets %/

call create_entity_ (op_conref, "op_con"):
call create_attribute_{op_conref, "op_con.name", "field", 12, D_con_name) :
call create_attribute_(op_conref, "op_con.number_qd", "field®, T, wgn);:
call create_relationship_{op_conref, fprocess->op_con", "member"):
call create_relationship_(op_conref, "operator->o _con", "member"):
call create_relationship_(op_conref, "sys-)og_con', "member"):
call create_relationship (op_conref, "node/dbo/mg->process", "owner"):
call insert_ op_conref,'Wprocess->op_con"& "first", procref):
call insert_(op_conref, "operator->op_con", "first*. oBref):
call insert_(op_conref, "sys->op_con", "first", SYS REF):
ca%l write_list_("Operator connection®, p_con_name, "has been established"):
return:

17

Appendix II Procedure OP_CON

/% OPERATOR MESSAGE 7/13/76 %/

opmsg: entry(p_con_name):

/% This procedure will cause a message to be sent from an operator to a
process over the operator connection sgecified by "p_con_name". If a
grocess is waiting for this message, it will be awakened and given

he message, otherwise the message will be queued. Any OBPL's that
were waitine for state information about the operator with respect to
this operator connection will be discarded since the operator is active %/

/% If the operator connection specified by "n_con_name" does not exist,
print an error message and return */

if find_entity_loc(op_conref, "sys->op_con", SYS_REF, p_con_name,

"op_con.name")
then do-
call write_list_("Invalid operator connection name:",
. p._con_name, "does not exist"):
return-

end*
/* Discard any ORPL's that were waiting for state information from the
operator that sent the message */

call find_owner_(opref, "oBerator->oB_con", op_conref):
call find_first_(obplref, "operator- obpl", opref, eos):
do while (" eos):

call remove_(obplref, "operator->obpl"):

call find_firsh_(obpiref, "operator->obpl", opref, eos):

end-
/% If no process is waiting for the message, aqueue it an return L)
if emgﬁy_(gp_conref, "node/dbo/mg-)process"5
en do-

number_ad = extract_(op_conref, "og_con.number_qd") + 1

call alter_(op_conref, "op_con.number_qd", number_qd):

call write 1ist ("No process is waiting for the messape,",

Wgo it is queuved"):
return:

end:

/* A process is waiting for the message, so we must wake it up */

call find_first_(procref, "node/dbo/mg->process", op_conref, eos):

call remove_(procref, "node/dbo/mg->process"):

call find_owner_(tableref, "node->process", orocref);

call insert_(procref, "node/dbo/mg->process", "first", tableref):

/% Get the name of the process that was awakened #/

process name = extract_(procref, "process.name"):

proc_node_name = extract_(tableref, "node_table.name"):

call write list_ (process_name, "at node", proc_node_name, "has been",
Tawakened upon™):

call write_list_(" receipt of a message over operator connection",

. p_con_name) :
return:

118

Appendix II Procedure OP_CON

/% OPERATOR STATUS T/14/76 %*/
ogstat: entry(p_op_node_name, p_op_name, p_state, p_con_name):
/%* This procedure will take the aperopriate action when an operator
reports that it is "active" or "waiting" ¥/
/% If the node specified by "p_op_node_name" does not exist, print an
error message and return %/
if find_entity_loc(noderef, "sys->node", SYS REF, p_op_node_name,
"node.name")
then do-
call write_list ("Invalid node rame:", p_op_node_name,
. Tdoes not exist");
return:

end-
/* Get the location of the node table for tle node specified by
"n_op_node_name" #/
eoa = find_entity_loc(tableref, "node->node_table", noderef,
p_op_node_name, "node_table.name"):
/® if the operator specified by "p_op_name" does not exist at the given
node, print an error message and return %/
if find,entity_loc(opref& "node->operator", tableref, p_op_name,
"operator.name

then do-
call write_list_("Invalid operator name:", p_op_name,
Tidoes not exist"):
return:
end

/% If the operator is active, we can discard all OBPL's that desired this
state informationﬁ and then return %/
if p_state = "active
then do:
call find_first (obplref, "operator->obpl", opref, eos):
do wh.le (“eos):
call remove_(obplref, "operator->obpl"):
call find_fIrst_(obpiref, "operator->obpl", opref, eos):

end:
call write 1ist_("All ORPL's waiting for the given state",
Winformation have been discarded"):

return:
end:
if p_state "= "waiting"
then do:

call write_list_("Invalid state. An operator can only be",
active or waiting®):

regurnf

end:

/* If the operator connection specified by "p_con_name" does not exist,
print an error message and return because one can not wait for a
messaze over a non_existent operator connection %/

it find_ertity_loc(op_conref, "sys->op_con", SYS_REF, p_con_name,

"op_con.name"
then do:
call write_list_("Invalid operator connection name:",
: p_con_name, "does not exist"):
return:

end*

/% If the operator specified by "p_op_name" is not involved with the
operator connection specified by "p_con_name", print an error message
and return %/

call find'pwnen_(confopref, "operator->op_con", op_conref):

if opref = con_opre

then do-
call write_list_ (p_op_name, "at node", 8_op_node_name,
Wis not associated with operator connection',
p_con_name):
return:
end:
call write_list_("We will now check for deadlock involving the given",

119

Appendix IT Procedure OP_CON

"operator"):

call write_list_(" and operator connection"):

/% If the process that can send messages over the operator connection
sgecified by "g con name" is active, there is no deadlock, so
discard all ORPL's that requested the given state 1nformation ®/

call find_owner_(procref, "process->op_con" op_conref):

call find_owner_(ndm proc_ownerref, "node/d o/mg->process", procref):

if en%%ty_glasa_name_ ndm_proc_ownerref) = "node_table"

en do:
call find_fjirst_(obplref, "operator->obpl", opref, eos):
do while (“eos):
call remove (obp%ref "operator->obpl"):
caél find_first_ obplref. "operator->obpl", opref, eos):
end:
return;

end:
/% If there are no OBPL's waiting for state information about this
operator, create an OBPL with the operator as the only process entry */
if ethy_(opref, "operator->obpl")
hen do:
call dcl_obpl(obplref, p_op_node_name, "“, "op_msg"):
call dcl_proc_entry(obelref, p_op_node_name, 8 op_name) :
caél insert_(obplref, "operator->obpl"™, "first®, opref):
end:
/% Find out the name of the process that can send the message the
operator desires %/
process_name = extract_(procref, "process.name"):
/% Expang eagh ORPL that required state information about the given
operator
call find_first_(obplref, "operator->obpl", opref, eos):
do while (eos):
/% Remove the OBRPL from the set belonging to the given operator %/
call remove_(obplref, "operator->obpl®):
/% Check if we have a deadlock */
call check_fon_deadlock(obglref. p_op_node_name, process_name, eos):
/% If eos = 1, then a deadlock was not detected, so we should add a
resource to the OBPL and then expand it %/
if eos
then do*
call obpl_add_resource(obplref, ndm_proc_ownerref,
- p_op_node_name, eos):

/% if eos = 1 then the resource the process is waiting for
is in the same node as the process, so we can continue
to expand the OBPL %/

if eos

d then call exp_obpl(obplref, p_op_node_name):
end;
/% See if there are any more OBPL's to be examined */
cagl find_first_(obplref, "operator->obpl", opref, eos):
end:
return;:

120

Appendix II Procedure OP_CON

/% RECEIVE OPERATOR MESSAGE 7/13/76 %/

rcvopmse* entry(p_con_name):

/% This procedure will simulate the receiving of a message by a process
over the operator connection specified bx "n_con_name"

/% If the operator connection specified by p_con_name" does not exist,
print an error message and return */

if find_entity loc(op_conref, "sys->op_con", SYS REF, p_con_name,

“"op_con.name"

then do-
call write list_("Invalid operator connection name:", p_con_name,
Tidoes not exist"):
return:
end:

/* Get the name and node of the process that should receive the messarge %/
call find_owner_(erocref, "process->op_con", o conref'):
process_name = extract_(procref, "process.name"):
call find_owner_(tableref, "node->process" Brocref):
proc_node_name = extract_(tableref, "node_éa le.name"):
7% If the orocess is not active, print an error message and return *®/
call find_owner_(ndm_proc_ownerref, "node/dbo/mg-> rocess", procref):
if entgty_glass_name_(ndm_proq_ownerref) = "node_table"
en do;
call write_list_("?rocess"{ process_name, "at node",
proc_node_name, "is not active. No message can be"):
call write_list_(" received over operator connection",
p_con_name):
return-
end:
/* Find out if the message can be received, or if the process must be
blocked %*/
number_ad = extract_(op_conref, "op_con.number_qd"):
if number_ad > 0
then do:
/% Remove one message from the queue */
number_qd = number_ad ~ 1:
call alter_(op_conref, "op_con.number_qd", number_qd):
call write_list_(process_name, "at node", proc_node_name,
Whas received a message"):
call write_list_(" over operator connection", p_con_name):
return:
end-
else do-
/% BRlock the process and initiate processinﬁ of an OBPL %/
call remove_sprocref, "node/dbo/mg->process®):
call insert_ Drocrgg, "node/dbo/mg~>process", "first",
op_conref):
call write_gist_("Process". process_name, "at node',
proc_node_name, "is blocked waiting for a"):
call write_list_(" message over operator connection",
p_con_name)®
e¢all initiate_obpl(proc_node_name, process_name, proc_node_name,
¢ p_con_name, "op_msg"):
return:

e L]
end OP_CON"

121

Appendix II Procedure RCV_CM

RCV_CM: procedure:

/% This procedure is a collection of subroutines which will accept
a control message and take the appropriate action. The following user
visible function is included:

RECEIVE CONTROL MESSAGE
The following sugport routines are included:

PROCESS MESSAGE

PROCESS OBPL PASS

PROCESS "PROCESS TERMINATION"

PROCESS RESOURCE GRANT

PROCESS RESQURCE RELEASE

PROCESS RESOURCE REQUEST */

del accept_node_name char(12):

del accept_node_tableref fixed bin(17);
del accept_proc_name char(12):

del accept_procref fixed bin(17):
del access_type char(9);

del cont_msg_numb fixed bin;

del cont_msgref fixed bin{17):
del cont_msg_type char(20):

del dbo_name char(12):

del dbo_node_name char(12):

del dbo_noderef fixed bin(17):
del dboref fixed bin(17):
del dbo_tableref fixed bin(17):
del 208 bit(z):

del mg_name char(12):

del megref fixed bin(17):
del ndm_proc_ownerref fixed bin(17):
del obpliref fixed bin(17);
del p_cont_msg_numb char(#*):

del p_msgref fixed bin(17):
del p_obpl_passref fixed bin(17):
del p_res_grantref fixed bin(17):
del p_res_relref fixed bin(17):
del p_res_reqref fixed bin(17):
del process_name char§12 :

del oroc_node_name char(12):

del proc_noderef fixed bin(17):
del procref fixed bin(17):
del proc_tableref fixed bin(17):
del qd_mseg_numb fixed bin:

del rev_msg_numb fixed bin:

del rcv_node_name char(12):

del sh_asmtref fixed bin(17);
del write_list_ entry options(variable):

%include DDM_serv_routines:

9include ADT primitives:

/* RECEIVE CONTROL MESSAGE 6/15/}6 */

receive_control_message: rcvem: entry(p_cont_msg numb):

/% This procedure will verify that the control message which has its number
sgeeified by "p_cont_msg_numb" has been sent, but has not been received.
The procedure will then determine what type of control message it is, and
the appropriate subroutine will be called to act on the message,

call find_first_(cont_msgref, "sys->control_message", SYS_REF, eo0s):

/% Cogverg/the control message number from a character string to a numeric
value

cont_mse_numb = p_cont_msg_numb:

122

Appendix II Procedure RCV_CM

/* Find the control message with number specified by "p_cont_msg_numb" #*/
do while ("eos):
if ex%;actaﬁcont_msgref, "control_message.number") = cont_msg_numb
en do:
/% Remove the control message from the set of control messages
:g thgs this control message will not be received a second
me
call remove_(cont_msgref, "szs-)control_message"):
/% Find out what EXRe of control message it is, and call the
routine that will take the appropriate action #/
cont_msg_type = entity_clasa_name_(cont_msgref);
if cont_msg_type = "msg"
then do:
call write list_("Control message_number",
R_cont_msg_numb, "pepresenting a message",
in a message group"):

call write_list_g“ has been received"):
call process_msg cont_msgref);
return:
end:
if cont_msg_type = "obpl_pass"
then do:

call write list_("Control message number",
cont_msg_numb, "regresenting an ORPL",
"has been received."):
call procesa_obpl_pass(cont_msgref):
return:
end:
if cont_msg_type = "res_grant"
then .
call write_list_("Control message number",
_cont_msg_numb, "reeresenting a remote",
resource allocation®):

.

call write list_(" has been received"):
call procesa_res_grant(cont_msgref):
return:
end:
if cont_mse_type = "res_rel"
then do:

call write_list ("Control message number",
__cont_msg_numb, "representing a remote",
resource release"):

call write_list_(" has been received"):
call process_res_rel(cont_msgref):
return;
end:
if cont_msg_type = "res_req"
then do;

call write_list_("Control message number",
P_cont_msg_numb, "representing a remote",
'‘resource request"):

call write_list_(" has been received");:
call process_res_req(cont_msgref):

regurn'

end:

end:
call find_next_(cont_msgref, "sys->control_message", eos):
end- '
/% If "p_cont_msg_numb™ didn't match an¥ control message number, then we
should print an error message and return ®/
call write_ list_(p cont_msganumb, " is not a valid control message number.",
. W Command rejected"):
return:

123

Appendix IIT Procedure RCV_CM

/* PROCESS MESSAGE T7/1/76 */

procr.ss_ms«¢: entry(p_msgref)-

7% This procedure will receive a message in a message group. If a process
is waiting for this message, it will be woken up, otherwise the message
will be "queued" #*/

/% Get the name and location of the message group */

me_name = extract_(p_msgref, "msg.mg_name):

eos = find entity_loc(mﬁref, "gys->message", SYS_REF, mg_name,

message.name®):

/* Acknowledge receipt of the message by adding 1 to the number of messages
that have been queued in this message group

aqd_msg_numd = extract_(mgref, "message.number_qd") + 1:

call alter_ (mgref, "message.number_qd", qd_msg_numb) :

/% If no process has accepted the message group, return #*/

if *inserted_(mgref, "rcv_proc->message")

then do-
call write list_("Message group", mg name, "has not been",
Waccepted. The message 1S queued."):
return:
end:

/% Get the name and node of the process that can receive the message %/

call find_owner_(accegt_pro?ref, "rov_proc->message", mgref):

accept_proc_name = extract_ accegt_procref, "pprocess.name");

call find_owner_(accept_node_tableref, "accep _node->message", mgref):

accept_node_name = 2X ract_(accept_node_tableref, "node_table.name")*

/% Keep the message queued if the process is not waiting for it. Otherwise
wakeup the process.

call find_owner_(ndm_proc_ownerref, "node/dbo/mg->process", accept_procref):

if ndm_proc_ownerref = mgref

then call write_list_("No Rrocess is waiting for the message,",
lse d "go it is queued"):
else do:

call remove_(accept_procref, "node/dbo/mg->process")
call insert_ acceptaprocref, "node/dbo/mg->process", "first",
accept_node_tableref):

rcv_msg_numb = extract_(mgref, "message.number_rcvd") + 1:

call a ter_(mgref* "message.number_rcvd", rev_msg_numb):

call write_1ist (*Process ", accept_proc_name, " at node w,
accept_node_name, "has been awakened upon");

call write_list_(" receipt of a message in message group",
mg_name) :
end:
return:
/% PROCESS OBPL PASS 6/24/76 */

process_obpl_pass: entry(p_obpl_passref):

/% This procedure will allow a partially expanded OBPL to be "received" by a
node and then be expanded as much as possible within that node %/

/% Get the location of the ORPL entity that has been "passed" between nodes.
Ve need not check "eos" because we know the desired entity exists. #/

call find_first_(obglref, "obpl_ pass->obpl", g_obpl_passref eos):

/% Get the name of the node receiving the control messaqe. i

rev_node_name = extract_(g obpl_passref, "obpl_pass.dest_node_name"):

/% Remove the OBPL from this control message so that we can send the expanded
OBPL in another control message if necessary */

call remove_(obplref, "obgl_pass-)obgl" :

/% Expand the OBPL as much as possible in the receiving node %/

ca%l exp_obpl(obplref, rev_node_name):

return:

124

Appendix II Procedure RCV_CM

/* PROCESS RESOURCE GRANT 6/15/76 */

process_res_grant: entry(p_res_grantref):

/% This procedure will wake up a process and give it access to a resource as
specified by the remote resource grant control message pointed to by
"p res_grantref"

/% Get the names of the process, resource and nodes involved %/

process_name = extract_(p_res_grantref, "pes_grant. roc_name");

proc_node_name = extract_(p_res_grantref, "res_gran .proc_node_name"):
dbo_name = extract_(p_res_grantref, "res grant.res_name"):

dbo_node_name = extract (g res_grantref, res_grant.res_node_name"):

/% Find the locations of the entities for the process, resource and their node
tables within the node specified by "proc_node_name". Note that we need
not test "eos" because we know the names placed in the control message
represent existing entities.

eos = find_entity_loc(proc_noderef, ngys->node", SYS_REF, proc_node_name,

node .name")

eos = find_entity_loc(proc_tableref "node-»node_table", proc_noderef,

proc_node_name, "node table.name");

eos = find_entity_loc(procref, "node->process", proc_tableref, process name,

"process.name"):

eos = find_entity_loc(dbo_tableref "node->node_table", proc_noderef,

dbo_node_name, "node table.name"):

eos = find_entity;Ioc(dﬁoref, Tnode->dbo", dbo_tableref, dbo_name,

fidbo.name");

/% Unblock the process

call remove_(procref, "node/dbo/mg->process"):

call insert_(procref, "node/dbo/mg->process", "first", proc_tableref):

/% Give the process exclusive or shared access to the dbo, depending upon the
tyge of access that was requested.

if extgact (procref, "process.access_type") = "exclusive"

en do
/% Grant the process exclusive control of the database object */
call insert_(dboref, "process->dbo", "first", procref);
call write 1ist_(process_name, "at node", proc_node_name,
Whas been granted exclusive use of"):

call write_list_(" " dbo_name, "at node", dbo_node_name):
return:
end:

else do-

/% Grant the process shared access to the database object */

call del_dbo_sh_asmt(sh_asmtref):

call insert_(sh_asmtref, "dbo->dbo_sh_asmt", nfipst", dboref):

call insert_(sh_asmtref, "process->dbo_sh_asmt", "first", procref):

call write 1ist_(process_name, "at node", roc_node_name,
"has been granted shared access to");

call write list_(" " dbo_name, "at nodef, dbo_node_name):

regurn:

end:

125

Appendix II Procedure RCV_CM

/% PROCESS RESOURCE RELEASE 6/15/76 %/

process_res_rel: entrx(p.rea_relref):

/% This procedure will release a resource from control by a remote process,
as specified in the resource release control message. If possible,
additional processes will be removed from the queue for the database
object and will be granted access to the database object A

/* Get the names of the process, resource and nodes involved %/

process_name = extract_(p_res_relref, "rea_rel.rel_gzoq_name"):

proc_node_name = extract_(p_res_relref, "res_rel.re pnode_name"):

dbo_name = extract_(p_res_relref, res rel.dest_dbo_name"):

dbo_node_name = extract (g_res_relref, "res rel.dest_node_name"):

/% Find the locations of the entities for the grocess, resource and their
node tables within the node sEecified by "dbo_node_name". Note that we
do not test "eos" because we know the names placed in the resource release

control message represent existing entities.

eos = find engity_locgdbq_noderef, "gys->node", SYS_REF, dbo_node_name,

node.name"):

eos = find entity_loc(dbo_tableref "node->node_table", dbo_noderef,
bo_node_name, Pnode table.name"):
eos = findﬁenttty;Ioc(dboref, Wnode->dbo", dbo_tableref, dbo_name,
dbo.name") :
eos = find_entity_loc(proc_tableref "node->node_table", dbo_noderef,
proc_node_name, "node tabie.name"):
eos = find_entity_loc(procref, Wnode->process", proc_tableref,

process_name, "process.name");
call write_list__abo_name& "at node", dbo_node_name, "has been released by"):
call write_list_(" , process_name, "at node", proc_node_name) :
/% Check if the process had exclusive control of the database object L
if inserted_(dboref, "process->dbo")
then do:

/% Release the database object and then grant at least one other
process access to the database object if any processes are
queued for it

call remove_(dboref, "process->dbo"):

if “empty_(dboref, "node/dbo/mg->process")

then call rem_proc_from_queue(dboref, dbo_tableref);
return:

end:

else do-

/% Release the database object from this shared assignment, and if
there are no other processes currentlg having shared access to
the database object we can grant another grocess access to the
database obgect if anz are queued for it */

call find_first_intersection_(sh_asmtref, "process->dbo_sh_asmt",

procref, "dbo->dbo_sh_asmt", dboref, eos):
call delete_entity (sh_asmtref "de_sh_asmt"):
if memben_coupt_(dboref, "dbo->dbo sh_asmt") = 0O
then if “empty_(dboref, "node/dbo/mg->process")
then call rem_proc_from queue(dboref, dbo_tableref):
regurn:
end:

126

Appendix 11 Procedure RCV_CM

/% PROCESS RESOURCE REQUEST 6/15/76 */

nrocess_res_req* entry(p_res_reqref):

/% This procedure will process a request for a resource from a remote
groeess, as specified in the resource request control message. If

he resource can be assigned, it will be and a control message will
be zenerated to that effect. Otherwise the process will remain blocked
until the resource becomes available.

/% Get the names of the process, resource and nodes involved */

process_name = extract_(p_res_reqref, "rea,req.req_proe_name"):

proc_node_name = extract_rp_res_reﬂref, "res_req.req_node name"):

dbo_name = extract_(p_res_reaqref, rea_req.dest_dbo_name“f:

dbo_node_name = extract (g res_rearef, "res req.dest_node_name"):

/% Find the locations of the entities for the grocess, resource and their
respective node tables within the node specified by "dho_node_name". If
the node is unaware of the existence of the process, create a local entity
for that process. e do not have to test eos because we know the entities
for the node tables and the resource exist because the names were placed
in the resource re?uest control message *

eos = find_entity_loc(dbo_noderef, "sys- node", SYS_REF, dbo_node_name,
Tnode.name"):

find_entity_loc(dbo_tableref "node->node_table", dbo_noderef,

eos =
dbo_node_name, "node_table.name"):

eos = find_entity loc(dboref, "node->dbo", dbo_tableref, dbo_name,
Wdbo.name") ;

eos =

find_entity loc(proc tableref, "node->node_table", dbo_noderef,
proc_node_name, “hode_tabie.name"):
if find_entity_loc(procref, "node->process", proc_tableref, process_name,
ch "process.name"
en

o:

/% Create a "local" entity for the process, since one does not
already exist ¥*/

call del_process(procref, process_name) ;

call insert_(procref, "node-> rocess", "first" proc_tableref):

call insert_(procref, "node/d o/mg->process”, “first",

proc_tableref):

Q.

end-
/% Determine what tyge of access is desired #/
access_type = extrac _(p_res_reaqref, "res_req.access_type"):
/% Check if the database object might be available for assignment ®/
if inserted_(dboref, "Brocess->dbo) | emptg_(dboref, "node/dbo/mg->process")
then do° /%Block the process if the database object has been
assigned to another process for exclusive use or
if other processes are currently queued for the
database object
call alter_(procref "Process.aceesa_type", access_type):
call remove_ procref, 'node/dbo/mg->process"):
call insert_(procref, "node/dbo/mg->process”, "last", dboref):
call write 1ist_("Resource not available, process remains blocked");
call initiate_obpl(proc_node_name, process_name, dbo_node_name,
¢ dbo_name, "dbo"):
return-:

end-
/% Check if the reaquest is for shared access L4
if access_type = "shared"
then do: /%Give the process shared access to the desired
database object *
call del_dbo_sh_asmt(sh”_asmtref):
call insert_{(sh_asmtref, "dbo->dbo_sh_asmt", "first", dboref):
call insert_(sh_asmtref, "process->dbo_sh_asmt", "fipst", procref):
call write 1ist_(process_name, "at node", proc_node_name,
Wis eranted shared access to"):
call write_list_(" " dbo_name, "at node", dbo_node_name):
call dcL_rem_rea_grant(dbo_node_name dbo_name, proc_node_name,
process_name, cont_msg_numﬁ):
call write 1list_("Control message number"ﬁ cont_msg_numb,
Waent from", dbo_node_name, "to proc_node_nane) :
call write_1list_(" representing this allocation"):

127

Appendix II Procedure RCV_CM

regurnt
end:
/%The next if statement will be executed if the request is for
exclusive use of the database object *
/% Check if any process has shared access to the desired database object */
if ® empty_(dboref, ndbo->dbo_sh_asmt")
then do: /%Queue the process for exclusive use of the database
object because at least one other process currently
has shared access to the database object. b
call alter_(procref "Brocess.accesa_type", nexclusive"):
call remove_gprocref, node/dbo/mg->process"):
call insert_(procref, "node/dbo/mg->process", "last", dboref):
call write_list_("Resource is not currently available for",
: Wexclusive use, process"h process_name) :
call write 1list_(" at node", proc_node_name,
Wremalns blocked"):
call initiate_obpl(proc_node name, process_name, dbo_node_name,
dbo_name, "dbo"):
return:
end:
else do- /%Crant the process exclusive use of the desired
database object. ¥#/
call insert_(dboref, "process->dbo", "first", procref):
call write_1list_(process _name, "at node”, proc_node_name,
is granted exclusive use of"):
call write_list_(" " “dbo_name, "at node", dbo_node_ name):
call del_rem_res_grant(dbo_node_name, dbo_name, proc_node_name,
process_name, cont_msg_numb):
call writeﬁlist_lwbontrol message number"ﬁ cont_msg_numb,

sent from", dbo_node_name, "to proc_node_name):
call write_list_(" representing this allocation"):
return:
end:
end RCV_CM:

Appendix II

$.
ORPL* procsguref
an OBRPL and check for deadlock.

Procedure OBPL

This procedure is a collection of subroutines which act on

The following support routines are included:

CHECK FOR DEADLOCK
COPY OPRPL

EXPAND ORPL

OBPL ADD RESOURCE

decl eos

del first_procref

del message_numb

del mgref

del ndm_proc_ownerref
del new_obplref

del obpI_proc_name
del obpl_proc_node_name
del obpl_proc_node_tableref
del obpl_procref

del old_proc_entryref
del op_conref

decl operator _name

del opref

del p_copyref

del p_eos

del p_ndm_proc_ownerref
del p_obplref

del p_process_name
decl p_proc_node_name
del p_rcv_node_name
del proc_entryref

del process_name

del proc_node_name
del procref

del proc_tableref

del rev_noderef

del res_name

del res_node_name

del res_node_tableref
del resref

del res_type

del sh_asmtref

del write_list_
{include DDM_serv_routines:
4include ADT primitives:

®/

bit(1):
fixed bin(17
fixed bin:
fixed bin(17
fixed bin(17
fixed bin(17
char(12):

|

fixed bi

R SC T S S B B |

A d N’ L
<o oo . e 20 ve a0

—

char(12
fixed bin(17):
char(12):
char(12):
fixed bin(17):
17):
17

fixed bin
fixed bin
char(12):
char(12): -
fixed bin217;f
fixed bin(17):
char(7):

fixed bin(17):

entry options(variable):

.
.
.

129

Appendix II Procedure OBPL

/% CHECK FOR DEADLOCK 6/25/76 */

check_for_deadlock: entrz(p_obplref, p_proc_node_name, p_Process_name, p.eos):

/® This procedure will check if the process specified by 'p__grocess_name17
and located ir the node specified by "p_proc_node_name" already has an
entry in the OBPL pointed to by "p_obplref". If no such entr¥ exists,
then one will be created and "p_eos™ will be set to "1"b, indicating that
there is no deadlock. If an entr{ already exists for the process, we
have a deadlock and a message will be printed giving the Erocesses
involved and "p_eos® will be set to "O"b indicating a deadlock has been
detected. *

/® Get the location of the first proc_entry in the OBPL #*/

call find_first_(proc_entryref, "obpl->proc_entry" g_obplref p_eos):

/% For each proc_entr{ in the GBPL, check if it matches the glven process.
Note that if we detect a deadlock, we will return from inside the loop
and p_eos will be 0. If no deadlock is detected we will exit the loop
before returning and p_eos will be 1, as desired. %/

do while ("p_eos):

* If we have a match with "p_process name" and a proc_entry, we must
then check if the node name attribute matches "p_proc_node_name" #/
if p_grocesa_name = extract_(proc_entryref, "proc_entry.process_name")
hen if p_Proc_node_name = extract_(proc_entryref,
'proc_entry.node_name")
then do:
/% A deadlock has been detected, list all the processes
involved and return. #
call write list_("A deadlock has been detected."6
TThe following processes are involved:%);
eos = "O"b;
do while (“eos)-
process_name = extract_(proc_entryref,
"nroc_entry.process_name"):
proc_node_name = extract_(proc_entryref,
“groq_entry.node_name"):
call write list_(" " process_name,
"at node ", proq_node_name’:
call find_prior_(prcc_entryref, "obpl->proc_entry",

eos):
end-
call write_list_ (" End of deadlock list"):
regurn-
end:

/% Get the next proc_entry in the OBPL */
call find_next_(proc_entryref, "obpl->proc_entry", p_eos)-
end*
/®* No deadlock has been detected, so create a new proc_entry and have it
inserted into the ORPL %/
ca%l del_proc_entry(p_obplref, p_proc_node_name, p_process_name):
return-

130

Appendix IT Procedure OBRPL //

/% COPY OBPL 6/25/76 */
coo¥ obol* entry(p_copyref, p_obplref):
his procedure will cop¥ the 0 PL pointed to by "p_obplref" and return
a pointer to the copy via " yref". The order of the OBPL entries,
and their attribute values in t e copy will be identical to those in
the original. %/
/% Get the attribute values (resource information) from the OBPL entity
pointed to by "p_obplref". *
res_name = extract_(p_ obplref "obpl.res_name"):
res_node_name = extract_(p_obplref, "obpl. res node _name") :
res_type = extract_(p_obplref, "obpl.res_ t{
/®* Create an ORPL entity with the above at ribute values %/
call del obgl(p copyref, res_node_name, res _name, res_type):
message_numb = extiract (p obplref, "obpl.msg_numb"):
call alter_(p_ copyref, Rl msg_numb" message_| numb
/% Get the last entry in the OBPL pointed to by g obplref" ®/
call find_last (cld_{roc entryref, "obpl->proc_entry", p_obplref, eos):
/* Copy eagh OBPL en
do whi le ("eos):
Get the attribute values of the proc_entry pointed to by
"old_proc_entryref" #/
process_name = ex ract (old proc entrzref. "proc_entry.process_name"):
proc noae name = extract_(old proc_entryref, "proc_entry.node_name"):
/% Create a new proc_entry with the above aétribute values and
insert it into the new copy of the 0BPL.
call dclfproc entry(p_copyref, proc_node name, process name) ;
See if there are any more proc_entries to be copied L4
cagl find_prior_(old_proc_. entryref "obpl->proc_entry". eos):
end:
return: '

131

Appendix TI Procedure ORPL

A EXPAND ORPL 6/24/76 %/

exp_obpl: entry(p_obplref, p_rcv_node_name):

/% This procedure will expand the OBPL pointed to by "p_obplref". It will
be expanded as much as poxxible using the information available to the
node specified by "p_rcv_node_name" *

/% Get the fully qualified name Tresource name plus the name of the node
in which it resides) of the resource which is controlled bﬁ or being
vaited for by the last Brocess to be added to the OBPL. (Note that we
add processes to the OBPL by inserting them at the beginning of the set */

res_name = extract (p_obylref, "obpl.res_name"):

res_node_name = extract_(p_obplref, "obpl.res _node name"):

/* Get the type of the resource ("message" or "dbo% or "op_msg") */

res_type = extract_(p_obplref, "obpl.res_type");

if res_type = "message"

then do-

/% The resource t{ge is a message, therefore we know the process
that can send e desired message is in the node that 1is
expanding the OBPL. We will act accordingly. */

/% Get the location of the entity for the message group from which
a message is desired. We need not test "eos" because we know
the entity exists.

eos = findwentity_loc(msref, "sys->message”, SYS_REF, res_name,

message ,name¥):

/% Get the number (within the message group) of the messase
that is desired. %

message_numb = extract_(p_obplref, "obgl.msgﬁnumb"):

/% If this number is less than or equal to the number of messages

ent in this message group, then there is no deadlock.

if (message_numb > extract_(mgref, "message.number_sent"))

then return:

/* Find the process that can send the desired message *®/

call find_owner_(procref, "send_proc->message" mgref):

/% Find out if the process is active. (If it {s active there
is no deadloc?. ®/

call find_owner_f?dm_proc_pwnerrer, "node/dbo/mg->process",

procref) -

if ent1ty_c1asa,name,(ndm_proq_ownerref) = "node_table"

then return:

/% Get the process name and check for deadlock */

process_name = extract_(procref, "process.name"):

call check_fog_deadlodﬁ p_obplref, res_node_name, process_name,

eos)"

{; %{ eo§ = 0 then a deadlock has been detected and we are done */

eos
then return:

/% Add the resource that the process is waiting for to the OBPL ®/

call obpl_add_resource(p_obplref, ndm_proc_ownerref,

p_rcv_node_name, eos):

/% If eos = 1 then the resource the process is waiting for is in
the same node as the process, so we can continue to expand
the ORPL. *#

if eos

then call exp_obpl(p_obplref, p_recv_node_name) :
return*
ir L end:" n
res_type = "op_msg
then do-

/% The resource type is an operator message, therefore we know
the last process to be added to the OBPL is waiting for a
message from an operator at the same node. We will act
accordingly.

/% Get the location of the entity for the operator connection
over which a message is desired

eos = find_entity loc(op_conref, "sys->op_con", SYS_REF,

res_name, "op_con.name"):

/% Get the location and name of the operator whc can send the
desired message %/

132

Appendix II Procedure OBPL

call find_owner_(opref, "operator->op_con", op conref):
ogeratonﬂname = extract_(opref, "operator.name)
/% Check if the operator is already in the OBPL list */
call check_fon_deadlock(p_ob lref, res_node_name,
operator_name, €08):
/% If eos = 0 then a deadlock has been detected and we are done */

if (“eos)

then return:
/% Queue the OBPL and request status information from the
operator
call insert (p_obglref "ogerator-)obpl", nfipst", opref):
call write_list_("An OBPL has been queued waitigg for a status",
Wpeport from operator", operator_name):
call write list (" at node", res_node_name,
. WThe Involved operator connection is", res_name):
return:

end:

/% If the next section is executed, a database object is controlled by or
is being waited for b{ the last process to be added to the OBPL %/

/* Get the name and location of the last process to be added to the OBPL #*/

call find_first_(obgl_procref "obpl->proc_entry", p_obplref, eos):

obpl_proc_name = ex ract_(obgirprocref. "proc_entry.process name")
obpl_proc_node_name = extract_ obgl_procref, Wproc_entry.node_name"):

/% Get the entity locations for the database object and its node table, and
the process and its node table within the node specified by
"p_rcv_node_name". We need not test "eos" in most cases because we
know the entities exist

eos = find_entity_loc(rev_noderef, ngys->node", SYS_REF, p_rcv_node_name,
Wnode.name"):

find_entity_loc obgl_proc_node_tableref, "node->node_table",

rcv_noderef, obpl_proc_node_name, "node_table.name"):

eos = find_entity_loclres node_tableref, "node->node_table", rcv_noderef,

res_node _name, "node_table.name"):

eos = find_entity;Ioc(oﬁpl procref, "node->process", obpl_proc_node_tableref,

obpl_proc_name, "process.name");

/% We must test "eos" to see if the node containing the resource is aware
of the existence of the most recentlx inserted process in the OBPL. If

ir it is not, we have no deadlock at this time, so we can return .
eos

then return:

eos = find_entity_loc(resref, "node->dbo", res_node_tableref,

res_name, "dbo.name"):

/% Check if the resource is in the node that is expanding the OEPL %/

if res_node_name = p_rcv_node_name
then do-

/% Verify that the process specified bg "obpl_proc_name" is still
waiting for the resource specified by "pres_name" #/

call find_owner_(ndm_proc_ownerref, "node/dbo/mg->process",
bpl_procref);

if resref "= ndm_proc_ownerref

then return-

/®* We must now add an entry to the OBPL for the process
that controls the resource specified by "res_name",
provided that the process is not already in the
ORPL. If there are n processes that have shared
access to the database object, then we must create
n copies of the OBPL and use a different. copy
for each reader

if inserted_(resref, "process->dbo")

then do- '
/% The database object is held for exclusive
use. Find the controlling process and
check for deadlock. *®
call find_owner_ (procref, "process->dbo",
.. resref):

€0s

L gtggpaq_name = extract_(procref, "process.name"):
. cal

;rind;ounen_ proc_tableref, "node->process",
133

Appendix IT Procedure OBPL

procref):
proc_node_name = extract_(Proq_tableref,
"node_table.name"):
call find_owner_(ndm_proc_ownerref,
"node/dbo/mg->process", procref):
/% If the process is active and it is at the
same node as the resource, then we have
no deadlock.
if entity_class_name_(ndm_groc_ownerref)
= "node_table" proc_node_name
= res_node_name
then return:
call check for_deadlock(p_obplref,
proc_node_name, process_name, eo0s):
/% If eos = 0, than a deadlock has been
detected and we are done .
if (“eos)
then return:
if proc_node_name = res_node_nanme
then do:

/% The process is in the same node as
the database object, so we cap
continue to expand the OBPL */

/% Add to the OBPL the resource that the process
is waiting for #/

call obpl_add_resource(p_obplref,

ndm_proc_ownerref,
p_rcv_node_name, €os):

/% If eos = 1, then the resource that was added
to the OBPL is in the same node as the
process that is waiting for it, so we can
further expand the OBPL */

if eos

then call exp_obpl(p_obplref,
p_rcv_node_name)

return:

end:

do:
/% Send the OBPL to the node specified
by "proc_node_name" *
call del_obpl_cont_msg(p_obplref,
proc_node_name, p_rcv_node_name) :

else

return*
end:

end:

/% If the following code is executed, the database object
has n readers. We need to make n-1 additional coE es
of the OBPL. Each time we make a cogx of the OBPL,
we expand that copy as much as possible for the given
ggge and the process that we are associating with

s copy

/% Find a process that has shared access to the
database object #

call find first (sh_asmtref, "dbo->dbo_sh asmt®,

resref, eos):

call find_ounen_tfirst.procref, "process->dbo_sh_asmt",

sh_asmtref)*

/% We will check for deadlock involving the OBPL and the
process Eointed to b{ nfipst_procref" after we check
for deadlock with all the other readers of the
database object. We will teherefore use the "original"
OBPL (rather than a copy) for this check *

call find_next_(sh_asmtref, ndpo->dbo_sh_asmt", eos):

do while ("eos):

/% Find the process that has the shared access
represented by the dbo sh_asmt entity pointed
to by "sh_asmtref"

134

Appendix II Procedure OBPL

call find_owner_(procref, "process->dbo_sh_asmt",
sh_asmtref):
process_name = extract_(procref, "process.name"):
/% Get the name of the node in which the process
resides #/
call find_ownen_(groc_tablerer, "node->process",
procref):
proc_node_name = extract_(gsoq_tableref,
"node_table.name"):
/% If the process is not active or if it is at a node
different from the node in which the resource
resides, then we must check for deadlock. *
call find_owner_(ndm_proc_ownerref,
"node/dbo/mg->process", procref):
if entity_glass_name_ ndm_?roq_ownerref)
*= "node_table" | (proc_node_name
= res_node.names
then do:
/% Copy the OBPL and check for deadlock ®/
call copy_obpl(new_obplref, p obplref):
call check for_deadlock(new_obplref,
proc_node_name, process_name eos):
/® If eos = 1 then we must either continue
to expand the list or send it to
another node */
if eos
then if proc_node_name = res_node_name
then do-
/% Add to the OBPL the resource that
the process is waiting for %/
call obpl_add_resource(
new_obplref,
ndm_proc_ownerref,
p_rcv_node_name, €0S):
/% If eos = 1, then the resource that
was added to the OBPL is in the
same node as the process that is
waiting for it, so we can further
expand the OBPL #*/
if eos
then call exp_obpl(
new_obplref,
p_rcv_node_name):

end:
else call del_obpl_cont_msa(
new_obplref,
proc_node_name,
p_rcv_node_name):
end:
/% Spe if there are any more readers of the database
object specified by "res name" */
caél ind_next_(sh_asmtref, "dbo->dbo_sh_asmt", eos):
end:
/% Find the process name and the node in which it resides
for the process pointed to by "first_procref" #/
process_name = eftract (first_procref, "process.name"):
call find_owner_(proc_tableref, "node->process",
first_procref):
proc_node_name = extract_(proc_tableref, "node_table.name"):
/% IT the process is at the same node as the resource and
it is active, we need not check for deadlock.
call find_owner_(ndm_proc_ownerref, "node/dbo/mg->process",
first_orocref)-
if entity_class_name_(ndm_proc_ownerref) = "node_table"
& proc_node_name = res_node_name
then return
/% Check for deadlock and then expand the OBPL or send

135

Appendix II Procedure OBPL

it to another node %/
call check_for_deadlock(p_obplref, proc_node_name,
process_name, €o0S):

if eos
then if proc_node_name = res_node_name
then do:
call obpl_add_resource(p_obplref,
nmeproq_ownerref, p_rcv_node_name,
eos):
if eos
then call exp_obpl(p_obplref,
q p_rcv_node_name):
end:
else call del_obpl_cont_msg(p_obplref,
proc_node_name, p_rcv_node_name):
regurn:
end:

/% The next section of code will be executed if the resource is located
in a node different from the one that is exgunding the 1ist #/
/% Firsat check if the process is active. If it is activeﬁ we are done %/
call find_owner_(ndm_proc ownerref, "node/dbo/mg->process”, obpl_procref):
if entity_class_name_(ndm_proc_ownerref) = "node_table"
then return:
/% Verify that the process specified bx "obpl_proc_name" still controls
the resource specified by "res name®" #/
/% See if the process had either exclusive or shared access to
the database obiect specified by "res_name". If it has neither,
we can return.
if (empty_intersection_(obpl_procref, "process->dbo", res_node_tableref,
"node->dbo")) & empt*_intersection_(obgl_procref&
"process->dbo_sh_asmt®, resref, "dbo->dbo_sh_asmt®))
then return:
/% Add to the OBPL the resource that the process is waiting for #*/
call obpl_add_resource(p_obplref, ndm_proc_ownerref, p_rcv_node_name, eos):
/% If eos = 1, then the resource that was added to the OBPL is in the same
ggdeogsLtgg process that is waiting for it, so we can further expand
e

if eos
then call exp_obpl(p_obplref, p_rcv_node_name):
return:

136

Appendix II Procedure OBPL

/® OBRPL ADD RESOURCE 6/24/76 %/
obpi_add_resource: entry(p_obplref, p_ndm_proc_ownerref, p_rcv_node_name,

p_eos):
/% This grocedure will be passed a pointer to a resource that the most
recently inserted process in an OBPL is waiting for. The procedure will
determine the type of resource that "p_ndm_proc_ownerref" points to, and
will insert information about this resource into the OBPL entity pointed
to by "p_obplref". If the resource is in the node specified b¥
"n rev_node_name", then p_eos will be set to 1, otherwise it will be set
to 0 and the OBPL will be sent to the node that contains the resource */
if en%%ty_glass_name_(p_ndm_proc_pwnerref) = "dbo"
en do°
/% Get the database object name and get the name of the node in
which it resides #*/ A -
res_name = extract_(p_ndm_proc_ownerref, "dbo.name"):
call find_owner_(res_node_tableref, "node->dbo",
p_ndm_proc_ownerref'):
res_node_name = extract_ (res_node_tableref, "node_table.name"):
call alter_(p_obplref, Wobpl.res_type", "dbo"):

end:
if en%%ty_glaaa_name_(p,ndm_proq_pwnerref) = "message"
en do:
/% Get the message groug name and the name of the node from
which a message should be coming #/
res_name = extract_(p_ndm_groq_ownerref "message.name");
call find_owner_(res_node_tableref, "1nit_node- message",
p_ndm_proc_ownerref');
res_node_name = extract_(res_node_tableref, "node_table.name");
/% Get the number of the message (within the message group) that
is desired and insert this into the OBPL #/
message_numb = extract_(p_ndm_proc_ownerref, "message.number_qd")+1:
call alter_(p_obplref, "obpl.msg numb", message_numb):
caél alter_(p_obplref, "obpl.res_type", "message"):
end:
if enggty_glasa_name_(p_ndm_proq_pwnerref) = "op_con"
en do:
/% Get the name of the operator connection over which a message
from an operator is desired %/
res_name = extract_(p_ndm_proc_ownerref, "op_con.name"):
/* The resource (operator connection) is located entirely in
one node, so the resource_node_name is the same as that of
the node processing the OBPL *
res_node_name = p_rcv_node_name;
caél alter_(p_obplref, "obpl.res_type", "op_msg"):
end:
/® Put the resource name and its node name into the OBPL #*/
call alter_(p_obplref, "obpl.res_name", res_name):
call alter_ g_pbplref, "obpl.res_node_name", res_node_name):
/% Check if the node can continue to expand the OBPL or if it must send the
ORPL to another node #/
if res_node_name = p_rcv_node_name
then p_eos = "1%b:

else do:
p_eos = "0"b:
¢ call dcl_obpl_cont_msg(p_obplref, res_node_name, p_rcv_node_name):
return:
end ORPL:

137

Appendix II Procedure REL

%
REL: procedure’
/% This procedure contains subroutines which allow processes
to release resources and then assigns the released resource to a new
process if gossible. The following user visible function is included:
RELEASE DATABASE OBJECT
The followinﬁ supBort routine is included:
REMOVE PROCESS FROM QUEUE ®/

decl cont_msg_numb fixed bin:

del dbo_name char(12):

decl dbo_node_name char(12):

del dboref fixed bin$17g:

del dbo_tableref fixed bin(17);

del eos bit(1):

del ndm_proc_ownerref fixed bin$17;:

del ownerref fixed bin(17):

del p_dbo_name char(®):

del p_dbo_node_name char(%*);

del p_dboref fixed bin(17):

del p_dbo_tableref fixed bin(17);

del pnoderef fixed bin(17):

del p_process_name char(#):

del p_proc_node_name char(®);

del process_name char(12);

del proc_node_name char(12);

del procref fixed bin(17):

del ptableref fixed bin(17);

del res_rel_ref fixed bin(17);

del sec_node_name char(12):

del sh_asmtref fixed bin 17;:

del tableref fixed bin(17);

del temg_name char(12);
write_lis entry opéions(variable):

del —
¢include DDM_serv_routines:
¢include ADT primitives:

138

Appendix II Procedure REL

/% RELEASE DATABASE OBJECT 6/2/76 %/

release_dbo:dbrldbo:) entry(p_proc_node_name, p_process_name, p_dbo_node_name,

p_dbo_name) :

/% This Rrocedure will cause the Erocess specified by "p_process_name" (at
node Y_proq_node name") to release its control over the database object
specified by "p_dbo_name" and located at the node specified by
"n_dbo_node_name" #

/% Verify that the node specified by "p_proc_node_name" exists %/

if find_en&itg_loc(pagderef, "gys->node", SYS REF, p_proc_node_name,

node.name"):

then do:
call write list ("Invalid process node name. ", p_proc_node_name,
Wdoes not exist"g;
return:
end:

/% Verify that the process specified by "p_process_name" exists at the node
specified b{ "p_proc_node_name" %

eos = find_entity_loc(ptableref, "node->node_table", pnoderef,
g groc_node_name, "node_table.name"):

if find_entIty_loc(procref, "node->process", ptableref, p_process_name,
"process.name")

then do:
call write_list_("Invalid process name." E grocess_name, "at node",
. p_proc_node_name, "does not exist™);

return:

end:
/% Verify that the node sgecified by "p_dbo_node_name" exists */
if find_entity_loc(dbo_tableref, "node->node_table", pnoderef,
p_dbo_node_name, ”node_table.name“7
then do;
call write_list_("Invalid database object node name. ",
p_dbo_node_name, "does not exist.");
regurn;
end;
/% Verify that the database object specified by "p_dbo_name" exists at the
node specified by "p_dbo_node_name" and that the process specified by
"p process_name" has access to it. #/
/% Verify that the node containing the process is aware of the existence of
the database object */
if figg_engity_loc dboref, "node->dbo", dbo_tableref, p_dbo_name, "dbo.name")
en do:
call write list_("Invalid release. Process", p_process _name,
Wat node", p_proc_node_name, "does not have");
call write list_(" access to", p_dbo_name, "at node",
p_dbo_node_name) :
return:

end;

/% Verify that the process has access to the database object %*/

if find_entity_loc(dboref, "process-)dbo"& procref, p_dbo_name, "dbo.name")
& empty_intersection_(procref, "process->dbo_sh_asmt®, dboref,
"dbo->dbo_sh_asmt")

do
call write 1ist_("Invalid release. Process", p_process_name,
. at node", p_proc_node_name, "does not have"):
call write_list_(" access to", p_dbo_name, "at node",
p_dbo_node_name):

then

regurnt
end-
/% Verify that the process is active #/
call find_owner_(ndm_proc_ownerref, "node/dbo/mg->process", procref):
if ent%ty,glass_name_(ndm_proc_pwnerref) = "node_table"
en do:
call write_list_("Invalid release. Process ", p_grocess_name,
. Wat node", p_proc_node_name, "is not active");
return:

end:
/% Check if the database object is at a node different from the one that
139

Appendix II Procedure REL

contains the process %/
ifr p_groc_node_name = p_dbo_node_name
hen do:

/% Release the resource and send a resource release control message
to the node which contains the database object */

/% Check if there are no more "local" processes queued for the
specified remote database object #/

if emggy_(gborer, "node/dbo/mg->process")

en do:

/% If the process had exclusive control of the database
object or if no other local process had shared access
to the database object, then we can delete all local
information about the remote database object
otherwise just "release" the shared access of the
grocess to the database object ¥/

if inserted_(dboref, "process->dbo") '

!“member_count_(dboref, "dbo->dbo_sh_asmt") < 2
then call delete_entity_(dboref, "dbo");

else do:
/% Find the entitx for the involved dbo_sh_asmt
and delete it %/
call find_first_intersection_(sh_asmtref
"process->dbo_sh_asmt", procref
ndbo->dbo_sh_asmt", dboref, eos):
caél delete_entity_(sh_asmtref, "dbo s!_asmt"):
end:
end:
else do:

-/% Release the database object from access b{ the process,
but retain other local information about the remote
database object

if inserted_(dboref, "process->dbo")
t?en gall remove_(dboref, "process->dbo");
else do;
call find_first_intersection_(sh_asmtref
"process->dbo_sh_asmt", procref
ndbo->dbo_sh_asmt", dboref, eos);
caél delete_entity (sh_asmtref, "dbo_sh_asmt"):
end:
end:
/% Create an entity for a remote resource release and the declare it
as a control message %/
call create_entity (res_rel_ref, "res_rel");
call create_attribute_(res_rel ref, "rea_rei.rel_pnode_name",
"field, 12, ?_proc_node_name):
call create attribute_ res_rel_ref, "res_rel.rel_proc_name",
"field", 12, p_process_name);
call create attr16ute_(res rel_ref, "res rel.dest_node_name",
"field", 12, p_dbo_node_name):
call create_attribute (r3s_rel_ref, "res_rel.dest_dbo_name",
"Tield", 12, p_dbo_name);
call decl_control_message(res_rel_ref, "res_rel"“ cont_msg _numb);
call insert_(res_rel ref, "sys->control _message", "last", SYS_ﬁEF):
call write 1ist_("Control message number", cont_msg numb,
sent from", p_proc_node_name, "to", p_dbo_node_name):
ca%l write_list_(" representing a remote resource release"):
return:

end-
/% The next section will be executed if the process and database object are
located in the same node #*/
/* Check if the process had exclusive control of the database object */
if 1n€§rteg_(dboref, "process->dbo")
en do:

/% Release the database object and then grant at least one other
process access to the database object if any processes are
gueue for it. %/

call remove_(dboref, "process->dbo");

140

Appendix II Procedure REL

call write_list_("Process", gﬁprocesa_name, "at node",
roc_node_name, as released database"):

call write_list (" object", p_dbo_name, "at node",

" ?_dbo_node_name):
if “empty_(dboref, fhode/dbo/mg->process")
then call rem_proc_from_queue(dboref, dbo_tableref);
regurn:
end:

do:

/% Release the database object” from this shared assignment, and if
there are no other processes currently having shared access to
the database object we can grant another grocess access to the
database object if ang are queued for it %/

call find_first_intersec jon_(sh_asmtref "process->dbo_sh_asmt",

procref, "dbo->dbo_sh_asmt", dboref, eos);

call delete entitxm(sh_asmtref, "dbo_sh_asmt"’;

call write_list_("Process", eﬁprocess_name, "at node",

p._proc_naode_name, as released database"):

call write_list_(" object", p_dbo_name, "at node",

p_dbo_node_name)

1f member_count_(dboref, "dbo->dbo sh_asmt") = O

then if emp%i (dboref, "node/dbo/mg->process")

else

then call rem proc_from queue(dboref, dbo_tableref):
return:
end:
/% REMOVE PROCESS FROM QUEUE 6/?/76 *®/
rem_proc_from_gqueue: entry(p_dboref, p_dbo_tableref):

/% This groceaure will grant at least one process access to the database
object that is referenced by "p_dboref" (and is located in the node that
has its own node_table referenced by "p dbo_tableref"). If the first
process on the queue wants exclusive use of the database object, then
only this grocess will be granted access to the dbo, otherwise all
processes that requested s ared access and that are in front (in the
queue) of all processes that requested exclusive use will be given
shared access to the database object */

/% Find the first process ﬂueued for the database object */

call find_first_(procref, "“node/dbo/mg->process”, p. boref, eos):

/% Check 1f the process wants exclusive use of the database object #*/

if ex%;acta(orocref, "process.access_type“) = "exclusive"

en do:

/% Unblock the process %/

call find_owner_(ownerref, "node->process", grocrer):

call remove_(procref, "node/dbo/mg->process");

call insert_(procref, "node/dbo/mg->process", nfirst", ownerref):

/% Give the process exclusive control of the resource &/

call insert_(p_dboref, "process->dbo", "first", procref);

/% Get the names of the process, dbo and nodes involved /

dbo_name = extract_(p_dboref "dbo.name");

dbo_node_name = extract (p_dﬁo tableref, "node table.name");

process_name = extract_{procref, "process.name'") :
proc_node_name = extract_(ownerref, “"node_table.name");

/% Check if the process gaining access to the database object is in
the same node as the dbo */

if proc_node_name = dbo_node_name

then do:
call write_list_("Process"& process_name, "at node"
proc_node_name, "is given exclusive use of"):
call write_list_ (" " dbo_name, "at node",
dbo_node_name) ;
return:
end:

else do:

/% Create a control message for a remote resourc

141

Appendix II Procedure REL

allocation and send it zcross nodes. ®/

call dcl_rem_res_grant(de_node_name, dbo_name,
proc_node_name, process_name, cont_msg_numb):

call write 1ist_("Controi message number", cont_msg_numb,
Wgent from", dbo_node_name, "tol,
proc_node_name) ;

call write_list_ (" ﬁranting", grocess_name,
Wexclusive use of", dbo_name):

return:

end;

end:
else do while ("eos):
/% The first process on_the queue requested shared access L
/% Unblock the process
call find_owner_(ownerref, "node->process", grocref);
call remove_(procref, "node/dbo/mg->process"):
call insert_(procref, "node/dbo/mg->process", "first", ownerref):
/% Give the process shared access to the database object */
call dcl_dbo_sh_asmt(sh_asmtref);

call insert_(sh_asmtref, "dbo->dbo sh_asmt", "first", dboref);
call insert _(sh_asmtref, "process->dbo_sh_asmt", "firs W‘ procref);
/% Get the names of the process, dbo and nodes involved #/

dbo_name = extract_(p_dboref #dbo.name");
dbo_node_name = extract (p_dﬁo tableref, ™node_table.name");
process_name = extract_(procref, "process.name");
proc_node_name = extract_(ownerref, "node_table.name"):
/% Check 1f the process gaining access to the database object is in
the same node as the dbo */
if proc_node_name = dbo_node_name
then do;
call write_list_("Process"& process_name, "at node",
proc_node_name, "is granted shared access to");
call write_list (" n ~dbo_name, "at node",
dbo_node_name):
end;
else do:) _
/% Create a control message for a remote resource
allocation and send it across nodes.
call del_rem_res_grant(dbo_node_name, dbo_name,
proc_node_name, process_name, cont_msg_numb) ;
call write 1ist_("Control message number", cont_msg_numb,
Wsent from", dbo_node_name, "to",
proc_node_name) ;
call write list_(" ranting", 9rocess_name,
Wshared access to", dbo_name):

end;
/% Find what is now the first process queued for the database

object #*/

call ﬂind_?irst_(proeref, "node/dbo/mg->process", p_dboref, eos);

/% If this process wants exclusive control of the database object it
must remain blocked and we will not remove any more processes
from the queue %/

if extract_(procref, "process.access_type") = "exclusive"

then eos = "1"5:
end:
return:
end REL:

142

Appendix II

/%

The following declarations are o

decl

del
del
del

del
del

del

del

del
del
decl

del

del

del

del

del
del

DDM_serv_routines.inecl.pl!
f the DDM service routines

check_for_deadlock
/% Located

del_dbo
/% Located
del_dbo_sh_. asmt
~/% Located
del_control_message

/% Located
dcl_node ta?le

decl _obpl

Located

/% Located
del_obpl_cont_msg

/% Located
del_proc_entry

/% Located
dcl_process

/% Located
del_proc_term

/% Located
del_rem_res_grant

/% Located
find_entity_loc

/% Located
exp_obpl

/* Located
initiate_obpl

/% Located
obpl_add_resource

/% Located
rem_proc_ from_queue

/% Located
rldbo

/% Located

within
within
within

within
within

within

within

within
within
within

within

within

within

within

within
within

within

DDM_serv_routines

entry(fixed bin(1§) char(12)
char bit(1));

Procedure OBPL

entry(fixed bin(17), char(12)):
Procedure DDM *

entry(fixed bin(17)):

Procedure DDM %/
entry(fixegibin(17)

d bin
Procedure DDM %*/
entry(fixed bin(17), char(12)):
Procedure DDM
entry(fixed bin(1;), char(12)
char(12), char(7))
Procedure DDM %/
entry(fixed bin(1 ;, char(12),
char(12
Procedure DDM %/
entry(fixed bins ;), char(12),
ch ar
Procedure DDM #/
entry(fixed bin(17), char(12));
Procedure DDM &
entry(char(12), char('), char(12));
Procedure RCV_C
entry(char(1§) char('), char(i2),
ch ar #) fixed bin):
Procedure DDM #
entry(fixed bin(17) char(20)
fixed u1nt17 char{12)
chdr(4)) returns (bit(i))
Procedure DDM %
entry(fixed bin(17), char(12));
Procedure OBPL #/
entry(char(12), char(*), char(12),
ch ar(12) char(7)):
Procedure DDM
entry(fixed bin(1;) rixed bin(17)
c ar$12
Procedure OBPL
entry(fixed bin(17) fixed bin(17))
Procedure REL
entry(char('),(char('), char(*®),
char
Procedure REL #/

char(20),

\

143

Appendix II

/%75-12-29 ADT_g
These are ADT primitives designed
del add_

del alter_

del append_

del break__

del create_attribute_

del create_catalog_object_
del create_entity_

del areate_group_

del create_order_

del create_relationship_
del deleted_

del delete_entity_

del divide_

del empty_

del "empty_intersection_
del entity_class_name_

del entity_order_name_

del exception_

del extract_

del find_associatively_
del find_catalog_object_

del find_direct_

del find_each_

decl find_first_

del find_first_intersection_
del find_first_union_

del find_last_

del find_next_

decl find_next_intersection_
del find_next_union_

del find_owner_

del find_prior_

decl insert__

del inserted_

14y

ADT_primitives

rimitives.inecl.p
o assist the fu ct on definit

on writer %/
entry(char(12 char

returns(char(12) var ing):
entry(fixed bin(17), char(lil),

entry%fixed bin(17). char(20),
char(6), fixed bin(17)):
entry(fixed bin(17));

entry(fixed bin(17), c ar(4y),
c ar§10 , fixed bin(17),
char(#*
entry(fixed bin(17), char(®)):
entry(fixed bin(17), char(20 ;:
entry(fixed bin{17), char by)):
entry fixed bin(17), char(20),
char(;
entry(gix?d bin(17) char(20),
char
entry(fixed b né ;) returns(bit(1)):
entry fixed bin(17 char(20))
entry(char(128), char(12))
returns(char(128) var inﬁ)
entry(fixed bin(17), char(
returna(bit(1));
entry(fixed bin(1z , char(zog
bin(17), char(20)
returns(bit(lg;
entry(fixed bin(1z
returns(char(20)):
entry(fixed bin(17; char(20))
entr returns(bit(1)):
ry:
entry(fixed bin(11) char(ld))
returns(char(128) varging)
entry(fixed bin(1§), char(
fixed bin(17 char(128)5 'varying,
char(48), bit{1));
entry(fixed b1n§17 , chari“ ;
entry(fixed biniy17), char %));
entry(fixed bin}17 , bit(1)
entry{fixed bin(17), char (20},
fixed bin(17), bit(1))
entry(fixed bin(1 }, cnar(20),
Fixed bin§17 , char(20),
fixed bin(17 bit(1%)'
entry(fixed bin(1 }, char 20y,
fixed bin$17 , char(20),
fixed bin(17), bit(1))
entry%fixed bin(1;3. charszb).
bin(17), bit(1)):
entry(f%%??)bin(175. char(20),
entry(fixed bin(17) char(20),
ohar(20), bit(1)):
entry(fixed bin(l), char(20),
fixed bin§17 , char(20)
fixed bin(17 bit(1
entry(fixed bin(1; , char 26),
fixed bin(17));
7), char(20),

entry(fixed bin(1
bit

char(20),
bin(1))))

Appendix 11 ADT_primitives

del last_of_set_ entry(fixed bin(17 char(20))
returns(bit(1)):

del member_ entry(fixed bin(17 char(20))
returns(bit(1)};

del member_count_ entry(fixed bin(17), char(20))
returns(fixed bin(17)):

del name_catalog_object_ entry(fixed bin(17zz
returns(char(44) var¥ing):

del multiply_ entry(char(128), char(128))
returns(char(128) varging):

del owner_ entry(fixed bin(17), char(0))
returns(bit(1 e

del remove_ entryifixed b1n217 , char§20;):

del sort_relationship_ entry gix%gobin 17), char(20),
char :

del subtract_ entry(char(12 }, char(128))

returns(char(128) varying):
/% The following are global reference variables used by modellers
del changemode fixed bin(17) external static:

del SF_REF fixed bin(17) external static init(0);
del CN_REF fixed bin(17) external static init(0);
del PROC_REF fixed bin(17) external static init(0);
decl PSPH_REF fixed bin(17) external static init 0
del PSSG_REF fixed bin{17) external static init(0);
del return_code fixed binar¥ external static init(0);
del SYS_REF fixed bin(17) external static init(0):
del tracemode bit(1) external static init("0"b);

45

Appendix III

This appendix contains examples of several deadlock and '"near deadlock"
situations, thus demonstrating various features of the deadlock detection al-
gorithm presented in Chapter VI. 1In the case where a deadlock is detected, a
final state diagram is given, whereas in the examples where no deadlock 1is
detected, an important intermediate state is also shown. A key to the
diaerams appears on the next page. piagrams appear on a page with a header
containing the name(s) of the assoclated scenario(s). Each diagram immedi-
ately follows the first scenario with which it is associated.

It should be noted that before the commands specific to each example were
executed, after the system state was reinitialized, the commands in file

"demoN" were executed.

146

Appendix III

e dbok
access_type

city

Key for State Diagrams of Demonstration Scenarios

Represents process "pi" as the initiator of message
group "mgj". @ and , are always in the same

node for this representation.

Represents process "pi" as the acceptor of message
group "mgj" and "pi® is currently waiting for a mes-
sage in "mgj". @ and need not be in the

same node for this representation.

Represents process "pk" waiting for a message from

operator "opi" over operator connection conj".

Represents operator "opi" waiting for a message from

process "pk" over operator connection "eonj".

Represents process "pi" as having access to database
object "dbok". The type of access is specified by

"gccess_type". @ and need not be in the

same node.

Represents process "pi" as waiting for access to
database object "dbok". The type of access desired

is specified by "access_type". and need

not be in the same node.

Represents a node with the node name specified by
oity". and drawn "within" this node
represent processes and database objects located
within the node specified by "city". Adrawn
tyithin® the node represents a message group that was
initiated by a process located in the node specified
by "city".

147

Appendix III

scenario demo0
sysgen

System created
cnode Boston

Node created: Boston
cnode Phoenix
Node created: Phoenix

cproc Boston pl

Process pl created in
cproc Roston p2

Process p2 created in
cproc Roston pg

Process p created in

cdbo Boston dbo1
Database object dbo1

cdbo Boston dbo2
pDatabase object dbo2

cproc Phoenix pi
Process pl

cproc Phoenix 52
p2 created in

Process
cproc Phoenix 53

Process p created in
cdbo Phoenix dbol

Database object dbo1
ecdbo Phoenix dbo2

Database object dbo?2
cnode Cambridge

Node created:
cproc Cambridge p1

Process p1 created in
eproc Cambridege p2

Process p2 created in
cproc Cambridge p3

Process p3 created in
edbo Cambridge dbel

Database object dbo1
cdbo Cambridge dbo2

Database object dbo?2

created in

Cambridge

node Boston
node Boston
node Boston
created in node
created in node
node Phoenix
node Phoenix
node Phoenix
created in node

created in node

node Cambridge
node Cambridge
node Cambridge

created in node

created in node

148

BRoston

Boston

Phoenix

Phoenix

Cambridge
Cambridge

scenario demoO

Appendix III scenario demo_bug

scenario demo_bug

note This is an example of a case where a deadlock involving two
note processes and two resources located in two nodes is detected,
note when in fact no deadlock exists. The reason a deadlock is

note detected is that an OBPL sent from Boston to Phoenix had its
note arrival delayed long enough so that p1 in Phoenix could release
note dbo1 in Boston reguest access to it again, gain use of the
note database obJec€ and then request access to and Eet ueued for
note dbo1 in Phoenix before Phoenix examined the OBPL. he first
note seven commands set up the state where p1 in Phoenix has exclusive
note use of dbo1 in Boston, p1 in Boston has shared use of dbo1l in
note Phoenix, pt in Boston is blocked waiting for shared use of dbol
note in Boston, and an OBPL has been sent to Phoenix by Boston.

rqdbo shared Boston p1 Phoenix dboi ,
Process g1 at node Boston is blocked while a request is sent to
he node containing the desired resource
Control message number 1 sent from Boston to Phoenix
: representing a remote resource request
rcvem
Control message number 1 representing a remote resource request
has been received

p1 at node Boston is granted shared access to
dbo1 at node Phoenix
Control message number 2 sent from Phoenix to Boston

representing this allocation
rcvem 2
Control message number 2 representing a remote resource allocation
has been received
p1 at node Boston has been granted shared access to
dbo1 at node Phoenix
radbo exclusive Phoenix p1 Boston dbol
Process 1 at node hoenix is blocked while a request is sent to
he node containing the desired resource
Control message number 3 sent from Phoenix to Boston
3 representing a remote resource request
revem :
Control message number 3 representing a remote resource request
has been received

pl at node Phoenix is granted exclusive use of
dbo1 at node Boston
Control message number 4 sent from Boston to Phoenix

4 representing this allocation
recvem
Control message number Y representing a remote resource allocation
has been received
p1 at node Phoenix has been granted exclusive use of
dbo1 at node Boston
rqdbo shared Boston pl1_Boston dbo1
Resource not available, process blocked.

Control message number sent from PBoston to Phoenix
representing an OBPL
note Do not let the OBPL be received at this time. Let p1 in Phoenix
note release dbol in Roston, so that p1 in Boston will be awakened and
note granted shared use of dbotl in Boston.

rldbo Phoenix pi Boston dbot1
Control message number 6 sent from Phoenix to Boston
representing a remote resource release
rcvem 6
Control message number 6 representing a remote resource release
has been received

dbot at node Boston has been released by
1 at node Phoenix
Process p1l at node Boston is granted shared access to
dbo1 at node Boston
note LLet p1 in Phoenix request access to dbotl in Boston for the
no%e sgjong time, and let it be granted shared use of the database
note object.

149

Appendix III scenario demo_bug

rqdbo shared Phoenix p1 Boston dbo1
Process 81 at node Phoenix is blocked while a request is sent to
he node containing the desired resource
Control message number 7 sent from Phoenix to Boston
representing a remote resource request
revem 7
Control message number 7 representing a remote resource request
has been received

p1 at node Phoenix is granted shared access to
dbo1 at node Boston
Control message number sent from Boston to Phoenix

representing this allocation
rcvem
Control message number 8 representing a remote resource allocation
has been received

p1 at node Phoenix has been granted shared access to
dbo1 at node Boston
note Let p1 in Phoenix request exclusive use of dbol in Phoenix.
note The process will be blocked and an OBPL will be sent to Boston
note where it will be discarded because p! in Boston is active.

rqdbo exclusive Phoenix p1 Phoenix dbo1l
Resource is not currently available for exclusive use, process p1
at node Phoenix 1is blocked.
Control message number 9 sent from Phoenix to Boston
representing an OBPL

revem 9

Control message number 9 representing an OBPL has been received.
note Now let Phoenix receive the OBPL. that was previously sent bg
note Boston. A "false" deadlock will be detected because p1 in Phoenix
note is blocked and has access to dbo1l in Boston, even though this is
note not the same assignment of the resource that was used when the
note 5 OBPL was created.
rcvem

Control message number 5 representin§ an OBPL has been received.
A deadlock has been detected. The fol owing processes are involved:
p1 at node oston

pl at node Phoenix
End of deadlock list

150

Appendix III scenario demo_bug

exclusive

[dbo1}— ™ pl

shared!

shared ,
44dboﬂ

Boston Phoenix

State where control message 5 regresenting an OBPL has just been sent
from Roston to Phoenix. Receipt of the OBPL is delayed until after the state

drawn below has drawn been reached.

shared
dbo1
shared
shared
p1
Boston Phoenix

Finsl State Diagram

151

Appendix III scenario demol

scenario demol

note This is an example of a two process two resource deadlock in a
note single node. No control messages and no operators are involved
note in the detection of this deadlock.

initmg mg1 Boston p2 Eoston
Message group mgl has been initiated
acceptmg mg1 Boston p1
mgI has been accepted by g1 at node Boston
rqdbo shared Boston p1l Boston dbo1l
p1 at node Boston granted shared access to dbol at node Boston
rodbo exclusive Boston p2 Boston dbo1
Resource is not currently available for exclusive use, process p2
at node Boston is blocked.
revmsg mgl
Process pl at node PRoston is blocked waiting for a
message in message groug meg
A deadlock has been detected. The following processes are involved:
pl at node oston

p2 at node Boston
End of deadlock list

dboTlk— - — — — —— @
exclusive

Boston

Final State Diagram

152

Appendix III scenario demo?2

scenario demo?2

note This is an example of a two process two resource deadlock

note involving two nodes. The first three commands create the state
note where both grocesses are active and both involved resources have
note been allocated to the proper processes.

rqdbo exclusive Phoenix ¥1 Phoenix dbol
pl at node Phoenix s granted exclusive use of dbo1l at node Phoenix
initmg mg2 Cambridge p1 Phoenix
Message groug mg2 has been initiated
acceptmg mg2 Phoenix p1
me2 has been accepted bx 51 at node Phoenix
rqgdbo shared Cambridge p1 Phoenix dbo1
Process pl1 at node Cambridge is blocked while a request is sent to
the node containing the desired resource
Control message number 1 sent from Cambridge to Phoenix
representing a remote resource request

note ge will delay the receipt by Phoenix of this resource request.
rcvmsg mg
Process pl at node Phoenix is blocked waiting for a
message in message group mg2
Control message number 2 sent from Phoenix to Cambridge
representing an OBPL
rcvem 2
Control message number 2 representing an OBPL has been received.
Control message number 3 sent from Cambridge to Phoenix
representing an OBPL
note This OBPL contains entries for p1 in Phoenix and p1 in Cambridge.
note It will be discarded bz Phoenix because Phoenix has no record that
note p1 in Cambridge is waiting for dbo1 in Phoenix since control
note 3 messare 1 still has not been received.
revem

Contqol message number 3 representing an OBPL has been received.
revem
Control message number 1 representing a remote resource request
has been received
Resource not available, Rrocess remains blocked.
Control message number sent from Phoenix to Cambridge
representin% an OBPL

note This OBPL contains entries for p1 in Cambridge and pt in Phoenix.
note It states that €1 in Phoenix is waiting for a message in message
note groug mg2. Cambridge will veri that the desired message has
note " not been sent, and a deadlock will be detected.

revem

Control message number U4 representing an OBPL has been received.
A deadlock has been detected. The fol owiné processes are involved:
pl at node ambridge
p1 at node Phoenix
End of deadlock list

153

Appendix III scenarios demo2 demo3 demol

exclusive

Phoenix Cambridge

Final State Diagram

154

Appendix IIIl acenario demo3

scenario demo3

note This is an example of a two process two resource deadlock

note involving two nodes. The first three commands create the state
note where both grocesses are active and both involved resources have
note been allocated to the proper processes.

rqdbo exclusive Phoenix 51 Phoenix dbo1l
p1 at node Phoenix s granted exclusive use of dbol at node Phoenix
initmg me2 Cambridge p1 Phoenix
Message groug mg2 has been initiated
accegtmp mg2 Phoenix p1
mg has been accepted by §1 at node Phcoenix
rqdbo shared Cambridge pl1 Phoenix dbo1l
Process 81 at node Cambridge 1is blocked while a request is sent to
he node containing the desired resource
Control message number 1 sent from Cafibridge to Phoenix
representing a remote resource request

note We will dela receiﬁt by Phoenix of this resource request just
note long enough to block p1 in Phoenix (which controls dhol in Phoenix)
rote and send an OBPL to Cambridge. In this way, after receipt of the
note resource requast, we will have two OBPL's outstanding, and the same
note deadlock will be detected twice.
rcvmsg mg?2

Process p1 at node Phoenix is blocked waiting for a

message in message group mg2
Control message number 2 sent from Phoenix to Cambridge

representing an OBPL
rcvem 1
Control message number 1 representing a remote resource request
has been rcceived
Resource not available, process remains blocked.
Control message number sent from Phoenix to Cambridge
representing an OBPL

recvem 2
Control message number 2 representing an OBPL has been received.
Control message number 4 sent from Cambridge to Phoenix
representing an OBPL
rcvem 3

Control message number 3 representinf an OBPL has been received.
A deadlock has been detected. The fol owing processes are involved:
p1 at node ambridge

p1 at node Phoenix
End of deadlock list
rcvem U
Control message number U representin% an OBPL has been received.
A deadlock has been detected. The following processes are involved:
p1 at node Phoenix

p1 at node Cambridge
End of deadlock list

155

Appendix III scenario demol

scenario demoll

note This is an example of a two process two resource deadlock

note involving two nodes. The first three commands create the state
note where both erooesses are active and both involved resources have
note been allocated to the proper processes.

rqdbo exclusive Phoenix 21 Phoenix dbol
p! at node Phoenix s granted exclusive use of dbol at node Phoenix
initmg me2 Cambridge p1 Phoenix
Message groug mg2 has been initiated
accegtmg mg2 Phoenix p1
mg has been accepted bg Y1 at node Phoenix
rqdbo shared Cambridge p1 Phoenix dbo1
Process pl1 at node Cambridge 1is blocked while a request is sent to
the node containing the desired resource
Control message number 1 sent from Cambridge to Phoenix

representing a remote resource request
note We will allow this resource request to be immediately received
note by Phoenix. No OBPL will be generated because ¥1 in Phoenix is
note active, and it controls dbo1 in Phoenix. By default, control
note messages generated in the future will be received immediately
note : after they are sent, and the deadlock will be detected once.
revem

Control message number 1 representing a remote resource request
has been received
Resource not available, process remains blocked.

rcvmsg mg2
Process pl at node Phoenix is blocked waiting for a
message in message group mnmg
Control message number 2 sent from Phoenix to Cambridge
representing an OBPL
rcvem 2
Control message number 2 representing an OBPL has been received.
Control message number 3 sent from Cambridge to Phoenix
representing an OBPL
revem 3

Control message number 3 representing an OBPL has been received.
A deadlock has been detected. The fol owing processes are involved:
p1 at node hoenix

p1 at node Cambridge
End of deadlock list

156

Appendix III scenario demo5

scenario demo5

note This is an example of a state where two deadlocks exist

note involving four processes and four resources located in three
note nodes. Twn deadlocks are involved because dbol in Cambridge
note has two shared users. The first 10 commands create the state
note wvhere all the involved processes are active and all the involved
note resources have been allocated to the proper processes.

initmg mg1 Boston p1 Cambridge
Message aroup m§1 has been initiated
acceptmg mg1 Cambridge p1i
mel has been accepted by g1 at node Cambridge
rqdbo shared Cambridge p1 Cambridge dbo1
pl at node Cambridge granted shared access to dbol at node Cambridge
rqdbo shared Boston pl1 Cambridge dbol e
Process 81 at node Boston is blocked while a request is sent to
he node containing the desired resource
Control message number 1 sent from Boston to Cambridge
: representing a remote resource request
rcvem
Control message number 1 representing a remote resource request
has been received

pl at node Boston is granted shared access to
dbo1 at node Cambridge
Control message number 2 sent from Cambridge to Boston

5 representing this allocation
rcvem
Control message number 2 representing a remote resource allocation
has been received
p1 at nod2 Boston has been granted shared access to
dbo1 at node Cambridge
radbo exclusive Cambridge p2 Phoenix dbo1
Process 52 at node Cambridge is blocked while a request is sent to
he node containing the desired resource
Control message number 3 sent from Cambridge to Phoenix
3 representing a remote resource request
revem
Control message number 3 representing a remote resource request
has been received

p? at node Cambridge is granted exclusive use of
dbo1 at node Phoenix
Control message number 4 sent from Phoenix to Cambridge

" representing this allocation
revem
Cortrol message number 4 representing a remote resource allocation
has been received :
pe at node Cambridge has been granted exclusive use of
dbo1 at node Phoenix
rqdbo shared Phoenix p1 Phoenix dbo2
p1 at node Phoenix ranted shared access to dbo2 at node Phoenix
rqdbo exclusive Boston pl1 Phoenix dbo2 :
Process el at node Boston is blocked while a request is sent to
he node containing the desired resource
Control message number 5 sent from Boston to Phoenix
re resentin% a remote resource request
e

note No ORPL will sent to another node, and no deadlock will

note be detected because p1 at node Phoenix is active and is the only
note 5 process that has access to dbo2 in Phoenix.

revem

Control message number 5 representing a remote resource request
has been received

Resource is not currently available for exclusive use, process »pl
at node Boston remains blocked

rqdbo shared Phoenix p1 Phoenix dbot

Resource not available, process blocked.

Control message number sent from Phoenix to Cambridge
representing an OBPL

157

Appendix III scenario demo5

note 6 No deadlock will be detected because p2 in Cambridge is active.
rcvem

Control message number 6 representing an OBPL has been received.
note This next request will create a three process three resource
note deadlock. An ORPL will be created, and we will immediately pass
note it from node Lo node in order to detect the deadlock.

rqdbo exclusive Cambridge p2 Cambridge dbo1l
Resource is not currently available for exclusive use, process pe
at node Cambridge 1= blocked.
Control message number 7 sent from Cambridge to PRoston
representing an OEPL

revem 7
Control message number g representing an OBPL has been received.
Control message number sent from Boston to Phoenix

representing an OBPL
rcvem 8
Control message number 8 representing an OBPL has been received.
A deadlock has been detected. The fol owiné processes are involved:
p2 at node ambridge

pl at node Boston
p1 at node Phoenix
End of deadlock list
note The next command will create a four process four resource deadlock.
note Due to the fact that two processes have shared access to dbos1 in
note Cambridre, both this newly created deadlock, and the previously
note detected deadlock will be detected when the OBPL 1is created and
note passed among the nodes.
revmsg mgl
Process pl at node Cambridge is blocked waiting for a
message in message group mgl
Control message number 9 sent from Cambridge to Boston
representing an OBPL
rcvem 9
Control message number 9 representing an OBPL has been received.
Control message number 10 sent from Boston to Phoenix
representing an OBPL
rcvem 10
Control message number 10 representing an OBPL has been received.
Control message number 11 sent from Phoenix to Cambridge
" representing an OBPL
revem

Control message number 11 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:

p1 at node Cambridge
p1 at node Boston
pl at node Phoenix

p2 at node Cambridge
End of deadlock list
A deadlock has been detected. The following processes are involved:
pl at node oston
pl at node Phoenix

p2 at node Cambridge
End of deadlock list

158

Appendix III scenarios demo5 demob

exclusive

\/ Boston Phoenix

shared exclusive

shared

exclusive

Cambridge

Final State Diagram

159

Appendix IIIX scenario demob

scenario demob

note This is an example of a state where two deadlocks exist

note 1nvolvin% four processes and four resources located in three
note nodes. wo deadlocks are involved because dbol in Cambridge
note has two shared users. The first 10 commands create the state
note where all the involved processes are active and all the involved
note resources have been allocated to the proper processes.

initmg mel Boston p1 Cambridge
Message group mgl has been initiated
acceptmg mg1 Cambridge p1
mrl has been accepted by 21 at node Cambridge
rqdbo shared Cambridge p1 Cambridge dbo1l
r1 at node Cambridge granted shared access to dbol at node Cambridge
rqdbo shared Boston p1 Cambridge dbo1
Process g1 at node Boston is blocked while a reguest is sent to
he node containing the desired resource
Control message number 1 sent from Boston to Cambridge
. representing a remote resource request
revem
Control message number 1 representing a remote resource request
has been received

p1 at node Boston is granted shared access to
dbo1 at node Cambridge
Control message number 2 sent from Cambridge to Boston

» representing this allocation
rcvem
Control message number 2 representins a remote resource allocation
has been received
pl at node PRoston has been granted shared access to
dbo1 at node Cambridge
radbo exclusive Cambridge p2 Phoenix dbo1l
Process E? at node Cambridge 1is blocked while a request is sent to
he node containing the desired resource
Control message number 3 sSent from Cambridge to Phoenix
representing a remote resource request
revem 3
Control message number 3 representing a remote resource request
has been received

ne at node Cambridge is granted exclusive use of
dbo1 at node Phoenix
Control message number 4 sent from Phoenix to Cambridge

representing this allocation
rcvem 4
Control message number U representing a remote resource allocation
has been received
p2 at node Cambridge has been granted exclusive use of
dbo1 at node Phoenix
radbo shared Phoenix p1 Phoenix dbo2
pl at node Phoenix granted shared access to dbo2 at node Phoenix
rqdbo exclusive Roston p1 Phoenix dbo2
Process p1 at node Boston is blocked while a request is sent to
the node containing the desired resource
Control message number 5 sent from Boston to Phoenix
representing a remote resource request

note p1 in Phoenix is active, so there will be no deadlock when the
note . remote resource request is received from Boston.
revem ©

Control message number 5 representing a remote resource request
has been received

Resource is not currently available for exclusive use, process pl
at node Boston remains blocked

rqdbo shared Phoenix g1 Phoenix dbo1

Resource not available, process blocked.

Control message number sent from Phoenix to Cambridge
representing an OBPL

160

Appendix III ’ scenario demob

note is received by Cambridge.
rcvem
Control message number 6 representing an OBPL has been received.

revmsg mel

note Yg ih Cambridge is active, so the OBPL will be discarded after
6

Process p1 at node Cambridge is blocked waiting for a
message in message group gl
Control message number 7 sent from Cambridge to Boston
representing an OBPL
note EZ in Cambridge is active, so the OBPL will be discarded when
note t reaches Cambridge.
rcvem 7
Control message number g representing an OBPL has been received.
Control message number sent from Boston to Phoenix

representing an OBPL
revem 8
Control message number 8 representin% an OBPL has been received.
Control messaze number 9 sent from Phoenix to Cambridge
representing an OBPL

rcvem 9

Control message number 9 representing an OBPL has been received.
note This next request will create two deadlocks, due to the fact that
note dbo1 in Cambridge has two readers. Two OBPL's will be generated,
note and both deadlocks will b= detected when their respective ORPL's
note arrive in Phoenix. The OBPL's need not return to Cambridge
note because p2 in Cambridge was the first process to be placed in the
note OBPL's, and Phoenix knows that p2 in Cambridge controls dbo1
note in Phoenix.

rqdbo exclusive Cambridge p2 Cambridge dbo1
Resource is not currently available for exclusive use, process p2
at node Cambridge is blocked.

Control message number 1 sent from Cambridge to Boston
representing an OBPL
Control message number 11 sent from Cambridge to Boston

representing an OBPL
rcvem 10
Control message number 10 representing an OBPL has been received.
Control message number 12 sent from Boston to Phoenix
representine an OBPL
rcvem 12
Control message number 12 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:

p2 at node ambridge
p1 at node Cambridge
pl at node Boston

p1 at node Phoenix
Fnd of deadlock list
rcvem 11

Control message number 11 representing an OBPL has been received.
Control message number 13 sent from oston to Phoenix
representing an OBPL
rcvem 13
Control message number 13 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:
p2 at node ambridge
pl at node Boston

p1 at node Phoenix
End of deadlock list

161

Appendix III scenario demo7

scenario demo7

note This is an example of a state where three deadlocks exist

note 1nvolvin% six processes and five resources located in three

note nodes. hree deadlocks are involved because dbo2 in Boston

note has three shared users. Five, rather than six, resources are
note involved because two processes are waiting for the same database
note object. The first 18 commands create the state where all the
note involved processes are active and all the involved resources
note have been allocated to the proper processes.

rqdbo shared Poston p1 Boston dbo2
§1 at node PBoston granted shared access to dbo2 at node PBoston
initmg me1 Phoenix p1 Boston
Message group mg1 has been initiated
acceptmg mgl Boston p1
mel has been accegted bg pl at node Boston
rqdbo exclusive Phoenix 82 oston dbo1
Process 22 at node Phoenix is blocked while a request is sent to
he node containing the desired resource
Control message number 1 sent from Phoenix to PRoston
- : representing a remote resource request
recvem
Control message number 1 representing a remote resource request
has been received

p2 at node Phoenix is granted exclusive use of
dbho1 at node Boston
Control message number 2 sent from Boston to Phoenix

) representing this allocation
rcvem
Control message number 2 representing a remote resource allocation
has been received
p2 at node Phoenix has been granted exclusive use of
dbo1 at node Boston
rqdbo shared Cambridee p1 Boston dbo?2
Process 21 at node Cambridge 1is blocked while a request is sent to
he node containing the desired resource
Control message number 3 sent from Cambridge to Boston
representing a remote resource request
rcvem 3
Control message number 3 representing a remote resource request
has been received

p1 at node Cambridge is granted shared access to
dbo?2 at node Boston
Control message number U4 sent from Boston to Cambridge

" representing this allocation
rcvem
Control message number U4 representing a remote resource allocation
has been received
p1 at node Cambridge has been granted shared access to
dbo2 at node Boston
rqdbo shared Cambridge p2 Boston dbo?2
Process gz at node Cambrid%e is blocked while a request is sent to
he node containing the desired resource
Control message number 5 sent from Cambridge to Boston
re resentin§ a remote resource request
rqdbo shared Phoenix p Cambridge dbo1l
Process €1 at node Phoenix is blocked while a request is sent to
he node containing the desired resource
Control message number 6 sent from Phoenix to Cambridge
5 representing a remote resource request
revem
Control message number 5 representing a remote resource request
has been received

p°2 at node Cambridge is granted shared access to
dbo2 at node Boston
Control message number 7 sent from Boston to Cambridge

representing this allocation

162

Appendix III scenario demo7

revem 6
Control message number 6 representing a remote resource request
has been received

p1 at node Phoenix is granted shared access to
dbo1 at node Cambridge
Control message number 8 sent from Cambridge to Phoenix

7 representing this allocation
rcvem
Control message number 7 representing a remote resource allocation
has been received
p2 at node Cambridge has been granted shared access to
dbo2 at node Boston
rcvem 8
Control message number 8 representing a remote resource allocation
has been received
p1 at node Phoenix has been granted shared access to
dbo1 at node Cambridge
rqdbo exclusive Cambridge p3 Phoenix dbo1
Process EB at node Cambridge 1s blocked while a request is sent to
he node containing the desired resource
Control message number 9 sent from Cambridge to Phoenix
representing a remote resource request
rcvem 9
Control message number 9 representing a remote resource request
has been received

p3 at node Cambridge is granted exclusive use of
dbo1 at node Phoenix
Control message number 10 sent from Phoenix to Cambridge

representing this allocation
rcvem 10
Control message number 10 representing a remote resource allocation
has been received

p3 at node Cambridge has been granted exclusive use of
dbo1 at node Phoenix
rcvmsg mg1)
Process pl at node Boston ~ is biocked waiting for a
. message in message group mgt
Control message number 1 sent from Boston to Phoenix
representing an OBPL
note i The OBPL will be discarded by Phoenix because pl1 is active.
revem

Control message number 11 representing an OBPL has been received.
rqdbo shared Cambridge p1 Boston dbol
Process €1 at node Cambridge is blocked while a request is sent to
he node containing the desired resource
Control message number 12 sent from Cambridge to Poston
representing a remote resource request

note The process that controls dbol in Boston is located in Phoenix,
note and is active. Therefore, when Boston receives the resource
note request, it will create an OBPL and send it to Phoenix, which
note 12 will then discard it.

rcvem

Control message number 12 representing a remote resource request
has been received
Resource not available, process remains blocked.
Control message number 13 sent from Boston to Phoenix
representing an OBPL
rcvem 13
Control message number 13 regresenting an OBPL has been received.
rqdbo exclusive Phoenix p2 Phoenix dbo
Resource not available, process blocked.

Control message number 14 sent from Phoenix to Cambridge
representing an OBPL
note The OBPL will be discarded by Cambridge because p3, which controls
note " dbo1 in Phoenix, is active.
rcvem

Control message number 14 representing an OBPL has been received.
163

Appendix III scenario demo7

rqdbo exclusive Cambridge p3 Cambridgre dbo1l
Resource is not currently available for exclusive use, process p3
at node Cambridge 1is blocked.

Control message number 15 sent from Cambridge to Phoenix
representing an OBPL
note The OBPL will be discarded by Phoenix because pl, which controls
note 5 dbo1 in Cambridge, is active.
rcvem

Control message number 15 representing an OBPL has been received.
rqdho shared Cambridge p2 Phoenix dbo1
Process p2 at node Cambridge 1is blocked while a request is sent to
the node containing the desired resource
Control message number 1 sent from Cambridge to Phoenix
representing a remote resource request
rcevem 16
Control messape number 16 representing a remote resource request
has been received
Resource not available, process remains blocked.
Control message number 17 sent from Phoenix to Cambridge
A rggresenting an OBPL
n

note PL is sent to Cambridge because p3 in Cambridge controls
note dbo1 in Phoenix. 53 will be added to the OBPL which will then
note be passed to Phoenix because pl1 in Phoenix controls dbol in
note 17 Cambridge. The OBPL will then be discarded because p1 is active.
rcvem

Control message number 13 representing an OBPL has been received.

Control message number 1 sent from ambridge to Phoenix

representing an OBPL

recvem 18

Control message number 18 representing an OBPL has been received.
note The next request creates three deadlocks. When Boston receives
note the remote resource request for dbo2, it creates three OBPL's
note because there are three readers of the database object. We will
note then allow the three ORPL's to be passed among nodes until all
note three deadlocks have been detected, at which time there will be
note no outstanding OBPL's or control messages.

rqdbo exclusive Phoenix p1 Boston dbo2
Process 21 at node hoenix is blocked while a request is sent to
he node containing the desired resource
Control message number 19 sent from Phoenix to Boston
representing a remote resource request
rcvem 19
Control message number 19 representing a remote resource raquest
has been received
Resource is not currently available for exclusive use, process pl

at node Phoenix remains blocked

Control message number 20 sent from Boston to Cambridge
representing an OBPL

Control message number 21 sent from Boston to Phoenix
representing an OBPL

Control message number 22 sent from Boston to Cambridge

representing an OBPL
rcvem 21
Control message number 21 representing an OBPL has been received.
A deadlcck has been detected. The following processes are involved:
p1 at node hoenix
pl at node Boston
End of deadlock list
rcvem 20

Control message number 20 representing an OBPL has been received.
Control message number 23 sent from ambridge to Boston
representing an OBPL
revem 22
Control message number 25 representing an OBPL has been received.
Control message number 24 sent from Cambridge to Phoenix
representing an OBPL

164

Aopendix III scenario demo”

rcvem 23
Control message number 23 representin% an OBPL has been received.
Control message number 25 sent from oston to Phoenix
representing an OBPL
rcvem 25
Control message number 22 representing an OBPL has been received.
Control message number 2 sent from hoenix to Cambridee
representing an OBPL
rcvem 26
Control message number 26 representing an OBPL has been received.
A deadlock has been detected. The followinghprocesses are involved:
a

p1 t node oenix
p1 at node Cambridge
p2 at node Phoenix

p3 t node™ Cambridge
End of deadlock list
revem 24

Control message number 24 representing an OBPL has been received.
Control message number 27 sent from Phoenix to Cambridge
representing an OBPL

rcvem 27
Control message number 27 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:

P at node Phoenix
p2 at node Cambridge

p3 at node Cambridge
End of deadlock list

165

Appendix III scenarios demo7 demo8

exclusive ,/////’———‘\\i\\\
» p2

|
/ exclusive

/ (27 - - |-~ ---- A NI)

I
|
I dbo2 b/~ _exclusive 1\ _ @ '
4 \
|‘ ') \
1 PRoston Phoenix :
\
[
shared\\ shared shared shared !
\ /
\ !
\ exclusive !
\ /
\ ‘shared

Cambridge

Final State Diagram

166

Appendix III scenario demo8

scenario demo8

note This is an example of a state where three deadlocks exist

note involving six processes and five resources located in three

no.e nodes. hree deadlocks are involved because dbo2 in Boston

note has three shared users. Five, rather than six, resources are
note involved because two processes are waiting for the same database
note object. The first 18 commands create the state where all the
note involved processes are active and all the involved resources
not.e have been allocated to the proper processes.

radbo shared Roston p1 Boston dbo2
§1 at node Boston granted shared access to dbo2 at node PRoston
initmg mg1 Phoenix p1 Boston
Messare group wmgl has been initiated
acceptma mel Boston p1i
m§1 has been accepted bg pi at node Boston
rqdho exclusive Phoenix B? oston dbo1
Process EZ at node hoenix 1is blocked while a request is sent to
he node containing the desired resource
Control message number 1 sent from Phoenix to Boston
representing a remote resource request
rcvem 1
Control message number 1 representing a remote resource request
has been received

p2 at node Phoenix is granted exclusive use of
dbe1 at node Boston
Control message number 2 sent from Boston to Phoenix

representing this allocation
rcvem 2
Control message number 2 representing a remote resource allocation
has been received
p2 at node Phoenix has been granted exclusive use of
dbo1 at node DBRoston
rqdbo shared Cambridge p1 Boston dbo2
Process €1 at node Cambridge is blocked while a request is sent to
he node containing the desired resource
Control message number 3 sent from Cambridge to Boston
3 representing a remote resource request
revem
Control message number 3 representing a remote resource request
has been received

pl at node Cambridge is granted shared access to
dbo2 at node Boston
Control message number 4 sent from Boston to Cambridge

" representing this allocation
rcvem
Control message number U4 representing a remote resource allocation
has been received
pl at node Cambridge has been granted shared access to
dbo2 at node Boston
rqdbo shared Cambridege p2 Boston dbo?
Process €2 at node Cambridge is blocked while a request is sent to
he node containing the desired resource
Contrcl message number 5 sent from Cambridge to PRoston
representing a remote resource request
rqdbo shared Phoenix p1 Cambridge dboi
Process p1 at node Phoenix 1is blocked while a request is sent to
the node containing the desired resource
Control message number 6 sent from Phoenix to Cambridge
representing a remote resource request
rcvem 5
Control message number 5 representing a remote resource request
has oeen received

pe at node Cambridge is granted shared access to
dbo?2 at node Boston
Control message number 7 sent from Boston to Cambridge

representing this allocation

167

Appendix III scenario demo8

rcvem 6
Control message number 6 representing a remote resource request
has been received

ol at node Phoenix is granted shared access to
dbo1 ag node Cambridge
Control message number sent from Cambridge to Phoenix

representing this allocation
revem 7
Control message number 7 representing a remote resource allocation

has been received
p2 at node Cambridge has been granted shared access to

dbo2 at node Boston
revem 8
Control message number 8 representing a remote resource allocation
has been received
p1 at node Phoenix has been granted shared access to
dbo1 at node Cambridge
rqdbo exclusive Cambridge p3 Phoenix dbo1
Process 83 at node Cambridge is blocked while a request is sent to
he node containing the desired resource
Control message number 9 sent from Cambridge to Phoenix
9 representing a remote resource request
rcvem
Control message number 9 representine a remote resource request
has been received

o3 at node Cambridge is granted exclusive use of
dbo1 at node Phoenix
Control message number 10 sert from Phoenix to Cambridge

representing this allocation
rcvem 10 :
Control message number 10 representing a remote resource allocation
has been received
p3 at node Cambridge has been granted exclusive use of
dbo1 at node Phoenix
rqdbo exclusive Phoenix p1 Boston dbo2
Process pl1 at node Phoenix 1is blocked while a request is sent to
the node containing the desired resource
Control message number 11 sent from Phoenix to Boston
representing a remote resource request

note After receipt of the remote resource request, Boston will send
note two OBPL's tc Cambridge because two processes in that node have
note shared use of dbo2 in Boston. A third external message is not
ncte needed because the third reader of dbo2 is located in Boston
note and is active. We will delay the receigt of one of the OBPL's
note until after the process in the list that controls dbo2 gets
note " blocked waiting for a resource located in Phoenix.

revem

Control message number 11 representing a remote resource request
has been received .
Resource is not currently available for exclusive use, process p1

at node Phoenix remains blocked

Control message number 12 sent from Roston to Cambridee
representing an OBPL

Control messaze number 13 sent from Roston to Cambridee

representing an ORPL
revem 12
Control message number 12 representing an OBPL has been received.
rqdbo shared Cambridge pl1 Boston dbo1
Process 81 at node Cambridge is blocked while a request is sent to
he node containing the desired resource
Control message number 14 sent from Cambridge to Boston
representing a remote resource request
radbo shared Cambridge p2 Phoenix dbol
Process p2 at node Cambridge is blocked while a request is sent to .
the node containing the desired resource
Control message number 15 sent from Cambridge to Phoenix
representing a remote resource request

168

Appendix III scenario demo8

rcvem 13

Control message number 12 representing an OBPL has been received.
Control message number 1 sent from Cambridge to Phoenix
representing an OBPL
note Let Phoenix receive the OBPL before it receives the remote resource
note request that was assumed to have taken place before the last
note process was added to the OBPL. The OBPL will he discarded because
note Phoenix has no record that p2 in Cambridge is waiting for dbo1
note in Phoenix.
rcvem 16
Control message number 16 representing an OBPL has been received.
note Mow let the above mentioned remote resource request be received
note by Phoenix. An OPPL will be created and sent to Cambridge, which
note 15 will then discard the OBPL because p3 is active.
rcvem

Control message number .15 representing a remote resource request
has been received
Resource not available, process remains blocked.
Control messare number 17 sent from Phoenix to Cambridge
representing an OBPL
revem 17

Control message number 17 representing an OBPL has been received.
note Now let the remote resource request for dbol in Foston by p1 in
note Cambridge be received by Boston. An OBPL will be created and sent
note to Phoenix, where p2 in Phoenix is waiting for dbol in Phoenix, so
note the OBPL will be passed on to Cambridge where p3 is active, and
note ” the OBPL will then be discarded.
revem

Control message number 14 representing a remote resource request
has been received
Resource not available, process remains blocked.
Control message number 18 sent from Boston o Phoenix
representing an OBPL
rcvem 18
Control message number 18 regresenting an OBPL has been received.
rqdbo exclusive Phoenix p2 Phoenix dbo1
Resource not available, process blocked.

Control message number 19 sent from Phoenix to Cambridge
representing an ORPL
note 19 The ORPL will be discarded by Cambridge because p3 is active.
rcvem 19
Control message number 19 representing an OBPL has been received.
note The next command will create a two process two resource deadlock.
note An ORPL will be sent to Phoenix, which will agpend p1 in Phoenix
note to the OBPL and send the OBPL back to Boston because pl is waiting
note for dbo2 in Boston. The deadlock will then be detected, and two
note OPPL's wili be sent to Cambridge because there are three readers
note of dbo2. These OBPL's will then be passed around until the
note return to Cambridge, where they will be discarded bhecause pg in
note Cambridge will still be active when the OBPL's get examined.
revmseg mgl
Process p1 at node Boston is blocked waiting for a
messare in message group mgl
Control message number 20 sent from Boston to Phoenix
representing an OBPL
revem 20

Control messame number 20 representing an OBPL has been received.
Control message number 21 sent from hoenix to Foston
representing an OBRPL

169

Appendix III scenario demo8

rcvem 21
Control message number 21 representing an OBPL has been received.
Control message number 22 sent from oston to Cambridge
representing an OBPL
A deadlock has been detected. The following processes are involved:
pl at node Boston

p1 at node Phoenix
End of deadlock list)
Control message number 23 sent from Boston to Cambridge
representing an OBPL

revem 22
Control message number 22 representing an OBPL has been received.
Control message number 24 sent from Cambridge to PBoston
representing an OBPL
rcvem 24

Control message number 24 representing an OBPL has been received.
Control message number 25 sent from Eoston to Phoenix
representing an OBPL
revem 25
Control message number 22 representing an OBPL has been received.
Control message number 2 sent from Phoenix to Cambridge
representing an OBPL

rcvem 26
Contggl message number 26 representing an OBPL has been received.
rcevem
Control message number 23 representing an OBPL has been received.
Control message number 27 sent from Cambridge to Phoenix
representing an OBPL
revem 27

Control message number ZE representin% an OBPL has been received.
Control message number 2 sent from hoenix to Cambridgpe
representing an OBPL

rcevem 28

Control message number 28 representing an OBPL has been received.
note This next request will create two deadlocks. An OBPL will be
note sent to Phoenix, which will add Y1 in Phoenix to tne list and
note send it to Boston. Boston will then send out three OBPL'S,
note one for each reader of dbo2 in Boston. These OBPL's will be
note passed among the various nodes until there are no more OBPL's
note and control messages outstanding. Note that the two process two
note resource deadlock will be detected for a second time because of
note the fact that p1 in Roston still has shared access to dbo2 in
note Poston and the deadlock has not been broken by aborting any
note Erocesses.
rqdbo exclusive Cambridge p3 Cambridge dbot

Resource is not currently available for exclusive use, process p3
at node Cambridge 1is blocked.

Control message number 2 sent from Cambridge to Phoenix
representing an OBPL

rcvem 29

Control message number 29 representing an OBPL has been received.

Controi message number 30 sent from hoenix to PRoston
representing an OBPL

rcvem 30
Control message number 30 representing an OBPL has been received.
Control message number 31 sent from Roston to Cambridge
representing an OBPL
Control message number 32 sent from Boston to Phoenix
representing an OBPL
Control message number 33 sent from Boston to Cambridge
representing an OBPL
rcvem 32

Control message number 32 representing an OBPL has been received.
A deadlock has been detected. The followins processes are involved:
pl at node hoenix

pl at node Boston
Fnd of deadlock list

170

Appendix III scenario demo8

rcvem 31
Control message number 31 representing an OBPL has been received.
Control message number 34 sent from Cambridge to Boston
representing an OBPL
revem 34

Control message number 34 representin% an OBPL has been received.
Control message number 35 sent from oston to Phoenix
representing an OFPL
rcvem 35 .
Control message number 35 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:
a

p at node mbridge
p at node Phoenix
pl at node Cambridge

p2 at node- Phoenix
End of deadlock list
rcvem 33

Control message number 3 representing an OBPL has been received.
Control message number 30 sent from Cambridge to Phoenix
representing an OBPL
rcvem 36 ‘
Control messaze number 36 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:
r3 at node ambridge
pl at node Phoenix

p2 at node Cambridge
End of deadlock list

171

Appendix III scenario demoYy

scenario demo9

note This is an example of a case where a process releases a remote
note database object and sends a remote resource control message at

note the same time that an OBPL is sent to this node stating that some
note other process is waiting for the resource mentioned above, which
note is controlled bx the first process mentioned above. Refore the
note ORPL arrives, the first process gets blocked waiting for a resource
note that is controlled by the process that was placed in the OFPL.

note Mo deadlock is detected because the resource in question is no
note longmer controlled by the last process to be added to the OBPL.

rqdho shured Boston p1 Phoenix dbo1
Process 21 at node Boston 1is blocked while a request is sent to
he node containing the desired resource
Control message number 1 sent from Boston to Phoenix
representing a remote resource request
rcvem
Control message number 1 representing a remote resource request
has been received

p1 at node PRoston is granted shared access to
dbo1 at node Phoenix
Control message number 2 sent from Phoenix to PBoston

representing this allocation
rcvem 2
Control messaze number 2 representing a remote resource allocation
has been received
p1 at node RBRoston has been granted shared access to
dbo1 at node Phoenix
radbo exclusive Phoenix B1 Boston dbol
Process 1 at node hoenix is blocked while a request is sent to
he node containing the desired resource
Control message number 3 sent from Phoenix to Boston
representing a remote resource request
rcvem 3
Control message number 3 representing a remote resource request
has been received

p1 at node Phoenix is granted exclusive use of
dbo1 at node Boston
Control message number 4 sent from Boston to Phoenix

representing this allocation
rcvem U
Control message number U4 representing a remote resource allocation
has been received
p1 at node Phoenix has been granted exclusive use of
dbo1 at node Boston
rqdbo shared Poston p1 Boston dbo1
Resource not available, process blocked.

Control message number 5 sent from Boston to Phoenix
representing an OBPL
note Let dbol in Boston be released by p1 in Phoenix, and let p1 in
note Phoenix then get blocked waiting for dbol in Phoenix before the
note ORPL from Boston is received by Phoenix.

rldbo Phoenix p1 Roston dbo1l
Control message number 6 sent from Phoenix to Boston
representing a remote resource release
rcvem 6
Control message number 6 representing a remote resource release
has been received

dbo1 at node Boston has been released by
pl at node Phoenix
Process pl at node Boston is granted shared access to

dbo1 at node Boston
rqdbo exclusive Phoenix pl1 Phoenix dbo!
Resource is not currently available for exclusive use, process pi
- at node Phoenix is blocked.
Control message number 7 sent from Phoenix to Boston
representing an OBPL

172

Appendix III scenario demo9

rcvem 7

Control message number 7 representing an OBPL has been received.
note No deadlock will be detected because Phoenix observes that p1 in
note Phoenix no longer has access to dbol in Boston, and discards
note the OBPL. :
rcvem 5

Control message number 5 representing an OBPL has been received.

"——-:\\\\\ shared

‘_*:.L exclusive
dbo1 —

Roston Phoenix

State where control message 5 has just been sent from Boston to Phoenix.
Control message 5 represents an OBPL. eceipt of the OBPL is delayed until
after the state drawn below is reached.

;:\\‘\\\ shared

shared

Roston Phoeni x

Final State Diagram

173

Appendix III scenario demo10

acenario demo10

note This is an example where an OBPL is sent from Boston to Phoenix
note stating that a process in Boston is waiting for a message from a
note process in Phoenix. Before the OBPL arrives in Phoenix, the
note desired message is sent, and the process in Phoenix gets blocked
note waiting for a resource that is controlled by the process that was
note placed in the OBPL that was sent from Boston to Phoenix. No
note deadlock is detected because Phoenix notices that the message
note that was desired by the process in Boston has alread¥ been sent.
note The first six commands create the state where the OBPL

no mentioned above has just been sent.

te
initme mg1 Phoenix p1 Boston
Message group Mgl has been initiated
acceptmz mg1 EBoston p1
mel nhas been accepted bK 1 at node Roston
radbo exclusive Boston p1 Phoenix dbo1l
Process pl1 at node Boston is blocked while a request is sent to
the node containing the desired resource
Control messagze number 1 sent from Boston to Phoenix
. representing a remote resource request i
revem
Control message number 1 representing a remote resource request
has been received

pl at node Roston is granted exclusive use of
dbo1 at node Phoenix
Control message number 2 sent from Phoenix to Boston

representing this allocation

revem 2
Control message number 2 representing a remote resource allocation
has been received

pl at node Boston has been granted exclusive use of
dbo! at node Phoenix
rcvmsg mgl
Process p1 at node Roston is blocked waiting for a
message in message group mgl ,
Control message number 3~ sent from PRoston to Phoenix
representing an OBPL
note We will now temporarilz delay receipt of the OBPL by Phoenix.
note Send the message that the process in Boston desires.
sendmsg mgl
Control message number h sent from Phoenix to Roston
representing a message in a message group
note Let the process in Boston receive the message.
revem

Control message_number 4 representing a message in a message group
has been received

Process pl at node Boston has been awakened upon
receipt of a message in message group mgl
note Block p1 in Phoenix and then let Boston discard the OBPL that
note will be created as a result of this wait.

rqdbo shared Phoenix p1 Phoenix dbol
Resource not available, grocess blocked.
Control message number sent from Phoenix to PRoston
representing an OBPL

revem 5

Control messace number 5 representing an OBPL has been received.
note Now let Phoenix receive the OBPL that was previously sent by
note Roston.

revem 3

Control message number 3 representing an OBPL has been received.

174

Appendix III scenario demo10

exclusive
p1)= —{dboT] @

Boston Phoenix

State where control message 3 representing an OBPL has just been sent
from Roston to Phoenix. Receipt of the OBPL is delayed until after the state

drawn below is reached.

(:E>~ \ exclusive
p)

Roston Phoenix

Final State Diagram

175

Appendix III scenario demo11

scenario demo1l1
note This is an example of a deadlock involving one process and one
note operator at the same node. Two operator connections are involved.
dclop Poston opl

op1 has been.declared as an operator at node Boston
cogcon conl Boston op1 p1

perator connection cont has been established
cogcon con2 Boston op1 pl

perator connection con2 has been established

note Let p1 in Boston request a message from operator opl in Boston
rcvopmsg conl
Process pl at node Boston is blocked waiting for a

message over operator connection conl
An ORPL has been queued waiting for a status report from operator opl
at node Boston The involved operator connection is conl
note Create a deadlock by reporting that opl is waiting for a message
note over operator connection conZ2.
opstat Roston opl waiting con2
We will now check for deadlock involving the given operator
and operator connection
A deadlock has been detected. The following processes are involved:
pl at node oston
og1 at node Boston
End of deadlock list

Boston

Final State Diagram

176

Appendix IIIX scenario demoi12

scenario demo12

note This is an example of a deadlock across three nodes which involves
note several operator connections. It demonstrates that deadlock

note involving operators will be detected as long as the operator

note proper1¥ states what he is waiting for. The first 15 commands
note set up the state where all operators have been declared, all

note operator connections have been created, the message groug has

note been initiated and accepted, and the involved database objects
note have been assigned to the proper processes.

delop Roston opl
opl has been declared as an operator at node Boston
delop Phoenix opi
op1 has been declared as an operator at node Phoenix
delop Boston op2)
op2 has been declared as an operator at no.e Roston
copcor: conl1 Roston opl pl
perator connection con1 has been established
copcon con2 Roston opl p2
Operator connection con2 has been established
cogcon con3 Boston op2 p2
perator connection con3 has been established
cogcon conli Roston op2 p3
perator connection conli has been established
concon con5 Phoenix op1 p2
Operator connection con5 has been established
copcon conb Phoenix opl p1
Ogerator connection conb has been established
initmg mg1 Cambridege p1 Phoenix
Message grou

g mgl has been initiated
acceptmg me1 Phoenix p1

me has been accepted by pl at node Phoenix
radbo exclusive Poston p3 Cambridee dbol
Process 83 at node Boston is blocked while a request is sent to
he node containinz the desired resource
Control message number 1 sent from Boston to Cambridre
] representing a remote resource request
revem
Control messarge number 1 representing a remote resource request
has been received

p3 at node Boston is granted exclusive use of
dbo1 at node Cambridge
Control message number 2 sent from Cambridge to Foston

) representing this allocation
recvem 2
Control messame number 2 representing a remote resource allocation
has been received
p3 at node PBoston has been granted exclusive use of
dbo1 at node Cambridge
rqdbo shared Phoenix p2 Phoenix dbo1l
p2 at node Phoenix granted shared access to dbo! at node Phoenix

note Let g1 in RBoston wait for exclusive use of dtol in Phoenix. No
note deadlock will be detected because p2 in Phoenix, which controls
note dbo1 in Phoenix, is active.

radbo exclusive Roston pi Phoenix dbo1t
Process €1 at node Boston is blocked while a request is sent to
he node containing the desired resource
Control message number 3 sent from Boston to Phoenix
representineg a remote resource request
rcvem 3
Control message number 3 representing a remote resource request
has been received
Resource is not currently available for exclusive use, process pl
at node Boston remains blocked

177

Appendix III 3cenario demo1?2

scenario demo1?2

note This is an example of a deadlock across three nodes which involves
note several operator connections. It demonstrates that deadlock

note involving operators will be detected as long as the operator

note properlx states what he is waiting for. The first 15 commands
note set up the state where all operators have been declared, all

note operator connections have been created, the message groug has

note been initiated and accepted, and the involved database objects
note have been assigneua to the proper processes.

dclop Roston opl
opl has been declared as an operator at node Boston
dclop Phoenix op?
opl has been declared as an operator at node Phoenix
dclop Roston op2
op2 has been declared as an operator at node Roston
cogcon conl Boston op1l pt
perator connection con1 has been established
copcon con?2 Roston opl p2
Operator connection conZ2 has been established
cogcon con3 Boston op2 p2
perator connection con3 has been established
cogcon conl Roston op2
perator connection conll has been established
copcon con5 Phoenix op1 p2
Operator connection con5 has been established
cogcon conb Phoenix op1 p!
gerator connection conb has been established
initmg mg1 Cambridee p1 Phoenix
Messarge zroug mgl has been initiated
acceptmg mel1 Phoenix pi
mgl has been accepted by 1 at node Phoenix
radbo exclusive BRoston p3 Cambridee dbo1
Process €3 at node PBoston 1is blocked while a request is sent to
he node containing the desired resource
Control “-essage number 1 sent from Boston to Cambridre
representing a remote resource request

R/
w

revem 1
Control message number 1 representing a remote resource request
has been received

p3 at node Boston is granted exclusive use of
dbo1 at node Cambridge
Contrcl message number 2 sent from Cambridge to FPoston

representing this allocation
rcvem 2
Control messare number 2 representing a remote resource allocation
has been received
p3 at node PRoston has been granted exclusive uce of
dbo1 at node Cambridge
rqdbo shared Phoenix p2 Phoenix dbo1
p2 at node Phoenix granted shared access to dbo1l at node Phoenix

note Let YI in Boston wait for excli3ive use of dbol in Phoenix. No
note deadlock will be detected because p2 in Phoenix, which controls
note dbo1 in Phoenix, is active.

radbo exclusive Roston pi Phoenix dbo1
Process €1 at node Boston is blocked while a request is sent to
he node containing the desired resource
Control message number 3 sent from Boston to Phoenix
representing a remote resource request
revem 3
Control message number 3 representing a remote resource request
has been received
Resource is not currently available for exclusive use, process p1
at node Boston remains blocked

177

Appendix III scenario demo12

note Let EZ in Phoenix now wait for a message from opl in Phoenix.
note We then state that opt in Phoenix is active, so no OBPL's get
note expanded further.
rcvopmse conb

Process p2 at node Phoenix is blocked waiting for a

message over operator connection cons
An OBPL has been queued waiting for a status report from operator op!
at node Phoenix The involved operator connection is con5
onstat Phoenix opt active
All OPPL's waiting for the given state information have been discarded

note Let g1 in Phoenix walt for a message from p1 in Cambridege. No
note deadlock exists because p! in Cambridee is active.
rcvmse mel
Process p1 at node Phoenix is blocked waiting for a
message in message group mgl
Control messace number U4 sent from Phoenix to Cambridee
representing an OBPL
rcvem U
Control messare number U representing an OBPL has been received.
note Let p3 in Boston wait for a message from op2 in BRoston. The
note OBPL created when p3 gets blocked will be discarded when we
note state that op2 is active.
revopmse conll
Process p3 at node Boston is blocked waitine for a

message over operator connection conl
An ORPL has been queued waiting for a status report from operator op?
at node Poston The involved operator connection is conk

opstat Boston 082 active
All OBPL's waiting for the given state information have been discarded

note Simultaneously block p1 in Cambridge and p2 in Boston. Then
note let Boston receive the OBPL from Cambridge that was created
note when p1 in Cambridge was blocked. PBefore we report the status
note of opl in Boston, state chat op2 in Boston is waiting for a
note message from p2 {n Boston, thereb¥ queuing a second ORPL for
note information on the status of op1 in Boston.

radbo shared Cambridee p1 Cambridege dbo1
Resource not available, process blocked.
Control message number 5 sent from Cambridge to Boston
reoresenting an ORPL
rcvopmsg con2
Process p?2 at node Boston is blocked waiting fcr a
message over operator connection con?
An OPPL has been queued waiting for a status report from operater op1
. at node Roston The involved operator connection is con2
revem 5
Control] message number § representing an OBPL has been received.
An OBPL has been queued waiting for a status report from operator op2
at node PRoston The involved operator connection is conl
onstat Boston op2 waiting con3
We will now check for deadlock involving the given operator
and operator connection
An OBPL has been queued waiting for a status report from operator opl
at node Roston The involved operator connection is con?
opstat Roston op1 uaiting conl
We will now check for deadlock involving the given operator
and operator connection

Control message number 6 sent from Boston to Phoenix
representing an OBPL
Control message number 7 sent from Boston to Phoenix
representing an OBPL
note There were two OBPL's waiting for state information from opl in
note Boston, therefore two OBPL's are expanded and sent to Phoenix.,
note Let Phoenix receive and expand both OBPL's, and state that op1
note in Phoenix is-waiting for a message from pl in Phoenix thereby
note closing the deadlock 1oop. The deadlock will be detected twios
note because we had two OBPL's being passed around due to the fact
note that we blocked two processes simultaneously.

e 178

Appendix III scenario demo12

rcvem 6
Control message number 6 representing an OBPL has been received.
An ORPL has been queued waiting for a status report from operator opl
. at node Phoenix The involved operator connection is con5
rcvem
Control message number 7 representing an OBPL has been received.
An ORPL has been queued waiting for a status report from operator opl
at node Phoenix The involved operator connection is conS
opstat Phoenix op1 waiting conb
wWe will now check for deadlock involving the given operator
and operator connection

Control message number 8 sent from Phoenix to Cambridee
representing an OBPL
Control message number 9 sent from Phoenix to Cambridee
representing an OBPL
rcvem &
Control message number 8 representing an OBPL has been received.
Control message number 10 sent from Cambridge to Roston
representing an OBPL
rcver Q9

Control message number 9 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:

pt at node Cambridee
p3 at node Boston
082 at node Boston

p at node Boston
op1 at node Boston

pl at node Boston

pe at node Phoenix
op1 at node Phoenix

pl at node Phoenix
End of deadlock list
revem 10

Control message number 10 representing an OBPL has been received.
An ORPL has been queued waiting for a status report from operator op2
at node Boston The involved operator connection is conH
opstat Boston op2 waiting con3
We will now check for deadlock involving the given operator
and operator connection
A deadlock has been detected. The following processes are involved:
o

p2 at node ston
opl at node Boston
p1 at node Boston
pe at node Phoenix
opt at node Phoenix
pl at node Phoenix
pi at node Cambridge
p3 at node Boston

oYZ at node Boston
End of deadlock list

179

Appendix III scenario demo12

Boston

exclusive

Cambridge

Final State Diagram

180

