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ABSTRACT

One suboptimal control algorithm for systems with unknown dynamics is
the Multiple Model Adaptive Control algorithm (MMAC). Due to the poten-
tially wide applicability of this adaptive control algorithm, the proper-
ties of this controller need to be understood. This thesis is an exten-
sion of previous research into the behavior of deterministic MMAC systems.
The investigation undertaken looks at the properties of limited memory,
setpoint and stochastic MMAC systems.

The accuracy of approximations developed previously for deterministic
hyperbolic MMAC systems is checked, and a modification to improve the
accuracy is implemented. A similar approximation is derived for the limited
memory and setpoint MMAC systems. The approximations are qualitatively
accurate, except in cases where the assumed switch-like behavior in the
probabilities did not exist. A modification ensuring the switch-like be-
havior, using a maximum likelihood control, resulted in an accurate pre-
diction. The need for a stronger stability condition for the setpoint
control MMAC is demonstrated.

The analysis of the stochastic MMAC system in this thesis involves
two techniques. A Random Input Describing Function (RIDF) approximation
is derived for the MMAC system, and Monte Carlo simulations are used to
check its accuracy. The accuracy of the RIDF in predicting the first two
moments of the states is good for most cases. A modification is suggested
which should improve the qualitative and quantitative accuracy of the
RIDF. An approximation for the probability density of the MMAC proba-
bility indicates that the density accumulates at zero and one for a large
class of MMAC systems, i.e., the control uses one model or another, with
little use of combinations of the models. The existence of stochastic
hyperbolic stability is conjectured along with other stability conjectures
based on the observed behavior and approximate analysis.

THESIS SUPERVISOR: Alan S. Willsky

TITLE: Associate Professor, Electrical Engineering and
Computer Science
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CHAPTER 1

INTRODUCTION

The optimal control problem for systems in which the dynamics are

completely known has been thoroughly studied. The theory is well de-

veloped, and many techniques are available to determine the optimal con-

trol. In the case where the dynamics are incompletely known, the optimal

control problem is unsolved. Since the second case is the usual one in

control applications, the lack of analytic tools for determining the

optimal control has led to the development of numerous suboptimal de-

signs.

In determining the optimal control for the system with known dy-

namics, the control can usually be determined from calculus of varia-

tions [1], Pontryagin's maximum principle [2], or dynamic programming [3].

In the special case of the linear system, linear-quadratic-gaussian

methodology can be used to determine the optimal control.

Using dynamic programming to solve for the optimal control for a

system with unknown dynamics, Willner [4] proposed a suboptimal controller

which is defined in the next section. This algorithm forms the basis

for this investigation.

1.1 Definition of the Multiple Model Adaptive Control

Willner [4] attempted to derive an optimal control for a class of

systems with unknown dynamics. He limited this class to linear systems

7



expressible in the following form.

x(k+1) = A(w)x(k) + B(w)u(k) + w(k) (1.1)

y(k+1) = C(w)x(k+1) + v(k+i) (1.2)

x(k) is the plant state vector of dimension n

(k) is the observation vector of dimension m

u(k) is the control vector of dimension p

w(k), v(k) are independent zero mean Gaussian random vectors
with covariances W(w), V(w) respectively

A(w), B(w), C() are the unknown dynamics

w takes on values in some parameter space Q, i.e., w e[0,1].

Using the above formulation, along with the following cost function

(1.3),

J(k) = F x'(j)Q(j)x(j) + u'(j)R(j)u(j) (1.3)

he attempted to derive the optimal control for the case where w is con-

stant, and

W e { w} i = 1,2,... ,N

i.e., the set of possible dynamics is finite. He showed that the optimal

control is extremely complex and could not be implemented practically. A

suboptimal control, which was thought to be close to the optimal, was

investigated for this case, and was shown to be optimal for the last stage

of the dynamic programming solution [4]. This suboptimal control algorithm

is the Multiple Model Adaptive Control (MMAC) algorithm, and is defined

8



as follows.

The plant is assumed linear time invariant and defined by

x(k+1) = Ax(k) + du(k) + w(k) (1.4)

y(k+1) = Cx(k+1) + v(k+1) (1.55)

and the set of models for the possible system dynamics is defined by

x (k+1) = Agxg+i ( + k) + w(k)(1.6)

y.(k+1) = Cx. (k+1) + v (k+1) (1.7)

where w(k), v(k), w.(k) and v.(k) are assumed to be stationary. Under

these conditions (1.4) -(1.7), the MMAC algorithm is defined by the fol-

lowing equations and is also shown in Figure 1.1.

x (k+1) = A 2 (k) + H r(k+1) (1.8)

r (k+1) = y(k+1) - C1(A i8(k)+ Bu(k)) (1.9)

i = 1,2!, ... ,N

SscV(1.10)

S= [C1V C + (A sA'+W) -1 1  (1.11)

N
u(k)x - ZPG (k) (1.12)

i=1

= (BK + B (1.13)

K = g + AK.A - AK.B(B!KB+R)1B KA (1.14)
ri -1--1 --1-1-1-1-1 -1 -1-0-i

P.(k)p(r (k+1))
P (k+1) = 1(1.15)

j P i(k)p(r (k+1))
J=1

9
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p(r (k+1)) = ((2r) r) 2 exp(- r(i+1): r.(k+1)) (1.16)

2.= V. + C _.c (1.17)
-1-1 -i-1-1

This set of equations can be divided according to different functions

within the MMAC. Estimates of the plant state based on the different

models are computed using Eq. (1.8) - (1.11). The equations define steady

state Kalman filters based on each model. The driving and observation

noise covariances for each model are W and Vi, respectively. A feed-

back gain for the state estimates ^i based on model i, the state weighting

matrix Q.., and control weighting matrix R. is computed using Eq. (1.13) -

(1.14) (linear quadratic optimal control). Equations (1.15) -(1.18) are

used to generate a set of probabilities associated with the models.

1.2 Recent Work

One of the first applications of the MMAC algorithm was the NASA

F-8C Digital-Fly-By-Wire Aircraft project [51. In this application,

the F-8C aircraft was used as a testbed for evaluating digital (adaptive)

flight controls. In this case, data was available for linearizations of

the flight dynamics for various flight conditions in the flight regime.

For this application, the models for the MM/AC were the linearized flight

dynamics.

It should be noted that in this application, the dynamics of the

plant were nonlinear and the models were linearizations of the dynamics

about various points. This does not fall into the formulation assumed

by Willner [4]. The structure of the MMAC algorithm leads to a straight-

11



forward implementation for this case, but no claim can be made concerning

the optimality cf this type of application, even for the last stage of

the dynamic programming solution.

This application of the MMAC provided a test bed for the performance

of the algorithm. For certain sets of models, the algorithm performance

was acceptable, while for others its performance was less than satisfac-

tory. The overall performance of the algorithm seemed to be linked to

the performance of the identification, i.e., the probabilities.

One of the properties of the MMAC algorithm, demonstrated in the

F-8C application, was a switch-like oscillation in the probability. Be-

tween switches, the probability was essentially constant, leading to a

linear control in the interval. Since the probability had a switch-like

oscillation, the resulting control was piecewise linear, with jumps at the

probability switch times. It was proposed that the probabilities be low

pass filtered to smooth the control. This ad hoc modification did

achieve the desired result, without seriously affecting the stabilizing

control. This was just one example of the ad hoc procedures used in the

implementation of the MMAC for this project.

That further analysis of the MMAC algorithm was necessary became

evident with the F-8C application. The effect of the choice of models

on the overall performance of the control system was a major question

that needed answering. Without this analysis, the control could only be

designed and then tested using Monte Carlo techniques, with ad hoc modi-

fications being suggested to improve the performance. The first steps

taken toward understanding the properties of the MMAC algorithm were

12



taken by Greene [6] in his analysis of a simplified MMAC system.

The response exhibited by the MMAC in the F-8C application was

thought to have significant deterministic components, and not due en-

tirely to stochastic effects. It was thought that significant portions

of the MMAC response could be understood using deterministic analysis.

Since the deterministic components needed to be analyzed before work

could be done on the stochastic response, Greene's primary assumption

was that the white noise sources (w(k), v(k)) were zero. The Kalman fil-

ters used in his analysis were designed with assumed nonzero covariances,

but for the simulation and the analysis the sources were "turned off."

Some significant insights into the behavior of the MMAC system were obtained

in this way.

To simplify the analysis, the equations were further reduced with the

following additional assumptions:

1. The plant is globally linear

2. The desired closed loop equilibrium state is the origin

3. The matrices B, Bis C and Ci are identity matrices.

Under the above assumptions, the equations for the two model MMAC analyzed

by Greene are:

x(k+1) = Ax(k) + u(k) + w(k) (1.18)

y(k+1) = x(k+l) + v(k+1) (1.19)

1(k+1) = A181(k) + u(k) + Hlr(k+1) (1.20)

r(k+1) = y(k+1) - A121(k) - u(k) (1.21)

X2(k+1) = A2 2(k) + u(k) + f2r2(k+1) (1.22)

13



f2(k+1) = y(k+1) - A2i2(k) - u(k) (1.23)

u(k) = -P(k)G 1x(k) - (1 -P(k))G 2i2(k) (1.24)

1 - P_
P(k) = (1- P0 exp(-a(k)))~ (1.25)

2_ 2cz(k+1) = c(k) + 11r(k+1)1[ -1 - 1|r2(k+1)lI6-1 (1.26)
1 2

P0 is the initial probability that model 1 matches the plant

P(k) is the conditional probability that model 1 matches the
plant

= i/1621 -(1.27)

In this formulation, the probability is a function of the log likelihood

ratio a(k). The Kalman filter gains H and [12 are computed using equa-

tions (1.10) - (1.11) assuming the following:

W =W. (1.28)

V =V i(1.29)

The control gains G and G2 are computed using equations (1.13) - (1.14),

where the following is assumed.

R = (1.30)

Q = Q. (1.31)

Using the above formulation Greene was able to demonstrate some of the

properties of the MMAC algorithm.

14



Motivated by the results fo the F-sC application, Greene, as part

of his work looked at a "worst case" of the probability switching beha-

vior. Figures 1.2 and 1.3 show a typical "worst case" response for a two

state, two model system. This type of response is characterized by large

excursions of the states, peaks, and oscillatory switching of the pro-

bability. For this case, Greene developed an approximation to the time

between switches in the probability and to the size of the states at the

switch times.

1.3 Overview of This Thesis

The work in this thesis proceeds in two directions. The first

(Chapter 2) is a direct extension of Greene's work, and the second

(Chapter 3) is an extension of the analysis to the stochastic MMAC system.

In the direct extension, the accuracy of Greene's approximation to

the time between switches is checked for three cases of interest. An

equivalent approximation is derived for the single observation finite

or limited memory MMAC. The accuracy of this approximation is also checked.

The last section is a derivation of a switch time interval approximation

for the case of a nonzero set point.

In the extension to the stochastic case a random input describing

function (RIDF) is computed for the two model MMAC system. This approxi-

mation is compared to Monte Carlo simulation results for various cases.

1.4 Notation

Listed in this section are some definitions used later in this thesis.

15
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AIl= maxX(A'A)

A21 = max(X(A)) (note this is not a true norm)

A(A) = eigenvalues of A

xI=II =

|IxKH6 = /

A= determinant of A
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CHAPTER 2

DETERMINISTIC ANALYSIS

In this chapter, some of Greene's analysis of a "worst case" MMAC

system are reviewed, checked for accuracy, and then extended to two other

formulations of the algorithm. Using this type of analysis, qualitative

results concerning the response of the MMAC can be obtained.

Section 2.1 is essentially a review of Greene's derivation of the

approximation for the time between switches in the probability. This is

included as a reference for the type of approximation derived in Sections

2.2 and 2.3. Also, in checking Greene's approximation it became necessary

to implement a modification to the approximation, and inclusion of Greene's

derivation gives some insight into the effects of this modification.

Section 2.2 is a derivation of an approximation to the time between

switches for the single observation limited memory MMAC algorithm. In

this algorithm, the MMAC probabilities are based only on the last obser-

vation, y(k), and not on all past observations. This algorithm is an

example of what Greene referred to as the Finite Memory MMAC [6]. The

accuracy of this approximation is checked using simulations of the system

for three different cases.

Section 2.3 is a derivation of an approximation of the time between

switches in the probability for a nonzero set point MMAC. For this case,

the desired equilibrium is no longer the origin, as the possibility of

biases in the control inputs is allowed.
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In this chapter, the cases used for the comparison of the accuracy

of the approximations are defined in Table 2.1. These three cases cor-

respond to stable, neutrally stable, and unstable MMAC systems. The

stability of the system can be seen in the change in the height of the

peaks of the state in the responses, Figures 2.1, 2.2,- and 2.3. The

system is stable if the height of the peaks decreases with time, neutrally

stable if the height of the peaks is constant with time, and unstable if

the height of the peaks increases with time. Further insight into these

types of stability can be obtained in Section 2.1.

2.1 A Review of Greene's Switch Time Approximation Derivation

An alternate expression for the MMAC was used in Greene's analysis.

In this alternate form, the state of the MMAC system was taken to be the

plant state augmented by the filter residuals, instead of the filteres-

timates, and the probability;

x(k+1)

1(k+1)

2 (k+)

A(P(k)) -

x(k)

A(P(k)) rl(k) (2.1)

L2 (k)

A - P(k)G (1 - P(k))G2  P(k)G (l- Ul) (1 - P(k))G2(I-!H2)]

L - A -01)

A-A2 0 2 ( 2)

(2.2)

Using equations (2.1) - (2.2) along with equations (1,25) - (1.27), instead

of equations (1.18) - (1.27), simplified the analysis.

20
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TABLE 2.1: Deterministic Case Definition

Fa 0 7

A~i = LZ2L1 a

Fh 0

LO h

g 0

0 glj

a 0

L a 1

H2 = 2
l2[t h

G2 =[1:
-2 9

Case a

a 2.0

b 2.0

c 2.0

a1

0.

0.

0.

h h
- ~ -1

0.809 0.5

0.809 0.

0.809 0.5

1.62 0.

1.50 0.

1.40 0.
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One of the advantages of this formulation is that the system is linear

for a fixed value of the probability (P(k)). This allows the use of some

of the insights of linear system theory in the analysis of the properties

of the system. For example, if A(P(k)) is stable, i.e.,

maxlx(A(P))I < 1 V P e [0,1]

then the system is stable, [6]. Greene called this type of stability

universal stability.

For the case of interest in this chapter, A(P(k)) is unstable for all

P(k).

maxlx(A(P))l > 1 V P e [0,1]

Greene found certain conditions on A(P(k)) such that it was unstable for

all P(k), but the MMAC system was still stable. The primary assumption

for this type of stability was that each mode of the system is stabilized

for P(k) equalling either 1 or 0 (although some modes may not be sta-

bilized for both 0 and 1).

With this assumption in mind, a new set of state vectors, y1 (i) and

2(k) were defined. The states y(k) were unstable for P(k) = 0 and the

states Y2k) were unstable for P(k) = 1. The matrices A, A1 and A2 were

assumed to be diagonal, which allowed the following partition of A(P(k)).

1l(k+1) A 1(P(k)) 0 Yi(k)

(k+1) [ 0(P(k)) (k)(2.3)

where

25



[(P(k)) 0

0 82(P(k))_

is an appropriately partitioned version of A(P(k)).

Simulations demonstrated a switch-like behavior in the probability

for this MMAC system. The probability P(k) would switch from near zero

to near one and vice versa as the plant states were alternately stabilized

and destabilized.

To characterize this type of behavior, Greene introduced the concept

of hyperbolic oscillations, with a corresponding stability concept. If

the unstable states for P(k) = 1 (or 0) increase at a slower rate during

the time interval where P(k) =0 (or 1),, then the system was called hyper-

bolically stable. If the rate of decay is equal to the rate of growth,

then the system response was neutrally stable hyperbolic oscillations,

otherwise the system was hyperbolically unstable.

Motivated by the simulations, Greene assumed the probability is I or

0 in the interval between switches in the probability. In actuality, the

probability is not 0 or 1, but the assumption that it takes on these

values is not unreasonable, since on these intervals, the values of the

probability are nearly zero or one. Greene developed an approximation to

the time between switches in the probability and to the norm of the state

vectors y1(k) and Y2(k) at the switch times, {T1 }. We now review this

development. Let

ro T.1 <k<T.1
P(k) = j(2.4)

1 T k < Tj+1

26
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I(T>_1 )I 2< 1125Tj- 1 1I 2 (2.5)

During the interval [Tj 1 , Tj), 11y1(k)II2 increases and I2(k)112 decreases.

At the switch time, T.

)A2 2 (2.6)

and during the next interval [T1 , Tj+11), 1y(k)112 decreases, and II22(k)112

increases.

The relation between the above approximation and the concepts of hyper-

bolic stability is as follows: for j sufficiently large,

Stable Hyperbolic Oscillations

I1 i )(Tj)I 2 2>1 jTj+2)1 2 and I22(T)j-1 2 21j>2(T9l (2.7)

Neutrally Stable Hyperbolic Oscillations

Iy,)(Tj)l l2= Tj+212 and Ix 2 (T)j-1 2 I12(T2)112 (2.8)

Unstable Hyperbolic Oscillations

)11 2< T )Tj 2 and (T_ 2< (T)2 (2.9)

Using the equations (2.3), (1.25) - (1.27) for the evolution of yl(k),

22k) and c(k), the time interval between switches in the probability can

be approximated. In the two model, two dimensional state case used in

Greene's examples yI(k) and 22(k) are defined as follows.
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X
1
(k)

y1(k) = r11(k)

r12(k)

Plant state x

Filter 1 residual

Filter 2 residual

x2 (k)
= r21(k)

Lr22(k)

X 2(k)~.(k) = X1 kL2(k
ri(k) = [r k

LY12 (k)

r21(k)~
r2(k) = 21

L22(k)

so the evolution of a(k) can be written as follows:

k
c(k) = Y y(i)

i =0

- (i) H

i
I
11

5L=0

Ak(P(9)) 12
z=0 2(P(z)) Y2(')

where $ and $2 are appropriately partitioned versions of

For

and e-21'

K e [TTj+

then

P(k) 0

28
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(2.14)

(2.15)
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then assuming

P(k) = 0

leads to

A1(P(k)) = A1(0)

A2(P(k)) =A 2(0)

=if

al i~2(O)II
a2  2(

then on this interval

a 1

a2

and

a(k) ~ct(T.) +

T -1

x=T
a-Ti I 1(T9I1 2a1 - aT ilx 2 T1 )1Ij 2

t 2t 2

At the switch times,

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

where

(2.23)

(2.24)

(2.25)
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a(T) 0 (2.26)

c(Tj+ )O(2.27)

11x2(T 1 I2 II2 j(T )Il2  (2.28)

If the half period for the oscillation, T, is defined as follows:

T=Tj+1-T (2.29)

then T can-be approximated from the following equation.

aT+1- 1 2 aT+1 1

a 1  - 1  a1 2 - 1 2 
I i T J 2  2( 2 .3 0 )

As Greene noted, exact solution of this equation (2.30) for T, is not pos-

sible, but T can be approximated using numerical techniques.

This approximation will be checked using the three cases defined in

Table 2.1. These cases correspond to the three types of hyperbolic sta-

bility, for which the approximation was derived. The stability of each

case is defined below.

Case a) Stable Hyperbolic Oscillations

b) Neutrally Stable Hyperbolic Oscillations

c) Unstable Hyperbolic Oscillations

2.2 Implementation of Greene's Switch Time Approximation

The approximation to the switch times and the norms of the states

derived by Greene, outlined in the previous section (2.1), appears to be
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quite useful. Greene showed this approximation should allow insights to

be gained concerning the type of response of the MMAC system. The actual

implementation of the approximation was not done, i.e., no specific cases

were checked.

The work done in this section is a check of the accuracy of Greene's

approximation, something not done in his thesis. Similar approximations

are derived for two other MMAC formulations later in this chapter, so a

check on the accuracy of this type of approximation, switch time, seems

prudent.

Difficulties were encountered in the computation of the norms of the

matrices in Greene's approximation. In the derivation of the approximation

it was assumed that:

1)2 > 1 (2.31)

IIA 2(O)1I 2<1 (2.32)

but the values computed for these norms were not as expected. Instead of

HIn (P)I2 being greater than one for P= 1 (or 0) and less than one for

P =0 (or 1), it was strictly greater than one, Table 2.2.

Using the values for the norms, it is obvious that the approximation

will indicate instability independent of the stability of the actual MMAC

system. Since the norms are greater than one for P = 1 and P = 0, the

estimates of 11 2(k)11 2 and 112 (k)II12 generated by the approximation will

grow with time, ruling out any behavior similar to stable hyperbolic oscil-

lations.
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TABLE 2.2: HA1(P)H 2 for Deterministic Cases

CASE

a

b

C

p

0.

1.

0.

1.

0.

1.

(221 P)fl1

8.00

4.15

8.00

4.23

8.00

4.37

IIA2(P)II 2

4.15

8.00

4.23

8.00

4.37

8.00
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Greene had suggested using the following measure of the size of the

matrix (quasi-norm):

1A 5I2 = max(X(A))2 (2.33)

instead of the norm

A2 = maxX(A'A) (2.34)

It was suggested in [6] that this might result in an improvement in

the approximation. Thus the use of this quantity was investigated.

It is easily shown that I(-), is not a true norm. However, it in

fact does improve the approximation, as is seen later. Also as is seen

in Table 2.3, the values assumed for the matrices have the expected pro-

perties, i.e., the matrices A.(P) were not stable for P=0 or P=1.

To determine the accuracy of the approximation, in predicting the

switch times and the corresponding magnitude of the states, a measure of

the size of the states is needed. Greene developed a quasi-Lyapunov func-

tion to measure the growth or decay of the states of the plant

V(k) = ln x1(k)x2(k) (2.35)

Although (2.35) is not a true Lyapunov function, it gives a good indication

of the stability of the system in the hyperbolic sense. Since the plant

states are not computed in the approximation of the switch times, a modified

function was chosen for this analysis of the accuracy of Greene's approxi-

mation. This second quasi-Lyapunov function uses parameters which are

computed in the approximation
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TABE(23:for Deterministic Cases

CASE

a

b

C

P

0.

1.

0.

1.

0.

1.

I31 (PHI1*

4.00

0.14

4.00

0.25

4.00

0.36

|AX211 2(p)I1$

0.14

4.00

0.25

4.00

0.36

4.00
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V*(k) = 2n y,(k)JI2 I2(k)||2 (2.36)

This function is quite similar to Greene's quasi-Lyapunov function, and

consequently has similar properties with regard to the stability of the

system.

For the cases of interest, the function V* behaves linearly with

time as does Greene's [6]. The increment of the linear function V* is

indicative of the stability of the system.

V*(k+J,) - V*(k) < 0 Stable Hyperbolic Oscillations

V*(k+1) - V*(k) = 0 Neutrally Stable Hyperbolic Oscillations

V*(k+1) - V*(k) > 0 Unstable Hyperbolic Oscillations

This linearity with time, exploited by Greene in his analysis, is also

quite useful in this work, so V* will be repeatedly used in this approxi-

mate stability analysis.

To obtain a comparison of the approximation to the actual system

response, V* is plotted at the switch times (Figures 2.4a, 2.4b, 2.4c).

In these figures, V* from the simulation results is plotted at the actual

probability switch time. For the sake of contrast, V*, as predicted by

the approximation, is plotted at the predicted switch times, also from

the approximation. By plotting the data in this way the accuracy of the

approximation for both the size of the states and switch times is seen.

It is apparent from the figures that the approximation is not an exact

prediction of the behavior of the system, but that it is indicative of

the response. The error in predicting the times of probability transi-

tions (T) is significant as is the error in predicting the size of the
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states at these times. Even with these inaccuracies, the approximation

is still useful in predicting the type of response. Looking at the

different cases, the accuracies of the approximation are seen.

For the hyperbolically stable case (la), similarities are seen in

the approximation and the simulation. First, the negative increment of

V* for both the approximation and the system simulation indicates the

system is stable. Secondly, the increment is nearly the same for both

the approximation and simulation, indicating the degree of stability,

rate of decay of the states, is quite similar. Thirdly, the time inter-

val between switches in the probability is increasing with time, again

a property of the approximation and the system response.

For the other two cases (1b, 1c) the approximation agrees with the

system response in a similar manner, indicating the neutral stability

and instability, respectively, and the change in switch times intervals

for the probability with good accuracy.

From these examples, some conclusions can be drawn concerning the

utility of this approximate analysis. In the examination of the

qualitative behavior of the MMAC, this approximation would be useful.

The insights gained in Greene's worst case analysis using this approxi-

mation demonstrate its usefulness. The explicit indication of stability

and switch time trends are useful in understanding the response of a

MMAC system. It should be noted that the qualitative accuracy is good,

but the quantitative accuracy is not nearly as good. As with most ap-

proximation, however, some care must be taken in using this method to

ensure no assumptions vital to the approximation accuracy are violated.
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For example, later, in Section 2.3, the effect of violating the assump-

tion that P0 or P ~1 on the accuracy of the approximation is investi-

gated.

2.3 LimitedMemory MMAC

One of the properties exhibited in the case of hyperbolic oscillations

is the large excursions of the state as they are alternately stabilized

and destabilized. Greene [6] showed this is mainly due to the inertia or

lag in the probabilities. Since the probabilities are based on all past

observations, the probabilities may be driven toward 0 (or 1) during one

time interval, and then have to overcome the inertia of the prior in-

terval to reverse direction and go to 1 (or 0). This is illustrated in

the log likelihood formulation of the MMAC, repeated here.

2_2_
a(k+1) = (k) +||r(k+1)H 6 -1 - Itt2(k+l)1Ie-1 (1.25)

-1 -2

P(k) = (1 + 0 exp(-da(k)))1 (1.26)
P0

In this case, a(k) tends to attain large values compared to the in-

crement Aa(k) defined as follows:

2_2_
Ac(k) = IIr (k+l)li 1 2(k+1)ll-1 (2.37)

-1 -2

so if a(k) gets large in the positive sense compared to Ac(k), it will

take many times steps before a(k) is reduced to zero by a sequence of
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negative increments. During this interval the unstable states will grow

geometrically, resulting in the peaks seen at the switch times of the

probability.

A modification to the MMAC proposed by Greene to "speed up the pro-

babilities" or reduce the inertia is to limit the memory of the MMAC. This

is done by introducing a moving observation window for the computation

of the probabilities, i.e., instead of using all past observations for

the computation of the probabilities, only the most recent observations

are used [6]. For the log likelihood formulation, only the equation for

a(k) (2.14) js changed in implementing the limited memory MMAC algorithm.

For an observation window of length M, the equation for a(k) is as follows:

k22
a(k) = i=-M1121(2.38)

i=k-M 11ri)116ll 11C2 -2

A limiting case of the limited memory MMAC algorithm is where the

probabilities are based on only the last observation. In this case eqjia-

tion (2.38), a dynamic equation for t(k), becomes a static equation

a(k) = [1fl(k)jj2_ 1 - 1f2 (k)J 1(2.39)
2 2

To obtain some insights into the behavior of the system, an approxi-

mation similar to that for the full memory MMAC is derived in this section.

For the limited memory case, the equation for a(k) in terms of g1(k),

2(k), a,, and a2, defined in (2.3), (2.24) - (2.25) is:

a(k) ~-1 1 (k) i2 - h2(k) 2cr2 (2.40)
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With this formulation, the half period T, defined in equation (2.29),

can be approximated, assuming P(k) switches between zero and one, and does

not take on intermediate values. Assuming P(k)= 0 on the interval [Tl, T1+1),

then it follows from the assumptions on y1(k) and 2(k) (Section 2.1):

I1(O)II2 = a, > 1 (2.41)

12(O)12 = a2 < 1 (2.42)

Approximating I|rj(Tj+k)IIO:1 by aiy1(T1 )I 2 on this interval, simplifies

the analysis and results in

cdk+T.) =a1k (T)12 C a2
I)= k ()!Ia - k2 2j 202(2.43)

If

II1(T )II 2 <II 2(T )II2 (2.28)

and

a(Tj+) 0 (2.27)

then T can be approximated by the following equation.

= T )I2  - a2  T) 2(2.44)
0 =aiy( Ci-a1 2 1c I2\(Tj/IIG2  (.4

This equation can be solved for T, resulting in the following.

1 [I2(T)12cs 2
T l=n42(Tn a7 ln 2(2.45)

( 1l / alx1(T )Ia1
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Three cases were used to evaluate the approximation and simultaneously

investigate the properties of the limited memory MMAC. The cases are

the same used to check the full memory approximation and are defined in

Table 2.1. Figures 2.5a, 2.5b, and 2.5c contrast the behavior predicted

by the approximation with the simulation results.

One of the interesting properties of the approximation is that it

predicts that the probability switches every time instant, after the first

few switches. This is an erroneous prediction, since the minimum interval

found in the simulations has a length of three time steps, but again the

qualitative prediction is correct. In terms of the prediction of sta-

bility, the approximation correctly predicts the rate of growth for the

neutrally stable hyperbolic case (2b) and the unstable hyperbolic case (2c).

For the limited memory implementation hyperbolically stable system case

(2a), the norms of the states 11y1(k)112 and 1122(k)II2 are predicted to de-

crease to zero, but the simulation exhibits a limit cycle type response.

The limit cycle response of the simulation can be explained as follows.

As the norm of the states, Yj(k)1[2 and 16 22(k)11
2 decrease toward zero,

the probability will move toward . For P(k) fixed at , the system is

unstable, and so as P(k) approaches , the system becomes unstable, or

the norms 11y1(k)I2 and hy2(k)|I2 increase. This increase in these norms

drives P(k) away from , towards 0 or 1. This shifting of P(k) from 0 or

1 to near and back leads to the limit cycle type behavior.

An assumption made in the derivation of this approximation was that

P(k) was either 0 or 1 and did not take on any intermediate values. In

the simulation, P(k) did take on intermediate values as the system limit

43



0 1.0 000o ooo ooo ooooooooooooo ooo ooo-ooooooooooooooooooo.

-20

V*(Tj)

-40

-60-

-0-- Approximation (switch every time)

-80 a Simulation

-100
0 20 40 60 80 100 120 140 160

K

V*(T ) for Simulation and Approximation (Limited Memory)Figure 2.5a



(A~oewp;I~J)uoiLeuuixoaddv pup UOL4QLflWLS I 04(IX*A

0?t001
A1

0809

qS9Z ejn5 j

at?

UOI4DIlnW!S o

(ewis AJGAB 4D'!Ms) uoitDw!xoJddV -0-

-0o?-

-JOcI
ooooooooooooo0oooooooooooooooooooooooooooooooooooooo ILfl

KUf

([I) A*

-109

091ON0
IITTITI

-OV



80 k-

600
0 30

V *(Tij)60000
40 -- 0 00 O

200
201- 

00 00 000000

.O O

0 - -o- Approximation (switch every time)

o Simulation

-20
0'10 40 60 80 100 120 140 160

K

Figure 2.5c V*(T.) for Simulation and Approximation (Limited Memory)



cycled violating the assumption. This explains the discrepancy between

the approximation and the assumption.

An example of this type of limit cycle response is seen in Figure 2.5.

For the initial portion of the time history (0Osk< 16), the approximation

and the simulation agree as to the stabilization of the states, but later

in the time history (k>16) the stability indication of the approximation

and the simulation differ. A look at P(k) for these two different in-

tervals, (0 <k <16) and (k> 16), reveals the cause of the discrepancy

in the approximation and the simulations. In the initial interval, the

values taken on by P(k) were essentially zero or one, but during the

latter interval P(k) was near one-half. This violated the assumption that

P(k) was near zero or one, resulting in a limit cycle.

A look at the initial conditions supports the claim of degradation

to a limit cycle response.

11y 1(0)2 = 100. (2.46)

2( 2 = 1. (2.47)

For the initial switch intervals 1 y1(k)II2 and 11Y 2(k)112 were significantly

different, due to the difference in the initial conditions. For later

switch intervals, the state had been reduced so that the difference be-

tween them was small. At this point, c(k) was near zero, so the proba-

bility was near one-half, and not near zero or one, where some of the

states would be stabilized. When the states reached nearly the same size,

a limit cycle resulted.
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To test the hypothesis that intermediate values of P(k) would account

for the discrepancy in the simulation and the approximation, a maximum

likelihood control was used instead of the probabilistically weighted

control, i.e., the following control law was used.

(-Git(k) P(k)>1
.u(k) =(2.48)

=-G2 2(k) P(k) <4 (2.

In this case, the control is precisely piecewise linear, with gains cor-

responding to the P= 0 and P= 1 limits.

It was found that the negative increment of the quasi-Lyapunov func-

tion (V*(k)), indicative of the stability of the system, is exhibited by

both the simulation and the approximation, i.e., the limit cycle was

eliminated. Since the only change in the control was to ensure the as-

sumption was valid, it would appear that P(k) taking on intermediate values

in the probabilistically weighted control contributed to the neutral sta-

bility of the limited memory MMAC system.

The discrepancy between the approximation and the simulation for

the hyperbolically stable case (2a) of the limited memory MMAC with

probabilistically weighted control demonstrated an effect of violating

the P(k) = 0 or P(k) = 1 assumption. The significance of the assumption

is brought out, when in violating it, the approximation breaks down.

If the assumption of P(k)= 0 or P(k) =1 is not violated, the approxi-

mation is fairly good. The prediction concerning the stability of the

system appears to be correct, although care must be taken in the stable

case. In the case of a prediction of stability, the actual system may

limit cycle, as P(k) takes on intermediate values.
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2.4 Set Point Analysis

In the analyses done thus far, the control associated with each

model was designed to drive the state to the origin. In this section,

an extension of this zero set point analysis is undertaken. The more

general case of interest in this section is where the control associated

with each model is biased.

u (k) = -Gii(k) + b. (2.49)

If the controller were linear, this bias would not affect the stability

of the system, but since the MMAC is a nonlinear controller, the bias

may affect the stability. It should be noted that the bias also affects

the MMAC probabilities. If the Kalman filters used in the MMAC were all

matched with the true system (plant), the bias would not affect the pro-

babilities, but since there is no guarantee that all the filters are

matched, the bias will affect the probabilities through the mis-matched

Kalman filters.

To gain some insights into the effects of a biased control, an ap-

proximation was developed for the time between switches in the probability.

As before, in this approximation the states are partitioned into those

unstable for P(k)= 0, y1(k) and P(k)= 1, 22(k). With the assumption

of a diagonal system, the equations for the evolution of y1(k) and Y2(k) are:

[ 2(k+) =[ 1 (P(k)) A(Pyk) (k)-+ + 1(P(k))] (2.50)

..22(k+1 )J L 0A2(P(k)) 2 (k) b2(P(k))
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where A1(P(k)) and A2(P(k)) are defined by equation (2.3) and (P(k)),

(P(k)) are appropriately partitioned versions of (P(k)b 1+(1 -P(k)b 2).

To compute the half period T, (2.29), assume a switch-like behavior

in P(k), and that P(k)= 0 for the interval [T., Tj+). The evolution of

(k )112and IIy2(k)II2 can be approximated by the following equations.

dk_

Iyj(T+k)II 2 = (d Lx1 (T )II + ---- C1)II)2 (2.51)

dk_
2(T +k)Il 2 = (dI 2 (T)I + 2- 1W 2(O)I12 (2.52)

2

Using these two approximations (2.51) - (2.52) in the equation for a(k),

the following approximation for the evolution of c(k) is obtained.

k . di -1
a(k) = c(T.)+ 4 (d y(T )+1 (0)) - 2 (d |y(T )

i-O1 d1 1It1(-( T

+ d2 -2 2(2.53)

2

where

d1= maxX(A1 (0))l (2.54)

d2 = maxX(A2(0))1 (2.55)

Now if

a(T.) 0 (2.56)
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(Tj+ 1) =0 (2.57)

(2.58)I1 1(T~ i) 2

The time interval between switches T can be approximated using the fol-

lowing:

(dk T)

d k1

+ d-1
1

1 b 2
T

k=0
(d L|2(Tk)

d -1

+~ E2 -(0-21

(2.59)

or equivalently,

S(d2(T+1) - 1

d 1

1)

(d1-1)

1 j 2 +

1

d 1

2

(d1 -1)(d -1)
(d2(T+l) - dT+2 - dT+l+ d ) (0)1 1 1 + 1 11T)I11(OI

(dfT+l) - 12dT+2-2d +1+ 2d1+1) + T+1] 1Wi(0)12} 1

d2(T+1) 12
~ { 2 d

2 - 2 jT 1 +
2

(d2-1) (d2_1
(d2(T+1) - dT+2 - d+1+ d2 2(T2 2 d2 2)1I 2(T.)lII -2(0)1I

(d2(T+l) _ 2dT+2 -2 2 2d T+l + 2d2+1)+T+1] II2K(0)12}c22]11 2 -2

(2.61)

(2.62)

51

T

K =

+ 12-1
(d2-1)

1

2

Assuming

(2.60)

d > 1

d2 < 1

h2 jTi)1 2

L- 6-



and consequently, for large T

d >> d (2.63)

d <d2(2.64)
d2  d2

then (2.60) reduces to the following:

d 2T+1) d2(T+1) d2(T+1)2 T1) T )|2 +12 dy'(1 T ) (b)| 1 I+(0)l2a,
d - 1 1x5(T91 dd 2j- -2 2 0d1) (d -1) 1

1 2+2 d2 I2 I j (0) + T+12 2
1-d2J (1-d2)(1-d2) -2 (d)21 j

(2.65)

After some simplification, the equation (2.65) reduces to the following,

which is used to approximate T.

d2(T+1)C
2 1+(I j+(T)1I( 2

(d -1 ) 1d

2( )I (T +2d 2  1+d2
~ -2 j2221j +12(0) 1-) + d2 12(0)1I] (2.>6)

The stability of the system can be determined in a way analogous to Greene.

The relative size of the peaks at the switch time can be determined using

the following equivalent form of equation (2.66):
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C dl 5 2d 1-d 2
1 (+ 2 2(02+1 (- y 2(Tl2l (T+1) ( )1) (0)101 d2 (d2 1) 1-d2  2 (d2 1)2 22

(2.67)

For the case where I$i(0)II =0, this equation reduces to the zero set

point equation used by Greene [6]. In the case of interest in this

section, l|b(0)Il is not zero, and equation (2.67) must be used. Due to

the complexity of the equation (2.67) no simple condition, involving the

parameters of the MMAC system, has been developed for the stability of

the nonzero set point MMAC system.

Before recommending that the approximation derived in this section

be used in any future work, an analysis of its accuracy is desired. A

check of the accuracy of this approximation was done for the three cases

defined in Table 2.1. The bias in the control associated with each model

was such that the desired equilibrium point for the plant states was the

same.

xsteady state = (2.68)

Insight into the behavior of the set point control was gained from

the test cases investigated. All three cases were found to be unstable,

even the hyperbolically stable case (3a). This would seem to indicate a

need for a stronger stability condition for the nonzero set point control

MMAC system than for the zero set point system.

A comparison of the approximation to the simulation results reveals

the significantly better accuracy of this approximation compared to earlier
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approximations investigated (Sections 2.2 and 2.3). The approximation

derived in this section predicted the switch times with good accuracy

and the magnitude of the states at these times was also predicted well,

as seen in Figures 2.6a, 2.6b, and 2.6c. It is conjectured that the

biased control inputs greatly accentuate the effects of the model mis-

match, which would lead to a better approximation for the biased control

case. It would seem that this approximation would be useful in future

work concerning stability conditions for the nonzero set point MMAC

system.
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CHAPTER 3

STOCHASTIC ANALYSIS

This chapter is a presentation of the results of research into the

stochastic properties of the MMAC. These results were obtained from a

combination of exact and approximate analysis and simulations. This work

constitutes a first step towards understanding the stochastic properties

of the MMAC algorithm.

In Greene's work [6] and the work of the preceding chapter, the

assumption of zero noise input was made. This simplifying assumption

allowed many insights to be gained into the response of the deterministic

MMAC. To obtain a complete understanding, the stochastic properties

must also be investigated. Consequently, the noise sources have been

assumed nonzero for the work in this chapter.

Since the MMAC is a nonlinear control algorithm, the analysis of the

stochastic response is not straightforward. Even though the noise inputs

are white and Gaussian, the nonlinearity leads to non-Gaussian pro-

bability densities for the states of the MMAC. These non-Gaussian

densities impede the analysis by requiring numerical integration tech-

niques for the Chapman-Kolmogorov equation [7].

A way of bypassing some of the difficulties of analyzing nonlinear

stochastic systems is to use a quasi-linear approximation. One analysis

of this type is a Random Input Describing Function (RIDF) approximation,

which in its standard form leads to approximations for the first two moments
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of the system states. The accuracy of this type of approximation varies

significantly with different applications, i.e., sometimes it works, and

sometimes it doesn't.

In Section 3.1, the RIDF method is outlined for a general non-

linear system. This section serves as the background for Section 3.2,

where a RIDF is derived for the MMAC system. In Section 3.3, the concept

of stable probability intervals is introduced as a way of classifying

stochastic MMAC systems. In addition, this classification is compared

to Greene's classifications for deterministic systems. To check the ac-

curacy of the RIDF approximation, a set of test cases, defined in Section 3.4,

are used in Monte Carlo simulations of the MMAC system. The results of

these simulations are analyzed and compared to the predictions of the RIDF

approximation in Section 3.5.

3.1 Random Input Describing Function

In the analysis of nonlinear stochastic systems, one technique for

approximating the first two moments of the states of the system is the

random input describing function (RIDF) [8]. This approximation has good

accuracy for a large class of nonlinear equations. For this reason, the

RIDF approximation was used in this analysis of the stochastic MMAC.

The basic idea of RIDF analysis is to develop a quasi-linear approxi-

mation for the nonlinearities in the system. This is done by computing

minimum mean square error linear approximations for the nonlinearities,

assuming an input of known distribution, usually Gaussian. For example, if
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x(k+1) = f(x(k)) + w(k)

w(k) ~ N(O,w) (3.1)

E[w(k)w'(j)] = 0 ik

A quasi-linear approximation can be computed as follows. Assuming

x(k) ~ N(m(k),Z(k)) (3.2)

then f(-) can be approximated by

f(x(k)) = F(m(k),Z(k))(x(k) -m(k)) + b(m(k),z(k)) (3.3)

where F(m(k),Z(k)) and b(m(k),Z(k)) have been chosen to minimize

P = E{[f(x(k)) - F(m(k),z(k))(x(k) -m(k)) - br(m(k),Z(k))]

x [f(x(k)) - F(m(k),-Z(k))(x(k) -m(k)) - b(m(k),j(k)]}

(3.4)

Once the functions [(-,-) and b(-,-) have been determined, the following

equations can be used to approximate the evolution of the mean, ^i(k), and

the covariance, (k), of the system.

@(k+1) = b(Mi(k),E(k)) (3.5)

E(k+1) = F(i_^(k),(k))2(k)F(r(k)J,(k)) + W (3.6)

The reason for assuming that x(k) is Gaussian is twofold. First, the

driving noise, w(k), is white and Gaussian implying that x(k) is always

a convolution of a Gaussian and a non-Gaussian density. Secondly, and

most important, the minimization of the error (3.4) is simplified, due to

the moment factoring property of the Gaussian distribution. Whether this
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assumption is reasonable depends upon the application.

The application of RIDF analysis to the MMAC system necessitates

the linearization of the nonlinearities in the identification and control

portions of the algorithm. The resulting quasi-linear system is used

to approximate the means and covariances of the MMAC states.

3.2 Derivation of the RIDF for the MMAC System

In this section, a RIDF is derived for the two model MMAC system,

defined in equations (1.18) - (1.27). This derivation approximates the

nonlinearities in the identification and control sections of the algorithm,

equations (1.24) - (1.27). The extension to the N-model MMAC, set point

MMAC, etc. is conceptually straightforward.

The equation for the evolution of the log likelihood ratio at(k),

(1.26), is quadratic in r(k) and r2(k)

a(k+1) = a(k) + r(k+lj1 (k+) - r(k+1) r2(k+1) (3.7)

A RIDF for a(k+1) can be computed, assuming r1(k) and r2(k) are jointly

Gaussian. Since the MMAC is a nonlinear controller, the plant states and

filter estimates do not have Gaussian densities. The residuals, being

functions of the states and filter estimates, are also non-Gaussian. To

retain tractability in the computation of a RIDF for the MMAC, the residuals

were assumed to be close to Gaussian. This assumption is reasonable, if

there is substantial measurement noise. Under this assumption, (k+1)

can be approximated by the following.
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a(k+1) ~=Kc((k) -max(k)) + K' (r (k+1) -M (k+1))aaa-car 1 -1 1r

+ K' xr2(r2 (k+1)- m r (k+1)) + b> (3.8)

where K , Kar , K r2, and ba are functions of mr1 (k+1), m r2(k+1)9, Er (k+i) ,

2 (k+1)and E(k). After minimizing the expected error in the lineariza-

tion, K,9 Kar 'Kr2 and 5a are defined as follows:

K 1 (3.9)

K = 2Z (k+1)e- 1m (k+1) (3.10)
-rr 1 -r -1r

-2E (k+1)e2 n (k+1) (3.11)-cxr 2  -r2  1)2 r2(k1

5t = ma (3.12)

The RIDF approximation for this product of states type of nonlinearity

has limitations. Geier [10] has proposed modifications to this method

which improve the accuracy. His modified RIDF propagates higher order

moments for those states used in the product nonlinearity. Later in this

work, Section 3.5, as part of the analysis of the accuracy of the RIDF,

it will be proposed that Geier's method be used to improve the accuracy

of the approximation.

The states used in this analysis of the MMAC are the plant state,

x(k), augmented by the filter estimates, XI(k) and ^2(k), and by the log

likelihood ratio a(k). To get the approximation for a(k+1) in terms of

the state of the MMAC system, the following equalities are used:
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1(k+1) = Ax(k) - (k)+ v(k+1) + w(k)

2(k+1) = Ax(k) = A222(k) + v(k+1) + w(k)

(3.13)

(3.14)

Substituting for r1(k+1) and r2(k+1), using equations (3.13) - (3.14) in

equation (3.7) the new approximation for c(k+1) is the following:

c(k+1) = ak + K'(x(k) -m m(k)) + K' (2 1(k)-rn2 (k))

+ x (k) -rn 2(k)) + K'v(k+1) + K' w(k1) + b

(3.15)

The functions KKA K A 2K' K K , and b are defined as follows:_U'-ax,-czx 2-czV -czw

K 2A'[e1 (Am (k) - A (k))

.Kaki 2A e (Am k) -(k))

-ax2
2Ak(Am(k)

S= 2o (An (k) -
ot v

- 0 (Am (k)
- '2 2 (k))]

2

- 2 (k))
2

(k)) - 2 (Am(k) - 2!2 (k))]
2

Kaw = V

b= tr{ - (k)A' -2AZ (k)A' + (k)Ai + V + W

+ (Am (k) -

- [AE (k)A' - 2A (k)A'
x XX2

+ (Am (k) - A2 2(k))(Am (k)
x ~~222 -x

q-, (k))'x 

Am

+ A2z (k)A + V + W
2

- A (k))']}
X2
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For the nonlinearity defined by equations (1.24) - (1.25) the derivation

of a describing function involved an expectation with the following term:

E L1s10 cxk) 1L(k) -.G2i2(k)

where the expectation is taken over a(k), x(k), and 22 (k). The computa-

tion of this RIDF assumes t(k), 'I(k) and R2(k) are jointly Gaussian.

Even with this Gaussian assumption for the states an additional simpli-

fication is needed to compute the RIDF. To simplify the expectations in-

volving this term and others similar to it, the following assumption was

used.

1 t1(k)>caswtch
P switch(3.22)

1+,-- 0 e ak 0 a(k) < aswitcheO 20 2

aswitch = 2 ln 0 (3.23)

It should be noted that this approximation is precisely the maximum like-

lihood control formulation of the MMAC, defined in Section 2.3. Using this

approximation (or exact expression, if the maximum likelihood control is

used) (3.22) - (3.23), the describing function for equations (1.24) - (1.25)

is the following.

u(k) = K' u(x(k) -rn(k)) + K (21(k) -rm- (k)) + K (X2(k)ux - X-ux 1 ( 1 _ ux 2(2

- T^ (k)) + Ku(a(k) -m (k)) + b (3.24)
X2 u c_
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where the functions K , KUx , KuA , KUa, and bu are defined in the fol-
1  2

lowing equations.

K0-ux 0

A = ( qG

1-q)G2

(3.25)

(3.26)

(3.27)

zf [Ck]
zfEyGk) 1Z2jk) G2 A(k)]

-k1 -x2c

f 
Tx[GIrn (k)

/I-[k} 1
-G292 (k)]

2

(3.28)

b qGlmA (k) + (1-q)G2mn' (k)
1 2 /z (k) 2 2 a(k)]

2

= aswitch ck

/2 (k)

lz 2
0- e /2

This set of equations (3.15) - (3.21), (3.24) - (3.32) led to the fol-

lowing quasi-linear form for the MMAC.

x(k+1)7

i1(k+1)

a(k+1)-ow

A(k)

x(k)

x (k)

cx( k)

w(k)
+ F(k)

v(k+1)j

Kua

(3.29)

(3.30)

(3.31)

(3.32)

B(k)
(3.33)

m (k)

M (k)
.-1

mc (k)-X
2

m (k)

b (k)-U

bcx Ck)
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-K A

-ux
2

-K'-ux?A2

(J-H )A -K- 2 - 2 --x2

K'
-ta2

-K-ua

-K
-ua

A-K'
- -ux

KI-atx

(3.35)

(-.)=rn(k)

K A KA
-ux -ux2

U 1 ux2K'-~ K'-
-ux -ux21 2

K 'A K'Y
-uxi -UX 2

K ' x K' 2-ctx -ctx1 2

K -I 0
-uca -

K -I 0-uca -

K -I 0

o o 1

With this quasi-linear approximation, the approximations for the means and

covariances of the MMAC system can be propagated in time using equations

(3.37) - (3.40).
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-uxi

(I-H ) Ks-a-1 - ux

-K A-uxi

-ax
mn(*)=m(k)

(.)=z(k)

(3.34)

A(k) =

_ (k)

I

-2

SK'
--cV

0

K'
-GYM

$(k) =

K'-ux

K'-ux

K'
-ux

-K'- I

(3.36)

.()=rn(k)



Let

x(k)

x 1(k)
(k) E (3.37)

x 2(k)

a(k)

x(k) x(k)

(k) 1 (k)

2(k) = cov ,(k (k(3.38)
x(k) x2k

a(k) _ a(k)

and A(k), Z(k) be approximations for F(ik), i(k). Then

m (k)
(k+1) = A(k)M(k+1) + B(k) ~---- (3.39)

b

b

z(k+1) = A(k)t(k)A'(k) + r(k) ~ '(k) (3.40)
0 v

This approximation will be used later in this chapter, to demonstrate some

of the properties of the stochastic MMAC system.

3.3 Stable Probability Intervals

In Greene's work, MMAC systems were classified according to the de-

terministic response. These classifications, universally stable, hyper-

bolic oscillations, and mixed case, lend themselves to equivalent classifications
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for the stochastic MMAC. In this section, the idea of stable probability

interval is used as a classification criterion. There is a direct cor-

relation between Greene's classification and the stable probability

interval classification, which is explained below.

As mentioned in Section 2.1, the MMAC system is linear for fixed P(k).

The stability of the system can be determined for various values of P(k).

The set of values of P(k) for which the MMAC system is stable is called

the set of stable probabilities. In the cases of interest in this chapter,

this set of stable probabilities defines an interval on [0,1], i.e.,

Psal e [Pmi P 1 0 < P.< P < 1
stable min' max min max

For the work in Sections 3.5- 3.7 the stable probability interval is an

important quantity in determining the response of the stochastic MMAC.

The following terminology is used in the discussions that follow:

1. Universally stable systems. These systems have a stable pro-

bability interval of [0,1].

2. End point stable intervals. These systems have a stable pro-

bability interval which includes 0 or 1.

3. Interior stable intervals. These systems have a stable in-

terval which does not include 0 or 1.

4. No stable interval. These systems have no stable probability

interval.

The following correlation exists between the stable probability in-

terval and deterministic response characterizations.
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Probability Interval Deterministic Response

Universally stable <- > Universally stable

End point and interior< > Mixed case

No stable interval <=- Hyperbolic oscillations

There are systems with no stable probability interval that do not oscillate,

i.e., the states grow without oscillatory behavior.

3.4 Case Definition

To illustrate the types of stochastic responses investigated, a few

cases were chosen. These cases were used to check the accuracy of the

RIDF, as well as to gain insight into the response characteristics. In

this section background information for the case definition and Monte

Carlo simulation is presented.

In the last section, the concept of stable probability interval was

presented. In this section, the determination of cases with specified

probability intervals is outlined. Also some motivation for the choice

of cases is given.

To reduce the number of parameters which determine the stable pro-

bability interval, the following assumption was made.

Q = R = V = W = I (3.41)

I = n xn identity matrix (3.42)

With this simplification the matrices A, A and A2 will determine the

stable probability interval. The matrices A, AV and A2 being diagonal

allows the following form.
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a 0

- 0 a(3.43)

a 0

= ](3.44)
L0 a I-

- 1

g2 0

92 9 0(3. 49)
0 ga

1h 0

- Lo0 1+hj(3.50)

1h 0

20+ 2  1:h (3.51)

where Hi.G1i and O.i are obtained using equations (1.10) - (1.11), (1.13) -

(1.14), (1.17), assuming C i and B i are identity matrices. In this case,

the matrix equations (1.10) - (1.11), (1.13) -(1.14) can be replaced by the

following set of independent scalar equations.
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2 2 

a.
1 s 2

= .
S s.i+1

= aih.

Using this formulation, the matrices A1(P) and A2P), defined

(2.3), reduce to the following form for this two state case.

by equation

a-Pg -(1-P)g
2

0

a-a
2

a-Pg -(1-P)g
2

a-aI

0

S g1

(1-h )a

0

1-h 1 )g1

(1-h I) a1

0

(1-P)(1-h2)92

0

(1-h2)a
2

(1-P) (1-h) g2

0

(1-h)a

These matrices A1(P) and A(P), can be used to determine Pmi and P

if they exist.

Using the Routh-Hurwitz criterion [9] to determine stable ranges for

P. a plot of P m n as a function of a2 for A(P) can be determined. An

example of this plot, Figure 3.1, was made for the case where

a = 2.0 (3.57)

An equivalent plot was also made for P as a function of a1, Figure 3.2,

for A2P). For fixed a1 and a2, the stable probability interval is the
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Ap) =

A2( P)

(3.55)

(3.56)
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following intersection:

[P. , i ]n[0,Pmx

As mentioned before, this interval [Pmin, Pm] is an important quantity

in differentiating the cases used for examples.

Since the universally stable case is a type of "best case" MMAC

system, the properties of this type of response were investigated. To

demonstrate some of the properties, and to determine the accuracy of the

RIDF, Case 1 was developed as a universally stable example. This case

is defined in Table 3.1, along with the following cases.

Case 2 is a hyperbolic oscillation system, i.e., a system with no

stable probability interval. This "worst case" MMAC system is precisely

Greene's deterministic hyperbolically stable system in the stochastic

version, i.e., with non-zero noise sources.

Cases 3 and 4 are two examples of Greene's mixed case MMAC system.

They are used to demonstrate the effects of decreasing the stable pro-

bability interval, and the effect on the error in the RIDF approximation.

Both of these cases have internal stable probability intervals.

Case 5 is another mixed case MMAC, but this system has an endpoint

inclusive stable probability interval. This case is used to demonstrate

some errors in the RIDF, and to demonstrate the accuracy of an approximation

derived later.

In each of the five- cases, sample means and sample covariances of

the MMAC states are obtained from Monte Carlo simulations. The sample

statistics are averaged over 100 runs. This number of runs led to an
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Table 3.1: Stochastic Case Definition

Case a a1  a2 h h1  h2  q 91 92 2min pmax

1 2.00 1.75 3.25 .809 .771 .914. 1.618 1.349 2.971 0.00 1.00

2 2.00 0 0 .809 .500 .500 1.618 0 0 -- --

3 2.00 1.57 3.63 .809 .738 .930 1.618 1.159 3.378 0.05 0.95

4 2.00 1.57 7.909 .809 .738 .984 1.618 1.159 7.782 0.75 0.95

5 2.00 1.75 7.909 .809 .771 .984 1.618 1.349 7.782 0.75 1.00
C"



acceptable scatter in the sample statistics, without the higher cost of

averaging over a greater number of runs.

3.5 Stochastic Responses of MMAC Systems

In this section, insights into the stochastic response of the MMAC

will be presented. These insights were obtained from Monte Carlo simu-

lations, RIDF approximations, and analysis. Five different responses

are used to demonstrate the properties of the stochastic MMAC system.

The MMAC system design uses nominal noise covariances, but in appli-

cation the actual noise covariance may differ significantly from the

nominal. This noise mismatch was found to have little effect on the

nature of the response of the stochastic MMAC. The effects were limited

to scaling the variances of the states, or in some cases, scaling the

response of the variances in time. This time scaling effect is used in

Case 4 to speed the response. All other simulations use the nominal noise

covariances for the noise inputs.

The first case of interest is the universally stable MMAC, a globally

asymptotically stable system. For a system of this type, the first two

moments of the states should be finite, for bounded covariance inputs.

This behavior is exhibited by both the Monte Carlo simulations and the

RIDF prediction, Figure 3.3. It should also be noted that the RIDF ac-

curately predicts the transients of these moments of the plant states.

Looking at this example, the response of the variance is quite similar

to that of a stable linear system. This is not unexpected, since the MMAC

system is linear for fixed P. and in this case, also stable for all P(k).
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A look at the expected value for P(k) from the simulation explains the

quasi-linear behavior. The expected value for P(k) approaches 1, there-

fore, this system is essentially linear after the initial time interval.

In the following paragraph an approximation is derived for the probability

density of P(k).

To gain further insight into the response of the MMAC system, an

approximation for the density of P(k) is derived for the following case:

a 2 a.(3.58)

h = L2

91= 92

(3.59)

(3.60)

Moments of (k) can be determined analytically.

equation (3.7), is repeated here.

The equation for a(k),

c(k+1) = a(k) + ri(k+1)e-'r(k+i) - r (k+1)ejY 2 (k+1)

Letting

a(k) = rj(k+1)er(k+1) - r'(k+1)62'r2 (k+1)

allows the following formulation for a(k+1):

c(k+1) = t(k) + a(k)

In the case of a symmetric mismatched system,

E[Act(k)] = 0
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implying

E[ct(k)] = (0) (3.64)

The second moment of a(k) can also be determined for this case:

E[a2(k+1)] = E[(a(k) +Aa(k))2] (3.65)

= EE[a(k)Aa(k)a(k)11+Era 2(k)]+ E[(Act(k))2 ] (3.66)

= E[c(k)E[r (k+1)e_1 r1(k+1) - rk(k+1)6~2 r2(k+1) a(k)]]

22 -

+ E[a2(k)] + E[(Act(k)) 2 (3.67)

Due to the symmetric mismatch

E[ri(k+1)e r1(k+1) - r(k+1)0 r(k+1)la(k)] = 0 (3.68)

Therefore

E[a(k)Acz(k)] = 0 (3.69)

Since

E[(Aa(k))2] > 0 (3.70)

in all but the singular case where

r -~ zrr xrr2r =0 (3.71)
-1  - 1r2- 2-r2r1

One example of this is where both models are the same, not a very interesting

case. It was assumed, for the following analysis, that this singular con-

dition did not hold, so that the mean square value of a(k) was greater than
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zero. Then the second moment of a(k) is unbounded in this case, i.e.,

E[a 2 (k)] -> c
k xO

If the residuals of the filters were Gaussian, the increment in a

(Aa(k)) would have a two sided chi square probability density, since

a(k) would be the difference between two squared Gaussian random vari-

ables. With substantial measurement noise, the residuals were approxi-

mately Gaussian, so the probability density for a(k) (assumed to be two

sided Chi Square) was approximated by the following.

2(a-m )/ac

f(ea) = 2-m )/a >(3.72)

e a a a>m

E[c] = m (3.73)

E[(cx-ma) 2  = a (3.74)

The purpose of this assumed density was to determine an approximate density

for P(k). The choice of this two-sided exponential was one of convenience.

A comparison of using different two sided densities for a(k) showed little

effect on the induced density of P(k), for large ma and/or aa.

The induced density on P, assuming f(a) is the above (3.72) two sided

exponential density, is the following.
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-2m /
2 -mcr t lPca 1 P> 1

a aaI/2P(1-P)1 in!/

l+e a
f(P) = -4(3.75)

2 2ma a p 1 <
a [e_, ]a P(1-P)1m'/2

Figure 3.4 is a plot of this approximate density for P for various values

of aa and m = 0. This plot is indicative of the trend in f(P) as a

increases, as in the case of symmetric mismatch of the models. In this

case, the limiting density of P approaches the following:

f(P) ~ ' 6(P) + 6(P-1) (3.76)

All of Greene's cases fit in the symmetric mismatch system class--

in particular, the stable hyperbolic case which is examined now. In

this case, the system is stable in the deterministic sense, but it is

unstable for the stochastic case, as indicated in the simulators to be

described later.

The proof of stochastic instability of the deterministic hyperbolically

stable system has not been completed. The fact that the probability ap-

proaches the singular density, equation (3.76), for which the probability

mass is concentrated at zero and one is not enough to prove instability

of the system. Even though the system is unstable for these two points

an alternation from P= 0 to P= 1 and back may stabilize the system in a

manner similar to the deterministic response. In the stochastic case

the expected trend in these peaks must be decreasing for the system to be

stable. One way to show this would be a generalization of the deterministic

work. To determine trends in the expected peak height, a conditional
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expected switch time could be computed. The conditioning would be on

the present state of the MMAC system. The details of this approach are

not trivial and have not been worked out.

Figure 3.5 is a plot of the variances of the plant states for this

type of system (Case 2) for both the Monte Carlo simulation and RIDF ap-

proximation. The indication of instability is evident for both of these

runs, but the quantitative prediction of the RIDF is seen to be in error.

In looking at the full covariance matrix for the MMAC states as pre-

dicted by the RIDF, it was found that the variance of a(k) approached

a constant value, contrary to the behavior predicted in the analysis of

Aa(k) and the Monte Carlo response. It is conjectured that inclusion of

higher order moments of ct(k) in the approximation, Geier [10], would im-

prove the accuracy of the approximation. Verification of this conjec-

ture was not pursued in this work.

The next two cases to be investigated are both internal stable

probability interval cases. The first is quite close to the universally

stable MMAC, in terms of the stable probability interval,

Pstable 6 [.05, .95]

and the second is quite close to the hyperbolically stable system

Pstable e [.75, .95]

With this large difference between the two systems' stable probability

intervals, the responses are surprisingly similar.

Since the first case is almost universally stable the response might
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be expected to be similar to theuniversally stable system. This is not

true, and this is demonstrated by looking at P(cz(k)). For the symmetric

mismatch MMAC system, the mass of the probability density for P moves

out of the stable interval for sufficiently large k, leading to an un-

stable response, i.e., growth of the variance of the plant states. Fig-

ure 3.6 is a plot of the variance of the plant states for both the Monte

Carlo simulation and the RIDF prediction.

This effect is more pronounced in the second case with the smaller

stable probability interval. A smaller cx(k) is sufficient in this case

to have a large portion of the probability mass outside the stable inter-

val. The smaller of the growth rates of the variances of the two plant

states increases significantly as aa(k) becomes sufficiently large;

consequently f(P) approaches a density with delta functions at zero and

one. After this threshold is passed, the smooth growth rate changes to

a more erratic growth.

This case is the only one where mismatched noise covariances were

used. The actual covariances used for the noise inputs are

V = W = 1001 (3.77)

This mismatched noise covariance does not affect the type of response

beyond the variance scaling and time scaling mentioned earlier. The

threshold is attained in a shorter time with this larger covariance, Fig-

ure 3.7. Using nominal covariance noise sources would also result in the

unstable behavior but it takes longer to develop (since the growth rate

for E[a2z(k)] is smaller in the nominal case).
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The last case presented is an endpoint inclusive stable probability

interval MMAC system. This case is one of Greene's mixed case type MMAC

systems. This MMAC system has a region of attraction behavior similar

to the deterministic mixed cases. It is used to demonstrate the error

in the RIDF and to demonstrate the accuracy of another approximation

derived next.

This case does not have the symmetric mismatch mentioned earlier, so

E[Aa(k)] f 0 (3.78)

With this drift in E[a(k)], the probability density for P(k) accumulates

at P =1. To get a handle on the rate of drift of E[a(k)], Ac(k) will be

investigated in more detail.

A(k) = ri(k+1)e1'r (k+1) - r (k+1)e21 r2(k+1) (3.61)

Replacing r1(k+1) and r2(k+1) in equation (3.61) using equations (3.13) -

(3.14) results in the following (the time dependence k, k+1 having been

dropped):

E[Aa] = E[(Ax-A% 1+v+w)' OI( A -jviw) - (Ax-2+ '

x (A-A2X2+v+w)] (3.79)

Assuming the second moments of x,X^ and^X2 are approximately equal

E[aa] ~=tr[(e 1 E[AA'-2AAj+AAj]- a2I '-2AA +22)E[x']

+ (e1--e 1 )(V+W)j (3.80)
-1 -2
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It should be noted that the assumption on the second moments of x,x
-X1

and 2 is crucial to this approximate analysis. Although it holds for

the example case, in general it may be unfounded. So with these assump-

tions, an approximation to the expected drift in a(k) as a function of

the input noise covariance and second moment of the plant states can be

derived.

For Case 5, the approximation for E[Ac] is the following.

-17.6 0 .049 0
E[Aa] tr E[xx'] + (V +W) (3.81)

0 .03] L0 .012

if E[xx'] dominates (V+ W) then

-17.6 0

E[Act] ~E[xx'] (3.82)
0 .03~

Due to the structure of the MMAC system, the input noise filters through

both plant states, i.e., the V1 input will affect the plant state x2 in

the diagonal case investigated in this thesis. This leads to the situa-

tion where

E[x] ~=E[x2] (3.83)

for the two model case. For Case 5, the above assumptions were found to

be reasonable. Consequently, the prediction of

E[a(k)] >
k-o

was accurate.
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With E[c(k)]- -o, the mass of the probability density for P(k) will

accumulate at one and zero, i.e., f(P) will approach the following:

f(P) => q6(P) + (1-q) 6(1-P)

The weight, q, will depend on the relative rates of growth of m- and .

With P(k) approximately one, the system is stable, so only the noise

inputs will drive P(k) away from one. If the sequence of Aa(k) make c(k)

large, positively, the system will be unstable for the corresponding

P(k) (P(k) =0). So the states will grow, particularly state x1. This

increase in the states will drive a(k) negative, where the system is

stable. This behavior has been observed in several individual simulation

runs which were run for a longer period than the Monte Carlo simulations

described earlier.

Figure 3.8 is a plot of the Monte Carlo variances and the RIDF var-

iances. As is seen in the time history of the variances, the RIDF is

grossly in error for this case. Again, inclusion of higher moments in

the computation of a(k) is thought to improve this error, Geier [10].

90



o x,, Monte Carlo
0 X2,Monte Carlo

-- x,,RIDF

-- x 21 RIDF

I

Do
0o

00
0

0

o oDO
0 0

o~o000
/ a o0 0 00  00 oO
/ 0 0 0 o

I

10 20
K

o o0 0 0 0 0 0 0 0

30 40

RIDF and Monte Carlo Plant State Variances (Case 5)

0

12.51

10.01

2o5(

7.5

0

0o

0

0
0

Do

0
0

0

5.0

2.5

C
)

00

- I I I I
I-

Fiagure 3.8



CHAPTER 4

CONCLUSIONS

In the prior two chapters, results of research into the properties

of the MMAC algorithm have been presented. Techniques for analysis and

insights into the behavior of the MMAC algorithm comprise the results of

this work. In this chapter, the major results of this work will be re-

viewed, along with discussion concerning their significance, interrelation,

and suggestions for future work.

4.1 Deterministic MMAC Conclusions

In the deterministic work, three approximations were investigated,

each for a different class of MMAC systems. In the case of the full

memory MMAC systems, Greene's approximation was found to be in error when

2
implemented. The norm lAi was too conservative when used in the approxi-

mation, the rates of growth of the states were predicted incorrectly.

In this approximation, lJAW2 was not used as a bound, but it was used to

reflect the rate of growth of the states. It was found that the quasi-

2
norm 111* more accurately approximated the rate of growth of the states.

In future use of this approximation, replacement of i|AI2 by 1A|| will

result in a more accurate approximation in most cases. In analyzing the

accuracy of the approximations for deterministic MMAC systems, this re-

placement has been made.

For the cases that have been considered, the accuracy of the modified
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approximation is quite good. The stability indications are accurate, as

are the predictions of the rates of growth or decay of the magnitudes of

the peaks. The trends in the length of the interval between switches in

the probability are also accurately predicted.

Although the accuracy was good for the simple cases examined, it

might be worse for higher order stiff systems. For the more complex systems,

this modified approximation may also be conservative. The predicted rates

of decay and growth may be such that a prediction of instability may be

made for a system that is stable. This is the same type of error that

2
was found for the approximation using |Al

The second approximation was one derived for the response of the

limited memory MMAC system. This approximation was derived in a manner

similar to Greene's, and exhibited similar accuracy for unstable and neu-

trally stable hyperbolic MMAC systems. For these two cases, the responses

were hyperbolic oscillations, but at a higher frequency. The approximation

correctly predicted the stability (unstable, and neutrally stable) of the

systems. Although the prediction of high frequency was qualitatively cor-

rect, the actual switching frequency exhibited in the simulations was

somewhat slower than the predicted frequency.

For the hyperbolically stable MMAC system, the prediction of the

approximation for this limited memory case was in error. The approxima-

tion predicted an asymptotically stable response, when the simulated

response was neutrally stable. Insight into the response of the limited

memory MMAC was gained in determining the cause for this erroneous pre-

diction.
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The magnitudes of the states decrease with time for the full memory

hyperbolically stable MMAC system. With large initial conditions, this

is also the case for the limited MMAC, during the initial time interval.

In the limited memory case as the maqnitudes of the states decrease to

zero, the probability (P(k)) goes to . If the linear system for P(k)

fixed at is unstable, the magnitude states will grow, driving P(k)

away from . Consequently, the system will have a limit cycle response.

This is one explanation for response observed in the simulations. In

addition the derivation of the approximation for the limited memory MMAC

system assumed that P= 0 or P= 1. In hyperbolically stable system

limited memory response outlined above, it is observed that P takes on

values around , violating the assumption used in the derivation. With

this assumption, the possibility of a limit cycle response described

above is ignored, so the approximation will be in error for this case.

As a check on the results presented for this last case, a modified

control was used for the MMAC system. This maximum likelihood control is

equivalent to ensuring P = 0 or P = 1. This modification does not change

the approximate analysis for the limited memory MMAC; the maximum likeli-

hood control guarantees the switch-like behavior of the probabilities

assumed in the approximate analysis. In contrast to the limit cycle

behavior exhibited earlier, this maximum likelihood control MMAC system

had an asymptotically stable response. For this case, the predicted rate

of decay of the states was accurate. Again the qualitative prediction

of high frequency switching in the probability was correct, although the

actual rate was somewhat slower than predicted.
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This analysis of the limited memory MMAC system has brought to light

an interesting effect of modifying the control used in the algorithm. If

one of the models matches the actual plant dynamics, the full memory MMAC

will lock on to that model. If none of the models match, the limited

memory may do better, because the full memory MMAC may lose its adap-

ability in locking into one model. In limiting the memory, the smoothing

of the probabilities in the full memory MMAC is sacrificed for adaptability.

Using the maximum likelihood control in the limited memory MMAC improves

the stability of the overall system in some cases. How well this sta-

bilizing property of the maximum likelihood control MMAC applies in

more complex systems needs to be investigated.

The last approximation derived, was for the case where constant

biases in the control inputs were allowed. The approximation for this

class of problems was found to have good accuracy in predicting the switch

times and the magnitudes of the peaks. In the case where the biases are

zero this approximation reduces to Greene's approximation. The effects

of the mismatched models was accentuated by the biased inputs. In the

approximation, the bias effects dominated some effects which led to the

errors in the approximate analysis in the non-biased case.

The response of the hyperbolically stable MMAC for this case of

biased inputs was found to be unstable. Hyperbolic stability depends on

a tenuous balance of alternately stabilizing and destabilizing the states,

which the biases overwhelm. Consequently, the magnitudes of the peaks

grow with time. This instability indicates a need for a stronger sta-

bility condition for this case. An equation for determining the stability
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was derived, but no simple condition, similar to Greene's for the unbiased

case, has been obtained from this equation.

4.2 Stochastic MMAC Conclusions

In the study of the stochastic MMAC systems, a two-fold approach was

used to gain insights into the stochastic response. A RIDF approximation

was derived, and checked against cases representative of the various re-

sponses of the class of MMAC systems studied. In checking this approxi-

mation, further insights into the characteristic responses of the MMAC

were gained. In parallel with the RIDF work, some other, more exact

analysis led to some interesting results and insights.

In checking the RIDF approximation, five cases were used, each rep-

resenting different types of deterministic system behavior. In the cases

where the RIDF predicted a stable response for the first two moments of

the MMAC states, the predicted values were very accurate when compared

to Monte Carlo simulation results. Only in one of the five cases was

there a discrepancy between the qualitative prediction of the RIDF and

the Monte Carlo simulation.

In checking the response of the first two moments of the log likeli-

hood ratio, a(k), it was conjectured that the RIDF does not account for

the effects of higher order moments in the distribution of a(k). These

effects can be included using a method similar to the modified CADET

investigation by Geier [10]. Future work in this area might lead to an

improvement in the qualitative predictions of the RIDF.

As mentioned above, the RIDF approximation was in error qualitatively
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for one case. For this case the RIDF predicted the system was unstable,

when the corresponding simulations indicated the system was stable. In-

vestigating causes for this erroneous instability prediction led to sig-

nificant insights into the stochastic MMAC system. For a specific class

of MMAC systems, those where the expected, value of a(k) is constant, it

was determined analytically that the variance of a(k) grew without bound,

implying that the corresponding density of P(k) is singular at P(k) = 0

and P(k) = 1. Approximate analysis of the density of a(k), where the

mean value is not constant, also leads to this conclusion. The relative

weights of the delta functions at zero and one, for the limiting density

of P(k), are determined by the relative rates of growth of the mean and

variance of a(k). The unbounded growth of the variance of a(k) is not

predicted by the RIDF. It is conjectured that implementing Geier's [10]

modified CADET, mentioned earlier, in the RIDF to include higher order

moments of a(k) will improve the accuracy of the predictions of the

variance of a(k).

The stable probability interval is an important factor in determining

the stability of a stochastic MMAC system. Since the density of P(k)

approaches a singular density for a large class of MMAC systems, whether

the stable probability interval includes the singular points of the

limiting density or not clearly plays a crucial role in determining the

stability of the system.

The endpoint inclusive stable probability interval MMAC system is

the only case where the RIDF prediction of instability was in error. The

prediction of a finite variance for a(k) disagrees with the analysis

97 -



indicating the variance should be unbounded. An approximation to the

drift in the expected value of cx(k) indicates that the expected value of

c(k) is driven toward the stable end point. Consequently, the weighting

of the delta function at the stable end point will be much greater than

the weighting at the unstable end point, in the limiting density of P(k).

The relative length of time that P(k) stays at the stable end point versus

the unstable end point will determine the stability of the system. The

relative length of time spent at each end point is dependent upon the

time correlation of P(k), which, in general, has not been derived. In-

dependent of correlation of P(k), the much lower probability associated

with the unstable end point leads to the conjecture of stability for this

end point inclusive MMAC system.

It is conjectured that the internal stable probability interval MMAC

systems are unstable. In the deterministic equivalent of these stochastic

systems, Greene's mixed case MMAC, P(k) will converge to a value within

the stable interval. In the stochastic case, P(k) is driven outside the

stable interval, as is seen in the limiting density of P(k). The singular

points of the limiting density lie outside the stable interval, implying

that the system should be unstable.

One possible mechanism for stability for systems with internal sta-

bility intervals is stochastic hyperbolic stability, a stochastic analog

of Greene's deterministic hyperbolic stability. Instead of the precise

switch-like behavior of the probabliity, observed in the deterministic

hyperbolic system, P(k) would have a stochastic switch-like behavior. The

stability of this system would depend on the time correlation of P(k).
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Stochastic hyperbolic stability may also be possible for Greene's hyper-

bolically stable case, but it has not been observed in simulations of

hyperbolic or internal stability interval MMAC systems.

For the deterministic hyperbolically stable MMAC system, introduction

of biased inputs (set point MMAC) was sufficient to destabilize the sys-

tem. It is possible that the stochastic end point inclusive MMAC system

may also be destabilized by biased controls. The biases may drive c(k)

away from the stable end point, i.e., the biases may overcome the drift

in a(k) toward the stable endpoint. It is possible that this may lead to

an unstable system, but this effect has not been investigated in this work.

As mentioned before, for a large class of MMAC systems, the proba-

bility density for P(k) degenerates to delta functions at zero and one.

As P(k) approaches zero or one, the MMAC loses its adaptability. In

practice, the adaptability of the MMAC is one of the major reasons for

using it; loss of this ability to reflect changing operating conditions

is not desirable. To eliminate this degenerate probability density for

P(k) (concentrated at zero or one), one of two methods can be used. The

range on a(k) can be limited or t(k) can be age weighted, Greene [6].

For the two modifications, the mass of the probability density for P(k)

is spread more uniformly between zero and one. With limit on a(k), the

density of P(k) will have delta functions at the values which correspond

to limits on a(k). The age weight modification will lead to concentrations

of the density of P(k) at the end points (no delta functions). The effects

of these modifications are similar, so discussion will be restricted to

the limiting a(k) modification.
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The limiting a(k) modification can either stabilize an unstable

system or destabilize a stable system. If the limits on a(k) are chosen

such that the corresponding limits on P(k) are within the stable pro-

bability interval, the system will be stabilized', Figure 4.la. Also,

if the limits on a(k) are such that the interval between the limits on

P(k) does not intersect the stable probability interval, the system will

be destabilized, Figure 4.1b. For the third possibility, where the inter-

val formed by the limits on P(k) intersects the stable interval the sta-

bility depends on the time correlation of P(k), Figure 4.1c, as discussed

previously.

4.3 Additional Directions for Future Work

As mentioned in the introduction, the work toward understanding the

response of the MMAC system has been motivated by the F-8C application.

Greene's work and the work presented in this thesis represent two steps

toward gaining a full understanding of the MMAC system. In the last sec-

tion a few directions for future work have been outlined. In this section,

more directions for future work are described.

Most of the work done towards understanding the MMAC has assumed

diagonal A matrices with identity B and C matrices. This class of systems,

although sufficient to demonstrate some of the basic properties of the

MMAC systems, is restrictive. The effects of relaxing these assumptions

needs to be investigated. This would give more practical importance to

the results obtained thus far.

'Since the computation of stable probability interval requires knowledge
of the actual system dynamics, this is not a design procedure.
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Thus far most of the research into the behavior of the MMAC system

has been limited to the two model case. Extending the results of the

two model MMAC to the N-model case would represent a quantum jump in

the research of MMAC systems.

Another extension would be to investigate the MMAC properties for

systems with nonlinear plants. The models for this application might

be linearizations about equilibrium, as in the lateral dynamics of the

F-8C [5], or linearizations about some other point in the state space,

as in the longitudinal dynamics of the F-8C. This second linearization

will have models with biases, resulting in biased control inputs. So the

results of set point control MMAC will be useful in this application.

The work outlined here would provide the basis for a complete design

methodology for the MMAC algorithm. Questions remain unanswered as to

how close the models must be to the plant, or the number of models needed

to stabilize a nonlinear plant through its full operating regime. The

results of research for this thesis along with the work proposed in this

chapter would provide the basis for determining how useful the MMAC al-

gorithm is in specific applications and how to use it.
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