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ARSTRACT

A system that performs non-uniform time-scale modification
(TSM) of speech signals, based on the Discrete Short-Time Fourier
Transform, is developed. This system builds on Portnoff's [1978]
design, but has two major improvements: first, it allows a time-
varying scale factor (as opposed to the constant scale factor required
by Portnoff's system) and, second, the system requires less than
2 percent of the storage reguired by its predecessor.

The TSM system is used to perform feature-dependent time—
scale modification of speech, in which the scale factor varies in
response to changes in the local structure of the signal. Feature-
dependent TSM is then compared to uniform TSM. Finally, to illustrate
other potential application areas of the system, applications to
long speech passages, to a compression/expansion communications
scheme, and to music signals are presented.
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CHAPTER 1

INTRODUCTION

1.1 Problem Motivation

The ability to control the speed at which recorded speech

is plaved back has a number of potential applications. On one hand,

people can understand everyday speech at a rate up to three times

greater than that at which it is physiologically possible to produce
it. Thus, a system that increases the speed of a speech signal,

without appreciably degrading its perceptual characteristics, can

be used to increase the information rate of the auditory channel.
On the other hand, speech recordings containing particularly complex
segments, such as those in a technical or foreign language, may be

made more understandable and easier to listen to by processing them

with a system capable of slowing them down.

Time compression (speed increase) and time expansion (speed
decrease) can also be used together as a codiné/&ecodinq scheme for
speech communications. Several speech signals can be compressed
in time and subsequently time-multiplexed into a channel that would
otherwise be capable of carrying a single signal. The corresponding
receiver would demultiplex and expand its input by the inverse of
the coding rate.

Ffor the blind, whose access to printed information is often
1imited to recorded speech versions, a playback speed control is

likely to be particularly useful. Without such control, the rate
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at which a person can listen to the speech is completely paced by
the recording. A time compression system would allow the listener
to increase the speed of the speech in order to scan the recording,
and then to adjust it to a more comfortable level for normal
listening.

Speech recognition systems could also use a time compression
and expansion system to adjust the length of their input to a pre-
determined value. This preprocessing step might simplify later
pattern recognition algorithms by normalizing the length of the

utterances to be recognized.

Processing a speech signal to obtain another that differs
from the original only by its apparent rate of articulation is referred
to as TIME-SCALE MODIFICATION (TSM) <f the signal. The TSM scale
factor is defined to be the ratio of the length of the input signal
to the length of the output signal. Thus a TSM scale factor less
than unity corresponds to expansion, and a scale factor greater

than unity corresponds to compression.

1.2 Historical Background

From the standpoint of signal processing, TSM of speech
signals is a complex problem. A simple change in the speed at
which the tape travels in front of the playback head of a tape
recorder or, similarly, in the output sampling rate of a digitally
coded speech signal, leads to very significant degradation of the
speech structure, even when the change is relatively small. This

degradation is caused not only by a change in the pitch of the voiced
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portions of the speech but, more importantly, by a change in the
location on the frequency spectrum of the vocal tract resonances
(formants) of the speech.

The problem of time-scale mocdification of speech signals has
received considerable attention in the past. Most algorithms designed
for this purpose have been based on the Fairbanks method [Fairbanks,
et al., 1954, 1959; Lee, 19721.

The Fairbanks method performs the time-scale modification
by automatically splicing the signal in time. It periodically
repeats and discards sections of the speech which are chosen to
have a length between that of a pitch period and that of a phoneme
(both estimated a priori). This technique introduces significant
perceptual degradation of the speech because the end of a section
almost never continues smoothly into the beginning of the next.

The Fairbanks TSM technigue has been refined in several
ways. By introducing a pitch detector, the sections of speech that
are repeated and discarded during voiced segments correspond more
closely to the actual pitch periods than with a priori estimation
[(Scott and Gerber, 1972; Huggins, 1974]. Although the performance
of the pitch-synchronous implementation is an improvement over
Fairbanks' pitch-independent svstem, pitch detection errors introduce
objectionable distortion, particularly when the speech is corrupted
by noise. Even with no pitch errors, section boundary discontinuities
will not be completely eliminated. A pseudo-pitch-synchronous
implementation has been tried by Neuburg [1977]. He uses average

pitch period section lengths and a smocthing algorithm at the
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section boundaries. This system is more robust than the pitch-
synchronous one and it produces an output of higher quality.

An alternative to the Fairbanks approach is to use classical
vocoder techniques to construct an analysis/synthesis system to
obtain a representation of speech as a set of time-varying parameters.
Time—scale modification can then be implemented by time-scaling the
variations in the parameter values. However, since most vocoders
are designed for bandwidth compression, the quality of their output
is in general too low for use in a TSM system. One notable excep-—
tion is the Phase Vocoder, introduced by Flanagan and Golden [1966].
This vocoding scheme is an efficient implementation of a Discrete
Short-Time Fourier Transform analysis/synthesis system [Flanagan
and Golden, 1966; Schafer and Rabiner, 1973(a): Portnoff, 1976,

1977, 1978].

Portnoff [1978] has developed a time-scale modification (TSM)
system based on the Phase Vocoder. Portnoff's method changes the
rate of recorded speech with significantly less degradation than
TSM systems that operate in the time domain. It can compress
speech intelligibly to about a third of its original length, and can
expand the speech by about six times without significant degradation.
Tn addition, since it does not require a pitch detector, the system

behaves well when the speech is corrupted by additive white noise.



1.3 The Scope of This Thesis

The TSM system designed by Portnoff [1978] transforms the
apparent articulation rate of speech signals with very little degrada-
tion. In addition, Portnoff develops the theory of time-scale
modification (TSM) of speech signals in detail, and presents a
computationally efficient TSM algorithm.

Nevertheless, it is desirable to further improve Portnoff's
algorithm to make it applicable to a wider class of practical
prcblems. Specifically, Portnoff's system assumes a constant
modification rate, but this may not be a desirable characteristic
cf a TSM system. As was pcinted out in Section 1.1, many applica-
tions of time-scale modification make it imperative for the TSM rate
to be allowed to vary at runtime. Such is the case, for example, in
a system that lets the listener scan a section of a speech recording
rapidly, and then lets him readjust the listening rate to a more
comfortable level.

Besides increasing the practical applicability of the TSM
system, a variable modification rate will allow us to experiment
with feature-dependent time-scale modification. When TSM is per—
formed at a uniform rate, degradation sometimes becomes more severe
during transition periods in the speech signal (such as stop
consonants and intervowel glides). This happens because one needs
to assume, for uniform TSM, that speech is always locally stationary
(i.e., quasi-stationary), an assumption often violated during
speech transitions. As Toong [1974] showed in the case of com-—

pression, allowing the modification rate to become milder (closer to
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unity) during the transition periods reduces the overall degradation
of the speech signal.

A second reason for reformulating Portnoff's system is that
while Portnoff's algorithm is computationally efficient, it uses
very large amounts of storage which make it difficult or even im-
possible to implement in a small or medium sized computer.

The first part of this thesis develops an alternative
algorithm to the one that Portnoff used. This new algorithm requires
less than one-fiftieth of the main memory storage needed by its
predecessor, and has no peripheral memory storage needs (except
for the input and output signals themselves) which Portnoff used
extensively. In addition, the proposed algorithm eliminates certain
computational steps of Portnoff's algorithm that were experimentally
shown to be unnecessary. Moreover, the TSM system developed here
allows a variable modification rate.

The usefulness of the non-uniform TSM system described in
the first part of this thesis is evaluated in the second part. First,
a feature-dependent TSM system is developed, in which the wvariable
TSM rate is adjusted to accommodate the local structure of the
speech. It is found that, in general, feature-dependent TSM is not
necessarily an improvement over feature—independent (uniform) TSM.
Second, an assortment of other applications of non—uniform TSM are
informally evaluated.

In summary, this thesis deals with the design, implementation
and evaluation of an efficient non-uniform time-scale modification

system based on Portnoff's [1978] design. The resulting TSM



system is used to examine the advantages of feature-dependent TSM.
Finally, to give an indication of the overall usefulness of TSM,
the feasibility of several desirable applications of the TSM system

is informally evaluated.

1.4 Thesis Overview

The remainder of this thesics is divided into two parts.

Part I, which consists of Chapters 2, 3 and 4, presents the
reformulation of Portnoff's system. First, in Chapter 2, mathematical
models of both the input speech signal and of the desired output signal
are described. Of particular importance is the introduction of the
concept of time-unwrapped phase. This concept is used later as an
essential part of the time-scale modification algorithm.

The Short-Time Fourier Transform (STFT) is defined in
Chapter 3. The classical discrete—time, continuous—-£frequency
transform, with infinite summation limits, is introduced. It is then
modified to a discrete-time, discrete-frequency form with finite
summation limits, known as the Discrete Short-Time Fourier Transform
(DSTFT). Algorithms toc compute the DSTET (Analysis) and its inverse
(Synthesis) are described. While these algorithms are based on
Portnoff's design, thev are: shown to be more efficient in terms
both of the number of comnutations required and of the amount of
storage needed.

Chapter 4 describes techniques used for time-scale modifica-
tion of speech. The uniform—rate modification scheme developed by
Portnoff [1978] is presented, and then extended to allow the rate

to be varied at runtime.
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Part II, which consists of Chapters 5, 6 and 7, presents
and evaluates several possible uses of the TSM system developed in
Part I.

Chapter 5 describes feature-dependent time-scale modification
of speech. Three speech segmentation algorithms are introduced
that can be used to control the TSM rate in response to speech
features. These algorithms are based on a set of statistical measures
of the signal designed to estimate its local level of quasi-stationarity.
The resulting feature-dependent TSM system is then evaluated.

Chapter 6 presents the results of several potential applica-
tions of the non—-uniform TSM system, to give an indication of its
usefulness. Two specific application examples that have been con-
sidered are the compression/expansion communications scheme suggested
in Section 1.1, and application of the TSM system to music signals.

Finally, Chapter 7 concludes the thesis with a summary of

the major results obtained, followed by a set of suggestions for

further research.



PART I

A TSM SYSTEM
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CHAPTER 2

A MODEL OF TIME-SCALE MODIFIED SPEECH

In order to design a time-scale modificaticn system, we must
fully understand what such a system is to accomplish. In Section 1.1,
TSM was defined as the process which takes a speech signal and gen-—
erates a speech-like signal which is perceptually identical to the
original, except for a change in its apparent rate of articulation.
This chapter examines this definition in detail. 1In Section 2.1,
a parametric model of normal speech is developed and the concept of
a time—unwrapped phase, which is used extensively in later parts
of the thesis, is introduced. Based on our analysis of normal
speech, Section 2.2 describes the desired time-scale modified speech
signal. Finally, having understood what the input and the desired
output of a TSM system are, Section 2.3 outlines the major process-—

ing steps involved in time-scale modification.

2.1 A Model of Normal Speech

The standard engineering model of speech production is shown
in figure 2.1. According to this model, speech signals are generated
as the convolution of a time—varying linear system (modeling the
vocal tract) with an excitation signal which can be either a
quasi-periodic train of pulses (representing vocal fold excitation)
or white noise (representing whisper, £ricative or any other noise-—

like excitation).



19

The Standard Engineering Model
of Speech Production

Unit - sample
train generator

|

Pitch period

pn]

White noise
generator

v[n]
t(n,m)
| Linear
—F—Time --Varying —>X [n]
I System
uln]

Voiced / Unvoiced
decision

Figure 2.1



When the speech excitation can be represented as a train of
pulses, we refer to the speech as Voiced. When it can be represented
by noise, the speech is referred to as Unvoiced. In this chapter,
the analysis of the speech signal is quite different in these two

cases. Consequently, each case will be treated in a separate

subsection.

2.1.1 Normal Voiced Speech

Let v[n] denote a quasi-periodic train of unit samples. BY
quasi-periodic we mean that the number of zero—valued samples lying
between any two consecutive unit-valued samples of vi[n] is approxi-—
mately constant in the vicinity of any fixed point n = ny- We will
consider v[n] to be the excitation of the linear time-varying
system during voiced speech segments.

By representing the local behavior of vinl as a sum of
harmonically related complex exponentials, Portnoff [1978] has shown
that, during voiced segments, the speech signal x[n] can itself be
represented as a linear combination of harmonically related

exponentials.

To describe the behavior of v[nl, let us define the following

parameters:

Let pl[n] denote the number of samples that separate the two
consecutive unit samples surrounding the point n or, if n cor—
responds to a unit sample, the number of samples between the
previous unit sample and n (figure 2.2). The quantity plnl
is commonly referred to as the local pitch period of v[n]

and, consequently, of x[n].
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Let d[n] denote the number of samples that separate the
point n from the latest unit sample in the sequence vinl.
Clearly, d[n] can only take values between zero and p[n] - 1,

inclusively (figure 2.2).

In the vicinity cf n = n v[n] can be described locally as

OI

follows:

4o

vingtml = ] § [m-d [n 1-rp(njl] (2.1)

r=-—«

where m is assumed to take only small values and §[n] is
the unit sample function of n.

The periodic impulse sequence given by equation (2.1) can
be expressed as a sum of harmonically related exponentials. In

this form, equation (2.1) becomes:

] p[nO]-l jZWk(m+d[no}/p[nO]
v[no+mJ = —T:—T— Z e
Plig k=0
L Plgl-1  sirsin 1+man 1)
B 0 0
= —ﬁ—]' Z e (2.2)
Pl k=0
where Q[no] = Zw/p[no] (2.3)
@[nO] = Q[nO]d[nO] + 21rI[nO] (2.4)

and T[n_] is the integer number of unit samples of v[n] that

precede the point n = ng-
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The quantity Q[no] is referred to as the local pitch fre-
quency of v[n], and thus of the speech signal x[n}, at n = g -

The quantity'¢[nol is the time-unwrapped phase value of the funda-

mental of v[n] at sample n.

The concept of time—unwrapped phase is novel and, therefore,

requires some clarification. The main results concerning time—

unwrapped phase are presented in equations (2.5) - (2.10).
Consider a signal vO[n] defined as the fundamental of vI[n].

In general, the signal vb[n] will be quasi-sinusoidal in the sense

that, in the vicinity of any point n = no, vo[n] will look like a

sinusoid of frequency Q[nO] but, over time, this local frequency

will not be constant. For small values of m, we can write vb[n]

as:
vb[n0+mj =V - sin(Q[nO]m+¢[no]) (2.5)
where V is the amplitude of the sinusoid.
The argument of the sine function in equation (2.5) is
referred to as the time—-unwrapped phase, ¢[no+m], of’vo[no+ml-
(2.6)

‘b[no+m1 = Q[nolm + ¢[n0]

The name of ¢[n0+m] is motivated by the fact that if m
is an intecer multiple of the local pitch period p[noi, then

@[no+mJ will be equal to ¢[nO] plus the same multiple of 27.
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In other words, every time v[n] completes a period, its time-
unwrapped phase increases by 2m. To see this, replace m by

kp[no] in equation (2.6), for some integer K:

¢[§O+kp[nolj =¢Q[nolkp[nol + ¢[no]
= (ZTT/p[nO])kp[no] + ¢[nO]

= 21k + ¢[no] (2.7

The term ZWI[nO] appears in equation (2.4) to account for this
fact.
An interesting property of the time-unwrapped phase is that
its growth cannot be arbitrary. In fact, Lt is bounded by a constant.
This property can be derived by evaluating equation (2.6)
for m = 1. Settingm =1 is consistent with the definition of

equati~n (2.6) since it assumes that m is small, and m =1 is the

smallest possible value of m. Equation (2.6) then becomes:

@[n0+l] = Q[nO] + @[nol (2.8)

From the definition of plnl it is evident that its value
must be greater than or egual to unity. Therefore, equation (2.3)

implies that the range of Q[nl] 1is:

0 < @n] < 2@ for all integers n (2.9)
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Combining equations (2.8) and (2.9) we can put a bound on

the growth of ¢[n]:

0 < ¢[n+l] - ¢[n]l < 2w (2.10)

Equation (2.10) shows the motivation for referring to
$[n] as an unwrapped phase rather than as a principal value phase.

Two important issues can be raised regarding time—-unwrapped
phase. First, the constraint imposed by equation (2.10) applies
to the difference between consecutive values of the sequence
$[n], and not to ¢ [n] itself, which can take arbitrary real values.
Second, we can compare the concept of time-unwrapped phase with
the more familiar one of frequency-unwrapped phase. In the latter
case, the underlying assumption 1s that the phase curve is con-
tinuous along the frequency axis. No bound, such as the one im-
posed by eguation (2.10), exists on the growth of the frequency-—
unwrapped phase. This causes any algorithm for the estimation of
the unwrapped phase curve from its principal value curve to be
rather cumbersome [Tribolet, 1977; Quatrieri, 1979].

To return to ocur derivation of a model of voiced speech,
consider the local voiced excitation segquence v{no+m] described by
equations (2.2) - (2.4). The seguence can be expressed in terms

of its time—unwrapped phase by direct replacement of equation (2.6)

in equation (2.2):
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Plngl=l 54 o]
vin +m] = — e (2.11)

0 k=0

Equation (2.11) describes the local behavior of the voiced
excitation v[n]. To obtain a description of the global behavior
of v[n], we can use equation (2.8) to redefine ¢ [n] recursively.

Then, we can replace nO by n in equation (2.11) and, setting m equal

to zero, we obtain:

5 pln]l-1

vin] = = ejk¢{n] (2.12)
plnl -0
where: ¢ [n+l] - Qn] r, n<O
¢[n] = 2md[0]1/p [0] , n=20 (2.13)

¢ [n-11 + Qn-1] , n >0

During voiced segments, the speech signal is the convolu—
tion of the voiced excitation vIn] with the time-varying linear
system that represents the behavior of the vocal tract. Let
the doubly indexed sequence t[n,m] be the time-varying unit sample
response of this linear system. Specifically, the sequence t[n,m]
corresponds to the response of the system at time n to a unit

sample which occurred m. samples earlier.

The signal x[n], during voiced segments, can therefore

be written as the time-varying convolution of v[n] with t[n,m]
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along the index m:

+
xnl = )  tin,2lvin-g]
Q:—oo
oo pn-2]-1 : _
= z ‘ tln,2] - —TJEET’ e]k¢[n o l (2.14)
f=co l pin k=0 |

It is commonly accepted in speech analysis that changes in
the pitch period, plnl, occur slowly enough to assume that the
sequence pln] is constant for the duration in m of the sequence
t[n,mj. By making this assumption, we can replace p[n-2] by pin]

to simplify equation (2.14):

+o

plnl-1 .
) gIie (n=tl } (2.15)

{ tn,21 -
k=0

xinl : p&ﬂ lem

Interchanging the order of summation and regrouping terms:

plnl-1  += e P
D[ln] J  tln,21e 02l (2.16)

x[n] = A
k=0 g=—c

Our assumption that pfn] is constant for the duration in
m of tln,m] implies the same for Q[n]. Therefore we can replace
¢Mm] in equation (2.16) by its local representation given in

equation (2.6):
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1 pinl-1 +o

jk (¢ [n]-2R[n])
x[n] = Y ¥ tn,tle’
pln] k=0 P
I e [ 5xaeral |
= —= Jxé [nl J trm,ee XAl (2.17)
plal 2 = 1

The term in brackets in equation (2.17) can be interpreted
as the second partial Fourier transform of the sequence t[n,m].
If we fix n = Dyr the Fourier transform of the one-dimensional

sequence t{no,m] is:

v ~jwl
Tingwl = [ tlngdle I (2.18)

=—c

Equation (2.17) can then be rewritten in terms of T[n,w]:

pnl-1

1 - .7 _Jk¢ [n]
x[n] = oinl zo TLp,kQ[nJ]e ¢
_eRIFL g ke ] ke nl (2.19)
k’—:O P[n]

Another assumption commonly made in the study of speech
signals is that the sequence t[n,m] varies much more slowly in n
than in m. This is because the variation of t[n,m] along its index
m corresponds to the instantaneous unit sample response of the

vocal tract (at a given time n), while the variation of tln,m]
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along its index n reflects the much slower changes in time of

the acoustic characteristics of the vocal tract.

We can therefore consider the term in parentheses in

equation (2.19) as a slowly varying lumped parameter ck[n].

The desired model of normal voiced speech can then be obtained

from equation (2.19):

pln]l-1 .
x[n] = ) c [nje) <] (2.20)

_ TEn,kQ [n]j (2.21)
pn]

where ck[n]

The parameters ck[n] represent the slowly varying character-
istics of the vocal tract and of the pitch period p[n]. They are
referred to as the "complex harmonic amplitudes” of the speech
and, seen as sequences in n, they contain non-negligible freguency
componentsonly up to the range of tens of Hertz [Portnoff, 19781].
Thus, their bandwidths are very small compared to the lowest
frequency components of normal speech, a fact that will be very

useful in Chapter 4, where the TSM system is presented.

2.1.2 Normal Unvoiced Speech

Let u[n] denote a zero-mean stationary white noise process.
The sequence uln] will be taken as the excitation of the linear
time-varying system t[n,m] during the unvoiced speech segments.

As is customary in speech processing applications, we shall limit
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the description of ul[n] to its second order mcment characteristics.
Thus, ul[n] will be assumed to be sufficiently specified by its
mean and autocorrelation sequence. The unvoiced speech sequence
x[n] is generated as the convolution of u[n] with a linear system.
Consequently, x[n] can also be specified by its mean and auto-

correlation sequence.

We have assumed that uln] is a zero-mean random process.
Since t[n,m] is a linear system, the mean of x[n] is also zero.
Now, let Ru[n] denote the autocorrelation sequence of
uln]. The fact that uln] is a white noise process implies that,
. . . 2
for some positive real value of its variance Uu, the sequence

R [n] is:
u

I

R [n] = E[ulm] u*(n+m]]

= % - 6l (2.22)
u

where "*" denotes complex conjugation.

The time-varying autocorrelation function, Rx[n,m], of
the speech signal x[n] can be obtained as the autocorrelation of

the convolution of u[n] with t[n,m] along the index m:



31

Rx [n,m] = E E*c[n] xX* [n+m]]
+o 4o
= E[—{ Z tln,pluln-pl } { z t[n—!—m,q]u[n-{-m_q]}*J
— pz_w 'q:_w L
+00 +c0
= Z X tin,plt*[n+m,glE El [n-plu* [n+m—q]:)
£)=-m q:-oo
40 40
= Z Z tn,plt*[n+m,q] Ru [p+m-q]
p—_’—-w q:-—m
+o +o0 5
. = 7 ) tln plt* [n+m,qlo’ 8 [p+m—q]
p::—co q:—oo
Therefore:
5 400
Rx[nfm] = GU. Z t[an]t* (n+m, p+m]} (2.23)
p—_—_m

Since we have assumed that t[n,m] varies much more rapidly

in m than in n, we can replace the term t{n+m,p+m] in equation (2.23)

by t[n,p+m]:

Rx [n.m] = Gi Z tln,plt*[n,p+m] (2.24)



Equation (2.24) expresses the time-varying autocorrelation
sequence of x[n], Rx[n,m], in terms of t[n,m] and the variance
Gi of its unvoiced excitation. This equation, together with the
fact that x[n] has zero mean, constitutes the desired second order
model of unvoiced speech.

To understand the process of time-scale modification of
unvoiced speech, however, we must carry our analysis somewhat
further. We may recognize the summation in equation (2.24) as
the deterministic autocorrelation of the sequence t{n,m] along
the index m, with the index n being held cconstant. It can be
easily shown [Bloomfield, 1976] that this summation has a Fourier
transform, Tn[w], which equals the square of the Fourier transform
Tln,w] of tln,m] along m, with n held fixed, as defined by

equation (2.18). That is:

32

T fwl = |Tne]]? (2.25)

400 .

where Tln,w] = Z ‘c[n,m}e—Jmm (2.26)

— 0

Equation (2.24) can then be expressed in terms of T[n,w] as

follows:
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R [n,ml = o F {7_lul)

2 1 J lT[n,w],Zejwmdm (2.27)
-

Let us now define the time-varying power spectrum,st[n,m]

of the unvoiced speech sequence x[n] as:

S_[n,w] = cle[n,w]l‘z (2.28)
X u

The functions Rx[n,w] and Sx[n,w] thus constitute a Fourier

transform pair, for n held constant:

T .
R [n,m] =~JL» [ S [n,m]ermdw (2.29)
X 21 X
1T
o —Jwm
s [nwl = J R [n,mle ’ (2.30)
bYe i X

Since we have assumed that t{n,m] has a slow variation in
n with respect to its length in m, we shall refer to the unvoiced

speech signal x[n] as a quasi-stationary random process.

The desired model of normal unvoiced speech can now be

formed by grouping together equations (2.24), (2.29) and (2.30)
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with the added knowledge that the mean of x[n] is zero.

2.2 A Model of the Desired Time-Scale
Modified Speech

As before, we will deal separately with voiced and unvoiced

2.2.1 Time—-Scale Modified Voiced Speech

From our discussion in Section 2.1, we know that the voiced
speech signal x[n] can be represented as a set of time-varying
parameters. This parametric model is in the form of a sum ot
harmonically related complex exponentials, as expressed by equation

(2.20), which we repeat here for convenience:

pln]l-1 .
x[n] = Z c [n]ejk¢[n] (2.31)

The parameters p([n], ck[n] and ¢ [n] have meaningful inter—
pretations in terms of speech features. The sequence plnl] is
the local pitch period, as described in figure 2.2. The set of
sequences ck[n] are a lumped parameter description of the local
behavior of the time-varying linear system which represents the
vocal tract, normalized by 1/plnl. This can be seen in equation
(2.21). Finally, the term ¢[n] is the time—unwrapped phase of the
fundamental of v[n], and is defined by equation (2.13).

We wish to determine the corresponding parametric descrip—
tion of a sequence y[n] = xB[n] which is perceptually’identical—

to x[n] except for the fact that it appears to have been articulated



B times faster than the original.

To obtain this parametric description, it is useful to keep

in mind that the sequence x[n] is obtained by sampling a continuous-—
time signal x(t) such that:

x[n] = x(nT) (2.32)

where T is a constant sampling interval.

We shall distinguish between discrete—-time and continuous-—
time signals by placing the arguments of discrete-time signals in
brackets and the arguments of continuous-time signals in parentheses,
as in equation (2.32).

The sequences pl[n], ck[n] and ¢[n] can similarly be
interpreted as sampled versions of continuous-time signals. It
is therefors meaningful to define the sequences x[8n], p[Bnl],

ck[Bn] and ¢ [Bn], for any real number 8 as follows:

x[Bn] = x(BnT) (2.33)
p[Bn] = p(BnT) (2.34)
ck[Bn] = Ck(BnT) (2.35)

¢ [Bnl = ¢ (BnT) (2.36)



We have implicitly assumed that the sampling interval T
is small enough to guarantee that x[n] completely specifies the
bandlimited continuous-time speech signal x(t), without any fre-
quency domain aliasing. Therefore, it is possible to recover x(t)
from x[n], at least in principle. If we were to actually recover
the continuous-time signal from the discrete—time signal, a
simple scaling of the time dimension of x(t) by B would vield
x(Bt) . The sequences x[Bn], p(Bnl, Ck[Bn] and ¢[Bn] could then
be generated as sampled versions of their continuous-time
counterparts.

In practice, however, the sequences defined in equations
(2.33) - (2.36) can be obtained without the need to return to
continuous-time signals. In particular, when the number B is
rational, Schafer and Rabiner [1973(b)] have shown that the
procedure to obtain a sequence (such as x[Bn]) from another that
represents the same continuous-time signal with a different sampling
rate (in this case x[n]), consists of a simple finite impulse
response (FIR) filtering operation. Therefore, when B is rational,
the sequences x[Bnl, p[Bnl. cn[Bn] and ¢ [Bn] can be obtained
respectively from x[n], plnl, ck[n] and ¢[n] by FIR filtering.
Since any real number can be approximated by a rational one with
arbitrary precision, we will assume for the remainder of this
thesis that B is rational.

We will now proceed to show that the time-scale modified

sequence xs[n] is equal to the sequence x([Bn] with its time-

unwrapped phase divided by B.

36
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In terms of the parametiric representation of voiced speech

given by equation (2.31), the sequence x[Bn] can be written as:

x[Bnl = ) ck[sn]ej ¢[fn] (2.37)

=0

Although it may be intuitively appealing to say that x([8n]
is the desired time—scale modified sequence xs[n], a closer look
at the structure of x[Bn] indicates that this is not the case.

For the time-scale modified sequence xB[n] to have the
same pitch structure in time as the original sequence x[n], its
time~dependent pitch fregquency QB[n] must be equal to [n] with
its time dimension scaled by 8:

B

@ [n] = Q[Bn] (2.38)

In other words, the spectral location of the pitch frequency
Qs[n] must be the same as the spectral location of the original pitch
frequency Q[n], with its argument n replaced by B8n.

Let Q2[Bn] denote the pitch frequency of the sequence

x{8n]. We will now show that 2[8n] is not equal to Q[Bnl].

To do this, we refer back to the continuous—time signals
x(t) and x(Bt). An approximate result can be derived with discrete-
time signals {Portnoff, 1978]. Using continuous—time signals,
nowever, we can obtain an exact result which can be directly

interpreted in terms of x[n] and x{Bn].
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Equation (2.8) shows that @[n] is equal to the first

forward difference of ¢[n]. In continuous time, this equation

becomes:

d N —_—
at ¢(t) = Q(t) (2.39)
The functions ¢(t) and Q(t) are referred to, respectively,

as the time-unwrapped phase and the instantaneous frequency of x(tj.

For x(Bt) we can obtain a similar result:

d
S o0 = 3G Y - gp Bt
-S| . 8
dt [T - 8t
= BR(Bt) (2.40)

By definition, the derivative of ¢(Bt) is the instantaneous

frequency Q(Bt) of x(Bt), so:

Q(Bt) = BQR(Bt) # Q(Bt) (2.41)

This result can be directly interpreted in terms of discrete-

time signals:
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2(8n] = Q(BnT)
=8 - Q(BnT)
= 8 + Q(8n] (2.42)

Equation (2.42) shows that Q[Bn] does not equal ([Bn].
This result should not be surprising. The sequence x[Bn] is a
sampled version of x(Bt) which, in turn, is exactly the signal that
we would have obtained by speeding up the sampling rate of the
digital-to-analog conversion of x[n] to x(t) by a factor of B
(ox, analogously, by speeding up the playback speed of an analog
tape containing x(t)). As discussed in section 1.2, this method
will not produce the desired time-scale modified signal.

To correct the pitch of x([Bn] we must divide its phase,

¢[Bn], by B. If we do this, equation (2.40) becomes:

d
v {6(Bt) /B}

BR(Bt) /B

Q(Bt) (2.43)

We have therefore transformed the sequence x[Bn] into the
desired sequence.xs[n]. The expression for the time—scale modified
voiced speech is thus:

8 o(Bnl-1

x [n] = Z ck[Bn]e
k=0

jk¢ [Bnl/R (2.44)



40

2.2.2 Time—Scale Modified Unvoiced Speech

When x[n] is unvoiced, we have modeled it as the output
of a time-varying linear system with impulse response t[n,m] which
is excited by a white noise process uln]. Thus, x[n] is a gquasi-
stationary random process with zero mean and time-varying second
order statistics given by equations (2.24), (2.29) and (2.30).
The time-scale modified sequence xB[n] is, in this case, another
quasi-stationary random process with zero mean and time-varying
second order statistics that are those of x[nl with their time

dimension scaled by B. In terms of its second order model, the

sequence xs[n], for the case of unvciced speech, is given by the

relations:

R®[n,ml = R_[n,m] (2.45)
< X
or, eaquivalently:

(2.46)

8 _
Sx[n,w] = Sx[Bn,w]

and:

E[xBml] =0 (2.47)
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2.3 Cutline of a Time-Scale
Modification System

In Section 2.1 we derived parametric models of normal

voiced and unvoiced speech. In the case of voiced speech, it was

shown that the speech signal x[n] can be interpreted as a sum of

harmonically related exponentials, as given by equation (2.20):

p(n]-1 .
x[n] = ) c [n]ejk¢[n] (2.48)

=0

where the time-varying parameters p[n], Ck[n] and ¢[n], respectively
correspond to the pitch period, the normalized vocal tract character-
istics, and the time-unwrapped phase of the speech signal.

In the case of unvoiced speech, our model of x([n] was a
second order quasi-stationary stochastic characterization. Equa-
tions (2.24), (2.29) and (2.30) define the time-varying auto-

correlation and power spectrum of the unvoiced speech signal:

2
er[n,ml =0, Z tln,plt*(n,p+m] (2.49)
p:—m
(TI‘ .
R [n,m] = = J S [n,w]el*™du (2.50)
X 2 X
—Tr
+x j m
_ -Jw
s ol ) R/ [nmle (2.51)

m==—wx
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where the time-varying parameter t{n,m] is the vocal tract impulse
2 . . . .
response, and the constant cu is the variance of the white noise

excitation.

In Section 2.2, we obtained the corresponding models of
time scale modified voiced and unvoiced speech. We found that,

for voiced speech segments:

plBn]-1 .
xs[n] -9 ck[Bn]eJk¢[Bn]/B
k=0
= x[Pn] with its phase divided by 8. (2.52)

In the case of unvoiced speech, the time-scale modified sequence
xs[n] is given by equations (2.45)-(2.47). If we assume that the
unvoiced excitation uln] is a Gaussian white ncise process (as
opposed to a general white noise process), and if we can estimate
Sx[n,w] with enough resolution, then for the purpose of time-scale
modification, the unvoiced portions of the speech may be treated
as if they were voiced [Portnoff, 1978]. This means that we must
divide the phase of x[Bn]l during unvoiced speech segments (as we
would normally do if they were voiced), to obtain the desired second
order statistics.

This result is a very important one. Since voiced and un-
voiced speech are to be treated in the same manner, no need exists

for the TSM system to make voiced/unvoiced decisions. This
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increases the robustness of the modification algorithm, particularly
when the speech is corrupted by noise.

For the remainder of this thesis, the speech signal x[n]
will be assumed to consist solely of voiced segments. Therefore,
we shall assume that x[n] has the structure derived in Section 2.1.1
and, consequently, that xB[n] has the structure given in Section 2.2.1.

We can now see that a TSM system must perform two distinct
operations on x[n]. First, it must compute x[8n] from x[n] and,
second, it must estimate and modify the phase of x[Bn] to yield
the desired sequence xB[n].

The first step in the TSM process, which derives x[Bn] from
x[n] by scaling its time dimension by B, will be referred to as
LINEAR TIME-SCALING. This will distinguish it from the overall
TSM process which is non-linear due to the phase correction required
to obtain the correct pitch contour of’xB[n].

In order to perform the linear time-scaling and phase
modification operations, the values of the time-varying parameters
which form our model of voiced speech (equation 2.20) must be
estimated. Then, the linear time-scaling and phase modification
steps will yield xs[nl in parametric form. Finally, xB[n] has to
be derived from its parametric description.

Thus, a complete TSM process can be divided into four steps
which will be labeled, respectively: Analysis, Linear Time-Scaling,

Phase Modification and Synthesis, as shown in Table I.



Table I

The TSM Process

Analysis

Estimation of the time-varying parametric struc-
ture of the signal x[n].

Linear Time-Scaling

Computation of x[Bn] from x([n].

Phase Modification

Estimation and scaling of the time-unwrapped
phase of x[Bn]. This step will yield the
parametric description of the desired signal xs[n].

Synthesis

Generation of xB[n] from its parametric
description.
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CHAPTER 3
THE SHORT-TIME FOURIER TRANSFORM

The time-—scale modification system described in this thesis
is based on a mathematical technique referred to as the Short-Time

Fourier Transform (STFT). In its classical definition, the STET

involves a continuous frequency variable, and a discrete time
variable which is summed between infinite limits. In order to
make the technique computationally viable, the DISCRETE Short-Time
Fourier Transform (DSTFT) is introduced, in which the frequency
variable is discrete and the summation limits are finite.

In this chapter, both the STFT and the DSTFT are described.
Efficient algorithms for the computation of the DSTFT and its in-
verse are presented.

Most of this chapter is a reformulation of work previously
done bv Portnoff [1978]. The derivation presented here, however,
improves on Portnoff's results in two ways. First, it eliminates
several computational steps from Portnoff's algorithm that were
experimentally shown to be unnecessary. Second, 1t introduces
an alternative inverse DSTFT algorithm which requires less than
one-twentieth of the storage needed by its predecessor. This reduc-
tion in the size of the memory reguirements of the algorithm is
important because, in its previous formulation, the inverse DSTET
operation had storage needs that made it difficult, or even

impossible, to implement in a small to medium sized computer.
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In the first section of this chapter, the Short-Time
Fourier Transform (STFT) is presented. Its implementable counter-—
part, the Discrete Short-Time Fourier Transform (DSTET), is
introduced in the second section. Finally, in the third section,
efficient algorithms for the computation of the DSTFT (referred
to as BAnalysis) and its inverse (referred to as Synthesis) are

described.
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3.1 The Short—-Time Fourier Transform

The Short-Time Fourier Transform (STFT) is defined as

follows [Weinstein, 12966]:

Let x[n] denote a real valued discrete—time signal
defined for all integers n.

Let h[n] denote a real valued discrete—-time window
defined for all integers n, with h[0] = 1. Usually,
but not necessarily, h[n] will be zero for -hj <o < hp,
for some positive integers hy and hy.

The STFT of x[n] windowed by hin], and its inverse, are
given by the relations:

g2 -

}s: x[n] fﬁ;;-xs[n,w] = ) x[m]h[n—m]e-jmn (3.1)
m=~—c
Fo
_1 s 1 .
e\} : X [o,0] —Lw»x[n] = — (W X [n,0le?dw (3.2)
s s 2T S

=

For convenience, let us define the two-dimensional sequence

x[n,m}:

xn,m] = x[mlh[n-m] (3.3)
The sequence x[n,m] is best thought of as a succession of
frames along m, indexed by n. If we fix n = no and let m vary
from - to +=, x[no,mJ will be the original signal multiplied by
the window hinl]l, which is positioned over x[n] so that h[0] lies

directly over x{nO].



Equation (3.1) then becomes:

*-m —
Xs[n,w] = Z x[n,mle

m=-—o

Jw

m
(3.4)

Equation (3.4) corresponds exactly to the standard one-

dimensional Fourier transform of the sequence x[n,m] along the

variable m, with n held fixed. Xs[n,w] can therefore be interpreted

as a sequence, indexed by n, of local spectra of x[n]. This

interpretation is shown graphically in figqure 3.1.

Let us now show,

‘defined in equation (3.2)

Fixing n in Xs[n,

resulting function of w,

Setting m = n in

for completeness, that the inverse STFT
in fact yields x[n] from Xs[n,w].
w], and inverse Fourier transforming the

we obtain:

x[n,m]

x [m]lh [(n-m] (3.5)

equation (3.5), and recalling that

h[0] = 1 by definition, we have:
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T R
{ Xs[n,m]ejwndw = x{nlh[n-n}
—17

1
2T
= x[n]h[O0]

= x[n] (3.6)

which is the desired result.

Because Xé[n,m] is a redundant representation of x([n],
other inverse STFT relations, which are equivalent to equation (3.2),
can be derived.

For example, replacing n by n, and m by n in equation (3.5),

x{n] can be recovered from Xs[n,w] by the alternative formula:

,'TI' -
- jwn
x[n] = Tt a] J—-;r X [ng,wle’™ dw (3.7)

for any n and n_. such that h[no—n] # 0.

0
Alternatively. if H(w) is the Fourier transform of hinl,

it can be shown [Parsons, 1976; Allen, 1977] that:

400 .
1 Jwn
x[n] = 2ﬂH[m][ [:_ ré;m Xs[r,w]e dw (3.8)
m:

0

A general equation that contains all the above inverse

STFT relations as special cases was introduced by Portnoff [1978]:
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1 m s jwn
x[n] = 3= ) £ln,n-rlX_[r,0le” du (3.9)
-

Equations (3.2), (3.7) and (3.8) are special cases of equa-

tion (3.9), respectively, for:

fln,m] = §[n] ., (3.10)
fln,m] = S[n—mrno]/h[—m] (3.11)
and fln,m] = 1 (3.12)

where &[n] is the unit sample function.

Portnoff showed that egquation (3.9) will be a valid inverse

STFT formula if the sequences f£[n,m] and hln] satisfy the relation:

X fln,-mlh[n] =1 , for all integers n. (3.13)
m=—co

The two-dimensional sequence f[n,m] is referred to as
the SYNTHESIS FILTER. In general, it is a time—varying seguence.
In this thesis, however, only time—invariant synthesis filters
will be considered.

We define the time-invariant synthesis filter f£[n] by the

relation:
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fln] = £[0,n] (3.14)
In terms of f[nl, equation (3.9) becomes:

1 " Py jwn
x[n] = g [ Z i:'[n—r:]XS[n,co]e:J dw (3.15)

—T7 r:—m
Equation (3.15) is the inverse STFT relation that will be used in

this thesis.

As shown in figure 3.1, the STFT of x[n] can be interpreted
as a time sequence of local spectra of x[n]. Alternatively, the
sequence Xs[n,wI can be viewed as the output of a bank of filters
excited by x[n]. Specifically, consider equation (3.1). This
equation can be interpreted as a convolution sum, along the index n,

of the sequence h[n] and the demodulated speech sequence x{n]enjwn:

x_[mwl = | <mlh[n-mle J°™
+oo iem
= E (x[mle °“™) h(n-m]
m:-—oo
= (x[nle °“7 «_ hinl (3.16)

The sequence Xs[n,m] can therefore be interpreted, for

a fixed w, as the output of a linear time—invariant filter with
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impulse response h[n], excited by the demodulated (frequency
shifted) signal x[n]e—jmn. Figure 3.2 shows schematically how
Xs[n,m] is obtained with a filter bank. Note that, although only
a finite number of values of w are shown in the figure, w is a
CONTINUOUS variable which takes values along all of ﬂQ-

In light of the filter bank interprctation of the STFT
relations, it is natural to think of the filter h([n] as having
low-pass spectral behavior. When this is the case, Xé[n,w] will
be the output of a bank of bandpass filters. As we shall see
in the next section, if h[n] is a good low-pass filter, large
computational savings can be obtained by decimating (downsampling
in time) the function Xs[n,w].

The alternative interpretations of the STFT of x[n] -- as
a sequence of local spectra and as the output of a bank of bandpass
filters -- impose conflicting constraints on the shape of h[n].

On one hand, the window h[n] must be small in order for each STFT
sepctral frame (i.e. Xs[n,m] seen along the variable w, for a fixed
value of the time index n) to correpond to the local behavior of x[n].
On the other hand, for h[n] to have good low-pass behavior, it

must be relatively long. Experimentally, a gecod tradeoff between

the two constraints is achieved by letting h[n] be a raised cosine
(Hamming) window centered at h[0]. For the remainder of this

thesis, then, h[n] will be assumed to be a Hamming window.

The relations for the STFT and its inverse constitute an
analysis/synthesis pair. As mentioned earlier, we will refer to

the sequence £[n] as the SYNTHESIS FILTER. Analogously, the
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Filter Bank Interpretation
of the STFT

hin] | Xs[n,wp]

h[n] —Xs [n,wq]

hin] |—Xg [, e

NOTE: w is a continuous variablei the
indices p,q and r are used for

illustrative purposes only.

Figure 3.2



window h[n] will be referred to as the ANALYSIS FILTER.

The STFT relations expressed in equations (3.1) and (3.15)
are useful theoretically, but are of limited practical use in
signal processing for two reasons. First, the frequency variable
w is continuous and, second, the summation limits in the analysis
equation (3.1) are infinite. 1In the next section, these limitations
will be removed from the STFT. The resulting transform pair is
known as the Discrete Short-Time Fourier Transform (DSTFT) .

3.2 The Discrete Short-Time
Fourier Transform

The change from a continuous frequency variable in the
STFT to a discrete fregquency index can be accomplished by replacing
w in equations (3.1) and (2.15) with kQO. The number k is an
integer which ranges from zero to some maximum value M-1, and
Q = 2m/M is the frequency sampling interval. The index k does

0

not vary from -® to +® because complex exponentials of the

-j27kn/M .o . .
form e J / are periodic in k with period M and, therefore, a
discrete Fourier transform representation of a signal involves
only one such period [Oppenheim and Schafer, 1975].

The resulting Discrete Short-Time Fouxrier Transform (DSTET)

relations are:

55
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+o -jQOkm
x_[n,k] = )  ximlh[n-m]e (3.17)
m:—oo
1 M—1 T4 i kn
x[n]l =& ) Z £[n-mlX [n,kle (3.18)
S
k::o m=-o
2m
where QO-— M (3.19)

and k is an integer between O and M-1.

Equation (3.18) is a direct counterpart of equation (3.15)
with w replaced by kQO. Since the new frequency variable is dis-
crete, the integral along w in equation (3.15) has been replaced
by a summation, and the normalization constant 1/27 has been
replaced by 1/M.

The constraint on the pair of functions h{n] and flnl for
equation (2.17) to be a valid inverse DSTFT relation is similar
to the one in the continuous frequency case, given in equation (3.13).
Portnoff [1978] has shown that x[n] will be recovered from.Xs[n,k]

by equation (3.18) if hin], f[n] and M satisfy the relation:

}  £lm-mlhim-ntqu] = §[ql (3.20)

where 6[n] is the unit sample function.
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A functional diagram of equations (3.17) and (3.18) in

their filter bank interpretation is presented in figure 3.3. Note

that, in contrast to figure 3.2, the discrete frequency indices
in figure 3.3 correspond to the actual structure of the DSTFT.

The output of each analysis filter in figure 3.3 consists
of a demodulated and low-pass filtered version of the input signal
x[n}l. The sequence Xs[n,k], viewed only as a function of n with

k held fixed, has a spectrum that corresponds to a band-pass section

of the spectrum of x[n] centered at Wy = kﬂo but shifted so that

w_ is mapped to zero. This result is shown graphically in figure 3.4.

0

This fact can be easily derived by noting that the Fourier
-3jkQ n

transform of the signal x[n]e is X(w+kOQO). Low—pass filter-

-jk n

ing x[nle with the filter h[n] causes the freguencies outside

the filter passband toc be severely attenuated, yielding the desired
result.
The band limitation of Xs[n,k] as a seguence in n, holding

k fixed, can be exploited to drastically reduce the amount of

computation needed to evaluate it. Since its spectrum does not

span the whole frequency range from -m to T, Xé[n,k] can be down—
sampled (decimated) in n without any loss of information, as long

as the resulting sampling rate exceeds the Nyquist rate associated

with the low—-pass filter hin].

Keeping only every R sample of’Xs[n,k], we obtain the

decimated transform:
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The DSTFT Seen as a Filter Bank

eﬂ90°(M-Un

N

h[n]

&80 (M-2)n

e X [ n,M- 1]

x[n] —

e Xs[ n,M-2 ]

h[n]

X[ nik]

a) Analysis -- equation (3.i7)

—

Xs [ ny M=l Jo—

Qo (M-1
e]ﬂo (M )n

X/

f[n]

Xs [ n,M-2]e—

o i%0" (M-2)n

X

f[n]

Xs[ni.k] < X [ 2 ]

@o—

fejﬂo-Zn)

X

X¢ [ n, 1]

ejﬂo’n )

X

f[n]

Xs [ n,0] &
-

ej.Q,o ‘O)

X

f[n]

b) Synthesis — — equation (3.18)

Figure 3.3
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Modulating and Filtering x[n]
b X(w) ={x[n] }

-‘;r "kgﬂo
°1"r -k{.Q.o - wp® Wh k:Q,o 1r%
\_cutoff frequency
of h[n]
y{xs [n,k]},with k held
fixed
7 -KQg ~“h° wp kQg 7 ¢

If k is held fixed, X[n,k] is a frequency
shifted band - pass section of x[n].

Figure 3.4
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X [pR,k] = X_[n, k] (3.21)
S S

n=pR

for any integer p.

Thus, the decimated DSTFT of x([nl], Xs[pR,k], consists of
a set, indexed by k, of M sequences in the decimated time variable p.
Alternatively, XS[pR,k] can be seen as a succession of local spectra
of x[n], separated in time by R samples. Each one of these local
spectra is obtained by letting the index k vary from O to M-l while
p is held fixed. Viewing Xs[pR,k] as a set of M decimated time
sequences corresponds to the filter-bank interéretation of the
DSTFT shown in figure 3.3, while viewing it as a succession of
local spectra of x[n] corresponds to the sliding window interpreta-
tion illustrated in figure 3.1

Both interpretations will be used throughout this thesis.
The choice between the two during any specific derivation will
e one of convenience and simplicity.

To avoid any confusion that might arise later, we shall

adopt the convention that any variable that is underlined is being

held fixed. Thus, Xs[gg,k] is a succession of local spectra
(sliding window interpretation -— p held constant), while
Xs[pR,EJ is a set of M decimated time sequences (filter bank
interpretation -— k held constant).

Now, we define'f{Xé[qugj} as the Fourier transform of
Xé[pR,EJ. Note that,\f[xs[pR,EJ} is the Fourier transform of

a sequence in time, so its image is in the frequency domain. It



is useful to relate J {Xs [pR,k]} to _;{XS [n,k]}, the Fourier

transform along the same time variable prior to down—-sampling:

‘f{xs[pR,y} = ) XS[pR,ye'jYp
e gl R-1 jzﬂrn/Rl -3yn/R
= ) Xs[n,k] lg ] e e 0Y
n=- r=0

where the term in brackets is the discrete Fourier series
representation of a periodic sequence that equals unity
when n is an integer multiple of R, and is zero otherwise.

R-1 4+ .
-1 y E X [n,k]e_]n(y—zwr) /R
R & s =
r=0 n=-x
, Rl [
== I ¥ [n,y}i (3.22)
r=0 S w = (y=-27r)/R

In other words, ‘f{xs [pR,&]} is obtained by adding together
R replicas of \'f"{XS [n,kl}, separated by 27/R from each other,
and with the frequency dimension scaled by 1l/R.

As long as R is small encugh tc ensure that the sampling
frequency of the decimated transform exceeds the Nyquist rate of
the analysis filter, the complete DSTET sequence, Xs [n,k], can be
recovered from its decimated version by bandlimited interpolation.

Schafer and Rabiner [1973(b)] treat the problem of bandlimited
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decimation and interpolation in detail.

The decimation of Xs[n,k] to obtain XS[pR,k] is only a con-
ceptual operation. In practice, only those samples of the DSTFT
which will be retained need be computed. The resulting dec imated

DSTFT relations are:

+oo -jkQ _n
x_[pR,k] = ]  x(nlhlpR-nle 0 (3.23)
n:—oo
1 M-1 +o jkQ n
x[nl ==~ ) )  fln-pRIX [pR,kle (3.24)
M k20 p=o o

with the constraint:

4+
Z f[n-pR]h[pR-n+gM] = d[q], for all integers n (3.25)

P:—m

The synthesis filter £[n] in equations (3.24) and (3.25)
is chosen to be a l-to-R interpolating FIR filter, as defined by
Schafer and Rabiner [1973(b)]. This choice of f£[n] must satisfy
equation (3.25). To show that this is the case, we can interpret
equation (3.25) as an interpolation sum. Schafer and Rabiner
[1973(b) ] have shown that the sequence h[n] can be recovered from

its decimated version h([pR] by the formula:

hin] = )  £ln-pRIh[pR] (3.26)
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This assumes, of course, that R is small enough not to cause alias-

ing in the sequence h[pR].

For the specific sequences f£[n] and h([n] that we have chosen,

the left-hand side of equation (3.25) can be evaluated using equa-

tion (3.26). Thus:

4o
) £[n-pRI1h[pR+(gqM-n)] = h[n+(gM-n) ]
p:—w
= h[gM] (3.27)

Therefore, for equation (3.25) to be satisfied by f[n] and hin]

when the former is an interpolating filter, we must choose h[m] such

that:

higM] = §[q] (3.28)
In Section 3.1, we restricted h[m] to be a Hamming window.
Equation (3.28) will be satisfied if we restrict the length of h(m]
to be less than 2M. Portnoff [1976, 1978] considered the possibility
of using analysis filter lengths greater than 2M. In this case.,
equation (3.28) requires that h{n] be zero for n equal to a non-zero
multiple of M. For this reason, Portnoff considered analysis filter
shapes other than Hamming windows (e.g., truncated sinc functions).
Experimental results have shown, however, that when the DSTET rep-—

resentation of a signal is modified to effect time-scale modification
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of the signal x[n] (as will be described in Chapter 4), analysis

window lengths greater than M cause noticeable reverberation in the

output signal x~ [n]. Thus, for the remainder of the thesis, the

length of hin] will be assumed to be less than or equal to the

number M of DSTFT freguency samples.

Equations (3.23) and (3.24) define the DSTFT. In addition,
for eqguation (3.24) to hold, the sequences h[n] and f[n], together
with the number M, must satisfy the constraint imposed by equation
(3.25). In particular, when £f[n] is a l-to-R interpolating filter,
the constraint will be satisfied if h[n] is a Hamming window whose
length is less than M. The filter bank interpretation of equations
(3.23) and (3.24) 1is illustrated in figure 3.5.

This definition of the DSTFT is still of limited use compu-
tationally because the limits on the summations over n and p remain

infinite. It is a simple matter, however, to replace these limits

by finite ones.

Consider equation (3.23). In general, the summation limits

over n are infinite. In practice, however, the length of the window

h{n] is finite and, thus. the tails of the summation make no contribu—

tion to XS[pR,k]. Let hln] be non-zero only for values of n in the

range from -~h, to h2. That is, hin] is hl + h2 + 1 points long.

1
Equation (3.23) then becomes:

PR¥R, k2 n
X [pr,k] = z x[nlh[pR—nl]e (3.29)
S n=pRrh2
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The Decimated DSTFT Seen as a Filter Bank

e-jQ.o'(M-l)n
h(n] o _|o—= Xg [ PRyM-1]
-(M-2)n

’—40——4 Xs[ pR,M-2]

. X[ PR,k
<(n] | efjo—e X[ PR, 2] sLProKd
e xs R, 1]
hin] R—1o—= Xs[ PR, O]
a) Analysis -- equation (3.23)
) o100 (M-1ny
Xs T pR,M-1]o—] toeees fn] X
| —R ejﬂo’(M-Z)ﬂ>
Xs [ PR, M-2] e Looeer fn]
| —R
; ' on‘ZI‘I
X.[pR,k ° 3
sPRHY L (ori2] T {0 g e
[ —R ejﬂ,o'n )
Xs [PR, ] | f(n]
| —R eI.Q.o'O)
| Xs [pR,0O] Toeeee f[n] %
| —R
b) Synthesis —— equation (3.24)

Figure 3.5
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Now, consider equation (3.24). The infinite summation limits
cannot be replaced by finite ones as in equations (3.23) and (3.29)
because ideal interpolating filters are infinitely long. Excellent,
albeit not ideal, interpolation filters can be designed with finite
lengths [Schafer and Rabiner, 1973(b); Oetken, Parks and Schuessler,
1975]. The length of these filters is measured in terms of thg num-
ber of points from the original sequence that are involved in the
computation of a given point of the interpolated sequence. An inter-
polating filter is said to be of order Q if it requires 2Q input
points to compute an output point. (An even number of input points
is required because, in general, interpolating filters are odd sym-
metric seguences) .

Portnoff [1978] has shown that if f[n] is a l-to-R inter-
polating filter of order Q, then the actual summation limits on p
in equation (3.24) are:

L'l =[n/R7+ 0 (3.30)

L [n] ={n/R]-0Q-1 (3.31)

where ra_[denotes the largest integer that is
less than or equal to a.

Equation (3.24) can then be rewritten with finite limits:

, M-l Cin] k@ n
0]
x[n] = Z z fln-pRIX [pR,kle (3.32)
k=0 p=L~[n] S
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Equations (3.29) and (3.32) constitute a definition of the
decimated DSTFT which can be implemented as a computer algorithm.
All of the variables in the two equations are discrete, and their
summation limits are finite. If they are implemented literally,
and last,

however, their computational efficiency is low. The next,

section of this chapter presents efficient DSTFT analysis and syn-

thesis procedures.

3.3 DSTET Analysis and Synthesis Algorithms

If the number M of DSTET frequency samples is chosen to be
an integer power of 2, then equations (3.29) and (3.32) can be im-
plemented very efficiently using a Fast Fourier Transform (FFT)
algorithm. To conform to the notation commonly used in describing

. km
FFT algorithms, let us define the number WM :

km e—jZka/M

=

-jﬂokm

= e (3.33)

Equations (3.29) and (3.32) can then be rewritten using the

FFT notation:

9R+hl kn
X [pR,k] = x[n]h[pR-n]W (3.34)
S M

n=pRrh2

M—1 L [nl en
Z Z £[n-pRIX [pR,k]WM‘ (3.35)
k=0 p=L" [n] S
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Efficient algorithms for the implementation of DSTFET Analysis
(equation (3.34)) and DSTET Synthesis (equation (3.35)) are derived
separately in the remainder of this chapter.

The analysis algorithm presented here follows closely the
one derived by Portnoff [1976, 1978]. It is simpler than its pre-
decessor, however, because it takes advantage of our assumption that
the length of h[n] is less than the number M of frequency samples.

Portnoff's synthesis algorithm is also described here. It
will be shown to have very large storage requirements. An alterna-
tive algorithm will be presented which needs less than one-twentieth

of the storage used by Portnoff's algorithm, without sacrificing its

computational efficiency.

3.3.1 Short-Time Analysis Algorithm

Equation (3.34) can be implemented using an FFT algorithm

by a simple change of variable.

Letting r = n — PR + h2, equation (3.24) can be rewritten

using r as the summation index:

h
1By k (r+pR-h.)
X [pR,k] = )  x[r+pR-h,]h[h -rlW (3.36)
s 2 M
r=0
For convenience, define xp[r] as follows:
(3.37)

xp[r] = x[r+pRrh2]h{h2-r]
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Then, equation (3.36) can be rewritten:

ho+
k(pR-h,) 1 h,

X_[pR,k] = W Y (elwss
S [PR.KI = R x [rly

(3.38)

Equation (3.38) expresses Xs[quk] as the product of a phase
k (pR—hz)

term, WM. , and a summation which is in fact the Discrete Fourier

Transform (DET) of the sequence xp[r]- If M is chosen to be an

integer power of 2, this equation can be implemented with an FFT

. m .
algorithm. Let us assume, then, that M = 2, for some integer m.

Define the M-point sequence x_[r] as follows:

p
x [z] = (3.39)
D
0 , forr = h7+hl+l to M-1
In terms of ip[r], equation (3.38 ) becomes:
k(pRehz) M-1
¥ (3.40)

X_[pR,k] =W . x (rlwr
S M M
r=0

The summation in equation (3.40) can be implemented using
an FFT algorithm. This equation can be further simplified by re-
placing the product of the DFT of ip[r] and the linear phase term

k (pR—hZ)
W with a circular left shift of the sequence ip[r] in r
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by the amount pR — hz. This can be done because, for the Discrete
Fourier Transform operator, multiplication by a complex exponential
in the frequency domain corrasponds to a circular shift in the
time domain.

Equation (3.4l1) is equivalent to equation (3.40) with the

k(pRrh2) )

phase term.WM> replaced by a circular shift. Together with
equation (3.39), which is repeated here as equation (3.42), equa-
tion (3.41) constitutes an implementable and efficient DSTFT analysis
algorithm, as shown in Table II.

The algorithm defined by equations (3.41) and (3.42) is
shown in flowchart form in figure 3.6. The figure depicts the com-
putation of a single DSTFT frame, for a given value of p (that is,
the computation of XS[EB,kl). Other frames are computed by repeat-
ing the same procedure for other values of p.

It is important to note that x[nl] is assumed to be infinite.

In practice, this means that x[n] is "padded" with zeros at both ends

when the first and last few frames are analyzed.

3.3.2 Short—-Time Synthesis Algorithm

Equation (3.35) synthesizes the signal x[n] from its DSTET
representation, XS[quk]. It implements the inverse of the analysis
procedure expressed by equation (3.34) . Therefore, the two equations
together form a transform pair.

The DSTFT analysis and synthesis equations can also be con-
sidered independently. In this sense, equation (3.34) takes two

one-dimensional sequences and generates a two-dimensional seqguence.
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DSTFT Analysis Algorithm
(see equations 3418 342)

( ENTER )

Obtain the sequence
WINDOW : xp[r]= x[r +pR-hs] h[hs-r]
for r=0 to r=h; + ho
i
Append M-I-hl*hz Zeros
PAD : to xp[n] to generate
the sequence Xp[n]

Y

Circularly shift Xp[n]
ROTATE' to the left by pR-ho
points

v

DFT the rotated
FFT: sequence with an
FFT algorithm

i

(. RETURN )

Figure 3.6
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Table IT

DSTFT Analysis Algorithm

M-1

~ k
X [pR.k] = ] % [((c-pR¢h,)) JW.F (3.41)

s P M™ M

r=0
where:
g x[r+pRrh2]h[n2-r] , r =20 to B, + h2
x () = ( (3.42)
P
0 , otherwise

and where: ((r))M denotes "r modulo M."
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In turn, equation (3.35) generates a one-dimensional sequence from

two others with one and two dimensions, respectively.

In the next chapter, the DSTFT analysis and synthesis

algorithms are used separately to design a TSM system. For this

purpose, the input and output sequences of the synthesis equation
will be renamed to distinguish them from their counterparts in the

analysis equation.

Let Ys[pR,k] denote the input sequence in equation (3.35)
and let y[n] denote the corresponding output sequence. Equation (3.35)

then becomes:

M-1 L+[n] —kn
ynl == ) ) £[n-pR]Y_[pR,kKIW (3.43)
=0 p=L~[n] s M

Clearly, if we choose Yé[quk] to equal Xs[pR,k], equations
(3.42) and (3.43) will be identical. 1In this case, y[n] will equal
x[n]l, and equations (3.41) and (3.43) will constitute a transform
pair.

The efficiency of equation (3.43) can be greatly improved
by using an FFT algorithm to perform the bulk of the computation.
However, in order to use an FFT, we must change the form of

equation (3.43).

Interchanging the order of summation and rearranging terms,

we have:
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L+[n] M-1 —xn
yn]l = Z £ [n-pR] { Z Y [pR,k] WM } (3.44)
p=L" [n] =0 °

e

The term in brackets in equation (3.44) is the inverse DFT
of the one-dimensional sequence YS[ER,k], and thus it can be computed
using an FFT algorithm.

The inverse DFT of Ys[pR,k] will yield a sequence v [pR,k]
which is analogous to the sequence x[n,m] defined in equation (3.3),
decimated at a rate R along the index n. In fact, if no modification
is effected, the sequence y[pR,m] will be equal to x[pR,m].

Equation (3.44) can therefore be rewritten as two separate

equations in terms of the sequence y[pR,m]:

L+[n]
y[n] = z f[n-pRly[pR,n] (3.45)
p=L" [n]
wQere:
1 M—1 _
v [PR,n] =¥ Eo Y [pR,k]WM (3.46)

A useful interpretation of equations (3.45) and (3.46) can
be obtained by making use of the fact that WE? is periodic in n
with period M. Thus, the sequence y[pR,((n))M] is identical to the
sequence y[pR,n].

Equations (3.45) and (3.46) can then be rewritten in terms

of y[pR,((n))M]:
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L+[n]
ynl = ) £(n~pRly [PR, ((n)) ]
p=L" [n]

(3.47)

where:

1 n
Y[PRr ((n))M] = ﬁ' Z YS [PR'k]WJ; (3.48)

Figure 3.7 illustrates the synthesis procedure described by
equations (3.47) and (3.48). This figure emphasizes the derivation

of the sequence y[n] from y[pR,n]. Portnoff [1976, 1978] has

shown that:

yin] = y[n,m] (3.49)

m = ((n))M

The sequence y[n,m] must be recovered from y[pR,m] by inter—
polation. However, it is not necessary to obtain y[m,n] in its
entirety. Since y[n] is equal to y[n,((n))MJ, only those points of
yv[n,m] which lie along the helical path determined by the relation
m = ((n))M_need to be recovered.

The DSTET synthesis algorithm described in equations (3.47)
and (3.48) is implementable in a computer and has been shown to be
computationally efficient [Portnoff, 1978]. Still, it has one major
disadvantage. Since several frames of y[EB,m] have to be accessed
simultaneously to interpolate yv{n,m], its storage requirements are

very large. Therefore, this procedure is difficult, or even
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DSTFT Synthesis Algorithm
©

Figure 3.7
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impossible, to implement in a small or medium sized computer.
In general, the order Q of a good interpolating filter will

be between 10 and 20. The number of frames that such a filter

would need to access simultaneously is 2Q + 1. Therefore, 21 ~ 41
frames will usually be required in memory at any given time.

An alternative interpretation of equation (3.47) can reduce

the number of frames that need to be accessed simultaneously from

20 + 1 to one.

Let us define the sequence wr[n] as follows:

v _[nl = Eln-rlylr, ((n)) ] (3.50)
Equation (3.48) can then be rewritten in terms of wr[n]:
L-i-[n]

y[n] = ¢ _[n] (3.51)
p=I~[n] P&

As a function of the variable n, for a given fixed value of

r, wr[n] is the product of the interpolating filter £[n] and the

sequence v[r,m] evaluated along the path m = ((n))M. Without loss

of generality., we can let £[0] correspond to the center value of the

{odd) sequence fin]. Then, since we have defined £[n] as a lL-to-R

interpolating filter of orxrder Q, we know that £[n] is equal to zero

for values of n outside the range from -RQ to RQ. Consequently,

¢r[n] will equal zero if n-r < -RQ or n-r > RQ. In particular

for r = pR:
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n & [pR-RQ,pR+RQ] = Vor = O (3.52)
The sequence waIn] can be interpreted as the contribution
th
to the output sequence y[n] from the p frame of the decimated
sequence y[pR,m]. The fact that this contribution is zero beyond
the length of the interpolating filter makes sense because one would

not expect a given frame of y[pR,m] to contain any information about

y[n] for values of n far away from pR.

Figure 3.8 shows how y[n] is constructed from the sequences
¢PR[n]. Since these sequences are summed together and they overlap
in time, we will refer to this synthesis algorithm as the OVERLAP-ADD
synthesis algorithm; its structure is similar to that of the well-
known fast convolution algorithm that bears this name [Stockham,
1966]. For the purpose of illustration, f[n] is assumed to be a
sinc function with three pairs of zero crossings (too short for
actual use), and the values of y[pR,m] are assumed to be equal to
unity for all n and m, so that the familiar shape of the filter £([n]
stands out in figure 3.8.

To describe the overlap-add synthesis algorithm, let us

define the segquence yp[n] as the sum of the sequences waIn] for

p ranging from -« to P:

P
ypnl = 7 ¥ pnl (3.53)
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DSTFT Overlap-Add Synthesis Procedure

y [n,m] y [ PR,M]
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Since in practice the sequence y[n] has to start somewhere, we can
define a time origin, without loss of generality. Let us assume,
therefore, that y[n] begins at n = QR + 1. From this fact, and
referring to equation (3.52), we can deduce that wPR[n] will equal
zero, for all values of n, when p is less than zero. Thus, equation

(3.53) becomes:
P
yplnl = Z y__[n] (3.54)

The sequence yp[n] can then be formed recursively:

0 , for p < 0
Yp[n] = (3.55)

. 0
Yoo1 [n] + ‘[JPR[n] for p >

»Equations (3.52) and (3.55) show that wPR[n] will only
contribute to yp[n] for values of n greater than or equal to
PR - RQ. Therefore, every time p increases by one, tﬂere are R
points of yp[n] that will receive no further contributions from
future frames of y[pR,ml. Consequently, these are completely formed
points of the sequence y[n]. This fact can be seen in figure 3.8.

The segquence yP[n] is, therefore, a partially formed version
of y[nl. It is constructed by overlap—adding the individual frame

contributions wQRﬁn]. The complete output sequence y[n] can thus



Table ITI

DSTFT Overlap—-Add Synthesis Algorithm

Let Y_l[n] =0 , for all integers n.
For p = 0 to «:
1. yipR, ((n) ] = IDET{Y_ [pR, k1}
2. tpr[n] = £[n-pRly [PR, ((n)) ]
3. yp[n] = yp_l[n] + waIn]
4. The leftmost pR points of’yp[n] are

completely formed points of yl[n].

81

(3.57)

(3.58)

(3.59)

(3.60)



82

be obtained from yp[n] as p increases. Specifically:

y[n] = ypfn] , forn <p-QR+1 (3.56)

In summary, the DSTFT overlap-add synthesis algorithm generates
the sequence, y[n], from its decimated DSTFT representation, as
shown in Table III.

In a computer implementation, yp[n] can consist of a finite
length buffer that is initialized to zero (egquation (3.57)) and
whose contents, at each iteration on p, are replaced by the sum
of its previous contents and the sequence wa[n] (equation (3.60)).
The buffer can then be shifted to the left by R points, and those
R points that fall off its left end can be output as the next R
points of the sequence y([n].

Figure 3.9 is a flowchart description of the DSTFT overlap-
add synthesis algorithm. At any given time, only the frame of
y [pR,m] for which wa[n] is being computed has to be in main memory.
In comparison, the procedure described by Portnoff [1976, 1978]

requires about 20 such frames.

3.3.3 The Analysis/Synthesis System

The analysis and synthesis procedures described in the
previous two sections constitute an efficient implementation of
the Discrete Short-Time Fourier Transform. Without any modification
between the analysis and synthesis stages, and as long as the

constraint imposed on £[nl, h[n] and M by equation (3.25) is
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DSTFT Overlap-Add Synthesis Algorithm

Synthesize y [ n]

fromits DSTFT

representation
Y

Initialize to zero a buffer of the same
INTIALIZE: length as the interpolating filter
f[n]. Set p to zero.

{
Compute the IDFT of the pth
IDFT: _—»| frame of Yg [pR,k] over the
variable k. Call it y[pR,m].

WINDOW Obtain the sequence
BY FILTER: ¥pR [n]= f[n-pR]y[PR,(nNy]
!
Add ¥pR[n] tothe contents of the
ADD: buffer and put the result back into
the buffer.
Output the leftmost R buffer points
OUTPUT AN?_ and shift the buffer R points to
SHIFT: the left (discarding the R output points).
!
CONTINUE Increment p by one and continue

if the pth frame of Yg [pR, k]
was to be sythesized. Otherwise
stop.

|F NEEDED:

Figure 3.9



satisfied, the analysis/synthesis system is an identity system.
That is, y[n] equals x[n] up to quantization and computational
errors which, experimentally, have been shown to be negligibly
small.

It is interesting and useful, however, to modify the
sequence xs[pR,k] in some form, and to synthesize y([n] from the
modified sequence Ys[pR,k]. One possible modification consists
of coding Xs[pR,k] at a low bit rate for bandwidth compression.
Schafer and Rabiner [1973(a)] have studied various coding schemes
for this purpose. Bandwidth compression of this kind is based on
the empirical result that the ear is less sensitive to guantization
degradation when the gquantization occurs in the frequency domain
than when it occurs in the time domain.

Another possible way of modifying Xs[PR"k] is to generate
a sequence YS[pR,k] that is approximately equal to the decimated
DSTFT of x[n] had it been originally spoken more slowly or more

rapidly. This modification is the subject of the following chapter.

84
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CHAPTER 4

TIME-SCALE MODIFICATION’OF SPEECH

BASED ON THE DSTFT

A time-scale modification system 1is described in this chapter.
From Chapter 2, we know that a TSM system must perform four opera-—
tions on the speech,signal x[n} to obtain the time—scale modified
sequence xs[n]. These four operationss which are carried out in
stages, are referred to as Analysis., Linear Time-Scaling, Phase
Modification and Synthesis. The Analysis stage estimates the time—
varying values of the parameters which specify the model of speech
developed in Chapter 2. The time variation of these parameters is
then linearly rime-scaled by the second stage of the system,(Linear
Time-Scaling) - This operation,produces theparametrﬂ:representation
of the sequence x[Bn]l. The third stage, Phase Modification, estimates
the time-unwrapped phase of x[Bn] and divides it by g, yielding the
parametric representation of the desired time—scale modified sequence
xB[n]. The actual seguence xB[n] is then,synthesized from its
parameters by the fourth and final stage of the TSM system.(Synthesis).

portnoff (19781 has shown that the DSTET representation of a
speech signal x[n] constitutes an estimate of the values of the
parameters in the speech model. In fact, if the analysis filter
hi{n] and the number M of frequency samples are appropriately chosen,
this estimate is excellent. Therefore, the analysis and synthesis

stages of the TSM system are efficiently implemented.by means of
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the DSTFT analysis and synthesis algorithms developed in Chapter 3.

Section 4.1 interprets the DSTFT representation of a speech
signal x[n] in terms of the parameters of the speech. Both the
estimation of the values of these parameters (analysis) and the
generation of the signal from its parametric description (synthesis)
are discussed.

The linear time-scaling stage is described in Section 4.2.
This stage is implemented as a bandlimited decimation/interpolation
operation, based on the technique developed by Schafer and Rabiner
[1973(b) 1.

Section 4.3 describes the phase modification stage. The bound
imposed on the growth of the time-unwrapped phase, ¢ [n], serves to
develop an algorithm to estimate ¢ [n] from its principal value.

The estimate of the time-~unwrapped phase is then divided by B,

thus completing the calculation of the parametric description of

B

x [n].

A somewhat surprising result is presented in Section 4.4. The

decimation and interpolation steps which occur, respectively, within

the DSTFT analysis and synthesis algorithms can be used tco implicitly
carry out the linear time-scaling operation described in Section 4.2.
Thus, the explicit linear time-scaling stage can be effectively
eliminated.

This finding has two important consequences. First, the need
to perform a bandlimited interpolation to obtain x[Bn] from x[n]
no longer exists. Thus, the only interpolation operation remaining

in the TSM system is the one that occurs as part of the sysnthesis
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algorithm. In Chapter 3 we went to great lengths to reduce the
storage needs of this interpolation. Therefore, implicit,implementa—
tion of the linear +ime-scaling stage significantly'reduces the
storage requirements of the TSM system, while at the same time it in-
creases 1its computational efficiency. In portnoff's system (19781,
the linear'time—scaling was performed explicitly, and the synthesis
was performed with the storage inefficient algorithm described in
figure 3.7. The overall storage needed by the TSM system.described
here is about 50 times smaller than the storage needed by Portnoff's
system.(assuming interpolating filters of order 12).

The second consequence of implicit linear time-scaling is that
the resulting structure of the TSM system can be easily modified to
allow the TSM rate to vary at runtime. The advantages of a variable
TSM rate were discussed in Section 1.3.

Section 4.5 presents & variable rate (non-uniform) TSM system,
pased on the uniform system.described in Sections 4.1 — 4.4. The
non-uniform TSM system is developed.by’alterinq the structure of
the uniform TSM algorithm with an implicit linear +ime-scaling stage.

Section 4.6 describes the implementation of a non-uniform TSM
system and, €inally, Section 4.7 compares the,system.developed in
this chapter with Portnoff's system.

As discussed in Chapter 2, the processing required to time-scale
modify the unvoiced segments of the speech sequence x[n] is the same
as that used during its voiced segments. Therefore, x[n] will be

assumed to consist solely of voiced segments.
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4.1 Interpretation of the DSTFT Of Voiced
Speech (TSM Analysis and Synthesis)

The DSTFT representation XS[n,k], of a sequence x[n] windowed
by h[n] is given by equation (3.17), which is repeated here for

convenience:

+o0 -39 _km
Xs[n,k] = Z x[mlh[n-m]le (4.1)

m=-

The speech sequence x[n] can, in turn, be modeled as a sum of

harmonically related complex exponentials. In Chapter 2, we described

this model in equation (2.20):

pinl-1
x[n] = Z Cr[

r"‘_‘

. ejrqﬁ (n] (4.2)

The parameters in this model represent specific speech features. The
sequence p[n] is the time-varying pitch period of x[n]. The sequences
cr[n] are lumped parameters, which describe the frequency response of
the vocal tract. Finally, ¢[n] is the time-unwrapped phase of the
fundamental of the voiced excitation of x[n].

Replacing x[n] in equation (4.1) by its harmonic representation

expressed in equation (4.2), we have:

+o  pm]-1 . -jkQ m
Xs[n,k] = Z Z cr[mjejr@[mjh[n—mle 0 (4.3)
m== r=0
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In Chapter 3, we determined that the length of h[n] must be

short enough to ensure that X[n,k] contains information about x[n]

only in the vicinity of the point n. Therefore, we can assume that

pln] is constant for the duration of h[n]. Equation (4.3) can then

be rewritten with p[m] replaced by p(n]. For the same reason, ¢[m]

can be replaced by its local approximation, given by equation (2.6).

Equation (4.3) then becomes:

+o  p[nl-1 . -jkQ m
x_[n,k] = ] ] o mpedr@nitmmIfinhy 1 e (4.4)
m=~ r=0

Interchanging the order of summation and rearranging terms:

X _[n,k] = p[rf]-l Em c [mlh[n-n]e = (¢ p]-nen]+mln]) —jkfgm
Ts r e

=0 =—00

jm(rﬂ[n]-kﬂo)

plnl-1 . a +oo
= ej‘(¢[nj o (n]) | Z cr[m]h[n—m]e
=0 m==—c

(4.5)

Referring to equation (3.1), we may recognize the term in
brackets in equation (4.5) as the DSTFT of the seguence cr[n],
windowed with h[n], with the frequency variable w evaluated at
w = kQO - xQ2[n]. This particular DSTFT analysis equation has the
property that the bandwidth of the seguence cr[n] is significantly

narrower than the bandwidth of h[n].
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The difference in the bandwidths of cr[n] and h[n] can be
derived as follows. First, we saw in equation (2.21) that the
complex harmcnic amplitudes cr[n] of speech contain non-negligible
frequency components only up to about ten Hertz. Second, for the pitch
period p[n] to be nearly constant under the window h([n], the length
of hln] cannot correspond in real time to more than about 30 milli-
seconds. For a Hamming window, this maximum length implies that the
cutoff frequency of its spectrum cannot lie below about 70 Hertz.

We will consider a 10 Hertz signal to be narrow-band compared to
a 70 Hertz low-pass filter.

The large difference between the bandwidths of cr[n] and hln]
can be exploited to simplify equation (4.5). Portnoff [1978] has
shown that if a signal z[n] is narrow-band compared to a filter hinl.,
then the STFT of z[n] windowed by h[n] is given by:

z_tn,u] = 2(]E @0 L (4.6)

where: wg is the -enter frequency of the spectrum
of z[nl.,

H(w) is the Fourier transform of h(n]
and: e is an error term that approaches zero as the

spectrum of z[n] approaches an impulse and hinl
approaches an ideal low—pass filter.

The term in brackets in equation (4.5) can therefore be simplified
by the result in equation (4.6), where we can assume that the error

term € is negligible. Equation (4.5) becomes:
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pln]-1 . _ =jkQ -r@nl)r
X_[n,k] = I¥(¢lnl-nfiinl) {c (n18[0- (k2 -2 [n]) e °
s —0 r
(4.7)
The terms ejrnQ[n] and e-jrnQ[n] conveniently cancel in equation

(4.7) which can be rewritten:

p (rvll ~1 j(x9 [n] —anO)
Xs[n,k] = rio cr[n]HE?Q[n]—kqjje

(4.8)

Recall that the index k in Xs[n,k] represents the continuous
frequency w sampled at intervals of QO. A useful interpretation of
Xs[n,k] can be obtained by rewriting equation (4.8) in terms of the
continuous frequency variable w. The STFT of the speech signal x[n]

can then be written by replacing on by w in equation (4.8):

plnl-1 N N
Xé[n,m] = z cr[n]H[iQ[n]-d]e](r¢[n] na) (4.9)

r=0

Equation (4.9) expresses the STFT of x[n] as a sum of p[n] images
of H(w), each shifted in frequency by r2[n] and scaled by

<, [n] <—:aj (r¢ [n]-nw) . In general, there will be some overlapping
of the shifted images of H(w). However, if the bandwidth of H(w)

is less than the pitch frequency Q[n], then these images do not

overlap.
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For most speakers, the value of the pitch frequency rarely
falls below 100 Hz. When we compared the bandwidths of cr[n] and

h[n], we found that the bandwidth of H(w) must be greater than

70 Hertz. Therefore, if H(w) is chosen to have a bandwidth between

70 and 100 Hertz, then equation (4.9) takes the form:

crmnﬂﬁnm—@eju¢m}mm ,:ﬁrlrQMPml<wh

Xs[n,w] = l (4.10)
0 , otherwise
where wy denots the cutoff frequency of HWw) ,
and r varies between O and plnl-1.
The DSTFT of x[n] can then be obtained from equation (4.10) by
sampling w with a,period,QO:
j(r¢[n]—kn90)
cr[n]H(:rQ [n]-k,]e , for |[reMml-ke | <oy
X [n.k]
S
0 , otherwise
(4.11)

Equation (4.11) can be simplified further by assuming that
H(w) is close to the spectrum.of an ideal low-pass filter. Therefore,
H(w) is equal to 1 over its entire non—zero region. Replacing

H[%Q[n]-k%¥1 by 1 in egquation (4.11) , we have:
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j (ré [n]-knQ )
c_I[nle , for |r2(nl-kQ I < w
r 0 h

Xx_[n,k] = (4.12)

( 0 , otherwise

The DSTFT of x[n], as expressed in equation (4.12), is very
similar to the speech model given by equation (4.2). In fact, by
appropriately selecting the bandwidth of H(w), and if QO is less
than this bandwidth, then the DSTFT analysis equation separates the
terms of the summation in equation (4.2), and multiplies them by a

—janO
known constant, e . Therefore, the sequence Xs[n,k] is an
estimate of the time-varying parameters in the model of speech
given in equation (4.2). The TSM analysis stage can thus be im-
plemented using the DSTFT analysis algorithm described in Chapter 3.

Let us now assume that the speech parameters have been modified,
and that the sequence Ys[n,k] denotes the modified transform from
which the time-scale modified speech, y[n] = xs[n], is to be
synthesized. For simplicity, let us assume that the frequency

variable is continuous. From equation (4.10), Ys[n,w] can be

written as:

J(xéBnl/B-wn)  zp [re(Bnl-w| < w

cr[Ban[rQ {Bn] —-w]‘e h

Y [n,w] =
|

¢} , otherwise (4.13)

where w. is the cutoff fregquency of H(w), and r varies
between 0 and p(Bn]l-1I1.
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Since the shifted images of H(w) do not overlap:

Y wl = ] cr[snm[rsz[en]—mjej (¢ [Bn]/B-un) (4.14)

The sequence y[n] is synthesized from its. STFT by means of

equation (3.15):

1 T pa Jjwn
y[n]l = ey J’_ﬁ E f[n-m] YS [m,wle (4.15)

m= -0

Replacing YS [n,w] by its description in terms of speech parameters,
given by equation (4.14), interchanging the order of summation and

integration, and rearranging terms:

+§° P [Brfl -1 5ré [Bml /B

y[nl] = f [n-m] c. [Bm]le

m__.-m r=

1 T -jw (m-n)
. = J H[rﬂ[Bm]-—w]e JOHTRY gy (4.16)

The integral over w in equation (4.16) is the inverse
- -jwm - s
Fourier transform of H‘:rﬂ [(Bm] '“’13 . This integral can be evaluated

using the shift properties of the Fourier transform [Oppenheim and

Schafer, 1975]:
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—j (m—n) £ (Bm] (4.17)

1 T -jw (m-n)
o J H[rQ[Bm]—m]e J dw = hlm-nle

-

Replacing the integral in equation (4.16) by its value in equation

(4.17), we have:

+o  p[Bm]-1 - o
yln] = f[n—m]cr[Bm]h[m-n]e]r(¢[Bm]/s (m-n)Q(Bnl) (4 1g)
m=-*® r=0
The exponent in equation (4.18) is the local representation
of ¢[Bnl/B, as expressed by eguation (2.6). Since hln] is chosen to

be short enough so that p[n] can be assumed to be constant under
the window, we can substitute ¢[Bn]/B for its local representation

in equation (4.18), and we can replace p(Bm] by p[Bnl].

+o- p[Bn]l-1 . "
ylnl = ] ) Eln-mlc_[Bmh(m-n]e’ ¢ [8nl/8 (4.19)

m=-— r=0

Interchanging the order of summation, and rearranging terms:

plBn]-1 +oo .
yml = ] { I o _Bmlfln-mlhl-(n-m)] } o JT¢ Bnl/B (4.20)
r=0 m=—=

The expression in brackets in equation (4.20) is the con—
volution of cr[Bn] with the composite filter £[nlh[-n]. Since h[n]

and £[n] are both low-pass filters, the bandwidth of the composite
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filter is of the order of the sum of the bandwidths of the individual

filters. The bandwidth of h[n] has been chosen to be significantly

larger than the highest frequency component of cr[n]. Therefore,
the bandwidth of the composite filter f[n]h[-n] must be much greater
than the highest frequency in cr[Bn]. Thus, the sequence cr[Bn]

is passed by the composite filter with negligible distortion.

Equation (4.20) can therefore be rewritten with the expression in

brackets replaced by cr[Bn]:

plBn]-1 .
ynl =V c_[Bn]el™? (Bnl/8 (4.21)
r=0
Equation (4.21) is identical to equation (2.44). Therefore:

y[n] = xB [n] (4.22)

The TSM synthesis stage can thus be implemented using the

DSTFT synthesis algorithm developed in Chapter 3.

4.2 Linear Time—-Scaling

Equation (4.12) expresses Xs[n,k] as an estimate of the
time-varying parameters of the speech signal x[n]. Having estimated
these parameters, the next stage of the TSM system must linearly time-—
scale the time variation of Xé[n,k] by B8, to obtain the new sequence

Xé[Bn,k]. Referring to equation (4.12), XS[Bn,k] can be written

in terms of the time-varying speech parameters:
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J (r¢ [Bn]l-kBn )
c_[Bnle , for [rQ[Bn]-kQOf < Wy
‘ r

(4.23)

;, otherwise

In Chapter 2, B was restricted to be a rational number.
Although, in general, B can be any real number, we justified this
restriction by the fact that a real number can always be approximated
by a rational one with arbitrary precision. If 8 is rational, it

can be written as the ratio of two intergers:
B = D/I (4.24)

Schafer and Rabiner ([1973(b)] have shown that, if z[n] is
an appropriately bandlimited signal, then z([Bn] can be obtained from

z(n] by the decimation/interpolation formula:

4o
z[Bnl = )  g[nD-rIlzlr] (4.25)
r-_—-m

where g(n] is a l-to-I interpolating FIR filter
of order Q.

We can use equations (3.30) and (3.31) to replace the in—

finite summation limits in equation (4.25) by finite ones:
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/

L'l = [a/I] + 0 (4.26)
Let
] =[o/f] —0+1 (4.27)
\
where ra-[ denotes the largest integer that is less
than or equal to a.
Then:
+
L [n]
z[Bn] = ) g [nD-rIlz(r] (4.28)
r=L" [n]

Equation (4.28) can be used to obtain XS (Bn,k] from XS fn,kl.
Referring to the filter bank interpretation of the DSTFT (figure 3.3),
we may recall that the (one—dimensional) time sequence X [n,k] is
bandlimited because it is the output of the low-pass filter h[n].
Since Xs [n,k] is bandlimited, it can be linearly time-scaled with

the formula given in equation (4.28). Consequently:

L+[n]
X_[Bn,kl = ) g[nD-rIl1X_[n, k] (4.29)
S r=L"[n] S

In practice, the output of the DSTFT analysis alogrithm

consists of the sequence XS [n,k] in terms of its real and imaginary

parts:

Xs[n,k] = Re{xs [n,kl1}+ 3 Im{XS n,k1} (4.30)
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Therefore, equation (4.29) 1is implemented as two parallel equations:

L" [n]
Re{X [Bn,k]l} = ) g [nD-rI] Re{XS[n,EJ} (4.31)
s r=L" [n]
L' [n]
Im{x (Bn,kl = ) g(nD-rI] Im{x_[n k]} (4.32)
s r=L" [n]
where: Xs[Bn,EJ = Re{XS[Sn,Ej} + 3 Im{XS[Bn,EJ} (4.33)

The linear time-scaling stage of the TSM system can be im—
plemented by applying equations (4.31) and (4.32) to Xs[n,Ej for
each of the M values of k. However, note that for equation (4.29)
to hold, the decimation rate D cannot be arbitrarily large. In
fact, D must be chosen to be small enough so that the sequences
KS[Dn,Ej are not degraded by frequency domain aliasing.

The actual bound on the size of D is simple to obtain.

Let us assume that the original continuous-time speech signal x(t)
contains frequencies up to fx = S KHz. By design, the analysis
filter h[n] has a cutoff frequency, fh, that lies between 70 and
100 Hertz. The sequence x[n] is assumed to be a discrete-time
version of x(t), sampled at a rate fs' which is greater than the
Nyquist rate of x(t) - Ks[n,k] is sampled as often as x[n], but it
contains frequencies cnly up to w, = erh/fs. The Sampling Theorem

states that X[n,k] can be decimated at a rate D that must satisfy

the constraint:
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(4.34)

In terms of the time-scale modification system, this restric-
tion implies that the signal x[n] cannot be compressed at an arbitrary
rate. In fact, in Section 4.3, the decimation rate D will be
restricted to lie below fs/2.5 fh' However, this restriction is not
very significant because it places a bound on the compression rate
that lies well beyond the point where the speech becomes unintelligibly
fast. The number fs/2.5 fh is at least equal to 40*. Compressing
speech more than 40 times is basically a useless operation.

In this section, we developed a technigue to explicitly
implement the linear time-scaling stage of the TSM system. In
Section 4.4, however, we will show that Xs[n,k] can be linearly time-
scaled without explicitly carrying out the decimation/interpolation
operation. The implicit implementation of the linear time-scaling
stage will increase the computational efficiency of the TSM algorithm,
and will significantly reduce its storage requirements. More

importantly, implicit linear time-scaling will allow the TSM system

to be modified in order to make the scale factor B variable at

runtime.

4.3 Phase Modification

Equation (4.23) expresses the linearly time-scaled DSTET

sequence XS[Bn,k] in terms of speech parameters. It is useful

to analyze XS[Bn,k] with a fixed value of the index k for which the

*10000/(2.5 x 100) = 40
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sequence does not vanish. In this case, Xs[Sn,Ej can be reduced to:

j{x¢ [Bn]-kBnf )

X [Bn,k] = c_[Bnle (4.35)
s — r

for some value of r between O and p[Bn]-1

The phase modification stage of the TSM system must first
estimate the time-unwrapped phase of XS[Bn,E). Then, it must divide
this phase by B, and substitute the modified phase value for the un-
modified value in,Xs[Bn,Ej. In this way, the sequence Ys[n,EJ = Xi[n,gj
is generated.

When the value of k is such that Xé[Bn,Ej vanishes, the
phase of the sequence Xs[Sn,Ej is not defined. Experimental results
show, however, that the phase modification alogrithm should treat
XS[Bn,Ej as if it did not vanish. This result is a consequence of
the fact that the magnitude of the vanishing XS[Bn,EJ is negligibly
small. Therefore, any discontinuity that might appear in the
estimated time-unwrapped phase of Ys[n,Ej will occur when its
magnitude vanishes and, thus, when its contribution to v [n] 1is
imperceptible. We shall therefore assume that the sequence XS[Bn,EJ
can be expressed by equation (4.35) for all values of k.

The linearly time-scaled DSTFT of x([n], expressed in equation

(4.35), is a complex quantity, which can be rewritten in polar

form:
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X_[6n k] = MIBn,K] JOBn. Kkl (4.36)

where:  M[Bn, k] [xsten,gc_][ (4.37)

and: ©[Bn, k] = arg{x_[Bn, k1} (4.38)

The magnitude and phase of XS [Bn,k] can be obtained from equatioﬁ (4.35):

(4.39)

M[Bn, k] |cr[6n] |

©o[Bn,k] = arg{c_[8nl} + r¢(Bn] - kBnf, (4.40)

The phase of Xs (Bn,k] is equal to the phase of c_ [(Bn] plus the term
r¢ [Bn] - EBnQO. We can write O[Bn,k] explicitly as the sum of its

two components:

9[Bn,k] = arg{c_[8nl} + C[Bn, kI (4.41)

where: ¢z [Bn,k] = r¢[Bn] - EBnQO (4.42)

Portnoff [1978] has shown that each complex harmonic amplitude,
c. [Bn]l, is a slowly varying function of n, whose phase is also

slowly varying. In contrast, the sequence ¢ [Bn,k] varies rapidly as

a function of n, as can be seen in equation (4.42) . The difference
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in the variability of arg{cr[Bn]} and z[Bn,k] as functions of n will
be used later to estimate Z[Bn,k] from ©(Bn,k].

Now, let us restate the objective of the phase modification
stage of the TSM system in terms of the DSTET representation of the
speech. Given the linearly time-scaled DSTFT of x[n], XS[Bn,k],
expressed in equation (4.35) for a fixed value of k, the phase

modification stage must form the sequence:

j(r¢[8n]/8—kn90)

Y [n,k] = c [Bn]e (4.43)
s r

The desired time-scale modified sequence, y[nl, can be synthesized
from Ys[n,kJ with the DSTFT synthesis algorithm, as shown in

equations (4.14)-(4.22).

In order to form YS[n,k], two distinct steps must be carried

out:

1. Estimation of the sequence ;[Bn,k] from the values
of Xs[Bn,k], which are the output of the linear
time-scaling stage.

2. Substitution of the quantity:

Z[Bn,k1/8

for the unmodified phase of Xg[Bn, k], where [8n, k]
denotes the estimate of r[fn,k]-

For the sake of clarity, the phase estimation and substitution
procedures are treated separately in Subsections 4.3.1 and 4.3.2.

Finally, this section concludes with a summary of the complete phase

modification algorithm.
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4.3.1 Estimation of the Time-Unwrapped Phase

At the output of the linear time-scaling stage, the complex

sequence Xs[Bn,EJ is obtained in terms of its real and imaginary

parts (equation (4.33)).

The first step in the estimation of Z[Bn,k] is the conversion

of XS[Bn,Ej to polar coordinates:

i

MiBn,k] = %Re{xstsn,ghz + (m{x_(8n, k1 1)’ (4.44)

0. _[Bn,k] = Arg(Re{X [8n,kl}, Im{x (Bn,k]1}) (4.45)
PV — S — s -

The subscript "PV" denotes that @PV[Bn'Ej is the principal value of

0[Bn,k]. The function Arg(a,b) is defined as follows:

-1
(.tan (b/a) , a >0, for all b
T/2 ,a=0, b>0
0 ,a=0, b=20
Arg(a,b) = (4.46)
-T/2 ,a=0, b<0
-1
tan (b/a) + T , 2a<0, b>0

\-tanfl(b/a) -7 ,a<0, b<oO

where tan—l(b/a) is assumed to be the
single-valued arctangent function of b/a
whose range is the open interval, (-t/2, ®/2).
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The function Arg(a,b) is often supplied as a standard function in
high-level mathematically oriented programming languages.

The second step in the estimation of Z[Bn,k] 1is to obtain
©[Bn,k] from GPV[Bn,EJ. In other words, we need to time-unwrap the
principal value phase sequence @PV[BH'EJ' In fact, we will find that
z[Bn,k] can be estimated directly from.OPV[Bn,EJ-

We can relate the time-unwrapped phase of’Xs[Bn,Ej to its

principal value phase as follows:
0, (8 k] = ((8Bn. k1)), (4.47)

where ((a))2ﬂdenotes modulo 2.

Equation (4.47) can be expressed in terms of an integer function
I(Bn,k] that denotes the integer number of jumps of 27 by which

6 [Bn,k] and OPVIBn,Ej differ:

The first backward difference operator A, applied to some sequence

z{nl], is defined as follows:
Az[n] = z[nl - z[n-1] (4.49)

Taking the first backward difference of both sides of equation (4.48):
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26, [Bn k] = 80(8n,k] - 2mAL(Bn, k] (4.50)

For simplicity, define the sequence i[Bn,k]:

i[Bn,k] = AI[Bn,k] (4.51)

The first backward difference of an integer function is also an integer
function, so A@PVIBn,EJ differs from AQ[Bn,k] by an integer multiple
of 2m.

The term AOQ[Bn,k] in equation (4.50) has a meaningful inter—
pretation in terms of the filter bank interpretation of the DSTFT
(figure 3.3). The sequence O[n,k], prior to the linear time-scaling
operation, is the time-unwrapped phase of Xs[n'Ej which, in turn, is
the output of the low-pass filter h[n]. If mh is the cutoff fre-—
quency of h[nl]l, then it is also the highest frequency of Xs[n,Ej.
Equation (2.8) expresses the local frequency, f2[nl, of a sequence
as the first backward difference of the time—unwrapped phase of
that sequence. Therefore, AO([n,x] is egual to the local frequency
of Xs[n,k], which cannot be greater than W, - Consequently, we
can set a bound on the size of A@[n,kl:

(4.52)

|aon, kI < o,

As shown in Section 4.2, w_ = 2wf /£ . where £, is the
h h s h.
effective cutoff frequency (in Hertz) of the filter h[n], and fs

is the sampling rate of x[nl]. The actual values of fh'and_fS
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were also discussed in Section 4.2: the sampling rate, fs, was

assumed to be about 10 KHz, while the cutoff frequency fh was chosen

to lie between 70 and 100 Hz. Therefore:

0.014mw < wy < 0.02m (4.53)
We shall conservatively assume that:
Wy < 0.0257 (4.54)
Combining equations (4.52) and (4.54):
(4.553)

|a0[n, k1| < 0.025T

Then, assuming that B8 is small enough so that A@[Bn,k] is equal to
A@ (B (n-1) ,k] -- a very safe assumption —— we can write equation (4.55a)

for the linearly time-scaled phase, ©@[Bn,k]:

|A0(Bn, k]| < 0.025m8 (4.55b)
Now, let us rewrite equation (4.50) with AI[Bn,k] replaced by

i[Bn,k]:

A@PV[BH,EI = AG[Bn.k] - 27i([Bn,kl] (4.56)

If we choose B so that 0.02578 is less than m, then equations (4.55b)
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and (4.56) show that AO©([Bn,k] can be estimated from A@PV[Bn,Ej
simply by adding some integer multiple, i[Bn,k], of 27 to AOPV[Bn,EJ

such that:
|ae,, [Bn k] + 2mi[Bn, k]| < ™ (4.57)

Actually, since GPV[Bn,Ej is a principal-value phase, it
ranges between -7 and T. Therefore, AGPV[Bn’EJ must lie between
—27 and 2m. This means that i[Bn,k] can only be equal to -1, O, or 1.

Orice we know the value of i[Bn.,k] we can then find O[Bn,E} by the

recursive relation:

‘ GPV[O'EJ , n =20

0(8n,k] = l (4.58)
9[8(n-1) kI + A6, [Bn k] + 2mi[Bn,k] , n >0

As indicated in the beginning of this subsection, however,
z[Bn,k] can be estimated directly from @PV[Bn,EJ, without the need
to form ©[Bn,k]. Equation (4.41) expresses 0[Bfn,k] in terms of
¢[Bn,k]. Taking the first backward difference of both sides of

this equation:
A6 [Bn,k] = A& arglc [Bnl} + Az ([Bn,k] (4.59)

As mentioned earlier, Portnoff [1978] has shown that the phase of

cr[Bn] varies much more slowly than Z[Bn,k] as a function of n. Therefore
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A arq{cr[Bn]} << Ag [Bn, k] (4.60)

Equations (4.62) and (4.63) imply that, with a negligibly

small error:

Combining equations (4.56) and (4.61), and rearranging terms:
AZ[Bn,k] = A0, [Bn k] + 27i[Bn K] (4.62)

where i[Bn,k] is determined by equation (4.57)

Finally, the estimate Z[Bn,k] of the quantity ¢[Bn,k] is obtained

recursively as follows:

(4.63)

The sequence ¢z ([Bn,k] can then be constructed by obtaining a[Bn,Ej

for each of the M possible values of k.

4.3.2 Phase Substitution

Once the M seguences g[Bn,gj have been obtained, the sequence

Ys[n,gj (as expressed in equation (4.43)) can be obtained as follows:
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|Y_[n.kl| = M[Bn,K] (4.64)

[endl
=
.
o)
Ul
N

arg{YS [n,kl}= arg{cr[Bn] } + z[Bn,k1/B

Equation (4.64) is implemented directly, but equation (4.65)
must be expressed in terms of’ﬁ[Bn,Ej, and can be considerably
simplified. The phase of Ys[n,Ej is obtained from 6[Bn,k] and

z[Bn,k] by the formula:

arg{¥_[n,k]} = 0[8n,k] + ( 5 - 1)208n,k] (4.66)

The effect of equation (4.66) can be seen by substituting the value

of ©(Bn,k], given by equation (4.41), in equation (4.66):

arg{Ys[Bn,Ej}==arg{cr[8n]}+-C[Bn,Ej + ( %’- 1 )Z[Bn,k]

= arg{cr[Bn]} + Z[Bn,k]/B (4.67)}

Although the phase modification algorithm given by equation
(4.66) canbe implementeddirectly, arg{Yé[n,E}} can be expressed
recursively in a form that does not require the estimation of

0[Bn,k]. Combining equations (4.61), (4.63) and (4.66), we have:

n

arg(¥_[n,k1}=0Bn.Kl + ( —é—— 1) ) Ae[Bp.k] (4.68a)
p=1
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Consequently:

n-1

arg{¥_[n-1,k1} = 8[B(n-1) kI + (%- 1) J  10Bp.k]
p=1

(4 .68b)

Subtracting equation (4.68b) from equation (4.68a), and rearranging

terms:

arg{¥_n,k1} = arg(¥_[n-1,k]} + 20(8nk] + ( - 180080 k]

= arg{Ys[n—l,Ej} + %—A@[Bn,&j (4.69)

Replacing A%[Bn,gj for AO[Bn,k] in equation (4.69) :

1 -~
arg{yY_[n/kl} = arg{y_[n-1,k] b + g AzlBn/k] (4.70)
From equations (4.58), (4.63) and (4.66) we obtain the boundary
condition:
(4.71)

arg{y_[0.kl} = @, [0kl
Finally, equations (4.64), (4.70) and (4.71) provide the

desired procedure for forming the sequence Ys[n'Ej from XS[Bn,Ej

and the estimate E[Bn,gj of the unmodified time—unwrapped phase:



112

j argly_[n, k|

Y [n,kl = |¥_[n,kl[e (4.72)
S - S -
where:
v, [n, k1| = M[Bn, k] (4.73)
‘ 0Ly L0kl r n =20
(4.74)

arg{¥_[n,kl} = «

l arg{y_(n-1,k]}+5 Af[Ba,kl, n > O

As before, the sequence Ys[n,k] is obtained by evaluating'YS[n,EJ for
ecach of the M possible values of k. To complete the phase modifica-
tion stage, Ys[n,k] must be converted to rectangular coordinates

before it is given to the synthesis stage.

4.3.3 Phase Modification Algorithm

The above subsections have developed an algorithm to modify
the time-unwrapped phase of XS[Bn,§J- The complete,phase,modification
algorithm, which generates Ys[n,gj from.Xé[Bn,Ej (both given in
rectangular coordinates) is summarized here, in Table IV.

The algorithm expressed in equations (4.75) - (4.81) computes
Ys[n,Ej for a single value of k. To obtain the complete sequence

Yé[n,k] this algorithm should be carried out for k = O,1,--.,M-1.



Table IV

TSM Phase Modification Algorithm

2
¥ [n, k1| = \/(Relx [Bn,k]})2 + (Im{x [Bn,kl1})
s = Vv s — s -

OPV[Bn,EJ = Arg(Re{Xs[Bn,Ej}, Im{XS[Bn,EJ})

1

where Arg(a,b) is defined in equation (4.46)

If n equals 0, skip to step 6.

Set i[Bn,k] equal to -1, 0 or 1, so that:

|ae,,[8n, k] + 2milBn,kl|< w
6Z(8n,k] = A8, [Bn k] + 2mi(Bn, K]

0, [0kl

arg{¥_[n,kl} = 1

arg(Y_(n-1,k1} + 7 88(8n,Kl,

Re{Y_[n,kl} [Ys[n,li][ * cos(arg{¥_[n, k})

In{Y_[n,kl} = [¥_[o, k1] - sin(arg{¥_[n,kl})

n

>

0
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(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)
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4.4 Implicit Linear Time—-Scaling

A procedure for implementing the linear time-scaling stage
of the TSM system was described in Section 4.2. This procedure
consists of explicitly decimating and interpolating the M band-
limited one—-dimensional sequences Xs[n'EJ to obtain the two-
dimensional sequence XS[Bn,k]. There is, however, an alternative
implementation scheme for the linear time—scaling stage which is
significantly more efficient (both computationally and in terms of
storage requirements) than the method described in Section 4.2.

This alternative scheme is referred to as Implicit Linear
Time-Scaling.

In order to present the implicit linear time-scaling method,
it is useful to view the TSM system as a whole. This is done by
describing each of the four TSM stages in terms of their input/output
behavior, and then analyzing the structure of the system as a set
of four subsystems which communicate with each other through their
respective inputs and outputs.

At the front end, the analysis stage takes a one-dimensional
signal x[n], a window h[n] and a decimation rate RA’ and produces
the two-dimensional decimated DSTFT sequence Xé[pRA,k]. At the
other end, the synthesis stage takes a two—-dimensional sequence
Yé[pRS,k], a ch order l—to-RS interpolating filter f[n] and an
interpolation rate RS' and produces the one-dimensional seqguence

y[n] (figure 4.1).

In this chapter, we have implicitly assumed that:

(4.82)
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This assumption has been made only to simplify the notation and, as
shown below, it is now useful to remove it.

Between the analysis and the synthesis stages, ths sequence
XS[pRA,k] is modified to form the sequence YS[pRS,k]. This modifica-
tion takes place in the linear time-scaling and phase modification
stages. The linear time-scaling stage performs two operations on
Xs[PRA'k]: the sequence is decimated by the rate D and is interpolated
by the rate I. These two operations are quite distinct although,
as indicated by equation (4.29), they are carried out simultaneously.
The inputs of the decimation operation are XS[pRA,k] and the rate D,
and its output is the decimated sequence Xs[PRAD'k]' In turn, the
interpolation operation takes Xs[PRAD'k]’ a QIth order l-to-I
interpolating filter g[n] and the rate I, and produces the seguence
Xs[pRAD/I,k]. Therefore, the complete linear time—-scaling stage
generates Xs[pRAD/I,k] from.Xs[pRA,k], g[nl], D and I.

Finally, the phase modification stage accepts as inputs the
seguence Xs[pRAD/I,kJ, and the value of the scale factor B, which
is now given by:

B = (RA'D)/(I-RS) (4.83)

The output of the phase modification stage is the sequence.Ys[pRsrklr

from which the synthesis stage can generate the desired sequence

y[n] = xB [n].
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The structure of the TSM system in terms of its stages is
shown in figure 4.1, where the linear time-scaling stage is shown as

the cascade of two separate sub-stages: decimation and interpolation.

The implicit method of implementing the linear time-scaling

stage can now be obtained from equation (4.83), by simply setting:

(4.84)

and letting RA>and RS vary. In this case, equation (4.83) becomes:

B = RA/RS (4.85)

The value of R.S can theoretically be any integer greater than or
equal to 1, although Portnoff [1978] has shown that the value of B8
cannot be arbitrarily small due to the non-linear nature of the phase
modification procedure. Experimentally, B can take values down

to about 0.25 for speech signals. In Chapter 6, the TSM system is
shown to work for music signals, in which case B can be as low as

0.1 without too much degradation.

The value of RA is subject to the constraint imposed on D

by equation 4.34:

R, < £ /28 (4.86)
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Therefore, RA can range from 1 to about 40.

Equation (4.84) effectively eliminates the linear time-scaling
stage by turning it into an identity. The resulting implicit TSM
system is depicted in figure 4.2. We have already shown that the
analysis stage can generate XS[PRA'k] from x[n], hin] and RA' and
that the synthesis stage can take YSEPRS'k]' £f[n] and RS, and
produce y[n]. However, the fact that,XS[pRA,k] can be transformed
into Ys[pRS,k] by the phase nodi fication stage needs some

clarification.

The input and output of the phase modification stage are
given, respectively, by equations (4.35) and (4.43). Thus, the phase

modification (PM) stage, given B, can be specified in operator form

by the relation:

PM{XS [n,k] rB} = YS [n/B k1 (4.87)

Replacing 8 in equation (4.87) by its value, given in equation (4.85):

PM{XS [n,k1, RA/RS} =Y [nRS/RA,k] (4.88)
Decimating both sides of equation (4.88) along the index n at a
rate RA gives the desired result:

(4.89)

PM{X_ (R, k1, RA/RS} = Y_[pRy k]
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The implicit TSM system described in figure 4.2 is sig-

nificantly more efficient than the explicit system shown in figure 4.1.

- T e -

Computationally, its increased efficiency is primarily as

~ =~ +ha
= L ek XN

fact that the decimation stage, in the explicit TSM configuration,
effectively discards D-1 out of every D spectral frames (i.e.,
sequences of the form Xs[Efk]) that are generated by the analysis
stage. Therefore, most of the computational work of the analysis
stage is wasted. The implicit TSM system dues not waste any computa-
tions in this manner.

The elimination of the explicit interpolation stage also
reduces the computational burden of the TSM system, but only by a
negligible amount. In terms of storage requirements, however, the
difference between explicit and implicit interpolation is very large.
If g[n] is a QIth order interpolating filter, then 20+1 spectral
frames of XS[nD,k] are needed to perform the explicit l1-to-T
interpolation. A typical value of Q is 12 and, as demonstrated by
Portnoff [1978], the number M of frequency samples mustat least
equal 29 = 512. Thus, (20+1)M = 12800 complex numbers must typically
be stored simultaneously for use by the explicit linear time-scaling
stage. In the implicit TSM system, the interpolation is carried
out by the synthesis stage. This stage can be implemented with
the overlap-add method described in Chapter 3, which stores only
one frame at a time (512 complex numbers) .

Portnoff [1978] developed a TSM system which uses an explicit
linear time-scaling stage, and which carries out the synthesis by

the method described in figure 3.7. By using implicit linear
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time-scaling, and by implementing the TSM synthesis stage with an
overlap-add DSTFT synthesis algorithm, the storage needs of the

TSM system are reduced more than 50 times.

Up to this point in the thesis, the scale factor B has been
assumed to be constant. In the next section of this chapter, the
structure of the implicit TSM system, shown in figure 4.2, is

modified in a way that allows the parameter B to be variable at runtime.

4.5 Non-Uniform Time-Scale Modification

The structure of the implicit TSM system, shown in figure 4.2,
is a cascade of three distinct subsystems (stages): BAnalysis (&),
Phase modification (PM) and Synthesis (S). Equation (4.87) specifies
the phase modification stage in terms of its input/output behavior.
The analysis and synthesis stages can be similarly specified:

Afx[n],h[n],RA} = Xs[PRA'k] (4.90)

s{Ys [n,k1,£f[n] ,RS] }= y[n/RS] (4.91)

In terms of this operator notation, the implicit TSM system

can be described as follows:

rsM{x[nl],B8} = xs[n]

s{pM{a{x[n] ,h(n] ,RZ;},RA/RS},f[nl (R} (4.92)

where B = R.A/RS
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The scale factor B in equation (4.92) has no time dependence.
In order for the value of B to vary in time, one or both of the

rates R and,RS must vary in time. From equation (4.85), B[m] can

be expressed as:

Bm] = RA[m]/RS [m] (4.93)

The index m has been used instead of the time index n in
equation (4.93) to indicate that B [m] does not correspond to samples
of some continuous signal B (t) but, rather, is an ordered succession
of independent values. The feasibility of a TSM system which can
accept variable analysis and synthesis time rates depends on whether
the respective variable rate stages can be implemented.

The analysis algorithm is described in figure 3.6. The
algorithm consists of the cascade of four operations: "Window,"
"pad," "Rotate" and "FFT." Of these, only the first and third opera-—

tions depend on the rate RA' The operation labeled "Window" computes

the sequence:

xb[r] = x[r+pRAfh2]h[h2—r] (4.94)

To emphasize the role of the rate RA' equation (4.94) can be written

as:

p
x [r] = x[x + ) RA-hZ]hIhz—r] (4.95)
15 m=L
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The variable rate RA[m] can be substituted directly for the constant

rate RA in equation (4.95):

P
%, [r] = x[r + mzl R, [m]~h,]h(h -]

Now, letNp be defined as follows:

§
N = R_ [m]
P m=1 A

In terms of Np, equation (4.96) becomes:

xp[r] = x[r+Np—h2]h[h2—r]

Therefore, xp[r] is equal to the sequence x[r] windowed by hir],

(4.96)

(4.97)

(4.98)

with the window positioned so that h[0] lies directly above x[Np].

The window position NP can be defined recursively:

Np+l - Rl + p <O
N = 0 , =0
p P
+ >
N_, tRIPl , P>0

Thus, the position of the window h[n]l for the p

RA[p] samples to the right (further in time) than the position of

(4.99)

analyzed frame is
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Table V

Non-Uniform TSM Analysis Algorithm

For all integers p > O:

( 0] p =20
1 N = (4.100)
P 1
N -1 + RA[P] , p >0
s x[r+Np-h2]h[h2-r] , r=0 to hl+h2
2. x [r] = (4.101)
p l
0 , otherwise
M-1 Kr
3. X [N k]l = } % [((x-N_+h_)) IW (4.102)
s p =0 P p 2°'M M

where ((r))M denotes "r modulo M"



st
the window for the p-1 frame. If R.A is a constant, then the
right shifts of the window from one frame to the next are all of the
The window can also be shifted by different amounts from

same size.

one analyzed frame to the next, so that the windowing operation can
be implemented when R.A varies in time.

The only other operation in the analysis algorithm that
depends on the value of RA is the third one, labeled "Rotate."
This operation circularly shifts the sequence ﬁp[n} to the left
by pR.A—h2 points.
performs the circular shift by pR.A[p]—h2 points.

The non-uniform TSM analysis algorithm is shown in Table V.
It has been assumed, for simplicity, that the integer index p can
only take positive values.

The TSM phase modification algorithm is described in
equations (4.75) - (4.81). The only place where the rates R.A
and R_ enter into the algorithm is in equation (4.79), where the
division by B = RA/RS occurs. Clearly, this equation does not have
to be modified at all to allow B to vary in time except, perhaps,
to explicitly show this time variation; if B varies in time,

equation (4.79) becomes:

Opy L0kl r =0

arg{Y_[p k] } =
R_[pl RA [pl

= AZ[p —— , k , 0
RA[p] CPRS[P] k] p >

arg{Ys [P-l r}_(_] } +
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If R, varies in time, the "Rotate" operation merely

(4.103)
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Therefore, the TSM phase modification algorithm designed for a time—
independent value of B can be used directly when B varies in time.
We have seen that RA can vary in the analysis and phase
modification algorithms. 2 simple argument will show, however,
that the TSM synthesis algorithm cannot easily adapt to a variable
rate RS. As described in equations (3.57) - (3.60), the overlap-add
synthesis algorithm is based on a running sum of the sequences waS[n]-
These sequences correspond to the contribution of the pth spectral
frame of’YS[pRS,k] to the sequence y([n]. By adding the sequences
was[n] together, we are effectively interpolating selected points
of the sequence y([n,m] (Which is the fully sampled version of the
sequence y[pRs,n] = y[pRS,((n))MJ, defined in equation (3.57)).
This interpolation is performed by means of the l—to-—RS interpolating
Filter £[n]l. If RS were to vary in time, the filter f([n] would
itself have to vary, with one sequence fRS[n] corresponding to each
possible value of the rate RS. Each of these filters would have to
be stored in memory if a variable rate R_S were used. Furthermore,
there is no simple way to construct y[nl from a set of sequences
$PRS[n] obtained with different interpolating filters. Therefore,
if the overlap—add synthesis algorithm is used, the rate R.S cannot
vary in time. Implementation of the variable rate synthesis stage
with the direct algorithm (shown in figure 3.7) was not considered
in this thesis because the increased storage requirements made this
an uninteresting alternative.

The variable scale factor B[m] can therefore be implemented

by selecting a constant denominator RS' and letting RA[m] vary in time:
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B[m] = RA[m]/RS (4.104)

The selection ofRS must be done while realizing that RA[m] can only
vary from 1 to about 40, as discussed in Sections 4.2 and 4.3.
Therefore, B8[m] can only take values between l/RS and 4O/RS.

n developed at the beginning

In terms of the operator notatio

of this section, the non-uniform TSM analysis algorithm can be
described as follows:

a{x{nl,h(n],R_[pl} =X [N k] (4.105)
A s p

b
where N = Z RA[m]
P m=1

Replacing B in equation (4.87) by its value given in equation (4.104),
and replacing equation (4.79) in the uniform-rate phase modification
n-uniform TSM phase modification

algorithm by eguation (4.103), the no

algorithm can be described as follows:

o}
eM{X_[n kI, R, [pl/RS} = ¥_{npR_ /m-Z—-J_ R, [m] (k1}

=Y {nprR_/N_,kl} (4.106)
s S p

Since RS remains constant for non—uniform TSM, the synthesis algorithm

in this case is described by equation (4.91).



128

Table VI

Non-Uniform TSM Algorithm

xB[m][n] = TSM{x[n],B8([pl}

I

S{PM{A{X[n],h[n],RA[p]},RA[p]/RS},f[n],RS} (4.107)



The non-uniform TSM algorithm is described in Table VI in
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terms of the operators defined in equations (4.91), (4.105) and (4.106).

Figure 4.3 describes the structure of the non-uniform TSM
system based on the algorithm described in equation (4.107).
Comparison of figures 4.2 and 4.3 will show the differences between
the uniform and non-uniform TSM systems. The uniform analysis and
phase modification stages (shown in figure 4.2) have been replaced
by the corresponding non-uniform stages in figure 4.3. In addi-—
tion, the non-uniform TSM system includes an input port for the
analysis rate sequence RA[p]. It is assumed that the sequence
RA[P] is long enough so that the value of the analysis window posi-

P
tion marker, N_ = Z RA[m], will eventually become larger than

m=1
the length of x[n].

The next section in this chapter describes the implementation

of the non-uniform TSM system described in figure 4.3.

4.6 Implementation of a Non-Uniform
TSM System

The non-uniform TSM system developed in this chapter was
implemented in a general purpose PDP-11/50 minicomputer.

The sequence x[n] was obtained from the speech signal x(t).
First, x(t) was low-pass filtered at 4.98 KHz and sampled at 10 KHz

to form the sequence x'[n]. Second, x[n] was generated by pre-

emphasizing x‘[n] as follows:

x[n] = x*[n] - 0.995x' [n—-1] (4.108)
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The Non-Uniform TSM System
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The speech was pre-emphasized in order to decrease the dynamic range
of the signal by flattening its spectral envelope [(Holtzman Dantus,
1977]. In some cases, the signal x(t) was pre-emphasized prior to
the filtering and sampling operation using the Speech Pre—emphasis
filter designed by Holtzman Dantus [1977].

The analysis filter was chosen as & Hamming window. Several
window lengths were used, but the best results were obtained with a
256-point window. The cutoff frequency of an N-point Hamming window
is approximately equal to 47/N [Oppenheim and Schafer, 1975].
Therefore, the analysis filter had a cutoff’frequency*wh equal to

7/64 which, for a 10 KHz sampling rate, corresponds to an effective

cutoff frequency of 78 Hz. This cutoff frequency falls within the

70 Hz - 100 Hz range discussed in sections 4.2 and 4.3.
The number M of frequency samples was chosen to be equal to
512. Portnoff [1978] has shown that values of M smaller than 512

Sy aal

will severly decrease the frequency resolution of the DSTFT. Larger
values of M were not feasible due to memory size limitations. The
M—-point Discrete Fourier Transform was performed with an assembly
language version of the decimation-in-time FFT algorithm described
by Rabiner and Gold [1975].

The synthesis filter f[n] was designed using the method
described by Oetken [1975]1. 1In general, the filter order was chosen
to be about 16, with a cutoff frequency of 0.75m.

The bound imposed on RA[mJ by equation (4.86), with the parameter

values chosen above, reduces to RAImJ < 64, for all m. The analysis

rate was conservatively allowed to vary between 1 and 48. To avoid
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aliasing due to the non-linearity of the phase modification algorithm
[Portnoff, 19781, the synthesis rate RS was also chosen to be between

1 and 48:

< < 4 4.109
1< RA' RS < 48 ( )
Finally, the output of the non-uniform TSM system was de-—
emphasized using the inverse of equation (4.108):
n
y'inl = ) (0.995)"y[n] (4.110)
=0

The non-uniformly time-scale modified signal y(B[m]t) was
obtained by filtering y'[n] with a 4.98 KHz low-pass filter. As
in the case of the conversion of x(t) to digital form, the de—emphasis
and filtering operations were sometimes performed in reverse order.

In this case, the de-emphasis was carried out by the de—-emphasis

filter designed by Holtzman Dantus [1977].

4.7 Comparison with Portnoff's System

The system developed by Portnoff [1978] is described in
figure 4.1, and the non-uniform system developed in this thesis
is described in figure 4.3. This section compares and contrasts
the two systems.

In Portnoff's system there are five separate stages:

Analysis, Decimation, Interpolation, Phase Modification and Synthesis.
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In the new system, the Decimation and Interpolation stages have been
eliminated. The remaining three stages carry out the same functions
as the corresponding stages in Portnoff's system, but perform their
tasks somewhat differently.

The non-uniform analysis stage differs from Portnoff's
analysis stage in two respects: first, it allows a variable analysis
rate, RA[mJ and, second, because it assumes that the length of the
analysis window h[n] is less than the number M of DSTFT frequency
samples, it performs fewer computations. The phase modification
stages in both systems are the same, except that in the non-uniform
system, the scale factor B need not be constant. Finally, the synthesis
stage in the new system is computationally identical to Portnoff's
synthesis stage but, as discussed in Chapter 3, the overlap-add
synthesis algorithm used in the new system is significantly more
efficient in terms of storage requirements. It is important to note,
h z that each cof the stages in the new system could be sub-
stituted directly for the corresponding stage in Portnoff's system.

The performance of the two systems was compared by assuming
a constant scale factor B for the non-uniform system. When the
speech is expanded (B < 1), or mildly compressed (1 < 8 < 3), the
two systems perform almost identically. When the speech is severely
compressed (B > 3), however, the new system retains a higher pitch
quality than Portnoff's system. As an identity system (8 = 1),

both TSM systems recover the original signal exactly.
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This part of the thesis has described the development of a

non-uniform TSM system. The second part evaluates the performance

and the usefulness of this system.

u
du
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PART IT

USING THE TSM SYSTEM
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CHAPTER 5

FEATURE-DEPENDENT TIME-SCALE

MODIFICATION OF SPEECH

The model of the speech signal, x[nl, developed in Chapter 2,
consists of a sum of harmonically related exponentials. This model

is shown in equation (2.20), which is repeated here for convenience:

jré [(n] (5.1)

The TSM system presented in Part I of the thesis was designed
under the assumption that, within this model, the parameters o [n]
and cr[nJ vary much more slowly (as a function of n) than the time-
unwrapped phase ¢[n]. While this is a valid assumption over most
of the length of x[n], it is sometimes violated during speech
transition segments (such as stop consonants., voiced-to-unvoiced
transitions and rapid intervowel glides).

The speech is particularly degraded when the value of the
scale factor 8 is much greater than one. When B is equal to one,
however, the TSM system becomes an identity system, and does not
degrade the signal. A possible improvement to a uniform TSM system
might then be to adapt the value of the scale factor B to the local

structure of the speech by making it approach unity during transition
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This technique is referred to as feature-dependent TSM.

segments.

In the case of compression, Toong [1974] has shown (using
a Fairbanks type TSM system) that feature-dependent TSM may decrease
the overall degradation of the time-scale modified speech.

This chapter develops a feature-dependent TSM system, based
on the non-uniform TSM system developed in part I of the thesis.
A possible strategy for performing feature—-dependent TSM is to
severely time-scale modify pause segments in the speech, in order to
reduce the severity of the TSM during non-pause segments. This and
other such trivial schemes are not considered in this thesis. The
dependency on speech features is obtained by pre-processing the
speech sequence, x[n], to generate a sequence, Bfm], of TSM scale
factors that varies in response to local speech features, such as
transitions. The sequence B[m] 1is then passed to the non-uniform
TSM system in the form of a fixed synthesis rate RS' and a sequence

of analysis rates R _[m], such that:

Ry (m]
Blm] = —(/— (5.2)
S
The generation of the rates R.S and RAIm] from the speech
sequence x[n] is carried out in two stages. First, the speech

is segmented into regions of similar local structure and, second,
the segment characteristics (type and boundaries) are translated

into a common synthesis rate, RS, and a sequence of feature-

dependent analysis rates, RA[m].
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The remainder of this chapter presents three speech segmenta-

tion algorithms (two of which are automatic, and one of which is
manual), discusses the translation process from segment characteristics

to actual rate values, and compares feature-dependent and uniform

TSM of speech.

Section 5.1 develops two different automatic speech segmenta-

tion algorithms. A manual speech segmentation scheme is described

in Section 5.2. Thisprocedure is based on the visual recognizability

of certain speech features when the signal is plotted graphically

(amplitude versus time). Next, the generation of the rates RS

and,RA[m] from segment characteristics is discussed in Section 5.3.

Finally, in Section 5.4, the feature-dependent TSM system is compared

to a uniform TSM system.

5.1 Automatic Speech Segmentation Algorithms

This section presents two algorithms to automatically segment
the speech signal. Although these algorithms select segment boundaries

differently, they are based on a common set of three statistical

measures of the speech.

For clarity, this section is divided into three subsections.
First, the statistical measures that form the common ground for the
segmentation algorithms are described in subsection 5.1.1 and, then,

the two algorithms are presented, respectively, in subsections 5.1.2

and 5.1.3.
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5.1.1 Speech Statistics

As discussed earlier in this chapter, it is desirable for the

value of the TSM scale factor B to approach unity during speech

transition periods. It is therefore necessary to develop a means

of detecting the transition periods.

Stevens [1971] has shown that rapid transients in the

speech signal can be identified with rapid changes in the magnitude

of its short-time spectrum. Speech transitions can therefore be

detected by measuring the difference between short-time magnitude

spectra some RM samples apart. The discrete short-time magnitude

spectrum of the signal x[n], windowed by hln] and sampled every RM

points, can be obtained from equation (3.34) as follows:

QRM+hl [

k
|x_lpR, k1| = I x&ﬂh@%(mwgl
n=pRM—n2

(5.3)

IfAD denotes the first backward difference operator along
the index p, then a speech transition can be identified by large
values of the length of the M-dimensional vector AP[XSEPRM,k][.
This length can be obtained with the Euclidean distance operator

(EDP) on the M-element vector ixs[PRM,k][' along the index p, which

is defined as follows:

M-1
: 2
EDP{IXé[pRM,k][} = kzo (Ap]xs[pRM,k][) (5.4)



As a means of detecting speech transitions, however, this measure
has the undesirable effect of becoming large when the overall energy
of the speech signal changes abruptly. Thus, any emphasis or
accentuation that might occur in the speech could be erroneously
detected as a transition. To avoid this problem, we define the

normalized Euclidean distance (NEDP) on the M—-element vector

[XS [pf%d'k]:], along the index p, as follows:

I [ s [Xs [pRM,k] [ l
NED {|{X [pR . ,k]|} = ED - ~ (5.5)
p s M p l Ek{IXS[pRM,k] | } s
where Ek{{xs [pRM,k] |} is the energy of the vector
le [pRM,kll along the index k, and is defined by:
M-1 2'
E, {|X_[oR/k|} = kéo (x_[pR, k1) (5.6)

The NEDP operator can be used to detect speech transitions
because it is independent of the energy of the signal. In addition,

this operator has a useful geometric interpretation. Combining
equations (5.4) - (5.6), NEDP{[XS [pRM,k] [} can be easily shown

[(Wiener, 1949] to be given by the relation:

NED_C[X_[pR,k1[} = 2 [l—cos{ |x_tpR, k1|, [ [(-1) R, kI }} (5.7)

Since the M scalars that comprise [Xs [E_RM,I{][ are all positive, the

cosine of the angle formed by the vectors [XS [E_RM'k][ and
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IXS[(p-l)RM,k]( must be in the range:

0 < cos{|x_[pR k] [/ Ix_[(e-1)R K] [} <1 (5.8)

Therefore, NEDP{IXS[pRM,k]I} satisfies the relation:
(5.9)

1
0<3 - NEDP{IXS[pRM,kII} <1

Consequently, speech transitions can be detected by comparing the

quantity NEDp{[xs[EBM’k]I}/Z to a fixed threshold, NED . . such that:

< NED nr+>transition

mi
NED X R,k 2 5.10
P{l PR, K1}/ ( )
> NED_._ -+ normal
- mee s
The actual choice of the measure rate RM' the window
h(n] and the threshold NED . 1is experimental. According to Stevens

min

[1971] and Klatt [1979], hin] should approximate the impulse response
of a low—pass filter with a 300 Hz cutoff frequency, which is the
case for a 64-point Hamming window at a 10 KHz sampling rate. With
a window of this kind, Stevens [1971] has shown 1:ha.t.R.M should be
equal to 300 samples, again assuming a 10 KHz sampling rate.

Figure 5.1 shows two typical NEDP measures. The value of the

threshold, NEDninf will be determined in the next two subsections
It
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Typical N EDp Measures
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when the individual segmentation algorithms are discussed.

In addition to obtaining the normalized Euclidean distance
(NED ) measure of the speech, it is useful to estimate the local
normalized log—-energy value (NRGP) and the local normalized zero
crossing count (ZXSP) of the speech signal, as a function of the

time index p [Agrawal and Lin, 1975]. These measures are defined

by the relations:

PR¢*h, 5 )
( }‘ (x[nlh_[pR _-n]) 1
NN
1 n=pRN-h2 !
NRG {x[nl}= 5 loglo 5 5 + 1 (5.11)
P I X - (E {h_[nI}H
I max n N
- L J
pRZ+hl—l
) [[SGN{x[nl }-seN{x[n+L]1}|* (1-sGN{x[n]}-SGN{x[n+1] })]
n=pRz—h2 =
ZXSp{x[n] } =
2 - (h1+h2)
(5.12)

The various parameters in equations (5.11) and (5.12) are defined

as follows:

. hN[n] is a 256-point Hamming window, from.‘hl = —-63
to h2 = 64.

X is the maximum possible value of the sequence x[n].,
usually normalized to unity.



e ScN{al} is the sign function of o. It is defined as

follows:
S -1 , a <O

seN{a} = o , a=20 (5.13)
l 1 , « >0

e The sampling rates Ry and Ry have been experimentally
determined to be (for best results):

R. =R =2 .
N 7 0 samples

The measures defined in equations (5.11) and (5.12) are
shown in figure 5.2 for the sentence: "Line up at the screen door."

The next two subsections use the NEDP, NRGP and ZXSP measures
to segment the speech signal x[n]. The first segmentation algorithm,
presented in subsection 5.1.2, is primarily based on the,NEDp measure.
The second algorithm, described in subsection 5.1.3, uses all three
measures to segment the speech. Both segmentation algorithms con-—
sist of a decision procedure to determine the nature of the local
structure of x[n]. These decision procedures are based on a set
of comparisons between the local values of the speech measures and

experimentally chosen thresholds.

5.1.2 Segmentation by Spectral Similarity

The speech segmentation algorithm described in this sub-—

section categorizes speech into five segment types:

1. - Pause.
2. - Stationary.
3. - Slowly varying spectrum. (5.14)

4. - Rapidly varying spectrum.
5. — Very rapidly varying spectrum.

144
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Log-energy and Zero Crossing Count Measures
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Although the decision procedure used by this segmentation
algorithm involves all three speech measures, the segment type
selection is based primarily on the NEDp measure. Equation (5.10)
shows that the normal versus transition decision can be made by
means of a threshold (NEDmin). This single threshold is replaced

: NE .
here by a set of three thresholds NEDLOWJ DMlddle and NEDHigh.
The NRG and ZXSP measures are used for pause detection.
If each measure falls below its threshold (NRG . and 2ZXS_. .,
min min
respectively), a pause is detected [Agrawal and Lin, 1975].
Finally, the ZXSp measure is used to improve the accuracy
of the NEDp measure. As Agrawal and Lin [1975] have shown, if
the zero crossing count exceeds 0.25, then the speech is locally
anvoiced. 1In this case, due to the random nature of the speech

waveform, the NEDp measure will take relatively high values.

For this reason, an additional threshold for the ZXS

measure is defined:

ZXSUnvoiced = 0.25 (5.15)

the deviation from unity

Fhen the ZXS measure exceeds ZXS . ’
P Unvoiced

of the NED measure is attenuated. An attenuation of 30% has been

experimentally shown to be adequate.

The decision procedure to segment the speech by spectral
similarity is given in Table VII. The commonly accepted "Pidgin

ALGOL" convention [Aho, Hopcroft and Ullman, 1974] for specifying

algorithms is used in this thesis.
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Segmentation by Spectral Similarity

BEGIN

IF (ZXSp > ZXS THEN = NEDp <—'N‘EIDP - [(l—NEDp)'O.3] (5.16)

Unvoiced)

IF (NRG < NRG . ) and (ZXS_ < ZXS_. ) THEN: "Pause"
P min P min

ELSE IF (NED_ > NED_. .) THEN: "Stationary"
P High

SE I > - " > "w
EL F (NEDP NEDMiddle) THEN Slowly varying

ELSE IF (NEDp > NEDLOW) THEN: "Rapidly varying"

ELSE: "Very rapidly varying"

(5.17)



Typical values for the thresholds have been determined

(by trial and error) to be:

= 0. 5.18
NEDHigh 0.83 ( )
NEDMiddle = 0.74 (5.19)
NED = 0.66 (5.20)
Low
NRG . = 0.20 (5.21)
min
ZXS . = 0.055 (5.22)
min
=0, .2
zstnvoiced 0.25 (5.23)

The decision procedure shown in Table VII categorizes x[nl
in the vicinity of n = pR, for some sampling rate R. Since R
may not (and generally does not) equal the actual sampling rates
of the measures (RM, RN and RZ), intermediary measure values are
obtained by linear interpolation. A more accurate interpolation
procedure is not necessary because the measures vary slowly with
respect to the time index p.

Figure 5.3 shows the result of segmenting the sentence
“"You are the biggest man" by spectral similarity. The three
speech measures from which the segmentation was obtained are shown

in the figure for reference.
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Segmentation by Spectral Similarity
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5.1.3 Speech-Specific Segmentation

An alternative segmentation algorithm categorizes the speech

into four segment types which are specific to speech signals:

1. — Pause

2. - Voiced

3. - Unvoiced (5.24)
4. — Transition

The speech—specific segmentation algorithm uses a single
transition threshold for comparison with the NEDp measure, as shown
in equation (5.10). The voiced/unvoiced/pause decision is then made
based on the values of the NRGP and,ZXSP measures [(Agrawal and Lin,
1975]. A&s in the case of the spectral similarity segmentation
algorithm, when an unvoiced region is detected, the deviation from
unity of the NEDp measure is attenuated by 30%.

The decision procedure used to segment the speech into
"pguse," "Voiced," "Unvoiced" and "Transition" regions is shown
in Table VIII.

Typical values for the thresholds in equations (5.29)

and (5.30) have been experimentally'determined to be as follows:

NED . = 0.73 (5.25)
min

NRG . = 0.20 (5.26)
min

ZXS . = 0.055 (5.27)
min

Z . . =0.15 (5.28)
Unvoiced

In the same manner as the spectral similarity segmentation algorithm,
fhe measures are linearly interpolated to adjust to the sampling

rate of the segmentation.
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Speech-Specific Segmentation

BEGIN

THEN: NED <« NED - [(1-NED )-0.31 (5.29)
P p D

IF (2ZXS > ZXS .
P Unvoiced)
IF (NRG < NRG . ) and (ZXS < ZXS_. ) THEN: "Pause"”
o} min o} min
ELSE IF (NED < NED . ) THEN: "Transition"
o} min
ELSE IF (ZXS > ZXs . ) THEN: "Unvoiced"
P Unvoiced
ELSE: ‘"Voiced" (5.30)

END
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Figure 5.4 shows the result of segmenting the sentence "You
are the biggest man" with the speech-specific algorithm. The dif-
ferences between the two segmentation algorithms can be seen by
comparing figures 5.3 and 5.4.

These two schemes for speech segmentation can be carried
out in a completely automated fashion. Section 5.2 describes an
alternative segmentation scheme which requires human intervention,

but which is likely to be more accurate than either of the two

zlgorithms presented in this section.

5.2 Manual Speech Segmentation

The basis for the manual segmentation scheme is that voiced,
unvoiced, transition and pause regions can usually be recognized
visually in an amplitude versus time plot of the speech signal.
Figure 5.5 shows the typical appearance of these regions. Voiced
speech, shown in figure 5.5(a), is a quasi-periodic signal. Un-
voiced speech, shown in figure 5.5(b), can be recognized by its
noise—like (random) appearance. An example of a speech transition
region is shown in figure 5.5(c). The characterizing feature of
transition regions is rapid change in the nature of the signal,
occurring over a short time interval (usually in the order of
100 milliseconds). Finally, a pause is shown in figure 5.5(d).

The speech signal can be readily segmented by visual
identification of the type and boundaries of each consecutive
region. Figure 5.6 shows a portion of the sentence “Line up at

the screen door" (around the "s" in screen), with its manually

selected segment boundaries.
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Speech -specific Segmentation
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Typical Appearance of Speech Regions
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Regardless of the segmentation algorithm used, the resulting
set of segments must be translated into a fixed synthesis rate, RS,
and a sequence of analysis rates, RA[m]. These rates can then be

used by the non-uniform TSM system to complete the feature-dependent

TSM operation. The generation of RS and RA[m] is discussed in

Section 5.3.

5.3 Input to the Non-Uniform TSM System

The output of the segmentation algorithms described in the
previous two sections consists of a sequence of segments, each
defined by three parameters: beginning sample, ending sample and
This sequence of segments must be transformed into a

segment type.

fixed synthesis rate, RS' and a sequence of analysis rates, RA[m],

which define the desired feature-dependent scale factor sequence,
B[m] = RA[m]/RS-
th .
Let Sq denote the g segment of the signal x[n]. Thus,
qurepresents the triplet

sq = {blgl,elql,Tlql} (5.31)

where b[g]l 1s the sample of x[n] at which Sq begins, elql] is the
end sample of Sq’ and T[g] is the type of Sq (e.g. "Voiced"). For
convenience, we shall assume that the q+lSt segment immediately

th
follows the g segment. Thus, excluding the first and last segments,

we have:
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blgl] = elg-1] + 1 (5.32)

In addition, let us assume that there are Q segments (g =0,1,...,0-1),

which span the whole signal x[nl}. Consequently:
b[0] =0 (5.33)
and e[0-1] = <last sample number in x[n]> (5.34)

To obtain an overall scale factor BO (defined as the ratio
of the length of the input speech signal over the length of the
output time-scale modified signal), a feature-dependent scale
factor sequence, B[m], must be generated from the information con-
tained in the set of Q triplets Sqf To generate B[m], an analysis
rate Rirmust be assigned to the rth segment type (there are either
4 or 5 different segment types, depending on the segmentation
scheme used) and a fixed synthesis rate RS must be selected. An
overall scale factor 60 can then be obtained by choosing values

for RAIm] and R that minimize the error term in the formula:

1

4 or 5 - ,
50 = z R ( Z e[q]—b[q]+l].}/R. + € (5.35)
A S
r=1 qGEQr

Q =t glTlql=r}

The error term € in equation (5.34) is due to the fact that

BO cannot, in general, be obtained exactly by selecting values for
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RA[m] and RS, since these rates are restricted to be integers
between 1 and about 40, depending on the analysis filter used in

the TSM system. Since there is no closed form solution to the
problem of minimizing € in equation (5.35), the selection of the
rates Rr and R_ is heuristic. The selection can be accomplished
either by user trial and error, or automatically by a "hill climbing"

search algorithm [Nilsson, 1980].

>

Once the rates Ri and Rs have been determined, the sequence
RA[m] (and consequently the sequence B[m]) can be easily generated.

Equation (4.97) defines the quantity Np:

)
N = R_ [m]
P m=1 A

(5.36)

The sequence RA[m] can then be generated by the following algorithm:

BEGIN

p <0, NO <« 0

TOR g <« O UNTIL Q-1 DO
UNTIL (N? > elql) DO

BEGIN

T [gl
RA{p] *—-R.A

p<p+ 1l
END

END (5.37)
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Since e[Q-1] is equal to the last sample number in x[n] (equation
(5.34)), the sequence RAIm] generated by equation (5.37) will be

long enough so that the whole sequence x[n] will be processed by the

TSM system.

Figure 5.7 shows the complete feature—-dependent TSM system.
The option of automatic or manual segmentation schemes is explicitly
shown in the figure but, for simplicity. the choice between the two

automatic segmentation algorithms discussed in this chapter is not

shown.

Section 5.4 concludes this chapter with a comparison of

uniform and feature-dependent TSM.

5.4 Evaluation cf Feature-Dependent TSM

A careful, though somewhat informal, comparison of uniform
and feature-dependent TSM shows that the feature—-dependent system
does not improve upon the uniform system. A set of ten test
sentences, shown in the Appendix, was used to compare the two TSM
schemes. All ten sentences were processed several times with each
of the two segmentation algorithms described in Section 5.1, and with
varying threshold values. Sentence 45 (which has a particularly
rich phonetic structure) was also segmented manually.

In general, the feature-dependent time-scale modified
speech was either similar, or slightly worse, than the uniformly
time-scale modified speech. This can be attributed to several
factors. For simplicity, only the case of speech—-specific segmenta—

tion (either automatic or manual) is discussed.
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First, for the difference between uniform and feature-—
dependent TSM to be noticeable, the local scale factor during
transition segments must be very close to unity. To obtain an
overall scale factor'BO, the local scale factors during pause,
voiced and unvoiced segments must be significantly farther frcm
unity than BO. The large difference in local scale factors causes
the output speech to sound as if the speaker had stuttered. In
additicn, as the local scale factor departs from unity, the
degradation of the output signal increases. Therefore, any gain
in the quality of time-scale modified transitions is offset by a
loss of quality during voiced and unvoiced portions of the output
speech. Most listeners stated that the losses were greater than
the gains.

Second, the perceived quality of the time-scale modified
speech is somewhat different for different values of the scale
factor B. The same effect is observed in Portnoff's system [1978,
1980]. Although this effect is difficult to notice between two
time-scale modified sentences with different scale factors, it
is easily perceivable when the value of the local scale factor is
changing rapidly.

The experimental results obtained in this chapter indicate
that Ffeature-dependent TSM is not necessarily an improvement over
uniform TSM. Clearly, not all possible schemes for making the
scale factor 8 vary with changes in the local signal structure
were evaluated. Whether an alternative feature-dependent TSM

scheme that constitutes an improvement over uniform TSM can be
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found, remains an open research question.

The fact that feature-dependent TSM is not necessarily an
improvement over uniform TSM contradicts the results obtained by
Toong [1974]. Using a Fairbanks (time-domain) type TSM system, and
using manual segmentation, Toong found that feature~dependent TSM
produced higher quality speech than uniform TSM. The experiments
carried out by Toong, however, were different from the ones described
in this thesis. First, the TSM technique used by Toong was a
time-domain technique, which does not generate time-scale modified
speech of a quality as high as that obtained with the TSM system
based on the DSTFT. Therefore, Toong did not have a high-quality
uniformly time-scale modified speech signal for comparison. Second,
Toong did not compensate the approaches of the scale factor B to
unity during transitions with corresponding departures of B from
unity during the rest of the signal, to obtain an overall scale
factor 80. Therefore, the quality of the non-transition segments
processed by Toong was identical in uniform and feature-dependent
TSM but, in the latter case, the overall scale factor was BO + €.
Feature-dependent TSM using the system described in Part I of the
thesis was carried out without this compensation, for comparison
with Toong's results. In this case, feature-dependent TSM was
slightly better than uniform TSM.

In Chapter 6, several other possible uses of the non-uniform

TSM system are discussed.



163

CHAPTER 6
OTHER APPLICATIONS OF THE TSM SYSTEM

This chapter discusses three trial applications of the TSM

system described in Part I. The purpose of this chapter is to suggest

the overall usefulness of the TSM process, but not to derive any
precise measurements of the performance of the TSM system.

Section 6.1 describes the result of time-scale modifying
speech segments whose lengths are approximately one minute long,
as opposed to the single sentences (about three seconds long)
used to evaluate feature-dependent TSM. The overall quality of time-—
scale modified speech is informally evaluated and, in addition,
the long—-term stability of the phase modification algorithm developed
in Section 4.3 1s examined.

A simulation of the compression/expansion communications
scheme suggested in Section 1.1 is discussed in Section 6.2. The
overall quality of the recovered speech is shown to be poor beyond
a 4-to-1 initial compression, although the speech retains some
intelligibility up to a 10-to-1 initial compression.

Finally, Section 6.3 discusses the TSM process for signals
other than speech. In particular, the result of applying the

TSM system to music signals 1s evaluated.



164

6.1 TSM of Long Speech Segments

Although the TSM system developed in Chapter 4 is very
efficient, its computational requirements are large. In its present
implementation, the system processes a speech segment T seconds long
in approximately 103-r seconds, depending on the actual analysis and
synthesis rates used. Therefore, the performance of the TSM system
has been evaluated using single sentences which are about three
seconds long. It is useful, however, to apply the TSM system to
longer speech recordings, as they provide a better test of the
overall quality of the time-scale modified speech. In addition,
processing long speech segments allows us to verify the stability
of the phase estimation algorithm (equations (4.75)-(4.81) and
(4.103)) which, since it is implemented as a running sum, could
become unstable.

In order to test the stability of the phase estimation pro-
cedure, the original algorithm is compared with a slightly modified
version of itself. 1In the modified algorithm, the estimated time-
unwrapped phase of YS[pRS,k] (given by equation (4.103)) is reset
to the principal value phase of Xs[Né'k] whenever a pause is
detected, as if the signal had just begun at the pause. Since
the energy of the signal is negligibly small during a pause, any
discontinuity in the phase of Ys[pRS,k] that might be caused by the
reset operation will have an imperceptible effect on the output
signal. The detection of pauses can be performed either manually

or automatically, as discussed in Chapter 5.
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The time-scale modification of long speech segments was
carried out both uniformly and non-uniformly. In the non-uniform
case, the scale factor B was made to vary arbitrarily, to imitate
the effect of a user speeding up or slowing down the speech at will.
The varying scale factor B was implemented by means of the manual
speech segmentation scheme developed in Chapter 5. In this case,
however, the segmentation did not correspond to speech features
but, rather, consisted of arbitrarily located regions where the
scale factor gradually increased or decreased. In some cases, the
scale factor B was even changed abruptly (from severe compression
to severe expansion, or vice versa) to test the response of the
system.

From the above experimental results, several observations
can be made. First, the phase estimation algorithm is stable and
need not be reset during pauses. Resetting the phase generally had
no effect on the speech quality. In fact, in some cases, resetting
the phase actually decreased the overall quality of the speech
slightly. Second, it was found that semantically rich passages
begin to be difficult to understand at twice their original speed.
However, the level of understanding increases significantly when the
listener has had previous experience listening to speeded-up speech.
Finally, non-uniform TSM produces very high quality speech, despite
the discontinuities in the scale factor B caused by the fact that

the aralysis and synthesis rates must take integer values between

1 and 40.
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6.2 Compression and Expansion as a Communications
Scheme

A communications scheme was proposed in Sectlion 1.1 in which

speech is compressed for transmission and then re-expanded at the
receiver. The purpose of this scheme is to allow the simultaneous

transmission of several speech signals over a channel that would

otherwise be able to carry only one signal. This can be done by

time-multiplexing a set of N signals, all of which have been previously

compressed with a uniform scale factor B = N. The receiver can

recover the transmitted signal by de-multiplexing, and expanding
the speech with a scale factor 1/N.

The compression/expansion part of this system was simulated.
The original compression was carried out with N = 2,3,4,6, and 10.
Tt was found that the quality of the recovered speech was very good

for N < 3. Increasing to N = 4 and 6, the pitch information in

the speech was quickly lost. However, even at N = 10 the recovered

speech retained some intelligibility, although it sounded whispered.
Since the compression/expansion technique works well only for N < 3,

this communications scheme appears to have limited practical

usefulness.

As an experiment, the speech was also processed in a reverse
way; that is, the speech was first expanded and then compressed.
Expansion rates of 2, 4 and 10 were tried. In this case, the
quality of the recovered speech was excellent, regardless of the

original expansion rate, although at the highest rate some reverbera-—

tion was introduced.
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6.3 Time-Scale Modification of Music Signals

Although the TSM system was designed for speech signals, it
may be used to process signals other than speech. An obvious applica-—
tion is to music signals. Two different musical passages, each about
30 seconds long, were processed. The first passage was a classical
guitar solo (Theme from the Etude No. 2 in B minor for guitar by
Fernando Sor). All the notes were distinctly separated and, therefore,
the signal was similar to voiced speech in that it was the output
of a time-varying resonator (the guitar strings and body) excited
with a quasi-periodic train of "impulses" (the action of the player's
fingers). The second passage (Theme from the "Promenade'" in
"pictures at an Exhibition" by Modeste Moussorgsky, orchestrated by
Ravel) is played by a full orchestra and was chosen since it was
very unlike speech.

The quality of the output music for both uniform and non-
uniform TSM was excellent. However, it was found that the analysis
window used for speech (a 256-point long Hamming window) did not
have enough frequency resolution for music, so a 512-point Hamming
window was used.

Two interesting effects were observed in time-scale modify-—
ing music signals. First, since the length of the analysis window
was increased from 256 points to 512 points, its time resolution was
decreased and, thus, the TSM process added some reverberation to
the output music, particularly during expansion by a factor greater

thar 3. During compression, the timbre of the instruments changed

slightly. This is due to the fact that the resonating time of the
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instruments was compressed by the same scale factor as the overall
signal. Moorer [1976, 1979] performed time-scale compression of
signals generated by single musical instruments using a similar

TSM system to the one developed in this thesis. Using linear
predictive coding (LPC) technigues, however, he separated the
resonant characteristics of the instruments from the action of

the player. He then time-scale modified the player action by itself,
and left the instrument characteristics intact, eliminating the
timbre distortion problem.

Both music passages were also non-uniformly time-scale
modified using the manual segmentation algorithm to determine the
local value of the scale factor B8 (as in Section 6.1). Again, the
integer nature of the analysis and synthesis rates did not cause
perceptible discontinuities in the output signal, and the time-—
scale modified music was of high quality.

The next, and last, chapter summarizes the major results

of this thesis and outlines suggestions for further research.
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CHAPTER 7

CONCLUSIONS

7.1 Summary of Major Resultz

Part I of this thesis develops a non-uniform TSM system

Lased on Portnoff's [1978] design. This system has several practical

applications, including: a variable-speed speech playback system
for the blind; a time-adjusting machine for the advertising industry;
and normalization of the length of speech segments for voice recog-
nition systems.

A general outline of the time-scale modification (TSM)
process for speech signals is presented in Chapter 2. Using Portnoff's
results, the speech is assumed to consist solely of voiced segments.
The model of voiced speech is given by equations (2.20) and (2.21).
Based on this model, the TSM process is described as a four-step
procedure (Table I): Analysis, Linear Time-Scaling, Phase Modification
and Synthesis.

Chapter 4 shows that the analysis and synthesis stages of
the TSM system can be implemented by the corresponding DSTFT analysis
and synthesis algorithms developed in Chapter 3 (Tables IT and III).

An explicit implementation of the linear time-scaling stage is
developed in Section 4.2; later, in Section 4.4, it is shown that
this stage can be implemented implicitly by allowing the analysis

and synthesis rates to be different from one another. Section 4.3
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then presents an algorithm for implementing the phase modification
stage (Table IV).

The TSM system developed up to this point (figure 4.2) 1is
a uniform system. This system is quite similar to Portnoff's system
(figure 4.1), except that it has significantly smaller storage
requirements since it uses the overlap-add synthesis algorithm
developed in Chapter 3 (figure 3.8) and omits the explicit linear
time-scaling stage.

A non-uniform TSM system is developed in Section 4.5. It
is shown that the constant analysis rate can be replaced by a sequence
of analysis rates which need not be the same; the synthesis rate,
however, must remain constant. The analysis and phase modification
algorithms are modified to accommodate the variable analysis rate.
The non-uniform TSM analysis algorithm is given in Table V, and the
complete non-uniform TSM system is shown in Table VI in operator
notation. Figure 4.3 illustrates the structure of the non-uniform
TSM system. This systemwas implemented in a general purpose mini-
computer; this implementation is described in Secticn 4.6.

part IT of this thesis investigates several uses of the non-
uniform TSM system developed in Part T. Feature-dependent TSM of
speech signals is developed in Chapter 5. Both automatic and manual
detection of speech features are described. It is shown that, in
general, feature-dependent TSM is not an improvement over uniform
TSM.

Finally, Chapter 6 evaluates the overall usefulness of the

TSM system in three trial applications. Section 6.1 shows that
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uniform and non-uniform time-scale modification of long speech seg-
ments produces high guality speech. The stability of the phase

modification algorithm is alsd confirmed. Section 6.2 evaluates a
compression/expansion communications scheme; the scheme is found to

have limited practical usefulness. Finally, an application of the

TSM system to music signals is discussed in Section 6.3.

7.2 Suggestions for Further Research

The non-uniform TSM system developed in Part I of this
thesis has been shown to be successful for performing time-scale
modification of both speech and music signals. However, there are
several possible extensions to the system.

First, the current implementation of the system in a high-
level language on a minicomputer is very slow; 1000 T seconds are
required to process a sentence T seconds long. A much faster system
could be implemented using a dedicated array processor or an assembly
language program in a faster computer [Seneff, 1980]. The system
could even be implemented in real-time (where a T second long
sentence is processed in T seconds or less) with special purpose
hardware and a pipelined structure.

Second, time-scale modification is only one possible applica-
tion of the DSTFT analysis/synthesis algorithm. Other schemes for
modifying the analyzed signal can be developed. For example,

Seneff [1980] has shown that the spectral characteristics of the
input signal can be modified by estimating the signal spectrum

from its DSTFT representation and approximating the DSTFT
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representation of the desired signal, which can then be synthesized
by the DSTFT synthesis algorithm. Other modifications, such as

low-bit coding of the DSTFT and feature extraction, could also

be made.
Finally, alternative strategies for performing feature-
dependent TSM can be developed. In particular, the scale factor

B8 can be controlled by a heuristic algorithm that takes into

account the semantic structure of the speech.
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TEST SPEECH PASSAGES

a) Sentences:

1. We made some fine brownies. (Female)
2. They took the crosstown bus. (Male)
3. The bowl dropped from his hand. (Female)
4. The chef made lots of stew. (Male)
5. Line up at the screen door. (Male)
6. He has the bluest eyes. (Male)
7. You are the biggest man. (Male)
8. stuff those with scoft feathers. (Female)
9. Those shoes were black and brown. (Male)
(Female)

10. That shirt seems much too long.

b) Long speech passage:

When the sunlight strikes raindrops in the air, they act
like a prism and form a rainbow. The rainbow is a division of
white light into many beautiful colors. These take the shape
of a long round arch, with its path high above, and its two
ends apparently beyond the horizon. There is, according to
legend, a boiling pot of gold at one end. People look, but no

one ever finds it.

When a man looks for something beyond his reach, his friends
say he is looking for the pot of gold at the end of the rainbow.

Throughout the centuries, men have explained the rainbow
in various ways. Some have accepted it as a miracle without
physical explanation. To the Hebrews, 1t was a token that
there would be no more universal floods. The Greeks used to



177

gn from the gods to foretell war or
n considered the rainbow as a bridge
from Earth to their home in the

imagine that it was a si
heavy rains. The Norseme

over which the gods passed
sky.
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