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OF FINITE WIDTH

by
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ABSTRACT

Surface Acoustic Wave gratings of finite width support a finite
number of transverse modes. A theory of the excitation of these modes,
based on a coupled-mode formalism, is developed and checked against
the experimental results of Mason et al. on shorted and open metal-
strip gratings. The theory does not, as yet, explain the observed mode
structure in the shorted strip grating (isotropy and excitation by a
uniform input apodization over the width of the grating were assumed).
It is, however, in excellent agreement with the experimental observations
on the open-strip grating for which a study of the dispersion relation, of
the mode structure and its frequency dependence, and of the effect of
apodization on the selective excitation of grating modes is presented.
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I. INTRODUCTION

1. 1 Surface Acoustic Waves

Surface Acoustic Waves (SAW), or Rayleigh Waves, are elastic

waves that are confined to the surface of solids and propagate with

velocity independent of frequency. (1-3) The current interest in SAW is

due in large part to their relatively low velocity compared to that of

electromagnetic waves. SAW are typically five orders of magnitude

slower than electromagnetic waves. This fact, in conjunction with the

high Q of acoustic media, makes possible the construction of delay lines

with delays a hundred times that of low-loss electromagnetic waveguides.

It also means that components whose size is of the order of the wave-

length - i. e. most microwave components - can be realized in a volume

which, in principle, could be fifteen orders of magnitude smaller than

that required by their electromagnetic counterparts. SAW devices also

hold a clear edge over bulk acoustic wave devices. The archetypal bulk

device, the quartz resonator, becomes too fragile above 50 MHz (its

resonant frequency is inversely proportional to crystal thickness). By

contrast, SAW resonators are rugged (only one surface must be free).

They offer high Q (105), low insertion loss (<5 dB), impedance levels in

the 10-1000 ohm range, and operating frequencies an order of magnitude

higher than comparable bulk devices.

A SAW device is typically comprised of a piezoelectric substrate

material with an optically polished surface and of transducers to convert

between electrical and acoustic signals. An efficient transducer was not

available until the introduction of the interdigital transducer (IDT) by

White and Voltmer. The properties of the IDT were immediately
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exploited in the design of interdigital transversal filters. (5) This

approach is not always satisfactory since the dual role of the IDT, to

transduce and to determine response, leads to conflicting requirements

with subsequent loss of performance. In particular, the need for radar

expanders and compressors with wide bandwidth and large compression

ratio stimulated the development of the devices studied in this thesis -

SAW gratings - where the response is not dictated by transducers but by

surface structures.

1. 2 Surface Acoustic Wave Gratings

A direct analogy exists between Rayleigh wave propagation and the

propagation of paraxial beams in optics. (6) High reflectivity mirrors are

used in optics to build Fabry-Perot resonators. Similar SAW resonators

would require strong localized reflectors of Rayleigh waves. Pending the

discovery of such reflectors, grating reflectors are used. These distrib-

uted reflectors utilize the Bragg scattering from a periodic array of

discontinuities to achieve very high reflectivities (~ 98%) over a narrow

bandwidth with relatively low reflectivity per discontinuity (- 40 dB). A

Fabry-Perot type resonator results when two strong distributed reflectors

are appropriately separated to form a cavity. The idea of forming such

an acoustic cavity on a piezoelectric substrate was first proposed by

Ash(7 in 1970 and demonstrated experimentally by Staples(8) in 1974.

Coupling into the system is effected by means of one or more standard

interdigital transducers.

The development of SAW resonators has been considerable in RF

systems, providing a wide range of important filtering, signal processing,

and frequency control operations. Yet, a variety of second order effects

stand in the way of obtaining a desirable resonance characteristic: (9)
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longitudinal modes of the cavity, device loss, asymmetry of the insertion

loss curves and transverse modes, all with a detrimental effect on the Q

of the resonator. (10)

Transverse modes stem from the limited transverse extent of

SAW transducers imposed by size restrictions and impedance require-

ments. Such modes are particularly troublesome since they may lead to

spurious resonances close to and on the high side of the main resonance

peak. The recent theoretical work of Haus and Wang(12-14) has

elucidated the structure of these modes and their complex frequency

dependence. This thesis, based on their approach, addresses itself to

the excitation of transverse grating modes in finite width SAW gratings

and the effect of transducer apolization on their selective excitation.
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II. TRANSVERSE GRATING MODES

2. 1 Introduction

An analytical solution to SAW propagation in grating reflectors is

not available. Scattering of elastic waves from obstacles is an exceed-

intly difficult problem, much more intricate than its electromagnetic

counterpart. Cambiaggio et al. (15,16) have used the finite difference

method to obtain computer solutions to the scattering of SAW from one or

two metallic strips on a piezoelectric substrate, but they have been frus-

trated in their attempts to obtain numerical solutions when the number of

strips is increased. (17) In spite of the complexity of the problem, a

theoretical understanding of SAW propagation in gratings has been

attained by Haus(12) through the judicious combination of the paraxial

wave approximation with the coupling of modes formalism. That approach

is examined in this chapter.

2.2 Paraxial Wave Equation

Surface wave propagation on a semi-infinite, isotropic solid can be

completely described by a single scalar potential 0 which obeys the two-

dimensional wave equation:( 1 8 )

2 + 2 + k = 0 (2-1)
bx by

where k is the wavenumber, and (x, y) the coordinates of the surface.

For propagation directions close to three-, four-, or six-fold axes

in elastically anisotropic media, the longitudinal wavenumber is given by

kk + 2k(9) k=0(1 +cv9)(2-2)
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for small 9. The anisotropic parameter a is a function of the elastic

moduli when k deviates from the pure-mode axis. The wave equation

(2-1) can be altered to account for the anisotropy expressed in (2-2),

2 2220 y- + k22b = 0 (2-3)
bx by

with y = /T 2 a.

Assuming near plane-wave behaviour and substituting a forward

-jk x
R = R(x, y) e 0 (2-4)

into (2-3) yields

V R - 2 jk bR - 0 (2-5)
T bx

A b A 6
where VT 5 + Y by

The paraxial wave equation obtains when R is a weakly varying

function of x, i. e.

2& I « jk
2

&!Fj (2-6)

Then,

Y2b - 2jk = 0 (2-7)

by

The paraxial wave equation (2-7) can be used to obtain the classical

results of surface wave diffraction on anisotropic substrates (parabolic

approximation):

(a) Dividing equation (2-7) by v2, one can deduce that the

t A

In optics, the electric field r = xR, (2-1) is only approximate since
V- rT 0. Here it is legitimate.
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profile at a distance x along the pure-mode axis is equivalent to the

profile predicted in an isotropic medium (Y = 1) at a distance xx. As a

approaches 0. 5, the aperture profile is mairtained out to large distances

(autocollimated beam). For Y > 1, the far-- I1 distribution is closer to

the aperture than it is in the isotropic case, while y < 1 indicates that the

beam-spreading is slower than in the isotropic case. These results are

an obvious by-product of the paraxial wave equation. This should be

contrasted with the laborious proof of Cohen ( 9 which involves the

solution of the related problem of electromagnetic diffraction in uniaxially

anisotropic media. (Cohen's work is the basis for the standard work of

Slobodnik and Szabo( 2 0 , 21).) In the coupling of modes formalism for

gratings of finite width, scaling x entails scaling the coupling constant X.

Alternatively, one could scale y, altering the width of the grating, while

keeping x and X unchanged. (22)

(b) The solutions to the paraxial wave equation (2-7) are the well-

known Hermite-Gaussians. This fact, an immediate consequence of

equation (2-7), should be contrasted with the proof given of it by Mason

and Ash. (23)

2. 3 Coupling of Modes

The grating discontinuities are regarding as a small periodic

perturbation of the surface. Thus, the wave propagation in the periodic

medium can be treated by an exact Floquet formulation with the solution

expressed as an infinite sum of space harmonics. (24) Yariv( 2 5 ) has

shown that the simpler coupled-mode approach is formally equivalent to

the Floquet formulation near the Bragg regime since they both yield the

same dispersion diagram.

The coupled-mode formalism was developed by Pierce( 2 6 , 2 7 ) and
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Ns(28)
used extensively in integrated optics, notably in the investigation of

distributed.-feedback lasers by Kogelnik and Shank. (29) It was intro-

duced in the study of surface wave gratings of infinite width by Haus, (3)

and then generalized to include diffraction effects in gratings of finite

width. (12, 13)

The starting point of the analysis is to

equation of a forward wave R, equation (2-7),

backward wave S through a coupling x

couple the paraxial wave

to a similar equation for a

bR 1 b 2)R=jKS

- j(6 + 1-k 2  = j
W 7y2
0 ~

(2-8)

(2-9)

where 6

A

k
0

= grating period t jk x

= axial wavenumber in the e dependence of

R and S (removed from (2 - 8) and (2 - 9)),vk0=f/A

The detuning parameter, 6, is a measure of frequency deviation from the

Bragg condition (6 = 0). When the velocity v0 under the grating is

different from the velocity v outside it, detuning becomes y-dependent:

6 = 1
w IT

0V
y< wi

(2-10)

se 6 - k A, y > iwi
o o v

where the fractional velocity change - = vv.
v v

2.4 Frequency Dependence of X

It is clear from the coupled-mode equations that - if second-order
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effects are neglected - the coupling constant x is the only parameter

needed to analyze the grating reflector. A detailed account of the

physical basis for x is given in Chapter III. The coupling constant is,

in general, frequency dependent. Experimental studies of grooved

gratings lead to an empirical result for the reflection coefficient of a

groove: (31)

r ,h<< 1 (2-11)

where h is the groove depth and X the wavelength. The coupling

coefficient is the reflection coefficient per grating period

4x h(2-12)

Thus, at a detuning 6 from Bragg

x(6) x -,(2-13)

where x is x(6 = 0) and >6 is the wavelength at Bragg. Taylor-expanding
0 0

K (6)

x(5) = xo+ 05+ 0(62) (2-14)
0

which for small 6 yields

+(2) = x + (2-15)
0

a result inferred by Wang and Haus(13) from an analogy with the electro-

magnetic problem treated by Lee. (32) Although experimental evidence

is scant, a similar result seems to hold in metal-strip reflectors

(cf. Chapter III), that is X = 1/(m). For the coupled-mode formalism

to be valid, m >> 1. When m 4 1, two things happen: (1) It is

improbable that one could still obtain a reflected surface wave. (2) The
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appropriate normal modes cease to be forward and backward waves with

weak coupling beiween them, but are rather the trapped motions in

individual wells, also weakly coupled.

2. 5 Dispersion Relation

The coupled-mode equations can be solved for the wave amplitudes

when an e-ax dependence is assumed

2- a2  - ( + 4 2
2 R(y) = 0 (2-16)

0 by

with a similar equation for S(y). Equation (2-16) has four solutions

which split up into a symmetric set and an antisymmetric set. The

symmetric solution is the only one of interest in what follows. Under the

grating (y < Iwi)

R = Acos ayy + B cosha2 ye M(2-17)

where

a =p 1- 2+a1  0

a2  = p-6

M = 1/XX, p = 2

a and 8 have been normalized with respect to X, and

distances x and y are measured in wavelengths

The forward wave decays exponentially away from the grating

(y > 1) with decay constant
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b = p /-6 -ja , Re(b) > 0 (2-18)

For the S wave, the decay constant is b.

Corresponding to the forward wave R (equation (2-17)) there

exists a backward wave S,

SaA (csy -T cosh.a 2 y) (2-19)

where

77 = /1-c - ja, In = 1

B a 1 sin a1w - b cos a1w

a2 sinh a2 w+ b cosh a2 w

(obtained by matching R, at y = w)

If the detuning parameter 6 is real, equation (2-9) complex con-

jugated becomes identicial to equation (2-8) if R is identified with S.

Thus R = 4S. The proportionality constant j must have unity magnitude

since 1R12  I (In the stopband, the real time-average power flow

is zero. Power flowing in via R is carried back by S.) Since 171I1 in

equation (2-19) this imposes the condition

B _ 71 B (2-20)
A

which leads to the dispersion relation

R[ a sin aIw - b cos a1 w -2

a2 sinh a2 w + b cosh a2(-

This is a compact form of the "determinantal equation" obtained by Haus

( 1 3) bR bS
and Wang through the matching of R, S, F-and 5 at a grating edge.
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The forward wave outside the grating is given by:

a sin aIw cosh a2w + a2 cos a1w sinh a2w -b(yI -w) (2-22)
R = sin wc + -osawe (-2

R b cosh a 2 w + a2 sinh a2w

It should be obvious from the preceding discussion that S can be expressed

very simply as

S = 'R-(a-+a, y)e - (2-23)

both inside and outside the grating.
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III. MODE EXCITATION

It would be difficult to find a physical science

without orthogonal functions.

E. T. Bell

Grating modes can be obtained for any reflective array given its

width and the appropriate coupling constant. One would like to expand

arbitrary SAW profiles into a superposition of these grating modes. This

requires that the grating modes be orthogonal in some way, and that in

conjunction with the radiation field they satisfy completeness (which

essentially means that a spatial impulse can be resolved into a sum of

radiation field and grating modes). Completeness is taken for granted on

physical grounds. The proof of orthogonality, however, is essential.

3. 1 Orthogonality Relation

Assume two forward wave modes with transverse distributions

r m(y) and r (y) and decay rates aM and an. A standard trick to find

orthogonality relations involves expressions of the form 5(RmRn 

S S') dy. These are not useful in the stopband since the modes are
m n

evanescent and do not carry net power in the x-direction. However, the

coupled-mode equations admit two solutions: growing modes denoted by

a (+) superscript, and decaying modes denoted by a (-) superscript. As

in a metallic electromagnetic waveguide driven below cut-off, the com-

bination of growing and decaying evanescent waves can carry net power

along the guide. This suggests the manipulations to be performed on the

coupled-mode equations: Write a set of coupled-equations for r+ andm
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s and a corresponding set for rn and sn. Multiply the former set by
M n n

rn and s respectively and the latter by r and s* By adding the
n n m m

resulting equations and integrating over the transverse direction, one

obtains

b
+0 -F - -d jF - b +*

(a -a) (r r-s )dy - r -- r
n m m n m n 2k nby

b 
(3-1)

+* + b

- rm r + s n yy sm sm n5ys
a

For odd modes, the limits of integration are 0 and m, while for even

modes the limits are - and + o. The right-hand-side of equation (3-1)

vanishes (even modes)

CO

(a -a) r+'r - s* s)dy = 0 (3-2)m n m n m n

This is the orthogonality relation; unless an = amr _S(rt rn - sX s)dy = 0.

Incidentally, one can deduce from (3-2) that decaying (or growing)

evanescent modes do not carry power,

CO + ++ +*

(r~mr~n - s~ms~n) dy = 0 (3-3)
jmn -m n

The orthogonality relation can be written in a different form since

+ -* + -t
s = s and r = r

(aman) >(rmr - s~ms~) dy = 0 (3-4)
m n J n mD

For m = n, the integral reduces to:
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(1-fl2) S r2 dy (3-5)

which is nonzero since 71 is complex (equation (2-19)). (It is, of course,

not necessary to go through the preceding discussion to derive equation

(3-4). However, blind manipulation of the coupled-mode equations could

lead to frustration. The argument outlined above is helpful and

physically appealing.)

3.2 Excitation Coefficients

Assume that an incident surface wave profile U(y) can be expanded

as

U(y) = D a r (y) (3-6)
n n n

The coupled-mode equations impose the simultaneous existence of back-

ward waves

S(y) = D a s~(y) (3-7)
n n n

The expansion coefficient an in (3-6) and (3-7) must be the same. Multi-

plying (3-6) by rm and (3-7) by s~ and subtracting the resultant equations,

one obtains

S a (r r - s s ) + Ss = Ur (3-8)
n n nm nm m m

Replacing S by its expansion (3-7) and integrating over all y

a (r r - s s )dy + L a snsmdy = U r dy (3-9)
nn n mS m n n n m J M

Applying the orthogonality relation (3-4) leads to a system of linear

equations for the excitation coefficients:
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(r 2 ) (r r) --- (r r) a r
1 1 2 1 n 1Iu

r2) --- (rr) a2 = (3-10)2 2 n 2

(r 2 ) a (Ur )
n n n

( P denotes5 (-i)dy.

The matrix is symmetric (not hermitian). The above formulation

is self-consistent. When U(y) = rm(y) - the IDT is apodized to conform

to a given mode-shape - the solution is trivial (but satisfying): am = I

and a = 0 for n / m, i. e. the other modes are not excited. For wide

(12)
gratings, the cross terms are negligible,

= K(3-11)
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IV. THEORY AND EXPERIMENT

Introduction

The coupling of modes theory is applicable to a variety of grating

reflectors. Experimental evidence of transverse modes is available in

open and shorted metallic gratings. To account for the experimental

observations, appropriate coupling constants are selected. The disper-

sion relation, mode structure, mode excitation and transducer apodiza-

tion are then examined using the formalism presented in Chapters II and

III.

4. 1 Reflection Mechanisms

The choice of reflector in a SAW grating is based on ease of

fabrication and tuning as well as on loss and second-order effects

inherent to the reflector. In general, one of four reflection mechanisms

is exploited:

(a) Topographic reflection(3 1 )

The boundary condition at the discontinuity is the source of the

reflected wave. The geometric reflection is employed in the grooved

gratings mentioned earlier. The reflectivity of a groove goes to zero

linearly in the normalized groove depth (h/X). Standard fabrication tech-

niques yield reflectivities accurate to less than 0. 5 dB. A weighted

array can be fabricated by varying the groove depth in the desired manner

(RAC devices). The formalism of Chapter II is directly applicable to

this reflection mechanism.

(b) Mass loading (33)

A grooved substrate can be visualized as a flat substrate with an

overlay. When overlay and substrate have dissimilar density or elastic
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constants, a reflection, attributed to "mass loading", occurs. Haus( 3 4 )

has shown that, in general, mass loading reflection is less effective than

topographic reflection. (Mass loaded gratings have other disadvantages

with respect to grooved gratings: they are not monolithic and the proper-

ties of the overlay are difficult to control. ) Alternatively, the properties

of the substrate can be altered by ion-implantation or diffusion.(35,36)

Experiments suggest that ion-implanted gratings are "fast", which means

that, in the coupled-mode description, a non-uniform Rayleigh velocity

should be assumed as in (2-10).

(c) Piezoelectric shorting(8 '37,38)

Metal strips deposited on a piezoelectric substrate with a large

electromechanical coupling constant (K2), such as Y-Z LiNbO3 , periodic-

ally short the tangential electric field associated with the piezoelectric

Rayleigh wave to produce a reflection commonly referred to as " i

reflection. Shorted-strip metal gratings can be treated by the methods

of Chapter II.

(d) Electrical regeneration( 3 7 '38)

In shorted-strip arrays, piezoelectric shorting is preponderant.

In open-strip metal gratings, an additional reflection occurs due to the

regeneration of surface waves by the potential induced on a strip. Both

types of reflection exist even as the strip thickness goes to zero.

Regeneration can be eliminated by breaking up the strips to produce the

dot arrays of Solie(39) or the waffle-iron arrays of Matthaei et al. (40)

4.2 The Experiments of Mason et al. (41)

Mason et al. performed experiments on open and shorted metal

strip resonators. The distributed mirrors were each 100 wavelengths

long, and 20 wavelengths wide, fed by a 9. 5 finger pair unapodized IDT.
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Amplitude scans of the internal field distribution taken at 8 axial wave-

length intervals, using a laser heterodyne point probe, revealed that the

open strip acts as a surface waveguide with a discrete set of eigenmodes

(Fig. 2). They speculated that the observed modes were the fundamental,

the 3rd-order and the 5th-order symmetric modes. The higher-order

mode emerges to dominate the field pattern at the end of the mirror. In

the case of the shorted grating, only one mode seems to be present with a

decay rate that corresponds to Xsc f 1/(34 X). For the open-strip

grating, the coupling constant Xoc cannot be deduced as readily from the

experimental observations. Instead, an appropriate value of the coupling

constant, Xoc = 1/(26 X), is selected after examining the data available

from the theory of gratings of infinite width, from impedance mismatch

models, and from optical measurements of the reflection coefficient of a

grating.

(a) Optical measurement

The coupling constant X can be inferred from the experimental

results of Cambiaggio et al. (17) Reflectors of 20 Al fingers with a

periodicity of 35 1m were constructed on Y-Z LiNbO 3. The reflectors

were either open or short-circuited. An incident laser beam, many

wavelengths wide, is diffracted by the surface displacements which

provide a variable phase diffraction grating. The reflection coefficient

R is obtained from intensity measurements on the first-order diffracted

light (Fig. 4). To relate X to R, one needs an expression for the

reflection coefficient in an infinitely wide grating. It is a simple task to

show

R = K (4-1)
3 [1 coth# -j
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and since IR + 1T12 = 1, the transmission coefficient

T = 9(4-2)
# cosh P - jO sinh IT

where

2 = grating length

6 = detuning parameter

Maximum reflection occurs at Bragg (6 = 0)

Rmax = j tanh (xg) (4-3)

Zero reflection occurs at a detuning 6min

6 . = + n)2 n: integer 0 (4-4)mm

The experimental data provides information about 6min and Rmax

from which x can be deduced through (4-3) or (4-4). A coupling constant

X = 1/(26 X) for open strips and X = 1/(34 X) for shorted strips provides a

good match to the data (Fig. 3).

(b) The theory of metal strip arrays

B16tekjaer et al. (42) have developed a method to analyze wave

propagation in infinitely wide periodic metal strip arrays. The method

is based on Legendre polynomial expansions of the electric field when the

electromagnetic properties of the structure can be expressed in terms of

a wavenumber-dependent permittivity. In the stop-band, the dispersion

relation for open and shorted strips with wavenumbers koc and ksc

respectively can be written
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(kc -A)2 _
oc
sc

oc
sc

v

2
1=-K (2 -Cos

AV (21  cosO9))]

42~ [ (1+ cose + P.(t cos9)
-wP

A

v

9

Pg1 (cos 9)

K2

= grating periodicity

= velocity of propagation

= Tx (metallization factor) is here

= Legendre function of order ij and argument cos 9

= electromechanical coupling constant

In the middle of the stop-band, the reflection coefficient is given by

R = jtanh(NA)

N =-

(4-6)

number of strips

AB = normalized stop bandwidth, AB oc = W 2 )
scsc

The coupling constant X can be directly related to physical param-

eters by equations (4-1) and (4-6),

NAB (4-7)

For a metallization ratio of 0. 5, ABoc = ABsc. This means

that, in an infinitely wide isotropic grating, the coupling constant for

where

(4-5)

"2oc
sc

and

where
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open and short strips has the same magnitude, xj, intermediate

between the values used in the model.

(c) Transmission-line approach

Since the work of Sittig and Coquin, (43) distributed SAW gratings

have been modeled as repetitively mismatched transmission lines. The

SAW reflector is divided into N sections, each consisting of a quarter

wavelength strip of impedance Z1 and a quarter wavelength gap of

impedance Z0 . Because of the impedance discontinuity, each section

contributes a small reflection of the surface wave as it propagates.

Using a transmission-matrix approach, one can show

IR I = tanh [NE sin (Tt)] (4-8)

T I = sech [Ne sin (ut)] (4-9)

where
Z

0

t = fraction of the propagation phase shift that occurs

in the perturbed portion of a grating period

Again, the reflection coefficient provides a bridge between the coupled-

mode approach and the impedance mismatch approach, but there is a

caveat due to an inherent weakness of the impedance mismatch represent-

ation. It is not possible to assign unique velocities to the perturbed and

unperturbed regions, so that t does not have a simple interpretation, i. e.

t is only approximately given by the metallization ratio. Using a phase

measurement technique, Cross( 3 7 ) finds ( = 0. 0111 0. 01 for open strips,

while Haydl, (38) using the same technique, gets ( = 0. 0145. Matthaei 4 4 )

deduces C = 0. 015 from a transmission measurement through a grating.
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.(17)
Cambiaggio uses C = 0. 0195. The discrepancies are partly due to

mass-loading effects. The equivalent C in the model is C = 0. 018. For

shorted strips, the spread in values is much narrower. Cross(37) and

Matthaei both find C -0. 015, which is equivalent to X = 1/(34 X), in

agreement with the value deduced from the experimental amplitude scans

of Mason et al. (41)

4. 3 Coupled-Mode Analysis

The coupling of modes formalism presented in Chapter II is

applied to a grating of width 20 X with coupling constant X = 1 /(26 X).

First, the zeros of the dispersion relation (2-23) are determined on a

computer using binary search to locate the roots and then linear inter-

polation in the vicinity of a root. The roots are plotted on a dispersion

diagram (Fig. 4) which displays three branches: each one corresponds to

a mode. These are the only guided modes of that particular grating

reflector. The application of the mode excitation theory of Chapter III

with uniform transducer apodization over the width of the grating yields

the theoretical amplitude scans of Fig. 5. Although anisotropy and

electrical regeneration have been neglected, both the global evolution of

the transverse profile and its fine structure at different axial stations are

in remarkable agreement with the experimental transverse amplitude

scans (Fig. 2). At Bragg, the mode-shape looks "reasonable" (Fig. 6)

(observe that the 5-humped mode is the 3rd symmetric mode, not the

5th as conjectured by Mason et al.). The modes have different decay

rates; the highest-order mode has the slowest axial decay constant (a)

and correspondingly is the less confined transversly. The slow decay

explains why the mode eventually emerges to dominate the field pattern at

the end of the grating reflector (Figs. 2, 5). It also has the lowest
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cut-off frequencies which lead to the passband branch below Bragg and to

a leaky mode above. (14) Below Bragg, the mode profile preserves the

shape it had at 8 = 0. Above Bragg, the mode profile changes pronouncedly

(Fig. 7). No obvious trait is available to identify a particular mode, such

as preservation either of the envelope or of the number of wiggles. The

metamorphosis of mode profile is more rapid the closer a mode is to its

cut-off frequency, the modes that are relatively far from their cut-off

being unaffected (compare Figs. 8 and 9).

4.4 Apodization

Experimental evidence suggests two methods to suppress transverse

modes:

(a) Decrease the width of the grating (which is not always

practical). This is a consequence of the dispersion relation;

Wang has shown that the nth symmetric mode cuts off when

(n-i) = 2w (4-10)
V/mT

which also reveals the dependence of the number of guided modes

on the coupling constant (x = 1/(mk)).

(b) Tailor the IDT apodization to conform to the fundamental

grating mode. Typical weightings are cos, cos2 and gaussian.

The cosine shape conforms very closely to the fundamental mode

amplitude (Fig. 10), which, in light of the discussion of mode

excitation in Chapter II, shows why it is so effective. Even

when the apodization conforms closely to the fundamental mode

profile, higher-order modes are excited and, since they have

the lower decay rates, eventually dominate the field pattern.
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However, the amplitudes are so low by then (down by factors

of 103), that this effect is negligible (Figs. 11, 12).

It is possible, in principle at least, to find the "point source" response

of a grating (Fig. 13), but the concept is of little usefulness since the

grating does not satisfy translational invariance in the transverse

direction.

When a grating is wide enough (w >> X) or has a coupling constant

which is large enough, the modes are tightly bound to the grating with

negligible energy outside, viz.

cos a w
R(y) ~ cos ay - coshaw cosh a2 (4-11)

An expansion into these modes is easy since they are orthogonal.

In the case at hand, too much energy is still outside the grating since the

transverse amplitude scan using the approximate modes (Fig. 14) is

different from the one obtained using the exact modes (Fig. 5). For

shorted gratings, there is, as mentioned earlier, general agreement that

the appropriate coupling constant is Xsc = 1/(34 X). The coupling of

mode formalism applied to a grating width of 20 X yields two modes. The

fundamental mode is apparently the only one present or excited in the

experiment of Mason et al. (41) That fact cannot be accounted for by

assuming a non-uniform Rayleigh velocity (- type guidance). Anisotropyv

in Y-Z LiNbO3 tends to increase the effective width of the grating, which

could alter the relative excitation of the two modes. It is evident from

the discussion on apodization that the effective width of the transducer

could also play an important role in the relative excitation of grating

modes. A measure of relative excitation is the ratio of excitation

coefficients la 1 /a 2 1 (Fig. 15). In particular, a uniformly apodized
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transducer, 13. 2 X wide, would not, for all practical purposes, excite the

second mode.

The mode excitation formulation can quite easily accommodate a

large number of modes (the excitation matrix is symmetric and thus

efficiently invertible, while the apodization integrals can be computed

using a Romberg integration scheme). A typical grating has an aperture

of 50 X. For a coupling constant X = 1/(26 X), it would support six modes.

Figure 16 shows an amplitude scan at the aperture when the incident

surface wave has uniform apodization.
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CONCLUSION

The theory of mode excitation in SAW grating reflectors of finite

width has helped unravel the mode structure of an open-strip metal

grating. As for the shorted grating, it is believed that some mechanism

(anisotropy or other) is altering the relative excitation of the modes to

produce the observed experimental results. The theory of mode excita-

tion leads to a very simple treatment of apodization which could be of

interest in the design of SAW devices. In particular, if uniform apodiza-

tion were desired, the theory would predict the optimal IDT width which

would minimize the excitation of higher order modes.

Electrical regeneration - whereby the potential induced on a strip

by an incident surface wave in turn gives rise to a reflected surface

wave - has been neglected. It is suggested that electrical regeneration,

negligible in shorted gratings and apparently not important in the open-

strip grating examined here, should be studied to achieve a better under-

standing of multistrip coupler behavior in the stop-band. It is a global

effect and can be incorporated into the coupled-mode formalism through

the addition of appropriate integral terms.
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Fig. 16 Transverse amplitude scan (aperture).
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