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ABSTRACT

This report involves the application of ideas in adaptive stochastic
control to economics.

We investigate the control problem for a linear, multivariable, dynamic
system with purely random (i.e. white) parameters. The quadratic cost
criterion is formulated to make the problem a tracking problem. Since the
parameters are modelled as white stochastic processes, there is no
posterior learning and no dual effect. The- certainty-equivalence principle
does not hold. We find that the extension of the "Uncertainty Threshold
Principle" from scalar systems to multidimensional ones turns out to be
analytically intractable.

Next, we derive sensitivity equations for the above optimal system to
study the effects of small variations in parameter uncertainties on the
optimal performance of the system. These equations enable us to rank
parameters in order of the sensitivity of the performance to variations
in their variances. This makes it possible to locate the "pressure"
points in a model, if any exist.

We then convert an economic policy problem into a stochastic optimal
control tracking problem and analyse it with the equations we have derived.
We study the different elements that enter into a tracking problem and
then discuss the empirical results obtained from the sensitivity equations.
The model we choose for the analysis turns out to be insensitive to
variations in parameter variances which makes it reasonably reliable.
We also analyse in detail the structure of the model and the inter-
dependences of the state and control variables.

General purpose computer programs are included in one of the appendices.

THESIS SUPERVISOR Michael Athans
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CHAPTER 1

INTRODUCTION

1.1 Adaptive Stochastic Control

Though research in stochastic control has progressed in the last

decade, there does not exist at present a general, computationally viable

theory of optimal stochastic control. Richard Ku, in his doctoral thesis

[1], gives a survey of this area. Bellman [2] first introduced the

concepts of 'information pattern' and 'learning'. Feldbaum [3] expanded

on this in his celebrated four part paper on the theory of dual control,

in which he identified the two distinct roles an optimal controller must

play to be truly optimal. The controller must actively try to identify

the unknown parameters of the system and simultaneously try to control the

system. He showed that in such dual control systems there may exist an

inherent conflict between applying the inputs for learning and for

effective control purposes. This introduced the concepts of caution and

probing and the possible trade-off between them, For some insight, the

reader might want to refer to a paper by Sternby [4], in which he solves

a simple dual control problem analytically and compares the optimal

solution with other suboptimal strategies.

Bar-Shalom and Tse have further clarified the concept of dual

control and various related concepts like separation, certainty-

equivalence, neutrality and have also made precise the subtle differences

between closed-loop optimal policies and feedback optimal policies

arising from different information patterns. These can be found in

{5] - 19]. On the last point there is an excellent paper by Dreyfus 110].
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Since the permissible controls are causal, the only information

about future observations that can be used by the controller is the

probability distribution of these future observations. This knowledge

is what makes the difference between a feedback control policy and a

closed-loop control policy. It is only the latter policy that uses this

information to advantage. The feedback law at time t uses information

only upto time t. And it is this difference that makes the dual effect

possible. A control is said to have a dual effect when, in addition to

its effect on the state of the system, it is able to affect the

uncertainty of the state of the system. If the control cannot affect

this uncertainty, then the system is called neutral. If the dual effect

is present, then the control can help to improve the future estimation

and in so doing facilitate the task of the control. In this case the

control is said to be actively adaptive. Precise definitions of these

terms can be found in the references cited above.

It turns out, however, that we cannot solve the adaptive control

problem except for special cases. In fact, the decision problem in

linear systems with unknown parameters is actually a nonlinear stochastic

control problem [7], [47]. There are two ways in which we can make

approximations to make the original problem mathematically tractable.

One is to approximate the optimal law. The second is to approximate the

linear system as having random parameters that are uncorrelated in time,

or white, in engineering jargon, and to obtain the optimal control for

this approximate system which may now be possible analytically. This is

the route we shall take in this report. We shall find that our

assumption of white parameters makes identification impossible which means
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there is no probing action thereby making the problem solvable.

Before we turn to a mathematical description of the problem, let

us first survey the interactions of control theory and economics, as we

shall be applying our techniques to an economic policy problem.

1.2 Control Theory and Economics :

In recent years, several workers have begun to find the techniques

of optimal control theory to be useful to the analysis of economic

problems. Some of the basic concepts of system theory and, in particular,

of stochastic optimal control theory may be able to provide a more unified

and comprehensive analytical framework for posing and solving economic

problems. Kendrick 112], Athans and Kendrick [13], and Aoki [14] have

written good survey articles with extensive bibliographies on the

different areas of interaction between economists and control theorists.

The earliest instances of such intercourse began to appear in the 1950's

with the work of Tustin f15], Phillips f16], Theil 117] and Simon [18].

After this, there seems to have been a total absence of dialogue until

the 1970's. This decade has seen, however, an encouragingly large

number of interactions. Aoki, Chow, Kendrick and Pindyck, amongst

others, seem to have been the more prominent contributors, 119] - [38].

Though there is still a debate about the degree and kind of applicability

of control theoretic ideas and methods, it is significant that the debate

does not question any more the fact of the basic usefulness of control

theory to economics. One cannot emphasize enough, however, the need

for control theorists to thoroughly understand the economics they wish

to apply themselves to. Also, economists would do well to appreciate
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the different tools developed in control theory together with the

limitations of these tools.

The applications of control theory have been in different areas of

economics : various microeconomic problems and macroeconomic stabilization

and regulation problems. Examples of microeconomic applications are

profit maximization in a firm, optimal advertizing levels, analysis of

commodity markets, optimal price setting in the face of uncertain consumer

response, and others, all in a more general dynamic setting. The reader

can find references in the survey articles cited above and in 138].

A natural area for control applications is the analysis of

macroeconomic policy planning problems. Economic policymakers are

interested in.controlling the national economy with the various instruments

they have at their disposal. The economy is, firstly, a dynamic entity,

in which present policy action affects not only the present but also the

future course of events. Secondly, it is essentially a stochastic entity

as well, so that some way of incorporating uncertainty at a basic level

is needed. This makes the regulation of the economy a natural stochastic

control problem,

A number of questions arise in the evaluation of the performance

of the economy under different specifications of the policy instruments.

First of all, we need to specify goals in terms of which this performance

can be evaluated. Once we have succeeded in formulating clearly our

objectives, how do we look for good policies? In general, one might

expect a good policy to coordinate all the available instruments in some

suitable way. How do we compare different "good" policies? Is there an
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unique optimal policy? Many other related questions can be asked.

Optimal control seems to offer a natural, precise framework for addressing

such questions.

Another point, in a slightly different vein, needs to be made

here. System theory can make a far more basic contribution as well. Much

conventional economics is done in a sociopolitical vacuum from which all

traces of conflict, compromise, imbalances of power, human factors in

policymaking and other so-called imperfections have been conveniently

removed. If one is to adopt a realistic approach to real problems, then

a more comprehensive viewpoint at a fundamental level is needed, and to

the extent that science can illuminate our understanding of human

"systems", system theory has the potential to incorporate a larger view.

(This, of course, is not to ratify the argot in the pseudosciences- of

"General Systems Theory" f39] or "System Dynamics" t40].)

Economists and control theorists approach their models with

different attitudes and this has, to some degree, influenced the tools

they use. In economics, many aspects of the models are rather arbitrary

since the sheer complexity of real economic phenomena force model

builders to adopt many simplifying and often unrealistic assumptions for

reasons not entirely justifiable on economic considerations alone. This

is in addition to the fact that economic theory today does not as yet

have a really fundamental grasp of economic phenomena. Conscious of this

arbitrariness to some extent, economists do not take their models

literally and are generally content with establishing qualitative

properties of their models such as existence of optimal decision rules
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and properties of classes of optimal decision rules such as stationarity

and stability. Time has played a relatively minor role in these models,

though recent economics has considered it more adequately.

Engineers, on the other hand, do have a better and deeper

understanding of the engineering systems they model, relatively speaking,

and so tend to trust their models to a far greater degree. They generally

analyse their systems in detailed quantitative terms, and construct and

implement algorithms for optimal decision rules, in addition to studying

the qualitative features of their systems. Most models do take into

account the dynamics of the system.

The focal point of the interaction here has been the traditional

macroeconometric model which, after suitable transformation, can be

recast into the state-space representation familiar to engineers.

Economists usually assume that the main state variables can be measured

exactly. Also, they emphasize the estimation of unknown parameters.

Engineers, on the other hand, usually take parameters as given and deal

with observation errors instead. In 131], Kendrick observes that the

data used by policy analysts to determine monetary and fiscal policies

are known to contain errors. Such data are being constantly revised as

more information becomes available. The magnitude of these revisions

gives us a measure of the relative quality of different macroeconomic

time series. However, economists do not at present use this new

information in determining policies. Fair f11] points out that the

accuracy of the model is generally improved when the actual values of the

exogenous variables are used and when more recent coefficient estimates
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are used. From the engineering side, adaptive control algorithms that

look impossible in an aerospace context may be perfectly practical when

decision rules have to be computed only once a month or once every quarter.

Differences of this kind in attitude and approach help to underscore,

in fact, the common thread that binds both fields : the making of decisions

with imperfect information in an uncertain environment. Adaptive

stochastic control seeks to tackle this basic question. Let us turn now

to a mathematical formulation of the problem.

1.3 The Problem

We shall study the following linear, multivariable, discrete-time

system

x =Ax B u + c (1.3.1)
t+1 t t t t t

where At,Bt are white, Gaussian matrices and ct is a white, Gaussian

vector. Note that the noise in this system enters both additively, through

Ct, and multiplicatively through At and Bt. Note also that all the

random quantities are white. This is a crucial assumption in that it

makes active learning impossible since, at each time instant, the values

of A, B and C are all uncorrelated with the past. However, this

assumption does enable us to deal analytically with uncertain parameters,

representing in some sense a worst case situation. The assumption of a '

Gaussian distribution is actually superfluous. All we need to know are

the first and second order statistics. The actual probability distribution

does not matter.
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This formulation holds a double interest. Firstly, its solution

is of basic theoretical interest. An analysis of this problem can be

found in [1], [41], [42], [43]. This system forms the basis of the

result embodied in the "Uncertainty Threshold Principle" expounded in

[1], [44], [45], [46]. The second point of this formulation is that its

assumptions fit the framework of linear econometric models reasonably

well. The estimated parameters of econometric models are actually random

variables. The use of white processes, of course, may not be quite

realistic, though this assumption makes the problem amenable to mathe-

matical solution, and in addition represents a worst case situation

which may yield useful information for further analysis.

The central result of Ku's thesis t1] that is of relevance to us

is embodied in what is called the "Uncertainty Threshold Principle".

It arises from an analysis of the following scalar stochastic control

problem

Xt+1 = axtt + btut + xt X0 given (1.3.2)

where xt is the scalar state of the first order system. We assume that

the driving term Et is a zero-mean Gaussian white noise with known

variance E. We also assume that the random parameters at and bt are

Gaussian and white with known means a, b, known variances E , E ,aa' bb'

and known cross-covariance Eab. We also have perfect state information.

The optimal control problem is to find a feedback control law

ut Y(xt,t), t = 0,1,2, ... , N-1, such that the expected value of the

following quadratic cost functional is minimized.
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N-1
J = E { Qx2 2+(Qx2 + Ru2) }, F,Q >0, R > 0 (1.3.3)

t=0

The expectation is taken with respect to the probability distribution of

the underlying random variables at, bt ' t*

The solution to this problem is readily obtained by applying the

standard stochastic dynamic programming algorithm. We get the following

equations

*

ut = -Gt xt (1.3.4)

K ( E + ab)
G = t+I ab (1.3.5)
t R+ (Ebb +b 2) Kt+1

K = Q + ( E + a 2 )K - G2[R + K (Zb + ~2)] (1.3.6)
t aa t+1i t t+1i bb +B) 136

KN NQ (1.3.7)

The optimal cost is given by

N-1
J = Kx2  

+ 1 K (1.3.8)
00 T=0 t+it

We note, in passing, that the control law is linear in the state and the

Riccati-like equation satisfied by Kt has a unique solution under the given

conditions.

An inspection of the infinite horizon case (N-+c) yields an

interesting result. Assume that Kt+1 is "large" in the following

equation

K 2  (Z +6-2

K = Q + ( Ea +i 2 )K+ - t+(i ab 2)
t aa t-i R + (E bb + Kt+1
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Then the backward in time evolution of Kt is given approximately

Kt ~Kt+l*.M

where M = E + a2 _Zab (1.3.9)
aa(Zbb + b2)

Clearly, if the threshold parameter M> 1, then Kt blows up. In

fact, it is possible to prove that the unique positive solution to the

above equation exists if and only if M <1. This result, which imposes

a fundamental limitation on the infinite horizon problem, is called the

Uncertainty Threshold Principle. If M> 1, then Kt blows up and therefore

the optimal cost J* also blows up. In physical terms, this principle

makes the eminently reasonable statement that if one's knowledge about

the present and future structure of the system is "very" uncertain, then

there is no optimal action that will keep the cost finite for the infinite

horizon problem. Though the result has been proved for linear-quadratic

systems, it seems reasonable to assume the same qualitative result for

general systems too.

1.4 Structure of Report

In this report we shall pursue two different routes that arise

from the random parameter formulation. The first is to extend the above

described result to multivariable systems. This turns out to be far more

difficult than what it may seem to be on first sight. The equations,

though similar in structure, are far more complicated because of the

appearance of matrices in all the formulas. The first difficulty one faces
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is the question of suitably representing the covariance of a matrix and

then establishing formulas and equations that are expressed in terms of

the means and covariances of the various matrices. We find that it is

very difficult, if not impossible, to derive an analytical formula for

the threshold in analogy with the scalar case. This part of the work is

described in Chapter 2.

The second route is more practically oriented. We know that it

is difficult to control large econometric models with many random

parameters. If we formulate the policy problem in an optimal control

framework, then it would be very useful if we could develop some method

by which to rank these parameters in terms of their influence on the

performance of the system. This would tell us which, if any, parameters

are sensitive and give a clue as to whether better information is needed

if we are to trust the model we are using. This kind of study falls under

the general rubric of sensitivity analysis. A fair amount of work has

already been done in this area, t48] - f63], and this methodology can be

readily applied to derive equations for our case. We first derive

sensitivity equations for optimal random parameter systems. Next we

choose a small econometric model by Abel 147] and apply these equations

to the model. We then analyse the results and comment on possible uses

for this approach. This is the content of Chapters 3 and 4,

1.5 Contributions of the Report

1. Derivation and analysis of the solution to the optimal

linear - quadratic tracking problem with purely random

parameters and additive noise.
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2. Sensitivity analysis development of sensitivity equations

for the above system to rank parameters in terms of their

influence on the performance of the system.

3. Application of above equations to a simple macroeconomic

model of the U.S. economy.

4. Development of general purpose computer programs for the

optimal stochastic control of multivariable linear systems

with white parameters with respect to quadratic performance

criteria, for both regulator and tracking applications.
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CHAPTER 2

OPTIMAL LINEAR RANDOM PARAMETER SYSTEMS

2.1 Introduction:

In this chapter, we shall develop and discuss the optimal control

problem for linear systems with purely random parameters. We treat the

most general case of this formulation the problem is multivariable and

includes additive noise, and is stated as a tracking problem. We also

state the 'Uncertainty Threshold Principle' for one-dimensional systems

and consider some of the difficulties involved in trying to extend it to

multivariable systems. Here we present one way of representing

algebraically the solution to the multivariable control problem. Some

empirical results are presented to demonstrate the behaviour of such

systems. This chapter will try to lay the groundwork and motivation for

the next chapter.

In the next section, we state the problem as a multivariable

linear - quadratic random parameter tracking problem. In section 3,

we present the solution of the problem. Since the actual derivation is

slightly long and complicated we choose to present it in Appendix A.

In section 4, we discuss the solution of the problem. Next, in section

5, we demonstrate the Uncertainty Threshold Principle developed by

Ku [ 1] for further insight into the problem.
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2.2 Problem Statement

Let us begin by stating the- problem. Consider a multivariable

stochastic linear dynamical system with state xt and control ut

described by the following difference equation

=t+ AitEtutt +c t(2.2.1)

x given; t = 0,1,2, ... , N-1
-o

tFeR ,u-t E Rm, A ERnxn, Bt eR , at e R

Henceforth we shall not underscore vectors or matrices for greater

clarity of notation. We assume that the additive term ct driving the

system is a vector random process which is white and whose mean vector

and covariance matrix are given. That is, we assume that

E{ct} = zVt

1 if t=T

E { (c - c) (c - E)'} = Z 5 6 =
t T c6tT tT o if t$T

where EC is an n x n matrix.

Assume that At and Bt are random matrices which are also white with

given first and second order statistics. We assume that

E{At } A

E{ B t

Here we face the issue of how to represent the covariance of a matrix.

Just as the covariance of a vector is a matrix, so the covariance of a
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matrix is a fourth-order tensor. We can, however, express this tensor

as a higher dimensional matrix. There are many ways of doing this, an

obvious one that comes to mind immediately being the Kronecker product.

The manner of representation should evidently be dictated by how we wish

to use the covariance. We shall find that, for our purposes, the most

suitable representation is obtained by using the simple notion of a

stacking operator, that is, an operator that stacks the columns of a

matrix into a.single vector. Mathematically, if we have a p x q matrix A

whose columns are denoted by a i.e.

if A = (a1 a2 a3  a)

qq

stacks the columns of A into a single vector of length pq.

The definition of covariance now follows quite readily

Cov (A) = E { [ S(At) - S(A)] [ S(At) - S(71'1

An immediate advantage of this representation vis-h-vis the Kronecker

product is that it is symmetric.

To return to our problem, we assume that

E { [ S(At) - S(A) ] f 5(A) - S(A) ]'} = EA 6t

E { } S(Bt) - S(B) ] [ S(BT) - S(B) ] = EB 6tr

E { [ S(Bt) - S(9) ) { SCAT) - S(X) ]'} = EBA 6tT
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We also assume that the following cross-covariances are given

E {[S(A t) [ 
) cT - c ]}=EAc 6tT

E{ [S(Bt) - S(B) ] c -C]' = Bc 6tT

All the covariance matrices must, of course, be positive semi-definite.

In addition to this, they must also satisfy the constraint that the

correlation coefficient for each pair of parameters must lie between -1

and +1. Note that all the given statistics are time-invariant - this

is not really a restriction. The generalization to the nonstationary

case is immediate. Note also that we have made no assumptions about the

actual distributions of the various random parameters.

For any optimal control problem, it is essential to specify the

information available for control, that is, the information pattern.

Generally, in stochastic control problems, utilizing observations

improves the performance over the open loop controls because using

measurements on the system allows one to reduce the uncertainty. A

causal or non-anticipative control cannot obviously use future

observations, but it can, however, use the given a priori information

about the future probabilistic behaviour of the system and measurement

dynamics, or, in equivalent terms, it can use a probabilistic description

of future observations.

For our formulation of the problem, the information pattern is

especially simple, The whiteness of each component of noise, multi-

plicative as well as additive, in the system, makes any learning

impossible, and so renders the control law incapable of affecting future
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uncertainty. The law does, of course, take present uncertainty into

account.

We assume perfect state measurements. We also assume that the

admissible controls are real-valued and of state feedback type,

'ut =Y(xt,t)', such that they depend only on the given a priori

information and measurements upto time t.

The optimal control problem, then, is to determine the control

sequence ' ut = Y(xtot), t = 0,1,2, ... , N-1 ', that minimizes

the following quadratic cost criterion

1 N-1

J = E X [(xt - i )'Q(x ) + (ut - i )'R(u - i )]
t=0 t t - t t t

+ (XN - NQN N) 1 (2.2.2)

where { {t} are the target state and control sequences

respectively. These are, of course, also specified at the beginning of

the problem. Thus, the problem is what is called a 'tracking' problem in

the literature. Note that the weighting matrices are taken to be

constant for simplicity but the generalization to time-varying matrices

is quite direct.

We now proceed to solve the problem.

2.3 Problem Solution

The solution to the optimal control problem stated above can be

obtained by applying the method of stochastic dynamic programming. Since

the complete derivation is somewhat lengthy, we shall relegate it to
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Appendix A and merely state the solution here.

The control law turns out to be a linear state feedback law, as

one would expect. The equations are

u = Ltxt +1Mt: (2.3.1)

where the gain Lt is given by

Lt = - [ R + B'Kt+1 B ]l [ B'Kt+iA ] (2.3.2)

(We use the notation B'K+B to denote E { B'K+Bt} , etc. See
t~l t t+l t

Appendix A)

and where

m t = - [ R + B'Kt+ 1 B ]l [ ,B'Kt+1c + B'pt+ 1 - Rt] (2.3.3)

The matrix, Kt, in the above equations, satisfies the following Riccati-

like difference equation

Kt = Q +A'K A +[I B'K A ]'- L (2.3.4)

with the terminal condition:

K NQ(2.3.5)

The vector, Pt, satisfies the following equation

pt = - t + A'Kt+c + A'pt+1 + [B'Kt+1Al' * mt (2.3.6)

pNt cn

The optimal cost can also be evaluated and turns out to be:
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* 1
J x'K x + pI'x + g (2.3.8)

2 o 000 0 0 0

The scalar g0 comes from the following difference equation

11 1 -
g9 .- IQXR +-i1'RWit+-Ic'IK C+ I
tt t Rt +2 t+lt+

+2[B'K t+c + Bi'p t+1 - RUt]' mt + gt+1(2.3.9)

NTd XN (2.3.10)

The state of the optimal system is now given by

xt+1= (At + BtLt) xt + Btmt +c t(2.3.11)

Since xt is a random variable, so is the control ut, though the

gain Lt and the driving term mt are deterministic.

Note, however, that our a priori information is in terms of means

and covariances of At, Bt and ct, whereas the solution is expressed in

terms of certain expectations of At, Bt, ct. We should like, therefore,

to represent the solution in terms of the various means and covariances.

As these equations are a bit complicated, let us first look to the

scalar case for some insight. Let's consider the scalar system

X = atx + b u + c (2.3.12)t~lt tt tt t

where at, bt, ct are now scalar random processes. The Riccati-like

equation for the scalar Kt is

KQt Q + a2 K t+l + (abKt+ ) Lt
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Lt = - (R + b2 K)t+ )~(abK)t+

ab . Kt+i (2.3.13)
R+W K t+i

Therefore,

(ab)2 K2

K = Q + a2.K -
R + b2. K

t+

But

E { a 2 } = E +5N2

E { b 2} = Eb + 2

E {ab} = Zba+

Hence
(Z + 5)2K2bat+

K = Q + (Ea+ 2)K - ba t+l (2.3.14)
R + (Eb + b2)Kt+1

So now we see how the covariances and means of the various random

parameters directly influence the evolution of Kt. In order to represent

the solution to the multivariable case in a similar way we need to make a

few definitions.

(a) e %a vector of appropriate dimensions with all zeroes except

for a one in the i-th place.

0
0
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(b) E.. % a matrix of appropriate dimensions with all zeroes except
3

for a one in the i.,j-th place.

E.
i33

o .. o0... o

0 .

L o .. 0 ... 1

Pk o a block matrix with n columns

of rows (usually either n2 or mn) with

the k-th block is the identity In, and

'n' refers to the number of states and

controls. This is a generalization of

0 0

0 0

1 0

O 1

and an appropriate number

blocks of nxn such that

the rest are zeroes. Here

'im' to the number of

e..
1

(d) k 2"jthe (k,Z)-th block of size nxn in covariance matrix E
A A

A similar definition holds for cross-covariance matrices too.

(e) kZ r the (ij)-th element of the (k,P,)-th block of ZA i.e.
A..

iJ

ZA. = E [ (aik - aik) (a. - W ) ]
13

Note that., from the above definitions, we have,

A k A Z

(c)
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We now have the following representation

A'KA = E{A'KA}

n n
tr(KP EA P) E + A'KA

k=l Z=l 9

E { A'KA }

E l (A'KA) EkZ k

= E [ (AIKA)kZ ] EkZ

where (A'KA)kt is the (k,L)-th

element of (A'KA)

B [ (A'KA)k ] = E t a' Ka ]

where ak, a are the k-th, Z-th columns of A respectively.

B [ a' Ka.]k 2
i,j

a. K.. a.P ]ik a. 3

K.. E (a.ka.Z)

K.. ( i + a.ka.Z)KJ Aj k ik-gj ZA.
13

K.. EkZ +
13 A..13k .

i ,

- tr K + KA k Z9

a. K.JaZ
iknce K m

(since K is symmetric)

- tr (K PI At) + a1 Ka

Proof :

(2.3. 15)

But

L,J

1,J
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Therefore,

tr (KPkIEPz) Ekz + (A' KA)k9Ek9

n n
= I tr (KPZAPZ) Ez + X'KA

k=l L=l
as required

The same expansion holds obviously for the other cases as well.

Thus, we can rewrite the solution to our optimal control problem in the

following way :

= Ltxt + mt

m m

= -[R +
k=l =l

(2.3.16)

tr (K + PE P ) Ek + 'Kt+l
t-'l kB Z k ~

m m
[ ZZtr (K I P P ) E
k=l =l t+l k BA.

m m

k=l i=l

+ t+ 1A (2.3.17)

tr (K P Bp) Ek + 'K B]t+l k B Z k t+l

tr Kt+l k Bc k + 'Kt+l t+l

n n

k=l R

m

k=1

n

t k+ 1+k=l

- Ru t

(2.3.18)

tr (K+IAp) Ek + A'K A]+
t~l k Z kk t+l

mp+
I tr(Kt+ EBA p) EkE + 'Kt+A]'.Lt

(2.3.19)

tr (K t+PA)e + A K c + Ap +

m m

k I =X

k=l 9,=l1
t+1 k BA ) Ekz t+ j' mt

(2.3.20)

A'KA

u t

Lt

mt

Pt

Kt
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g= -x' QS +-u' Ru
1 Q2 t t 2 t t

+ -[t r (K Z + EC'K ] + V p
2 t+l c t+1 + t+1

m
+ i[ I tr (K kEBCe ek +l'Kt+ m

2 k=l ~ l B k+ t+l
1=

+2 'pt+ -Rt m t1 (2.3.21)

KN 
(2.3.22)

PN = QxN (2.3.23)

gNI= 
(2.3.24)

--x'K x + p'x + g (2.3.25)
2 o o o 000 0

2.4 Comments

Let us briefly note some of the salient features of the solution.

Figure 2.1 shows the overall structure of the optimal feedback system.

Since u* = L x + mt , the optimal controller is a linear and time-t t t

varying transformation of the state. This is so even if the system is

stationary and the cost-functional is time-invariant.

The driving term 'mt' in the control performs the function of

neutralizing the mean of additive noise term ct, whereas the gain Lt

does the actual steering of the system, as can be seen by the fact that

Lt is independent of ct. Looking at Lt more closely, we see that when

Bt is more uncertain, the'controller is more cautious, as it should be

since the control ut affects the state xt through Bt. If there is,

on the other hand, a high correlation between At and Bt, then the

control is more active since it can better regulate the system. This is
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X
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Fig. 2.1 Structure of the optimal feedback controller
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so even in the extreme case where B = 0, that is, when the system is

'most' uncontrollable on the average, since the controller can use the

information about the high correlation in a useful way. When the matrix

At is uncertain, then, of course, the controller will be more active,

though the degree to which it will be so will depend on the other terms

in the expression, since Kt appears in both the numerator and the

denominator. Similar observations can be made for the various covariances

in the equation for 'mt'. For example, if Bt and ct are strongly

correlated then the magnitude of mt is greater, as it can more

effectively cancel the exogenous driving term ct,

We note also that the certainty-equivalent control law is

different from the optimal control law. It can be obtained from the

optimal law by setting all covariances to zero, Basically, the optimal

control takes into account the uncertainty in the parameters.

The optimal control is without any posterior learning. This,

in fact, we had already anticipated when we defined our information

pattern. The random matrices in the system equation are white and

therefore unidentifiable. It is as if at each new time instant, the

system restructures itself anew according to some unknown (and not

necessarily constant) probability distribution, whose first and second

moments, however, are known to us. The control system must adapt

itself to this visceral change in order to minimize the cost-to-go.

The whiteness of the noise does not permit us to reduce future

uncertainty by present control action, which is to say that the control

does not perform a dual role. Note however that the optimal decision
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certainly uses a priori knowledge of future randomness. That is, we

know and make use of the a priori knowledge of the various future means

and covariances. The problem and its solution are changed if we exclude

knowledge of future statistics from the information pattern.

Physically, of course, this is quite unrealistic, and we ought to

mention some ways in which this choice of modelling a stochastic system

can be useful. In reality some learning is always possible and systems

are never so insistently white. If we assume that the parameters are

unknown but constant, we know that leads to the well-known dual problem,

which does not admit of an exact analytical solution. With our assumption

of whiteness we face a problem that is analytically tractable and that

leads to a control that can be easily implemented. Moreover, economists

have argued that in economic systems, it may be desirable to treat

unknown parameters as purely random to obtain a consequent caution in the

control, especially when Bt is not known accurately. Athans and Varaiya

[44] have argued that the control of white parameter systems represents

a worst-case situation in which the ratio (for scalar systems)

K o(0 E: s0, oE 0, E A0)
a b ba

a b ba

provides a measure of the deterioration in performance due to the unknown

parameters, which can provide a guide as to whether sophisticated

parameter estimation and adaptive control algorithms are warranted.
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2.5 The "Uncertainty Threshold Principle"

In this section we examine the asymptotic behaviour of linear

random parameter systems. We assume here that all means and covariances

and the weighting matrices in the cost functional are constant.

Let us first consider the simplest situation of scalar systems

in a regulator problem type setting without additive noise. We have

x = atx +btu x given (2.5.1)
t+1t t t t0

t = 0,1,2, ... , N

Here, at and bt are white with given means, variances and covariance,

all of which are constant. Note that the term ct is absent.

1 N-1
J = E{k [ Qx4 + Rufl + Qx }(N2.5.2)

Note that we have no non-zero trajectories to track.

The solution to this is obtained from our earlier general solution

and is given by :

u* = Lx (2.5.3)t~t t

L =Kt+l ab+
L tK+- ( 2(2.5.4)

R + (Zb + b ) Kt+1

KK=2+ (Z + a 2

K Q + K (a +E) - l ab (2.5.5)
R + (Zb +b) Kt+1

K =NQ (2.5.6)

1 2

J=o X K0 (2.5.7)
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This set of equations has been investigated by Ku [1] and gives

rise to what is called the Uncertainty Threshold Principle. This is

basically a result regarding the stability of the nonlinear difference

equation for K t Its implications are discussed fully in Ku [1]. Here

we shall merely give an informal expositional argument and then see what

can be said for the general multivariable case.

In Eq. 2.5.5 assume that Kt+1 is "large". Then we have the

approximate relation :

Kt % m . Kt+1

where 'in', the threshold parameter, is given by

M = E + 2_ ab C2.5.8)
aEb

If M > 1, then obviously Kt blows up as N -+ o , so that a steady-state

solution does not exist in this case. In fact, the uncertainty threshold

principle states that for the infinite horizon problem, a necessary and

sufficient condition for a solution to exist is m < 1.,

If Kt blows up for the infinite horizon problem, then so does the

*
cost J which means the optimal control problem has no solution. This

makes good intuitive sense too, because if there is too much uncertainty

in a system then there is little one can do to control its evolution

over a long period of time.

We would expect a similar result to hold for multivariable systems

as well. However, it seems that a neat mathematical expression for the
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threshold is not possible owing to the complexity of the equations

involved. A special case of multivariable systems has been explored by

Ku [1] in which the eigenvalues of the A matrix have to satisfy a

threshold. The general case, in which we consider the multivariable

tracking problem with additive noise is, as one would imagine, hopelessly

complicated. Here we must consider the stability of three equations,

for Kt' pt and gt, to determine whether the infinite-horizon cost remains

finite or not.

2.6 Conclusion

In this chapter, we have stated and solved the optimal tracking

problem for a linear-quadratic system with purely random parameters. We

briefly noted the salient characteristics of the 'Uncertainty Threshold

Principle' and found that the multivariable case presents formidable

analytical problems which may make it impossible to derive a mathematical

expression for the threshold.

Now that we have the complete solution, we can explore, in the

next chapter, the derivation of the sensitivity equations for this

problem and then apply them to a macroeconometric model of the U.S.

economy.
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CHAPTER 3

SENSITIVITY EQUATIONS

3.1 Introduction

In this chapter, our main objective will be to develop equations

to analyse the sensitivity of linear systems with random parameters to

variations in parameter uncertainties.

The concept of sensitivity is a very general one and 'sensitivity

analysis' is a fairly well-developed tool. In any real system, there is

always some uncertainty associated with the exact values of its parameters,

either because of imperfect information or because of approximations made

in the modelling process or possibly because of some inherent randomness

in the behaviour of its parameters. This obviously affects the efficacy

of any control law, whether open or closed loop, as well as the accuracy

of any simulation of the system. If the behaviour of a system is

dramatically different as a result of variations in parameter values,

then we say the system is very sensitive to such variations. This gives

us some useful information in assessing the reliability of our efforts.

An excellent example of such a situation is provided by the now infamous

'Limits to Growth' report by the Club of Rome f48]. Sharply different

qualitative results, such as lack of evidence on which to base a

prediction of the collapse of world population, can be obtained by

appropriate combinations of small changes. This illustrates the caution

that is necessary in basing policy judgments on sensitive models.
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There are many different questions one can ask in this area of

sensitivity analysis. One basic question is how perturbations in the

parameters affect the optimal performance of the system. If the optimal

cost or optimal welfare are significantly altered as a result of small

variations in the parameters, then obviously our analysis and policy

recommendations are not very reliable. This kind of study is probably

most useful in dealing with large economic and socio-economic systems,

in which little is known about the actual structure of the system, and

in which there is almost always a great deal of uncertainty about

parameter values,

For systems with parameters that are modelled as being deterministic,

the standard procedure is to derive sensitivity equations with respect to

variations in the parameter values themselves. This has already been

done and is readily available in the literature.

For systems whose parameters are modelled as random processes,

however, it makes sense to look instead at the effects of variations in

the parameter uncertainties, that is, the variances and covariances of

these parameters. This leads to a slightly modified set of equations,

though the basic approach remains the same. Sensitivities may either be

absolute, or relative to the parameter and optimal cost values, and it may

be useful, in general, to look at both sets of numbers. We can even

rank parameters in order of their sensitivities which may help to

identify the 'pressure points' of a system.
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We shall first derive general sensitivity equations from the

optimal control solution developed in the previous chapter. Next, we

briefly describe a small econometric model of the U.S. economy and do a

sensitivity analysis of the model. We end with a discussion of the

results and possible uses for a sensitivity analysis and ranking of

parameters.

3.2 Problem Statement

We are given the following linear multivariable system

xt+1 = At t +Bt ut+C tx =i 0(3.2.1)

t = 0,1,2,. N-1

We have perfect measurements of the state. The elements of the matrices

At, Bt and the vector ct are all random variables. Each element con-

stitutes a white stochastic process with given mean and variance. That

is, we are given the covariance matrices EA' B' ' ZBA' ZBc' Acwhere

each covariance matrix is defined by the convention described in

chapter 2, and we are given the mean matrices A and B and the mean

vector c. We choose to minimize the standard quadratic cost functional:

N-1
= E { [(xt -t )Q (x-t) + (ut t)R(ut t

t=o

+ (xN - 'Q(xN -N) (3.2.2)

The sequences {id {t} are, of course, given.

This is so far only a restatement of the optimal control problem

considered in the previous chapter. Its solution has also been given there.
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Now we would like to pose the following question. Let a denote

any element of any one of the six covariance matrices. The question is

how sensitive is the optimal cost to small variations in a ?

If J denotes the optimal cost, then the answer is given by the

number - . Here the symbol is used to mean 'evaluated at the

given values of the various means and covariances'. This number is an

absolute measure of sensitivity. If there is a small absolute change 6a

* *

in a, it induces a corresponding absolute change 6J in J , whose

magnitude is given by the relation

*

*3J 0 sa (3.2.3)

Do

If is large, then the induced change 6J is also proportionally

large. It is in this sense that Di is an absolute measure of
0

sensitivity.

We can also obtain a relative measure of sensitivity by noting

that

5J _- 3 a I a
DoU-(3.2.4)

J* 9J a 7J

This number, -L.C , tells us how a percentage or relative change

*

in a is transformed into a percentage or relative change in J . In

general, the appropriate measure will depend upon the application at

hand, and in some cases both measures may provide useful information.
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For now, let us turn to deriving equations that will enable us

to evaluate the quantity - .

3.3 Derivation of Sensitivity Equations

The derivation of sensitivity equations for a linear random

parameter system is quite straightforward though the final equations are

somewhat cumbersome to use. We first restate the solution to the optimal

control problem (see Chapter 2).

U* = Lt xt +m (3.3.1)

Lt = - f R + B'Kt+B + JB B'Kt+A (3.3.2)

mt = - R + B'Kt+lB ] [ B'Kt+ 1c + I'pt+1 - Rt] (3.3.3)

Kt = Q + t A'Kt+lA 3 + B'K 4t+1A Lt (3.3.4)

Pt = t + [A'Kt+1c] A+I'pt+ + [B'Kt+ A] mt (3.3.5)

1 - -l 1
-x -x' Q x +-u' Ru -+-[c'K c] +C'p

=92 t t 2 t t 2 t+ t+l

+-[B'K+c + B'p+- Rut m + 1 (3.3.6)2 t~l t+1l t t-

KN = Q (3.3.7)

PN = QxN (3.3.8)

1..
gN2 X XN (3.3.9)

* 1
J - x'K x + p x + g (3.3.10)2 o o o 0 0 0
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The evolution of the state is now given by :

x = (At + BtLt) xt + Btm + t c X = (3.3.11)

tJ*t 3K0  
3P 3g

In order to calculate y J*we need to calculate3-
3L 3m 3ay 3a'3a'

which in turn require us to calculate 0 0. Let us, therefore,

differentiate the appropriate equations.

Preliminaries

Before we actually carry out the differentiation let us state a

few simple algebraic results in order to make the derivation a little

clearer.

(b) trA = tr
3a c (3.3.12)

(b) Let G be a random matrix with mean G and covariance EG and let H

be a deterministic matrix and some function of a, where a may be

an element of EG. Then,

-- [G'HG] - k tr (HP'EGPZ) Ek+ G'HG]3 c 30 l k G kU

tr (HP Ep2 Eki + (GHG)

2H + 311-
= ~ tr(-P'E P E +'

k,9Z 3a k GV I + 6'-G

+ tr (HP G PZ) Ek
k.9 k)kEkz

Let f ( G'HG) tr3 HPG &,HE+ G'-d (3.3.
k ti(n ky G9akZ ss rtt

We make this definition only to save us some repetitious writing.

13)
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(c) Let r = 1 + quotient [ ]
n

s = 1 + quotient { j
n

u = 1 + remainder [ ]
n

v = 1+ remainder [ - ]
n

where i=1,2, ... ,n 2 ; j1,2,...,n2

Let a. . be the (ij)-th element ofZG
13G

Then,

= E.. + E.. E. .6..
13 31 13 13 (because E G is symmetric)

Therefore,

DEG
P PP= p E..P + PE..P - P'P E..6..p
k 9a. k ut k9i Z k i i

= E 6 6 +E 6 6 -E 66 6uv6krt s +Evu ks 9r 5uv kr Zs 13

which follows from the fact that (i,j) must belong to the (k,Z)-th

block of E. . for a non-zero product. Hence
1J

ZG
tr (HP' - P ) E

k,Z k 1Da3k

= tr (HE )E +tr (HE )E - tr(HE ) E 6..uv rs vu sr uv rs13

= h'vE + hUvE - hvuE 6.. where hvu is the (v,u)-thrs sr rsij3
element of H, etc.

(3.3.14)

For i = j, this simplifies to

hvuE
rs

a.G

3
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(d) (AA~1) .= (I) = 0

_A -1 9A 1

-A .A +A. =0

DA -l A -l
A .-. (3.3.15)

Derivation

We shall now differentiate the optimal equations stated above.

There are six separate cases to be considered a.. can be the (i,j)-th
13

element of any one of EA' B' 2' 2 22BA' .Ac. We shall only look at

A' B' BA'

Let St = [ R + B'Kt+B]

t tKIt

t
1J

DL
t9

1. = . 9 [. R + B'Kt+1B ] . ( B'Kt+1A)
13 13

- (R + B'Kt+1 B) (B'Kt+A)

13

St - . St - B'Kt+ 1 A -Stg (B'K t+A)
13 i

S (B'K B) S . B'K A - S (B'K A)
t 9c.. t+1 t t+1

St f(B'Kt+B) + tr (Kt+1 P) Ek tS B'Kt+A
13 3-l +1 r 9k2cyi kt ~

- St ~1[ f(B K t+1A) + tr (Kt+1 kBaBA Pk) E k
k,BP1.

(3.3.16)
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(a) a. cE
ii A

13
= 0

BA
9a1.

=-0

Therefore,

= st-1 f(B'Kt+iB).St. -1 (BKt+iA) - St. 1 f(B'Kt+iA)

= (R + B'Kt+iB) 1. ( tr (P IPE P) E + B'PtB)
k~z t+1 k B 1 kZ ~

- 1(R + B'K t B) - (B'K l A)

- (R + B'Kt+iB) 1 ( I tr (P Pt kZBP)E

k,Zk t+1 k BAZk
B'P t+A)

(3.3. 17)

(b) . cEB BA

1)

=-o

Therefore,

9Lt

Da.
ii

-1 vu -1A -1
= S t [f (B'Kt+1B) + k t+i Es]S t -.(B' Kt+iA) - S t -f (B 'Kt+iA)

= (R + B'Kt+1B) 1( tr (Pt+ I k kB)E + + Pt+1 +
k.9Z t+l kEBP9E +k wpt +

vu -1
kt+i Ers. (R + B'Kt+iB) -. (B'Kt+1A)

- (R+B'Kt+B)Y (Z tr(P 1 PkZBAt+PZ)+B'P
t1 kZ L'k At+1

(3.3. 18)

(c) a E E BA

= 0
DEB
Icy. .

1J

3L

ijy .
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Therefore,

=c St 1 -.f([B'Kt+iB).St'. (B'Kt+iA) - St1 [f(BYKt+iA) +

vu
k E]
kt+1BEs

(R+B'Kt+B)1 ( tr(PP+ k B P k + t+

(R + B'Kt+4 B) . (B'Kt+iA)

- (R+B'Kt+1B)1 [L tr(Pt1 PkZBA )Ek + +P
k,ZBt+1

vu

+ t+1 Ers
(3.3.19)

Kt
2. 9a..

13

9
9a.

1J3

(A'Kt+ A) + (B'K+A).L
90. t+1 t

13

+ (B'K t+A)

= f(A'Kt+ A)

+ [f(B'Kt+ A) +

+ (B'K t+A)'

(a) cx. eA

---BA

13
- 0

tr (KPt+ ' kP Ekt~lk
9cm.

tr (K + Pk
ti-i k

92BA

9cJ.
R) EkL]

3L
9c .

13

13
= 0

3Lt

13

Lt

(3.3.20)
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Therefore,

vu

f(A'K t+A) + k Bt+Ers + [f(B'Kt+iA)] . Lt + (B'Kt+iA)'.
ij

Therefore,

Pt = tr (P+IEk AP)E
kZ t+lkA

+[ tr(P+ k BA EkL

vu

+ t+1A + kt+1 E
rs

3L
-B't+PA] . Lt + (B'K t+ A)'.

13. .
1]

(3.3.21)

=0 BA

ij

Therefore,

3K = f(A'K t+A) + tf(B'K t+A)] . Lt + (B'K t+A)'.

Therefore,

= tr(Pt+ P

t+1,k
A p)EkZ +Alt+1

+ [ tr(P + P BA P )Ek + t+11]

k~k t+l k BA ZId k A

+ [B'Kt+'A] .Lt

13

a Kt

1j

(b) CL.

13
=0

Pt

aL
t
I:.

aa

Lt

(3,3.22)

e EB

I
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(c) 5 Z BA

3EA

13
= 0 = 0

Therefore,

3Kt

Si
= f(A'K A)

t+1

vu
+ ff(B'K A) + k B E . Lt+1 t+1 rs t
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I asi :
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(b) a.E. Z
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t+1 k

'K t+A)' .mt

.a
t+1

ek ] +A' +p

a3 BA
a13

Ekz] .

(a) ci

Ac

Therefore,

apt

13

e A

= 0
aEBA

ac..
13

=-0

- [ tr(P p'I E ) e
k t+l k Ac k

+-A'P c ]
t+1

+Pt+1 kZBAPZ)E + BI'P A

3mt
+ (B'KAt+A'

t+

4. t

13

(3.3.28)

_3pt+1
+ A' -a-

13

(3.3.29)



53

(b) a. c Z

- BA

1J

-o

Therefore,

k
k

tr (Pt+ k Ac k + + ] +

+ [ 9tr(P+ k BA9) )EkZ
k,9. t+

+ ( B'K A )'.t+1

t+1
3a.
1]

+ t+1

amt-t
3a..

1J

(c) a

3
ZAc

r ,

Therefore,

[ tr(P P' E )e
k t+l k Ac k

+ Z tr (P + Pk

k,RZ t+1 k

vu

t+1 Ers

+A'P c]
t+1

2BA z)Ekz

9Pt+1

13

t+1

9m
+ (B'K t+A)'.

13

KZAc

13

c.
13

(3.3.30)

9Pt

13

(3.3.31)

E B



54

5. t
93..

3J

1
gy(c'K c) + c,

30- t+1

9p
-t+1
3.
lj

(B'Kt+c + 'pt+

+
a
T (B'K c
i. t+1
13

- Rut)? m

+ 'Pt+ - Rut)'

= .-[ f(c'Kt+ic) tr(Kt+1 -C)

9a..

+ 2 f(B'Kt+ic) + I tr(K
k t

+ (B'K C + B'p2 t+1 t+1

- I
9p t+1

+ +1-

ai

+1 k Da..
1j

3m
-Ru)'d -t

a..
13

92
-c
9c.

9Bc

= 0 _Be
3J

Therefore,

=tr(t+1 c t+ 1~ + '

+ tr(Pt+ I kB +BPkc + B'
k t+,PkxBcek + t+1

B'K c + Bpt+1

3pt+1

IJt

' mt gt+1
- R id" +.

13 1

(3.3.33)

3m
t

G..
13

+ t+1
93..

13

(a)

apt4 '
33k + BI

3t+

.ift

(3.3.32)

_0

3g2t ap
+1

ay..
iL]

(b) EB

3a..1

9 EBc

13

0

E E



55

Therefore,

gt

D3
1
I

- - ._ 3t+1[ tr(P+ c) + c'P+1 c ] + C'
t+1t

+ .[ tr(Pt+ k Bc k + 'Pt+

B'K c + Bpt+1 t+1 - Ru
t

+ pt+1

13

3m
-t
3c. .13

3g
+ t+1

13

(3.3.34)

(c) a. .
13

-c

3cr.
ii

E EBA

.Bc

'3

Therefore,

- tr(Pt c) + l 'Pt+l c + c, t+1
13

+ [ tr(P+1, Z k)e + BPt+E + B,
k k Bc k l

+ 1 B'Kt c + I'p
3mt

- u -3cr.

13

3pt+1 
.

3g
+- t+1

3c..
'3

3K
6.

13

3
2PN

3cr..
13

=0

32-9i

=-0

=-0

=-0

(3.3.35),

(3.3.36)

(3.3.37)

(3.3,38)



56

* @KDp'g1J , o o0 07. D- 2 1 X x + -- X + --- (3.3.39)
3(y 2 0 ..C o 3 .. o 30..

Evaluating this number finally gives us an absolute measure of the

sensitivity of the optimal cost to variations in parameter uncertainties.

As we mentioned before, we can also calculate from this a dimensionless

number, a relative sensitivity, for each parameter, viz.

* afl
GJ ij

JJ
We have, at this point, completed our derivation of the cost

sensitivity equations. It is also frequently useful to look at the

sensitivity of the optimal control law to parameter variations, Though

the transformation itself in the optimal law is deterministic, the control

is random because the state is random. Here again, therefore, it is more

meaningful to calculate the sensitivity of the covariance matrix of the

optimal control to parameter uncertainties. Mathematically, we would

ttlike to calculate 90 where Eu t is the covariance matrix of the

optimal control ut*. We have

ut = Ltx t + mt

Therefore,

E = L tL' where 2t = cov {x } (3,3.40)U ttt t t
t

We need, therefore, to calculate Zt. This turns out to be a gargantuan

mess, so we shall not bother to reproduce it here, and merely indicate

the source of the complexity.
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Xt+= (At + BtLt) t + Btmt + ct (3.3.41)

The point is that At, Bt and ct are themselves random, so that

calculation of variances becomes doubly complicated. Some relief is

afforded by the fact that, at each time instant, xt is independent of

At, Bt and ct, but even so, the complexity is too great to warrant a

derivation here.

3.4 Computer Code

In Appendix B, we code the solution to our stochastic control

problem and the sensitivity equations we have derived in this chapter.

More precisely, we code Equations (3.3.1) - (3.3.11) and (3.3.16) -

(3.3.39). Though all the quantities represented in these equations are

not printed out, they are all used in various intermediate calculations,

and so can easily be made available by minor alterations in the program

if the user needs them. The program does not contain sensitivity

equations for a c Ec' 2 Bc' ZAc. Since this program was used for a

specific application it also has a particular specification for the

target sequence {i -'} which can again be altered by the user. No

sequence { u' } was needed for this application because we used R = 0.

The user must provide both target sequences, the values for the Q and R

matrices, the values of the means and covariances of A, B and c, and the

time horizon N.
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3.5 Conclusion

Now that we have derived the relevant equations let us see how

we can use them in analysing a specific model. For this we choose a

small econometric model of the U.S. economy and analyse it in the next

chapter.
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CHAPTER 4

SENSITIVITY ANALYSIS

4.1 Introduction

In this chapter, we shall use the equations we derived in the

previous chapter to analyse the sensitivity of a small macroeconomic

model of the U.S. economy. We first describe the model, then recast the

equations into the appropriate optimal control framework, and finally

present some simulation results with a discussion of their interpretation.

Let us begin in the next section with the model.

4.2 A Simple Macroeconomic Model :

We shall describe, in this section, an especially simple macro-

economic model of the U.S. economy. This model was developed and

estimated by Andrew Abel [47] to analyse the relative effectiveness of

monetary and fiscal policies in an optimal control framework.

It is based on real quarterly data covering the period from 1954/I

to 1963/IV, which corresponds roughly to the period between the end of

the Korean War and the beginning of heavy U.S. involvement in Vietnam.

It is an extremely small model, consisting of only two endogenous target

variables, consumption Ct and investment It, and two instruments,

government expenditures Et and the money supply Mt. We assume that, in

the short run, government authorities can control Et and Mt in real terms

since prices do not change rapidly enough to seriously neutralize their

actions. Over the time period covered by our data, the rate of inflation

was low enough to make this assumption plausible.
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This model is based on a closed economy. Desired consumption is a

linear function of GNP, and the realized period-to-period adjustment in

consumption is subject to a partial adjustment factor

Ct = aCt-1 +bIt + bEt + d (4.2.1)

The structural equation for investment is based upon a modification of

Samuelson's private consumption accelerator. We posit that the desired

level of the capital stock is a linear function of consumption and that

the realized adjustment of the capital stock is subject to a partial

adjustment factor. Since gross investment, It is defined as

Kt - (1 - D) Kt-1, where D is the depreciation rate of the capital

stock, we have

I t et - (1 - D)eCt-1  t- 1 +g

In addition, we assume that the level of gross investment is linearly

related to the money supply in order to capture some of the effects of

interest rates upon investment

It = e't - (1 - D)e'Ct- + f''t + hMt + g' (4.2.2)

The estimated reduced form equations corresponding to the structural

equations are

C t = 0.9266 Ct-l - 0.0203 It-l + 0.3190 Et - 0.4206 Mt
(0.0534) (0.0916) (0.1389) (0.1863)

- 63.2386

(25.7718)

R2 = 0.9958

D -W = 1.7084 (4.2.3)
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It 0.1527 C + 0.3806 I - 0.0735 E + 1.5389 M
(008)t-l t-l tt(0.0781) (0.1339) (0.2031) (0.2724)

- 210.8994
(37.6899)

R =

D-W =

0.8749

1.7582 (4.2.4)

Note that each of these estimated equations has a high value of R2 .

In addition, the Durbin-Watson statistic, although biased towards 2.0

because of the lagged endogenous variable, does not suggest significant

serial correlation in either equation. The figures in parentheses are the

corresponding standard errors.

4.3 Conversion into Optimal Control Framework

Let us recast the reduced form equations in the previous section

into state variable form. We shall write the model as a first-order

linear vector difference equation with random coefficients

t+1 = At x t + Bt ut +c (4.3.1)

where

xtt

Et+l
u=

Mt+i

E Ej

Note that u = Et ]and not FEt
t Mt+ M

Lt+iLtJ
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This is a small difference in the approach of control theorists and

econometricians and is merely a matter of definition. Both refer to

the policy variable that must be used to directly influence the state

at time (t+l).

The coefficients of the various variables in the reduced form

equations give us the respective means of the random matrices At, Bt and

the random vector ct' We have

a11 a 12 0.9266 -0.0203

t =a21 a22 0. 1527 0.3806

b b:2 0.3190 0.4206

t b 21 b 22 -0.0735 1.5389

-63.2386

=2 -210.8994

The covariance matrices are defined by the convention in Chapter 2.

These are obtained from the standard errors of the various random

variables. The square of each standard error, that is the number in

parentheses under each coefficient in Eqs. (4.2.3) - (4.2.4) gives the

variance of the corresponding variable. Thus the diagonal entries of

ZA are the variances of a11 , a21 , a1 2 and a22 in that order. The off-

diagonal entries, the covariances, we somewhat arbitrarily set to zero.

(Ignoring the covariances will usually tend to overestimate the size of

the model's forecast errors. The majority of the estimated covariances

are usually negative and cancel part of the variance in each coefficient.
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Ignoring the

fluctuation

constant.

covariances thus tends to overemphasize the degree of

in the coefficients.) All the covariance matrices are

= diag [ var(a11 ), var(a21) , var (a1 2) , var (a2 2) ]

.0029

0

0

0

0

.0070

0

0

0

0

. 0084

0

0

0

0

.0179

- diag [ var(b11 ), var(b21) , var (b12),

.0193

0

0

0

0

.0412

0

0

0

0

.0347

0

0

0

0

.0742

var (b2 2)

Ec = diag [ var(c,), var(c2) ]

664.1908 0

0 1420.5286

We also need to define the values of the cross-covariance matrices

B' ZBE AC.The estimation procedure used in Abel's paper does not

provide us with estimates of these covariances, so here again we shall

arbitrarily set them all equal to zero. This will also help a little in

reducing the complexity of the various equations we have derived. We

have, therefore :
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EBA

EAc

E Bc

- 0

- 0

- 0

At this point, we have completely specified the linear, random

coefficient structure of the economic system in state variable form. To

analyse the system in an optimal control framework, we need to specify a

cost criterion.

N-1

= E{ t=f tit tit) + (uil) R(ut t

+ (xN - ipQ(N - xN)

We need to choose suitable values for the targets {i, {^4} t = 0,1,...,N

and specify the weighting matrices Q, R and the time horizon N. Pollowing

Abel, we examine the historical growth rates for consumption and

investment over the period of estimation, 1954/I to 1963/IV, which turn

out to be 0.91 % and 1.14 % per quarter respectively. With these in mind,

we select target growth rates of 1.25 % per quarter for both Ct and Ito

Mathematically,

t
- (1.0125) x0 t = 0,1,2, ... , N

We shall restrict our choices for Q to diagonal matrices for the

purpose of the analysis. We shall use the following five values for the

Q matrix to compare different solutions.

xt
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10

Q =
0

2

0
1

0

0 T

0

2

0

10

A

A

A

A

diag (10,1)

diag (2,1)

diag (1,1)

diag (1,2)

diag (1,10)

_A (10,1) for simplicity

A (2,1)

A (1,1)

A (1,2)

A (1,10)

Henceforth the notation (10,1), (2,1) etc. will be used to denote the

diagonal entries of diagonal Q matrices. We shall use this simplified

notation especially when we present the simulation results.

We choose the R matrix to be zero throughout to simplify the analysis.

R = 0

Since R is chosen to be zero, we do not need to specify the targets

{u } The cost criterion is reduced to

J S +E xt Q (xt
t=0

After doing a few simulations, it was decided that N = 15 would be large

enough for the analysis without incurring too great a cost for the

simulations.
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The last item that needs to be specified is the initial conditions.

From the historical record we find that

C 362

X 0 189

The units used are billions of dollars. Et and Mt, the instruments,

also have the same units. Note that x0 = x by definition.

This completes the statement of the problem. In the next section,

we present some simulation results.

4.4 Interpretation and Discussion of Results

We shall now present, in the form of graphs and tables, some

simulation results describing the behaviour of our econometric model in

an optimal control framework. In this section we shall analyse some of

these results and leave others for future research.

First, some general observations. As with other tracking problems,

this problem can be split into one part that helps to regulate the state

and another that helps it to track the desired trajectory and cancel any

additive driving terms. We see that, in the event that all the covariance

matrices are zero, the optimal control tracks perfectly. This is seen

from the uppermost curves in Figs. 1 and 2. This is to be expected since

R = 0 and there is no constraint on the control energy expended in the

process. Also, in our problem, x0 = xo, so there is no initial error.

This deterministic solution is also the certainty-equivalence solution

[ ], and we observe that the certainty-equivalence principle does not hold.
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In the stochastic case, with ZA' ZB and Ec nonzero, we must first

understand what it means for the state to track the desired trajectory.

Since A,B and c are all random so are xt and ut (though the gain Lt and

the correction cum tracking term m.t are deterministic). The control

attempts to minimize the mean square error of the state trajectory which

means it tries to keep the mean of the error plus the variance of the

error small. In other words, there is a trade-off between keeping the

average state close to the desired trajectory and keeping the variance

of the error low. In general, therefore, we shall find that the average

state evolution does not track perfectly. This is so even though R = 0.

In Figs. 1 and 2, we have plotted the means of the state trajectories for

the different values of Q. We see here that these mean trajectories

fall short of the perfect certainty-equivalent trajectory. Of course,

the actual trajectory we would get from any stochastic simulation would

be different each time since we would have different realizations of A
t'

Bt and ct - this is true for both the state and control variables.

The certainty-equivalent solution for R = 0 simplifies to

Lt = -B A (4.4.1)

Kt = Q (4.4.2)

mt = - w C + pt+l - 1 (C - t+)(4.4.3)

Pt Q t (4.4.4)

1
t2 (4.4.5)J 2 t t

J = 0 (4.4.6)
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Fig.l. Consumption vs. time, Eq. (3.3.11), for N = 15. For the C.E.
case, all covariance matrices are set equal to zero. The C.E.
curve is identical with the desired trajectory.
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Fig.2, Investment vs. time, Eq. (3.3.11), for N= 15. For the C.E.

case, all covariance matrices are set equal to zero. The C.E.

curve is identical with the desired trajectory.
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Substituting these equations into the mean of the state equation we

get,

Xt+ A t + BLtt t + mt

- (A - B.B A) xt- B.B c + -BB x +i-c
t t+l

S xit+ 1, as expected. (4.4.7)

Note that the gain Lt, the additive term mt and the average state zt

and the average control law ut are all independent of the choice of Q

This is why we need not specify the value of Q for the certainty-equivalence

curves in Figs. 1 and 2. The different curves for the stochastic case

are identified by the corresponding values of Q.

The gain Lt in Eq. 4.4.1 serves to cancel the coefficient matrix A

which it does exactly in the mean case when A = A, whereas the term mt

cancels the additive exogenous term c as well as forces the state to

track the target, both of which again are done exactly in the mean case.

*

Note that the optimal cost J is zero (Eq. 4.4.6), the absolute minimum

of Jbecause R = 0 and because the state tracks perfectly, J is also

independent of Q.

Let us now examine the stochastic case more closely. Our first

observation of the simulation results is that the regulator part of the

problem viz. Lt and Kt, is well behaved. We have plotted in Fig. 3 the

certainty-equivalent and the stochastic Kt for Q = Cl,l). There are

four graphs, one for each element of Kt. SinceKt is symmetric two of the

graphs representing the off-diagonal terms are identical. We plot, in a
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2 x 2 matrix. Q = (1,1), N = 15.

10

-10
N

-30

--50

1-05

1-03

1.01

-99

0 5 10 15
time (in quarters)

C.E. case

C.E. case

0 5 10 15
time (in quarters)

C.E. case

-L



72

2.71
0 5

-372

-324
N~

-276

-228
10 14

time (in quarters)

- .2166

- -2214

- 2264

-- 2310

o 5 10 14
time (in quarters)

C.E. case
I .

0 5 10 14
time (in quarters)

0 5 10
time (in quarters)
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Fig.5. Additive term t vs. time, Eq. (A.6), for N = 15. Q = (1,1)

for all curves. For the C.E. case all covariance matrices

are set equal to zero.
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similar way, L in Fig. 4, again for Q = (1,1). The certainty-t

equivalent value of Lt in this figure is given by Eq. (4.4.1). Both

quantities soon reach a steady state, seen backward in time, The

correction terms mt in Fig. 5 keeps growing because it has to track xt

in addition to cancelling the exogenous term ct. The optimal

cost also keeps growing. However, since Kt is steady initially, we

1can deduce that the regulator component of the cost, -i'K x , settles
2 o 00

to a steady state. The tracking error naturally keeps accumulating

and this makes the cost grow. The behaviour of Kt (Fig. 3) leads us to

the conclusion that the uncertainties in the problem are within the

uncertainty threshold (even though, we do not know exactly what the

threshold is), We shall find later that even if A is multiplied by a

scale factor of 30, K does not blow up. This seems reasonable whent

one inspects the numerical values of A, EA' B EB which are all fairly

small. The elements of EA' B in particular are all << 1.

K = Q+[A'K A + [ tr(K EkZ )E
t t+l t+l A ki

k, 9

kP, -1 --
- A 'K t+1 B] .[{B' Kt+1 B + Tt r(K t+1 B ) E k] . [B' Kt+1 A]

kk

Note that EBA =0 in our problem. Since Q>0, EA >0 B >0, the

structure of the equation tells us to expect Kt > Q or equivalently,

11 KtjI ' lQ11 where J1 M E - (det M)1/2. This is in fact borne out

by the simulation results. In Table 1, we present some norms of Kt for

different Q. This demonstrates that the steady state "value" of Kt in

the stochastic case is greater than that in the certainty-equivalent case.

This confirms our intuition that we need more "force" when there is
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Table 1. Comparison of norms of Q and

corresponding K0.

(10,1) 3,16 3.64

(2,1) 1.41 1.62

(1) 1. 00 1. 18

(1,2) 1.41 1.75

(1,10) 3.16 4.74
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*uncertainty. The end point constraint KN = Q forces Kt to come down to

the C.E.value at N (Fig. 3). Physically, Kt represents a sort of

cumulative weighting matrix which incorporates both the present error

at time t as well as the propagation of this error as t progresses

to N. When t << N we would expect the slope of Kt to be relatively

horizontal since the future error weighs about the same for small t

far from N. However, as t gets close to N, K is determined more by
t

the present error since the propagation error gets smaller, so that it

begins to fall to Q, till at t = N, there is no future and KN exactly

equals the present error weighting matrix Q. We have ignored here the

effects of non-zero R. The steady-state value is greater in the

uncertain case because we are minimizing the mean square error, as

opposed to just the mean error so that there is greater propagation of

the present error and Kt > Q. This description can quite easily be

extended to the case of time-varying Q's. Note also that if EBA 0,

then the propagation of the uncertainty in the error is somewhat reduced,

since B and A are now correlated and the control can make use of this

additional information. However, because of the restrictions placed by

the various correlation coefficients, the effects of uncertainty cannot

be completely nullified. This is also supported by the mathematics.

The gain Lt, Fig. 4, follows the behaviour of Kt in a mathematical

sense. It is steady initially and, as t approaches N, it moves away from

the steady-state value just as Kt does. Again, it basically attempts to

minimize the mean square error instead of just the mean error. Note that

Lt represents only the regulator part of the control and is totally
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independent of the targets and the driving term c. The scalar case

provides some insight into its behaviour.

t 
a

tb + U 2 b 1 + a2/b2
b b

Note that in the scalar case Zt is constant even in the stochastic case.

Also, note that t decreases in absolute value as orb increases, other

things remaining the same.

x t+1 = (a + bZt )xt + bmt + c

Ob2
a +2 * x + b m + c

= a. b2+crbjxt t

the coefficient of xt has the following approximate behaviour

when orb = 0, the coefficient vanishes, thereby keeping xt+ 1 close to zero,

as required by the regulator. The optimal gain is chosen so as to minimize

E(a + bkt)2

i.e. d E(a + bt)2 = 0
t

Therefore 2 "ab + (B2 + Cb2)t=0

Therefore Z = - as required
t t 2 +or 2

b
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This short derivation merely shows, from a different perspective, that

kt does the stochastically optimal thing. The vector case behaves

essentially in the same way though the mathematics is a trifle opaque

because the appropriate quantity to minimize for the one-step optimal

gain is E[(A + BLt)' Kt+ 1(A + BLt)], because Kt+1 embodies the correct

cumulative weighting at time t.

The term pt is again essentially a mathematical entity like Kt.

The equation for pt is

pt t+ AKt+c + A'pt+ (Kt+B).mt

Qit + AK t+1c + A'pt+1

- (A'Kt+1B). (B'Kt+1B) (B'Kt+lc + B'pt+ 1)

PN ~ N

Its behaviour can be understood in analogy with that of Kt. It

has two basic functions. The first is its role in providing a correction

term to cancel the exogenous term c and the second to provide a

cumulative weighted measure of the desired trajectory. To understand

these roles more clearly let us look at them separately. First let us

assume that the desired trajectory is zero i.e. xt = 0 for all t.

Then,

Pt = 0t+ c +Apt+ - (Kt+ B)(B'K t+B)~ (B'Kt+c + 'p)t+

= 0
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We note here that the behaviour of pt is directed towards c. At t=N,

PN = 0 because cN cannot affect the optimal cost. Now let us assume

that c=0, we get,

Pt t Apt+1 - ((Kt+1 ).(B'Kt+ 1B) -1 .(B'pt+i)

PN = QN

This shows how at t=N, PN represents a weighted target and for earlier t,

how it incorporates both the present target in the term - Q5t and the

propagation of this in the future as well as future targets in the rest

of the equation. In the general case when R / 0, Pt also includes the

weighted control targets in the term - RUit'

Just as K gives us the gain L so p (in combination witht+l C t t+l

K t+) gives us the additive term mt, which embodies the two roles of pt

explicitly in the control. The first role is to act as a correction term

to offset the exogenous vector c. This function is independent of the

regulator and tracking parts of the problem or, in other words, it is

needed in both. The second function is tracking. It is responsible for

making the state track the desired trajectory. These two objectives are

clearly observable in the equation for mt.

M = - { B'K B + tr(K zk -)E I [BK c + Bt pt t+1 t+k1EB kk t+1 t+1

We see from Fig. 5 that the behaviour of mt shows an approximately steady

growth. Though the corrective component does reach a steady state the

tracking component does not since the target itself grows with time. Its
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behaviour could also be understood in terms of the minimization of a

suitable expression as we did for Lt. However, this is complicated by

the fact that both Kt+1 and pt+l enter into it.

Now that we have some description of the behaviour of the various

components of the problem we can better appreciate the behaviour of the

control u and the state x .

The certainty-equivalent control ut is given by

Ut
-- I- --I -= Lt x~ + = -B A x - B (c -i )t t tt t+l

and the certainty-equivalent xt is :

xt t

This shows that ut and xt in the certainty-equivalent case must be

approximately linear (since xtt [1 + 0.0125 1). This is borne out

by Figs. 1-2 and Figs. 6-7. In the stochastic case we find thatut

tries to approach utCE in the "middle", as we would expect. At this

point it is useful to look at the mean values of the A and B matrices

.93 -. 02 .32 .427
AB

.15 -. 3 8  -. 07 1.53

and

C t+1 .93 -. 02 C t '32-

It+l .15 .38] Lt -.07

-63.24

-210.90

.42 EQ 763.24

1.53 mt 210.90
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Looking at the relative values of the elements of A, we see that

average consumption C is essentially independent of average investment I,

though I does depend on C. Also, owing to the relative values of the

elements of B we see that the average government expenditure F does not
t

really affect investment It+ . However, Et influences Ct+1 directly

which in turn influences It+2' so that the effect of average government

expenditure on average investment is experienced two periods later. We

note also that both the instruments can influence consumption.

In the stochastic case we see that as the relative weighting of

consumption and investment in the weighting matrix Q changes in favour of

one or the other, the corresponding state approaches the target more

closely, as one would expect. In Fig. 1, the perfect C.E. case is at

the top. Below this comes the curve corresponding to Q = diag (10,1).

As the relative weighting of consumption decreases to Q = (2,1) the mean

consumption trajectory drops even further down. This trend continues

till Q = (1,10). In Fig. 2, we observe exactly the opposite. Q = (1,10)

represents the case for which investment tracks most closely since the

relative weight of I is highest here and it gets progressively worse as

we go to Q = (10,1).

Finally, the optimal cost J needs to be considered. We find that

it can also be divided into two parts ; the regulator part and the

tracking part. The regulator part comes from the term -Ix'K x , which is
2 o 00

the same as the cost for the corresponding regulator problem. The

additional terms p'x and g explain the tracking part of the cost,
0 0 0
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The term 'g0 ' represents a residual type cost (the dynamic counterpart

of the constant term 'c' in the minimization of a quadratic function

ax2 + bzx + c). We note also that J increases as EA increases, since the

control becomes less and less capable of controlling the system

effectively, (Fig. 8).

Let us now look at the sensitivities of some of the parameters. To

keep things simple we shall only look at the sensitivities of the diagonal

elements of ZA and EB. Note that a11 = var (a11 ), 22 = var (a21)'

033 = var (a12), 44= var (a)22 when a c EA Similarly, when

a. B 'Z 011 =var = var(b = var (b2 andij B 1(b 11), 022 ( 21), 033 ( 1 9

G44 =var (b22). For convenience we shall denote var (a..) by a(a..)

and var (b.) by a(b..). The relative sensitivities corresponding to

different Q matrices are given in Table 2 and are then ranked in Table 3.

We do the same with the absolute sensitivities in Tables 4 and S.

Our first observation is that none of the parameters are overly

sensitive. We note that the highest relative sensitivity is only .3 or

30%. We can call a relative sensitivity of 1 or 100% high because that

implies a variation of a magnitude commensurate with the actual value.

Judging by this standard sensitivities of .3 or less are negligible.

Thus, in a general sense, this model is quite insensitive to variations

in parameter variances. In other words, at least for this model, this

method of analysing sensitivity does not yield much useful information,

besides the fact that the model is insensitive and therefore reasonably

reliable.
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Parameters Q: (101) Q:(2A1)Q: (1,1) Q:(1,2) Q:(1,10)

Sf(a 1 1 ) j .171 107 .075j .050 .016

CY 2 2 jja(a2 1)j .037 0099] .129] .152 .169

A 33  cr ai [ .058 .041 .028 ) 017 j .005

C144 a22) [0012 .038 f.048 f .03 Jf.051
(b1 1)]f.216[ .127 .082 [ .048 .010

B 22 ]f (b2 1 ) .047f .117 .140 f .145 f.105

033 1 2) .250 .168f .121 .081 f .030
044 ]f a(b2 2) .054j .155 f.206 F .249 f .316

Table 2. Relative sensitivities



Parameter s C.E .Q:(1,1) Q:(10,1) Q:(2,1) JQ:(i,1) Q:(1,2) Q:(1,10)

O (a 1 1 ) 1176272 13405233 2860309 I1515515 1646233 2098791

022 o(a2 1)f 1176272 1354913 1234413 1209006 2362638 10445811

A 3 [(a12) 71100 1537704 371865 191135 19519? j 217415

044 a(a2 2 ) 71100 155412 160615 152658 280599 1086178

1 (b1 [ ) 111247 -2501325 503951 244319 233663 199524

B 2 [ 11247 252895 217093 194130 332498 962598

03 (b1 2) 154526 1609666 370167 199918 222138 322734

2 ] {4154526 162709 159488 159089 317734]f1603107

Table 4. Absolute sensitivities

OD
(31
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(10,1) Q:(2,1) Q:((1,) Q:(l,2) Q: (1,10)

a(b1 2 ) o(b1 2 ) (b 2 2 ) a(b2 2 ) a(b2 2 )

0(b1 1) 0(b2 2) a(b2 1 ) o(a21) 0(a21)

u(a1 1) o(b1 1) a(a2 1 ) o(b2 1) a(b21)

a(a1 2) 0(b2 1) o(b12) a(b1 2) o(a22)

0(b2 2 ) 0(a,1 ) a(b1 1) 0(a2 2) a(b1 2)

a(b2 1 ) 0(a21) Y(a1 1) Y(a1 1 ) o(a1 1 )

a(a2 1 ) 0(a1 2 ) (a22) 0(b1 1) a(b11 )

a (a2 2) a(a22) a(a 1 2) a(a 1 2) a(a 1 2)

Table 3. Ranking of parameters in order of decreasing
relative sensitivity

Q:(10,1) Q: (2,1) Q: (1,1) Q: (1,2) Q:(1,10)

o(a1 1 ) 0(a 1 ) 0(a 1 ) a(a21) o(a21)

0 (b1 1 ) a(a2 1) o(a2 1) o (a1 ) oa(a11 )

0 (b 1 2) o (b 1 1) 0 (b11) a(b21) 0 (b22)

0(a12) o(a1 2) a(b1 2) a(b22) 0(a22)

" (a21) 0(b1 2) a(b21) o(a2 2) 0 (b21)

0 (b21) a(b2 1) a(a1 2 ) a(b1 ) a(b 12)

0 (b2 2 ) a(a2 2 ) a(b 2 2 ) a(b1 2 ) 0 (a1 2 )

(a22) 0 (b2 2 ) (a2 2) aa1 2) 0(b1 )

Table 5. Ranking of parameters in order of decreasing

absolute sensitivity
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If we look at the variations in the sensitivity ranks as Q is

changed, we find a reasonable pattern. When consumption is more heavily

weighted than investment, we find that the parameters a(al), 0(a12)'

a(b 1 1), o(b1 2) tend to be more sensitive, whereas when investment is

more heavily weighted the parameters a(a2 1), o(a22), o(b21), o(b2 2) are

more sensitive (Tables 3 and 5). This is as it should be as is evinced

by the positions of these parameters in the covariance matrices

a(a1 ) 0 0 0

0 oa(a 21) 0 0

0 0 o (a12) 0

0 0 0 a(a2 2)

o(b 1 ) 0 0 0

0 (b2 1) 0 0

B 0 0 a(b1 2) 0

0 0 0 a(b2 2

What happens in the sensitivity equations 4is that the above shown 2x2

blocks enter into the mathematics directly through the terms P EAP
k A k

PE B Since o(a 1 ), a(a 1 2 ), u(bl), 12 ) occupy the top left

positions in these blocks they contribute to the error in the propagation

of consumption and as consumption assumes a greater relative importance

in the cost functional, these parameter variances become more sensitive.

This is shown by the column of rankings under Q = (10,1) in Table 3.

Exactly the same happens in the other direction with investment. The
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parameters 0(a2 1)a, (a22 )', 0(b2 1), (b2 2) occupy the bottom right

positions in these blocks and thereby contribute to the error in

investment, so that they become more sensitive as the relative weighting

of investment increases. As we move from the column under Q = (10,1) to

the column under Q = (1,10) from left to right in Tables 3 and 5, we

find that the parameters a(a2 1), a(a22 ), 0 (b2 1), o(b2 2) move from the

bottom of the columns gradually to the top when we get to Q = (1,10).

This pattern also makes sense physically. When consumption is more

important, one would expect the higher sensitivities to be with the

first rows of A and B which parameters affect consumption directly,

More explicitly

Ct+1 = a 11 C t+a1 2  t + b11 Et + b12 Mt +c

The other parameters a21 , a2 2 , b21 , b2 2 affect Ct only indirectly. The

same is true for investment.

I t+1= a21 Ct + a22 t +b21 Et + b22 Mt + c2

From this one would expect a(a2 1), 0(a2 2), 0(b2 1), (b2 2) to be more

sensitive as is borne out by the results.

Q = (2,1) seems to represent some sort of a "break-point" that

weights consumption and investment in some "equitable" manner. Firstly,

we find that the relative sensitivities at this value are all evenly

distributed i.e. there is no priority in ranking in either group,

[a(a 1 1), (a12), a(b11), 0(b1 2)] or Ia(a21), (a2 2), a(b2 1), 0(b2 2)'
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See the column under Q = (2,1) in Table 3. If we increase the relative

weight of consumption towards Q = (10,1), then we find elements of

[c(a11), a(a1 2), a(b1 1 ), (b1 2)] becoming more sensitive whereas if we

decrease it towards Q = (1,1), (1,2) and (1,10), we find [a(a2 1), a(a22),

a(b2 1 ), a(b2 2)] becoming more sensitive. Of course, since our data comes

from only five Q matrices, we cannot have the exact break-point but we

can say that it lies roughly near Q = (2,1). This also seems to be the

Q that gives the lowest value for the optimal cost J scaled by the norm

of the corresponding Q, as can be seen from Table 6. In addition to this,

Table 7 indicates that 0 L0 is largest in the Q = (2,1) case. Of course,

the certainty equivalent J equals zero and is lower than the above

*

scaled J , and l L 0f CE = .682 is also higher thani L011 for Q = (2,1).

The fact that J is lowest for this Q means that this represents the

minimum of J taken over all Q. Similarly, the fact that IL0 is highest

seems to imply that the control is most forceful in this case. All this

points to the fact that Q = (2,1) represents a special weighting matrix.

The specific value of Q depends of course in some complicated way on the

values of A, B and EA ZB However, the important point is that it gets

closest to the certainty-equivalent case in some average way. It

represents, in a certain sense, an "optimal" choice for Q.

As we increase ZA gradually, scaling the entire matrix ZA by factors

of 1.1, 2, 6, 15 and 30 progressively, we find first that the optimal cost

J increases (Fig. 8). This is reasonable physically since the system

becomes increasingly difficult to control with increasing uncertainty.

We find the other variables behaving reasonably too. For example, the
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Table 6. Normalised values of the optimal cost for

different weighting matrices Q.

Table 7. Normed values of initial gain matrices for

different weighting matrices Q,

[ Q Jf/fQ

(10,1) 7,27

(2,1) 5.66

(1, 1) .,6.00

(1,2) 6,72

(1,10) 12.02

C.E. 0.00

Q fL

(10,1) o444

(2,1) .470

(1,1) .439

(1,2) .387

(1,10) .230

C.E. .682
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Fig.8. Optimal cost-to-go vs. time, Eq. (A.13), for N = 15.

c is the scale factor for the covariance matrix ZA'
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quality of the state trajectory drops and we find in some sense a greater

expenditure of control energy (Fig.9-10).The behaviour of the sensitivities

does not show any useful regularities as can be seen by carefully studying

@J* a
Tables 8 and 9. Since the relative sensitivity is given by a and

3J*7
a and J*both increase, and the change in itself is hard to guess, we

are left without any reasonable predictions. For example, the first row

of Table 8, which shows the values of 0(a1 1) as the scale factor a of EA

increases, indicates that a(a 1 1) increases as a goes from 1.1 upto 15 and

then drops at a .= 30. Similarly, the third row shows that a(a1 2) increases

till a = 6 and then drops for a = 15 and a = 30. The second row keeps

increasing whereas the fourth row behaves like the first. However, there

is no identifiable pattern which allows us to predict the behaviour of

these sensitivities. Also, since the values of 2A are very small, even

a scale factor of 30 does not succeed in making Kt blow up. We are still

within the threshold even though we do not know exactly what it is.

To sum up, we could say that the outcome of the analysis on this

model is basically positive. There are no really sensitive parameters,

so we can trust the results of the model (on the assumption, of course,

that the underlying economics is accurate).

4.5 Conclusion

In this chapter, we have presented a simple macroeconomic model of

the U.S. economy and recast it into state-variable form, Next, we have

applied the equations developed in Chapters 2 and 3 to this model, and
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a:l.1 a:2 a:6 a:15 a:30

Cy(al ) .115 .170 .272 .294 .215

S(a 21) .106 .161 .e287 .397 .444

a (a 12) .044 .063 .089 .077 .049

a(a2 2) .040 .060 .094_ .104 .101

a(b 11 ) .127 .122 f.106 .080 .048

a(b2 1) .117 .115 .1121 .108 .098

c(b1 2 ) .164 .131 .065 .026 .012

u(b2 2) [ .151 .124 .069 .035 .026

Table 8. Relative sensitivities for Q = (2,1) and

different scale factors a for EA

(i.e. the actual covariance used in

simulations is aA where EA is given

on page 63).



a:: 1. :6 l a: 15 a j30
a(a1 ) 2860368 2860618 2855406 2801006 2547648

0 (a21 1237788 1268444 1410905 1768482 2455696

a (a1 2) 370616 359680 317017 249433 197812

a (a2 2) 160508 159594 J 156699 157288 190995

0(bll)1[ 514235 605546 985255 1697967 2542816

0(b21) 222153 266288 486861 1068166 2405713

Y (b12) 369435 363047 333829 308774 362907

S(b 2 2 )] 159614 160796 167413 f 194690 349698

Table 9. Absolute sensitivities for Q = (2,1) and different scale factors

a for EA
(i.e. the actual covariance used in simulations is aEA where EA is

given on page 63).
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presented some empirical results together with a discussion of these

results.

Our model turns out to be fairly insensitive to parameter uncertainty

variations and therefore quite reliable. Applications of this method to

more models is required for a better understanding of the equations we

have developed. It seems, however, that the complexity of these equations

and their relative resistance to deeper insight makes this method of

approaching sensitivity issues undesirable. The computation involved

increases at a prohibitively untrammelled rate as the dimension of the

model increases and since most useful econometric models are large, this

method is not quite practical, It can, however, be useful when a small

subset of the parameters in a large model needs to be analysed for its

sensitivity. This, of course, is to be expected since this method is

essentially a brute force way of identifying sensitive parameters,
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CHAPTER 5

CONCLUSION

5.1 Summary of Results

In this report, we have investigated the structure of optimal,

linear, random parameter systems. We model these parameters as white

stochastic processes. Thus, the model contains both additive and

multiplicative white noise. This white parameter approach to adaptive

stochastic control is important for two reasons. Firstly, it makes the

problem solvable analytically. The general adaptive control problem is

in fact a nonlinear stochastic control problem and cannot be solved

without making approximations. Secondly, it shows, in a worst case

sense, the fact that the control gains of an optimal stochastic system

with purely random parameters depend not only upon the mean values, but

also upon the variances of the random parameters. The scalar case of

this problem was investigated by Ku 11]. Here we investigate the most

general multivariable version. The problem is formulated as a tracking

problem and includes additive noise as well. We do this work in

Chapter 2.

In the next chapter, we develop sensitivity equations to analyse

the sensitivity of the system performance to small variations in the

variances of the system parameters. The equations turn out to be fairly

cumbersome in the general multivariable case. Deriving equations for the

sensitivity of the optimal control and the optimal trajectory turns out

to be hopelessly complicated.
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We describe a simple macroeconomic model, recast it into an

optimal control framework, and make a thorough investigation of its

structure and of the optimal solution together with the sensitivities

of the different parameters. We present some of the relevant simulation

results for the analysis.

5.2 Conclusions :

The multivariable case for linear random parameter systems, though

solvable analytically, turns out to be somewhat opaque and does not

yield much further insight than the scalar case. The main result for

the scalar case described in Ku 11] is the Uncertainty Threshold

Principle. In the scalar case it is possible to find an analytic

expression for this threshold (some function of all the means and

covariances). In the multivariable case, we find that it is very

difficult, if not impossible, to obtain an analytical expression for the

threshold. The source of the problem is that we are dealing with

matrix quantities and matrix multiplication is non-commutative and

operations like the trace of a product of matrices do not decouple.

However, a threshold certainly exists as can be verified by trying out

different values for the various mean and covariance matrices.

The sensitivity equations, since they are derived from the above

optimal solution, turn out to be even less amenable to any insight. We

do not even bother to reproduce the equations for the sensitivities of

the optimal control and state trajectory, The application of these

equations to Abel's model also turns out to be of dubious value. Though
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they do supply us with some valuable information - that the model is

basically insensitive and therefore reasonably reliable - it is

questionable whether such a brute force approach to sensitivity analysis

is worthwhile. Many currently popular econometric models are large and

nonlinear and this approach would become far too involved computationally.

The cpu time depends geometrically (%n2) on the order of the system and

linearly on the time horizon. However, if we restrict the set of

parameters whose sensitivities we wish to examine to a small subset of

all the parameters, then we can hope to extract some useful information

at a reasonable cost.

5.3 Suggestions for Future Research

1. More analysis is required to thoroughly understand the

different aspects of tracking problems. Specifically, one

needs to understand the end-point behaviour of various

variables like xt, ut. Lt and mt physically. It may help

to reduce these matrix and vector quantities to scalars

by using suitable norms.

aKt
t

2. We have calculated quantities like . It may be useful

Lt+O a

to consider quantities like au6as well. This represents

the effect of a change in the present value of a on the

future value of Kt. This may prove to be useful in

adaptive control schemes where such information may be used

to guide control action.
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3. Though the equations turn out to be very complicated, it

t _t
would be useful to look at the behaviour of Dz 't H '

Perhaps somewhat different initial assumptions might lead

to a more tractable problem which might yield useful

information.

4. The scheme developed in this report can be applied to assess

the reliability of different models of a given system. This

affords a selection criterion which can aid in choosing one

out of a number of models.

S. This sensitivity analysis can also be applied to an analysis

of the monetarist-fiscalist debate in Abel's paper [47].
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APPENDIX A

We solve here the optimal control problem posed in Chapter 2

using the method of stochastic dynamic programming.

We begin by stating the problem and the principle of optimality.

We have the following linear random parameter system

X.k+l = Axkk + Bkuk + ck kx given (A.:

where Ak' Bk and ck are all white and Gaussian with known means,

covariances and cross-covariances.

E {Ak}A

E {BB} =k

E {ck} = c

E { [ S(Ak) -(I)S] [8(A) -(A)] } = A 6k

E { [S(Bk) - S()] [S(B ) - S(B) = B 6k

E{ [S(ck) - S(c)] [S(c) -S(c)6] } = k

E{ [S(Bk) -S(B)] [S(A) -S(A) ] } = EBA6kZ

E { [ S(Bk) - S(B)] [ S(c) - S(c) ]I = EBc6

E{ [S(Ak) -s(A)] [S(c) -S(c) ]} = EAck

Here we introduce some notation for convenience. For any matrices Y,

1)

let

E { Y Zk= k k k

= Y'zkY if E {Yk)} = Y constant

K'Aa z I
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The cost functional we choose to minimize is :

N-1

k=0
[(xk - k) Q(xk -k + (uk - uk)'R(uk - Uk)

+ N N N N) (A.2)

where Q, R are symmetric, positive semi-definite matrices and where xk, uk

are given target trajectories.

The stochastic control problem is to find a control sequence

{ u, u1 , ... , UN-1 } that minimizes the value of J. This problem is the

stochastic tracking type of optimization problem and can be solved with

either the discrete minimum principle or dynamic programming. We choose

the second approach.

N

i=k
[(x. - .)'Q(x. -i .) + (u. - U. )'R(u. - u. 1) ]1 1 1 1 - - - -

S [ (xk ~k)Q(Xk k + (uk-1-k-1)'R(uk-1k-1

= E{J k

= E{Pk

min Yk
uk-1, ... ,uN-1

where k=1,2, ... ,N

- min
uk-1, ... uN-1

k = 1,2, ... , N
Yk

Let

k

Yk

We have

Y*
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= min

u k-1,...,uN-1

= min

u k-1,1 ...e , uN-1

= min
ukR-1, . .. UN-1

EJk

E (Pk+Pk+l + + PN

EPk + min EJk+l
u k-1, ' a 'N-1

(Note EJ0N+ )

= min EPk + mi (mink+,)

Uk-i uk-i uk, . . uN-1.

* *

min A + mn y (Note :-Y 0)Ak k-1N+l

* *

k = min (Ak+yk+l (A.3)
Uk.-l

This is the functional recurrence relation that we shall use in our

derivation.

We shall first calculate k'

xk = EPk

= k P(Xk) dxk

- 1f[( xi)'Q(xi)- + ukl.ik)'R(uklukl
= 2 Ek k k~k) + uk-l~'"k-1) R k-l1 k-l

P(xkAk1Bk-13ck-lxk-l)P(Ak-1Bk-1ck-P(xk-1)

d(xkAkl,Bk-1,ck-lxk-1)

using p(x) = f p(x/y) p(y) dy.

*

a



i'

Note that xk-l is independent of A , Bk-1,9Ck-1 so we can write

p(Ak-1,Bk-1,ck-lxk-) p(Ak-,Bk-1ck-1) (xk-1)

Also, d(xk, Ak-1 Bk-1  ck-l xki) is merely an abbreviation for

dxkdAk-ldBk-ldck-ldxk-1

Therefore,

= 2 k-~l (Ak _QAk- )xk-1 + Uk I(R+BI _QBkl) Uki

+ CilQCk- + 2 uk-j(B( QAk- )k- + 2uk-l(Bi-lQCk-)

+ 2x (AIk-1 k) + Ikxk -Uk-Ruk- - 2i Ruk-1
k.1 -Ik-) ''Qk '-l -1 k-1 k-i

- 2xk(QAk k-l - 2 tj(QBk-)Uk- - 2 Xk(Qck-)

p(Ak-19Bk-1,ck-P(xk-)d(Ak-)Bk-1,ck-lxk-1)

using xk = Ack-1 - + Bk-1uk-1 + c and integrating out xk

Now, integrating with respect to Ak-l. Bk-1, and ck k1we get

k =[xk- 1AQA x + uk- 1(R + B'QB) uk- +c'Qc

+ 2u'(BQA)x + 2u' (B'Qc) + 2xkI-(A'Qc)
k-l k-l k-i .

+ iQ + I Rk -2 d Ru
kQxk - Qk-lk-1 k-i k-i

-2IkQAXk - 2xiQBuki-2ikQc ]P(Xk)dXk
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1. k=N

YN xN (yN+ )

N-1

dAN
dN = 0

duN-1

2(R + B'QB)uN-1 + 2(B'QA)xN-1 + 2(B'Qc) - 2RN 1 - 2B'QiN 0

uN-i - (R + B'QB)~(B'QA)x

- (R + B'QB)(B'Qc -

With this, we calculate y .

* _ 1 -

yN ~ 2 f X 1 (A' QA)x- 1  x (A'QB)(R+B'QB) (B'QA)xN-i

+ (B'Qc - IQxN - RdN-)'(R+B'QB)~ (BQc - BQxN - RuN-1)

+ 2xN-1(BQA)'(R + B'QB)-1 (B'Qc - B'QXN - RdN-1)

+ c'Qc - 2x'- 1 (A'QB) (R+B'QB)~(BQA)x 1

- 2(B'Qc - B'Q N - RuN-1 )'(R + B'QB)~-(B'QA)xN-1

-- 1
- 2 x' 1(A'QB)(R + B'QB) (B'Qc)

- 2(B'Qc - 'QxN - RUN-1)'(R + B'QB)~ (B'Qc)

+ 2 xN-(A'Qc) + xG QxN + %N-1Ni

+ 2 R(R + B'QB)x(B'QA) N-1

+ 2 iN- R (R + B'QB)~ (B'Qc - B'QXN - RaN-1
Ni N N-i

- 2 XQAx
N N-i



113

+ 2 QB(R + B'QB)-1(B'Qc - B'QXN - RUNl)

-2 1 Qc ] p(xN-1) dxN 1

On simplifying the above, we get,

1 , ifwA-1

2 N-{A'QA - (A'QB)(R + B'QB) (B'QA)} xN-1

+ N- AQc - AQxN - (A'QB)(R+B'QB)~ 1 (B'Qc - 'QXN- R N1 ))

- (B'Qc - B'QXN - RiiN-1) '(R+B'QB) (B'Qc - BIQXN - RUN-1)

+ c'Qc + XIQXN + N- R - - N2 RQ ] p(xN-1 N-1

Since we know the final answer, we can make some convenient definitions at

this point.

Let KN = Q

N 1 N

1 -l
N-x(A'KNA - A'KNB(R + B'KNB) B'KNA) "N-

+ 2xl-(A'KNc + AlpN - (AIKNB)(R+B'KNB) (B'KNC + B'pN- RUN-1

Now define

D .l

- (B'KNc + BI'N RUN-1'(R+B'KNB) -(B'I-KNc + B'PN

u E. + 2E'pN p (x ldxNl+ A'KNC+ (RgNBKi-(N-B N-1 +'N N-1)

= AKN .iA - (A'K N .iB)(R+B'K_ B)-1 (B'K.N .A)

*

Then,

*

- N-
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= A'KN-.c + A'PN-. - (A' _B)(R+B'K .B)

(B'KN.C + B'p i - N-i-i)N-i N-i UN-i- 1

= Q +D.

= -Qx.+q.
1 1

= - (R + B'K. B) (B'K. A)1+1 i+i

-1 -= - (R + B'K. 1 B) (B'K. c + B'p. - Rd.)
1 -

S (B K . + B'p. - R .+)' + c'K c2 ( N-ic N-i N-i-i N-i-l 2 N-i

+ - u' Rd
2 N-i-1 N-i-i

S PN-i N-i

Thu wexcnir+ir.

Thus we can write

-[x 1 DN - 1 + N-1 + 2rN-1] P(xN-1dxN-1

*
N*

uN-1 = LN-1 xN- +N-I

From here we go on to the next step in our calculation.

2. k

*1

YN-1

= N -i

min

uN-2

*
(AN-1 + N

K.
1

p.
1

L.

m.

rN.l

1
2
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We have, from

N

after integratir

Therefore,

*
AN + y

the previous step,

S[xIDN- VN + 2N AN-+ 2rNN] P(x-idxN-1

N-2(N-2DN-1N-2 N-2 N-2BN.2DN-1BN-2 N-2

" c' D C 4- 2u B' D A x
N-2DN-i N-2 N-2 N-2DN-i N-2 N-2

" 2u B' D C + 2,x' A? D C
N-2BN-2N-1 N-2 N-2AN-2DN-i N-2

+ 2x Al q - + 2 u 2 BN 2q 1  + 2c q

+ 2 N-i1  xN-1 AN 2,BN2 ,cN-2 N-2.N-2BN-2cN-2

P(xN-2)d(XN- ,AN2 , BN-2,CN-2N- $N2)

A'D A(x +Aj BD c'

f -2A DN-i N-2 N-2B'N-iB 'N-2 +'N-

+ 2 u-2B'D -A x +2u N-2B'DN-c + 2 x-2AD -c
N-2 N-i N-2 N-2 N-i N-2 N-i

* 2 xf-2 A'q~ + 2 %l B'q 1 + 2 cl + 2r~l+ 2 N2 N-1 + N-2 N-1 + 'N-1 +2N-1

P(xN-2)dxN-2

ig with respect to Ni A BN-2, BN-2, and cN-2

= f x A'(Q + D )A }x
2 N-2 N-V N-2

+ uh' {R + B'(Q + DN)B} u
N-2 N-1 N-2

+ cl CQ + DN-1)c

+ 2 U2 B2 (Q + DN-.1)A xN-2
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+ 2 51-2 B' (Q + DNl)c

+ 2 xN-2 A' (Q + DN-I)c

S2 xN-2A N-1 QN-)

+ 2 l '(-q - QX'Nl)+ N-2 N-1 -

+ 2 C'Cq N- 1 -QXN-1)

+ 2 rN-1

+ X~Q!J + l- - 2 D u
+ N-1 + N-2RN-2-2 N-2R -2

P (xN-2)dxN-2

fx-2 (A' NA)xN-2 + u- 2 (R+B'KN-1B)UN-2

+ c'l c + 2 u-2(B'I A)xN-2 + 2uN'-2B' C

+ 2 A'K + 2 x' A'p + 2 u' B 'pNx-2 N-1 N-2 NiN-2 N-2 NC

+ 2 E'Pl + 2 rN~ + XRl Q-Xl+ u i
+2'N-1 +2 N-1 N-1 N-1 + N-2R N-2

- 2- 2RuN-2 ] P(xN-2)xN- 2

We can now minimise this expression w.r.t. uN-

d *

UN 2 (N-l+YN

2(R+ B'K N-1B)uN-2 + 2 B'KN 1A N-2 + 2 B'KN-lc

+ 2 BpN-1 - 2 R = 0N-2
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uN 2  = - (R + B'KN- 1B) -1 (B'_KNA) xN 2

N-2 -1 X-2

- (R + B'KNlB) -(B'% c + B'PNl - R N 2 )

LN-2 xN-2 +MN-2

Let us now calculate uN-1
* 1

Y = - f [ x' 2 (A'KlA)x + x' L' 2 (R + B'KlB)LNx
N-12 N-2 N-1 N-2 N-2 N-2 N-1 N-2 N-2

N'(R+BKNlB)m + 2 ' Lk2 (R+B'KlB)mN-i -N- N-2 KN-2 N-2 N- N N-2

+ c'K-Lc + 2 xmLB- -+ 2 mx B' A xN-

N- N -2 N-i2 N -2_, N-l-2 N

+ 2 N-2B _lc + 2 -2'N-1 + 2 A c

+*2 xk A'pN1 + 2 x' L' B'p + 2 m'B'p
N 2 N-1 N-2 N-2 N-i N-2 N-1

+ 2 p + 2 r + i'Qi + ' Rd
N-1 rN-l N-i N-i N-2 N-2

- 2 N-2R -2xN-2 - 2 %iN-2RmN-2 p(xN-2)dxN-2

N-2DN-2N-2 N+N -2N-2 + 2rN-2 P(xN2)dxN-2

after some simplification and rearrangement of terms.

So we see that we get similar expressions for the control and

optimal cost-to-go for the next period. This obviously carries through

by a simple induction argument to all time periods, Thus we can write

down the complete solution. Before we do this we eliminate some of the

new variables we introduced earlier.



D.
1-i

K.

Pi

(B'K. c + B'p.2 i+1 1+1 - Rd.)' n. + g.i 1 i+1

The complete solution to the optimization problem is therefore :

- Ltxt +imt

-1
- - (R + B'K B) (B'K A)

t+l t+1

-1 -'~
- - (R+B'K B) (B'K c + B'Pt - Ru )t+1 t+l t+1 t

- - Qt - tAKlc + A'pt++ (A +1 B) mt

- Q +A'K t+A
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-1= A'K.A (A'K.B)(R + B'K.B) (B'K.A)

SQ + D.

- Q + A'K. A + (A'K. B) L.
+f 1+1 i

= A'K.c + A'p. - (A'K.B)(R + B'K.B) (B'K.c + B'p.

Q i 
+ q 1 -Rd. )i-i

- -fQ. ++q.1 1

S - Qx + A'K. C + A'p. + (A'K. B) m.1 + 1+1 i+1 i

1 -~ -= -(B'K~c + B'p. - Ru. 1 )' .1 + 4 - c'KN + p

1 ~ ~

+ -u! R u. +g

2 i2 i-

- -! Qxc +-u ! Rd. +-c'K. c +c'p.2 i i 2 i 1 2 i+l 1+1

*

ut

Lt

pt

Kt

(A. 4)

(A.5)

(A.6)

(A. 7)

(A. 8)+(A'K t+1 B) L t
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x iQx Iu'u + ' C 
t t + t + c't+1c+ 't+1

+ (B'K C + %'p - RU)' mT  + g
2 t+l t+l t t l

KNQ

PN N

N 2NQN

and t = 0,1,2, ... , N-1

We can also calculate the value of the optimal cost

cost.

The optimal cost-to-go is given by

zk

(A.10)

(A. 11)

(A.12)

-to-go and the optimal

y + E [ (xk- k Q(Xk- xk-

- f I+Dkl Xk- + 2 xq + 2 rk] P(k-)dxk-

2 k 1 k-1 k-1 -2 k-1 k-1 k-1 k-1 k1
I+x - x Qr+r Q2 -( Lk1k - Xk QxIk-1 k- 1 k-I

p(xk-1)dxk

- -f[xk 1 (Q + Dki)xk + 2 xv 1 (q O- xkl

+2 rk~~ +xkQxkI p (xkldk

kl k-1 -1 + k2 p k-1 +2 k-1 k- 1)-
- 1~ f (xv-lKkl~ 2 Po-ixi + 2 g 9P(x 1 )dx 1

S E { Ik-1 k-l k- + k-1 k- -1 } k = 1,2, ,.., N

(A.13)

(A.9)
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*
The optimal cost is given by J = ci

*

J
- E 1S{-x'K x

2 oO

Since x is known with certainty we

-7- x'K x + p'x
0 00 0

+ p'x00o + g }

can write

+ g0 0
(A.14)
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APPENDIX B

COMPUTER SUBROUTINES
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FILE: ?APMN FORTLAN A CONVERSATIONAL MONITOR SYST.M

INTEcER NA,NSNNA,NPTS,N,tNM,N,IPVT:10) ,KIN,KOUT
DOUbLE 2ECUISION A Fl0,2) , Bf110,2) ,CC10,2) ,Q (10,2) ,R (10,2),

+ STGd7,4),SIG3B12,4),SIG3A 12,4),SIGC(1o,2),
SIGAC '7, 2) ,SIGBC12, 2) ,PT12) , GT,XZEoR 010)

+ X!f12) ,u t (12),D'1f,2) ,EKT 1,2) ,EL:f10,2) , EM10),
+ J(1O,2),V(10,2),W (10,2),W1 10),W2(10),WOEK(10),
+ VW (13,2) ,UVf (10,2),AFRRAY (51,10),
+ 6DKB(1j,2),BKA 1 ,2),BPB310,2),
+ 3PA(10,2),LCOST (20),COST (20),LbPC (10),
+ 30P:1):),DM1),DP1 ),BKC10),DG

CCdMON/lN DU/KIN ,KOUT

KIN = 5
KOUT=o
NA=10
NN=4

N =1 4Na~t= 1

NS=12
NNA=7
N =2
1= 2
CALL MA TIo :NA,N,N,Q,4)
CALL A TI OINAoi,, R ,4)
CALL ATIU NA,N,N,A,4)
CALL MATIO( NA,N,M,5B,4)
CALL MATIO ,N,MM,C ,4)
CALL MAT10(NNA , NMfN"ISIGA,4)
CALL MAJIO(NS,NMaNN,SIGB,4)
CALL MATIONA,N,N,SIGC,4)
UT( 1) =0.000
UT12)=j.&DC
XZEP0 11 )=362 .CD0
XZMRO'2)=89.ODO
NPTS=1 6
X T ( 1)=( ( 1. 0125D0) (NPTS-1) ) *ZER O(1)
XT r2)= 1. 125W0) ** (NPTS- 1)) *XZERO (2)
CALL PAi( LA, NS, NNA,NPTS, N,MNMNN,A,B,C ,Q,RSIGASIG3,

+ SIGBASIGC,SIGACoSIGBCXT, UTPTGTXZERO,D,EKTs
+ EiELARnAY,COSTLCOSTBKBvBKABPABPB,Ei,DP,
+ 13PCBDP,BKC, DG,U,V, W,VW, UVW, W 1,W2, rORK,.IPVT)
WRITE(KOJT,15) GT

15 FOLhMAT(1H,7H GT = ,D26. 16)
WRITE(KCU2, 16)

16 FORMATC1H),51H PT
CALL MATIO N,NMM, PT, 3)
WRITE KOUT,17)

17 FORMAT (1H,7H MCT)
CALL MATIO(N,N,M 1,EM,3)
iRITE (KOUT,18)

18 FCRMAT(1H0,7H L(T)
CALL ATIONA,A,N,EL,3)
WRITE (KOUT, 19)

19 F 0RMA T',17 Li ,7 h K:T)

P AROC10
PAR00020
PA ROu0030
PAR00040
PAROQ050
PA 30 06 3
2ARO070
PAR00080
PAROU090
P ARiV1Q0
PARO0 110
P AR U 4120
PAROG 130
PAR00140
PAR00150
PARO160
PAR0U170
PAR00180
PAR iO19O
PAR00200
PAR00210
PAR00220
PAHOC 230
P ARQC2 40
PAROU 250
P AR 0 Q 260
PARD02270
P ARGO 283
PAOO 290
PAR00300
PAR00310
PAR00 320
P AR 00330
2AROO 340
PARQ035C
PAR00 360
PAR00370
PAR00380
PARC0 390
PAROD400
PAR00410
PA R00420
PAR00430
PAR00440
PARUG450
P ARCC46
PARO0 470
P ARU0480
PA00 490
PAR00500
PAROU510
PAROU520
PAR-00530
PARD0540
P AR00550

C

C
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FILE: PAinxlM FORTRAN A CONVERSATIONAL ONITOR SYSTC1I

CALL ATIIO(N A,N,N,EKT,3)
STOP

PAROC 560
P AR 57)
PAR00580
PAR 0590
PARO600
PAOO610

LAST LINE OF PARLIN

END

C
C
C

-1-
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FILE : PAR ORIRAN A CCNVhESATIONAL MONITOR SYSTEjM

SUEROUTINa 2AR'(NAtS,NNA, NPTS, N,M,NiNNA,B,C,Q,R,SIGASIGB, PARiO010
+ SIGBA,SIGC,SJIGAC,SIGBC, XT,UT,TTAT,XZEEO, PAR00020
+ DK,LKT,EM,EL,A R RAY,COST,LCO STBKB,3BK A, BPA, PARQJ03U
+ EPB,DM ,CBD3PCBP,BKC,DG,U,V,SUVWUVWW1,W2, 2ARODJ40
+ WORK,IPVT) PARJ( 5C

C PARUC60
C *****PAR A]LETZRS: P ARJ)u7C

INTEGJR AA,NS,NNA,NPTS,N,1,NM,NN,IPVT (N) PAROO80
DOUBLE 2iCiSION A (NA,N),B (NA, M) ,C (NAN) ,LQ"-NAvN) ,E NA,o) , PARUu9t

+ SIGA(NNA,NN),SIGB(NS,NM),SIG BA(NS,N), PAR00100
+ S iGC (N A, N)j,SIGAC (N NA , N) ,SIGBC3L1 S, N) , P AROL11%
+ XT4(N)1,UT() ,PT(N) ,GTXZL0 (N) ,DK(NA,N)r,EKI (NAN) ,PAR00120

+ EI(NA,N)j,ARRAY (NPTS,1) ,COST9NPTS),LCOST(NPTS), PARO013
+ Ei (M),BKB(NAI),oBKA(NAN),BPA(NAN),BPB(NAiY), PAR00140
+ UJ(N A,IN ),V (NA, N) ,W (NA ,N) ,VW (NA ,N),[UVW(NA ,N), WI(N) ,iAROO150
+ 42 (N) ,DP(N)r,D!M),DG,bPC (N),BDP (N) ,BKC(N),ORK(N)PAEoC160

PAR00170
C *****LOCAL VARIABLES: P ARlu183

INTEGEE K,L,KKLLKIN,KOUTITOP (40,6),IN (9),NSYM(1),SC,MAXES, PAR00190
+ IX YtJNDEX,Il,I5,JIEGY, MM, NLG,NGEuIDH, IN DEX, ICOUNT,ID, IL, P AROU200
+ IiND1,IND2,IND3,IND4,IRIS,IT ITtllIT1 ,IU,IY,I1,IzI4,15,PAROU210
+ J,JD,J1,KL PAROL22Q
DOU BLE 2 0ISI N CGND,TR, SUMXMIN, XMAX, YMIN,YMAXYSF (10) ,ZEEO, PAROO230

+ XMXS1 (2)o, XS (2) ,LTS (10,2)j, XSAV Ef16,2), PAR00240
+ LTSAVE(30,2),MTSAV 30),MTS(2),X32(2), PAiOG250
+ USAV E (15,2) ,DKSA VE (96,32),PTSAVE (32) ,G TSA VE (16), PARO0260
+ W3(1,2),DPSAVE(96,16),DMSAVE(96,16), PAR00270
+ DGSA VE (48,16) ,CSTSENLARRAY (15,4L),MARREAY (15,2)v, PARO0 280
+FR'LSEN82) ,SC P AR0C29O

c PARU300
*****FUqCrIoNS: P ARQV 310
INTEGER AOD PAR0 320
DOUBLE PRECISION DFLOAT PAR0330

C PAR00340
C *****SUBROUTINES CALLED: PAR00350
C SAVE,MADDMSUB,MMUL,MQFMSCALETRNATBTRACE,THPLT,LINEQ,ILINEJ PAR00360
C PAR00370
C------------------------------------------------------------------------'PA ROO 3BO
C PAG00390
c *****PURPOSE: PARG 4()
C THIS SUBiOUTINE PERFORMS TWO FUNCTIONS: PAROG410
C 1) IT SOLVES NHE FOLLOWING DISCRETE TIME LINEAR QUADRATIC PAE0Q42C

OPtIMAL CONTROL PROBLEM FOR A LINEAR SYSTEM WITH PURELY PAiU0430
C R ANDOM PARAMETERS. 2 AROL440
C THE SYSTEM IS DESCRIBED BY PAR0450
C PARO0 460
C X (I+1) = A*K (T) + B*UIT) + C, X(Z) = XZERO PAROC470
C PARG00480
C A,B, AND C ALE WHITE AND RANDOM. PAR0c49Q
C PAR00500
C THE MEANS, COVANIANCES, AND CROSS COVARIANCES OF PAR i51
C A, 3, AND C ARE SPECIFIED. PAR00520
C PAR0k53
C THE COST CRITERION IS PAR00540
C PABOG 550
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FILE: PA-' LOHrRAN A CONVERSATIONAL MONITOR SYSTEM

C
C
C
C

C

C

C

C
C
C

C

C
C
C

C
C
C
C
C
C

C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C

C

NPTS -

N

NIm

NN

A

B

C

Q

SIG A

sIGB

SIGBA

J = C1/2) t*E

X ,T)-XI

(U(T)-UT.

(X (N) -XT

TH E TARG ET S
MUST DE SPEC

(2) IT CALCULATE.
PARTIAL DERI
THE PARTIAL
(SJI.lA/JSTAR)

A3ERE JSTAR

SIGMA IS ANI
SIGA, SIGB, C
S2NSITIVIES(
IN THE PARAM.

*****PARAtETER DLSC]
ON INPUT:

NA,NS ,NNA

SUMMAT ION FEOM T = TO N-1 OF P AROL56Q
T PAR00570

ILDAfT)) *Q*:xc(T)-XTILDA:T)) + PAROO58O
T PAR00590

ILDA (T)) *R*(U(T)-UTILDA (T))) +PA2i0600
T PARO61C0

ILDA (N)) *Q* (X (N) -XTILDA (N)2) PAO062
P AR00630

EQ UENC ES (XTILDA(T), (UT ILD A (T)), T=3, 1, . .N PAROU0640
IFIED ALONG WITH Q AND R. P AR Q i659

PA00660
3 TUE QUANTITIES PAR00670
JATIVE OF JSTAR WITH RESPECT TO SIGMA AND PAR00680
LERIVATIVE OF JSTAR WITH RESPECT TO SIGMA * PAROb90

PAR00700
IS THE OPTIMAL COST (OBTAINED FROM(1)) AND PARU710
ELEMENT OF ONE OF THE COVARIANCE MATRICES PAR00720
DR SIGBA. THIS GIVES THE ABSOLUTE AND RELATIVE PAR00730
OF T HE OPTIMAL PERFORMANCE TO VARIATIONS PAR00740
ETER VARiANCES. PAR00750

AR00760
RIPTION: PAR0077U

PAR00780
R OW DIMENSIONS OF THE ARRAYS CONTAINING A (ANDPAR00 790
B,C,Q,R,SIGCDKEKT ,EL,BKB,BKA,BPABPB,U,V, W, PAROU800
VW, UVW)j, SIGB (AND SIGBA,SIGBC), AND SIGA :ANDPAROU810
SIGAC), RESPECTIVELY, AS DECLARED IN THE PAR00820
CALLING PROGRAM DIMENSION STATEMENT; PARU8d30

PAR00840
NUABER OF POINTS 0 BE PLOTTED; PARUC850

PAR00860
NUMBER OF STATES; P AR0Ib870

PAR00880
NUMBER OF CONTROLS; P AROC890

PARU0900
= N*M; PAR00910

PARUU920
= N*N; PAGO930

P AR 0Q 94C
N X N SYSTEM M ATIX; PAR00950

PARO0960
N X 3 INPUT MATRIX; PA00970

PARD0980
N X 1 ADDITIVE NOISE VECTOR; PAR00990

PAR01000
N X N STATE WEIGHTING MATRIX; PAR01010

PAR01020
M X M CONTROL WEIGHTING MATRIX; P AR01 3A

PARS1040
NN X UN COVARIANCE MATRIX OF A; P ARS105)

PARO lObS
NM X NM COVARIANCE MATRIX OF B; PAR01070

PAR01080
NiL X NN CROSS COVARIANCE MATRIX OF A PARO1Q90
AND B; PAE01100
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FILE: PAL FOLT2AN A CONVERSATIONAL MONITOR SYSTEM

SIGC

C ON OUTPUT:

N X N ARRAY CONTAINING THE RICCATI MATRIX;

M X 1 REAL VECTOR -CONTAINING THE CORRECTION
CUM TRACKING TERM;

M X N GAIN MATRIX;

NPTS X NN REAL SCRATCH ARRAY USED FOR
PLOTTING;

NPTS X 1 REAL VECTOR CONTAINING THE OPTIMAL
COST TO GO;

N X N ARRAY CONTAINING THE PARTIAL DERIVATIVE
OF EKT WITH RESPECT TO SIGMA;

REAL VECTOR OF LENGTH N CONTAINING THE
PARTIAL DERIVATIVE OF EM WITH R ESPECT TO
SIGMA;

REAL VECTOR OF LENGTH N CONTAINING THE
PARTIAL DcRIVATIVE OF PT WITH RESPECT TO
SIGMA;

REAL SCALAR EQUAL TO THE PARTIAL DEEVIATIVE OJ
GT WITH RESPECT TO SIGMA;

M X N REAL SCRATCH ARRAYS;

A ? M REAL SCRATCH ARRAYS;

C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C

C

SIGAC

S. G32

XT

UT

PT

N X N COVAHIANCE MAThIX OF C;

NN X N CROSS COVARIANCE MATRIX OF A
AND C;

NM X N CROSS CUVARIANCE MATRIX OF 3
AND C;

REAL VECTOR 02' LENGTH IN CONTAINING
XTILDAlbNPTS)

REAL VECTOR OF LENGTH N CONTAINING
UTILDA:NPTS);

RELAL VECTOR OF LENGTH N CONTAINING
THE VALUES OF P(NPTS);

REAL SCALIAR CONTAINING THE VALUE OF
G "NPTS) ;

INITIAL CONDITION VECTOR.

EKT

EL

COST

D K

D '

C
C

C

C
C

C

C
C

C
C

C
C

C

C
C

C
C
C

C
C
C

C I
C W

C

C .

c

c

c

c

C'"
4aw

bKA ,BPA

PARSO1110
PAR01120
PAROI1130
PARO 1140
PAR01150
PAR01 160
P AR01170
PARO 1180
PAR 01190
PARO 1200
PAR01210
PAR01220
PARD1230
PAR01240
PAR01250
P AROl1260
PAR01270
P AROI1280
PAIO 1290
PAR01300
PAR01310
PASO 1320
PAR 01330
PAR01340
PAR01350
PAR01360
PAR01370
PARO 1380
PARD1390
PAR01400
PARS 1410
PAR 01420
PAR01430
PARU1440
PAR01450
P ARQ1460
PASO 1470
PARIh148U
PAR01490
PARO1500
PAR 01510
PAR01520
PARO1 530
PASO 1540
P ARU 1550
PA 01560
PAR01570
PAE01580
PARO1590
FPAR01600
PAS01610
P A50162Q
PARD 1630
P ARis164U
PARSO1650
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FILE: PAP FORTRAN A CONVERSATIONAL NONITO SYSTEM

C PAaHO1660
C D i,3PC,3KC REAL SCRATCH VECTORS OF LENGTH N; PAR01670
c PAR01680
C U,V,W,VWUVW N X N REAL SCRATCH ARRAYS; P AR169&
C PAR01700
c W1,W2,dOaK REAL SCRATCH VECTORS OF LENGTH N; PAR01710
C PAR01720

IPVT INTEGER SCRATCH VECTOR OF LENGTH N. 2Aa01730
C PAR01740
C *****jjj5'QjY PARO 1750
C WRITTEN BY J.A.K. CARRIG, PARC1760
C (LAB. FOR IlF. AND DEC. SYS.,(L.I.D.S), M.I.T., RM. 35-427, PAR0177U
C CAMBRIDGEs, MA 02139, PH.: (617) - 253-7263), P AR01780
C JANUARY 1979. PARO 1790
C uAOST EECENT VERSION: JANUARY 11, 1979. PAR018O
C PAR01810
C -------- -- -- - -- - - - - -- - - - - - - -- - - -- - ----- P AR'01820
C PAR01830

COMMON/INfU/KIN,KOUT PAR01840
C PAR01850

DATA IBLANK/1H / PAR01860
C PAR01870

DATA IN (1) ,IN (2) ,IN (3),LN (4)/1If1,1H2,1H3,1H4/ PAR01880
DATA IN!5) ,IN '6 ) ,I N 7) ,INr8)f,I N (9) /1H5, 1H6,1l7,s1H8',1H9/ P AR0189v

C PAR01900
DATA ITO P1, 1),ITOP:'2,1) ,ITOP (4, 1) ,ITOP:5,1) , ITOP:6, 1)., P ARi191tk

+ITOP1(7,1) ,ITOP (8,1) ,I TOPf(9,1)v,ITOP (10,1),ITOP (11,1) ,ITOPr12,1), 2AR01920
+1 TO02 13,1), ITOP(14, 1) ,ITOP f15, 1)J, ITCP (16,1) ,ITOP(17,1), PAR01930
+ITOP0 (18,1 ) ,ITCP (19, 1) ,I TOP (20, 1) , ITOP (21, 1) , ITOP (22, 1) , ITOP (23, 1) PAR01940
+/1H ,IHK, 1H , 1HV , 1HE, 1HE, 1S, 1 HU,1 HS, 1i , 1 HT, 1 HI,1HM, 1H.E, PARO1950
+1H ,1H ,1 ,1H ,1b ,1H 11 ,i1H / PAE01960

C PAR01970
DATA tOPf(1,2) ,ITOP (2,2),IToP(3,2),rTOP(4, 2),ITOP(5,2),ITOP (6,2),, PAR01980

+ITOP(7, 2) ,ITOP(8,2) ,ITOP(10,2) ,TOP (11,2),ITOP(12,2), PARO1990
+ITOP (13 ,2) ,ITOP (14 ,2) ,I TOP (15, 2) ,ITOP f16,2) ,ITOP (17,2) ,ITOP (18,2) ,2AE0J200o
+ITO P (19,2) ,ITOP(20,2)jITOP(21,2),rITOP (22,1) ,ITOP(23,1) PARO2010
+/1H ,1H3,1,T ,1HAm,1HTt,1HE,1H , BX ,1H 4, 1HiV , 1 HE, 1H F, 1 ni ,1HU,1 HS,1 H , eAR02 020
+1HT ,1Hi ,1H,1iiE,1H ,11 / PAR020 30

C P AR 0204 L
DAT A IT OW :1,3) ,I TOPr(2,3)s,ITOP (3,3) ,ITOP f4,3) ,ITOP (5,3) ,ITOP 16,3)f, PAR O2O50

+ITJP (7,3) ,1TOP(8,3),ITOP (9,3) ,ITOP f10,3) ,ITOPf12,3) ,ITOPf13,3), PAR02060
+IT0Pf (14 ,3) ,IT CPf(15,3) ,ITOP16o3) vITOP117,3) ,ITOP (18, 3) ,ITOP (19, 3) ,PAR0O2070
+I T OP (20, 3) ,jI TOP (21,3) ,ITOP(22,3)4,1T-oP (23,3) PAR0 2080
+/1H ,1HC ,1HOf,1HN,1H T,1HR,1hO,1HLr1u ,1 HU, 1H ,1H V,1HE, 1HRV,1HS4,1HU, PAR02 090
+ 18S, 18 , llT, 1ii, 1dM, 1 LIE / PAR02100

C P AR02110
DATA ITOP(1,4) ,ITOP(2,4),ITGOP(3,4),ITOP (4,4)r,ITOP (5,4),ITOP (7, 4)f, PAR02120

+IT P( 8
1 ,4) ,IT02 9,f4) ,ITOP(10,4) ,ITOP 11, 4) ,ITOP:r12,4) ,ITOP'13,4)2, 2AR02130

+ITOP!(1 4,4)sITOP(15,4) ,I TOP (16,4),ITOPF(17,4) ,ITOPu18 ,4) ,ITOP (19,4) ,PARo2140
+ITJP/ ,20,4) j ITOP :21, 4) , ITO P (22 ,4) ,ITCP (2 3,4) P AR02 150
+/1iH ,1 H G,1 HAf,1HI ,1 HN,1H , 1HVF1E1Hs1HD, R1S, 1110,1S,1Hv , 1HTr, PARU2160
+ 181, 1.0, 1HE, 1Hs , 11-s , 1H ,iIH ,1H / PAR02170

C PARU2180
DATA ITOP(1,5),I TOP (2,5),ITOP (4,5).uIToP(5,5) ,ITOP (6,5), PAR0219 1

+ITO P (7 ,5) , I T C2 oE,85) ,TOP (9,5),ITO P (10,5) ,:TOP"&l1,5) ,IToPr%12,5), P AR02200

1
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C

+IIP (13,5)I1ICP14,5),ITOP15,5),ITOP 16,5),ITOP (17,5),ITOP2f18,5),PARO2210
+ITD P(19, 5) , ITOP (20, 5) ,ITOP:F21, 5) ,IT cP'f22,5),ITOP f23,5) P2A 02220
+/ 1 H ,li1,lii,1 ,11AV ,1H z, 1HR, 1 HS, 1UD, 1.S,9 18 , l1HT, 18, 11LM, 1HE, 111, PA R4"223 j
+ 1h , 1 ,18 , 1 , 1H , 1h ,11U / ?Aa02240

PAR02250
DATA ITOP(1, 6) ,I TOP (2,6) ,ITOP (3,6) ,IToP (4,6).,ITOP(5,6),rITOP (6,6), ?Ahi02260

+ITOP27,6) ,ITGP 8,6) ,ITOP 9,6) ,ITOP :1,6),I TOP 11l,6),ITSP (12,6)P, ARGJ227&
+ITCP( 13,6) ,iTO2 (14, 6) ,1TOP (15,o) hITOP (16,6) ,1TOP (17 ,b) ,ITO? (18,6) PAR02280
+ITOP (19r,6),ITGP0 20,b) ,LTOP j21,6) ,ITOP (22,6) ,ITOP'23,6) P ARO2290
+/118 ,l1C l 0O,,1H S,1H T ,1H ,1 HV, 1 HE,1IHr1S,1LIU,1181H ,1 HT ,1HI, APAi2U
+ 11ll, 1Hrl fIi ,H 1H ,iu ,ii ,l / PAR02310

PARO2320
MSC= 1 PAR02330
MAXES= PAR02340
IXY=0 PAE02350
IEGtY= 1 PAEL236C
ZERO=0.=D0 PAB02370
XMIN=1.0DD PAR02380
NGRIDH=5 PAR02390
MM=1 PARO2400
NLG=O PAR0241 4
DO 10 1=1,10 PAR02420

YSF I)= 1. ODO P A Rt 243)
10 CONTINUE 2AR02440

DO 20 1=24, 40 2AR02450
ITOP I, 1)=IBLANK P AR02460
ITO?(1,2)=IiLANK PAR02470
ITO2 1,3)=IBLANK 2AU2480
ITOP (I,4)=IBLANK PAR02490
ITO t 1I,5)=IBL ANK P ARU2500
ITOP 1I,6)=IBLANK PARO2510

20 CONTINUE PAR02520
IT=NPTS PAR02530
XKYAX=DFLOAT (IT) PAa02540
CALL SAVE:iNA ,NA,N,N,Q,EKT) PAR02550
CAL L MUL (NA, N, N,AMM,N,N,XT,P T) PARO2560
CALL MSCALE N,N,i1',-1.DO0,PT) PAR02570
CALL YIQFNA,N,N,N,MM,Q,XT,WlWORK) PAR02580
G T= W 1 11)/2. ODO P AR0259
DO 3C L=1,N PARO2600

DG 30 K=1,N 2AR02610
LNDEX=K+ tL-1) *N PAR0262 0
ARRAY (ITINDEX)=Q (KL) PAR02630

35 CONIINU E PAR02b4O
I NDEX=IT* N PARO2650
PTSAVECLNDEX-1)=PTC1) P AR02660
PISAVE (INDLX)=PT C2) PAR02o70
GSEA YE kiT)=GT PARu268G
IT M11=IT-1 PA RO2690
DO 220 1L1,IT i1 PAA02700

IT1=LT-IL PARO2 710
CALL TRNATE(NANAN,MBU) PAR02720
CALL MMULNA,N,N,MN, M,N,U,PT,W1) PAR02 730
CA LL 1UL (NAr, NMA, P1,MMl,R , UT,V) PAR0 2740
CALL MSUB N,NA,N,M,MM#,W1,V,i1) PAR12 75 0

C
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FILE: PAR FDR. TRAN A CONVERSATIONAL MONITOR SYST2M

C
C
C

CALL AUL NNA,NA,NA,N,M,N,U,LKTW)
CALL AiJL UA,NA,NA,1,NM,W,* ,WKB)
CALL tMJUL*(NAINA,INA,N,MN,W, A,DBK A)
CAL L 4-UL (NA,NA,N,MMA, N,W,C,BKC)

CALCULATE M(T) ,L (T)

DC 60 K1,M
KK=1+ 'K-1)*N
CALL IM UL (NAfNS, NA, N, N, N,EKT, SIGBC (KK, 1) ,rW)
CALL TR ACE (N A,N,W,TR)
bKC(K)=BKC K) +W1 K)+TR
DO 40 L=1,i

LL= 1+CL- 1) *N
CALL MMUL (NANS, NA,NNEN, EKTSIGB (KK,LL) ,W)
CA LL T RACE 3%NAIN,WTR)
1KB (KL) =-R(K, L) -BK B (K,L)-TR

CO NTIN UE
DC 5 0 L=1,N

LLl= 1+ L-1)*N
CAL I M MU L ( NNSNA,N,N,N,KT, SIG BA KK, LL),W)
CALL IR ACE (NA, N,W,TR)
BKA K,L) = KA CK,L) +TR

CONTINUE
CON TINUE
CALL SAVE('RA,NA,M,,BKBW)
CALL SAVE (N,M,ANM,BKC,EM)
CALL L1INL" NA , N, W, EM,COND, I PVT, WORK)
CALL SAV4N(A,NA,M,2BKB,W)
CALL SAVE (NANAM,N,BKA,EL)
CALL MLINEy(NA,NA,M,N,W,ELCOND,IPVTWORK)

SAVc LT ANE MT

LO 70 J=1,3
1i=2* ITM1-IL)+J
LTSAV EfI1,1)=ELLCJ,1)
LTSAVE(11, 2) = EL (J,2)

7) CONIINUE

DO 60 L=1 ,N
DO 80 K=1,tl

INDEX=K+ 'L-1)*M
LA R RAY IT1 ,LND LX) El (K,L)

80 CONTINUE

12=2* (IlT 1-IL)
ATSAVZ '2+1)=ENf1)
TSA V E (12+2) = EM (2)

DO 90 K=1, M
ARRATY gIT 1,K)=LMK)

90 CONT INU E

CA LC ULA T E K, DM, DG, DP, COST SENSITIVITY

PAR02760
PAR02770
PARO2780
PARO2790
PA-R02800
PAR02810
P AR U;2820
PARO2830
PARO2J84
PAR 02850
PAR02860
2AR02870
PARO2880
P A R 02 890
PARU2900
P AR02910
PA iO 2920
P AR 02930
PA R029 40
PAR02950
PAR02960
PAEO2970
PAR 02980
PARC2990
P A03000
PAR03010
PARO3V2C
PAR03030
PARO3040
PAR03050
PARO3060
PAR03U70
PARO3080
P AR03 J990
PAR03100
PAR03110
PAR03120
P ALO 3 130
PAR 03140
PAR03150
P ARV-3160
PAR03170
P ARO3 18
PAO 3190
PAR03200
PAR03210
PARO3220
PAR03230
P A RU 3240
PAR 3250
PAS03260
P AR U327.1
PAR 03280
P AED3290
PASO 3300

43

50
60

C
C
C

C

C

C
C
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ViLE: PAY FORTEANA CCNVERSATIONAL MONITOE SYSTEM

DO 19$ ICOUNT=1,3
I N D1=-1
IND2=N*IL+l1+ ICOUNT-1)*12
IND3=0
1ND4=IL+1+ (ICOUNT-1)*6
DO 183 1=1,NN

JI
IND1 1=1ND 1+ N
IND3=1ND3+ 1
DO 1 I I1=1,2

INDEX=I ND2-N+I 1-1
DP 'I1)=DPSAVE INDEXINE3)
LM(I1))=DMSAVz fI NDiXIND3)
Do 100 J1=1,2

JNDEX=INDl+J 1-1
DK (I1,Jl)=DKSAVE(INDEX,JNDEX)

CONTINUE
DG= EGSAVE(IND4-1IND3)
CA LL TRNATB 'NArNA,N,N,B,U)
CALL MMUL(NAA,NAN,M,N,U,DK,W)
CALL LIMUL NA,NA,NA,N,A,N,W,A,BPA)
WALL MMUL(NANA,NA,M, ,N,W,B,BPE8)
CALL ?MUL NANANAMM,r, ,W,C,BPC)
CALL MMUL(NAN,N,MM,,N,U,DP,3D2)
IE= 1+(I-1)1/N
IS=1+ J-1)/N
IU=1+MOD(I-1,N)
IV=1+ MOD "J-1,N)

CALCULATE DK

DD 110 K= 1, M
DO 110 L=1,N

KK= 1 + (K-1) *N
LL=L+ IL- 1) *N
CALL MMJUL(NA,NA,NA,N,N,NrDKSIGBA (KKLL) ,)
CALL TRACE NA,N,W,TR)
BPA (Kt) =BPA (KL) +TE

CONTINUt
DO 120 K=l,M

DO 120 L=1,M
KK=1+(K-1) *N
LL= 1 + (L-1) * N
CALL NMULt NA, NANAN,N,NSDK, SIGB [KKLL) ,vW)
CALL TRACE(NA,N,W,Tt)
EPB K,L)=BPB 'K,L)+TE

ONIINUE
IF 'ICOUNr.EQ.2) BPA IRIS)A=BPAIR,IS) +EKTIV,IU)
ZA LL TRNATB 'NA,N A,MN, BPAW)
CALL MMUULNA,NA,NA,N,N,a,W,EL,VW)

CALL SAVEW(NA,N A,rM, N,BPA,UV)
CALL SAV 4NA,NA,M,M,BKBW)
CALL MLINEV.(NA,NA,M,N,WUVWCOND,IPVTWORK)

C PAR03310
PAR03320
PAR03 330
PAR03340
PAR03350
PAR03360
PARO03370
PARO3380
PAR03390
PARO3400
t' A 341O
PAR 3420
2 AIR03430
PAR03440
PARU3450
PAR03460
PAR03470
PAR03480
PAR03490
P AR03500
PAR03510
PAR03520
PAR 03530
PAEO 3540
PAR03550
PARO3560
PAR 03 570
PAR03580
P AR 03590
PAR03600
P AR 036110
PAR03620
PAR03630
PAid03640
PARO0650
PAR 03660
PAROD3670
P ARD368
P ARO3690
PAR03700
PARO3710
PARO3720
PARO3 730
PAR03740
PAR 03 750
PAR03760
? AR03770
PAR03780
PAR03790
PARU3800
PAR03d 1
PAR 03 82 0
PAR03830
PAR 03 840
PAR03850

100

C

C

110

120

C



CONVERSATIONAL MONITOR SYSTEM

C

CALL TRNATB 'NA,NANMeN,BKAW)
ZA LL MULJNA,N A, NAN,,',IW, UVW, V)
CALL ADD /NA,NA,NA,M,N,V,VW,VW)

CALL SAVz (N A,NA,M, N,BKA,W)
CALL SAVE CNANAMeNDKBvUVh)
CA LL MLINEQ(NA,N A,M,N, UVWIh,COND,IPVTWORK)
IF .ICOU NT.EQ.3) BPB 'I R,IS)=BPB (I R,IS)+EKT (IV, I U)
CALL MMUL (NA,N ANANMMBPBWIUVW)
CALL SAVE fNAUNA,4,MBKB,W)
CA LL MLI NLQCNANA,M,N, WeUVW, COND, IPVT, WOR K)
CALL TR NAT B INA,NA, 1,N, BKAW)
CALL MMUL fNANA, NA,N,Mr,M, W,UVWV)
CALL M ADD (N A, N A, NAM,N,VW,V,VW)

CALL TRNATB(NA,NA,NN,,A,V)
CALL MMUL'NA ,NANAo,N,N,N,DKIA, UVW)
CALL NMiUL (NA,NA,NA,N,NIN,,V,UVW , W)
CALL MADD fNA,N A,NA,N,N,W,VW,UVi)
DO 130 K=1,N

DO 130 L=1,N
KK=1+(K-1) *N
LL=1+(L-1)*N
CALL MMULNANANA,NN, N,DKSIGA(KKLL) ,W)
CALL TRACE(NAN,W,TR)
UVW CK,L) =UVW (KeL)+TR

CONTINUE
zF ICOUNT.EQ.1) UVW'IR,IS)=UVW'IR,IS)+EKTgV,IU)

CALCULATE DM

DD 140 K=1,tA
KK=1+ K-1) *N
CALL MlUlUL (N A, NS, NA , N,N,NoDK,SIGBC (KK,1) ,W)
CALL TRACE(NAN,W, TB)
BPC (K) =BPC (K) +B DP (K ) +TP

CONTINUE

CALL SAVE 'NAI,NA,N,NKB,KWK)
" ALL SAVECN, M, N, M,BPC, DM)
CALL LINE4 (N A,N,W , DM, COND, IPVTWORK)

CALL SAVE(NN,N,N,-MBKC,W)
CA LL SAVE (NA , NA,NN,,BKB,W)
CALL LINEQ(NA,M,4W1,COND,IPVTWORK)
CA LL L:1U L9NA ,N,N,M,N,N,B PBWii1, W2)
CALL sAVE (NA,N A,N,N, BKB,W)
CALL L.INEQ 'NA,N,W,W2,COND,IPVTWORK)
C A L L UA DDN,NN,NIM,DMrW2, DM)

CALCULATE DG

CALL MMUL3NA,NA, NA,N,N,NDKSIGCW)
CALL TRACE(NA,N, W, Ta)
CALL TR NATB NA ,1M2,N,MM,C,W3)

P AR U3860
PAR0 3870
PARG3880
PAR03890
PAR03900
PAR 03 910
P ARK3920
P AR 03930
PAR03940
P AR03950
PARC3960
PAR03970
PAR03980
PARC3990
PAR04000
PAR04010
P AR04v20
PA R 0 4030
PARU4040
PAR04050
PARO4060
PARO4070
PARK4080
PAR 04090
PAR04100
PAR04110
PARK4120
PARQ4 130
PARO4140
PAR04150
PARO4160
PAR04170
PAR04180
PARO4 190
PAE 042 00
PAR04210
P AR04 229
PAR04230
P AL 04240
PA-H 4250
P ARO4 260
PAR04270
PARU4280
PAR 04290
PAR04300
P ARC 431 0
PARO4320
P AR00433'
PA RU 4340
PAR04350
PAR04360
PARO 4370
PAR04380
PARD 4390
P AR 04 40,)

C

130

C
C

C

140
C

C

C
C
C
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FILE: PAV" FORTRAN A CONVERSATIONAL MONITOR SYSTEM

C

C

C

C

C
C
C

160 CONTINUE

CA LL MMUL fNA,iJA,NoMMN,N,oDK,C, W1)
CALL MMUL(MN,N ,NA,M i,MM,N,W3,W1,W)
CALL MMUL(iAM, N, NA, MM, MM, N,W3, DP, V)

JG=DG+ (TE+Wf(1, 1))/2.ZO DO + V (l, 1)

CA LL TR NATB N, MM,N,MM ,BPC,W 3)
CALL MMUL(MHM,NA,M ,MM,N,W3,EM,W)

CALL TRNATB'(N,M, N,MM,BKC, W3)
CALL MMUL(IM M,N,N,MM,ML,N,W3,DM,V)

DG= DG + ( 4( 1, 1)+ V(1,1 )/2 . 0 0

CALCULATE DP

CALL TRNATB (NA ,NA,N, N,A, W)
CALL NMMUL NA,NAN,NM,N,N, DK,CW1)
CALL MADD(iN,N,N,,MM, W 1, DP, W1)
CALL MMUL fNA,NN,tI,N,N,W,WIW2)

DO 150 K=1,N
KK=1+ (K-1) *N
CALL : IUL(NA,NNA,NA,N,N,NDKSIGAC(KK,1),W)
CALL TRACE (NA ,N,W,TR)
DP(K)=W2(K)+TR

CO N TiN U-E

CALL TR NAT B(NA,N A,N,N, BPA,W)
CALL AAUL(NAr1,MN,MM,N,N,W,EM,W 1)
CALL MADD(NN,N,N,MM, DP,W1,DP)
CALL TENATB(NA,NA,N,N,BKA,W)
CALL 1MUL (NA,N,N,MM,N,N,W,DM,W1)

C A LL MA DDI(N,N,N,N, MM, DP, W1,DP)

IF(IL.N.IT1) GO TO 160

CALCULATE COST SENSITIVITY

CALL TRNATB(N,1,N, 1,XZEEO,W3)
CALL MMUL (NA,N ,N ,NM,N,N,UVW,XZEEO,WORK)
CA LL MMUL'1,N, NA,MMMMN,W3,WORK,W)

CALL TRNATB (NN,NMM, DPW 3)
CALL MMULC'%N,NN,M,NMM,N,W3,XZERO, V)

CSTSEN=Wf(1,1)/2.ODO + V(1,1) + DG
lIE(KOUT,900) CSTSEN

IF(ICOUNT.SEQ. 1.AND.I.EQ.J) KL=KL+1
IF(ICOUNT.EQ.3.AND.I.EQ.J) KL=KL+I
IF lCOUNT.EQ.1.AND.I.JLQ.J) RtL SEN (KL)=CSTSEN*SIGA (I,J)
IF(ICOUNT.EQ.3.AND.I.EQ.J) RELSEN (KL)=CSTSEN*SIJGB(I,J)

PARO4410
PAV-O4420
PAR04430
PAR04440
2AR04450
P ARU4 460
P AR447$
PARO4480
P AR 04490
PAR04500
PARO4510
PAR04520
PAR04530
PAR04540
PAR04550
P ARU4560
PAR0 4570
P AR04580
PAR04590
PARC4600
PARO4610
PARO4620
PAR 04630
PARC4640
P kR04650
PAR04660
P ARU4670
PARO4680
P ARC4690
PAR04700
PAR04710
PAR04720
PAR04730
P AR 047140
PA 20 4750
P AR J4760
PARO4770
PARO4 780
PAR04790
PARO480U
PARu4810
PARC 4820
P AR) 483&
PARU4840
P A C4850
PARC 4860
PARC4870
PARO4 880
PARO4890
LIAR04900
PAR04910
P Af 0492:3
PAR04930
P AR0494 4
PAR04950

C

15D
C

C

C

C
C
C

C

C

C
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FILL: PAE FORTRAN A CONVERSATIONAL MONITOR SYSTEM

r

C
C

SAVE DK, DP, DM, DG

Do 170ID=1,2
INDEX =I NLD2+ID-1
DPSAVZ ]IN DE X,1INL 3)=DP(ID)
DMSAVE(INDEX,IND3)=DN(ID)

0 17. JD=1,2
JNDEX=IND1+JD-1
DKSAVE(INDEX,JNDEX)=UVW(ID,JD)

CONTINUE
DGSAVE(IND4, IN 3)=DG

CONTINUE
CON T IN JE

CALCULATE G (T), OVERWRITING G(T+1)

SC=.9876543209876544L Q
CALL dSLCA LE N,N, ii,SC,XT)

CALL TRNATBfN,NA,M,NMBKC,V)
CALL JMMUL (NA,M,N,AM,NiVM,V,EM,W2)
CALL MMUL NANA,NAN,N,N,EKT,SIGCW)
CALL TRACE(NA,N,W,TR)
CALL R NATB(NA,NA,N,MA, C,W)
CA LL MMU L (NA, NA, NA, N, IM, N, W, EK T, V)
CALL MUL (NA, N A, N, MMrM,N,V,C, 1W)
CALL MAUL (NA,N,NA ,MMrMM,N,WPT,V)
GT=GT+V(1,)(1)+(W1(1)+W2(1)+TR)/2.0D0
CALL Aj F'NA,N,N,N,LLy,XT,W 1,WO&K)
CALL MQ F (NAM,N,NLIM ,R, U T,W 2,WOEK)
GT=GT+ (W 1fl)+W2 (1) )/2. D)0

SAVE GT

GTSAVE(IT1)=GT

CA LC ULA T E P (T), OV ER WRITING P(T+1)

CALL TR NATB (NA,NA,N,N,A,W)
CALL MAUL NA,NA,NA,N,N,N,EKT,C,V)
CALL MA DD NA ,N,NA, N,MM,V, PT, V)
CALL MMUL(NA,NA,N, Ml,N,N,W,V,W1)
CALL TL NATB (NA ,NA, M, N,BKA,W)
CALL M PUL(NA,M,NA,MM,N,M,W,EM,V)
CALL AUL (NArNN,N, MN, N,Q,X T, W 2)
CA LL ASUB (NA,N,N, N,M M,V,W2,W2)
DO 200 K=1,N

KK=l + (K-1) *N
CALL MMUL(N A,NN A,NA,N,N, N,EKT,SIGAC(KK,1),W)
CALL TRACE(NA,N,W,T&)
P T (K)= W1 (K) +W 2(K) +T R

CONTILNUE

PAR4960
PARO4970
PAR04980
P AR Q40997
PA EQ 500 0
P AR05010
PAR0520
PAR05030
PAR05040
PARD5050
L" ARU5060
PARO 5070
2 AR508G
PAR05090
PAR05100
PAR05110
PAR 05120
PAR 0513 0
PAR05140
PAR05150
PAR05160
P AR05 170
PAR05180
PAR05190
PAR05200
PARO5210
P AR 05220
PAR05230
P AR 05240
PAR05250
P AR 05260
PAii 5270
P AR05283
PAE05290
PAR05300
PAR05310
PAR05320
2 AR05330
PARO5340
P AR 05350
PARO5360
P ARO5 370
PARO5380
PAR05390
P AR 05400
PAEO5410
P ARQ5 420
PARO5430
P ARQ 5440
PARO5450
? AR 05460
PAh05470
P ARC 5 48 0
PAR05490
PAR05500

17:

180
190

C

C
C
C

C

C

C

C

C
C

C
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F OKf"A N A CON VERSATIONAL NONIIOR SYSTEM

C
C

CALCULATE STATE XS

XSAVE(1, 1)=XZEirO(1)
XS AV E (1 ,2)=X ZER0 (2)

XS'1)=XZERO (1)
XS (2)=XZERO (2)
DC 250 I=1,ITM1

DG 240 J=1,NM
INDEX=2*1-2+J
LTS LJ,1)=LTSAVE(INDEX,1)
LTS (0, 2)=LTSAVE(INDEX,2)

CONTINUE
CALL MAUL (NA ,N, M, M,AdN,L TSvXS,XSI)

MTS (1)=ZTSAVE(II-1)
TS(2)=&TSAVE 'II)

CALL MADD( ,,MI,M,Mw,XS1,MTS,XS1)

C
C
C

SAVE PT

Iq= (IT-IL) *N
PTSAVZ (I4-1)=PT(1)
PTSAV(I4)=PT(2)

CALCJLAT2 K7), OVEIXWiITING K (T+1)

CALL TENATB (NA,NA,M,N,BKA, W)
CALL LiMUL'(N A,NA,N ANN,M,W ,EL,U)
CALL 2IQF NA ,NA ,NA, N, N,EK T,A,',V)
CALL ZADD(NA,NA, NA,N,N,U,W,U)
DO 213 L=1,N

DO 213 K=1,N
KK=1+ (K-1) *N
LL=1t' (L -1) *N
CALL MU L NANNANA,N, N, N,EKT, SIGA KK, LL),V)
CALL TRACE(NA, N,V,TR)
W (KL)=Q (KL) +U (KL)+TR
INDEX=K+ (L-1)*N
ARRAY (IT1,1WNDEX)=W (KrL)

21) CONTINUE
CALL SAVE(NA,NANN,W,EKT)

220 CONTINUE

PLOT K

DO 230 I=1,N
DG 230 J=1,N

INDtX=J+(I-1) *N
IF(INDEX.LE.9) ITOP (3,1)=IN(INDEX)
IF(LNDEX.GT.9) ITOP(3,1)=lBLANK
N SY Ii(1) = 11
CA LL TP LTfNPTS ,IE% Y,A ERA Y (1,lNDEX),N P TS, ITOP,NSYiIXMIN,

+ XMAX,YMIN, YM A X,YSF,NGF IDH,NLG,MSCALEMAXESoIXY)
233 CONTINUE

PAR05510
PAR0552 0
PAR05530
PAR05540
PAR05550
P AR0556D
PARO 5570
P ARu558O
PAR05590
P AR05600
PA05610
PAR05620
PAR05630
PARO5640
2 AR 05650
PARJ5660
PAR05670
PAR05680
PAR 5690
PAR05700
PARD5710
P AR 05720
PAR05730
PAR05740
PAR05750
PAR05760
PAR05770
PAPO5780
PAR05790
PAR05600
PAR05810
PAR05820
PAR05830
P ARU5840
PAR05850
PAR05860
PAR05870
PAR05880
PAR05690
PAR05900
PAR 05910
PAR05920
2AR0593C
PAIR05940
PAR05950
PA P05960
PARO5970
PAR05980
PARU5990
P AR 06)0%,
PAPR 6010
PAR06 020
PARC6030
PAR06040
PAR06050

C
C
C

C
C
C

C

240
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IILE: PAR FOR TRAN A CONVERSATION AL ONITOF SYSTtI

USAV(I, 1)=X31(1)
USA VE,2)=XS1 (2)
CALL I 3UL (NA,i, 1M rN,IMiBeXS1,X52)
CALL dADD N,N,N,N,4,XS2,C,XS2)
CALL mU L (NAr,N,N MtN,IN,A,X S,XS1)
CALL MADD(N,N,N,N,MMXS1,X32,XS)
XSAVlI+1 ,1)=ZS1)
XSAVE(I+1,2)=XS(2)

25Q CONTINUE

PLUT STATi TR AJECTORY

DO 260 J=1,N
NSYPMI(1)=24
IF (J.L".9) ITOP (9,-2)=1N (J)
IF(J.GT.91) ITOP (9, 2) =1o'LA NK
CALL TUPLi (N PTS, I EGY,XSA VE (1,J) ,NPTS ,IT OP (1,2) ,NSYA1,XIIIN,XMAXv

+Y MI N, Y MAX,YSF,NGRIDH,NLG, M SC AL E,MAXES, IXY)
260 CONTINUE

PLOT CONTROL TREAJECTO EY

XW=D FLOAT (iTM1)
D0 270 J=1,N

NSYMI!1)=21
IF(J.LE.9) ITO P(11,3)IN (J)
IF (J.GT.9) ITOP'1,3)=IBLANK
CA LL THPLT (ITM1#,IEGYUSAVE(1,J).,ITM1,ITOP (1,3),NSY,X.IbN,XI,

+ YMIN ,YMA X ,YS F,NG RI DH ,NLG, MSCALE, M AXES, IXY)
270 CONTINUE

C

+

+

PLOT GAINS

DO 28 I=lgN
DC 280 J=1, M

NSYM 1)=12
IDZX-=J+ (I-1) *M
IF :INDZX. LE.9) ITOP .6,F4)=IN (INDEX)
iF (INDiX .GT.9) IT OP (6,4) =IBL ANK
CALL T HPLT (IT M 1,IEGY, LARR AY '1rIND EX),ITM1, ITOP(1,4) ,gNSYM,

X MI NX M, Y NIN, Y MAX , Y SFrN GRI D H,NLGIMSCALE,MAXES,
IxY)

280 CONTINUE
C
C PLOT CORRECTION TERiM (YT)
C

DO 290 J=1,M
NSYM (1)=13
IF (J.L,.9) ITOP(3,5)=IN(J)

F 'J.GT.9 ) ITOP(3,5) =IBLANK
CALL THPLT1(IT,11,IEGYiARRAY (1,J) ,IT M1,ITOP (1,5),FNSYLXMIN,XM,

YMIN,YMAX,YSF,NGRIDid,NLG,MSCALE, AXES,IXY)
290 CONTINUE

C
C CALCULAT2 COST

C

C

PAR060 60
P A 06 7%
PAR06080
P A R6J90
PAR06100
PA306110
PAR06120
PARO6130
P AZ6 140
PAR06150
P AR U160
PALO 6170
PARO6180
PAR06190
PAR06200
PAR 06210
P ARO6.220
P AR0623)
PAL06240
P AR06 250
PAR06260
PAR06270
PAiL06280
PAR06 290
PAR06300
P AR63 10
P AR06320
PAR®6330
P AR06 340
PA RJt350
PAR06 360
PAR06370
PAI06380
PAR06390
PAROb400
P AR06410
PALO6 420
P ARO6 43C
PAh06440
PAR06 450
PAR 06460
PARO6470
P AR 06480
PAR 06490
P ARO65 OJ
PA RhO65 10
PAR06520
PAR® 530
PAROo540
PABU6550
PAP6ub 560
P ARO657j
PARLb580
PAR06590
PAdiOb b0

C
C
C


