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ABSTRACT

This report involves the application of ideas in adaptive stochastic
control to economics.

We investigate the control problem for a linear, multivariable, dynamic
system with purely random (i.e, white) parameters. The gquadratic cost
criterion is formulated to make the problem a tracking problem. Since the
parameters are modelled as white stochastic processes, there is no
posterior learning and no dual effect. The certainty-equivalence principle
does not hold. We find that the extension of the "Uncertainty Threshold
Principle" from scalar systems to multidimensional ones turns out to be
analytically intractable.

Next, we derive sensitivity equations for the above optimal system to
study the effects of small variations in parameter uncertainties on the
optimal performance of the system. These equations enable us to rank
parameters in order of the sensitivity of the performance to variations
in their variances. This makes it possible to locate the "pressure"
points in a model, if any exist.

We then convert an economic policy problem into a stochastic optimal
control tracking problem and analyse it with the equations we have derived.
We study the different elements that enter into a tracking problem and
then discuss the empirical results obtained from the sensitivity equations,
The model we choose for the analysis turns out to be insensitive to
variations in parameter variances which makes it reasonably reliable.

We also analyse in detail the structure of the model and the inter-
dependences of the state and control variables.

General purpose computer programs are included in one of the appendices.
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CHAPTER 1

INTRODUCTION

1.1 Adaptive Stochastic Control

Though research in stochastic control has progressed in the last
decade, there does not exist at present a general, computationally viable
theory of optimal stochastic control. Richard Ku, in his doctoral thesis
[1], gives a survey of this area. Bellman [2] first introduced the
concepts of 'information pattern' and 'learning'. Feldbaum [3] expanded
on this in his celebrated four part paper on the theory of dual control,
in which he identified the two distinct roles an optimal controller must
play to be truly optimal. The controller must actively try to identify
the unknown parameters of the system and simultaneously try to control the
system. He showed that 'in such dual control systems there may exist an
inherent conflict between applying the inputs for learning and for
effective ;ontrol purposes. This introduced the concepts of caution and
probing and the possible trade-off between them, For some insight, the
reader might want to refer to a paper by Sternby [4], in which he solves
a simple dual control problem analytically and compares the optimal

solution with other suboptimal strategies.

Bar-Shalom and Tse have further clarified the concept of dual
control and various related concepts like separation, certainty-
equivalence, neutrality and have also made precise the subtle differences
between closed-loop optimal policies and feedback optimal policies
arising from different information patterns, These can be found in

[5] - [9]. On the last point there is an excellent paper by Dreyfus [10].




Since the permissible controls are causal, the only information
about future observations that can be used by the controller is the
probability distribution of these future observations. This knowledge
is what makes the difference between a feedback contrel policy and a
closed-loop contrel pelicy. It is only the latter policy that uses this
information to advantage. The feedback law at time t uses information
only upto time t. And it is this difference that makes the dual effect
possible. A control is said to have a dual effect when, in addition to
its effect on the state of the system, it is able to affect the
uncertainty of the state of the system, If the control cannot affect
this uncertainty, then the system is called neutral. If the dual effect
is present, then the control can help to improve the future estimation
and in so doing facilitate the task of the control. In this case the
control is said to be actively adaptive. Precise definitions of these

terms can be found in the references cited above,

It turns out, however, that we cannot solve the adaptive control
problem except for special cases, In fact, the decision problem in
linear systems with unknown parameters is actually a nonlinear stochastic
control problem [7], [47]. There are two ways in which we can make
approximations to make the original problem mathematically tractable.

One is to approkimate the optimal law. The second is to approximate the
linear system as having random parameters that are uncorrelated in time,
or white, in engineering jargon, and to obtain the optimal control for
this approximate system which may now be possible analytically. This is
the route we shall take in this report. We shall find that our

assumption of white parameters makes identification impossible which means
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there is no probing action thereby making the problem solvabie,

Before we turn to a mathematical description of the problem, let
us first survey the interactions of control theory and econcmics, as we

shall be applying our techniques to an economic policy problem,

1.2 Control Theory and Economics

In recent years, several workers have begun to find the techniques
of optimal control theory to be useful to the analysis of economic
problems. Some of the basic concepts of system theory and, in particular,
of stochastic optimal control theory may be able to provide a more unified
and comprehensive analytical framework for posing and solving economic
problems. Kendrick [12], Athans and Kendrick [13], and Acki [14] have
written good survey articles with extensive bibliographies on the
different areas of interaction between economists and control theorists.
The earliest instances of such intercourse began to appear in the 1950's
with the work of Tustin [15], Phillips [16], Theil [17] and Simon [18].
After this, there seems to have been a total absence of dialogue until
the 1970's, This decade has seen, however, an encouragingly large
nunber of interactions. Aocki, Chow, Kendrick and Pindyck, amongst
others, seem to have been the more prominent contributors, [19] - [38].
Though there is still a debate about the degree and kind of applicability
of control theoretic ideas and methods, it is significant that the debate
does not question any more the fact of the basic usefulness of control
theory to economics. One cannot emphasize enough, however, the need
for control theorists to thoroughly understand the economics they wish

to apply themselves to, Also, economists would do well to appreciate
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the different tools developed in control theory together with the

limitations of these tools,

The applications of control theory have been in different areas of
economics : various microeconomic problems and macroeconomic stabilization
and regulation problems. Examples of microeconomic applications are
profit maximization in a firm, optimal advertizing levels, analysis of
commodity markets, optimal price setting in the face of uncertain consumer
response, and others, all in a more general dynamic setting. The reader

can find references in the survey articles cited above and in [38].

A natural area for control applications is the analysis of
macroeconomic policy planning problems. Economic policymakers are
interested in controlling the national economy with the various instruments
they have at their disposal, The economy is, firstly, a dynamic entity,
in which present policy action affects not only the present but also the
future course of events. Secondly, it is essentially a stochastic entity
as well, so that some way of incorporating uncertainty at a basic level
is needed. This makes the regulation of the economy a natural stochastic

control problem,

A number of questions arise in the evaluation of the performance
of the economy under different specifications of the policy instruments,.
First of all, we need to specify goals in terms of which this performance
can be evaluated, Once we have succeeded in formulating clearly our
objectives, how do we look for good pelicies? In general, one might
expect a good policy to coordinate all the available instruments in some

suitable way, How do we compare different "good" policies? 1Is there an

TR ey o et 1 ot r - poam o e memn e o
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unique optimal policy? Many other related questions c¢an be asked.
QOptimal control seems to offer a natural, precise framework for addressing

such questions.

Another point, in a slightly different vein, needs to be made
here. System theory can make a far more basic contribution as well. Much
conventional economics is done in a sociopolitical vacuum from which all
traces of conflict, compromise, imbalances of power, human factors in
policymaking and other so-called imperfections have been conveniently
removed., If one is to adopt a realistic approach to real problems, then
a more comprehensive viewpoint at a fundamental level is needed, and to
the extent that science can illuminate our understanding of human
"systems', system theory has the potential to incorporate a larger view.
(This, of course, is not to ratify the argot in the pseudosciences of

"General Systems Theory" [39] or "System Dynamics' [40].)

Economists and control theorists approach their models with
different attitudes and this has, to some degree, influenced the tools
they use. In economics, many aspects of the models are rather arbitrary
since the sheer complexity of real economic phenomena force model
builders to adopt many simplifying and often unrealistic assumptions for
Teasons not entirely justifiable on economic considerations alone, This
is in addition to the fact that economic theory today does not as yet
have a really fundamental grasp of economic phenomena. Conscious of this
arbitrariness to some extent, economists do not take their models
literally and are generally content with establishing qualitativé

properties of their models such as existence of optimal decision rules
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and properties of classes of optimal decision rules such as stationarity
and stability. Time has played a relatively minor role in these models,

though recent economics has considered it more adequately.

Engineers, on the other hand, do have a better and deeper
understanding of the engineering systems they model, relatively speaking,
and so tend to trust their models to a far greater degree. They generally
analyse their systems in detailed quantitative terms, and construct and
implement algorithms for optimal decision rules, in addition to studying
the qualitative features of their systems. Most models do take into

account the dynamics of the system.

The focal point of the interaction here has been the traditional
macroeconometric model which, after suitable transformation, can be
recast into the state-space representation familiar to engineers.
Economists usually assume that the main state variables can be measured
exactly. Also, they emphasize the estimation of unknown parameters.
Engineers, on the other hand, usually take parameters as given and deal
with observation errors instead, In [31], Kendrick observes that the
data used by policy analysts to determine monetary and fiscal policies
are known to contain errors. Such data are being constantly revised as
more information becomes available, The magnitude of these revisions
gives us a measure of the relative quality of different macroeconomic
time series. However, economists do not at present use this new
information in determining policies. Fair [11] points out that the
accuracy of the model is generally improved when the actual values of the

exogenous variables are used and when more recent coefficient estimates
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are used. From the engineering side, adaptive control algorithms that
look impossible in an aerospace context may be perfectly practical when

decision rules have to be computed only once a month or once every quarter.

Differences of this kind in attitude and approach help to underscore,
in fact, the common thread that binds both fields : the making of decisions
with imperfect information in an uncertain environment. Adaptive
stochastic control seeks to tackle this basic question. Let us turn now

to a mathematical formulation of the problem,

1.3 The Problem :

We shall study the following linear, multivariable, discrete-time

system

Xy © Atxt + Btut *C (1.3.1)

where At’Bt are white, Gaussian matrices and ct is a white, Gaussian
vector. Note that the noise in this system enters both additively, through
Cy> and multiplicatively through At and Bt' Note also that all the

random quantities are white. This is a crucial assumption in that it

makes active learning impossible since, at each time instant, the values

of A, B and C are all uncorrelated with the past. However, this

assumption does enable us to deal analytically with uncertain parameters,
representing in some sense a worst case situation. The assumption of a
Gaussian distribution is actually superfluous. All we need to know are

the first and second order statistics. The actual probability distribution

does not matter,
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This formulation holds a double inte;est. Firstly, its solution
is of basic theoretical interest., An aﬁalysis of this problem can be
found in [1], [41], {42], [43]. This system forms the basis of the
result embodied in the '"Uncertainty Threshold Principle" expounded in
[11, {44], [45], [46]. The second point of this formulation is that its
assumptions fit the framework of linear econometric models reasonably
well. The estimated parameters of econometric models are actually random
variables. The use of white processes, of course, may not be quite
realistic, though this assumption makes the problem amenable to mathe-
matical solution, and in addition represents a worst case situation

which may vield useful information for further analysis.

The central result of Ku's thesis [1] that is of relevance to us
is embodied in what is called the "Uncertainty Threshold Principle'.
It arises from an analysis of the following scalar stochastic control

problem :

X = ax. +bau +&

t+1 t™t T £ X, given (1.3.2)

where X, is the scalar state of the first order system, We assume that

the driving term Et is a zero-mean Gaussian white noise with known

variance Z. We also assume that the random parameters 2_ and bt are

t

Gaussian and white with known means a, b, known variances Lo be,

and known cross-covariance Ea We also have perfect state information.

b
The optimal control problem is to find a feedback control law

u, = Y(xt,t), t =0,1,2, ... , N-1, such that the expected value of the

following quadratic cost functional is minimized.
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N-1
J= E {Qx; + 7 (Qxi + Rui) }, F,Q>0, R>0 (1.3.3)
t=0 :

The expectation is taken with respect to the probability distribution of

the underlying random variables 2., bt’ Et.

'The solution to this problem is readily obtained by applying the

standard stochastic dynamic programming algorithm. We get the following
equations
: G
u, = -G, x, (1.3.4)
G S T (1.3.5)
t R+ (o +B7) Ky
- =2 L o2 T2
Kt Q-+ ( Zaa + )Kt+1 Gt[R + Kt+l(zbb + b)) ] (1.3.6)
KN = Q (1.3.7)
The optimal cost is given by
N N-1
J = Kx* + } K. .= (1.3.8)
oo =0 T+1 7 T

We note, in passing, that the control law is linear in the state and the
Riccati-like equation satisfied by Kt has a unique solution under the given

conditions,

An inspection of the infinite horizon case (N-r«) yields an

interesting result. Assume that Kt+ is '"large" in the following

1

equation :

2 any 2
Keer (Zab + 8b)
- T2
t+l R+ (I * D ) K,

Z)K

iXll

Kt=Q+(Eaa+ )
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Then the backward in time evolution of Kt is given approximately

Ke & Koo M
(Z_, + 3b)?
where M = £ +32 . —2b  ° (1.3.9)
aa (L. + b?)
bb

Clearly, if the threshold parameter M >1, then Kt blows up. In
fact, it is possible to prove that the unique positive solution to the
above equation exists if and only if M<1., This result, which imposes
a fundamental limitation on the infinite horizon problem, is called the
Uncertainty Threshold Principle., If M>1, then Kt blows up and therefore
the optimal cost J* also blows up. In physical terms, this principle
makes the eminently reasonable statement that if one's knowledge about
the present and future structure of the system is '"very" uncertain, then
there is no optimal action that will keep the cost finite for the infinite
horizon problem. Though the result has been proved for linear-quadratic
systems,it seems reasonable to assume the same qualitative result for

general systems too.

1.4 Structure of Report

In this report we shall pursue two different routes that arise
from the random parameter formulation, The first is to extend the above
described result to multivariable systems. This turns out to be far more
difficult than what it hay seem to be on first sight, The equations,
though similar in structure, are far more complicated because of the

appearance of matrices in all the formulas. The first difficulty one faces
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is the question of suitably representing the covariance of a matrix and
then establishing formulas and equations that are expressed in terms of
the means and covariances of the various matrices. We find that it is
very difficult, if not impossible, to derive an analytical formula for
the threshold in analogy with the scalar case. This part of the work is

described in Chapter 2,

The second route is more practically oriented. We know that it
is difficult to contrel large econometric models with many random
parameters. If we formulate the policy problem in an optimal control
framework, then it would be very useful if we could develop some method
by which to rank these parameters in terms of their influence on the
performance of the system. This would tell us which, if any, parameters
are sensitive and give a clue as to whether better information is needed
if we are to trust the model we are using. This kind of study falls under
the general rubric of sensitivity analysis. A fair amount of work has
already been done in this area, [48] - [63], and this methodology can be
readily applied to derive equations for our case. We first derive
sensitivity equations for optimal random parameter systems. Next we
choose a small econometric model by Abel [47] and apply these equations
to the model. We then analyse the results and comment on possible uses

for this approach. This is the content of Chapters 3 and 4,

1.5 Contributions of the Report :

1. Derivation and analysis of the solution to the optimal
linear - quadratic tracking problem with purely random

parameters and additive noise.
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Sensitivity analysis : development of sensitivity equations
for the above system to rank parameters in terms of their

influence on the performance of the system,

Application of above equations to a simple macroeconomic

model of the U.S. econcmy.

Development of general purpose computer programs for the
optimal stochastic control of multivariable linear systems
with white parameters with respect to quadratic performance

criteria, for both regulator and tracking applications.
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CHAPTER 2
OPTIMAL LINEAR RANDOM PARAMETER SYSTEMS

2.1 ' Introduction :

In this chapter, we shall develop and discuss the optimal control
problem for linear systems with purely random parameters. We treat the
most general case of this formulation : the problem is multivariable and
includes additive noise, and is stated as a tracking problem. We also
state the 'Uncertainty Thresheld Principle' for one-dimensional sysfems
and consider some of the difficulties invelved in trying to extend it to
multivariable systems. Here we present one way of representing
algebraically the solution to the multivariable control problem. Some
empirical results are presented to demonstrate the behaviour of such
systems. This chapter will try to lay the groundwork and motivation for

the next chapter.

In the next section, we state the problem as a multivariable
linear - quadratic random parameter tracking problem. In section 3,
we present the solution of the problem. Since the actual derivation is
slightly long and complicated we choose to present it in Appendix A.
In section 4, we discuss the solution of the problem. Next, in section
5, we demonstrate the Uncertainty Threshold Principle developed by

Ku [ 1] for further insight into the problem.



21

2.2 Problem Statement

Let us begin by stating the problem. Consider a multivariable
stochastic linear dynamical system with state X and control UL

described by the following difference equation

= Ax_ +B

X4l Ax, u, * ¢ (2.2.1)

t t

Henceforth we shall not underscore vectors or matrices for greater
clarity of notation, We assume that the additive term e driving the
system is a vector random process which is white and whose mean vector

and covariance matrix are given. That is, we assume that

E { Ct} = C Vvt

1 ift=1

E{ (c_-¢)(c-O'}t = L3§ 8§, =
¢ T ¢ tr £t 0 if t £ 1

where ZC is an n X n matrix.

Assume that At and Bt are random matrices which are also white with

given first and second order statistics. We assume that

A

E { A, 1

n
ol

E { B, }

Here we face the issue of how to represent the covariance of a matrix.

Just as the covariance of a vector is a matrix, so the covariance of a
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matrix is a fourth-order tensor. We can, however, express this tensor

as a higher dimensional matrix. There are many ways of doing this, an
obvious one that comes to mind immediately being the Kronecker product.
The manner of representation should evidently be dictated by how we wish
to use the covariance, We shall find that, for our purposes, the most
suitable representation is obtained by using the simple notion of a
stacking operator, that is, an operator that stacks the columns of a
matrix into a single vector. Mathematically, if we have a p X q matrix A

whose ceolumns are denoted by a; i.e.

if A = (ag 2, 35 ..., aq)
4
then S(A) = a
2
a
q

stacks the columns of A into a single vector of length pq.
The definition of covariance now follows quite readily :
Cov (A) = E{ [S(A) -S@] [SA) -s®] !}

An immediate advantage of this representation vis-a-vis the Kronecker

product is that it is symmetric,

To return to our problem, we assume that

E{[S@)-s® 1[SA) -SRI} = Iy 8.,
E{[S(B)-S®E1[s5B)-5E]1T = I, &
E{[SB)-SE][SAY -SE 1"t = 5, 8,



We also assume that the following cross-covariances are given

1'} Z,. 8

Ac tT

(e

E{[S(At)-S(A)][cT—

ch 6tT

1'}

£

E{[S(Bt)-S(E)][cT—

All the covariance matrices must, of course, be positive semi-definite.
In addition to this, they must also satisfy the constraint that the
correlation coefficient for each pair of parameters must lie between -1
and +1. Note fhat all the given statistics are time-invariant - this

is not really a restriction. The generalization to the nonstationary
case is immediate. Note also that we have made no assumptions about the

actual distributions of the various random parameters,

For any optimal control problem, it is essential to specify the
information available for control, that is, the information pattern.
Generally, in stochastic control problems, utilizing observations
improves the performance over the open loop controls because using
measurements on the system allows one to reduce the uncertainty. A
causal or non-anticipative control cannot obviously use future
observations, but it can, however, use the given a priori information
about the future probabilistic behaviour of the system and measurement
dynamics, or, in equivalent terms, it can use a probabilistic description

of future observations.

For our formulation of the problem, the information pattern is
especially simple, The whiteness of each component of noise, multi-
plicative as well as additive, in the system, makes any learning

impossible, and so renders the control law incapable of affecting future
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uncertainty. The law does, of course, take present uncertainty into

account.

We assume perfect state measurements. We also assume that the
admissible controls are real-valued and of state feedback type,
'ut =Y (xt,t)', such that they depend only on the given a priori

information and measurements upto time t.

The optimal control problem, then, is to determine the control

sequence ' ut = Y[xt,t), t=0,1,2, ... , N-1 ', that minimizes

the following quadratic cost criterion

N-1
= 1 ) - NIRRT 5
J = 5 E {Ezo [0 = X 'Qx, - X))+ (u, = G)'RQu_ - §)]
LGSR ME N (2.2.2)

where {it} , {ﬁt} are the target state and control sequences
respectively. These are, of course, also specified at the beginning of
the problem. Thus, the problem is what is called a 'tracking' problem in
the literature. Note that the weighting matrices are taken to be
constant for simplicity but the generalization to time-varying matrices

is quite direct.
We now proceed to solve the problem.

2.3 Problem Solution

The solution to the optimal control problem stated above can be
obtained by applying the method of stochastic dynamic programming. Since

the complete derivation is somewhat lengthy, we shall relegate it to
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Appendix A and merely state the solution here.

The control law turns out to be a linear state feedback law, as

one would expect. The equations are :

Uy =  L.ox_ + m‘ (2.3.1)
where the gain Lt is given by :
A ] (2.3.2)

= - ' -1 t
L [R+B'K, B17 [ BK

1

(We use the notation B'Kt+ B to denote E { B'K } , etc. See

1 t t+lBt
Appendix A)
and where

m
t

- —— - .
- 1 t 1 -
[ R+ B'K ,B ] [ B'K ;¢ * B'piyq Rut] (2.3.3)

The matrix, Kt, in the above equations, satisfies the following Riccati-

like difference equation :
K = QeA'K A+ [ BK AT L (2.3.4)
with the terminal condition:

Ky = Q (2.3.5)
The vector, P, satisfies the following equation :

Py = m G AT e APt [BIR GATT

sl (2.3.6)

t

PN - QRN

The optimal cost can also be evaluated and turns out to be :
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- 1 1
J = > onoxO TPt 8, (2.3.8)

The scalar g, comes from the following difference equation :

= l ¥ l"‘l"‘ _1_1 _.l
8¢ % 7 HW r F URE  F K 4C Py
_1_ L] 1 o
* 3 [B Kt 1€ ¥ B Peyy - Rut] My *+ 8iyq (2.3.9)
g =  LtxrqQx (2.3.10)
N 7 N N XN "
The state of the optimal system is now given by :
Xep1 T (At + BtLt) X, o+ Btmt *Cy (2.3.11)

Since Xy is a random variable, so is the control U, though the

gain Lt and the driving term m, are deterministic.

Note, however, that our a priori information is in terms of means

and covariances of At, Bt and ¢_, whereas the solution is expressed in

t?
terms of certain expectations of At’ Bt, Cyo We should like, therefore,
to represent the solution in terms of the various means and covariances.
As these equations are a bit complicated, let us first look to the

scalar case for some insight. Let's consider the scalar system

Xepl = agx, + btut t e, : (2.3.12)

where a bt’ ¢, are now scalar random processes, The Riccati-like

t’ t

equation for the scalar Kt is

= 2
K = Q+a Kt+1 + (abKt+1) Lt
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- 2 -1
L, = - (R + b%K 17 (abK )
- - ___225;_5111 (2.3.13)
R + b“. Kt+1
Therefore,
_ (2b) 2 K2
t+l
K = Q + a%. K -
t t+l e
R + b“, Kt+1
But
21 - =2
E { a®} = £, + 3
E{b? =1 +1b?
b
E {ab} = Lya * 3P
Hence a3
(I, + @b)2K
K, = Q+ (5, +@)K,, - —22 e+l (2.3.14)

2
R+ (I, + b2)K

So now we see how the covariances and means of the various random

parameters directly influence the evolution of Kio Inm order to represent

the solution to the multivariable case in a2 similar way we need to make a

few definitions.

(a)

e; v a vector of appropriate dimensions with all zeroes except

for a one in the i-th place.

o
0
i 1

0




(b)

(¢}

(d)

(e)
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Eij " a matrix of appropriate dimensions with all zeroces except

for a one in the i,j-th place,

0 .0...0

E.. = O ... 1...0
ij .

0 0...0

Pk "~ a2 block matrix with n columns and an appropriate number
of rows (usually either n2 or mn) with blocks of nxn such that
the k-th block is the identity In’ and the rest are zeroes. Here
'n' refers to the number of states and 'm' to the number of

controls, This is a generalization of e -

[0 0]

0 0
p - e
k 1 0

|_O 1_1

ZEQ v the (k,2)-th block of size n*n in covariance matrix ZA'

A similar definition holds for cross-covariance matrices too.

{kl v the (i,j)-th element of the (k,2)-th block of I, i.e.
Aij

kL _ _

ZAlj = E [ (aik = alk) (aJ.Q, - aJQ..) ]

Note that, from the above definitions, we have,

KL ,
Iy = Pr TPy
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We now have the following representation :

ATKA

Proof :

But

where

|

E [ (A'KA),, ]

3y, 3

E [ ai KaQ]

E{AKA}

n n o
E=1 E=1tr(KPéZAPQ) Epq * A'KA
E{A'KA }

E{ J (ATKA) LB o}

ER EL (AKA), T Eyy

E [ ay Kal ]

are the k-th, %-th columns of A respectively.

E[]

ik K
i,j

= J K.. B {a,
1

i,]
( Tk «
: A..
s] 1J

= 7 k. M.

= t
tr (K P} I, Pp)

ij ik?

(2.3.15)

where (A'KA)kE is the (k,%}-th

element of (A'KA)

aj2 ]
i)

ik

2ik%55%58

+ a! Ka

k TR

(since K is symmetric)
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Therefore,
A'KA = J tr (K'y P,)E ., + J (A'KA) ,E,_
) K2 ke T K25ke
n n o
) }ootr (KPZ,P.) Ep A'KA as required
k=1 2=1

The same expansion holds obviously for the other cases as well.

Thus, we can rewrite the solution to our optimal control problem in the

following way :

u = tht +om, (2.3.16)
m iﬂ 1
L = -[R+} tr (K ) By * B'K, . ,B ]
t =1 2=1 t+1 k B Py t+1
m m
-, -
[ Z_ {_ tr (K., PiZp. Py ) By + B'K 4R ] (2.3.17)
k=1 g=1
m m 1
m, = - [ R+ 3 tr (K, P} ZpP)) B, + B'K, JB]
k=1 =1
m — -_ —_ o~
pr ] t -
[ E:l o (Kt+1 szc) k * B Kt+1C + B pt+1 Rut ]
(2.3.18)
n n
= E At A
K, Q+ [ Z_ Z‘ tr (K, PLEaPe) By + A'K LA] +
k=1 2=1
m Th
1]
(D1 tr(KqPilgaPo) Epp + B'K AL L,
k=1 2=1
(2.3.19)
n — — —
= - 4 ¥
Py e * E:ltr KearPrZacd®x * A K © * APy
m m
g
[ E=1 §=1 T (K, PpTpaPg) Eyg * B'K (AL my

(2.3.20)
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- _l_ ¥ g l i 't
g, = X QX rgu Ry
1 a1 = =1
v 5 [ tr (Kt+12c) + C Kt+1c ] + ¢ Pis1
1, v 3
t3l Z=1 K Pl ) gt B gE] m
1 = ~ 1
+ E-[ B'pt+1 - Rut ] LI - {2.3.21)
Ky = Q (2.3.22)
= - 0% .3.23
Py QX (2.3.23)
= 1 3t ¥
g, = 3X5Q% (2.3.24)
J* = l-x'K X+ p'x +g (2.3.25)
2 o000 oo o
2.4 Comments :

Let us briefly note some of the salient features of the solution.
Figure 2.1 shows the overall structure of the optimal feedback system.

Since u; = tht *m, the optimal controller is a linear and time-

varying transformation of the state. This is so even if the system is

stationary and the cost-functional is time-invariant.

The driving term 'm ' in the control performs the function of

neutralizing the mean of additive noise term whereas the gain Lt

oo
does the actual steering of the system, as can be seen by the fact that

L, is independent of ¢

¢ Looking at Lt more closely, we see that when

£
Bt is more uncertain, the controller is more cautious, as it should be

since the control u, affects the state Xy through Bt' If there is,

on the other hand, a high correlation between At and Bt’ then the

control is more active since it can better regulate the system. This 1s
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so even in the extreme case where B = (0, that is, when the system is
'most’ uncontrollable on the average, since the controller can use the
information about the high correlation in a useful way. When the matrix
At is uncertain, then, of course, the controller will be more active,
though the degree to which it will be so will depend on the other terms

in the expression, since K, appears in both the numerator and the
denominator. Similar observations can be made for the various covariances
in the equation for 'mt'. For example, if B, and ¢, are strongly

correlated then the magnitude of m_ is greater, as it can more

t

effectively cancel the exogenous driving term Cov
We note also that the certainty-equivalent control law is

different from the optimal control law. It can be obtained from the

optimal law by setting all covariances to zero. Basically, the optimal

control takes into account the uncertainty in the parameters.

The optimal control is without any posterior learning. This,
in fact, we had already anticipated when we defined our information
pattern. The random matrices in the system equation are white and
therefore unidentifiable. It is as if at each new time instant, the
system restructures itself anew according to some unkncwn (and not
necessarily constant) probability distribution, whose first and second
moments, however, are known to us. The control system must adapt
itself to this visceral change in order to minimize the cost-to-go.
The whiteness of the noise does not permit us to reduce future
uncertainty by present control action, which is to say that the control

does not perform a dual role. Note however that the optimal decision
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certainly uses a priori knowledge of future randomness. That is, we
know and make use of the a priori knowledge of the various future means
and covariances, The problem and its solution are changed if we exclude

knowledge of future statistics from the information pattern,

Physically, of course, this is quite unrealistic, and we ought to
mention some ways in which this choice of modelling a stochastic system
can be useful. In reality some learning is always possible and systems
are never so insistently white. If we assume that the parameters are
unknown but constant, we know that leads to the well-known dual problem,
which does not admit of an exact analytical solution, With our assumption
of whiteness we face a problem that is analytically tractable and that
leads to a control that can be easily implemented. Moreover, economists
have argued that in economic systems, it may be desirable to treat
unknown parameters as purely randem to obtain a consequent caution in the
control, especially when Bt is not known accurately. Athans and Varaiya
[44] have argued that the control of white parameter systems represents

a worst-case situation in which the ratie (for scalar systems)

K (0] L, #0, 5 #0,5 #0

K = = =
0 | z, z La 0

> 1

provides a measure of the deterioration in performance due to the unknown
parameters, which can provide a guide as to whether sophisticated

parameter estimation and adaptive control algorithms are warranted.
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2.5 The "Uncertainty Threshold Principle' :

In this section we examine the asymptotic behaviour of linear
random parameter systems. We assume here that all means and covariances

and the weighting matrices in the cost functional are constant,

Let us first consider the simplest situation of scalar systems

in a regulator problem type setting without additive noise. We have :

X1 T ax, + btut X, given (2.5.1)

Here, at and bt are white with given means, variances and covariance,

all of which are constant. Note that the term Cy is absent.

N-1
E [ Qx2 + Ru2 1 + Qx2 (2.5.2)
(1 o - mplee)

1
2
Note that we have no non-zero trajectories to track.

The sclution to this is obtained from our earlier general solution

and is given by :

* =
uf tht | (2.5.3)
K (L + 3p)
L, o= - t+l - ab — (2.5.4)
R+ ( b * b™) Kt+1
2 -2
K (E . + 3b)
K - Q+k @ +L)._trl ab (2.5.5)
t t+1 a R + (Z + —b'Z) K
b t+1
Ky = Q (2.5.6)
* 1 =2
J = 5 x, Ky (2.5.7)
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This set of equations has been investigated by Ku [1] and gives
rise to what is called the Uncertéinty Threshold Principle. This is
basically a result regarding the stability of the nonlinear difference
equation for Kt° Its implications are discussed fully in Ku [1]. Here
we shall merely give an informal expositional argument and then see what

can be said for the general multivariable case.

In Eq. 2,5.5 assume that Kt+ is "large'". Then we have the

1

approximate relation :

Kt A m . K

t+l
where 'm', the threshold parameter, is given by :

+ 55)2
m = L + ac - (2.5.8)

If m > 1, then obviously Kt blows up as N + « , so that a steady-state
solution does not exist in this case. In fact, the uncertainty threshold
principle states that for the infinite horizon problem, a necessary and

sufficient condition for a solution to exist is m < 1..

If Kt blows up for the infinite horizon problem, then so does the
cost J* which means the optimal control problem has no solution. This
makes good intuitive sense too, because if there is too much uncertainty
in a system then there is little one can do to control its evolution

over a long period of time.

We would expect a similar result to hold for multivariable systems

as well. However, it seems that a neat mathematical expression for the
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threshold is not possible owing to the complexity of the equations
involved, A special case of multivariable systems has been explored by
Ku [1] in which the eigenvalues of the A matrix have to satisfy a
threshold. The general case, in which we consider the multivariable
tracking problem with additive noise is, as one would imagine, hopelessly
complicated, Here we must consider the stability of three equations,

for K and By s to determine whether the infinite-horizon cost remains

£+ Pyt

finite or not.

2.6 Conclusion :

In this chapter, we have stated and solved the optimal tracking
problem for a linear-quadratic system with purely random parameters. We
briefly noted the salient characteristics of the 'Uncertainty Threshold
Principle' and found that the multivariable case presents formidable
analytical problems which may make it impossible to derive a mathematical

expression for the threshold.

Now that we have the complete solution, we can explore, in the
next chapter, the derivation of the sensitivity equations for this
problem and then apply them to a macroeconometric model of the U.S.

economy.
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CHAPTER 3

SENSITIVITY EQUATIONS

3.1 Introduction

In this chapter, our main objective will be to develop equatioms
to analyse the sensitivity of linear systems with random parameters to

variations in parameter uncertainties.

The concept of sensitivity is a very general one and 'sensitivity
analysis' is a fairly well-developed tool. In any real system, there is
always some uncertainty associated with the exact values of its parameters,
either because of imperfect information or because of approximations made
in the modelling process or possibly because of some inherent randomness
in the behaviour of its parameters. This obviously affects the efficacy
of any control law, whether open or closed loop, as well as the accuracy
of any simulation of the system. If the behaviour'of a system is
dramatically different as a result of variations in parameter values,
then we say the system is very sensitive to such variations. This gives
us some useful information in assessing the reliability of our efforts.
An excellent example of such a situation is provided by the now infamous
'Limits to Growth' report by the Club of Rome [48]. Sharply different
qualitative results, such as lack of evidence on which to base a
prediction of the collapse of world population, can be obtained by
appropriate combinations of small changes. This illustrates the caution

that is necessary in basing policy judgments on sensitive models.
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There are many different questions one can ask in this area of
sensitivity analysis. One basic question is how perturbations in the
parameters affect the optimal performance of the system. If the optimal
cost or optimal welfare are significantly altered as a result of small
variations in the parameters, then cbviously our analysis and policy
recommendations are not very reliable. This kind of study is probably
most useful in dealing with large economic and socio-economic systems,
in which little is known about the actual structure of the system, and
in which there is almost always a great deal of uncertainty about

parameter values,

For systems with parameters that are modelled as being deterministic,
the standard procedure is to derive sensitivity equations with respect to
variations in the parameter values themselves. This has already been

done and is readily available in the literature.

For systems whose parameters are modelled as random processes,
however, it makes sense to look instead at the effects of variations in
the parameter uncertainties, that is, the variances and covariances of
these parameters, This leads to a slightly modified set of equations,
though the basic approach remains the same. Sensitivities may either be
absolute, or relative to the parameter and optimal cost values, and it may
be useful, in general, to look at both sets of numbers. We can even
rank parameters in order of their sensitivities which may help to

identify the 'pressure points' of a system.
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We shall first derive general sensitivity equations from the
optimal control solution developed in the previous chapter. Next, we
briefly describe a small econometric model of the U.S. economy and do a
sensitivity analysis of the model. We end with a discussion of the
results and possible uses for a sensitivity analysis and ranking of

parameters.

3.2 Problem Statement

We are given the following linear multivariable system

X4l ° At X * Bt U+ e, X, = X, (3.2.1)

We have perfect measurements of the state, The elements of the matrices

At’ Bt and the vector c, are all random variables. Each element con-

stitutes a white stochastic process with given mean and variance. That

Z z L z where

B’ BA, Bc: ACJ

each covariance matrix is defined by the convention described in

is, we are given the covariance matrices ZA, z o

chapter 2, and we are given the mean matrices A and B and the mean

vector ¢, We choose to minimize the standard quadratic cost functional:
= l - 1 - - T - N

J = 5 E { E [ Oxg - X1'Q (xp = %)+ (up - 8) 'Ry, u.)]
s (X - Xy - X)) ) (3.2.2)

The sequences {it} , {ﬁt} are, of course, given.

This is so far only a restatement of the optimal control problem

considered in the previous chapter. Its solution has also been given there.
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Now we would like to pose the following question. Let ¢ denote
any element of any one of the six covariance matrices. The question is
how sensitive is the optimal cost to small variations in G ?

*
If J denotes the optimal cost, then the answer is given by the
*

aJ .
number 30 . Here the symbol is used to mean 'evaluated at the
] 0
given values of the various means and covariances'. This number is an

absolute measure of sensitivity. If there is a small absolute change &¢
* *
in o, it induces a corresponding absolute change §J in J , whose

magnitude is given by the relation

*
N ,
& - aJ 86 (3.2.3)
3 10
a *
*

If -5% is large, then the induced change &J 1is also proportionally

¢ *
large, It is in this sense that -%% is an absolute measure of

0

sensitivity,

We can also obtain a relative measure of sensitivity by noting

that

* a *
. 27 g Ec_f. (3.2.4)
J* 9c o J
J'k
This number, g& -9;, tells us how a percentage or relative change
L |

*
in ¢ is transformed into a percentage or relative change in J . 1In
general, the appropriate measure will depend upon the application at

hand, and in some cases both measures may provide useful information.
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For now, let us turn to deriving equations that will enable us

to evaluate the quantity 30

*

aJ
)

3.3 Derivation of Sensitivity Equations :

The derivation of sensitivity equations for a linear random

parameter system is quite straightforward though the final equations are

somewhat cumbersome to use.

control problem (see Chapter 2),.

*
Yt

Lt xt + mt

- 5% 8 17! [ B 2
[R+BK,B17 [BK, AL

_— -1 —_— -
- 1 1
[ R+ B Kt+ B ] [ B Kt+1c + B!

1

—_— 1
1
Q+ [AK AT+ [BK_A] L

+1 Pee1 t+l t

,:_l_""t e l"'r i l 1 '
7% QX *zup Rug 5 [e'K el v e'p
+ l—[B'K c + B'p Ru ]' m_+ g

2 t+l 1 t t t+l
Q
- QXN
1o, o=
7 Xy Q Xy

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

We first restate the solution to the optimal

3.1)

3.2)

.3.3)

3.4)

3.5)

3.6)

3.7)

3.8)

3.9)

3.10)
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The evolution of the state is now given by :

Xeop = (At - BtLt) X, * Btmt + ct 3 Xy = Xy (3.3.11)
dx_ dp_  og
*
In order to calculate %Q_, we need to calculate ——Q, =2, ——9,
o 5L om a0 * 8g ’ 90
0 0. Let us, therefore,

which in turn require us to calculat —, =
hich q e vl v

differentiate the appropriate equations.

Preliminaries
Before we actually carry out the differentiation let us state a

few simple algebraic results in order to make the derivation a little

clearer.
2 - 9A
(b) G tr A tr % (3.3.12)

(b) Let G be a random matrix with mean G and covariance EG and let H

be a deterministic matrix and some function of g, where ¢ may be

an element of ZG. Then,
2 [G'HG ] = 3 [} tr (HP! £ P,) E , + G'HG ]
90 ag .2 k "G k2
¥
= 7 2 ey (HP! TP ) E  + 2 (G'HG)
o) ac k "G % k& ag
- _Bﬂ' —fa_H"
= E . tr (55 Pl ZPy) B, ¢ G 5 C
>
; 3L
+ tr (HP! —=° P,) E
) k 30 &7 “k&
— 9H =, 9H =
1 A on on
Let f£{G'HG) 2:5_2 tr (55 Pp L)) Epp v G oG (3.3.13)

We make this definition only to save us some repetitious writing.
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1 -1

Let T = 1 + quotient [ ]
- : i -1
s = 1 + quotient | ]
u = 1 + remainder [ — ; 1 ]
- . j -1
v = 1 + remainder | = ]
where 1 = 1,2, ... , n2; j=1,2, , n2
Let Uij be the (i,j)}-th element of EG
Then,
g
= E.. +E.. - E..G,. . .
acij i] ji ij7ij (because ZG is symmetric)
Therefore,
BZG
E— = ] t - p
Pk acij Pl Pk Eijpl + PkEjiP2 Pk Eijaijpg
N Euvdkraﬁs * By Gks aﬁr - By 6kr 625 6ij

which follows from the fact that (i,j) must belong to the (k,%)-th

block of Eij for a non-zero product.

%
Y tr (HP! 2

) E
k.2 k acij 2

ki

tr (HEuv) Ers + tr (HEVU) Esr

vu

- hYE uv

+ h E

vu
s st " h "E_ 6.

TS 1]

For i = j, this simplifies to :
VUE
TS

h

Hence

- tr (HEUV) Erséij
where h'" is the (v,u)-th

element of H, etc.
(3.3.14)
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: 3 . 3 _

(@) 2wl < 2m -0
sA -1 T
A ATl e p AT Ly
a0 PiTo

-1

BAT L ptl 3A -l (3.3.15)
dag 3c

Derivatiocn :

We shall now differentiate the optimal equations stated above.

There are six separate cases to be considered : Uij can be the (i,j)-th
element of any one of ZA, ZB’ Zc, ZBA’ ZBc' EAc' We shall only look at
ZA’ zB’ ZBA°
= '
Let S, [R+B'K,,B]
P = ﬂ
t ag. .
1]
aL 3 3 .
— = — ]
1 30, . 5. [ R*B'K BT . (B'K A
ij 1]
S R+FE B2 BE A
t+1 90, . t+l
1]
0S
- -1 “t -1 —— 13 ——
h S 3, 5¢ - B Keath - 5S¢ 55, (BK A
1] 1]
i e R e SRS B 13
- St 30, (B'K B S . BIK A - S 5o, . (B'K )
1] 1]
3z
- s,lreEw B+ 7 tr (kP —P pyE 1s 7 ER A
t t+l t+l 'k 27 Tk t t+l
k,2 30, ,
1]
3L
-1 —_— . BA
- S [ EBK A+ ) tr(K P 30, Pg) Erp

k,%
(3.3.106)
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(2) ij € Ly
3o, . a0, .
ij ij
Therefore,
i TS £(BTK_,1B).S,. " H(BK. A) - s, Le(BTR A
aoij I t+1°) -2t (BT t ( t+l
- Uam ' T 3
= (R+B'K,B) . ( E Etr (Pra1PrlePe) Epp * B'P{B).
— _
(R + B'K_ B} . (B'K_,(A)
— -1 - -
(R + B'K_,1B)7" ( E 2tr (PP ZpaPg)EL, * B'P,,,A)
(3.3.17)
az
) o..eZ_: —BA
1J B ac- i - 0
ij
Therefore,
3L
_t vu R L N T
80,5 e £+18) * kpa B St LB A - Sy LERTK A

Bl ' Bt R
(R +B'K B} () tr (P PIL POE,, +B'P B+

2 t+1 k°B t+l
2>
vu -1
keop Epgde (R # B'K ,1B) ".(B'K_,,A)
'7_“"‘ 1 N
(R+B Kt+1B (E 2tr(P PIZoaPg) * B P™
(3.3.18)
(c) Gij > ZBA
d0.
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Therefore,
aLt -1 —_— -1 = -1 —_
_— = - 1
Bcij S¢ .f([B'Kt+1B).St .(B'Kt+1A) S¢ [£(B Kt+1A) +
vu
kt+1 Ers]

—_— 1 _
L] ] 1
(R+B'K,,1B) " ( E itr(Pt+1kaBP£)Ek£ *BTP LB

—_— 0] ————
1 [
(R+B Kt+1B) . (B Kt+lA]

-1 - —_
- (ReBTKGB) TL L tr(Py PRl By + BIP A

o t+l
vu
+k E__]
t+l s (3.3.19)
3K oL
._t = _a_ [ _3 1 ' _t
3c.. 930, (A Kt+1A) Y 8., (B KegghdoLp + (BTK 1A 3a. .
1j 1] 1] 1]
- 3L
- AR A+ tr (KPP — pyE
L S R T TR A <
ij
3L
BA '
+ [£(B'K, 4A) + 7 tr(K Py — Pp) Epl . Ly
k,2 3o, |
ij
- 3L
+ (B'K_ .A)"
t+ 50, (3.3.20)

(a) Gij € ZA

L N

ag a0. .
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Therefore,

oK, - vu —_— - 3L,
- 1 —
30,5 = EATK A+ kB v [EB'K A - Ly v (B'K A 350

t+l
1j

Therefore,

- T At
P E Rtr(Pt+1pszp£JEk2 AP Y R B
- - —— oL,
1 1 L] T
+ [ tr(P Py Lo PYE , + B'P R] L Lo+ (BTK A

k,L 30. .
1)

(3.3.21)

by og.. & I

i] B
o azBA
| S
30 90, .
ij ij
Therefore,
Ky , S 4
—_ - ' 1
o, = fQA'K M) + [£(B'K M) . Lo+ (B'K  A)'. —
ij 9g, .
1]
Therefore,
- ' At A
P, ) tr(P, Pl L,P))E  + A'P A
k,2
z — — T
1 L}
+ [ 7 tr(P_ Pr 25, P )E o + B Pt+lA] . Ly

k,2
[B'K, Al e
+ ., —
t+l 30, .
ij

(3.3.22)
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{c) Gij € ZBA:
BEA BZB
30, . =,w0_ 3o.. 0
ij 1)
Therefore,
E)Kt . L vu '
— ; ;
aoij f{A Kt+1A) + [f(B Kt+1A) + kt+lErsJ . Lt
- SLt
+ (B'K__ A . "t
t+l 3a. .
1]
Therefore,
— A A
P, = ) tr (P, Py LP)E  + A'P LA
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Evaluating this number finally gives us an absolute measure of the
sensitivity of the optimal cost to variations in parameter uncertainties.
As we mentioned before, we can also calculate from this a dimensionless
number, a relative sensitivity, for each parameter, viz.
*
3J %j

3c,. J*
1]

We have, at this point, completed our derivation of the cost
sensitivity equations. It is also frequently useful to look at the
sensitivity of the optimal control law to parameter variations, Though
the transformation itself in the optimal law is deterministic, the control
is random because the state is random, Here again, therefore, it is more
meaningful to calculate the sensitivity of the covariance matrix of the

optimal control to parameter uncertainties. Mathematically, we would
dZu

" like to calculate Py where Eut is the covariance matrix of the

*
optimal control u, . We have

*

ut = tht + mt

Therefore,

A = 1 =

Eut LtZtLt where L = cov {xt} (3.3.40)

We need, therefore, to calculate Zt. This turns out to be a2 gargantuan
mess, so we shall not bother to reproduce it here, and merely indicate

the source of the complexity.
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xt+1 = (At + BtLt) xt + Btmt + Ct (3.3.41)

The point is that At’ Bt and c_ are themselves random, so that

t

calculation of variances becomes doubly complicated. Some relief is
afforded by the fact that, at each time instant, X, is independent of

A but even so, the complexity is too great to warrant a

£ Bt and ¢

t!

derivation here.

3.4 Computer Code

In Appendix B, we code the solution to our stochastic control
problem and the sensitivity equations we have derived in this chapter.
More precisely, we code Equations (3.3.1) - (3.3.11) and (3.3.16) -
(3.3.39). Though all the quantities Tepresented in these equations are
not printed out, they are all used in various intermediate calculations,
and so can easily be made available by minor alterations in the program
if the user needs them. The program does not contain sensitivity

L, .» Since this program was used for a

equations for o ¢ L. Lpe? Ac

specific application it also has a particular specification for the
target sequence { it} which can again be altered by the user. No
sequence { ﬁt } was needed for this application because we used R = 0.
The user must provide both target sequences, the values for the Q and R
matrices, the values of the means and covariances of A, B and ¢, and the

time horizon N.
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3.5 Conclusion

Now that we have derived the relevant equations let us see how
we can use them in analysing a specific model. For this we choose a
small econometric model of the U.S. economy and analyse it in the next

chapter.
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CHAPTER 4
SENSITIVITY ANALYSIS
4,1 Introduction :

In this chapter, we shall use the equations we derived in the
previous chapter to analyse the sensitivity of a small macroeconomic
model of the U.S, economy. We first describe the model, then recast the
equations into the appropriate optimal contrcl framework, and finally
present some simulation results with a discussion of their interpretation.

Let us begin 1n the next section with the model.

4,2 A Simple Macroeconomic Model ;

We shall describe, in this section, an especially simple macro-
economic model of the U.S. economy. This model was developed and
estimated by Andrew Abel [47] to analyse the relative effectiveness of

monetary and fiscal policies in an optimal control framework.

It is based on real quarterly data covering the period from 1954/1
to 1963/1IV, which corresponds roughly to the period between the end of
the Korean War and the beginning of heavy U.S. involvement in Vietnam.

It is an extremely small model, consisting of only two endogenous target
variables, consumption Ct and investment It’ and two instruments,
government expenditures Et and the money supply Mt' We assume that, in
the short run, government authorities can control Et and Mt in real terms
since prices do not change rapidly enough to seriously neutralize their
actions. Over the time period covered by our data, the rate of inflation

was low enough to make this assumption plausible.
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This model is based on a closed economy. Desired consumption is a
linear function of GNP, and the realized period-to-period adjustment in

consumption is subject to a partial adjustment factor :

Ct = aCt_1 + bIt + bEt +d (4.2.1)

The structural equation for investment is based upon a modification of
Samuelson's private consumption accelerator. We posit that the desired
level of the capital stock is a linear function of consumption and that
the realized adjustment of the capital stock is subject to a partial
adjustment factor. Since gross investment, I_, is defined as

t

K, - (1 ~-D)K

¢ where D is the depreciation rate of the capital

t-1’

stock, we have

I, = eC - (1-DeC  +£fI  +g

In addition, we assume that the level of gross investment is linearly
related to the money supply in order to capture some of the effects of

interest rates upon investment :
= L - - ] 1 1
I e Ct {1 - D)e Ct-l + £ It + hMt + g (4.2.2)

The estimated reduced form equations corresponding to the structural

equations are :

C, = 0.9266 C,_| - 0.0205 I_  + 0.3190 E, - 0.4206 M
(0.0534) (0.0916) (0.1389) ©  (0.1863)
- 63,2386
(25.7718)
RZ = 0.9958
D-W = 1.7084 (4.2.3)
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I, = 0.1527C, +0.3806 I - 0.0735 E_+ 1.5389 M
(0.0781) (0.1339) (0.2031) ©  (0.2724)
- 210.8994
(37.6899)
R® = 0.8749
D-W =  1.7582 (4.2.4)

Note that each of these estimated equations has a high value of RZ.

In addition, the Durbin-Watson statistic, although biased towards 2.0
because of the lagged endogenous variable, does not suggest significant
serial correlation in either equation, The figures in parentheses are the

corresponding standard errors.

4.3 Conversion into Optimal Control Framework :

Let us recast the reduced form equations in the previous section
into state variable form, We shall write the model as a first-order

linear vector difference equation with random coefficients

Xep1 = At X, + Bt u, e, (4.3.1)
where
C‘t
x -
t
Et+1
ut = "
t+1

E E
Note that ut = Mt+1 and not Mt'
t+l t



62

This is a small difference in the approach of control theorists and
econometricians and is merely a matter of definition. Both refer to
the policy variable that must be used to directly influence the state

at time (t+l1).

The coefficients of the various variables in the reduced form

equations give us the respective means of the random matrices At’ By and

the random vector ct. We have :
— - r -
3411 %12 0.9266  -0.0203
At = A = a a =
21 %22 0.1527  0.3806
K b.. | [~ B
11 12 0.3190  0.4206
B = B = =
t by Pao -0.0735  1.5389
L | _ _
- _
1 -63.2386
ct = c = c =
| 2 -210.8994

The covariance matrices are defined by the convention in Chapter 2.
These are obtained from the standard errors of the various random
variables. The square of each standard error, that is the number in
parentheses under each coefficient in Eqs. (4.2.3) - (4.2.4) gives the
variance of the corresponding variable. Thus the diagonal entries of
EA are the variances of 311 a21, 3, and a22 in that order. The off-
diagonal entries, the covariances, we somewhat arbitrarily set to zero.
(Ignoring the covariances will usually tend to overestimate the size of

the model's forecast errors. The majority of the estimated covariances

are usually negative and cancel part of the variance in each coefficient.
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Ignoring the covariances thus tends to overemphasize the degree of

fluctuation 1in the coefficients.) All the covariance matrices are
constant,
ZA = diag { var(all), Var(aZI), var(alz), var(azz) ]
F-.0029 0 0
_ 0 .0070 0
0 0 . 0084 0
0 0 0 .0179
ZB = diag | var(bll), var(b21), var(blz), var(bZZJ ]
.0193 0 0 0
0 .0412 0 0
) .0347 0
0 0 0 .0742
ZC = diag [ var(cl), var(cz) ]
664.1908 0
0 1420,5286

We also need to define the values of the cross-covariance matrices
ZBA’ EBd’EAc' The estimation procedure used in Abel's paper does not
provide us with estimates of these covariances, so here again we shall
arbitrarily set them all equal to zero. This will also help a little in

reducing the complexity of the various equations we have derived. We

have, therefore



64

EBA = 0
EAc = 0
ZBc = 0

At this point, we have completely specified the linear, random
coefficient structure of the economic system in state variable form. To
analyse the system in an optimal control framework, we need to specify a

cost criterion,

We need to choose suitable values for the targets'{it}, {ﬁt} t =0,1,...,N
and specify the weighting matrices Q, R and the time horizon N. Following
Abel; we examine the historical growth rates for consumption and

investment over the period of estimation, 1954/I to 1963/IV, which turn

out to be 0.91 % and 1.14 % per quarter respectively. With these in mind,
we select target growth rates of 1.25 % per quarter for both Ct and It'

Mathematically,

-~ t

X = - (1.0125) X, t=20,1,2, ... , N

We shall restrict our choices for Q to diagonal matrices for the

purpose of the analysis. We shall use the following five values for the

Q matrix to compare different solutions.
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i0 0
Q = A diag (10,1) 4 (10,1} for simplicity
1 0 1
2 0] :
Q = A diag (2,1) A (2,1)
0 1
- -l
a -
Q = 4 diag (1,1) 4 (1,1
0 1
! 0
Q = A diag (1,2) A (1,2)
Y 2
1 0
Q = A diag (1,100 A& (1,10)
0 10

Henceforth the notation (10,1), (2,1) etc, will be used to denote the
diagonal entries of diagonal Q matrices. We shall use this simplified

notation especially when we present the simulation results.
We choose the R matrix to be zero throughout to simplify the analysis.

R = 0

Since R is chosen to be zero, we do not need to specify the targets

{ut} . The cost criterion is reduced to :

N

= 1 ¥ ot b

Joo=  FE{] (xg-X) Qx - XD}
t=0

After doing a few simulations, it was decided that N = 15 would be large

enough for the analysis without incurring too great a cost for the

simulations,
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The last item that needs to be specified is the initial conditions.
From the historical record we find that

C 362
0 I 89

The units used are billions of dollars. Et and Mt’ the instruments,

also have the same units. Note that X, = io by definition.

This completes the statement of the problem. In the next section,

we present some simulation results.

4.4 Interpretation and Discussion of Results

We shall now present, in the form of graphs and tables, some
simulation results describing the behaviour ¢of our econometric model in
an optimal control framework. In this section we shall analyse some of

N

these results and leave others for future research,

First, some general observations, As with other tracking problems,
this problem can be split into ome part that helps to regulate the state
and another that helps it to track the desired trajectory and cancel any
additive driving terms. We see that, in the event that all the covariance
matrices are zero, the optimal control tracks perfectly. This is seen
from the uppermost curves in Figs. 1 and 2. This is to be expected since
R = 0 and there is no constraint on the control energy expended in the
process. Also, in our problem, X, = io’ s0 there is no initial error.
This deterministic solution is also the certainty-equivalence solution

[ ], and we observe that the certainty-equivalence principle does not hold.
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In the stochastic case, with EA’ X and Ec nonzero, we must first

B
understand what it means for the stafe to track the desired trajectory.
Since A,B and ¢ are all random soc are X, and Uy {though the gain Lt and
the correction cum tracking term mt are deterministic). The control
attempts to minimize the mean square error of the state trajectory ﬁhich
means it tries to keep the mean of the error plus the variance of the
error small. 1In other words, there is a trade-off between keeping the
average state close to the desired trajectory and keeping the variance

of the error low. In general, therefore, we shall find that the average
state evolution does not track perfectly. This is so even though R = 0.
In Figs, 1 and 2, we have plotted the means of the state trajectories for
the different values of Q, We see here that these mean trajectories

fall short of the perfect certainty-equivalent trajectory. Of course,
the actual trajectory we would get from any stochastic simulation would

be different each time since we would have different realizations of At’

Bt and ct - this is true for both the state and control variables,

The certainty-equivalent solution for R = 0 simplifies to

L, = -B7K (4.4.1)
K, = Q (4.4.2)
I S R ) = -Br @ -% ) (4.4.3)
t Preg t+1 e
P, = -Q% (4.4.4)

- L xqx 4.4.5
& 7 7 Tt X% (4.4.5)

J = 0 (4.4.6)
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L40
Q=(1,1)
(10,1)
(2,1)
420 P
(1,1)
g (1,2)
S 400 |
‘c
7]
S
;_5'
.E
c 380
£
E
=3
1
&
360
{1,10)
340 1 L
0 5 10 15

time (in quarters)

Fig.l. Consumption vs. time, Eq. (3.3.11), for N = 15, Tor the C.E.
case, all covariance matrices are set equal to zero. The C.E.
curve is identical with the desired trajectory.
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110
Q:(‘l,‘l)
{1,2)
(1,10)
(1,1)
(2,1)
100 p- C.E.case
{10,1)

90

investment {in billions of dollars)

70 ] A1
0 5 10 15
time (in quarters)

Fig.2. Investment vs. time, Eq. {3.3.113, for N = 15, For the C.E,
case, all covariance matrices are set equal to zero. The C.E.
curve is identical with the desired trajectory.
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Substituting these equations into the mean of the state equation we

get,

t+1 t tt t

it+1, as expected, (4.4.7)

Note that the gain Lt, the additive term m_ and the average state E£

t

and the average contrel law U, are all independent of the cheoice of Q.

t
This is why we need not specify the value of Q for the certainty-equivalence

curves in Figs, 1 and 2. The different curves for the stochastic case

are identified by the corresponding values of Q.

The gain Lt in Eq. 4.4.1 serves to cancel the coefficient matrix A
which it does exactly in the mean case when A = A, whereas the term m,
cancels the additive exogenous term c¢ as well as forces the state to
track the target, both of which again are done exactly in the mean cése.
Note that the optimal cost J* is zero (Eq. 4.4.6), the absolute minimum

®
of J,because R = 0 and because the state tracks perfectly, J 1is also

independent of Q.

- Let us now examine the stochastic case more closely. -Our first
observation of the simulation results is that the regulator part of the
problem viz, Lt and Kt’ is well behaved., We have plotted in Fig. 3 the
certainty-equivalent and the stochastic Kt for Q = (1,1). There are
four graphs, one for each element of K.. Since K, is symmetric two of the

graphs representing the off-diagonal terms are identical, We plot, in a
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14 10
C.E. case
17 }= -10 b
x:: x.‘:'
10 CE. case 30 k
-8 | I ~-50 i 1
0 5 10 15 0 5 10 15
time (in quarters) time (in quarters)
10 105
CE. case
;" o
. MN
-30 101 =
C.E. case
-50 1 1 99 ! )
0 5 10 15 0 5 10 15
time (in quarters) time (in quarters)
Fig.3. Solution of Riccati-like equation, Eq.(A.8). K_ 1s a symmetric

t

2 x 2 matrix. Q = (1,1), N = 15.
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Fig.4. Graph of gain matrix Lt vs. time, Eq. (A.5), for N = 15,-Q=(1,1).
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Fig.5. Additive term m, Vs. time, Egq, (A,6), for N = 15, Q = (1,1)
for all curves. For the C.E. case all covariance matrices

are set equal to zero,
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similar way, L_ in Fig. 4, again for Q = (1,1). The certainty-

t
equivalent value of Lt in this figure is given by Eq. (4.4.1). Both
quantities soon reach a steady state, seen backward in time, The
correction terms m, in Fig. 5 keeps growing because it has to track it
in addition to cancelling the exogenous term Cyo The optimal

cost also keeps growing. However, since Kt is steady initially, we
can deduce that the regulator component of the cost, %—xéKoxo, settles
to a steady state., The tracking error naturally keepé accumulating
and this makes the cost grow. The behaviour.of k. (Fig. 3) leads us to
the conclusion that the uncertainties in the problem are within the
uncertainty threshold (even though we do not know exactly what the
threshold is). We shall find later that even if ZA is multiplied by a
scale factor of 30, Kt does not blow up. This seems reasonable when

one inspects the mumerical values of A, ZA’ B, ZB which are all fairly

small. The elements of EA, ZB in particular are all << 1,

- - 134
= 1 3
K, Q+ [A'K A+ ) tr(K,,; Iy JE, 1
k,2
- - = - kL -1 = -
L] '
- [A'Kt+1B].[B K, 1B * ) tr(K,,; Tp7 JE ) .B Kt+1A] |

k,2

2z
A 2 G, the

Note that ZBA = 0 in our problem. Since Q2 0, Z, 2 0, ZB

structure of the equation tells us to expect Kt > Q or equivalently,
- 1/2 s

]|Kt” > 1Q ] where ||M || = (det M)"'°. This is in fact borne out

by the simulation results. In Table 1, we present some norms of Kt for

different Q. This demonstrates that the steady state "value" of Kt in

the stochastic case is greater than that in the certainty-equivalent case.

This confirms our intuition that we need more '"force'" when there is
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Q lQ il Ko |l
(10,1) 3.16 3.64
(2,1) 1.41 1.62
(a,n 1.00 1.18 l
(1,2) 1.41 1.75
(1,10) L 3.16 4,74 1

Table 1, Comparison of norms of Q and

_corresponding Ko.



.uncertainty. The end point constraint KN = Q forces Kt to come down to

the C.E.value at N (Fig. 3). Physically, K_ represents a sort of

t
cumulative weighting matrix which incorporates both the present error
at time t as well as the propagation of this error as t progresses
to N, When t << N we would expect the slope of Kt to be relatively
horizontal since the future error weighs about the same for small t
far from N. However, as t gets close to N, Kt is determined more by

the present error since the propagation error gets smaller, so that it

begins to fall to Q, till at t = N, there 1s no future and K

~

N exactly
equals the present error weighting matrix Q. We have ignored here the
effects of non-zero R, The steady-state value is greater in the
uncertain case because we are minigizing the mean square error, as
opposed to just the méan error so that there is greater propagation of
the present error and Kt > Q. This description can quite easily be
extended to the case of time-varying Q's., Note also that if ZBA # 0,
then the propagation of the uncertainty in the error is somewhat reduced,
since B and A are now correlated and the contrel can make use of this
additicnal information. However, because of the restrictions placed by

the various correlation coefficients, the effects of uncertainty cannot

be completely nullified. This is also supported by the mathematics,

The gain Lt’ Fig. 4, follows the behaviour of Kt in a mathematical
_sense. It is steady initially and, as t approaches N, it moves away from
the steady-state value just as K, does. Again, it b;sically attempts to
minimize the mean square error instead of just the mean error. Note that

Lt represents only the regulator part of the control and is totally



77

independent of the targets and the driving term c. The scalar case

provides some insight into its behaviour.

1
2 2
1+0b/b

o

(

fand

1

|

"

|
ol ol

Note that in the scalar case Qt is constant even in the stochastic case.
Also, note that Qt decreases in absolute value as Ub increases, other

things remaining the same.

&
I

1 T (a + bRt) X * bm, + ¢

» G}

when g, = 0, the coefficient vanishes, thereby keeping X, close to zero,

b

as required by the regulator. The optimal gain is chosen so as to minimize

1

2
E(a + b,Q,t)_°

. d 2 _
i.e. dlt E(a + bzt) =0

Therefore 2 @b + (b2 + szjﬂt =0

Therefore lt = - ;:ﬁfﬂl——— as required
b2+db2
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This short derivation merely shows, from a different perspective, that

Rt does the stochastically optimal thing. The vector case behaves

essentially in the same way though the mathematics is a trifle opague

because the appropriate quantity to minimize for the one-step optimal
L. . .

gain is E[(A + BLt) Kt+l(A + BLt)], because Kt+ embodies the correct

1

cumulative weighting at time t.

The term is again essentially a mathematical entity like K_.
P, y 7 t

The equaticn for P is

Pp = - Q@ rAK o APy * (A'_KU_}LB)'mt
= - &+ W"K'Ptd
- (K, B). (B'K, BYNBK_c + Bip,, )
Py = - QX

Its behaviour can be understood in analogy with that of Koo It
has two basic functions. The first is its role in providing a correction
term to cancel the exogenous term ¢ and the second to provide a
cumulative weighted measure of the desired trajectory. Tc understand

these roles more clearly let us look at them separately, First let us

assume that the desired trajectory is zero i.e. it = 0 for all t,
Then,
- _ — - - _— -1 = — —_
= 1 ' _ T ' t 1
P, A Kt+1c + A P.1 (A Kt+1B)(B Kt+lB) (B Kt+1C + B pt+1)

Py
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We note here that the behaviour of P, is directed towards c. At t=N,

Py = 0 because ¢, cannot affect the optimal cost. Now let us assume

N
that ¢=0, we get,

~ — — e
- t - 1 1 T
th + A Piy1 (A Kt+1B).(B Kt+1B) . (B pt+1]

Py
pN = - QXN

This shows how at t=N, Py Tepresents a weighted target and for earlier t,
how it incorporates both the present target in the term - Qit and the
propagation of this in the future as well as future targets in the rest
of the equation. In the general case when R # 0, P, also includes the

weighted control targets in the term - Rﬁt.

Just as Kt+1 gives us the gain Lt S0 Pt+1 (in combination with

gives us the additive term m_, which embodies the two roles of Py

Kie) o

explicitly in the control. The first role is to act as a correction term
to offset the exogenous vector c. This function is independent of the
regulator and tracking parts of the problem or, in other words, it is
needed in both. The second function is tracking. It is responsible for
making the state track the desired trajectory. These two objectives are
clearly observable in the equation for m .

- = kR
m = - [ B'K B+ E 2tr(Kt+1ZB )E

1o -+ Rt
gl [B'Kiqe * Blp ]

We see from Fig. 5 that the behaviour of m  shows an approximately steady
growth. Though the corrective component does reach a steady state the

tracking component does mnot since the target itself grows with time. Its
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behaviour could also be understood in terms of the minimization of a
suitable expression as we did for Lt. However, this is complicated by

the fact that both Kt+1 and Piyy enter into it.

Now that we have some description of the behaviour of the various
components of the problem we can better appreciate the behaviour of the

control ut and the state xt,

The certainty-equivalent control u, is given by ;

_ - by --1 -
u = L x, + m_o= - B A Xy - B "(c - xt+1)

and the certainty-equivalent X, is

This shows that u, and X, in the certainty-equivalent case must be

approximately linear (since it = J1 + 0.0125t] xo). This is borne out
by Figs. 1-2 and Figs. 6-7, In the stochastic case we find that G£
tries to approach utCE in the 'middle", as we would expect. At this

point it is useful to look at the mean values of the A and B matrices :

~ .93 -,02 B .32 .42 3 -63.24
A= B = c =
.15 .38 -.07 1.53 -210.90
and
c,C+1 _ .93 -.02 C, . .32 .42 E, ) 63.24
T .15 .38 T -.07 1.53 M 210.90
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Fig.6. Government expenditure vs. time, Eq. (A.4), for N = 15,
For the C.E. case, all covariance matrices are set equal

to zero,
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Money supply vs. time, Eq. (A.4), for N = 15, For the C.E.

case, all covariance matrices are set equal to zero.
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Looking at the relative values of the elements of A, we see that

average consumption C is essentially independent of average investment E}
though 1 does depend on C. Also, owing to the relative values of the

elements of B we see that the average government expenditure E; does not

really affect investment It+1' directly

However, E. inf s C
s t influence Ct+l

which in turn influences I so that the effect of average government

t+2’
expenditure on average investment 1s experienced two periods later. We

note also that both the instruments can influence consumption.

In the stochastic case we see that as the relative weighting of
consumption and investment in the weighting matrix Q changes in favour of
one or the other, the corresponding state approaches the target more

closely, as one would expect. In Fig. 1, the perfect C.E. case is at

the top, Below this comes the curve correspending to Q = diag (10,1).

As the relative weighting of consumption decreases to Q (2,1) the mean
consumption trajectory drops even further down. This trend continues
till Q = (1,10), 1In Fig. 2, we observe exactly the opposite. Q = (1,10)
represents the case for which investment tracks most closely since the

relative weight of I is highest here and it gets progressively worse as

we go to Q = (10,1},

*®
Finally, .the optimal cost J needs to be considered. We find that
it can also be divided into two parts : the regulator part and the
tracking part. The regulator part comes from the tern %-xéKoxo, which is

the same as the cost for the corresponding regulator problem. The

additional terms péxo and g, explain the tracking part of the cost,
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The term 'go' represents a residual type cost (the dynamic counterpart

of the constant term ‘c¢' in the minimization of a quadratic function

ax2 + bx + ¢)., We néte also that J* increases as ZA increases, since the
control becomes less and less capable of controlling the system

effectively, (Fig. 8],

Let us now look at the sensitivities of some of the parameters. To
keep things simple we shall only look at the sensitivities of the diagonal

elements of EA and ZB. Note that g,. = var (a = var (a

21)’

033 = var (312), 044 = var (a22) when Uij £ ZA. Similarly, when

11 117 952

0,. € L o,, = var (bllj, a Y and

ij “B’ 11 = var (b

var (b

22 2177 933 © 12

044 = var (b22)' For convenience we shall denote var (aij) by c(aij)
and var (bij) by c(bij). The relative sensitivities corresponding to
different Q matrices are given in Table 2 and are then ranked in Table 3.

We do the same with the absolute sensitivities in Tables 4 and 5.

Our first observation is that none of the parameters are overly
sensitive. We note that the highest relative sensitivity is only .3 or
30%. We can call a relative sensitivity of 1 or 100% high because that
implies a variation of a magnitude commensurate with the actual value.
Judging by this standard sensitivities of .3 or less are negligible.
Thus, in a general sense, this model is quite insensitive to variations
in parameter variances. In other words, at least for this model, this
method of analysing sensitivity does not yield much useful information,
besides the fact that the model is insensitive and therefore reasomably

reliable.
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Parameters Q:(1¢,1) Q:(2,1)J Q:{1,1)1Q:(1,2) Q:(I{IO)
PR ACTE R S V! .107 .075 . 050 .016
92 | “C21) | o037 099 || .129 .152 .169
ZA Ogz || 92150 ) .038 041 || .028 .017 . 005
o4q || 93220 | .012 .038 || .048 053 051
opp | P | 216 127 i .082 048 L0190
5 Loz G(bzl)} .047 117 [ .140 . 145 105
o33 | 910 1 250 168 || .121 .081 030
!
ogq || 9(byy) | Los4 155 | .206 .249 .316
Table 2, Relative sensitivities




Parameters C.E.Q:(1,1)| Q:(1o,1) Q:(2,1) Q:(1,1) Q:(1,2) Q:(1,10)

_
011 o(ay,) 1176272 13405233 2860309 1515515 1646233 2008791
T99 o(a,,) 1176272 1354913 1234413 1209006A} 2362638 10445811

[A L
033 0(312)] 71100 1537704 371865 191135 195192 217415
O44 G(azz) 71100 155412 160615 152658 280599 1086178
011 ] U(bll) 111247 2501325 503951 244319 233663 199524
| o

) G2 G(bzl) 111247 252895 217003 194130 332468 962598

B ]
033 o(b,,) 154526 1609666 370167 199918 222138 322734

—
044 a(b,.) 154526 162709 159488 159089 317734 1603107
22° o ;
Table 4. Absolute sensitivities

98



87

Q:(10,1) Q:(2,1) Q:(1,1) Q:(1,2) t Q:{1,10)
by ) aby,) oby)) GALPPY (55
o0y o(byy) 905y o(25,) (25
ota) | oy | oG, | oky) | o,
a(a;,) alby;) alby,) a(by,) a(a,,)
oy o2 70y o(a;5) 3by)
I(by1) o(371) o2y olayy) a2y’
(2,1 7(25) a2y, a(by;) o)
ola) | lay) | oy || oty | o) |

L |

Table 3,

Ranking of parameters in

relative sensitivity

order of decreasing

Q:(10,1) Q (2,1) \ Q: (1,lﬂ Q: (1,2) Qi(ljlo)w
o(ary) olay) o(21) 0(25y) a2y
o(by) aay,) o(ay)) a(a;y) a(ayy)
olby ) o) olbyy) a(byy) a(b,y)
o(a;,) o(a,,) SICIPY a(b,,) 9(2,,)
oay) a(by,) o (byy) 0(a,yp) G(byy)
by, 0(byq) Glayy) | - 9lbyy) a0y,
0{b,,) a(ay,) a(b,,) a{b,) a(a;,)
0 (a,,) a(b,,) o (a,,) 9(a,) o ()

|
Table 5, Ranking of parameters in order of decreasing

absolute sensitivity
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If we look at the variations in the sensitivity ranks as Q is
changed, we find a reasonable pattern. When consumption is more heavily

weighted than investment, we find that the parameters O(all), 0(312),

a(bllj, o(blzj tend to be more sensitive, whereas when investment is

more heavily weighted the parameters 0[&21), 0(322), o(b o(b22] are

21) ’

more sensitive (Tables 3 and 5). This is as it should be as is evinced

by the positions of these parameters in the covariance matrices

r— 1 —
|
G(all) 0 | 0 0
|
| 0 o(ay,) | 0 0
L= | == ;r —————————————
0 .0 i ola;,) 0
|
0 0 0 o(a,,)
L ! 2_ 1
p— | -
c(b,;) 0 \I 0 0
|
. _P_h owzﬂ ;0 0
g | T
|
0 0 | a(by,) 0
|
0 0 I 0 a(b,,)

What happens in the sensitivity equations 'is that the above shown 2x2
blocks enter into the mathematics directly through the terns PéZAPQ,
P%ZBPE‘ Since G(all), o(alz), o(bllj, U(blz) occupy the top left
positions in these blocks they contribute to the error in the propagation
of consumption and as consumption assumes a greater relative importance
in the cost functional, these parameter variances become more sensitive.

This is shown by the column of rankings under Q = (10,1) in Table 3.

Exactly the same happens in the other direction with investment. The
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parameters 0(321), G{azzj, G(bzlj, G(b22) occupy the bottom right
positions in these blocks and thereby contribute to the error in
investment, so that they become more sensitive as the relative weighting
of investment increases. As we move from the column under Q = (10,1) to
the column under Q = (1,10) from left to right in Tables 3 and 5, we
find that the parameters 0[321), gla

a(b 0(b22) move from the

2277 9(gy)

bottom of the columns gradually to the top when we get to Q = (1,10),
This pattern also makes sense physically, When consumption is more
important, one would expect the higher sensitivities to be with the
first rows of A and B which parameters affect consumption directly,

More explicitly

Cesr = 311 Cp * 855 T+ by B+ by Mov ey
The other parameters a21, a22, b21’ b22 affect Ct only indirectly. The
same is true for investment.

Tesr = 3 G v 3y Ip by Ep by My ey

From this one would expect G(azl), 0(&22), c(bzl), G(bzz) to be more

sensitive as 15 borne out by the results.

Q = (2,1) seems to represent some sort of a "break-point" that
weights consumption and investment in some "equitable™ manner. Firstly,
we find that the relative sensitivities at this value are all evenly

distributed i.e. there is mno priority in ranking in either group,

[0(a;), 0(ag,), 9;)), o(by,)] or [6(ay), oay,), olby ), 9(b,)].
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See the column under Q = (2,1) in Table 3. If we increase the relative
weight of consumption towards Q = (10,1), then we find elements of
[o(all), 0(312), o(bll), 0(b12)] becoming more sensitive whereas if we
decrease it towards Q = (1,1}, (1,2) and (1,10), we find [0(a21), 0[322),
a(b

o{(b,,)] becoming more sensitive. Of course, since our data comes

217 9lbys)

from only five Q matrices, we cannot have the exact break-point but we

can say that it lies roughly near §Q = (2,1). This also seems to be the

Q that gives the lowest value for the optimal cost J* scaled by the notm
of the corresponding Q, as can be seen from Table &. In additienm to this,
Table 7 indicates that llLoll is largest in the Q = (2,1) case. Of course,
the certainty equivalent 3" equals zero and is lower than the above

scaled J*, and || L || .p = 682 is also higher than|l L] for @ = (2,1).

CE
The fact that J* is lowest for this Q means that this represents the
minimum of J taken over all Q. Similarly, the fact that ||L0|] is highest
seems to imply that the control is most forceful in this case. All this
points to the fact that Q = (2,1) represents a special weighting matrix.
The specific value of Q depends of course in some éomplicated way on the

values of‘R, B and ZA, z However, the important point is that it gets

3
closest to the certainty-equivalent case in some average way. It

represents, in a certain sense, an "optimal'" choice for Q.
P ’ ’

As we increase EA gradually, scaling the entire matrix EA by factors

of 1.1, 2, 6, 15 and 30 progressively, we find first that the optimal cost
*

J 1increases (Fig. 8). This is reasonable physically since the system

becomes increasingly difficult to control with increasing uncertainty.

We find the other variables behaving reasonably too., For example, the



91

Q I/l
(10,1) 7.27
(2,1) 5.66
(1,1). 6,00
(1,2) 6.72
(1,10) 12,02
C.E. 0.00
1]

Table 6. Normalised values of the optimal cost for

different weighting matrices Q.

Q Iy |l
(10,1) ,444
(2,1) .470
(1,1) 439
(1,2) . 387
(1,10) .230
C.E. .682

Table 7. Normed values of initial gain matrices for

different weighting matrices Q,
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optimal cost- to-go

120
100 |= 30
80 P~
60 |
40 [ 15
20 =
6
as?
. 1 |
0 5 10 15

hme (in quarters)

Fig.8. Optimal cost-to-go vs, time, Eq, (A.13), for N = 15.

& is the scale factor for the covariance matrix ZA'
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quality of the state trajectory drops and we find in some sense a greater
expenditure of control energy {Fig.9-10).The behaviour of the sensitivities
does not show any useful regularities as can be seen by carefully studying

*
Tables 8 and 9. Since the relative sensitivity is given by g%—. %; and

¢ and J*both increase, and the change in %%fitself is hard to guess, we
are left without any reasonable predictions. For example, the first row
of Table 8, which shows the values of G(all) as the scale factor g of ZA
increases, indicates that 0(311) increases as ¢ goes from 1.1 upto 15 and
then drops at o = 30. ‘Similarly, the third row shows that o(alz) increases
till @ = 6 and then drops for o = 15 and o = 30. The second row keeps
increasing whereas the fourth row behaves like the first. However, there
is no identifiable pattern which allows us to predict the behaviour of
these sensitivities. Also, since the values of EA are very small; even

a scale factor of 30 does not succeed in making Kt blow up. We are still

within the threshold even though we do not know exactly what it is,

To sum up, we could say that the outcome of the analysis on this
model is basically positive. There are no teally sensitive parameters,
s0 we can trust the results of the model (on the assumption, of course,

that the underlying economics is accurate).

4.5 Conclusion :

In this chapter, we have presented a simple macroeccnomic model of
the U.S. economy and recast it into state-variable form, Next, we have

applied the equations developed in Chapters 2 and 3 to this model, and
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Fig. 9. State trajectory, Eq. (3.3,11). Comparison of trajectories
for C.E., case with the stochastic case when ZA is scaled by

a factor of 30. Q = (2,1) for all curves.
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Fig.10. Control trajectory, Eq. (A.4), for N = 15. Comparison of
trajectories for C.E. case with the stochastic case when

ZA is scaled by a factor of 30. Q = (2,1) for all curves.
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a:l,.1 a:2 o6 a:15 a:30
9@ )| .15 || .170 272 || .294 .215
oa, )| .106 .161 .287 .397 .444

_

oa;,) || .044 || .063 .089 || 077 . 049
a(a,,) | .040 | .060 094 || .104 .101
o(d )i 127 || .122 .106 | .080 . 048
o(b,y) )l .117 | .115 112 | .108 . 098
o(by,) 1 .l64 .131 . 065 .026 [ .012
aby,) | .151 || .124 .069 || .035 .026

Table 8. Relative sensitivities for Q = (2,1) and

different scale factors o for ZA

(1.e. the actual covariance used in

simulations is aZA where &, is given

A
on page 63).



1 a:l.l o:2 |l a:6 o:15 a:30
o(ay;) 2860368 2860618 2855406 2801006 2547648
o(a,,) 1237788 1268444 1410905 1768482 2455696
c(a),) 370616 359680 317017 249433 197812
a(a,,) 160508 159594 156699 157288 190995
o(b,y) 514235 605546 985255 1697967 2542816
0(bzlj 222153 266288 486861 1068166 2405713
O(by,) 369435 363047 333829 308774 362907
a{b,,) 159614 160796 167413 194690 349698
Table 9. Absolute sensitivities for Q = (2,1) and different scale factors

a for EA

{(i.e, the actual covariance used in simulations is aX, where EA is

given on page 63).

A
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presented some empirical results together with a discussion of these

results.

Qur model turns out to be fairly insensitive to parameter uncertainty
variations and therefore quite reliable. Applications of this method to
more models is required for a better understanding of the equations we
have developed. It seems, however, that the complexity of these equations
and their relative resistance to deeper insight makes this method of
approaching sensitivity issues undesirable. The computation involved
increases at a prohibitively untrammelled rate as the dimension of the
model increases and since most useful econometric models are large, this
methed is not quite practical, It can, however, be useful when a small
subset of the parameters in a large model needs to be analysed for its
sensitivity, This, of course, is to be expected since this method is

essentially a brute force way of identifying sensitive parameters.
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CHAPTER 5
CONCLUSION

5.1 Summary of Results

In this report, we have investigated the structure of optimal,
linear, random parameter systems. We model these parameters as white
stochastic processes, Thus, the model contains both additive and
multiplicative white noise. This white parameter approach to adaptive
stochastic control is important for two reasons. Firstly, it makes the
problem solvable analytically. The general adaptive control problem is
in fact a nonlinear stochastic control problem and cannot be solved
without making approximations. Secondly, it shows, in a worst case
sense, the fact that the control gains of an optimal stochastic system
with purely random parameters depend not only upon the mean values, but
also upon the variances of the random parameters. The scalar case of
this problem was investigated by Ku [1]. Here we investigate the most
general multivariable version. The problem is formulated as a tracking
problem and includes additive noise as well, We do this work in

Chapter 2.

In the next chapter, we develop sensitivity equations to analyse
the sensitivity of the system performance to small variations in the
variances of the system parameters. The equations turn out to be fairly
cumbersome in the general multivariable case. Deriving equations for the
sensitivity of the optimal control and the optimal trajectory turns out

to be hopelessly complicated.
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We describe a simple macroeconomic model, recast it into an
optimal control framework, and make a thorough investigation of its
structure and of the optimal sclution together with the sensitivities
of the different parameters. We present some of the relevant simulation

results for the analysis.
5.2 Conclusions ;

The multivariable case for linear random parameter systems, though
solvable analytically, turns out to be somewhat opaque and does not
yield much further insight than the scalar case. The main result for
the scalar case described in Ku [1] is the Uncertainty Threshold
Principle. In the scalar case it is possible to find an analytic
expression for this threshold (some function of all the means and
covariances). In the multivariable case, we find that it is very
difficult, if not impossible, to obtain an analytical expression for the
threshold. The source of the problem is that we are dealing with
matrix quantities and matrix multiplication is non-commutative and
operations like the trace of a product of matrices do not decouple.
However, a threshold certainly exists as can be verified by trying out

different values for the various mean and covariance matrices.

The sensitivity equations, since they are derived from the above
optimal solution, turn out to be even less amenable to any insight. We
do not even bother to reproduce the equations for the sensitivities of
the optimal control and state trajectory, The application of these

equations to Abel's model also turns out to be of dubious value. Though
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they do supply us with some valuable information - that the model is
basically insensitive and therefore reasonably reliable - it is
questionable whether such a brute force approach to sensitivity analysis
is worthwhile. Many currently popular econometric models are large and
nonlinear and this approach would become far too involved computationally.
The cpu time depends geometrically (wn?) on the order of the system and
linearly on the time horizon. However, if we restrict the set of
parameters whose sensitivities we wish to examine to a small subset of
all the parameters, then we can hdpe to extract some useful information

at a reasonable cost.

5.3 Suggestions for Future Research

1. More analysis is required to thoroughly understand the
different aspects of tracking problems. Specifically, one
needs to understand the end-point behaviour of various

variables like X, U Lt and m, physically. It may help

t,

to reduce these matrix and vector quantities to scalars

by using suitable norms,

oK
2, We have calculated quantities like '7;; . It may be useful
ak
to consider quantities like _5;+6 as well, This represents

the effect of a change in the present value of © on the
future value of Kt' This may prove to be useful in
adaptive control schemes where such information may be used

to guide contrel action.
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Though the equations turn out to be very complicated, it

9lu,  3lx,

d3g * 30 °

Perhaps somewhat different initial assumptions might lead

would be useful to look at the behaviour of

to a more tractable problem which might yield useful

information.

The scheme developed in this report can be applied to assess
the reliability of different models of a given system. This
affords a selection criterion which can aid in choosing one

cut of a number of models,

This sensitivity analysis can also be applied to an analysis

of the monetarist-fiscalist debate in Abel's paper [47].
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APPENDIX A

We solve here the optimal control problem posed in Chapter 2

using the method of stochastic dynamic programming.

We begin by stating the problem and the principle of optimality.

We have the following linear random parameter system :

X

kel = A%

+

Bkuk + ck

X iv
o given

where Ak, Bk and ¢, are 2l]l white and Gaussian with known means,

covariances and cross-covariances.

Here we

let

{ay)

[}

{Bk}
{ck}

TSy
{ [ s}
{ [ S(e)
{ [ s
{ [ s

{[ S(A,)

introduce

L= I

ol

S(A) ] [ s(ap)
5(8) 1 [ S(8))
5(c) 1 [ Sley)
S(B) 1 [ S(A))
S(8) 1 [ S(cy)

SA) 1 [ S(cy)

-5(A) ]} = g,6

A "k
-8B 1} = Iy S
-Sk) ]} = L. 8y
SSM 1T = Tpdy,
-S(c)y ]} = Zacbin
-S(©) 111 = zAc5k2

some notation for convenience. For any matrices

if E {Yk } = Y constant

(A.1)

Y, .2

k
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The cost functional we choose to minimize is :

1 ~ - ~ ~
J = 3 E {E_O [(x - %)'Q0x - %) + (e - ) "Ry - )]
-— X t - X
ECTRIEMRNCHEE W (A.2)
where Q, R are symmetric, positive semi-definite matrices and where X s Uy

are given target trajectories.

The stochastic control problem is to find 2 control sequence

{ U, U, wee 5 U } that minimizes the value of J. This problem is the

N-1
stochastic tracking type of optimization problem and can be solved with

either the discrete minimum principle or dynamic programming. We choose

the second approach.

et 3 = 3 ik [(x; - %)'Qxy - ) + (ug_| - B )R, - &) ]
P = 3 L0 m XAy - R ¢ Oy T ROy Ty ) ]
Yy = E{J. 7}
M F E{P }
Y; = min Yy

Yk-17 00 UNal

where k=1, 2, .,. , N

We have

*
Yy = Eln Yi k
k-1 te0 v UN-l

1,2, ... , N
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Yk = Eln EJk
k-1""*"UN_1
= Eln N E (Pk + Pk+1 + ...+ PN)
k-1 """ ' YN-1
= zln EPk + Eln EJk+1
k=177 29N-] k-l,"'uN-l
(Note : EJ, , =
= min EP, + mWin (Eln EJk+l}
Y1 Uk-1 k* o YNl
. . * * _
= min Ak + min Yk+1 (Note YN+1 =
* . *
Y o= min ( Ak * Yol ) (A.3)
Yk-1

This is the functional recurrence relation that we shall use in our

derivation.

We shall first calculate Ak'

Ak = EPk

= ] Pk p(xk) dxk
= % JLOG-% ' Qx-R) + (o (-8 ) "RGs -y )]
POx /A 1aBy ya0y X P By jaey IP(x )

d(xk B

A 12Bro17%k-17%k-1)

using p(x) = /S p(x/y) p(y) dy.
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Note that X1 is independent of Ak-l’ Bk~1’ €,_1 SO We can write

P B %g1) T PO 0By 10S) P (X )

B ) is merely an abbreviation for

A].SO, d[Xk, Ak-l, k_ll Ck_ll xk'l

dxdek_ldBk_ldck_ldxk_l.
Therefore,
— l ' 1 t
A= 3T DX A X g (ReB_ 1By 1) wy )

P o1 ®pn Iy B W Ny v B By 1Ry y)

* A Ay Q) F K&+ 8y (R - 28 Ry

= QA% g - 2K QB Py g - 2K Qe ) ] -
p(Ak—l’Bk-l’ck-l)p(xk-l)d(Ak-l’Bk;l’ck-l’xk—l)

using x, = Ak-lxk-l + Bk—luk-l + o1 and integrating out Xy

Now, integrating with respect to Ak—l’ Bk—l’ and Ck—l we get

- l 1 ATOA RTOR i~
Moo= I MW x v u  (R4BTGB) ¢ ee

+ 2uﬁ_1(B'QA)xk_l + Zui_l(B'Qc) + 2xﬂ_1(A'Qc]

-~

- g 4 ~ - =~
*xQx o GR o o- 2wy GRey

o 9%t R _ 9%
ZkuAxk-l 2x]'<QBuk_1 2kuc ] p(xk_l)dxk_1
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1 k = N
* . N * _
Yy = omin Ay Vg1 =0
Un-1
dA
N _
duN_1
=R RTOA T 0c) - 2R3 - 9B'0%. =
2(R + B'QB)uN_1 + 2(B QA)xN_l + 2(B'Qc) 2RuN_1 ZB'QxN 0
ue = < R+ B'QB) B
N-1 " N-1
—_— 1l e =y e -
- (R +B'QB) "(B'Qc - B QxN - RuN_l)
*
With this, we calculate Yn-
yoo- 1 JLxt (ATQRIx, o+ X (ATQB) (R+B7QB) "L (BTQA)x
N 2 N-1 N-1 & ™N-1 N-1

—— — o~ ~ -1 ~ ~
' - ' - 1 1 1 - ' -
+ (B'Qc - B'QR - R, )" (R*B'QB) ' (B'Qc - B'QXy - Riy )

+ 2xy (BTG (R + BTQ8) M (B7Ce - B'QKy - Ry )

+ cT0e - 2x) (VT (R+BTER) T (B'QAYx_

- 2(B'Qc - B'Q&%, - Riy ;)" R + B'QB)'l(B'QA)xN_l
2k B R+ T EE)

- 2B - BQ% - Ry, )R + BTQB) (RO

~

' AT O %1 (O =t
2 X RIe) Ry Qg+ By gRuy g

v 20y RR+ BT T BTRR) Xy,

.-l = = ~
T3t t ! - -
+ 2 uN-lR (R + B'GB) " (B'Qc B'QiN RuN_l)
"V' ~
-2 xNQAxN_l
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+ 2 FIQBR + 57g8) (B¢ - B'QR, - Rdy )

-~ 2 RIE 1 plxgq) dxy )

On simplifying the above, we get,

J L x  ATQA - (A'QB)(R + B'QB)T (B'QA)} xy

<
1]
e

+ 2xt . {A'Qc - K'QxN - (ATQB) (R+B'QB) "L (B'Qc - B QX Rl

N-1 N- l)}

- (B'Q - B'Q¥ - RG_ )" (R+BTQB) ' (B'Qc - B'QXy - Ry ;)

1 ¥ 100% _ A=
+ c'Qc + xNQxN + N 1Ru -1 2 xNQc ] p(xN_ljde_l

Since we know the final answer, we can make some convenient definitions at

this point,

Let KN = Q
PN = = QXN
g, = &I
N 7 NN
Then,
* = L ' ' At [ -1 %
Yy o= gl D TRA - ATKBIR + BTGB) T BTRA) Xy g

*oaxg (ATKge + Alp, - (A'K \B) (R+B'Ky, B)~ (B‘KNC + B'py- Ry )

—_— —_ —~ _1 " —_—
- t [ - [ 1 ' [ -
(B'Kyc * B'py - Ruy ;)" (R+B'KB) ™ (B'Kc + B'py - Ruy )

vetKe v 2gy v Oy Ry o+ 28tpg 1 oplxy )dxg

Now define

= [ 1 ' ‘1_:-—
Dyojor = A'Kgh - ATKg BY(RBIKY LB) T (B'Ky M)



N-i-1

Thus we can write

From here we go

N =

ATK o At - Y ]
A KN-ic + A pN-i (A K.N_iB] (R+B KN_iB)

Q

1

2

tof =
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-1

(B'Ky_5C * B'By s = Riy;_ 1)
+D1
W + gy
(R + B'Ki+1B)‘1 (B'Ki;lA)
(R + B'Ki+1B)—1(B'Ki+lc + Efpi+1 - Rd,)
(B'Xy ;¢ * B'py ;- Riy ;) my, y + 5 oK
¥ % IN-i-1ROyio1 * S'PyLp * By
IR, + T,

1
x4 Py 1 %yoq *

Lyo1 *no1 * ™oy

]
2X0o19-1 2Ty ] PO ddx

on to the next step in our calculation.

min

N-2

(A

*
N-1 Y

N-1i

C
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We have, from the previous step,

t
JU g aPyia®er * 21%or * 20y ] POy 9%y

-2
=
1]
P

1 J
JU g A Py A2 hz * e 2Bhe P 1P 2y

1
ST

1] ] ]
* oyoPno1Cn-z2 T PN 2BN-2PN- 1= 2R 2

D + 2x' A D

1
* 2uy_oByoaPNo1SN-2 N-2"N-2"N-1°N-2

'
UN- 2B

+ 2% +2u

]
N-2N-20N-1 Un-2BN-29N-1 T 2ON-2%-1

2Ty POyl Ay p0B

+

N-27CN-2 N 20 P Ay 2By 00Oy 2)

P Xy _)d(xy 58y 22 By. 2SN XN )

_l t A'D A lf—l_ N -
I T P RL R eI L
r nt r Rt ll
+ 2 uN-ZB DN-lA XN 2 + 2 uN—ZB DN c + 2 Xy 2 D c
t voq -
+ 2 Xy qN Lt 2 uN_ZB’qN_1 + 2 c'qN_l + ZrN_l]
(X 20d%y 2
after integrating with respect to xN—l’ AN-2’ BN-Z’ and CN—Z'
Therefore,
Ay *Yo= =[xt {A(Q+D, JA}X
N-1 N 2 N-2 N-1 N-2

uy.p{R * B'(Q + Dy IR} uy,

+# T @Q + Dy_j)e

T 1
+ 2 u.N_2 B'(Q + DN_I)A anz



lle

RPN

+ 2 x! A'(Q + D

N-2 N-17€

1 —1 - -~
Xy ATy g - Qxy )
' Y - el
*2uy o Bl - QX )
*2etlay g - By )
+ 2 rN_1

el ] ~ M~ In-4 _ ~
* XN @yoy t ONagRUya 7 2 Ty pRuy ]

Plxg_)dXy;

|
)=

I[ xﬁ-Z(A'KN-lA)xN—Z ¥ uﬁ-Z(R+B'KN-1B)uN—2

+

] ] 1 L]
C Ko * 2 uy o (BUK AIxy 5+ 2 ug BTy ¢
1 ] T _l ] —'
vIxg ARG 1S 2 X APy Y 2y BTy

=t 31
*2e'Pyy v e Tyt X Bya

2 1’ ,Ru
"N-2""N-2 T plxy_,)dxy_,
We can now minimise this expression w.r.t. Uy_o

d (A

*
o *yg) = 0
duy , - N-1 7 TN

B'K. .Blu. . + 2 B'K. .Ax. _ + 2 B'K. ¢
2(R + B'Ky ,Bluy > + 2 B'K A X o+ 2B'Kg e

- 2 Ru = 0

—l
+ 2 B'py N-2
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] -1 [
- (R +B KN_lB) (B KN—IA) XN_2

“N-z T
T 5 (R . o . - &G
(R + B'Kg_1B) "(B'Ky ;€ + B'py | - Ry )
= lyog nez * M-z
*

Let us now calculate YN-I
Yo o = [0 xt AE. A)x, L+ x! L' (R + B'K. B)L. .x
N-1 2 No2 BT KA X ohyg N-19 b0 %n- 2

! T ] 1 !
oy Ry BImy o+ 2 gty (REBTKy  BImy

[} 1
+ C KN lc + 2 XN 7 N— B KN 1A X + 2 m B KN 1A X
I 1 1 1 ‘l
+ 2 xy oL BTKy e+ 2w BTKy e+ 2 xf ATK e
[ r ' T @[t
vo2xy 2 Py-1 * 2 Xoknez B Pyo1 * 2 MyooB Py

Py o1 'y 4
+o2e'pg y t 2y g Xg QK ¢ RO,

- 24 - 24

N-28 yo2®n-2

r t
[ Iy oDy g * Pugyag * 2% o] POXy

after some simplification and rearrangement of terms.

t =

So we see that we get similar expressions for the
optimal cost-to-go for the next period. This obviously
by a simple induction argument to all time periods,

down the complete solution,

new variables we introduced earlier.

]
N-2RMy. o] Pxy_pddxy o

~2)4xy s

control and

carries through
Thus we can write

Before we do this we eliminate some of the
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[ - 1 1 -
ATKA - (A'K.B)(R + B'K,B)

Q + D,

1

B) L

1
Q+ A'K, 1 i

A AR

1
(B'K;A)

—— - - _1 —_
1 ' - ' [
A Kic + A Ps (A KiB)(R + B KiB) (B'Kic + B'pi

- QX vy

BPCE i
Qe + ATK g APyt

l! B _ no '
5 (B Kic + B P; Rui_l) m

fol
e
+
H

M| =
w

e -

Hu

(=

¢

IS
=

P

l == .3
* 7 (BK 0 By,

1]
(A Ki+lB) m.

1
i-1 Y7 °°K

Ru, 1)

c +c!

The complete solution to the optimization problem is therefore :

LeXe * My

- (R + B'Kt+1B)-1 (B'K_ ,A)

t+l

1

(R+B'K B)'I(B'Kt+

t+1 1

oy A'Y .~ AN
- th - A Kt+1c + A pt+1 +

AVK A A'Y R
Q+ A'K A+ (A'K B

1 ) L

c + B

pt+1 B Rut)

Ak B)m

t

t

P

1

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)
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(A.9)

(A.10)

(A.11)

(A.12)

We can also calculate the value of the optimal cost-to-go and the optimal

cost.

The optimal cost-to-go is given by :

* -1- . , .
et EL Oy g - X 1A - X )]

ST

N =

N

' 1
I ka—l Dk-l xk-l + 2 xk—lqk-l + 2 rk-l] P(xk-l)dxk-l

1 ' o 0% <y s
7 LI @y - 2 Wy * Xy
POy )d% )

[ @+D ) x  +2x (- )

2Tyt X ] Pk )X

1 )
[ o Ky 13y * 2 Plo1¥k-1 * 2 g, _)P(x_)dx,

1, , ]
I3 X K1 ¥ker " Pror®or * Bl bk = 12,

youes

(A.13)

N
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[}
2

*
The optimal cost is given by J

- 1.,
J = E{Zonox

+
g
O-n
i
+

q
—

0

Since X, is known with certainty we can write

— _1_ 1 r
J = 3 onoxo * PX, * 8 (A.14)
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COMPUTER SUBROUTINES
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PARMNN FURTuAN A CCNVERSATIONAL MONITOK SYSTad

INTEGER NAa,NS,NNA,NPTS,N,M,NM,NN,IPVT 1)) ,KIN,LOQUT

DOUBLE 2?x=CISLOGN A[10,2),8010,2),C{10,2),0!10,2),k{(10,2) .,
SIGAL7,4),5IGB{12,4),5IGBA112,4),S15C(10,2),
5IGAC(7,2),5IGBC{12,2) ,PT{12),GT,XZER01J),
XT {12) ,0T {12} ,D{1C,2),2KT/10,2),EL110,2),24110),
J419,2),v0(10,2) ,&(10,2),W1(10) ,42{10), WORK {10),
VW (10,2) ,UVwW (10,2) ,ARRAY (51,10},
GXB{1%,2) ,BKA (19,2} ,39P8.10,2),
BPA(10,2),LCUST (20} ,COST (20) ,BPC (10),
aDP 1) ,0H L18) b2 f1C),BKC19), DG

+ + o+t

CCAAON/INOU/RIN ,EQUT

KIN=5

KOUT=b

NA= 10

NN=U

N =i

qH=

NS=12

ANA=T

N=2

=2

CALL MATIO 'NA,N,N,Q,4)

CALL HATIOINA,d,H,K,4)

CALL HAATIU NA,N,N,A,u)

CALL MATIOI!NA,N,M,B,4)

CALL MATIO [ ,N,Md,C,4)

CALL MATIO(NNA,NM,NH,SIGA,U)

CALL MALIO(NS,NM,NN,SIGB,4)

CALL HATIOINA,N,N,SIGC,4)

UT(1) =0.0D0

UT!2)=u.GD7

(ZZRC {1} =362.2L0

XZ5RO {2)=8Y.0D0

NPTS=16

XT{1)={{1.0125D0) %% (NPTS~1) )*XZERO (1)

KT 12)=111.7125D0) % [NPTS- 1} ) *XZERO [2)

CALL PAR{JA, NS,NNa,NPTS,N,1,NM,NN,A,B,C,C,R,SIGA,SIGB,
5IGBA,SIGC,SIGAC, SIGRC,XT, UT,PT,GT,XZERQ, D, EKT,
¥, EL,AExaY,COST ,LCOST,BKS,BKA,BPA,BPB, Ed, DP,

+ $PC,BDP,BKC,DG,U,V, W, Vi, UVd, W1, %2, WORK, IPVT)

WHITE(KOUT, 15) GT

FCLMAT {1H:,7H GT = ,D26.16)

WRITE(KGUT, 16)

FOEMAT [1H) ,5 PT )

CALL MATIC{Y,N,dM,PT,3)

WRITE (KOUT, 17)

FORMAT [1HY,7H M {T) )
CALL MATIO(N,N,4M,EHX,3)
WRITE [KOUT,18)

FCRAAT (140, 74 L (T) )

CALL MaTIO'NA,4,8,EL,3)

ARITE (KCUT, 19)

FORNAT/I7U,7H K I[T) )

+ +

PARICUTY
2AR00020
PARDUU3Y
PARJCOUD
PARKOCQSD
PAGIQQ6]
2AEQ0070
PARQVUBY
PAROOLO9Q
PARLY TG
PAROO 110
PARUW120
PARJO 130
P2ARUG 140
PARQC1I50
PARDOC 160
PARQUITU
PARQQ 180
PARUV 19T
PAROC 2CO
PARDG 210
PARQQ220V
PAROQG 230
PARYG24G
PAEROU 250
PARGG260
PARUOZTO
2AR0D02843
PARQO 299
PARQ0 300
PAEQU3ND
PARQQC 320
PAEBQU33T
2ARQU 340
PARGGISS
PAROO 360
PAROU 370
PAROQU380
PARJ0 394
PARQO 400
2ARGUU41Q
PAROGL20
PARCQ 430
PAROQGU4Q
PARUG 450
PAR G460
PAROOY47D
PARLGUED
PARGUEU9D
2ARQ0OS500
PARQ0510
PARJUDSZ0
PARUO530
PARQOS4L4O
P ARUDS5(]
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CALL HALIO(NA,N,N,LEKT,3)
STOP

LAST LINE OF 2ZAEHHN

END
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PAROC 560
PARIGSETD
2ARQ0 580
PARULHIY
PAROUBOO
PARU0L10
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PAR FONTRAN A CCNVEESATIONAL MONITOE SYSTEM
SUBROUT IN. PAE (NA,NS,NNA, NPTS, ¥, M, NM, NN, A, B, C,U,E,SIGA,SIGE, PARUCO10
SitéBa,SsIvC,SIGAC,SIGBC, XT,UT,PT,3T,XZELO, PARQOGC20
DX, zKT, 24,EL,4 KRAY ,CG ST,LCOST, BKB,BKA,BPA, PAROOO3 U
EP3, D, DP, BPC, BOP ,BKC ,0G,U,V, 4, Vi, UVd,v1,42, 2AR0DIL0
WORK,IPVT) PARILISY
PAROGU6D
£x%%%D AR AU ZTERS : PAROLUTC
INTEGEE dA, NS,NNA,NPTS,N,4,N¥,NN,IPVT (X) PAROGO8O
DOUBLE P&&CISIGN A [WA,N),B!SA,M),CINA,N),Q'NA,N),EINA, &), PARULUIY
STGA [HNA,NN) , SIGB{NS,NH) ,SIG3A(¥S,N), PAR00 100
SLGC!NA,N) ,SIGAC{NNA,N),SIGBC/NS, ), PAROC 114
LT (8) ,UTM),PT(N),GT, XZEEO (N), DK {NA,N) ,EKT {KA,N) ,PAKO0120
EL (NA,N) ,ABRAY (NPTS,1) ,COST/NPTS), LCOSTINPTS), PAROO 130
Eid{M) ,BKB{NA, 1), BKA{NA,N), BPA!NA,N),BPB{NA,¥), PAROUI4]
J(NA,N), V(NA,N), W (NA,N),V¥ (NA,N) ,UVH (NA,N), W1 N),PAROO 150
A2{N},DP(N),Da{M},DG,BPC(K),BDP IN) ,BRC (N}, wCEK (N)PAROQU160
PARQOG 17D
2%+ %LOCAL VAKIABLES: PARGU 180
INTEG =k K,L,XX,LL,KIN,KGUT,ITOP {(40,6) ,IN (9) ,NSY& (1) ,452 ,MALES, PAKOQ 190
IXY,JNDEX,I1,I15,1EGY,MN,NLG,NGRIDH,INDEX,ICOUNT,1ID,IL, PAROL2CO
i,LND1,IND2,IND3,IND%,IR,IS,IY, IT41,171,10,1IV,11,12,1I4,15,PAR00210
J,J0,Jd1,KL PARCOL22¢
DOUBLE PRECISICN COND, TR, SUM, £MIN, XMAX, YMIN,YMAX,YSF 110),ZER0, PAKOU230
XM,X51(2),X%X572) ,LTS(10,2) ,XSavVE(16,2), PAROD 240
LTSAVE {30,2) ,MTSAVE{30) ,UTS{2) ,X52{2), PAROC250
JSAVE(15,2), DKSAVE (96,32) ,2TSAVE (32) ,GTSAVE{16), PAROC 260
“371,2),DPSAVE {96, 16), DMSAVE (96, 16), PARQU270
DGSAVE(48,16) ,CSTSEN,LARRAY (15,4%) , MARRAY (15,2), PAKO0O 280
ELLSEN 8) ,SC PARDG 293
PAR00 JDO
*%% % *LUNCILONS : PARDU3IC
INTEGEE 40D PAR00320

DCUEBLL PRECISION DFLOAT

**kx%x% SUBROUTINES CALLED:
SAYVE,HADD ,MSUB,NEUL,HQF, MSCALE, TRNATB, TEACE, THPLT,LINEQ , ¥LINEQ

PAREUL 334
PAR00 340
PAROG350
2And0360
ZAROG 370

------------------------------------------------------------- ~--—-PAR00U330

#xx¥xxpPJRPISE:

THIS SUYOUTINE PZRFORAS TWO PUNCTIONS:

) IT SOLVES THE FOLLOWING DISCRETZ TIXE LINEAR QUADKATIC
OPILMAL CONTROL PHROBLEM FORK A LINEAR SYISTEAN wWITH PURLLY
RAHDONX PAEAMETEHS.
THZ SISTEM IS DESCRIBED BY

XT+1) = a*( [T) + B*U!T) + C, X{3) = XZERO
A,8, AND C ARE WHITE AND RANDOH.

Tilg MEANS, COVASKIANCES, AND ChCS55 COVARIANCES OF
A, 8, AND T ABE SPECIFIED.

THZ COST CKITERICN IS

BPARQG 390
P ARG 40D
PAROCUY10
PAROWUZU
PARUG 430
PAROUVLUD
PARQCOUSD
ZAKQ0 U660
PARQCUYTC
PARQU 487
PARCGY9Y
2AKCO500
PARVES1G
PARCUS20
PARQuU532
PARQOS4Q
PARDOOSS5D
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C J = [(1/2)*E(SUXSATION FEOU4 T = . TO H¥-1 OF PARILS6 ()
C T PARQQO 570
C !X!{T)~XTILDA{T)) *Q*IX[T)-XTILDAIT)) + PARICSBD
C T PAR0059C
c (U(T) -UTILLA(T)) *E* {U{(T)-UTILDA (T))) + PAROUBOD
C T PAROU61G
z {L{N)-XTILDA{N)} *Q* (X(N)=~XTILDA (N)) PALOU 620
C PARUCH3D
< THE TARGET SEQUENCES (XTILDA{T)), (JTILDA(T)), T=0,1, . .N PA&0U64D
C 4UST DT SPECIFIED ALCNG WITH y AND R. PARLU653
C PARO0660
c (2) IT CALCULATES THE QUANTITIES PAROU670
c PARTIAL DERIVATIVE OF JSTAE WITH RESPECT TC SIGMA AND PAKOU680
C THt PARTIAL L[ERIVATIVE OF JSTAR WITH RESPECT TO SIGHA * PARGUHY0
c (SLGMA/JSTAR) PARQO700
C A1ZRE JSTAR 1S THE OPTIMAL CCST (OBTAINED FRO4(1)) AND PARUITI0
C SIG#A IS AN ELEMENT OF ONE OF THE COVAKLANCE KMATEICES PARJC 720
c 3IGA, SIGB5, OR SIGBA. THIS GIVES THE ABSOLUTE ANWD EELATIVE PAKOO730
C SUNSITIVIES OF THE OPTIMAL PERFGCERMANCE TO VAEIATIONS PARULT4GE
C IN THE PAHAMETEE VARIANVCES. PARQU750
C PARDGTEY
C *#%x* ¥PARAMEZTER DLSCKIPTION: PAROUTTO
C ON INPUT: PAROD 780
c WA, NS ,WNA ECW DIMENSIONS OF THE AREAYS CONTAINING A (ANDRAKOC 790
C B,C,J,R&,SIGC, DK, EKT ,EL,BKB ,BKA,BPA,BPR,U,V,W, PAKOUBOO
C V%,UV¥W), SIGB {AND SIGBA,SIGBC), AND SIGA fANDPAROUS10
C SIGAC), RESPECTIVELY, AS DECLARED IN THE PARQUS20
o CALLI NG PROGRAM DIMENSIGN STATEMENT; PAROUE30
C PAROCHLO
c NPTS NUMBER OF POINTS I0 BE PLCTTED; PAEUL 850
C PAR0O0BED
C N NUNBEE OF STATES; PAROUBT Y
C PAROOBAC
- 4 NUMBEE OF CONTLOLS; P AREOUBI0
C PARUGI00
C N = N¥M; PARCV910
C PARUGY20
C NY = N®N; PAROCY3C
C PARUGILG
C A N X N SYSTEM MATKIX; PAR009YS0
C PAECL 96
C B B X 3 INPUT MATRIX: PAROUY70
C PARDOYBG
C C N X 1 ADDITIVE NGISE VECTOR; PARUL Y90
C PARG1CUD
¢ 9 8§ X N STATE WEIGHTING MATEIX; PARO1010
C PARO1020
c iy M X B CONTROL WEIGHTING MATRIX: PARUTUIY
c PARV 1040
c SIGA NN X NN COVARIANCE MATRIX OF Aa; PAED1 S
C ZAR0 1060
c SIGD NM X NM COVARIANCE MATRIX OF B; PAR01070
C . PAEQ1080
c S1G34 N X NN CKOSS COVARIANCE MATRIX OF A PAROTU90
C AND B; PAEKVU1100




FILE:

NOCAOOOaNOOnNeNNNaNAa0 o 0aNEClONNAGaNANo00NGaNENGoaOAGOo 0N 00

P AL

SLeL

w
P
G
s
i

wi
-
[y
s
(]

XT

nJ
|

AREAY

cesT

DK

DM

be

LG

BEKA ,BPA

oKD ,0P3

-126-

CONVEKRSATIONAL

N X N COVARIANCE MATHIX OF C;
NN X N ChOSS COVARIANCE

AND C;

HATRIX QOF A

Nd X ¥ CEOSS COVARIANCE
AND C;

HATRIX OF &8

REAL VECTCE OF LENGTH W
XTILDA [NPTS) ;

CONTAINING
REAL VECTCR OF LENGTH N CCONTALNING
UTILDA[NPTS) ;

RLAL VYZCTOR OF LENGTH N
THE VALUES OF P (NPTIS);

CONTAINING

REAL SCALAEK
G (NPTS) ;

CONTAINING THE VALUE OF

INITIAL COYDITION VECTOR.
N X N ARKAY CONTAINING THE KRICCATI MATFIX;

¥ X 1 REAL VECIOR CONTAINING THE CCHZECTION
CO0¥ TRACKING TERH;
B X ¥ GAIN MATEIX;

NPTS X NN x EAL SCRATCH ARRAY USED FOR
PLOTTING;

NPTS ¥ 1 EEZAL VECTOR CONTALNING THE OPTIMAL
COST TO GO,

N X N AEKEAY CORTAINING THzZ PARTIAL DLRIVATIVE

CF EKT WITH RESPECT TO SIGHA;

REAL VECTOK OF LENGTH N CONTAINING THE
PARTLAL DERIVATIVE OF EM WITH RESPECT IO
SIGHA;

REAL VECTOR OF LENGTH N CONTAINING THE
PARTIAL DuRIVATIVE OF PT WITH RESPECT TO
SIGHA;

MONITOR SYSTZHM

PARUT11O
PAROT1120
PAKO1139
PARQ 1140
PAKU1150
PARD 1160
PARGITITO
2AR01180
PARV1199)
PAROT1200
PAEQ1219Q
PARQ1220
PARO1230
PARO1240
PARO125)
PARC1260
PAEO 1270
DARUTZ8D
PAZQ 1290
PARG1300
PARO1310
PARD1320
PARO1330
PARO1340
PARQ1359
PARO 1360
PARU1370
PARO 1380
PARJ1390
PARU1400
2AR01410
PALRQ1420Q
PARO 1430
PARUI44T
PARO 1450
PARVILGE
PARO 1470
PARGIU8Y
PARI149C
PARO1500
PARU1510
PARO1520
P ARQ133D
PARARU1540
PARG1554
PAKO 1560
PAROIS70
PARJ1580
PARLG 1590

BREAL SCALAR ZTQUAL TO THZ PARTIAL DERVIATIVE GFPARO160Q0

GT WITH FESPECT TO SIGHA;
M X N REAL SCREATCH AKRAYS,

4 X ¥4 REAL SCRATCH AREAYS;

PARO 1010
?ARO 102G
PARO 130U
PAKG164Yy
PARO 1450
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PAE FORTRAN A CONVEERSATION AL MCNITGE SYSTLM
PARO 1660
BDY, BEC,BKC REAL SCRATCH VECTGES CF LENGTH N3 2ARI167
PARO 1680
U,V, W, Ve,UVH ¥ £ N REAL SCHATCH ARRAYS; PARU169Y
PAR01700
W1, W2, A0RK EEAL SCRATCH VECTCES OF LENGTH N: PARO1710
PARD1729
IPVT INTEGER SCRATCH VECTCK OF LENGTH N. PARG 1730
PAKOT1 740
*%xx %21 STORY & PARO 1750
WEKITTEN BY J.A.K. CAKRIG, PARD176 "
(LAB. TOX IWF., AND DEC. 5YS.,{L.I1.D.S), ¥.I.T., M. 35-427, PARD 1774
CAMBRIDGE, WA 02139, Pil.: {617) - 253-7263), PARU178¢(
JANUARY 1979. PARG 1790
MOST EECENT VERSION: JANUARY 11, 1979. PARO180¢
PARO 1810
------------------------------------------------------------------ PARC1824
PARO 18390
CCMAON/INOU/KIN, KOUT PARO 1840
PARQ1859
DATA IBLANK/TH / PARD 1860
PARQ1870
DATA IN(1),IN(2),IN(3),IN(4)/181,1H2,1H3,1H4, PAR0 158D
DATA 1N{5),IN[6),IN7),IN[8),IN[9)/1H5, 16, 167, 148, 1HI/ PARD 1894
PARQ 1900
DATA ITOP!1,1),1ITOP !{2,1),ITCP [4,1),ITOP {5, 1),ITOP6,1), PARG191C
+IT0P (7,1) ,1TCE (8,1} ,ITOR(9,1},ITOP {10,1),TTOP {11,1) ,ITCGP (12, 1),  PARD1920
+IT0P (13,1),ITOP {14,1) ,ITOP {15,1),ITCP!16,1) ,1TORP{17, 1), PAR0193C
+«ITOP {(V8,1) ,I1TCP (19,1} ,ITOP{20,1),ITOP (21, 1), ITOP {22, 1), ITGP {23, 1) PAKO1940
#/14 , 18K, 16 , 14V, VHE, 1HK, 184S, 14O, 1HS, 14 , 14T, 14L, 1HN, 1HE, PAR01950
+1H ,1H 16 ,1H ,1h ,1H ,1H ,1H / PAK01960
' PAKO 1970
DATA ITOP{1,2),ITOP{2,2),ITCP{3,2),1T0P{4,2),ITOP(5,2),ITCF (6,2}, PARO198U
+ITOP(7,2) ,ITOP(8,2) ,I1T0P(10,2),ITCP (11,2),ITOP (12,2}, BAR01990
+ITOP [13,2) ,ITCP {14,2) ,L TOP (15,2} ,ITCP (16,2) ,I1TOP {17,2) ,1TOP {18,2) ,P AROZ U0y
+I702(19,2) ,1TCP(20,2) ,ITOP (21,2} ,ITOP (22,1) ,ITOP (23, 1) PAR02010
+/14 ,165,14T,1Ha , 16T, 1HE, ' , 16X, 14 , WV, 14E, 18R, 145, 1HU, 14S,1H , PARO2G2(
+1HT ,1BI 184, 1HE, 1,14 / PARD 203D
PARO2ULE

DATA ITOP®{1,3),lTUP{2,3},ITCP(3,3),ITCP (4, 3),ITOP {(5,3),ITOP {6,3), PARJZ(50
+1ToP({7,3),LTOP (8,3),ITOP 9,3),ITOP {10,3),ITCP(12,3),ITOP{13,3), PAKO2060
+IT02 {14,3) ,ITCP(15,3) ,1T0P[16,3),ITOP{17,3) ,I1TOP {13,3) , ITOP {19,3) ,PARQ2 Q70

+ITOP(20,3),1TOP (21, 3) ,ITOP (22,3) ,LT0P (23,3) PARO2080
+/1d ,1HC,140,1HN,1HT, 14R, 1HG, 1L, 1H , 1HU, 1H , HV, 1HE, 14R, 1S, 1HU, PAK0209¢
+14$, 1 , V4T, 1HI, 14X, 1HE / PARQ2100

PARGZ110

DATA ITOP!1,4),IT0P (2,4),I1TCP (3,4),ITOP (4,4) ,IT0F (5,4),ITOP (7,4}, PAR0OZ2120
+I1T0P 8,4),ITOP [9,4) ,ITOP (10,4) ,ITOP {11,4) ,ITCP{12,4),ITOP/13,4), PAaRIZ130
+ITCP {164,4%),I1TOR (15,4) ,ITCP{16,4),ITCP (17,4} ,ITOP {18,4) , ITGRP {19 ,4) ,PARO2 140

+IT0OP (20 ,4) ,ITOP [21,4) ,ITOP (22,4} ,ITCP!23,4) PARUZ15C
+/1H ,1HG, THA ,1HI ,THN,1H , 1HV, 1HE, 1HER, 1HS, 140, 14S, 1H , 14T, PARVZ160
+ JHI, 148,142, 1 , 18 ,1H ,1H ,1H / PARQZ2170
PARVU2180

DATA ITOP(1,5),1TOP(2,5),ITOP(4,5),1ITOP (5,5} ¢1ITOP (6,5)., PARQZ2190

+Itop [7,5),ITCF 8,5),iT0P{9,5),1TOP(14,5) ,ITOP/11,5),1TOP {12,5), PARD22U{
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+1IGp {13,5),17C2 (¥4,5) ,IlT0P{15,5),1I10P (16,5} ,ITCP (17,5),ITGP [18,5) ,2AR02210

+1T0P(19,5 ,1ITOP (20,5) ,ITCP {21,5),ITCP{22,5),1TOP{23,5) PARGZ222C8
+/1d VM, 1d L4V V35, 1HR, 1HS, 14U, 1HS, 10, 1UT, THI, 14, THE, 14 , PATUL230
+1i L0 LH L 1H ,MH L, YH L1h s 24302240

PARQ225%

DATA ITOP(1,6),1TCP(2,6),ITOP{3,6),ITCP (4,6),1TOP (5,6),ITOR(6,56), 2AK02260
+ITo® (7,0),1TCP 8,06) ,iTOP!9,€),1T02{1),6),I1TOP11,6),IC0P (12,6}, PARJ2273
+ITC2(13,0) ,1TGE (14,6} ,1TOP (15,0),I7T0P (16,6) ,1T0P (17,6) ,ITCR (18,6) ,PAR02280

+ITO? (19,0) ,ITOP {20,6) ,iTOP {21,6),ITOP{22,6),1TOP (23,6) PARG229¢
+/1i JHC,140,1ES,1HT,1d ,1HV,1HE, YHE, 1US, 140,165, 1H , 1HT, 1HI, PARV2300
+ 14, HE , V3 ,1d ,1H 1H ,1H ,1H / PARUGZ31D
PARQZ2320

%¥s5C=1 - PAKO2330
MAXES=C PARQZ34V
I{Y=0 PAR0C2350
IzZGY=1 PARUZ36(
ZERO=(. QLY PAR0 23760
XMIN=1,9B9 FARQZ3890
NGR IDH=S5 PAR(Z390
M¥=1 PARQZ400
NiG=0 PARQ2414
DO 1¢ I=1,14 PARQZ420
YSF {I)=1.0C0 PARLZ43%
CCONTINUEZ PAEQ2440
DO 20 I=24,4Q PAROZ450
ITOP {I,1)=1IBLANK PARQZUu60
ITGP (I, 2) sIBLANK PARQ24790
IToP {I,3)=IBLANK : PARV2489
ITOP {I,4)=IBLANK PARDOZ249(Q
1ToP (I,5)=IBLANK PARUGZS0G
ITOP {I,6)=IBLANK PAKJZ510
CONTINUZ 2A502520
IT=NPTS 2ALEG32530
{MAX=DFLOQAT(IT) PARD2540
CALL Savs [Na,¥A,N,N,Q,EKT) PARO0Z 550
CALL MMUL{NA,N, N, MM, U, N, ,XT,PT) PAEUG 2560
CALL MSCAL& {N,N,¥4M,-1.5D0,PT) PARJ257%
CALL NQT (NA,N,N,N,HM,Q,XT,W1,WO0RK) Par02580
CGT=%1{1}/2.0D0D PARROZ2594
DO 3C L=1,N PARQZ600
DG 39 K=1,N PARQZ610
INDEX =K+ [L-1) *N PAR(D26290

ARRAY (IT,INDEX)=Q (K, L) PARU2630

CONT INUZE PAR Q2040
INDEX=IT*N PAROZ65)
PTSAVE [INDEX=-1)=PT {1) PARUZEGES
PISAVE([INDEX)=PT(2) PARO0Z679Q
GTSAVE [LIT)=GT PARUZBEG
ITH1=IT-1 PAEOZe%0
DG 220 IL=1,ITH1 PARIZT700
iT1=1T-1IL PAEJZ 710
CALL TRNATE(NA,NA,N,4,B,U) PARDZ2720
CALL MMUL {NA,N,N,MM, M, N, U, PT,d 1) PARQZT3D
CALL MAUL (WA,M,NA,4M,M,M,E,UT,V) PARDZ2740

CALL MSUD [N, NA N, ,MU,d1,V,a1) 2 ARUZ TSN
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CALL M4UL {NA,NA,NA,N,M,¥,U, KT, ®)
CALL 4dUL !NA,NA,NA,%,4,N,d,D0,BKE)
CALL MHMJLINA,NA,NA,N,¥,N,w,A, BKA)
CALL A4UL(NA,NA,N,H41,4,N,4,C,BEKC)

CALCULATE A(T),L{T)

DC 60 K=1,1
K= 1+ (K= 1) *N
CALL MMUL{(NA,NS,NA, N,N,N,kKT,SIGBC/KK, 1), W
CALL TRACE(NA,N,¥,TR)
BEKC /K)=BKC [K) +k 1/K) +TE
DO 40 L=1,4
LL=1+ {1-1) *X
CALL MMUL {NA,NS,NA,N,N,N,EKT,SIGB {KK,LL) ,W)
C4LL TRACE (NA,N,4,TR)
BKB (K,L) =-E (K,L) -BKB(K,L) -TR
CONTINUZ
BC 50 L=1,K
LL= 1+ (L=1) *y
CALL HMUL{NA,NS, NA,N, N, N,ZKT,SIGBA'KK,LL), )
CALL TEACE(NA, N, W, TE)
3Ka (K,L) =BKa (K,L1) +TE
CCNTINUE
CONTINUL
CALL SAVE/NA,NA,N,M,BKB, W)
CALL SAVE [N,H,4,dM1,BKC,EMN)
CALL LIWug(NA,d,%,EM,COND,IPVT, WOEK)
CALL SAVc(NA,NA,nh, M, BKB,K)
CALL SAVEI [NA,NA,M, N,BKA,LEL) :
CALL MLINE{{NA,NA,M,N,W,EL,COND,IPVT,WCEK)

SAVe LT ANI MT

LG 74 J=1,4
I1=2% [ITM1-IL)+J
LTSAVE(I1,1)=EL{J, 1)
LISAVE(I1,2)=EL(J,2)

CCUT {NUE

DO 8. L=1,K
DO 80 K=1,H4
INDEX=K+ [L-1) *M
LAERAY {IT1,INDEX)=EL{K,L)
CONTINUE

12=2% (ITH1-1IL)
ATSAVE (12+1)=Ea!1)
ATSAVE(1242) = EA(2)

CC S0 K=1,¥
M ARRAY [IT1,K)=LM LK)
CONT INUE

CALCULATE LK, DM, DG, DP, COST SENSITIVITY

MONITOK SYSTzZH

PAKQO276Q
PARQ2774
PAKQZ780
BARUZ2790
PARV2800
PARQ2810
PARLZ823
PAROZ830
PARZB4 G
PAROZB50
PAR0Z2860
PAEU2870
PARDZ880
PARUZ E90
PAROZ2900Q
PARD2910
PAROZ920
PARDGZ2930
PARQ2940Q
PARD2950
PARUZ 960
PAROZ2970
PARD2980
PARQZ2990
PARU3QGO
PARO301Q
PARU3Y2L
PARO3030
PARD 3040
PARO3US0
PARJ 30860
PARO3IUTY
PAKQ 3080
PARU3 Y9G
PARQO3100
PARJ3I110
PARO3 120
PARQ 3130
PARQO3 140
PABR03150
PARU3 6
PARO3170
SARVIBL
PARG3190
PARQ3200
PARC3210
PARD3 220
PARD3I230
PARUVU3 240
P ARU3I 250
PARO 3260
PARG3IZ2T7}
PARQ 3280
PAED3290
2AR03300
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POTLAN A CCNVERSATION AL HONITOE SYSTEM
PARQO3310
19 ICGUNT=1,3 PAO3328
IND1=-1 PARG 3330
IWD2=N#IL+1+ [ICOUNT~1)*12 PARC3340
IND3I=D PARO 3350
INDU=TL+ 1+ (ICOUNT=-1)*8 PARD3360
DO 182 I=1,8N PARO3370
J=1 PAR03380
IND1=IND1+4d PARG3 390
INC3=IHD3+1 PARO3400
oo 1y I1=1,2 PARC3415
INDEX=IND2-H+I1-1 PAEQ3420
DP {I1)=DPSAVE'INDEX,IND3) PARD3430Q
C¥(I1)=DASAVE (INDaX,IND3) PARO34490
Do 103 J1=1,2 PARD 3450
JNDEX=IND1+J1-1 PAERO3 460
DK (I1,J1)=DKSAVZ {INDEX,JNDEX) PARQ 3470
CONTIUUE PAR{O3489
DG=LGSAVE(INC4-1,IND3) PARO3490
CALL THENATB (NA,NA,N,%,B,U0) PARGISOU
CALL XMUL (NA,NA,NA,N,M,N,U,DK, W) PARQ3I51Q
CALL MMUL ‘NA,NA,NA,N,d,N,%,A,BP4) PARJI3IS2G
CALL MMULI/NA,NA,NA,M,4,N,%,B,BPB) PAE03530
CALL #MULINA,NA,NA, M¥,H,4,W,C,BPC) PAREU3540
CALL MMUOL({NA,N,N, MM, 4,N,U,DP, BDP) PARO3550
IZ=1+(I~1) /N PARD 3560
IS=1+ (J-1) /N PARO03570
IU=1+M0D(I~-1,N) PARO3580
IV=1+4CD J-1,N) PARQ35990
PARO 3600
CALCULATZ DK PARJ361¢
PAEV 3020
DO 110 K=1,HM 2AE03639
LG 113 L=1,N PARU3OLY
KK=1+(K-1) *X PAR03 650
LL=1+ /L~ 1 *N PARU3660
CALL MHUUL(NA,NA,NA,N,N,¥,DK,SIGBA (KK,LL) ,#) PaAR03670
CALL TEACE !'NA,N,W,TE) PARJ368L
BPA (K,L)=BPA (K,L)+Tk PAR0 3690
CONTINUL P ARU3 TGN
DO 120 K=1,4 PARO 3710
DO 120 L=1,4 PARO3720
KK=1+#{R-1} *N PARQ3 730
LL=1+{L-1) *N PARO3T4D
CALL MMUL{NA,NA,NA,N,N,N,DK, SIGB (KK,LL) , ¥) PARO3 750
CALL TRACE(NA,N,W,Tk) PARQ3760
BPB 'K,L)=BPB [K,L)*TE PARQ3IT7L
CONTIINUE PARO 3780
IF {ICOUNT.EQ.2) BPA!IR,IS)=BPAYIR,1S) +EKT!IV,IU) PARW3 790
CALL TEHENATB INA,NA,NM,N, BPA, ¥) PARO3800
CALL MMUL !N&a,NA,NA,N,N,4,W,EL, V¥) PARO3H 10
PARD3820
CALL SAVE(NA,NA,M,N,BPA,UVH) PARY 33 30
CALL SAVE [NA,NA,M,M,BKB,W) PARJ3 349
CALL MLINEy(NA,MNA,H,H,%,UVW,COND,LIPVT,WORK) PARQ3H50
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TENATB/NA,NA, M, N,BKA,W)
AMUL {NA,NA,NAN,H,4, W, UVK, V)
SADD INA,NA,N&, 4,4,V ,VE, VW)

SAVL(NA,NA,H, N,BXA,H)
SAVE [NA,NA, ¥, ¥, DKB, UV¥)
MLINEZQ(NA,NA,4,N, UVW,w,COND,IPVT,wORK)

IF {ICCUNT.EQ.3) BPB(IR,IS5)=BPB(ILR,IS) +EKT(IV,IU)

CALL
CALL
CALL
Call
CALL
CALL

CALL
CALL
CALL
CaAaLL

MMUL {NA,NA,NA,N,M,M,BPB,W,UVH)
SAVE 'NA,NA,%,M,BKB,¥)
MLINLQ(NA,NA,M,N,d,UVW, COND, IPVT, KORK)
TENATBING,NA,¥,N,BKA,¥)

MAUL (A, NA, NA N, f,M, 4, UVW, V)
MADD(NA,NA,NA M, N, VW ,V,V¥)

TRNATB (N&,NA,N,N,A,V)
MMUL {NA ,NA,NA ,N,d,N,DK,A, UVN)
HMUL (NA,NA, NA N, N,N,V,UVW,W)
MADD NA ,NA,NA,N,N,¥W,VW,UVH)

DU 130 K=1,4
DO 130 L=1,N

KK=1+[K~1) %N

LL=1+4({L-1) *N

CALL MMUL{NA,NA,NA,N,N,N,DK, SIGA (KK,LL) , %)
CALL TRACE(NA,N,W,TEK)

OVH [K,L) =UVW (K,L)+TEk

CONTINUE
iF [ICOUNT.EQ.1) UVW (IR,IS)=UVW !IR,I5) +EKT!IV,I0)

CALCULAT Y DM

D3 140 K=1,H
KK=1+ fK=1) %X
CALL MMUL (NA, NS,NA,N,N,N,DK,SIGBC {KK,1) ,W)
CALL TRACE(NA,N,&, TH)
BFC (K) =B82C {K) +BDP (K) +TF
CONTLiNUE

CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL

SAVE !NA,NA,N,N,BKB,H)
SAVE(N,M,N, 1, BPC, DM
LINED (NA,H,#,DM,COND,IPVT,WORK)

SAVE(N,N,N,¥M,BKC,¥1)

SAVE {NA,NA, N, N,BKB, W)
LINEG(NA, M, d, W1, COND,IPVT ,WORK)
YMUL {NA ,N,N,MM,N,N,BPB,%1,W2)
SAVE(NA,NA,N,N,BKB,«)

LINZ) [NA,N,W,%2,COND,I2VT,WOEK)
HADD{N,N,N, N, 44, DM, w2, D}

CALCULATE DG

CALL
CALL
CALL

MMUL[M¥A,NA, NA,N, N, N, DK, SIGC, ¥)
TRACE (N4, N, W, Ti)
TRNATE [NA, 44, N,84,C,%3)

CONVERSATIONAL MONITOR SYSTEM

PARU3 864
PARO 3870
PARG3IB80
PARQ3 890
PARO3900
PARD03I910
PARO 3920
PARV3 Y30
PARDO394G
2 AEJ3955
PARU 3980
PARQ397¢C
PARQ3 980
PARD3990
PARCY OO0
PARQ4Q10
PARQLU2T
PARQGLO30
PARCIH QY
PARQOLOS0
PARQB OG0
BARKCQU Q70
PAROUO8BY
PARO49090
PARO4 100
PARG4110
PAROW 120
PARQU 13
PARGY 140
P ARy 154G
PAROY4 160
PARJG 170
PARU4180
PAZOL 190
PAROL4200
PARG4 210
PARVUY 22
PARQU 230
PARQU 245
PAEQ4 250
PARO4 260
PARQU270
PAROL4280
PARJUZ9Q
PAROU3Q0
PARJU3TG
PARQO4320
PAECU 330G
PAROU34¢
PARUS 35¢Q
PARQU3EQ
PAROU3TC
PARU& 38O
PARI 43590
PARUU YO
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FORTE AN A& CONVERSATIONAL HONITOHRK SYSTEM

CALL MMOL [4A,¥A,N,M4,N,N,DK,C, W 1)
CALL MHMUL(¥M,N,NA, MM, M, N,W3,%1,W)
CALL MMUL{iM,N,NA, MM, 44,N,%3,DP, V)

JG=DG+ [TE+4 (1, N} /2.3DD + V1, 1)

CaLl TRYATB (§,44,N,u4,BPC,W3)
CALL HMUL({¥4,4,NA,Mi,HM,N,W3 ,EH,W)

CALL THNATB{N,uM,N,%MH, BKC, W3)
CALL MMUL /44 ,¥,N,dM,MM,N,W3,DH,V)

DG=DG+ (W (1, 1) +V(1,1})/2.050
CALCULATE DP

CALL THKNATB(NA,NA,N,N,A,¥)

CALL MMUL {NA,NA,N,MM,N,N,CK,C,W1)
CALL MADDI(N,N,N¥,N,HM,%1,DP,W1)
CALL MMUL /NA,N,N,MM, N, N,N ,¥1,42)

DO 150 K=1,N
KK=1+ (K- 1) #N

CALL MHUL (NA,NNA,HA,N,N,N,DK,SIGAC (KK,1) ,W)

CALL THACE {NA ,N,W,TE)
DP(K) =W2 (K} +TR
CONTINUZ

CALL TENATB!NA,NA,N,N,BPA,W)
CALL MAUL{NA,d, N, M, N, N, u,EM, % 1)
CALL #4ADD(N,N,N,N,MH, DP,%1,DP)
CALL TEWATB!NA,NA,N,N,BKA, W)
CALL AMUL (NA,N,N,MM,9,N,W,04,¥1)
CALL 4ADDIN,N,N,N,MM,DP,W1,DF)
IF/IL.NEL.ITMY GO TO 160
CALCULATS COST SENSITIVITY

CALL TRERNATB{N, 1,N, 1,XZ2EE0, W3)

CALL AMUL (NA,N,N,MM,N,N,UVW,XZERO,HORK)
CALL MMUL'1,N,NA,MM,MM,N,W3, wOEK, W)

CALL TRNATB/N,N¥,N,HM,DP,W 3)

CALL MMUL {N,N,N,M4,MU,N,W3,XZERC, V)

CSTSEN=W [1,1) /2,000 + V{1,1) + DG
WiITE(KOUT,900) CSTSEN

IF [{ICCUNT.EC. 1.AND.I.EQed) KL=KL+1
IF (ICOUNT. Q.3 .AND.I.EQ.J) KL=KL+1

IF ([ICOUNT.E£Q.1.AND.I.25Q.Jd) RLELSEN(RL)=C5TSEN*SIGA(I,Jd)
IF(ICOUNT.EQ.3 .AND.IL.EQ.J) RELSEN (KL})=CSTSEN*3IGB (I,J)

CONTINUE

PARO4U10
PAEQUL20
PARJIL430
PARO4U4L4G
BARJUL50
PARO 4L UB0
PARLGUYTY
PARO4U48Q
PARGL LI
PARQU4S00
PARO4510
PARJ4 520
PARO 4530
PARU4540
PARQUS50
PARUG 561
PAROU4STO
PAEQUS58D
PAEQ4590
PARGU4B00
PARQ4610
PAR(LE20
2ARQU630
2ARQ 4640
P ARJL4 650
2ABRO 4660
PARVUETY
PARO U680
PARQ469Q
PAROU 700
PAERQ47T710
PARQL4 720
PARO47 30
PARGY4T74D
PARO 4750
PARIJU4TB G
PARQL4TZO
PAROW 780
2AEO4 799
PARD 480U
PAEQ4 8190
PAEQ U320
PARJUBIL
PARQOL4AY0
PARCUBS0
2AROUBBY
2ARQ4870
2AR0488C
PAKJO4890
2ARKQ4900
PARJ49 10
PARGGOZ2C
PARO49390
PARQu 9472
PARGUYSO
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FOGTHAN A

34VE DK, DP, OHM, DG

Do 175 ID=1,2
INDEX=IND2+ID-1
DPSAVE /INDLX,INL3) =DP [ID)
DMSAVE[INDEX, IND3) =DM {ID)
L0 173 JD=1,2
JNDEX=IHD1+JD-1
DK3AVE (INDEX, JNDEX)=UVW (ID,JD)
CUNTINDE
DGSAVE(IND4,INLC3)=0DG

CCONTINUE
CONTINUE

CALCULATE G({T), OVERWEITING G(T+1)

SC=.9870543209876544 0
CALL MSCALE (N,N,N8,S5C,XLT)

CALL TRNATEBIN,NA,H ,MM,BKC,V)
CALL MAUL [NA,H,N,MM,d8,%,V,54,%2)
CALL AMUL [NA,NA,NAi,N,N,N,EKT,SL1GC, ¥
CALL TERACE {NA,N,#,TR)

CALL TRNATB(NA,NA,N, M4,C,W)

CALL ANOL{NA,NA,NA,N,MM,N,W,EKT,V)
CALL H4UL (NA,NA, N, MM, Md,N,V,C,H1)
CALL #AUL {NA,N,NA, A4, MM, N,¥,PT,V)
GL=GT+V(1,1) +(W1(1}+W2 (1) +TR) /2.0D0
CALL AuF [NA,N,i,N,H08,0,XT,H 1,WCRK)
CALL “yF (NA,M,d,M,H44,E,UT,%2, HOEK)
GT=GT+ (A171)+W2 11} )/ 2. 00O

GISAVE(IT1)=GT
CALCULATE P(T), OVERWGITING P (I+1)

CALL TENATS [NA,NA,N,N,A,¥)
CALL MZUL !NA,NA,NA,N,N,N,EKT,C,V)
CALL MADDINA,N,NA, N, MH,V,PT, V)
CALL MHMUL (NA,NA,N,H44,N,N,u,V,H1)
CALL THENATB {NA,NA,M, N, BKA,W)
CALL #MUL (NA, M, WA, 4M,N,M, 4, 284, V)
CaLL MalUL ‘NA,N,N,H84,N,N,Q,XT,%2)
CALL A4SUB (NA,N,N,N,dM, V, W2, 42)
DC 200 K=1,N

KK=1+!K-1) *N

CALL MMUL 'NA,NNA,NA,N,N,N,EKT,SIGAC (KK, 1) ,W)

CaLlL TRACE(NA,N,%, TR
PT(K)=W1(K)+W2(K) +TR
CUNT INUE

CONVERESATICNAL MONITOER

5

I5TEN

PLROUYBT
PAR 04970
PARQ 498U
PARGU4 99D
PAEQ5Q000
PARO5010
PARQ5020
PAR050G30
PARO5040
PARDS5050
PARGLSJ6U
PARQSO70
P ARUSGEE
2AR05090
PARGS5104
PAEG5110
PAR05120
PARV5130
PAROS 140
PARUS 150
PAEOS 160
PAROS 170
PAROS5 180
PAEQ5190
PAROUS5200
PaR05210
PARQS5220
£AK05230
PARDS5243
PAROS250
PARJ5269
PALZOD270
PAROS 28
BARQ5290
PAEQS302
PARO5310
PAE(GS5320
P AEU5 3372
PALROS 340
P AR95 354
SAHOS360
PAEO5 370
PARDS5 380
PAEDS390
PAROS40Q
PAEUS 410
PAGJOUZU
PARUS5430
PARUS G4
PAROS5450
PARUS45Q
PAKOS479
PARGSUBO
PARQS490
PARG5500
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FILg: PAE FORTRAN A CONVERSATION AL MONIIOR SYSTEXM
C SAVD PT PAEKOS51Q
c PARQ5520
Iug={IT~-LL)*H PARO5530
PTSaVIII4-1)=pPT( 1) PAROS5540
PTSAVE{Iu4)=PT(2) P2AR05550
c P ARUS56 2
o CALUJLATE X!T), OVEEWEITING K{T+1) PAR0O5370
o PARUSS580
CALL TENATB (NA,NA,H,N,BKA,HW) PAROS5590
CALL AMUL (NA,NA,NA,N,N,4,W,EL,U} PAROS5600
CALL HoF !NA,NA,MNA,N, N,EKT,A,%,V) PARJS5610
CALL dADD(NA,NA,NA,N N,U,4%,U) PARG5620
¢ 215 L=1,N PARKQO5630
LO 213 K=1,N PAROSH540
KX=1+ K- 1) #N P AR U565
Lu=1¢/L-1) *N PARUS660
CALL MMUL /NA,NNA,NA,N,N,N,EKT,SIGA!KK,LL),V) PARJS670
CALL TRACEI{NA,N,7,TEK) PARJ5080
W{K,L)=Q(X,L)+U(K,L) +TR PARUS6S%0
INDEX=K+ [L-1) %} PARO5 700
ARDAY(ITV,INCEX)=H (K, L) PARJIS710
212 CONTINUE PAERUST2C
CALL SAVE{NA,NA,N,N, W,EKT) PARQS730
220 CONTINUZ PARDS T4
C PAROS7S50
C PLOT K PAROS5760
C PAR1JSTTH
DO 230 I=1,N PAROS?80
DG 230 J=1,40 PAROS 790
INDuX=J+{I-1) *N PARO54300
IP(INDEX.LE.?) ITOP (3,1)=IN(INDEX) PARUS58 10
iF (INDEX.GT.9) ITCP![3,1)=iBLANK PAROS532¢Q
HSYA( 1) =11 PAE(QS830
CALL THPLT /NPTS ,IESY,AERAY(1,INDEX) ,NPTS,ITOP,NSYit, XMIN, PARUSBUY
+ IMAX JYMIN,  YMAX ,YSF ,NGR IDH,ULG ,NSCALE ,MAXES , ILY) 2AROS585¢
23) CONTINUZ PARCSB6G
C PARQS870
C CALCULATE STATL XS PARGS880
c PARQS 390
XSAVE(1, N=XZER0(1) PARD5900
{SAVE {1,2)=XZERC[2) PAROS91¢
[ PAROSY20
X5{1)=XZERC 1) PARGS593(
XS [(2)Y=XZERD {2} PARO5940
DG 250 I=1,ITH1 PARJI595C
DO 240 3=1,H PARQS960
INDEX=2¥ [-2+47 EARDS9TO
LT5 {J,1)=LT5AVLE [INDEX, 1) PARO5980
LT5{(J,2)=LTSAVE{INDEX,2) PARUS5590
240 CONTINUE PARUG VLT
CALL MAUL (YA ,N,M, MM, 4, N,LTS, X5,X517) PAEOB010
I1I=1I+1 PARQB D2V
MTS {1)=UTSAVE({II-1) PAROG6U30
WT5(2) =8T5AVE [11) PARQGOU4S
CALL MADT {M,4,d,M,HN,X51,MTS,X51) PARJ6050
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FILz: PAn TORTRAN A CONVEERSATICHN AL MONITOE S5YSTud

USAVE(I, 1)=XS1{1)
USAVE [1,2)=X512)
CALL 44UL [BA,¥,d,4d,N,M,B,%51, X52)
CALL dALD IN,N,8,N,M4,882,C,4X52)
CALL HMUL INA,N,,dH, N, H,A,XS,X51)
CALL MADD(N,N,N,N,M%,Z51,%52,X5)
XSAVE (I+1,1)=X511)
XSAVLE(I+1,2)=X5{2)

25L CONTINUE

PL)T STATo TRAJZCTORY

1010

DO 269 J=1,N
NSYH 1) =24
IF(J.LZ.3) ITOP(9,2)=IN(J)
IF (J,5T.9) ITOP!9Y,2) =LBLANK
CALL TUPLI(®PTS,IEGY,XSAVL{1,J) NPTS ,ITOP (1,2) ,NSY4,XMIN, XNAX,
+ YMIN,¥MAX,YSF,NGRIDH ,NLG,MSCALE, 4 AXES,IXY)
260 CONTINUE

PLOT CONTROL TEAJEZCTIOERY

o RPN

XM=DFLOAT 11T41)

oG 270 J=1,N
NSYH 11)=21
IF{J.LE.9) ITO2(11,3)=1IN(J)
IF [J.GT.9) ITOP '11,3)=IBLANK
CALL THPLT(ITM1,IEGY,USAVE(1,J),ITN1,ITOP (1,3),NSYN,X0IN,LH,

+ YMIN,YSAX,YSF,NGRIDH,NLG, MSCALE,%AXES, IXY)
270 CGNTIMNUZ

PLOT GALNS

Gl

DU 284 I=1,H
DC 280 J=1,H4
NSYM (1)=12
IUDEK =J+ (I-1) *d
IF 'INDZX.LE.Y) ITCP !6,8)=IN/INDEX)
LF/INDEX.GT.9) ITGP{6,4}=IBLANK
CALL THPLT (IT#1,IEGY, LARKAY {1,INDEX),ITH1,ITOP(1,4),NS1A,
+ XKMIN,XH, YHIN,YMAX,YSF, NGRIDH,NLG,MSCALE ,MAXES,
+ I1Y)
28C CONTINUE

PLOT COERECTION TEEREH #[T)

O 0

DG 290 J=1,H
NSYd (1) =13
IF(J.LZ.9) ITOP (3,5)=IN(J)
IF {J.6T.9) ITOP!3,5) =IBLANK
CALL THPLT(ITM1,IEGY,i#iARRAY {1,J),IT1,ITOP (1,5), NSYM,AMLN,XH,
+ YMIN,YMAX ,YSF,NGLRIDH ,NLG,MSCALE,MAXES,IXY)
290 CONTINUE
C
C CALCULATES COST

PAERCG60OBE
PAELBUTO
PARO608C
PARUGE J9Y
PAROG 100
PARDE 110
PARUS120
PAR06 130
¢ ARJ6140
PARQS6 150
PaARGE 160
PAZO6 170
PARDB 180
PAE0O6190
PAROG200
2AR06210
PAROG 220
PARJO6234
PAEQG240
2 ARG 250
PAKVOG260
PARUB27C
PAz062840
PARDG 290
PARQ6300
PARDE310
PARDE32Y
PAKQ6330
PARJ6 340
PARUbL 350
PARDG6 36y
PARO6374
PAN06 360
2AR063990
PARQB 40O
PARZH 4T
PAzDoU20
PAEQOBU ST
PAROGUULO
PAROGUSD
PAKOOLUGD
PAERO6 470
PAEDd 64380
PARD O LSO
PARCGEDHIC
PAEQBES10
PARGDES20
PAEQE5390
PAROB540
PAEUGE55U
2AkUE ST
?ARUBST
PAEQO5H0
PARD&590
PAHQE60D



