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ABSTRACT

Normal Kleene recursion is considered in the general

setting of a universe of sets, a formulation due to

Normann and Moschovakis. In Chapter 0 Kleene's original

definitions are reviewed and reformulated as an iteration

of first order definability relative to a predicate. The

theory of the Kr-function for the normal Kleene theory is

reviewed.

Chapter 1 defines IE-recursion and recasts it in

terms of hierarchies and constructibility. The Moschovakis

Phenomenon is defined and the Kr-theory developed on

initial segments of L.

In Chapter 2, using the parameters n and p first

defined by G. Sacks, we prove

Theorem. p RE-regular -> a minimal pairs of E-RE

degrees.
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In Chapter 3, working in

E-closed L(K), we prove

:E(A)-recursion on

Theorem: A, B C K, RE with A C1  B, but B E A,

A A A
then p = p and p A E(A)-RE regular--> a C CK RE

with A <E C< B. In particular, this shows that the

E -RE degrees are dense, if the assumptions of the

theorem are satisfied for every incomplete RE A.

Chapter 4 reviews absolute notion of degree for non-

L-like E-closed sets and indicates changes necessary in

Chapters 2 and 3 to prove the analogous results for these

RE degrees.

The Appendix contains the proofs of two selection

theorems used in the proofs of Chapters 2 and 3.

Thesis Supervisor: Gerald E. Sacks

Title: Professor of Mathematics
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Chapter 0: Recursion in Higher Types

0. Normal Kleene Recursion

In preparation for our study of recursion in a universe

of sets, we return to the original definition of Kleene

[1959]. The partial recursive functions for recursion in a

normal object of finite type are generated by induction via

a list of nine schemata.

Notation:

a number variable

(X function variable of type (1)

q natural number

$,X functions of indicated variables

the function being defined.

For the reader's convenience Kleene's schemata are given

below with their "indices" and intended meaning on the

right.

Definition 0.0.0:

Sl $(a,b) = a' = a+l <l,<n0,...

S2 $(b) =q

Ur

(successor function)

<2,<n0'...,nrti

(constant function)
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S3 $(a,b) = a <(3j<n0.n

(projection)

S4 $(b) = $(X(b),b)

$ (O,b) = $ (b)

55

$(ab)= X(a,$P(a,b),b)

S6 $ (a) = $ (a1 )

S7 $(a.,a,b) = a(a)

8 = i (jj-2-2, )SB~(a cp~t ,)f(ae. xFc

<4,<n0...,n >g,h>

(composition)

<5, <n 0'f'00.,n r>,gh>

(primitive recursion)

<6,<n 0'.. .,nr>,j,k,g>

(permutation of

arguments)

<7,<n0 ... ,nr

(application)

< ,<n0' 'ntrp >j ,h>

(application of

type (j))

Kleene adds a scheme S9 in section 3.7 of Kleene [1959]

which we shall consider in a moment.

Let F be a type (2) variable. In computing $(F)

we allow ourselves to ask, at any step in computing, F(S)
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if a procedure for computing 5(y) for any y has

arisen.

Remark: (i) $(F) is computed via a preassigned procedure;

(ii) The only "non-mechanical" step is S -> F(5).

Here Kleene departs from classical recursion theory

(CRT) in that the oracle for F(S) (using computations of

S(y) for y E w) will not, in general, be a finite object.

Returning to Kleene's schemata we note that we need,

in giving an adequate definition of computability, elemen-

tary operations (primitive recursive functions) as well as

the ability to "reflect" upon computation procedures

(already set up) as objects. This is to say, we need a

mechanism by which we are allowed to treat procedures al-

ready defined as parts of new computing procedures.

Remark: (i) This added feature of reflection will insure

that there is no means of deciding in general whether a

computation procedure terminates.

(ii) To make precise this notion of reflection,

Kleene assigns numbers or indices (as above) to the recur-

sive functions (used as G6del numbers) following the con-

ventions: For a primitive recursive function (a),

(a) r = maximum type of a;

(b) n0 '... ,nr are the numbers of variables

of each type;
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(c) for S4, S5, S6 g and h are the

indices already determined for $ and

X by descriptions of them as part of

the description of $.

Finally, Kleene adds the scheme,

59 $(a,b,c) {a}(b) <9,<n0,...,n r

<m0'...,m>

(reflection),

where s = max type of b; m 0, ... ,ms the numbers of

variables in b of types 0,...,s respectively.

To obtain the partial recursive functions, use

schemata 51-59 using ~ as usual and interpreting,

aj(aj-2 jIj-2,b))

in S8 to be undefined when aj- 2  )j j-2,b) is incom-

pletely defined. Since ai is integer valued we may as

well assume that it takes values in {0,1} and hence is,

a9 C tp(j-1) (a E tp(j)).

Nowhere in S8 do we have ai in its entirety, we are only

allowed to ask questions about its value at particular
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arguments. Notice that we are not even allowed this

question at arbitrary arguments (i.e. elements of

tP(i2)tp(j- 2 )), but only those computed in their entirety

at some "previous" stage (the height of a computation is

intuitively, the strict upper bound on the heights of its

subcomputations-our ability to effectively compare the

heights of computations will prove indispensable).

If one views Kleene recursion in a normal object of

type (j) as a hierarchy of objects of type (j-l), then

it is the scheme SB which embodies the distinction between

recursion relative to an element of (or "set" in) that

hierarchy and recursion relative to a subset of (or predi-

cate on) that hierarchy. For each predicate $(x) on

tp(j-2), given by an integer code and a parameter already

computed, we see what it has given us so far (those x

such that t(x) has already been computed) and this is a

typical element of tp(j-1) available to us for applica-

tion of a.

The point of view that we are iterating first order

definability relative to a predicate is instructive and was

presented in detail first by Harrington [1973]. This

answers, in part, the "conceptual" question raised by

Kechris-Moschovakis [1977], namely the relation between

higher types recursion and other work in foundations as

well as its "proper place within definability theory".
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1. Hierarchies and First Order Definability

In this section we endeavor to make explicit the

models of Kleene's Sl-S9 where a. is of type (j). We

use symbols F, G or E for functionals and add a

superscript to indicate their type, for example, n+2r

is a functional of type (n+2). This notation should

serve to remind the reader that n+2IF takes elements of

tYPe(n)type(n) = {f:f : type(n) -> type(n)} as argu-

ments, i.e. dom( n+2IF) C type (n+l). We fix, for n E to,

x e type(n+l), the functional

o, i f X

n+2
E ( X )i

1,if X=$0.

Definition 0.1.1: n+2IF is normal, if for some e an

index generated by Sl-S9,

{e}( n+2 n+2

We shall be concerned only with normal higher type objects.

Normality will be the source of our ability to compare

heights of computations and of a "bounding principle" or

limited replacement in models for Sl-S9. The hierarchy
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defined below, following Harrington [1973], has precursors

in hyperarithmetic theory introduced by Shoenfield [1968].

Fix an n > 0 and a normal n+2]F. Let I = type(n),

X
the individuals. Given an X C I, let {e} denote the

p
th
e- type (n+l) functional primitive recursive in X and

n+21E. If I is R(w+n) = the collection of sets of rank

< w+n, then consider the structure <I,E,X>. Fix a Gbdel

X thnumbering of formulae and let {e} be the e--- function
p

from I into w which is first order definable over

<I,e,X>. Let

We ={a E I j {e} (a) = 0}.

Definition 0.1.2: Define 0 F I and - F 0  -- >

JF F
ordinals and a E range -1, H. C I. By simultaneous

induction for each a E I, define 0I anda

F IF -> ordinals:

0 = { <m,a> m e 0F A a E I}a

c<m,a>I F ImlIF; HF
a 0

F

H = {<e,a,0> a E Wa } U
a+l e

<H >

{<e,a,x+l> |F({e} a,a = x}, and
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H = {<b,c> b E 0 A b1 C A c E H b
I b IIF

Remark: From now on we write F for n+2IF and omit

superscripts where understood.

(i) 1 E Oat 1 a =0

(ii) x E 0a 2 2xE 0a and 2 X1 a = xa +1

(iii) m, e E o, if m 8 QaIma= a and if

<H >
a, "'a C 0, then 3M'5 e 0a j 3 m* 5 e l= least

limit ordinal > a and > 1bl, for each

<H >
b E We a,a

From this definition we can give sense to the expression

{e} (a) = x for e E o, a E I i.e. let e = <e0'e1

e 0a and {e1 } ( a0a) = x. Then {e} (a)t

(defined) simply means that for some x, {e} (a) = x.

Definition 0.1.3:

IF_, if a e and

Ci) $ : type (n+2) -> to is REC in

V G 8 type (n+2),

(ii) A C type(n+2) is RE in :F

able), if (a e) (V G 8 type(n+2))

(recursively enumer-

G E A-* {e}<]FG>
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There are some ordinal parameters associated with this

hierarchy. That these definitions of recursion in n+2F

agree with those of Kleene can be verified as in Schoenfield

[1968].

Definition 0.1.4: Fix normal n+2IF and let,

K0 = sup{iml0 m E0 I} for i < n

FIF F
K. = sup{Iml a E type(i) A m E a

<]F a>

sup{K<I'Fa a E type (i)I

IF IF IF
K = K = 0 n ordinals.n

For a EOn a recursive in ]F

IF .

a constructive in IF iff

JF
mE 0 .

0

iff Ha recursive in

aF
Cr= Iml|0, for some

Remark: (i) From now on omit IF as superscript where

understood and denote for a I, i < n K ,a by

a

(ii) Definition 0.1.4 can easily be relativized to

a CE I.
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Recall the meaning given above to the expression {eX
p

th
as the e- function from I into o which is first

order definable over the structure <I,E,X>. Then the

"sets" of the form,

We = {a E I {e}(a) = 0}
e P

as e ranges over a fixed G6del numbering of formulae are

nothing more than the collection of subsets of I first

order definable over <I,E,X>. With this in mind it's

clear that the universe for Kleene recursion in normal

n+2 F is nothing more than the result of iterating first

order definability over a set of individuals, passing

through limit stages only when we have defined an effective

procedure which generates ordinals unbounded in that limit.

What is called KI above is the first limit ordinal

where we fail to generate such a procedure. The following

precise expression of this is due to Harrington.

Definition 0.1.5: For a E On, define L [F] as:

L0 [IF] = I

Lc[+1 [F] = {X C L [F] I X is first order definable

with parameters over

<La [F] ,E,IF (type(n+l) nL [IF])>}

L [IF = ) L 6 [F] . Let M [IF] denote the structure,
6<Ak
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<L [F] ,E,IF (type (n+l) n L [F])>

and L be the first order language appropriate to the

structures M []F] . L [IF] is then the structure for
K

normal Kleene recursion in n+2F . The above is Gbdel's

constructible hierarchy relativized to a predicate IF,

constructing over I. For details the reader is directed

to Harrington [1973].

Remarks: (i) There is a one-to-one correspondence

e <-> 1e between integers and E formulae of L, such

that V G E type(n+2),

{e}<IF,G> (0) t M < F,G> (<IF,G>) K$

(ii) A C I is RE in IF iff there isa Z EE L

such that V a E I,

a E A M a[IF] $(a).
K
0

Here and in many similar situations we will have

<a,]IF> IF . a <a, IF>K' < KF Thus, writing Ka for K< theK 00  ,th

study of RE subsets of I for L I[:F] is the study of
K

the function a-> K0  for a EI. For n > 1 the

structures L F[F] will not be E -admissible and it is
K
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this theme of inadmissibility that gives this theory its

peculiar flavor. There is, in fact, aZ1 formula

4(x) E L such that (V a E I)

M r[Fh p(a)

K

however

M a [IF]=$ (a).

K
0

2. Z1 -Reflecting Ordinals and Selection

In general we say that a theory of recursive

enumerability admits of full selection just in case for

any RE set A defined by $e (for some Gbdel number e),

if A / 0, then there is a uniform way of passing from e

to a non-empty REC subset Z C A. In CRT this amounts to say-

ing that given an index e for a non-empty, recursively enumer-

able set of natural numbers W,, there is a recursive

function f such that f(e) E We. The procedure f will,

of course, diverge if We = $ and can be taken to equal

3the least integer in We. Even for L 3 [B3E] this is too

much to hope for since we cannot even make sense of the

"least" a E 2w in the absence of well-ordering of 2w.

In this section we will review the limited selection theorems
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for L F[F] and develop the theory of 2 -reflecting
K

ordinals that results from the failure of full selection.

It is this reflection phenomenon which will form the basis

for the priority method here and in more general settings.

Definition 0.2.1: (i) For a E I and a < KI call a

an a-reflecting ordinal, if for all 2 -formulae,

$(x) E L

M [F] H c(a) * M a[F] H 4(a);

K
0

(ii) the limit of a-reflecting ordinals is clearly

a-reflecting so let Ka = greatest a-reflecting ordinalr

(i.e. there is a E formula ea(x) in L such that

M [F] , = 0(a), but Ma [F] a (a)).

r r

The following proposition gives a hint of the connec-

tion between reflecting ordinals and selection principles.

If Xe L [F], we say that a E I selects over X, if
K

whenever A c X, non-empty and RE in <a,x>, then there

is a Z C A, non-empty and REC in <a,x>.

Proposition 0.2.2: Let X E L [F] and a e I, then the
K

following are equivalent:

(i) a selects over X.

(ii) (V t e X) K<a,x,t>_<a,x>
r r

Proof. (i) -> (ii) . Suppose (ii) fails, then
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R = {t| K <a,x,t> > K<a,x>
r r

is RE in <a,x>, non-empty and clearly a does not select

on R.

(ii) -> (i). Let RC X be RE in <a,x>, via e,

then (a t E X) (2 y < K <a.x,t>)
0

L [F] a y'[ {e}(t,a,x)I < y'], but

K <a,x ,t> <Ka,x,t> <ax>
0 r r

Lra,x>([F] H (a t E x) (Z y) [ {e} (t,a,x) f=y

so by reflection,

LK<a,x>[F] (a t E x) (a y) [ e} (t,a,x) =y

Then Gandy Selection computes such a y. C

Thus the presence of an effective selection operator

over a set X is equivalent to a crude ordinal bound on

computations in elements of X.

The following two results establish selection princi-

ples for particular X E L F [F].
K

(Gandy Selection). There is a partial recursive operator

such that for A Cw A RE in <a, F> via e for aCG I,

(i) (e,a). <-> A : 4 and if A $ 4,

(ii) $(e,a) e A.

This result is proved using stage comparison and the
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recursion theorem for normal Kleene recursion. One conse-

quence of Gandy selection is that the union of RE sets is

RE. It states, in effect, that the family of RE sets is

closed under existential quantification over integers.

(Grilliot Selection). Let n > 1 and F of type (n+2)

normal and J = type(n-1) (subindividuals). There is a

partial recursive operator $ such that for A C J, A RE

in <a,F> via e for a e I,

(i) $(e,a)4 <--> A # $ and if A /,

(ii) Z = {j E J I !<e,aj>I IF K(e,a)I } is a non-

empty REC in <a,$,F> subset of A.

Grilliot's selection principle tells us that for any

a E I and any E formula O(X) in L, if

a [F] H p(a), then
Kn-

4 a[F] H (a).
K
0

In other words, if $(a) is true at some ordinal recursive

in a, F and some subindividual j E I, then $(a) is

true at some ordinal recursive in a, F. As a consequence,

the RE in a, F (for a E I) subsets of I are closed

under the quantifier a j C J. The proof of Gandy Selection

can be found in Moldestad [1977] and that of Grilliot selec-

tion in Harrington-MacQueen [1976].
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A natural question is then whether the family of RE in

<a,]F> (for some a E I) subsets of I are closed under

a b E I. The answer, due to Moschovakis [1967], is a re-

sounding "no!".

Lemma 0.2.3 (Kechris [1973]): For aS I, if B is a non-

empty subset of I, co-RE in <F,a> , then there is a

b E B such that K<Ka,b> a
r r

Proof. Suppose not and take E formula $(x) in L

such that

M [IF] H (a), but

r

M a [I] -(a) .
aK 
0

For all b E B, by assumption KK<ab>> a and so
r r

K ' H 
<a,tb> [F ](a) . r

By reflection

M <a,b> [IF] (a) .

K0

Since B is co-RE in <'zF,a> , there is a E formula

$(x,y) of L such that
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(V b E I) [b B iff M K<a,b>F] H (a,b)]. Thus,

K0

(v b E I) [M <a,b>[F] H (a,b) Vcf$(a)]

K 0

and by bounding

(V b E I) [M a[F] $(a,b) Vt(a)].
K 
0

Since B $ 01, a b E I such that

M [F] H (a,b) and so
KaK
0

Ma [F] H (a),
K
0

contradicting the choice of $(x). 0

Results of this sort are often called basis theorems,

the point here is that if a co-RE set has an element, then

it has an element whose E -reflecting ordinals are

bounded by those of its defining parameter.

Intuitively, a computation is convergent iff its

computation tree is well-founded. Through the computation

tree of a divergent computation is an infinite descending

path of subcomputations and divergence is a co-RE phenom-

enon. The next theorem states that, with sufficient
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coding and the basis result of the previous lemma, that

witness to divergence will be in L [IF].

Theorem 0.2.4 (Moschovakis [1967]): For any subset A of

I RE in <a,]F> for a E I, there is a relation R(x,y)

on I RE in <a,]F> such that,

(V a E I) [a g A iff (2 b E I)R(a,b)].

Proof. Consider A = 0 the universal RE in IF

subset of I. Define an RE in IF predicate

R'(x,y) C I x I by: R'(b,c) *

(i) b = <2m,a'> for some a' E I and for some

m E W, then c = <m,a'>;

(ii) b = <3.M5 ,a'> for some a' E I and some

m, e E w and if c 7 4<m,a'>, then <m,a'> E 0 ,

<H ,a'>
Im I,= a and c E W<H .a e

(iii) if V a' E I V m, e E w[b $ <2m, a'> and

b ; < 3 m-5e,a'>], then c = 0

(iv) V a' E I[b <1,a'>]

Then R' (x,y) gives the relation of being an immediate

subcomputation in L [F]. In the case that some b 90

we can then use R' (x,y) to assert that fact by asserting

that there is an encoding of path through the tree of

subcomputations. R'(x,y) fails to be REC because of

clause (ii). More precisely,
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(a) if R' (b,c) and b E-= , then c E 0 F and

bj > IcI ; and

(b) if b 9 0 , then (a c E I) [c ( 0FA R (b,c)].

Define R by:

R(a,b) ( [b E I /\ (b) 0 = a A

(V i E w)[R'((b) ,(b)i+1

To see that R(a,b) defines a % 0I : If a E 0 and

R(a,b), then by (a)

aIIF= (b) 0 1|F > (b) 11 >...

an infinite descending chain of ordinals, which is absurd.

If a 9 0 F, then one can find (b0 'b1 ,... such that

b0 = a and R'(b.,bi+), i.e. taking b = <b0,b,.

then R(a,b) holds. 0

A path through the computation tree of a divergent

a E I will be called a Moschovakis Witness to its diver-

gence. As a consequence of Theorem 0.2.4, L I[I] is
K

not E-admissible for n+ 2 F normal with n > 1. And

the F-RE subsets of I are not closed under the

quantifier a b E I.
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The next result, due to Harrington [1973], brings

together the basis theorem of Kechris and the apparently

negative result of Moschovakis to characterize the rela-

tion between 2 reflecting ordinals and this failure of

selection over I.

Theorem 0.2.5 (Harrington): There is a formula (not E1)

in L, e(x), such that for all a E I,

M a[F] F 0(a),

K
r

but for all a < Ka
r

C[F],= 0(a).

Remark: We include Harrington's proof of this theorem to

make 6(x) explicit. This result will allow us to turn a

failure of selection into a powerful tool in preserving

computations relative to an oracle in the setting of a

priority argument. The import is that looking down from

Kr is the same as looking down from K when it comesr

to facts REC in <a, F>

Proof. Since the predicate R'(x,y) of Theorem

0.2.4 is RE in F, there is a 2 formula $(x,y) in L

such that,
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(V b, c E I)[IR(bc) iff M <b,c>[F] (bc) iff

0
M I[F]H $(b,c)]. Let $p(x) be a 2 formula of L

such that, (V a E I) [a c0 M a [F] H $(a)]. Let
K

0

e(x) be the following formula of L:

a(x) * (V m E w) [$p<mx>) V 2 b E

[b = <b 0 ,b,. ..> and b =

and (V i e w)4(b.,bi+ u.

Thus for aEOn and aEI, if

N [F] H (a) , then

(V in e to) fin C a iff M[F] H 1<m,a>)]

and therefore a > Ka and a > Kr for otherwise this
0 r

fact would reflect below K , a contradiction.r

Claim: For any a e I, M [F] H (a).
K
r

Proof of Claim. Given m to such that <m,a> 9 0,

find b = <b 0 ,b 1 ,. ..> E I such that R(<m,a>,b) and

<b., b+ >
(V i e+) K <K]. Construct b as follows:
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b.
b = <m,a> and given b.0 IF such that K b<K r

Sr r

find bi+ 0 such that R'(b.,bi+) and

<b.,b. >< i+l a As was already remarked, this presents no
r r

in' e
problem except in the case that b. = <3 -5 ,a'> for some

a' e I, m' e E w and <m',a'> E 0, an "I-branching" in

the computation tree. Let a = jm'jI', and

<H ,a'>
B = {c E I j c # 0 /\ c E We a } which is co-RE in

e

<bF>.B 0 for otherwise b. E 0 , contradicting

the choice of b. By Lemma 0.2.3 of Kechris, 2 bi+ E B

such that

<b.,b. > b.i i+l 1 a
r r r

b = <b 0,b,...> is the desired Moschovakis Witness (MW). E

The following facts are easily verified using Theorem

0.2.5.

$Facts: Let K = K ,r r

(i) (V a E I) K Ka
r r

(ii) (V a E I) [K < Ka H is REC in <F,a>]
r r Kr

(iii) B C I, B A 0 co-RE, then there is a non-empty

subset of B primitive recursive in H (so H can
r r

select from a non-empty co-RE set).

(iv) (Kechris) A C I, RE in F has non-empty REC

in F subset iff (2 a E A) [K Kr]
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Remark: The reader can consult Harrington [1973] for the

proofs of (i) - (iv).

Notice that fact (iv) gives the precise connection

between selection and Z 1l-reflecting ordinals. Relativiz-

ing fact (ii) to a E I and using Theorem 0.2.5 H a
r

contains all information needed to decide the predicate

" m E IF-".
a

Proposition 0.2.6: Let F E type(n+2) be normal with

t Fn > 1, then if X EL IF] and, supKr =K then
FtEX

t F
sup K 0 K

tEX0

Proof. Notice first that Theorem 0.2.4 implies that,

(v a e I)Ka < K I . Suppose the proposition fails andr

fix X E L F[F] such that,

K

t F
SUP Krt= K , but
tEX r

t F
Sup KO 60
t9X

We know that sup K = KI , so take a0 GI such that
aG-I r0

a0 F
K 0 > 6. Then there exists a a <K such that,r 0'

M [F] H (a0 ),
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where e(x) is the formula of L constructed in Theorem

0.2.5. By reflection,

M60[F] 8(a 0

a00

and so Kr 6 which contradicts the choice of a 13

This proposition will allow us to make use of the

upper bound, given uniformly by Harrington's e(x), in

6 A
preserving a computation {e} (a) where A is an oracle

for some predicate on I, e E w and a E I. Through pre-

serving the value of the characteristic function of A we

will not only be able to insure that e} A(a)I for the

final A, but, in fact, that {e}A(a)t for the final A,

AnK<e,a>
{e} r (a)t. The fact that Ka < K for a E I tellsr

us that we need only preserve A's values through K<e,a>

r

to insure the behavior of {e}A(a)! The details of this

preservation strategy will be given in our chapter on RE

degrees.
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Chapter 1: E-Recursion

90. Background

This section is intended as an introduction to the

theory of recursion on a universe of sets which was intro-

duced independently by D. Normann [1978] and Y. N.

Moschovakis [1976]. E-recursion will be the theory of

partial recursive set functions, that is, functions whose

domain is contained in a universe of sets and which take

sets as values.

The thought behind Normann's introduction of "Set

Recursion" was that the companion for Kleene recursion in

normal objects of finite type was easily identified with

a natural universe for set recursion. Thus priority

arguments can be carried out in this much more familiar

set-theoretic setting and hence one can draw conclusions

about the degrees of functionals. The success of that pro-

gram is evidenced by Normann's results on Post's Problem

and the existence of a minimal pair [1975] for Kleene

recursion in a normal function F of type-(n+2) for

n > 1. Set recursion was the result of Normann's study of

the companion of a normal functional of finite type.

The computation theory that resulted was far more

general in nature than had been suggested by the intended

application. In contrast to a- and -recrusion
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theories, one is given a priori search only over the

integers. As a result it is a theory based on the notion

of a computation and this notion is absolute between

models of the theory, provided one insists that they be

transitive. That is, given a domain M which is E-

closed (closed with respect to E-REC functions, a

notion which will be made precise momentarily) and given

e E w and x E M, then the computation {e}(x) is

convergent in M if and only if it is in V. Associated

with such an e and x in M is a computation tree,

where branching is given by the relation of being a

subcomputation and to say that {e}(x) converges is

simply to assert that the associated computation tree is

well-founded. Thus, just as in classical recursion

theory, a set x will be put into an RE collection of

sets just in case there is a well-founded computation tree

on x which is "computable" from x and a definition of

that RE collection. A typical step in such a computation

will compute a set W and then apply a preassigned pro-

cedure to each element y of W. So, unlike CRT, the

branching in a computation tree is potentially infinite

depending on the "size" of W. As a result the very exis-

tence of solutions to many priority arguments will depend

on the character of the power set operation and the exis-

tence of intimate ties between the sets of the recursion-

theoretic universe and its ordinals.
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1. E-Recursive Functions

The domain for E-Recrusion will be the universe of

sets. If R C V, the universe, and R ' V, then computa-

tion relative to R means that we may ask if a given x E V

is an element of R in the course of computing. In other

words, if we have generated a set x in the process of

computation we are allowed to compute x n R and treat it

as a set. By this we simply mean that we are allowed to

treat x n R as a finite entity, we may use all information

about x n R or information uniformly derived from elements

of it at the same time. The notion of relative computabil-

ity is reflected in scheme (vi). E-recursion is nothing

more than the rudimentary set functions of Jensen (cf.

Devlin [1973]) augmented by a reflection (Kleene [1959]) or

diagonalization (Normann [1978]) scheme.

Let R C V be a relation. Define the functions par-

tial recursive relative to R with index e by the

following schemes:

Definition 1.1.1:

(i) f(x1 ,...,x) Xi e = <1,n,i>

(projection)

(ii) f(x 1 ,...,x) x.\x.e = <2,n,i,j>
1d

(difference)
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(iii) f(x1,...,aa fn) = .{ fx, } J e = <3,n,i,j>

(unordered pair)

(iv) f(x1 ,...,x )= y h(y,nx, x
yEx.

e =<4,n,e>

where e' is an

index for h.

(v) f(x1 ,...,xn) =h(g & ,...,xn ''''em ('1'''An

e = <5,n,m,e',e1 ,...,em '

where e' is an index for h

and e1 ,...Iem are indices

for g1 ,... ,gm' respectively.

(vi) f(xa,.a..I,x) ~ x. R
1 n 1

e = <6,n,i>

(vii) f(e1 ,x1 ,... ,xy 1 .n. l '' r {meRcx1,... x)

e = <7,n,m>.

Remark: Scheme (iv) is defined just in case h(y,x 2 '''' xn

is defined for all y E x1 .
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The partial functions defined by these schemes are

R
called E-recursive relative to R and are denoted {e}

All functions that are rudimentary in R will be- E-

recursive relative to R (E(R) -recursive) . Since the con-

stant functions n, for n E w are rudimentary, they will

be IE-recursive. Arguments may be commuted via schemata

(i) and (v).

Because the E-recursive (E-REC) functions are

generated inductively via these schemata, canonical notions

of length of computation, subcomputation and computation

tree are easily derived from Definition 1.1.1. Standard

n
proofs yield the recursion theorems and the sm-theorem.

The following two results are due to Normann [1978] in

E- recursion and are two important aspects of the theory's

flavor.

Lemma 1.1.2 (Normality). There is in IE-recursion an index

e such that for arbitrary R, x, e, x:

0, if (V y E x) [{e} R(yx) Q]

{e}(Rxex)

R+
1, if (V yE x)L1"{e }R(y,x)] and

(3 yE x) [{e } R(y,X) # 0]

where "1" indicates "is defined".
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Proof. Take $ rudimentary such that

$(O) = 0

$ = 1,

and

for all x / 0.

So assume that {e1 } R is a characteristic function taking

values in {0,1} and let

{e} R (x,e1 ,x) = J {e}R (yt
yEX

using scheme (iv). E

This lemma justifies the use of the term "E-Recursion"

in analogy to the source of normality of a functional

n+2 n+2 . . n+2F , namely E is recursive in F where,

0, if (V a) [{e}(ctj,ca) 0]

n+2

1, if (V c) [{e}(a7 ,c.) and

ca) {e} (aca) / 0]

The computability of the {e} of Lemma 1.1.2 demonstrates

sense in which
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arguments or sets are "finite" in the tradition of many

generalized recursion theories. Information uniformly

derived from a set can be used in its entirety.

Lemma 1.1.3 (Stage Comparison).

tion p(x,y) such that p(a,b)

a and b are computations and

0

p (a, b) =f

There is an E-REC func-

if f a or b, where

if 11 all Il<bil

if 11all > Ilbl.

(11-11 refers to the canonical function giving the length of

its argument, a computation.)

Proof. (Sketch) Apply recursion theorem to the

definitions of a and b via the schemes. For the de-

tails of a similar argument see loldestad [ 1977 1, where

this result for recursion in a normal n+2F is proven. C

An immediate corollary of Lemma 1.1.3 is what we

called Gandy Selection in the previous chapter.

Corollary 1.1.4 (Gandy Selection). There is in

sion an index e such that for any R, el, x,

E-recur-

{e} (ex)4 .( n e -w)[{e}R(n,x)tl,
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and then

R R +
{e1 } ({e} (e1 , x),xt.

Again we refer the reader to Moldestad [1977] for proof.

There are two points we would like to emphasize before

making explicit the relation between E-recursion and the

hierarchies of Chapter 0. First is that Scheme (iv)

embodies what we will refer to as an effective bounding

principle, a notion familiar to generalized recursion

theory (for example, hyperarithmetic theory). Secondly,

and as a consequence of this bounding principle, one can

regard E-recursion as a minimal formalization of the

notion of Effective Transfinite Recursion (ETR). It is

the presence of ETR, provable from schemata (i) - (vii),

which gives a normed theory, i.e. an effective means of

measuring the length of computation. For the moment let us

say that a set M is E-closed iff M is transitive,

closed under pairing and if e is an index for an E-REC

function on M, X E M, then {e}(x)4 -> {e}(x)E M

(recall the E-REC functions are set-valued). We cannot

yet give the precise definition of being E-closed, but

this intuition should motivate much of what follows.
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2. Hierarchies of Computations

This section will present a definition of E-recursion

in terms of hierarchies of computations. This definition is

a straightforward generalization of the hierarchies for re-

cursion in higher types of the last chapter as pioneered by

Schoenfield [1968], Grilliot [1969]. The equivalence of

this definition for normal Kleene recursion to that via

schemata can be found in Normann [1978]. The hierarchical

definition serves to make explicit both the definition of

computable set function and our choice of the domain for

E- recursion. The reader should keep in mind the hierarchy

for Kleene recursion in a normal n+2F as we proceed.

Preliminary to our final notion of computability is

that of primitive recursions. Let X E V and fix a Gbdel

X th
numbering of first order formulae. Let {e} be the e--

function from the TC(X) into w, which is first order

definable over the structure <TC(X),E,X> (TC(X) denotes

X
the transitive closure of X). Then We = {a E TC(X)

X th
{e} (a) = 0} is the eL subset of TC(X) which is

primitive recursive in X.

Define now by simultaneous effective transfinite re-

cursion for each <a,X> with a E TC(X) a set of

integers, <a,X> and a map < :a-,X> <aX> -> On,

the ordinals. For each ordinal number a in the range of

<a,X> X
-nI as a ranges over TC(X), define sets H a
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Let 0X = {<na> I n E E aX>} andX<e,a>I= e <aX>

For A an IE-closed set let OA = )X, then the
XEA

induction proceeds as follows,

Definition 1.2.0:

() 1 e O<aX> <11a,X> = 0 andH = 0;

(ii) If n E O<a, X> and InI <aX> = a, then

n E 0<a,X>; 2n<a,X> = nI<a,X> + 1 = a + 1 and

HX
H = {<e,a,0> : a w e};a+l e

and finally,

(iii) Given m, e E w, if m EO<aX>

H a, X
and WeA & C X, then 3 m -5e e <aX> Lete

3m- 5ej<a,X> = first limit ordinal A

Hx,a,X
X > sup{a} U { bj II b EW e I}. Let

H= {<b,c> b E 0X A Ib IX < A A c E HX

the effective disjoint union of the H' s for a < A.

From this hierarchy of primitive recursive set opera-

tions we define the usual recursion theoretic notions.

<amI X>
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Definition 1.2.1:

(i) A set Y C TC (X) is IE-recursive (E-REC) in

Ha, X

a, X for some a E TC(X) if Y = W l<ma>1 for some
e

m 8 0 <a,X> and some e 8 O. This relation is denoted by

Y a, X.

(ii) Y C TC(X) is E-recursively enumerable (E-RE)

in a, X if a e E w Y = {b E TC(X) : eE 0<b,X>1

We now turn to two notions of relative computability

over a fixed E-closed set A, where

Definition 1.2.2: A set M is IE-closed, if M is

transitive, closed under pairing and given any X E M and

Y E-REC in X, if Y is an effective code for a set

Z, then Z E M.

By an effective code we mean that every element of Y

is an ordered pair and the partial order computed from Y

is the diagram for the 8-relation in TC(Z). Thus 1.2.2

says simply that any Z E-recursively constructed from

some X E A is an element of A. Call the least E-

closed set with X as an element the E-closure of X

(E-cl (X)) . In analogy with the previous chapter, there

are some important ordinal parameters associated with X

and its E-closure.
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Definition 1.2.3:

<aX> <aX> <aX> K', is(i 0K =sup{1MI :M oE ,X>}; K <aX is0 0

the supremum of the heights of prewellorderings of TC(X)

which are recursive in a, X.

(ii) KX = sup{l<m,a>lX : <m,a> E OX}; then KX is the

height of the E-closure of X.

Fix an IE-closed set M = IE-cl(X) and z E M then,

Definition 1.2.4: A set Y C TC(X) is E-recursive in a,

HaX Z

X, Z for some a E TC(X), if Y = W e<m, a>I for some
e

m E O<a, x, Z> and some e E o. This relation is expressed

by Y < X, a, Z.

Proposition 1.2.5: Suppose M = E-cl(X) and z E M, then

0 X,z is recursively isomorphic to 0X above |z|

Proof. (Sketch) We have trivially that K = K Xz

Using a new definition of the hierarchy with HXI = z and0

proceeding by ETR on KX yields the result. Intuitively,

there is a natural embedding of 0X into 0X'z and with

the parameter z E E-closure of X that embedding can be

reversed. The details of the proof are omitted. 0

This situation is altered radically if we consider

0 X,A for A some unbounded subclass of 0 X or if

A = E-cl(X). For such an A we will have that KAX > KX

since by the above this corresponds to the E-closure
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(A,X). Thus for purposes of relative E-computability on

0A we give a definition based on 1.2.0 relativized to

predicate on 0X. This corresponds to the effect of scheme

(vi). It may still be the case that K XIA > K, however

for an interesting recursion-theoretic choice of A we will

have that E(A)-cl(X) E-cl(X) and K = K '. These RE

A's will be called hyperregular.

Def inition 1. 2. 6: A C TC(X), a E TC(X),

Ci) 1 E 0 <a,X,A> 1 1 <a,X,A> =0 and

HXA =0
0

(ii) If n EoaXA> then 2n E 0 <a,X,A> and if

|n-<a,X,A>= a then 2n<a,X,A> = nj<a,X,A> + 1 = a + I;

and

HXA,A
H = {<e,a,0> : a E W aa+l e

Finally,

(iii) Given m, e E o if M e O<a,X,A>, i<aX

X,A

and W ,a,X,A XA, then 3m 5 e <aLXA>. et

|3m- 5el<a,X,A> = first limit ordinal A, A > sup{al U

XjA H XAIa,X,A
{bI I b E W a}. Let

-a,A>
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H XA = {<bc> : b E QX,A A bXA < X A c E HXIA
X lb XA

the effective disjoint union of the HXA's for a < X.
a

From this hierarchy of primitive recursive set opera-

tions relative to A we can now derive the relative notions

of computability.

Definition 1. 2. 7: (i) A set Y C TC(X) is E(A)-recur-

sive (IE(A)-REC) in a, X for some a E TC(X) if

HaXAX,A
|<, ,A > | F m . <a ,X ,A >Y =W cm,ad for some m e 0 aand some e e w.

This relation is expressed by Y <1E(A) X, a.

(ii) A set Y C TC(X) is E(A)-recursively enumer-

able (E (A) -RE) in a, X if a e E w

Y = {b E TCCX) : c E O<bXA>I

This will be our choice of relative computability and

before the end of this section we focus on the case of E-

closed initial segments of L, G6del's constructible uni-

verse. Before that we note two facts about certain E-RE

subsets of TC(X).

Definition 1.2.8: K C TC(X) is complete E-RE over

A = E-cl(X), if for all E-RE Z C TC(X), Z < X, K.
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Remark: For this choice of K, KX, > KX since

0 e E(K)-cl(X). K can be thought of as the canonical

complete E-RE subclass of TC(X), i.e.

K = {<e,a> : e E 0X,a A a E TC(X) A e e w}.

Definition 1.2.9: (i) A C TC(X) is regular, if for all

x EE-cl(X), Afl x EE-cl(X).

(ii) A C TC(X) is hyperregular, if E(A)-cl(X) =

E-cl(X).

Proposition 1.2.10: Let A C TC(X) be E-RE and

incomplete, then A is hyperregular, in particular,

A,X X

Proof. First observe that any incomplete RE A is

regular, for otherwise take z0 E E-cl(X) = M such that,

A nz 0 9 M.

Now with. z0 as a parameter define f :z0 -> On n M by,

lei0X,<b,a> 
if a E A n z0

f(a) = 10 if a g A n
le , if a9#Aflz0



46

where e E o and b TCCX) and <e,b> is an index for

A as an RE set. Then using z0 E M and the fact that

f <E (A) Z0  (viewing f as a set) , we have,

Claim: A is complete.

Proof of Claim. Suffices to show that 0X < A, z0

or 07 <Df, z0 , but

b E 0 <-> (a a < sup(rng(f)))[b E0QXIa

Suppose A is non-hyperregular and so, in particular,

On fn E (A) -cl(X) > On n E-cl(X).

Thus a 6 < K and E-REC f such that

(i) f A 6 total, and

(ii) sup f(y) = K.

y<6
But, as before

b E0 <-> (a a < sup f(y))fb E 0XI
Y<6 Ca

contradicting A incomplete.D

Remark: Suppose there is an E-REC well-ordering of TC(X).

That there is a regular complete IE-RE set was first noticed

by G. Sacks (1980].
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Proposition 1.2.11: The RE predicates in E-recursion are

closed under the quantifier a n E w.

Proof. Immediate from Gandy Selection. E

Corollary 1.2.12: If K0< ' = x for some a E TC(X),

then E-cl(X) is Z 1 -admissible.

Proof. Since the integer notations relative to <a,X>

are unbounded in 0X an arbitrary quantifier 2 t < KK

can be converted into H e e w a t < I<e,a>f . Then apply

Gandy Selection. M

Proposition 1.2.13 (Moschovakis): There is a r.e. in X

relation <R S TC(X) x TC(X) such that

V e E V b E TC (X) [<e, b> E 0 <===> <R restricted to

{b E TC(X) : b KR <e,b>} is well-founded].

Proof. <R is defined inductively. Say that y is

an immediate subcomputation of x, if

(i) x = <0,a> then x has no immediate subcomputa-

tions.

(ii) x = <2na> and y = <n,a>.

(iii) x = <3m- 5ea> and y = <m,a> or <m,a> e0

HX, a

a<m,a>I
and y E W.
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(iv) none of the above then y = x.

Let z <R y if there is a finite sequence y0,.f . yn such

that yi+i is an immediate subcomputation of y , yo

and yn = z. <R is r.e. since 0X is. Given y, then

y E OX iffKR is wellfounded below y.

(==>) by ETR on |yj X and

(=) by ETR on jy| R which is well defined if <R is

wellfounded below y. E

Definition 1.2.14: An E-closed set A satisfies the

Moschovakis Phenomenon (MP) if: Taking <R as in 1.2.13,

if <R is not well-founded below a point b, then there

is an infinite descending <R-chain below b in A. Such

a sequence will be referred to as a Moschovakis Witness

for b.

Among the examples of IE-closed sets satisfying MP are:

(i) The companion structure for Kleene recursion in

k+2 1  (Normann [1978] and Moschovakis [1976]);

(ii) an inadmissible E-closed L(K), and

(iii) any IE-closed set A modelling the CO-RE

dependent choice scheme, i.e. A = DC (R), where R is

CO-RE, and DC (R):

(V x) (a y)R(x,y) -> (2 z) (V i E w) IR( (z) I, (z)i+1



49

As in Chapter 0 we will now recast (X in the setting

of constructibility. The reader familiar with Gbdel's L

will notice that this amounts to constructing over some

set TC(X).

Definition 1.2.15: For an ordinal a, define L C(X) by,

L0 (X) = TC(X)

L +(X) = {y L (X) : Y is first order definable

over <L (X),E,X> with

parameters from L (X) }

L (X) = ) L CX).

X X b
Let M (X) = <L (X),E,X>. K = sup K0 ' , then as

a a bETC(S) 0

before the relationship between L (X) and 0X is very
K

close. There is a one-to-one correspondence, e <-> $,,

between integers e and E1 formulae $ such that,

<e,a> E 0 <=> M <a,X>X) e(a).

K0

The definition of 0x at limit stages is analogous to the

following bounding principle in L X(X).
K
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Proposition 1.2.16 (Bounding Principle): Suppose

V b E TC(X)

M <a,b,X> (X) H c(a,b)

0

for some <a, X>
$ E 1 (L X(X)). Then there is a G < K 0

K
such

that V b E TC(X),

M (X)H 41$a, b) .

If L is the language appropriate to M (X),
K

we have

Definition 1.2.17: For a E TC(X) and a < Kx say that a

is <a,X>-reflecting, if for all E formulae 4(y) in L:

M (X)H $(a) iff M <aX>[X) a).

0

<a, X>Let Kr '
r

< xa

be the greatest <a,X> reflecting ordinal
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3. E-closed Ordinals

We now focus our attention on a special class of IE-

closed sets whose structure is closely tied to the ordinals.

One can think of them either as the result of applying the

IE-REC functions to ordinals or, alternatively, as domains

which compute well-orderings of themselves.

Definition 1.3.0: Let K E On, then K is IE-closed if

L(K) (Gbdel's constructible universe through K) is an

IE-closed set.

The following results provide the basis for the prior-

ity method on E-closed ordinals.

Proposition 1.3.1: Let K be E-closed and suppose there

is no greatest cardinal in L(K). Then L(K) is E

admissible.

Proof. By the standard proof in a-recursion theory,

the cardinals of an initial segment of L are E -

reflecting. The E -admissibility of L(K) follows

immediately. E

We now focus on inadmissible (not Z1-admissible),

E-closed L(K). Thus L(K) has a greatest cardinal by

1.3.1 which we denote by gc(K) = greatest cardinal of

L(K). By 1.2.12, Kg < K for a E L(K). The next two
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results establish that every inadmissible, E-closed ordinal

satisfies MP.

Proposition 1.3.2: Suppose K is E-closed and X E L(K)

is well-ordered in type gc(K). For each e g X, a

Moschovakis witness for <e,x> is constructed at KX + 1.
r

Proof. Suppose e 0 X, then the following procedure

generates the leftmost path through <R restricted to

<e,x>. By the well-ordering of X all computations are

indexed by ordinals less than gc(K). The computation tree

for <e,x> is ill-founded and breaks up into two parts,

namely, those subcomputations which are convergent and those

which are divergent. At a branching in the tree we can

imagine the subcomputations as well-ordered in type cg(K)

since x is. Thus we compute along that well-ordering.

Since {e}(x)t there is a least, in the sense of that well-

ordering, point in the branching where we have divergence.

By leftmost we then mean leftmost among the divergent

subcomputations. Thus everything to the left of the result-

ing path will be convergent subcomputations and, hence,

serve to define that path at a sufficiently large ordinal.

We construct the o-sequence f : --> R as follows:

(i) If f(n) = < 2m, 6 >, then f(n+l) =<m,6>.

(ii) If f(n) = <3 m -5e,,>, then either f(n+l) = <m,6>

and <m,6> C (7X or <m,6> E 0 and
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H X
f(n+l) E W and V 6' < f(n+l)

H '

61' E w <m,6> -> 61' E

If we let WF(R)cex> be the well-founded portion of

this tree such that in any branching at level n,

WF(R) restricted to that branching contains only

points less than f(n). WF(R) is E-RE and well-

founded. Then a = supfheight (WF (R) ) | e E w} > K X
<eex> r

for an a < Kr and would reflect the complete subset of

w relative to X to some a<1 X, which is absurd.

Likewise a cannot be greater than KX for otherwise an
r

enumeration of an unbounded subset of a chopped off at

X x x xKr would witness Kr CE X, contradicting K0  KKr. Thus

a = Kr and the preceding gives a definition of f atr
x+
KX + 1. Er

Corollary 1.3.3: Under the assumptions of 1.3.2, there is

a E formula (z) for a E TC(X), such that

M a,X+1(X)fr= $(a,X) and

r

M (a,X)j = $(a,X) and

r

this formula is uniform in a, X.
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Proof. $(z) says that there is a Moschovakis witness

for all divergent computations in z, X for z E TC(X). C

The analogy of this for Kleene recursion in normal

n+ 2 F (n 1) was first obtained by Harrington [1973,

where he considered Ka, , for a E I.
r

Proposition 1.3.4: Suppose K is inadmissible and E-

closed, then for every <a,X> E L(K), a E TC(X) we have

K<a,X><

r

Proof. Take a, X as above and suppose K<a,X> _
r

then (V b) [Krb,X> = K]. We get that K is E -admis-

sible since the witnesses for Z formulae with parameters

in X are contained in L X by reflection. Since K0 < K

K
0

by 1.2.12 and K is inadmissible. But then K is Z -

admissible, a contradiction. C

Corollary 1.3.5: If K is inadmissible and E-closed,

then L(K) H MP.

Proof. Inmediate from 1.3.2 and 1.3.4. 0

As we will see later when we consider much more

general E-closed sets than E-closed L(K), the

Moschovakis phenomenon is a consequence of dependent choice

along CO-RE set relations. The next two chapters contain

results on the RE degrees of an E-closed, inadmissible
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L(K) which make heavy use of 1.3.5. In our final chapter

we describe the changes necessary for extending these

methods to Kleene recursion in a normal functional, n+2F

for n > 1.
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Chapter 2: IE-RE Degrees and the Priority Method

0. Preserving Computations

We now narrow our study to E-closed L(K), K E On,

which are not 2 -admissible. By 1.3.5, such an E-closed

set satisfies the Moschovakis Phenomenon. In fact if

{e}(x)t for e E w and X E L(K), then as we saw in the

last chapter a Moschovakis Witness to divergence is con-

structed at K + 1 and K + 1 < K. Thus for e E w the
r r

question whether {e}(x)4 or {e}(x)t is completely

determined at Kx + 1 and can therefore be used in the
r

course of a construction in K-many stages.

Now suppose we are constructing an E-RE A C L(K) in

the sense that at stage T C K we consider certain

X E L(W) and if X satisfies a condition defined in

L(K) we enumerate X into AT+1 (= amount of A enum-

erated through stage T + 1). Further suppose that as we

construct A we consider the values of the indices for

B -recursion applied to A as an oracle, i.e. {e}A

using scheme ( vi ) of relativization. Thus at stage
AT

T < K {e}T (x) may appear to converge or diverge using
T

positive and negative information about AT (y < T and

y G AT or y 9 AT). Suppose that A preserves the E-

closure of L(K), i.e. L [A] is E-closed over A

(briefly L(K) is E(A)-closed). Then
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K [A] = sup{y y y A)X < K and, as we shall see,

K [A] = (greatest X-reflecting ordinal over A) < K.
r

Thus, as before in the unrelativized case, if e e o then

either

(i) Lxy
Kr [A]
r

(ii) L X
Kr [A]r

[A] {e} (x)4

[A]J|= {e} (X)t

and in case (ii) a Moschovakis witness for {e}A (x)t

definable in L [A] at level Kr- [A].
K r

Therefore information about A used in {e}A x)

contained in A Kr[A] (actually XA r KX[A] where

XA : K -> {0,l} given by

is

is

r0, if y EA

XA(Y) =

lif y A

However as we construct an E-RE A, A [ K>[A]

change by our enumerating some y < K>(A] into

AT A
{e}T (x)k we can insure that {e} (x)4 for

AT

freezing that portion of XA used in {e} (x)A T

may well

A. If

> T by

(and all

or
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A
of its subcomputations, of course). If {e} T(x)t we can

A
insure that {e} 0 (x)t for a > T by doing the same-

xNote: 1. Kr [A] < K (for this choice of A),
r

2. K [A] is an upper bound on restraint for ther
A

sake of preserving {e} T (x).

Unlike classical or ordinal recursion theory divergence

is E1 (L(K)) or in the above E(LK[A]). Thus given

f : K -> {0,1} the condition R : {e}A $ f can be satis-

fied in one of two ways. Find x such that

(i) {e}A (x)t and f(x)4 where

{e}A (x) $ f(x); or

(ii) {e}A (x) t and f(x)t

and preserve XA through Kx[A] to extablish (i) or (ii)XA r

once and for all. Thus, we have established,

Lemma 2.0.0 (Persistence Lemma): Let A C L(K) and suppose

L(K) is E8(A)-closed and not Z -admissible. Then for

e E Wo,

L [A] {e}A (x) 4 iff L x [A]=e}A

Kr [A]
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1. E-RE Projecta

AConditions such as R : {e} A f above are indexed by

codes for the IE-recursive functions on L(K). As in ordi-

nal recursion theory we use the shortest possible listing of

these codes in a priority argument whose goal it is to

satisfy R for each <e,x> , e E w and x < K a

code for a parameter in L(K).

Definition 2.1.0: Let

(i) PL(K) =1Yy< K Y0< K)( < K)(a < Y)

(ae E G) [6 = I{e}(y0,a)I ] and

(ii) ri = ay K cay< K) [R C y is RE in y '

but R-% 1 6 for any 6 < K]

Remark: These parameters were first defined by G. Sacks

11980] for the special case of E-cl(2W) where iE =E

and there is a REC well-ordering of 2 . They correspond

roughly to the two notions of E -projectum defined by1%.

Jensen [cf. Devlin [1973]]. Sacks called them the

"greater" and "lesser" RE projectum, respectively. His

intention is implicit in (i) of the following proposition.
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Proposition 2.1.1: Let q and p be as in 2.1.0 (we omit

the superscript from now on), then

(i) q <p; and

(ii) q and p are cardinals in LCK);

(iii) p < K implies p = gc(K).

Proof. (i) Define

N = {T < pIt {([) 0 }(y 1O(T)) A1CT0

is an index in E-recursion},

where y0 is the parameter in the definition of p. Then

N is simply the set of ordinals less than p which are

notations for ordinals less than K, i.e. {(T) 0 }y0 T')1 )

could be written (T)0  ' CT 1> Then we have

sup{j(T)0 [ T E N } = K,

by the definition of p.

Thus N is RE\REC in y0 and n <p

(ii) If a 6 < n 2 f : 6 <-> q such that f E L(K)

then if R C n witnesses the definition of n, then

{f~ (6) |1 6 < A /\ 6 E RI

is RE\REC, contradicting p least such.
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If a 6 < p a f : 6 <-->>p such that f E L(K), then

(V a < K)(a y < 6)(a e 8 ew)[a = ({e}(yof(y)) I

where y0 defines p, contradicting p least such.

(iii) (ii) -> p < gc(K). If p < gc(K), the func-

tion f : K-> p given by

f(a) = py < p(2 e e Ew)[{e}(y 0 ,y)1 = a]

is REC and total. Thus {f(a) a < gcC(K)} E L(K)

contradicting gc(K) a cardinal. C

We shall use p to list the E-recursive functions.

The assumption n = p, sometimes termed "adequacy" in

abstract recursion theories (cf. Fenstad [1980]), has

played an important role in most generalizations of the

priority method to abstract recursion theories.

Lemma 2.1.2: Suppose L(K) is E-closed, not Z -

admissible and r, p as above. Then if a0 < K, then

6 < n [sup K < K].
C<6 r

Proof. Suppose not and fix 00 < K and 60 K n such

that,
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< C of Y>
SUP Kr

Y<6 0r
= K.

Let

N(60 ) = {y < 6o Ia e e w{e} (a 0 ,y)V }

is RE in some e0 E w by Gandy Selection. If N(60 were

REC in some T < K, then the function f :6 -> K given

by

) Co' ' ' if y E N(6 0){e0
f (Y)

f(y) =

would contradict L(K)

least such.

0 otherwise

E-closed. But this contradicts n
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2. Effective Cofinalities

Let L(K) be E-closed and not E -admissible.

Definition 2.2.0: Let A K be a cardinal of L(K) (i.e.

L (K) "A is a cardinal"), then

(i) REC-cf(A) = y < X[a E-REC f : y -> A

with range (f) unbounded in X]; and

(ii) A is a regular cardinal of L(K) iff

REC-cf (A) = A.

Remark: 2.2.0 (ii) has been called "recursive regularity"

by Normann [1975].

For K E-closed obviously there is no E-REC f with

dom(f) = A < K and range (f) unbounded in K. However it

can happen that gc(K), for example, is recursively singu-

lar, i.e. IE-cf(gc(K)<) < gc(K). Examples of this are

K = E-cl(N ) and K = IE-cl( ), where in E-cl()W WIW

IE -cf (X ) = and in E-cl(N ) E-cf ( ) = W1 .

Remark: E-cl(W ) is E -admissible (cf. Kirousis [1979])

and E-cl(N ) is not Z -admissible (cf. Moschovakis

[1967]).

Since we demand that an E-REC function f : On -> On

satisfy

f(&) < 6, p,
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where p is a parameter encoding f, problems non-existent

in admissibility theory crop-up. For example there can be

RE sequences cofinal in K of order type less than K.

Definition 2.2.1: Let A be a cardinal of L(K), then

(i) RE-cf (A) = yiy A [there is an RE X C A

cofinal in A A o.t.(X) = y]

(ii) A is RE-regular iff RE-cf(X) = A.

Proposition 2.2.2: RE-cf(K) .

Proof. Recall that

p = y- - K (S R) [ (2 a < K) [R is RE in a] /\ (V T < K)

[R is not REC in T]

and fix the parameter <e,a> defining X. Then

W = {<y,T> I-y < / T < K /\ I{e}(a,y)I = T}

is RE of order type < n and U W = K, by the definition

of p. 0

There are cases where RE-cf (K) < p.
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Proposition 2.2.3: Let K = IE-cl(N ) then

RE-cf (K) =o1 < P = N.

Proof. p < N8 by the choice of K, however we can-

not have p < N since N is an L-cardinal. In addi-
LU1  LU

tion RE-cf(K) > W since N cannot be cofinalized with

W. For a < w, let

= sUP K ,S <N a r

where p is the parameter in the definition of p. As

before q = p = N W implies that (V a) [Sa < K ] and by

the definition of

<<t a>a <W1>

is E-REC (hence RE) and cofinal in K. 0

Since we plan to index the partial E-REC functions by

p, in the course of the argument for the existence of

minimal pairs that follows, fortunately K and p have the

same RE-cofinality.

Lemma 2.2.4 (Sacks): L(K) E-closed, not Z -admissible

and n as above, then

RE-cf(n) = RE-cf(K)
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Proof. If n = K, the lemma is trivial so assume

n < K. RE-cf(n) < RE-cf(K) for let R(K) C K witness

RE-cf(K), i.e. (2 a 0 < K) (2 e Ew) [R(K) = {y< K K

{e 0 T YY) }],with U R(K) = K. Let R C ri witness the

definition of n, i.e. ( a1 < K) (2 e1 e ) [R = {y < p

{e }(a1 ,y)t}] and L.U [j{e 1 }(ay)j] = K by R non-REC.
yER

Then define an RE subset S of p as follows: If y is

first element enumerated into R(K), then enumerate 6 E R

into S least such that, l{e 0}a0 1 y1 ) C {e1 }(aI)je

Continue in this fashion insuring that the element enumer-

ated into S at a given stage is also larger than all pre-

vious elements enumerated into S. S is then RE in

parameters <'a 0 11> and unbounded in n by 2.1.2. Hence

RE-cf(n) < RE-cf(K). RE-cf(K) < RE-cf(T): Let R(p) C p

witness the RE-cf(n), i.e. (a < K) (2 e 0 e W)

[R(n) = {y < pi {e 0 }(a0,y)I}] and K) [I{e 0 }( 01y)I =

yGR(n)

K by R(n) non-REC. Define for y e R(p),

<,6>
S = sup Kr

6 <Y

then (V y E R(n)) 4' [ < K] by 2.1.2. Then the sequence

S = <S Y y E R(p)> is RE with parameter a1 , has order

type that of R(n) and is unbounded in K, by

U) [I{e 0 '}(a0 1y)l]=K.
yER(T)
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In the course of the construction of the next section,

we will proceed in K-many stages to satisfy conditions

listed in order type p. We will make use of the assumption

RE-cf (p) = p to insure that the construction succeeds.

The final Lemma of this section tells us in terms of

Levy def inability exactly what the RE-cf(K) is.

Definition 2.2.5: Fix e On a limit ordinal and let (in

L(S)) ,

E -cfU(3) = Y $[a if y Y -> B A f E C L()

A range (f) unbounded in K].
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Remark: E-cf(s) = iff 6 is E-admissible.

Since we are considering E-closed L(K) which are not

E 1-admissible, by the remark, E1 -cf(K) < K.

Lemma 2.2.6: 21 -c(K) = RE-cf(K).

Proof. That RE-cf(K<) < 2 -cf(K) is immediate from

the fact that RE C Aj(L(K)). To see that Zi-cf(K)

RE-cf(K), choose f : E -cf(K) -> K f E E 1 (L(K)) and

consider

S = <<y,f(y),w > J y K 2 -cf(K)>,

where w E L(K), V y and is the "witness" to the E

definition of f. (Here we have suppressed the possible

parameter in the definition of f). Then S is E-REC

(hence RE) and cofinal in K since range (f) is.

Definition 2.2.7: Let K be E-closed and not E-

admissible, then let

(i) E 1 -pr(K) = py C <[a f : K---> y A f E

then

(ii) K is weakly inadmissible, iff
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2 -pr(K) < 2 -cf(K)

and K is strongly inadmissible, iff

E1 -cf(K) < E 1 -pr(K).

Proposition 2.2.8: E1 -pr(K) < p.

Proof. Recall that,

p = yy < K a y 0{(a a K K) (a 6 < y) (2 e e w) C = I{e}(y0,6) ]

and consider f: K--> p given by, for y < K,

f(y) = p6 < p[(a e e w)j{e}(yO,6)I =y],

where y0 is the parameter defining p. Then f is

JE-REC via y0 and hence E 1 (L(K)). Thus

E1 -pr(K) < p. 0

Proposition 2.2.8 tells us that, in the case that K

is strongly inadmissible, there are RE sequences of order

type less than p which are cofinal in p. This should

motivate the following definition.
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Definition 2.2.9: Let R C K be RE, then R is

scattered, if

(i) R is not REC; and

(ii) o.t.(R) = "order type of R" p.

There are scattered sets which are complete (cf.

T. Slaman [1981]). To see this consider the example of

IE-cl(k W) and define the following sequence of ordinals,

indexed by w: y <1

S= Sup K ;
a. r

a =index below p for a

At limits take supremums. Then obviously

(V a < wl)[Ka<K] and

sup a = K.
c<w 1

Finally take A to be {< ,aa+,> : a < W}, then a

straightforward ETR shows that there is an f < A and

f : W -- > K unboundedly, where f(a) = S.

Stable sequences of this sort are familiar in

admissibility theory and, in fact, give easy solutions to

Post's Problem for some Z -admissible a (cf. Simpson-

Hrbacek [1979]).
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3. Minimal Pairs of RE Degrees

Given a notion of relative computability <R'

(classically for A, R Cw A T R read "A is Turing

reducible to B"), which is reflexive, antisymmetric and

transitive, one takes the R-degree of a set A to be its

equivalence class under <R Intuitively, the degree of

A is a measure of the difficulty of 'computing' member-

ship facts about A. The relation C3 satisfies these

conditions as a relation between hyperregular subsets of

L(K).

Definition 2.3.0: (Recall for A, R C L(K) A < R

allows a parameter in L(K), then for A RE and incom-

plete,

(i) IE-dg(A) = {B C L(K) B RE and

IBC AflAC B]}

(ii) Let A, B C L (K) RE such that

(a) A% 1  B and B 1  A; and

(b) [C RE such that CC A and CC B]

-> C REC. Then dg (A) and dg (B)

(omitting E in E-dg(-)) form a minimal

pair of RE degrees.

Minimal pairs of Turing degrees were constructed

independently by Yates [1966] and Lachlan [1966] using a

strengthening of the finite-injury priority method, dubbed
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the "finite-injury-infinite preservation" method. If a

is a Z 1 -admissible ordinal, then for many a there exist

minimal pairs of a-recursively enumerable degrees (cf.

Lerman-Sacks [1972] and later Shore (1978]). Below we

demonstrate there existence for E-recursion on E-

closed, inadmissible L(K), assuming that p is RE-

regular (see 2.2.1 (ii)).

Theorem 2.3.1: Let L(K) be IE-closed, not Z 1-admis-

sible and suppose n = p and p is RE-regular. Then

there are RE A, B C L(K) such that,

(i) A, B are non-REC; and

(ii) VCC: L(K)t(C REAC A A C < EB) = C REC].

Proof. As the partial REC functions on L(K) can be

indexed by p, so too will our conditions. Assume

{W } is a listing of the domains of partial REC func-eep

tions.

Positive Conditions: For e < p, let

AP : W unbounded -> A n W <,e>
e e

B
P : W unbounded -> B n We 0 <2,e>.

e e

These conditions are called positive since they entail our

A B
putting elements into A and B. If P and P are
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satisfied, then obviously neither A nor B is REC.

Negative Conditions: For e < p, let

Ne : [{(e)0} AB(e) 1 B = f total]

t.f is E-REC <3,e>.

(Here f is treated as the characteristic function of some

subset of L(K) and free use is made of a REC pairing

function).

These conditions are called "negative" since our

strategy for satisfying them will be to preserve negative

information about A and B.

Ordering of Conditions:

For e, f < p we let R have higher priority than

Rf just in case e < f as ordinals less than p. The

partial REC functions have a standard indexing via Y < K.

Recall that

p = Iy < KJ(V a K)(a < y)(2 e E Gw)[{e}(p,6) = a]

where p is the defining parameter. Using this parameter

we have a partial REC f : p ->> K (onto) which, in turn,

can be used to interpret a partial REC function Xx{a}(x),

indexed by a < K, as a function Ax{a'}(x), where
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a' < p and f(a') = a. The tameness of this indexing is

the content of the next lemma.

Lemma 2.3.2: Assume n = p and let y < p and

f : p ->> K (partial REC, onto) be given by the defini-

tion of p. Then

dom(f) fl y E L(K).

Proof. Suppose not and let y0 < p witness the fail-

ure of the lemma. Then

{6 1 6 < y A f(6)t} c y

is RE and not REC. But this contradicts 2.1.0 (ii). 1

Thus the indexing of the partial REC functions by p

has the property that we eventually (at an ordinal less

than K) are correct about an initial segment. As

changes in our guess (i.e. fa V 6 = {y < 6 j L(a)H f(y)4}

for y < p, a < K) appear, we drop all preservations

created on the basis of false information about a given

initial segment, that is, we respect the new priority

ordering. By Lemma 2.3.2 these errors made in preserva-

tion will eventually stop (before K).

We will define length of agreement and restraint

functions. The first will measure the degree to which

some index appears at any stage to be computing the same
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set from A and B. The restraint function will monitor

the values of the length of agreement function and, under

certain circumstances, preserve negative information about

A and B needed in the associated computations giving

agreements. If for some index $ = <e,f> we have that

{A B{e} A= {f}B

is total, then the length of agreement function will in-

crease unboundedly in K for that index. If the negative

information about A and B were to remain unchanged, we

could then use d to read off the values of

g = e}A (f in an E-REC way. This won't happen,

of course, since we will put elements into A and B in

order to satisfy the positive conditions P A and P B
e e

A and B will be RE by the construction, since we will

only put x into A or into B at an ordinal REC in

<x,p> for some p e L(K). Neither A nor B will be

A BREC provided Pe and Pe are satisfied for all e < p.
e e

The basic conflict is between preserving negative

information about A and B for the sake of some N

and enumerating elements into A and B for the sake of

A B
P eand P,. Our restraint function will resolve this

difficulty by ignoring all but the negative restraint

required by conditions of higher priority.
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This strategy would still be our undoing, since

bounded initial segments of negative conditions could

successfully thwart all our attempts to satisfy positive

conditions of lower priority. Thus the restraint function

will also allow us to enumerate elements into one of A

or B at stage a for the sake of positive conditions of

lower priority provided both sides of the computation

A B{e} = {f},

associated with N <e,f> are defined and equal on a longer

initial segment of K that at any stage before a. For

an entire initial segment of negative conditions of higher

priority than a given positive condition, they are brought

to drop back restraint simultaneously be a simple hand-

over-hand argument.

Remark: This is a departure from the proof of Lachlan

11966] and Yates [1966] in CRT, since there are no limit

ordinals less than o.

In so doing, if we destroy a computation

{e}A (x) for some argument less than the length of agree-

ment, then we preserve f}B(x) until {elA(x) returns

and the length of agreement advances still further (this

will happen, if {e} _ =fB is total). We will then act
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to satisfy the positive condition of highest priority as

yet unsatisfied. Our strategy for N will nonetheless

succeed for those e such that {(e) 0 }A =BI =

A
total, since at any given stage beyond the activity of P ,

B
and P , for e' < e, one or the other side of the

e

computation is present and computes the correct value.

The parameter that then gives f as a total E-REC func-

tion will be an encoding of that stage which bounds both

A B
the activity of P , and P , for e' < e and bounds the

e e

stages at which computations, destroyed as a result of this

activity, return if they ever will.

Definition 2.3.3: If e < p, we say that N is an

A-injured at stage a + 1, if there is an active A-

requirement for e at stage a, i.e. z 6 a such

that z C) A = 0 z used negatively in {(e) 0 } (Ay) for

some y, and for some x E z, x e AJ+1 \AU (similarly

for B-injuries).

Auxilliary Functions:

Definition 2.3.4: For d < p, d = <e,f> and a < K,

let
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sup

Z(d,a) =

0,

A B
ct < 6[{e} a(a) = f a

if there is such a 6.

otherwise;

and

m(d,a) = sup (dcr).

Note: We write A and B
a a

B enumerated by stage a < K.

to be the portion of A and

Proposition 2.3.5: If e < p, a <C K, then Z(e,a) and

m(e,a) are REC functions of e and a.

A
Proof. By convention all information in {e} a) is

less than a. The proposition then follows from stage

comparison for E-recursion. 0

Thus if we have that Z(d,a) > m(d,a), it appears

that d is defining a total function on A and B giving

the same set. If so we act to preserve the corresponding

positive and negative facts about A and B, tempered by

our need to satisfy positive conditions.

Since K < K for all x E L(K), there will be two
r

ways of achieving the inequality
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{e}A B

if it is to be achieved, namely,

(i) for some y < K,

fe} () {f} (y); or

(ii) for some y < K, either

{e}A(y)t or {f}B(y)t.

If either of (i) or (ii) obtains then we preserve A (or

B) through K<el >[A] (K<eI >[B]) and, in so doing,r r

satisfy N<ef>*

Definition 2.3.6: For e < p, a < K, let

r(e,a) -

U {KI ',a) : e' < e A K 'a) < a
r r

if (e,c) > m(e,ca)

U { < a : (e,X) = te

otherwise

and

R(e,a) = U {r(e',a) e' < e}.
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Remark: To insure that Z(e,X) is defined and > 6 for

X a limit ordinal, if it is so unboundedly in X, we

restrict further injury to individual computations:
A

If {e} a (y) is destroyed by enumerating some x into
a A

A for the sake of RA, then if {e} (y) for
a+l e T

T > a + 1, we only allow {e}A (y) to be destroyed

again at stage 6 > T for the sake of P,, where
e

e" < e. (Similarly for {f} B(z)).

With this constraint on the construction, if a fixed compu-

tation were injured infinitely often, we would thereby

generate an infinite descending chain of ordinals below e'

(the source of the initial injury). Therefore injury to

a fixed A- or B-computation is truly finite.

Remark: This will not stop our satisfying the positive

A Bconditions P and P , since the amount of A used in
e e

{el}A (y) is bounded by K<eY>[A].
r

Construction: Set

A = and B0.

Definition 2.3.7: Let e < p and a < K and say that e

requires attention at stage a + 1, if

(i) e = <l,T> or e = <2,T> and

(a x < a [x > R (e, a) Aa 1 x]; or



81

(ii) e = <3,df>, if a y < a and there is no active

A- or B-requirement at stage a for Nd at argument y,

where y satisfies either,

A B
(a) [{d} a (Y) = 0 /\ {f} a

A B
[{d} "(y) = 1 A {f} (Y) =0];

or

A B
(b) [{d} a (y)t A {f} a (y)t].

Note: An A-requirement z for N is active at stage

a, if A n z = 0.

Stage a + 1: Check to see whether there is an element of

{y < a JIL(a) H f(y)f}

which requires attention. If no, proceed to the next

stage.

If yes, let e be the least y < a such that

L(a) f(y) 4 and (identifying e with f(e)) proceed

by cases depending on the form of e.

Case 1. e is of the form <l,e0> i.e. we consider

Acondition PA and since it requires attention a x < a
e0
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such that x E We0 (x E W ). For some x E W

x > R(e,a) so check to see whether enumerating x into

A+ will destroy any previously destroyed computation

Afor the sake of some Pe,. If there is no such computa-

tion, let Au+1 = A U {x 0 } and go to the next stage,

where x0  is least such. If there is, then if e < e'

let AG+ 1 =Aa U {x0} for lease such x and go to the

next stage. If e' < e, let Aa+1 = A and proceed to

the next stage.

Case 2. e is of the form <2,e0>, then proceed as

in Case 1 with the roles of A and B interchanged.

Case 3. e is of the form <3,f,g>. This case

breaks up into two subcases depending on whether e re-

quires attention because of 2.3.7 (i) or 2.3.7 (ii).

Subcase 2.3.7 (i): So there is no active A U B-

requirement for e at argument y, where

A B
[{f} a(y) = 0 A {g} ay) = 1

or

A B
a{f}a(y) = 1 A {g} a(y) = 0].

Then let a\A U B be an A U B-requirement for e at

argument y0 , the least such y.
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Subcase 2.3.7 (ii): There is no active A-requirement

(B-requirement) for e at argument y, where

A B
f a

(If both give preference to A-computation.) Suppose

A

{f} aI(y) tand let a\A be an A-requirement for e at

argument y0 , the least such y.

Stage A (A a limit ordinal): Let

Axk) A and Bx= J B6

and proceed to the next stage.

Finally let,

A= UA and BB= YB
6<K 6<K

End of Construction. E

The following sequence of lemmata establish that A

and B as constructed satisfy the conclusion of Theorem

2.3.1. This first lemma states that Z(e,a) behaves as

desired at limit stages.

Lemma 2.3.8: Let e < p and A, 6 < K, where A is a

limit ordinal. If {a < A 1 Z(e,a) > 6} is unbounded in
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X, then Z(e,X) > 6. Thus

{ Z(e,ca) = m(e,a)} and so

{a r(e,a) = 0}

are closed in the usual set theoretic sense.

Proof. (The proof follows R. Shore [1978 ].) Fix an

argument x < 6 and assume that A, 6, e satisfy the

hypotheses of the lemma. By the constraint put on cases 1

and 2 of the construction, there are finitely many stages

T such that a computation

{f} Cx) or {g}Bx

is injured. So if {f}A (x) and {g1(x) are defined

unboundedly in A, they must eventually be constant,

i.e. the same computations are uninjured from some stage

onward; thus it is a computation of

A B
{fA } X)and {g} Cx) .

Since they agree unboundedly often at x, they agree at

the limit, so
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A A
{f} (x) = {g} (x),

for all x < 5. The second assertion is immediate for if

Z(e,a ) = m(e,a ) for increasing fa } such that

A = sup Ca0'

then 2(e,k) = m(e,X) = U m(e,a ). 0

Lemma 2.3.9: A and B are not REC, i.e. (V e < p)

A B[P and P are satisfied].
e e

Proof. Proceed by induction on p. Fix e < p and

A B
suppose all e' < e of the form P , or Per are satis-

e e

fied by stage a0 < K . Without loss of generality assume

that e is of the form <l,e0> (symmetric for the case

e = <2,e0 >), thus we are concerned with putting an ele-

A
ment of W into A to satisfy P .

By lemma 2.3.2 dom(f) n e0 E L(K) where

f : p -> onto (partial, onto) given by the definition of

p. Thus take a a>0  such that a1 > jy[dom(f) n e0 G

L(y)]. After stage a, the information we have concern-

ing dom(f) n e0  is correct. Therefore we know condi-

tions Ret for e' < eo , in particular, Ne, for

e' < e. These Ne, for e' < e break into two cases:

Case 1. Those e' such that for some y < a we have at
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6 -<a

A B6
{ (e ) }a () and {(e') 16

and

A6  BS
{(e') 0} 6 (y (' 1} 6Cy

corresponding to subcase 2.3.7 (i) of the construction; or

such that for some y < a we have at 6 a,

{(e')} I(y)t or {(e') 16 t

corresponding to subcase 2.3.7 (ii) of the construction;

and

Case 2. Those e' < e such that for all y < a,

A A
{(e') a 1 a ( )

and

A A
{(e')0 }a(y)-

For fixed e' < e the restraint imposed is bounded

<eboyveby0
above by K r' where y 0 is. least such. Th-e set
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X = {<e',y> j e'< e /\ y < a and Case 1 obtains

for e' at y in L(a)}

satisfies X C a, e and so, by q =p

SUP K 'a,'e> < K.
TEX r

Take a2> a1  such that a2 > suP Kr'4' .
TEX

By W e unbounded there is an X E W e with X > a2'

Now a hand-over-hand argument on

{e' e' < e A Case 2 obtains for e'}

will yield an ordinal a3  such that

(i) 3 X and

(ii) X > R(e,3)'

A
At that stage P has highest priority among unsatis-

e

fied positive conditions, requires attention and is there-

fore satisfied by our enumerating X into A 3+18 0

Lemma 2.3.10: Let e < p of the form e = <3,f,g> and

suppose

{f}A B is total .
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Then h is REC.

Proof . e < p = r so by lemma 2.3.2,

dom(f) n e E L (K) ,

where f :p --- >K

definition of p.

G0

Thus beyond stage

(partial, onto) E-REC map given by the

Take a0 such that

Ma dom(f) fn e E L(K)].

a 0 we are correct about the ordering

below e.

A a B
By lemma 2.3.9 each Petand'P , is eventually

satisfied. Consider the sequences

AX = {<e' ,x>|e' is of the form P A ande-

A
x is enumerated into A to satisfy P , } and

e

B BX = {<e' ,x> |e't is of the form P and

B
x is enumerated into B to satisfy P ,}.

e

They are clearly RE and so by Gandy Selection their union

XA U XB is RE. Since put at most one x into A or
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A
into B to satisfy such a P ,

e
B

or P ,e

o.t. (Xk)XB) <.

By RE-cf(K) = p and e < p, there exists an ordinal

a1 > a0 bounding

{a < K 2 <e',x> E X U XB x is

enumerated at stage a into A or BI.

Now let,

K = {<e',{d}c(y),x,a> e' < e/\

(C = A V C = B) /\ {d}c (q)

d = f V d = g)

is injured due

to e' by enumerating x into C and

{d}C(y) returns at stage a},

then by the assumption that

{f A B is total

such a's exist and K is RE. By the constraint on
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Cases 1 and 2 of the construction and the fact that we

A
enumerate at most one x into A or B to satisfy Pe

B
or P ,. We have

e

o.t. (K) < e < p.

Thus by RE-cf(K) = p, there exists a2 >Ca1  such that,

a2 > sup{r4 (r) | : E K}.

With the parameter <e,a 2> = p, we show that REC in x, p

we can compute

h = {f}A = B (total).

(We have 'translated' the computation of h(x) by a 2

representing interference posed by positive conditions of

higher priority.)

Claim: (e,a) is unbounded as a varies over K.

Proof of Claim. Suppose not and let

= y (2TQ(v T> TQ(Z'(eT) <y)]. Fix T as in the

definition of B.

S = 6 + 1 : since A and B are regular

T > T
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A B
( T > T) [{f}(6) = {g} T =

fA B{f} (6) = {g} (6)]

and since S was minimal a T > T1  such that,

Z(e,T) = 6;

but then by definition Z(e,T) > 6 + 1, a contradiction.

= A a limit ordinal, then consider

6(e) = {(Y k(e,a) > 61

for 6 < A. 6(e) is E-REC and unbounded, hence for

6 < A there is a common limit point T > T0 and by lemma

2.3.8, (e,T) > 6, a contradiction. claim 0

Sublemma 2.3.11: If p is REC regular and 6 < p, then

{a j a < 61 is 6-reflecting, i.e. for p < K, a para-

meter,

sup K<r K,<p,6>

a<6 0r

Proof. This is essentially due to Normann [1979], for

normal Kleene recursion in k+2E , where he proves the

analogous result for p = |-(|, -< a recursive
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well-ordering of I (individuals). Proceed as in Normann,

but do an effective version of Grilliot Selection on L(K)

(see Appendix for details). Sublemma C

We now proceed by induction to show that for every

T > a2  at least one of

A B
{f} T(x) or {g} (x)

T T

is defined. Then we show by ETR on p that there is such

a T-<x, a2.A

If 9,(e,) = m (e, T) > x, then both of {f } T (x) and

B
{g} T(x) are correct by induction. Otherwise let y < T

be the last stage greater than a2  such that

Z(e,y) = m(ey) > x.

By lemma 2.3.8 only one was injured at stage y, say

A
{f} (x). By the definitions of r(e,a) and R(e,a)

nothing has been allowed to injure the computation of

A

{f} (x)

and it is preserved through T by the choice of y.

Thus,
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A A
{f} (x) = {f} T(x)

A B
But {f} >x) = {g} (x) by the choice of y and one is

correct by induction.

To compute h(x): suppose we have computed h(y) for

all y < x. Considered as pairs <a1 ,y>, by sublemma

2.3.11,

sup <<a2 y>< K r ' 
2 X SUXK 0  

r
y~x

<a2'x
Thus at some G < Kr all h(y) have been computed.

r
A B

At a we can ask (f} (x) or {g} (x) for a value

and be correct since from a onward we protected with

highest priority the computations {fj}A (x) and {g} B x

associated with e. By reflection U a < K< at

which this is true and, hence, at any T > a, rT <r <a2 ,X>

we compute h(x) and get the correct value.

D

This completes the proof of Theorem 2.3.1. E

Remark: A closer look at the proof of Theorem 2.3.1

reveals that the following strengthening is possible.

Theorem 2.3.12: Let C C K be RE, non-REC and incomplete

and RE--cf(p) = p. Then there exist A, B C K, RE and

non-REC such that,
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(i) If DOK is RE, D A and D 1 B, then

D is REC; and

(ii) both [A E C A C C A] and

[B 3 1E C/\C< 1  B].

The proof of 2.3.12 proceeds as in Theorem 2.3.1 with

additional conditions:

RA: {e 0 }A d C /\ {e0} C A; e = <4,e>

R : {e B 3 C /\ {e C B; e = <5,e0>.e 0 0

For clause one of each Re and Re introduce preserva-

tions which will insure that if, say, {e}A = C, then C

is REC, contradicting the choice of C. For clause two of

A Beach of R and R which are positive, introduce
e e

A
constraints on putting x into A or B for Re or

RB similar to those on P A and PB in the construction
e e e

of 2.3.1. The proof of this will appear in E. Griffor

[1980]. (At this writing the author has noticed that the

assumption of RE-regularity on p can be eliminated by

an entirely different proof for another choice of the

parameter p (see E. Griffor [1980]).)
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Chapter 3: 1(A)-Recursion and the Density Theorem

0. E(A) -Recursion

In Chapter 2 we made use of the Kr-function in the

setting of E-closed, inadmissible L(K) to carry out a

priority argument yielding a minimal pair of RE-degrees.

As remarked, this minimal pair can be taken to be incompar-

able with an arbitrary incomplete RE A C K. The Kgr

function has also been used by G. Sacks [1980] to give a

positive solution to Post's Problem for every E-closed,

inadmissible L(K). His solution uses a 'wait-and see'

argument without injuries. Thus what was a finite-injury

priority argument in ORT and a-recursion theory can be

done without injury. We will see in this chapter that the

density theorem for RE-degrees is, in many cases, a

'finite-injury' argument, i.e. injuries bounded below K.

Again Z1-reflecting ordinals will play the key role in

our strategy, where here we are concerned with Z1(A)-

reflecting ordinals for A C K RE and incomplete. For

this choice of A, L [A] = L and L is E(A)-closed,

i.e. A does not violate the E-closure of L(K). If

L(K) is inadmissible, then so is L [A] and this fact

combined with L(K) E(A)-closed provide the basis for

an argument using Z1 (A)-reflecting ordinals.
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Proposition 3.0.0: A C K, then

E1(A)-cf(K) < Z 1 -cf(K).

Proof. Immediate from the definition of E (A)-cf(K).

0

We will see that the RE(A)-cf(c) is E (A)-cf(K).

Definition 3.0.1: For 6, a < K, L(K) E-closed and

A C K, call a 6(A)-reflecting, if for all EI(A)-

formulae, $(x), of L(A)

L6 [A]H(6) L 6 [A]$(6).

K0

Remark: (i) L(A) is the language L of Chapter 1 with

an additional predicate letter A to be interpreted as a

chosen subset of K.

(ii) Recall from Chapter 1 that KQ[A] = "supremum

of those r < K which are REC(A) via some integer in

6 6
6". Obviously K 0 [A] > K0 .

As before, the limit of 6(A)-reflecting ordinals is

6(A)-reflecting. Let K [A] be the last 6(A)-reflectingr

ordinal. For A C K RE and incomplete we will have

L [A] = L(K) E(A)-closed and, hence, by 3.0.0 for each

6 < K there is a E1 (A) formula e6 (x) of L(A) such



97

that, L

Kl [A]

[A]$ 65(5) but L 6 [A] 6 (6) i.e.

Kr [A]+

5
K [A] < K. For such an A we exhibit the same uniformityr

which Harrington [1968] demonstrated in the setting of

higher types.

Lemma 3.0.2: For 6 < K and A RE and incomplete, if

B C K non-empty and co-RE(A) via 6, then there is a

y E B such that K 'rA]-< K6[A].

Proof. Suppose not and pick E1 (A)

such that L 6 [A]f= 4(5) and L 6
Kr [A]+1 K [A

0 (x) in L(A)

[A] $ 4(5) .

This can be done, since by the choice of A K [A] < K
r

for a < K. For all y E B K <f>[A] > K [A] and sor r

L K< A> [A]j=$4(6). By reflection

r

L '<6 > [A] = ( )

0

Since B is co-RE(A) via 6, there is a E1 (A) formula

(x,y) of L(A) such that

(V Y < K)[y r B iff L <6,Y> [A]H 6(5,y)].

K [A]

Thus V y < K,
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K <6,Y>]
0

[Aj (6,y) V $(6) and so V y < K,

[A]= $(6,y) V 4(6). We have used the bounding prin-
L[A]

ciple relativized to A,

violate the E-closure of

Since B 3 0, a y <

and so L 6
[A]

which holds since A does not

L(K).

K such that L 6 [A],=4$6,y)

Ko[A]

[A] 4(6), contradicting the choice of $.

0

Theorem 3.0.3: L(K) E-closed, inadmissible and A C K

RE and incomplete. For any B C K RE(A) there is a

relation <R(A) on K which is RE(A), such that

(V y < K) ygV B iff (a 6 < K)[6 encodes a <R(A)

infinite descending path through the computation tree re-

sulting by applying the definition of B (rel. to A) to

y].

Proof. Suppose B RE(A) via e, i.e.

y E B <-> {e}A(y)t

(suppressing parameters). Then if y E B, {e}A(y)t and

{e}A(y)A = a < K and the computation uses positive and

negative information about A n a 8 L(K). Similarly, if

y 9 B, then {e}Ay)t, so repeat the argument of Chapter
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1 relative to A to get an infinite descending path through

<R(A) below <e,y> (the subcomputation relation relative

to A). By the fact that A preserves the E-closure of

L(K) there will be a < K, such that

La[A] H"g inf descending path

through {e}A(Y)

We now have our uniformity,

Theorem 3.0.4: Take A c K RE and incomplete, then there

is a formula aA(x) of L(A) (not E1 (A)) such that

V 6 < K

L 6 [A]H A (6),
Kr[A]r

but for all a < K [A], L [A]$= 6

Proof. Take <R(A) as in 3.0.3 RE(A), so there is

a E 1 (A) formula $(x,y) of L(A) such that,

(V a,T <IK)[a < TR(A) iff L ([A]

0

iff L [A] $(a,T)].

By our choice of A, there is a E1 (A) formula $(x) in
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L(A) such that

(Y a<K)[ai iff L a
K 0 [A]

[A]H $(a)],

viewing a as a code for an E(A)-computation. Let 6CAX)

be the following formula of L(A).

6 (x) = ( m e w)[$(<m,X>) V 2 6 < K

(6 encodes f : w -> K A f(0) =<m,x>

and (V n e w)4(f(n),f(n+l))].

Thus for any a, 6 < K: if

La [A] eA (6),f then

(V m e w) [{m} (6)4 iff L [A]h ic(<m,6>)]

6 6
so a > K6[A] and, in fact, [ > Kr[A], for otherwise

6
this fact could be reflected to some T < K 0 [A], which is

absurd.

Claim: For 6 < K
Kr[A]

[A]h A (6).
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Proof of Claim. It suffices to find, given m E L

wush that {m} ()t, an f : -> K such that

f(0) = <m,6> and (2 n E w) [c(f(n),f(n+l))] and

(2 n E w) [K< r(n),f(n+)> () [All. Let f(0) =<m,6>

and given f(n)t such that

Kf(n)[A] < Kr[A],r r

find f(n+1)t with

1. p( f(n),f(n+1), subcomputation

2. K<f(n),f(n+1)>6[A] 6 [A].
r r

The hard case is a branching i.e. f(n) = <3m -5e, T> for

some T < K, m', eEw and {m'}(T)t. Let a= Jmj

then

<HA
B = {y <K y/\ YE We a I

is co-RE (A) via f(n) and so by 3.0.2 there is

f(n+1) E B such that

K<f(n) ,f (n+) > [A] < Kf(n) [A]I <K6(A]
r r r

take f(n+2) to be least such.
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Remark: In the case that the universe is effectively

well-ordered (as in L) we can actually piece together the

infinite descending path. In general, as we will see in

Chapter 4, we can only designate several paths.
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51. Relativized RE Projecta

In order to show that the RE degrees are dense for

L(K) we will need to work in E(A)-recursion, that is, in

the structure L [A], where A is RE and incomplete. As

we saw in the case of Theorem 2.3.1 (Minimal Pair) of the

last chapter parameters such as nL() PL(K) and

RE-cf(K) played important roles. As we will work in
LK[A] LK[A]

L [A] we will instead be concerned with A , p

and RE(A)-cf(K) among others.

Definition 3.1.0: Recall that the E(A)-REC functions are

denoted {e} and let

L [A]
(i) p K =1JY CKac 0 [(VaK) ( 6 <y) (aeeE )

[= {}A 0')A

a "notation map relative to A"; and

(ii) K = Wy K a 0 [R C y is RE(A) in

but V a < K R is not REC(A) in a].

Then as before we have,
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Lemma 3.1.1: (Abbreviate p

IA

(i)

(ii)

s A L [A]
as p and rj

IA A

nA and pA are cardinals in L [A].
K

Proof. (i) By the definition of pA there is a

a0 < K such that

(V a < K) ( 6 < pA) (a e E w) [a= {e}A(cr0 ,6) 1A

Let

= A A {)0 A 1 '

then 0A is clearly RE(A)\REC(A).

(ii) Suppose a ff e LK[A] such that f :nA<>

for some y K rA and let R C qA witness the definition

of A Then

{f(6) 6 6 E RI C y

is RE(A)\REC(A) by the choice of R, contradicting the

choice of nA as least.

Similarly suppose a f E L [A] such that

f: pA <--> Yfor some Y < pA. By the definition of p ,

a a0 < K such that,

as

(*)
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(VU < K ) (a 6 < pA)21 e E w) [ = {e}( 0,)A

Then clearly,

(V a < K) (2 6 < y) (2 e E w) [a = {e}A (ao (6) A]

namely fix a< K and take 6 < pA and e E w with

A A
a = I{e}AcAot(6)) and then a = I{e}A (aoAf(6)I. But

this contradicts the choice of pA as least. E

Definition 3.1.2: Let A C K, then

(i) A is regular iff (V a < K) [A r) a E L(K)]

(ii) A is hyperregular iff L [A] is E-closed.

Proposition 3.1.3: Let A C K RE, then

(i) A hyperregular -> A regular,

(ii) A is complete RE <-> A is not hyperregular

(recall that an RE A is complete just in case B C A

for all RE B C K).

Proof. (i) Suppose A is not regular and let a0<

witness the non-regularity of A, i.e. A nl a0 r L(K).
Define f : a0 -> K,by

I{e}(y)|, if y E Afl a0

f(Y) =

f 0 ,otherwise.
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Then f < A and range (f) is unbounded in

otherwise a a < K such that range(f) c a.

A r a 0  E <a ,e,?a> and hence Afnla0 E L (K)

ing the choice of a T. But now f witnesses

E-closed, contradicting A hyperregular.

(ii) Case 1: p < K, then let,

K, for

But then

contradict-

L [A] not

0 = {Y< I < p {(y)0}C(o1Y)}'

wherea0 is the parameter in the definition of p. Re-

call that {jy(0 | y e 0} are unbounded in K and let

f : p -> K be defined by,

Fy ,if yE 0

f(y) =

I0 ,otherwise.

Then since 0 is RE, 0 C A and hence f A. Then

f witnesses A not hyperregular (note that by (i)

L IA] = L ).

Case 2: Assume that if K 6 < K is E -

closed, then the function

G L(K 6 )

K ~> pK

K = K) K 6 ',

where

is constant.
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Define for p = G(K 6 ), V 6 by ETR f p -> K

f(S) = sup g6 (T),
T<p

where in L(K6 ) we let

= < p ( (Y) )( K6
K 0 K

and p
K6

L(K6 )
defines p

0
K6

(Tr)

g 6 ( ) =

0

. Also g6 p -> K 6 , by

K

otherwise.

Then f < A and witness L [A] not E-closed. Hence

A is not hyperregular.

Now suppose A is not hyperregular, i.e. there is

6 < K and f : 6 -> K unbounded with f CE A, then

{e}(y) <->

(a a <sup f(y)) [l<e,y>I C(a].
Y<6

Hence A is complete RE. 0
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Remark: Recall (Sacks [1980]) there is a

regular complete RE subset of K. We will use this and

the fact that every incomplete RE subset of K is regular

(by 3.1.3) in our argument for density of the RE degrees.

Lemma 3.1.4: Suppose A C K is RE and incomplete, then

(i) L [A] = L , and

(ii) L [A] is IE-closed.

Proof. (i) By 3.1.3 A is regular and hence

L [A] = L . (ii) by 3.0.3 A incomplete iff A

hyperregular ifLf L [A] is E-closed.
K

Remark: For incomplete RE A C K we will often write

L(K) for L [A], noting that we are still concerned

with those functions E(A)-REC on L(K).

Lemma 3.1.5: Let nA and pA be as in 3.0.0, where

A C K is RE and incomplete, then

A
(i) p = pA; and

(ii) a K IE-closed such that

A An < P

i)PA _<A
Proof. (i) p p by definition so assume pAK p

then the map

a !f>y < PA [a =I{e}A(a 0 y)J
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where a0  is the parameter in the definition of p is

E (A) -REC and total on K. By the definition of this

notation map for fixed a < K

(*) y< PA A ( e e w) [a = {e} (a0,y) IY IA

E L [A] = L(K) and so consider

A
f r p :p -> p

By (*) f r p uses at most A n p E L(K), by regularity

of A and, therefore, f r p E LCK). But this contra-

dicts p a cardinal in L(K). (i) C

Cit) By part (i) p = pA so suffices to give E -

closed K where n < p: Let L(K) = IE-closure( S ) and

in L(K) form

E-cl(w U { }) = M

and let be the Mostowski collapse of M. Now

L(CK) MMp - and hence p = S , however clearly

M
[sup K] = On n
.Y<Li1 0

and hence pm < pm. Hence
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nA<2 A 2M

for any incomplete RE A C On n R. (ii) C

Remark: is E-closed since M is closed under

X -> K . To see this notice that any infinite descending
r

path through a divergent computation in L(K) can be taken

to be a countable sequence of countable ordinals, hence REC

encodable as a countable ordinal. At a branching at level

n, simply take the least a <w such that for some

y < X the computation procedure diverges on y. This

example was first noticed by T. Slaman.
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2. Relativized RE Cofinalities

As in Chapter 2 an obstacle to the priority method is

the existence of RE sequences of short order type cofinal

in K, so-called scattered sets. Such sequences arise

naturally in the argument for the existence of a minimal

pair of RE-degrees. Associated with a fixed negative

condition are computations which are injured for the sake

of positive conditions of higher priority. The set of

such computations which eventually return form an RE

sequence which may or may not be REC. Essential to the

'recovery' argument there was our ability to bound these

sequences below K. Working in L [A] we are concerned
K

with sequences RE(A)\REC(A) of order type less than n

(and hence less than pA since we will assume that

A A
A = pA).

Definition 3.2.0: Let A C K and A a cardinal of

L [A],, then
K

(i) RE(A)-cf(X) = -y[y is the order type of some

X C A RE (A) and unbounded in A]

(ii) A is RE(A)-regular iff RE(A)-cf(A) = A.

Proposition 3.2.1: Let A C K be RE and incomplete, then

(i) RE(A)-cf(K) < RE-cf(K); and

(ii) RE(A)-cf(K) = Z1(A)-cf (K).
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Proof. (i) Immediate since any R C K which is RE

is RE(A). (i) E

(ii) Z 1 (A)-cf(K) < RE(A)-cf(K) since any R C K

RECA) is E(A), where the witness in the EZ1 (A) defini-

tion is the computation {e}A y) = W, e, y < K.

W E L [A] by the fact that A preserves the E-closure

of L(K), i.e. if {e} (y)t, then a a < K such that

<e,y>fA = a

and the information about A used in the computation, say

A n a, is an element of L(K) (since A regular).

Thus,

{e}A(6) <-> [there is an ordinal a < K

and a neighborhood A n y for

some y < a such that

{e} Any(),

The right hand side is E(A), i.e. E treating A as

a AO predicate with some parameter less than K.

RE(A)-cf(K) < E1(A)-cf(K): let f y:y -> K witness

j (A)-cf(K) and for each 6 < y, let W be the witness

to f(6) = a < K. Then the sequence
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<<6,f(6),W6 > 6 < y>

is RE(A) and has order type y. Thus

RE(A)-cf(K) = Z(A)-cf (K),

as desired. (ii) 0

If we use pA (pA = p for our choice of A by

3.1.5 (i)) to index the conditions of our argument, then

RE(A)-cf (K) is somewhat well behaved.

Lemma 3.2.2: Let -nA be as in 3.1.0 (ii), then for

a < K and y < rpA

SUPK <a"'6> [A] < K.
6<y r

Proof. Suppose not and let y 0 and a0 witness,

sup K [A] = K.
6<Y r

Sublemma 3. 2. 3: sup K ' [A] = K -> sup K0 ,[A] = K
6<y 6<y

Proof of Sublemma. Suppose that sup K ' [A] = K,

<a, 6> 6<y r
but sup K0  < K and take X. K<K such that for all

6<y
6 < Y
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K< ' [A] A 0.

By assumption there is a 6 0 < y such that

S <a,6
0O r

Without loss of generality y is closed under pairing, so

take 6 < y such that

Kr

<a,61

and let 6 = <60'6 >. Then 6 < y and

K [' 0 [A] < K<' [A] K K,r r

so L Ka,6>

Kr A]

[A]H ") a Li[A]H AS) . " where 6A CX)

is the formula of Theorem 3.0.4. By reflection,

L

K (A]

[A] H" a L [A] 1 A(6A0)l'

but then

%,0 [A <a,6>[A
Kr A0'

contradicting the choice of 60.0 r-l
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Returning to 3.2.2, by the choice of y0 and a0

and 3.2.3

<a0,'6
sup K0 [A] = K, but

6<y 0

R o= {6 < Y0 1(2 e E w){e}A (&,y)41 }

is by Gandy Selection an RE(A)\REC(A) subset of y '

A Acontradicting the definition of p and y 0 A . Thus

V G < K, yVyY< n

sup K '6[A] K K.
6<Y r

C

With this lemma we can now show that K and A

have the same RE(A)-cofinality.

Theorem 3.2.4: A C K RE and incomplete, then

RE(A)-cf (K) = RE(A)-cf(r A).

Proof. RE(A) -cf (K) < RE (A) -cf (riA): Let R (A CA

witness the RE(A)-cf(nA), i.e. for some e E w and

0  

AK 

,

R(nA f <qA f A~aOY
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A A A
is RE(A) and U {y y E R(n )} = For y E R( ),

let

Y = sup K 1 [A],

6<y r

where a is the parameter in the definition of nA

Then by lemma 3.2.2,

A
(V y e R(p )) [S < K]

y

and the sequence

S = <S Y y e R(nA)>

is RECA) via <a0 ,a'1>. By the definition of nA S is

also unbounded in K and also has order type that of

R (n A). Thus RE (A) -cf (K) < RE (A) -cf(nA).

To show RE(A)-cf (nA) < RE(A)-cf(<), let R (K) C K

witness the RE (A) -cf (K) , i.e. (a e E w) (aa 0 < K),

R(K) = {y < K {e}A ( 0 y)t}

is RE(A) and U R(K) = K and R(K) has order type

RE-cf (K).

Fix a witness to the definition of nA, i.e.

R C nA RE(A) via e' E w and a < K. Define S C'nA
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as follows: Run algorithms for computing R and R(K),

if x is enumerated into R(K) i.e. {e}A (c 0 ,x)4, then

enumerate into C the first element y E R satisfying

{A ,A{e }A(a01Ox) I<j {e' }A (a11y)J

Continue this process each time enumerating y into c

just in case y is greater than all y' previously

enumerated into C. Then ; is RE(A) and of order type

A
that of R(K) by construction. U = n , for otherwise

2y <cnA

sup K0  [A]=K
6<y

for some a < K, contradicting Lemma 3.2.2. r-
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3. The Density Theorem

To carry out the preservation-recovery strategy in

Chapter 2, we made use of what is called in the Appendix

Normann Reflection, i.e. p REC-regular iff (v 9 < K)

(V 6 < P)

sup K0 K'.
Y<6

An analogous result holds for L [A] for A C K RE and

incomplete with minor changes in the proof. We state the

result here with a sketch of the proof.

Theorem 3.3.0: Let A C K be RE and incomplete, then

P A is E(A)-REC regular iff V a < K Vy <p

sup K 0 '6 ,T>[A] < K< [A].
6<yr

Proof (Sketch): The proof of 3.3.0 proceeds as in

the Appendix with some changes. Instead of the collapsing

argument used to produce the parameter

B6 = {f : 6 -> p f EL(K)

first notice that for f : 6 -> pA, f E L [A]

A Au rng(f) < p by the E(A)-REC regularity of p , say

U rng(f) = a. Then f uses at most A n a in its
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computation and A n a G L(K) by regularity of A. By

the lemma of the Appendix and p = PA

fA n a J a < pA} E L(p+l) C L(K).

Thus, using A,

B6 [A] = {f 6 > pA f E L [A]} E Lp+ 1 [A] C L(K).

Then use B6 [A] to carry out the selection argument to

get IF x) partial REC(A).

As before, suppose a a0 K a 6K<pA such that,

0 0 0rsUpD K 0  [ >K r [A] .

6<6Q

Now let

R = {6 < 60 ( ca e C- ){e}A(60, Y'

then R is RE(A) subset of 60 via <6 01 0 >. Let

<00,60

R(> Kr [A]) = {6 < 60 ( e E w){e}A(60 ' 0 6)4
. r0

<aY 0>A 6 Al
A Kr r [A] K I{e} (60'a0,6) }

00then R(> Kr [A]) is RE(A) subset of 6 viar 0
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A<60'G0>, say via the integer e0 . Then F<, (e )4 and

min jzj < I F(e H .

zER (> K [A])
r

But by the definition of rA,

r A (e ) I < <0 [y>A] <60Fa0>(l
<6a'0 0'

contradicting the definition of R(> K [A]).
r

E

Theorem 3.3.1: Let L(K) be E-closed and not E -

admissible. Let A, C C K RE and A be incomplete with

A < C but C%1 A and further suppose that rA _=A

and pA is IE(A)-RE-regular. Then there exists B C K

such that

(i) B is RE

(ii) [A<1 B /\ B% 1  A] and [B E C/\ C B].

Proof. Strategy.

In proving 3.3.1 we employ the basic idea first used

by G. Sacks [ 1964 ] to prove that the Turing degrees of

recursively enumerable subsets of the integers are dense.

To insure that A B we plant with highest priority A

into B as A is enumerated on L(K). B < C by the
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construction and the fact that A C. To insure that

B $ A we will monitor, for each index e, the length

of agreement between {e}A and B and if this length

appears to be increasing unboundedly in K, then we will

plant information about C as it appears into B in an

E (A) -REC way. If we then had B = {e}A finally, then

we would have C C A contradicting the choice of A

and C. To insure that CO B we monitor, again, for

each index e, the length of agreement between {elB and

C. If this length appears to be increasing unboundedly

in K, then we will preserve information about B used

in those computations. If we then had {e}B = C

finally, then again we would have C 1 A contradicting

the choice of A and C. Without loss of generality we

can assume that both A and C are regular. The fact

that A is incomplete insures that L [A] = L and that

L is E (A) -closed.

Conditions and the Ordering

The conditions to be satisfied will be indexed by

PA = p. By the definition of pA there is a partial

E (A) -REC function from pA onto L(K) and a total

A1E (A) -REC map of K into p . This latter map is given

by, for U K K,
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a -> (wy < p (a e E w)

[a = I{e}A( 0 ,y)1 ,

A
where a0  is the parameter in the definition of p . For

e < pA

PA A < EB

P AB e B 7 A e = <1,e'>e

We write P A and P AB to indicate that these conditionse

are positive, i.e. they entail our putting elements into

B to satisfy them. For e < p A

NB, {e} C e = <2,e'>
e

We write NBC to indicate that these conditions are
e

negative, i.e. they entail our restraining certain elements

from B in order to preserve {e} B on longer and longer

initial segments of K. The priority ordering will be

given by the ordering as ordinals of indices less than pA

1. PA has highest priority

2. For e, e' < ps if R e R lrange over positive

and negative conditions then Rt has higher priority than
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R e iff e < e'

conditions).

(provided e and e' are indices for

Proposition 3.3.2: Under the assumptions of the theorem,

if y < PA then

A
(i) p indexes the E(A)-REC functions;

(ii) {f f E(A)-REC with index 6 < y} = P(y) is

an element of L .
<y,a0>

K I A]r

Proof. (i) The IE(A)-REC function have a natural

indexing via ordinals a < K. Using closure of pA under

pairing and the definition of pA there is a 6 < pA

such that for some e E,

a = {e}A(ao,6)I,

(a0 0  the parameter defining p ) i.e. a is constructive

in 6 via <e,a0> ()M

(ii) That P(y) E L(K) follows from IA = A and

the fact that P(y) is an RE(A) subset of y < pA

However Theorem 3.3.0 gives that

<a0 ',y>
sup K 06<y

and hence

[A] Kr
r

P(y) E L

r [A]

[A]

(ii) 1
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The proposition asserts the strong 'tameness' of or

reindexing of the ]E(A)-RE functions via P .

Auxilliary Functions

Definition 3.3.3: For a < K and e < pA if e

then let

AB B
A (,e) = max (V a < y) [e'} a () = A (0)0,

Y<aa

and if e = <2,e'>, then let

nfl B
ZBC _(,)e) ==maxy<C(Vca<y)[e'}I c )C(a)].a y

Remark: (a) D = {y < K {e}(y)t I\ {e}(y)j < y}

where e defines D C K RE.

(b) Subscript a on {e} (y) indicates that it

is evaluated in L(a) and, by convention, all information

is coded by ordinals less than a.

Definition 3.3.4: If a < K and e < pA, then if

e = <l,e'>, let

mA,B A,B

and if e = <2,e'>, let
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mB,C B,CM IC (ea) =UK)Z BC(e,)

"longest initial segment of agreement before stage a".

Suppose that,

p(e,a) = y[Y bounds negative facts about

B used in evaluating ZBFC(e,a)].

A bound on p(e,a) will arise in one of two ways:

1. (H a < K){e'}B(a) , in which case

p(e) = lim p(e,a) < K<e'a>[B]; where
r

kBIC (e) = lim ZBC(e,a) = a; or

2. (2 a < K) [C(a) a {e'}B()] in which case

p(e) = lim p(e,a) < T < K <e'I>[B], where

BIC (e) = lim ZBC (e,c) = a.

Roughly, we will be able to conclude that 1. or 2.

obtains after the fact by an ETR on y < e.

Definition 3.3.5: For e < pA and a < K say that e

requires attention at stage a if e is least such that

either,

(i) e = <l,e'> and APB(e,a) > mAB (ea); or

(ii) e = <2,e'> and BIC(e,C,) > mBC(eIc).
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Construction

Stage 0: Set B = 0

Stage A: A E LOR, then let

B = K.) B

Stage a: a E SOR. Let e be the least index less

than a which requires attention, then:

Substage 1. Check to see whether A \A 0,a T

where a = T+l. If so for each y E A \A , enumeratea T

<Q,y> into B and proceed to substage 2.

Substage 2.

Case (a). e = <l,e'> (PAB) and suppose thate

zAB (e,a) = z. Consider the truth value of the sentence:

AB B
AB (z,e,a) 2 (V x < K) [A (x) = {e'} a(X)]a a

in L(K) (i.e. 0 or 1) and let cAB y,e,a) be that

truth value. Let p(z,e,a) = "the number of changes in

c(z,e,T) for T C a"; say that p(z,e,a) = 6. Form the

pair <z,6>, then a a < p such that {(a)0 }(() 1 )4 and

I{(c) 0})((ct)| = a. Form <a,<z,6>> and check to see

whether <a,<z,6>> > R(e,a), where
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R(e,z) = U (d,a) d < e A (a d') [d =<2,d'>
r

If <a,<z,6>> < R(e,a), then go to the next stage. If

<a,<z,S>> > R(e,a), then let

[<a,<z,6>> E B iff z E C ]

and go to the next stage.

Case (b). e = <2,e'> (NBIC), then proceed to
e

the next stage.

Finally, let B = ) B.
Y<K

End of Construction.

We now show that the constructed B satisfies the

statement of the theorem.

Lemma 3.3.6: (i) B is RE

(ii) A<1 B and B< C.

Proof. (i) By the construction the elements of A

were enumerated into B as they were enumerated into A,

say A defined via parameter a < K, i.e.

y 8 A <-> <Oy> 8 B.

In addition, in Substage 2, Case (a) we had elements of B

of the form <a,<z,6>> and a was an index less than p
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for the stage at which we enumerated <a,<z,6>> into B,

if we did it at all. (i) C

(ii) A B by construction and B C C by

construction and the fact that A<C C. ii C C

Lemma 3.3.7: B %E A and C %1 B (allowing parameters

in L(K)).

Proof. We proceed by induction on e < pA and the

form e (i.e. e = <l,e'> or e= <2,e> corresponding to

PAB and NBC). Fix e and assume that for d < e wee e

have that

(i) a $ {d}A, if d = <l,d'> and

(ii) C $ {d'}B, if d = <2,d'>.

Case 1. e = <l,e'>(PAB). P(e) E L(K) so lete

a= 0 a < K[ P(e) e L(a)]. For d < e corresponding to

(i) and (ii) we have: (i') d = <ld'>( ac < K) such

that t{d'I}A(a) 3 B(c)] or [{d'}A(a)t]; or

(ii') d = <2,d'> (S a < K) such that [{d'}B(a) # C(Ca)]

or {{d'}B(a)t]. In either case let a(d) be the least

such. By E(A)-closure of L(K) this disagreement or

divergence is established by & < K<d',ca(d)>[A] or
0

K <d't ac(d)>f[B]. Let for d K e:



S 0
0

a[j{d'}A(t(d))

K <d',a(d)>[Al,
r

= Ifr if (d'}A t(d)) / B(a(d)) /\ d =

if {d'} (a(d))t A d =

HNJ

a[I{d'} B((d))I = a], if {d'}B(a(d)) A C(ct(d)) /\ d =<2,d'

K <d'(d)>[B], if {d'} (a(d))t /\ d = <2,d'>
r

S(d) =

0e0



130

Then the sequence,

<S(A) | d K e>

is RE(A) and of order e, hence bounded by some

a > 00 (E(A) -RE-cf(K) = pA). For d < e d = <l,d'> we

planted falsely in B, consider F(e) = {<z,d> J d < e A z

planted for the sake of PA,B} E(A)-RE of order type < e,a
hence bounded by some a2 > 01. At a2 we can compute that

false planting activity and V T > a2' assuming {e'}A = B,

we plant for the sake of e with highest priority in an

1E(A) -REC way. Suppose we have computed C(y) V y < z

E(A) -REC'ly via fA and show that fA(z) = C(z) can be

computed. Now e enumerated in C then I"e E C"I < K PZ>
0

p defining C, and

supI fA(Y)I < K' [A] (by 3.3.0).

<02'~
Thus a a < KK [A], by which time we have

f A(y) I Ky< z} and T = I{p}(z)I (assuming a2 = <0

and at stage z was E(A)-REC coded into B, thus

f A(z)t and correct. But with f A CE A, contradic-

tion. C

Case 2. e = <2,e'>(NBC) P(e) E L(K), lete

00 = pa[IP(e) E Lc(K)]. Take <a(d) I d < e> as in Case 1

and also S(d) and the bound a2 and consider,
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I(e) = {<z,w> I z planted for the sake of

PAB A d < e injuring w associated with
d

e and some argument a}

which is E(A)-RE in a2  of order type, e and hence

<a<z,w> <z,w> E I(e)>

where a(z,w) = stage at which w returns is also

E(A) -RE and, hence, bounded by some a3 > a2 (assuming

C = {e'}B for a contradiction). We show by ETR

that C CE A with parameter a3. Suppose we have de-

fined fA(' V y < z. By construction we preserved

{e'}B = C with highest priority after a3 , hence

<a3,'z>sup IfA Kr [A]

Y<zr

using IE(A)-closure of L(K) and 3.3.0 hence by reflec-

<a3,'z>
tion S a < KV [A] with l{p}(z)| C a, where p0

defines C. For all T > a we preserved {e'}B(z) with
B

highest priority and fA(z) = {e'} a(z) is correct.

Thus, C C A, a contradiction.
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Thus B satisfies the statement of the theorem.

Corollary 3.3.8: (Density). Let L(K) be E-closed,

A A A
not E -admissible and assume nA p and pA E(A)-RE

regular for each A, C C K RE with A <1 C, but

C 3 A. Then the E-RE degrees on L(K) are dense.

Proof. Apply Theorem 3.3.1 to each pair A, C and

take a = 1E-degree (A), b = 1E-degree (B) and

c = E-degree (C), where for D C K

1E-degree (D) = {B C K D B A B D} = d.

Then a < b < c. E

Remark: At this writing the author has found a means of

eliminating the assumption of p E(A)-RE regular by

an entirely different proof using a shorter 'tame' listing

of the E(A)-REC functions. Independently, T. Slaman

has given a proof of density using his techniques for

'splitting' IE-RE sets (Griffor-Slaman [1980]).
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Chapter 4: Absolute Degree Theory: Normal Kleene-

Recursion Revisited

0. Absolute Degrees

This last chapter will consider another particular

case of an IE-closed set, namely the universe for normal

.k+2Kleene recursion in F : Tp(k+l) -> Tp(k+l), k > 1,

reviewed in Chapter 1. There we described a hierarchy

for k+2F which amounted to iterated constructibility

relative to a predicate contained in Tp(k+l), L I[F],
K

where K was the least ordinal not recursive in

<F,a> for some a E I = Tp(k). As Normann [1978] has

shown, this theory can be shown equivalent to IE-Recursion

on E-cl(Tp(k)) with an additional predicate or relation,

i.e. E(R)-Recursion R c Tp(k+l). In this case

R = k+2F c Tp(k+l). There may or may not be a well-

ordering of Tp(k) in what we will call F-cl(Tp(k)),

read the 'F-closure of Tp(k)'. However the ordinals

less than K form the spine of this universe and since

F-cl(Tp(k)) is indexed by elements of Tp(k), it makes

sense to focus our attention on those elements of

Tp(k) which have the same degree in the sense of F as

an ordinal < K modulo some integer. If we narrow our

attention then to those elements of F-cl(Tp(k)) which

have the same degree (F) as an ordinal modulo an
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integer, then the resulting domain will prove sufficiently

'L-like' to allow the arguments of the previous chapters.

Definition 4.0.0: For k > 1 and k+2F normal consider

F -cl (Tp (k) ) and let K I = On n E-cl(Tp(k)) , then

OA (F -cl (Tp (k) ) = {X E-F -cl (Tp (k) ) I (a e Ew) (a y < K)

"ordinal absolute part" [X eA FI e, X]} OAF.

Remark: We write rather than :E (R) '

R = k+2]F C Tp(k+l) for convenience.

Now Tp (k) OA = OA (F -cl(Tp (k))) n Tr(k) C Tp (k)

and, in general, may not be all of Tp(k), however, the

least order type of a well-ordering of Tp(k)FOA will

be a cardinal in OAI. If we then restrict our attention

to the functions of L [IF] F-REC on OA , then
K

something can be said about the IF-RE degrees on OA .

Definition 4. 0.1: (i) f : OA -> OA is IF-REC onIFIF

OA F if a e an index in 1E(R) -recursion for R = F

and some z E OA ,F wEOAF

~IFf(w) = {e} (zw);

(ii) GCOA is :F -RE on OA in a E OAIF if

e E w, z E OA
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z E A <-> {e} (az)V ; and

(iii) ACOA is F-REC on OAI , if A and

OA \A are F -RE on OA (suppressing parameters in

OA ).

It remains only to make sense of relative F-recur-

sion and, hence, F-degree (A) for A OAr.

Definition 4.0.2: (i) A, B C OAr, then A < B on

OAF ('A is F -REC in B') if (a e E w) (a a E OAr)I

(V z E OAF) [{e}B, (a,z) =A(z)],

viewing A as its characteristic function;

(ii) F -degree (A) = {B C OAFj A , B on

OA and B I A on OA 1.

Remark: We will omit the phase on OA and assume that

parameters in OA are allowed unless stated otherwise.
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1. The Kr-Function

In this section we review the results necessary for

the use of the Kr-function in this setting.

Lemma 4.1.0 (Kechris): If a E Tp(k) and BC Tp(k)

CO-F -RE in a, then there is a b E B such that

<a,b> <a

r r

Theorem 4.1.1 (Moschovakis): For any subset A of Tp(k)

F-RE, there is a relation R(x,y) on Tp(k) which is

F-RE such that V a e Tp(k) [a g A iff a

b e Tp(k)R(a,b)].

Remark: The reader may consult Harrington [1973] for the

proofs of 4.1.0 and 4.1.1. 4.1.0 is used in the proof of

4.1.1, which actually asserts that L [F] is not Z -
K

admissible.

Finally Harrington's characterization of K .r

Theorem 4.1.2 (Harrington): There is a formula (not

1 (L F[F])) O(x) in L such that for all a E Tp(k)
K

M [F] 0(a), but for all a < K ,M [F] = (a)
Kr

denotes the structure(Ma[F]



137

<La[IF] ,E,F [ (Tp(k+1) n L [IF])>

and L is the first order language appropriate to the

structures M IF]) .

Finally we state the result, due to Normann [1978],

which combines a Skolem Hull argument with a result on

selection to exhibit a regularity of the Kr-function.

Definition 4.1.3: A subset A C Tp(k) is reflecting, if

for all b e Tp(k) such that A <F b : sup K <alb><Kb
aEA0r

(throughout IF = <k+ 2 EA > where A C OAF F F-RE on

OAr and incomplete, as in the next section).

Let K be a wellordering of Tp(k) and assume that

E IF- cl (Tp (k)).

Definition 4.1.4: < is ]F-REC regular if there is no

function F-REC in some a E Tp(k) mapping an initial

segment of - onto a -- cofinal subset of Tp(k).

Theorem 4.1.5 (Normann): The following are equivalent:

(i) - is IF -REC regular

(ii) All proper initial segments of t are reflect-

ing.

Proof. [See Normann [1980]]. E

The results of this section provide the tools for

proving the results of the next section.
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2. Absolute RE Degrees

Fix k+2F and work in OAr.

Definition 4.2.0: Recall that K is the ordinal of

OAF and let

1=Y < K I (a R) RCy [R is JF -RE/F-REC on OAr]

p = j1y K (2 f [f :YKonto>

f partial IF-REC

on OAr

Remark: In this setting p = ITp(k)OA , where we simply

mean the well-ordering inheritedfrom the ordinals. Thus

there will exist a total inverse of f taking any

T < Kr to its least index in jTp(k) FOAI = shortest

order type of the wellorderings of TP(k)FOA in OA .

Obviously n < p.

Definition 4.2.1: Let a be a cardinal of OAI and let

F-RE-cf (a) = py <a[y is the order type of

an F-RE X C a A UX = a].
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Theorem 4.2.2 (Minimal Pair): Working in OA for

normal k+2IF. Assume that n = p and p is F-RE

regular (i.e. IF-RE-cf(p) = p). Then there exists a

minimal pair of F-RE degrees, i.e. a A, B CK

F -RE/IE -REC such that V C C K I F-RE

[(C C A A C <I B) -> C is F -RECd.

Proof. This proof proceeds just as in Chapter 2 on

L(K) using the tools of 4.1. We need that

F -RE-cf (K ) = F-RE-cf (TI) , the proof of which proceeds

as those of the analogous fact in Chapter 2. 4.2.2 E

For the density theorem we work in E(F ,A)-recursion

(or simply F(A)-recursion) on OAF as before.

Definition 4.2.3: A C Kr and let

A
(i) fn = Y < K F(a R) Rc Y [R is F (A) -RE\ IF (A) -REC

on OA IF(A)

(ii) jP=yY< K F (af J [f :y onto
f partial F (A) -REC

on OAF (A)

Remark: Take A C K F F-RE and incomplete, then as

before OA, =OAIF (A) and p = pA. Then

q A _C<p = p for this A.
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Remark: Take A C KF IF-RE and incomplete, then as

before OAr =OAF(A) and p=pA. Then

qA p P=PA for this A.

Definition 4.2.4: Let a be a cardinal of OAF(A)

let

and

F(A)-RE-cf(a) = y<y a(y is the order type

of an ]F(A)-RE xcaAUX= cr].

Theorem 4.2.5: Work in OAr

A, C CK IF-RE such that

A A
and assume that r = p and

(i.e. F(A)-RE-cf(p _ = PA).

IF-RE such that:

(i) A B, but B %

(ii) B C, but C %

for normal k+2IF . Take

A < C, but C %F A;

A
p is F(A)-RE regular

Then there exist B C Kr

A; and

B.

Proof. The proof proceeds as in the analogous result

of Chapter 3 using the tools of 4.1. By the above Remark,

OA = OA and OA is F(A)-closed. The proof

that IF(A) -RE-cf (K 2 )=IF(A) -RE-cf(pA) proceeds as in

Chapter 3. E

Corollary 4.2.6: Work in OAr for normal k+2IF. Assume

that nA= pA and IF(A) -RE-cf(pA ) = pA for all A
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IF -RE and incomplete. Then the F-RE degrees on OAr

are dense.

Proof. Apply the theorem to each pair A, C C Kr

F-RE with A-C C, but CI A to construct B.

Then the required degrees are a = F-degree (A) < b =

F-degree (B) < F-degree (C). C

Remark: Analogs to 4.2.2 and 4.2.5 can be proved for an

absolute notion of degree on arbitrary E-closed sets M,

Griffor [1980], which are not E -admissible and satisfy

DC (RE), the scheme for dependent choices of length o

along relations R which are E-RE on M.
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Appendix: Selection Theorems in E-Recursion

We include here the proofs of two selection theorems

for E-recursion on E-closed L(k), Gandy Selection and

an effective version of Grilliot Selection for L(K)

where p < K and REC-regular. This second result was

used in Chapters 2 and 3 in the proofs of Theorems 2.3.1 and

3.3.1. The proof of Gandy Selection is based on the

proof given by Moschovakis [1967] in the setting of normal

Kleene recursion in a functional of higher type. It

should function as a 'warm-up' for the second result which

we call Normann Selection [1980].

Theorem A-0 (Gandy Selection): Let L(K) be E-closed.

Then there exists a partial recursive function $(e),

e E w such that:

(a n E w)f{e}(n) ]

(v n E w) [I{e}I((e)) I {e}(n) ].

Remark: Parameters are suppressed for clarify of exposi-

tion. If we are considering e 8 w, T < K such that,

(a n E ) [{e}(T,n)V]

then the value of 4 will also depend on -r.
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Proof. Let 0 be the complete RE subset of w in

L(K) i.e.

0 = {<e,n> {e}(n)4}

and make use of g wxw 0->O such that

{e}(n)I <-> q(e,n) E 0.

a-0 is simply height of computation and we omit the

superscript. Using this norm 1-1 on computation one can

define < : o x w -> {0,1} partial REC

C (x,y)t iff xt or yt

(i.e. viewing x as a pair {(x)0 (x)9 ) and if either

is defined, then

O, if 1xI< |yl

(x,y) =~I!

i, if IyI < Ix|

Remark: For xt, jxj = o, larger than any OR.

We shall define f(e) by induction on min(e),

where
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Definition A-i: min(e) = in(V m) [I{e}(n)I < I{e}((m)]

("the least integer which gives rise to the least height

of computation"). Note that min(e) will be defined,

just in case (a n) [{e}(n)1].

Let e' be primitive recursive function of e such

that,

{e'}(t)= {e}(t+).

Proposition A-2: min(e) > 0, then

min(e') = min(e) 1.

Proof. Since min(e) , let

min(e) = s0 = ps v t[l{e}(s)l I{e}(t) I,
Sdf

then s0-1 = min(e'), for: fix t, then

J{e'}(s 0 -l)1 = |{e}(s 0 )j |{e}(t+1)J C I{e'}(t)I

so t {{e'}(s0-l) < I{e'}(t)I].

If sC-1 were not least such, then n K sM 1

min(e') = n
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and min(e) = n+l ; s , contradiction. A-2 0

Remark: This method can't succeed for RE W C y; w < y

since for limit ordinals X < y, "A-i" is meaningless.

The idea is, however, still sound. One actually builds up

to min(e) E ON using the set of e' for which min(e')

has already been defined by effective transfinite recur-

sion (cf. Harrington-MacQueen [1976]).

Keep in mind that $p(e) min(e), which is defined

if (2 n E w)t{e}(n)*]. Also

$(e)4 iff q(t,e) E 0,

where $ is an index for $ obtained by the recursion

theorem.

To compute 4(e) from i:

Try to compute ({e}(0),q(,e')):

Case 1: If ({e}(0),q(t,e')) ~ 0, then {e}(0)1 so

C ({e},(O),z)I for any z, so ask whether

V t[ ({e}(0),{e}(t)],

i.e. if 0 gives computation of minimal height. If yes,

output 0. If no, output $ (e') + 1.
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Case 2: ({e}(O),q(,e')) = 1, then compute

< ({e}(0),{e}($(e')+1))

(this is defined since q(5,e')4

-- > {e}(p(e')+1) .

If < ({e}(O),{e}($(e')+l))

whether Vt[< ({e}(0),{e}(t))].

no, output $(e') + 1.

If - ({e}(0),{e}($(e')+1))

0, then as above ask

If yes, output 0. If

= 1, output p(e') + 1.

Claim: (a n)[{e}(n)4], then

p(e) = min(e).

Proof of Claim. By induction on min(e) E w.

min(e) = 0 i.e.

(V t)[I{e}(0)I {e}(t)j]

and since {e}(0)., C ({e}(0),q(,e'))4: if

< ({e}(0),q( ,e')) = 0, then by assumption,

(V t) C ({e}(0),{e{(t)) = 01,

so we gave output, 0 as desired.
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If < ({e}(O),q(l,e')) = 1, then

Iq( ,,e')I < |{e}K(0)|,

and so q(i,e')4 so $(e')t and it must be that

< ({e}(O),{e}(p(e')+1)) = 0

and hence 0 is output, the min(e), since

| {e} (0)| C j{e}(ip(e' )+1) .

min(e) > 0; by induction hypothesis

$(e') = min(e')

since min(e') < min(e), by the proposition. Thus we show

that,

(e) = $(e') + 1:

({e}(0),q(4re'))I

i ({e}(0),q ,e')) = 0,if by assumption
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-(v t) [ ({e}(O),{e}(t))],

(e) = 4(e') + 1, as desired.

If < C{e}(0)r,q ($,e')) = 1, then if

({e}(0),{e}(p(e')+l)) = 0

and we output $(e') + 1, as desired; or

C({e}(0),{e}($(e')+l)) = 1

$(e) = 4(e') + 1, a

and again

s desired.

claim E

Thus p is our desired selection operator. 1

In the following version of Grilliot Selection we

assume that p < K. In the case that p = K and we have

RE XC 6 < p, let

M = E-cl(gc(K) U 6 U p+l)

where p is the parameter defining X. Then M is

transitive and hence M = L(K') for some K' < K

so
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(ow. L(K) = E-cl(y) for some y < K and, hence,

p < K ) and so carry out this argument inside L(c').

Theorem A-3: L(K) E-closed not E -admissible, p < K

and p REC-regular iff

V 6 6 K p * sup K<Y' < K].
Y<6 0 r

Remark: Parameters are suppressed for the sake of clarity.

One actually proves, for y0 K

6 < p sup K-< K .

Y<6 0 r

Proof. (=) Suppose p is REC-singular and let

6 < p, f : 6 -> p witness this singularity with f REC

and rg(f) unbounded in p.

Note that by Theorem 1.2.13 due to Moschovakis, the

RE subsets of K are not closed under the quantifier

a T < p. But, using f, we can write a T < p as

(2 y K 6) (2 c < f (y)).

Thus RE sets cannot be closed under less than p bounded

existential quantification, so it must be that for some

6 < p and y0 K
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<y,y0 ,6>

y<6 0

<K 0f
r

To show p REC-regular implies

(V 6)[(6 < p) sup K 0Y,6><K
6

Y<60r

Lemma A-4: If p is REC-regular and 6 < p then there

is a partial REC (suppressing parameters) such that if

(E y K 6)I{e}(y)t] <-> r(e)

and then if (e)t,

min[j{e}(y)I] J2(e)j.
y<6

We can now complete the proof of the theorem. Suppose

sup K'6 > K 6
y<6 0 r

then let

R = {<e,ca> e E w A y < 6 A {e}(y)1}.

Then
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sup 1{(z) 0 }((z)9I = sup KY , 6 >>K6
zER y<6

Now define

R(> K ) = {<e,y> I {e,y> E R A {e}(y) > K 6.r r

Certainly R(> Kr) is RE in 6 say via e w and con-

tained in 6. By assumption R(> Kr) , so

r (e0 '6) 4 and

min[ {e 0 JeO6)[.
y<6

But P (e0 ,6)j < K6 and by the definition of R(> Kr)

(v Y < 6) [Kgr < {e0}'(y) I,

a contradiction.

It remains only to prove the lemma.

Proof of Lemma:
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Proposition A-5: Suppose p is REC-regular, 6 < p and

AC 6 and AEL(K). Then AEL(p).

Proof of Proposition: Fix 6 < p and A C 5,

A E L(K) then 2 a E K A E L(a). Then in L(a) let

M = IE-cl(6 U {y})

where y < p such that a<4 y. Let M be the Mostowski

collapse of M. M C 1 <6,y> and is indexed by ordinals in

W x 6. By p REC-regular n f p is bounded. Since

A C 6 and the collapse is the identity on 6, A is

mapped to A, so A EMH.

Let yo = On M, then y0 < p and

N = L(y0

and so A E L(y0 ) C L(p). C

By the proposition, if 6 < p,

B6 = {f : 6 -> p f E L(K)}L(p+1) C L(K).

We will use this fact in defining F(e).

Note that by the definition of p we can view the

E-REC functions as being indexed by ordinals less than p.
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If a < p is a code for a computation, then q(a) < p

is an immediate subcomputation of a. Ra = {immed.

subcomputations of a} is, in general, RE\REC in a.

Let X C 6 be RE via e with X $0. By closure

under pairing we can imagine 0 C p

0 = {<e,6> | e}(f)j,

then there is REC h : 6-> p such that b < 6

b E X <-> h(b) e 0.

These are the functions we'll consider in our proof. Our

goal is to product a non-empty REC subset of X, W.

Naturally enough

W = {b E X I fel(b)l is minimal}.

Keeping in mind the proof of Gandy Selection, for

f: 6-> p, let

min f = min {ff(b)I - jb < 6}

where f(b) is an instruction for computation.

We define *(f,b) : 6p x p -> {0,1}, by
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$(f,b) =

0,

1,

if If(b)| = min f<c

if If(b)| > min f

if min f=m.

So given f : 6 -> p with min f < w,

{b < 6 1 lf(b) I = min f} c.

P will be defined by ETR on minf.

is correctly defined for all g, b,

Say f given and p

b < 6 such that,

min g < min f,

then we will define c(f,b) for all b < 6. Assume

0 < min f < m.

Define $ p x 6 -> {0,1} an approximation to

{b < 6 |q(f(b))j <min f},

where, recall, q(a) is an immed. subcomputation of a,

which must be evaluated before the remaining
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subcomputations can be determined. This corresponds to an

application of scheme (iv).

0(a,b) = 0 iff we know that

q(f(b))t,

hence the set of immed subcomputations is known and we can

proceed.

$(a,b) is defined by ETR on a simultaneously for

all b,

Stage 0: $(o,b) = 1 for all b < 6.

Stage a > 0: $(a,b) is defined as follows, if

(T,b) has been defined b < 6, let

q(f(b)) if

$(T,b) = 1

M = {g : 6 -- > p : g E L(T) A g(b) =

some element of

Rf(b) if

1 (T,b) = 0 }

where Ra = {immed subcomputations of al 8 RE(a).

Intuitively these functions q : 6 -> p "lie

under" f at stage T constructible by T. Clearly
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4 E If, T since

S(T,b) = 0 q(f(b)) [* Rf b) E bJ.

Notice: gEM *ming<min f and so e rM x 6 is

available i.e. the min's of g e M . Using p define

N = {g(b) : g E M A b < 6 A $(g,b) = 0}.

Finally assume $(T,b)t defined V T < a and all

b < 6, then

ip(a,b) = 0 iff

(HT < a) (a c E N )[Jq(f(b)) IcI]

in particular q(f(b))4.

1. r K a - $(T,b) > $(a,b),

2. T<aM C M

V bK< .

and N CN.
T- a

3. g E M =min g < minf so

c E N >cl = min g for some

Facts:

M T .
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4. $(a,b) = 0 q(f(b)) < min f.

Intuitively, i(a,b) = 0 tells us that in our effort to

effectively generate the ordinal min f, q(f(b)) gives

a "false minimum".

There exists a < p such that V b < 6

$(a,b) = q(a+l,b),

for otherwise using 6 and p

assuming such a a, say a(y)

y < 6, the map

y -- > s(Y

and B6 as parameters and

has been determined for

) is IE-REC.

a(y) is increasing as a function of y so if there were

no a(6) < p the map h : 6 -> p given by

h(y) = a(y)

would give an E-REC singularity in p, contradicting p

REC-regular. Thus a(6) < p and if a0  is the least

such, (a0 ,b) is E-REC(b) and hence Ma and N

are lE-REC.
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For b < 6, define 4(f,b), by

(frb) = 0 i (a0 1b) = 0 A ( d e Rf(b)

(a c E N G ) [Id -< c .

To show that $(f,b) is correctly defined,

Claim: minf =sup{cl +11 cSeN 1.

Proof of Claim. Assume not. We know

cE NC

we show

-- > Jc K min f

so, we assume

min f > sup{lcl +11 c E N }.

Let Y = {b < 6 j $(a 0 'b) = 0}, then b 9 Y implies

i(a0 +1,b) = (a01,b) = 1, so by the definition of $,

|q(f(b))|% Icl for any cEN

If b E Y, then lf(b) > min f > sup{IcI + 1 J c E N }*,

so H d E Rf (b) such that Idl F cl for any c E N .



159

Define g: 6 -> p by

Cd e Rf (b) such that Idl % jcj for

any cEN , if b E Y

g(b) =

g(f(b)), if b 9 Y.

Then g E M , so for some b < 6, g(b) E N , but by

the definition of g,

Jg(b)j % Jcl for any c E N

a contradiction.

This shows that $(f,b) is correctly defined. Now

if min f < w, then p(f,b) is defined for all b < 6

and if we let ef be an index for f,

{b I(f,b) = 0} < f so let

P(ef,6) = U {b < 6 | $(f,b) = 01, then

1r(ef,6)1 = U {l$(fb)1 + 1 : b C 6 A $(f,b) = 01
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and, then

min[ {ef}(y) ] F(e ,6) ,
y<6

as desired. D
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