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ABSTRACT

The incorporation of stochastic effects into models of
terminal performance is traditionally accomplished through the use
of simulation. In an effort to reduce the computational overhead
of an analysis based on simulation, this research lays out an
approach for studying stochastic delays in terminal operations
based on theoretical results from the theory of bulk queues. After
formulating different queueing problems as bulk queues, transforms
of the queue length and waiting time distributions are derived for
bulk arrival queues with service and random batch capacities. Also,
the concept of a scheduled departure queue with cancellations is
introduced and explored. In most cases, the relevant moment formulas
for the mean and variance of both the length of the queue and the
waiting time are derived.

Following the theoretical work, several numerical problems
associated with the application of transforms are addressed. First,
it is shown that the task of finding the zeroes of a particular
function, required to solve the transforms, does not pose any
significant numerical problems, contrary to several recent papers,
and can in fact be performed very quickly. Next, it is shown that
these zeroes can be used to perform a partial inversion of the queue
length transform, but that methods for performing complete numerical
inversions are extremely sensitive to roundoff errors. Finally, a
method for approximating moments which eliminates the need of
solving for zeroes is developed and shown to yield accurate results.

The last problem addressed is the validity of the assumption
of a Poisson arrival process. It is shown that the Poisson arrival
process is not a good approximation for general arrival processes which
may in fact appear Poisson. With this in mind, a methodology is
outlined for approximating general arrival processes.

Thesis supervisor: Yosef Sheffi
Title: Professor of Civil Engineering
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Chapter 1 Modeling Stochastic Delays in Transportation Terminals

Over the last decade, planners have become increasingly aware of the

importance of service reliability as a major factor in the mode choice

decision. In both passenger and freight modes, users of the system are

as sensitive to the variability in total travel time as they are to its

expected value. Martland (1972), Reid et al. (1972), and Folk (1972)

have looked at determinants of service reliability in the rail mode, and

the subsequent effect on a shipper's logistics costs. This viewpoint

contradicted the conventional wisdom that the rail mode offered a

slightly lower level of service (measured in terms of average travel

time) at a lower price. Several recent studies have focussed on similar

problems in transit (see, for example, Turnquist and Bowman (1979), and

Abkowitz (1980)), and a number of papers have appeared on the problem of

controlling randomness in bus operations. Terziev et al. (1978) and

Richardson (1979) have looked at the effect of variability in demand on

service reliability in less-than-truckload (LTL) trucking networks.

Variability in the level of service offered can in most cases be

attributed to the randomness in the demands placed on the system.

Operators usually have very little control over the market (an exception

being air markets, where reservation systems and discount fare restrictions

help reduce some of the variability) and must design a set of services

which strike an appropriate balance between costs and level of service,

reflecting the needs of the user. In this respect, there are a number of

strategies based on resource pooling and the level of system control which
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offer different choices in terms of cost and level of service. For

example, vehicle pooling and increased flow consolidation over links and

through terminals help to mitigate the relative variability in demands,

but usually (though not always) at a lower level of service. Different

levels of system control are found in the use of fixed departure schedules,

set by a central scheduling department, and real time dispatching, exercised

at the terminal level.

Thus, while an operator may not be able to control the market, there

are a range of strategies available for responding to it. Unfortunately,

the state of the art in analysis methods restricts the ability of a

manager to effectively compare and evaluate these strategies in the

context of realistic models. In particular, the analyst needs to be

able to look at large networks in order to test routing policies,

terminal location, fleet control strategies and vehicle dispatching

strategies. At present, Monte Carlo simulation has been the only

approach available for modeling complex systems with a stochastic com-

ponent. While an extremely powerful tool for many situations, simula-

tion is also notoriously slow computationally and poses additional

statistical problems associated with analyzing the outputs. For example,

a large motor carrier network might have over 400 terminals with over

1500 individual queues. In most cases, extremely efficient determi-

nistic network algorithms are used which model only the average flows on

the system. These methods enable planners to estimate the capacity

required at different points in the system and help locate potential

bottlenecks. Because they ignore the distribution of demands at each
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link, however, deterministic models generally underestimate true delays.

More importantly, the analyst cannot evaluate operating strategies aimed

directly at controlling the effects of randomness in demand on service

reliability and costs.

On the basis of these observations, it is clear that there is a

definite need for a methodology for incorporating stochastic demand in

the analysis of transportation networks. The level of detail required

should be consistent with a large, strategic planning model and computa-

tionally fast enough to allow the evaluation of a large number of

alternatives at reasonable cost. Such an objective has provided the

general direction of this thesis. The goal here, however, is not in the

actual development of such a model, but rather to first identify a basic

methodology, and then to fill in many of the gaps needed to implement

the approach. Such gaps include additional theoretical work on simplified

problems and supporting nuerical work required to implement the theory

in a problem solving context.

The following sections provide a more detailed description of the

specific set of topics that are covered in this research. The main focus

is on the formulation of stochastic delays in steady state using the

theory of bulk queues. Section 1.1 outlines the basic operations that

a terminal performs, each of which represents a source of delay. Section

1.2 casts each operation as a specific queueing model and describes a

classification scheme for the different types of queues encountered in

terminals. Section 1.3 then highlights some of the important assumptions

that are made in modeling the demands over the system. Finally, section

1.4 summarizes the chapter and presents the organization of the thesis.
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1.1 Modeling delays in terminals

The total time required to transfer a passenger 'or shipment over a

network can be divided into two components, linehaul time, and terminal

transfer time. The relative sizes of each of these components may vary

widely among models, but in most instances the principal source of

randomness in the total time occurs at the terminals. For this reason,

this research concentrates on finding the distribution of time from when

a passenger or shipment arrives at a terminal until it departs. The

first task, then, is to describe the basic transfer operations that take

place in terminals and outline the delays that may occur at each point.

This is done using the operations of a typical less-than-truckload (LTL)

break-bulk terminal as an illustration, followed by brief descriptions of how

the same concepts would apply to other modes.

Figure 1.1 shows a typical layout of an LTL break bulk terminal.

These buildings resemble large warehouses with up to 150 doors which

trucks back up to for loading or unloading. After an arriving truck first

backs up to an empty door (usually preassigned), one or more men then

unload the freight, using either a forklift or by placing the freight on

a handcart. Each shipment is then loaded onto an appropriate outbound

truck, or if no truck is waiting, placed on the floor and stored until a

truck becomes available. When one does, then the freight waiting on the

floor must be loaded onto the truck, which if full, may then be dispatched.

Dispatching in trucking terminals generally takes two forms. Trucks

traveling from one break-bulk terminal to another are usually sent on a
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go-when-filled strategy; since volumes between break-bulks are usually

quite high, there is little chance that a shipment will wait more than a

day before the truck is full. On the other hand, trucks moving between a

break-bulk and an end-of-line terminal, which handles the pick-up and

delivery operations with the shipper, tend to run on a once-a-day basis,

even if the trucks are partially empty. Since the volume of freight into

and out of end-of-line terminals is relatively low, this strategy

guarantees a minimum level of service.*

The time required for a shipment to move through a terminal can be

divided into three components, unloading, intermediate storage, and

loading, as depicted in figure 1.2. The unloading time is that interval

from when a vehicle first arrives in a terminal until the shipment in

question is placed in intermediate storage. Intermediate storage

generally refers to the terminal floor, but can also mean the outbound

truck itself. Sorting the freight also occurs at this step. The time

spent in intermediate storage is also referred to as connection delay

and consists of the time from when a shipment is placed in intermediate

storage until the decision to dispatch is made, at which point the

loading process begins. In other words, a dispatch decision means that

the vehicle should be sent as soon as the freight sitting on the terminal

floor is loaded. The time required to complete this process is, of

course, the loading time. Note that if all the freight has been loaded

* The two strategies also reflect differences in the nature of the two
types of terminals. Break-bulk terminals operate continuously 24 hours a
day; end-of-line terminals have a daily cycle with separate shifts since
pick-ups and deliveries can only occur during business hours.
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directly onto a waiting truck, then the loading time is zero.

The three step process of unloading, storage, and loading applies

to every other mode as well, although in some cases one or two of the

steps may require a negligible amount of time. For example, a bus stop

is a very simple terminal where arriving passengers have no unloading

step and loading time is often neglible. Rail classification yards, on

the other hand, are relatively complex terminals where all three steps

are important. Here, the "vehicle" is the locomotive consist (repre-

senting one or more locomotives), with the load being the set of freight

cars being pulled. The unloading step is the classification process,

where blocks of cars are disconnected from the train and placed on

appropriate outbound tracks. Connection delay is then the time spent in

the classification yard until the dispatch decision is made, at which

point a crew begins to assemble the outbound train (the loading process).

Having described the principal operations of a terminal, the next

task is to formulate each step as a queueing model. Section 1.2 provides

these formulations and outlines a classification scheme for different

types of queues arising in transportation applications. Then, section 1.3

discusses some of the major assumptions that are made regarding the

demands on the system and the manner in which arrivals to a queue are

being represented.
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1.2 Formulating terminals as queues

The three steps in the terminal transfer process can each be

modeled as a specific queue. For the moment, we are interested only in

the existence of bulk arrivals, bulk service, or both. Later other

assumptions regarding the nature of the arrival and service processes

are presented.

1.2.1 The unloading queue

The unloading queue consists of vehicles, partially or completely

full of passengers or freight, arriving at an unloading area. An

unloading crew, once available, will unload the freight, placing each

shipment in an intermediate storage location and then return for

another. Such a system can be viewed as a bulk arrival system with

service in single units, although it may be advantageous to assume bulk

service as well. There are, however, instances in which the arriving

vehicles are the "customers", and where the service time is the time

required to unload the entire vehicle. An arriving vehicle, or group,

is sometimes referred to as a "supercustomer" when viewed in this manner.

This approach applies to problems where outbound departures from the

storage queue might be delayed until the entire contents of a vehicle

have been unloaded.
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1.2.2 The storage queue

The storage queue represents passengers or freight waiting to depart

on a specific outbound link, as illustrated in figure 1.3. Arrivals to

the queue represent departures from the unloading queue, and here two

possibilities arise. If the unloading process significantly spreads out

the arriving groups (a group referring to a load of freight or passengers),

then arrivals to the storage queue may be in single units, as illustrated

in figure 1.4a. On the other hand, if unloading times are short relative

to the interarrival times of groups to the unloading queue, then arrivals

to the storage queue will also appear to be in groups as well as depicted

in figure 1.4b. Service, however, is always in bulk, since departures

from the queue are on vehicles.

1.2.3 The loading queue

Unlike the previous two cases where arrivals are in the form of

vehicles or shipments, arrivals to the loading queue are represented by

the sequence of decisions to load and send a vehicle. If departures

are scheduled, then the schedule forms the arrival process to the queue.

If departures are on a go-when-filled basis, then an arrival represents

a queue becoming long enough to fill the vehicle. Service is rendered by

the loading crew, and the service time is the time required to load all

of the waiting shipments. Thus the queue has arrivals and departures in

single units.
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1.2.4 Other aspects of loading and unloading queues

The above descriptions identify where bulk arrivals and bulk

service are likely to occur. The next question that naturally arises is

the nature of the arrival and service processes. All the theoretical

work presented in this research assumes simple or compound Poisson

arrivals and general service times.* Notationally, the queue would be

represented as #/GY/l, meaning Poisson arrivals of groups of size x,

general (independent) service times with bulk departures, where the

capacity of the outbound vehicle is a random variable y. To obtain

analytically tractible results, we must also assume a single server,

which obviously poses some problems when there are, say, k loading and

unloading crews. Such cases must be handled approximately, possibly by

estimating bounds on delay obtained by first assuming k independent

queues (an upper bound) and then by assuming a single server that

operates k times as fast as a single one (a lower bound).**

Thus the general problem can be cast as an l /Gl queue, which has

as special cases queues with arrivals and for service in single units.

There is, however, an additional and very important distinction separating

loading and unloading queues from storage queues. The first two have a

well defined service process, where the server is the loading/unloading

crew and the service is the time required to move freight onto or off of

a vehicle. Total loading or unloading time is then made up of the wait

time in queue plus the service time. The service process for the storage

* Chapter 5 outlines methods for approximating general arrival processes.

** See, for example, Brumelle (1971).
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queue, on the other hand, is more of an artificial construct. For example,

if there are scheduled departures from a terminal once a day, then the

service time is one day. This bears no relation to the service being

performed, which is the movement of goods over the link. Hence, we would

only be interested in statistics describing the length of and waiting

time in the queue as opposed to the system including the queue plus the

server.

The differences between loading/unloading queues and storage queues

are not really fundamental, and in fact, the two types are actually

closely related. The differences are, nonetheless, substantive in terms

of the problems being described and should be distinguished. For this

reason, the two types are termed here respectively service queues and

dispatch queues, reflecting the nature of the underlying service process.

Service queues represent the more conventional queues commonly studied in

the literature, and can be distinguished partially by the fact that the

server is idle if and only if the system is empty. Conventional notions

of busy periods and idle periods also apply, concepts which become

somewhat fuzzy in the context of dispatch queues.

Dispatch queues describe the time until a passenger or shipment finds

available space on a departing vehicle, and are more difficult to

characterize because the service processes are more complex. In service

queues, for example, the server works as long as there are any demands

waiting, and stops when the system is empty. Dispatch queues, on the

other hand, may exhibit a variety of control strategies that determine

when a vehicle leaves. These can be divided into three general categories
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based on the availability of vehicles and the level of control being

dxercised, as follows:

1) Scheduled departure queues assume that vehicles depart at

predetermined instants that are independent of the arrival

process or the state of the queue. The vehicle departs even if

no-one is waiting. Examples include bus stops, subway stations,

and trucking terminals with once-a-day departures.

2) Real time queues determine departures solely by the state of the

queue. The most obvious example is the go-when-filled strategy,

but also includes cases where there is a limit on the longest

waiting time. The important feature here is that a vehicle

must in theory always be available, regardless of the time of

the last departure.

3) Quasi-real time queues are identical to real time queues with

the exception that now there is a period of time following each

departure during which no departures can occur, regardless of

how long the queue might become. Once the vehicle becomes

available, it may either leave immediately or be held until the

dispatch criteria are satisfied.

One generalization of the scheduled departure queue is to allow for

cancellations. In this case, we define a set of dispatch instants,

t9 t 2,'.. ., which are independent of the arrival process or the

state of the queue. At each instant, a decision must be made to send the

vehicle or cancel the run, the latter choice occurring whenever the

queue is less than some specified minimum. If the queue is too short,
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the departure must be cancelled until the next dispatch instant. Note

That the scheduled departure queue without cancellations and real time

queues can both be viewed as special cases of quasi-real time queues,

whereas the scheduled departure queue with cancellations cannot.

The classification of queues presented here is summarized in table 1.1.

The distinction between dispatch and service queues is an important one

in the study of bulk queues, but is nonetheless ignored in a number of

papers. This organization of the different types of queues proves

useful in chapter 2, where the review of the literature is presented by

identifying how the different contributions relate to each other. The

theoretical work presented in chapter 3 focuses on the ME/G /l scheduled

departure queue, with and without concellations, and the real time,

go-when-filled queue, since these represent problems that need the most

work. A detailed description of the problems to be solved is provided at

the end of this chapter. The next section outlines some of the important

assumptions regarding the demands on the system.
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I Dispatch queues

Scheduled departure queues

Without cancellations

With cancellations

Real time queues

Quasi-real time queues

II Service queues

Table 1.1

Classification of queues
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1.3 Modeling demand

In this section, an outline of some of the major assumptions is

made in modeling the arrivals to a queue and the manner in which

stochastic flows can be characterized. The two principal assumptions are:

1) the arrival and service processes are stationary, and the

queue can be modelled in steady state, and

2) goods moving though the network can be described as discrete,

identical units which are routed independently.

The first assumption is often made in queueing applications, and

while it is probably not only the strongest one that is made, it is also

fundamental to the methodology and therefore cannot be relaxed within

the existing framework. One of the basic hypotheses of this thesis,

however, is that the ability to incorporate randomness in demand

represents a quantum improvement over deterministic methods, and that

an improvement in this respect, which still produces a computationally

feasible model, is more appropriate than one which is more accurate

(e.g. simulation) but otherwise unusable.

The second assumption has two important components. The first

requires that flows be discretized into homogeneous units and represents

a natural outgrowth of the study of passenger systems, where each person

is a separate unit. Rail freight systems also exhibit a natural

discretization in terms of freight cars. In the case of LTL trucking,

however, shipments are of varying size, and hence must be broken into



29

some arbitrary unit, such as 1,000 pound blocks, for example. This

leads into the second component which assumes independent routing of

units. Violations of this assumption would occur, for instance, when

families travel together, when a shipper sends several freight cars to

the same destination, or when two 1,000 pound units actually represent

a single 2,000 pound shipment.

At this point, it is useful to describe how stochastic flows over

a transportation network can be characterized. In doing this, we use

the notion of a compound arrival process. A simple arrival process,

such as the Poisson, is used to describe the random arrivals of single

customers. A compound arrival process occurs when groups of customers

are arriving at the queue, where the arrival of groups might be given by

a Poisson process, but where the size of each group is given by a

completely independent distribution. The use of compound arrival processes

is useful in characterizing not only the arrival of shipments of varying

size from the shipper, but also the arrival of vehicles at a terminal

with different sizes of loads.

It is important in the study of terminals to separate the arrival

of vehicles to a terminal and the arrival of one or more units out of

that vehicle to a particular queue. For example, the distribution of the

number of units on an arriving vehicle might be given by a random

variable F, but the distribution of the number of units out of that

vehicle that, after being sorted, arrive to a particular departure queue

might be given by a random variable G. It is the distribution of G that

is needed to study the delays at the queue, and in chapter 3, we show how

to find G given F, using the independence of routing assumptions.
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1.4 Summary

This chapter serves as an introduction to the primary set of problems

that are addressed in this research. The theoretical work focuses on the

? /G/l scheduled departure queue with cancellations, and therefore can

be viewed as a contribution to the analysis of bulk arrival, bulk

service queues in steady state. The discussion here is intended to

illustrate in general how bulk queues can be used to study terminal

operations, and in particular, the specific application of the research

presented in subsequent chapters.

The outline of the research is as follows. First, chapter 2

provides a thorough review of the literature on bulk queues, using the

classification scheme depicted in table 1.1 to help organize the many

contributions. Also covered is some of the literature on queueing networks.

Several recent papers on approximate methods for analyzing complex queueing

networks are discussed in terms of applying the approach to transportation

networks. These methods are interesting since, while the focus of this

research is on single queues, they provide an approach for applying the

results obtained here to the general study of transportation networks.

Next, chapter 3 presents a compenduanof theoretical results

associated with the /Gl scheduled departure queue, with and without

cancellations. The principal results are queue length and waiting time

transforms and the formulas for the mean and variance of each. Part of

the contribution here, in addition to several new results, is the

simplicity of the analysis, which uses standard transform methods to solve
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for queues using the imbedded lorkov chain. It is then shown how the

queue at regeneration points is related to the number of units in front

of an arriving or behind a departing unit, and to the length of the queue

at a random point in time.

Chapter 4 provides a considerable amount of numericaii support work

needed to bridge the gap between deriving transforms and using them.

Solution of queue length transforms requires finding the zeroes of a

particular function, a problem which in principle can pose serious

computational problems. It is shown that, when set up in a particular

way, the root finding problem does not in fact pose any serious difficulties

and furthermore can be solved very efficiently. In addition, however,

extremely accurate approximations are developed which give the mean and

variance in closed form, thus eliminating the root finding procedure

altogether. These are then used to fit approximate queue length distri-

butions, which are compared against the true distributions and found to

be quite accurate.

Chapter 5 then uses simulation to look at non-Poisson arrival

processes that might occur in transportation networks. One conventional.

technique for determining if a given arrival process is Poisson and one

new one are tested, and while the latter one, based on analysis of

successive increments of the arrival process, is found to be much better,

both have serious drawbacks. In particular, it is shown that assuming a

Poisson arrival process can produce seriously biased estimates of the

length of the queue even when the actual arrival process appears to be

Poisson. Based on these results, a new approach for approximating bulk
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queues with general arrival processes is tested and shown to provide

significantly better estimates of the mean queue length.

Finally, chapter 6 summarizes the major contributions of the

research and outlines directions for further research.
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Chapter 2 Review of the Literature on Bulk Queues and Queueing Networks

As is established in chapter 1, the principal focus of this research

is the analysis of stochastic delays in terminals using the theory of

bulk queues. The first step in this direction is a thorough review of

the literature on the topic. To date, such an overview has been notably

lacking and many papers can be somewhat ambiguous in terms of the specific

problem being addressed. For this reason, the first goal of this chapter

is to organize the many contributions in terms of the problem that is

being considered, what results were obtained and the solution approach.

Then, since the remainder of the thesis focuses on bulk arrival, bulk

service, scheduled departure queues, the state of the art with respect

to this particular problem is addressed and major gaps are highlighted.

Filling these gaps then becomes the subject of chapter 3.

The chapter is organized into two sections. Section 2.1 concentrates

solely on the bulk queueing literature and represents the relevant

literature for the remainder of the thesis. Section 2.2, motivated by

the originalobjective of applying the research to study large scale

networks, briefly touches on some recent papers that have appeared in

the area of approximate analysis of queueing networks. The purpose of

this section is simply to indicate that a method for studying queueing

in transportation networks exists. The topic is discussed again in

chapter 6 where the mechanics of designing a method for analyzing large

scale queueing networks are outlined as an area for further research.
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2.1 The bulk queueing literature

The study of bulk queues originated with the pioneering paper by

Bailey (1954), who considered the case of simple Poisson arrivals to a

bulk queue with service capacity c. Service times were general and

departures occurred regardless of whether anyone was waiting, a system

which we refer to as a scheduled departure queue. This system has

come to be known as the transportation problem of queueing theory.

Since that time, papers have appeared which can be differentiated on the

basis of 1) the type of queue (arrival process, service process, number

of servers), 2) what is solved for (queues, waiting times, busy periods,

etc), 3) the time domain of the solution (i.e. steady state or transient,

and whether they apply to regeneration points or continuously over time),

and 4) the method of solution (transforms or direct numerical methods).

For simplicity, the review of the literature is organized in terms of

the type of queue being solved, focusing specifically on the breakdown

between systems with bulk arrival, bulk service, or both. The large

majority of all papers assume Poisson or compound Poisson arrivals and

general service times, although a few consider negative exponential,

Erlang, or hyperexponential service distributions.

As discussed in chapter 1, there is also an additional question

regarding whether the system being solved represents a dispatch queue

or a service queue. For the most part, the papers with single arrivals

and bulk service fall under the heading of dispatch queues, while the

others (bulk arrival, single service, and bulk arrival, bulk service)
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are usually service queues. Exceptions do exist and these are noted as

they occur.

The review is organized into three sections, which discuss,

respectively, a) single arrival, bulk service queues, b) bulk arrival,

single service queues, and c) bulk arrival, bulk service queues. These

sections, however, are confined to papers which use standard transform

techniques for solution. Section 2.1.4 reviews those papers which

present numerical techniques for solving transient and steady state

queues. Finally, section 2.1.5 summarizes the principal contributions

and points out unsolved problems.
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2.1.1 Single arrival, bulk service queues

As mentioned earlier, Bailey (1954) originated the study of bulk

queues by considering a system with simple Poisson arrivals to a server

which takes, at particular points in time, all waiting customers up to

a fixed capacity c. If no customers are waiting, an empty batch departs,

implying that the server is never idle. The queue, denoted by M/GCC/l

is described using the embedded Markov chain defined at points of service

completions. Bailey found the transform of the queue length distribu-

tion at these points, the derivation of which required the determination

of the roots (zeroes) of a given function, which depend on the service

time distribution. The solution was then demonstrated for deterministic

and Erlangian service distributions.

Immediately following Bailey's paper, Downton (1955) derived the

Laplace transform of the waiting time distribution in terms of the

queue length and service time transform. The importance of this result

is that the distribution of the waiting time (or at least its mean and

variance) can be found with no additional numerical effort. Downton

follows exactly the general outline of Bailey's paper, and derives the

moments of the waiting time distribution for the same set of special

cases. This paper, and that by Bailey, provide the basis for most of

the subsequent literature on bulk queues. Both of these results have

been extended by Peterson (1971) to the case where the capacity of the

vehicle is random.



37

Motivated by the problem of having to solve for the roots of a

fonction, Downton (1956) followed immediately with a paper that

considered the limiting case where A, c + 0, while holding the ratio

A/c constant. In the case of deterministic departures, this eliminated

the need to solve for any roots; for an ER (R stage Erlang) service

distribution, the procedure still required the solution of R roots,

although the function changed from a polynomial of c + R to a polynomial

of order R with an exponential term, thereby simplifying the computations.

Unfortunately, these results are felt to be of little practical use

since the limiting process changes the nature of the arrival distribution.

The coefficient of variation of the Poisson distribution with parameter

A isl/V/X7, which of course becomes small as A and c are increased.

Inthe case of deterministic service times, the probability that the

number of arrivals will exceed c becomes zero as A, c +o , implying

that no one will ever miss a departure. This observation is borne out

by Downton's numerical results which show both the average waiting time

and its coefficient of variation decreasing significantly for all cases

as c is increased.*

Using the method of phases, Jaiswal (1960a) develops the necessary

equations for studying the queue length distribution over continuous time.

This approach assumes that the service distribution of a randomly chosen

*Despite these problems, Downton's limiting results have been applied by

Peterson (1977a), who apparently did not recognize that the limiting
result implied no queueing, and hence could be solved much more simply
using renewal theory.
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j
customer is ER with probability P , r = 1, . . ., j where Z P = 1.

K r r=l r

Such a service distribution is fairly flexible and can be used to

approximate a wide range of cases encountered in practice. Later, Jaiswal

(1960b) applies this to the time dependent bulk queueing problem, although

here he introduces the change that the server becomes idle if the system

is empty following a service completion. In this case, an empty batch

can never occur, since the server waits until at least one customer

arrives. This case, then, would fall under the heading of service queues.

Neuts (1966) next extends the analysis to incorporate randomness

in the capacity of the vehicle, a system which is denoted by M/G/l.

Furthermore, to describe the system is continuous time, he formulates

the problem as a semi-Markov process, using a bivariate sequence to

reflect not only the length of the queue at regeneration points but also

the time elapsed since the last service completion. Without making it

explicitly clear, he also assumes the server becomes idle if the system

is empty following a service completion. He then derives the transform

of the queue length distribution, as well as the Laplace transform of the

queue length over time, although these results were derived only for

the case of fixed outbound capacity. He does not, however, discuss how

to solve these equations numerically, and his results appear to be useful

only for finding the limiting distribution as t +0 (arrival and service

rates are assumed constant over time).

Up to now, we have considered only service processes with no

control over the size of the smallest batch to be served, with the possible

exception of servers which become idle until at least one is in the queue.
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To describe cases where the server may be held until a sufficient queue

is waiting, Neuts (1967) introduces the concept of the (so-called)

general bulk service rule,* where a server, on finishing one batch,

may remain idle if there are fewer than m customers waiting for service.

Thus all departing batches from the queue have at least m customers,

although no more than c. This system, then, would fall under the heading

of quasi-real time dispatch queues. Again formulating the problem as a

semi-Markov process, he proceeds in much the same way as he did in his

earlier paper, determining the transform of the queue length in discrete

and continuous time.

Borthakur (1972) next studies the queue length for the simpler

system with negative exponential service times operating under a

general bulk service rule and derives the steady state queue length

probabilities directly in terms of the root of a given polynomial.

Following on this result, Medhi (1975) finds the waiting time density

function in terms of the same root. In both these cases, the results

were in terms of relatively simple expressions for the queue length and

wait time distributions directly, and not their transforms.

Several authors have considered the multiple server case, beginning

with Arora (1963) who studies the M/Mc/2 server queue. This is later

extended by Ghare (1968) to the more general k server case, where he

*The scheduled departure queue with cancellations is not a special case

of Neuts' general bulk service rule.
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found the steady state queue length probabilities in terms of a single

root. Medhi and Borthakur (1972) subsequently consider the 2 server

queue under the general bulk service rule, which Medhi (1979) then

extends to the k server case. Finally Roes (1966) has investigated

the many server case with general input, GI/Mc/k.

2.1.2 Bulk arrival, single service queues

The literature on bulk arrival queues has proceeded for the most

part independently of that on bulk service queues, using a more

classical description of the server. Unlike bulk service queues, where

the server may work continuously regardless of whether there is anyone in

the system, bulk arrival, single service queues incorporate the more

traditional concept of an idle period where the server stops if no one

is in the system. Most of the work assumes compound Poisson input and

general service, a system that is denoted M/G/1.

The earliest work on the topic is that by Gaver (1959) who, in a

very thorough paper, finds transforms for the steady state queue

length and waiting time* at a random point in time by modelling the queue

as a semi-Markov process. Restrepo (1965) studies the system with Erlang

service times using the method of stages. Foster (1961) and Connolly

(1960) investigate systems where arriving batches are of fixed size;

*Unfortunately, there is an error in his result for the waiting time

transform which is described in section 3.6.
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Foster (1964) later relates the Gc/M/l queue (arrivals of fixed size c

with general interarrival times) to the G/Ec/1 queue (see also Kleinrock,

vol. 1 (1975)). Gupta and Goyal (1965) consider the case with hyperexpo-

nential service, and Gupta (1964) studies the MS/Er/1 queue using the

method of phases as devised by Luchak (1958), where service is a random

number of exponential stages. Chaudry (1979) points out the relationship

between G/M/l and G/E /1, where E denotes a phased distribution where

the distribution of the number of stages is the same as the distribution

of the size of an arriving group in the associated bulk arrival queue.

Chaudry also derives the relationship between the length of the queue at

a departure instant and at a random point in time. Jenson and Paulson

(1978) derive closed form expressions for the queue length distribution

for the MS/M/1 queue, where the arriving batches have a multinomial

distribution. Finally, Harris (1970) investigates bulk arrival queues

with state dependent service rates, considering, among others, the case

where service is negative exponential at a rate linear with the number of

customers in the system.

A separate group of papers have studied the MS/G/1 (service) queue

by first looking at the arrival and service of groups, also referred to

as supercustomers, where the service time is that required to serve the

entire group. Gaver (1959), uses this approach, but only finds the

transform of the waiting time of the first customer in each group.

Cohen (1969) also applies this concept, correctly differentiating between

the time until the first customer in a group begins service, and the time

required for other customers in the same group to be served before a
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particular, random customer reaches the server. However, Cohen uses the

incorrect distribution for the number of customers in front of a randomly

chosen customer which belong to the same group. This error is corrected

by Burke (1975), who applies the same concept of working with supercus-

tomers to find the true waiting time distribution for an individual

customer.

2.1.3 Bulk arrival, bulk service queues

Unlike the previous two areas, relatively little attention has been

devoted to the explicit problem of queueing systems where both arrivals

and services are in batches. Miller (1959) was the first to consider the

problem, assuming a service process which is idle if the system is empty,

i.e. the M/Gc/l service queue. Miller also introduces the concept of

accessible and inaccessible batches, whereby the former allows customers

who arrive during the service of a batch to join if there is empty

capacity, while in the latter customers may enter a batch only at the

beginning of the service. An example of an accessible batch would be the

traffice light queue where cars that arrive at an intersection during a

green may proceed on through. Inaccessible batches, on the other hand,

would include vehicle departures from a terminal.* Miller finds the

queue length transform in steady state but could not solve for the wait

time transform except in the special case where arrivals or departures

*All queueing systems considered here are assumed to be of the inaccessible

type.
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were in single units. Cohen (1969) studies bulk arrival, bulk service

qu'eues with random departure capacities (which is denoted here by Hx/GY/i,

the x and y indicating that arrivals and server capacity are of variable

size), assuming that the server will remain idle if no one is present.

In this case, an idle period terminates with the arrival of the first

group. He also studies the &/G/i dispatch queue where the server never

becomes idle. However, his results are expressed in terms of contour

integrals rather than directly as transforms, and therefore are not in

a form which lends itself readily to numerical analysis. Bhat (1964)

studies the Mx/GI/1 service queue using results from fluctuation theory,

but he also does not solve explicitly for the queue length transform.

Teghem et al. (1969) and Borthakur and Medhi (1974) study the

Mx/Gc/l queue operated under the general bulk service rule and find,

respectively, the number in the system and the number in the queue. In

both cases, the problem is studied using the theory of semi-Markov

processes, and the Laplace transform (over time) of the transform of the

number in the system is obtained. This result could in principle be

used to find the steady state transform of the number in the system,

although this is not done in the latter paper.

2.1.4 Numerical methods in bulk queues

Every transform result in problems with bulk service queues requires

for solution the determination of the c-I roots of a particular function.
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This solution technique is used widely in queueing theory and to date is

the only known method for finding certain transforms. Several authors,

however, have questioned the feasibility of actually implementing the

technique. The major criticism is that is some cases the determination

of roots can be numerically hazardous, as is pointed out by Page (1965)

and demonstrated by Dahlquist et al. (1974, p. 246). Neuts also makes

the comment that, "From an aesthetic viewpoint it is unattractive, as it

involves several steps without a clear probabilistic significance",

(Neuts, 1979, p. 767). Furthermore, transform analysis does not in

general yield readily to inversion and therefore often does not provide

an explicit description of the actual distribution. These problems have

given rise to several iterative numerical procedures which yield the

desired probabilities without resorting to transforms and complex analysis.

The first and simplest of the procedures is one used by Hirasawa

(1971) in the analysis of elevator systems which is referred to here as

the method of numerical convolutions. The procedure, studied in much

greater depth by Bagchi and Templeton (1972) who provide an abstract

formalism for it, relies on the concept of the imbedded Markov process

and uses a recursive formula to describe the behavior of the system from

one regeneration point to the next. The mechanics of the alogrithm

require little more than the repeated numerical convolution of two

probability vectors, and can be used to study a system under time varying

or steady state conditions, although the transient analysis uses the

number of regeneration points as the time variable. For example, it is

This limitation of the result is not discussed by the authors.



45

th
necessary to know the distribution of arrivals between the n and

n+lst service completions, even though we do not know when these completions

occurred. On the whole, the method is extremely powerful and is discussed

in greater detail in chapters 3 and 4.

A different procedure is presented by Wijngaard (1978) for finding

the stationary distribution of queue length for state dependent bulk

service queues where customers arrive singly and the service distri-

bution is negative exponential. The algorithm uses the approximate

triangularity of the transition matrix to find the mean recurrence

times of states, and from this derives the steady state probabilities.

By far the most concerted effort at developing a numerical proce-

dure for analyzing bulk arrival, bulk service is that due to Neuts.

In a series of papers (1974, 1976, 1977a, 1977b) culminating in a final

(at the moment) expository paper (1979), Neuts outlines an algorithm

for calculating the stationary queue length distribution which involves

the manipulation of vectors and matrices of dimension c (the capacity

of the vehicle). Unfortunately, the method (the mechanics of which are

outlined in appendix A) is extremely involved and is very sensitive to

the value of c (he does not discuss its sensitivity to the utilization

ratio p). Some computational results are reported in Neuts (1976) for

c equal to 5 and 10 which demonstrates this sensitivity; CPU times on a

CDC 6500 jumped from approximately .7 seconds for c = 5 to 4 seconds

for c = 10. Thus while the algorithm does have some advantages over that

of the numerical convolutions method (in particular, the dimension of

the vectors and matrices in Neuts' procedure are insensitive to the

level of congestion) it is also fairly complex and computationally

appears to be quite slow.
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2.1.5 Summary

It is useful at this point to refer back to the classification of

queues given in table 1.1. To understand approximately where the state

of the art now stands, this listing is shown again in table 2.1, with a

cross-classification of five important queueing systems, differentiated

in terms of whether they are bulk arrival, bulk service, or both

and whether the cases of bulk service have a fixed capacity c or random

capacity Y. In each cell, it is indicated whether the steady state

queue length or waiting time transforms have been found. Of particular

interest here is the fact that no results have been obtained thus far

for bulk arrival, bulk service scheduled departure queues and no

waiting time results are available for any bulk arrival, bulk service

queue. Also, no papers were found considering any real time policies

such as go-when-filled, although it should be pointed out that the M/Gc/1

go-when-filled queue is trivial to solve, and the extension to M/G /1 is

probably quite simple. Also, no-one has considered the scheduled

departure queue with cancellations, which is discussed briefly in

chapter 1. With the exception of the general bulk service rule, all of

the untouched cases are considered in chapter 3.

This concludes the review of the bulk queueing literature. The

next section looks at some of the queueing network literature and discusses

a possible methodology for approximately analyzing networks of queues in

transportation.
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queue length transform
waiting time transform

Table 2.1

Summary of Contributions

Service control policy Queueing Configuration

Dispatch queues M/Gc/1 M/G /l M/G/l #M/GC/l Hc/GY/l

Scheduled departure 1,2 1,2

Real-time

Quasi-real time 1,2 1
(general bulk
service rule)

Service queues 1,2 1,2 1,2 1

1:
2:

I II
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2.2 The queueing network literature

In chapter 1, the desire to study stochastic delays in large

transportation networks is cited as one of the primary reasons for

turning to queueing theory for computationally efficient solution methods.

The approach that is being taken to study these delays, however, focuses

on the study of single, isolated queues. It is useful, then, to take

a moment to review the current literature in queueing networks to see

if such an approach can be extended to study delays in transportation

networks.

The large majority of papers in the queueing network literature has

centered around the pioneering paper by Jackson (1957), who showed that

networks of M/M/k queues could be solved exactly by studying each queue

in isolation. Since then, a number of papers have generalized Jackson's

-result by showing that the same solution technique applies to open and

closed networks with feedback, state dependent arrival rates, and dif-

ferent classes of customers (see chandy (1972) and Gordon and Newell(1967)).

Baskett et al (1975) consider networks were the only restriction on

service time distributions is that they have rational Laplace transforms

and where the service discipline is processor sharing or last come, first

served, or where the number of servers meets or exceeds the waiting

space. They explicitly exclude first come, first served systems except

where the service time distribution is negative exponential. (For a

review of these papers see Lemoine (1977, 1978) and Kelly (1979). All of

these papers, by one means or another, show that the steady state solutions

of the joint probability vector for the network as a whole can be expressed
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as a product of the state probability functions for each queue in

isolation (see Chandy et al (1977) for a discussion of the different

4pproaches used to prove product form solutions).

Despite the generalizations, no paper has been able to demonstrate a

product form solution for a system with anything other than M/M/k

servers if the service discipline is first come, first served. The

simplicity of such systems arises from the fact that the output

process of an M/M/k queue is also Poisson, as shown by Burke (1956).

At the same time, the output of an M/G/k system, for any k < o, is

renewal if and only if G = M, in which case the output is Poisson

(Daley (1973)). Hence, the output process for an M/G/l queue is not

even renewal. The only exception to the M/G/k case is the M/G/cO queue,

which also features a Poisson output process. Since the output process

of one queue may be the input process for another, a single M/G/l queue

in a network destroys the analytical tractibility of the system. In

addition, since the arrival process to a queue may be the superposition

of two or more departure processes, it is also true that the superposition

of two or more processes is Poisson if and only if all the processes

are also Poisson.

The net result of this is that networks of queues with non-expo-

nential service times (and FCFS service disciplines) cannot be solved

exactly, either in closed form or numerically. As might be expected, service

times which can be approximated well by a negative exponential distribution

are extremely rare in actual systems and almost non-existent in transportation

applications. The question then shifts to the possibility of approximate

solutions of more general problems. Toward this goal, several recent papers
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have appeared which attempt to model a system by approximate decomposition of

the network into isolated queues or subsystems.

As mentioned above, such an approach is exact only when the system

is completely Markovian. Kuehn (1979) uses this methodology to study

networks of servers with general service time distributions, which

consists of three principal steps. First, modeling each queue as a

GI/G/l system, he approximates the departure process as a general

renewal process and fits an interdeparture time distribution using the

first two moments of the actual interdeparture times. Next, since the

arrival process to a queue may be the superposition of two or more

departure processes, which would not be renewal, arrival processes are

replaced with approximate renewal processes by matching the first and

second moments of the interarrival time distributions. Finally, delays

for each GI/G/1 queue are estimated using an approximate formula.

Following Kuehn's work, Whitt (1979a,b) provides a careful

discussion on the replacement of general arrival processes with

renewal ones. He also introduces a new approach which is discussed in

chapter 5, and then compares his procedure with that by Kuehn in the

context of a GI/M/l queue. Without going into the advantages and dis-

advantages of each approach, the important point is that researchers

have begun to study general queueing networks by first approximating

the arrival process and then approximating the performance of the queue.

In chapter 5, a method for estimating queue lengths for Gx/G/ 1 systems

is proposed, introducing the possibility of studying transportation

networks in the same manner being used for communication networks.
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2.3 Summary

This chapter provides an outline of the state of the art in bulk queues

and queueing networks. The subject of queueing networks is not discussed

again until chapter 5, when the types of arrival processes likely to be

encountered in transportation networks are described. Such applications are

used to motivate the approximate analysis of bulk queues with general

arrival processes.

Based on the review of the bulk queueing literature, chapters 3 and 4

focus almost exclusively on bulk arrival, bulk service, scheduled departure

queues, with special emphasis on the option to cancel departures if the queue

is too short. Chapter 3 presents the needed theoretical work, bulkding off

the methodology described in the original papers by Bailey (1954) and Downton

(1955). Since virtually all the results are expressed in terms of transforms,

chapter 4 describes the techniques required to solve these transforms

numerically, and discusses some of the difficulties that may be encountered.
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Chapter 3 The M1 /GY/1 Scheduled Departure Queue

In the preceding chapters, sources of delays in transportation

terminals are formulated as queueing problems and the relevant bulk

queueing literature is reviewed. In this chapter, we focus on the

dispatch queue with compound Poisson arrivals and scheduled bulk

departures, which is denoted here the MA/Gl scheduled departure

queue. Standard transform methods are used for solution and all the

results assume steady state conditions prevail.

To date, Cohen (1969) is the only author to have studied the

Mx //l scleduled departure queue, a system which he refers to as the

transportation problem. His analysis, however, is extremely complex and

he does not explicitly solve for the queue length transform. Peterson,

however, has studied the M/G /l scheduled departure queue and some of

his results apply to the problem at hand. Several other authors have

studied the Mx/Gy/ 1 service queue, where the server becomes idle if the

system is empty, including Teghem et al (1969), Bhat (1964) and Borthakur

and Medhi (1977). Not withstanding the difference in the type of

problem solved (i.e. the presence of idle periods), the methodology

used here and the presentation of the results is much simpler than that

of other papers. In addition, practical problems associated with

obtaining numerical results is touched on at several points in the

discussion. We also introduce and analyze a new queueing system referred
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to as the scheduled departure queue with cancellations.

This chapter summarizes a number of new results which apply to

scheduled departure, bulk arrival, bulk service queues. Of these three

are felt to be of particular significance, namely:

1) formulas for the mean and variance of the length of the queue,

2) the queue length transform for the scheduled departure queue

with cancellations,

3) a method for finding the moments of the wait time distribution

with bulk arrivals.

The first result is a generalization of Bailey's moment formulas

to allow for bulk arrivals. The second represents a new problem which

has not been previously studied. The third extends the moment formulas

obtained by Downton to allow for bulk arrivals, representing the first

time delays have been solved for in any bulk arrival, bulk service queue.

In addition, a variety of other results have also been obtained,

all of which apply to bulk arrival systems. These are:

4) the queue length transform when vehicle capacities are random,

5) a light traffic approximation for queues with cancellations,

6) the queue length transform for queues where the sequence of

service times (departure headways) forms an alternating

renewal process (this is used to describe the bus bunching problem),

7) the transform of the size of an arriving group for a queue

imbedded in a network,
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8) the relationship between the distribution of the number of units:

a) at a dispatch instant,

b) at a random point in time,

c) in front of an arriving unit,

d) behind a departing unit.

The presentation of these results is organized as follows. Section

3.1 briefly reviews the notation and conventions used throughout the

chapter. Section 3.2 derives the queue length transform for the Mx/G /1

queue* through a straightforward extension of Bailey's original paper.

This result is then extended still further to allow for cancellations

when the length of the queue at a dispatch instant is less than some

value m. Next, section 3.3 presents several variants of these problems

along with other related results, described as topics 5,6 and 7 above.

Section 3.4 then derives a method for finding the moments of the waiting

time for M /G /l queues and provides the formulas for the first two

moments. Section 3.5 discusses topic 8, contributing several new insights

regarding the length of the queue from different perspectives and at

different points in time. Finally, section 3.6 synthesizes several

known results for the 1#/G/l service queue. The justification for this

final block of material is its importance in describing the unloading

queue.

Unless specifically stated otherwise, all queues are of the scheduled
departure type.
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3.1 Notation

Perhaps the single biggest difficulty with reading theoretical

presentations is becoming comfortable with the notation. This section is

therefore intended as a quick introduction to the symbols and conventions

that are used throughout the thesis, and should serve as a convenient

reference for the reader who forgets what a symbol means and cannot find

where it was defined. We do not attempt to go into any great detail

describing each letter as each is introduced and defined as it is

needed. Instead, all the symbols are listed in table 3.1 with brief

definitions as a reference guide only, and not as an introduction that

should be covered on first reading.

More important at this point is an outline of special conventions

that are used. Isolated capital letters, such as X, will always

denote random variables. The subscripted lower case versions of the

same letter, such as x., are the associated probabilities. In other

words, x. = Prob{X = i}. Lower case letters in brackets {x}, refer to the

entire probability vector, as in {x} = x, x 1 ,. . . .  Finally, capital

letters expressed as functions always represent transforms of the

associated random variables. For discrete random variables, we use the

z transform defined as X(z) =.i x. z1 . Density functions for continuous

random variables, such as B, are written using lower case functions, such

as b(t), with cumulative distribution functions B(t) = f tb(t)dt. In this

case, the transform is defined as the Laplace transform denoted by a

capital letter, superscripted by an asterisk, with the argument s, e.g.
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Table 3.1

Notation

Q length of the queue immediately prior to a departure

QM length of the queue prior to a dispatch instant when a
minimum load constraint m is imposed

n
Q number of units in front of a randomly arriving unit, in-

cluding other units in the same arriving group

Q number of units behind a random departing unit, including
others in the same departing batch

Q total number of units in queue as seen by a random arriving
unit at a dispatch instant

Qt length of the queue at a random point in time

R number of units remaining following a dispatch instant

Y number of units arriving during a service period (the
time between successive departures)

Y number of units arriving during a service period when
sampling is performed over the units

Y number of units in front of a random arriving unit that
arrived during the same service interval, including units
arriving in the same group

F number of units on a random incoming vehicle

N number of vehicles arriving during a service period

G size of a group arriving at a queue; number of units
out of an incoming vehicle which will depart through a
given outbound queue

G number of units in front of a randomly chosen unit arriving
in the same group

V (random) capacity of an outbound vehicle
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Table 3.1 (cont'd)

H number of arrivals during the wait time of a randomly chosen
unit

U number of units already on an outbound vehicle before it
arrived at a terminal

W waiting time of a randomly chosen unit

c (fixed) capacity of an outbound vehicle

m minimum load constraint for an outbound vehicle
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a*(s), defined as B (s) = fe-stb(t)dt. We generally use the term Laplace-
0

* O-stStieltjes (L.S.) transform, defined by B (s) = f e dB(t), which is a

slightly more general definition. In all cases, the letter z is

used as the argument for transforms of discrete random variables while

s is used for continuous random variables, where both z and s are

defined over the complex plane.

Finally, since these results are not confined to freight or

passenger systems, the more generic term "unit" is used to refer to

flows through the system. This will help emphasize the discretized nature

of the flows, regardless of whether it is composed of individual passen-

gers, freight cars, or a continuum of shipment sizes broken into one

ton increments.

3.2 Queue length transforms for the 1#/G/1 queue

In this section we consider the scheduled departure queue with

compound Poisson arrivals with a general service time distribution and

constant vehicle capacities. In section 3.2.1, vehicles are assumed

to depart irrespective of the length of the queue, implying that a

departing vehicle may be partially or completely empty. Next, section

3.2.2 introduces a control policy where a departure may be cancelled

if the length of the queue is less than some minimum.
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3.2.1 The Nx/Gc/l queue without cancellations

The queue length transform when arrivals are described by a

compound Poisson process can be obtained as a direct extension of

Bailey's original work. The derivation used here, however, is somewhat

simpler and more clearly identifies how bulk arrivals are incorporated.

We begin in the usual manner by setting up a recursive formula that

describes the state of the system from one regeneration point to the

next. Thus, let tn denote the time of the departure of the n h vehicle.

Define Q to be the number of units waiting immediately prior to t andn n

R to be the number left over immediately after t . The sequence ofn n

interdeparture times (service times) given by T = t - t are assumed
n n n-l

to be independently and identically distributed (i.i.d.) with density

function b(t) and L. S. transform B *(s). If Y is the number of units
n

arriving in the interval (tn, tn+i) then we have the following relationship:

=n+ = Rn + n 3.1

We may also define the dispatch operator D{-} which maps the units

waiting at t to those remaining at t , implying that R = D{Q } and
n n n n

hence:

Q+1= D{Q} + Yn 3.2

+ +1 n

Other authors generally use the convention Rn = n- c] ,where [x] =

max (o, x). The use of the operator notation i s m ad e clear when

scheduled departures with cancellations are considered. If the fY }
n

form a set of i.i.d. random variables, then the sequence {Q} constitutes
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a first order Markov chain. This condition is satisfied if a) arrivals

occur according to a simple or compound Poisson arrival procees or

b) if the number of groups arriving during the interval is deterministic

and the size of each group forms a sequence of i.i.d. random variables.

The latter case is especially important in transportation applications

where schedule coordination between arriving and departing vehicles may

produce the required conditions.

We may also introduce the interdepature times T = tn - tn-l'

whereby the bivariate sequence fQn, TIn forms a semi-Markov process,

enabling us to study the process between departures, an approach which

has been taken by several other authors (e.g. Neuts (1966), and Borthakur

and Medhi (1974)). It is shown in section 3.6 that all the needed infor-

mation regarding the system (the queue as seen by a randomly chosen

arriving unit and the wait time of that unit) can be derived from the

simpler sequence {QnI.

Before proceeding to derive the transform, it should be pointed

out that the steady state distribution of Q can be found directly from

3.2 using the method of numerical convolutions. We have by assumption

that the Y are distributed according to some random variable Y. Define
n

the probability vector {y} by:

Y= ProbfY = i} i = 0, 1, 2,

where it is assumed that the y. can be computed directly. Similarly

n n
define qi= prob{Q = i}, and r. = prob{R = i}, where we now have

n n

from 3.2:
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n+l n n
q. =SI r y. . 3.3

j=

n c n
where: r = E q.

0 . 3j=0

r = q i = 1, 2,...

0 0
Starting with an initial solution r = 1, r. = 0, i = 1, 2, ...,we

0 1

may use (3.3) recursively to solve for the steady state distribution of

Q (assuming it exists). Because of its relative simplicity, this

procedure is used as a basis for comparison when the evaluation of

the transform approach is undertaken in chapter 4.

Returning to equation 3.1, we define the following transforms:

cO

Q (z) = Z q.nz 3.4
n .

1=0

n 
R (z) = E r.nz 3.5
n 11=o

Y(z) = E y.z 3.6
1=0

Since Y and R are independent, we have, using the basic properties of
n n

transforms:

Q (z) = R (z) Y(z) 3.7n+1 h

Expressing R (z) in terms of' {q? } gives:
n 1
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c-1 oo
R (z) E q.n + E q i-c
n . 1

i=0 i=c

c-1 -c C-1

Zq + z [Q%(z) - E q nz
1=0 i=o

11

-c qn (ZC3.= zc qf (Zc - z) + Qn(3.8

Assume for the moment that the steady state queue length distribution

exists and is unique. Then, taking the limit as n+ c , and denoting

lim Q (z) = Q(z), we may substitute 3.8 into 3.7 and solve for Q(z),giving:

c-1
Z q.(z - z )

Q(z) = i=o 3.9

c
z
Y (z)

Equation 3.9 still has c unknowns, q0,..., qC-1 , on theright hand side.

The classical approach to solving for these remaining quantities is

through an application of Rouche's theorem which reads as follows

(Churchill et al., p. 300):

Theorem: Let f and g be functions which are analytic inside and on

a closed contour C. If f(z) > 1Ig(z)j at every point z on C, then

the functions f(z) and f(z) + g(z) have the same number of zeroes (count-

ing multiplicities) inside C.

Using this theorem, it is possible to show (see Appendix B) that

the function zc - Y(z) has c zeroes on or within the unit circle. Since

A point i is a zero of f(z) if f(2) = 0.



63

Q(z) must be absolutely convergent in this region (i.e. it cannot

contain any poles), the numerator must have the same set of zeroes.

Denoting these zeroes by z0, z1 , . . ., zc-1, we also note that z = 1

will always be one of the zeroes, and hence we adopt the convention

that z0 = 1. This particular zero does not give us any information

regarding the unknown probabilities, but we do have the additional

fact that:

lim Q(z) = 1 3.10
z+-l

We now consider the conditions required to guarantee the existence

and uniqueness of Q(z). Let S denote the (possibly infinite) set of states

making up the Markov process. Necessary and sufficient conditions for

existence and uniqueness is that there exist a single communicating class

of states CQ S in which the states are aperiodic and positive recurrent.

A slightly stronger assumption is that the chain also be irreducible,

whereby C=S, which implies that the process be ergodic. For problems in

queueing theory, it is almost impossible to have more than one communi-

cating class and hence the stationary distribution, if it exists, is

always unique. For reasons outlined in appendix B, however, the problem

is simplified somewhat if we assume the stronger condition of ergodicity,

and thus we assume throughout the remainder of the research that the

process is in fact ergodic. To guarantee existence, or, equivalently,

to ensure that the states within C are positive recurrent, we must assume

that p = Y/c 1, which is the usual condition for steady state analysis.
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An alternative set of conditions for existence and uniqueness deals

directly with the task of solving for the unknown probabilities. As

described above, and outlined in greater detail in appendix E.2, these

unknowns can be determined from a set of simultaneous linear equations.

A necessary and sufficient condition for existence and uniqueness, then,

is that these equations be consistent. Bailey shows that this is true

if and only if all the zeroes are distinct, a condition that depends

on Y(z) and must be satisfied on a case by case basis. In appendix B,

a simple test is provided for determining whether all the zeroes are

distinct and is then illustrated for several cases.

Returning to the problem of finding Q(z), it is possible to solve for

Q(z) directly in terms of the zeroes. We just note that the polynomial in

the numerator is of order c, enabling -us to write:

,c 1) c-l c-l
(z - z = q H (z-z.) 3.11

i=0 i=0

c-1
Now we have the single unknown I q. which may be evaluated using 3.10.

i=0 1
Doing this, we have: c-1 c-1

( I )(z-1)T H (z-z.)
lim Q(z) = 11 lim i i=l
z- z- c

z
- 1

Y(z)

Applying l'Hopital's rule yields:

c-1 c-1
S q, ) R (1-z,)
i=0 i=13.12

c - Y'(1)
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where we have adopted the shorthand notation

d
d-Y(z) =Y'(l) =Y
dz 

I~z=l

Thus we have:

C-1 C-1

11q. = (c-Y)(z-l) c-i 3.13
1=01 =1 i

where Y = Y'(l) = the expected number of arrivals during a service interval.

Note that 3.13 gives us the probability that a randomly chosen vehicle

will not be completely full. Substituting 3.13 and 3.11 into 3.9 gives:

c-1 z-z.
(C-Y) (z-1) 11 (T-)

i=1

Q(z) = 3.14
z

Y(z) -

Equation 3.14 is the same as that obtained by Bailey, although the

derivation is somewhat different. What is significant about the analysis

here is the ease with which compound arrival processes are incorporated.

Bailey, assuming a simple Poisson arrival process, noted that

Y(z) = B (X - Xz), where X is the arrival rate of units to the queue.

To allow for a compound Poisson arrival process, let G be the size of
m

the mth arriving group with transform G(z). It is well known, then,

that the transform of the distribution of the total number of arrivals

during a service interal is given by Y(z) = B* (X - XG(z)), where A is

now the arrival rate of groups to the queue.
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At this point it is possible to obtain a number- of important

results regarding the behavior of the queue at departure instants. Using

3.14, it is possible to find the mean and variance of the queue distribution

using the following standard formulas:

E IQ] = Q'(1) 3.15

Var [Q] = Q"(1) + Q'(l) - Q'(1) 3.16

Although very straight forward, the algebra required to use these

relationships can be extremely tedious and is therefore left in appendix C.

The results of this exercise are the following formulas, reported here for

the first time:

-- -2 2C-1
Q =4YY + (C-Y) 6(c-Y) +3Y -. c

- i-z
2(c-Y)i= i

.. - 2 24
var[] _4Y(c-Y) + (1+6Y) (c-Y) + 3(Y) -(-Y

-2
12(c-Y)

c-1 z
3.18.1-Z.

i=l

where Y, Y and Y are respectively the mean, variance and third moment

about the mean of the number of arrivals during a service interval.

For simple Poisson input, Y = Y = Y = pc. Substituting these into

3.17 and 3.18 yields the formulas that were originally derived by Bailey:

E[Q] = l-c(l-p) 3.19
2(1-p) i= 1-Zi
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1 +2p+ 6pc(l-p)2 - c2 (l-p)4  c1 zi
Var[Q]=-2l-z3.20

12(1-p)2  i=1 1

The moment formulas can be of some use by themselves, or, as is

shown in section 4.3, can be used to fit approximate distributions if

other statistics are required. It is also possible to develop a set of

equations that allow numerical inversions to be performed, enabling us

to explicitly calculate the probabilities q, q 1 ,. . . .  This topic is

pursued in some depth in section 4.2.

Before moving on to the problem of scheduled departure queues

with cancellations, there is one special case of the service time

distribution which deserves mention because of its simple analytical

properties. The distribution, termed here the hyperstage distribution,

is actually a very general class of distributions whose principle feature

is that it has rational Laplace transforms. It is best described by

Kleinrock (1975 p. 144) as the distribution of time required by a customer

to pass through the network depicted in figure 3.1. The customer has a

choice of i=1, ... , N branches, each of which may be chosen with

probability a . o move over branch i, the customer must pass through

r. stages, each with a processing time given by a negative exponential

distribution with parameter r.P. The distribution includes, as special

cases, the Erlang and hyperexponential distributions.

The importance of this distribution is that it can be used to

approximate virtually any distribution encountered in practice while

possessing very simple analytical properties. A number of authors have
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used it in the bulk queueing literature, including Bailey (1954),

Downton (1955), Gupta (1964), Gupta and Goyal (1965), Foster (1961, 1965),

Jaiswal (1960a, b) and Luchak (1958). In most cases, the distribution

was used to formulate a queue as a completely Markovian system using the

well known method of phases. Our interest, however, is in bringing out

its implications with regard to solving the transform in equation 3.14

as was originally noted by Bailey, whose presentation we now follow.

Assume we are describing the M/Ec/l queue, where E denotes the rr r

stage Erlang distribution. In this case, Y(z) is given by:

Y(z) ri- )3.21
rp+ X - XZ

The denominator of 3.14 now becomes:

() (zc(r + X - Xz)r - (r)r 3.22

Equation 3.22 has c + r zeroes, of which c are on or within the unit

circle and r are outside. Denoting these zeroes z, . . ., z 1 , . .

z c+r-lwe may write 3.14 as follows:

c-1
Q(z) = K II (z-z.)

i=0 3.23
c+r-1

II (z-z.)
i=O

where K is a constant of proportionality. Cancelling common zeroes

and evaluating K yields:
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c+r-1 1-z.
Q(z) = II 3.24

z-z

Q(z) may now be inverted by expanding the right hand side by partial

fractions. From a computational perspective, there are several features

of this problem, discussed in section 4.1.1, which suggest that the

necessary zeroes may be difficult to find. Also, for bulk arrival

systems where the maximum size of an incoming group is ^C, the number of

zeroes located outside the unit circle that must be found jumps to L-r.

If the service distribution is a hyperstage type with N branches and

r. stages in branch i, the number of zeroes outside the unit circle

N
increases still further to E Zr.. This may be considerably more difficult

i=1
than finding the c zeroes within the unit circle. On the other hand,

the number of zeroes within the unit circle remains at c regardless of

the functional form of Y(z).

This section introduces the basic methodology for solving for queue

length transforms for bulk arrival, bulk service queues. The most

important results are the transforms in equations 3.9 and 3.14, and the

moment formulas in equations 3.17 and 3.18. In the sections which follow,

these results are extended to allow for cancellations and vehicles with

random capacities.

3.2. 2 The MV/Gc/1 queue with cancellations

The scheduled departure queue with cancellations is defined as

th
follows. Let t be the time of the n dispatch instant, representing

n
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the points in time where departures may occur. If at t the length of
n

the queue is at least m, then the vehicle will depart carrying up to

c units. If the length of the queue is strictly less than m, then the

run is cancelled and the time until the next dispatch instant is drawn

from the service time distribution. The service time is defined as the

time between dispatch instants and is independent of whether a departure

actually occurred or not.

Examples of scheduled departure queues arise frequently in freight

applications where a vehicle might depart from a terminal once a day.

If there is too little traffic to economically justify sending the vehicle,

the departure can be cancelled and the traffic held over to the next day.

It is important to understand the difference between this kind of control

strategy, which has not been dealt with before in the open literature,

and the general bulk service rule proposed by Neuts (1967) which has

been studied by a number of authors (Tegham et al (1969), Borthakur

and Medhi (1974), Borthakur (1971), and Medhi (1975, 1979). In both

cases, there is a period immediately following a departure during which

no departures may occur and arrivals must queue up. Where the two

models differ is when the length of the queue is less than m. Under

the general bulk service rule, the vehicle is simply held until the

length of the queue reaches m, at which point the vehicle departs, whereas

in our case the departure is cancelled until the next dispatch instant.

The length of the next service time is independent of whether the vehicle

has been held or not.

The system is easiest to describe at dispatch instants. Let Q
n

be the number of units waiting prior to the n th departure, where the
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superscript m is used to denote the presence of a minimum load constraint.

Proceeding in much the same way as we did for the case without

cancellations, we observe:

3.25= D{QI}+ Yn

where the regeneration points now occur at dispatch instants.

The dispatch operator D P- is defined as:m

D {x} =
m

Proceeding as before

M-1
R (z) =
n i0

x x<m

0 m < x < c

x-c x >c

we find the transform of R as follows:
n

. c-1 0 .
q.z' + . c +I i-z

i=m i=c

M- 1 a C-1 -C-1
= q Z + q. + z-c [Q(z) - qz]

i=o i=M i=o

M-1 . C-1.[c c c
z (z-1) q z + q (z -z) (z)]

i=O i=M

Taking the limit as n +- gives:

Qm(z) = R(z) Y(z)

M-1 c-1 .
(zC-1) q.z + q.(zC-z )

i=O i=M

C
z

Y(z)

3.26

3.27

3.28
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Note that the denominator in (3..28) is the same as that in 3.9,

enabling us to make the same observation that there must be c zeroes on

and within the unit circle. The numerator, on the other hand, is a

polynomial of order c + m -1, containing not only the same c zeroes as

in the denominator but m - 1 additional ones as well. Unfortunately, we

cannot locate these new zeroes in the same manner as the previous ones

using the known function in the denominator. Two alternative approaches

can be used to resolve this problem. The first involves using the c

zeroes in the denominator to solve directly for the unknown probabilities.

In other words, denoting as before the zeroes within the unit circle

by z, z1 , ... , zc-1 , we have the following system of equations*

(obtained by substituting the zeroes into the numerator of 3.28):

M-1 . c-l c 1

(z.-l) q. z. + I q. (z. - z. ) = 0 j = 0,1,...,c-l 3.29

3 i=0 1 i=m 1 J 3

In this case, the transform is as shown in 3.28.

The development of the second method is motivated by the obser--

vation that it seems unnecessary to have to solve for c unknowns when

in fact only m-i unknowns are added by the minimum load constraint (in

most cases, m < c/2). To begin, let zc, . . ., zc+M 1 denote the new

zeroes of the numerator, enabling us to express Qm (z) as follows:

*
Setting up these equations is actually somewhat more involved; see
appendix E.2.
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c+m-1
K -I (z-z.)m Ki0Q(z) = c
z

Y(z)

Evaluating the constant yields:

c+m-i z-z.
(C--,) (z-1) II(1

i=J. 1

Qm() = 3.30

ze -l1
Y(z)

Now define the polynomials Ac(z) and Bm(z) as follows* (the superscripts

c and m a r e dropped when writing out the coefficients):

c
Ac(z) = a.z

i=0

c-1 z-z.
= (c-Y)(z-1) I 13.31

i=1 I-

M-1 i i
B (z) = b.z

i=0

c+m-l z-z,
.1-z3.32

i=c

Our approach is, rather than to solve for the remaining zeroes,

to solve directly for the polynomial B(z) in terms of its unknown

coefficients using the known coefficients a0 , a1 , . . .,ac. Todo

this, define P(z) (=AC(z) *Bm(z), where:

B (z) should not be confused with the L.S. transform B*(s) of the

service time distribution.
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c+m-i .M-1 . c-1.
'(z) = 4.z = (zc-1) x q.z' + Xq. (zc - z )

i=0 i=0 i-m
3.33

Rewriting the right hand side of 3.33 in terms of increasing powers of

z gives:

M-1
W(z) = -

i=0

.Lz c-i
i .-i=m

. c-iq z + (q 0+i
I=M

c +mf1 i+c
iz + qiz

Matching the coefficients of like powers of z gives the following

expressions:

tktck+c =0
k = 1, 2, ... , m-1 3.35

Expressing the coefficients tk in terms of the polynomials Ac (z) and

Bm(z) gives:

k-1 M-1
I ak .b.+ (a + a )bk +k

i=0 i=k+l
ac . b. = 0c+k-:L i

The polynomial B (z), however, has m unknowns while 3.36 provides only

m-1 equations. The final equation is found by noting from 3.32 that:

B (z)

z=i

M-1
= b. =
i=0

The system of equations given by 3.36 and 3.37 requires that we

solve for only m unknowns, a problem that requires m3/3 additions

2and multiplications. To this we must add the c2/4 operations required to

solve for the polynomial Alz). If we assume m = c/2 (typically m will

3.37

3.34

3.36k 5 = a,. . -
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be less than half the capacity of the vehicle) then the total is
2
c c +w 1 ) additions and multiplications, or approximately an order of

magnitude faster (for large c) than if we solved the full c x c system

of equations. Once we have both polynomials A (z) and Bm(z), then the
C

probabilities q0, ... ,9 'c- are given by:

i
q= - a. . b. i = 0, ... , M-1 3.38

M-1
a b i = m, ... , c-1 3.39

j=O0~

At this point, it is useful to look more closely at Qm(z). Letting

Q(z) = Q0(z) as given in (3.14), then, since A (z) is unaffected by

the minimum load m,, we may write:

Qm(z) = Q(z) @B z) 3.40

Using 3.40, it is easy to compute the moments of Q using equations

3.17 and 3.18 and the coefficients of the polynomial B(z).

We have now completed the basic derivations for the scheduled

departure queue with and without cancellations. The following section

considers the special case m = c corresponding to the go-when-filled,

scheduled departure queue. This result is then used to solve the go-

when-filled real time queue, where departures occur as soon as the queue

will fill the vehicle. (Remember that for scheduled queues, departures

may occur only at predetermined dispatch instants).
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3.2.3 Scheduled and real-time queues under a go-when-filled policy

An interesting special case of the scheduled departure queue with

cancellations is the go-when-filled (GWF) policy. As one might expect,

the transition from scheduled departures to real time dispatching under

the GWF policy is a minor one, and hence the latter case is covered

here as well. For the moment, however, assume that we have a scheduled

departure queue with m-c (i.e., the vehicle leaves only if it is full).

Equation 3.28 now becomes:

c-I
(Z -c ) q iz

Qc(z) = c3.41
z

Y(z)

As before, the numerator must have the same zeroes on and within the

unit circle as the denominator, where these zeroes are unaffected by the

minimum load constraint. In the numerator, however, we see that the

additional c-l zeroes introduced by the minimum load are evenly distributed

around the unit circle, and can be solved for by inspection. In fact,

the polynomial B"m'(z) = B C(z for m=c can now be written:

c c-1
BcW) 1 z-l 1 z 3,42

c z-1 c i=O

An interesting feature of B (z) is that it is independent of the arrival

process, implying that the distribution of units left over is independent
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of the utilization ratio. Put differently, the increase in the length of

the queue produced by switching from m=O to m=c is independent of p. By

inspection, we can see that the distribution of units left over is

exactly the (discrete) uniform distribution between 0 and c-1, and hence

c-i c2-I
has mean -1-and variance 12 . Thus we may find the moments of

Qc as follows:

E(Qc) = E(Q) + c-343

2
c c -i

Var(Q ) = Var (Q) + 12

The go-when-filled, scheduled departure queue can be used to

approximate a real-time GWF policy in continuous time, as opposed to

simply at regeneration points. Assume the time between dispatch instants

is some fixed interval At**. Remembering that N(z) is the transform of

the number of groups to arrive between dispatch instants, we have, for

a Poisson process:

N(z)=n 0 + n z + 0(At2) 3.44

where n =XAt andn 1 -XAt.

The size of At may be determined by practical considerations. For

example, the dispatcher may only check on the status of a queue once
an hour.
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Assume that At is sufficiently small. Then

Y(z) 1 - n + n G(z) 3.45

As At+0 , n1 0+ andY(z) +1 ,leaving:

Q (z) = B z) 3.46

Thus, in the limit, the steady state queue length in continuous time

js simply the discrete uniform distribution between 0 and c-1.

Although the queue will of course exceed c at certain points in time

(as a result of bulk arrivals), once this occurs the vehicle is

dispatched within At. Thus as At -+ 0, the probability of ever seeing

the queue longer than c-1 vanishes.

The same queue can also be modelled in real time by defining each

arrival instant as a dispatch instant, and then finding the queue length

at each dispatch instant. In this case we have by definition one

arriving group between dispatch instants, or Y(z) = G(z), and all our

previous results apply. This is true irregardless of the arrival

process as long as the size of each group forms a sequence of i.i.d.

random variables. The only exception occurs when the size of an incoming

group may be larger than c. In this case, we must allow for the

possibility of two or more departures taking place at the same instant.

For all practical purposes, however, this possibility may be ignored.
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3.2.4 Vehicles with random capacities

As is pointed out earlier, the bulk arrival queue with random

service capacities, denoted the MI/G/l queue, has been studied by

several authors. Miller (1959) and Bhat (1964) both study the Mx/G /l

service queue, where the server becomes idle if and only if the system

is empty. Miller uses the conventional imbedded Markov chain approach

but does not fully simplify his results which is also left in terms of

the unknown probabilities q0 , . .. ,qc- 1 . Bhat presents a very complex

analysis using results from fluctuation theory, but does not explicitly

solve for the queue length transform. Cohen (1969) studied the problem

addressed here (i.e. the scheduled departure I/G/l queue) but he also

presents a very complex analysis without explicitly solving for the queue

length transform. Peterson (1971) considers the same problem assuming

simple Poisson arrivals; the extension to compound Poisson arrivals,

however, is straightforward. The methodology used here, however, is

substantially different and represents a new approach to deriving queue

length transforms. Following the derivation, we discuss several interesting

applications of the concept of random capacities.

The derivation presented here uses somewhat different arguments than

those used previously for the case with fixed vehicle capacities. The

approach taken brings out some of the underlying relationships more

clearly and represents an interesting alternative to Bailey's derivation.

We begin by assuming the capacity of the vehicle is given by a random

variable V where, following our usual convention, v.=Prob[V=i]. We also

define a new random variable W where:
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W = Q- V = W + W 3.47

where W = [Q-V] and W = [Q-V]~. Taking transforms of both sides of

3.47 gives:

W(z) = Q(z) V(-) = W+(z) + W~(z) - 1 3.48z

where:

W(z) = 2 w.z
i=-c 1

+ 0 *) i
W (z) w + w.z

i=-c i i=1 1

0 C0
W~(z) = 2 w.z + 2 w.

i=-c 1 1=1

Clearly W = R, the number of units left over following the departure of

a vehicle. 4-, on the other hand, is minus the amount of empty space

on a departing vehicle. Using the fact that W (z) = R(z) = Q(z)Y(z)

and solving for Q(z) gives:

Q(z) = 1 - W~(z)

Y(z) - Vz)

c c -
z -zcW (z) 3.49

z - zcV()
Y(z) z

The reason for multiplying and dividing by zc is that now we may apply the

same arguments used before to find the remaining unknowns, which in this

case are w-,....,w_. Noting that the numerator is a polynomial of order

c and that the denominator must have c zeroes inside and on the unit
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circle (if p = Y/V <1), we may express Q(z) as:

c-1 Z .
(V - Y) (z-1) IT

i=ll-Z.
Q(z) =C3.50

z- z V
Y(z) z

Unlike the previous case with fixed capacity, we do not recover

the probabilities q , ... ,qC-1, but rather the probabilities w 1 = the

probability of i units of empty space on an outbound vehicle. However,

we also have that:

c-i
W. = Zq v9,. 3.51

which forms a system of linear equations which uniquely determine

q09 . c-1. Furthermore, the equations are triangular, and hence

may be solved directly using the recursion:

1 ~i-i1
q. = - [w. - E q  . ] 3.521 v c -1 Z=O z A -i+c

c

As a brief aside, it is interesting to note that the recursion

relating Q and Q can be replaced by one in terms of R and R :
n n+l n n+l

R = [Rn + Y - V n+ . 3.53
n+l n n

Equation 3.53 is a standard relationship in queueing theory and applies

to other problems such as describing the unfinished work in a G/G/I

queue. This observation allows us to use the bounds and approximations

developed for other applications in the context of bulk queues.

Turning now to the case with cancellations, we again begin with

3.47 as a starting point. This time, however, we no longer have that
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R = W . Instead, we note that we may write:

IR = [Q-V] + + [Q-"m] + m u(m-Q) 3.54

where:

1 x > 0

U(x) =
0 X < 0

To take transforms of 3.54, temporarily define the random variable A

as follows:

A = [Q-m) + m u(m-Q) 3.55

Taking transforms of 3.55 gives:

M-1i
A(z) = E a.z

i=0 1

M-1Co i
-E q + E q z 3.56

i=m i=O

Again defining W = [Q-V] , we now wish to find R(z) in terms of

W (z) and A(z). Letting rk = Prob[R=k], we have that:

rk = Prob [W=Z9,A=k-ZJ 3.57

Observing that A=O if W >0 and W =0 if A >0, we find, for k>0:

rk = Prob[W =k,A=0] + Prob[W =0, A=k] 3.58

= Prob[W =k] + Prob[A=k]

wk + a . 3.59

Of course, ak=0 if k >m. To find r0, we use the relation:

r = Prob[W =0,A=0]

- ProbjW =01A=0] Prob[A=0] 3.60

* We implicitly assume here thatT is greater than-m,
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To find the conditional probability on the right hand side of 3.60,

we have:

+ +Prob[W =0] = w =
0

c i
E v. q.1 1
i=m j=0

Conditioning on the event A=0 gives:

+ Zv. Zq.- Sq.
Prob[W+=0 A=0] = i=m j=0 j=1 J

co
q + Zq q

j-=mJ

w - (1 - a )

a9

Thus:

r =w
0 0

+ a - 1
0

We can now f ind R (z) to be:

R(z) = W (z) + A(z) - 1

Combining 3.48 and 3.64 gives:

Q(z) V(-) = R(z) + 1 - A(z) + W~(z)z

= R(z) + W~(z) - A(z)

Using R(z) = Q(z)/Y(z) and solving for Q(z) yields:

Q(z) A(z) - W (z)

Y(z) z

z [A(z) - W(z)]
c

- zcV(
Y (z) z

3.61

3.62

3.63

3.64

- 1

3.65

3.66
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As occurred when the vehicle capacity is deterministic, the minimum

r-oad constraint does not affect the denominator. At the same time,

the numerator is now a polynomial of order c+m-1. The unknowns

W-c,..., w_,aa-w ,a ,...,aM-1 can be determined in the same manner as

was used for the case of fixed capacity.

The following examples demonstrate how randomness in capacity can

arise (the first example is reported in Peterson (1971)).

Example 3.1: The multi-stop problem

Of ten in scheduled networks a particular vehicle will make several

stops along a route, picking up and dropping off passengers along the

way. Units on board a vehicle coming into a terminal which are not getting

off then have the effect of reducing the capacity of the vehicle for those

trying to get on. Let U be the random variable describing the number of

units already on a vehicle which are not getting off at a given terminal

with transform U(z). It is easily verified that:

V(z) = z U (1) 3.67z

Or equivalently:

U(z) = z (1) 3.68
z

Substituting 3.68 into 3.50 gives the expression:

c-1 z-z
(c -U- Y) (Z-1) TI(1

Q(z) = 3.69
C
zc
Y(z)- U(z)
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where we have substituted V = c - U

Example 3.2: Priority queues

In many cases in freight applications a carrier will offer two

levels of service which separates standard and high priority traffic,

where the latter category is loaded first on any outbound vehicle

with the remaining capacity then allotted to the lower priority traffic.

By virtually guaranteeing the high priority traffic space on the first

outbound vehicle, the carrier can sell the service at a higher rate, and

offer the other traffic (typically low valued commodities) a reduced rate

with some reduction in service. Of particular interest to the carrier

is being able to estimate a) the probability the high priority traffic

will exceed the capacity of the vehicle, requiring the operator to make

a costly additional run or the embarrassment of a late delivery and b) the

level of service differential which would then assist in the setting of

prices (of course this is part of a larger equilibration problem).

The priority queueing problem is easily conceptualized as a multistop

vehicle routing problem. Assume there are p = 1, ... , P priorities

with p = 1 being the highest. We can now think of P separate queues,

where the vehicle stops first at p = 1, then p = 2 and so on. The

capacity available to a given priority level is simply whatever is left

over after all the higher priority traffic has been loaded on. The

problem therefore has already been solved in the previous example.
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Example 3.3: Weight versus volume

A problem frequently encountered in LTL trucking is that a trailer

may be full yet still be carrying well below its maximum weight limit if

the freight is of sufficiently low density. For this reason, a linehaul

trailer capable of carrying up to 45,000 pounds will often fill up with

less than 35,000 pounds. One approach to modeling this would be to

specify two capacities, and attach to each unit of freight another var-

iable describing its volume. The queue would then be described by

considering both weight and volume, each with its own upper limit. A

simpler and more useful approach would be to estimate a distribution

describing the number of tons a full truck might carry. The transform

of this distribution could then be used directly in equation 3.49.

The weight and volume constraint, of course, is not unique to

trucking. A similar problem arises in rail freight where a train is

usually pulling a mixture of fulls and empties. Again, the maximum

number of cars that can be pulled is determined by their combined weight,

where we may estimate directly the distribution of the maximum number of

cars before the weight constraint is met. Trains also have the added

dimension of locomotive availability, where the possibility of insufficient

locomotives contributes to the randomness of the total capacity of the

train. This problem can be modeled by first estimating the distribution

of the maximum number of cars F a single locomotive can pull, with

transform F(z). Now let G(z) be the transform of the distribution of the

number of locomotives that will be available. The transform of the total

capacity of the train is then V(z) = G(F(z)).



88

Example 3.4 Random shipment size

Up to now, we have discretized shipments into specific weight units,

allowing the capacity of the vehicle to be represented by a maximum

allowable number of units. Alternatively, we could let each shipment

be an individual customer and then use the concept of random vehicle

capacities to reflect the random size of each shipment.

This concluces the most important results regarding queue length

transforms. The next section reports on several related results, followed

by section 3.4 which addresses the problem of finding waiting time

transforms.

3.3 Extensions of the scheduled departure queue

Having solved for the queue length transforms for the Mx/GY/l

queue with and without cancellations, it is now possible to consider

three related results. The first is a light traffic approximation for

queues with cancellations. Second, the queue length transform is found

when the sequence of departure headways forms an alternating renewal

process. Third and last is the transform of the size of a group

arriving to the queue, where the group has just come off a vehicle

arriving from an upstream queue. Such a problem would arise when studying

a queue imbedded in a network. All the results here are new.
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3.3.1 A light traffic approximation for scheduled queues with cancellations

The scheduled queue with cancellations as presented in section 3.2.2

can be applied in situations with any level of demand. In some instances,

however, it may be possible to simplify the calculations by introducing

approximations. For example, in heavy traffic (p close to 1) the

probability of a cancellation will be negligible, enabling us to ignore

the minimum load constraint. Of greater interest is the light traffic

case where the minimum load is more likely to have an effect. Since the

capacity of the vehicle is less likely to be constraining, we can consider

an approximation which ignores the constraint altogether, assuming, in

effect, an infinite capacity vehicle. Proceeding as before to find the

distribution of units left over, we now have:

m-1 . 0
R(z) = q.z' + 4 q

i=0 i=m

m-l
q. (z - 1) + 1 3.70

i=O '

Using Q(z) = R(z) - Y(z) gives

M-1.

Q(z) = q. (z - 1) + 1] Y(z) 3.71

_i=0

Unlike the earlier problems, we no longer need to solve for any zeroes.

Instead, 3.71 can be used to set up an m x m system of equations for the

remaining unknowns. First, we must write the right-hand side of 3.71 in

terms of simple powers of z which, after some manipulation, yields:
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M-1 M-1 i .
Q(z) = I (1 - qz) y. + I q y. . z

i=0 91=0 j=0 ~

iO M-1M-1 .
+ I [(I-Zq) y.+ I qiy. I z 3.72

i=m = =0

Matching the coefficients of the first m-1 powers of z on both sides gives

the following system of equations:

i- M-1

I (y. - Y. -) + (1 - y) q. + y. q = y. i=0, ... , M-1 3.73

z=0 =i+I-

n
In writing 3.73 we use the convention that E(-) = 0 if m > n.

i=m
Once q, ... , qM-1 have been found, the rest of the probability vector

is easily computed by matching the coefficients of like powers of z on

both sides of 3.72. This approach to computing the probability vector

{q} is outlined in further detail in section 4.2.

3.3.2 Scheduled departures with correlated headways

thLet t be the time of departure of the n vehicle and define
n

T = tn+ tn to be the headway separating the nth and n+lst vehicles.

Thus far, we have assumed the departure times of vehicles to form a

renewal process in which case the sequence {TnI forms a set of i.i.d.

random variables. Now assume that each vehicle has a scheduled departure

time T with an actual departure time given by t = T + E , where
n n n n
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E is an arbitrary random variable where E(E ) = 0, Var(s ) = E(E2 ) = 2
n n n n

and Cov (E, E.) =0for all it- j. Now we have T = T - T+E -E:,
1 Jn n+ n +

2
Cov (Cn'T n+1) = -a ,and a correlation coefficient given by Cov (T'n+)/

Var(rn) = -.5. In this case successive headways are negatively correlated,

implying that the number of arrivals Y between successive departures is
n

correlated as well, violating one of the basic assumptions of the model.

Unfortunately, this problem arises often in practice, one of the most obvious

examples being the bus bunching phenomenon where buses serving the same

route tend to form pairs, resulting in a sequence of short and long

headways.

A simple approximation for dealing with such problems is to define a

new sequence of headway intervals T ,T2' .. , where T2n+ T1 and

T 2n ~T 2and where T 1 and T 2 are independent but with different distributions.

In order words, we are replacing a general sequence of headways with an

alternating renewal proce-s in order to capture the first order correlation

structure. The correlation coefficient CR for such a process is given by:

E(T 2 + - T)( T2n - T)

R ^ 1/2
[Var(T)]

2

2 +22 -2
E(T) + E(T 2 ) - 2T

where T =(T1 + T2)/2. Corresponding to such a sequence of headways is a

sequence Y of the number of arrivals during each headway. Analogously, we
n

have Y Y2n+1~1 and Y2n - Y2 The following recursions may now be defined:

2n+ = R2n+ 2n
3.75

Q2n+2 =-R2n+l + Y2n+l
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we'can now assume that Y2n and Y2n+l are conditionally independent. Letting

n + 0, we may write:

Q1(z) = R2(z) 0Y2

Q2(z) = R1(z) - Y (z) 3.76

where Q1 , R, and Y have the steady state distributions corresponding to

Q R , and Y andQ2 R and Y correspond similarly to Q
2 l 2n+l nl 2 2 2 2n

R2n and Y.2n The transform R1(z) is given by:

R1 (z) =Z-c [ q (zc - z ) +Q 1 (z)j 3.77
i=0

Hence:

C-11

Q2(z) = Z-c c (zc-z)+Q (Z) Y3.78
i=0

Similarly:

Q (Z)= C-1.q2 c-z i +Q2 (z) Y2(z) 3.79
i z(z -zI) Q2 \J

i=O

Substituting 3.79 into 3.78 gives:

2(z) = - 1 ql(zc-z ) + z-c (C-1 q (zc- zi) +Q (z z
Q2 (Z) = z c-I ( i) +Jc k z)+ Q2(z)) Y2( Z)] Y1(z)

Li=0 i=0

c-1 c c-1
z (zc -z) + q ci -z) Y2

i=0 i=0 3.80
2c

Y 1 (z) ~ 2(z)
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An analogous expression can be found for Qz), although 3.80 is all

we require for solution. The denominator in 3.80 has 2c zeroes on and

within the unit circle which can be used to solve a 2c x 2c system of

equations for the unknowns. Since the numerator is a polynomial of

infinite order, it does not appear possible to take advantage of

the shortcuts used earlier (i.e. expressing the numerator directly in

terms of the zeroes). The potentially large set of simultaneous equations

casts some doubt on our ability to accurately solve for the unknown

probabilities. No attempt is made in this research to solve 3,80, but

chapter 4 presents some tentative results using Gaussian elimination

to solve equation 3.9 which is somewhat simpler than 3.80.

3.3.3 The transform of the size of an arriving group for a queue imbedded

in a network

In the previous sections we concentrate on finding queue length

transforms for different problems. In this section, we derive several

results that are of use in describing the arrival process to a queue.

Using the transform of the length of the queue, the transform of the

size of a departing batch is derived. This is necessary when studying

networks of queues where the departures from one queue became the arrivals

to another.

Consider the problem depicted in Figure 3.2. Vehicles depart from

node A with a load of passengers which are dropped off at node B. Each

passenger then heads to a specific departure point i, i=l, ... , I, and
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waits for the next appropriate outbound vehicle. Each of the points i=1,

., I represents a queue with bulk arrivals, where the size of each

group arriving to queue i is determined by the size of the load arriving

from terminal A and the fraction of passengers who then depart from queue i.

What we wish to do now is derive the transform of the size of a load

departing from A, and from this find the transform of the size of a load

joining queue i.

Addressing the first problem, let F denote the size of the incoming

load from the queue at terminal A whose steady state queue distribution

has transform Q(z). Then under a scheduled departure dispatching policy

without cancellations we have:

f q = i = o,..., c-1

3.81
f =. q.

Taking the appropriate transforms and reducing gives:

c-1
F(z) = zc - qi (zc - z) 3.82

1=0

Using 3.9 we may rewrite 3.32 as

F(z) = z c- Q(z) -i

= zc [1- R(z)] + Q(z) 3.83

Alternatively, we may use 3.14 and express F(z) in terms of the zeroes
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required to find Q(z), as follows:

F(z) = z - (c - Y)(z
c-1

- 1) IT
i=l

If a minimum load constraint of m is

corresponding load size, we find:

F(z) = zc - [(zC- 1)

imposed, then, letting F be the

m-1 c-1.
E q. + q (zc - z')]
i=O 1 i=m i

Using 3.28 we may simplify this to:

F' (z) = z [1 - R(z)]
m-1

+ Q(z) + (zc-l) E q. (z -1)
i=o I

In this case we are forced to leave F(z) in terms of the probabilities

q0 ,..., qm-, which are easily determined using the methods outlined in

section 4.2. For the special case of m = c, it is easily verified that
c-1

q = 1 - p, where p Y/c. This gives:
i=o

F (z) = 1 - p + p z

F (z) of course is simply the transform of a binomial random variable

which takes on values of 0 and c with probabilities 1 - p and p. It is

interesting to note that F (z) does not depend on the characteristics of

the queue itself. We can interpret p now as the probability a vehicle

will be dispatched (with load c) at a given (scheduled) dispatch

3.87

i
z-z
1-Z.

3.84

3.85

3.86



97

instant, although it is important to realize that the probability of a

departure from one instant to the next is not independent.

In deriving 3.82,3.86 and 3.87 the assumption is made that an empty

load could depart from the queue. This serves not only to simplify the

expression for the size of each load but also the analysis of the

departure process. To allow for the presence of empty loads, we

introduce the concept of a virtual departure which would occur, for

example, when a minimum load constraint produced a run cancellation.

Using this notion, we find that the departure process of vehicles is

independent of a minimum load constraint since a real or virtual

departure occurs at each dispatch instant regardless of the length of the

queue.

With the total size of an inbound load determined, we turn now to

the problem of finding the distribution of units out of an inbound load

headed for an outbound link. This is solved easily as follows. Let

o be the fraction of units out of an inbound load headed for a given

outbound link, and as before, let G be the size of the resulting group.

We assume now that all units are travelling independently. Thus if an

inbound load has exactly k units, then G has a binomial distribution with

parameters k and 0, with transform:

G(zIk) = (1 - ( + ®z)k 3.88

Taking expectations of both sides gives:
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c
G(z) = E f G(zl k)

k=o

Ck
=Zf (.1 - Q+®z)
k=o

= F(1 - 0 + Oz) 3.89

Equation 3.89 gives a simple relationship between the total size of an

incoming load and the size of the group arriving at a particular queue.

This completes the major results relating to queue lengtWh transforms,

although we return briefly to the topic in section 3.5. The next section

looks at the important problem of waiting times in bulk arrival, bulk

service queues,

3.4 Waiting time transforms for bulk arrival, bulk service queues

Until now our attention has focused on studying the length of the queue

at dispatch instants. These results can be used to determine a limited

set of level of service parameters such as the probability of missing the

first departure. In this section, we consider the problem of waiting times

for bulk arrival, bulk service queues. To date, waiting time transforms

have been found only for single arrival, bulk service queues (Downton(1955))

and bulk arrival, single service queues (Burke(1975)). We present here a

methodology for finding all the moments of the waiting time distribution,

but only in certain examples can we explicitly find the transform itself.



99

One such example is where customers arrive singly, and hence Downton's

result is obtained as a special case. The derivation used here, however,

is considerably different than his.

The approach we use begins by proving that the distribution of the

number of units in front of a randomly chosen arriving unit, including

other units in the same arriving group, is the same as the distribution

of the number of units behind a departing unit, including others in the

same departing group. We denote the number in front of an arriving unit

by Q and the number behind a departing unit Q. This observation

simplifies the derivation of the distribution of Q. Then, by relating this

distribution to the waiting time distribution we can find the moments of

the latter.

We begin by proving that the distributions of Q and Q are the same.

This is analogous to the well known fact that the number of units at an

arrival instant is the same as that at a departure instant for any single

arrival, single service queue. It is equally well known that this statement

is not true for queues with bulk arrivals or bulk service. The important

difference between this statement and the one we are trying to prove is

that the number of units at an arrival instant is the same as the number of

units at an arrival instant is the same as the number of units in front of

the first unit in each arriving group. However, the proof we need for

bulk systems is a simple extension of that used for single arrival, single

service systems (see, for example, Gross and Harris (1974), pp. 235-236).

Referring to figure 3.3, define Q(t) as the number of units in queue at time

t, and let each circle (denoting an individual unit) be the points in time
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at which the process is observed. Following the derivation by Gross and

Harriss, define A (t) to be the number of unit upward jumps from state
n

n in the interval (0,t), representing the number of times an arriving unit

sees n customers in front. Similarly, define D (t) to be the number of
n

downward jumps through state n. It is clear from figure 3.3 that:

lAn(t) - Dn(t)1 < 1 3.90

Let A(t) and D(t) be respectively the total number of arrivals to and

departures from the system. We may now write:

A (t)
lim =n 3.91

A(t) n

and
D (t)

lim n = q. 39
D(t) qn3.92t->CO

Using arguments identical to those given in Gross and Harris, it is possible

to show that q = q.

With this result in hand, we address the problem of finding Q(z). Let

Y be the number of units in front of a random unit which arrived during

the same headway interval, where Y may include units from the same arriving

batch. As before, let R be the number left over following the last dispatch

instant (we are allowing the possibility of cancellations). Then

Q = R + Y, or, since R and Y are independent:

Q(z) = R(z) Y(z) 3.93

The quantity i is analogous to the forward recurrence time in a discrete

renewal process where the length of time between renewals is Y. It is

well known, then, that:
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~1 - Y (Z)Y(z) = 3.94
Y (1-z)

Combining 3.93 and 3.94 gives:

Q(z) = 1 - Y(z) R(z)
Y (1-z)

1 - Y(z) Q(z) 395

Y (1-z) Y(z)

Now consider the perspective of a departing unit. On leaving the sytem,

there will be a total of Q units behind a departing unit. Out of

these Q units, some will have arrived in the same group and the rest will

have arrived afterward. Let 0 denote the first quantity and H denote the

latter. 0 is the number of units behind a random unit which arrived in

the same group, and is similar to Y in that it can be thought of as the

backward recurrence time in a discrete renewal process. Thus we have:

1 - G(z)G(z) = 1 3.96
G (1-z)

We also note that 9 = C + H, or, since 6 and H are independent:

Q(z) = G(z) H(z) 3.97

Now using the fact that Q(z) = Q(z), and combining 3.95, 3.96 and 3.97,

we can solve for H(z), giving:

H(z) = G (1-z) 1 - Y(z) Q(z)

1 - G(z) Y (1-z) Y(z)
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Or:

H8(z)=G 1- Y(z) Q(z) 3.98
Y 1 - G(z) Y(z)

Equation 3.98 is a very important results, and is quite general as well.

For example, at no point did we ever assume that vehicle capacities were

constant, and hence it applies to the case with random vehicle capacities.

It also applies to the case where cancellations are allowed, although

a few words of explanation are in order. When deriving Q(z), we used

Q(z) at each dispatch instant. Q(z), however, is defined only at departure

instants, since downward transitions occur only when a vehicle leaves.

Thus H is the number of units behind a departing unit, even though Q(z)

in 3.98 is defined at dispatch instants.

We still have not discussed the topic of waiting times. To do this,

let W*(s) be the Laplace transform of the waiting time distribution. If we

have compound Poisson arrivals, then W*(k - AG(z)) is the transform of the

distribution of the total number of units arriving during the waiting time

of a randomly chosen unit. Clearly:

W*(X - XG(z)) = H(z) 3.99

Equation 3.99 is the equation needed to relate the (unknown) moments of

W to the (known) moments of H. Depending on the functional form of G(z),

however, it will not always be possible to solve explicitly for W*(s).

One special case where this can be done is when the arrival process is

simple, whereby G(z) = z. Letting z = 1 - s/A, we obtain:

W*(s) = H(1 - s/A)

A(1 - Y(l - s/X)) Q(l - s/A) 3.100

Y s Y(- s/1)
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Equation 3.100 is the result obtained by Downton (1955). In general,

however, it will not be possible to invert the function s(z) = X - XG(z)

to find z(s). Instead, we must express the moments of W in terms of the

moments of H, as follows:

E(W) = -3.101

Var(W) = [H 3.102

where Hand H are the mean and variance of H. Hand H, in terms of the

moments of G, Y and Q, are found to be (see appendix D):

=1lYE (H) = -= ( +Y-l)- y( +-1) + (Q-Y)

Y - GG

= 2[Y - - - G + Q 3.103
Y G

2-2 -4 =2
Var() = YY+6Y Y - Y +Y -3Y

122

-~7-2= -2 -4 =2
-(4GG +6G G -+C -3G

1252

+(-3.104

The derivations of equations 3.103 and 3.104 were simplified by

using the relationship:

H + G = Y + R 3.105

where H and G are independent and Y and R are independent. Thus
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E(H) = E(Y) - E(G) + E(R) 3.106

Var(H) = Var(Y) - Var(G) + Var(R) 3.107

Also, Q = R + Y, where R and Y are independent, and thus E(R) = E(Q) -

E (Y) and Var (R) = Var (Q) - Var (Y) .

As with equations 3.17 and 3.18 for the mean and variance of the

queue length, 3.103 and 3.104 are expressed in terms of the moments of

the number of arrivals between service instants, allowing the equations

to be used as approximations for more general arrival processes than

the Poisson. The equations are exact, however, only when arrivals are

in fact Poisson (or more precisely, when the sequence Y is i.i.d.).
n

If the time between departures is exactly T, then:

Y(z) = exp {-XT (1-G(z))} 3.108

where A is the arrival rate of groups. From 3.108 we find:

= XTE 3.109

= XT(+2) 3.110

XT[CC+3l(-l)+3-3G2+2G] 3.111

For single arrivals, (G(z)=z), 3.103 and 3.104 reduce to;

E(V) = Q - A T 3.112
2

(XT)2 - 6XT =
Var(V) = 12 + Q 3.113



106

The mean and variance of the wait time are now given by: (substituting

3.112 and 3.113 into 3.1l1land 3.102)

E(W) = QT 3.114

2 3=1-

2
Var(W) = + A2  3.115

To check our results, assume we now have an infinite capacity vehicle,

in which case Q = Y, and hence Q = Q = AT. Equations 3.114 and 3.115

then reduce to:

E(W) = T 3.116

2

Var(W) =2 3.117
12

This is exactly what we would expect, since wait times would be uniformly

distributed between 0 and T.

These results for bulk arrival, bulk service are new, as the current

literature has not yet addressed the problem of finding the waiting time

distribution for such systems. As this presentation has demonstrated, by

developing a basic understanding of the problem, it is possible to show

how Downton's earlier result can be extended to allow for the more

general case.

The derivation presented in this section is based on the careful

distinction between the number of units at a departure instant and the
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number behind a departing unit. In the course of conducting this investi-

gation, a number of interesting relationships were uncovered which have

not been discussed in the literature. These observations are now

reported on in the following section.

3,5 Relationship between the length of the queue from different

perspectives

In sections 3.2 and 3.3, the transform of the length of the queue at

dispatch instants is obtained. In section 3.4, it is shown that the

distributions of Q and Q are the same, and the transform of this distri-

bution is found using basic concepts in renewal theory. In this section,

we apply similar concepts to find the transform of the length of the

queue at a random point in time, denoted by Q , and summarize the

relationships between Q, Q, Q and Qt6

For compound arrival processes, the distribution of the length of

the queue at a random point in time is the same as the number of units

in front of the first -nit in an arriving group. We have already found

the number in front of a random arriving unit, Q, which includes others

in front in the same arriving group plus those already in the queue. The

first quantity is denoted G, since this is analogous to the number behind

a departing unit which arrived in the same batch, and has the same distri-

bution. The second quantity is just Qt, thus:

Q = G + Qt 3.118

Since G and Qt are independent, we find:
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Qt(z) = 3(Z)3.119G(z)

G 1 - Y(z) Q(z) 3.120
Y 1 - G(z) Y(z)

Comparing 3.98 and 3.120, we find that- Qt (z) = H(z). From before, we

have:

1 - Y(z) Q(z)
Q(z) = Q(z) = 3.121

Y (1-z) Y(z)

Thus 3.120 and 3.121 quickly summarize the relationship between Q,

Q, Q and Qt, and apply to any MX/GY/l queue, with or without cancellations.

Of course, the fact that Q(z) = Q(z) is completely general and applies to

any Gx/G /l system. Equation 3.119 was previously obtained by Chaudry (1979)

for the MX/G/l service queue using the method of supplementary variables,

without noticing that the difference between Qt and Q was simply the

number in front of a random unit that arrived in the same group.

3.6 The MX/G/1 service queue

In this final section we report on several known results for what

has been termed here the unloading queue, consisting of bulk, Poisson

arrivals to a queue which serves units singly with a general service

time distribution. Other authors who have considered the same problem

include Gaver (1959), Cohen (1969), Chaudry (1977) and Burke (1975).
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The problem is discussed here because of its importance in transportation

4nd to add several observations which have not been made in the literature.

The expressions for the queue length and waiting time transforms can be

obtained in a manner similar to that used before for the scheduled

departure queue.

To proceed, we begin by establishing a recursion similar to that

in equation 3.2. However, whereas in the scheduled departure queue no

distinction was made between the beginning and ending of a service period,

the unloading queue becomes idle when the system is empty and hence the

end of one service period may be separated from the beginning of the next.

We adopt the usual convention of defining the imbedded Markov chain at

the end of each service period. Also, we now define 4 to be the total

number in the system and W the total system time since the distinction

between the queue and the system is meaningless for freight and unimpor-

tant for passengers. As before, we define Q as the number remaining
n

in the system following the departure of the n unit and Y the total
n

number of units arriving during the service of this unit, and hence:

G - 1 + Y Q = 0

Qn+l = 3.122

Q -1+Y Q > 0n n n

thwhere G is the size of the group the n unit arrived in. Solving
n

by the usual transform method gives us:

~n+1 I = [~ In(z)-q
Q n+ (z) =q. z =-G(z) Y(z)]i L+ %, Y z ) *(1-q )
n+1 i=0 ' z0 \z l-q0 /.2

3.123
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Taking the limit as n + o-and solving for Q(z) yields:

q(G(z)-l)

Q(z) = -Z3.124

Y(z)

We can now find q using lim Q(z) = 1, which gives:
'0z -+ l

q = y3.125
G

Defining p = Y = XGB, we obtain:

(1-p)(G(z) - 1) 3.126
Q(Z)=

GYz)

Equation 3.126 gives the transform of the distribution of the

number of people behind a randomly departing unit, and hence is analogous

to Q found earlier for the scheduled departure queue. As before, this

is equivalent to the number in front of a randomly arriving unit, where

again we include other units in the same arriving group. Thus we may

easily find the length of the queue at a random point in time (or

equivalently, as seen by the first unit in a group), which we define as

Qt(z) (the subscript t denoting the average over time). Remembering that

G is the number of units in front of a random unit which arrived in the

same time group, we have:

Q(z) = G(z) * Qt(Z)

l-G(z) 3.127QG(z)
G(l-z)
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Using 3.126 and 3.127 to solve for Qt(z) gives:

Q (z) = (1-p)(z-l) 3.128
t z

Y(z)

Equation 3,128 has been found previously by Gaver (1959) and Chaudry

(1979) using the method of supplementary variables.

Interestingly, Qt(z) is the same as that found for the scheduled

departure queue at departure instants when the capacity of the outbound

vehicle is unity. This equivalence does not appear to have a simple,

intuitive explanation.

The transform of the total waiting time (including service time)

can be found by using results known for the M/G/l queue with single

arrivals, and brings out the relationship between the two queueing

systems. We proceed by finding the waiting time until the first

unit begins service (this can be thought of as the time until a crew

begins to unload a vehicle), denoted W1 . This can be found by treating

each group as a supercustomer with service time transform G(B*(s)) (see

Cohen (1969)); the concept of a supercustomer in bulk arrival queues is

implicit in a number of papers, including Gaver (1959) and Jaiswal

(1960a,b). Thus we have (Kleinrock (1975):

* s (l-p)
W7 ( s) = 3.129

s-X+XG(B*(s))

This is the result obtained by Gaver, who incorrectly identifies it as

the wait time for an individual unit. This is found by adding the
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service time for the other units in the same group which are served first,

denoted by W 2, with transform:

W2 (s) = G(B(s))

1 - G(B(s)) 3.130

G (1-B(s))

Finally, we must add on the service time of the unit itself. The total

wait time is now:

W (S) = W* (s) W*(s) B (s)

_ s(1-p) 1 - G(B(s)) B(s) 3.131
s-X+ XG(B(s)) -

G(1-B(s))

Equation 3.131 was obtained recently by Burke (1975). who points out that

several other authors provided incorrect derivations (Cohen (1969), Keilson

(1962)) by neglecting to account for the difference between the distribution of

the size of a group when sampled over groups and when sampled over units.

3. 7 Summary

This chapter has provided the important foundations required before

any numerical work can be attempted. The material presented here does

not, however, represent an exhaustive treatment of the theory of bulk

queues since our focus has been on reporting new contributions to the

field rather than summarizing old ones. The most important of the

new results are 1) extension of Bailey's work to bulk arrivals with

the new set of moment formulas, 2) derivation of the transform of the
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waiting time distribution for bulk arrivals to scheduled departure queues

and the associated moment formulas, and 3) the introduction and analysis

of scheduled departure queues with cancellations. In addition, the

presentation has emphasized not only deriving new results but interpreting

them as well, and several observations have been made (e.g. regarding the

distribution of units in front of and behind a random unit) that clarify

some of the results.

While the motivation of this chapter is to fill in the gaps in

the literature, many other results have been reported in the literature

which are not touched on here. Section 3.6 briefly touched on

some important results for the unloading queue with a general service

time distribution. As pointed out in 2.1.2, several authors have been

able to analyze the problem using variants of the hyperstage distribution

which enables a continuous time formulation of the problem and hence

avoids the necessity of using Kendall's concept of the imbedded Markov

chain. Considerable attention has been devoted to the general bulk

service rule (see 2.1.1 and 2.1.3) which may prove useful in some

applications, although it is not considered in this research.

As is pointed out in the beginning of the chapter, the remainder

of the thesis can be regarded as supplementing the theoretical work

reported here. First, in chapter 4, several numerical problems

associated with solving the transforms are addressed. These include

a) locating the necessary zeroes needed to solve for the transform,

b) inverting the transform and c) approximations for both the queue

length distribution and its moments. Then, chapter 5 considers the

Poisson arrival process as an approximation for more general processes,

and suggests several methods for approximating Gx/GJ/l queues.
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Chapter 4 Numerical Analysis of Transforms

The value of transform methods, notwithstanding their theoretical

elegance, depends in a large part on their ability to provide useful

numerical results. Having completed the theoretical groundwork in

chapter 3, it is now necessary to turn to the equally important probelm

of obtaining numerical solutions. As a topic which has received almost

no attention in the literature (inasmuch as bulk queues are concerned),

the research here focuses on two common problems encountered in the

application of transform results, namely a) finding the zeroes needed to

solve the queue length transform and b) inverting the transform. The

first problem, discussed in section 4.1, is frequently cited as a major

criticism of bulk queueing theory (see e.g. Neuts(1979) and Bagchi

and Templeton (1972)) on the basis of the (well-known) fact that solving

for the zeroes of a function can be numerically hazardous. Other

authors have in fact applied the theory to specific problems (e.g.

Peterson (1977a), Novaes (1963), and Groninger (1966)) but none have

reported on a careful, systematic analysis of the topic. Also, chapter 1

discussed the problem of applying the results to large scale networks,

where the issue of computational speed becomes important. This aspect

of the problem is also considered here.

The second problem, inverting the transform, is one that is

normally not addressed in either the theoretical or the applied

literature. In the case of bulk queues, the problem breaks into parts,

the first consisting of finding the set of probabilities q0, ... 9, qC-l'

and the second consisting of finding the remaining probabilities,

qc' 9c+1,a. .. . Two methods are outlined in section 4.2 for finding
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the first c probabilities. A separate procedure is then suggested for

finding the rest of the probability vector, and all three procedures

are tested numerically.

Finally, section 4.3 moves in a somewhat different direction and

presents approximations for the mean and variance of the queue length

for a particular set of queueing problems. The motivation for this

work is the desire to have estimates of the moments in closed form,

thereby avoiding the problem of solving for zeroes.

4.1 Finding the zeroes

The technique of finding zeroes to solve transforms has been used

in countless papers in the queueing literature and constitutes what now

might be considered the classical approach for solving many problems

in queueing theory. As is pointed out in section 2.1.4, however, finding

zeroes can, from a practical standpoint, be difficult to do within the

confines of a computer. Considering the number of papers which depend

on the technique together with its critics (e.g. Neuts (1979) and Bagchi

and Templeton (1972)), it is worthwhile to spend some time studying the

problem carefully. This section looks at three issues relating to the

topic, namely numerical stability, accuracy and efficiency. The first

of these addresses the question of whether the search procedure will

converge on the desired set of zeroes for a range of different problems

and different parameter values. The second, accuracy, is used here to

describe the sensitivity of the results (i.e. the values computed for

the zeroes) to the stopping criterion used in the search procedure.
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Finally, efficiency refers to the speed with which the calculations

can be performed.

The methodology that is used consists of finding zeroes for three

different problems corresponding to a) simple Poisson arrivals to a

queue with deterministic departures headways, b) simple Poisson arrivals

with Erlang distributed headways, and c) compound Poisson arrivals with

deterministic headways. The last of these was constructed by assuming

a Poisson arrival stream of vehicles from 10 different upstream terminals,

each operating with simple Poisson arrivals and deterministic departures.

Each of these upstream queues were solved to find the transform of the

distribution of the number of units on each vehicle as described in

section 3.3.4.

In all three cases, the root finding problem reduces to finding

c zeroes, z., i = 0, ... , c-1, such that:

c
f(z.) = Z - Y(z) = 0 i=0, ... , c-1 4.1

We note at this point that c = 20 is used throughout unless

specifically stated otherwise. The three cases are differentiated

in the form of Y(z), as follows:

Case I: Simple Poisson arrivals, deterministic headways;

Y(z) = exp{ -XT(1 - z)} 4.2

X = arrival rate

T = headway
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Case II: Simple Poisson arrivals, Erlang headways:

Y(z) = (1 +0 - z)-k 43

k

T = average headway

k = parameter of the headway distribution

Case III: Compound Poisson input, deterministic headways:

10
Y(z) = exp{ -T E X.(1 - F.(1 - a. + 0.z))} 4.4

i=11 1 1 1

. = arrival rate of vehicles from terminal i
1

F. (z) = transform of the distribution of the number of

units on a vehicle arriving from terminal i

(equation 3.84)

0. = fraction of units arriving from terminal i

which will head outbound over the queue in

question

Cases I and II are of interest because they represent respectively

irrational and rational functional forms for Y(z). Case III is of

interest simply because of the complexity of the functional form for

Y(z) which will certainly have an impact on the speed with which equation

4.1 can be solved and may affect the stability of the root finding

procedure.

The procedure used to find the zeroes is a straightforward
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application of the Newton-Raphson algorithm and is described briefly

in appendix E.1. There it is also shown that cases II and III must be

solved as a two dimensional problem, while case I can be reduced to

one dimension and solved much more efficiently. Some care was exercised

in the coding of the algorithm, but it is possible that further improvements

in computational performance may be realized with the use of either a

more sophisticated search procedure or more careful programming. For

this reason, the experiments reported here must be viewed as simply

indicative of what can be expected when implementing the procedures.

As a final comment, it is useful to point out that the problem of

finding roots in queueing theory often reduces to finding the roots of

the type of function shown in equation 4.1. The same equation occurs

in virtually every other bulk queueing problem including, for example,

the general bulk service rule (see section 2.1.1 and Neuts (1967), and

Borthakur and Medhi (1974)). It also arises, for c=1, in some cases

with arrivals and service in single units, (in particular the G/M/l

queue), as shown by Kleinrock (1975, pp. 132 and 249).
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4.1.1 Numerical stability

Numerical stability is an issue that is encountered frequently in

iterative numerical methods and is concerned with the simple question of

whether an algorithm will converge for all reasonable values of the

parameters of the problem. In most cases the problem reduces to one of finding

a good starting point, since virtually all techniques have excellent con-

vergence properties in the vicinity of the solution. When a good starting

point is not known a priori, the simpler first order methods such as the

Newton-Raphson procedure used in this research can be extremely unpredictable

if the function is ill behaved.

There are three characteristics of the function in equation 4.1

that suggest that the usual difficulties with finding roots will not

o rwur. First is the fact that all the roots lie within the unit circle,

providing not only a good starting point but also a bound on all the

other roots, guaranteeing that we will not have to search over an

arbitrarily large portion of the complex plane.* The second charac-

teristic is that rather than having an arbitrary function with c-l

roots, equation 4.1 can be expressed in terms of c-l equations, each

with a single root. To do this, we write:

* This would not be true for case II if we decided to solve for the K-1
roots outside of the unit circle as was described in section 3.2, eq. 3.24.
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c

= y( - = 0 4.5

Or:

z = exp {27ri}
Y(z) 4.6

where i = .11. Taking the cth root of both sides gives:

-1/c 2Trkilz Y(z) = exp {2cki k = 1, 2, ... , c-i 4.7

Thus equation 4.7 gives c-i equations, each of which can be solved for

a single root (using arguments, similar to those used to show that equation

4.1 has c zeroes on or within the unit circle, it is possible to show

that equation 4.7, for each value of k, has a single root on or within

the unit circle). This is considerably simpler than finding c-i roots

out of a single equation, which poses the problem of trying to avoid finding

the same root twice. We should point out that this is not the only way

to solve for the desired roots and in some cases, not even the most ob-

vious way. For example, case II produces in equation 4.5 a polynomial

of order K + c and can thus be approached using standard procedures for

finding the roots of polynomials, as is usually suggested in the lit-

erature. This creates the problem of distinguishing between roots in-

side and outside the unit circle and is felt to be a much more difficult

task. Equation 4.7 suggests a general method which will always produce

the desired roots inside the circle regardless of the functional form

of Y(z).

The third and final characteristic is that the c-i roots (plus

the root z=l) fall along a continuous contour. To

see this, consider the case where p=O, implying that Y(z)=1, whereby
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all the roots are located uniformly along the unit circle. Since

Y(z) is a continuous function of p, its roots must also be continuous

functions of p and hence one would expect that the contour on which

they fall as p increases would remain reasonably well-behaved. What

we cannot say, however, is how the contour behaves as p - 1, since

Rouche's theorem does not even guarantee their existence in the unit

circle for p > 1. We can point out that Y(z) is perfectly continuous

for p > 1 and hence we would not expect any major problems, but this

is a question that can only be answered numerically.

Figures 4.1 through 4.3 show plots of the zeroes in each case

for different values of p. Shown are both the contours along which

all the zeroes lie for a given value of p, as well as the radial paths

describing the movement of each zero as p is changed. For case III,

p was changed by increasing the frequency of arrivals from each ter-

minal without changing the size of the loads; the values of p are

then those that resulted for a given arrival rate and load size. In

the other cases, p is specified exogenously. In all cases, the con-

tours along which the zeroes lie are extremely smooth and, in view

of the differences in the three examples, surprisingly similar. This

also made it very easy to provide good starting points for each value

of k. In fact, it is these contours that suggested the initializa-

tion procedures given in the root finding algorithms in appendix E.1.

By using polar coordinates, where the kth root may be expressed as

zk = rkexp(iek), we could take advantage of the fact that as k is

increased in equation 4.7, rk+1 becomes only slightly smaller than

rk, and AO=k+1 -Gk+1 0k is only slightly smaller than A8k. In most
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Figure 4.2
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cases, the last few zeroes were each determined in only two iterations

of the Newton-Raphson algorithm. What is particularly interesting,

however, is that the zeroes are well-defined for values of p greater

than 1, implying that the root finding procedure will be very stable for

values of p near 1. The algorithm used for case I proved to be unstable

for values of p less than .15, although the method used for cases II and

III, both of which performed satisfactorily for all values of p, could

easily be adapted to case I. We should point out that queues with p < .5

exhibit virtually no queueing (when c=20) and hence can accurately be

solved by assuming Q(z) = Y(z) without finding zeroes.

It is significant that case III appeared to pose no special

problems. As complex as Y(z) is, its Jacobian is even more

complicated suggesting that the contour containing its zeroes might

not be quite as "nice" as was found for the simpler case. The exper-

iments undertaken thus far, however, indicate that the problem is

still well-behaved and that each root can be found with approximately

as many iterations as required for the simpler problems, although with

considerably more computational effort per iteration.

We can tentatively conclude from these investigations that the

root finding procedure is very stable and should not pose any problems

in this respect. We now consider the issue of numerical accuracy.

4.1.2 Accuracy

The factors influencing the accuracy of numerical methods can be

divided between those that are controllable and those that are not.
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The controllable element in iterative methods is the stopping rule which

can guarantee, up to a point, almost any level of accuracy. The stop-

ping criterion must be chosen carefully to ensure that the desired

level of accuracy is in fact being obtained, without performing cal-

culations that are unnecessarily accurate. A more important problem

is the uncontrollable element introduced by computer roundoff error

which in most cases is difficult to detect or correct. This factor

puts a limit on the accuracy of iterative search procedures such as

root finding algorithms, but is much more troublesome in other areas

such as solving systems of simultaneous linear equations. Thus while

search procedures tend to be self correcting (if round-off produces an

error in one direction, the procedure corrects for this in the next

step), other methods such as Gaussian elimination tend to accumulate

and compound errors. A similar problem exists in the inversion for-

mulas for the queue length probabilities (eq. 4.26) where qi+ depends

on q9, ... , q. Since these errors are basically unpredictable it is

necessary to use other methods to determine under what conditions

these errors become significant.

An alternative method for finding the steady state vector fq} is the

method of numerical convolutions mentioned briefly in chapter 3. Here the

probability distribution of Qn+1 is calculated using the recursion:

Q = R + y 4.8
n+l n n

where we assume the Y are i.i.d.. Thus we have:
n

n+l i nq. = E r. y,. . i=O,1,.... 4.9
j=0 J 1-J

Since the vector {q.} is theoretically of infinite length, we

truncate it by choosing the smallest constant M such that:



127

M
l-.T q. <e 4.10

- =N i 1

In all the experiments, 6 =.0001 is assumed. The recursion in 5.8

is carried out repeatedly until:

M n+1 nj
. . - q.1 < 2 4.11

i=0 2

The parameter 2 is experimented with below, since it can have

a considerable impact on both the accuracy of the result and the com-

putational effort required.

At each step in the process, the vector {q.} is normalized to

prevent an accumulation of roundoff errors. As is easily seen, the

method is self-correcting and hence the only important sources of error

are reflected in the choice of el and 2. We point out again the ex-

treme simplicity of this approach compared to the transform method and,

while there are some drawbacks, it is felt nonetheless to represent a

very powerful tool and one not to be slighted in the face of more

elegant techniques.

In appendix E.1, the root finding algorithms are formulated using

the stopping parameter c which we now label E. What we propose

is to test the sensitivity of the transform approach to e3 and the

numerical convolutions method to 2 in terms of their effect on the

accuracy of the first and second moments and on the accuracy of the

probability distributions. The outcome of these analyses are

fixed choices of E2 and E3 which we then use in the following

section comparing the two methods in terms of computational speed.

All these experiments assume simple Poisson input and deterministic

headways, corresponding to case I in the previous section.
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The analysis of the error in the moments begins by first

computing the moments with each method using c2 3 -6,and then

assuming that these are the exact values. The fact that the estimates

produced by each method are slightly different at this level of accur-

acy may be partly a result of the choice of 1 for the numerical con-

volutions procedure. In any case, E2 and 3 are then increased, and

the mean and standard deviation of the length of the queue are compared

to the "true" values for an estimate of the relative error.

The results of these tests are shown together in figure 4.4 where

E is given on a horizontal log scale and the relative error, RE, on the

vertical. The relative error is computed using the formula

RE = 100.(x - 1) /i, where x is the most accurate estimate of the

mean or standard deviation and x is the estimate corresponding to

a particular value of e2 or E3. The runs are conducted for p=.7,

where virtually no queueing occurs, and p=.95, where on the average 6

or 7 units are left over following each departure and where the prob-

ability a randomly chosen unit left on the first outbound vehicle is .67.

For p=.95, the relative error produced by the transform approach is

under 1 percent for all values of 3, the same occurring for p=.7 when

the numerical convolutions technique is used. For this particular
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problem, the error produced by assuming that no queueing occurrs (Q(')

= Y(z)) for p=.7 is also approximately 1 percent. Based on the figure,

it would appear that using E3=.001 would be a safe, almost conservative

assumption for the transform approach and hence this is used in

section 4.1.3. On the whole, the results in terms of predicting moments

using transforms are surprisingly, and encouragingly, insensitive to

3.

The numerical convolutions technique poses a different problem al-

together. Like simulation, it is extremely sensitive to p, requiring

a large number of successive iterations to reach steady state for even

moderate levels of congestion. In addition, for higher values of p, it

is very sensitive to E2, especially when estimating the variance of

the steady state distribution. The nature of the algorithm implies

there is always some downward bias in the estimates of the mean

and variance which, for a given value of 2, can produce arbitrarily

large (absolute) errors as P -+ 1. In order to choose an appropriate

value for E2, then, it is necessary to set an upper bound on p. For

c=20, p=.95 produced a 33 percent chance of missing the first depar-

ture with an average of 6 units left over following each departure.

While this is felt to represent a significant level of congestion, it

is not wholly unrealistic and hence is taken to be the upper bound on

P. Referring to figure 4.4 again, we see that for 2=.001 errors in

the estimates of both moments are within 2 - 3 percent. While this

is higher than that produced by the transform method, it is acceptable

for planning purposes and hence will be adopted in the following

sections for comparisons on the basis of numerical efficiency.
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4.1.3 Computational efficiency

The question of how fast a queue can be solved is of little interest

in the analysis of single queues and for this reason has received almost

no attention in the queueing literature. When we consider the problem

of modelling networks with 1000 links or larger, each with its own

queue, then computational efficiency takes on much greater importance.

The issue is further magnified if we consider the possibility of

incorporating the performance model as part of a search procedure

requiring repeated solutions of entire networks under different operating

strategies. In this section we compare transforms and numerical convolu-

tions with respect to the time each requires to find the mean and variance

of the steady state queue distribution. The comparisons are made assuming

simple Poisson input and deterministic or Erlang distributed headways.

The execution time for the numerical convolutions method includes the

time required to derive the distribution of Y. This poses a negligible

burden for the case of deterministic headways but requires the convolution

of K geometric distributions for Erlang distributed headways (K=10 is

assumed here). If arrivals are in groups, then the distribution

of the size of each group would have to be repeatedly convolved, adding

substantially to the overhead. The tests being conducted here are

therefore case specific and serve only as an indication of the relative

efficiency of the two methods.

Each program was executed 50 times and timed using an internal

clock which excluded any read and write statements. Both routines were

run over a range of values of p; the transform approach proved almost
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Table 4.1

Comparison of execution times using transforms

and numerical convolutions

_Determinist ic
headways

Numerical
p P convolutions

.2

.6

.8

.85

.90

.95

.000

.002

.034

.067

.134

.318

.008

.014

.036

.050

.089

.301

sacs

secs

secs

sacs

secs

secs

Transforms

.003

.003

.003

.003

.003

.003

secs

secs

secs

secs

se cs

secs

Erlang
Headways

Numerical
P Convolutions Transforms

M

.000

.006

.205

.301

.431

.601

.013

.042

.097

.148

.241

.572

sacs

secs

sacs

secs

sacs

sacs

.012

.012

.012

.012

.012

.012

secs

secs

secs

sacs

secs

secs
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completely insensitive to p while the reverse was true for the numerical

convolutions method for values of p greater than .8. The results of

these runs are summarized in table 4-1 and also plotted in figure 4.5

where, rather than putting execution times versus p, they are plotted

against the probability P a random unit will miss the first departure.
m

This level of service parameter conveys more intuition re-

garding the degree of congestion than p. The plot shows that the

transform approach is considerably faster for all but the least congested

situations. When P is close to 0 (more specifically, less than .05)

the efficiency tests become meaningless since virtually no queueing is

occurring, and we can accurately assume Q=Y. Since most networks are

likely to have a good portion of transfer points where supply is much

greater than demand, considerable savings can be realized by using

"light traffic" approximations.

What is perhaps more important than the high relative efficiency of

transforms is its efficiency in absolute terms. For example, if trans-

forms were 10 times faster than numerical convolutions, but still required

1 minute of CPU time, then it is unlikely that they would be of much use

in large scale applications. The fact that run times are on the order of

.01 seconds (using transforms) is very encouraging and suggests that the

techniques may be efficiently incorporated into network models. If the

probabilities q 0,.. .. , qC-1 are desired (say for finding PT), then the

polynomial expansion algorithm (described in section 4.2) can be used, re-

quiring only .0012 seconds for c=20 (based on 100 repetitions of the procedure).

Of course, as Y(z) increases in complexity so does the execution time. For ex-
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ample, if Y(z) is given by equation 4.4, representing bulk arrival for 10 dif-

ferent terminals, then the execution time jumps to 0.29 seconds. This can

probably be reduced first by using equation 3 . 6 7 instead of 3 . 6 9 ,where the

former expresses the transform of an outbound load size in terms of q,

. c-1 while the latter (used in equation 4.4 and in the root finding

routine) uses the zeroes directly. Equation 3.67 is easier to evaluate,

and the effort required to find the unknown probabilities is minimal. A

much more significant reduction can be obtained if we can replace the

individual streams from each terminal, each with its own load size trans-

form, with a single stream with a load size distribution which reflects

the combined distribution of the individual streams. Since the execution

time for finding roots increases approximately linearly with the number of

streams being superimposed, we may realize an order of magnitude improve-

ment if the ten streams in equation 4-4 are replaced by one stream.
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4.2 Inverting the transform

A common feature of most papers in queueing theory is that of

ignoring the fact that while most transforms cannot be inverted

analytically, they can be inverted numerically. The purpose of this

section is to indicate how such inversions can be performed and to

propose some new results in this area.

The task of inverting transforms of bulk service queues must

proceed in two stages. First, the probabilities q , ... I, qc 1 must

be computed using the zeroes found from the denominator. Second, the

remaining probabilities qC, + ... , must be calculated from the first

c probabilities using a set of recursive formulae. For each stage, two

methods for performing the calculations are described. For the first

stage, the method commonly referred to in the literature finds

the first c probabilities by setting up a system of simultaneous linear

equations (see, for example, Ohno (1978). The details of the method

are outlined in appendix E.2, but the general logic is as follows.

Using the fact that the zeroes of the denominator of 3.9 must coincide

with the zeroes of the numerator, we obtain the following set of

equations using the zeroes z., j=O, ... , c-l:

c-1.
c i

E q.(z. - z.) = 0 j=0, ... , c-1 4.12
i=0'

The mechanics of setting up these equations is a little more involved

than this, but the bottom line remains that we are forced to solve a

c x c system of equations. A more efficient scheme, termed here the
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polynomial expansion technique, uses the zeroes to expand the numerator

6f equation 3.14 into a polynomial of order c. That is, define P(z) as:

c

W(z) = E 4.z 4.13
i=O

c-i
z - z.

= (c-Y)(z - 1) II ) 4.14
i=l 1 - z.

Now, observing that the polynomials in the numerators of 3.9 and 3.14

must be equal, we obtain the desired probabilities by equating

coefficients of like powers of z as follows:

q = -i. i=0, ... , c-1 4.15

An efficient algorithm for calculating the polynomial Y(z) is given

in appendix E.3 and is shown to require approximately c2/4 additions

and multiplications. On the other hand, solving the system of

simultaneous equations requires c2 multiplications to set up and

c 3/3 to solve, introducing a much greater risk of round-off error.

With the first stage completed, we now describe two methods for

finding the rest of the probability vector, qc...c+ ...... The first,

while it has not been explicitly described in the bulk queueing literature,

is a straightforward extension of a well known method for inverting the

queue length transform for the M/G/l queue (see Gross and Harris (1974),

p. 229). Let P denote the one step transition matrix for the Markov

chain {Qn}, given by:
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c

c+l

0

yo

yO

yO

yO

0

0

1

yl

y1

yl

yl

yO

0

2

y2

y2

y2

Y2

1i

yi

4.16

where y. = prob i arrivals during the service period). Observing that

the steady state probability vector q must satisfy the following relation:

4.17q = q - F,

we obtain:

c-1

j =0

c+i
+ X q yc+i-j

j=c

Solving for q . gives:

C-1

C+, y q, j=O0 LM j=0

c+i-1
E

j=c

4.18

ci c+i-I 4.19
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Given the probabilities q0, '..., qC-1 , equation 4.19 can be used

recursively to find qc,' C+1' '4'

A second procedure which has not appeared in the literature is

obtained directly from the queue length transform. The method begins

by writing the queue length transform as the ratio of two functions,

Q (W) and Q2(z) (representing the numerator and denominator) as follows:

Q (z)
Q(z) = 4.20

Q2 (z)

Multiplying both sides by Q2(z) gives:

Q(z)Q2(z) = Q(z) 4.21

The vector of probabilities q c, q ... , can be found by expanding

both sides of 4.21 as polynomials and then equating the coefficients

of like powers of z. For the case of bulk arrival queues with service

in single units, the entire probability vector can be computed in this

way. To demonstrate the procedure, consider the case of the M/Dc/1

queue, where service intervals are of constant length T. Equation 3.9

is then given by:

c-l.
q. (zc - z')

I=0 Z 1 = cX(z-4.22
. E i zc e T(l-z)
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Bringing the denominator on the right over to the left as shown in

-XTz
4.21 and expanding e as a power series gives:

o jO~ . c-l
c AT 000 (-AT) j i C1-C-qi

z eA ( Lc. .Z1)(i=z0q.zjq(z -z ) 4.23
i=0 j-O i=0 i=O

Finally, changing the indexes in the first set of summations so that

i+j mterms with z appear as z produces:

00 m 91 C . C-1.

zC eAt I (- q zM cI c-zX 4.24
m=0Z=0 i=o i=0

Noting that two polynominals are equal if and only if the coefficients

of terms with like powers are equal, we obtain the following equations:

AT c-1

C -I4.25

i=0

AT (T)_ 9

i+c k0= ,i-2 .4.26

Thus, given q0, ... ', qC-1, we may compute the rest of the

probability vector using 4.25 and 4.26. There are, however, potential

numerical problems with the use of either equation 4.19 or 4.26.

Specifically, both formulas involve subtracting small numbers, the

difference of which is then multiplied by a possibly very large number.

This type of calculation tends to greatly magnify small roundoff errors

and raises serious questions regarding the practical usefulness of either

method. To get a sense of the numerical performance of the entire
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inversion process, several experiments were conducted comparing the

yrobability vector calculated using inversion techniques to that computed

using the numerical convolutions procedure.

Beginning with the first stage of the inversion process, the two

methods for finding the first c probabilities were applied to an M/D/1

queue, using c = 20. The results, shown in Table 4.2, exhibit at worst

four digit accuracy between the two approaches (for q19) with increasing

accuracy as i gets smaller. Similar results were obtained for other

values of P. When c was increased to 40, however, the method using the

simultaneous equations broke down entirely, yielding probabilities that

were all negative. The polynomial expansion technique, on the other

hand, performed quite well in addition to being computationally much

faster.

. Unlike the first stage, the recursive formulae needed to complete

the second stage of the inversion proved to be so sensitive to roundoff

errors as to make them practically useless. Sample results, for c = 4,

p =-.85 and c = 20, p = .9, are shown in Table 4.3 alongside the results ob-

tained using the numerical convolutions approach. In both cases, there

is reasonably good agreement until the inversion equations appear to

suddenly break down, producing unusually high or negative probabili-

ties. In both cases, double precision arithmetic was used with e =10l2
3

to ensure to maximum possible accuracy in computing the zeroes. Des-

pite these precautions, the problem with equation 4.26, however,

appears to be in the errors contained in the first c probabilities.

The inversion formulae were applied to the case of c=1 where we know

a priori that q0=l-p. The results, shown in table 4.4, appear quite
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Table 4.2

i Simultaneous
i Simultane ous

equations

0 0.0000000

1 0.0000002

2 0.0000014

3 0.0000083

4 0.0000378

5 0.0001375

6 0.0004171

7 0.0010859

8 0.0024771

9 0.0050310

10 0.0092143

11 0.0153765

12 0.0235843

13 0.0334960

14 0.0443399

15 0.0550247

16 0.0643555

17 0.0712893

18 0.0751438

19 0.0757223

**
20 0.0732025

,ii

Polynomial
expansion

0.0000000

0.0000002

0.0000014

0.0000083

0.0000378

0.0001375

0.0004171

0.0010860

0.0024772

0.0050314

0.0092148

0.0153772

0.0235852

0.0334970

0.0443411

0.0550260

0.0643559

0.0712914

0.0751494

0.0756714

**
0.0734454

Numerical
convolutions

0.00000

0.00000

0.00000

0.00001

0.00004

0.00014

0.00042

0.00110

0.00251

0.00510

0.00934

0.01558

0.02389

0.03393

0.04491

0.05572

0.06516

0.07216

0.07604

0.07659

0.07406

* Using C2 = 0 6

** Found using equation 4.25

Comparison of first 21 probabilities computed using numerical
convolutions and transform inversion
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Table 4.3

'1.*

C = 4, p = .85

Numerical
convolutions

.14797

.13038

.10420

.07881

.05805

.04232

.03076

.02234

.01621

.01173

.00849

.00614

.00442

i

4

5

6

7

8

9

10

11

12

13

14

15

16

Eq. 4.26

.14735

.12987

.10385

.07855

.05783

.04266

.03080

.02050

.01809

.02642

-. 03954

.02705

.16738

c = 20, p

Eq. 4.26

.07325

.06836

.06180

.05440

.04676

.03960

.03276

.02759

.02115

.02075

.00884

.02336

-. 00307

-. 02796

.37999

Comparison of queue length probabilities found

via transform inversion (equation 4.26) and

numerical convolutions for bulk service systems.

i

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

= .90

Numerical
convolutions

.07340

.06849

.06192

.05448

.04686

.03958

.03296

.02717

.02224

.01812

.01473

.01195

.00969

.00786

.00637
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Table 4.4

c = 1 p = .90

Numerical

i Eq. 4.26 convolutions

0 .10000 .10496

1 .14596 .15306

2 .13764 .14406

3 .11505 .12001

4 .09380 .09735

5 .07625 .07857

6 .06198 .06327

7 .05039 .05082

8 .04096 .04072

9 .03330 .03253

10 .02707 .02591

20 .00341 .00187

21 .00277 .00131

22 .00225 .00086

23 .00183 .00051

24 .00149 .00023

25 .00121 .00000

Comparison of queue length probabilities found via transform inversion

(equation 4.26) and numerical convolutions for single service systems.
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good and may easily be more accurate than that produced by numerical

Convolutions (compare the estimates of q0 produced by both methods).

Thus our inversion equations may be quite useful for single service

operations with bulk or single arrivals, but are not recommended for

bulk service queues.

We can conclude from these experiments that while we cannot fully

invert queue length transforms, we can safely use the polynomial ex-

pansion method to find the first c probabilities. It is important

to point out, however, that the first c probabilities can, by themselves,

be quite useful. For example, it is computationally easier to use the

transform as it is expressed in equation 3.9 using q0 ' '.' q 1 than

equation 3.14 using the zeroes. Also, operating statistics such as

the probability a random unit will miss the first outbound departure

require only the first c probabilities. If, however, the entire

probability vector is required, then approximate, fitted distributions

must be used, as is discussed in the next section.
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4.3 Approximations for queue length distributions

In section 4.1 we show that the task of finding roots posed no

numerical problems and could be executed both safely and efficiently.

We did find, in section 4.2, that we could not completely invert the

distribution, although most quantities of interest could be computed

using the portion of the probability vector that could be found. In

any case, the nature of the procedure is still relatively complicated

and requires some knowledge of both transforms and complex variables.

Thus, while the method may present few numerical problems, it is unlikely

to attract any attention from many engineers simply as a result of the

mathematical background required. In this section, we present a set of

approximations that provide not only the first two moments of the

steady state length of a queue in closed form, but also a method for

estimating the distribution itself.

The approach consists of first approximating the first

two moments of the queue distribution and then using this information to

determine the parameters of a known distribution. We begin by observing

that the moment formulas for the length of the queue (given by eqs. 3.17

and 3.18) can be broken into two parts, the first being a closed form

function of the first three moments of Y, and the second being expressed

in terms of our now familiar zeroes. Thus we may rewrite 3.17 and 3.18

as:

E(Q) = $(Y Y) + (Y)4.27
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Var(Q) = TP(Y,Y,Y,) + 42 (Y) 4.28
2 . . .2

where:
c-1

1 (Y) = E -4.29
i= 1-z1

c-1

2 (Y) i 4.30
i=l 1-zr

The functions $1(-) and $2(- are self-evident from 3.17 and 3.18. The

functions $ (-) and 2(-) are expressed as functions of Y since in

principal the zeroes reflect the full distribution of Y as opposed to a

few of its moments. The problem now is to replace %j) and $2(-) with

simpler functions of key parameters. To do this, we assume simple Poisson

arrivals to a scheduled departure queue with Erlang distributed headways

with density function b(t):

r-l -Ot

b(t) = r(St) e 4.31
(r-l)!

r r
The mean and variance of this distribution is S9 and 72 with coefficient

of variation r= By varying r, we can obtain distributions ranging from

negative exponential headways (r=l) to deterministic headways by letting r +O

while holding L constant. The transform of b(t) is:
S

r
*

B (s) 4.32

Assuming simple Poisson input, we have:
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Y(z) =B X Az) 4.33
6 + A-A

With Y(z) defined thus, we find the utilization ratio p given by p =

The parameters r and p can be used to define a family of

distributions where p controls the mean and r controls the shape. We now

assume that $l (- and 2 () are functions of r and p only (for a fixed

value of c). Figure 4.6 shows plots of these functions versus p for r =

1, 5, 10 and oo, from which we can see that both functions are very smooth

and well-defined for all values of both p and r. Interestingly, whereas

the actual moments become infinite as p + 1, and tend to

level off as p + 1. This implies that and # become quite small

relative to $ and V2 for p close to 1. On the other hand, as p -+0,

each set of curves converges to a single point independent of r. This

behavior can be verified theoretically by observing that both the mean

and variance must vanish for p = 0, implying that:

lim $(p, r) + (p, r) = 0 4.34

p +0

This gives us:
C-1

V1(0, r) = 2 4.35

$2 (0, r) = c2 -1 4.36
12

This result could also have been obtained by observing that for p = 0,

Y(z) = 1, and hence the zeroes must be located uniformly around the unit

circle. These could then be substituted into 4.29 and 4.30 to obtain 4.35

and 4.36.
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Still assuming c = 20, the following expressions were specified for

l and $2

() c-1+ 1 1P2 1 1 22 N fJ + X2  + 3  + p / E 4.37

2
c 2-1 2 22 22 2

t2(r, P) = c-i 2 ap+ 2 P + a2+ p2/ yE 4.38

Using a set of 30 points corresponding to p = .2, .5, .7, .8, .9 and .99,

and r = 1, 5, 10, 20 and oo, the following estimates were made using

ordinary least squares:

2$1(r, p) = 9.5 + 11.0468 p - 3.3974 p - 4. 2349 p1 F

- .3899 p2/ F 4.39

A 2

$2 (r, p) = 33.25 - 55.2158 p + 25.6323 p + 30.6362 p/ F
- 10.6138 p2/ 4.40

The functional specifications of 1(- and 2() were motivated

solely by the shape of the curves and apply only to scheduled departure

queues with c = 20. The closeness of the fit is also illustrated in

figure 4.6 where both functions have been evaluated at various points

and shown as dots (1) and circles 2 Although we do not explicitly

do so, both equations can be easily generalized to other values of c.

Figures 4.7 and 4.8 show plots of and 2 versus E=_ c-=21 and & =c-1
2 1 2 2 12

for p = .95 and r = 5 and co. It is easily seen that is almost perfectly
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linear in El and of course becomes even more so for smaller values of p.

A linear approximation may also be used for $2 as well, although the fit

is not quite as good and a quadratic term may be useful. A possible

specification would be:

^ 2 2 2 -
2 2 N p 2)(l + a2p + a3 + p/ + p / /r) 4.41

Naturally 4.41 would have to be expanded, but all the

coefficients are identifiable. Note that the specification retains
2
c -l hn

certain desirable properties, namely that it is equal to 12 we

0 and it vanishes for c = 1. A similar formulation could also be used to

refine 4.39 using t1. It would be desirable to compare the

predictive accuracy of the approximations for headway distributions other

than those out of the gamma family and for bulk arrival systems as well.

It seems reasonable that equations 4.37 and 4.38 could be reformulated

to incorporate the coefficient of variation for Y (instead of B), where

the latter variable would simultaneously reflect variations in both the

headway distribution as well as the sizes of incoming groups.

Once we have determined the moments of the distribution, the next

problem is to fit an approximate distribution for the length of the queue.

The family of distributions that are used can be looked upon as the discrete

analog of the Erlang distribution; whereas the Erlang can be found by

convolving negative exponential distributions together, we can convolve

geometric distributions together. To add an additional parameter for

greater flexibility, we consider as well the shifted geometric with p.m.f.:
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p)0 i = y, Y + 1,...4.42

0 < e < 1,

The parameter y shifts the distribution to the right and of course must

be integer. The transform of the shifted geometric is:

P(z) = ZY"(11 -) 443

Convolving {pJ.} K times, we obtain the approximate distribution

for Q, denoted by Q, with transform:

^ Y 1-6K = 1,2...Q(z; 0, y, K) = 1_e-)zK K= 1...) 1 (o)z Y = 0,1,... 4.44

The transform of Q is used only for notational simplicity since we are

interested only in its probability vector {q.}. The moments of Q are

easily verified to be:

E(Q) = KV )+ 4.45

K®
Var(Q) = ()2 4.46

The only problem keeping us from using 4.45 and 4.46 is that we have three

parameters and only two equations, 4.39 and 4.40. In principle, we could

develop a third equation for the third moment in a manner similar to that

used to find the approximate equations for the first two moments. As a
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simplification, we will guess at y and use 4.45 and 4.46 to find K and 6.

Q, of course, cannot be used to approximate an distribution, being

restricted to those with a coefficient of variation less than 1. If

necessary, we may generalize this approach to discrete versions of the

hyperexponential or hyperstage distribution with transform:

Q(z; 0., a., y., K., M) = a. \z447

M
where Ec =1

i=l

Letting y. = 0 and K. = 1 we obtain the discrete hyperexponential distri-

bution with a coefficient of variation greater than 1. For our problem,

however, the simpler distribution (M = 1) will suffice.

Approximate distributions were fitted using equations 4.39 and 4.40

to find K and 0 for r = 1, 5 and oo and for different values of p. In

each case, several values of y were tested manually and the value which

gave the best fit was used. Most of the time y = 1 was the best and in

all cases it worked quite well. For low values of p, however, y = 0

tended to produce a slightly better fit while y = 2 worked a little

better for higher values of p. Typical values of K were on the order of

2 to 10 for y > 1, but for y = 0, K was usually much higher; in one

example, the best fit was found using y = 0 and K = 1013, suggesting the

gain in accuracy might be more than offset by the additional computational

requirements of convolving over 1000 geometric distributions together.
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The results of these experiments are shown in figures 4.9 (r = 5) and

4.10 (r = c), where the solid lines represent the true distributions,

computed using numerical convolutions, and the dashed lines the approxi-

mation. The excellent fit is self-evident. The distributions for r = 1

are not shown since the true distribution is in fact geometric (as shown

by Bailey (1954); see also Kleinrock (1975, p. 139)) and hence the

approximate distribution is almost exact, using K = 1 and y = 0. Some-

what ironically, the approximate approach may be more accurate

in this case than the "exact" approach using numerical convolutions. The

reason is that as a result of the high variability of the headway

distribution, there were extremely long queues even for p = .5, and, as

we found earlier, the latter technique produced significantly downward biased

estimates of the variance under high levels of congestion. To compare the two

approaches under such conditions would therefore be misleading.

On the basis of these results we can conclude that transform

analysis of bulk queues may provide useful directions for developing

extremely accurate approximations that are easy to use and implement.

What transforms do is provide an indication of the true functional form

for the mean and variance and leave a much smaller and more manageable

component to be estimated empirically. This is especially useful in

estimating variances since it is unlikely that we would ever be able to

guess at the function in equation 3.18. We should also point out that the

approximations developed here for the length of the queue may be used

directly to find the moments of the waiting time using equations 3.100

- 3.104.
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4.4 Summary

This chapter provides the information needed to obtain numerical

results from the transforms derived in chapter 3. Specific algorithms

are detailed in appendix E, with research on their numerical performance

reported in sections 4.1 and 4.2. The tests indicate that there are

no problems with finding the zeroes needed to solve the transforms,

an observation that runs contrary to several statements made in the

recent literature. Also, given the zeroes, it is possible to safely

and efficiently find the first c probabilities which are useful both

for computational reasons as well as computing certain operating

statistics. It does not appear possible, however, to compute the rest

of the probability vector for bulk service queues due to the numerical

sensitivity of the recursive formulae used to perform the calculations.

Section 4.3 describes a novel approach for approximating the

moment formulas in closed form and demonstrates the accuracy of the

method in the case of a specific bulk queueing problem, the M/Ec/1
r

queue. The procedure is based on the observation that the term

containing the zeroes is extremely smooth and therefore easily approxi-

mated. These formulas are then used to fit approximate distributions

for the length of the queue which are shown to be very accurate. The

ease with which such approximations can be used more than offsets any

minor loss in accuracy, and further research expanding the moment

formulas to bulk arrivals would be useful.

The use of approximations, of course, can extend beyond simply

eliminating the need to calculate zeroes. From a more practical
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perspective, the most serious errors contained in the moment formulas

will arise from violations of the underlying assumptions, most notably,

but not exclusively, those regarding steady state and Poisson arrivals.

The purpose of this chapter has been to demonstrate how the transform

results presented in chapter 3 can be implemented insofar as obtaining

numerical solutions is concerned. All the results reported in this chapter,

however, apply only to the case of simple or compound Poisson arrivals.

In chapter 5, we turn to the problem of evaluating the Poisson arrival

process as an approximation for more general arrival processes.
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Chapter 5 Approximating the Arrival Process for G/Gc/l queues

One of the most important assumptions needed for the analytic solution

of bulk queueing systems, and which has been used throughout chapters 3 and

4, is that of Poisson arrivals. In this chapter, a series of experiments

are presented which test the validity of this assumption and to determine

the factors which influence its accuracy. In addition, a methodology is

outlined for approximating bulk service queues with general arrival processes.

From a practical perspective, the use of the Poisson arrival process

raises two important questions, namely when can an arrival process be

approximated by a Poisson and what can be done when this approximation breaks

down. Very little work has appeared that addresses either problem

adequately, and hence a set of experiments are presented which provide

a number of insights regarding the use of Poisson arrival processes.

The results of these experiments are divided into two sections. In the

first, section 5.1, a range of non-Poisson arrival processes are simulated

and analyzed to determine the extent to which the process appears Poisson.

The simulations are representative of situations that might arise in a

transportation network. The second set of experiments, presented in

section 5.2, repeat the simulations in the context of an actual bulk queue.

Statistics are gathered on the mean and variance of the queue, which are

then compared to the predicted mean and variance if Poisson arrivals are

assumed. The results of these tests indicate that the Poisson arrival

approximation is not robust, which motivates the discussion in section

5.3. There, a review of recent efforts aimed at approximating arrival

processes is presneted, and a methodology for approximating Gx/GY/l queues

is described and illustrated.
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5.1 Analyzing general arrival processes

The problem of deciding whether or not an arrival process is

Poisson is basically unsolved. Snyder (1975) discusses certain

conditions that must be satisfied and suggests that these might be used to

characterize the process qualitatively. As he points out, most of the

literature on the statistical analysis of arrival processes is concerned

with parameter estimation given that the process is Poisson. Gross and

Harris (1974) describe several statistical procedures for testing if an

observed interarrival time distribution is negative exponential, but ignore

the possibility of correlations between successive interarrival times.

Notwithstanding the fact that the statistical procedures used are not very

powerful, the lack of independence between interarrival times can seriously

affect the results.

It is reasonable to conjecture that the question as it is posed is by

itself unanswerable. That is, the real question is whether a particular

arrival process can be approximated as being Poisson and give good results

for a particular problem. The purpose of this section is to present

several possible statistics that might be used to characterize an arrival

process. Section 5.2 then looks at a particular queue to provide an indica-

tion of the relationship between the values of the statistics and the accuracy

of the Poisson approximation in estimating means and variances.

Two "views" of an arrival process are used in this section. The

first, termed the microscopic view, is based on the usual test for a

process to be Poisson which is that the successive interarrival times

are i.i.d. with a negative exponential distribution. Thus one approach

is to compute the correlation coefficient between successive interarrival

times and construct the distribution. The second view,
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termed the macroscopic approach, looks at the number of arrivals over

successive periods of time. This is equivalent to studying the random

variables {Yn}, where the periods of time represent service intervals.

If each time period is of fixed length, then the sequence {Yn) must be

i.i.d. with a Poisson distribution if the arrival process is Poisson.

Hence another way of testing if a process is Poisson is to compute

the correlation coefficient between each {Yn} and construct the

distribution for Yn'

To illustrate the use of these tests, as well as gain a number of

insights into non-Poisson processes, a set of experiments were designed

which focused on the superposition of independent arrival streams. In

transportation networks, vehicles may arrive independently from a number

of other terminals. The process describing the arrival of all vehicles,

therefore, is a superposition of the arrival streams from each of the

individual terminals. The problem is similar to that depicted in

figure 5.1. The question, then, is under what conditions a superposition

process can be approximated as a Poisson. It is well known that the

superposition of two processes is exactly Poisson if and only if the

two component processes are also Poisson. In fact, a superposed process

is renewal if and only if all the component processes are Poisson.

However, it has also been shown by Khintchine (1960) that the superposition

of N independent renewal processes tends, as N + co, to a Poisson process

(see also Cox and Smith (1954) who first considered the case of N

identical processes, and the discussion in chapter 6 in Cox (1962)).

The problem here is that renewal processes are rare, and are especially

unlikely to occur in transportation.
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The simulations that were run look at not only the number of

processes being superimposed but also the nature of the component processes.

Section 5.1.1 describes the details of the simulation and presents the

results of the microscopic view of a process; section 5.1.2 presents the

macroscopic view.

5.1.1 The microscopic view

The simulation experiments were conducted by superimposing N

independent component process, representing (possibly) the arrival of

vehicles from N separate terminals. Different runs were made by changing

the characteristics of the component processes which can be divided into

two general categories, namely renewal and nonrenewal. Renewal processes

were considered as representing the most favorable conditions for

producing an approximate Poisson superimposed process (i.e. if, for a

given value of N, the .superimposed process is not approximately Poisson

and the component processes are renewal, then making the component

processes non renewal would not improve the approximation). Non-renewal

processes were formulated to reflect the presence of a schedule, where

actual arrival times were assumed to be uniformly distributed around a

scheduled arrival times. This group can be further subdivided on the

basis of two criteria which describe the relationship between the

component processes. The first criteria is whether the processes have

the same frequency of arrivals; if so, the processes are termed phased,

and unphased means the frequencies are different. The second criteria

is that if the processes are phased, then we may distinguih between

those where the scheduled arrival times are the same or not. If so, the
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system is called coordinated, and uncoordinated implies the scheduled

arrival times are independent. Of course, it is impossible to have

coordinated service if the process is unphased. An example of phased

service would be once an hour service from each terminal. If arrivals

are once an hour on the hour, then the service is coordinated.

A hierarchy of the different types of services is provided in Table

5.1. Each of the non-renewal categories can be seen to represent a

specific type of scheduled service. In total, four different types of

processes can be identified, namely renewal, coordinated, uncoordinated

and unphased. In using these names, it should be understood that the

last three are all nonrenewal, and the coordinated and uncoordinated

process are both phased. We may represent the nonrenewal cases by

defining t to be the arrival time of the nth vehicle from the ithn

terminal where:

i i
t = t + n/N. + E. i=1, ... , N 5.1
n o i in

n=I, 2,

and where: t is the time origin for the ith vehicle
0

X is the arrival rate of vehicles from terminal i

(1/N. is the headway)

Ein is an error term

For phased service, it was assumed that . = N = l/(5N) for all i, while

for coordinated service t = 0 for all i. Letting T = 1/X, we assume for
0

uncoordinated service that t0is uniformly distributed between 0 and T.

For unphased service, it was assumed that T. ~U(2.5N, 7.5N), where

N. = l/T.. In conducting these experiments, the arrival rates of the

component processes were always adjusted so that the combined arrival

rate remained approximately constant regardless of N, thus allowing us
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Hierarchy of component process

I. Renewal - successive interarrival times are i.i.d.

II. Non-renewal - arrivals occur on or around scheduled arrival
times which are evenly spaced

A. Phased - each of the N arrival processes have the
same frequency

1) Coordinated - each of the K arrival processes
have the same scheduled arrival
times

2) Uncoordinated - arrival times of the K
processes are independent

B. Unphased - each of the K arrival processes have dif-
ferent frequencies

Table 5.1
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to increase N and still compare directly the interarrival time distributions.

For the renewal and both phased processes, the combined arrival rate was

held constant at .2. For unphased service, since the interarrival

times were drawn from a uniform distribution as just described, the

arrival rate for each component process is a random variable, and

hence so is the combined arrival rate. In this case, the actual average

arrival rate must be computed from the simulation. For the renewal

process, arrival times for vehicles from terminal i are given by:

t = t + T 5.2n+l n n

where

T = l/X+.
n in

and where X = 1/(5N). In all four cases, it was assumed that Ein

U(-5N 5, 5N 6). The parameter 6 is the relative error in the arrival

times and is used to test the effect of variability in the component

arrival processes on the convergence to a Poisson.

With the simulation thus described, we turn now to the actual

experiments. The basic idea here is to investigate the rate at which

the superimposed process converges to a Poisson as N is increased. The

rate of convergence is studied with respect to two factors, the first

being the type of processes being superimposed, where we have the four

cases outlined above, and the second being the parameter 6 which determines

the degree of variability. In this section, the method by which similarity

between a superposition process and a Poisson process is measured is

given by what we have referred to as the microscopic view. The distribution
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of the interarrival times and their first order correlation coefficients

dre computed and compared to what should occur if the process were

Poisson. Thus the interarrival time should have a negative exponential

distribution and the correlation coefficient should be zero. Of course,

it is impossible to draw any conclusions from these comparisons regarding

whether a given process is or is not approximately Poisson. Rather,

these experiments are intended to convey how a process looks when viewed

using the conventional methods for studying the characteristics of a

point process. Then, in sections 5.1.2 and 5.2, we show how the

microscopic view can be very misleading, particularly in the context

of bulk queues.

A large number of simulations were run for each of the four processes,

for different values of both N and S. It was consistently found that

for 6 > .2, N > 8, the interarrival time distribution almost exactly fit

the predicted negative exponential distribution. For this reason we

show only the cases where the fit was not quite as close. These results,

given in figures 5.2 - 5.13, show both the histograms for the observed

interarri-val time distribution as well as the predicted distribution if

the process were Poisson. The plots indicate for the nmost part poor

similarity for N = 3 or 5. Thus, on the basis of this information alone,

N must be greater than approximately 7 or 8 for the process to appear

approximately Poisson.

Figures 5.14 and 5.15 describe the correlation coefficients for each

of the four processes as N is increased for two values of 5. These

graphs more clearly show the convergence, although at N = 10, the

correlation coefficient is still at -.10. It remains to be seen if
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(N = 3 processes, coordinated departures, = .2)
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(N = 5 component processes, coordinated departures, S = .2)
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(N = 3 component processes, uncoordinated departures, 5 = .2)
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(N = 5 component processes, uncoordinated departures, S = .2)
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(N = 3 component processes, unphased, S = .2)
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Comparison of correlation coefficients for

superimposed streams of renewal and unphased processes
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Comparison of correlation coefficients for

superimposed streams of coordinated and

uncoordinated processes

-1.0

Coordinated S = .2
-0.8

Coordinated 3 = .4

-0.6

-- oUncoordinated S = .2

-0.4

-0.2
Uncoordinated-

0

2 4 6 8 10
usd

Nubr fsueimoedsrem

Figure 5.15



177

this is sufficiently low for the resulting process "to be Poisson," but

it does seem clear that the rate of convergence will be very slow for

N > 10.

Section 5.1.2 repeats some of these experiments, concentrating

instead on the number of arrivals in successive periods of time instead

of the interarrival times. The results of these tests are then compared

to those presented in this section.

5.1.2 The macroscopic view

It is common in the study of random point processes to concentrate

on the interarrival time distribution as the most important descriptor.

In the analysis of bulk queues; however, the most important

quantity is the number of arrivals during a service period, denoted by

the variable Y. In this section, then, we study an arrival process by

defining a set of points in time, evenly spaced, and analyze the number of

arrivals between each set of points. The set of points can be viewed as

departure instants for an M/Dc/1 queue, but our interest at this point is

only studying the arrival process in isolation, and not as part of a

queueing process. Denoting the points in time Tn, we assume T - T = T,
nn+l n

where T is a constant equal to the length of each successive interval. As

before, Y is the number of arrivals between T and Tn .
n n n+1*

The study of the variables Y is termed here the macroscopic view
n

since the time period of interest, T, is generally much longer than the

time period used when studying interarrival times. Also, the microscopic
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view looks at the time of each arrival, whereas the macroscopic view looks

dnly at the aggregate number of arrivals over a longer time period T.

What is significant about the latter approach, however, is that it captures

the net effect of correlations between successive interarrival times over

a large number of arrivals, That is, if T9T+ 1 , .".0., are the

sequence of interarrival times, we would find that not only are Tn and

Tn+1 correlated, but so are Tn and Tn+2 ' Tn and T 3 , and so on. The

combined effect of such correlations is impossible to capture using the

methods described in the previous section.

The simulation experiments were conducted for only two types of

arrival processes, renewal and unpbased, representing the two cases most

likely to produce an approximate Poisson process. The distribution of Y

was computed as was the correlation coefficient between Y and Yn+'

Similarity to a Poisson arrival process was measured by comparing the

distribution of Y to a Poisson distribution with the same mean. Of course,

the correlation coefficient should be zero if the process is Poisson. As

before, these statistics were computed while increasing N, although here

the parameter 6 was set to .4. Instead, the effect of the parameter T

was studied since this determines the length of the time interval over

which arrivals are being counted. Clearly, if T is approximately the

length of one interarrival time, then it is unlikely that the two views

would differ significantly in their conclusions. As T is increased,

the view becomes more macroscopic, and the effect of small correlations

in the interarrival times would become more pronounced.

As before, a large number of simulations were run, and in each case

the distribution of Y and the correlation coefficient were computed. The
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results are best described by the plots of the correlation coefficient

shown in figures 5.16 and 5.17 for the renewal and unphased processes.

In each case, N is increased from 1 to 10, and plots are drawn for T = 5,

10, 15, and 100. Note that along the horizontal axis, we also show the

average interarrival time Y for each of the component processes.

Remember that T was increased with N in order to keep the average inter-

arrival time for the combined process the same. In figure 5.16, we notice

an interesting pattern where the correlation coefficient first increases

and then steadily decreases. In each case, the peak occurs when Y/T = 2

or, in other words, when the length of the period of observation, T, is

exactly one half the average interarrival time of the component process.

In figure 5.17, where the frequencies of the component processes were all

different, we notice that the graph remains approximately constant at -.5

until again at T/T = 2, the curve drops off sharply.

These observations can be explained from the nature of the simulation.

When T = '0, one arrival from a particular terminal must occur in either

(Tn Tn+1 ) or (Tn+1 , Tn+2 ) which produces the high negative correlation

between Yn and Yn+1. For T< T, if no arrival from terminal i occurs in

T , it might also be true that none would occur in T either, thereby

reducing the dependence between Y and Y . On the basis of this analysis,
n n+l1

it would appear that the graphs simply reflect the fact that we are

correlating only Yn and Yn+l, and not Yn and Yn+2, for example. However,

the convergence to a Poisson distribution suggested by the reduction in

the first order correlation coefficient is supported when we look at the

computed distribution of Y itself. Interestingly, the distribution of Y

does not even begin to approach a Poisson distribution until T/T is at
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least 2. For example, if we are superimposing 10 renewal processes,

ahalysis of the interarrival times (i.e. the microscopic view) suggests

an extremely close fit with a Poisson arrival process. On the other hand,

the distribution of Y when T = 100 (T/T = 50/100 = .5), shown in figure

5.18, does not even approximately resemble a Poisson distribution with

the same mean. As we would expect, the small, negative correlations

between successive interarrival times over a long time period produce an

actual distribution for Y with a much smaller coefficient of variation

than would occur if the process were indeed a Poisson.

On the declining sides of the curves (i.e. when T/T > 2) the agreement

between the observed distribution for Y and a Poisson distribution becomes

much better. For the cases where N = 10 and T = 5 and 10(T/T = 10 and 5,

respectively) the fit is quite good (see figures 5.19 and 5.20). Figures

5.21 and 5.22 show the same information for N = 5 and T = 5 and 10 (T/T =

5 and 2.5) demonstrating a somewhat poorer fit.

The results of this section suggest that the ratio T/T is a more

important determinant of whether a given arrival process is approxi-

mately Poisson than the number of streams being superimposed. On the

basis of this observation, one can explain not only why the arrival of

passengers at a bus stop would be described by a Poisson process but also

why this would not be a good approximation for the arrival of vehicles at

a terminal. In the first case, each passenger represents a separate

component process, where T might be equal to 24 hours (i.e. he arrives at

a bus stop once a day); since the bus frequency might be departures every

.5 hours, we have T/T = 48, which of course is relatively large. On the
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Comparison of observed distribution of arrivals
and a Poisson distribution with the same mean
(T=5; component processes are unphased with T=5)
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other hand, vehicles would arrive at a terminal over each link at

approximately the same rate they would depart over each link, in which

case W/T 1. Thus even though the superposition of arrival streams of

vehicles at a particular terminal may appear Poisson based on an exami-

nation of interarrival times, it is unlikely that the number of vehicles

arriving at a terminal between successive departures over a particular

link would be given by a Poisson distribution.

In the next section, we focus on an arrival process in the context

of a bulk queue to determine the accuracy of the Poisson arrival process

in predicting the first and second moments of the length of the queue.
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5.2 A general arrival process in the context of a bulk queue

Section 5.1 presents two approaches for measuring the similarity

between a general arrival process and a Poisson, one being the conventional

approach based on an analysis of interarrival times, the second looking

at successive increments of the process. There it is shown that the

latter approach provides a better indication of whether an arrival process

is approximately Poisson. Also, the ratio T/T, the mean headway of a

component process over the mean departure headway, is a more useful

indication of whether a set of superimposed processes is approximately

Poisson than N, the number of streams being superimposed. What remains

to be tested is how well the Poisson arrival process approximates a

general superposition process in terms of estimating the moments of the

length of a queue.

To answer this last question, a set of experiments were conducted

whereby N renewal processes were superimposed, creating an arrival process

to a bulk service queue with departures every T units of time with a

vehicle capacity of c = 5. The utilization parameter is given by P = -NT
cT

where X = / is the arrival rate of customers for each component process.

The headway T was chosen for each value of N such that P = .9. Given these

parameters, the mean and standard deviation of the length of the queue

were computed for values of N ranging from 5 to 60 (~T/T increased from

.9 to 10.8), as shown in figures5.23 and 5.24. Also shown are the theoretical

mean and standard deviation computed using the methods described in

chapter 4. Finally, as a check on the simulation program, the same figures

were computed by simulating the superposition of N Poisson processes. It
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is easily seen that the theoretical values do in fact agree with those

dbtained when simulating Poisson arrival processes. On the other hand,

the simulated general arrival process has consistently lower estimates of

both the mean and standard deviation, even for relatively large values of

Y/T.

This experiment suggests that the Poisson arrival processes is not

a particularly robust approximation. More importantly, statistical

analyses of an arrival process, using either approach described in section

5.1, may not provide a good indication of whether a given arrival process

is "sufficiently Poisson". The problem is that it is unlikely that any

process is truly Poisson if viewed over a sufficiently long period of

time. For example, arrivals to a bus stop maybe adequately described by

a Poisson process, but it is unlikely that the total number of arrivals

over 24 hours is given by a Poisson distribution. Hence, the real

issue is over what length of time a process must "look" Poisson. For

bulk queues, this length must be at least T or 2T, but is more likely to

be related to the length of the busy period. Thus as p approaches 1, the

Poisson approximation is more likely to break down. It would be interest-

ing to compute the ratio of T over the mean length of a busy period and

use this figure as a basis for evaluating the accuracy of the Poisson

approximation for a general arrival process.

This discussion brings out the important factors determining the

use of the Poisson arrival assumption to solve particular queues. It does

not, however, solve the problem of what to do when the arrival process

cannot be accurately approximated with a Poisson. Section 5.3 looks at

this problem and suggests several methods for developing approximations

for G /G /l queues.
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5.3 Approximations for G/Gc/1 queues

Since the early sixties, queueing theorists have sought to approximate

results for G/G/1 queues which could not be obtained using standard

methods based on analysis of the imbedded Markov chain. These include

fluid approximations and diffusion approximations as well as a number of

bounds on mean waiting time (see Kleinrock (1976) for a review of this

material). Only recently, however, have any papers appeared which address

the problem of approximating the actual behavior of a G/G/l queue (i.e.

finding the approximate distribution of the queue length or waiting time,

instead of simply the average waiting time). Kuehn (1979) and Whitt (1979a,

b) have studied the problem of approximating general, non-renewal arrival

processes with renewal ones. The problem being studied was the superposi-

tion of several message streams in communications networks. Service

times were assumed to be negative exponential, and hence the replacement

of a G/N/l queue with a GI/M/l queue enabled analysis using standard

transform methods.

Replacing a general arrival stream with a renewal one does not, of

course, simplify the problem of studying bulk queues. The work performed

by Whitt does, however, suggest an alternative approach. For this reason,

it is appropriate to first describe his research as outlined in Whitt

(1979a). Consider the instance of a general arrival stream with inter-

arrival times given by TV, T2 , . . ., which are not independent. The

problem is to derive a new random variable T such that an i.i.d. sequence

T 1 , T2 , . . ., produces a renewal arrival stream which produces the same

queueing behavior as the original, non-renewal one. The approach used by
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Kuehn, which Whitt terms the stationary interval method, is to estimate

the mean and variance of T, which are then used to calculate two

parameters of an assumed distribution for T. Thus T and $ have the same

mean and variance, the only difference being that T'4, 2, . . ., are now

assumed to be independent.

Whitt then proposes a second approach, which he terms the asymptotic

interval method, where the means of z and 0 are the same, but the

variances differ. Using an important result by Smith (1959), Whitt

estimates the limiting distribution of arrivals over a long period of

time, and from this obtains a different (lower) estimate for the variance

of f. Comparing the two approaches, Whitt found that they produced upper

and lower bounds for the actual length of the queue (found using

simulation), and that an even sharper estimate could be obtained by taking

a convex combination of the two bounds. Furthermore, the appropriate

combination was found to depend on p, with the stationary method being

more accurate for small values of p and the asymptotic method improving

for large values of p.

The approach that is proposed here for approximating bulk queues is

to focus on the increment of the arrival process. Specifically, let Y(t)

denote the associated counting process and let ti, t2 , . . ., be departure

instants. The variables Yn, then, are given by Yn = Y(t)n+1 Y(t ), and

hence represent successive increments of the counting process Y(t). All

the results described in chapter 3 apply to any process for which the

sequence f{Y I is i.i.d.. Of course, this can only occur if the arrival

process is compound Poisson, or if the number of groups arriving in each
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interval ( tn+1 n) is deterministic, and the size of each group forms

a sequence of i.i.d. random variables. In most other cases, the variables

Y will not be independent. However, we may artificially construct a

new random variable Y, where Y1 , 2' ., are i.i.d., and where we

specify the moments of Y in such a way that the new arrival process

behaves in a manner similar to that of the original one. In other words,

rather than finding a new arrival process by creating a new interarrival

time distribution, we are creating a new distribution for successive

increments of a counting process and then assuming that these increments

are independent.

The next question is how to estimate the moments of Y. It seems

natural to require that E(Y) = E(Y), i.e. the expected number of arrivals

in each increment of the new process should equal that of the original.

To estimate the variance of Y, there are two approaches that are suggested

by the work of Kuehn and Whitt and are thereby named in an analogous

manner. These are:

a) the stationary increment method - simply let var (Y) = var (Y);

in other words, Ywill have approximately the same distribution

as Y, but the successive correlations are ignored;

b) the asymptotic increment method - calculate the variance of the

total number of arrivals over a very long period of time, and

from this infer the variance of the number of arrivals over a

period of time equal to one departure interval.

These approaches can be illustrated by applying them to the same

problem considered in section 5.2, where N identical renewal processes
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were superimposed to form an arrival process to a bulk queue. Inter-

arrival times for each component process are given by:

T = 1/5-N + E

where e~ U(-2N, 2N). The capacity of the outbound vehicle is c = 5

and a utilization ratio of p = .9 is assumed, thus Y = pc = 4.5. The

variance of Y, Y, was estimated from the simulation program and is shown

in table 5.2 for different values of N, along with the associated

correlation coefficients. To apply the stationary increment method to

estimate the mean queue length, we would define a random variable Y

with mean and variance Y and Y. Assuming that the number of arrivals

between successive departures is independently and identically distri-

buted according to Y, then the mean queue length is given by equation 3.17

as follows:

2 c-1
Y + c - Y - (c - Y) +1

2(c-Y) i=0 1-z31

We still have the problem of finding the zeroes for which we would need

the actual distribution of Y, as opposed to just its moments. For simpli-

city, we will compute the zeroes by assuming Y has a Poisson distribution

with mean Y.

To apply the asymptotic increment method, we again assume Y has mean

Y, but we must turn to another source to find Y. For this problem we may

use a limiting result reported by Smith (1959) for the variance of the

number of arrivals in a renewal process over a long period of time. Let

Y. (t) be the number of arrivals in (O,t) from one component process, and

let T . be a random variable describing the interarrival time. Then, as

t -+ O, Smith shows:
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Table 5.2

Simulated variance of Y f-or superimposed process

N R

5

10

20

30

40

50

60

-.32

-. 59

-.29

-.18

-.11

-. 07

-.06

y

1.05

2.54

3.41

3.84

3.93

4.05

4.24

N = number of streams being superimposed

R = correlation coefficient between Y and Y
n n+1

Y = variance of Y
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Var(Y(t))~ 3 - t

2 22(106N) -(4N) =. 2For the example, E(T) = 5-N and Var (T)= 12 =12 =1.33 N

Thus:

Var Y.(t) 0107
1 N

Now let Y(t) = Y(t) + Y2t) + . . . + YN(t) be the counting process for

the superposition of all N streams. Since these streams are independent

and identically distributed, we find:

N
VarJY(t)] = #1 Var[Yi(t)]

= N Var[Y.(t)]

= 0.107t

which is independent of N. We now want the variance over a length of

time equal to the departure interval, which for this problem is t = 22.5.

Hence Var[Y(t = 22.5)] = .24, which we may use as our estimate of the

variance of Y (note, as expected, that this estimate of the variance is

significantly lower than that reported in table 5.2 for the stationary

method). We can substitute Y = 4.5 and Y = .24 into equation 3.17

(along with the necessary zeroes) to find the estimate of the mean queue

length.

Figure 5.25 shows the true estimate of Q, obtained from simulation

and those calculated using the stationary and asymptotic increment

methods. As anticipated, these two approximations appear to provide
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upper and lower bounds on the mean queue length. To improve the estimate,

an average of the two bounds is also shown, which appears to be much more

accurate. Of course, it is possible to contemplate more general convex

combinations of the two bounds, which would further sharpen the

approximation. This, however, represents a significant research problem

which extends beyond the scope of this research.
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5.4 Summary

The question of when an arrival process is approximately Poisson

arises often in queueing problems, and to date, there are no clear

criteria for answering it. This chapter develops a number of insights

regarding the use of certain criteria for judging whether a process is

Poisson, and the accuracy of the Poisson approximation in predicting the

moments of queues. Attention is focused on the particular case of

examining arrival streams of vehicles from multiple terminals. The

results of the simulation experiments suggest the following conclusions:

*Analysis of an arrival process to a bulk queue based on

interarrival times can be misleading.

*Analysis of the increments of an arrival process can be useful,

but does not necessarily provide a good indication of when a

Poisson approximation will provide an accurate estimate of the

length of the queue.

sIn general, the arrival of vehicles to a queue cannot be

accurately approximated using a Poisson arrival assumption.

In light of these observations, section 5.3 proposes a methodology

for approximating bulk queues with general arrival processes. This

approach is illustrated in the context of a specific problem, but

requires considerably more research before it can be applied to more

general problems. What is significant about the approximation is that

it draws directly off the theoretical work performed in chapter 3, thereby

enhancing the applicability of the moment formulas provided there.
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Chapter 6 Summary and Directions for Further Research

The motivation for this research is the development of planning

tools capable of modeling stochastic delays in transportation terminals.

Other tools such as simulation are too slow to be applied to the study

of large transportation networks, and in addition, pose problems with

respect to model development and the statistical analysis of the

outputs. Instead, the theory of modeling bulk queues in steady state

is used on the premise that such results strike a better balance be-

tween computational efficiency and level of detail. The application of

the theory of consolidation terminals, however, posed a number of

theoretical and practical problems which must be overcome. The identi-

fication, and in some cases, solution of these problems, together with

the basic approach used to study stochastic delays, constitutes the

contribution of this thesis. In this chapter, these contributions are

reviewed, in section 6.1, followed by a summary of important directions

for further research in section 6.2.



201

6.1 Summary of major results

The contributions of this research can be divided into three

categories, namely conceptual, theoretical, and numerical. From a

conceptual perspective, transportation networks have been described

as a network of bulk queues. Stochastic flows over the network are

characterized by the flow of groups of loads, with particular interest

on the distribution of the number of groups arriving in a given period

of time, and the distribution of the size of each group. Outbound

links are described as individual queues and the theory of bulk queues

are applied to find 'the delays encountered before departing over a

particular link. The observation is made that the most important source

of random delays occurred at transfer points in terminals, and hence

linehaul delays are ignored. Sources of delay within a terminal are

identified as unloading time, connection delay, and loading time, and

approaches for modeling each are described. Specifically, the use of

steady state bulk queueing theory is identified as a more accurate

approach than deterministic models without the computational overhead

of a simulation model.

In the second category, theoretical results, the research begins

with a thorough review of the literature which identifies potentially

useful contributions. At the same time, a set of problems are high-

lighted which require additional work. In particular, the 1/G /1

scheduled departure queue, denoting a system with compound Poisson

arrivals, and a general interdeparture time distribution where the out-



202

bound vehicle has a random capacity y, is investigated. Also studied

is a variant of this system which allows for cancellation of a departure

if the queue is less than a specified minimum. New results obtained in

this area are:

* transform of the queue length distribution for the lx/Gc/l queue

and formulas for the f irst two moments;

* transform of the queue length distribution for the Mx/G /l queue

(extension to random outbound capacities);

eformulas for the first two moments of the waiting time distribution

for MI/G/ 1 queues;

*the queue length transform for M?/Gl queue with cancellations;

ea light traffic approximation for queues with cancellations;

*the queue length transform when departure headways form an alter-

nating renewal process;

othe relationship between the distribution between the number of

units:

a) at a dispatch instant,

b) at a random point in time,

c) in front of an arriving unit, and

d) behind a departing unit.

In addition to these results, the derivations used are generally simpler

than the usual approach used in the literature.

On the numerical side of the research, several practical issues are

raised in connection with implementing the results. The first of these

is the immediate problem of solving the transform equations, requiring
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the calculation of the roots of a certain transcendental equation.

Contrary to recent indications in the literature, this task did not

present any numerical difficulties and in fact could be performed-

extremely efficiently. A new approach for performing partial transform

inversions is described which is both computationally more efficient

and less sensitive to round-off errors than the standard technique. A

method for performing complete transform inversions is also presented,

but is found to be extremely sensitive to computer round-off. However,

it is pointed out that the results of the partial transform inversion,

which provides the first c elements of the steady state queue length

distribution, could be used to compute several important levels of ser-

vice statistics. These include the probability a randomly chosen unit

leaves on the first outbound vehicle, the probability a vehicle is

cancelled due to insufficient demand, and the average load factor on a

departing vehicle.

In addition to the work directed at solving the transforms, several

approximations are developed which simplify the analysis and enhance the

generality of the results. The first of these are simple but accurate

approximations for the first two moments of the length of the queue for

an M/Ec/l system. These formulas are in closed form and eliminate the

problem of having to solve for zeroes. Second, a family of discrete

distributions is described, and the approximate moment formulas are used

to fit an approximate distribution for the length of the queue. When

compared to the exact distribution, the approximation is shown to be

extremely accurate.
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Third and last, a series of experiments were run which test the

accuracy of the Poisson arrival process as an approximation for certain

non-Poisson arrival processes. It is shown that the Poisson arrival

process is not a particularly robust approximation, even when tests

based on an examination of the interarrival times suggest that a given

arrival process is in fact Poisson. On the basis of these observations,

a new approach for approximating the behavior of IG/l queues is pro-

posed. The methodology proceeds by replacing a general arrival process

with one with independent increments. No attempt is made, however, to

actually derive the new process in terms of its interarrival time distri-

bution, since such a process will not in general even exist (in that the

Poisson is the only arrival process with independent increments). Rather,

we simply estimate a distribution for the increment of the process and

then assume that the successive increments are independent. The proce-

dure is illustrated in the context of a specific problem and shown to

yield fairly good results.
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6.2 Directions for further research

As with most concerted efforts in a new area, a number of questions

and problems remain which deserve additional work. A few of these are:

eApproximate moment formulas for the Mx/Gc/l queue - Thus far,

formulas have been estimated only for the M/Ec/l queue, and only

for the case c = 20. It should be possible to incorporate the

capacity of the outbound vehicle explicitly, as well as the

moments of the size of incoming groups.

*Validation - All the formulas should be tested in specific field

experiments. Errors in estimating parameters and other assumptions

(e.g. steady state) may overshadow the use of more complex models

(such as the use of random outbound capacities versus deterministic

ones). The results of an analysis based on stochastic models should

be compared with those obtained using simpler, deterministic models.

eApproximating Gx/G/ 1 queues - Considerably more work is needed in

the area of approximating the performance of bulk queues with gen-

eral arrival processes. It may be possible to parameterize a

range of arrival processes on the basis of the first two or three

moments of the number of arrivals during each service period, and

the correlation coefficient. Different approximations may prove

more accurate for different values of p, and this relationship

should be explored.
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eApproximating queueing networks - Given an approximation for

o /G /l queues, it should be possible to extend the methodology

outlined by Kuehn (see section 2.2) to networks of bulk queues.

The important problem is describing the output process of a queue,

and then using this information to approximate the arrival processes

to queues downstream. Stochastic flow over links in the network

may be characterized by the first two moments of both the number

of groups arriving in a given time interval and the size of each

group. Correlations in successive random variables can be incor-

porated by modifying the variance and higher moments.
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Appendix A Neuts' algorithm

The numerical procedure developed by Neuts was motivated by the

perceived computational problems associated with finding the roots of a

given function. The algorithm is of interest here since it applies to

a very wide class of bulk queueing problems. It was not given any further

attention, however, since the calculations required suggested that the

method would simply be too slow to be of any practical use in the problems

being considered. In this section, the major steps of this algorithm

will be outlined, the purpose being only to communicate the computational

requirements. No attempt will be made to motivate any of the steps, as

derivations are often quite involved.

Neuts assumes that the imbedded Markov process can be represented

by the following general transition matrix:

B0

A0

0

0

where the elements

B.=
J

B1

A0

A 0

0

of

B2 a

A 2

A 0

Ar c

P are c x c matrices with general form:

b .
o,cj o,cj + c - 1

b b
c-lcj ... -c-l,cj+c-l

j=0,l,...
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a0 a ... aC-1

0 a0  ... ac-2

A=
0

0 0 a
0

acj ..0 acj+c-l

A. =

acj-c+1 ... acj

To incorporate the special structure of P in the analysis, denote a

state by the pair (r,j), rQ 0, 1 jc, where r will be referred to as the

level and j as the state within level r. The vector of probabilities

q 0, ... ,qC-1 will now be found by finding the mean recurrence time for

each state (o,j), lj<c.

Let G =fG. j.T h e a cxc matrix of probabilities that given the

system is in state (r+l, i), the first state visited in level r will be

j. From the structure of P, it is easily seen that this matrix is

independent of r. By considering the sequence of possible events

following a transition from (r+l, j), it can be seen that G must satisfy

the relation:

G = E A.-G

i=0

Rearranging terms slightly, Neuts obtains the following algorithm for
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finding G given an initial starting point G = {0}:

G = (I-A1 ) (A + E A.G)n+ 1 0 j-2 j n

Given the matrix G, the next problem is to find the stationary

probability vector g for the (stochastic) matrix G, where g = g G.

Neuts does not give an explicit procedure in his last paper for doing

this, but presumably the relatively small dimensions of G simplify this

problem.

Before describing the next step, some new variables are needed.

Let O
A=Z A.,

j=0

e =(1, ... , 1),
0 0 0

a= (a ... ,c) = Z jA.e,

and let A(a) be the diagonal matrix whose elements are (a0 .. c0).
1* c

Finally let G be the matrix whose rows are g. Now compute the following

vector P:

0u-0
P = (I-G+G) (I-A+G-A (U )G) e (17)

With C, g and Bthus computed, it is now possible to address the

problem somewhat more directly. Let

K =E B.G
j=o J

and find the vector y such that y= yK. Let
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Co
0 0 013=(B.,..., S )= 2 jB e,

j=l

and

o
B = E B

j=o

and, as usual, let P be the utilization parameter. Now compute the

vector 6 where:

6 e + (1-p) 0 + (B-K) (I-G+ )

The vector (q,. .. , qC- 1) is now given by (YG ) -lY The remaining

probabilities qm , ... , are easily found from a series of recursive

formulae.

In view of the considerable matrix manipulations required, it is

difficult to understand how the algorithm can possibly compete with the

method of convolutions which is far simpler as well as being more flexible

with regard to the variety of dispatching strategies which may be

represented. Neuts has tested the algorithm extensively but makes no

comparisons against other numerical procedures. For c=10, typical

run times were on the order of 5 seconds on a CDC 6500.
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Appendix B Proof that the zeroes lie within the unit circle

As described in the text, Rouche's theorem tells us that there are

c
c zeroes for the function f(z) = z - Y(z) on or within the unit circle,

if it can be shown that IzcI>IY(z)I along the contour defined by

I zJ = 1 + 6., for6> 0 but arbitrarily small. We will now demonstrate that

this is true for any Y(z) that is a legitimate probability mass function

of a non-negative, integer valued random variable, as long as q} Y < c, and

b) the transform Y(z) is defined on the unit circle zI = 1+6 , for 6

arbitrarily small but positive. The latter of these conditions is satisfied

if all the moments of Y are finite, a condition that is likely to be satisfied

for any distributions encountered in practice.

First, we let z = (1 +6)e , 0 < 6 < 2 , and note that:

= 1(1+6)c e i61

l+CS + 0(62 B.1

We also have:

k
Y (z)=E y k zB.

k=0

Or:

Y (z) = E yk( +)kOB.3

Z=(1+5)e i 
=
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Applying the triangle inequality we observe:

Y (z) + e =k=
k=0

k kiG
yk(l+S) e

00
k kiO

E k (l+S) e
k=0

k=0
3.4

Rewriting the right hand side of B.4, we obtain:

y (
k=0

0 k (k-1) 2 k (k-11(k-2) 3
E y k ( ++ 2 3 2

k=O

=1 + YS + k
k=2 k!

B.5

where Yk is the k h factorial

dkY(z)
dkz .Since the right I
dz z1

moment of Y, which is equivalent to

hand side of B.5 is bounded by assumption, we may

write:

k +2
S k( ) =1 + Y6 + ( )

k=0
B.6

Since B.6 is

hand side of

as 5 + 0, we

an upper bound for Y(z), it is sufficient to show that the right

B.6 is less than B.1. Noting that the 0( 2) terms become negligible

have:

1 + T3 > 1 + y5
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which is true as long as c > Y. We observe that the condition p < 1 is

sufficient but not necessary for the zeroes to be within the unit circle,

since they may also be there (as was in fact found to be the case ) for

p < 1. What may happen for p > 1 is that the number of zeroes inside the

unit circle becomes greater than c.
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Appendix C Moment formulas for the length of the queue

In this section we will outline the derivation for the mean and variance

of the length of the queue. The purpose of this appendix is to assist

others in verifying the formulas in 3.17 and 3.18, since the algebra is

quite lengthy and mistakes are easily made.

Proceeding to find the mean, we have from equation 3.14:

Q(z) =

c-1 z-z
(c-Y) (z-1) IT (-Z

i=O 1

c
z -l

Y (z)

C.1

To find the mean, we observe that:

dQ(z),
dz z=1

00

y d=1
q z =1

= E jq.
j=O 3

C.2

Thus we have but to find Q'(1). To simplify this, we rewrite C.1 as:

c-1
Q(z) = A(z) II B.(z)

i=0

A(z) = (c-y)(z-i)
c
z -1

YW(Z

where:

C.3
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Bj(z) = . z1

1 -

It is easily verified that (using the fact that AUi) = B(l) = 1):

c-1
Q"(1) = A'(1) + Z B!(l) C.4

i=0

We will now try to find A'(1) in the simplest manner possible. Let:

Aj(z)
A(z) = C.5

A2 (z)

where A (Z) = (c-Y)(z-l) and A2(Z) = z)-1. Differentiating once1 2 Y(z)

yields:

A'(z)A2 (z) - Aj(z)A2 (z)
A' (z) ="1 2 1 2 c.6

A2(z)2

Noting that both the numerator and denominator vanish at z=l, apply

1'Iopital's rule and reducing slightly yields:

A" (z) A - A (z) A" (z) C.7
A'(z) 1 2 1 2

2A2 (z)A (z)

Clearly A"(z). 0. Again we have 0/0, so we use 1 'Hopital's rule once

more:

A'(z) = -Aj(z)A'(z) - A1(z) A(z) C.8

2A2(z)A'j(z) + 2A' (z)2
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Letting z=l and observing that ki(1) = A2(1) 0, we have:

A'(1) = -A{ (1)A' (l)

2A (1)2

Solving, we note:

A"(1) = c-Y
1

c-i

Y (z)

= C -Y

z czY(

Y(Z) 2 z=1

C .11

= c(c-1)zCZ

Y(z)

Y"(z)
Y-z)2

c-i
_ 2cz Y'(z)

Y (Z)2

- 2Y' (z)2

Y (Z)3 z=1

-2= c(c-1) - 2cY - Y"(1) - 2Y

- -2-
We note that Y'(1) = ?(1) +-Y Y, giving:

S-- - -2
A' (1) =c(c-1) - 2cY -y + Y + Y

Substituting C.13, C.11 and C.10 into C.9 gives:

- 2 - -2
A'(1)= Y + c-Y- c + 2cY - Y

2(c-Y)

2
Y+ c-y- (c-Y)

2(c-Y)

C.9

C,.10

A 2 (1)

C.12

C.13

c.14
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Also:

3
1'(j) = 1

1-z

Combining C.4, C.14 and C.15 gives us 3.17:

- -2 C-1
Y+c-Y- (c-Y) 2

2 ( c-) i=01-Zi

Turning to the variance, we note that:

Q = Q" (1) + Q'(1) - Q'() 2 = Q" (1) +Q - Q2

To find Q' (1), take logs of both sides of C.3 and define:

c-1
Qz(z) = log Q(z) = log A(z) + 2 log B (z)

i=0

Taking derivatives yields:

= Q' (z) - A' (z) +cI
Q(z) A(z) i=0

B' (z)
B(z)

Q"(z) -Q'(z)2

Q (z) - Q(Z) Q(z)2
A"(z) _ A' (Z)2
A(z) A(z)2

Solving for Q"(z) and letting z=1 gives:

2 2c-
Q"(1) = Q + A"(1) - A'(1) + [B"(1)

i=0

c-1

i=0

B' (z)

B(z)

2

B (z)2

- B (l)2]

C.20

C.21

Proceeding to find A"(1), we return to C.6 and differentiate again:

A" (z) =
[A7 (z) A2 (z) - A(z)AT'(z)]

2 (z)

A2 (z)

2[A (z) A2 (z) - A,(z)A5(z)] A'(z)
C.22

C.15

C. 16

C.17

C.18

C. 19
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Again noting that A"(z) = 0, we see that we will have to apply l'Hopital's

rule three times. Proceeding:

A"(z) = [-Aj(z) A2(z) A'(z) - A (z) -A' (z)

- 2A"(z) A2(z) A (z) - 2Aj(z) A (z)2 - 2A{(z) A2 (z) A (z)

+ 2A{(z) A (z)2 +4A(z) A4(z) A (z)]

C.23

3A2 (z)2 A2(z)

Reducing:

A"(z) [-3Aj(z) Aj(z) A'(z) + 3Aj(z) A(z) A (z)

-A(z) Aj(z) A"' (z) ]

C. 24

3A2 (z)
2 A'(z)

Applying 1'Hopital's rule a second time, but avoiding any terms with

A' (z):1

A"(z)= [-3A{(z) A'(z) A"(z) - 3A{(z) A2(z) A"' (z)

+3A 1(z) A (z) A"(z) + 3A1 (z) A'5(z)

+3A (z) A'(z) A' (z) - Aj(z) Aj(z) A"' (z)

-A (z) A(z) AT (z) - A(z) A2(z) A"(z)]

C.25

6A2(z) A(z)2 + 3A2(z)2 A(z)
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Reducing:

A"(z) = [ -4A{(z) Aj(z) A' (z) + 3A1 (z) A'(z)2

+ 2A,(z) A(z) A' (z) - A(z) A2 (z) A'"'(Z) ]

C. 26

6A 2(z) A(z)2 + 3A2(z)2 A"(z)

We now apply l'Hopital's rule one last time. In anticipation of letting

z = 1, any terms containing A1(z) or A2(z) will be omitted, since these

will vanish. Thus:

A"(z) = I-4A'(z) A(z) A"' (z) + 3A{(z) A"(z)2

+2A{(z) A(z) A' (z) I

C.27

6A (z)3

Letting z = 1 and reducing, using Aj(1) = A(1), gives:

-2A(1) A'' (1) + 3A' (1) 2

A"(1) = 22C.28

6A;(1)

Deriving A"' (1), we return to C.12:

2-
A" ' (Z) z=1 = (c-M)c-2) -3c(c-1) Y

-3c [Y"(1) - 2Y

-[Y' (1) - 6Y"'(l) Y+6 9 ] C.29

It is easily shown that Y"' (1) = E(Y3 ) - 3E(Y2 ) + 2Y

3y) 3(Y3) - (Y2 ) -3Also, Y = E(Y-Y =E() - 3YE() + 2Y . Expressing Y"' (1) in terms
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of Y, y and Y gives:

Y"' (1) =Y + 3 (Y+ ( - 1) - 2Y + 2Y

Y+3Y(Y-1) +Y - 3Y + 2Y C. 30

Expressing A"' (1) now in terms of Y, Y andY gives:

-22

A (1) = c(c-1) (c-2) -3c(c-1)Y -3c(Y- Y)

-Y-- -:-3 -2 -= -2 -
-Y -3Y(Y-1) - Y+3Y -2Y +6Y (Y + Y -Y)-6Y

= c(c-1)(c-2) - 3c2Y + 6c7 - 3e+ 3c2w

-- 3 --2-
+ 3Y Y+ 3Y Y - 3Y - 2Y C.31

Substituting C.11, C.13 and C.31 into C.28 produces:

2 - -2A"(1) = -2(c-y) [c(c-1)(c-2) -3c Y + 6cY- 3cY+ 3cY

-y +3Y Y + 3 Y - Y3- 372 -27]

-=- -2 32
+ 3 [c(c-1) - 2cY - Y + Y +Y

C.32
- 2

6(c-Y)
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Expanding:

A"(1) = -2c4 + 6c3 -4c2 + 2cY- 6c2+ 4cT+6cy

2-2 2- 2 2=7 -= 2-2
-6cY-12c2Y+ 12cY +6c - 6cY Y - 6c

+ 6cY .+ 2cY - 2Y Y - 6 cY Y + 6Y Y -6 cY + 6Y Y

:-3 -4 -2-+2cY3 - 2Y + 6cY -6Y 3 +4cY-4y

4 3 2 2
+ 3c - 6c + 3c - 12c (c-l)Y - 6c(c-l)Y + 6c(c-l) Y

2 2-2 - -+-+ 6c(c-l)Y + 12c Y + 12cY Y - 12cY - 12cY3

+ - -.2= -2 3 -+ 3y'-6YY -6Y Y+3Y+ 6Y3 +3Y4

C. 33

6 (c-Y) 2

Reducing:

4c2 Y22cY-2 -3
A"(1) = c4 - c2 - 4cY+ 2c + 6c2Y - 4cY

+ 2cY-2YY+Y -Y +3Y

-26(c-Y)
C.34

Rearranging terms yields:

-4 -22 -
A"(1) = (c-Y) (c-Y) + 2cY 2Y Y + 3Y

-2
6(c-Y)

Having reduced C.33 to a much more manageable form, substitute C.21 into

C.17 to give:

Q = A"(1) - A' (1) 2 + A (1) +C [B (1) -B'.c(1)2

i=0 i

C. 35

C. 36
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where we have used B'J(1) = 0. Starting with the first three terms we
I

have, combining C.35 and C.14:

2 4 -~y2 " -=
A"(l) -A'(l) + A'(1) = 2(c-Y)4 - 2(c-t)+ 4cY - 4Y Y + 6Y

=2- = - = -2 -2
3Y - 6Y(c-Y) + 6Y(c-Y) - 3(c-Y)

-3 -4 =2+ 6(c-Y) - 3(c-Y) + 6Y(c-Y) + 6(c-Y)

- 6(c-Y)3

-212(c-Y)

(1+6Y)(c-Y) 2 + 4(c-Y) Y + 3Y7 - c_:-)

= C.37
12(c-Y)2

Solving and reducing the rest of C.36 gives the desired result, shown in

equation 3.18:

(1+6Y)(c-Y)2 + 4 (c-Y) + 3j2 - (C-j) 4  c-1 z

- 2 - 2  2 C.38
12 (c-Y)2i=0 (1-z )



230

APPENDIX D

Moment Formulas for Waiting Times

In the text we found:

V(z) = B(z) R(z)

where:

A~)=1-Y(z)A(z) =
Y(1-z)

R(z)=1-G(z)
G(l-z)

R(z) Y (z)

We now wish to find V and V in terms of the moments of G, Y, and Q.

Proceeding:

(D.l)

(D.2)

(D.3)

(D.4)

A' (z)
= B(z) ~ R(z) + A(z)B (z)

* R' (z)

z=l

= A(l) - B'(l) + R'(1)

Differentiating A(z), we obtain:

Az -Y'(z)(1-z) + 1-Y(z)

Y(1-z)2

Now let z-+1. This gives us 0/0; hence we must apply 1'Hopital's rule:

im A' (z) =
-Y"(z) (l-z) + Y' (z) -

-2Y (l-z)

y+ y 2_
A'(l) =2

2Y
(D.8)

1)

V = V'(l)

(D.5)

(D.6)

Or:

Y ' (z) Y"z)

2Y
CD. 7)

A (z)B' (z)q
2

B (z) .
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To find A'(1), we need merely note that A(z) and B(z) have the same

functional form, and hence:

B'(_G=+ -1(D.9)

Finally:

R'1 (1)- (z) Q(z)Y'(z)
Y(ZlY(z) 2 z=l

Q- Y (D.10)

Substituting D.8, D.9 and D.10 into D.5 and reducing gives:

V = + Y - G + Q-Y (D.ll)

To find V, we use:

V = V"(1) +V' (l) - V'(l) (D.12)

As a shortcut, multiply both sides of D.1 by B(z) to give:

V(z) - B(z) = A(z) * R(z) (D.13)

Noting that A(z), B(z), R(z), and V(z) are all transfers of random vari-

ables, and since the product of two transforms represents the sum of two

independent random variables, we must have:

V + B = A + R

Or:

V= A - B + R (D.14)
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To find A, we must first find A"(1). Differentiating D.6 once again

gives:

A()=-Y" (z) (l-z) +
A"z)- 2+

Y(1-z)2
2 [-Y '(z) ( -z) + 1-Y(z)]

Y-- 3

Y"(z)(1-z) 2 - 2Y'(z)(1-z) + 2-2Y(z)
- 3
Y (1- z)

Applying l'Hopital's rule:

lim A"(z) =
z 1 -3Y( -z)2

Y"'(l)

3Y

Again we note that:

- ~ 3 = -2 -
Y"()Y3YY+ Y 3Y-3Y+2Y

A is given by:

2A = A"(1) + A'(1) -A'(1)

- -2= -3 -= -3 -2= [4YY+ 12Y Y + 4Y-12YY- 12Y+8Y

-2 =2 -2= -
+6YY+6Y 3 -6Y -3Y-6YY+6YY

-4 -3 -2]-3Y + 36Y -3Y

12Y

-2=7- 3 -2 -2 -4
[4Y6Y Y + 4-Y -3Y -33Y]

12Y2

-2
[4Y Y + Y (4Y-1)

- )2
- 3(Y-Y2

1 2
12Y

, of course, is the same as A using the moments of G instead of the

moments of Y. Finally, we note that:

(D.15)

(D.16)

(D.17)



RI=Q3- Y

Substituting into D.14 now gives:

- 22
=V[4Y Y + Y (4Y-1) - 3(Y-Y ) ]

-212y

2- -2 -=-2
[4G G+ G(4G-1) - 3(G-G

-2
12G

(D 19)

233

(D.18)
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APPENDIX E

Solving the Transforms

In this appendix we present the mechanics of actually solving the

transforms, first, in E.1 by finding the necessary zeroes, and second,

in E.2 and E.3 by then finding the first c probabilities where we will

present two alternative ways with which they can be found.

E.1 Finding the Roots

Here we will present two methods for finding roots, the first

applying only to the special case of simple Poisson arrivals to a queue

with deterministic headways, the second covering all cases. The same

algorithm will be used in both cases, namely the Newton-Raphson root-

finding procedure, and the only additions that will be made are in the

choice of starting points when finding each zero.

The problem is to find the c zeroes within the unit circle of the

function. f(z) defined by:

c

Yz)f (z) = Y -z l =O E.l

Or:

cZ 1 = exp(2Tri) 
E.2

Y(z)

where i = AT. Taking the 1i/cth power of both sides gives the following

c equations for the c roots:

-1/c
zY(z) = exp(--) k = 0,..., c-1 E.3

c

We now assume arrivals are simple Poisson and headways are deterministic
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of length

XT = Pc.

T, hence Y(z) = exp(l-XT(l-z)). We also have that p = XT thus
C

Substituting back into E.3 gives:

z exp ( p(l-(z)) =
c

Setting z

yields:

E.4

= r exp (iS) = exp (Lnr + i8) and taking logs of both sides

ie 21Tkinr + is + p - pre' =2rk
C

Or:

knr + is + p - pr(cos6 + i sine) = 2rki
C

E.5

Taking real and imaginary parts, we obtain two equations for the two

unknowns, r and 0:

Znr +p - p r cosO = 0

- pr sine =
c

E.6

E.7

For this special case only, we may solve for r using E.7 and substitute

back into E.6, where we now define g(0) as:

e 22rk
g(e) = 9n .c + p - (0 - -- ) cot S = 0 E.8p sin 8jc

We now have the problem of finding, for each k, the single root S of the

function g(0). For this purpose, the following algorithm is used:

Step 1:

Step 2:

k= 0

k = k+ 1

Initialization:

If k = I or 2, set ek = (k+.5)2T/c
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0
If k > 3, k = 0k-l + (k-l)

Set n = 0

Step 3: n = n + 1

en n-1
k k

.n-1

n-i d g(6 )
k d e

Step 4: If I 6 k < , go to step 2;k k

otherwise go to step 3.

The derivative in

d g(6)
d 6

step 3 is:

= p sin 6 si
2Tr- p sin8

2 -k C -

2i 
c i

-cote + (6 - ) (1 + cot2S)
C

= 1 -2 cot 6+ (e rk (1 + cot 2 6)

S 27k C
C q

E.9

Since complex roots must appear as conjugate pairs, we need only solve

for half the roots. More precisely, we must find [9] complex roots,

where [x] is the largest integer not exceeding x. If c is even, then

there is one more root on the negative real axis that cannot be found

using the above algorithm (since we already know 0 = 7 for this root).

In this case we define (r) using E.6:

^(r) Znr + p + pr =0 E.10

This problem is now solved using the same algorithm, where now we are

looking for r, using g(r) and its derivative instead of g(O). For a
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0
starting point, use rc/2  *rc = value of r corresponding to 0.

72--i

found from E.7. The reason for this is that rk - rk becomes smaller

as k increases, and hence rc rc

The reason for presenting this special case is that when it applies,

it can be solved extremely efficiently. To illustrate how other cases

are solved, assume we have Poisson arrivals and gamma distributed

headways with parameters N and N - p, thus:

- N
Y(Z) 

N

N-p+X -Xz

= (l+y-yz)-N E.11

where 1/u = average headway and y = N--- Returning to equation E.3,

we have:

N/c 2'rki
z (1 + y - yz) = exp ( c E.12

Taking logs again gives:

N 2__ Ek1
nr + iG+- n (1 + y - yz)= 2kiE.13

c c

Taking real and imaginary parts, define g(r,G), gj(r,6) and g2(r,G) as

follows:

g. (r,G) Zn r + - Re {Zn (1 + y - yz)}
g(r,e) =CE.14

g2 (r,). 0 + nIm {Zn (1 + y - Yz)}-2'k
c c

where Re(-) and Im (-) refer to the real and imaginary parts of the

argument. We must now solve E.14 using the multidimensional Newton-Raphson
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algorithm. Again, we are looking only for the first I - roots, and

a different procedure is required if c is even to find the last root

on the negative real axis. The algorithm is as follows:

Step1: k = 0

Step 2: k = k + 1 n = 0

Initialize e:

If k = 1 or 2:

0= (k + .5) 2Tk c

If k > 2:

0
k

Initialize

If k = 1:

If k > 1

Step 3: n = n + 1

n n-1

where:

n

x)

= ek + (ek - )=6k-1 +(ek-1 ek-2)

r:

0
r1 = .8

r = r
k k-i

- v)gx

n
rk

n
k

dg1

dr

dg
2

dr

dg,

dg

dg 2
de
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In n-i n n-i
Step 4: If rk -1k < E and 0 - <s, go to

step 2; otherwise go to step 3.

The Jacobian is found to be:

1 NRe i(y -N Z
r c 1+Y-yz c 1+Y-Yz

iSg =E. 15
-NIM ( e ) 1 - NR Yz
C 1+y-Yz C +y-yz

Naturally, this must be inverted, but this is trivial for a 2 x 2 matrix.

If c is even, the last zero on the negative real axis must be found

using g alone, that is, by finding the single zero r = -z of:

N
g(r) = Zn r + - Zn (1 + y + yr) E.16

This is solved in an analogous manner, using as a starting point

0
r =r

C c

2 2

E. 2 - Solving the simultaneous linear equations

Here we will solve for the unknowns q., ... , qC-1  by solving the

set of simultaneous linear equations using the roots z0, ... , zC-l'

The intent here is simply to demonstrate how these equations must be

set up; as an illustration, we will use the equations arising for the

scheduled departure queue with no minimum load constraint. Thus we have:

c-1
q (zc- z ) = 0 k = 0, ... , c - 1 E.17

i=0
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We cannot, however, use all c roots to determine the unknowns. First,

the root z = 1 gives us no information. In its place, we use the

fact that limn Q(z) = 1, or:
z-+l

C-1 cci
q. (Zc-Z )

lim Q(z) = 1 = limL E.18c
z+l z-1 z

Y(z) -

Applying l'Hopital's rule gives:

c-1
Z q.(c-i)

1 -= -

c- X

Or:

c-1

q. (c-i) c-A E.19
i=0

Equation E.19 is the first equation. For the rest, we now note that

since the complex roots appear as conjugates, only one of the

conjugates gives us any information. The remaining equations are made

up by using the real and imaginary parts, as follows:

c-1
Ref q (zc -z1)}=0 E.20

k= 12k , ... , [ ]
c-1

IM {Iq. (Zc - z)= 0 E.21. k k
i=0

If c is odd, then equations E.19, E.20 and E.21 are all we need to find

the missing unknowns. If c is even, then the root zc on the
2

negative real axis must be included as well. Once set up, the equations

are easily solved using Gaussian elimination.
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The computational requirements of this approach are as follows. There

are approximately c/2 equations to set up, each requiring c complex

2
multiplications or 4c simple multiplications, giving 2c multiplications

3
altogether. Gaussian elimination then requires c /3 multiplications and

additions.

E.3 Expanding the polynomial

As an alternative to solving the system of simultaneous linear

equations, it was observed that we may determine the unknown probabilities

by matching the coefficients of the following polynomials in z:

c-1.C-1z-z.
q. (zc - z)= (c - Y )(z-l) ci( .I) E.22

i= i=0 1i

Define P(z) as:

c . c-i
r i rC 1

P(z) = pz= q.(z - z1) E.23
i=O i=0

Thus:

q = - p i = 0, ... , c-1

E.24
c-1

q. =p. i PC
i=0

We now wish to expand the polynomial on the right hand side of E.22,

remembering that the roots appear as complex conjugates. The following

algorithm is now presented:
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Step 1: Initialization
c-i

Let = (c - Y i
J=O

Define M = c21

To compute 5, set S = c - Y and do, i = 1, ... , M:

S = 5-/(1-2 Re {z.} + lz 2 )
I

If c is even, then = S/( -z c
-I

If c is even, define the vector A = (a 1 , a2 , ... ) as:

a =-z
0 C/2

a,=- + zc/2

a2 1

a. = 0 i = 3, ...

If c is odd, then:

a =-10

1a,

a. = 0 i = 2,

Step 2: Compute B = (b0, by, b212 ... , b8 ) where:

c

B(z) =
i=0

b.
bIz = (z -

c-1
1) II

i=0
(z-z.) ;
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To do this:

Do: i=1, ..., M;

x = z.4;

X= 2Re (z.);
1 1

Compute b0, b , ... as follows:

b = a ' x ;

b =a x + a z ;1 o l 10o

Do: j = 2, 2*i + 1

b.=a x + a. x,+ a.;
J j o :i-l -

End;
Now set a. =b., j =0, ... , 2* i + 1

3 3

End;

Step 3: Compute P = (p0 , p1 , ... , p)

= *b. i = 0, .. c

Step 4: Find probabilities:

q. = - p. i =0,..., c-1

The primary computational requirements are in step 3. The

innermost loop repeats two additions and multiplications 2 i times,

which is repeated for i = 1, ... , c/2 (approximately), or
c/2 (c/2)(c/2 + 1) c2

2 2 i = 2 2 additions and multiplications.


