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ABSTRACT

A computational study was carried out on the
rarefied hypersonic gas flow past a circular disc by the
use of the direct simulation Monte Carlo method for the
, case of Knudsen number unity and the temperature ratio
between the disc and the undisturbed gas unity.

The results showed that the disturbed region
was confined to a small region due to the low temper-
ature of the wall, although the temperature disturbance
extended more widely than the velocity or density
disturbance. The study of the near axis flow properties
clearly showed the existence of the bow shock. Both of
the heat transfer rate and the pressure drag data showed
small values compared with the free molecule values,
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LIST QF SYMBOLS

miss distance impact parameter in a binary collision

specific heat at constant pressure

specific heat at constant volume

most probable thermal speed, cm' = 1/8

stream velocity

center of mass velocity of collision pair

relative velocity between two molecules

volume element in velocity space, dc = dudvdw

effective molecular diameter

unit wvector

normalized velocity distribution function in velocity
space

Maxwellian velocity distribution function

external force per unit ﬁass

velocity distribution function in phase space

enthalpy

Boltzmann constant

Knudsen number

mass of a single molecule

reduced mass

number of density

number flux; number of moleculés
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N number of collisions

c

p pressure; normal momentum flux per unit area

q heat flux vector

Q physical guantity associated with a molecule

r radius; radial coordinate

r position vector

dr volume element in physical space

R gas constant

Rf random fraction

s molecular speed ratio

t time

T thermodynamic temperature

u velocity component in the x direction

A velocity component in the r {or y) direction

v volume in physical space

W velocity component in the 6 (or z) direction

We ‘ weighting factor

X cylindrical coordinate axis in physical space

8 reciprocal of mast probable speed in an equilibrium
gas

Y ratio of specific heat

A Q] collision integral

€ azimuth angle impact parameter iﬂ binary collision

7 exponent of inverse power law molecular force

] angular coordinate

) mean free path
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mean free path in an equilibrium gas

collision frequency

collision frequency in an equilibrium gas
differential collision cross-section
total collision cross—-section

shear stress

Superscripts and Subscripts

*

1,2

fm

=

8

postcollision value

particular molecules or molecular classes

free molecule value

incident; inward

reflected; relative; compeonent in the r direction
free stream value

value at wall surface

component in the x direction

component in the @ direction

stagnation condition



CHAPTER 1
INTRODUCTION

The direct simulation Monte Carlo method has proved
to be a valuable tool in the study of rarefied gas flow
problems [1-7]. The present paper treats the axisymmetric
flow past a circular disc in the transition regime.

In the study of rarefied hypersonic transition flow
over axisymmetric blunt bodies, interest has generally focused
on bodies such as cylinders, hemispheres, spheres, and blunted
cones, and those problems have been treated extensively from
both continuum and kinetic theory viewpoints. Relatively
little attention has been given, however, to flat-faced
bodies, which might be regarded as the limit of maximum
bluntngss.- Potter and Miller [8] and Bailey and Sims [9]
conducted experiments to measure the characteristics of this
shape in the transition regime.

Victoria and Widhopf [10] have compared the rasults
of their finite difference solutions to the complete Navier-
Stokes equations with the direcf Monte Carlo calculations of
hypersonic flow over a sphere with cold Qall at low Reynolds
numbers in order to assess the validity of the continuum
approach. They found that the structure of the flow field
near the body was comparable for the two calculations, but

S
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that there were substantial differences within the outer por-
tion of the shock wave. The stream line solution of Levinsky
and Yoshihara [11l1, who assumed that the total disturbance
region is thin compared to the radius of the body, neither
velocity slip or temperature jump being considered, differs
substantially from both the Monte Carlo results and the
Navier-Stokes solutions over almost all the flow. This
is also shown by Jain and Adimurthy [12], who examined the
effects of slip boundary conditions on the thin layer and
the complete Navier-Stokes solutions on the stagnation line
at low Reynolds numbers.

In the present paper, direct simulation Monte Carlo
results for the axisymmetric rarefied hypersonic flow past a
flat-faced circular disc at Knudsen number unity are pre-
sented. Near-axis of symmetry flow properties, average heat
transfer to the disc surface and pressure drag are also pre-
sented together with the density and temperature distribu-

tions in the flow field upstream of the disc.



CHAPTER 2
THE BOLTZMANN EQUATION AND THE MONTE CARLQO METHOD

2.1 The Boltzmann Equation

The Boltzmann equation can be written in the form [13]

a(nf) . 9(nf) , 9(nf)
T T T
o 47
= J f n?(£*£,% - £fi)c_odode,  (2.1)
_mo
or
oF oF 5F
e trE e

© b 27

I maxJ (F*F*, - FFi)c bd e dbde: (2.2)
—®79 o
where £ = f(c¢) and F = F(¢,r,t) = nf. A bar under a quantity
denotes the vector guantity. The term on the right-hand side
of the Boltzmann equation is called the collision term. Its
integral form contrasts with the partial differential form of
the terms on the left-hand side which express the space and
time dependence of nf, and is responsible for much of the
mathematical difficulty asscciated with the Boltzmann equa-
tion. On the other hand, nf is the only dependént variable

il



12.
in the equation. This might be considered an advantage when
comparing the Boltzmann eguation with the Navier-Stokes equa-
tions of continuum gas dynamics, since these have the velocity
components and two thermodynamic properties as dependent
variables. However, the advantage is far outweighed by the
addition of the veloecity-space coordinates to the list of

independent variables.

2.2 The Moment Method

This approach employs the moment equations which are
obtained by first multiplying the Boltzmann equation by a
molecular quantity, and then integrating it over velocity

space. The moment eguation for Q is given in the form

3, = —= . 90 _
5g(nQ) + V - (ncQ) - nF 3 ALQ] (2.3)
where
o0 o 47 .
AfQl = f [ { n2Q(f*f, - ffl)crcdﬂdgldg. (2.4)

-l

A bar over a gquantity denotes the average over all the
velocity classes. The macroscopic quantities are defined

in terms of the average of the microscopic molecular guanti-
ties Q. The substitution of various values of Q into Eq.
(2.3) leads to a series of equations in the macroscopic quan-
tities, However, the presence of §§ in the second term means

that, as Q progresses to successively higher order of ¢ each
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equation involves a moment of still higher order. This can
only be overcome by using some method of truncation, to form
a determinate set of egquations.

The Chapman-Enskog solution [14] of the Boltzmann
equation is based on a series expansion of the distribution

function f as
£ = fo{l far(R ) +as(k)? 4 } (2.5)

where the coefficients a, are fqnctions of p, cy, and T only.
The first-order solution is the local equilibrium of
Maxwellian distribution function f;. The conservation egqua-
tions obtained by setting Q equal to m, mc and % mc? are the
five moment equations and reduce to the Euler equations of
inviscid flow. The second-order Chapman-Enskog solution
leads to the distribution function which enables the conser-
vation equations be reduced to the Navier-Stokes equations of
continuum flow., From the kinetic theory point of view, both
the Euler and Navier-Stokes equations may be regarded as "five
moment" solutions of the Boltzmann equation, the former being
valid for the K, ~> 0 limit and the latter for K << 1. If a
higher order of perturbation is used, the Burnett [15,16]
thirteen moment equations result. Grad [17] expanded the
distribution function in Hermite polynomials, the termination
scheme being to eguate the higher order coefficients to zero,
and obtained a different set of thirteen moment eguations.

However, for the region such as boundary layers or
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shock layers where the velocity, density, and temperature
profiles tend to be very steep, the solutions of the inviscid
fluid equations cannot be improved to describe such layers
even by taking into account higher order corrections obtained
by expansion in powers of a single parameter. The solutions
on either side of shock layers, for example, cannot be
obtained from a'single set of equations which is uniformly
valid both upstream and downstream flow field [18].

2.3 '"he Test Particle
Monte Carloc Mathod

The Monte Carlo method was developed through reference
to the physics of the gas flow. This is in contrast with most
numerical methods which are developed through reference to the
mathematical description of the flow.

y The Monte Carlo method, associated primarily with
Haviland [19,20j being best termed the test particle Monte
Carlo method, is based on the priﬁciple that, in a steady
flow maintained over a time period t for which t - «, the
average time spent in any region in phase épace is propor-
tional to the density distribution function F(x,u). Thus,
if the motion of a molecule can be represented analytically,
and if z suitable model can be set up to represent random
collisions with other molecules, the density distribution
can be computed from the time spent in each element of phase

space, together with any of its moments.

This can only be done if there is already a
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representation of the complete f;ow;field. Since this cannot
be done directly, an iterative procedure is employed, in which
the distribution obtained in the previous iteratioﬁ is used as
the distribution function of the "target" molecules. Follow-
ing Haviland's notation applied to the one-dimensional station-
ary flow with no external force fields, it is equivalent to
solving the Boltzman eguation by the iterative scheme

3 L (r) ® bmax - 2m
U ¥ F (x,c) = dci bdb d e c

X r
-0 0 1]

. { FO (x, o) F ™D (x,0,0) - FF) (x,0) FE ik 1) }

(2.6)

F(r) F(r"l)

where and are the results of successive iterations.
The distribution function so chosen is stored at a discrete
number of points in phase space. A large number of test mole-
cule trajectories are computed with the assumed distribution

for the computation of typical intermolecular collisions.

(-
When convergence has been obtained, so that Flr) For LR F,
we have a solution to the Boltzmann equation:
0 L2 Fee) = | ac | M opan |7 g e
x 3x = I r

g i 0
. { F(x,c*) Fix,c1*) - F(x,c) Fix,c1) } .

{2.7)
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2.4 The Direct Simulation
Monte Carlo Method

The alternative to the test particle approach is to
follow the trajectories of a very large number of simulated
molecules simultaneously. This process commences from a
specified initial state and then proceeds through a physi-
cally real unsteady process. An initial estimate of the flow
field is not required and there is no iterative process.

This direct simulation scheme was first adopted by
Alder and Wainwright {21] treating the molecular dynamics
as completely deterministic. Each time a single molecule
is considered, all other molecules must be examined as possi-
ble collision partners. This process requires computing time
proportional to the square of the total number of molecules
in thé region and all but the most elementary problems are
beyond the scope of the method.

Bird [22] first applied the direct simulation Monte
Carlo ﬁethod to the homogeneous gas relaxation problem, adopt-
ing probabilistic rather than deterministic procedures for the
computation of collisions, thus making the computing require-
ment manageable.

This direct simulation Monte Carlo method by Bird is
adopted in the present paper to calculate the transition
regime gas flow past a circular disc and is discussed in

detail in the following chapters.



CHAPTER 3
FUNDAMENTAL RELATIONS

In this chapter, some fundamental relations of the
kinetic theory will be reviewed so that they can be referred

to and be used directly in the following chapters.

3.1 The Molecular Model

For sufficiently low densities, the molecular spacing

is large compared with the effective molecular diameter.

Under these circumstances, only a small portion of space

is occupied by molecules. Each molecule moves, for the most
part, freely in space outside the range of influence of other
ﬁolecules. Moreover, when it suffers a collision, it is over-
whelmingly likely to be a binary .collision involving only one
ofher molecule. This situation defines a dilute gas.

The time scale of the microscopic process is set by
the mean collision time which is, by definition, the mean time
interval between the successive collisions suffered by a
typical molecule. The reciprocal of this quantity is called
the mean collision rate or collision frequency per molecule.
The mean collision rate is obtained by summing the number of
collisions for a test molecule per unit time with a class ¢
molecule over all velocity classes and therefofe over all

17
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values of relative velocity. That is,

v o= nUTcr (3.1)

where n is number density, O is total collision cross-section
and c. is relative speed. A bar over a quantity denotes the
average value over all molecules in the sample gas.

The total number of collisions per unit time per unit

volume of gas is given by

- 1 e 1 2
N_ = 5 0V = 5 a°g.C .. ' {(3.2)

The symmetry factor 1/2 is introduced because each collision
involves two molecules. The mean free path is the average
distance traveled by a molecule between successive collisions
and is therefore equal to the mean speed c' of a molecule

divided by the mean collision rate, i.e.,
e A ——— -
A=c'Ju = {n(oTcr/ET]} 1, (3.3)

If Orp is regarded as a constant, the mean collision rate and

the mean free path are

— ——. _ 2
v = ncTcr = nnd . (3.4)
and
A =‘{(E;767]nd2n}‘1. {3.5)
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|
The mean free path is defined in a frame of reference moving
with the free stream velocity of the gas. The prime on the

mean molecular speed ¢' denotes that this quantity is measured

relative to the stream velocity.

3.2 Binary Collision

The precollision velocities of the two collision
partners in a typical binary elastic coliision may be denoted
as ¢ and cz. The postcollision velocities ¢;* and gz* will
be determined. Using the relationship of éonservation of

linear momentum and energy in the collision, we ge;
mey + meCe = miey* + mec,¥ = (my + ma)c (3.6)
and
mic,? + mpce? = m1‘C1*2I+ Mmacy*? (3.7)

where m; and m, denote the masses of the two molecules and Em
is the velocity of the center of mass of the pair of molecules.

The precollision and postcollision relative velocities between

the molecules are given by

and +(3.8)

* = * o i
c = C C,

Eqs. (3.6) and (3.8) may be combined to give
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c1 = ¢ + mec /(m1 + my)
(3.9)
€2 = ¢ = mc /{m + m).

As can be noticed from Eg. (3.9), the collision is
planar in the center of mass frame. Similarly, postcollision

velocities may be obtained from Egs. (3.6) and (3.8) as

-~

Mz
c1* = ¢ ——c_*
=1 —m m:; + ms —=r

(3.10)

m;
Cz2* = ¢c_ - c_*
=2 —m m; + mz2 —r

This shows that the postcollision velocities are also
parallel in the center of mass frame. The conservation of
angular momentum requires that the projected distance between
postcollision velocities be equal to the projected distance
between the precocllision velocities.

Egs. (3.9) and (3.10) show that

mc:? + mec2? = (m1 + mz]Cm2 + mrcr2 ‘
and | (3.11)
mic1*? 4+ mec2*? = (my + mz)cm2 + mrcr*z )
where
m = e : (3.12)

r m; + m:2

is called the reduced mass. A comparison of Eq. (3.11) with
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!
the energy equation (3.7) shows that the magnitude of the

relative velocity is unchanged by the collision, i.e.,

c . *=c_. , (3.13)

Since bhoth ¢, and ¢ may be calculated from the precollision
velocities, the determination of postcollision velocities
reduces to the calculation of the change in direction of the
relative velocity vector.

3.3 Distribution Function
in an Equilibrium Gas

The equilibrium velocity distribution function is

defined as

—_ 83 212
£, = exp(-g*c'?) {3.14)
ﬂ372 .
where
B = (2RT) * = {m/(2kT}}. (3.15)

The fraction of molecules that are located within a velocity

space element of volume dc and located at c¢', therefore, is

%? = —%;f exp(-B2c'?)dc"'. (3.16)
m

The equilibrium speed distribution function is defined as

3 2 T
£ 4 = Eéugl_ exp(-p2c' 2) (3.17)
m
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The function fc. is zero when c¢' is zero, increases to a
maximum value when fc' is unity, and then decreases as c'
increases. The parameter B is, therefore, the reciprocal
of the most probable molecular thermzal speed c'm, i.e.,

c' = 1/8. (3.18)

The average of any quantity depending upén the molecular
thermal speed may be obtained through the mean value principle.

The average thermal speed ¢’ is

83 J cuaexp(_BZCIZ)dcl
0

or

’ eT = 2, (3.19)

The fraction of molecules with a velocitf component
within a given range, irrespective of the magnitude of other
components, is obtained by integrating Egq. (3.14) over these
other velocity components. The fraction of molecules with a
thermal velocity component in the x direction between u' and

u' + du' is

3 [+ =] 00
—%75 I J « exp{-g*(u'? + v'? + w'?)}av'dw'du’
- -0 -

T

J% exp(-g%u'?)du’. (3.20}
T
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l k]
The distribution function for a thermal velocity component is,

therefore,
£, =L exp(-8%u'?) (3.21)
u' y - .
T ,
3.4 Collisional Quantities

in an Equilibrium Gas

General expressions for the mean collision rate and
mean free path in a dilute gas obtained in the previous
section involve the mean value of the product of the colli-
sion cross-section and the relative speed. For the special
case of hard sphere molecule with a fixed cross-section, the
mean value of the magnitude of relative velocity is the only
one that has to be taken into consideration.

The rélative velocity in a binary collision is
C. = C1 ~ Caz where the subscript 1 ané 2 denote the two
molecules that are involved in a collision. Assuming molecu-
lar chaos, the two particle distribution function is egual to

the product of the two single-particle distribution functions

£, and £,. The required mean value is then

c_ = J I CrfledgldEZ {3.22)

-0

and for an equilibrium gas

T = il —(myc;® + myc,”)
r (2wkT) 3 I_w j Crexp{ KT }dgldg:_z- (3.23)

-
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This equation can be integrated to give

T = ii[ 353]*. (3.24)
5

X m
r

For a simple gas, m, = m/2 and the result is

;= 2¥/%/(x¥8) = 2%, (3.25)

.

The mean collision rate per molecule in an equilibrium simple
gas of hard sphere molecules is then given by the substitution

of Eg. (3.25) into Eq. (3.4), i.e.,
ve = 2%rd%ncT. (3.26)

The number of collisions per unit time and unit volume follows

from Egs. (3.2} as

N = 2 %pa?n2grT. (3.27)
Co

The mean free path in an equilibrium gas of hard sphere mole-

cules is then given by Egs. (3.26) and (3.3) as
Ao = (27ma%n)"l. (3.28)

3.5 Flux Quantities in
an Equilibrium Gas

The flux of molecular guantities across a surface
element in an equilibrium gas will be considered. The stream
velocity is inclined at the angle & to the unit normal vector

e to the surface element, as shown in Figure 3.1.
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b4
o
Fig, 3.1.--Molecular flux across a surface element.
Without loss of generality, we may choose Cartesian
coordinates such that the stream velocity lies in the x,y-
plane and the surface element lies in the y,z-plane, with
the x axis in the negative ¢ direction. Each molecule has
velocity components
u=1u' + c, cosb )
v =1v' + cgy sinb
r{3.29}

and

Therefore, the inward (i.e., in the negative ¢ direction) flux

of some quantity Q is

or - r(3.30)

n J f J Qufdudvdw J

- OO 0
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where consideration has been limited to those molecules moving
in the negative e direction. For én eguilibrium gas, the
function f, may be substituted from Eg. (3.14) to give the

inward flux of the quantity Q across the element as

3 o0 o0 oo
ng ou exp{-82(u'? + v'? + w'?)}dudvdw (3.31)
372 n

-0 0
!

per unit area per unit time. Eg. {3.29) enables this to be
written in terms of the stream velocity and the thermal

velocity components only, i.e.,

nBs [v4] Q0 0 ,
—377 * O(u' + cgecost)

T -CcycosH
. expl{-82(u'? + v'? + w'?)}du'dv'dw’'.

(3.32)

The inward number flux Ni to the element is obtained
_ . by setting Q = 1 in Egq. (3.32). The variables in the multiple

integral may be separated to give

-

3 [+~ oo
N, = ;gi2 J_m exp (~-B2w'?)dw’ J_m exp(-g2v'2)av’
. I (u' + cycos8)exp(-p%u'?)du’. {(3.33)
-Ccgcost

The right-hand side of this egquation can be integrated to give

n
287

[exp(-s®cos?8) + n%s cost{l + erf(s cdse)}] (3.34)

%
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where
_ - . %
S = Cyf = Co/Cm = ¢¢/(2RT)

is called the molecular speed ratio. For a stationary gas

where cq = s = 0, this reduces to
n 1l -
N. = = = nc. (3.35)
1 ZBH% 4

The inward normal momentum flux p; to the element is obtained
by setting Q@ = mu = m{u' + cgcdse) in Eq. (3.32) as
oo

3 o0
pi = II!I;B I eXp(-BZW'Z)dW' f exp(-Bzv'z)dv'
T -—C0

-0

I (u' + cycosd) 2exp(~-p2u'?)du’
-COCOSS

or

p. = —2—|s cosgexp(-s2cos?p)

+ {1l + erf(s cose)}[-zl- + szcos29H. (3.36)
The inward parallel momentum flux T4 to the element

is obtained by setting Q = mv = m(v' + cysing) in Eq. (3.32)

as
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o0

3 oo
7, = mab J exp(-8°%w'2)dw"' I (v' + cosin®)exp(-g2v'2)dv'
i Tr3 2} . e .
. f (u' + cocosf)exp(-B%u'?)du’
-cgocosh
or
!
T, = P ssinb{exp(-s?cos?0) + 5t s cos8{l + erf(s cos8§) }].
1 opp2
(3.37)
The inward translational energy flux q; to the element
can be obtained by setting Q = % mc? = % m{u? + v? + w?) in
BEqg. (3.32) as
q; = 372 J ! J {(u' + cocos8)?
. 27 ~-w J=w J=coc0osh

+ (v' + gosind)? + w'?} |

(u' + cocosBlexp{-B%(u'? + v'2 + w'?)}du'dv'aw’

or

[ 2 2 2
q. = (}s + 2)exp(-s“cos®0)
i 4ﬂ%Ba__

+ s cose(sz + %}{1 + erf(s cose){]. (3.38)

From the same discussion that leads to Egs. (3.30),

(3.31), and (3.32), the fraction of molecules with velocity

N
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normal to the element between u' and u' + du', irrespective

of thevmagnitude cof the other combonents, is obtained as

It 3/2

3 o o
dn _ 8 f J {(u' + cqocosb)
']T 00 - O

- exp{-B2(u'? + v'? + w'?)}du'dv'dw’ (3.39)
or
dn _ Ji[u' + cgcosf)exp(-B%u'_?}au’ (3.40)
n 2D 0 P n n’ .

Here u' has been replaced by u'n in order to make it clear
that this is the normal component. The distribution function
for the thermal velocity component'u'n normal to the boundary
element is, therefore,

u!

£ . = ﬁ%(u'n + uocose)exp(-ﬁzu'nz] (3.41)

or
fogr = —r(Bu'y + s Jexp(~8%u'?) (3.42)

where S, is the component of the stream velocity normal to

the boundary element.

The distribution function for a reflecting velocity
component normal to a diffusely reflecting surface follows

from Eq. (3.30). This is
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£, = quxp(-Bzuz) (3.43)

where C is a constant. Now
f£,du = Cuexp (-B2%u?)}du = % Cexp(~B%u?)d{u?)

so that the distribution function for the sgquare of the

normal velocity component is

f » = % Cexp(~B2u?).

u

8O}

The constant C may be evaluated through the normalization

condition of Eq. (A.4} to give

f = exp(~-B%u?). (3.44)

Bzuz

‘3.6 Free Molecule Flow Properties

Since the results from the free molecule theory
provide the limit K, > =, they serve as important references
and are used during the data reduction in Chapter 6. The
éurface properties follow from the application of the flux
equation in Section 3.5 to the incident and reflected mole-
cules. The reflected flux is discussed for the diffuse
reflection. The subscripts i and r will be used to denote
the incident and reflected molecular streams.

The values of the inward normal momentum flux Py
inward parallel momentum flux Ty and inward translational

energy flux q; are given directly by Egs. (3.36), (3.37),

~
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and (3.38), respectively.

In diffuse reflection, the molecules are brought to
rest relative to the surface and are reemitted with the
eguilibrium distribution corresponding to a temperature Tr'
The quantities P, and 9, are, therefore, given.by the flux
equations for stationary gas with s = 0. The reflected

parallel momentum T is, of course, zero. From Eg. (3.36)

_ r
pr = 4—8';2' (3.45)

and, from Eg. (3.38),

n_m
r

q,. = —pr——. (3.46)
r 21T28r3

The number density n  may be found from the condition that

the net number flux to the element is zero, i.e.,

N =N, + N_ = 0, (3.47)

Substituting from Eq. (3.34) for the incident number flux and

from Eg. (3.35) for the reflected number flux into Egq. (3.45),

we have
w ] : nr
[exp(-s%cos?6) + 7°'s cosb{l + erf(s cosB)}] - —x = 0.
2ﬂ%8 : 21 ‘B

o * X

Therefore,
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%

%
T
n_ = nw(—f} [exp(~s%cos?8) + 7°s -cosB{l + erf(s cosd)}1(3.48)

r

The above results may be combined to give. the following
results for the pressure, shear stress, and heat transfer

at the surface.

28,2 (p; + p,)

P =
P, Po
%
_ s cosf + 1 Tr 2 2
= ———-!;—— -2"' T—- exp(-—s COS )
T -
1 ﬂ% cosf Tr :
+ 5 + s?cos?e + -—ETT___ e {1 + erf(s cos6B)}|,(3.49)
2
a e T
i L
= E—E—;J;E-q[exp(—szcosze) + 7°%s cosb{l + erf(s cos8)}], (3.50)
)
and

[T
—l%-{(s2 + 2) -2 TE }exp(—szcosze)
4

o0
\

[%; + %) - %[—5 }s cosg{l + erf{s coso)}. (3.51)



CHAPTER 4
THE DIRECT SIMULATION MONTE CARLO METHOD

4.1 General Procedure

The direct simulation Monte Carlo method is a tech-
nigue for the computer modeling of a reai gas flow. The
process comm:nces from some initial configuration and com-
putes the trajectories of some thousands of simulated mole-
cules. The simulated molecule is regarded as being represen-
tative of some very large number of molecules in the real
gas in a particular volume element. The simulated region
of physical space is divided into an array of cells, the
,size of which are chosen so that the gradients of any flow
properties are small across the cell. Macroscopic guantities
are sampled in each cell. The velocity components and posi-
tion coordinates of the simulated molecules are stored in the
computery and are modified with time as the molecules are
followed through representative collisions and boundary inter-
actions in the simulated physical space. The ideal procedure
would be to move the molecules-simultaneous;y with the compu-
tation of collisions. However, there is‘expected to be a
considerable saving in computation time if the locations of
the molecules remain unchanged while a number of collisions
appropriate to some time interval is calculated.

33
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Time is advanced in discrete steps of magnitude Atm,
such that Atm is small compared with a mean collision time per
molecule. Then, the molecular motion and collision are de-
ccupled over the émall time interval Atm by repeating the fol-
lowing steps:
{(a) All of the molecules are moved through distances appropri-
ate to their velocity components and the time interval. Appro-
priate action is taken if the molecule cfosses boundaries
representing solid surfaces or the outer boundary of the flow.
Appropriate action is taken when.it is needed, if the molecule
crosses a cell boundary. New molecules are generated at boun-
daries across which there is an inward flux.
{(b) A representative set of collisions, appropriate to Atm,
is calculated among the molecules. The pre-~collision velocity
.components of the molecules involved in the collisions are re-
placed by the post-collision values. The position coordinates
of the molecules are not changed at this point due to the reason
stated above. Since the gradients of the flow properties are
small across each cell, any one of the molecules in a cell can
be regarded as a sample of the molecules at any instant at that
location. This enables the relative positions of the molecules
within the cell to be disregarded when the collision pairs are
chosen.

The sampling interval is chosen as some multiples of
the time interval Atm. Flow chart of the procedures is shown

in Figure 4.1. In the following sections, detail procedure
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will be discussed with our attention confined to hard sphere

molecule model.

4.2 Computation of Collision

The collision probability for a particular pair of mole-

qCpr @S can be shown by a discussion

similar to that which leads to egqn (3.4). Since Oq can be re-
garded as a constant and equated to wdz for a hard sphere mole-

cules is proportional to o

cule, the collision probability is proportional to the relative
speed C.. only and the representative collision must be chosen
on that basis.

Appropriate number of collisions Nt over time period

Atm in a cell is determined using egns (3.1) and (3.2)

Nt = % NmnOTcrAtm

or, again using egqn (3.4) for hard sphere molecules
= 2 ’
Nt (Nm/2) md ncrAtm (4.1)

where Nm is the number of molecules in the cell. One way of
dealing with the probiem would be to calculate either the num-

ber Nt of collisions per Atm or sample the number from a normal

distribution with N_ as a mean when appropriate. However, noti-

t :
cing the term E; in the right hand side of the equation, the
computation time required to calculate the mean value E; is

nearly proportional to the square of the number of molecules
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in the cell and is undesirable. This step can completely be

avoided by -~dvancing a time counter for each cell at each col-~

lision by
- 2 -1
Atc {2/Nm) (md ncr} (4.2)

Formal proof that this leads to egn (4.1l) over a large number

of samples is provided in [Appendix F, 23]. Since the overall
time for the entire flow field is advanced by Atm, sufficient
number of collisions for each cell will be calculated to keep the
cell time counters concurrent with the overall flow time.

The post collision velocity components are calculated
through a direct application of the result of the classical col-
lision mechanics that all the directions are equally likely for
the relative velicity gr*.after collision. The magnitude of
this quantity is unaffected as shown in egn (3.13) by an elastic
collision. An element of solid angle in polar coordinates with
@ as the polar angle and ¢ as the azimuth angle, is sinGdodé.
Therefore, ¢ is uniformly distributed between 0 and 27, while
is between 0 and 27 with a distribution function f£5 = sin®. Now

the fraction of angle between © and 0+d0 is

fed9= sin@de = -d(cos0)
and this si also the fraction of mclecules with cosines between
cos® and cos@ +d(cos0). Therefore,

£ d{cos@) = -d{cosd}. (4.3)

cos®

‘'so that £ is a constant and cos®@ is uniformly distributed

cos0d
between -1 and +1l.
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4.3 Weighting Factor

In an axially symmetric flow, the volume of a cell must
be calculated from the appropriate annulus. The volumes of
cells located at large distances from the axis of symmetry are
therefore large in comparison with those of cells of similar
cross sectional area near the axis. If the density is similar
in each of those cells, the number of simulated molecules and
consequently the sample size for macroscopic flow properties
is either excessively large away from the axis of symmetry or
excessively small near the axis. This large disparities in
the sample size is undesirable because a small gample leads to
large degree of statistical scatter in the results, while a
large sample leads to excessive computation time.

Each simulated molecule may be regarded as a represen-
"tative of some large number of real molecules. There is no
reason why the raﬁio of numbers of real to simulated molecules
has to be the same in all parts of flow field. This principle
allows us to use weighting factors. The weighting factors are
mainly to be used to compensate for large disparities in cell
volume, although they can be used also to compensate for large
disparities in density distribution. 1In either case, the pur-
pose of the use of weighting factors is to avoid large varia-
tions in saméle size over the entire flow field.

A weighting factor is assigned to each cell. They are
normalized so that the minimum value is unity. If the weight-

ing factor for cell n is Wh, each molecule in the cell represents
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Wn weighted molecules. The relationship between the weighted
molecules and the real molecules is stated as follows. The
number N,, of simulated molecules in a flow field of N cells

M
is

Nc
Ny = I (nnVp/W,) (4.4)

n=1
where n, and Vn are the number density and the volume in cell
n. When a molecule moves from a cell with weighting factor W,
to one with weighting factor Wm’ provision must be made either
to duplicate or remove the molecule. The number of molecules
in the new cell should be egual to Wn/Wm and, since this will
generally not be an integer, the removal or duplication is

based on an acceptance-rejection method. The number density

in an initially uniform flow containing N, molecules is obtained

M
from egn (4.4) as
+ Nc
ne =N, { £ (Vn/Wn)}™? (4.5 -
n=1
4.4 = Maolecular Indexing Scheme

In general, a flow field has open boundaries and pro-
vision must be made for a systematic change in the number of
simulated molecules during an unsteady process. All the mole-
cules in the simulated space are dist%nguished by the molecule
numbers assigned to them and are ordered in a molecular array.

A molecule is considered to be lost if -it moves out across the
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boundary. Once the locations of tﬂe molecules are settled, the
numbers (addresses in the molecular array) of the molecules in
a particular cell are stored in a cross reference array, SO
that the properties of the molecules in the cell can easily be
referenced. Reordering of all the molecules in the simulated
region should be made whenever molecular properties in the cells

are referred.

4.5 Initial Configuration

The steady state solution is found as the large time
limit of the solution of the unsteady flow that follows the
instantaneous insertion of a body into a uniform stream. An
alternative initial configufation would be a body in a vacuum,
with the stream commencing to entef from the upstream boundary
at time zero. In either case, the sampling of the required
'steady flow properties, therefore, will not be commenced until
some time after the start of the program.

In this paper the former initial configuration is used.
For each cell, some specified number of simulated molecules

are set up, in thermal equilibrium, to form a uniform stream

of the required speed ratio.



CHAPTER 5

MONTE CARLO CALCULATION OF

RAREFIED HYPERSONIC GAS FLOW PAST A CIRCULAR DISC

5.1 Definition of the Problem

Assuming a uniform parallel flow, a circular disc is
placed normal to the flow direction as shown in Fig. 5.1.
The temperature of the disc is .maintained at a constant value.
The disc has a diffusely reflecting surface, that is to say,
every molecule striking the disc is completely accommodated
when it is reflected or re-emitted from the surface. For a
specific Knudsen number Kn and speed ratio s, the steady state
.flow properties of the flow field as well as mass, momentum
and he§t flux to the disc¢ are sought in this work. The flow
is always ﬁnsteady since we are on a molecular basis. However,
the boundary conditions may be considered such that the steady
state can be obtained as a large time limit of an unsteady pro-
cess. It is assumed that whenever a molecule strikes the wall

surface, it is immediately re-emitted.

5.2 Ssimulated Region of Physical Space

The boundary conditions of this problem at infinity must
be such that the distributions are Maxwellian, the flow prop-
erties being those in a translating equilibrium gas. One of

the difficulties is how to replace the boundaries at infinity
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by boundaries relatively close to the disc. If the boundaries
are too close, it is no longer appropriate to assume a Maxwelli-
an. And if they are too far, it requifes excessive amount of
computation time, because the appropriate. size of each cell has
to be determined such that gradients of the flow properties over
a cell should not be large and, accordingly, too large a flow
region requires an excessive number of cells and of simulated
molecules.

An estimate for the appropriate location of the boun-
daries upstream and radially is made from the flow field data
obtained for a sphere by Bi:cd[l:I and Vogenitz et al[z]. The
boundary downstream is chosen to coincide with the plane in
which the disc is located since the flow field in the upstream
region is almost unaffected by the flow downstream of the disc
‘because of the high speed ratio of the undisturbed gas.

A cylindrical coordinate system is adopted to describe
the reéion. Advantage may be taken of flow symmetry in order
to reduce the number of position coordinates. Since the flow
is axially summetric in this case, only two coordinates i.e.
axial and radial, need be stored foi each molecule, All loca-
tions in azimuthal angle are equally likely. The three velo-
city components in the coordinate system must be stored for
each molecule, because collisions must be calculated as three
dimensional phenomena. Nocte that, because a position radius
is stored a change in its direction must be accompanied by an

appropriate rotation of the reference frame for the velocity

components as well.

~
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The simulated region of physical space is considered
as a thin slice of the real space and is divided into a network

of cells., Fig. 5.2 shows the region and the celis.

5.3 Initial Data

The simulated region is divided into 90 cells. The
size of the cells Ar and Ax away from the disc are set equal
to the mean free path A_ in the undisturbed gas and those near
the disc are set equal to A_/2. The Knudsen number based on
the radius of the disc and the mean free path in the undisturbed
gas is chosen as unity, therefore, the size of the disc is auto-
matically fixed. The number of simulated molecules initially
distributed in each cell varies from 2 to 10, depending upon
the increase in density at the final state so that the varia-
tions in sample size are minimized.

Linear dimensions and flow properties are nondimension-

. alized as follows:

distance x x/A,
velocity u u{cﬁ = ufe
time ¢ t/(B:lm)
temperature T T/T,_
density o p/P,,
number density n n/n_
number flux N N/(n_/B.)
pressure P | p/{p/B2)

heat flux d a/ (e /B2)
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where
A, is the mean free path in the undisturbed gas
céw is the most probable thermal speed in the undis-
turbed gas
B, 1is the reciprocal of cé
T, is the temperature of t;e undisturbed gas
P, is the density of the undisturbed gas
n_ is the number density of the undisturbed gas
and m is the mass of molecule

The most probable molecular speed in the undisturbed
gas cé& and its reciprocal B are effectifely regarded as
having unit value within the program. The mean free path in
.the undisturbed gas A_ is similarly regarded as unity. The
undistu;bed gas temperature T _ and the mass of molecule m are
also regarded as having unit valhe, so that the Boltzmann

constant k and the gas constant R are both effectively equal

to one half.

5.4 Computational Procedure

The FORTRAN program consisting of a main program
MCATDl and a subroutine FINDCELLZ used for this work is listed
as Appendix B.

FORTRAN Variables .

We consider a gas of hard-sphere molecules uniformly

distributed within the simulated region formed by upstream
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x = 0 and downstream x = XM boundaries, a boun&ary at a radial
distance RM, from axis of symmetry and two surfaces of symmetry
with some arbitraty angle between them. This angle is conven-
iently set equal to 2, so that the area of the disc involved
in the simulated region may be fixed to unity. All of the cells
are denoted by the subscripts (I,Jd}. Fig. 5.3 shows the region.

At time zero, the disc of radius DD and temperature TW
is instantaneously inserted normal to the flow direction at the
downstream edge XM of the simulated region. The number of
simulated molecules MC(I,J) disfributed initially in cell (I,3),
cell size CHX(I,J) and CHR(I,J), volume VL(I,J) and weighting
factor W(I,J) are read in as data. The time interval Atm is
alsoc read in as a data and is stored as DTM. The integers NST
and NiS set the other times as multiples of Atm: the sampling
,interval being AtS=NIS*DTM and the one data cycle time AtL=
ﬁtS*NST: NSAM denotes the number of total data cycles. The
data taken over NON cycles will not be accepted as a part of
the steady state solution. The flow field properties are
sampled at time intervals Ats, while the surface properties
are sampled over these intervals. Again, those properties
are not sampled until some time after the start of the program
which is defined by the parameter NON.

The two dimensional array P(L,N}) is used for the
storage of the necessary information on the simulated molecules.
The subscript N may be regarded as the molecule number and it
is these numbers that are arranged in order of the cells in

the cross-referencing array LCR(N), which also has the dimension
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N. Since the number of the molecules involved in the flow
region varies with time, the dimension N is taken larger having
enough margin compared with the actual number of molecules.
The subscript L ranges from 1 to 5, with the velocity compo-
nents in the x, r and ¢ directions being stored in L=1 to 3,
respectively. Because of the symmetry of the flow, only the
position coordinates x and r need be retained and stored in
P(4,N) and P(5,N), respectively.

Since the weighting factors are used, molecules are
sometimes removed or duplicated in the cells. The array IP(N)
is required in order to distinguish those duplicated molecules
from others for the systematic handling of the molecules. The
subscript N has the same dimension as in the array P(L,N). A
molecule has been duplicated if IP{(N)=-1. Otherwise IP(N)=1.
‘The value is reset for each Atm.

The starting address of the molecules of cell (I,J) in
LCR arréy is equal to IC(2,I,J)+l and the number of molecules
in thelcell is stored in IC(1,I,J). The cell time and the
maximum relative speed of cell (I,J) are stored in the arrays
c{1,I1,J) and C(2,1,d), respectively. They are used for the
calculation of collisions. The array SS(X,NN) is required to
accumulate and store the samplés of the surface properties
with the subscript K ranging from 1 to 8 and NN from 1 to 5.
The array SC(X,I,J,NN} is used for sampling of the flow field
information with K ranging from 1 to 7 and NN from 1 to 5.

The program is for hard sphere molecules, and egn (3.28)

shows that the mean free path in the undisturbed equilibrium

~



49

gas is given by

A, = (2%0n,) 7 (5.2)

o0

Since the normalization procedure defined in section 5.3 sets

A_ as unity, the collision cross section O is equal to
o, = 1/(27n_) (5.3)
T o '

and is stored as CXS. The average relative speed of collision
pairs in the undisturbed gas follows from eqn (3.25) and is

stored as VRM.

Set Initial State

The coordinates of the initially distributed molecules
‘are calculated. The probability of radial distance is propor-
tional to the distance and P(5,N) is calculated using egqn (A.8).
The x-coordinate P(4,N) is generated through egn (A.7). The
v and w velocity components of the molecules are generated
through egns (A.18) to (A.20}. The thermal velocity component
in the x direction is generated through egns (A.l13) and (A.14),
and the u velocity component is obtained by adding the free-~
stream velocity UW to it.

The cell time C(1,I,J) is set equal to a random frac-
tion of the mean time interval that would be added to them for
a collision in the undisturbed gas. The use of this quantity

instead of zero makes allowance for the fact that there must
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be an integer number of collisions over each DTM and that colli-
sions are calculated until C(1,I,J) exceeds DTM. The initial
approximation to the maximum relative speed in each cell is set,
in C(2,1,J), to twice the average relative collision speed in
the undisturbed gas.

Initiate Time

Three DO loops over Atm, Ats and AtL are set, the
second and the third are the multiples of Atm through integers
NIS and NST, respectively. The inward flux across the upstream
boundary appropriate to DTM is calculated. The axial velocity
component of the incoming molecules are generated through eqns
(A.16) and (A.17), while the other two components are generated
through eqns (A.18) to (A.20}. l

Then all the molecules are moved in the x and r direc-
tions over DTM, while for the molecules in the inward flux the
time intgrval DTA is set to random fraction of DTM to avoid the
unreasopablé distribution near the boundary. Since a radius is
stored, a change in its direction must be accompanied by an
appropriate rotation of the reference frame for the velocity
components. If a molecule is at radius ry with velocity com-

ponents V1 and Wy and moves for time At, the new radius is
- 2 V2%
r = {(rl + viAE)® 4+ (w,At) } (5.4)

Also, the v and w velocity components must be rotated so that

v remains the radial component. The new values of v and w are
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- : 2
v = {vl(rl + let)+ Wy At}/r (5.5)
.and
r
_ 1
W= Wy (5.6)

The calculated new coordinates are stored as X and R. The old
coordinates are stored as X1 and Rl,

If X < 0, the molecule is simply considered to be lost.
If X is greater than XM, two possibilities must be considered.
Cne is that the molecule simply moves out the region and again
the molecule is considered to be lost. The other is that the
molecule strikes the disc. The molecule has struck the disc
.wall if r-coordinate at x=XM is less or equal to the disc
radius PD. In this case, the sampling variables for incident
number, normal momentum, parallel momentum and energy are ad-
vanced by the appropriate amounts. The v and w components of
the reflected molecular velocity may again be generated through
egqns (A.18) t6 (A.20), although 1/B‘is now equal to VMW instead
of unity. The distribution function for a velocity component
normal to a diffusely reflecting surface follows from egns
(3.43) and (3.44). The distribution of u® in egn (3.44) is
identical to the aistribution of r2 that leads to eqn (A.20)
so that the post-reflection value of u is u ='{-ln(Rf)}%/VMW.
The amount of the time interval DTM that remains after the

surface interaction is calculated from geometrical consideration
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as DTR, and the molecule is moved again appropriate to the
reflected velocity components and DTR. The sampling variables
for the reflected properties are then advanced.

If R is greater than RM, the molecule has moved out
the region and the new molecule with the properties in the trans-
lating equilibrium gas is generated, so that the net flux across
this boundary can be maintained at zero. The velocity components
are generated through egns (A.16) and (A.17) with S, = 0, but
subject to the condition that Buﬁ (or Bv, in this case) must be
negative. The time interval over which the molecule is moved
is set to a random fraction of DTM. = The new coordinates are
stored as R and X.

Change in Number of Simulated Molecules

Since the weighting factor is used in the present pro-
_gram the provision has to be made for a systematic change in
number of molecules if molecules cross the cell boundary. The
qell nuﬁbers for o0ld and new coordinates are calculated using
the old and new coordinates (R1,X1) and R,X) respectively, by
the subroutine FINDCELL2 as (I,J) and (K,L}, respectively. The
number of molecules in the new cell should be egual to W(I,J)/
W(K;L) and, since this is generally not an integer, the removal
or duplication is based on an acceptance-rejection method. The
routine can best be deduced from the coding which contains 15

lines starting from label 35.

Mclecular Indexing

The molecular indexing information in the arrays LCR(N)

and IC(2,T,J) is not used prior to the collision calculation
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routine and is most convenientiy set between the molecular
motion and collision calculation of the program. The procedure
for this necessarily samples the number of molecules per cell
and, therefore, the number density. The number density is the
only macroscopic quantity reguired by collision calculation.
This algorithmis again best deduced directly from the coding
between labels 60 and 65. Subroutine FINDCELL2 is used to
determine the cell number (I,J) directly from the position
coordinates (P(5,N), P(4,N)) of a molecule.

Calculate Collisions

Appropriate number of collisicns are cailculated in
each cell. No collisions are calculated unless the number of
molecules in the cell is greater or equal to 2. The numbers
of the molecules in cell (I,J) are stored in the cross reference
‘array LCR(N) for value cf N between IC(2,I,J)+1 and IC(2,1,J)+
IC(1,I,J). One molecule is selected randomly among those
moleculés. A second molecule is then selected in a similar
way to.constitute a possible collision pair as long as these
two molecules are different. The relative speed VR between
these two molecules is calculated from three velocity components
of the molecules. Since the probability of collision is propor-
tional to the relative speed VR, the collision pair is retained
or rejected on this basis using the acceptance-rejection method.
If the pair is retained the collision time interval for the
collision is calculated from egn (4.2) and is added to the cell

time counter C(1,I,J). The collision counter SC(7,I,J} is

advanced by one for each collision.
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The post collision velocity components are generated

through egns (3.10) and (4.3).
These steps are repeated until the cell time counter

C(1,I,J) exceeds the overall flow time TIME.

Sample Flow Properties

At the sampling intervals AtS=NIS*Atm, the sample

size IN, Iu, Lv, Euz, Evz and Iw?

are sampied, and are stored
in the array from S8C(1,I,J,NN) to SC(6,I,J,NN). They are
accumulated over the one data cycle AtL=NST*AtS. At the end
of the time interval AtL, the sampled information is put into
the required form and printed. The flow properties are calcu-
lated fromthe information stored in the SC array. The normal-
ized density in each cell is obtained by dividing IN by the
product of the time multiplicative NST and the number of mole-
cules per cell MC(I,J) in the undisturbed gas. The average
’velocities in % and r directions are simply u=(Iu)/(IN) and

v=(Iv)/(IN), respectively. The kinetic temperature Tx based

on the u component of the velocity is given from the relation

kKT = 4mu'’= Lm(u’- %)

Thus we have

(w2 - 3 = & {(za?)/(0)-52)

w3
f
~13

or, noting our normalization .

T, = 2{(zu?) /(IN)-u?} . ' (5.7)
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The other kinetic temperatures 'I‘r and 'I'9 are obtained in a
similar manner, although w is zero for Te. The temperature is

obtained as the mean of the three temperature components.
T=2% (v, 4T+ T,) (5.8)
3 X r 0 .

The surface properties are based on the sampled flux
of molecular number, momentum and energy incident on and re-
flected from the surface. Since the multiplicative factor
for the velocity components in the normalization is effectively
unity, the required nondimensional fluxes are obtained by
dividing the sums of the appropriate quantities by the product

of the total time interval and the undisturbed number density.



CHAPTER 6

RESULTS AND DISCUSSION

6.1 Flow Properties

The computation was carried out for a flow of speed
ratio ten with the surface temperature of the disc equal to
the freestream temperature. The knudsen number is unity and
the corresponding Reynolds number based on freestream condi-
tions and the d;sc radius is Re_ = 17.7. 1In the definition,

the viscosity coefficient is taken as

2]

and is ‘proportional to Tl/z.

Flow Field

Information was obtained at a number of discrete
positions representing the cells in. the flow field on the
value of the directed velocity, the local density and the
local temperature. Figures 6.1 to 6.3 illustrate the changes
that occur in these flow guantities. The density and the
temperature are indicated by contour lines which are interpo-
lated between the sampled properties at discrete points. The
directed velocities are indicated by lines of the appropriate
length and direction. The distance from the stagnation point

is normalized with respect to the radius of the disc.
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The hear-axis density, velocity, temperature and the
kinetic temperature based on the thermal wvelocities in the
particular directions are presented in Figures 6.4 to 6.7.

Also shown in the figures are the Rankine-~Hugoniot conditions
for comparison.

The temperature disturbance seems to extend far from
the disc, although the disturbed region in terms of the density
and the velocity is confined to comparatively small region.
There is no physical explanatiop why the temperature disturbance
is decoupled from others to such extent. This is probably

caused by the high speed ratio. If"

E=5% me? + % kT ~ const.

differentiating both sides of the equation, we have

’

mcdc + % k4T ~ 0

or

But for the flow region away from the disc

~£_ 28?2 . 100
2RT
Thus we have
dT de
5~ 133 s
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in the region away from the disc. iTherefgre, a 50% change in
T corresponds to a 0.4% change in-c which may not be detectable.
This effect would have been much less if T behind the shock
had been used to normalize the temperature. Further, we should
expect temperature fluctuations to be much larger than velo-
city (or density) fluctuations, as can be clearly seen from eqn
(5.7), from which the temperature is calculated.

Surface Interaction

Figure 6.8 illustrates the average heat transfer rate

to the surface in terms of the Stanton number which is defined

by

q
st = (6.1}

pwuw(Ho—Hw}

In the figure, the Stanton number St is normalized by the free-
stream value Stfm which can be obtained analytically through
~eqgn {3.51). Also shown in this figure are the heat transfer
rate to a sphere and cylinder obtained by Bird [1] and to a
bluff-faced cylinder obtained by Pullin et al [24]. It is
reasonable for the present result to take a slightly higher
value than thé result by Pullin et él, because the wall temper-
ature is lower and the freestream velocity is larger in our
case.

Figure 6.9 shows the drag coefficient data. In the
calculation of the drag coefficient from the pressure data
output, it has been assumed that thepressure on the rear side
of the disc is zero. The data is also normalizéd by the free

molecule value obtained through eqn (3.49).
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APPENDIX A
SELECTION OF RANDOM EVENTS

The essential feature of the Monte Carlo method is
probabilistic modelling of real physical process in which
variables are distributed in a prescribed manner. The method
requires the generation of representative values of the

variates. This is done through random numbers.

A.l Random Numbers

Random numbers are generated by the function called
Pseudo-Random Number RAN (I1,I2) supplied by thé VAX/VMS vol
as a standard subprogram.

Format s RAN (T1,1I2)

Arguments: I1, 12

Integer *2 variables or array elements
that contain the seed for computing
the random numbers.

Notes : 1. The values of Il and I2 are updated

during the computation to contain

the updated seed.

2. The algorithm for computing the

random number value is as follows:

If I1=0 and IZ=U; set generator base
x(n+1)=2*%*16+3 (A.1)

Otherwise
x(n+l)=(2%*16+3) *x(n)mod2**32 (A.2)

Store generator base x({n+l) in Il1,I2.
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Result is x{n+l) scaled to a real wvalue

Y{n+l), for 0.0 .LE. ¥Y{n+l1l) .LT.1.

A,2 Sampling From a Prescribed Distribution

If a variable x follows a random process, the dis-
tribution of the variable may be prescribed by a normalized
distribution function such that a probability of a value

lying between x and x+dx is given by
£ 4dx (A.3)

If the range of x 1is from a to b , then the total

probability is

bexdx=l (A.4)
a

‘“The cumulative distribution function is defined as

_ (X '
FX—Iandx (A.5)

A random fraction R_ will now be generated and be set equal

£
to Fx' The representative value of variate x 1s given by

Fx=Rf . (A.6)

A.3 Distribution Functions

1We now consider the cases which appear in the main
text of this paper.

(a} The variate x is uniformly distributed between a and b.



(b)
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In this case fx = constant and using eqn (A.4)
fx=l/(b-a)
Therefore, from eqns (A.5) and (A.6)

FX:Iz E%E dx=(x—a)/(b~a)=Rf

or

x=a+Rf(b-a) (A.7)

The variate x is distributed so that the probability
of x 1is proportional to x .

Using eqn (A.4)
fx=2x/(b2-a2)

From egns (A.5) and (A.6)
Py~ (x%-a”)/ (bz—a2)=Rf

or

%

x={a2+Rf(b2—a2)} (A.8)

For a special case where a=0
B

x=b (R, i (8.9)
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A4 Acceptance-Rejection Method

Above procedure is applicable only when it is possible
to invert egn (A.6) to obtain an explicit function for x .
This can be handled by acceptance-rejection method. In order
to make direct use of random number, distribution function fx
¢, to give

is divided by its maximum value, fnax

f;{=fx/fmax (A.10)

A representative value of the variate x 1is chosen on the
assumption that x has a rectangular distribution between a

and b . Egn (A.7) can be used to give
x=a+Rf(b—a) (A.11)

The value of f; is calculated for this value of x and compared
‘with a further generated random fraction, Re. If f; is
greater, than R., the value of x is accepted. If £, is less

than Rf, the value of x is rejected and the procedure will

be repeated until a value of x -is accepted.

Since Rf is uniformly distributed between 0 and 1, the
probability of x being accepted is obviously proportional
to fX and the successive accepted values conform to the dis-

tribution.

(a) Consider the distribution function fu' for the thermal

velocity component in an equilibrium gas.

2 2 -
fu.=1—r% exp (-8%u'?) (A.12)
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The function takes the maximum value B/ﬂ% at u'=0, Dividing

£ by the maximum value to get

ul

fﬁ.=exP(~82u'2)

The uniformly distributed value of u' is calculated by eqn (A.7)

with a and b set as arbitrary cast-off values instead of
the real values. -~ and += in order to make this procedure
effective. If we take 3 times standard deviation for these
values, i.e., <-3/B and +3/8 for a and b respectively,
the fraction lying outside of this range is l-erf(3), or
0.000022, These cast-off values are considered fairly
reasonable unless the tail effect is too significant.

Therefore, from eqgn (A.7)

u'=(—3+6Rf)/8 . (A.13)

and '

fl'l.=ex9{—(—3+6Rf)2} | (A.14)

The next value of Rf is generated. 'The value of u' is accepted

if fﬁ'>R If f&,<R the value of u' is rejected and the

£° f
procedure 1is repeateduntil u' is accepted.

{b) Consider the distribution function for the thermal

velocity component normal to the boundary

1 2
£ = ——
. Buﬁ ﬂ%ﬁ

' a2 '
(Bun+sn)exp( g un ) _ {(A.15)



where uﬁ is the thermal velocity component normal to the

boundary and Sn is the stream velocity normal to the bhoundary.

2

>
fBu' takes its maximum value at Bu£={(8n +2)#-8n}/2 as

n

. ' 2 ..y 2
_ 1 2 Y (_{(Sn +2)%-5n}
£ ﬁ%B[{(Sn +2) Sn}/2+5n]expL 1 }

The normalized distribution is

2(Bu'+Sn)
= n2 - exp % + %?{Sn-(5n2+2)%}—82u'2
Sn+(Sn“+2) n

: 1
Bun
Adopting the same range as in (a), eqn (A.7} gives

Bu£= -3+6Rf (A.16)

and

2[ (-3+6R_)+Sn]
= 5 :i exp %-k%?{Sn-(Sn2+2)%}—(-3+6Rf)2
n {Sn“+2) “+5n R

' (A.17)

féu'

The next value of Re is then generated and, 1if féu'>Rf then
n

LI T & v .
Bun is accepted. If fBuﬁ Rf the value of Bun is rejected and

the process is repeated until a value of Buﬂ is accepted.

{c) The alternative way is available for a special case.
This provides the smapling pairs of values from the normal
distribution of eqn (A.12). These values are denoted by u'

and v' and from egqn (A.12),

-

fu,du'fv,dv'=(E/ﬂ%)exp(-ﬁzu'z)du'(B/ﬂ%)éxp(-Bzv'z)dv'

=(82/n)exp{-82(u'2+v'2)}du'dv'
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Now set

u'=r cost

v'= r sin® (A.18)

Then, since the Jacobian

du' é8u' .
""('S"r—' _G—é- cosd ~-r sin®
S(u',v') _ . -y
s(r,9) - Sv! ' - - !
v 8v .
6—1_' W ' sing r cosb
' v — 2 2 2
fu,du £ v’ = (8 /mYexp (-~ r“) rdrds

exp (-8%c%)a (82r?)as/2n

,The angle 8 is uniformly distributed between 0 and 27 so

that, from eqn (A.11)

4

‘8 = 2TrRf (A.19)

' The wariable Bzrz is distributed between 0 and « and its dis-

tribution function

£, 5= exp(-Bzrz)

62r

is alsoalready in a normalized form. The cumulative distribu-

tion function is

~

F5o= l—exp(-Bzrzl
B r
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and noting that Rf and 1--Rf are eqﬁivalent functions, eqn (A.6)

gives
1.
r= {-1n(Rf)}’/B _ (A.20)

A pair of values r and ® may be sampled from egns (A.19)
and (A.20) using successive random fractions. The normally
distributed values of u' and v' follow from egn (A.18) and
provide typical values for a thermal velocity component in

equilibrium gas.



APPENDIX B
LISTING OF PROGRAMS

Contained herein are the main program MCATD1 and

the subroutine program FINDCELLZ.

78



2

s

5
6
7
101

102

103

104

105

106

85

a6

a7

79

FROGRAM MCATHL

LDIMENSTION C(2e100100»T0(25 10100 ,80(710y100) o NTM(10D»
1 S5(8yE)»yWOLOv 10« OFCPYYyVURC (I yCHX (109 10D 5

1 CHRC1LO»10 s ME(I02 10 VLLLO 100 s F(T:4000) y IF(A000) ».CROACOM)
READ(I 13 NEAMyNSTyNISyNONy NOCRyNEX o NCRL-NOX»yT1.12
FORMAT(1OTA4Y

READNC3Ir2) RM XMy DD Uy TWe FNIDTMy ERFLUW
FORMAT(OF&6.2»3F8.0)

READ(E»3) ((WCTy ) p Tl s NORD 2 J=1 s NCXD

FORMAT(10F7.,3)

REAN(3+4) ((MOCT». D T=1yNORY > Je=l » NEXD

FORMAT(10I7)

READ{3:H) ((CHROT» D v T=1oNURY 2 J=1 s NOXD

FORMAT (1087 .3)

REAIIC324) ((CHXCT D)y T=LyNCR) ¢ J=3 P NCX)

FORMAT (10F7,3)

READC3s 70 (UL (T e e Tl s NORD » =1 o NOCXDY

FORMAT(10F7.3)

WRITE (4,101

FORMAT (7 DIRECT MONTE CARLO SIMULATION?

WRITE(42102)

FORMAT ¢ RARFFTIED HYFERSONIC GAS FLOW FAST A CTRCULARS,
1 72 nrsc sz

WRITE(4y103) DIy XMy TW

FORMAT (" THE DISC DF RANTUS »FE.2y 7 AT X=wFU. 2y

1 7 I8 DIFFUSELY REFLECTTNG WITH TEMFP. »Fé6.2)
WRITE(4r104) XMerRM

FORMAT (Y CONTROL VIH.UME IS A REGTION FORMED BY X=0.0,X="y
1L F3.207 AND R=/5F35.2)

WRITEC(4,105) UW

FORMAT ( VELOCTTY OF UNIFORM FREE STREAM TS UW='eF5.27
WRITE(4y1064) LTHM

FORMAT ¢ THE MOLECULES ARE ALLOWED TO MOVE OVER THE s

1 7 TIME FPERIOD’»F11.7/)

WRITE(4yB5)

FORMATCY SURFACE FROFERTIES /)

WRITEC(4+84)

FORMAT (7 NN SAaMPLE STIZE  NUMRBER FLUX FRESSURE ¢
17 SHEAR STRESS ENFERGY FLUX?D
HRITEC(4:87)

FORMATC( " NONWTD Wi WTa TMOIRENT 7

1 ¢ REFLECTED INCTOENT REFILECTED INCIDENT REFLECTET )

[0 SET CONSTANTS

FI=3.141593
UM=SRRTOTH )
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CXS=1./(SART (2, YRFNID
VRM=2. kSQRT (2. /F1)

N0 13 NN=1+5

S5 (BrNNY=0.

ne 13 M=ils7
SG(MsNNI=G,

DO 13 J=19NOX

) 13 I=1+NCR

SC(Mp LeJrNNY =0,

BR=SART (UWXUW+2.)
A=1 . +ERFLUW

FX1m (MO Ly 2IRDTM/CHX L v L) )RCEXF (MR UWD) FSORT (P T Y RUWRA)Y /

1 (2.%8BRTFI))
FXR=FNOKNCXRCHX (NCR» 1) XDTMRRM/ (W ONCR 1) XINDRDIORSQRT (PT3)

C INITIAL STATE WILL NOW RE SET

L8
19

"

o

ET
X200,

0 19 J=1sNCX

R2=0,

Xi=XR

X2=X14CHX (1500

L0 19 T=1rNGE

BCLyTo =0 RRONCTL o T2 /(MO Ty J)ACXSXENDIRVRM)
ClArTsd)=R KURM '
Ri=R2

R2=R14+CHR (T v )

DO 18 K=1eMC{Tv.d)

N=N+

FOAsNY =X 4 (X2-X1YRRANCT L I2)
FOSsN)=8ART(RZER2 ~R1IKRL YRRANCTLs T2 +R1LKEL)
As-3 ., +46  KRANCT L 12)

Bw2 k(AW REXE (O S0 FRUWK (UW-BE) ~AXA) / (UW+ER)
BER=RAN(TI3»I2)

TECERLLT.ERE) GO TO 17

el N =lUW4A

BeSHRT(-ALDGIRANCT1 120 1)

ASDRETRRANCTL I2)

P2y NY=RECOS(A)

FO3ryNI=REKSIN(A)

TF(N) =1

CONTINUE

CONTINUE

MMz

INTITIATE TIME

N0 81 NN=LyNGAM

L 83 Jk=1lyNGT

nn 8¢ IT=1yNTS
TIME=CC(NN~LYENSTHO L0y DRNISHT T KITM
FLLUX THROWGH £=0.

Ke=F X1

B=FX1-1 . %K

NH2=0

I 14 I=1.NCR

AmRANCTLy T2

K=FX1

IFCR.GT.A)Y K=K4l

NIM(T) =K

NMZ=NM2+NIM T

K=NM

NM=+NM2

Do 21 I=1yNCR

noo21 =1y NTMOT)

]

FrayiK)=0.

A=RANCTL Y I2)

ITFCTLGEWNCRLY GO TO 16



FOSrRI=CHROLy DIRSART C 2RI KA+ (T -1 0K (-1 )

GO TO 13F
16 FOGyRY=CHRINGRI s 1)XSORT C(2RKT-7) KA+ (T4 K (T -4))
15 AN==Z  +E KRANCT L » 12D ’

AmAA+IW

TFCALLT.0) G TO 15

By XAKEXF (O T40 . GXUWK CLIW-BE) ~AAKan) / (LHWHRE)
BRE=RANCI1,12)

IF{B.L.T.BRBR}Y GO TO 15

FOleK)=aA

B=GQRRT (~ALODG(RANCIL,TI23))

A2 KPTRRANCIL » T2

P(2yK)=RXCOB (A

FL3rRI=RRGIN(AD

IF{K)=1
a1 CONTINUE
¢ MOVE MOLECULES
30 N=:()

24 N=N+1

IF{N.GT.NM) GO TO 60
IFCIFONY LLT.O)Y GO TO 24
X1=F(ArN)
R1=F (5N
FR=F{2sN}
F3=F(IyN)

C ARQUE ARE OLD COORDNINATES

: IF(X1.EQ.0.y 60D TO 25

C E-MOLECULES
X=X14F (L e NIXTITM
R=SQRT O CRIFPIROTHY R CRT FFIRDTM 2P DREIRDTMYOTH )
F2yNI=(F2X(RIH+P2RDTH I P IEFIRDTHY /R

FO3rNY=PIKRI/R
GD TO 24
C I-MOLECULES
25 DTA=RANCTLyT2)%DTM

IFLDTAL Tl LE-10) DTA=1.:E~10
X=X14F (1 y NI XIITA
R=SART ({RLI+F2RDTAY R (RIAP2RDTA) FP IR IRDTAXNTA)
F2eNY=(P2X(RIAFEDTAY P IRFIRNTA) /R
FO3sN)=F3XR1/R

C AROVE ARE NEW CODRIINATES

26 IF(XWLT.0.) G0 TO 54
IF(XLGT XM ANDLR.GT . RMY GO TO 300
IF{(X.GT.XM) GO TO 27
IF(R-RM) 35,355,301

300 RRM=(R-R1)IK{(XM-X1)/(X-X1)
IF{RRM.LT.RM}) GO TO A

C MOLECULLE IS COMING INTO C.V. THROUGH THE BOUNDARY Re=RM

301 A= RRANC(T L 12)
B=SORT(2. )RAKEXF (O 5-AXA)
BRE=RAN(T1 12
IFCBLLTSRERY GO TO 301
PL2yN) ==

302 E=SQRT(-ALOG(RANCIL 12D )
A=2  KPTRRANCIL, T2
FOLe N =UWHFRECOSG (A
FOEyNI=RERSTINOA)D
DTA=LTHRRANCIL » 52D
R=8ART(RMAP (2 MNIXDTAY K (RMAF (2o NYRIITAY
1 Iy NP O NI RDTAXIITA)
IF(R.GT.RM) GO TO 302
X=XMXRANCIL1-12)
GO TO 35

27 RIp=Re (R~R1IKX-XKH) 7 (X-X1)

C RO IS & COORD. OF THE MOLECULE AT X=XM
IF(ROLGT.OID GO TD 54



C THE MOLECULE 8TRIKES DISC

C DI8SC HAS DIFUSELY REFLECTING SURFACE
HTR=DTMX(X-XM)/ (X-X1)

C OTR IS TIME REMAINING AFTER THE MOLECULE STRIKES DISC
IF(OTRLT«1.E~10) DTR=1,E-10
LTH=0TM~UTR
V= P2K(R1IEPI2XOTHY 4P IRFPIATITH) /RTI
Wh=P3%kR1/RD

S SAMFLING WILL NOT BE DONE UNLESS MM I8 FOSITIVE
MM=NN-NON
IF(MM.LE.Q) 60 TO 33
CALL FINIOCELLZ2¢{(RY1sX1e¢Iy.})

SEC1 MM =G8 (1 MMI+W (T .
SE(2eMMI=SS(2yMMIFF (Lo NI KU (T » 0}
SS(ArMM) =SS (4o MM I FVIRU (T 5. 1)
SS{HyMM) =SS (S MMIHC IRCF L NIRP (T s NDAVTIIRVDHUIRWID XKW T » 2
SS(8,MMI=HE(ByMMI+1.,
33 B=UMWKSORT(-ALIOG(RANCIL1-12)))
A=2  KFIXRANC(TIL, T2
F2=REBIN{A)
F3=RXCOS(A)
FOLyN)=—UMWASART (—-ALOG(RANCT L, X20 )

0 THE MOLECULE IS REFLECTED WITH F{1,N)sF{2yNY ANDI F{3sN}
IF(HM.LE.Q)Y 60 TO 34
BE(3sMMI=ES(TsMM)~F(LsNIXW(T D)
SS(SeMM)I=BS(SsMMI+F2KW (T )

SS(7 MM =887y MMIF O TR(F (Lo NIXRP Lo NYHFP2KP2HPINFIIRW (T 2200

34 X=XM+F (1L s NIXOTR
R=BART ((RDHFI2RNTRI X (RDHF2RDTRY HFIXFIRDTRANTR )
P(2yN)=2(P2R(RO4HFP2RDOTR Y +FIKFIRDTR Y /R
F{3sN)=FIRRII/R
IF(RW,GT.RM.OR.XLT.0.) GO TO 54

35 Catl FINDCELL2{R1sXisI-».1)

CALL FINDCELLZ(RsXrKyL)

C (Isd) I8 OLD CELL AND {Kyel.) IS NEW CEil
F(4aN)=X
F(GyNI=R
B=W(IsJ) /UKL
M=0

350 IF(R.L.T.1.) GO TO 51
M=M+1
E=H-1.

GO TO S0

H51 A=RAN(I1, 12
IF(A..T.R) M=MH+l
IF(M,EQ.0) GO TO G4
IF(M.EQR.1) GO TO 24

C MOLECULE WILL BE DUFLICATER
M=p--1
o 53 I=1+M
NM=NM+ ).
ng &2 J=1+5

52 FOJrNMY=P (UdsN)

53 IF(NM)Y=~-1
GO TO 24

G MOLECULE WILL RE REMOVED

54 ) 55 I=1,%

59 FOLoNY=F (T oy NM)

TRP(N)=TF (NM)
NM= M- 1L
Na=p-1.

GO TO 24

¢ MOLECULAR INNEXING

40 0 &1 d=1+NCX
Ho &t f=1sNCR

—

82



ICGCLs Ty d)m
61 ICC29 T )0
o 62 M=1sNM
CALL FINDCELLR(F(SGyN) sFC(AYNIv T )
&2 ICCA»yTo dy=I0 (1w Tr )+l
M=0
I0 44 J=1sNCX
00 44 T=1yNCR
ICC2s Ty d)=M
M=M+IC{1sIv.))
IC(1sI»J)=0
&4 CONTINUE
CICCLyTs) IS THE NUMRER OF MOLECULES IN CELL (Ts 1)
£ CIC(RyTe )41) IS THE STARTING AUDRESS IN CELL (Is.)
C MOLECULES WILL RE COUNTEDR IN R-DNIRECTION FIRST, THEN IN X-DIR.
PO 4% N=1sN
CALL FINDCELLZC(F(SsNY P (4eN)yTs. D)
ICCLsTe )=TC(LsTr b0 41
Ke2IC(De Iy JI4+ICCL T D)
LCR(K)Y=N
45 TFP{N)Y=1]
 CALCULATE COLLISTONS
ng 79 J=ieNCX
00 79 T=1sNCE
VRIIT=0(2y V2 ))
NFE=0
MAX=TOCLy o DR(TICCLy Ty Y+H12 X100
IFCCCL» o) GT.TEME)Y GO YO 79
IFCIC(LsIe 1), GEL2) GO TH 71
Clirlo)=CedeIe DHDTH

B0 TO 79
C CHOOSE ONE MOLECULE OF COLLEISION PATH
71 NF=NF 41

KeICC2y Ty ITRANCIL 2 T2IRIC L Ty 0y HO . PRFPIHY
IF(RLZEQLICC(25 09000 Ke=K41

L=t CR(K)

C CHOOSE ANOTHER MOLECULE OF COLLTSTION FATR

72 K=IC(2» Ty JOYHRANCTL s T2)RICL e T 0240, 7999909
IF(KEQ.TC(29Tr.J)) K=K+1
M=LOROKS

IFCLLEQ.MY GO TO 72
£ CALCULATE RELATIVE VELOCITY COMFONENTS AND RELATIVE SBFEED
0 73 K=1+s3
73 VRC (K= (KyL ) ~F{KsM)
UR=SART (YRC (LIKVRC (1Y HVRC (2)RVRE (2 +VRCC3TRVRE (3D )
IFCURLBTVRIOTY VRIT=VR
A=UR/VRTT
B=RAN(T1 s 12)
IF(NPLLE.MAX) GO TO 76
Ceisls D=0 Te ) HITH
G0 TO 79
76 IF(ALLT RY GO TO 73
C COLLISTON PROBARILITY IS FROFORTIONAL TO VR FOR HARDSPHERE MOLECULE
> ADVANCE CELL TIME AND COLLISION COUNTER
CllpTr =00 e o 42 %VLLT S/ (TCCLs T2 2 RECLL» Ty 0D
1 XCXEKURRW(T ».J) 2
MM=NN=-NON
TF(MM.LE.OY GO T 74
SL{T7sTs JoMMI=GOL 7y Te Jr MMI+T
 CALCULATE FOST COLLISION RELATIVE VELOCTITY COMPONENTS
74 =l -2 KRAN(TI1»12)
VRE (1) =BXVR
A=SART (1, ~BXE?
Bz, kP TRRANCT L » T2
VRC (2 =AXCOS (B XUR
VRE (3 =AXSTN (R I XVR

83



Do 795 K=1+3
VECCH=0  BX(P Ky LYSP(KeM))

C VCCM I8 THE VELOCITY OF CENTER 0F MASS
F{Kel )=VUCOM+O . SRVRC(K)

7% FIKyM)=UCOM=0 . 5RURC(K)

C POST COLLISION VELOCITY COMPONENTS HAVE REEN SET
IF(CCL eIy o LT TIMEY GO TQ 71

79 CONTINUE

a0 CONTINUE

C FLOW FIFLD WILL NOW BE SAMPLED
IF(MM.LE.Q) GO TO &01
g 82 J=1eNCX
00 82 I=1yNCR
K=ICC(Lsels D)
D 82 N=lsK
LL=ICC2y Ie J)+N
L=LCR(LL)Y
SCTsIr e MMY=GC (L Ly JyMMI+1,
SC(R2e T JoMMY=ST(2 e Tr deMMIFF (1L}
SCC(Ae Ty dyMM) =80 3 To JeMMIFF (251
no 82 M=1t,3
SC(M+IrTe JyMMI=EC (M43 Ty Je MMI+F (Mol YRP (ML)

82 CONTINUE
4501 WRITE(&y4600) NNy
400 FORMAT(” NN="»TI4y’ LI=7y14)
83 CONTINUE
WRITE(S6984) NM
84 FORMAT (Y END OF NN="»IX)
81 CONTINUE

C END OF SAMPLE ACCUMIH.ATION
C FLDW FROFERTIES WILL NOW BF AVERAGED
NMN=NSAM--NON
AA=NSTKNTISKROTM
Lo 89 NN=1sNNN
OP(13=53 (85NN
OF(23=8S (1 rNND

A=AAXF NI
no 88 1=3%,9
ag OF (X )=8G({T-2sNN)/A
g9 WRITEC(4»90) NN»OF
70 FORMAT(IH s I4s2FP.0+7F12.5)

BHE=AAXFNIKCXSKSART (2, /R 1)
N0 97 NN=1sNNN
A= (NON4NN-1 ) XAA
E=(NON+NN)} %aA
WRITE(4y21) AfR

1 FORMAT¢ “OFLOW FIELTD FROFERTIES DVEFR THE TIME PFRIODR FROM
1 F12.,5s7 TO/F12.5/)
WRITE(4,92)

F2 FORMATC( CELL SAMPLE NENSTTY X=VEIL . Yy
1 7 ¥Y-VEL., X~TEMF. Y-~TEMF, Z~TEMF., "y
i1 ¢4 TEMF. COLL. RATE?)
WRITE(4+23)

93 FORMAT(” IR JIX7 /)
00 94 J=1sNCX
o 26 I=1yNLR
OFC1)Y=80CC sy Ty deNN)
OF(2=8CCLe Tr JoNNY/INSTEME(T9)2)
OF(3)=GC(2y To. s NN) ZOF (1)
OF(4)=8C(3s T+ JyNN)/QFL{1)
OFP(5)=2.%{50 (4 Tp Je NNI/ZOF (1) -DP (3YROP(3Z))
OFCAY=2, %8B0 (Ss Ty Sy NN Z7OF (130 CAIXOF(4) )
OF(7)=2 X805 Ty Je NN Z70F (1)
OF{E)=COFCSIHOFCE)HORCTI IS,
OF{9)=8C{7y Ty JeNN) /(BRXMC(Tr.J))
WRITEC(4925) Tode (OF(LIv1L=1s%)



98
96
?7

200

201

202

203

204
205

206

FORMATC(IH »2T45F10.28F11.,5)

CONTINUE

CONTINUE

TIME=NSAMKNS THNTSKITHM

WRITE(2,200) NM

FORMAT(16)

Do 200 J=19NCX

00 20t I=1sNCR

CCleXTy )=0Cl sy Tr )y ~TIME

WRITE(2y202) (CCCLrTr ) v T=d o NERY v =1y NEX )
FORMAT(10E13.4)

WRITE(Dy203) ((C42y Ty ) sE=tsNORY s 01 o NCX)
FORMAT(10E13.4)

0 205 .J=1sNCX

O 205 T=1yNCR

K=I((1sTy.1)

D 205 N=1yK

LL=TECo e Ty k)4

L=LCRCLL)

WRITEC2a204) (P (Ml doM=ls5)
FORMAT(SE13,6)

CONTINUE

WRTITE(2e208) (CT0CIeTodd s U=l e NORY 5 =1 y NCX)
FORMAT(10T5) :

STOP

ENT
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SURKOUT INE

FINDCELLZ (R e X Ty )

86

FOUR BLOCKS L (X3 v #2(AX3 ) s h3{6XE) v R4 AKS)

FM=7 00y XM=6, Gy NOR=1 0y NCX=9

Fl=,9999999
TFOXGT. 3.7
TFIRGT.3,2
L=y KR+ PP
NP €42

G0 TO N
Pepb 43,
JuX AR

GO YO 5
TFIR.GT. 3.7
T=2 ¥RAFF

Ju= 2 KXHFF -3,

GO TO 5
(SR R

NES I 3 € 2o

IFCLEQG.0)
TFCIEQ.0)
RETURN
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