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ABSTRACT

A cobordism theory 1s defined for manifolds whose

first 4 Stiefel Whitney classes vanish. The classifying

map of the stable normal bundle for such manifolds can be

1ifted to the 4-connected covering BO&lt;Y4&gt; of BO. The

cohomology of the Thom space MO&lt;4&gt; of the canonical

bundle is partially computed, and the results used to give

information about the cobordlsm theory.

In analogy with the work of Brown and Peterson, an

invariant % is defined on this cobordism theory in

dimensions congruent to 6 mod 16, which reduces to the

Kervaire-Arf Invariant { when the latter is defined.

is shown that § 1s zero on all stably-parallelizable

manifolds of dimension 22 and 38, and some additonal

results on the vanishing of § are obtained.

T

Thesis Supervisor: Franklin rr y Peterson

Title: Professor of Mathematics



1

ACKNOWLEDGEMENT

The author would like to thank Professor Franklin

Peterson not only for suggesting the problem and for his

help while working on it, but also for his constant

encouragement without which the author would have given

up long ago.

Many thanks are also due to Richard Holzsager for

many fruitful conversations during which many obvious, and

9 few not so obvious, points were made clear.



TABLE OF CONTENTS

Page

Introduction

Chapter I.

Chapter II.

Statement of Rssults.

The Cobordism Theory and the Kervaire

Invariant: Elementary Properties.

Chapter III.

Chapter IV.

Chapter V.

The Cohomology of BOKA4&gt; and MO&lt;U&gt;...... 2G

Ext, (H*¥(MOKU&gt;5Z7,)
Differentials in the Adams Spectral

3-

4)

Sequence for T,.(MO&lt;Y:;

Chapter VI.

Appendix.

Bibliography...

Biography..

Product Formulas for vu.
 1 0
J

.61

. 44 75

78



INTRODUCTION

In his thesis Thom [28] defined the relation of

cobordism for closed, compact, ¢® manifolds. Two such

manifolds M and M' are cobordant if there is a compact

¢® manifold W whose boundary 1s the disjoint union of

M and M'. He also introduced the notion of the Thom

space MV of a vector bundle V, and proved that the

cobordism classes of manifolds form a graded ringIp py

which is isomorphic to the stable homotopy the Thom space

MO of the canonical vector bundle EO over BO, the

classifying space for stable vector bundles.

Since then cobordism theory has been generalized in

many directions. All have in common an isomorphism into

the stable homotopy of the Thom space of some bundle.

Thom [28], Milnor [22], Dold [11] and Wall [31], determined

the structure of the cobordism ring of oriented manifolds.

Lashof [16] has shown that a cobordism relation can be

defined with respect to any space X and map ff : X —&gt; BO.

A manifold is considered only if the classifying map of its

stable normal bundle Vv : M —&gt; BO can be factored through X

The cobordism relation must then of course preserve this

factorization. The cobordism ring of obtained in this

manner is isomorphic to the stable homotopy of the Thom space

*

of f£ (EO). This formulation gives as a special case all



cobordism theories associated to a reduction of the structural

group of the normal bundle ~© a manlfold to a subgroup of the

orthogonal groun

cobordism. pS

RU [onl ee

Th~ erxbonrinm th- - #asoclated with manifolds whose

~ denoted bv plramed

 later dehoted by in), 1s especlally

normal bundl.: i trivial common”

(which will b:

interesting because glhrames is isomornhic to the stable

homotopy of the sphere m™. Kervaire and Milnor [11]

study piramed in detail. One of the questions they

consider is: Given an n-dimensional framed manifold WV

is M framed-cobordant to a homotopy sphere. They use the

techniques of surgery, or spherical modifications to show

that the answer is yes if n 1s odd. [20], [33]

In order to approach the problem for even dimensional

manifolds, Kervaire [14] defined an invariant O(m)ez, for

2k connected 4k+2 manifolds, and showed that ¢(M)=0 iff

is framed-cobordant to a homotopy sphere. In [15] it is

shown that § induces a homomorphism § : giraped , 4
Lk+2 2

It is unknown whether this homomorphism is O.

In [8] Brown and Peterson prove § is zero on 8k+2

dimensional manifolds. They deflne an invariant refi 0 is J

and show that the composition ngrared &gt; agp 40 —&gt; Zy 1s

esqual to @, and is ©



In this work we attempt to adapt the work of [8] to

show that § 1s zero on manifolds of dimension 16k+6. A

cobordlsm theory oSH&gt; is defined, and a map ¢¥ constructed

crs ~Framed &lt;4&gt; .

such that the composition 6146 &gt; 2 6r46 —&gt; Zo is equal

C0 §, and some results on the vanishing of § are obtained.



CHAPTER I

STATEMENT OF RESULTS

Unless stated otherwise, the term "manifold" shall

mean compact manifold, differentiable of class c®. M and

will denote closed manifolds, W a manifold with boundary.

For an oriented manifold P, the same manifold with opposite

orientation will be denoted by -P. Cohomology shall always

mean cohomology with coefficients the field of integers

modulo 2; HE (X) = H5(X,2,) .

In section 2, the cobordism ring &lt;&gt; is defined,

and using results of Lashof [16], its elementary properties

are stated. One of the most useful 1s the following

proposition.

Prop. Every cobordism class fv € as” has a representative [

such that HIM) = HY(BO&lt;4&gt;) for aq &lt; [n/2].

A quadratic operation #&amp;, associated to the relation

sqBHt = 5q"sa%% + 5a2(5a™8a%K2)+sqt(sa®sqtsa®®3)is

defined, and Adem's generalizations [1] of the Peterson-Stein

formulae [25] are used to calculate @¢. The bordism groups

of a space | are introduced [9], and it is shown that

oe o&lt;h a

induces a maL ¢ : ert (K(2,,8k+3)) =&gt; Z,. Then #&amp;

is used to define a map ¥ : a, —&gt; Zo, and it is shown

chat ¢ = § on 8k+2-connected manifolds of dimensions 16k+6.



Most of the theorems and proofs are modeled after [8].

Chapters 3 and 4 are devoted to technical details

needed to study the structure of ash, Im chapter 3 the

cohomology of MQ." as a module over the Steenrod algebra

is partiallv determined. There is a monomorphism

A/A(SqY, Sq°, Sqr) —&gt; H*(MOC4S) which sends 1 into the

Thom class U. It is shown that for small dimensions,

H*(MO&lt;U4&gt;) is the direct sum of cyclic modules over A.

In chapter 4, Ext, (H*(MO&lt;U&gt;) is partially determined.

Most of the work is in determining Ext, (4/A(Sq",8q%, 50%) ,22)

H**(A,), where As is the sub-Hopf algebra of A generated

by sq, Sq°, and sql. This 1s done by using the spectral

sequence of May [18], which converges to H**(A,), and has

Es term the cohomology of the assoclated graded algebra

to A, with respect to the augmentation filtration.

There are many purely technical details, and the proofs

are referred to appendix I.

In chapter 5, some non-zero differentials in the Adams

spectral sequence for T*(MO&lt;4&gt;) = Qit&gt; are computed. In

particular there are elements in the 12 and 15 stems on

which d, is non-zero. A description is given of the

k stems for k congruent to 6 mod 16.

In chapter 6, the action of ¥% on products is

computed. In particular we have the following theorems.



Theorem: Let
- &lt;A&gt; - Lal

a8 € eras c - $164 s and suppose

3 and b have representatives M and N such that

AdglOkt0-A(yy _ 0 for q odd, and that APHI®IP(y)

for p odd and less than 8j. Then y(ab) = ¥(a)yx(b),

where YX 1s the Euler characteristic reduced mod 2.

Theorem: Let 1 € as) be such that bb has a representative

N with x(N) = 0. Let a be the class of SxS3. Then

(ab) = O. |

Using these theorems, and the results of chapter 5

&lt;h&gt;
it is shown that if a € 1 6146 has a representative

in the Es term of the Adams spectral sequence, such

that y lilies in the image of the map Ext,(2,5,52,) -

Ext, (H*(MO&lt;}&gt;), 2.) 5 then u(y) = 0, and that

pa) Tamed) =0 if n = 22 or 38.



CHAPTER II

THE COBORDISM THEORY AND

THE KERVAIRE INVARIANT: ELEMENTARY PROPERTIES

Let M be an n-dimensional manifold. Let BO, be the

classifving svace for k-dimensional vector bundles. Given

ii some euclidean space gtk

let Vio denote the normal bundle. Vie can be regarded as

a map Vie tM —&gt; BO, . Let 1 : BO, —&gt; BO, 1 be the

canonical map. The map iv t+ M - BO, 4 induces the

bundle Vi ¢ 1, where ¢ denot: "it~" sum, and 1 the

trivial line bundle over M. If ! ently large.

the homotopy class of Vie depends on’

bundle Vie is called the stable normal bundle. We drop

the k and denote it by Vis or Vv, when no ambiguity may

arise. Similarly BO, , for sufficiently large Lk will

be denoted by BO. Definc [34]

 cn In  and the

Co. +k _

1 (B80) = ln H'(Bo,) and T(BO) = um To (BO)

Let BO&lt;Kr&gt;, denote the nth connective covering of BO, .

BO&lt;r&gt;, is the total space of ou fibration Ppt BO&lt;r&gt;, —&gt; BO

such that BO&lt;r&gt; is r-connected, and px : T_(BO&lt;r&gt;

rm (BO,) is an isomorphism for q &gt; r. (For existence and

other properties see [12]). The map i : BO, —&gt; BO,1



~

1ifts to a map 1 : BOLT, —&gt; BO&lt;r2, 4 and the diagram

RN a nN *-,

2k+1

“x

’

Ty

’
re

commutes. We have

as for BO.

Br ~ HY (BOG and mr, (BOLr&gt;)

An r-structure cn ¢ manifold M 1s « lifting of the

C BOKr&gt;. Let &lt;&gt;? be the
normal bundle Vir to Yu ct M —

set of all n dimensional manifolds with at least one

r-structure, and &lt;Kr&gt; = &lt;P

There are several important examples cf r-structures

BO, (1) = BSO,, and a l-structure is just an orientation.

BO(2) = B Snin and a 2-structure is a Spin structure.

This 1s a consequence of the following basic fact

about connective coverings.

Prop [12]: A map f : M —&gt; BO&lt;r&gt;, has a lifting t.

BOKr+l&gt;, iff £*(H"* (Bo&lt;r&gt;,, T)) = 0, where

m=, ,(B0&lt;r&gt;)= 7 (BO). We have T,(BO) = T,(BO) = PA

mT), (BO) = Z, and hence a manifold has an orlentation iff

wy = 0, a Spin structure iff Wy and Wy = 0, and a

4-structure iff Wq and wy, = 0, and wy, = 0 as an integral

cohomology class. If v : M —&gt; BO can be lifted to

BOKr&gt; for every rr Vv is homotopically trivial, and hence



the bundle Vv is trivial. An &lt;=&gt; structure on a manifold

is a trivialization of its normal bundle.

A cobordism relation can be defined on &lt;&gt; as

follows: Two n-dimensional manifolds Ms Mo © LG

are r-cobordant if there is an (n+l) manifold W such

that

1) OW = M, + (-M,,

2) The diagram below commutes for 1 = ~

For r = oo, the man. must be a framed manifold

such that the framing on W restricts to that on M, and

1s»

Let EO, be the canonical bundle over BO,» and
*

p., (EO) = EO&lt;r&gt;,, the induced bundle over BO&lt;r&gt;.,. Let

M( 0,.,) be the Thom space of EO, ,

Theorem 1: The cobordism relation defined above is an

aquivalence relation. The set of equivalence classes

ar? of elements of &lt;r? form a group under the operation

induced by disjoint union, and oir? we 3 air? is a graded
7”

.

ring, the multiplication induced by cartesian product.



. {r&gt; X

The map defined by Thom &amp; &gt; Lim Tt (MEO,) is an

isomorphism. Set MO&lt;Lr&gt;, = MEQ, &lt;T&gt;5 . and

Hm Tc (MO&lt;T&gt;, ) = m_ (MO&lt;r&gt;) .

Proof: The usual construction [28] gives a map

ar? ~D Tc (MEO, ) for large k.

n+k dimensional shure, k large. The normal bundle

ls induced by a map M — BOLr&gt;, . This gives a map

M(v) —&gt; MO&lt;r&gt;,. To get the map S$ — M(v) identify

with a tubular neighborhood T of M in shtk, Then

M(v) = T/boundary of T = SPE compliment of T. So there

is a projection ght M(v), and by composing with the

map above, we get an element of Toc (He2&gt; ) The proof

that this induces an isomorphism from &gt; is T_(MO&lt;r&gt;)
1

is glven in [16]. It is essentially the same as Thom's.

Since the Thom space of a bundle over a point is a

©  ~framedy _ 5S _ k

sphere, we have &amp;_ (= a ) = mo = Lim To cS ),

the n-th stable stem of the homotopy of the sphere.

There is the obvious map p,, : a —&gt; ar? which sends

2 manifold in Q into its class in as. The trivialization

of vo determines a lifting of v, tc BOLLS.

IT wiil be very useful to be able to. choose representatives

of « given cobordism class such that they have partially

gnown cohomology.



Theorem 2: Let © € a: There is a manifold M &amp; ©

such that v* : HY(BO&lt;r&gt;, Zp) — 7 (M, Z,) 1s

isomorphism if q &lt; [%/2].

an

Proof: This uses the technique ¢7 surgery, or spherical

modifications. The theorem is proved in Lashof [16] so

we give only definitions and :: brief outline.

Definition: Let M® be a CC” manifold without boundary

but not necessarily compact. Let 1 : sP &gt; M be an

embedding of SP with trivial normal bundle, and

let FPF sP x pd+l —&gt; M where 1 +p +g =n be

specific trivialization.

Let Mm = (M - (sPx pty)yp(oPx

sP x pI and put back DPEx Ss? identifying along

Px 5% = 3(sP x py = 3(DP™i SY). (The standard

picture is putting a handle on G by starting with an

embedding of 39. Then we will say M' dis obtained from

M by the modification. The manifold W given by

W=MA®&amp; IU, pH, pd+l where g : sP x pd+l —&gt; M x

is given by g(x, y) = (f(x, y), 1), is a O-cobordism

between M and Mt i.e., OW - M uM. This is clear

from picture. If W is an r-modification and M, M' and

are in &lt;Kr&gt;, then F will be called an r-modification.

A

In order to prove the theorem, it is sufficient to

show that any homotopy classwofwT.(M) can be killed using



~

”~

r-modifications, unless Vv,(eX) = C in mT (BO), where

1 1s in appropriate dimensions. This 1s not too difficult

The ee"*&gt;»proof is in Lashof.

“, n &gt;, 16.

4

Corel r Then there is ca
"

py $0

whic’  pe ted,

Procf: Cir

BO&lt;4&gt; - BC.

such that HE(I) = C

has no torsion, H,(M) = C

(PA) = (BO) = 7. (BC) = Tg (EO) = 7,

There there is a manifold M in WwW

3

CT, HO (11) = Z. Since I”

for 1  8 =~ mm (1M) = 0 for

&gt;
"

5

Now we restric’; our attention to &lt;

For t": remainder of this chapter m will be an Integer

: &amp; sql2d will denote sqtsqd. Define &amp; secondary

on &amp; subgroup of H(T) with

quotient of 72M) for any space X as

cohomo!

value !

follows: [.].

Theorem 3: Since dia io

classes, the relation

grit = sq’ sa™™3 + sq2(sq m5) + sql (sq?stsm=5y in the

Steenrod algebra gives rise to a secondary cohomology

operation #£ : H'(X) Ker Sqft3 Ker sq tom-5 Ker sq? ttem=6

os BX) /Xqt BHR) + sqPHTMR(x) + sqtEPMTi(x).

Furthermore @ is quadratic, i.e., if @(x) and #&amp;(y)

are defined, so is @#(x+y) and g(x+y) = B(x) + &amp;(y)

on m-dimensional cohomology



Proof: This is proved Ia a more

Recall how 4 1s defined. Let

K %(7., 2m=-3) K(Z,, 2m-1)  K(Z,, 2m) where

"mod 8, and m &gt; 3. Let r K(Z,, m) —&gt; K

general case in [£].

m

¥/. a m=3.  % _ 4 m-5,

be such that £7 (105) = Sq “i; £7 (150 1) = 8q TL

. 2,4,m-6 .

and £*(1p) = Sq°’ *7771 , where ie HY (K(2,2)) is

a generator. Let E be the fibre space over

K(Z5, m) with fibre §K = K(2Z,, 2m=-4) x K(Z,, 2m-2) X K(Z,,2m-1

Look at the cohomology spectral sequence for this fibre

space. The element Xx = sai, + S01, _ptSati, 4 € HM (OK

is transgressive, and transgresses to

sqtsa™ 31 + saZsat My + Salsa? toMy = sq" =

Therefore there is an element # € HR) , such that

i*(g) = x where 4 (JK —&gt; E is the inclusion. Consider

the diagram

—

where X 1s any space, and u € HY A,

sq 3u = sq'tm-=5y = 522 Ham=6y = 0 implies fu is



homotopictoOO, and hence u lifts to a map

Define #(u) = TW(F). The indeterminacy of &amp;

™

i
-

. naman

&gt; E.

corresponds

to the different choicesof the lifting 7.

The H-space structure on £K and K(z,, m)

2 multiplication D : Ex E —&gt; E., Let

induces

K(Z,, m) x K(Z,, m) =&gt; K(Z,, m) be the multiplication.

By [6], Lemma 2.2, # 1s not primitive, i.e.

vig) = fd®1 +1@®@4F + Z, where Z is non-zero. But

HY(E) = 0 for m&lt;1i&lt; 2m -4, so HOE) = BoE)® 1 e

HY(E) ® HY(E) o 1@ H(E), and HE) = Z,, generated by

Pp (1,)- So v¥(4) = d®1 +1® 4 + p¥(1,) @p (3)

Suppose #(u) and #g()

venpeatively. Let A : ZL - LX xX be the diagonal

Then v(¥ x ¥)A is a lifting of u + v, since

pv(Tx¥)a=(uXv)A =u + v, since that is how addition

of maps is defined. Tt is a standard theorem that

(u + v)* = u* + v¥. Then

Blutv) = (v(TxM)A)*6= (A(Tx9)Vv(4)

= (AQ x) (EDL +146 + p (1) p*(1,)}

= g(u) + g(v) + uw modulo the indeterminacy of &amp;

Lemma 1: Let Me &lt;4&gt;2™, 4 : g™(M) —&gt; HZ(M). Then the

indeterminacy of @ is zero.

Proof: Indeterminacy of # = Sq HZ(M)+5q2HE™2(M)+sqm1(im

2-4 ry Lv E20) v. qo). Here Vv. denotes



the Wu class in dimension i. [21]. In general, if M is

5 i ‘ny manifold of dimension n, Vv, = Vv, (M) g HE (1M) is defined

2s that class such that

ov, uw, [MI&gt; = &lt;Satu, [M]&gt;, for all ue HY(m)

where ["1 € H_(M) is the fundamental class, and

denotes evaluation. Two useful facts about these

classes are

1) W, = &gt; SY Tv ’ and v
no

In particular Wp = Vi, Wo = Vy + sav, etc. If

Ww. = 0, then Wo = Vo Similarly if Wy and Wy = 0,

wy, = Vy. In the case above w, = w, = w, = 0, hence

Vy = Vy = Vy = O and the proposition is proved.

We now assume that all manifolds we are dealing with are

connected. This is possible since one can change any

manifold with a finite number of components by framed

spherical modifications (w-modifications) into a connected

manifold. Under this modification disjoint union becomes

connected sum [15]. The connected sum M + M' of two

n-manifolds M and N 1s obtained by embedding s© in

thelr disjoint union Mw M' and replacing the normal

bundle by sh-1 x I, or equivalently, by removing a small

n-disc from each manifold and identifying the boundary by

a map of degree - 1.



ll
From @, we want to define a map from a’ = Zs.

In order to do this, we need to know something about the

way © behaves with respect to cobordism, and have some

way of calculating it. But g of course depends on more

than the space it is applied to. Being a cohomology operation

its value #(u) depends on ue H(M). We want a cobordism

theory to take this into account.

Definition:1: The Y-bordism groups cf a space X, denoted

by £27 (x) is the set of equivalence classes of pairs

(M, £) where Me &lt;4&gt;” and f : M —&gt; X. The equivalence

relation is given as follows: two palrs (1,1), (M5)

are bordant if there is a manifold P e€ &lt;4&gt; and a map

F + P—&gt;X such that

Ly OP = M, J (-M,) and P is a +=CcObordism

2 If 1 M. —, P are the inclusion maps, the diagram

commutes

Then a&gt;" (0) is a group with operation of a

For details see Conner-Floyd [9].

Now if we let X = K(Z,, n), a map  -~

just an n dimensional cohomology class of M.

disjoint union etc

 a is

The next

cwo lemmas show that # defines a map



03t7(K(2Z,5 m)) = Z,, where m = 8k + 3, k © 0. (as above}

Lemma 2: Let [M, ul 051 (K(2,, m)). Then there is a

manifold M' and an element u' € 111) such that

(M', u')  [M, ul], i.e. (M', u') is bordant to (M, u)

and Mr is 7 connected. Moreover there is a Y4-cobordism

N, v between (M, u) and (M', u') such that if

 M—~&gt; NM and J : M' -— » N are the 1nclusion maps,

1,¥ 1s an isomorphism for gq = 8 and

jg* 1 an isomorphism for q 2m-8,

Proof: M' is obtained from M by surgery, taking care

to use only 4-modifications. N looks somewhat like

M x I, with cells of dimension 7 or less attached to kill

off the homotopy of M dimensions&lt;7. &amp;S.

with some "handles" DV x pe-i+l

maps gi-1 x pam=1+l _. yy 0, Hene

is Mx I with i cells attached (..

“tached by

como2ry type N

Simi? °

attached. Tht statementN is M' with 2m-i cells (. + C

that the inclusion maps induce isomorphisms in the appropriate

dimensions follows immediately from this de

Only necessary to check that the mao .

extends toamap F : N —&gt; K(Z,, m). But :

Mx I by F(x, t) = f(x). To extend to N note that N

is Mx I with cells of dimension 1 attached, 1 v8 =, i £m



4

Hence F | (O ¢f an attached cell) is an element of

ms (K(Z,, m)) = 0

completes proof of Lemma.

Lemma 3: The map §&amp; : SH (x(z , m)) — Z,. given by
Ee 2m 2 2

g([M, ul) = g(u)[M] is well defined, where [M] denotes

the fundamental cycle in Hy (M) (This lemma is Just what

we want. It says @ 1s some sort of bordism invariant.)

Proof: Lemma 2 says that any class ® in ast K(Z,, m)

contains a pair (11;, u,) where My 1s 7 connected.

Therefore Sq" H"(M;) &lt; 3 (1,) - 0 Sq POH) c HL,

and 5q2» Hsm=6 : HY(1,) —&gt; HO (1,) is zero since

5q2HMO (1) SqPHE™ E(u) = Ww HE (10, ) where

Wo 1s second Stiefel Whitney class. But since M eg ~

wy = O. Hence if wu, € H' (1,), gu) is defined. To

show it 1s well defined, only need to know it is not

dependent upon the representative of w in 25x(z,, m,

since the zero cobordism class is represented by (M, 0)

and g(0) = 0. Let (1,, us) ge ® such that g(u,) is

defined. Then (1M,, us) is bordant to (Muy). Let
N, v be a cobordism. If 'N is not 5-connected. we perform

surgery on it, so we may assume N 1s 5 connected. We

show #(v) is defined, and guy) depends only on #g(v)

Since g(u,) is defined, we have



-

- - oN om-

sq™ Svs = Sqm “u,, = Sq 5 °u, = C. We wish to show

corresponding relations for v. Let Jj. : uo, —&gt; N be

the inclusion. Then Ji *(v) = uy. The sequence

_ - Jo* ope

F23(w, 1) =&gt; EIN) g, u™3(i,) is exact. By

Poincaré duality Hem=3(y, M,) = Hy (N, My). But since

is 5 connected, and M; 1s 7 connected, H) (N, M,) is

Therefore Jo is a monomorphism in dimension 2m-3.

Then O = Sq" 3, = Sq",*v = J,*8q7" 3, Hence

9

sqm 3y = 0. Exactly similar reasoning gives

sq m5 = 0 and 5q2sHsm=b, = 0. Hence g(v) is

defined. Since Ji*(v) = uy; we have Jo *8(v) = plug

But we have just seen that Jo* is a monomorphism in

dimension 2m (the proof of sq sm-6, = C above) and

J * is an isomorphism in dimension 2m bv lemma Z.

Hence g(u,) = 0 iff gus) = 0, where = 0 means modulo

the indeterminacy of #. But M; and MN, are &lt;4&gt; manifolds

and by Lemma 1 the indeterminacy of g is 0. Hence the

lemma is proved.

We now state a few lemmas which will help to calculate

in certain cases.

We can express ©Y as a functional cohomology operation

by factoring it as follows: Let A r(x) —

74%) o&amp; HY(X) + HY(X) ve the map Au) = (u, u , Uj. Let
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g(x) + Bx) + 54x) — HY(X) be the map

eu, Us us) =u; + uy + uz. These are defined for all

spaces X and integers q. Let

5 2 HNX) &amp; HNX) &amp; HYX) = E(x) o B(x) o 5Y(X)

be given by b_(u;, Uy, us) = (sq 3u,, sq Mu, 5q2s trsm=~

and a: B3(x) 6 BH) eo HX) by alvy, vp, v

} 2 1. _ _

Sq v, + Sq Vo + Sq vg Let ao = ea and Bm = b A. Then

_ _ m+1 _ a5

af = €ab_A = Sq (remember m = 8k+3 k &gt; 0) and tire

relation Pp = 0 on classes in dimension m was what

gave us fg.

Proposition: Let ¢ and Bry be as above, Leo

. B™(Y). Suppose that fxg (u) = 0. Weand u . ready

know that ap (u) = 0. Then the operations

asp (u) are defined, and are equal modulo

sq HEH(X)+SPER(X) + Sq EE(x) + rxEf(X)

Proof: re

the same :

wher (neration which takes several variables

int. one. Fc combleteness, we define Qn... ff ¢ X —

Es

‘ust theorem 5.2 of Adem{i1It is basically

ormula of Peterson-Stein but in the case

can be regarded as an inclusion by using the mapping

cylinder. Then the exact cohomology sequence of the pair

Y, X gives the following diagram.
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J

at (y, x) =&gt; BF

o|taoe copes MJ |
Jet ~ ey oo. HE(

La

Ter

 :
HO(

where ir = =k &amp; gK—2 &amp; re

Given an element (uy, Us u,) € HEH (7) oH 2(Y) D ly

such that £*(uy, Us u,) = 0 and au, Ups Us = 0

define ao(uy Us ug) to be the set of all elements in

6 "tag * tH (u, Us s us), i.e. pull back along the dotted line.

The vanishing of eu, , Us, u,) and £*(u,, Ups ug) imply

that thls can be done.

Lerma 4: Let a, p= be defined as above. Let ue HX).

Then u : X - K(Z,, m), If @#(u) is defined, then so is

a, pB(1) and a,B(1,) _ g(u) modulo the indeterminacy of

Y

Proof: The above proposition »

In the following we drop the m and write only B.

In general the indeterminacy of a Bi) is too

large. We have already noted that the indeterminacy of

is zero when 1t is applied to manifolds 4¥, Denote

by I; the indeterminacy of a Bn(3.

we use will be to choose things so tha

possible. We need to know how @ behaves on products.

J's

' the methods

whenever

Let ao be as above.



| Vv be a map of spaces. Let

p

1 = (uy, vp, ug) 8H (Y) 6 H2(Y)  H3(Y) v e 1d(y)

with p, + 4 = p, +2 *% py + 1. Suppose au) = 0

1 a .
Sq°v = Sqv = Sq'v = 0, and f*(u) = 0. Then a.(uv,

1s defined, and cp(uv) = £*(v)aa(u).

p Dp p
Proof: Let HP(Y) = H 1(Y) &amp; H 2(Y)  H S(Y)

Then we have the commutative diagram

Plery 5 qP(v, x) -

xr

ab
x han

BY -s BP (X)

£*(v)

7H(x)qe
\

where the horizontal lines are the cohomology sequence of

the pair (¥, X) and vertical maps are multiplication

by the element shown. Furthermore the operations ao and

multiplication by v commute, by Cartan formula since

It
Sqtv = Sav = av = &amp; Thus bv applying a to above

diagram, we ge. .. three dimensional diagram, and chasing

around it gives result. We will apply this in the case

Yy =1 +N, X= K(Z,, m) x N.

Lemma 6: Let Me &lt;i&gt;i0KH0 yells |

7 connected. Let u € pOkt3 v € 1 (n). Then

 OM, N

f(u® v) 1s defined and Fudd v) = du) ve

modulo some indeterminacy which will come out in the proof.



J

Proof: Since M and N are 7 connected, so is M x N,

and

dud v) = ox Hg (54x) +3) = % x 181g x ® v)

The first equality 1s of course Lemma 5, the second is

naturality. Note an increase in indeterminacy at each

step. Now apply Cartan formula and fact that N is

7 connected to get Blig, 3 ® v) =(B 18143)® ve,

So glue v) = SH 1(p Loyiz © V0) But this is

a, P 1gk4a Dv = gu) ®v°, by lemma 5.

The indeterminacy is the indeterminacy of — which 1s

(u x 1)# 00(x(z,, 843) HOI(W)=wrt HO (k(z,, (8k43)))C

\BleH3BleA3 yy where pOK+3 denotes all the Steenrod

operations of degree 8k+3, since HO (x (2, 8k+3))

rm Co. : ~ :

= {Sq 1g,4ns and I = (15 «ees 1) with 21, = 8k+3, with

suitable restrictions on the i}.

Lemma 7: Let N be as in Lemma 5, M = sO x83. Me 13 (1M)

and Vv € 116d (x) such that v° = 0. Then g(u® v) is

defined, and g(u vv) = 0 modul. C

Proof: We have sq™ 3 V = UD ve

sq "Su Vv = gq2s Ham=0, = C

A(u® v) is defined. Then by same argument as in lemma 9

(ua v) = (UD ve = 0. The indeterminacy is 0 since
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a3u3(s3 x 85) = ¢

3»5°‘vanton SY x S- vanish.

Ta fact, all Steenrod operations

Ne are now ready Fo dering a map Loess
Y ° 250 &gt; 2

the Arf invariant. Let w € st? and M € © (Recall

m= 8k4+3, k &gt; 0). Since M is a manifold whose dimension

is congruent to 2 mod 4, and M is orientable, the

square of any element in HM) is 0, and H™(M) is

even dimensional as a vector space over Zoe Hence

we can choose a basis (xy, yg 1=1, «.. x} for HMM)

with the following property: XiXs m2 VY; = 03 XqY4 =

iff i #£ j. Such a basis is called a symplectic basis for

HM). We define

yr (M) by wr (nr 5 g(..., [Mo (y,) [1M] where + indicates

multiplication in Zo and w(w) by Y'(M) where M is

in ®w. Since there is an m In ® which 1s 7-connected,

we know there is an M such that '(M) = ¢¥(w) is defined

There are a few things to check to see that this definition

makes sense. First that ¢' 1s independent of the choice

of basis {xy vile This follows from the work of Arf,UY]

since #(x + vy) = g(x) + #(y) + xy, and the quadratic form

X, ¥ =&gt; xy 1s non singular (Poincaré Duality). So we

need only check that ¥ 1s independent of the representative

chosen.



Proposition: ¢ 1s well defined.

Proof: Suppose y' (1) is defined. Then there is a

7 connected manifold M, which is 4-cobordant to My

obtained by surgery. By lemma 2 J,* : HYN) =&gt; HO (0,

is an lsomorphism for each i. Ronee a symplectic basis in

H(M,) is carried by 3% into a basis for H'(M,,)

Recall by proof of Lemma 3 Jo* is a monomorphism in

dimension 2m, and by Lemma 2, Ji* 1s an isomorphism.

So Jp%3*t takes a symplectic basis into a symplectic

basis. $ is defined on all of H"(11,,) since M, is

7 connected, so ¥'(M) is defined. By Lemma 3, pH (HM, )

pt (M,) So we may assume each representative 7-connected.

Next claim ¢ is additive with respect to addition in

&lt;4&gt;
Som ’

Addition was originally defined by disjoint union,

but since we are considering connected representatives, it

is replaced bv connected sum. It 1s clear that the connected

sum is 4-cobordant to disjoint union, and so the group

structure is the same. If we denote the connected sum of

M, and M, by 1M; +M,, we know that BH (1, + My) =

HY (1) &amp; H'(M,) and if x e H'(M), v € H™(M,), then

xy = 0 in H'(M, + M,). Then a symplectic basis for

M, + M, can be given by (ug, eeesuy, Ug geet,

» 1 Le.V.} where { J £1 are a
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symplectic basis for M; and {u,, -

symplectic basis for Ms. Then we have, setting

= M; + Mj
k

"(M,4+M,) = 2 ‘ : 1] = 2 ]

 (My 2) 2 Aug) (Mlp(v,) [M] Aug) [1 +H, 14(vy) [My 41,
K

- ¥ same thing. But glu.) [1M *,] = Aug), ] if
J=1+1

g(uy) [M,] if J &gt; i and similarly for the v's. This says

p (1040) = y(M) + v'(M,). So to complete the proof we

need only show that ¥ 1s zero on the zero class. Let

Me Oe alt , N &amp; &lt;4&gt; such that M = oN, N is a

h-cobordism, N l-connected. Sufficeth to show ¥'(M) = O.

This will be obvious if we choose &amp; svmplectic basis carefully

Let wu, &amp; H'(1), uy #0, 6% : H'(". T(r wy,

i%* + EN) —&gt; HMM) the inclusion. I. =(u;) = C let

x be in HN) such that J*(x,) =u, and let y, &amp; H'(x

such that yu; #0 (vy; exists by Poincare duality). If

6*(u,) # 0, then by Poincare duality there is an element

x, € H"(N) such that x,6%(uy) = 0, But x,6%(u,) =

5(J*(x.) uy) # 0. Hence j*(x;)-uy # 0. Set y; =u

30 we have elements x. &amp; HUN), vy, € H(M) with

i*¥(xy) yy # 0. By using the same technique on the set

(z ¢ HM) | Zoey, = J*(x,)-2 = 0}, we get elements Xps J,

sith J*(x;%5) = y¥,.= 0 1*(x,)y. = 1*(x.)y, = 0 and
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J*(x5)¥5 £4 0. Proceeding similarly we get a symplectic

basis {3*(x4), vy) for HM). The proof of Lemma 3

shows @¢ 1s defined. Then ¢'(M) = = p(J*(xy)) [MIg(yy ) [MT

But #(3*(x,)) = J*4(x,) = 0 since g(x;) &amp; HTN) = oO.

Therefore %'(M) = 0 and ¥ 1s well defined. We drop

the ' and denote both #' and ¢¥ by ¢v¢.

To complete the definition we define ¥ on {,

Hy (MOCh&gt;,) = 0 4 ¢ ks k&lt;i&lt;k+ 8 and H_(MOKI&gt;)=

and the Whitehead theorem. Lim To (5) = 7.5, (s%) = Zp»

3 31 4 . &gt;
It is not hard to see that [S” x SY] # 0 in Qe.

a. 8 &lt;u&gt; Ky

follows from above that $f —&gt; 77 = Lim Teg S ) is an

isomorphism, and [s3 X $31 is not zero in Qe SO

[s3 Xx 531 generates aS, Define vis3 xX 331 to be +

Theorem 4: Let M € cls OKO m = 8k+3, M m-1 connected

stably parallelizable. Then ¢(M) = §(M), where

is the Kervalre invariant.

Proof: The proof 1s similar to that in [5].

Recall the characterization of § in [15]. § = Ze(x,)e(y.

where (x,v,} is a symplectic basis for M; and © is

the secondary operation © : HU(M) —&gt; HoM(M) with the
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be an embedding,

“M0 be the

cohomologv class dual to th: embedde” — Then

o(v) is zerc “°C vv is t—fvial. 8. -

that £ iff is trivial.

Thom space cf « To (ee

the map g¥* : E*» H*(117) indugel

i ' toes © ibe hs i.e. rf

T
-n

&gt;t to show

Tass. Then

projection

 + v andg + 1

g¥* is an isomorphism Za dimension 2m. So we need only

show that p(T “of vy is trivial. If v 1s trivial

M(v) = SM gm an ence (77) = 0. If v is non trivial

M(v) = sy =" where 4u T (8M) is the generator, and

(1, 1] Rig ih Whitehead square [5].

The folding map sy sm 5 s™ extends to a map

ho: Sx s™ M(v), since the obstruction to the extension

is just [i, 1], which is 0 in M(v). Let x &amp; H'(S")

be the generator. Then h*(g()) = 4(h*(U)) = dx1FI.

- dix 1) + (le Yet
;LES=Tx £ 0. Hence g(U) £0

and the theorem is proved.



CHAPTER III

THE ~OHOMOLOGY OF BO&lt;4&gt; AND MO&lt;"*

In[27]. Stong determined the cohomology of BOLr&gt;. H

proved the following proposition.

Proposition: H¥*(BOKU™) is a polynomial algebra on those

classes wert (7 no

ones in its ayal

 oP pe

Corcltary1:wy = C

if ~ 10, 11, 13, 17 18, 19, 21, 25, or 33.

Proof: There are no multiples of the generators in those

dimensions.

Corollary 2: If

then HT(BO&lt;4&gt;) = C.

The operation of the Steenrod algebra

H*¥(BO&lt;Y4&gt;) 1s given by tire Cartan formula

A
-

w’dh4

A

Sq ww = = sq" w, Saw, and the Wu formulas

 i L rotsTY; ==.\ W141

1

where () is binomial coefficient 2*/b!(a-b)! reduced
b

mod 2.

Corollary 3: As a graded group H*(MO&lt;4&gt;) is isomorphic

to  H¥(BO&lt;U&gt;) via the Thom isomorphism H¥*(BO&lt;4&gt;) —&gt; H*(MOLL&gt;



given by wy —&gt; w,U, where Ue HO(1M0&lt;4&gt;) is the Thom class

The structure of H¥*(M)&lt;4&gt;), which we now call H for

~onvenience, as a module over the Steenrod algebra is quite

different from that of H*(BO&lt;4&gt;), since SqU= Ww,U.

Using this, it is possible by brute force to determine

the structure of H as a module over A in low dimensions.

If x,V,2,... are elements of A, we denote by

A/A(X,¥,Z,...) the quotient of A by the left ideal generated

by the clement Xsl52,5...

generated by sq, sql, .. yet, Then the following 1s true.

Theorem 5: In dimensions less than 55, H 1s the direct

sum of cyclic modules over A of six different types. The

list below gives each type, together with the dimension

in which generators for 1t appear.

will denote the subalgebra of

Type dimension

A/AA 0

16 |

a copie)418(3 copies

20

50 copies)Hh2(2 copiles

40

hon

L6(2 copies)

ug

A/a(sqt, 502,540, 5q13)

a/a(Sqat,sq”)
A/A(SqT, 50°)
A/A(Sq%,50%5q%)
A/AA.

We will study a module of the second type briefly at

the end of the next chapter. The remainder of this

chapter and most of the next will be denoted to a study



of  A/AA,.

Lemma 8: Let A¥ be the dual of A. (2/AA,)* the dual of

A/AA,. A* is a polynomial algebra on generators £, in

degree 211, (A/AA,)* 1s the subalgebra of A* generated

o.2 .

oy £5, 64, 2, 6, 1

Proof: We must show that the annihilator of A, in

is precisely the subalgebra described above. Thils is just

211 those elements in A¥*¥ which are taken inte \ by an

element of A, acting on the rigt, This action can be

jescribed as follows: Let @g%: A¥ —&gt; A¥@A* be the

diagonal map. Let eB 2 25%. . 0, and eR) # St5g
rd

 3

=

Then eRe = tS eT, where T € A, and &lt; , &gt; 1s evaluation.

Furthermore the diagonal map #* in A* is given by

g*(€) = 2 ® FE So in order for eB Z 0 we must

have &lt;£°,1&gt; £ 0. Since A, is generated by sq? sq°, and

Sq? it suffices to find which elements of A¥ are non-zero

on these. But they are exactly those which have a gt, a 3

or a £4 as the first factor in some term of thelr diagonal

expansion. But these are just eX, Fy en, where

c Z0mod 8, m# Omod 4 and n £ O mod 2. Thus the lemma

is proved.



The Whitney sum of vector bundles induces a map

BOLLS x BO&lt;UY —&gt; BO&lt;KY&gt; just as for BO, which gives H*(BO&lt;4&gt;

the structure of a coalgebra over Zoe Since As is a

sub-Hopf algebra of A, the diagonal map on A 1nduces a

coalgebra structure on A/AA,. Then we have the following

lemma.

Lemma ©:

v(1l) = U.

Proof: Let Te A/AA., : which represents T. Define

v(t) to be al. Let be AA,. Then D = xSat + ySq© + zSq

where x,y,z € A. But sqlu = Sq°U = satu = 0, and so

is well defined. By naturality, Vv 1s a map of coalgebras.

Hence by proposition 3.9 of [24] wv 1s a monomorphlsm if

and only if it is a monomorphism on the primitive elements

of A/AA,. If 4 is the diagonal map on A/AA,, an

element 7 € A/AA, 1s primitive if (1) =1T@Q1L +1®7

The primitive elements in A/AA, are just the duals of

the indecomposable elements in (A/AA,)*. Let Q; be the

dual of &amp;, ;. Then Q, i&gt; 3, is primitive in A/AA,.

In fact it is even primitive in A. For 1i&lt; 3 Q, 1s

zero in A/AA,. The only other indecomposable elements in

8 4
(A/AA,)* are £1, £5, £2, These have duals sqC., sq 8

and gq2s 458 respectively. So we need to show that none

of these are mapped by v into zero. Since they are all
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in different dimensions, the lmages are clearly independent.

8 4,8 2,4,8
(54°) = Sa U = wgU. v(sq ? ) = Wy,U, v(s8ag©’"Y) = wy, U.

ol ol
We know Q; = Q; 154 + 897 Q;_,- Therefore v(Q,)

1,2,4,8., | .

Sq U = wy=U. Therest of the proof 1s by induction

We show v(Q,) = wyl_U + (decomposable elements of H*(BOLW))U

The Cartan and Wu formulas imply that any Steenrod operation

on a decomposable element gives a decomposable element.

We have v(Qg) =) JU. Suppose A) holds for 1 less than k

oo ok oK ok
Then v(Q.) = Q._y8a° U + Sa” QU = ,wkU + 8q~ wyk _.U

k

(decomposables)U. Show sq wok _U cannot possibly have

a term wyk+l, so we have v(Q) = Q_1WokU + (decomposables)U

Now @Q _jwokU = Q_55q wkU + (decomposables)U =

1,2 gtd L
Sq Sq ... Sq wokU + (decomposables)U. But Sq,

re ee) cee (ene eo Ww k+1

Sk-2 _ 5 Sk-1 | Wet

(decomposables)U by iterated application of the Wu formula.

But all the binomial coefficients above are 1, and therefore

the Lemma 1s proved.



CHAPTER IV

Ext, (H*(MO&lt;A&gt;; zy Zp)

[In this chapter w

compute Ext® |

This wil’ give the Eq term of the Adams spectral

up to dimension 4C since H is the direct sum of modules

*rmpute Ext, (AAA, and

15,54°, 5413) for t-s 20.

of the above form in dimensions less than 40.

Exto (A/AA,,Z,)

Liulevicius [17] has shown that Ext, (:/AA,,2,) is

isomorphic to Ext, (Zs, Z,), which is commonly called the
2 &gt;

cohomology of A,, and denoted by H(A), H*¥(A), or H**(A),

depending on how one writes bigraded objects. We will use

the usual grading, #5: %(a,) = ExtS? *(A/AA,, Zs) 5 where the

crading in the Steenrod algebra is t, and s

homological, or resolution degree. By dimension, or stem

we mean t-s,

We use the techniques of Peter May [18], [19] to

compute H(A). In outline it goes as follows: 1. Define

a filtration on A,, such that the associated graded algebra

EA, is a nrimitivelv generated Hopf algebra. 2. Compute

H*(E°A,) by using the theorem of Milnor and Moore that a

primitively generated Hopf algebra is isomorphic to the



universal enveloping algebra of its restricted Lie algebra

of primitive elements. 3. Use a spectral sequence to get

from H*(ECA,) to H*(A,). The process is extremely

technical, and most of the proofs are deferred to the

appendix.

Corollary (To theorem 7 to follow) H*(A,), as an algebra

over Zn is a free module over the polynomial ring

Zyl, 0, ] where ® € 18a) and ®, € 1250(a)

Definition: A graded, restricted Lie algebra over 2,

is a graded Lie algebra L over Zos together with a map

B:L —&gt; L such that [B(x),y=Ix,[x,y]], and B(x+y) =

B(x) + p(y) + [x,v], x,y in L where [ , ] denotes the

multiplication in L. If G 1s an associative algebra

over 25s it can be made into a restricted Lie algebra G,

by the definitions [g,h] = gh-hg and B(g) = z° for

all g, he G. The universal enveloping algebra V(L) of

the restricted Lie algebra L 1s defined by the following

universal mapping property: There is an associative algebra

with identity V(L) and a homomorphism of restricted

Lie algebras 1i:L —&gt; v(L),, such that if G is an

associative algebra, with identity, and f{:L —&gt; G. =

homomorphism of restricted Lie algebras, then there is

onigue homomorphism g:V(L) = G¢ such that f = gi.



Theorem (Birkhoff, Witt. Poincare) Let I. be a restricted

Lie algebra over Zoe Order the elements of L in some

way. Then a basis for V(L) is the set of all monomials

dy ee-Uy , Where us is less than u; for all Jj,
k J J+1

i.e.. all monomials in elements of L providing the

slements are written in increasing order. [13]

There is a map g:V(L) —&gt; V(L)D V(L) given by

g(u) = ul + 1Ou for uel, and #(uv) = Su) 4(v). This

map makes V(L) into a Hopf nm.

Proposition: Let Fy be the increasing filtration of

defined by:

F(A) = A, 1f p 1s greater than or equal to O.

F_,(A,) = I(A,), the elements of positive degree in A.

F_ (4) = I(A,)F_ (4)

This is commonly called the augmentation filtration, I(A,)

the augmentation ideal. Let

© = o =

E 0, E p,q As) (F(A) /Fy 1 (A) ug where the last

subscript indicates grading in A,. Let ° = = E° , and
T ptg=r Pd

5° = £ EO. Then:

- E° is a primitively generated, graded connected

fdopf Algebra.

0

2. E = A, as a vector space over /
"

E° = V(P(E®)), where P(E°) is the restricted Lie

algebra of primitive elements in E°



Proof: 1 and 2 are obvious, where connected means Eg =

3 is just the theorem of Milnor-Moore quoted above

(Theorem 6.11).

 4

For the remainder of this chapter we use the Milnor

basis for A. If R.= (ryseeesmy) is » finite sequence of

non-negative integers, let eR eA¥* Db: the element

£71 fk, and let Sq(R) be the element dual to it in A.

Proposition: A basls for As as a vector space over Zo

is given by Sq{r, ,rn, 75) where rv, &lt; 8, r, &lt; 4, and r, &lt; c

Proof: This follows immediately from lemma 7 of

last chapter.

Proposition: P(E®) = {Sq(R) | R has only one non-zero entry

and this is a power of 2} 1i.e., {Sq(1), Sq(2), Sa(%). Sq(0,1) Sqa(Q

and Sq(0,0,1)}.

Proof: The filtration on E°® E° 1s defined by

F (E°% E°) = = PF, (E°)&amp; F,(E°). It is clear that
P 1+3=p 1 i

2)

those elements above are primitive. That they are the only

ones is not hard to check from the dlagonal formula

#(Sq(R)) = = Sq(R,)¥&amp; Sa(R,) where the sum is over all

sequences R,, R, such that R. + Ro, = R(+ denotes

componentwise addition).



It P(i, °' = Sq(R), where R has one non-zero

entry ot in the jth component. Then the primitive

elements of E° are just P(i,j) for the pairs

(1,3) = (0,1), (1,1). (2,1), (0,2), (1,2), and (0,3).

Proposition: As a restricted Lie algebra P(E®) has

] Basis given above.

[P(1,3), P(k,m)] = 8, \ ,P(k,j+m)

3. B(PE,3)) = 0.

~

c

Proof: Follows from the multiplication formulas in A,.

Let IL denote P(E°) as a graded, restricted Lie algebra

over Zoe The grading is given by u € L has degree (0,t)

where t 1s the degree of u in As.

Proposition A: Let X = V(L)® I'(L), where TI'(L) is the

algebra of divided powers on L. Bigrade X by degree of

v.(1) = (r,rt), where u € L has degree (0,t), and

requiring that the degree of a product = sum of degrees

of factors. Then there 1s an algebra structure on X, and

2 differential, such that X is a V(L) free resolution

of Zoe

Proof: See Appendix

Proposition B: There is a natural coalgebra structure on

X, D:X =&gt; X® X given by D{ux) = #(u)d(x) if wu &amp; V(L)

and x € I'(L), where ¢ is the diagonal map in V(L)
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and D(v,(v)) = 3 7; (VR Ypoi (V) &gt; The dual

V(L)*-free resolution of Z,, and X* = Zo

aE on 1

® x
v(L)

R(1,J) = v1 (P(1,3))*is a polynomial algebra on generators

The differential in X* is given by

J=-1
5R(1,3) = = R(i+k, J-k)R(1,k)

1=1

Proof: See Appendix.

The elements R(i,1) i- 1, 2; R(J, i=, 1; R(O0,3,

and R(C,2)R(1,2) + R(1,1)R(0,3) in X* are cycles.

Let hy, AssPsY denote their respective homology classes.

Theorem 6: The elements hy, 1=0,1,2, a, j=1,23B8, and

generate H(X*) and hence u**(E°)., There are U4 relations:

re a" _ — nC

hh = 0 1=0, 1, ho = hv, hy = h oq and

2

Se) + hp.

Proof: This is by inspection. It is clear that the above

elements are cycles. For the relations note for example

5(R(1,2)) = hihy 15 5(RrR(1,2)R(0,3)) = ha, + hyy, ete.

We are now ready to compute H**(A.)

Proposition C: There 1s a spectral sequence whose E® term

is H*(E°A,,) and which converges to H*(A,). Furthermore,

che differentials can be described as follows:



oy

2 &gt;
-— ~ h .So(hyd = 0 8,(a)) = ny” + h, hy ,

_ _ 2

2
5,(B°) = hyo, 2. E° = B®

5 AN

~ /

AC; « &gt; J

2)

and 0, = C oxcept

Proof: See Appendix,

Using the above proposition H*¥*(A,) can be computed

almost by inspection. E2 has non-bounding cycles

n,, a2, ac, v2, hoy, 8°, hf, h.B, va; and these form a
i’ oO? 14 Y 9 17Y 3 0 J 2 3 Y 19

set of generators for the cycles, and for E3, The only

element above which is not obviously a cycle is Ys

_.3 2 2 2
but dy(ev) = hy + a;h hy = hgh a; + oh hs = 0.

3 = Er anc  magelr from gt to BE”. af is =

1,8 are. Name %.2 classes of

DO longer

"he classes of these elements in E- - = ry



name

io

SA

5

 uO

class of

[h,

[hv]

a ©]
. D

v=]

La. v]

[0,2]

[hp]

[hp]

[h,B°.

rat

grading

(1,2%)

(3,11)

(4,12)

(4,18)

(4,21)

(4,24)

(3,15)

(3,18)

(5,30)

(8,56)

stem

p=.

2G

2

~

r

2

Then we have the following theorem.

Theorem 7: H¥*(A,) = Ext, (A/AA,, Z,) 1s generated

(multiplicatively) by the elements above. The relations

are generated by those below. The multiplicative structure

in E° is the same as that in H**(A,) except for the

relation Rat, = 0 in E, which becomes Al, = g?

in H**(A,). This is proved as Proposition D in the

Appendix. The elements denoted by roman letters are in the

image of the map Ext, (Z,, Zs) —&gt; Ext, (Z,, Zn)» and

multiplication by either ww or ©y 1s a monomorphism



Relations:

Among the h's

[L

Ny Pip
0

3
hy,” = 0

Withou* "'3

(a) ec

( U

)

-z eT

» &gt;
.

2
= h, ha

hh,
~

\

where
Le

Lo
.

AS “

aoe

- -

2 "= Q
D «

ZT

1

\ -

= J

- i

-
fe

&gt;

2 _ e_TR &gt;to

[IT hd, = he

he, = hh,

hg =h~

nT = «

2 _ 2

hg d 82 h, 0
»

5

»

) hse = hg

hg = 0

h,T = h

2
h,dg = hg

1. ut = \

“ol, =o

XR, = &amp;°

1,8, = 0, nod, =n td.



Table 1. shows the structure of 122% (a,) for t-s less

than 25.

It is possible to compute Ext, (A/A(S3* Sa” 8q°, Sq3), -.

in low dimensions by merely constructing a minimal resolution.

It is a module over H¥**(A,) , and its structure is given

for t-s X20 by table 2.

Corollary: Ext’ 3+18 (pn /a(sq} S35” Sa

zero if s # 3, and Zp if s = 3. Furthermore the

generator in Ext? °t is in the image of hs



CHAPTER V

DIFFERENTIALS IN THE ADAMS

SPECTRAL SEQUENCE FOR ,(MO&lt;U4&gt;)

In this chapter two non-zero differentials in the Adams

spectral sequence [0] for T, (MO&lt;U&gt;) are computed. Recall

the Adams spectral sequence has Eg" - Ext? (H*(MO&lt;L&gt;) Zr

and converges to ,T.(MO&lt;U4N), the quotient of TT,(MOLD)

by its subgroup cf elements of odd order. Serre [22]

has shown that the standard theorems about homotopy are

also true for oT. In particular, the homotopy exact

sequence of « fibre space is still exact, and the Whitehead

theorem relatins; homology and homotopy still holds. In what

follows TT wil &lt;liway. stand for AT

We compute in low dimensions (n&lt;15) by

using a postnikov system decomposition of MO&lt;K4&gt;, and the

known results on the stable homotopy of spheres in low

dimensions [29]. Let Lk be large and set S = s¥, and

oS k .
m (8) = T° = ToS ). Then we have the tower of fiber

spaces



1] —

en”

(Zs, 14)

K(Zss ~

K(ZA

K(Z.

K(ZD1

nL ero

where ET 1s . fibration over ET% with fibre an

Eilenberg-MacLane space. We have He (£2) = 0 if

q«&lt; 16, and 1165, Z) has no 2 torsion, so by the

Whitehead theorem T(E) = Tm (S) if gq &lt; 16.

 Jd * {

Theorem 8: In the Adams spectral sequence for T,(MOKL&gt;),

there are at least two non-zero differentials do (7) = hw

and d, (dt ) = h_d_, where the notation is that of chapter

Proof: First we calculate d, (8 ). Recall the structure

of ES?" for t-s = 13, 14, and 15. For t-s = 13 it is

zero, and there are three non-zero entries each for 14 and 1%

given by hid for 14, and hIW for 15, i = 0,

If there is a non-zero differential on &amp;% , then it must be

4, or d,. If dy(®) = hd, then BS, SHA has one

non-zero entry d,, and hence m3; (MOA 2) 2% If



a, (RR ) = C and dy(at) £ 0 then we have d, and hd.

are not zero in k,, and hence E_. Therefore we have

m.), (MOH) = Z) since multiplication by h_ in E_

corresponds to multinlication by 2 in the homotopy.

Now look at the homotopy exact sequence for the fibre

space gE —&gt; EY, We have

5 I

But 715{Eg) = 7,5(8) = 25 &amp; Zap, Tu (Eg) - 7.0 (S) = 7. + 7.

and mu (EY) = m1, (MO&lt;4&gt;) so we have

sd _- olZo =&gt; 25 © Zy =&gt; To) (MOS
+

1

&gt;

Therefore

Tu (MOLL) = either Z, or 4
-—

vd

cw

Td
—

By the above argument it must be Z,, and therefore ds (A) = hd

2 2
Now ds(h R) =h “d= hy," and h® = hot, sO

1,(h,T) = h,%, which implies d(T) = ho.

Corollary: The 53" term of the Adams spectral sequence

for w,(MO&lt;U4&gt;), t-s = 6 mod 6, can be described as follows:

It is the module over the polynomial ring Zplw, ©p gt]

generated by the elements h,2, 2 d.. 724 t a_g”, Hoe”

and T dg, in dimensions 6, 22, 38, 54, 70 and 86

respectively.



Proposition

T. {MOKU&gt;) 1s given as follows:

Ts { 16 4D)

2

is
/

—~

{ y

/,

-

J}

| 2

1 3

Proof: The homotor, sequences ¢f the fibre spaces above

and the Adams spectral sequence give the above groups

without difficulty.



CHAPTER VI

PRODUCT FORMULAS FOR of

In this chapter we study the behavior of vy on

products, and use the results to prove the theorems on the

vanishing of the Kervaire invariant. We need some facts

about quadratic forms.

Let V De a vector space over Zp» an }

non-degenerate quadratic form on V. Q 1s anti-symmetric

if Q(x,x) = 0 and Q(x,y) = y,x) for all x, y in V.

A collection of subspaces vy, saws Vv. is mutually

orthogonal if x &amp; V,, y € Vv. i #1 implies Q(x,y) = O.

Lemma: Let V be a vector space over Zos 6 a non-degenerate

anti-symmetric quadratic form on V. Then V 1i3 even

dimensional, and if Vis song Vv. is a collection of mutually

orthogonal subspaces which span V « symplectic basis may

be chosen for each Vis such that the union of these bases

forms a symplectic basis for V.

We will apply this to the case where V 1s

FH(M), m = 8k+3, M € ym and Q(x,y) = xy (cup product).

Since M is orientable, Wy vanishes, and therefore the

square of any m-dimensional class is zero. This and

Poincard duality imply that cup product is a non-degenerate

quadratic form on H(M).



The idea of the proof of the product formulae is

simple. Given two manifolds M and N let m= 1/2

(dimension of M x N). In all cases we consider m will

be an integer. Decompose H(M x N) into mutually

orthogonal subspaces. Suppose Vv! i such a subspace,

and V! has ~ symplectic basis {x .v

Tr M) is completely

determined by the orthogonal complement W of V! where

W=1f{xeV=H(MxN)| xv=0 forall ve

ffx each 1. Then

y(M x N) = Bw, ) [Mlg(w}) [M] where {w,, w)} is 2

symplectic basis for W. We call f{w,, wi) an effective

symplectic basis for TM" VA subspace W V is

affective if it has ~~» 7% "7°

orthogonal complemen* ~° = “7 ~**ve subspace is an

ineffective subspace. W2 find - small effective basis

for HMM x N) with which we can compute.

TL,

Theorem 9: Let N &amp; 72" Tm T7-connected and M = g° x 5

Assume that x(N) = Euler characteristic of N reduced mod z

is 0. Then (M) = 0.

Proof: Let m = 8k+2,

m=r3(s3 x 83) @ BORN) frO(s3 x s3)®@ mE (n) e HO(s3x83)@EFIN}

First we show a symplectic basis for H is effective. It is

clear that H and B® are orthogonal, since gLok=3 (x) = O.
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Also the product of any two elements in the same summand

of a is O. Thus there is a symplectic basis (x,y,

for H, where Xx; € Ho(s3 x 3 ® HOEH3 (0) = HOE H3 (x),

We need to show p(x) is defined, and equal to zero,

with O sudeborninasy. But Sq%%x, g grok A3 (py) = 0,

goto 8-2 £ gLOk+5 yy) = 0 ete, Moreover g(x.) € gLOk+o yy) J

The indeterminacy is also obviously zero.

Let wv, € HE (N) be the Wu class. Then vgu =

for all u &amp; HOX(N). and v, = 0 if i 8k. Let

X € 13(s3) be ¢ renerator.

If vg = C then u® = Wa, = fo»all ue Ho (1)
8k 8k "oe

and by Lemma 7 @u) = (xe .®u) = 0, and

therefore ¢(M) = C Suppose Va # 0, then ve, = 0.

i _ 8k _ 1

For 2 Sq Vi6Kk-i = Sq Vg = W161 (ND 5 the top dimensional

Stiefel-Whitney class. But Wy 6c (N) = y(N).= 0 by

hypothesis, and so ve, 5 5q%vg, = 0. By Poincare duality

there is a class Vv' € 1K (1) such that vg v' £ 0. Let

V = subspace of HOK (1) spanned by Va and v', and let

W be its orthogonal complement. If w &amp; W, we = W

so 4 | w(sd x sw is O by lemma 2. So an effective

symplectic basis for M is

le x® Vas XQ LID Vg; X@UL DV', 1D 2D (vg, tv!)

{

But. gl@z@ vg) = p(x® l®vg) = 0

30 w(M) = 0 and the theorem is proved.

since ve = 0
&gt; 8k ~ °



Theorem 10: Let M e lyk” Tg ne 16D

M and N T-connected. Let n= 8k + 3, m roy) + 2

Suppose A? : YM) — 1 (1) is zero for gq odd, and

a? HOP=a yy) —&gt; OP (41) is zero for aq odd and gq 3p.

(a denotes the elements of the Steenrod algebra of

degree gq.) Then w(M x N) = ¥(M)x(N). Compare [8]

Theorem 1.6.

Proof: Let H, = FH (nN @® gOPH (30) o (0 i® HOP (p

 CC and H = HY{M)® 1oP(ny. Then HMM x N) = H &amp; &gt;

and all th summands are mutually orthogonal. First we

show I!
:

Ther Ti cases
d-

~ consider, 21 and 1 odd.

Consider i even The hardest case 1s for i = 2. The

proofs for larger . a= analogous and easier. Since the

product of any element in one summand of Hs with another

element in the same summand is O. a symplectic basis

(x45) for H, can be found such that

X. € H2 (1) @ HOPH2 (yyy. We show » 1s zero on that group.

Let we H2(1), ve HOP™(N). Then

xv? {18 (ap) 43) = %x1Plige 1 @ v) =

oq (80060) sq'ts8(kHp)-2 sq? HB) 3) (3 v)

=a, ,(0, sq 8a 1g, © sqBP-2y. sa? sBk3y @® SqP2y,

by lemma 4, and fact that N is 7 connected and 16p dimensiona.
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But sq°P-2y = 8q25q0(P-1) Hy + sqtagB(P=1) +g ly =

8(p-1) +4 1..8(p-1)+Ww, Sq ) v + w,5q" Sq (p ) Holy = 0 since N &amp; &lt;4

So g(u® v) = 0. Indeterminacy in above calculation is

(u » 1)* H(K(2Z,,n-2))® HOP(N) = ur B2(K(z,,n-2)) &lt;

_ A
(HE 2 (1m) = 0, by hypothesis. So H,, and similarly [Ne

is ineffective.

To prove H, ineffective for OG. so guffices to

show for His as proofs for other odd 1 are the same.

Let u € OK (1) | Vv € goP=1 (yy. By same argument as above,

it is sufficient to show g(u® v) = 0. Again apply lemma &amp;

to show that g(u® v) =

8x42 8p-2. «.!,8p-4 «.2,4,8p-5. |
2p oy (SC uD (Sq 18p-1° od lopn-1- ole] 18p-17"

But sqtkt2y = sq2sq%u + sqlsq¥sqtu = 0. So glu vi

Indeterminacy is (U&amp;® v3 OKO (11) ® HP(k(2,8p-1 J

 BPH BP-1y Zc. so H iu Crective.

8p 2 _

Let Vgp © H*(N) be the Wu class. If gp = 0, then

reasoning exactly as in proof of theorem 9, together with

lemma 6 implies ¢(M x N) = 0 = %(M)x(N). So suppose

ve #0. Let U-={x¢ HOP (1) | xvq. = 0}. Then b
8p . : 8p ° Y

Lemma 6, (1M) ®@ U dis ineffective. Let {xy,v4) be a

symplectic basis for H(M). Then (x, ® Vep» VD Vg)

is an effective symplectic basis for HT(M x N)
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p(M x N) = 2 g(x,®gp) [M x N1g(yv, vg) [M x NJ

= B(x) MIvE (N14(y,)[M]v5[N]

(= B(x) [1] Bly) [M]) vg,[N] = (0) x(N)
Corollary1:Let Me cys OKAO 16D  kK p

M stably parallelizable. N. °

YM) = 9 (M)x(N).

Proof: Same proof as theorem, except in the proof that

i, is ineffective for 1 odd. Instead of using

gud v) = Ce B(1) = Cy BUD i) use

plu v) = a ,pliav). Everything goes through, since M

stably parallelizable 1lmplies all Steenrod operations into

the top dimension vanish. Hence everything will be defined

mod O.

Corollary 2: Let M e&lt;h&gt;OK®0 ye an 200 1+ gpapiy

parallelizable. Then ¢(M x N) = y(M)x(N) = oO.

Proof: N stably parallelizable implies all characteristin

classes of M vanish, in particular x(M).= 0. The rest

 Arf the proof 1s as above.

In chapter 3 it was shown that there 1s a monomorphism

A/AA, —&gt; H*{(MO&lt;4&gt;) given by ao —&gt; aU for any a € A/AA,,

shere U e H°(MO&lt;U4&gt;) is the Thom class, and that the image

Nas an Amodule direct summand in dimensions less than 55.

Now assume that it is an A module direct summand, so we



have H*(MO&lt;U&gt;) = A/AA, &amp; ™

Ext, (H*(MO&lt;L&gt;), Z5) = Ext, (A/AA,, Z,) &amp; Ext,(K, Zn)

The generator f of T _(MO“4&gt;) corresnonding to

the cobordism class of ¢ print induces a map £* : H(MO&lt;U4&gt; )—&gt;H'(S"

for n suffi-*-~t'v lars such ‘= “ £¥(°°- + where

X is a genernn 7 El The

rs
“, Nou £% induces a map

a —-

homotopy is the mow

Ext (£*, 1) : Ex’
wu

BE {Try Pere TIEN | Zp) whose

image lies hb oa So every

element.

the hcr

sequence fou

er ev direct

summand «

the homot:~

element in the imag.

»

sequence for

cM whether» every

&lt; fom tL summand. But

STOwe can sav much about those elements whic

Theorem 11: As a module over the polynomial algebra

ly sS,t
P = Zolw, gr, 0,1, Ext,’ (A/AA,, Zo) for t-s = 6 mod 16

has 0 generators ne, od , 1d, do
g * ns o’ 0’ nee

See chapter 5 for details. Let C

given above, and P' = Zl w, gt. Then

the set of generators

ie % 1s zero on all cobordism classes whose repre-

sentatives in the E, term of the Adams spectral sequence

for oS lie in the P' module generated by G, except
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che class cof Ss % Ss which is represented by h5.

2, If d..(o,) = 0 for all r &gt; 5, P' map be replaced

by P

The proof 1s many iterations of the proofs of the preceding

two theorems. First we show 9 1s zero on elements

whose representatives lie in G, then apply Theorems 9 and

10 to give the result. The restriction in 2 is necessary

in order to know that products in E, are products in oH

We need the following lemma.

Lemma 10: Suppose Mg w € ot, and that ow 1s represented

by an infinite cycle x 1n Eq of the Adams spectral

sequence, xeweExt’P(H*(MOA&gt;), Z,) with s &gt; O. Then

x(M) = 0.

Proof: Let rr : — 7, be the map induced by the

covering py, : BOYS —» BO. r is the map which takes

the 4-cobordism class of a manifold into its ordinary

unoriented cobordism class. The map

px: Ext (H*(MOKL&gt;), Z,) —&gt; Ext(H*(MO), Z, carries x into  wT

since H*(MO) is a free module over the Steenrod algebra

and therefore Exty’U(H*(MO), 2Z,) = 0 if s &gt; 0. Further-

more, since everything in 7} . comes from something in

filtration 0, and 1r cannot decrease filtration, we have

r(w) = 0, i.e., M is unorientably cobordant to 0. Hence

ov [Qt] all Stieffel-Whitney numbers, and in particular
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Ww, = x(M) are C.

Corollary: Let M = w € Qc such that wo 1s represented

in E, of the Adams spectral sequence by an element of

the P module generated by G. Then x(M) = 0.

Proof cf Theorem 11:

If x ¢ Ext. (II¥(MO&lt;K4&gt;). Zp) which is an infinite cycle

in the Adams spectral sequence, let [x] € o&lt;H&gt; be the

cobordism class it represents.

Lope N= 0 [wal] = [0]

infinite cycles. [w] € SP , [c

sin. both are

c 0a. Py theorem 2 we

can choose M € [d, 1, N &amp; [w]

only if q = 0, 7, 14 and HY(N) # 0 only if gq =

Also all Steenrod operations in both N and M are zero.

such that £0

This is obvious from dimensional reasons and the fact that

sq" : 1 (N) —&gt; 1 () “is multiplication by v,(N), which is

D since Ne &lt;4&gt;. So we apply proof of theorem 2.

H'(M x N) = BH((M) HY(M). Let ue H(M), ve HI(N)

Then #(u® v) = a B(i,7) = a) B{uD 1,

ayy (805, sqsf sa? 5 ue in = ay. (0) = O.,

Steenrod operations are O, the indeterminacy is 0 and

y([w d_ 1) = O.

&gt;
2

. y(l*7a,. =0 1
J

is in dimension 38. The

nly possible non-zero differential on ~2 35 4 (1°) = h,d_w.
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2 BN 2 2
But then d(T dy) = h,d_“w = h0"g £0. 280

[v%a,] = [7®1la_]. Let Me [d] as in 1). Let

N € [12] with HY(N) = 0 unless q = 0, 8, 12, 16, 24

Then Ht? (um x N) = ql (Mm) 12 (N). Let ue Hn! (1),

Vv E HZ (NN). Then gu v) = % vB (lig) z= 0 (Blin ® Vv)
) |

a ( (Sa, Sqt*°1, sq22 hols) @ ve = vu) v2,

where ©» 1s the secondary operation associated to the

relation Sasa’ + 8a2(sa'sq?) + Sat(sq2sq?sqt) = 0. The

indeterminacy 1s O since all Steenrod operations in M

vanish. Then the same argument as in proof of theorem 10

shows that ¥(M x N) = X(N) (Sv(x, ) [M]o(y,) [N]) where

(xy, v.} 1s a symplectic basis for M. But X(N) = O

by lemma above, since [7°] is in filtration 6,

21 _ : &lt;H&gt;

3. ¥([a_g"]) = 0. This is in Qg;”. Both dj and xr
 oD

are infinite cycles, so [d,g°] = [a 1lells]. Let

Me [d.] as above, N' e [g] such that gd(N')

unless a = 0, 8, 10, 12, 20. Let N = N!' x N'

hl

LJ

Then

MWe [ag9], HOM x N) = H(M® 3°°(N) and by the

same argument as case 2, v(la_g®]) = 0.

vl %e2]) = 0. The only possibly non-zero

differential on &gt;t is a, (2) = hug. If so, then
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2.2
d3R z&gt; = hog” £ C.

Choose M € [WZ] such that M has odd dimensional

cohomology in dimension 15. This can be done by

theorem 2, since HI(MOKU4&gt;) = 0 for q odd and less

than 15. Then HI2(M x N) = HO(M)@HO(N). Let

1g HOM), v e HOO(N), then #(uep Vv) = eyP(155)

2 17 2 4,1 &gt; 2,4, 1k,
2 Plu ing) = A oy (1 @ Sa” 1,5, UD Sq ’150s uw Sq TT,

= SA) since u € HED (11) implies u® = 0. Now [2]

is in image of p, hence stably parallelizable, and

therefore all Steenrod operations into the top dimension

are zero, hence indeterminacy is O.

5. w(lr a gd) =o, [vag] eal C and ry

infinite cycles, but d(T) = hw. Theref:re

d,(7g) = h,wg = 0. The on’v other possible non-zero

jifferential on 7g I (+) = @°n,d_. If that be so

then dg(T de&gt;) = Wu “ Ang +O. So we have

(td g3] = [tg]la_g]. But [tg] dis in 32 stem [dg] in

the 54 stem, moreover by theorem 10, since [d_e°] is in

image of 0, v(t dg) = vd g®lxl7g]) = 0. To complete

the proof of the theorem we apply theorems

Theorem 1 shows that ¥([nZp]) = 0 where pv eg P

; and 10.

Note

AE



that any element of
5

has the property that a Steenrod

operation from an cdl dimension into the Top dimension

is 0. Represent~~‘ves for [w°]¥ and ot

chosen with n. ~%1 dimensional cchome’ ev

Theorem 2 implies 1. To ge* 2 we need onl7v “&gt; show

2958-4 (yy) = 0 where N € a and q odd q &gt; 24,

By Theorem 2, N can be chosen to have non-zero odd

dimensional cohomology .only in dimensions 15, 23, 24 and 33

20 2. ro
Thus it sufficz: &gt; show A“ HEO( = A331" Y= 0. But

m~ v Ee (Bock) = oO.
this 1 +2110 gin

Theoren
-

o » 33. Then

Cramed
d 6)

Proof: We show ths’
4

’

Lo v on manifolds

™

in the image of oy

n = 22. There are
- clements Ho

in 55 , represented

by wd, and hx, where x is the element in 1220(a,)

I"*(MOK4&gt;) which is

isomorphic to A/AA, and begins in dimension 16. We have

already shown that Ylad 1 = ( I, is sufficient to show

that [hx] canr.’’

But the map a”

stably parallelizable manifold

the element [h5x]

alements in Qo in filtration less than 4

11 filtration 2, and there are no



~

’

—

n = 20

Let x be as above, y and y' be the elements

corresponding to generators of the summands of

H*(MO&lt;A&gt;) which start in dimension 32, and =z the

generator of the summand which starts in dimension 20.

Then there are 6 elements in pe to consider.

2 2 2 2
(%a_], [wd],[xed] [hSyl; [nzy'] and [hgval.

By theorem 11, ¥ 1s zero on the first two. By Theorem

(xd J] = y(wd ) x(x) = 0, and by Theorem 10,

y[n5vz] = x(vz) which is zero by Lemma 10. So we have

only [h5y] and [hSy"] to consider. These are both

5

in filtration 2, and hence would have to be in the image

of something in filtration 2 or less. There is one element

00 . . .

in fag in filtration 2, [hah]. But the map

ixty (2525) - (2,25) on t™

spectral sequence sends h, int

into 0. Therefore [hZy] and [hZy'] are not in the

“term of the Adams

 hence hh, goes

image of Q7, and the theorem 1s proved.



APPENDIX

In this chapter the four propositions cf chapter 4

are proved. The first three are contained in May's work

[18], [19], and are included only for completeness. The

last is a consequence of the work of Liulevicius (171,

and gives the multiplicative structure in H**(A,).

Let G be a Zp-module. Recall the definition of

the algebra of divided powers I'(G) on G. T(G) has

cenerators Ve (x) for each x in G and each

non-negative integer t, subject to the relations

Yolx) m for all

r+s

vo. (x4y) = = vy (x)v.(y)
© r+s=%t 4 S

30

Proposition A: Let L = P(E°A,), the graded restricted

Lie algebra of primitive elements in E°A,, and V(L) its

associated enveloping algebra. Let I'(L) be the algebra

of divided powers on L, and X = v(.)&amp; I(L). With a

bigrading, algebra and coalgebra structure, and differential

as defined as below, X is a free V(L) resolution of Z,

Grading: For any u &amp; L, assign degree (0, t), where

t is the degree of u in As. This induces a grading on

7(L), by setting grading uv = sum of gradings of u and



~~

~~

since the Birkoff-Witt-Poincare theorem says that monomials

in the elements of L are a Z, basis for V(L). Let the

grading of v,(u) be (r,rt), where t is degree of

u € As, and again require that the grading of a product

be the sum of the gradings.

Multiplication: Give V(L) and Ty: thelr natural

algebra structures, and subject the tensor product to

only the following relations:

v{(u)v = vy, (u) + vy, ([v,ul)

Vor (0dr = vy, (a) + yo (@)v (Tv ul) vy, gy (uw)

 vy, (i

for all wu.

Diagonal map: Define D
-

2) by

D(b,x) = #(b)D( &gt; where Db

is the diagonal map on V(L).

D(v,.(u)) = wv, (-

x € I'(L) and

E Al J 1S -

homomorphism on I'(

Differential: Define « .

d(bx) = bd(x) for be V(I),

av, (u)) - u for any u € L,

1(v,, (0) = ayy (W)vy(y y(n), and

is a derivation on (1).

— ti

Proof: The map € : X —

e(x) = 0 for any Xx &lt;

+ Zo glven by e(l) = 1 and

-e is clearly an augmentation.



So we need only show dd = «

show NG = 0, 1t 1s enough to show it 1s zero on generators.

a2 (u) = 0, a%y, (x) = d(x) = 0 clearly.

1B pn (x) = aly (Rvp) (8) = xox¥ppy(x)

- xy (2) x71 (xp (1p) (x) = 0 + XXY+ (x), (8)Vp (pop) (%)

- xy ([6,51)7; (2)7, (yp (%) = 0, since [x,x] = 0 in L

and xx is 0 in v(L).

To complete the proof we need only show

seyelic. Consider the filtration Fy, defined on X by

1. F(x) = = F.v(l))= F (T(L)).
r+s=p :

2. Fy, on v{(L) given *7r

Fy (v(L)) = Z,0 L (i.e. identity and elements of L)

2 (v(n)) = (Fr (v())® op

and on TI'(sL) by Vp (x) a (Xp) e Fl ir 2  0%ne

tlearly d(Fi)ec FS, so ¢ induces a differential d "3

Xq the associated graded algebra. But X, is just

v(12)@ (1%) where LZ% is the abelian restricted lie

algebra on the vector space L, i.e. [u,v] = u, and

8(u) = 0 for all u,v € 12. This follows from definitions

above and from the theorem of Milnor-Moore [24] which states

hat the associated graded algebra to v(L) with the above



filtration is v(L®). Ir X, is acyclic, so is X. So we

need only show X is acyclic. To show this construct a

contracting homotopy, i.e. 2a map Xo? £ —&gt; X. such that

5.44 3 ds, = I + E&gt; where e, X — Zp 1s the augmentation

Since 12 is abelian L2 = L, &amp; eo. @ Lys where Ly are

one dimensional restricted lie algebras and x = XD ces TA

Since x is isomorphic to x, for all 1 and Jj, it

sufficient to show 1) there is a contracting homotopy

on X,, and 2) given a contracting homotopy on

L-® Che DX» we can extend it to Xe Let Y = £5

d y
x XX, th ¢" “ferential, ss. . hd the

contracting homotopy ¢€., : X, — Z, ‘the augmentation.

We,

i, and s, are defined by

C) =d, (1 s, (4 } = oO

¢) =d, (u s,(u) = v4 (u)

a;(vq (u)) = 1,

a, (wy; (u)) = 0

dy (Yon(w)) = wry (Wp (yp) (ws

for ue Li the ‘generator. Note d, 1s the same as

a, |X. ® z.® .

s, (vq (ud = 0

s, (uy (u)) = v,(u

5, (uy, (u)y,, (u) C

Now suppose
-~

—

-
wr Z~ 1s the augmentation do, the



differential induced by d |

contracting homotopy for Y. Define

J

J
and Sy the

Ss, =5,@ 1 + ED Sse

Note ¢ =d3d-@ 1 + 1 J.

Then ds, = d,s. 3 1 + d, &amp;, © 54 + 5, ds + E,® ds8,

Sd = s,4d, &amp; 1 + £49, 5» tT S,q

adding, and noting that €,d, die, = 0 we have

a8, + 8.4, = (ds; + 5,4) @ 1+ ¢,@ (dys, + s,d,)

(1+) ®@ 1 +e. @ (1+e,) = 1® 1 +e,@ &amp;,

~~

=

— )
—y

Hence Xx, is acyclic, and the proposition is proved.

Proposition B: Let X* be the dual of X, X* = V(L)*@ I'(L)

Fx CL
and X¥* = ZB (1,) $X* X* is

. free V(L)* resolution of

Zr, and X* is a polynomial algebra on generators

R(1i,]) = (v,(B(1,3)))*. The differential in X* 1s given

J-1
by 6(R(1,3)) = = R(i+k,j-k)R(1i,k).

lr=1

Proof: Everything except the last statement follows from

Proposition A and the fact that the dual of an algebra of

divided powers with tiie natural coalgebra structure

(i.e., that which it has) 1s a polynomial algebra.

Grading X¥* the same as X, we have that 6(R(i,j)) must



have grading (2,t) for some t. So the only possible

things it could be non-zero on are vou) or v1 (v)y, (v)

5(R(1,3)) (vp(u)) = R(1,J) (uy, (u)) = oO.

SR(I,J)(vy(wv(v)=R(1,3)d(vq(w)v,(v))=R(1,3)(uyy(v)+~v(u)v

= 71,3) (v, (Tu, v1). This is non-zero Los [u,v] = P(1,]3).

Set u = P(k,Y) v = P(m,n). Then [u,v] = 8 man (M, X41)

Therefore k=min, m=i,. and Ym = J. Solving these we get

the formula above.

Proposition C: The proos of proposition C 1s divided into

two partys the firs” setting up the spectral sequence, the

 =~ tials,second calcul’

Propositic (7

Bar construction cn A,, B(a,, such that F gives rise to

a spectral sequence {ET} wach Ghat

1 {EY} converges to Huex(A5), the homology of A,

vr 7

2, EY = B(E°A,) as a differential graded Z, module

and hence

he 0 o
3. E° = Hyx(E"A,), the homology of E"A,.

The dual spectral sequence (E_} 1s obtained by

dualizing everything above and

wd » {g_’ converges to kt£0 the desired algebra.

3. E, is isomorphic to H**(E°A,) , which we have

already computed.



We will use the homology spectral sequence only to

calculate differentials.

Proof: First we define the filtration on B(A). Let

Fy be the augmentation filtration on As defined above.

An element [ajlagl.cela] is in F, If a, « F

n

Py «= 1 and 2 Py +n = p.. This filtration gives rise
i=1

in the usual way to a spectral sequence {ET}. Furthermore

the filtration is finite in each degree, and hence the

spectral sequence converges to Hy,(A,). Let E° = FF _

to distinguish it from E°. The differential in the bar

~ronstruction is glven by:

n

dla. l...]a] ” a lag]...lz] + Zo lagleedagay glee

Therefore d(F,)e F, hence d = 0 and = pt

To prove 3, note that tensor product over Zo is an exact

func o — — -

functor. The sequences 0 —&gt; F_ (Ay) &gt; Ay =&gt; ASF (As)
~

Si

are split exact as Z, modules, and the filtration on

B(A,) is the augmentation filtration on each factor.

Hence BT = B(E°A,) as graded Z, modules, and comparing

the differentials one sees that they are the same. Hence

3 is proved. The rest follows by dualizing.

To calculate the differentials in the cohomology

spectral sequence, we dualize to the homology spectral



”~

sequence, embed X in B(A,; and compute the differentials.

Then duallze back to the cohomology spectral sequence.

In order to compute we need an embedding of X in RB.

Define the shuffle product in B as follows:

[a leeela 1% a i leeila  ] = &gt; larry lee lag (m) |

where the sum 1s taken over all permutations TT of the

integers 1, ..., nd such that 1f 1 &lt;i &lt;j &lt;m or

mk &lt; 1 &lt; j &lt; min, then 7(1i) &lt; 7(y). This is called an

(m,n) shuffle.

Proposition. There 13 a monomorphism ci’ Giflerential

+ X — B X = ! © =

algebras o : X = B(A,) where X = I'(P(ETA,)) = Z2,® (1)

such that

Lo oglya(u)) = lu]. fat +» factors

:  o(xy) = o(x)*o(y) where ue P(E°A,), x,y ¢ X

W1'"y the natural coalgebra structure on B,

J 1s &amp; map of coalgebras.

This is theorem 18 of [19].

Lemma: We can trigrade 7! by Et
— p,d,t

where an element

(a, |... la] has degree [p,q,t] 1f

n

Z (degree of a. ¢ A.)
i=] -

4

n

Pe

1=1

(filtration degree of a, € E°A,,) = q.

p+a=n.



Ncte that 0p xlways, since the filtration degree is

’

\ for each element a ¢ I°A, except 1. Furthermore.

the generators of E, = H**(E°A,) are in the following

trigradings:

i=0,1,2

&gt;(21+ 11) i=1,2

Proof: Just look at the definitions of the elements.

5,
 rn

gP&gt;d,t &gt; pP1T, g+l-r,% so the following corollary

is immediate.

Corollary: 6.(h,

Proposition CIT-

ACN = 3

55(a) = h,

55(P) = h,0

5, (8%) = hn

) for a.l i 0)
21 4]

J [OY

rw: 1 “r
5 To

and all other differentials are C.

Proof: The computations are long and messy, and are all in

Mav's thesis, so we give a sample computation.



(- /

. vy Bo

Sn(a ) = ee “y hos

-2,4,6 2
0, € E, A h,3,h, ha £

0,2 .20532,6  5-2,4,6 | 50,3,6

so everything is in the right dimension.

2” is represented by Yo(p(0,2)) ; hy*¥ by v,(p(1,1))

 Nn *
0

by v4(p(0,1)) and hy* by v.(p(2,0)).

Imbedding in B(A,) we have

3(v,(p(0,2))) = [p(0,2)[p(0,8)]

o(v, (Ry 4) = [p(L,4)].

So (n "n,)* is represented by

[p(2,1)1*[0(0,1) [p(0,1)] and (n,”)*

y = [p(1,2)[p(2,1) Ip(1,2)].

ax = [p(0,2)p(1,1)|p,°1 + [p(0,1)[p(0,2)p(1,1)] and

ay = [p(1.2)p(1,2) [p(1,2)],

Now consider thi chain ue Bag), u = [p(2,1)1%[p(0,1)|{p(0,1)]

then au=[  |p(c,2)] + [p(0,1)[p(1,1)p(0,2)] +

[p(1,1)p(C,2. :(v,-)]. So in B(E°A) we nave |

[p(0,2)|p(0,2)] &gt; al=(2,1) 1%[p(0,1) |p(0,1)] and therefore

a,(h_n,)* = a”. Similarly we get dy(n,3)* = a”,

other boundaries in Ee. and this gives the 0. above.

calculate 9). For dimensional

fer 2 € Ey except 8%, For example

y © g po4,8,12 and &amp;.a “ € EY» 0s 12 =



2 ~8,12
BT e Ey 230 ang 5,6 £ By »9239

z -4,9,30
0,0, gE), »953 and it is the only element. The same

computation as above shows 5, (8°) nr hao 2

dimensional arguments give 0ny gu

Once again

2

Proposition D: In H**(A,) A, =

Proof: Note first that this is possible. In the E_ term

of May's spectral sequence, the above elements are representec

oy We ps 7,18, Re £8:13,30, ana 2 e 516,24, 48

Now RN, = 0 in E_, but it is © ltration 12,

and hence it 1s possible that in H** Jd .. = g°. Since

the only elements in Ho 40(a,) are g~ and O, it follows

that it is sufficient to show RAR £ 0.

Lett B be the two sided ideal in As generated by

sqt for 1 =1, 2. We construct a map Jiurx(a,) —&gt; H¥**(B)

and show that Jat) J(R,) = 1 (g°) £0, B is a Hopf

sub-algebra of A,, and the quotient A,/B 1s the module AY

As a vector space this quotient is isomorphic to 2, &amp; Z,

with generators 1 and sq”, and it has the obvious structure

as an A, module. We have the exact sequence cof

1
A, modules O —&gt; Z, —&gt; AJ JL, Z, =&gt; 0. where 1

multiplication by sq”, and Jj 1s the augmentation. Applying

che functor Ext, ( ,Z2,) to this exact sequence, we get a
0

long exact sequence



Cc. “+ n J

—&gt; Bxty (25:2) =&gt; Ext, (Ag, Zs) £&gt; Bis $2 7

Liulivieius [17] has shown that Ext, (A") a Exty(Z,,2,)
5 0

H**(B), and in the same paper he computed H**(B). The

map JiE*x(a,) —&gt; H**(B) given by the composition

3 &gt;
~ 1 ~

H**(A,)= Exty (25:25)% ixty (RosZp) &gt; Exty(Z,,2,5) = H**(B)

is the same as thet induced by the inclusion of B into

Ase Hence it ir « ring homomorphism.

In Wit is shown that there is an element k in

gLs6(p) such that k* #Z C for any positive integer r

By constructing minimal resolutions for over As for

Z, and AL, and lifting the map one finds that

- A A,

ja) = x3, J(k,) = k°, and (&amp;®) ~ k'. Hence She

result follows.
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