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Abstract 
Cells have evolved mechanisms to distribute ~10 billion protein molecules to 
subcellular compartments where diverse proteins involved in shared functions must 
assemble. Here, we demonstrate that proteins with shared functions share amino 
acid sequence codes that guide them to compartment destinations. A protein 
language model, ProtGPS, was developed that predicts with high performance the 
compartment localization of human proteins excluded from the training set. 
ProtGPS successfully guided generation of novel protein sequences that selectively 
assemble in the nucleolus. ProtGPS identified pathological mutations that change 
this code and lead to altered subcellular localization of proteins. Our results 
indicate that protein sequences contain not only a folding code, but also a 
previously unrecognized code governing their distribution to diverse subcellular 
compartments. 
 
 Groups of proteins involved in shared functions must assemble to fulfill their 
physiological functions (1). For example, the fidelity of gene transcription hinges 
on the assembly of over a hundred different proteins at regulatory elements (2, 3). 
Selective protein-protein and protein-nucleic acid interactions are thought to be the 
predominant driving force leading to the assembly of specific proteins at locations 
where they carry out diverse functions (4-7). Shape complementarity among 
structurally stable portions of proteins have dominated models of protein assembly, 
but there is now considerable evidence that large assemblies of proteins with 
shared functions also occur through weak multivalent noncovalent interactions (8-
15). Nearly all cellular functions involve formation of such assemblies, which have 
been described as condensates, aggregates, puncta, hubs and non-membrane bound 
compartments (Fig. 1A). In a recent study, we used small chemical probes to 
demonstrate that different condensates can harbor distinct internal chemical 
environments, suggesting that such assemblies have different solvent properties 
(16). It is thus possible that protein molecules that assemble selectively with others 
in a condensate do so, in part, as a consequence of their compatibility with the 
internal solvating environment of that compartment (17-20). Integration of 
contributions from specific interactions (e.g., DNA-protein binding, protein-protein 
interactions) and nonspecific interactions (e.g., transient noncovalent interactions) 
is challenging to model, but protein language models provide a means to 
incorporate diverse contributions. If such a protein language model could be 
developed, it would have important implications for our understanding of cellular 
function and dysfunction by providing evidence of a protein code distributed 
throughout amino acid sequences that can guide selective distribution to 
subcellular compartments.  
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Evidence for shared protein codes in condensate compartments 
 To learn whether collections of proteins that assemble into specific condensate 
compartments have shared protein codes, we adapted an evolutionary scale protein 
transformer language model (ESM2) to predict protein assembly into distinct 
compartments (21, 22). The transformer architecture of ESM2 allows for 
simultaneous relationships between all amino acids in an input sequence to be 
learned, providing a general strategy to detect protein codes embedded in the 
amino acid sequence of a protein. We focused our studies on a set of 5,480 human 
protein sequences that have been annotated for twelve condensate compartments 
using the UniProt (23) and CD-Code (24) databases (Fig. 1B). The compartment 
identities of the proteins in these databases were determined with various 
experimental techniques and curated by experts in compartment annotation. 
Compartment annotated whole protein sequences were used as input. A neural 
network classifier was jointly trained with ESM2 to develop a model, termed 
ProtGPS, which computes the independent probability of a protein being found 
within each of the twelve different condensate compartments (Fig. 1C). The area 
under the receiver operator curve (AUC-ROC) showed that protein compartments 
could be predicted with remarkable accuracy (0.83-0.95) across the 12 different 
compartments (Fig. 1D). The performance of the ProtGPS model indicates it 
detects patterns in the protein sequence that differentiates these condensate 
compartments. 
 We attempted to identify features that might contribute to selective 
compartmentalization, although extraction of the non-linear patterns or principles 
learned by a machine learning classifier is a well-known challenge (25), due in part 
to neural network architecture, to the complexity of pattern information and to the 
lack of “language” to describe learned patterns outside of conventional 
physicochemical properties. The types of sequence features that enable transit 
across intracellular membranes were not immediately evident in the sets of proteins 
that that are found together in these compartments (Fig. S1). We did observe that 
proteins in some compartments shared physicochemical properties such as pI and 
hydrophobicity (Fig. S2, Table S1). We also note that the high performance of the 
protein language model depended on information learned from inclusion of  
multiple members of protein families, and when these families were not fully 
represented in the training set, the performance was only somewhat better than a 
random forest or linear regression model (Fig. S2, Table S1). This suggests to us 
that inclusion of multiple protein family members is informative in optimizing 
protein language model performance, although inclusion of this information 
presents some risk of overfitting. Certain amino acids were more informative to 
differentiate proteins found in separate compartments (Fig. S3). We found little 
evidence to suggest that a protein distribution code can be represented with a small 
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number of components (Fig. S4). We anticipate that advances in machine learning 
and in chemical pattern description will enable additional insights into the features 
that have been learned by ProtGPS that enable its level of performance. 
 
Guided generation of novel protein sequences for compartment selectivity  
 To further validate that ProtGPS has learned protein codes associated with 
condensate localization, we sought to design novel protein sequences that, when 
produced in cells, would selectively assemble into a compartment of interest. To 
test this idea, we initially designed protein sequences using an autoregressive 
greedy search (GS) algorithm (26) and generated eight novel proteins designed to 
assemble selectively into nucleoli (Table S2). However, these proteins failed to 
assemble selectively into nucleoli (Fig. S5). The failure of our initial efforts to 
generate proteins that selectively compartmentalize in nucleoli motivated the 
design of another approach that might be more successful. With GS and ProtGPS, 
protein sequences are generated without consideration of the chemical space of 
proteins found in nature. We sought to create an approach that could overcome this 
limitation by applying a concept borrowed from medicinal chemistry, where it is 
common to consider whether a molecule shares desirable physicochemical 
properties with others (27, 28), namely sampling from a protein chemical space 
with specific properties. To apply these concepts toward protein generation, we 
sought to constrain generation to (1) sequences in the chemical space (29) learned 
by ESM2, (2) sequences that are intrinsically disordered (30) because these are less 
likely to introduce competing folded states and are associated with condensates 
(31, 32), and (3) sequences that should localize to the intended compartment. In 
practice, this approach integrates the starting protein sequence (mCherry) and its 
properties into the search for new peptide sequences that are natural, disordered, 
and have a compartment classification of 0.95 or greater for the target 
compartment. Thus, we used additional features of protein chemical space and 
intrinsic disorder for our Markov chain Monte Carlo (MCMC) algorithm (Fig. 2A).  
 We then used the MCMC algorithm to perform guided generation of proteins 
that would selectively assemble into a condensate compartment when appended to 
mCherry protein, which would allow us to follow protein distribution. The 
chemical properties of mCherry were therefore necessarily integrated into the 
resulting newly generated protein, which would then allow us to compare 
partitioning of the new protein with mCherry alone. We first generated proteins 
that were designed to selectively partition into nucleoli (9), which were selected 
because they are large, well-studied bodies with distinctive morphologies and 
possess unambiguous marker proteins (Fig. 2A). Ten 100 amino acid long protein 
sequences targeted to nucleoli were generated (Table S3, Fig. 2A, Fig S6-7, Table 
S4). For each protein, a plasmid was constructed that encoded the generated 
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protein attached to an N-terminal nuclear localization sequence and a C-terminal 
mCherry protein. Each of the proteins was expressed in human cells together with 
the nucleolus marker NPM1-meGFP and cells expressing both a test protein 
(mCherry) and the condensate marker (meGFP) were isolated using flow 
cytometry. Imaging of cells revealed that four of ten proteins designed to assemble 
into nucleoli (NUC1-10) showed readily visible enrichment in nucleolar 
compartments (NUC1, 2, 5, 6) (Fig. 2B-C, S8-12), and a more detailed partitioning 
analysis indicated that the remaining six NUC proteins exhibit more mild 
enrichment compared to the mCherry control (Fig. 2D, Fig. S8-12, Table S5-6, 
Methods).  
 We next tested the ability of the MCMC algorithm to guide generation of 
proteins that would partition into nuclear speckles, which are condensates formed 
by mRNA splicing apparatus. Using the approach described for the NUC proteins, 
ten SPL proteins were generated and individually expressed in human cells 
together with SRSF2-meGFP, a marker of nuclear speckles. Imaging of cells 
revealed that none of the ten sequences for SRSF2-asociated nuclear speckles 
became clearly concentrated in nuclear speckles, but two of the generated proteins, 
SPL2 and SPL3, accumulated in cytoplasmic puncta together with SRSF2-meGFP 
(Figure S6, S12-13, Table S5-6, Methods). It thus appears that SPL2 and SPL3 
gained the ability to associate with the SRSF2 speckle protein in a cytoplasmic 
condensate, but lost the ability to migrate into the nucleus where speckles normally 
form. This behavior is analogous to the effect of mutations in the splicing regulator 
RBM20, which cause this nuclear speckle protein to accumulate in cytoplasmic 
puncta and concentrate other splicing proteins (33, 34). These results with NUC 
and SPL proteins indicate that the MCMC algorithm can guide generation of 
proteins that selectively partition into a target compartment, but it was not fully 
successful in doing so, suggesting that additional training data and analytical 
approaches will be necessary for improved performance. Sensitivity analysis 
conducted on the MCMC generative process suggested that increased sampling 
could lead to improvements in enrichment, but also found the process was non-
linear and can lead to reduced performance, as seen for the final version selected 
for NUC6 (Fig. 2E, S14). Generative modeling of new protein sequences is a 
challenging task whose success rate can vary from less than 0.01% to 
approximately 70% due to the specific modeling goal, the algorithms used to 
generate protein sequences, and the criteria used to define success or failure (35-
38). 
 
Pathogenic mutations can alter protein codes  
 Mutations can create pathogenic effects by altering a protein’s function or 
altering a protein’s subcellular compartmental distribution. Because ProtGPS can 
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accurately predict the subcellular compartmentalization of normal proteins, it 
might be able to identify pathogenic mutations that cause a change in the 
subcellular location of a mutant protein. To test this possibility, we turned to the 
ClinVar (39) database, a public archive of a vast number of human variations 
classified for diseases. Data were collected for 205,182 mutations and ProtGPS 
was used to predict if the changes in amino acid sequences alter the subcellular 
distribution of the mutant proteins (Fig. 3A). We employed two approaches, first 
examining how changes in amino acid sequence affect ProtGPS predictions and 
then testing experimentally whether mutations predicted by ProtGPS to affect 
protein distribution can do so. 
 To characterize the relationship between mutations and changes in ProtGPS 
predictions, we used approaches applied in information theory. ProtGPS is trained 
on wild-type sequences, and then uses learned patterns to score proteins for their 
likelihood of distributing to compartments. Mutations affect sequence, and can be 
seen as a change in the information content of the sequence. Any change is thus 
expected to result in some change in the scoring of mutant protein compared to the 
wild-type. Furthermore, any changes in scoring are likely to reflect an increase in 
uncertainty of the prediction, as mutations effectively remove information that 
went into the prediction for the wild-type baseline. To test this, we computed the 
change in Shannon entropy (40, 41), an information theory measurement of 
uncertainty, of the twelve condensate compartments for wild-type versus mutant 
proteins to ask if mutations alter the certainty of compartment assignment for a 
protein (Methods). We conducted this analysis separately for the truncation 
mutations (83,211), which we assumed would have major effects, from the single 
point mutations (121,971), which we assumed would have much smaller effects. 
We find that the Shannon entropy is consistently higher with mutant proteins 
compared to the normal proteins across all compartments, indicating mutations are 
associated with decreased certainty in compartment assignment, with truncations 
producing larger effects than point mutations (Fig. 3B). A similar analysis was 
performed for individual proteins; changes in the scores between a wild-type 
protein and its mutant counterpart can be measured using Wasserstein distance (42-
44), a metric of dissimilarity between two probability distributions. We find that 
pathogenic truncation mutations, when compared to single point mutations, tend to 
show larger Wasserstein distances (Fig. 3B), but both types of mutations are 
affecting the scores for compartmentalization. These Wasserstein distances cannot 
be fully explained by a model of mutations affecting well-recognized features of 
proteins such as short linear motifs, residues subjected to post-translational 
modifications or buried residues that might contribute to protein stability (Fig. 
S16-20, Table S7-9). These measures indicate that within this collection of 
pathogenic proteins, sequence variation may alter the predicted compartments of 



 7 

proteins in ProtGPS, suggesting that some mutant proteins may no longer partition 
selectively into compartments in the same manner as their normal counterparts. 
 To test experimentally if pathogenic mutations predicted by ProtGPS to change 
protein distribution information content did so, we prepared cells ectopically 
expressing wild-type and pathogenic mutant proteins from tagged with a 
fluorescent marker protein. We selected for study 20 pathogenic mutations (10 
truncation and 10 single point mutations) in proteins involved in a broad range of 
biological functions and diseases, whose normal cellular compartmentalization was 
well-known, and that scored across the range of Wasserstein distances (0.162-
0.000) (Table S10). We then generated a panel of cell lines stably expressing each 
protein from a doxycycline-inducible expression cassette, treated cells with 
doxycycline and conducted live cell confocal microscopy analysis. Differences in 
the subcellular localization between normal and mutant proteins would appear as 
changes in the fluorescence patterns displayed in micrographs. We noted that 
signals for all the normal proteins occurred in the subcellular locations where they 
are known to reside. When comparing images of normal proteins with their mutant 
counterparts, we found striking differences in compartment appearance for almost 
all truncation mutation proteins, and less striking but clear differences in 
compartment appearance for point mutation proteins, except for RBM10 (V354M), 
which scored with a Wasserstein distance of zero (Fig. 3C, Fig. S21, Table S10). 
Thus, it appeared that proteins calculated to have a large Wasserstein distance 
tended to exhibit more dramatic changes in compartment appearance, although this 
relationship was imperfect (Fig. S21-22). The effects of truncation mutations on 
nuclear localization sequences could not account for these results (Fig. 3C, Figure 
S22, Table S10). These results support the notion that ProtGPS can detect changes 
in protein codes due to pathogenic mutations that are demonstrable in an 
experimental setting.  
 
Discussion 
 Our studies suggest that proteins have evolved to harbor at least two types of 
codes, one for folding and another for intracellular compartmentalization.  Deep-
learning algorithms such as AlphaFold2, RoseTTAFold, Chroma, EvoDiff, 
ESMfold, and others have learned the relationships between linear amino acid 
sequence and 3D structure (22, 37, 45-49). We here describe ProtGPS, which can 
predict a protein’s selective assembly into specific condensate compartments in 
cells. ProtGPS with the MCMC algorithm also showed reasonable success in 
generating novel proteins that selectively partition into the targeted condensate 
compartments. The complexity of the underlying physicochemical rules for both 
protein folding and protein localization have proven difficult to parse using human 
interpretable approaches, and these deep-learning approaches therefore provide 
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valuable predictive and analytical tools for the study of protein structure and 
function. 
 Previous studies of protein compartmentalization have already described 
versions of amino acid codes for some compartments. Blobel and Sabatini 
proposed a seminal version of amino acid sequence-encoded information with their 
discovery of a signal peptide sequence for translocation to the endoplasmic 
reticulum (50, 51). For the membrane-bound nucleus, there are well-known nuclear 
localization sequences that facilitate the transport of protein from the cytoplasm to 
the nucleus (52-54).  More recently, models were used to identify patterns in 
protein sequences associated with specific compartments, especially those bounded 
by a membrane, but these did not sample a broad range of compartments and 
lacked generative experiments (55-57). For nonmembrane compartments, here 
called condensates, there is recent evidence of patterned amino acid sequence 
features that can engender selective assembly of certain proteins into 
transcriptional and nucleolar condensates (58-62).  Disease-related human genetic 
mutations have been shown to affect protein localization and provide additional 
experimental evidence for a protein code that contributes to compartmentalization 
(62-64). These observations are consistent with the concept of a protein code that 
promotes the selective distribution of proteins into specific compartments. 
Furthermore, there is recent evidence of distinctive chemical environments within 
condensates, suggesting that these compartments have different solvent properties 
(16, 61, 65). Thus, the patterns of amino acid sequences in proteins would be 
expected to both promote specific folding behaviors and to favor residence in 
compartments compatible with their solvent properties.  
 Patterns of amino acid sequences that occur in proteins, such as hydrophobic 
surface patches, blocks of charged residues or repeats, appear overall to be highly 
constrained in biology (66-72), and we suggest that this is due, in part, to the 
requirements for both proper folding and subcellular distribution. In our efforts to 
develop ProtGPS as a guide for generating novel protein sequences that promote 
selective subcellular distribution, we found that protein sequences sampled from 
collections of natural proteins were more successful at concentrating in the desired 
compartment than those generated without this consideration. Analogous to the 
medicinal chemist’s aspiration to increase drug-like attributes such as on-target 
specificity and low off-target effects when developing small molecule therapeutics, 
designing proteins to preferentially distribute in biochemically relevant regions of 
the targeted cell population might improve upon their therapeutic properties (16, 
65, 73). In addition, exploring the chemical space of proteins naturally present in 
specific biological compartments may provide a valuable guide to the generation of 
optimal chemical matter directed to target proteins in specific compartments. 
Indeed, there are widely used and efficacious anti-cancer therapeutics that 



 9 

concentrate in transcriptional condensates at oncogenes (73) due to the chemical 
environment of those compartments (16, 65). It is evident that similar 
considerations will apply to the design of protein therapeutics. We suggest that 
further understanding of the chemical environment established by amino acid 
patterns in proteins will lead to more efficacious disease therapeutics.  
 We conclude that ProtGPS can predict a protein’s selective assembly into 
specific condensates and guide generation of novel protein sequences whose 
cellular compartmentalization can be experimentally validated. We anticipate that 
future studies will advance this field by improving compartment annotation, 
modeling nested compartments, performing large-scale tests of generated proteins, 
developing robust techniques for measuring compartmentalization in vivo, 
deploying alternative machine learning approaches, and further exploring the 
effects of pathogenic mutations.  
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Fig 1. ProtGPS classifies protein compartment with high performance. A. 
Graphical depiction of some cellular compartments found in eukaryotic cells, 
compartments in bold were studied in this work. B. Bar graph showing the number 
of protein sequences gathered from UniProt and the CD-code database used in the 
development of ProtGPS. C. Schematic showing the approach toward developing 
ProtGPS. D. Bar graph showing the area under the receiver-operator curve for 
classification of withheld test data (15 % of total) with ProtGPS.   
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Fig. 2. Generative modeling creates novel proteins that concentrate in a 
desired condensate. A. Schematic showing the use of Markov chain Monte Carlo 
to generate proteins and assay them in live cells (MCMC) (see supporting 
information for more details). B. Live cell image of a colon cancer cell (HCT-116) 
tagged at the endogenous NPM1 locus with meGFP and expressing a nucleolus 
targeted protein NUC1-mCherry, scale: 10 microns. C. Live cell confocal 
micrographs of NUCX-mCherry proteins in HCT-116 cells expressing NPM1-
meGFP from the endogenous locus cells, scale: 10 microns. D. Dot plots showing 
the measured partition ratios of NUCX (Kx = Inucleolus / Inucleoplasm) proteins relative to 
the NLS-mCherry control protein, dotted line is the average value of NLS-
mCherry protein. See Tables 5-6 and Fig. S8-10 for more information. E. Live cell 
images and quantification showing the relationship of measured partition ratios (Kx 
= Inucleolus / Inucleoplasm) into the nucleolus by proteins on the NUC6-mCherry 
trajectory to its computed probability of partitioning. 
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Fig 3. Pathogenic mutations are predicted to alter protein 
compartmentalization. A. Schematic of information flow, pathogenic ClinVar 
mutants caused by single point or truncation mutations were classified with 
ProtGPS to determine if the detected protein code was changed in the pathogenic 
variant. B. (Left) Dot plot showing the Shannon entropy change in compartment 
prediction due to single point or truncation mutation. (Right) Histogram showing 
the Wasserstein distance between the wild-type and mutant protein compartment 
probabilities. C. Live cell images of mESCs ectopically expressing wild-type and 
truncated pathogenic variants fused to meGFP, Wasserstein distance is given for 
each mutant as w, scale 10 microns.  
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Materials and Methods  
 
Cloning 
 
Gene fragments were codon optimized for humans and purchased from Integrated DNA Technologies (IDT). Gene 
fragments were assembled into destination plasmids using the NEBuilder® HiFi DNA assembly kit with a molar 
ratio of 3:1 insert:back bone DNA (New England Biolabs, E5520S). Double stranded DNA products for 
CRISPR/Cas9 guide RNAs were purchased as monomer oligos from IDT, annealed in 10 mM Tris, 1 mM EDTA, 50 
mM salt, heated to 95°C, and allowed to cool until reaching 25°C, over 25 minutes. Assembled duplexes were then 
ligated using the Quick LigationTM Kit (New England Biolabs, M2200S) following the standard protocol provided 
with the product. Chemically competent E. coli cells were allowed to incubate on ice for 20 minutes with plasmids, 
heat shocked at 45°C for 30 seconds, before recovering on ice for 5 minutes. The transformed bacteria were then 
allowed to recover or SOC outgrowth medium (New England Biolabs, B9020S) for 1-2 hours, diluted 1:10, and 50 
µL was spread over a 2% agar plate containing the appropriate antibiotic selection marker (Ampicillin, 100 µg/mL). 
  
Transformed bacteria on antibiotic selection plates were then allowed to incubate overnight at 37°C. Single colonies 
of bacteria appearing on antibiotic selection plates were used to inoculate 5 mL of LB media with ampicillin (100 
µg/mL) to create an overnight culture. Overnight cultures were allowed to incubate at 37°C for 16 hours, cultures 
were pelleted immediately, and plasmid DNA was purified using a PureLinkTM MiniPrep Kit (Invitrogen, K210011). 
Isolated plasmids were sequenced using whole plasmid sequencing. Restriction digests were performed to generate 
DNA backbones appropriate for ligation chemistry or Gibson assembly reactions. Backbone plasmids were digested 
using restriction enzymes AfeI, BsrGI, SpeI (New England Biolabs, R0652L, R3575L, R3133L). Digest products 
were isolated using DNA gel electrophoresis, using a 120 V potential over 60 minutes as supplied by a Thermo 
scientific EC300 XL. Agarose gels were created with a 1% solution of SeaKem LEAgarose (Lonza 50004) in Tris-
Acetate-EDTA buffer (Millipore-Sigma, T9650) with the addition of ethidium bromide solution 10 mg/mL, to 1 part 
per 20,000 (Millipore-Sigma, E1510). Gels were imaged using a Biorad-Chemidoc XRST, and bands were excised 
while wearing UV ray eye protection. Relevant bands were isolated from gels after each run and then extracted with 
a razor blade from the larger gel. Gel chunks containing desired DNA bands were carefully weighed and extracted 
using a Monarch DNA gel extraction kit according to the manufacturer’s specifications (New England Biolabs, 
T1020L). An estimate of DNA concentration was collected from an absorbance reading for double stranded DNA 
using a Nanodrop oneC (Thermo scientific, ND-ONEC-W) and product was stored at -20°C.  
 
Protein design and testing 
 
Proteins designed in our assays consisted of 3 (NLS-mCherry) or 4 components (all other protein sequences). These 
components were arranged in the following order: SV-40 NLS signal (‘PKKKRKV’), an aqueously soluble and 
flexible linker (‘SGSGSG’), a generated protein fragment, and an mCherry protein (see Table S2 and S3 for 
corresponding sequences). NLS-sequences were attached to each protein fragment in improve the tendency for a 
protein to accumulate in the target compartment. Every reference to a SPLX or NUCX protein has this specific 
design construction.  
 
The NLS signal is added to ensure delivery to the nucleus, helping to subsequently assay the ability of the generated 
sequence to assemble in the target compartment. We note that ProtGPS considers each compartment an independent 
entity. Characteristics that maximize the probability for one compartment are not expected to have relevance for a 
different compartment. We would expect that the model would have learned to target sequences to the nucleus and 
then to a subcompartment only if the characteristics that dictated association with subcompartment were also those 
that dictated association with nucleus.  
 
Democratization of generative modeling strategies and their experimental validation would be enabled by a cost 
reduction in the infrastructure and reagents required for creating and testing generated information.  
 
Selection of compartments to test success of protein design  
 



Nucleoli and nuclear speckles were chosen for study because these compartments are relatively large, stable and 
possess readily discernible boundaries. These characteristics make it possible to identify a discrete compartment 
with confidence using a meGFP-tagged marker protein, and then to obtain robust measurements of mCherry signal 
inside and outside as a means to quantify enrichment of the protein. Other condensates are much smaller and more 
dynamic, making it much more challenging to obtain robust measurements of signal inside and outside.  
Nonetheless, we did attempt to generate de novo sequences for smaller condensates, such as transcriptional 
condensates marked by MED1 protein and chromatin compartments marked by the HP1a protein. We found that we 
could not discern with confidence whether or not there is enrichment of mCherry signal in these small puncta, using 
Zeiss LSM980 with Airyscan microscopy. 
 
 
Tumor cell tissue culture  
 
Human colorectal cancer cells (HCT-116 American Tissue Culture Catalog CCl-247TM) and human breast cancer 
cells (MCF7, American Tissue Culture Catalog HTB-22) were cultured in sterile 10 or 15 cm plates with 15 or 35 
mL of DMEM (Gibco, 11965084) media supplemented with 10 % Fetal bovine serum (FBS) (Sigma F2442) and 
100 units/mL penicillin (Life Technologies, 15140122), and 100 μg/mL streptomycin (Life Technologies, 
15140122). Cells were cultured at 37 °C and 5 % v/v CO2 in a humidified cell culture incubator and passaged at 75 
% confluency. Cells were counted to determine seeding density using a CountessTM II automated cell counter, 
employing trypan blue and disposable countess chamber slides according to manufacturer recommendations. Cells 
were tested regularly for mycoplasma using the MycoAlert Mycoplasma Detection Kit (Lonza LT07-218) and found 
to yield negative results. HCT-116 cells expressing NPM1-, and SRSF2-meGFP from the endogenous gene locus 
were previously reported.  
 
Stem cell tissue culture  
 
In these studies, we employed V6.5 mouse embryonic stem cells, a kind gift from R. Jaenisch. These cells were 
authenticated by short tandem repeat (STR) analysis compared to commercially acquired cells with the same name. 
Cells were passaged every 1–2 days by dissociation using TrypLE Express (Gibco, catalog no. 12604), the 
dissociation reaction was quenched using serum/LIF medium. Stem cells were cultured in 2i/leukemia inhibitor 
factor (LIF) medium on tissue culture-treated plates coated with 0.2% gelatin (Sigma, catalog no. G1890) in a 
humidified incubator at 37 °C and 5% v/v CO2. Cultured cell lines were tested for mycoplasma regularly using the 
MycoAlert Mycoplasma Detection Kit (Lonza, catalog no. LT07-218) and found to yield negative results. 
 
The composition of 2i/LIF medium is defined as 3 μM CHIR99021 (Stemgent, catalog no. 04-0004), 1 μM 
PD0325901 (Stemgent, catalog no. 04-0006) and 1,000 U ml−1 LIF (ESGRO, catalog no. ESG1107) in N2B27 
medium. 
 
In these experiments N2B27 medium was defined as follows: DMEM/F12 (Gibco, catalog no. 11320) supplemented 
with 0.5-fold N2 supplement (Gibco, catalog no. 17502), 0.5-fold B27 supplement (Gibco, catalog no. 17504), 
2 mM L-glutamine (Gibco, catalog no. 25030), onefold MEM nonessential amino acids (Gibco, catalog no. 11140), 
100 U ml−1 penicillin-streptomycin (Gibco, catalog no. 15140) and 0.1 mM 2-mercaptoethanol (Sigma, catalog no. 
m7522). 
 
Preparation of Serum/LIF medium used KnockOut DMEM (Gibco, catalog no. 10829) supplemented with 15% FBS 
(Sigma, catalog no. F4135), 2 mM L-glutamine (Gibco, catalog no. 25030), onefold MEM nonessential amino acids, 
100 U ml−1 penicillin-streptomycin, 100 μM 2-mercaptoethanol (Sigma, catalog no. M7522) and 1,000 U ml−1 LIF 
(ESGRO, catalog no. ESG1107). 
 
Cell line generation 
 
Dox inducible cell lines were generated using the Super Piggybac Transposase Expression Vector (Systems 
Bioscience, PB210PA-1), in conjunction with protein x-lone (75) expression cassettes. These reagents transposed 
proteins engineered in this study under a TR3GS doxycycline inducible promoter system. Plasmids were combined 
with Lipofectamine3000 reagent and Optimem media (Invitrogen, L3000015) and added to cells plated the day 
before at 50,000 cells/mL in DMEM (Gibco, 11965084) supplemented with 10% FBS in either 6-well or 10cm 



plates in accordance with manufacturer specifications. After 24 hours, their media was changed to DMEM 
supplemented with 10% FBS, 100 units/mL of penicillin, 100 units/mL streptomycin, and 1000-2000 ng/μL 
doxycycline hyclate (Millipore-Sigma, D9891) in water.  
  
Twenty-four hours after induction with doxycycline, cells were prepared for sorting by washing cells twice with 10 
mL of phosphate buffered saline prior to the addition of 1.5-3 mL of TrypLE to trypsinize the adherent cells for 5-10 
minutes at 37 °C. The trypsin reaction was then quenched by the addition of 5 mL of DMEM (Gibco, 11965084) 
containing 10% FBS, 100 μg/mL of penicillin and streptomycin (Life Technologies, 15140122). Cells were pelleted 
in 15 mL conical vials at 500 RPM using a table top centrifuge, and resuspended in Dulbecco’s phosphate buffered 
saline containing magnesium and calcium (GibCo 14040117), and filtered into a 5 mL polystyrene round-bottom 
tube outfit with a cell straining cap (Corning, 352235).  
  
Cells were sorted by flow cytometry as described below for double positives colon cancer (HCT-116) cells 
expressing green fluorescent protein tagged SRSF2 or NPM1 from the endogenous locus and the target mCherry 
protein (see Table S1 and S2 for sequences). A homogenous population of cells expressing only SRSF2-meGFP or 
NPM1-meGFP from the endogenous locus was used as a positive control for meGFP expression and a negative 
control for mCherry expression. Double positives were collected into 1.5 mL Eppendorf tubes containing 500 μL 
DMEM containing 10% FBS, 100 μg/mL of penicillin and streptomycin and stored on ice until they could be 
transferred into 12-well dishes. Sorted cells were cultured for 7 days or until approaching confluency in 12-well 
dishes.  
  
At approximately 75 % confluency, cells were taken up into solution following the protocol for TrypLE and washes 
given above, the concentration of cells was established using a CountessTM II automated cell counter, employing 
trypan blue and disposable countess chamber slides according to manufacturer recommendations. Each population 
of population of double positive cells was then diluted to 0.85 cells / 100 μL in DMEM containing 10% FBS, 100 
μg/mL of penicillin and streptomycin. A multichannel pipette was then used to transfer 100 μL of the diluted cell 
solution into four 96-well plates and cells were allowed to grow for 7-14 days until single colonies were identified, 
with media changes occurring on days, 4, 8, and 11. Clonal cell populations were replated in 96-well imaging plates 
and imaged with confocal microscopy to identify those clonal populations possessing the desired double positive 
phenotype. Chosen clonal populations were then transferred into 12 wells and allowed to grow to confluency before 
replating in 10 cm dishes for analysis.  

 
Production of stable mouse embryonic stem cell lines was performed by cloning WT and mutant gene sequences 
using NEBuilder HiFi DNA Assembly (NEB) into a doxycycline-inducible, N-terminal mEGFP-tagged expression 
construct with a hygromycin-resistance gene (pbfh-GFP), which was integrated into mESCs using the PiggyBac 
transposon system (Systems Biosciences). To perform a routine transfection, 0.5 x 106 wildtype mESCs were plated 
in 6-well format and simultaneously transfected with 1 μg of the expression vector and 1 μg of the PiggyBac 
transposase using Lipofectamine 3000 (ThermoFisher, L3000001), according to manufacturer instructions in 
serum/LIF media. The next day, media was changed to 2i, and cells were split into 100 mm gelatin-coated plates 
with 2i-media supplemented with 500 μg/mL hygromycin (ThermoFisher, 10687010) for selection. Selection media 
was exchanged every day and un-transfected control cells were monitored to assess selection. 
 
Flow cytometry  
 
Samples were sorted using a BD FACS Aria. Green fluorescent protein and mCherry signal was used to identify 
colon cancer (HCT-116) that were expressing NPM1 and SRSF2-meGFP fusion proteins in addition to the mCherry 
proteins incorporated as described in the section “Doxycycline inducible line generation.” Double positive cells 
were collected when both channels had relative signal 10-fold above the background signal produced in the absence 
of mCherry and within the region defined by the signal found in the meGFP-SRSF2 and meGFP-NPM1 control cell 
lines. Double positive lines were sorted into 1.5 mL Eppendorf tubes containing in 1 mL of media and stored on ice 
until plating. 
 
Live cell imaging  
 
Endogenously tagged HCT-116 cells expressing NPM1-meGFP or SRF2-meGFP were seeded at 50,000 cells/mL on 
an imaging plate to create 3 technical replicates. Imaging plates used were sterile Cellvis 96-well glass (Cellvis, 



P96-1.5H-N) bottom plates with #1.5 high performance cover glass (0.17 ± 0.005 mm), or sterile Cellvis 384-well 
(Cellvis, P384-1.5H-N) glass bottom plates with #1.5 high performance cover glass (0.17 ± 0.005 mm). Cells were 
plated 48 hours prior to the experiment in DMEM containing 10% FBS, 100 μg/mL of penicillin and streptomycin. 
Cell lines were induced to express generated protein sequences or NUC1-meGFP charge variants 24 hours before 
imaging by changing cell media to DMEM containing 2000 ng/μL doxycycline halcylate in water (Millipore-Sigma, 
D9891) 10% FBS, 100 μg/mL of penicillin and streptomycin. Cells were maintained at 37 °C with 5 % v/v CO2 in a 
humidified chamber over the course of the imaging experiment. Experiments were performed at least 3 times on 
different dates.  
 
Imaging instrumentation  
 
Live cell confocal micrographs were recorded with a Zeiss LSM 980 Airyscan 2 Laser Scanning confocal with a 1.4 
NA ×63 Plan Apo objective and running Zeiss Zen Blue v.3.5. Cells were maintained at 37 °C and 5% v/v CO2 in a 
humidified chamber throughout the experiment. Images were recorded using 405 nm at 25 mW, 488 nm at 25 mW, 
561 nm at 25 mW or 639 nm at 25 mW diode lasers as required.  
 
Imaging data analysis 
 
Our image analysis approach was designed to compute the partition ratio of nucleolus and splicing speckle targeted 
proteins as compared to the nucleoplasm in each cell. Regions were defined using Zeiss Zen Blue image analysis 
software. Nucleophosmin (NPM1) is a scaffold and marker of the granular cluster of the nucleolus and serine 
arginine-rich splicing factor 2 (SRSF2) is a marker for nuclear speckles. Nucleoli and nuclear speckles were 
identified using the 488 nm excitation band, which could indicate the distribution of nucleophosmin (NPM1)-
meGFP and SRSF2-meGFP fusion proteins in the cell. Global threshold-based detection using the following options 
enabled identification of the nucleolus: a three-sigma threshold approach, a minimum object area of 10 pixels2 (a 
size constraint of 50 pixels2 was used to cull erroneous calls of nuclear speckles), objects were expanded by 
employing a closed binary criterion, gaussian smoothing, and signal segmentation was performed using watersheds. 
Regions found outside of the target condensates were identified using Otsu thresholding (light-regions), without 
gaussian smoothing, object expansion was set to none, and watersheds.  
 
Average signal was computed for inside of the nucleolus (Inucleolus) and in the nucleoplasm (Inucleoplasm) to compute a 
partition ratio Knucleolus = Inucleolus / Inucleoplasm. Images collected of mCherry signal using the 561 nm excitation laser 
were analyzed used to calculate, Knucleolus, providing the partition ratio of mCherry proteins in regions defined above.   
 
Average signal within splicing speckles and cytoplasmic regions defined by the accumulation of SRSF2-meGFP was 
computed using ISRSF2. Reference regions, such as the nucleoplasm were using Inucleoplasm or Icytoplasm, which was 
manually defined in Zen blue. Images collected of mCherry signal using the 561 nm excitation laser were analyzed 
used to calculate, KSRSF2, providing the partition ratio of mCherry proteins in regions defined above.   
 
Images were analyzed to evaluate the correlation of condensate marker protein signal and signal generated from de 
novo generated protein sequences across the nucleus using Cell Profiler(76) (v.4.2.8). Image textural features(77) 
used to analyze pathogenic mutant cells (signal homogeneity and entropy) were computed from the gray level co-
occurrence matrix as implemented in Cell Profiler (v.4.2.8). Co-occurrence matrices embed information about the 
signal intensity of pixels relative to each other. Signal homogeneity is measurement of how homogenous a signal is 
within a defined region of an image; uniform signal has a homogeneity equal to 1. Entropy measurements compute 
the degree of randomness or order within a defined region of an image; higher values indicate more random signals. 
Spearman r-correlations and line plots from imaging were computed and displayed with GraphPad Prism (V.10.2.3) 
from the signal generated from line-plots using Fiji image analysis software. 
 
Statistical analysis of imaging data  
 
Statistical testing of data was performed using unpaired non-parametric t-tests (Kolmogorov-Smirnov test), which 
were performed using GraphPad Prism (V.10.2.3), as indicated. Kolmogorov-Smirnov tests (KS-test) ask how 
similar are two different cumulative distributions. In the context of this work, p-values computed with a KS-test ask 
how significant are the distribution of measurements for each protein’s enrichment in a target compartment 



compared to a control NLS-mCherry protein’s enrichment in a target compartment. P-values, statistical tests, and 
correlation measurements are reported for select data in Tables S5.  
 
Spearman r correlations were computed along lines intersecting different condensate compartments. Spearman 
correlations reflect a monotonic relationship between two variables even if that relationship is not linear in nature.  
Spearman coefficients generalize to non-linear correlations by computing correlations from the rank values of two 
variables. The reported spearman correlation reflects a typical value for a compartment and is specific to the 
example provided. For Table S6, single cross-sections of 4 cells were examined for each protein. The average 
Spearman correlation and its standard deviation are shown in the final column.  
 
Identification of benign, uncertain, and pathogenic variants  
 
Pathogenic mutations were collected from ClinVar database and annotated following the approach of Banani et al. 
2022(39, 78-83). Variants associated with Mendelian diseases were obtained from HGMD v2020.4(80), ClinVar(39) 
and in hg38. AACR Project GENIE v8.1(79) and various TCGA(78),(84) and TARGET studies via cBioPortal were 
used to collect cancer variants. (cBioPortal study identifiers:  
ucec_tcga_pan_can_atlas_2018, skcm_tcga_pan_can_atlas_2018, coadread_tcga_pan_can_atlas_2018, luad_tcga_p
an_can_atlas_2018, stad_tcga_pan_can_atlas_2018, lusc_tcga_pan_can_atlas_2018, blca_tcga_pan_can_atlas_2018,
 brca_tcga_pan_can_atlas_2018, hnsc_tcga_pan_can_atlas_2018, cesc_tcga_pan_can_atlas_2018, gbm_tcga_pan_ca
n_atlas_2018, lihc_tcga_pan_can_atlas_2018, ov_tcga_pan_can_atlas_2018, lgg_tcga_pan_can_atlas_2018, esca_tc
ga_pan_can_atlas_2018, prad_tcga_pan_can_atlas_2018, paad_tcga_pan_can_atlas_2018, kirp_tcga_pan_can_atlas
_2018, kirc_tcga_pan_can_atlas_2018, sarc_tcga_pan_can_atlas_2018, thca_tcga_pan_can_atlas_2018, acc_tcga_pa
n_can_atlas_2018, ucs_tcga_pan_can_atlas_2018, laml_tcga_pan_can_atlas_2018, dlbc_tcga_pan_can_atlas_2018, 
thym_tcga_pan_can_atlas_2018, meso_tcga_pan_can_atlas_2018, kich_tcga_pan_can_atlas_2018, 
tgct_tcga_pan_can_atlas_2018, chol_tcga_pan_can_atlas_2018, pcpg_tcga_pan_can_atlas_2018, uvm_tcga_pan_ca
n_atlas_2018, wt_target_2018_pub, all_phase2_target_2018_pub, aml_target_2018_pub, nbl_target_2018_pub, 
and rt_target_2018_pub).  
 
Liftover (85) was used to convert the genomic coordinates for different cancer variants from hg19 to hg38. We did 
not consider deletions larger than 100kb in this analysis. Protein coding sequences changes associated with variants 
in our study were mapped to the set of 20,394 human proteins using Ensemble VEP v102 and ID mappings between 
Ensemble and UniProt (86). We considered the pathogenic mutations in the context of the canonical isoforms in this 
study, which represent the best characterized set of isoforms. Isoforms are selected from criteria such as prevalence, 
similarity to other homologs and without consideration of other information (e.g., sequence length) (23). A 
collection of n= 2,644,688 DNA variants (62% of all variants located within source data sets) were mapped onto the 
20,394 canonical protein isoforms found within UniProt. All variant were counted as protein variants—i.e., DNA 
variants resulting in the same protein-coding alteration on different DNA sequences, were counted as the same. 
Synonymous variants were excluded from our analysis. For non-synonymous variants, only the primary and most 
severe protein-coding change associated with a variant was considered based on the established hierarchy of 
mutation effect severity conveyed by variant annotations in Ensemble.  
 
Mendelian variant pathogenicity was classified from the designations of their clinical significance for ClinVar 
variants (pathogenic or likely pathogenic) or of variant class for HGMD variants (DM or DM?). Cancer variant 
pathogenicity was determined by assessment of variants for their inclusion in CIViC (87), their inclusion in the list 
of CGI’s validated oncogenic mutations or oncogenicity designation in OncoKB v2.10 (predicted oncogenic, likely 
oncogenic, or oncogenic) (88). Definitions of pathogenicity rely on computation prediction of pathogenicity, but are 
less dependent upon computation prediction than clinical biological/functional or evolutionary evidence of 
pathogenicity (89, 90). 
 
Among pathogenic mutations, we chose to investigate those that might be readily discernable as influencing 
structure and assembly. Nonsense and frameshift variants were considered together to be truncating variants and 
assessed for their predicted propensity to elicit NMD. Predictive rules for NMD were obtained from prior work (91). 
A truncating variant was considered to elicit NMD if the corresponding premature stop codon it introduced occurred 
(i) >200 residues C-terminal to the start codon; (ii) >50 residues N-terminal to the final exon-exon junction; and (iii) 
in an exon ≤400 base pairs in length. Mutations were then be subsampled to include only those identified as a single 



point or truncation mutations, leading to 205,182 protein sequences. The resulting mutant protein sequences were 
then classified using ProtGPS.  
 
Benign and uncertain significance mutations were identified using ClinVar miner (92), unique variants were filtered 
by significance labeled as “benign” or “uncertain significance.” Only missense mutations causing a single point 
mutation in the coding region of a protein were included in the set of 26,848 benign and 23,538 uncertain mutations 
analyzed in this work.  
 
Bioinformatics analysis of nuclear signal peptides 
 
Nuclear export and localization signals identified from UniProt motifs possessing a description “Nuclear localization 
signal.” Nuclear localization and nuclear export signals within NLSdb (93) were filtered to be comprised of 
subsequences annotated as “Expert verified”, “experimental”, or “potential”.  
 
Compartment Classification 
 
To train ProtGPS’s compartment classifier module, we collected a dataset of 5,480 proteins from UNIPROT and 
CD-CODE (23, 24) covering 12 condensates, consisting of nuclear speckles, p-bodies, PML-bodies, post synaptic 
densities, stress granules, chromatin, nucleoli, nuclear pore complexes, Cajal bodies, RNA granules, cell junctions, 
and transcriptional condensates. Explicit incorporation of a nested or hierarchical cellular structure was avoided, as 
our goal was to learn the discriminating characteristics of condensate compartments. Signal sequences could be 
included downstream to enable enrichment into a membrane bound compartment. We randomly assigned 70% of 
protein sequences to training, 15% to development and 15% to test, yielding 3,834, 823 and 823 sequences in each 
split, respectively. Random assignment of sequences to training, development and test sets is assumed to control for 
potential biases such as length distribution. Furthermore, the use of a development set helps address concerns of 
potential overfitting of ProtGPS on patterns found in the protein sequences in the training set. We note that proteins 
with similar functions (as implied by their common presence in a compartment) may also share sequence homology. 
This homology, while likely reflective of the underlying biology, may produce a degree of bias in classification 
performance when examining other related proteins in the test set. 
 
Our model utilizes only the protein sequence to obtain a binary prediction for each of the 12 condensates. 
Specifically, we initialize a sequence encoder using the protein language model ESM-2 with 8 million parameters 
(esm2_t6_8M_UR50D) (22), and utilize a 2-layer feed-forward neural network with a hidden dimension of 512 as 
the classifier head. The classifier is implemented with batch normalization. From the ESM-2 model, we obtain a 
320-length feature vector per residue. We take the mean embedding across residues to obtain a 320 embedding of 
the protein sequence, and pass it to the MLP. We train the model end-to-end for 90 epochs in half precision. We use 
a batch size of 10, an initial learning rate of 0.001, an exponentially decaying learning rate schedule with a decay 
rate of 0.91, and a dropout rate of 0.1. The model is optimized with the Adam algorithm (94) with default 
parameters. All models are implemented in PyTorch (v2.0.0+cu117) and PyTorch Lightning (v1.6.4). 
 
Compartment classification with clustered train-test split 
 
We consider a train-test split according to sequence similarity and report the performance of a model trained on this 
data split. We cluster all sequences using MMSeqs2 (95) with a 30% sequence identity and 80% coverage, yielding 
3,166 clusters. Then, sequences belonging to the same cluster were assigned the same data split yielding 3,834 
sequences (2,136 clusters) in the training set, 823 sequences (504 clusters) in the development set, and 823 
sequences (526 clusters) in the test set. We train a new model with the same architecture as ProtGPS and 
hyperparameters on this new dataset. 
 
Compartment classification with physicochemical properties  
 
We evaluate the performance of non-deep learning models on predicting condensate localization, using the same 
training, development and test sets as those used for ProtGPS (random split of proteins among sets) and for those 
clustered as described in “Compartment classification with clustered train-test split”. We train a random forest and a 
logistic regression model in SciKit-Learn (96) (v1.5.0) that receive as input a set of physicochemical features 
associated with each protein that were calculated with the ProtPy package (97) (v1.2.1). Specifically, for each 



sequence, we calculate the amino acid composition, and the composition, transition, and distribution (CTD) of the 
sequence’s hydrophobicity, polarity, charge, solvent accessibility, and polarizability(98, 99). A description of how 
ProtPy features were used follows below. We optimized the models on multi-label classification and compute the 
AUC-ROC for each condensate separately.  
 
The protPy features used are: 

1. Amino acid composition: how often each amino acid type appears within the protein sequence 
 
For each of "hydrophobicity", "polarity", "charge", "solvent accessibility", "polarizability", we also calculate the 
following descriptors: 

2. Composition: proportion of the sequence with a particular property. This consists of 3 total features (e.g., 
for hydrophobicity, this is the fractions of residues that are hydrophobic, neutral or polar).  

3. Transition: how often there is a change in particular property along the sequence. This consists of 3 total 
features (e.g., transition from neutral to polar). 

4. Distribution: the percent of the sequence length which contains the first 1%, 25%, 50%, 75%, and 100% of 
amino acids with a specific property. This consists of 15 (3x5) total features (e.g., the length of the chain 
needed to capture 75% of hydrophobic residues).  

 
 
Calculation of attribution scores 
 
We used the trained ProtGPS model to generate attribution scores for amino acids within protein sequences across 
different compartments. Attribution scores were computed using the Integrated Gradients method (100), 
implemented with the `captum` library version 0.7.0 (101). The baseline sequence for generating attributions 
consisted of mask tokens, ensuring a neutral starting point for comparison. Integrated Gradients interpolated 
between the masked sequence and the actual sequence, accumulating gradients to highlight the contributions of 
individual amino acids to model predictions. For each sequence, residue-level attributions were aggregated by 
compartment for interpretation. To assess the significance of the attribution scores, we calculated p-values using 
two-sample t-tests. For each amino acid in a specific compartment, its attribution scores were compared to those of 
the same amino acid across other compartments. The t-statistic and p-values were computed with the `ttest_ind` 
function from `scipy.stats` version 1.11.2 (102). 
 
Latent space analysis of ProtGPS  
 
We used the trained ProtGPS model to analyze the latent space representations of protein sequences by 
compartment. To visualize the high-dimensional embeddings, we applied the Uniform Manifold Approximation and 
Projection (UMAP) method (103), which provides a two-dimensional projection of the latent space while preserving 
as much of the original structure as possible. UMAP was implemented using the umap-learn library, version 0.5.7, 
with default hyperparameters (104). 
 
To further investigate how compartmental labels relate to the model's latent structure, we computed the mutual 
information between these labels and components extracted via singular value decomposition (SVD) (105). SVD 
was applied to decompose the latent space, yielding 320 eigenvectors that capture the modes of variation within the 
embeddings. We then computed the mutual information between each eigenvector and the compartment labels to 
assess whether specific components held significant compartment-related information. Mutual information scores 
were calculated with the mutual_info_score function from the scikit-learn module, version 1.5.2 (96), providing a 
measure of association between the SVD components and compartment labels. 
 
Protein generation with ProtGPS: Autoregressive Greedy Search Generation 
 
Our first attempt at generating proteins possessing chemical codes for different compartments utilized a greedy 
search algorithm. Given the mCherry sequence, we add to the N-terminus a random subsequence of length ℓ = 150. 
This sequence is then iteratively mutated at each position of the subsequence. At each step, we predict the 
localization of the protein when mutating the current position to all 20 possible amino acids. We keep the top 3 
sequences predicted to localize to the desired compartment. For each of those 3 sequences, we repeat the process of 
mutating the next position (obtaining 3 x 20 sequences) and keeping only the top 3 scoring proteins. Once all ℓ 



positions are explored, we choose the single protein most likely to localize to the target compartment among all 
those generated.  
 
Protein generation with ProtGPS: Markov chain Monte Carlo Generation 
 
We adapt the framework presented in Verkuil et al. (106) to generate novel sequences that lead to the localization of 
mCherry to specific condensates. In particular, we aim to sample sequences 𝑥, where the first ℓ amino acids are 
designed computationally and the rest of the protein corresponds to the mCherry sequence. We guide the generation 
such that (1) the newly generated subsequence follows the natural distribution of protein sequences, (2) the 
subsequence is predicted to be disordered and (3) the full protein is predicted to have the desired localization 
phenotype (e.g., localizing to the nucleolus). We use blocked Gibbs sampling with MCMC (106) where we start 
from a random subsequence, sample a backbone structure 𝑦, then update the sequence given the current backbone. 
This process generates sequences according to the data distribution defined by the proteins that ESM-2 was trained 
on. Doing so results in sequences that are expected to follow the distribution found in the natural world.  
 
However, our aim is to specifically generate IDRs that are consistent with the chemical space of the condensate we 
are targeting. To do so, we use ProtGPS to condition the generation process on the likelihood that the full sequence 
(with mCherry) localizes to the desired condensate. In other words, we sample subsequences from the space of 
proteins that ProtGPS predicts to localize in our target condensate. To ensure the novel subsequence does not have a 
definite 3D fold, we use a predictor of protein disorder as a further constraint. Formally, we sample from the joint 
distribution 
 

𝑥, 𝑦 ∼ p(x, y|c = C, d = 1) 
 
where 𝑐 is the condensate compartment we are targeting, and 𝑑 indicates whether the generated subsequence is 
disordered. Since the sequence can fully determine structure, the backbone structure 𝑦!"#$%&' is obtained as in(106): 
 

𝑦!"#$%&' ∼ 𝑝(𝑦|𝑥) 
 
However, we sample a new amino acid sequence (keeping the mCherry sequence fixed) as: 
 

𝑥( ∼ 𝑝6𝑥7𝑦 = 𝑦!"#$%&' , 𝑐 = 𝐶, 𝑑 = 19 
 
We consider the likelihoods that a sequence localizes to a specific condensate and that it contains an IDR to be 
conditionally independent. So, we obtain:  
 

p6𝑥7y)*+,-./,  𝑐 = C,  𝑑 = 19 ∝ 𝑝6𝑐 = 𝐶7𝑥, 𝑦!"#$%&'9𝑝6𝑑 = 17𝑥, 𝑦!"#$%&'9𝑝6𝑥7𝑦!"#$%&'9 
 
 
Therefore, we add two terms, 𝐸012'&2!"3& and 𝐸456, to the original energy-based MCMC sampling(106): 
 

E(x)  =  λ, E,789.:;<8=(y = Y|x)  +  λ>? E>?(x)  +  λ= E=@7*+(x) 
 

+	λ0𝐸012'&2!"3&(𝑥) + λ456𝐸456(𝑥) 
 
where 

𝐸012'&2!"3&(𝑥) = −𝑙𝑜𝑔	𝑝(𝑐 = 𝑘	|	𝑥) 
 

𝐸456(𝑥) = −G		𝑙𝑜𝑔	 𝑝(𝑥_𝑖	 ∈ 𝐼𝐷𝑅|𝑥)
ℓ

BCD

 

 
Note that we use the full sequence to predict localization, but we calculate disorder only for the first ℓ residues, 
where ℓ is the length of the IDR we seek to generate. 
 



As in (106), we use ESM-2 (esm2_t33_650M_UR50D) for the language model and protein structure samplers. We 
use ProtGPS to estimate the likelihood the generated sequence localizes correctly (𝑝(𝑐 = 𝑘	|	𝑥)), and the DR-BERT 
model (30) to predict the disorder of each residue (𝑝(𝑥_𝑖	 ∈ 𝐼𝐷𝑅|𝑥)). We generate sequences of length 100 at the N-
terminus of the mCherry protein sequence, keeping the mCherry sequence fixed throughout the process. We set the 
weights for each energy term as λ, = 3,   λ>? = 2,  λ= = 1, λ0 = 1, λ456 = 1. Since we do not intend for the 
sequence that we generate to have a highly ordered structure, we stop the generation process when the sequence has 
a likelihood of 𝑝(𝑐 = 𝑘|𝑥) > 0.85 for 10 consecutive steps (instead of performing 170,000 MCMC steps). We use a 
warm-up of 1000 steps. For all other parameters, we use the default values. We use a different seed to initialize each 
process.  
 
Computation of Wasserstein distance and compartment entropy 
 
To provide a metric for the potential change in compartmentalization that could be attributed to a mutation in a 
protein, we calculate the Wasserstein distance (44) between the predicted scores of the two sequences. For each 
wild-type protein, ProtGPS produces a set of probabilities for the assignment of a protein to each of the 
compartments studied here. This set of probabilities is the predicted localization for a sequence by ProtGPS. The 
process is performed for wild-type and mutant protein sequences providing two sets of probabilities. The distance 
between the predicted localization of wild-type and mutant protein sequences made by ProtGPS can be computed 
using the Wasserstein distance (43, 44), a distance function from optimal transport (107) that computes a distance 
between the two sets of probabilities. In this application, we note it can be intuitively thought of as the change 
caused in the protein distribution code due to a specific pathological mutation.  
 
To compute Shannon entropy (40, 41) changes for each compartment between wild-type and mutant proteins, we 
make predictions with ProtGPS that gives a separate set of probabilities for all wild-type and mutant proteins that 
describes if they would be anticipated to be found in each compartment. For each compartment, the probabilities 
from every wild-type and mutant protein are then binned to create histograms for wild-type and mutant proteins for 
each compartment. Those histograms were then used to compute a Shannon entropy for each compartment from the 
wild-type and mutant protein compartment histograms. Shannon entropy describes the information required (in 
binary, this is bits of 0 or 1) to represent a “source”, here, a source is defined as the histograms constructed from 
wild-type and mutant protein predictions for each compartment. When two Shannon entropies are compared 
describing separate states, here, wild-type and mutant proteins, a positive increase in Shannon entropy conveys an 
increase in the uncertainty where a negative change indicates a decrease in uncertainty.   
 
Frequency of recognized protein features in pathogenic mutations 
 
For frequency of mutations affecting SLiMs, we used a set of over 350 SLiMs annotated in the Eukaryotic linear 
motif database (108) (accession date, July 14, 2024) and mapped their locations on proteins (Supplementary Tables 
S7,8; Supplementary Figure S17). We then checked the 2,057 pathogenic mutations found in the test set of proteins 
to see how many would potentially affect one or more SLiMs. We found 15% of pathogenic single point mutations 
overlap with one or more SLiMs, suggesting that aberrant SLiM-mediated function may explain a small fraction of 
pathogenic mutations. 
 
For frequency of mutations affecting PTM’s, we used a set of 1,127 potential PTM sites identified in the UNIPROT 
database (23) and mapped their locations on the test set proteins (Supplementary Table S9; Supplementary Figure 
S18). We then checked the 2,057 pathogenic single point mutations found in the test set of proteins to see how many 
would potentially affect one or more PTM sites. We found 0.97% of pathogenic mutations overlap with a PTM site, 
suggesting that aberrant PTM-mediated function might explain only a very small fraction of pathogenic mutations in 
these data. 
 
We reasoned that mutations in buried regions are more likely to contribute to stability defects than mutations in 
solvent exposed regions due to their increased potential to disrupt the protein’s hydrophobic core. For frequency of 
mutations that occur within buried regions, we asked what percentage of the 2,057 pathogenic mutations have no 
predicted solvent exposure. Approximately 35% of pathogenic mutations qualify, consistent with the average 
fraction of amino acids expected to be found in a protein’s hydrophobic core (40-50%). 
 
Analysis of protein sequences and composition 



 
To determine the tendency for a mutation to occur at disordered or folded domain, we computed a disorder score 
across every protein in the human proteome using the disorder prediction tool, DR-BERT (30). It was then possible 
to ask if a mutation occurred within an ordered region (DR-BERT score < 0.5) or a disordered region (DR-BERT 
score > 0.50).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Text 
 
Sensitivity analysis of NUC protein sequences 
 
We conducted a sensitivity analysis for the MCMC generative process. In the multistep optimization process for 
each generated protein, we might expect that continuous improvement in the score computed during the 
optimization process should reflect the ability to generate proteins with improved compartmentalization phenotypes. 
As a test of this prediction, we investigated nucleolar partitioning of proteins generated at different steps during the 
optimization trajectory for NUC1 and NUC6 (Fig. 2E, Fig. S14). Random sequences appended to mCherry, those at 
step 0, did not show nucleolar compartmentalization. Greater scores produced precursors to NUC1 and NUC6 
proteins that tended to show improved nucleolar compartmentalization, although improvement was not continuous 
(Fig. 2E, Fig. S14). These results suggest sampling for greater periods of time will tend to increase the likelihood of 
generating protein sequences with desired properties, although this is nonlinear and can lead to reduced 
performance, as seen for the final version selected for NUC6 (Fig. 2E).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
Supplementary Figure 1. Prevalence of common motifs associated with protein compartmentalization.  
Protein sequence features, such as localization signals and SR-dipeptide repeats are typically with the nucleus and 
nuclear speckles, however, known examples tend to be poorly predictive of those subcellular compartments. A. Pie-
chart showing the fraction of proteins annotated to reside in the nucleus within the UniProt database that possess an 
“expert verified”, “experimental”, or “potential” NLS motif present in the NLS-DB (accession date Feb. 2024). 
Protein length has been associated with different mechanisms for nuclear import and export (109).B. Cumulative 
distribution plot showing the length of proteins annotated to reside in the nucleus within the UniProt database and 
possess one or more NLS motifs (···), or without an NLS motif (···) identified in the NLS-DB. Statistical testing 
between cumulative distributions “Length with NLS” and “Length without NLS” was performed with a 
Kolmogorov-Smirnov test, p-value < 0.0001, KS-statistic = 0.33. C. Cumulative distribution plot of the odds ratios 
for the presence of any NLS-motif studied in Figure S1A in nuclear proteins and the human proteome. SR-dipeptide 
repeats are associated with a subset of proteins identified in nuclear speckles are more likely to be observed in the 
proteome than in nuclear speckle proteins. D. Plot showing the odds ratios for the presence of SR-dipeptide repeats 
in nuclear speckles and the human proteome.  
 
 
 



 
 
Figure S2. Performance of training data in different strategies. Shared sequence identity and protein 
physicochemical properties might be expected to be sufficient to predict compartmentalization. For more 
information on sequence similarity split compartment classification (see Compartment classification with train-test 
split). A. Bar-graph showing ProtGPS architecture performance (area under the receiver operator curve) with 30 % 
sequence identity cluster split, random = 0.5 defines theoretical minimum performance. A random forest and logistic 
regression model were trained on a physiochemical property-based representation of the same protein sequences 
used to train ProtGPS to test if this information was sufficient to achieve performance similar to ProtGPS (see 
Compartment classification with physicochemical properties for more information). B. Bar graph showing 
performance (area under the receiver operator curve) of physicochemical property-based model performance with a 
random forest or logistic regression model (blue gradient, random forest. Sunburst gradient, logistic regression), 
random = 0.5 defines theoretical minimum performance. 
 
 
 
 



 
 
 



 
Supplementary Figure 3. Average attribution scores of amino acids for condensate compartment predictions. 
A. Heat map showing the attribution of different amino acids to the ProtGPS score, mean attribution score for amino 
acids normalized by protein sequence length. B. Clustering of condensate compartments modeled with ProtGPS by 
attribution scores of amino acids.  
 
 
 
 



 
 
Supplementary Figure 4.  Investigation of ProtGPS’ hidden layers. In principle, investigating the latent space of 
a neural network can help to reveal relationships between data and provide insight into the performance and 
behavior of a classifier model. Embeddings for individual proteins from the hidden layers of ProtGPS’ neural 
network architecture were projected onto a 2-dimensional surface using universal manifold projection components 
(UMAP). However, as multiple layers of a neural network architecture are used to make predictions by ProtGPS, we 



might expect the poor separation of proteins. A. UMAP projection of the embeddings of proteins used in the 
training, test, and development of ProtGPS. Mutual information scores can help deduce how, or if, features are 
related. A singular value decomposition was performed on the latent space of ProtGPS’ neural network and SVD 
components were extracted. A mutual information score was then computed to see if there might exist key 
eigenvectors contributing to the protein distribution code. B. Plot of mutual information score (y-axis) against SVD 
component, which shows that there are only small differences in the mutual information content of any one 
component. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Supplementary Figure 5. Protein generation using an autoregressive greedy search algorithm. (Left) Schematic 
showing the approach to generating proteins using an autoregressive greedy search algorithm guided by ProtGPS. 
(middle) The nucleolus is shown in green (indicated by NPM1-GFP) proteins were generated to target the nucleolus. 
Confocal micrographs of GS proteins targeted to the nucleolus expressed in colon cancer (HCT-116) cells tagged at 
the endogenous locus of nucleophosmin (NPM1) with green fluorescent protein (GFP) to indicate the nucleolus (488 
nm excitation, green, 561 nm excitation red, overlap, yellow). Dashed lines indicate the perimeter of the nucleolus. 
scale: 10 microns. (Right) Dot plot on a log scale showing the partition ratios of GS proteins in the nucleolus relative 
to the nucleoplasm (K = Inucleolus / Inucleoplasm). 
 
 
 
 
 
 
 
 
 



 
 
 
 
Supplementary Figure 6. Alphafold3 prediction and confidence over sequence appended to the N-terminus of 
mCherry. Per residue local confidence in prediction (pLDDT) is plotted for newly generated protein sequences over 
the first 1,100 atoms in the polypeptide backbone of the A. NUCX, B. SPLX proteins. Confidence is correlated with 
a tendency to be disordered disordered (110). Unique nucleolus or nuclear speckle targeting sequence begins at 
position 70, ends at position 920).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Supplementary Figure 7. SLiM motifs were identified in different NUCX proteins. Short linear motifs (SLiMs) 
might constitute a subset of the protein distribution code, we looked for the presence of 352 different short SLiMs in 
the NUCX proteins to look for evidence they’re associated with distribution. A. Bar-graph showing the count of the 
top 20 most frequently identified SLiMs in NUCX proteins. B. Plot showing the outcome of hierarchical clustering 
of NUCX proteins by different SLiMs found in their sequences, at most one SLiM of each type was found in each 
sequence. Red bars, indicate a SLiM is found, black bars indicate the corresponding SLiM is absent. See Table S4 
for the list of SLiMs found in NUCX proteins.  

 



Supplementary Figure 8. Live cell confocal microscopy images of generated proteins targeted to nucleolus. A. 
Schematic showing how Spearman line-plot analyses were performed in Figures S6-8,12.  Live cell images of 
colorectal cancer (HCT-116) cells expressing NPM1-meGFP (Green) from the endogenous NPM1 locus and induced 
expression of the indicated nucleolus targeted protein, B. Control, NLS-mCherry, C. NUC1. D. NUC2. Some 
images are reproduced here from main text Fig. 2C. Scale bar is indicated by white line in bottom left corner, 10 
microns. 



 
 
 

 
Supplementary Figure 9. Live cell confocal microscopy images of generated proteins targeted to nucleolus. 
Live cell images of colorectal cancer (HCT-116) cells expressing NPM1-meGFP (green) from the endogenous 
NPM1 locus and induced expression of the indicated nucleolus targeted protein A. NUC3, B. NUC4. C. NUC5. D. 
NUC6 (magenta). NLS-mCherry control Spearman r correlation = -0.61. Some images are reproduced here from 
main text Fig. 2C. Scale bar is indicated by white line in bottom left corner, 10 microns. 
 



 
 
Supplementary Figure 10. Live cell confocal microscopy images of generated proteins targeted to nucleolus. 
Live cell images of colorectal cancer (HCT-116) cells expressing NPM1-meGFP (green) from the endogenous 
NPM1 locus and induced expression of the indicated nucleolus targeted protein A. NUC7, B. NUC8. C. NUC9, D. 
NUC10 (magenta). NLS-mCherry control Spearman r correlation = -0.61. Scale bar is indicated by white line in 
bottom left corner, 10 microns. 
 
 
 



 
 
 
Supplementary Figure 11. Confocal microscopy of a subset of nucleolus targeted proteins at different stages 
of the cell cycle. Condensate targeted sequences were found to concentrate in puncta defined by NPM1-meGFP 
during different stages of the cell cycle. Shown are examples of live cell images of colorectal cancer (HCT-116) 
cells expressing NPM1-meGFP (green) from the endogenous NPM1 locus and induced expression of the indicated 
nucleolus targeted protein, analyte (magenta), signal overlap at similar signal intensities (white), scale is indicated 
by white line, 10 microns. 
 
 
 
 



 
 
 
Supplementary Figure 12. Cumulative distribution plots showing protein partitioning into different 
condensates. Graphs showing the cumulative distribution plots of generated protein sequences partitioning into the 
target compartments defined by NPM1-meGFP, SRSF2-meGFP. These data show the range of partitioning values 
found for different foci and the corresponding generative sequences. A. NUCX protein partitioning into NPM1-
meGFP marked compartments, B. SPL protein partitioning into SRSF2-meGFP compartments. Dashed line at 
partition ratio = 1 indicates lack of enrichment over the nucleoplasm.   
 
 



 
 
 
 
 
 
 
 
 
 
 



Supplementary Figure 13. Subcellular distribution of SPL proteins. SPL proteins were found to associate with 
SRSF2-meGFP in cytoplasmic bodies, but lost the capacity to migrate into the nucleus where nuclear speckles are 
normally formed. This phenotype is analogous to the pathological mutations in the splicing regulator RBM20 that 
promotes its mislocalization into the cytoplasm and association with splicing proteins, leading to cardiac disease (33, 
34). A. Dot plot showing partition ratio measurements of different SPLX proteins and control NLS-mCherry protein 
into compartments identified with SRSF2-meGFP signal, dotted line indicates a partition ratio equal to one. Partition 
ratio measurements compare whole nucleus to puncta (see supplementary materials, Imaging data analysis for more 
details). Representative live cell micrographs and analysis of B. NLS-mCherry, C. SPL2, D. SPL3, constructs 
(magenta) in colorectal cancer cells (HCT-116) expressing SRSF2-meGFP (green) from the endogenous locus. 
Figure S11D shows two intensity values: low intensity; top.  high intensity; middle, bottom. This was done to clarify 
that the SRSF2-meGFP is incorporated into SPL3 compartments. Top images show whole nucleus, bottom images 
show zoom of SRSF2-meGFP marked compartment. Scale: 10 microns.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Supplementary Figure 14. Nucleolar partitioning and protein phenotype is sensitive to prediction strength. 
Sensitivity analysis showing how increased sampling with the MCMC algorithm tends to lead toward improved 
incorporation into a target compartment. A. Live cell images of NUC1 proteins in colon cancer (HCT-116) cells 
expressing NPM1-meGFP from the endogenous locus. Proteins were generated with MCMC with a range of scores. 
B. Quantification of the partition ratio of each NUC1-X step protein as compared to the average partition ratio of 
NLS-mCherry. C. Live cell images of NUC6 proteins in colon cancer cells expressing NPM1-meGFP from the 
endogenous locus, merged panels are repeated from Figure 2E. Scale bar is indicated by white line, 10 microns. 
Quantification given in panel 2E for NUC1 steps.  
 
 
 



 
Supplementary Figure 15. Pathogenic human missense mutations occur less frequently in, but have a greater 
median Wasserstein distance than benign or uncertain mutations. Single point mutations defined as 
“pathogenic”, “benign”, or “uncertain” were collected from ClinVar. Wild-type and mutant sequences were analyzed 
with ProtGPS and the Wasserstein distance between the compartment predictions for wild-type and mutant 
sequences were computed. Benign mutations are expected to occur more frequently as reflected by a higher 
GnomAD frequency than pathogenic, but not impact the Wasserstein distance to the same degree as pathogenic 
mutation if mislocalization was the pathological result of that mutation. A. Cumulative distribution showing 
pathogenic missense mutations tend to occur less frequently in humans than benign and uncertain mutations. B. Bar 
graph showing that pathogenic missense mutations tend to alter the distribution of proteins more than “benign” or 
“uncertain” mutations. Mann-Whitney test, ****, p-value < 0.001. C. Cumulative distribution plot of the fraction of 
mutation labeled as “pathogenic”, “uncertain”, or “benign” binned by the predicted protein disorder (DR-BERT) at 
the mutation site.  
 
 
 
 
 



 
 
 

 
 
 
Supplementary Figure 16. Solvent accessible surface area of pathogenic single point mutation sites. Analysis 
of the solvent accessibility of wild-type amino acids at different mutation sites using the Alphafold2 predicted 
structures. Mutation sites are defined as the location on a protein where a mutation occurs and the solvent 
accessibility is computed using the wild-type amino acid. A. Histogram of single point mutation sites by solvent 
accessible surface area. Relative exposed area normalizes the surface area for each amino acid by its hypothetical 
maximum surface exposed area (111). B. Histogram of single point mutations binned by relative solvent exposed 
area. Each amino acid residue was normalized by that amino acid’s hypothetical maximum surface area. C. Scatter 
plot of solvent accessible surface area plotted against the Wasserstein distance between wild-type and single point 
mutant.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Supplementary Figure 17. Pathogenic mutations within short linear motifs sites. Pathogenic single point 
mutations within regions defined by a short linear motif were analyzed to determine if they would change the 
Wasserstein distance computed from ProtGPS predictions of the wild-type and mutant proteins. A. Dot plot showing 
the proportion of proteins with 0, 1, 2, or > 2 short linear motifs (SLiMs) affected by a pathogenic single point 
mutation in our ClinVar dataset. B. Pie-chart showing the number of SLiMs affected by pathogenic single point 
mutations. C. Median Wasserstein distance as a function of SLiMs affected by a single point mutation, error bars 
show the 95 % confidence interval. D. Wasserstein distance between single point mutants and wild-type proteins, 
showing the range of Wasserstein distances for mutants changing 0, 1, 2, or > 2 short linear motifs. Mann-Whitney 
U-test comparisons between 0 SLiMs altered and 1, 2, or >2, were found to be significant (****, p-value <0.0001. 
***, p-value < 0.001. **, p-value < 0.01).  
 
 
 
 
 



 
 
 

 
 
Supplementary Figure 18. Pathogenic mutation of post translational modifications sites can impact 
subcellular distribution predictions. Post translational modifications could alter the distribution of proteins in cells 
by changing their propensity for interaction with other molecules, their solubility within condensate compartments 
or their ability to associate with other molecules. Single point mutations were assessed if they interfered with known 
post translational modifications reported in the UniProt database. That information was then compared to the 
Wasserstein distance computed from compartment predictions made by ProtGPS on wild-type and single point 
mutant protein sequences. A. Pie-chart showing the relative proportion (1130 of 118,069) of pathogenic mutations in 
our data set at the post translational modification sites reported in the UniProt database. Single point mutations 
impacting lipidation sites and glycosylation sites would be expected to change the solubility of a protein in opposing 
directions given their potential size and known opposing aqueous solubilities. B. Plot showing cumulative 
distributions of Wasserstein distances for lipidation (n = 23) (···), glycosylation (n = 233) (···), other post 
translational modification sites (n = 874) (···), and all other post translationally modified wild-type and mutant pairs 
(n = 77,971) (—). Kolmogorov-Smirnov statistic and p-value is given for each PTM-type compared to all mutations 
in panel B.  
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Supplementary Figure 19. Mutation of test set proteins at solvent exposed and buried residues impact the 
protein distribution code. Protein sequences in the test set were studied to determine if assess if solvent exposure 
correlated with the Wasserstein distance between the predicted compartmentalization of wild-type and single point 
mutants. Unexposed residues may impact the stability and subsequent distribution of a protein. A. Pie-chart showing 
the frequency of a pathogenic mutation found in test set proteins to be buried (solvent exposed surface area = 0), 
solvent exposed (greater than or equal to 50% exposure), or partially buried (> 25 square angstroms). Buried 
residues or surface residues might influence a protein’s subcellular compartmentalization by altering the surface 
chemistry directly or by reducing the stability of folded conformations. To look for clues, we assessed if test set 
mutations at buried, partially exposed, or exposed residues tended to have similar Wasserstein distances. B. 
Cumulative distribution plot for Wasserstein distances between pathogenic mutants and wild-type proteins in classes 
defined in A. Protein structure in test set proteins might influence the outcome of data presented in panel B, 
therefore a C. cumulative distribution plot was computed showing the fraction of mutations occurring in test set 
pathogenic mutants at amino acid sites as a function of protein region disorder (DR-BERT score).  
 
 
 
 
 



 
 
Supplementary Figure 20. ProtGPS and sensitivity toward mutation site structure or disorder. Truncation and 
single point mutations were contextualized by DR-BERT disorder score predictions. The effect of the loss of a 
truncated region or influence of a single point mutation on the Wasserstein distance of wild-type and mutant proteins 
were stratified by the disorder average disorder score of the lost domain or the disorder score at the site of mutation. 
A. (left) Histogram of the average disorder score for a pathogenic variant’s truncated domain, (right) dot plot of 
Wasserstein distance between wild-type and pathogenic truncation variant for different ranges of disorder scores, 
mean and standard deviation are shown. All comparisons between disorder score group 0.00-0.25 and other groups 
were significant, p-value < 0.0001. B. (left) Histogram of the average disorder score for the wild-type amino acid 
mutated in each single point variant, (right) dot plot of Wasserstein distance between wild-type and pathogenic 
single point variant for a range of disorder scores. Mann-Whitney U test comparisons between disorder score group 
0.00-0.25 and other groups were significant, p-value < 0.0001.   
 
 
 
 
 
 
 
 
 
 



 
 
 
 
Supplementary Figure 21. Live cell confocal micrographs of wild type and disease variants in mouse 
embryonic stem cells. Live cell images of mouse embryonic stem cells (v6.5) and MCF7 cells (BRCA1 and 
BRCA1 D720Ter) expressing wild-type and disease variant proteins listed in Table 6 were fused to meGFP, scale 10 
microns.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Supplementary Figure 22. Signal homogeneity and entropy changes between wild-type and pathogenic 
mutant proteins. Changes in the patterns present in an image can be detected with image analysis features. The 
effect of the mutation on subcellular localization produces a modest correlation between image entropy or 
homogeneity and Wasserstein distance. Signal homogeneity is measurement of how homogenous a signal is within a 
defined region of an image, with uniform signal equal to 1. Entropy measurements compute the degree of order 
within the defined region of an image where higher values indicate a more random distribution of signal. A. 
Schematic showing the approach to calculating entropy and signal homogeneity within the nuclei of pathogenic 
variant model systems. B. Plot of Log10 EntropyWT-mutant against HomogeneityWT-mutant, colored by variant type (single 
point, blue, truncation, goldenrod). C. Plot of Log10 EntropyWT-mutant against Log10 HomogeneityWT-mutant, colored by 



the “major” or “minor” effects described in Table S10 (minor effect, blue. major-effect red). D. Log10 EntropyWT-

mutant plotted against the Wasserstein distance computed between each wild-type and single point (blue) or truncation 
mutant (goldenrod) pair, reporting Pearson’s r correlation between each data type. E. Plot of Log10 HomogeneityWT-

mutant against Log10 Wasserstein distance computed between each wild-type and single point (blue) or truncation 
mutant (goldenrod) pair, reporting Pearson’s r correlation between each data type.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S1. Table of area under the receiver operator curve (AUC-ROC) metrics computed for the models studied in 
this work. See methods for more information on each approach.  
 

  
Random 
split  

 MmSeqs2 
split 

 

  ProtGPS 
Random 
Forest 

Logistic 
Regression 

 
ProtGPS 

Random 
Forest 

Logistic 
Regression 

Nuclear 
speckle 0.905 0.861 0.740 

 
 
 
 

0.759 

 
 
 
 

0.745 

 
 
 
 

0.769 

P-body 0.887 0.753 0.645 

 
 

0.688 

 
 

0.619 

 
 

0.543 

PML-body 0.768 0.555 0.554 

 
 

0.614 

 
 

0.549 

 
 

0.587 

Post synaptic 
density 0.872 0.767 0.742 

 
 

0.766 

 
 

0.718 

 
 

0.759 

Stress granule 0.830 0.658 0.649 

 
 

0.619 

 
 

0.668 

 
 

0.621 

Chromatin 0.921 0.794 0.692 

 
 

0.663 

 
 

0.674 

 
 

0.633 

Nucleolus 0.920 0.826 0.652 

 
 

0.796 

 
 

0.737 

 
 

0.601 

Nuclear pore 
complex 0.987 0.847 0.863 

 
 

0.855 

 
 

0.928 

 
 

0.776 

Cajal body 0.900 0.664 0.822 

 
 

0.646 

 
 

0.620 

 
 

0.50 

RNA granule 1.000 1.000 0.994 

 
 

0.964 

 
 

0.998 

 
 

0.968 

Cell junction 0.925 0.834 0.713 

 
 

0.727 

 
 

0.784 

 
 

0.731 

Transcriptional 
condensate 0.869 0.709 0.556 

 
 

0.605 

 
 

0.708 

 
 

0.675 

 
 
 
 
 
 
 
 
 
 



 
Table S2. Autoregressive greedy search generated N-terminal peptides created to target mCherry to the nucleolus. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sequence ID Sequence 

400 
 

KRIRSIRMMVKYMGEAFEYEGPCHTVGGKFTCHGICSYIHHPRPVMGGNYAWSTRSY
WVMMAICTVPKYFNGDICMVSDNGHGCCVGMGLACLCQKHYKMKHMNHDAHTE
YNHTAEWHHDWEEWFLECMANAPWMAKMEAQIDFKMKGDT 
 

403 
 

KKRMWDRQRFSTSFCYTGYIESIWGWGLYDAMRTVAPQKWPKVITIMWHAFASPYP
KLCLQAHITNCGCHMRTVFIRCPWTFSGEIKHCGWCAWCDRWLQCFAHADMNVACS
YSKQKPPPQRNVDRIHCTAVKPCIPRLPYVPHPGPYCC 
 

404 
 

AKKISCHLRILCYDRTSSMRWYAQGRAMRKAKEIRCNNHVQYSCKTIWCRMGIMIM
EGNCWETWITYHYTTAHPGKNWHVRRWDNMQKECNHAGWPRPRLIWHTHGLKHA
MMSEKSEPHYNQDEACFYNKGMYEYSMMEHHDMDFVTCVS 
 

674 
 

IEEEEIFMHRRRMGDWIQSKCKQCHEWNIKNHCEVWFKWRVSYCRCFNSFNCGQVR
NPCQMCDHLVGTTTFMQRKEKDVGEILQMRHPIGRCAVFCSHQPKHNFISHETCRAQ
GRWMLNSEEDMEVPIACADCGAWCCIHWEEDHSWPCT 
 

440 
 

GIETNKYRIYGAWDWIVASIIVQGVCDFHYTTTKEALRFKYIFGKMSWKHGCAIERRC
NNIGAIIDKHRFHEHIRAEANNAWAWPCAMAIDPIFRCGWFWLKVRPERYVKPKKFW
KHKENEDDHIKINTEIHHIWNWMMCWWHDDTKKSV 
 

401 
 

MGVDEKLEMTALFCIGIMGLSWQCCRSEVIMCCDDDTRHIMCMVVHYSIRCSYQRM
KYAMRDKKYFIWKMFRSKIGHRKSICLWRLHGIHKPWQTQWTSAAKDHKPYPDKH
QNYEHHYYDVRNTCRKIWHPSGYHADMDEWTMNNLEDAE 
 

505 
 

GDKNYAMMKGDNTEAWGGWKRAYSHTHHTKHCIRPRVKCWHYRIKKHSFIHGDW
CCYNRVIWGPEKRWWCQHFYGDENHDIKENWEEDRECAPISPGHPILREAVRRRFLR
YTRCNIRLSFIRMPEGTSSVQHFTDIQRVKWFDYGFPVH 

506 
 

LKHDGNHHHGCAKNVIHRYDEQRCDHTAADHINCVYGGLIKAQDTATWSHMTLTM
YMCHFNSHRIPTCKQWWRWYECTVPRLQPMERKDITPRHRGRRLGGKTMYPEWMN
RCWNHTNGINHECSGTWDDRSHHGGCPYHCDDGIRNECTS 



 
Table S3. Markov Chain Monte Carlo generated N-terminal peptides created to target mCherry to the nucleolus 
(NUCX) or nuclear speckles (SPLX). 

 
 
 
 
 
 
 
 
 
 
 

Name Sequence 

NUC1 FMLVSTLWWKQKRLNNAVRTHTKFLTTINNPWRDFCSHRKKYCQKRKHEHATLKSWGTNN
GSRRAAGICSGYGPEHSPDANTVKHCCIDYDSIDPIRCTR 

NUC2 HFMRIADRKVMHHGCAKQGNSWNHIGQKPCCSKVKKGEQSQKADAVVWGVKCHMKWE
ARSQCNQSFEKMQLHCPMSCRVQESSHNQHNIQPKANHQAMIH 

NUC3 ATDYRQEGLKMETQMSVTDAMIPSGPVKWGCNPNSKSKQKPTSVRQATHGTAWTQESHVW
NIWGIPCQLHADTHADPFEWKGVAHTADPVNHDRANRNES 

NUC4 DWKWRMYGEWDSTGTVMGEWGHRHCDTVQAICWVNRLYRKKEDPQAKHDFRAHQLPM
AQNKPKQHQCKKEEGILEPSKGVGGKGIRMWWDPEYRIYQEPL 

NUC5 GRPFRRFKKWEELDGPPIGEQLQGRLRETAYPLKEKIHTHHIFGRMVKTDWLPCWQHSGHLI
CRRMWSIFPEPTLKKKMDGHSNPHGAEGSQHKDFDPWS 

NUC6 NCLETANAEMDEPHDKILHEPRKAVRYQHHGQEYDRLQWPVTHPTFAESEMEKQRHYVHC
DRKRWKKCRIEEEKRQKLPHEPLEVSPVKHCPFEAEEYNG 

NUC7 HGQNRRRKNIGTLKMHTIRGFFPMFSEIRNNHTFTIHGSKSFNSDFQDQNLHCHDRMMHLQI
SDSMNNTGEEWMTEKVNSLPRKGKSGGPPYKPKVWSVQ 

NUC8 FMDDVLWQLHARQSFRYAHHFPGPVNSRKHFTHTICSDVDKNTRMGEDNMVPMCMPEAEY
ICPIDDLSLARSHKQRDMSTIFQETNLKVSNKQWRRPWLQ 

NUC9 HNVHRMNKSKLSLTLKRQPTITAMHFEASVSNHWKGFPSSNVVAHSGYYKEIAPHVTEQAN
MDQGVGMGIRSQSHTSQLNEIDNEPPGEAKESSAGCASY 

NUC10 LSPTWCDEVANDQQPTGNQAETHICNSIKGQSEAMGEHNNMQHVAGDWEKYMEPVYPHGE
EMDNPYAMCDGHFCPEIIKSLGGRANNKTQNGQYQINKHT 

SPL1 PGVPHQTLRHHIRPHEHIHAFKDRNWEGKTKGPEFNEYHNAEFHHHGTNESHCSERAKFRF
HQQRQTPHREIIESLSEEWNSTQKECHHRTTKEFVKCGK 

SPL2 VNDITDVEMAVGRVPREGGNATERCYACFHHLDDYDLHQQMHGRDAPHMRNNSYKKAAH
SEHINEVDHQGLQSDVEEYEGVMNEDTFKYMADERDCSPRN 

SPL3 TKIKKHRSTPNMIQSPVTYPDEDHTNNHAGWKTTKAAAPKFRCAARQINRTAMMRCENFAI
TIDDMPSQDWPHKDDHGAGDDKKDCMPARYDGHTEETND 

SPL4 FFDDVLWQLHARQSFRYAHKFPGPVNERKHFTHSRCSDVDKNTRMGEQNKVPMCMPEAEY
ICPIDDLSLARSHAQRDMSTSFCETYPKVSNTQWRRPHLQ 

SPL5 EKSHMHGLSMHNCHCGGMSCHHYQQPKMHAVSYKKFVNYGPVEDTLGARDEFVYHVRRS
EKRREMNNFEPWQFHTKTKTRHHKQSSHEGTWKWPAPQFHP 

SPL6 RRFRASIRLVHACGHNHEGKRPFGERWPCEDDKHKPMENQLMKCPFSLMHQQMAYMMEM
GDEWHPTMHYHTHMHAPMAEETYKTKVYNSYYGLGWWVDPM 

SPL7 THDEYSYHTRNTRNGFAFDRKDTGRSWGEYNQFKQTGADVNTDTRPLHRPAPKNNTRLYA
GRGLSRTKCKLERTTSRHQERHTGNNPEFASNCVSEPAFP 

SPL8 CEYLHARTFSTRVPHAAISTVSPSKDYEDNGYHPAADDCPADSHCYPTMYDKTQWHEYRWH
DTQHPSIDQKGNVSAHSEFHQHTGCNPAFFSKALNVMQY 

SPL9 YEFFFPERLVRISQAPKLKELEGTGMRKEPPSTKCTMCFNDLCMLVLHGRIWRIKQQDVKNN
PSDAMKVTEGENAADKHDHRKGSRHPMYCCPMCDCDFM 

SPL10 NTSTGVEKHKRVTNQKRDDCTKSCCMISQKIAVARDGHDEVTAPPYTRYTHDVPCYGQTSV
HKPRLNFKTADVMECDLSGHCSFEKKIDKETQNDEKMLD 



 
 
Table S4. Number of Eukaryotic short linear motifs found in each of the NUCX series proteins.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name NUC1 NUC2 NUC3 NUC4 NUC5 NUC6 NUC7 NUC8 NUC9 NUC10 Count
PDZ domain ligands 0 0 0 1 0 0 0 0 0 0 1

PIKK phosphorylation site 0 1 1 0 1 0 0 0 1 1 5
Cdc14 phosphatase dephosphorylation site 0 0 0 0 0 1 0 0 0 0 1

Polo-like kinase phosphosites 1 0 0 0 0 0 0 0 0 0 1
Caspase cleavage motif 0 0 1 0 1 0 0 0 0 1 3

MAPK Phosphorylation Site 1 0 0 0 0 1 0 0 0 0 2
Casein kinase 2 (CK2) Phosphorylation site 0 0 0 0 0 1 1 0 0 0 2

 MATH domain binder of the TRAF6 K63 E3 ligase 0 0 0 0 0 1 0 0 1 0 2
Cyclin N-terminal Domain Docking Motifs 0 0 0 0 0 0 0 1 1 0 2
Casein kinase 1 (CK1) Phosphorylation site 1 0 0 1 0 0 1 0 1 0 4

di Arginine retention/retrieving signal 0 0 0 0 1 1 1 1 0 0 4
PDZ domain ligands 0 0 0 1 0 0 0 0 0 0 1

Apicomplexan export motif 0 0 0 0 0 1 0 0 0 0 1
C-Mannosylation site 0 0 1 0 0 0 0 0 0 0 1

LATS kinase phosphorylation motif 1 0 0 0 0 0 0 0 0 0 1
GSK3 phosphorylation site 1 0 0 0 0 1 1 1 1 0 5
PP1-docking motif RVXF 0 0 0 0 0 1 0 0 0 0 1

Cyclin N-terminal Domain Docking Motifs 0 0 0 0 0 0 0 1 1 0 2
Y-based sorting signal 1 0 0 0 0 1 0 0 1 0 3
PDZ domain ligands 0 0 0 1 0 0 0 0 0 0 1

Cyclin N-terminal Domain Docking Motifs 0 0 0 0 0 0 0 1 1 0 2
CendR Motif Binding to Neuropilin Receptors 1 0 0 0 0 0 0 0 0 0 1

Arc N-lobe binding ligand 1 0 0 1 0 1 1 0 0 0 4
APCC activator-binding ABBA motif 0 0 0 1 0 1 0 0 0 0 2

N-degron 0 0 0 0 0 1 0 0 0 0 1
Glycosaminoglycan attachment site 1 0 1 0 1 0 1 0 1 0 5

FHA phosphopeptide ligands 0 0 1 0 0 1 1 0 0 1 4
FHA phosphopeptide ligands 0 0 1 0 0 1 1 0 0 1 4

Di-Tryptophan motif of Delta-COP MHD domain 0 0 0 1 1 0 0 0 0 0 2
Cyclin N-terminal Domain Docking Motifs 0 0 0 0 0 0 0 1 1 0 2

Apple-PAN domain ligand motif 0 0 0 0 1 0 0 0 0 0 1
Cyclin N-terminal Domain Docking Motifs 0 0 0 0 0 0 0 1 1 0 2

IAP-binding motif (IBM) 0 0 1 0 0 0 0 0 0 0 1
Polo-like kinase phosphosites 1 0 0 0 0 0 0 0 0 0 1

IAP-binding motif (IBM) 0 0 1 0 0 0 0 0 0 0 1
WDR5 WD40 repeat (blade 5,6)-binding ligand 1 1 0 0 1 1 1 1 1 1 8
WDR5 WD40 repeat (blade 5,6)-binding ligand 1 1 0 0 1 1 1 1 1 1 8

NRD cleavage site 1 1 0 1 1 1 1 1 0 0 7
Binding motif for UBA3 adenylation domain 0 0 0 0 1 0 0 0 0 0 1

IAP-binding motif (IBM) 0 0 1 0 0 0 0 0 0 0 1
NEK2 phosphorylation site 0 0 0 0 0 0 0 1 1 0 2

APCC activator-binding ABBA motif 0 0 0 1 0 1 0 0 0 0 2
Cyclin N-terminal Domain Docking Motifs 0 0 0 0 0 0 0 1 1 0 2

PK Phosphorylation site 0 0 1 0 1 0 0 0 0 0 2
PDZ domain ligands 0 0 0 1 0 0 0 0 0 0 1

IAP-binding motif (IBM) 0 0 1 0 0 0 0 0 0 0 1
NEK2 phosphorylation site 0 0 0 0 0 0 0 1 1 0 2

N-degron.1 0 0 0 0 0 1 0 0 0 0 1
N-degron.2 0 0 0 0 0 1 0 0 0 0 1
N-degron.3 0 0 0 0 0 1 0 0 0 0 1
N-degron.4 0 0 0 0 0 1 0 0 0 0 1

C-terminal Imide degron 0 0 0 0 0 0 1 1 0 0 2



Table S5. Statistical testing of generated peptide sequences.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Protein # of compartments assayed p-value (KS-test, comparing 
protein to NLS-mCherry) 

NUC1 45 < 0.0001 
NUC2 32 < 0.0001 
NUC3 27 < 0.0001 
NUC4 33 < 0.0001 
NUC5 33 < 0.0001 
NUC6 51 < 0.0001 
NUC7 12 < 0.0001 
NUC8 14 < 0.0001 
NUC9 28 < 0.0001 
NUC10 16 < 0.0001 
SPL1 5 0.0193 
SPL2 8 < 0.0001 
SPL3 16 < 0.0001 
SPL4 14 0.7102 
SPL5 11 < 0.0001 
SPL6 17 0.4129 
SPL7 13 0.0013 
SPL8 12 0.2343 
SPL9 12 0.2923 
SPL10 13 0.9242 



Table S6. Spearman’s r correlation and mean partition ratios measured for each of the generated sequences studied. 
 

Protein Compartment Spearman line A Mean partition 
ratio 

Average Spearman 
Correlation and 

standard deviation  
NUC1 Nucleolus 0.930 17.353 

0.91 ± 0.039 
NUC2 Nucleolus 0.830 3.953 

0.81 ± 0.033 
NUC3 Nucleolus 0.220 4.549 

0.19 ± 0.051 
NUC4 Nucleolus 0.820 1.985 

0.82 ± 0.034 
NUC5 Nucleolus 0.930 2.077 

0.90 ± 0.053 
NUC6 Nucleolus 0.540 2.651 

0.46 ± 0.059 
NUC7 Nucleolus 0.160 3.888 

0.19 ± 0.030 
NUC8 Nucleolus 0.270 3.398 

0.28 ± 0.025 
NUC9 Nucleolus 0.370 2.491 

0.36 ± 0.037 
NUC10 Nucleolus -0.260 1.545 

-0.22 ± 0.074 
NLS-mCherry Nucleolus -0.610 1.000 

-0.47 ± 0.047 
SPL1 Nuclear Speckle ND 1.173 ND 

SPL2 Nuclear Speckle 0.810 32.480 
0.81 ± 0.029 

SPL3 Nuclear Speckle 0.970 2.301 
0.9425 ± 0.031 

SPL4 Nuclear Speckle ND 0.967 ND 

SPL5 Nuclear Speckle ND 1.815 ND 

SPL6 Nuclear Speckle ND 1.046 ND 

SPL7 Nuclear Speckle ND 1.522 ND 

SPL8 Nuclear Speckle ND 1.060 ND 

SPL9 Nuclear Speckle ND 1.436 ND 

SPL10 Nuclear Speckle ND 1.082 ND 

NLS-mCherry Nuclear Speckle -0.49 1.003 -0.50 ± 0.038 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S7. Top forty SLiMS most frequently mutated by pathogenic single point mutations. 
 

SLIM (ELM database annotation functional site name) Count Median Wasserstein distance 
di Arginine retention/retrieving signal 546 0.00458333 
PP1-docking motif RVXF 525 0.00416667 
Cyclin N-terminal Domain Docking Motifs 499 0.00391667 
Cyclin N-terminal Domain Docking Motifs.1 499 0.00391667 
Cyclin N-terminal Domain Docking Motifs.2 499 0.00391667 
Cyclin N-terminal Domain Docking Motifs.3 499 0.00391667 
Cyclin N-terminal Domain Docking Motifs.4 499 0.00391667 
Cyclin N-terminal Domain Docking Motifs.5 499 0.00391667 
NEK2 phosphorylation site 467 0.00375 
NEK2 phosphorylation site.1 467 0.00375 
Di-Tryptophan targeting motif to the Delta-COP MHD domain 463 0.00483334 
SUMO interaction site 452 0.00341667 
SUMO interaction site.1 452 0.00341667 
Oomycete secretory protein processing motif permissive variant 

435 0.00483334 
PKA Phosphorylation site 434 0.00420833 
PKA Phosphorylation site.1 434 0.00420833 
Apicomplexan export motif 422 0.00445833 
Calcineurin (PP2B) PxIxIT docking motif 419 0.00316667 
Peptide Amidation Site 408 0.00341667 
N-glycosylation site 395 0.00441667 
N-glycosylation site.1 395 0.00441667 
PKB Phosphorylation site 393 0.00308333 
PK Phosphorylation site 378 0.00291667 
Cks1 ligand 374 0.00270833 
PCSK cleavage site 361 0.00291667 
PCSK cleavage site.1 361 0.00291667 
PCSK cleavage site.2 361 0.00291667 
PCSK cleavage site.3 361 0.00291667 
PCSK cleavage site.4 361 0.00291667 
NES Nuclear Export Signals 352 0.00370833 
NES Nuclear Export Signals.1 352 0.00370833 
WAVE regulatory complex (WRC) binding site motif 347 0.00258333 
Caspase cleavage motif 340 0.00341667 
MSH2 lever 1 domain ligand 334 0.00350000 
Binding motif for UBA3 adenylation domain 330 0.00412500 
CDK Phosphorylation Site 330 0.00233333 
CDK Phosphorylation Site.1 

330 0.00233333 
CDK Phosphorylation Site.2 

330 0.00233333 
PP2A holoenzyme B56-docking site 

314 0.002875000 
Polo-like kinase phospho sites 

294 0.00358334 
 
 
 
 
 
 
 
 



 
Table S8. Top 40 SLiMS by median Wasserstein distance between their wild-type and single point mutant. 
 

SLIM Count Median Wasserstein distance 
Tyrosine-based sorting signal 108 0.00945833 
Helical calmodulin binding motifs 41 0.00766667 
Helical calmodulin binding motifs.1 41 0.00766667 
UHM domain Ligand Motif 52 0.007 
HCF-1 binding motif 63 0.0065 
KEAP1 binding degron 22 0.00616667 
KEAP1 binding degron.1 22 0.00616667 
F and H motif 46 0.00579167 
ASX EGF hydroxylation 25 0.00566667 
WRxxL motif 45 0.00541666 
NRD cleavage site 215 0.00525 
MAD2 binding motif 122 0.004875 
Di-Tryptophan targeting motif to the Delta-COP MHD domain 463 0.00483334 
Oomycete secretory protein processing motif permissive variant 

435 0.00483334 
MDM2 binding motif 116 0.00475 
AAK1 and BIKe phosphorylation site motif 27 0.00458334 
di Arginine retention/retrieving signal 546 0.00458333 
Casein kinase 1 (CK1) Phosphorylation site 99 0.00450001 
Apicomplexan export motif 422 0.00445833 
N-glycosylation site 395 0.00441667 
N-glycosylation site.1 395 0.00441667 
Extracellular side LRP5 and -6 binding motif 50 0.004375 
C-Mannosylation site 150 0.00433333 
Cyclin D-specific Helical docking motif 29 0.00433333 
Ligand motif binding the CSL BTD 136 0.00429167 
Tankyrase-binding motif 215 0.00425 
Glycosaminoglycan attachment site 98 0.00420833 
PKA Phosphorylation site 434 0.00420833 
PKA Phosphorylation site.1 434 0.00420833 
PP1-docking motif RVXF 525 0.00416667 
Arc N-lobe binding ligand 271 0.00416667 
PTB ligand 219 0.00416666 
PTB ligand.1 219 0.00416666 
Binding motif for UBA3 adenylation domain 330 0.004125 
O-Fucosylation site 230 0.00408333 
Docking motif binding to N-terminal kinase domain of RSK 
family kinases 35 0.004 
APCC activator-binding ABBA motif 

244 0.00395833 
APCC activator-binding ABBA motif.1 

244 0.00395833 
EH ligand 

49 0.00391667 
Cyclin N-terminal Domain Docking Motifs 

499 0.00391667 
 
 
 
 
 
 



Table S9. Post translation modification site categories, count in test set sequences, and their median Wasserstein 
distances.  
 

PTM-category  Count Median Wasserstein distance 
Glycosylation site  234 0.00225 
Lipidation site 23 0.00275 
Other PTM-site types (Acetlyation, phosphorylation etc.) 834 0.00316 
Site does not contain a known PTM 7131 0.00602 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S10. Table of wild-type and pathogenic protein variants studied in mouse embryonic stem cells.  
 

Protein Mutation Magnitude of effect on 
distribution 

Wasserstein 
Distance (WT, 

Mutant) 

Fraction of predicted 
NES and NLS signals 

mutated 
DAXX R318Ter Major 0.162 NES 3/6 

NLS 11/14 
TCOF Q55Ter Major  0.159 NES 2/4 

NLS 50/53 
BARD1 R406Ter Major 0.098 NES 1/4 

NLS 2/6 
BCL11A Q177Ter Major 0.081 NES 2/4 

NLS 1/3 
BCOR Y657Ter Major 0.066 NES 3/4 

NLS 13/13 
SALL1 S372Ter Major 0.041 NES 3/5 

NLS 
SRSF2 P95H, 

 S54H 
Major,  
Minor 

0.025, 0.003 NES 0/0, 0/0 
NLS 0/5, 0/5 

ESRP1 L259V Minor 0.005 NES 0/6 
NLS 0/0 

BRD3 F334S Major 0.002 NLS 0/24 

TERT T567M Minor 0.002 NES 0/3 
NLS 0/5 

BCL6 R594Q Minor 0.002 NES 0/3 
NLS 0/1 

RBM10 V354M Major 0.000 NES 0/3 
NLS 0/17 

MECP2 R186Ter Major 0.067 NES 1/3 
NLS 11/16 

DYRK1A Q547Ter Minor 0.065 NES 0/3 
NLS 0/8 

ASXL1 R693Ter Minor 0.023 NES 1/2 
NLS 0/13 

BRCA1 D720Ter Minor 0.020 NES 0/2 
NLS 0/2 

ENC1 P404Q Minor 0.001 NES 0/3 
NLS 0/2 

CBX5/HP1a V21L,  
W142C 

Minor,  
Major 

8.33E-05,  
4.16E-04 

NES 0/1, 0/1 
NLS 0/6, 0/6 
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