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ABSTRACT: The goals of this Perspective are threefold: (1) to inform a broad audience, including machine learning (ML) and
artificial intelligence (AI) academics and professionals, about synthetic drug substance process development, (2) to break down the
general synthetic drug substance process development task into more tractable subtasks, and (3) to highlight areas in which machine
learning and artificial intelligence might be beneficially developed and applied. Application of machine learning and artificial
intelligence to chemical synthesis of medicinal compounds has long been discussed and has resulted in the development of a number
of computer-aided synthesis planning tools by both academic groups and commercial enterprises. The focus of these efforts has
primarily centered on the task of retrosynthetic analysis, as seen from the perspective of a medicinal chemist. This has left significant
unrealized opportunities in the application of machine learning and artificial intelligence to aid the process chemist or engineer in
commercial drug substance process development.
KEYWORDS: drug substance, accelerated process development, machine learning prediction, computer-aided synthesis planning,
route selection and optimization

1. INTRODUCTION
Bringing a new drug to market is a costly endeavor, with
estimates in excess of 2 billion dollars and timelines spanning
into decades.1 This can be attributed to several factors,
including the process of discovery, which must go through
design−make−test−analyze (DMTA) cycles for large pools of
candidates, from which only a few molecules will be
successfully moved into clinical trials. As or more significant
are the cost and time of conducting clinical trials and the cost
of developing and gaining approval for the regulated
manufacturing process to supply clinical trials and then
patients throughout the world.

In a previous article,2 we reviewed the DMTA drug
discovery cycle and discussed areas in which artificial
intelligence (AI) might be beneficially applied to medicinal
chemistry, e.g., with computer-aided synthesis planning
(CASP). In this Perspective, we focus on developing a suitable
synthetic manufacturing process for clinical and commercial
production of drug substance.3

In our experience and our reading of the relevant literature
over the last 15 years, we see significant unrealized
opportunities for machine learning (ML) and AI to enable
more efficient drug substance process development. We
suspect that these opportunities have not been in focus
because of the complex, multifaceted, and iterative nature of
synthetic drug substance process development; such tasks, in
their vast formulation, are hard to pin down into confined
supervised learning problems that can be tackled with ML or
narrow AI. We have three goals in this Perspective: (1) to
inform a broader audience, including machine learning
professionals, about synthetic drug substance process develop-

ment, (2) to break down the general synthetic drug substance
process development task into more tractable subtasks, and (3)
to highlight areas in which ML and AI might be beneficially
applied.

1.1. Breaking Down the Task of Synthetic Drug
Substance Process Development. The overall task of
process development is complex.4 To gain traction and provide
problem formulations that may be more readily tackled with
ML, we break down the synthetic drug substance process
development task, as shown in Figure 1. This divides process
development into two major subtasks: (1) Route Optimization
and (2) Process Optimization. Within each of those, we
identify sub-subtasks: four for Route Optimization�Route
Mapping, Route Narrowing, Route Scouting, and Route
Selection�and two for Process Optimization�Problem
Formulation and Search. While different pharmaceutical
companies approach these subtasks with variations in their
workflows, this outline defines the general requisite tasks.

1.2. Outline of This Perspective. The Perspective is
structured as we have broken down the process development
task: In section 2 we take a deeper look at Route Optimization,
and then we turn our attention to Process Optimization in
section 3. Section 4 then ends with some overarching
conclusions and an outlook for the application of ML and

Received: July 13, 2023
Published: September 25, 2023

Perspectivepubs.acs.org/OPRD

© 2023 The Authors. Published by
American Chemical Society

1868
https://doi.org/10.1021/acs.oprd.3c00229

Org. Process Res. Dev. 2023, 27, 1868−1879

This article is licensed under CC-BY-NC-ND 4.0

D
ow

nl
oa

de
d 

vi
a 

M
A

SS
A

C
H

U
SE

T
T

S 
IN

ST
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
Fe

br
ua

ry
 5

, 2
02

5 
at

 2
1:

38
:3

9 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+J.+Griffin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Connor+W.+Coley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Scott+A.+Frank"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joel+M.+Hawkins"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Klavs+F.+Jensen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.oprd.3c00229&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.3c00229?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.3c00229?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.3c00229?goto=recommendations&?ref=pdf
https://pubs.acs.org/toc/oprdfk/27/11?ref=pdf
https://pubs.acs.org/toc/oprdfk/27/11?ref=pdf
https://pubs.acs.org/toc/oprdfk/27/11?ref=pdf
https://pubs.acs.org/toc/oprdfk/27/11?ref=pdf
pubs.acs.org/OPRD?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.oprd.3c00229?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/OPRD?ref=pdf
https://pubs.acs.org/OPRD?ref=pdf
https://acsopenscience.org/open-access/licensing-options/
https://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


AI, including valuable applications that exceed current
methodologies and thus invite further advances to the art.

2. ROUTE OPTIMIZATION
In the Route Optimization phase of process development, the
goal is to identify the best synthetic route to a given drug
substance.5 In this goal, a route is defined by the selection of
the raw starting materials (SMs) and the sequence of drug
substance intermediates (DSIs) building from the selected
SMs to the final drug substance. A viable route is one that is
achievable by applying feasible chemical reactions and
isolations to transform SMs into intermediates, intermediates
into more advanced intermediates, and the final intermedi-
ate(s) into the drug substance.6 In their current state, CASP

tools7,8 are most useful at the ideation stage (Route Mapping),
where precise details of conditions and protection/depro-
tection chemistry are less relevant. For certain targets, the large
number of pathways generated likely needs to be clustered or
grouped for manual review along with experimentation to
identify viable and efficient routes from those proposed (Route
Narrowing).

As an example, Figure 2 presents a proposed convergent
route (shown retrosynthetically) to the complex cholesteryl
transfer protein inhibitor evacetrapib (shown at the left) from
five structurally simple and commercially available raw
materials (shown at the far right). As the starting point, access
to commodity raw materials is critical and essential to a viable
process chemistry route. The SM building blocks shown in

Figure 1. Hierarchical view of the stages and categories of tasks involved in process development. Throughout process development, it is necessary
to continue to supply material while also pursuing a more optimal route. This Perspective highlights the many opportunities for AI-enhanced
development (green) to support each stage of process development (Icons obtained and/or adapted from Flaticon.com).

Figure 2. Retrosynthetic approach for the cholesteryl transfer protein inhibitor evacetrapib. Adapted from ref 9. Copyright 2020 American
Chemical Society.
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Figure 2 were estimated to be available at a sufficient scale
(kilogram availability) and price point (ideally ≤ $100/kg)
during ideation.

Additionally, preferred routes are those that can ultimately
be achieved with efficient unit operations (simple reaction
configurations, minimal workups, high-yielding and highly
purifying crystallizations, etc.), be executed safely, and include
intermediates with good stability, among many other factors10

that require additional details of the proposed synthesis
process to be filled in. Therefore, to evaluate potential routes,
these routes must be further developed into proposed schemes,
which include conditions for achieving the transformations,
workups, and isolations expressed above and below the arrows.
As an example, the scheme to an intermediate in the synthesis
route to evacetrapib9 is shown in Figure 3. During Route
Optimization, proposed routes are scouted with experiments
testing key transformations and are further evaluated to
eliminate those that are not viable or less desirable. Ultimately,
a single route with a proposed baseline scheme is selected,
demonstrated on a larger scale, and taken forward into Process
Optimization.

The overall task of Route Optimization is multifaceted, and
there are at least a few aspects that make this difficult: the
virtually infinite number of options (potentially viable routes to
select from), the difficulty of experimentally scouting all
proposed routes, the multitude of competing objectives or
process metrics in defining the best route, and the difficulty of
evaluating these objectives or process metrics with the
incomplete information available when having to make the
selection.11

As additional constraints, process development groups are
limited in both time and resources in devising a route and must
continually make trade-off decisions when selecting routes to
ensure that clinical supplies are enabled throughout the process
and that the final route is viable for registration with global
regulatory bodies (Figure 1, blue). Consequently, due to
portfolio prioritization or project acceleration scenarios,
business decisions often require the selection of a route at
various stages that may not have all of the desired economic

and efficiency attributes, as conceptually depicted in Figure 4.
Changes after marketing authorization become even more

complicated and require a significant return on investment
(ROI) justification to undertake. This contrasts significantly
with commodity chemical route selection and optimization, in
which case route changes and optimizations can be achieved
iteratively and over a longer period of time in some examples.
We see the potential for the right applications of ML and AI to
bring forward much of the evaluation in Route Optimization
and enable process development teams to identify enabling,
registrable, and optimized routes faster as well as get to more
optimal routes in the same finite time; this perspective is also
conceptually depicted in Figure 4.

Figure 3. Synthesis of an evacetrapib intermediate. Adapted from ref 9. Copyright 2020 American Chemical Society.

Figure 4. Pharmaceutical Process Optimization conundrum. The path
from an enabling route to the ideal route involves several key stages
discussed in this Perspective. Criteria for the ideal route may include
robustness, cost, and sustainability; safety and drug substance quality
are not compromised. Better computational tools should decrease the
time/resources required to identify a suitably optimized route and/or
an optimized route closer to the ideal route, though there can be
diminishing returns for achieving ideality depending on production
volumes. The leftward arrows represent the time/resource savings
during development that AI-enhanced design can enable, while the
upward arrows represent that with a comparable investment a more
optimal route can be found that saves resources during manufacturing.
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To better manage the complexity of Route Optimization,
this is often broken down roughly into four substages, which
may be performed concurrently or iteratively:

1. Route Mapping, which involves the broad, generative
ideation and organization of possible synthetic routes to
produce the given target;

2. Route Narrowing, where the ideated map of routes is
consolidated to top candidate routes and executable
work plans are developed for scouting across these
(performed iteratively with Route Scouting);

3. Route Scouting, where preliminary experiments are
conducted to better evaluate the feasibility, productivity,
and robustness of proposed routes�with a focus on
pivotal transformations;

4. Route Selection and Demonstration, where a route is
selected and then demonstrated at an appropriate scale
going into Process Optimization.

In the following sections, we take a closer look at each of these
substages, highlighting challenges and some opportunities for
ML/AI.

2.1. Route Mapping. In contrast to synthesis planning for
discovery or medicinal chemistry to enable efficient DMTA
cycles (as reviewed by Struble et al.2), where the goal is to
synthesize many targets in small quantities as efficiently as
possible, Route Mapping and synthesis planning for process
development have a different starting point and different
objectives. Synthesis planning for process development starts
with the final synthetic target predefined and has at least one
enabling route known at the beginning of the planning
exercise; it also has the objective of progressing along the curve
shown in Figure 4 as efficiently as possible toward the “ideal”
route for clinical supply and ultimately commercial manu-
facturing.

To begin, process chemists and development teams start
with an ideation or Route Mapping exercise. The goal is to
identify as many potentially viable and varied synthetic routes as
possible, emphasizing diversity across these to expand the
considered route space and improve the odds of including the
“ideal” route for commercial manufacturing. As the initiation to
Route Optimization, this endeavor is quite important and sets
the base for the subsequent stages of Route Narrowing, Route
Scouting, and Route Selection.

Ideas for new routes can come from a variety of inputs:
experience of the process chemist and institutional knowledge,
searches across literature and broadly collected databases using
tools like SciFinder or Reaxys, and available CASP tools,7

which may employ ML/AI and are becoming more widely
used in industry. In particular, CASP methods can stimulate
route ideation by more quickly generating a large number of
possible routes without being biased by personal preference.
Emerging CASP tools incorporating aspects of biocatalysis
could further introduce stereo-, regio-, and enantiospecific
enzymatic transformations, enabling more efficient synthetic
routes and reduced use of organic solvents.12 However, this
comes at the cost of having many options to sort through, and
as such, these methods must also have ways to cluster and rank
suggestions to avoid overwhelming the user or presenting
many near-identical routes (differing in minor features, such as
protection/deprotection steps, for example). The ability to
collaborate on CASP pathway selections and share annotations
and insights would significantly benefit group efforts in Route
Mapping.

As part of the mapping exercise for commercial process
development, the choice of defined starting materials and the
sequence of steps to be registered with regulatory authorities
(GMP steps) should also be design criteria. Considering the
resource-intensive investigations needed to obtain regulatory
approval for the choice of starting materials, there is
considerable interest in data-driven models evaluating the
risks of candidate regulatory starting materials.13 Some routes
will have advantages with respect to other approaches in terms
of the number of likely registered steps (or GMP steps), the
number and complexity of custom starting materials, and
synthesis branch points as well as points of entry. For example,
a complex late intermediate entering the synthesis route may
not be supported by regulatory bodies as a starting material
and thus would require an additional GMP branch sequence.
In addition, the entry of less complex materials as starting
materials into the registered steps may be more easily executed
from a supply chain perspective. Accordingly, the mapping
exercise should generate routes not only with suitable
proposed GMP steps and well-defined, stable custom starting
materials but also in a manner where a diverse number of
options are devised.

2.2. Route Narrowing. Many possible routes to a given
target may be generated in Route Mapping, especially as CASP
tools continue to augment human ideation. At the end of
Route Mapping, the feasibility of the proposed transformations
in any given route may be uncertain, and most of the details of
reaction conditions, required workup operations, and isolations
have yet to be established. With so much unknown at this
stage, it is exceedingly difficult to perform a concrete
evaluation of the routes in the map and directly identify the
best route for commercial manufacturing from the candidates.
Further, it would be cost- and time-prohibitive to perform
detailed experimental exploration and optimization for every
route in a given map. Instead, a successive approach toward
Route Selection and Demonstration is taken. The map is first
narrowed, potentially down to a single route, but more likely
down to two to four routes that can be moved forward to more
extensive Route Scouting. Ultimately, one or two routes are
taken into Route Selection and Demonstration.

The task of Route Narrowing is one of elimination. The goal
is to eliminate those routes that are not feasible and further
eliminate those feasible routes that are dominated by others on
the map. In this usage, dominated means expected to produce
a commercial process that is worse on one or more process
metrics and not meaningfully better on any process metric.
Performing Route Narrowing well requires strategy and the
right tools. It could be significantly advanced with newly
developed ML and AI tools for evaluating reaction feasibility,
especially in combination with high-throughput and automated
experimental systems for reaction screening.

The general workflow for Route Narrowing is to first
organize or cluster the proposed map, often grouping those
routes that are most like one another or that hinge on the same
key transformations. Clustering is very useful for making
comparisons between routes and highlighting the most
informative reaction screening experiments to run. That is,
finding those “killer” experiments that assess proposed
transformations that have the highest degree of uncertainty
with respect to their feasibility is also central to the success of a
proposed route or cluster of routes. Additional factors beyond
feasibility that might be probed through small numbers of
selective experiments include safety inputs (expected reaction
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kinetics, high-energy reagents, calorimetry, etc.). Here we can
envision AI tools that allow for better identification of the most
informative reaction screening experiments to run as well as
extrapolate from one set of experimental results to resolve
uncertainty on the feasibility of other similar transformations in
the route map. The task of experimentally probing the
feasibility of proposed transformations through reaction
screening is often considered the initial stage of Route
Scouting, which happens iteratively with Route Narrowing
and is covered in more detail in the following section.

Depending on the size of the initial map, eliminating
infeasible routes may not be enough to reduce to the desired
two to four routes. To accomplish this, the map must also be
evaluated to find and eliminate dominated routes as defined
above. However, this can present a challenge, as few details
have been filled in for any given route. Moreover, only a small
amount of reaction screening plus early medicinal chemistry
and first-in-human process development data are available,
making it nearly impossible to accurately infer the absolute
values of the process metrics for the ultimate commercial
process using a given route�like cost of goods manufactured
(COGM) or throughput and efficiency. As a consequence,
routes cannot be reliably scored according to those metrics and
then simply compared to make the selection. Instead, to make
this task more tractable, routes can be compared head-to-head
with each other using simple criteria that can be inferred from
the little information on hand but also act as surrogate process
metrics, often focusing on comparing routes that are most
similar and deviate, for example, only in one or two proposed
transformations.

In performing the comparative analysis, it may be possible to
use expert judgment and experience to definitively eliminate
some routes as being worse than others. It is more often only
possible to make probabilistic judgments, eliminating routes as
being very likely worse than others for commercial manufactur-
ing. In a scenario in which judgment-based comparative
elimination does not quickly narrow down to a few routes,
additional scouting experiments may be executed with the goal
of revealing a better understanding of key steps in those routes
being considered. For example, running experiments to better
determine if a proposed set of telescoped and complicated
transformations, which clearly set up an efficient route, can
actually be achieved in practice with reasonably high yield and
without quality concerns. The information generated from
these further Route Scouting experiments better informs final
elimination decisions. Here too, we see significant potential for
ML and AI tools. These tools could aid in the organization of
routes for comparison, better identify surrogate process metrics
that can be used for head-to-head route comparison at this
stage, and identify chemical transformations within a given
synthesis route essential to the success of the most disruptively
innovative routes. The ML/AI methods could also inform
experimental planning and comparative analysis across routes
and perform predictive modeling to estimate uncertainty about
the expected performance of a given route or transformation in
a route without having to conduct experiments.

2.3. Route Scouting. Route Scouting is the experimental
evaluation and development of proposed transformations and
the selection of routes in a given map. This often begins with
screening reactions in the map to evaluate the feasibility of
uncertain transformations. Beyond elimination of routes that
appear infeasible following reaction screening, additional
information is generally required to perform head-to-head

comparisons and further narrow the route map by elimination
of dominated routes, in particular, information on how
reactions are to be executed as well as information on the
expected performance�e.g., selectivity, yield, robustness, and
process throughput. To gain this information requires
experiments in which reaction conditions are moderately
optimized and possible workup and isolation operations are
explored for select steps in the considered routes.

Route Scouting, because of the required experimental
campaigns, is likely the most time- and resource-consuming
subtask of Route Optimization. The opportunity for AI
systems includes developing improved prediction models for
feasibility and condition design, as computational evaluation of
these factors a priori can reduce the experimental burden and
potentially reduce the time spent evaluating these routes. At
the same time, it is important to note that AI is not solely
useful for proposing what to try in the absence of experiments
but as a tool for responding to experimental outcomes and
proposing what to try next. Model-guided experimental design
(e.g., active learning) can assist in the identification of the most
useful ways to invest experimental resources to eliminate
undesired routes quickly and effectively as well as prioritize the
most promising routes for further investigation.

It is also useful to recognize that Route Scouting occurs in
an iterative fashion with Route Narrowing and evolves through
the course of this process. In the early stages of Route
Narrowing and Route Scouting, the goal of scouting
experiments is generally to probe the feasibility of certain
proposed transformations. Ideally this aspect is executed
through reaction screening protocols, with initial application
of high-throughput experimental (HTE) systems to perform
this work efficiently and rapidly. Additional lower-throughput
automated reaction screening platforms for preliminary
reaction condition definition can also be utilized to provide
additional context on specific chemical transformations of
interest and to instill further confidence in the robustness of
the transformation. However, even with advances in HTE and
lab automation,14 application of reaction screening takes
considerable human time and effort as well as advanced
quantities of key intermediates. What is more, it is infeasible to
examine every reaction under every possible set of conditions.
This presents a significant opportunity for the ML and AI
tools. We can imagine these tools significantly advancing HTE
reaction screening by suggesting the right reactions within a
map to explore (as mentioned previously), suggesting the best
set of initial conditions for a given reaction to screen across (as
well as aqueous workup conditions), automatically processing
and interpreting the raw analytical data15 (for example, with
automated peak labeling and structure elucidation of both
products and impurities), enabling closed-loop or iterative
screening in which the results from one round suggest a next
set of experiments,16 and extrapolating from outcome data
collected over a finite set of reactions conditions to say more
definitively whether a reaction is feasible or not across any
conceivable set of reaction conditions. We highlight that in the
above, AI may in particular inform the selection of trans-
formations that provide breakthrough innovations in route
design but show up as low-yielding or “misses” in initial
screens. At the moment, success in pursuing such trans-
formations past screening and accessing these innovative
routes relies upon the experience and tenacity of the process
chemist. Going forward, we can envision AI tools helping both
highlight the potential breakthrough transformations that
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deserve extra attention in screening and also help the process
chemist more confidently interpret screening results to
distinguish between an infeasible transformation and a feasible
transformation that requires careful optimization to achieve
viable yields.

In the final stages of Route Scouting, it is typical to have two
or three moderately differentiated routes still in consideration.
The evaluation and comparison of these final routes for Route
Selection requires that they be turned into schemes such that
key process or surrogate process metrics can be calculated,
such as yield, atom economy, process mass intensity (PMI),
robustness, impurity formation and rejection, and intermediate
stability. This, of course, requires an experimental effort to
establish moderately optimized reaction conditions, workups,
and isolations for each step in the proposed routes. Some of
this work may be greatly facilitated by HTE campaigns�for
example, running solubility screens to help establish the
process solvent design space for reaction, workup, and
especially isolations by crystallization. However, the majority
of the experimental effort at this stage continues to require
process chemists and engineers to manually execute experi-
ments in the lab. Consequently, AI tools that can narrow the
design space to explore, extrapolate reliably from small data
sets, and/or enable more sophisticated lab automation would
offer substantial human-time and cost savings. Note that we
use the term “design space” to denote the space in which one
designs the commercial route, i.e., the potential operating
space, rather than the relationship of material attributes and
process parameters to critical quality attributes as defined by
regulatory guideline ICH Q8.17

2.4. Route Selection and Demonstration. For projects
to advance to the Route Selection and Demonstration stage,
typically one to two likely synthesis routes have been
identified. These routes will be carried through to the final
target to confirm the initial reaction conditions used in the
Route Scouting phase, beginning from a defined starting point.
While the precise reaction conditions for all steps used at this
stage can be changed in the final commercial version of the
process following Process Optimization, this demonstration
provides a more in-depth analysis of the overall route. Further
examination is required to elucidate parameters regarding
reaction performance, yield sensitivity, and telescoping options
as well as solvent selection to derisk the route. Many
techniques have recently been developed for reaction
optimization.18 Yield prediction remains a challenge for ML/
AI, but recent ML models for solvation19 and solubility20 offer
opportunities for predicting suitable green solvents and
telescoping opportunities. Process safety metrics, as well as
reaction kinetic profiles, can now also be measured in this
demonstration. Prediction of adiabatic temperature rise and
faster development of reaction kinetic models21 represent
additional ML/AI opportunities. Exemplification of the route
also serves to generate standards for new analytical method-
ology (e.g., chromatography conditions) and intermediates for
future development. Arguably, however, the most important
attributes to determine in this final part of route optimization
are the purification levers and how formed impurities can be
robustly controlled at points in the process, which often do not
fully reveal themselves until the route is demonstrated in its
entirety. Predicting impurity profiles is closely related to the
established tasks of predicting reaction outcomes, but existing
ML models do not provide the coverage and quantitative
precision needed to design a purification strategy in silico.

Failure to demonstrate a viable purification may disqualify the
route entirely and necessitate reverting back to earlier stages of
Route Scouting to explore alternatives.

In general, the selected route will have many or most
attributes of a desired manufacturing process, which may or
may not be ideal given the timeline or other resourcing
constraints. Figure 5 attempts to depict the multiparameter

aspect of Route Selection through a possible scenario where
various aspects may not be entirely optimized at the time of
selection. These risk elements can be discharged further in the
Process Optimization phase, with additional time and resource
implications.

Nonetheless, with an exemplified new route successfully
precedented, a more complete picture emerges of its attributes,
and these can be reassessed against the preceding medicinal
chemistry route to determine an ROI. This successful
demonstration also establishes the baseline for the nominal
process over which future Process Optimization efforts will
begin, and while labor- and time-intensive, this detailed in-
depth analysis is necessary to justify the major investment
required for Process Optimization. At this point, a new
synthetic route is selected, and the development effort shifts to
the more intensive Process Optimization phase.

3. PROCESS OPTIMIZATION
In the Process Optimization phase, the selected route is
developed into a full-fledged manufacturing process in
preparation for process characterization, technology transfer,
clinical supply, validation, regulatory filing, and ultimately
commercial manufacturing. In principle, what has been
decided up to the point of Process Optimization is the
synthetic route for manufacturing the drug substance, written
in terms of the starting materials and the sequence of
transformations that form drug substance intermediates to
the final drug substance. The conditions for each reaction step
and details of the workup and isolation operations have been
partially explored in Route Scouting, and a nominal design has
been selected and demonstrated, but these aspects have not yet
been locked. It is these yet-to-be-locked aspects of the process
that make up the design space to explore across in Process
Optimization. Process Optimization can be broken down
conceptually into two substages: Problem Formulation, where
objectives are established and the design space is identified,

Figure 5. Radar graph depicting a subset of the multiparameter
aspects of the Route Selection stage and varying degrees with which
key route attributes might be developed prior to Process
Optimization.
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and Search, where the design space is explored through
multiple stages of experimentation.

How best to formulate and explore the design space and
thereby complete Process Optimization as effectively as
possible is an outstanding question that process development
groups actively grapple with. In the following sections, we take
a closer look at the task, provide a description of the current
expert-driven approach to tackling Process Optimization using
a recent example, and suggest where ML and AI might be
beneficially applied (as expanded in Opportunities and
Outlook).

3.1. Problem Formulation. To conduct Process Opti-
mization, development teams must first spend time formulating
the problem. A set of objectives must be clearly established,
and the design space must be identified (and ideally
narrowed). This seems straightforward only at a glance; in
practice, it requires significant expertise and judgment. What is
more, the success and efficiency of the optimization campaign
can often be attributed to its formulation.

Development teams commonly have broad objectives in
conducting Process Optimization: to identify a safe-to-execute
process with the lowest COGM, maximum process through-
put, and maximum process robustness. Process throughput,
also often termed process intensity, measures how much
material can be produced by the specified process in a given

amount of time with a fixed scale of equipment. Process
robustness refers to the reliability of the overall process to
produce drug substance that meets the quality specifications
under normal operating variations; that is, process robustness
is a measure of the insensitivity of the drug substance quality
output with conceivable variation in the execution of the
process.

There are a couple of complications with this set of broad
global objectives from the standpoint of conducting Process
Optimization. The objectives may be competing�increasing
process robustness may result in higher COGM, for example.
Even more practically important, these are difficult to directly
calculate, making it a challenge for development teams to
systematically evaluate the explored variations in the process
according to the effects on these global objectives. Take
COGM, the simplest of the global objective measures. To
directly calculate the COGM requires knowledge of at least the
following: how much of each material will be used per amount
of drug substance produced, requiring yields at scale through
each operational step; the cost of that material, some of which
is specialized with bulk cost negotiated over time, with supply
chain optimization playing a significant role; and the
manufacturing cost per operation, which depends on the
required time and complexity of the manufacturing operations
as well as where the manufacturing takes place, on the

Figure 6. First-generation sotorasib manufacturing process with key process challenges highlighted for each step. Adapted from ref 22. Copyright
2022 American Chemical Society.
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equipment required for the operations, and often on business
relationships and negotiations with contract manufacturing
organizations.

To handle the complexity of the optimization objectives, the
prevailing strategy is an expert-driven approach: development
teams review the current route or first-generation manufactur-
ing process out of Route Selection and Demonstration (section
2.4) and identify what appear to be the biggest challenges or
shortcomings of each step in the synthesis with respect to a
judgment of how they will influence the overall global
objectives. That is, through problem identification at the step
level, broad global objectives for Process Optimization are
translated to tractable local objectives, and local optimization
campaigns can then be formulated around those. As an
example, consider the development of sotorasib (LUMAK-
RAS) recounted in a recent publication.22 Figure 6 shows the
first-generation sotorasib manufacturing process and highlights
what were identified by the process development team as key
process challenges for each step. Those challenges then
informed the local objectives for Process Optimization.

Once the Process Optimization objectives are articulated,
the next step is to identify the design space to explore to
optimize these objectives. This too can be a challenge. Looking
at the yet-to-be-locked aspects from route optimization
(everything above and below the arrows in the synthetic
route) reveals a very large and hard-to-define design space.
Consider even a single reaction�the reaction in the first step
of the sotorasib synthesis shown in Figure 6, for example. In
this two-part reaction, the process solvents and reagents must
be selected along with the solvent volumes, equivalents of all
reactants and reagents, and temperatures during the different
stages of the reaction. And that is just the start�the order of
addition, addition rates/profiles, agitation, and many other
parameters may be considered in optimizing the reaction. This
leads to a large design space with both categorical and
continuous design variables that have clear cross-interactions.
The design space expands exponentially when considering the
workup and isolation operations in each step and when
considering multiple steps in a synthesis simultaneously.

It is clear that the full design space cannot be mapped and
fully explored experimentally in a finite amount of time, even
with advanced high-throughput experimental setups that utilize
automation and parallelization. To deal with this challenge, the
prevailing approach, like that in defining the local objectives, is
expert-driven and based on current process knowledge.
Sticking with the first step in the sotorasib synthesis in Figure
6 as a revealing example, the key deficiency identified going
into Process Optimization was that this was a low-yielding
sequence, at just 66% step yield; this gave the straightforward
local optimization objective of increasing the step yield by
adjusting the design parameters.22 What is more, the proximate
cause of the low yield was also identified: as executed going
with the early-phase process, up to 15 HPLC area % (LCAP)
of a mixture of dimer-like species was observed.22 Having
identified the key deficiency and an understanding of the
proximate cause, experienced chemists on the process
development team could hypothesize on the potential
mechanism and narrow in on the design variables that should
offer the biggest levers. In this case, those could be adjusted to
inhibit the formation of the dimer-like species, thereby
increasing the step yield. These were the order of addition,
addition time, equivalents of POCl3, and temperature�
ultimately providing a much smaller design space that could

be explored experimentally to optimize yield with good
success.22

The described expert-driven approach to Problem For-
mulation, which recasts general global objectives into local
ones with significantly narrowed design spaces based on expert
understanding, can be quite effective. However, it also may
lead to a local optimum. To manage more ambitious problem
formulations that consider full steps or multiple steps at a time
and bring us closer to finding globally optimal processes, we
will need assistance from ML- and AI-enabled computational
tools to accurately capture the global objectives and allow a
significantly expanded design space to be explored efficiently.

3.2. Search. Once the optimization problem has been
formulated, process development teams consider how to
efficiently explore the design space through a series of
experiments. It is convenient to break down the search task
into three components, operating in a cycle: (1) strategy, (2)
experimental execution (including measurements), and (3)
interpretation. In this breakdown, strategy refers to the
approach taken to determine which experiments to execute
over time and the criteria under which the search should be
stopped (how to move through the design space and when to
stop). Experimental execution is how to run those experiments
as well as to collect raw data that can be used to evaluate the
outcome, usually over time. Finally, interpretation includes the
processing of raw analytical data to relevant outcome measures,
the mathematical connection of design variables to the
outcome measures, and the evaluation to identify whether
there is a point in the already-explored space that meets
process optimization stopping criteria and, if not, to suggest
the best direction(s) to explore with a next set of experiments
(often based on the mathematical connection established
between design variables and the outcome measures).

There are a variety of approaches to each component of
Search. For local process objectives and sufficiently narrow
design spaces, process development teams can use a small
Design of Experiments (DOE) that is executed and interpreted
mostly manually and expect to get to a local optimum quickly.
From a zoomed-out perspective, the prevailing approach in the
industry is along these lines: (1) select the points in the design
space�usually not too far away from a proven set of
conditions�that, based on chemical knowledge and past
experience, are expected to produce a different and perhaps
more optimal outcome according to a local objective; (2)
execute the experiments in the lab, taking advantage of
automated lab reactors but requiring manual processing; and
(3) process the raw data and interpret the results.

The prevailing strategy is very effective with sufficiently
narrow objectives and design spaces. However, with broader
objectives and larger design spaces, it becomes more and more
difficult, as well as time-consuming, to comprehensively
explore the design space through human-driven experiments
and interpretation. This is especially true when considering a
full step with multiple unit operations and multiple steps in
sequence. In those cases, it is not uncommon to conceive of
hundreds or thousands of design variables, including
categorical and continuous variables and the time dependence
of the outcome. To search larger design spaces experimentally,
there is a concerted push to formalize the strategy, apply more
advanced DOE and optimization concepts, and bring to bear
lab automation/robotics systems. Even so, smart experimental
design and lab automation alone are unlikely to meet the
challenge. To explore truly large and complicated design spaces
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will require systems that can explore these complex spaces
intelligently and fully autonomously without interruption; this
will require new ML/AI tools and new ways of coupling those
tools with more flexible robotic systems that are integrated
with the right analytical tools.23,24

4. OPPORTUNITIES AND OUTLOOK
The full workflow of synthetic drug substance process
development is multifaceted and requires balancing many
objectives when specifying (or optimizing) the full details of
the sequence of reaction, workup, and purification steps. There
is a practical limit to what can be achieved through screening,
and hence, new technologies that are able to (a) make use of
existing data and information and (b) propose informative
experiments to run will help guide this complex design process.
While we have touched on several opportunities and use cases
already, we will elaborate on some of them here.

Route Mapping is the best connection between process
development and the progress in computer-aided synthesis
planning that the field has seen largely applied to discovery or
medicinal chemistry. CASP tools7 are routinely used in
industry nowadays to generate large numbers of ideas, some
of which may be viable as is, some of which may serve as
inspiration, and some of which may not make chemical sense.
Assessing the feasibility of the proposed reactions and routes is
a challenge shared with discovery chemistry. What is unique
about the application to process development is the challenge
of narrowing down routes to the most ideal for clinical and
commercial production, which has to be done on the basis of
tailored objectives and in consideration of complex and hard-
to-calculate process performance metrics. For example, the
notion of an “efficient” route can be crudely captured by its
step count or atom economy, which is easily calculated given a
proposed synthetic route; however, the more pertinent metric
would be process mass intensity (PMI), which more
comprehensively captures material usage and requires
quantitative details of conditions and yields for both reaction
and purification steps. Even this metric does not directly relay
ultimate performance metrics, such as COGM, process
robustness, or process safety. Aiming to calculate more
complicated but more pertinent metrics raises the bar in
terms of the level of precision we expect from our CASP tools,
which have tended to focus on qualitative predictions (e.g.,
whether the reaction is likely to “work”) rather than
quantitative ones (e.g., concentrations, reaction times, and
yields). Also, unique to process development is the need to
meet regulatory constraints, whether in the selection of starting
materials or in elucidating and managing impurities. There are
no rigid rules as to what acceptable Regulatory Starting
Materials are, but efforts have been made to learn guidelines
given past FDA approvals.13,25 What is more, unlike in
applications such as commodity manufacturing, where there is
time and financial incentive to improve COGM further and
further after proposing a given commercial process, there is a
high barrier to making postlaunch changes to API manufactur-
ing routes given regulatory considerations and commitment to
safety. The routes that we use do not need to be the
mathematical optima, but we would like our computational
methods to get us closer to the “ideal route”.

The desire to shift toward CASP tools that include more
quantitative understanding of synthetic processes introduces
new challenges in molecular property prediction. Property
prediction is an overarching goal that supports process

modeling in many different ways. For example, to design a
purification following a reaction step requires predicting not
just the major product(s) in the reaction but also relevant
related impurities and their amounts as well as the solvent
system physical parameters and execution process parameters
that will influence the operation dynamics and, crucially, the
rejection/retention of solvents and key impurities in different
phases. This may include pH-dependent distribution coef-
ficients for liquid−liquid extractions with or without pH
swings, solubilities in various solvents and solvent mixtures for
crystallizations, or even retention times and behavior on
chromatographic columns as a function of solvent, temper-
ature, and solid phase. Process intensification strategies
(particularly when considering maximizing concentrations in
continuous flow chemistry processes) may require estimation
of solubilities at elevated temperatures in nonaqueous solvents,
for which little data exist. Of these many properties, progress
has been made on predicting solvation19 and solubility.20

Xiouras et al. recently reviewed opportunities for AI to
accelerate crystallization processes.26

The use of property prediction models, which resemble the
quintessential tasks of quantitative structure−property relation-
ship modeling but may also include interactions or mixtures, is
best suited as components of a strategy to predict outcomes of
unit operations across design variation and relevant process
metrics at the unit operation or step level, which can then be
combined to calculate route-level metrics. We do not envision
using a surrogate ML model to predict the PMI of a route end
to end, for example, but rather using surrogate models to
estimate the values at each step that are needed to calculate the
overall PMI. These tools will be most valuable in the early
stages of Route Scouting and Route Narrowing to get a sense
of pathway viability where some uncertainty and inaccuracy is
tolerable. At later stages when intermediates are locked in and
there is a better sense of strategy, it is more feasible to obtain
experimental measurements (including through the use of
automation) instead of relying on uncertain predictions.
Uncertainty quantification is itself a major challenge for the
field and an important aspect of property prediction.27 In many
ways, the step of Route Narrowing is about risk management
and anticipating the suitability of candidate routes before
committing to a full exploration and optimization of their
parameters.

We would like these various predictive tools to lead to a
“digital partner” for managing the process development
lifecycle: a platform that helps guide us to the optimal route,
perform risk assessment, capture ML predictions, design new
experiments, learn from new experimental data, predict
physical properties, anticipate impurities, and overall guide
process development decisions (dotted green arrow in Figure
1). This hypothetical tool could tie together physics-based
modeling with empirical data-driven models in the pursuit of a
digital twin. Importantly, such a digital partner within company
firewalls could learn from project-specific data for the reactivity
and properties of proprietary intermediates with the structural
motifs of the target API, thus improving the quality of model
predictions and overall route guidance throughout the
development process. Furthermore, within pharma, hetero-
geneity of data (both within and across companies) in terms of
both inputs and structure further complicates model training
and development. A significant potential for AI and a digital
twin exists to integrate disparate data streams, which will
improve the process development lifecycle and AI-based model
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performance. While the complexity of a digital twin for the
whole process will be hard to tackle (e.g., a pharmaceutical
analogue of Aspen28), progress in addressing individual
components of the process can be made, e.g., (1) solvation
and distribution prediction to design liquid−liquid equilibrium
or crystallization steps, (2) yield prediction as a function of
catalyst/ligand and substrate for a particular reaction family,
and (3) structural elucidation and spectral prediction to
accelerate the analysis of impurities observed experimentally.

Experiments are a key part of the process, from Route
Scouting to Search in Process Optimization, and they serve as
an important validation step. We should not assume that
predictive models will ever fully replace experimental testing,
although the confidence in our predictions may become much
higher as these tools improve. The role of models trained on
previous data may be to predefine a narrower design space and
act as a prior to inform which condition settings might be most
appropriate to explore during Process Optimization. Iterative
experimental design techniques (e.g., Bayesian optimization
and active learning) also can play a large role in Process
Optimization by identifying the most informative or
discriminating experiments. Such techniques have been applied
successfully to catalyst and condition selection18,29 as well as
kinetic model discrimination.30 The most well-developed part
of this is iterative reaction optimization, but there are many
opportunities to facilitate problem formulation and especially
design space selection as well as extend these approaches to
larger design spaces (more variables), including process steps
other than single-step reactions.24,31 The automated execution
of experiments themselves can also be made more flexible/
robust, allowing for the execution of more unit operations and
execution of full steps in synthetic sequences (rather than just
reaction screening) by integrating feedback loops powered by
ML/AI tools, for example, integrating machine vision.32

Additionally, ML/AI tools can be brought to bear to better
process raw analytical data and do this automatically; consider
automatic structure elucidation from LC-MS data, for
example.33 Finally, ML strategies can almost certainly be
used to improve the development of surrogate models that
connect design variables to the relevant process outcome
metrics (perhaps over time) from data collected during the
iterative experimental execution in Process Optimization.

Alongside the opportunities for AI/ML in process develop-
ment, there are challenges the field must address. Data sparsity
complicates model training,34 so it makes sense to consider the
use of proprietary company data to improve process models. In
addition, improved ability to extract detailed data from written
records would be of great benefit for obtaining well-curated
data sets.35 There are opportunities for federated learning
(collaborative ML without centralized training data hosted by a
trusted party), as have been explored by the MELLODDY
Consortium36 for certain property prediction tasks. Even with
the willingness to share information in this way, it may still
prove difficult to build generalizable models that can achieve
the tasks we have outlined above without the assistance of
specific, proprietary data collected throughout process develop-
ment. Hybrid models and the use of computational chemistry
to augment experimental data sets can help,35 but the total
number of molecules that have gone through rigorous process
development is in the thousands, compared to the tens of
millions of molecules that have been made in the discovery
setting. Identifying appropriate data sets and finding creative

ways to augment those data sets to enable the application of
ML with sparse data remains an outstanding challenge to meet.

Finally, we should address the wave of excitement around
ChatGPT37 and comparable tools. In our view, generative AI
tools and in particular large language model (LLM)-based
tools do not fundamentally change process development
opportunities but may provide far improved interaction with
those tools. We expect these advances to have the largest
impact in how users interact with written process descriptions
and also how users interact with various AI/ML technologies.
Conversational, natural language interfaces could provide a
more intuitive way for process chemists and engineers to
access data and integrate model predictions (first-principles or
ML-based) into their workflows. The opportunity to fine-tune
LLMs for document-based question and answer also offers new
means of accessing the heterogeneous data sources associated
with process development, from internal reports to regulatory
filings. To the extent that information is already formatted in
natural language, LLMs can provide a more convenient and
interactive way to learn about the content without reading the
full text. As knowledge-based and retrieval-augmented systems
mature and the level of trust that we have increases, we may be
able to rely on AI to prepare and verify these documents
automatically.

As we continue to progress in the field, it is our perspective
that effective synthetic drug substance process development
will not and cannot be done without domain expertise, but it
also should not be done without data science expertise and the
use of rapidly advancing ML and AI technology. While the
advancement of ML/AI does not change the goal of process
development, we do expect these advances to improve our
speed, ef f iciency, and ef fectiveness in conducting process
development and, in doing so, enable us to get material into
the clinic and ultimately to patients worldwide faster at
reduced costs.
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■ GLOSSARY
API active pharmaceutical ingredient
CASP computer-aided synthesis planning�the

task of designing a synthetic route; the
level of detail associated with a proposed
route varies

COGM cost of goods manufactured�the total cost
including processing costs, labor, and equip-
ment used, in addition to the purchase price
of consumed raw materials in the synthesis

DS drug substance (often used synonymously
with API)

DP drug product�the final formulation (e.g., a
pill to be taken orally)

DMTA design−make−test−analyze�the typical
iterative process in early-stage drug discovery

enabling route a synthetic route used to manufacture a drug
substance for early clinical studies which
may not be fully optimized

FTO freedom to operate
GMP good manufacturing practices�the require-

ments to which manufacture of the final DS
must adhere according to regulators (e.g.,
the U.S. Food and Drug Administration)

LCAP liquid chromatography area percentage�a
metric measuring how much product was
formed that does not require calibration

registrable route a synthetic route used to manufacture drug
substance which is deemed by the innovator
company to have desired commercial attrib-
utes

ROI return on investment
SM starting material�a commercially available

compound used to begin a designated
synthetic route
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