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ABSTRACT

This work is an investigation of the dynamic behavior of an ammonia reactor,

The objective was to understand the dynamic behavior of this reactor in order

to allow for stable and optimum conditions of operation,

A mathematical model retaining the major transport, generation and accumu-

lation processes of enthalpy was derived and solved by finite difference

approximation methods on a digital computer. The results of the simulation

were interpreted physically by considering the changes occurring during a

transient for each transport and generation process of enthalpy. The changes

in temperature during the first instants of the transient resulting from a step

change in the feed temperature were described in terms of the propagation of

a thermal perturbation introduced at the entrance of the catalyst section, and

of the results of changes in the wall temperature separating the catalyst from

the feed gases.

[t was shown that because of the poor reactivity of the catalyst investigated the

rate of propagation of the thermal perturbation is almost unaffected by the

extent of the chemical reaction. The instability resulting from the "blow out"

of the reactor was described as a "snow ball" type of instability. The dynamics

of the reactor were demonstrated linear for perturbations in the feed temperature

smaller than 5°C around the conditions of maximum production. Under these

conditions the dynamics of the ammonia reactor were described by frequency

response curves, and by simplified transfer functions retaining the major
features of the transient.

The results of the present investigation were used to design and test an ideal

controller which was shown adequate to avoid the blow off of the reactor when

changes in ammonia mole fraction in the feed, occurred, but which did not

optimize the production of the reactor.
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Title: Professor Chemical Engineering
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CHAPTER I

SUMMARY

The derivation and the solution of a mathematical model describing the

dynamic behavior of a Haber-Bosh reactor is the objective of this research

All the previous investigations concerning this type of reactor have been

limited to its steady state behavior. They have demonstrated the extreme

sensitivity of the reactor to changes in the operating variables when it is

operated under the conditions of maximum production. As a first step

towards the design of an automatic controller providing safe and optimum

operation of this reactor, a description of its dynamics was needed. Since

experimental results on the dynamics of a Haber-Bosh reactor have not

been published, a mathematical model has been derived. The proposed

mathematical model lumps radially the reactor in three sections and takes

into account the longitudinal variations in temperature and composition.

Despite many simplifying assumptions, the proposed model is believed to

retain the characteristic features of the behavior of the reactor.

The proposed model consists ot four partial differential equations (one

mass balance equation and three enthalpy balance equations). Because of the

nonlinear terms representing the rate of reaction and the release of energy

by chemical reaction, there is no analytical solution to the mathematical

system to be solved. Finite difference analogs of these equations have been

derived and solved on a digital computer (IBM-7090), The convergence of

the numerical solutions obtained has been demonstrated. During the investiga-

tion of the computation method the use of the Stone-Brian method of approximat-

ing first order time and distance partial derivatives have appeared more effective
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in terms of computer time than the Courant-Isaacson and Rees method

recommended in the literature to solve the same type of equation,

The transient resulting from a step change in the feed temperature

to the reactor has been described both during an approach to a new

stable steady state and during the blow out of the reactor. During the

first instants of the transient the changes in temperature observed in this

reactor have been explained in terms

i. of the propagation of a thermal perturbation introduced

at the entrance of the catalyst bed.

and the results of changes in the wall temperature of

the tube separating the catalyst from the feed gases.

Near the entrance of the catalyst bed, the magnitude of the second effect

has been found £0 small that it could be neglected. Near the outlet of the

reactor it has been found predominant during the first instantsof the trans-

ient. A second change in temperature has been observed after the passage

of the initial thermal perturbation, The regenerative character of this

process has been found responsible for the slow approach to steady state after

the passage of the initial thermal perturbation through the reactor. The

changes in temperature and composition have been interpreted turough the

effects of the transient on each transport and generation process of enthalpy

An analysis of the rate of propagation of the thermal perturbation shows

that it is dependent on the ratio of heat capacity of the gases and catalyst

charge but is almost unaffected by the extent of the reversible chemical

reaction under consideration. The poor reactivity of the catalyst

present in the reactor which never brings the reacting gases close to their

equilibrium conditions has been used to explain this observation.

2

[t has been shown that the instability, resulting from the decrease of

the feed temperature below the "blow off'' feed temperature, is of the ""'snowball'



type: never before have oscillations in temperature and composition been

observed on the present model, To investigate the nonlinearity of the

process, the effect of step changes of different magnitudes has been in-

vestigated. For the standard conditions under investigation, perturbations

in the feed temperature have to be smaller than 5°C in order toconsider

the response as linear. Under these conditions the dynamics of the reactor

have been described quantitatively by frequency response curves generated from

t he transient results of the simulation. Simplified transfer functions

have been proposed to approximate the frequency response curves at these

locations. The physical interpretation of the proposed transfer functions has

confirmed the qualitative explanation offered for the transient. For perturba-

tions outside the linear range of operation, resulting in the "blow off" of

the reactor, the simulation has been recommended as the only way to

d escribe and compute the dynamics of the reactor.

The results obtained from the linear behavior of the reactor have been

ased to design an ideal controller which has been demonstrated to avoid the

"blow off'' of the reactor caused by an increase in ammonia recycled in

the feed. The proposed control scheme does not allow for optimization of the

production and the simulation derived in this research has been proposed to

lest more elaborate control schemes which can both avoid the '"blow off" of the

reactor and optimize its production.

The recommendations for further work concern two areas

|

?

The description of the uncontrolled reactor during a transient

in its linear range,

The description of the reactor under close loop control conditions
and the derivation of an automatic controller optimizing the production

of this reactor.



CHAPTER 1II

INTRODUCTION

Every time one considers a reversible exothermic catalytic reaction,

the problem of optimum temperature arises. At low temperature when

equilibrium is favorable the rate of reaction are too small for industrial

purposes, at high temperature equilibrium is limiting and high degree of

conversion cannot be obtained,

For a single reaction, once the dependence of the rate equation with

temperature is known, it is possible to obtain the optimum temperature

profile as a function of the degree of conversion by setting the partial

derivative of the reaction rate with respect to temperature equal to zero,

Arable” and Kjaer?) computed such profiles for the case of the ammonia

synthesis, using kinetic equations derived from Temkin works; 52, 33

Calde 2 bale’ did a similar study for the sulfuric acid contact process.

In all cases the optimum temperature is infinite at the entrance of the

reactor when no products are present in the feed stream. This is due to

the fact that the reverse reaction has a rate equal to zero under these

conditions. As one proceeds down the reactor the optimum temperature

decreases as the conversion increases.

Because of the exothermicity of the reaction considered, the tempera-

ture inside the catalyst bed has the tendency to increase rather than to

follow the optimum trend, and consequently, such optimum profiles can

only be approximated in industrial reactors. One of the first attempts to

approximate such a profile was to use a series of adiabatic beds provided

with interstage coolers. The Chemico or Monsanto designed converter for

the synthesis Sulfuric acid and the Montecantini converter for the synthesis

of ammonia still use this principle.
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But the most widely used type of equipment to carry out a reaction of

this nature is the Haber-Bosh converter, first designed for the ammonia

synthesis. In this reactor gas flow and heat exchange are arranged to

reduce the increase in temperature associated with the reaction and in the

case of stable operation to suppress the need for an external source of heat.

A specific design of the Haber-Bosh converter is described in the first sec-

tion of Chapter III.

The Haber-Bosh ammonia synthesis belongs to the category of '"auto-

thermic process''; this term was introduced by Van Heerden&gt; + to describe

exothermic reaction in which the heat required to bring the reactants to the

reaction temperature, is produced by the heat of reaction alone. Stable

conditions of operation for these processes are obtained when the heat

consumption is balanced by the heat produced by the reaction. Van Heerden

was the first to explain the properties of such processes as the need of an

ignition by external heating, and the existence of a minimum reaction

temperature below which the reaction will ""blow out''. For such reactors

he reported that the most economical condition of operation, productionwise,

corresponds to the limit of stability, Logeais work” along this line showed,

in fact, that the blow out temperature is different from the maximum pro-

duction temperature but is still very close to it: less than 5°C in the cases

he studied.

The actual problem in operating a Haber-Bosh reactor (Tennessee-

Valley- Authority Design) was reported by Slack Allgood and Maune. 29 The

existence of an optimum inlet temperature which is affected by the process

variables and the catalyst activity was described. As the rate at which gases

are fed to the reactor increases they reported that the stability of the reactor

decreases and that the reactor tends to "blow out.' In order to avoid this



problem Slack, Allgood and Maune reported that the reactor was operated

away from its blow out limit and consequently away from the maximum

production conditions of operation.

In order to investigate the stability of the Haber~-Bosh converter from

; ; 34 _,. 21 2 rR

a steady state point of view, Van Heerden™ = Kjaer, Annable” and Logeais

derived mathematical models describing the steady state behavior of the

reactor and studied on such models, the effect of the various design and

operating variables. The results of Logeais' investigations presented in

Chapter III, Section B confirmed the general findings of Van Heerden, and

demonstrated that the difference between the optimum temperature of op-

eration andthe "blow out' temperature is very small under most operating

conditions.

Since the optimum feed temperature for a given feed rate is very close

to the blow out temperature, the reactor must be closely controlled if it is

to be operated at maximum capacity. The control philosophy proposed for

the ammonia reactor is presented in Chapter VI, Section G. To design

such a control scheme the dynamic behavior of the Haber-Bosh reactor

needs to be investigated around its optimum conditions of operation. The

objective of this thesis is to describe the dynamic behavior of an autothermic

reactor, in a way to improve the understanding of this widely used class of

reactor.

Dynamic studies of a packed bed reactor have been limited in most

cases to mathematical analysis. Furthermore, the amount of results

published to date is very small; due to the fact that any mathematical

model describing the transient behavior of packed bed catalytic reactors

includes nonlinear partial differential equations, without analytical solu-

tion, which have to be solved numerically. In Chapter III, Section C, the

attempts made to simulate the transient behavior of chemical reactors

are briefly reviewed.



For both control and design purposes the necessity to undertake a

study of the dynamic behavior of the Harber-Bosh reactor arose. This

study with objectives and goals presented in Chapter III Section D is made

by deriving a mathematical model describing the changes in temperature

and composition as a function of time and distance within the catalyst sec-

tion of the reactor. The derivation of the mathematical model and the

assumptions built into the model are presented in Chapter IV. Since a

n umerical method of solution had to be used, rather than arbitrary kinetics

data and design characteristics, the present model uses the kinetics data

and the design parameters retained by Logeals®’ in his steady state analysis

of a Tennessee Valley Authority (T.V.A.) reactor. The model as derived

will, in fact, apply to any type of reaction (sulphuric acid synthesis,

Methanol Synthesis) if provided with different kinetics or to other size of such a

design of reactor. Chapter IV, Section C considers the major assumptions

made in the derivation of the mathematical model, and estimates how close

the results of the simulation represent the behavior of a real Tennessee

Valley Authority ammonia reactor.

Chapter V presents the numerical method of computation used in solving

the mathematical model. The extensive computation required to solve the

mathematical model for any transient has been made feasible through the

use of a digital computer (IBM 7090). Most of the numerical methods

available to solve first order nonlinear partial differential equations are

excessively time-consuming. In this research finite approximations to

partial derivatives proposed by Stone and Brian’ for the solution of con-

vection problems are used.

The convergence of the finite difference approximations to the system

of partial differential equations describing the dynamics of the reactor was

tested and the results of this study are presented in Chapter V Section C.
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To specify the steady state gain of this process, the equations repre-

senting the steady state behavior of the reactor are solved by the same

method proposed by Logeais. The steady state conditions corresponding

to the beginning and the ends of the transient under investigation are

reported in the first section of Chapter VI.

The transient behavior of the reactor is investigated by making step

changes in the feed temperature, Chapter VI, Section B describes the

behavior of the reactor when the step change results in a stable condition

of operation. Chapter VI, Section C presents the same results when the

step brings the temperature beyond the '"blow out!" temperature,

The influence of the step size on the dynamic response of the reactor

is investigated and the results reported in Chapter VI, Section D. From

these results a region of dynamic linearity is defined. Within this region

of linear behavior, the dynamics of the T.V,A, reactoraredescribed by

the classical methods of linear control theory: frequency response curves

and approximated transfer functions. The results of this analysis presented

in Chapter VI, Section E are used to design an ideal controller operating on

the feed temperature of the reactor. The location of the thermocouple is

chosen to allow for large values of the controller gain.

In Chapter VI, Section F the effect of '"blow out" perturbations lasting for

a finite amount of time are investigated. The scope of this section is to con-

firm that the return of the feed temperature to its initial value brings the

reactor back to its optimum conditions of operation as long as the average

hed temperature has not decreased below the ignition temperature associated

with the optimum feed temperature.

In Chapter VI, Section G the results obtained with an ideal automatic

controller are reported during perturbations which would have resulted in

the "blow out" of the uncontrolled reactor.



CHAPTER III

LITERATURE SURVEY AND OBJECTIVES OF THE THESIS

A, DESCRIPTION AND CONDITIONS OF OPERATION

OF A HABER-BOSCH REACTOR

The Tennessee Valley Authority reactor, (abbreviated T.V.A. reactor)

is a particular design of the Haber-Bosh reactor. Van Heerden used it to

characterize an autothermic process. The T.V.A. reactor was described in

several papers by G.L., Bridger, G.R. Pole and A.W. Beinlich, %1., B. Hein, 13

A.V. Slack, H.Y. Allgood and H.E. Maune,&gt;’J.Kjaer,&gt;*,D. Annable” and

B. Logeais., 22

A simplified diagram of the T.V.A. reactor is shown in Fig. 3.1.

converter consists of two sections:

A heat exchanger section presented at the lower

part of the diagram

2. A catalyst bed section presented at the upper part

of the diagram.

The

In the heat exchanger section, the feed gases A enter the shell side of a con-

ventional heat exchanger and are heated by the hot gases leaving the catalyst

bed section. The purpose of this heat exchanger section is to bring the feed

gases to a temperature high enough to insure a stable condition of operation

inside the catalyst bed section.

The feed gases leaving the heat exchanger section are mixed in G with

fresh feed gas entered in H and which has bypassed the heating section.

The temperature of the gases entering the catalyst bed section can be

consequently controlled within some limits by a proper setting of the bypass flow

The catalyst bed section acts as a conventional heat exchanger and as a

fixed bed catalytic reactor. The preheated feed flows inside a large number of

small tubes imbedded in the catalyst. The heat produced by the exothermic

reaction is transferred to the feed gases ascending through the tubes and

raises their temperature until the gases reach the top of the reactor. There
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the feed gases reverse their direction and flow down the catalyst bed where

the reaction takes place.

The outlet gases D from the catalyst bed section enters on the tube side

of the heat exchanger section before leaving the reactor. In order to prevent

the decomposition of steel by hydrogen at the high temperature (500°C) and

ander the high pressure (300 atm) where the T.V.A., reactor is operated, the

reactor walls are insulated and cooled by a stream of fresh synthesis gas

entering the reactor at the top Fand which is mixed withthe remaining of the feed

gas in A,

Operating data taken from a T.V.A. reactor were reported by A.V, Slack,

H.Y. Allgood and H.E. Maune, 29 and B. Logeais. 22

Figure 3.2 represents a steady-state temperature profile measured in the

catalyst section of a T.V.A. reactor whose characteristics appear in Appendix A

The operating conditions corresponding to this run, as reported by Logeais,

appear in Table 3.1.

TABLE 3.1

OPERATING CONDITIONS CORRESPONDING TO THE

EXPERIMENTAL TEMPERATURE PROFILE OF FIG. 3.2

Space Velocity*

Pressure

Feed Composition

"I

N

NH,

INERT

Production

13.800 1/hr

287 atm

mole fraction

0.650

0.212

0.052

0. 072

120 T/dax

The space velocity used to characterize the feed rate of synthesis gases

is defined as the number of cubic feet of feed gases (under standard con-

ditions of temperature and pressure), per cubic foot of catalyst, per hour
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The experimental temperature profile presents a maximum called

the '"hot spot''. In this run the '"hot spot'' is located 6 feet down the reactor

and corresponds to a temperature of 518°C. The location and the magnitude

of the "hot spot'' was reported to vary with operating conditions and catalyst

activity.

Since the catalyst used in this reactor (reduced Iron promoted with Al,04

and K,0) is deteriorated when exposed to high temperatures, in operating the

I'. V.A. reactor efforts are made to keep this temperature at as low a level

as is possible.

For a given space velocity and feed composition, changes in the hot spot

temperature can be achieved by changes in the inlet temperature to the reacting

section, that is to say, by different settings of the bypass stream to the heat

exchanger section. In fact, it will appear in the next section that changes in feed

temperature to the reactor affect not only the hot spot temperature but the

production and the stability of the reactor giving rise to the general problems

associated with the operating of an "autothermic process"

B. STEADY STATE ANALYSIS OF THE TVA REACTOR

Van Heerden &gt;? was the first to simulate the steady state behavior of a

 IT. V.A. reactor in his study of autothermic processes. Kiaer later proposed

a model which takes into account temperature and concentration variations in

both longitudinal and radial directions. The system of three partial differential

equations describing this reactor was then approximated by finite difference

equations and solved by hand computations. Because of this time-consuming

method of solution. the T.V.A. reactor was simulated for one set of parameters

only

Logeais? returning to the one dimensional model of Van Heerden and with

the use of a digital computer carried out an extensive investigation of the
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effect of the design and operating variables on the steady state behavior

of the T.V.A., reactor.

For a given reactor, and for a given choice of the operating parameters

space velocity, feed composition and operating pressure, Van Heerden and

Logeais reported that there is a feed temperature which maximizes the

production.

Figure 3.3, obtained from Logeais' results, describes the dependence of

the production rate with the top temperature of the reactor. Figure 3.4 relates

this top temperature to the feed temperature of the reacting section. The

optimum feed temperature which corresponds to a top temperature of 426°C

in the present case, is 229°C. Furthermore, the feed temperature of 224°C

is found very critical as it is described below:

a. If the feed temperature is larger than 224°C: there are two top

temperatures corresponding to one value of the feed temperature. This

is to say that there are two different steady state conditions of operation

feasible for the reactor, Logeais reported that there are, in fact, two different

temperature profiles which would satisfy the steady state equations for the same

value of the feed temperature.

Van Heerden and Logeais described the steady state corresponding to

the higher conversion as a stable steady state; that is to say, a steady state

at which the reactor can operate.

They described the equilibrium corresponding to the lower conversion

as an unstable one. The reactor will not operate under these conditions unless

provided with the proper control scheme.

In differentiating between stable and unstable conditions of operation,

van Heerden and Logeais used the following concept illustrated in Fig. 3.5

(which is a different method presenting the results described in Fig. 3.4).
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In Fig. 3.5 the difference between the top temperature and the feed

temperature (AT = Tiop - Ticed is plotted against the top temperature Loop

for various steady state conditions computed by Logeais. For a given feed

sk

temperature Te Fig. 3.5 allows one to determine the corresponding top tem-

perature by intersecting the curve already presented with a straight line of

equation

sk

Al = Top - Tg { &lt; 1;

According to the values of Tp it is seen that the straight line representing

Eq. 3.1 intersects the curve at one, two or three points corresponding to one

two or three possible equilibrium top temperatures.

If the ordinates of Fig. 3.5 are multiplied by the average heat capacity

of the synthesis gas, it represents a quantity of heat. The straight line

represents the amount of heat which is absorbed by the synthesis gases

during their ascending travel in the tubes. The curve represents the amount

of heat which is available for heat transfer when the top temperature of the

reactor is allowed to vary. This amount of heat corresponds to the enthalpy

generated by the chemical reaction minus the excess sensible heat convected

by the gases at the outlet of the reactor over the sensible heat of the feed gases

The intersections of the straight line and the curve correspond to equilibrium

conditions of operation for an autothermic process.

It can be demonstrated that the lower temperature (369°C) representa

an unstable equilibrium by considering the effects of small pertubations in

the top temperature around this equilibrium value: A slight drop in the top

temperature results in the production of too little heat to maintain this tem-

perature since the heat transferred to the feed gas is larger than the heat

generated by chemical reaction; this will cause a further decrease in the

top temperature. On the contrary, a slight increase in the top temperature

results in production of too much heat to be absorbed by the snythesis gases

and gives a further increase in the top temperature. For this last reason
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the lower equilibrium temperature is called the ''ignition temperature!''.

It is the lowest temperature at which the top temperature must be brought to

before high conversion steady state can exist.

On the other hand, the higher temperature is demonstrated to be a

stable equilibrium since small perturbations around this condition will

bring back the top temperature to its equilibrium value.

b. If the feed temperature is smaller than 224°C there are no steady

state conditions of operation possible in the temperature range investigated

There is, in fact, a steady state condition achievable for feed temperature

lower than 224°C but it corre sponds to almost no reaction.

This minimum feed temperature of 224°C was called the "blow out feed

temperature' by Logeais. In the case presented here the difference between

the optimum feed temperature and the blow out feed temperature is of the

order of 5°C. The fact that a small difference in feed temperature may create

such a large difference in the production of the reactor, shows the sensitivity

of the process under investigation to the temperature of the feed.

Logeais showed that the production of the T.V.A, reactor is similarly

sensitive to changes in other operating conditions: space velocity, ammonia

and inert mole fraction in the feed.

Figures 3.6 and 3.7 obtained from Logeais' work represent the relation

between the top and the feed temperature for various values of the space

velocity and ammonia concentration in the feed.

An increase in space velocity, that is to say, in feed rate to the reactor

or an increase in ammonia recycled in the feed have the effect of increasing

the "blow off! feed temperature since the minimum of the curves presented

herehasincreased. Consequently, an increase in flow rate or ammonia mole

fraction in the feed which are not compensated by an:increase in feed

temperature to the reactor will result in a "blow off" of the reactor. Similar
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"blow off'' will result from an increase in the concentration of inert in

the feed to the reactor or in a decrease in the catalyst activity. To

characterize the stability of the T.V.A., reactor, Logeais determined the

changes in operating variables which would result in an increase by 10°C

of the "blow off feed temperature''. These results appear in Table 3.2.

TABLE 3.2

EFFECT OF OPERATING VARIABLES ON THE

STABILITY OF THE T.V.A. REACTOR

Operating

variable

Space Velocity

Ammonia Mole Fraction

in the Feed

[nert Mole Fraction

in the Feed

Catalyst Activity

Reference

condition

13, 800

0.05

\7J© ng

fal

Changes which result
ina + 10 C change
of the "blow out

feed temperature"

' 00

+0.008

+0.024

-0 05H

Assuming that the feed temperature to the reactor remains constant,

the changes in operating conditions described in Table 3.2 will "blow out"

the reactor if the margin of security existing between the operating feed

temperature and the "blow off feed temperature' is smaller than 10°C.

Since it was seen previously that the difference between the optimum feed

temperature and the "blow off temperature' is equal to 5°C, the perturbations

described in Table 3.2 will, in fact, blow off the reactor operating at its

optimum conditions of operation.

Slack, Allgood and Maune?? reported that, in practice, the way to avoid

the blow off ‘of the reactor is to operate with a security margin of 15 to 25°C.

With the present conditions of operation such a security margin results in a
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daily production varying from 141 to 138.5 T/Day comparedto the 143 T/Day

reported under the optimum conditions of operation.

If the reactor is already designed and is to be operated at maximum

production the extreme sensitivity of such a process to changes in the operating

conditions suggests the use of automatic control on this equipment. If the

reactor is to be designed for a given production, the engineer can avoid operat-

ing under the optimum conditions of production by overdesigning the catalyst

juantity to be placed in the reactor. For example, a 5 percent increase in

catalyst quantity will secure the required production with a 25°C operating

margin. At that time economical considerations need to be brought into the

picture. In this research the incentive to study the dynamic behavior of

the reactor comes from the existence of an optimum feed temperature which

is very sensitive to changes in operating variables. Since in this section gain

in productivity varying from 1 to 2 percent of the total production on already

designed equipment appeared feasible by the use of automatic control, itis

the scope of this research to provide the control engineers with the transient

data required to design and test various control schemes.

C. LITERATURE SURVEY ON DYNAMICS OF CHEMICAL REACTORS

The control of chemical reactors is playing an important role in

maintaining smooth performance of today's chemical plants and in assuring

the operation of a process under conditions as close as possible to the most

economical operating conditions.

To be able to achieve such a goal, the need to understand the dynamic

behavior of each class of chemical reactor emerges. Alan S, Foss? defines

the dynamics of a reactor as what "encompasses the interplay of the rates

of heat generation, heat removal, chemical conversion, material transport

and fluid mechanical aspects, and their effects on the transient excursions
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of the major reactor variables such as temperature, concentration and

pressure.

The first investigations in the field of reaction dynamics began in 1908

with the work of Hirniak!'S on autocatalytic reactions. Both Hirniak and

Lotka?3 discovered the effect of positive feedback on the reaction system,

Later on the autocatalytic effect of the heat produced by exothermic reac-

tions was studied by Frank Kamenetskiil&gt; and Saliov®&gt; in relation with

their study of flame stability.

Denbigh” for a reaction taking place in a continuously well stirred

reactor and Van Heerden®* for a tubular catalytic reactor, demonstrated

the existence of inherently stable and unstable steady states for exothermic

reactions whose rate dependence followed the Arrhenius law, Van Heerden

classified such processes under the name ''autothermic processes'', He

chose the Haber-Bosh reactor presented before as an example of reactor

to characterize the stability problems associated with autothermic processes

The phenomena describing the dynamics of well stirred reactors are re-

presented by ordinary first order differential equations. For this reason

the study of the dynamics of this type of reactor was the first to receive

attention. Amundson and his co-worker sl’ 4, 31 carried an extensive study

of the stability of reactions performed in stirred tank reactors.

They used the method of nonlinear mechanics as developed by Poincarre,

Liapunoff and Minorsky to describe the dynamic behavior of the reactor arounc

a steady state condition of operation. The perturbation method was used to

derive transfer functions characterizing the process. Bilous, Block and

Pires’ have reported transfer functions for several occurring kinetic

systems and for the case of a series of well stirred reactors,

I'he dynamics of tubular reactors are usually described by nonlinear

partial differential equations. For this reason the solution of the mathe-

matical systems describing these dynamics is more complex
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Until today, two approaches have been used in this area.

|. Derivation of stability criteria from the steady state

condition of operation

) Description of the dynamic behavior of the reactor

through simulation with the hope of defining transfer

functions when the reactor operates in the linear range.

Van Heerden&gt;* by steady state considerations, presented the stability problems

associated with the Haber-Bosh reactor in the case of the ammonia synthesis

Logeals&gt; extended Van Heerden's results by studying the effect on stability

of the design and operating variables. Derivation of empirical stability

criteria from a large number of steady state results obtained in a tubular

reactor were reported by Barkelew, 3 but are, in fact, limited to the geometry

and the form of kinetics studied. Bilous and Ammundson™’ B using the per-

turbation theory presented a method to derive transfer functions for a tubular

reactor. The method they proposed results in expressions too complicated

to be used for control purposes and limited to small perturbations around a given

steady state. As soon as the kinetics becomes complicated or the geometry of

the reactor different from a simple tube with constant wall temperature the only

source left is the simulation.

Grotch and Kiplin? have simulated on a digital computer the transient

behavior of a fixed bed adiabatic reactor where butadiene synthesis is per-

formed. They assume that the fluid flowing through the catalyst is at the

same temperature as the catalyst particles and that overall rate constants are

valid all along the reactor; the expressions describing this system are identical

to the equations describing the dynamic of a tubular reactor. Their results were

not generalized to other kinetics but used to control and optimize the pro-

duction of this adiabatic catalytic reactor.

The most recent treatments in the field of reactor dvnamics consider the

difference between the catalyst temperature and the fluid temperature.

Furthermore the effect of the resistance to mass and heat transfer between

the catalyst and the fluid is taken into account
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Denbigh and Cannonl? considered the stability of a catalyst particle from

a steady state point of view. Liu Ammundson and Aris?® 27 extended Wicke

and Vortmayer's’&gt;’ 36,387, 38 work simulating the transient behavior of a

packed bed reactor in which the first order reaction A-B, is occurring. Their

investigation considered both the case of an adiabatic bed, and the case of a

constant wall temperature reactor. Their model accounted for mass and heat

transfer resistance at the surface of each particle. Under these conditions

they reported that some particles along the bed can have one, two or three

steady states, one of which is always unstable.

According to Liu, Ammundson and Aris, when in the final steady state

each particle has a unique state, the reactor is absolutely stable and unique

temperature and composition profiles are obtained from all initial particle

temperatures. On the other hand, if any particle in the bed has multiple steady

states, the system will be unstable for a certain value of the feed condition and

the steady state pofile obtained will depend on the initial particle temperature.

Even though they computed transients from one steady state condition to another

they did not attempt to describe these transients, concerning themselves only

with some pathological case of this system.

This brief review of the different attempts to represent mathematically

the dynamic behavior of fixed bed catalytic reactors shows that the problems

associated with autothermic processes have never been treated from a dynamic

point of view. Until today, the only data reported are dealing with the steady

state behavior of such processes as it was is presented in Chapter III, Section B.

D. OBJECTIVE OF THE THESIS

In Section B of this chapter the necessity to investigate the dynamic

behavior of the T.V.A. reactor appears fromthe extreme sensitivity of its

production to changes in the operating variables. Since the T.V.A, reactor is
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a packed bed flow reactor it falls into the class of distributed systems whose

dynamics have not been investigated extensively, as it appeared in Section C of

this chapter.

The objective of this research is to provide a mathematical model for

a T.V.A. reactor which could be solved numerically and would describe the

dynamic behavior of this widely used type of reactor. It is the scope of this

research to confirm dvnamically the unstable nature reportedbyLogeaisand

Van Heerden.

The dynamic behavior of the reactor will be described both during

a transient resulting in a stable equilibrium, and during a '"blow out'' of the

reactor, in order to characterize the internal feedback existing between the

catalyst part and the heat exchanger part of the reacting section, Since the

results of this investigation are to be used for the control of the reactor,

the linearity of the dynamic results will be investigated. The method of linear

control theory will be applied to describe the transient data corresponding

to small perturbations. These results will be used in the derivation of a control

scheme, which will be tested on the simulation to control for perturbations in

the operating variables.

Besides the simulation of the dynamic behavior of the reactor, a major

objective of this research lies in the computational method used to solve the

mathematical model describing the reactor: It is the scope of this research

to test the Stone-Brian method of approximating time and distance derivatives

for convective problems in a nonlinear case.



CHAPTER IV

MATHEMATICAL MODEL OF THE T.V.A. REACTOR

A. ASSUMPTIONS USED IN THE DERIVATION OF THE MATHEMATICAL MODEL

In this research the mathematical model representing the dynamic

behavior of the reacting section of a T.V.A. reactor is a one dimensional

model. The temperature within the catalyst, the cooling tube, and the walls

of these tubes varies only in the longitudinal direction. This assumption

allows one to lump radially the reactor into four sections:

The empty tube section which includes all the feed gases

during their ascending travel.

The tube wall section which includes all the metal of the

wall separating the catalyst from the feed gases.

The catalyst section which includes all the catalyst

granules.

The reacting gas section which consists of the gas

flowing through the porous catalyst.

Furthermore, in this investigation the temperature of the reacting gases has

been assumed constantly equal to the temperature of the catalyst materials

through which they flow.

This additional assumption reduces the model into a three-lump model

which is shown in Fig, 4.1.

4

i. The empty tube section, represented by the temperature Tor

2. The tube wall section, represented by the temperature Ty

The reacting section, represented by the catalyst temperature T.

Throughout the model Tors Ty and T. are only functions of two variables

time, and distance measured from the point in the reactor where the gases

reverse their flow direction.

It has been seen in the description of the reactor that the gases leaving

the empty tube section reverse their direction and flow into the catalyst

section. In this model the "turn around section, ' where this change of

direction takes place, is assumed to have a negligible hold-up. This is

“27=
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—Empty Tube Section

Catalyst Section

IT feed

[Tube Wall Section

Fig. 4-1 Lumped Model of the Reacting Section
of the T.V.A. Reactor
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equivalent to say that at each instant the gas fed to the "reacting section"

has the temperature and the composition of the gas leaving the empty tube

section.

In order to reduce the number of variables the catalyst basket has been

neglected in this study. This is equivalent to say that the exchange of heat

setween the catalyst and its surrounding basket is negligible.

The geometry of the reactor considered, affects the model through the

total mass of catalyst, through the total weight of metal in the tube wall

section, through the amount of surface area available for heat transfer on

each side of the wall and through the coefficients of heat transfer on both

sides of the wall, since they are functions of the linear velocity of the gases

The source of perturbation which can affect the reactor are classified into:

flow perturbation corresponding to the changes in feed

flow rate and operating pressure.

composition perturbations corresponding to changes of

the feed composition.

thermal perturbations corresponding to the changes of

the feed temperature.

With each of these sources of perturbation can be associated a time constant

which characterizes how fast the system will respond to such a perturbation.

If the reactor is at steady state and if the inlet flow to the reactor

suddenly changes, a pressure wave will propagate through the reactor at

roughly the speed of sound and the gas velocity at each point in the reactor

will start to vary as a function of time and distance. As a result of this

change in gas velocity changes in temperature profile will occur until a new

steady state distribution of temperature and concentration is achieved in the

case of a stable operation or until the reactor "blows out' in the case of an

unstable operation. The thermal transient which establishes this new steady

state is much slower than the phenomena involved in establishing a new flow

pattern. This study only considers the transient behavior resulting from

thermal perturbations. It is assumed that changes in flow rate, pressure
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and composition propagate instantaneously throughout the reactor and reach

at once the steady state value associated with the thermal condition prevailing

in the reactor at the considered instant. The results of this study are reported

for constant flow rate, pressure and feed composition and present transients

due to changes made in the feed temperature.

With the assumptions already presented, a material balance written in

the catalyst section and an enthalpy balance written within each of the three

sections completely describe the transient behavior of the reactor. In

deriving a material balance equation around an infinitesimal volume of

reactor the proposed model neglects the

accumulation of mass within this volume,

longitudinal diffusion of the reactants,

effect of pressure drop along the reactor on the

rate of reaction.

[t is further assumed that the rate of reaction is expressed as a function of

temperature, reactant concentration and total pressure only. The same form

of overall rate of reaction is considered valid throughout the entire reactor.

[n deriving an enthalpy balance around an infinitesimal volume of the empty

tube section the proposed model neglects the

accumulation of enthalpy in the gas phase,

transfer of enthalpy by conduction within the

gas phase,

transfer of enthalpy resulting from radiation
from the tube wall.

The only two fluxes of enthalpy considered in this section are:

the bulk flow enthalpy flux which represents the enthalpy

carried across the surface of the control volume by the

mass flow of gas and

the convected enthalpy flux between the gas and the

tube wall.

In deriving an enthalpy balance on the tube wall the proposed model neglects:

the longitudinal conduction along the metal of the wall

the energy radiated to the empty tube section and from

the catalvst
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I'he only mode of enthalpy transfer considered in this section is the convection

of enthalpy from the catalyst section and towards the empty tube section.

Provision is made in this model to store enthalpy within the metal of the wall.

In deriving an enthalpy balance in the catalyst section, the proposed

model neglects.

the temperature difference between the catalyst and the

gas in this section

enthalpy accumulation in the gas phase present
this section.

The enthalpy modes of transport retained in this section are:

bulk flow enthalpy transfer as defined previously

convection of enthalpy between the catalyst and the

tube wall

enthalpy production by chemical reaction

enthalpy diffusion which represents apparent conduction

within the gas phase, solid-solid conduction, and radiant

energy transmission.

Enthalpy is stored inside the catalyst particles. It will be seen in Chapter V

that the introduction of the diffused heat is required to allow for the solution

of the simulation. In computing the enthalpy of the flowing gases it has been

assumed that, over the range of temperatures prevailing in the converter,

molal specific heats remain constant and independent of pressure.

In conclusion, the proposed model is a one-dimensional model which

allows for enthalpy storage only inside the catalyst and the metal of the tube

wall. The mass balance equation in the catalyst section and the enthalpy

balance in the same section are coupled through the temperature and composition

dependence of the rate of reaction. The distributed feed back effect due to

the coupling between the reacting section and the empty tube section is

accounted for through the convected heat term across the tube wall.

In spite of the numerous assumptions built into this model, it is expected

0 provide the specific dynamic properties of an autothermic process
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Chapter IV, Section C analyses the major assumptions to estimate how

close such a model will describe the dynamic behavior of an ammonia

reactor as the Tennessee Valley Authority reactor

B. DERIVATION OF THE MATHEMATICAL MODEL DESCRIBING THE

T.V.A. REACTOR

Material Balance intheCatalyst Section

The mathematical model under investigation neglects both accumulation

of mass in the gas phase, and longitudinal dispersion. Consequently for a

given feed composition, the knowledge at a position in the reactor of the mole

fraction of one of the four components of the gas mixture (hydrogen, nitrogen,

ammonia and inert) is sufficient to determine completely the composition of

the gas mixture and the total number of moles flowing per unit of time past

that position.

[n this investigation the mole fraction y of ammonia is used to express

the mole fraction of the three other components. If the feed composition

expressed in mole fraction is

vw IN, TNE
J

at a point down the reactor where the mole fraction of ammonia is y the

mole fraction of hydrogen, nitrogen and inert obtained by material balance

on each of these elements are respectively

* + 1.5 * 1.5 *

24:8 . YNE = ( . = Yh)?

NH.

(yo 4+0.5y _ )-(0.5-y.)y . Y - . = Vy Yy

N, NH, N,

NH

a —
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ys

sk

Vi (1+y)

Lig
YNH,

As the ammonia synthesis proceeds with a decrease in the number of moles

present, the number of moles flowing past a position in the bed is a function

of the feed rate (Flb mol/hr) and of the degree of conversion at this position.

In term of y, the number of moles flowing past a position in the catalyst bed

is expressed by the following expression:

F (1+ Yr )
_ 3

(z) ~ (T+y)

A material balance on ammonia around an element of volume dV = A dz of

the catalyst bed results in the following terms:

*

F(1+yng)
3

(T+7vy) y

 EF (1+ *

( NH, 4

—a ry Yt =

A dz

3k
F[Fy
EE Er dz

moles of ammonia entering

the section

moles of ammonia leaving

the section

moles of ammonia produced

»y chemical reaction

~vith:

number of moles of ammonia produced per unit of time

and per unit volume of bulk catalyst (for the conditions

of temperature, pressure and reactants concentration,

A-

7,

present at that time, and position). Looe
hr ft

cross-sectional area of the catalyst bed £2

distance along the catalyst bed (measured from the
entrance of the gases into the catalyst section). ft

As mass accumulation is neglected the material balance equation reduces

to Eq. 4.1 where A has been replaced by the ratio of the catalyst volume V to

the total depth of catalyst 1.
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dy _ V (147)
dz ~ F1 * ;

Cy

(1+ yp
(4.1)

The boundary condition associated with this first order ordinary differential

equation is:

a.

NH,

The rate expression used

ro

in this investigation is of the form

P., 3/ - =

cp TH, NH
N, P - KZ —n

2 PN 2
3 Py

where:

1 1

Ki and KS

Py , PH, and PN,

are two specific rate constants

are the partial pressures of nitrogen,

hydrogen and ammonia.

This expression where fugacities replace partial pressures has been

proposed by MillsZ% in his study of the kinetics of ammonia synthesis under

high pressure. Logos has used the same expression with partial pressure

to correlate experimental results obtained by Sidorov’S and to successfully

simulate the steady state behavior of the T.V.A. reactor

The following expression of the rate of reaction proposed bv Logeais has

been used in this research:

£

0.5

| 1.5

y y y

x 2 p2 Hy Np, “NH

YNH, Yor
) ?

where:

Kp is the equilibrium constant of the reaction
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i 3 —

&gt; N, + &gt; H, « NH,

= is the total pressure of the system in

atmospheres.

The specific rate constant KS is expressed in terms of temperature by

Py
the following equation proposed by Logeais ¢

K! = 1.75 100 exp (- 20,360,
2 T

Ib mole (Atm)?

hr PRE of catalyst

The rate expression can be expressed as a function of the mole fraction of

ammonia alone by Eq. 4 2

In iy

-0.5
. 1.5

1.75 1p exp (- 20,300 fre R(B-v)! (€ -v)

Dyy (4.2)
(B-y)

The dimensionless groups # BC and) are function of the feed composition

alone through the relations:

1.5
5k ‘ %k

(1.5-yy ) (0.5-yy )

PO)

(L+tygp )

 AB

“

y +1.5 *
y -OY
H, NH,

1.5-y
H,

3k sk

yn. Y0-2YNy

0.5-%
IN

hei

A)
14s

YNH
3

 _—
1.5-y

H,

| a

.

"

ma
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After replacing the rate expression r by its value in Eq. 4.1 and normalizing

for distance,and temperature, the material balance equation is written

d A= = gy ©XP (- 25.375 | 2 Bs AB 5E-y
ref o v

wih

2) y (1+y)°
QB - 14y

“x normalized distance 5 z/1

total length of the catalyst section

T/T = normalized catalyst temperature

1:75 10° p 0° x 359 = 6.283 107° p70:

space velocity = number of cubic feed of gas

(under normal conditions) fed per unit time

and per unit volume of catalyst

Fx 359 1

V hr

= K P

=

J

\

/
fo}

I.

{4. 3)

The effect of catalyst activity on this equation appears in the dimensionless

group

LF oofV,

The dependence of the ammonia mole fraction y with feed rate is included

inside the same group through the space velocity V_. As the reaction is

reversible and proceeds with a change in the number of moles, the effect of

pressure on the rate expression appears inside two groups —v and L.

As the reaction is reversible the effect of temperature on doo ote snpression

appears also in two groups

exp (- 25,375 } and L

It was shown before that the effect of feed composition appears inside groups

RB, € ana.
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2. Energy Balance

a. Energy balanceintheempty tube section: An energy balance around

an element of gas of volume a dz inside the empty tube section results in the

following terms:

F C_o{Tp-Tg)

—_ d
FC olTr Tg) - a7

hyS,
— (Ty-T~) dz

with cross sectional area of the tubes

Temperature of the gas inside the tube

Temperature of the tube wall

Base temperature used to express the

enthalpy (298°K will be used)

Average molal heat capacity of the feed gas °
measured from the base temperature BTU/lb mole F

Average heat transfer coefficient between the tube °

wall and the gas in the empty tube section BTU/hr sq ft F

Total surface area available for heat transfer between

the tube wall and the gas in the empty tube section £12

I'he mathematical model under investigation neglects heat conduction along

the gas phase, radiation from the tube wall, accumulation of enthalpy within the

gas phase and assumes that Co is a constant independent of temperature; with

these assumptions the energy balance equation for the empty tube section is

written

dTp BS, (To - To
aalRrra - ]

Zz IFT__ T w

(4.4)

which after normalization for temperature and distance reduces to Eq. 4.5

A341x Eb WW

m=»

ge = B (w-m)

T

normalized temperature in the empty tube section = —
T., ref

normalized temperature of the tube wall section = rm
ref

(4.5
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h.S

3 = Ll is the number of transfer units which characterizes

FC o one heat exchanger.

The boundary condition on associated with this first order ordinary differential

equation is

wWo=
% iced

[Or a-~

&gt;. Energy balance in the tube wall: With the assumptions presented at

the beginning of this chapter an energy balance around an element of length dz

of tube wall results in the following terms

~i:h

h.S
272

LL (T_-T_)dz heat transferred from the catalyst

h.S
11
= (T,-T) dz heat transferred to the empty tube section

MC___ dT

_ pm ¥ az
7 rr

heat stored inside the metal of the tube

h
/

average heat transfer coefficient between the wall and

the catalyst EY
hr ft °F

total surface area available for heat transfer between
the catalyst and the tube wall. ft

3,=

T. = temperature of the catalyst section °F

M = total weight of the metal inside the tube wall 1b

Sw average heat capacity of the metal of the wall BTU/Ib °F

 = time hr

I'he energy balance inside the tube wall is

dT
wo _ - - -

MC —gp = h,S, (T_-T_)-hS (T_-T.)

This equation normalized for temperature and time takes the form of Eq. 4.7

Nell

y

de

~ »

?

4 =v-m~-alm -v)

T

normalized catalyst temperature re
h S ref

ot ratio of the resistance to heat transfer
2 2

on both side of the wall

(4,7)
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at Com _ total heat capacity of tube wall

Ww Coc ~ total heat capacity of catalyst

total mass of catalyst 1b

average heat capacity of the catalyst BTU/1b °F

I'he normalized time 6 is given by Eq. 4.8

h,S, ¢
WC

NDC

(4.8)

WC

a ua is the time in hours required to lower the temperature of the
2-2 whole catalyst bed by 17°C when the difference of temperature

between the catalyst and the wall is 1°C.

[he boundary condition associated with Eq. 4.7 is

m(a) = f(a) at 8 = 0.

which is equivalent to say that the temperature distribution in the wall of the

tube is known at time zero.

¢ Energy balance in the catalyst: As the reaction proceeds, the total

heat capacity of the flowing gas changes. If FC, is the heat capacity of the

gas fed per unit time, at a position down the reactor where the mole fraction

of ammonia is yv the heat capacity of the gas flowing per unit time past this

position is y x

Y-YNH
3

so ~ AC 14+v ]
~~

{

vhere

- x x * x

C =v C + yn C +v C +vy, C

po "Np Py, Np Py, NH3 Png, POP

is the average feed molal heat capacity. (C sy C sy C s C_ are
p p p pH N NH i

2 2 3

average molal heat capacity of each component measured between the base

temperature and an average bed temperature assumed constant).

AC =1.5C + 0.5C -C is the decrease in molal heat capacity

Pu PN PNH
2 2 3

of the mixture resulting from the formation 1 1b mole of ammonia. In the
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remaining part of this chapter the ammonia mole fraction in the feed will

*

pe represented by y only.

The total enthalpy of the gas flowing past a position in the bed is equal

to the sum of the sensible heat of the gas and of the enthalpy of the ammonia

expressed as function of the standard enthalpy of formation at the base

temperature AH. With the assumptions presented at the beginning of this

chapter, this amounts to:

3% x
- *, Y-y

7 [C,, - 2° 5 J[T, -Tgl+F[AaH][y+135]

The energy balance written around an element of volume A dz of catalyst

results in the following terms:

enthalpy convected in:

* %*

= ac YY i PY

“ing ~ BE 51 [Te Tgl+FAH [y ty)

enthalpy diffused in:
37

D' A a

anthalpy convected out

L

* x

y-y } 4 yoy

wo "berry LT. TaltFatly Tey
2

*

3 ALYY _{re acy1 [To -Tpl + FAH, |
*

&gt; y-yY+ 75] dz.

enthalpy diffused out

oT 3 oT

D! A —— + 5 [-D'A— | dz

Enthalpy transferred to the wall

h.,S
2°2

SL (T_-T_)dz

Enthalpy accumulated inside the catalyst
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We oT,
— X dZ X =i

where D' = effective Longitudinal diffusion =
BTU

ftxhr &lt; °F

Fhe enthalpy balance in this section writes

3%T % AT
D'V C h,8
D'V SFT -pc XY c_ 272

1 52 [ DO Ae T5y dz [ (T,- LL

—
4

vr

‘AH -Ac(T_-Ty) 1+y dy _ Wo 2L, 4.9)

H,-acll, Bl 5.7 sz=TT3%-°

The t Sy ierm in == can be replaced by its value taken from Eq. 4.1

F(l+vy) oy V5 ee ——— X 1

2 oz 1
(1 + v)

The normalized energy equation in the catalyst section writes

D
2% y * d

+s(l-h XX) &amp;¥ vo
ya? ( +5) da mm

} SY [e+h(v-0.3725)]s y 5 exp [- 4-]

12 1.5
L SB - ’ (&amp; - )

r Y) y) = : ] = 0X (4.10)

with

D WH

D'V

5
1 h,S,

AC

—
po

AH
cmems
Tr C

ref po

FC_
po

h,S,
A

T V
ref o

20, 300

ref
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The dimensionless group D represent the ratio of the effect of diffusion to

the effect of heat transfer towards the wall of the reactor.

I

=

is equal to the length of a heat transfer unit for the catalyst

section taken as a tubular reactor.

is a function of the starting composition through C ° and repre-
sent, how many times T the temperature of 1 Rdle of feed

: ref .
increases every time 1 mole of ammonia is produced at the

base temperature.

The fact that the reaction proceeds with a change in sensible heat and

at various temperatures is taken into account through the two correcting

factors.

 1 h yy
1+ v

aid

e + h (v-0.3725)

d.. Boundary conditions associated with the energy equation inside the

catalyst section: The boundary condition imposed at the entrance of the

catalyst section is obtained by computing the enthalpy flux flowing past the

entrance position of the reactor from the left end side and from the right

end side of this position.

At the beginning of this section the assumption is made that the gas

leaving the tube section enters a '"turn-around section' of no heat capacity

where, the gases are well mixed. Consequently the temperature of the gas

in this Section is uniform and equal at each instant to the temperature of

the gas at the exit of the tube section. On the side of the entrance location

facing this section no diffusion occurs. The enthalpy flux entering the

reactor reduces to the enthalpy transported by bulk flow, which is written

om Es

or (Tp - Ty) + F AH »
a=0

The enthalpy flux flowing past the location inside the catalyst section within

an infinitesimal distance of the entrance is composed of the enthalpy trans-
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ported by bulk flow and of the enthalpy diffused longitudinaly. It is written

~

oT
’ 5k Cc

- - 1

LAT, To)+FAHy-D'A(—55)
a=0 a=0

D' being the effective heat diffusion in the catalyst section. By equating

the two values of the enthalpy flux the relation between T. and To
a=0 a=0

is obtained

aT

r_ = Ty + DA... 5)
a=0 a=0 FC oz

po a=C

(4. 11)

The boundary condition expressed under this form is equivalent to the

expression proposed by Pangweris and later discussed by Wilhelm and

Wehner)

In the section dealing with finite approximation of the partial differential

equation the entrance boundary condition will be introduced by making a

similar enthalpy balance on a slice of finite dimension rather than to approxi-

mate directly Eq. 4.11.

The same concept of enthalpy flux applied at the end of the reactor

results in the equation

c=1-,

-

TT

yy. _1°Y
Pa z=1

CT -pac-2ZiDO l+y, _,4 ]

JA 3T
==)

z=1-¢
Ek

oT,
FF ==,

y 177 z= €— 7 =

Coo "8 Try,

1

Co=1+¢
 EF

where D'" is the effective conductivity in the section following the catalyst.

Intuitively one cannot imagine a discontinuity at the outlet of the reactor

and as € becomes smaller the temperature on both sides of the outlet boun-

darv must tend to the same limit.
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I. = T,
z=1-¢ z=]1+e€

as¢€ —OO

Under these conditions the boundary equation reduces to

dT
ptSa _ or oF
 TT (5)

z=1+€

When the packed section is followed by a section where no diffusion occurs

(D!'" = 0) the boundary equations reduces to the form proposed by Danckwertst]

that is to say

3T,
(—=—)

dz y=
(4.12)

In the section dealing with the finite approximation of the partial differential

equation the same flux balance will be made on a slice of finite dimension

and use will be made of Eq. 4.12 in computing the heat diffused out of the

considered volume of catalyst.

C. DISCUSSIONS OF THE ASSUMPTIONS INCLUDED

IN THE MATHEMATICAL MODEL

In this section the more critical assumptions introduced into this

model are discussed and the steady state results obtained with the present

model will be compared with the experimental results presented in Section

B of Chapter III obtained by Slack, Allgood and Maune 29

L. Effect of Neglecting Radial Temperature Gradient

In the T.V.Areactor previously investigated by Kjaer? and Logeais™?

experimental results provided by Allgood and reproduced in Table 4.1 show

a strong dependence in the temperature at various depths in the reactor with

the radial location of the thermocouple measuring this temperature. The off

center thermocouple indications differ from the center temperature by more

than 80°C near the outlet of the reactor. This temperature difference which

if representative of what happens in the reactor will invalidate the present
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Table 4,1

Experimental Temperature Profile

Location

I

Y

.0

| 1

L2

[3

| 4

15

| 6

| 7

Center "hermocouple

428

439

456

493

528

544

549

549

546

543

540

535

532

529

523

517

511

505

off Center Thermocouple
C

421

432

446

475

500

514

518

516

509

500

493

481

468

463

455

444

438

424
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assumption, was explained by both Kjaer and Logeais in terms of the location

of the thermocouple well with respect to the cooling tubes. Figure 4.2

shows the thermocouple arrangement for both the center thermocouple and

the outer thermocouple. The center thermocouple well replaces a cooling

tube while the off center well is located in the middle of the equilateral

triangle formed by three cooling tubes.

The hatched area of Fig. 4.2 is cooled by two cooling tubes in the case

of the outer thermocouple and by three cooling tubes in the case of the off

center thermocouple. This qualitative explanation proposed first by Kjaer

was confirmed quantitatively by Logeais who was able to match the indica-

tions of the center thermocouple for the same feed conditions by using in

his model a heat transfer area equal to 2/3 the heat transfer area really

present. Kjaer, furthermore, computed radial temperature profiles inside

the T.V.A. reactor due to the existence of the basket surrounding the

catalyst and the cooling tube embedded in the catalyst. He concluded that

the radial temperature variations are practically negligible for converters

with internal cooling. 21

Even though complete experimental evidence supporting this assumption

is lacking, it is the author's belief that the assumption of uniform radial

temperature and composition is justified as a first approach to the descrip-

tion of the dynamic behavior of this class of reactor.

Temperature Difference between Catalyst and Gas

The magnitude of the steady state difference in temperature between the

catalyst and the gas flowing through it has been investigated experimentally

by Jakob?" for the case of hydrogenation of ethylene. He found a temper-

ature difference of the order of 1°C. Wilhelm 0 reported that experiences

?
wad ==

in his laboratory indicate this order of magnitude for moderate reactions.
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Since the reaction takes place on the catalyst particle, the steady state dif-

ference in temperature between the catalyst T and the gas flowing through

it Ts can be expressed to a first approximation by the equation

AHr

G h_
14.13)

where AH is the heat of reaction (BTU/lb mole), r the reaction rate

(1b mole /hr ft cube of catalyst), hv the heat transfer coefficient per unit

volume of catalyst. Gamson, Thodos and Hougen =” have proposed a cor-

relation for the heat transfer coefficient between gas and solids in packed

beds which can be used in this section to estimate the steady state temper-

ature difference between the catalyst pellet and the gas flowing through it.

h

he Y -1.064GC N "2/3 0-41
a, ~ “pr re

for 350 &lt; No &lt; 4000

where a is the particle surface area per unit bed volume sq ft/cubic ft.

G mass velocity 1b/sq ft, hr

C heat capacity of gas BTU/16°F

DG

N.gt modified Reynolds number —EB=

N Prandlt number
Pr

D, particle diameter (ft)

(4. 14)

»
 =u

Under the conditions existing in the T.V.A. reactor the maximum tempera-

ture difference computed exists at the entrance of the reactor where the

rate of reaction is maximum and amounts to 2.3°C. This difference in

temperature decreases as one proceeds down the reactor to amount to

0.6°C at the middle of the reactor and 0.4°C at the outlet. These results

confirm the 2.2°C maximum figure reported by Kjaer. 21

It appears that neglecting the temperature difference between the

catalyst and the gas flowing through it; is justified for steady state computa-

tions. In order to prove that this justification can be extended to the
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transient case a very simple model is proposed which can show how fast

the gases flowing through the bed at a certain location will respond to changes

in the catalyst temperature at that location.

ol

SL

Te

a“

pe

lors 0ope—og

Te

The dynamic heat balance equation relating the temperature of the gas in

the slice of length § L, considered as a well stirred tank, to the temperature

of catalyst is

dT
G

ST. )+ €AS _G _ v(T .- i

where A is the cross-sectional area of the reactor (empty), § L is the length

element over which the temperature can be considered as constant Pg the

density of the flowing gases, € the void fraction of the catalyst.

If one considers only changes in the catalyst temperature the transfer

function relating the Laplace transform of the changes in gas temperature

&gt; TT, to the Laplace transform of the changes in catalyst temperature § Te

is written

hv

&gt; Tg € p Cp |
 8 8

5 T - G a hv ]

 a s + sre, Ep_CpP,

(4. 16)

This equation represents the response of a first order system whose time

constant T is represented by Eq. 4.17
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1

Chg

8 Lep, ¥ € PCP,

(4.17)

In order to estimate how fast the temperature of the gas changes with changes

in the catalyst temperature it is useful to compare the value of T so defined

with the time constants associated with the other transient phenomena.

It should be noted that the present model is only approximate since it

breaks the reactor down into a series of well stirred tanks of length § 1., At

the limit, as § L goes to zero the series of ordinary differential equations

becomes a partial differential equation of the form

9T,, _

No 1 + (1 s+1) Ts Te (4,18)

whe re

G
N frome Ce —————

T € P,

€ p Cp

r= —88
T he

Conclusions are almost impossible to derive from this partial differential

equation without solving it since Te is in this case function of distance .

Nevertheless Eq. 4.17 shows that always

€ p Cp
J—

The upper limit of T encountered in this reactor is of 0.07 seconds. Con-

sequently if the catalyst temperature at any location changes suddenly

because of changes in the rate of reaction it would take less than 0.3 sec.

(4 time constants) for the gas flowing through it to approach the new steady

state value associated with this catalyst temperature. The analysis pre-

sented in this section justifies the assumptions made in neglecting the tem-

perature difference between the catalyst and the gases
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3. Relative Magnitude of Enthalpy Storage

The enthalpy is stored in the reactor inside the gas phase in the empty

tube section and in the catalyst section, inside the wall metal and inside the

catalyst pellets, The enthalpy storage will arise primarily into the system

having the higher heat capacity, that is to say, inside the metal of the wall

and in the catalyst pellets.

Table 4.2 presents the relative magnitude of the heat-capacity in

each section of the reactor. For comparison purposes, the results are

presented as the ratio of the heat capacity of each section to the heat

capacity of the catalyst.)

Table 4.2

Total heat capacity of catalyst

Total heat capacity of tube wall

Total heat capacity of gas in the tube section

Total heat capacity of gas in the catalyst section

| 9

0.30

0.007

0.025%

k = E———————

A void fraction of 1/2 was used in this estimate

From the figures reported in Table 4.2 it is clear that the accumulation of

energy inside the metal of the wall cannot be neglected in this investigation.

Furthermore, the accumulation of enthalpy in the gas phase both in the

empty tube section and in the catalyst representing less than 3 percent of

the total heat storage capacity can be neglected.

4 Residence Times Compared to Thermal Tira Constants

In Section A of Chapter Iv it was seen that the proposed model does

not take into consideration the flow and pressure variations during a

transient and, furthermore, neglects the accumulation of mass in the gas
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phase. This simplification was proposed in view of the small residence time

experienced by the gas in the reactor compared to the time constants as-

sociated with the transient of the system.

For the standard conditions investigated the residence time of the gas

in the empty tube section amounts to 2 sec, while in the catalyst section it

amounts to 15 seconds. On the contrary, if by analogy with a heat exchanger

the time required for a perturbation entering the top of the reactor to travel

the entire reactor is computed, a value of 375 seconds is found. Always by

analogy with a heat exchanger if the ratio of heat capacity of the catalyst

per unit volume of reactor to the amount of heat transferred per unit vol-

ame of reactor per unit time for a one-degree driving force is used to

characterize the rate at which the reactor responds to a thermal perturba-

tion it is found that the value of this time constant is equal to 160 seconds.

From these figures it has been found that the transient associated with

the establishment of a flow and pressure pattern are much faster than the

transient resulting from the establishment of a thermal profile, Consequently,

ander the flow conditions at which the reactor is operated, the assumptions

uncoupling the pressure and flow transient from the thermal transient and

considering the first one as extremely rapid appears justified.

5 Comparison of Computed and Experimental Steady State Results

With the choice of parameters corresponding to the conditions of Table 3.1

the agreement between the experimental results and the computed steady state

profiles appears in Fig. 4.3. A relatively good agreement is obtained as far

as temperature profile is concerned, however the model production is 12%

higher than the reference production. The assumptions of iiniform radial

temperature and composition, and the use of a rate of reaction obtained for a

different catalyst have been offered bv Logeais? as explanation of these
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discrepencies. The results of this simulation will only approximate

quantitatively the dynamic behavior of the T.V.A, reactor from which

Allgood, Slack, and Maune results were taken, Nevertheless, it is

believed that the transient computed by the proposed mathematical model

retain the main features of an industrial ammonia synthesis reactor of this

type.



CHAPTER V

COMPUTATION METHOD

There is no analytical solution tothe system of nonlinear partial dif-

ferential equations describing the dynamic behavior of the autothermic reactor

which is presented below:

* 2

dv y-y | OV vp ov

5 Ss (1-h Fy ) Ja + (v m) D PW

‘rl +. il (v-U oy (125)| S
yu

 pL

Iw

da
= Bg (w- (n)

vy
-

9m

DO
= v + dw - m(1+d)

2
oy _ , (lty)

- x

Ja lv

LJ (4.10)

(4.5)

(4.7)

(4.3)

Consequently, finite difference approximations to these equations were

derived and the resulting finite difference equations were solved on a digital

computer,

Iet j be the subscript used for distance and n the subscript used for

time such that the normalized temperature v at a distance a = jAa from the

top of the reactor and at an instant 6 = nAOfrom the beginning of a run is vin

In the first part of this chapter the finite difference analogs used to repre-

sent each equation are presented.

The sequence of computation retained to solve the system is as follows:

1 S olution of the ordinary differential equation representing the

energy balance inside the empty tube section (Eq. 4.5) coupled with the equation

BG
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representing the energy balance inside the tube wall section (Eq. 4.7). In

solving this last equation use is made of the old value of the catalyst tem-

perature; (vi nl)
2. Solution of the partial differential equation representing the

energy balance inside the catalyst section (Eq. 4.10). In this solution the

temperature of the wall is expressed implicitly as a function of the old and

new temperatures on both sides of it.

3. Solution of the mass balance equation inside the catalyst

section (Eq. 4.3) using the values of the catalyst temperature derived in

Step 2. Once this cycle is terminated the time is advanced by AO and the pro.

cess is resumed. The Fortran program of the computer scheme so derived

appears in the Appendix.

In Section B of this chapter, the computer scheme used to approximate

Eq. 4.10 is tested for stability and accuracy on a linear partial differential

equation obtained by linearization of Ey. 4.10. In Section C of this chapter,

the convergence of the proposed scheme is demonstrated for both Aa and AO.

In approximating Eq. 4.10 a method directly derived from the Stone-Brian- 0

method of solving convection problems is used. In Section D of this chapter

the results obtained in the present simulation are compared for efficiency with

the results obtained with the Courant Isaacson and Rees method'l of approximation

A. DERIVATION OF THE COMPUTER ALGORITHM

1. Variable Distance Grid

[In preliminary investigations the need for a variable distance grid along

the bed appeared. The distance increment must be very small at the entrance

of the catalyst section and can be fairly large at the outlet.

In order to achieve these results, the following change in variable is used:

d £(E)
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The new distance variable £, so defined, varies from 0 to 1.0 as a

varies from 0 to 1.0 and is divided in increments of equal size AE. The

original distance position a. is represented in terms of the new variable ¢

by equation

1 = f(j x Ag
3

(5,1)

From Eq. 5.11it is seen that the increments Aa are variableiff(£is a nonlinear

function of £ and can be varied as desired by a proper choice of the function f

The system of partial differential equation rewritten in terms of § reduces to

Df"

ss + [Sh

k

sn)
£

+=

D %v

V-1m - T pel w- [e+h (v-0.3725)] sr=0

oul = Bf (w-m)

Z Im = v+dw - m(l+d)
A

gh = rf (try)
1+v

(5.2)

(5.3)

(5.4)

(5.5)

The function f used in this study is of the form

a = af+(1-a) £2 (5.6)

the case a = 1,0 corresponding toa = §.

The first and second derivatives of £ are, respectively,

f= a+2(l-a) E

1

C= 2(1-2)

(5.7)

(5. 8)

1 1"

The functions f and f are known at any position and can be entered into the

finite difference analogs without difficulty, as will be shown later,
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2. Solution of the Energy Equation for the Gas in the Empty Tube Section

The ordinary differential equation

oy = PB £ (w-m) (5.3)

is solved by using the implicite finite difference approximation appearing

in Eq. 5.9

Worl,ntlVi,ntlory(Vi,nT,nel

41,0417, ntl |
_itlntl©J,nil (5.9)

In this expression the values of the wall temperature at time n+l funy nt1) are

unknown. They are given by solving simultaneously the energy equation for

the tube wall (Eq. 5.4).

The ordinary differential equation (5.4) is approximated bv the following

finite difference analog

g
my 4174, n oF, a) ow: x

J =v + ——

ADO j.n 2

HAS,mi dmg, (5.10)

The value of the catalyst temperature at time n+l being still unknown, v is only

expressed in terms of its value at the old time.

Equation 5.10 can be solved for m,
j, n+l

(1+d)A©
g-——72

My. ntl © + (FADTIA

m + AC Vv.

jn (IFHAG “j,n
gt ——m——

dAG

2 [w +w, |]
y+ LT AG j,ntl j,n

(5.11)
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which is rewritten for simplicity as

By nk) ™ EV, TPN ty ite "oa (5.12)

After substituting the value of m, ntl expressed by Eq. 5.12 into Eq. 5.9 and

solving for Wy n+] One obtains

1 1 1

1- B25 « (£1 +1) (1-b)

Vi,ntl © PAT r : = *VYit1, ntl
1 — X (£41 + fxll-b )

1

a BA } o)

’ x [Vigra ts 0
1+ B55 x (f+ £)x(1-b ) Js

1

Cc BAE 1 1

nn x i + W _ [0441 4 mm, N
1+BAE (£17 £, )x(1-b)

ir (5.13)

The computation process is a marching process originated at

i+1 = NSTOP (E=1)

A
NSTOP =~ Yfeed

witt.

This marching process is stable as long as

Bi, + £2) (1-b)

is positive which is always the case in this study. As a: result of this

investigation the temperature of the gas leaving the empty tube section Wi 4

is known.
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3. Solution of the Energy Equation in the Catalyst Section

A finite difference analog derived from the method presented by Stone

and Brian-® is used to approximate the partial differential equation repre-

senting the energy balance inside the catalyst section (Eq. 5.2). The dis-

tance and time derivative are respectively approximated by the following

expressions proposed by Stone and Brian.

8%v  Vitl, n+l %Vj, n+l t Viol, ntl
_ dtlatl joatl  j-1,nl9 2 IAF

Yi+1,n ” 4; 8 + Vi-1,n
 TTT

2AE

8v _ Vit+l,nt1 ~ Vj-l, ntl Vi+,n ~ Vj-1,n
og 4AE 4A E

(5.14)

(5.15)

ov _ VitLntl” Vita (vs n417¥j,n) *2
00 ~ 6A0 3A0

_Vi-1,n+1 ~ Yj-1,n
 5A (5.16)

The remaining part of Eq. 5.2 is called a source or sink term according to

the position along the reactor.

it is of the form

b = v-m- [ eth(v-0.3725)] sr

Because of the nonlinearity of the rate of reaction term r, it is impossible

without iteration to express r in terms of its value at new time represented by

?) ntl’ Consequently the source or sink term has been weighted in time and
’

distance for the part v-m and only in distance for the remaining part. Equation 5.17

represents the approximation adopted for wu
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_jthntl T Pylon Yi, nl” intl Y5-1, 041” jolt
12 3 - 12

‘j41,n 7 ™41,n ;
Vv. - m. Vv. - m.

j,n js,n + j-1,n j-1,n

t,
[e + h(v( +n 0.3725)] sr (vj+1,n’ Yi+1,n

- [e +h(v, ~-0.3725)] sr (Vi fr V: in

7, [e + h(v: 1 4 - 0.3725)] sr (Vi_1.n Yi_1,n (5.17)

In this last equation the value of my n+l could be replaced by its value obtained

in the previous section (Eq. 5.12). However, it is preferable to rewrite the

energy equation onthe metal of the tube in order to use both values of v and w

at new time. The ordinary differential Eq. 5.6 is now approximated by the

following finite difference analog.

of
 My ntl” ®j,n _ Vj,nt17"Vy,n;Ayne1tVy,no)
- AB  - Zz 7/7

{1+d) x (my, ont my
(5.18)

Equation 5.18 solved for m. is written:
ij, n+l

aa

J n+l

(1+4d)AE
g8 - To

(FAAD
g + Fr

xX m.
n

7 + Vv. ]
(TRIED x [vi nt1 ij, n- +

g 4 —

dAO

Nn 2
— mae [ViantVial

(5.19)
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AC
g- (1+d) =

This finite difference analog is stable since IFd)AD is always smaller
 PO ee

han 1 as (14d) &gt; 0 For simplicity Eq. 5.19 is written as

I ntl al v. tvs ol] + bw. tw:

-

. ri.
1s 12

(5.20)
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After replacing the derivatives by their values in Eq. 5.2 and the source

or sink term by Eq. 5.17 the energy balance in the catalyst section takes

form of Eq. 5.21

1 D Df

i4l, ntl {AO S22 | To
21°A8 f

Yio 27
s(l -h HE)ty

__ dem |
4AE

i
2} 2 + D + l1-a

1

1 D LY
Vv, 50" "72 2° ——

y. TY
-h JB

s (1 h I+v. 2
jn

enA——————

a.

A l-a|.

WN tTx

Li

y. -Y

s(1-h poo)
Jem 1. | x ike

Df!
1 D i

+1.n {720 YT ie t—
iat

| - a + | 2 _ D _ l-a

12 Vi, n 3A0 EN: 3
3

St

y. VY

D fr! s(1-h {4——)

‘1,n § 6A0D 2 22 3 4 AE

24 AE f;

1-2 + (w + w + w

12 jtl, ntl jtl.,n j=l, n+l

 on) nALa *1z twintl TW yz 2- = tm, x £1
j.n

WA

4
Lia

c+1
Hlon tM JF 17
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1
e +

z= [ h (vier, mn” 0.3725)] sr (v, y )j-1l,n’ j=1,n

1
2

- [e+h (Vv. no" 0.3725)] sr (vi V5 0)

~ [e+h (itl, n 0.3725)] sr (Vit1, ns Vitel, n) (5.21)

which can be arranged in the form of Eq. 5.22

a
Viel, odd T 5 ae) * Oust, mS (5.22)

The stability of such a finite analog is impossible to analyze rigorously be-

cause of the nonlinearity present. In Section B of this chapter a stability

analysis will be carried out on the equation obtained by linearizing Eq. 5.2,

that is to say, on an equation of the form

D

2
dv ov dv _

TZ - V IF - 35 - Rv =
0 (5.23)

As each equation 5.22 contains three. unknowns, the solution of the finite

difference analog consists of solving a system of linear equations whose

matrix of coefficient is a tridiagonal matrix,

In order to truncate this matrix, use is made of the boundary conditions

at the entrance and at the exit of the reactor as expressed in Chapter IV. In

this Chapter the boundary condition associated with the partial differential

Eq. 4.10 has been presented as

F
_ D ,0v

220° “emo T 3 (55)
a=0

(5,2 4

Rather than approximate the derivative (2X) in terms of finite differences,

the concept of enthalpy flux presented in Chapter IV to derive Eq. 5.24 is

used here to make an energy balance around a slice of finite dimension.
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pr

Using the same notation as in Chapter III an energy balance written around

the volume of catalyst enclosed within the planes located at a=0 and a= 22

from the entrance of the catalyst section results in the following terms:

enthalpv convected in:

enthalpy convected out:

enthalpy diffused out

F
_- %
Coo [Top a=0 To] + FAH y

Yhna = 7

Cro 8 Tope1[Tg
Aa Aa

-2 « “2

NY -Y

I+y, 4
Tp

F Io]

BF
*

AH _ [vy +

 a AT

oa 52),
&gt;

enthalpy transferred to the wall

h_s
2

LZ AZ (TTT)

enthalpy accumulated

we, , dT.
— AE 8

~vhere the subscript 2%. refers to the position located at 3 from position

.. The energy transferred to the wall and the enthalpy accumulated inside

the catalyst are evpressed as functions of an average temperature within the
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the enthalpy balance around the slice 0 Ac is written:

28 W Tha X
S -

1 2s Zz "7Y 2D! dv

Aa. Aa, (1-h 1+ Y Aa ) VAa + Aa ( oa JA

Seti 2 “2

v-m) + (e-0.3725 h) s 1 =
ov
50 (5.25)

In deriving a finite difference analog to this equation, the weighting coefficients

proposed by Stone and Brian are used. Wherever possible the variables are

expressed both at new time and at old time. The value of the variables at the

position a is taken as the arithmetic average of the value of the variables

at position 1 and 2.

"Aq _ vty,
BT TT (5.26)

The finite difference analog of Eq. 5.15 is written

y ty
SXW., S XW du 2,0 yr

__lntl 7 Ln Ss gp 2% 7 yx
A0. Al, Ao Yi," Vz, n

1+ AB 52

tv tv tv

"1,n41""1,n”"2,n+l” "2,n +s (e-0.3725h) x

r(v y +r (v As )
r2 : 1 1,n’ 1,» 2,n"’2,n
3 Vl av, at 5 (——2— —= )]

1
D

= Vv - ,

AZ V2, nt17 V1, nt1"V2, 07 Vin |

i

m + m

ee 1 1,n+1 2,ntl

[ 1.n+17 Lol t 6 [

m +m
l1,n 2,n 1
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1 vi +v \4 +
- [ ol 2, ntl + 1,n V2,n ]

11 ett ettfm ts — &gt; —

2 Vi,n+1" V1, n : 1
2 AO 3

"1,041" V2, 041 V1,n"V2,n
[4 - 2]

(5.27)

I'his expression can be rearranged in the required form to truncate the tri-

diagonal matrix, that is to say

ry
Yin+1 tVC1V2 p41 5 9 (5.28)

I'he same concept of rewriting the energy equation for half a slice is used in

deriving the end boundary equation. The enthalpy flux leaving the reactor is

equal to
tS a

— w-Y sk YN Y

7G,-AC Tay1[Tew Tal + FAR [vy + 135]

An enthalpy balance around the column of catalyst enclosed within the planes

located at - a2 and 0 from position NSTOP results in the following terms:

Enthalpy convected in:

: 5%

Va. Aa -y
] N-5-

, AC
l+y

 nN. Ac
&gt;

C I [T Tre
C A - Tg] + Fa * my 7"

ye H[y - a) -y1+vy
N- Aa

5

enthalpy diffused in:

3T_
-D'A (55)

N= Aa

enthalpy transferred to the wall:

h.s
2° 2 Az rm —

1 2 (T -T_)

enthalpy accumulated inside the catalyst

N tv .

ec az Oc
2? At
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In these expressions the subscript N- Aa/2 refers to the position distant by

22 from the outlet of the reactor. After rearrangement and normalization

the enthalpy balance is:

-y

YN ) vig2s ob 15
y Aa a iN- == yy

&gt; N- == (1 I Na
\J

2D' Jv — —— _ JV

N- 22

With the same method of approximation, the finite difference analog to this

(5.28)

equation is:

y ty
N-1,n ’N,n _ _*

— -Y [N-1L, ntl, ntl YN-1,n' VN, nM—————————————————————————————————————_——_——————=—-———————————— — EA Sgwe EE

La YN-1,nT YN, n 2

—
sk

YN ny D
— (1-h D227 yw. tv ]-
Aa 1+yN. n - N, n+l N,n ra

xe (1-B
OO

D 2

oo &gt; (vu, 0 YN-1.10) + s (e- 0.3725) [+ r (vu, nN, 0)
DN)

TN, nt YN, oF ENGL, YN, LL
3 N. n+ i

1

+ ge IN, n

L (PN, nt NC 1 ntl, TN, a NL, :
a 3 2

en

oo

v + v

i 1 N, n+l N-1, n+l
+ [Nonna - 7

YN, nt N-1,n4 _ 2 YN, n+l” YN, n
2 - 3 AO

N,n+1t VN-1, ntl YN, nt YN-1,n
ral a N-1,r

AE
(5.29)
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This expression can be rearranged in the form

~3 WN-1.0+1 T PNYNL ntl © ON

In matrix form the system to be solved is written

BE &lt;,

a b, Cc.

} a. b.

Ang 2

he

bol

a \r

CN-1

by

(V1, nel |

V2, n+l

I

Vi. n+1

YN-1, ntl

VN, n+l 1

po 1

d

d
’

ty

dng

dy |
(5.30!

A method of solution applicable to such a system of linear equations having a

tridiagonal matrix of coefficients is well known®? 2 and is used in this thesis.

The computing process consists in transforming the matrix Eq. 5.30 into Eq.

5. 31

[B,©, 0

0 8 C
2

jo.

I'v,

3

od

\

WJ

Bn-1 SN-1

» B

I

i

“1, n+l
%

Vo. ntl

Vi n+l

VN-1.n+1

| N, n+1 ]

“eff

|

Y N=1

| |

=

(hb. 31!

The coefficients 8, and vy, are related to a,b.c.d, by the following relations

J
) dy ks -

3-1

B. 4

%Yi-1

B:_y

(5.32)

( 5 33)
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The computing process is started with

3 = b
ol

 = d

and proceeds for i varying from 2 to N.

From Eq. 5.31 it is seen tnat the v can be computed by a marching

process starting with

J

—_ Pr1+nN,
(5.34)

and for which the general equation is:

J
_ Yi” C3541, ntl

j ntl B.
(5.35)

Once the values of vy nt] 2F€ known the temperature of the tube wall is com-
?

puted by using Eq. 5.20

‘Yt ntl - av. 141 + Vial i bw, it wo oo tc Mn (5.20]

Solution of the material balance equation

In order to solve the nonlinear ordinary differential equation representing

the mass balance inside tne catalyst section (Eq. 5.5) Heun's first method of

41
approximation = has been used. This method consists of computing a first

approximation to Yit1 ntl by using the simple Euler equation. This first
2

estimate of F543 ntl is then used in the 'trapezoidal'' equation to obtain a
3

better estimate of Vit, ntl’ The integrating scheme is written

} £1 +f 2

= _ ' 1+ vy.ESRC itr. LLVand14 ion+1, Vi, nel)

(5. 36)
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AG xf +f]
= —_— JTi+1,n+1 =~ Yj,nt+1 t L

(1+7, a

{ YS nel) (——t— rr (v,1 +y i, n+1° 75, nt1)

— z

(14 Y441, nt1) z lv —_ )
Lr tL nt)? Yj+1, n+1 I

(5 37

This marching process is started with the boundary condition

1+

olf:

—

Yiand (5.38)
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I, i.e., data at small pf where diffusion is unimportant. This method

depends on the fact that the nf vs. T curves are relatively straight,

even for large values of B so that an effective first-order rate constant

may be assigned to each Bf. Note that as the Inf, vs. T curves are not

exactly straight, the value of the effective rate constant will depend some-

what upon how these curves are approximated by straight lines. The

procedure adopted is for the curve for each value of B to draw a straight

line through the points f=1, 7=0 and £=0.1, T=Ty 1 where To. 1 is

the value of T for f = 0.1. The effective rate constants obtained from the

slopes of the straight lines will best represent the time required to reach

a value of f=0.1. If accurate correlations are required at other values

of f the correlation procedure must be repeated drawing the straight

lines through this new value of f rather than through f = 0.1.

Now fn (+) =kp_ t=T at f = 0 and for the straight line approximations

‘or 3
ha

- 0

{ n ()=(ek) p_t=eT, (3.4)

where e is the slope of the straight line at the given value of g and Ta is

the normalized time required to regenerate to f at the given value of f.

The effective rate constant is then ek where e =1 at B = 0 and e&lt;1 for

B&gt;0. From the model solutions a table of values of e and 8 can be

obtained. Further, for the limiting case of very large values of 8 the

solution of Weisz and Prater, Eq. 3.3 applies

Hence

-

+ = (1/8) = 5 (1-2/3). 3 (1-1

and for a given f and large B, ep is a constant. For f= 0.1 2 (1-8273) -

1(1-£)= 0.0923 and t(1/f) = 2.303. Then eB = 2.303/0.0923 = 24.95.
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I

y-y
9 ov D! 8%5 v Df" 8 {-h Try) 08v

Fo GZ mt law

"|% 0.3725) sr (vD [(e+h(v -

rr

(5. 41)

Equation 5.41 is a linear partial differential equation of the form of Eq. 5.42

l

oy Oy _ 9y _

P—7 “Vax “RY =
(5.42)

In Eq. 5.42 the dependent variable is now y, and x and t are the independent

variables. The coefficient D,V, R are obtained by identification of Eq. 5.42

with Eq. 5.41. Because of the geometrical configuration of the reactor and the

temperature dependence of the rate of reaction, the values of R varies with

distance. Near the entrance and the outlet of the reactor R is found negative

and Eq. 5.42 contains a source term. On the contrary, in the center section

of the reactor, R is positive and Eq. 5.42 contains a sink term. In this

section it will be assumed that the coefficient D, V,R are constant, both cases

of a sink and a source being considered.

Since Eq. 5.42 is linear, it is possible to solve it analytically for certain

boundary conditions and to compare this solution for accuracy with the numerical

solutions obtained with the finite difference analogs.

The investigation reported in this section is an extension of the work

reported by Stone and Brian’ who studied the accuracy of various finite difference

analogs to the following partial differential equation

5” oy  @
D y _v% _ 9

5.2 ox ot
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The scope of this investigation is to justify the choice of the finite difference

approximations used in this research and to point out the problems of in-

stability associated with the . .solution of this type of equation.

L. Analysis of Stone-Brian's Results

Stone and Brian’? have studied the accuracy of various finite difference

approximations to the linear partial differential equation represented by

Eq. 5.43,

They have written a general difference equation which contains arbitrary

weighting of all the possible approximations to oy and 7 involving three

d istance positions at two time levels. The final difference analog they in-

vestigated was

.D Tit,ne 255,041 ¥ Yj-1, ntl
Are bne ene

2Ax

Yit,n = “Yn tia ] + = [af
&gt;Ax Z Ax Yi+1,n Yj, n/

5 {Y; -V.j.n Yi_l.n) + c(y:y -j+l1, n+l Yi pep) aly; -j, n+l Yi 1, nl]

{
i Oo

atl 8(Y; n+l - Yin) tz (Y.1,n+1 ” Yul nd

m(Yi11, 041” Yjbln)]

The weighting coefficients a, . , c, d, g, g . m are subject to the restrictions:

A -+ c+ d=1

4 + ©, 1
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Stone and Brian tested the choice of the coefficients by comparing the solu-

tion of the resulting difference equation with the analytical solution of

Eq. 5.43 for a special boundary condition. The initial condition used is a

sine wave of frequency proportional to w. The reason for studying the

behavior of a sine wave initial condition is that any other type of starting

condition can be broken down into a Fourier series. Since Eq. 5.43 is

linear, the solution can be obtained by a superposition of the solutions for

the various harmonics. The analytical solution to this problem is

7ix,t) = cet x exp [ -0* m2 Dt] X

sin 0 1 (x-Vt) (5. 45)

[n absence of diffusion the phenomena described by Eq. 5.45 is the propagation

of a sine wave down the bed at a velocity V independent of the frequency of the

initial sine wave.

In presence of diffisuion the wave is still propagated at the same velocity

~w2 m2 Dt
V but is decayed at a rate equal to e . In the case of a complex

initial condition the higher frequency harmonics are decayed at a much faster

rate than the fundamental, such that after a while the lower frequency har-

monics only need to be considered in the superposition process.

The solution of the finite difference equation, 5.44, for the same boundary

condition can be expressed in the form

oo =ins cst p* sisin wm (jAx -V ¢ n At (5.46)

where p and ¢ are expressed as functions of the new parameters

a =2DAt and B owVAt
2 Ax

Ax

by the following relations derived by Stone and Brian
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3.

Le + B(a- =) + [ (5 +m) - Bla-3)] Cos WTAX-a sin” Sn

2
“

2
3

1 [Bat 9=) + (&gt; - m)] sin wTAx

“g + Bld-c) + [2 +m) - B(d-c)] cos wmAX +a sin” SIRE

plea) - (8
2

-m)] sin wTAx ¢

- — (5.47)

] 1 | [ Bla+ H+ - m)] sin w mAx

® \Fovas Arango6]ieonLZOTAig+B(a-3)+[ (5 +m)-pla—3)] cos WTAxX-a sin —

+ artang

[B(ct+d) - 5 -m)] sin wTAx

- O -» g + B(d-c) + [ (= +m) -p(d-c)] cos w TAX + a sin’ WT AX ] | (5.48)

Physically, Eq. 5.46 describes the propogation of a sine wave at a speed

equal to V ¢ and the decay of a sine wave at a rate proportional to p. Stone and

Brian satisfied the condition that p should be equal to 1.0 in absence of diffusion

for every value of f and every frequency by setting c = = a=dand m=
O
&gt;

With this new restriction the expression for ¢ reduces to

ToTAR artang
B/2 sin wm Ax

—
1+ [Bl -€) - O][1-cos wmAx]

(5.49)

Equation 5.49 shows that the velocity of travel of the sine wave, V ¢, is a

function of the frequency of the sine wave. For example, for wmAx = 0

$ is equal to 1.0 but for w Ax = 7, ¢é = 0, which means that such a frequency

does not travel at all, Furthermore, there is no choice of € or © which would

make ¢ independent of wnAx for all the values of 8
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Stone and Brian have proposed to use € = + and O= + as the optimum

choice of weighting coefficient. This choice of weighting coefficient makes

é remain close to unity over a wider ran ge of frequency of the initial sine

wave, This. choice of coefficients insures a travel of the lower frequency at

a rate very close to V. However, Stone and Brian concluded that there was

no scheme which would cause the highest frequency to travel at a correct rate

(for wm Ax = a1, ¢ will always be equal to zero).

In absence of diffusion, this phenomena will result in oscillation in distance

of the solution, the high frequency shifting out of phase with the fundamental.

In presence of diffusion, the high frequencies are decayed much faster than the

fundamental, and the fact that they do not travel at the right rate becomes less

important.

As a conclusion of this study, Stone and Brian recommended the introduc-

tion of an amount of diffusion which would prevent the largest frequencies from

getting out of phase with a magnitude still noticeable.

2. Extension of Stone-Prian's Results to the Case with a Sink or Source Term

At the beginning of this section it was seen that the sink or source term

obtained by linearization of Eq. 5.2 can be expressed as

d
R=1-m [e+h (v-0.3725)] s r (v)

Since r is nonlinear, it has been shown in Section A of this chapter that the

rate of reaction is always expressed at old time. In order to take this into

account in this analysis, the source or sink term has been expressed in two

parts. Returning to the present notation where y is the independent variable.

the source or sink terms has been wtitten as

Ry, (5.50)
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In deriving the finite difference analog of Eq. 5.51

 ND
8%y dy dy-V - - I'~

2 VE cwmovt
0 (5.51)

the weighting coefficients defined by Stone and Brian are used for the

approximation of the derivatives. Furthermore, the most general way to ap-

proximate source or sink term using values at three locations and two

time levels (when possible) is presented in Eq. 5.52

V O1Visl,n T%2Y5,n FT 93 Vjo1,n T %4Y541, n+l

i Q
F Yint1 T % Yijolont1 = 29 t Yi41. n

iL. Sy. = 2a, I'v.
i.n R Yii1,n (5.52)

The restriction attached to the new weighting coefficients is

iq +a, +a, ta,+tag +a, =1.0 (5.53)

When the same initial condition is used in this analysis, as in Stone and Brian

analvsis.the analvtical solution to Eq. 5.51 is

y = cst exp [-(D w 2 rr? + 1-1) t] sin w 1 (x-Vt) (5.54)

Equation 5.54 describes a sine wave which is travelling at a velocity V

independent of the frequency of the initial condition and which is decayed at

2_2
a rate equal to el weal 4 I-T]t the frequency of the starting condition

affects the rate of decay only through the term D win? If .T'&gt;'1 + Dela”

the coefficient of the exponential is 30 and the analytical solution tends toward

+o ast tends towards ». If Ir &lt;1+Doin?, the analytical solution decays and

approaches zero as time approaches infinity.
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The solution of the finite difference equation obtained by adding

Eq. 5.52 to Eq. 5.44 is

a n . 3

Tin = cst p sin wr [jAx -V¢ n At] (5.55)

with op and &amp; expressed in function of a, B, At and I"At through the

relations 5.56 and 5.57.

|stpe-3) - a,(1-2T1) At + ($+ m) -B(a- 2)-(a tas) (1-21)At] cos WT A x

2

iy -G sin? STA | + (pa &gt;) HS -m)+(a;-a,) (1-2T) At] sin wmAx
2. —

[5 #8(a-c rapes THm)-pla-c) + (a, + og) Bt] cos wma

2 3

a sin” aE } + {i B(ct+d)-(S -m)t(a, =a.) At] sin wmA &gt;

{

' 1

$ T BwTAx

 oO
rtane [plas (= -m)+(a;-a,)(l-2T)At] sin wTAX

[g+Ba-5)-a, (1-20) At +] Dtm)- B(a-=)-(a tas) (1-2DAt]

(5.56)

 2 Ww TAX
c co8 WTAX-asin.—=—|

[ B(ct+d) -§ = m)+(a -a,) At] sin Ww TAX
+ artang ———00mm——————————EE (5.57)

[ g+B(d-c) + agAt + [(&gt; + m)-B(d-c)+(a +a )At] cos WITAX

 2 WTAX
a sin —=]

Equations 5.56 and 5.57 reduce to Eqs. 5.47 and 5.48 in absence of a source

or sink term. Furthermore, in Eq. 5.55, p!' and ¢!' have the same physical

significance as p and ¢ of Eq. 5.46.
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If the weighting coefficients proposed by Stone and Brian for the

approximation of the derivatives are used (a=c=d= 5 = 3 , &amp; - 5 , m= 2 =)

Eqs. 5.56 and 5.57 reduce to:

+ &lt;

2 a,(2T-1)At +3 t (ajtaj) (2I'-1)At) cos wmAx - a sin” SIEnan|
2

8 + (a;-0,)(1-2T)At] sin w TAX )

+ a At + [5 + (a, ta) At] cos w TAx + a sinLAX )
(5.58)

re + (ay -a,)A t] sin w TAX

Bg

bl = rs aren kb tlaj-ajz) (1-2) At] sin w TA xyr _ _

5 + 0,(2T -1)At +[a tay) (2 I-1) At] cos wmAx-a sin2WTAX

[5 + (a -a;) At] sin w TAX

+ artang &gt; TT TOTAX (5.59)
3 + ag At + [= + (a ta )At] cos WMTAXx + a sin —
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The major difference between the present case and the case studied by Stone

and Brian is that the value of ¢' corresponding to the zero frequency is not

equal to unity. The value of ¢' for a zero frequency is expressedbyEq.5.60

; (B/2+(ag-a )2T-1)At
= Ba -

B 1T+(2T )at{a, %a,%a,)

B/2+(ay-a,)At }1 tat(a,tagta,)

he

(5.60)

Equation 5.60 shows that there is no choice of the weighting coefficients a,

which would make ¢' equal to unity for any value of Bp and I'At. Consequently

the finite difference analogs will always introduce an error in the rate of

travel of a perturbation. Six choices of the weighting coefficients a, have

heen investigated.and the values of p' and ¢' corresponding to the zero fre-

quency are presented in Table 5.1.

In cases Nos. 1, 2 and 3 the linear part of the source or sink term is

expressed at early and late time. This scheme can be considered as

implicit. On the contrary, in cases Nos. 4, 5 and 6 the source or sink term

is only expressed at early time. Cases Nos. 1, 3, 5 and 6 allow for weighting

the values of the sink or source term at three locations. Cases Nos. 2 and 4

consider only the value of the sink or source term at one location. Table 5.1

also presents the values of p' and ¢' corresponding to the exact solution

(Eq. 5.54) for the present values of I'and At. Table 5.1 shows that the

accuracy for both p' and ¢' is greater for the implicit schemes.

In the remaining of this section, the weighting coefficients a, corresponding

to case No. 1 are retained to investigate the accuracy of the finite difference

analog for different values of the parameters pf, and At. Even though such a

choice of weighting coefficients is used in this research, it has not been

demonstrated optimum.
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Table 5.1

Effect of Various choices of weighting coefficients a,

on the values of p' and d' for the zero frequency

Fixed parameters B = 0.80

~ = 2.5

At = 0.01

Case

Number Choice of a,

J |

By RGg 28,R60=17
 1

Gy R80,"7

a, =a,=a,=a,=0

a,=ag= 1/2

a =a,=a,=a,=ag=0,

/6

( ~o.=a,=ag=a,=0

p—

1.0149

] 0149

| J153

c. 04

d

0.3877

0.988

0.9870

0. 9807

a. =1.0

Exact solution

a. =a =a

1-376

a,=2/3

a,=ag=a,=0

tq cq 2}

1 1T%27%37 3

1,=a.=a,=0

1 , 04

1.040

1 0151

0.9807

0.2807

1 0
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With the choice of values of a, corresponding to case No. 1

1. "0, ®a,=0, 2

a, =a; =1/3

the expressions for ¢' and p' reduce to:

2 (1-21) At 1_ UU-2mAt 1-2

3 3 t [5 - =F At] cos or ox - a sin? 2TAX |

+ {5 sin oma
i At+ 4 At ETN p ’

3 = +g + 5 1 cos orax + asin’ CTX |Z

[£ sin ww TAX

d' =

4 p sin w TAX

Aw tang —m———————————Bw TAX ar _ j

Z . (1-Z2rata+[+ - (1-2DatANZ:At]coswmAt-asinTE

5 sin @ TAX
mtg (5
zt a + [+ +441 cos wTAX + a sin” OTE

al.

The values of the paramters a and § corresponding to the various choices of

At investigated appears in Table 5.2

Figure 5.1 shows the dependence of the growth factor p' with the frequency

of the starting sine wave for the three sets of parameter presented in Table 5.2

The growth factor p' corresponding to the zero frequency is larger than unity

as it is expected in the case of a source term. In presence of diffusion, as

the frequency increases the growth factor decreases and becomes smaller

than unity. This observation is in agreement with the analytical solution

presented in Eq. 5.54. In presence of diffusion the highest frequency will

consequently be decayed and will not affect the stability of the computer scheme

On the contrary it can be shown in Eq. 5.61 that in absence of diffusion the
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Table 5.2

Parameters hold constant D = 2. 107°

= 2.5

Ax = 0.005

V = 0.4

Parameters changed during investigation

I'ime increment At

0.00125

0.010

0.040

Parameter B

0.10

0.80

3.20

Parameter a

0.020

0.160

0.64

growth factor for the highest frequency is equal to the growth factor for

the fundamental, that is to say, is greater than unity. Figure 5.2 illustrates

the dependence of the velocity factor with the frequency of the starting sine

wave. for the same set of parameters a, pf and At.

The departure from unity of the value ¢' corresponding to the zero

frequency increases as P increases. Furthermore, as increases the

departure of the entire curves from the horizontal axis ¢' = 1.0 increases

and becomes important for smaller and smaller frequencies. This is

equivalent to. say. » the number of higher harmonics being shifted out of phase

with the fundamental, increases as f increases. The use of time and distance

increments corresponding to a value of f = 3.2 are expected to show oscillations

in distance since the curve ¢' corresponding to those conditions departs from the

horizontal even for very low frequencies. These oscillations were observed

on the computer solutions using the corresponding value of AO= 0, 04.

From Fig. 5.2 it appears that the conclusions drawn by Stone and Brian

apply in this case: since the highest frequencies are not travelled at the same

rate as the lower frequencies, they have to be decayed.

In absence of a diffusion term the highest frequencies cannot be decayed

since it has been seen previously that their growth factor is greater than

anitv. It has been found. in fact. that the computation results obtained with
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a zero value of the diffusivity D experience oscillations even with very

small time and distance increments.

[n Figs. 5.1 and 5.2 the values of p' and ¢' corresponding to a different

choice of the weighting coefficients a, are presented for a given set of para-

meter. (The choice of a, corresponds to case No. 2 of Table 5.1.) Under

these conditions, the values of B' and ¢' never differ by more than one half

percent. It should be pointed out that this comparison has not been carried

to the point where the choice of weighting coefficients a,, used in this

research, can be called optimum.

The conclusions reached in this section, for a source term, apply also

to the case of a sink. With the choice of parameters a, p and At investigated,

the growth factor corresponding to a sink is always smaller than unity. Under

these conditions any error introduced in the computation is expected to decay.

The results presented in this section show the influence of the time

increment on the rate of travel and decay of a sine wave present in the bed

at the beginning of a computation. It has been seen that the presence of

diffusion is required to eliminate the highest frequencies which are shifted

out of phase, and this even more so in the case of a source term,

Since the equations solved on the computer are nonlinear, the results

obtained in this section can only be qualitative and must be canfirmed by a

convergence study of the proposed algorithm. The results of this study are

presented in the next section.

C. CONVERGENCE STUDY OF THE PROPOSED SCHEME

To test the convergence of the proposed computer scheme a 5°C step change

in the input temperature is imposed on the reactor which was operated at a

steady state. The effect of the distance and time increment on the variation of

the temperature in the catalyst section are studied for several positions in the bed

The conditions of the runs performed during this investigation are pre sented in

Table 5 3.



.88-

Table 5.3

o
Run n

F-II-1

F-II-2

F-III-3

F-I~1

F=]-2

F-I~-3

F-1-4

AO

0.01

0.01

0.01

0.005

0.010

0.020

0. 040

number

distance

slices

200

100

50

00

00

"NO

| § YO)

maxAa

0.00898

0.01792

0.03568

0.01792

0.01792

0.01792

0.01792

min Aa

0.00102

0.00208

0.00432

0.00208

0.00208

0.00208

0.00208

Since the computer program uses a variable space grid, the number of slices

ls complemented by the maximum and the minimum value of Aa used in the

I uh

Figures 5.3, 5.4. 5.5, and 5.6 present the results obtained with a 200-,

100-, and 50- mesh space-grid at four locations in the reactor. The results

obtained with a 200- and 100-mesh space-grid never differed by an amount

larger than 0. 04°C and did not present any oscillation. The results obtained

with a 50-mesh grid presents oscillations when the temperature at the position

considered changes rapidly. The oscillations decay but the error introduced

travels down the reactor. Figures 5.7 and 5,8 represent the temperature

variation for two locations inside the catalyst bed when AOtakes the values

0.005, 0.01, 0,020, and 0.04. The results obtained with AG= 0.005 and 0.01

show a perfect agreement and do not present oscillations. The results obtained

with larger values of AO present oscillations as the temperature starts to

c hange rapidly, The presence of these oscillations can be explained through

t he results of the stability analysis of Section B of this chapter. When used

with large values of B the finite difference equations do not allow even the

low frequencv to travel at the proper rate
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The oscillations so generated, however, die rapidly and do not affect

the change in temperature at points further down the reactor. Furthermore

the results obtained with large values of AOagrees with the results obtained

with the smallest values of AOat every position before the temperature

starts to change rapidly. Good agreement also exists when the change has

occurred for some length of time. For this reason a small time increment

is only needed as long as rapid changes in temperatures occur inside the bed.

In Chapter VI it will be seen that the changes in temperature inside the

catalyst section can be described as a temperature wave travelling through

the bed followed by a slower approach to a new steady state. Small values

of the time increment are required as long as the temperature wave remains

inside the bed, Since the time required for this wave to travel through the

bed can be estimated, it is possible to determine at what time the time

increment can be modified.

The following time and distance increment have been used to describe

the transient resulting from step changes in the feed temperature.

number of distance slices

max Aa

min Aa

Time increment

as long as the wave travel

inside the bed

Time increment after

100

0.01792

0.00208

AG0.01

AO= 0.04

During the runs simulating the converter under automatic control the value

of AG= 0,01 was kept throughout the computation since the feed temperature of

the reactor keeps changing with time.
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D. COMPARISON WITH THE C.I.R. SCHEME

Stone and Brian have reported that their method of approximating dis-

tance and time first derivatives is the most effective for the solution of

linear problems. In order to check this result in the nonlinear case under

investigation, the Courant-Isaacson and Rees’d method of solution

abbreviated C.I.R. method was used to solve the energy equation inside

the catalvst

ov E 1 YY ov
sot [7 (-h 555)sg+v-m

e+ h(v-0.3725)] sr =0 (5.2)

The approximation used for the time and distance derivatives are as follows

ov _ Vi ntl” Vi, n
REE AB

ov Vi,n~ Vi-1,n
JF AE

The source or sink term present in Eq. 5.2 is always expressed at position

j and at early time n. The finite difference approximation of Eq. 5.2

expressed in terms of v,, ,, is written
j. n+l

 3

y. -V
Ss jan A ©=v, oA enka ae 40]+1 . { fT 1+y. A

" J 2 J Yijun s

3

Vy. -Y
 5S (1-n din’ Ad

Yi-1n (1 “Try =) AF]

4 a, A +[eth(v, -0.3725)] sr(v, ,y, )A6 (5.63)
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The computing process in this case is a simple marching process since

each equation is explicit in v; ntl The entrance boundary bondition
3

retained in this case is:

ntl © V1,ntl (5.64)

Figures 5.9 and 5.10 present the time variations of the temperature at the

location a = 0.028 and a = 0.0528 in the early instants of a transient resulting

from a + 5°C step change in the feed temperature,

On each of the figures is plotted the results obtained with 50-, 100-

and 200-mesh distance grid and a time increment A©® = 0.00125, The

results show that under these conditions the convergence of the numerical

solution is not obtained.

In Fig. 5.9 it appears that the effect of increasing the distance mesh

size is equivalent to a smearing effect on the wave front traveling down the

reactor. This effect could be predicted from the results reported by Stone

and Brian © for the linear Eq. 5.65

dy oy _
z= + 3 =0 (5.65)

The approximations of the C.I.R. method result in the introduction of a

dispersion term of the form

VAx 3%y
=

since the approximations are only first-order correct in distance. To be

able to reduce the diffusion effect introduced by the C.I.R. method to the

same order of magnitude as the physical diffusion existing in this reactor,

the size of the distance grid must be reduced to 1073, that is to say, one

must use a distance grid of 1000 meshes. Furthermore the results of the

Stone and Brian analysis have proven that the C.I.R. method is unstable

unless the following restriction is observed
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p= YAtx &lt; 0.5

For a value Ax = 1073 the corresponding value of time increment is then

10"3. The only advantage of the C.I.R. method, which is that it is explicit,

is offset by the extremely small values of the time and distance increments

required to obtain convergence of the solution. In the present problem more

of the computer time was taken by the estimate at each time and distance

step of the rate of reaction. Under these conditions the excess time required

to solve the linear system of equations resulting from the Stone Brian method

is negligible. Under these conditions the Stone Brian method, in computation

time, can be compared directly to the C.I.R. method on the basis of the time

and distance increments acceptable for convergence. The present study of

the C.I.R. scheme was not carried to the point where convergence of the

solution was obtained. But, already with a 200-mesh space-grid, representing

an added diffusion five times larger than the physical diffusion, the computer

time was greatly in favor of the Stone Brian method of solution.
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CHAPTER VI

RESULTS AND DISCUSSION

A, STEADY STATE OF THE REACTOR

In order to characterize the conditions of the T.V.A., reactor at the

beginning of a transient the steady state equations describing it, are solved

first.

Equations 4.3 and 4.5 apply unchanged to the steady state case since the

variable time does not appear explicitly in them. In Eqs. 4.7 and 4.10 the

time derivatives cf and 3 must be removed in order to use these

equations for the steady state case.

Logeais®? method of solution of this system of ordinary differential

equations provides the steady state profiles in the case where longitudinal

diffusion of heat is neglected, that is to say, for the case where Eq. 4.10

is a first-order differential equation.

The presence of the diffusion term forces us to use the method of solu-

tion of the transient case, presented in Chapter V, to generate steady state

profiles: the transient is computed until the temperature in the reactor stops

changing with time. This last method consumes much more computer time

in order to generate one steady state profile corresponding to a given feed

temperature; furthermore, it was observed that this method of computation

allows us to reach only the stable steady state,

It is Town that in industrial reactors of this type the importance of

the longitudinal diffusion on the temperature and concentration profiles

existing at steady state in the reactor is very small. Nevertheless the

longitudinal diffusion has been retained in describing the transient behavior

of the reactor in order to obtain stable numerical solutions for the finite

difference approximations of Eq. 4.10 as was shown in Chapter V
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The effect of longitudinal diffusion on the steady state behavior of

the T.V.A. reactor has been investigated in computing the concentration

and temperature profiles corresponding to a feed temperature of 227. 6°C

for the case where longitudinal diffusion of enthalpy is

neglected ( the method of solution is the method proposed

by Logeais).

for the case where longitudinal diffusion of enthalpy, (as it

can be estimated for packed bed similar to the reacting section

of the T.V.A. reactor) is taken into consideration and the transient

method of solution presented in Chapter V is applied in this case.

The results of this investigation are presented in Table 6.1 where the

temperature inside the catalyst section, inside the tube wall,inside the empty

tube section and the ammonia mole fraction are presented for both cases at

different positions in the reactor. The largest temperature differences are

encountered in the catalyst section as can be expected. The maximum tem-

perature difference is of the order of 0. 6°C and correspond to a location

close to the entrance of the reactor.

The temperature profile obtained in the case where longitudinal diffusion

is considered is above the temperature profile obtained in absence of the

diffusion during the first part of the reactor. This can be explained by the

fact that the catalyst temperature at the entrance of the reactor is larger in

the case with diffusion. This difference in temperature at a =0 results from

the entrance boundary condition associated with each problem. In absence

of diffusion the temperature of the catalyst at a =0 is set equal to the

temperature of the gas leaving the empty tube section. In presence of

diffusion, as shown by Danckwerts, 11 the temperature experiences a

discontinuity at the entrance of the bed. The existence and the magnitude

of the discontinuity was presented in Chapter IV. Since the reacting gas

seen by the catalyst located immediately downstream is at a higher



Table 6.1

Effect of longitudinal diffusion on the reactor steady state profile

Normalized

Distance for T T T
Top of the = T _ T, T : T. W. Y_

Reactor “b=0 “D=physical Ip=o Dephysical “¥p.o D=physical = ¥,_,  D=physical
diffusion diffusion diffusion = diffusion

 rT c— LS——

0.0

0.100

0.208

0.30

0.408

0.506

0.600

0.719

0.812

0.912

1.0

427.25

471, 64

510.18

528.66

531,92

524.97

514.19

499.73

481.29

461.69

442 20

427.61

472,12

510.63

528.91

531.97

524.94

514. 14

499.66

481.21

461.61

442 21

EES

427.25

424, 04

413.42

399.22

378.40
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temperature, the catalyst temperature at this position will have the tendency

to be higher. The original temperature difference, which is of 0. 36°C,

will be amplified and then attenuated as the gases proceed down the reactor

according to the signe and the magnitude of the temperature and concentra-

tion dependence of the heat generation by chemical reaction, This amplification

and attenuation concept will be discussed in detail in the next section.

Since the effect of the diffusion present in the T.V.A., reactor on the

steady state profile was so small, it was neglected and Logeais'® method

of computation was retained in generating steady state profiles for the

determination of the ''"blow out' temperature associated with the present

conditions of operation.

The dependence of the temperature at the outlet of the empty tube

section with the feed temperature is presented in Fig. 6.1. Under the flow

rate and feed conditions investigated, the '"blow out'' temperature is equal

to 220°C. If the feed temperature is larger than 220°C two different

temperature profiles would satisfy the steady state equations for the given

boundary condition, but the steady state corresponding to the higher con-

version only is stable as the considerations of Chapter III. show. If the

feed temperature to the reactor is lower than 220°C the reactor will "blow

ut!

Figure 6.2 presents the dependence of the feed temperature on the

outlet ammonia mole fraction. The maximum ammonia production corresponds

to a feed temperature of 225°C. Since a steady state corresponding to a

feed temperature of 227.6°C generated by the transient method of solution

was available, the transient behavior of the T.V.A. reactor has been

investigated around this temperature which is considered for practical pur-

poses as the optimum temperature of operation.
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In investigating the transient behavior of the reactor around this tempera-

ture, step changes in the feed temperature were performed and the effect

of these changes on the temperature and concentration profiles was analysed.

The different values of the feed temperature investigated are presented

in Table 6.2.

Table 6.2

Run No.

Conditions of Transients Performed in this Investigation

New Feed

temperature Size of the stepStarting condition

steady state corresponding
to a feed temperature

T= 227.6°C

212 6 15°C

217.6

222.6

232.6

237 6

-10°C

5°C

+ 5°C

+10°C

The steady state considerations reported before show that the feed

temperature used in runs 3, 4 and 5 are above the ''blow out' temperature

for the flow rate and feed compositions investigated. It is expected that as

a result of such a step in the feed temperature the reactor will approach a

new stable steady state.

[n the same way, since the feed temperature used in runs 1 and 2 are

selow the "blow out! temperature, the reactor is expected to "blow off"

that is to say--to experience a decrease in temperature and conversion

which would force the:operator after a certain time to use the heater to

restore the reactor in its optimum conditions of operation.

In this chapter, Section B describes qualitatively and discusses the

changes in temperature and concentration generated during run 4.

Section C describes the same changes when the reactor blows off

(run 1). Since the magnitude of the step change in feed temperature affects
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so strongly the final steady state approached, the present reactor is tested

for dynamic linearity in Section D. A linear range of operation is defined

and the transient results obtained within this range are used, in Section E

to generate frequency response curves and derive the form of simplified

transfer function relating the changes in temperature at various locations in

the catalyst section to changes in the feed temperature.

In order to introduce the concept of control, the effect of '"blow out"

perturbations of finite duration are investigated in Section F'. In Section

G a closed loop ideal controller is tested on the simulation for changes in

the amount of ammonia recycled in the feed.



.108-~

B. DYNAMIC OPERATION OF THE REACTOR UNDER STABLE CONDITION

L. Description of the Results

At the beginning of the transient the temperature and concentration pro-

files in the reactor correspond to the steady state profiles computed with a

feed temperature of 227, 6°C. At time zero the feed temperature is stepped

by 59°C to 232.6°C. As itis expected the reactor approaches the stable

steady state corresponding to the new value of the feed temperature.

Figure 6.3 describes the variations with time of the changes in the

catalyst temperature AT at different locations in the reactor. The tem-

perature change AT is defined in Eq. 6.1 as the difference between the

temperature at any instant and the steady state value of the temperature at

the same location at the beginning of the transient.

%

AT = T -T
CC C

6. Ie
Is

Figure 6.4 is an enlargement of the part of Fig. 6.3 corresponding to the

carly instants of the transient. On both figures an in the remaining figures

of this chapter the time is expressed in a dimensionless unit ©', defined by

Eq. 6.2

Ot =

FC
PO

WC
De

(6. 2)

[t will be seen later that this unit of time corresponds in the present

model to the time required for a thermal perturbation introduced at the

entrance of the catalyst section to travel the entire catalyst bed when no

reaction takes place. For the conditions under investigation in the T.V.A,

reactor, one time unit corresponds approximately to six minutes and 15

seconds, The temperature at the entrance of the catalyst section (a = 0) as

shown in Fig. 6.3 and 6.4 experiences a rapid change in temperature in the
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early instant of the transient, followed by a slower approach to the new

steady state value. The temperature at a position a = 0.10 experiences

little change in temperature as long as ©O' is smaller than approximately

0.10 and then an increase in temperature until the new steady state value

is approached. The same phenomena is observed for the variations in

temperature at a position corresponding toa = 0,30. The temperature

at that position increases slowly during the first instant of the transient,

then slightly dips down before recovery and again initiates an increase until

the steady state value is obtained, This last increase in temperature happens at

approximately ©' = 0,30.

The existence of this delay before any appreciable variation in tem-

perature occurs, is characteristic of a perturbation generated in the feed to

the catalyst section which travels down the reactor at a finite speed.

The increase in temperature observed at the beginning of the tran-

sient experienced by the position a = 0.30, becomes more and more pro-

nounced as the value of a increases. Theairves of Fig, 6.4 for a = 0.6

and a = 1.0 show a larger increase in temperature during the first instants

of the transient: This phenomena results from changes in the wall temperature

o f the tubes. ..

The temperature variations during the first instants of a. transient resulting

from a step change in the feed temperature can be qualitatively represented

a8 the sum of the perturbations due to the changes in the feed temperature to

the catalyst section and of the perturbations due to the variations of the bound-

ary conditions of the catalyst section: the wall temperature. The results

of the first type of perturbation can be represented during the first part of
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the transient as a "thermal wave''travelling down the reactor at a finite

speed, being amplified or attenuated according to the location in the

reactor.

The term ''thermal wave'' is used in this research to describe at a

given location rapid changes in temperature occuring at a finite amount of

time after the introduction of the feed perturbation; the time delay experienced

in the temperature response is a function of the location. In absence of

diffusion a thermal wave is characterized by no change in temperature before

the arrival of the wave front, then by an instantaneous temperature change

as the front passes the location. In this research the presence of diffusion

smears the front of the wave and changes in temperature occur before and

after the passage of what is still considered the front of the wave,

Figure 6.5 presents the same results but in a different way. The ''gain'

of the reacting section defined as the ratio of the temperature variations at

a certain position to the magnitude of the step change in the feed temperature

a is plotted versus the position a in the reactor at different times e',

or 6'=0,11 Fig. 6.5 shows that rapid changes in temperature occur

around the location a=0.11., For all the locations corresponding to values

of a smaller than 0,11 changes in temperature have already been experienced;

on the contrary, at the locations corresponding to values of a between 0.13

and 0.5, the steady state conditions prevailing at the beginning of the tran-

sient are still observed, Already at that time the second half of the

reactor has experienced temperature changes felt everywhere at the same

time but whose magnitudes are functions of the location. For this reason

these changes are not describablebyathermalwave.

At time 6'=0. 37 the zone of rapid changes in temperature has penetrated

inside the bed as far as location a=0. 37. At the same time the magnitudes

of the changes experienced in the second half of the reactor have increased
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and only a small section of the reactor near a=0.4 is still under the tem-

perature conditions existing at the beginning of the transient. At 0'=40.964

the two effects presented before are now blended together, There is no

location in the reactor where the temperature has been left unchanged.

It further appears from the curves corresponding to ¢=2.37 and 4.65 that

the catalyst temperature continues to change even after the original pertur-

bation has traveled down the entire bed, This results from the fact that

the boundary conditions associated with the catalyst section (feed tempera-

ture and wall temperature profile) continue to change with time. For this

reason the time required for the T.V.A, reactor to reach a steady state

corresponding to a new value of the feed temperature is expected to be much

larger than the time required for an identical packed bed whose feed does

not exchange heat with the catalyst section before entering it. This result

is in agreement with Boyle's &gt; observations of regenerative processes.

From the shape of the curves presented in Fig, 6.5 it appears that the

temperature '"gain'' is a strong function of the location in the reactor even

when the new steady state is reached as is almost the case for, 6'=4,65,

A temperature perturbation introduced at the entrance of the catalyst section

is amplified during the first 4/10 of the reactor and then attenuated during

the remaining part of the reactor,

The strong dependence of the '"gain' of the process with the location in

the reactor results in the travel of the maximum temperature in the reactor

during the transient. Figure 6.6 presents the variations with time of the

location and of the magnitude of this hot spot temperature. The delay

phenomena described before appe ars also in this figure, During the tran-

sient resulting from a five-degree step increase in the feed temperature,

the peak temperature has moved by 0.5 foot or 3 percent of the total reactor

length. The magnitude of the peak temperature has changed by 7°C. In the
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same figure is plotted the variation.with time of the temperature at

position a = 0.374 where the peak temperature was located at the beginning

of the transient. As long as 6' is smaller than 0.374, that is to say, before

the thermal wave reaches the considered location, the two temperatures

are similar. As the transient proceeds the difference between the peak

temperature and the temperature at a = 0.374 increases to reach the maxi-

mum value of 0.5°C at steady state.

Figure 6.7 presents the variation with time of the changes in ammonia

mole fraction Ay at the locations reported in Fig. 6.3. At each location the

change in ammonia mole fraction, Ay, is defined as the difference between the

ammonia mole fraction at any instant and the steady state value existing at

the beginning of the transient.

Figure 6.7 shows that the changes of the ammonia concentration during

the transient do not experience delays as the temperature did. This results

from the fact that the mathematical model under investigation neglects the

accumulation of mass in the gas phase. A change in temperature at the

entrance of the reactor affects the reaction rate at this point which in turn

affects, instantaneously, the reactant concentration and the rate of reaction

at each location downstream of it. For the position a = 0.1and a = 0.30

Fig. 6.7 shows that the step change of 5°C in the feed temperature results

in a monotonic increase of the ammonia mole fraction. For the positions

a=0.6anda = 1.0 a slow initial decrease in the ammonia concentration is

followed by a recovery and then a further decrease until a new steady state

value is reached. From the steady state considerations discussed in

Section A of this chapter it has been established that a step change in the feed

temperature of +5°C would result ultimately in a decrease in the ammonia

mole fraction at the outlet (a = 1.0) of the reactor.

The next section will discuss the fact that the phenomena described

in this section can be explained through the temperature and concentration

dependence of the rate of reaction
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2. Discussion of the Results

[n order to discuss qualitatively the temperature changes during the

transient, each term of the energy equation written in the catalyst section is

considered as a function of the location in the reactor.

If diffusion is neglected, for simplicity of presentation, the energy

aquation in the catalyst at steady state reduces to Eq. 6.3

-S

b3

(1-h 3225) 4 + (m-v) + [e+h(v-0.3725)! sr(v,y) =0 (6. 3]

x

q, = s(l1-h 172) 5 represents the amount of energy carried in by bulk flow

J
i

(m-v) represents the amount of energy convected from the wall

4; = [ eth(v-0.3725)] s r(v,y) represents the amount of energy produced
by the chemical reaction.

The magnitude of these three terms are presented as a function of the position

in the reactor in Fig. 6.8for the steady state conditions existing at the beginning

of the transient. Near the entrance of the reactor the only source of enthalpy

is by chemical reaction. The elimination of enthalpy by transfer to the wall is

much less important than the elimination by bulk flow. On the contrary, near

the outlet of the reactor the heat released by chemical reaction is much smaller

than the heat convected to the wall and enthalpy transported by bulk flow makes

up for the difference. The dependence on position in the reactor of the relative

magnitude of heat generated by reaction and heat removed by transfer to the wall

will be used later to explain the phenomena described in the previous section,

It is advantageous to know the effect of a change in temperature or

reactant concentration on the heat generation by chemical reaction at each

position in the reactor since this is represented in Eq. 6.3 by a highly nonlinear

Ferm
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9q 9q
Figures 6.9 and 6.10 present the values of the derivatives = and —&gt;

as a function of the location. in the reactor. The ordinates of these figures

are proportional to the amount of additional BTU released per hour per cubic

foot of catalyst when the temperature at the considered location increases by

1° or when the ammonia mole fraction at that position changes by one unit.

Figure 6.9 shows that an increase in temperature at any position corresponding

to a&lt;0.275, results in an increase in the amount of heat generated by the

chemical reaction. The same phenomena occurs at the location corresponding

toa &gt; 0.845. On the other hand, for all the positions located between a = 0.275

and a =0. 845, an increase in temperature results in a decrease in the amount

of heat generated. This behavior is characteristic of a reversible exothermic

reaction, Figure 6.10, on the other hand, shows that an increase in ammonia

mole fraction, that is to say, a decrease in reactant concentration, always

results in a decrease in the amount of heat generated by the chemical reaction

With the assumptions built into the mathematical model of the rea ctor,

the temperature in the empty tube section is given by Eq. 6.4 obtained by

integration of Eq. 4
2
 3g

\R/

1

Wood g-Bi1-9) + pote m(E) Paz | (6.4)

A step change in the feed temperature affects instantaneously the temperature

w(a) through the term

X-

feed
r™

OS (l-a)
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then as a function of time through the value of the finite integral which

involves the wall temperature profile. Since the outlet temperature of

the empty tube section constitutes the feed to the reacting section, the

catalyst section experiences an initial step change in its feed temperature

whose magnitude is equal to Paw, q It should be noted that the magnitude

of this initial step depends on the number of heat transfer units in the empty

tube section.

The rate of travel of the thermal wave generated at the entrance of

the bed is a function of the heat capacity of the flowing gases, of the heat

capacity of the solid particles and of the extent of the chemical reaction.

To prove these points the two extreme cases which can happen in a packed

bed reactor are considered:

1. when non-reacting gases flow through the packing.

2 when the gases flowing through the bed are so reacting that

equilibrium exists at any location along the bed.

The last case corresponds to an excellent catalyst which is so active that

equilibrium is instantaneously reached.

In the case of non-reacting gases Arist? reported that a perturbation

moves through the bed at a constant velocity u_ related to the gas flow

velocity u~ by the equation

Total heat capacity of the gases in the reactor
u-~ X

&lt; Total heat capacity of the gases and of the catalyst

(6 5)

Aris considered the effect of longitudinal diffusion and reported that the thermal

pulse introduced at the entrance of the bed becomes '"smeared' as it proceeds

d own the bed. The spreading effect on the pulse was reported to be a function
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of the particles shape as well as the other system parameters, but the

average flow velocity of the heat wave was reported independent of the

particle shape and given by Eq. 6.5.

To investigate the effect of the chemical reaction on the rate of travel

of the thermal wave let us return to Eq. 4.9 which represents an enthalpy

balance around an infinitesimal slice of catalvst section

F

IN * 9T
 CT -aCc LL] h2%

P I+vy oz I (T.-T,

| %

[AH - AC (T.-T)] F Hy Oy
Ly) 2 92

WC oT _
2 gy (4.9)

In the case where equilibrium exists everywhere, y, the ammonia mole

fraction, becomes dependent of temperature through an algebraic relation

of the form

y A

obtained by writting the equilibrium condition

NH,
0.5 1.5 ~ K,(T,)

Py Py,

This relation does not involve time, distance or boundary conditions and

consequently the value v can be eliminated from Eq. 4.9 by replacing its

partial derivative with respect to distance bv the following expression:

dy _ 0T¢ a3
oz oz aT equilibrium
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Under these conditions Eq. 4.9 reduces to Eq. 6.6

B )] x-TAC (T, .AH AC

Cp,

* A————

wy) ! =.AC paCofriS
 hel+y dy oT h.sC 2"2

1+y)&gt; (eq) 5-1 (TT
WC Pc Bl,

ot
(6.6)

In computing the velocity of travel of the thermal wave the heat capacity
*

of the flowing gases Cp, (1- = qr) must now be replaced by the effective
0

heat capacity C. J

% AH C

_ AC (y-y) frre 35 (T_-T,)]
Cp. = Cp{ 1- = T+y) Cp, Tp,

0

X
Thy dy
—— (77)(+v) 2 c eql |

which is no longer a constant but a function of the extent of the reaction,

that is to say, of the composition of ammonia at equilibrium. The value of

A, Ac 1+y”  d
the correcting factor [— -= (T -T.)] = (xk) fyi has been

= = c b 2 ‘dT’ equilibrium

Cp, Cp, (1+y) c
computed for various values of the ammonia mole fraction y in the case where

there is no inert present and when hydrogen and nitrogen are in the ratio of

3 tol. This case was chosen for reasons of simplicity. Figure 6.11 presents

the variation of the correcting factor with the ammonia mole fraction at

equilibrium. The correcting factor is maximum for an ammonia mole fraction

of 0.42 and is equal to 1.55. Under these conditions the effective heat capacity

of the flowing gases is two and a half times larger than their sensible heat

capacity. Consequently the speed of travel of the thermal perturbation

represented by Eq. 6.7)
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JA

l l1F Cp,
“WC CT "WC__

pc pc

FCp_

(6.7)

is two and a half larger than the speed of travel of the perturbation in

absence of chemical reaction.

If the ammonia mole fraction is equal to five percent, the magnitude

of the correcting factor is only 0.3 and the rate of travel of the thermal

wave is 1.3 times faster in presence of chemical reaction.

In the present case where equilibrium is not obtained, the relation

between y and T.is no longer an algebraic relation but a differential equation

involving time, distance and the associated boundary conditions. Mathematically

the substitution of by b bo x &amp;y } has no meaning and the only method left
Dz °Y Pz * 9GT 8 y

is to solve simultaneously the two equations as was done in this research.

The results of the simulation shows that the rate of travel of the thermal

wave is almost unaffected by the chemical reaction. Figure 6.4, presented

before, shows that the thermal wave reaches the location 0.10, 0.3 and

2.6 at times very close to the time evaluated if the gases were non-reacting

gases (O' = 0.1, ©' =0.3 and ©' = 0.6). The explanation given of this result

lies in the very poor reactivity of the catalyst present in the reactor. In

order to check this explanation a run was done in which the activity of the

catalyst was increased by a factor of 5. This result was achieved by increasing

the frequency factor associated with the Arrhenius expression of the rate

of reaction by a factor of five. A new steady state profile was obtained and

starting from these conditions a 5°C step in the feed temperature was

performed.
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Figure 6.12 presents the changes in temperatures during the first

instantsof this transient. The response at location a = 0.1 shows little

effect of the catalyst activity on the rate of travel of the heat wave. But

for locations 0.2, 0.3, 0.4, 0.6 it is seen that the thermal wave reaches

these locations at an earlier time than it would be if estimated for the

case of non-reacting gases.

The fact that the time at which location a = 0.20 and a = 0.30 are

reached by the thermal wave is: more affected by the catalyst activity

results from the fact that at these locations the reacting gases are closer

to the equilibrium condition.

The previous results show that the perturbation originated in

the feed temperature to this reactor propagates down the reactor at a rate

almost unaffected by the extent of the chemical reaction because of the

poor reactivity of the catalyst present in the T.V.A, reactor.

To this inlet perturbation are infact added all the perturbations

generated within the reactor by changes in the wall temperature or in the

reactant concentration and which travel also down the reactor at approxi-

mately unit speed. Figure 6.4 shows that at a position a = 0.10 before

the arrival of the thermal wave the temperature has a tendency to increase

since the wall temperature at that position has increased. On the contrary

the increase in ammonia concentration apparent in Fig. 6.7 has the tendency

to decrease the temperature since it decreases the amount of enthalpy

generated by the chemical reaction. The magnitudesof these two effects

are expected to be very small and apparently almost cancel each other

during the first instantsof the transient. When the thermal wave reaches the

location a = 0.10 the increase in temperature felt by the catalyst becomes
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predominant over the negative effect of the conversion increase.

Furthermore the magnitude of the thermal wave reaching that location

is further amplified since the rate of heat generation by chemical

reaction increases as the temperature increases. It has been seen before

that the relative magnitude of the energy transferred to the wall over the

energy released by chemical reaction increases as one proceeds down the

reactor. At position a = 0.3, during the first instants of the transient the

increase in wall temperature forces the temperature to increase. Since

Fig. 6.9 and 6.10 show that an increase in temperature and in ammonia mole

fraction decrease the amount of energy generated by the reaction os and

= are both negative) the temperature at 6=0.3 will soon stop increasing

and, once the wall temperature has stopped to change rapidly will dip down

before the arrival of the thermal wave. When the thermal front passes that

position the temperature will increase since the gas reacting at that position

arrives hotter, and this despite the two negative effects on the heat generation

by reaction. The two negative effects of temperature and conversion increase

nevertheless appear in the fact that the ''gain'' obtained at the location a = 0.30

is smaller than the '"'gain'' obtained at position a = 0.2.

The same sequence of phenomena is. described in Fig. 6.3 and 6.4 for

the position a = 0.6. By now the energy transferred to the wall is predominant

and as a result of the increase in the wall temperature the temperature at

that position increases during the first in stantsof the transient de spite the

two negative effects of temperature and conversion changes on the heat

generation by reaction.

No dip down in the catalyst temperature is experienced ata = 1.0.

The increase in the wall temperature stops only at the time when the ammonia

mole fraction at the outlet of the reactor starts to decrease as it appears on
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Fig. 6.7. Consequently both reactants concentration and temperature

changes occurring at the end of the reactor increase the amount of

energy produced bythe chemical reaction, further increasing the tem-

perature at that location.

The effect of temperature and ammonia concentration variations on the

rate of reaction can be represented by similar curves as Fig. 6.9 and 6,10,

At the entrance or near the outlet of the reactor, an increase in temperature

results in an increase in ammonia production; on the contrary, in the center

part of the reactor an increase in the temperature results in a decrease in the

rate of reaction.

Figure 6.7 shows that during the first instants of the transient

the increase in temperature at the entrance of the reactor results in an

increase in ammonia mole fraction leaving this section. Despite the decrease

in ammonia production (due to a:déecrease in reactants concentration) down-

stream of the first half of the reactor, this initial increase generates an

increase in the ammonia mole fraction observed. The magnitude of this

variation decreases as one proceeds down the reactor to ultimately

correspond to a decrease in the ammonia mole fraction observed in the

second half of the reactor. It should be pointed out that the decrease in

ammonia mole fraction is less pronounced at the outlet of the reactor than

at location a = 0.6 since the temperature: variations reported for the outlet

of the reactor on Fig. 6.4 result in an increase in the ammonia production.

As the ammonia mole fraction leaving the first half of the reactor

further increases the decreasing trend of the ammonia mole fraction for the

locations in the second half of the reactor is reversed. This increase lasts

as long as the thermal wave' does not reach the region where a decrease in
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production corresponds to an increase in temperature. At location

a =0.5Fig. 6.9 shows that an increase in temperature decreases the

amount of reaction. The ammonia mole fraction leaving this section

after the passage of the thermal wave will be smaller than before since less

ammonia will be produced. As a consequence, the mole fraction observed

at locations further down the reactor will also decrease. The simplified

attempt presented in this section to interpret qualitatively the temperature

and ammonia concentration variations during a transient has shown the

complexity of the phenomena encountered in the T.V.A, reactor. To obtain

any quantitative information one must consider simultaneously all the

elementary processes analyzed before and the solution of the simulation

as presented in Chapter V is the only method available for this purpose.
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C. "BLOW OUT" OF THE REACTOR

At the beginning of the transient the reactor operates under the steady

state conditions corresponding to a feed temperature of 227. 6°Cc. A step

of -15°C in the feed temperature brings it to 212, 6°C which is below the

"blow out temperature! of 220°C reported in Section A, It has been shown

in Chapter III that there is a stable steady state corresponding to a feed

temperature below the "blow out" temperature, but that it corresponds to

almost no production of ammonia since the temperature inside the catalyst

is uniformly equal to the feed temperature. The negligible conversion

obtained under these conditions makes that condition of operation unaccept-

able. The instability encountered in the reactor, when the feed temperature

falls below the ""blow out" temperature, corresponds to an approach to a

new steady state under which no reaction takes place.

Since large temperature changes occur before the new steady state is

reached (the average bed temperature has to cool from 475°C to 212°C)

the time required for the present transient is expected to be very large.

The results reported in this section were obtained during the first 15

minutes of the "blow off'', Fifteen minutes after the change in feed

temperature the temperature drop experienced at any location in the

reactor never exceeds 35°C.

The variations with time of the changes in temperatures experienced

at the locations a=0, a=0.1, a=0,3, a=0,6 and a=1.0 are presented in

Fig. 6.13, The variations with time of the change in ammonia mole frac-

tion at the same positions are presented in Fig. 6,14, These results

show that the nature of these changes encountered during the first part of

the blow off are similar (in absolute value) to those presented in Section B,

Chapter VI for a +5°C step in the feed temperature.
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Figure 6.13 shows that the temperature at the entrance of the catalyst

section responds instantaneously by a decrease to the step change in the

feed temperature. The temperature at the entrance of the bed keeps

decreasing monotonically during the whole transient, The temperatures at

locations a =0. 10 and 0. 3 experience very little change until the thermal

wave reaches these locations, respectively, at time 6'=0.,1 and 6'=0. 3.

After the passage of the thermal wave the temperature at these locations

decreases monotonically, Figure 6.13 shows that at location a=0.6 and

a=1.0 the temperature of the catalyst decreases as soon as the feed

temperature is changed and follows the temperature changes generated in

the tube wall. The passage of the thermal wave originated at the entrance

of the catalyst section further decreases the temperature at these locations.

The results presented in Fig. 6.14 show that for a=0.1 and 0.3 the

ammonia mole fraction experiences an immediate decrease. As it was

explained in Section B this results from the instantaneous propagation of

concentration in the present model, The passage of the thermal wave

through the section of the reactor where a decrease in temperature is

accompanied by an increase in production results in Fig. 6.14 in a temporary

increase in the ammonia mole fraction observed at location 0.6 and 1.0,

Figure 6.15 shows the gain of the reactor (defined as the ratio of the

change in temperature at any location to the change in feed temperature)

plotted versus location at different times. The gains reported in Fig. 6.5

appear also in Fig. 6.15. For small values of time the gains obtained in

both cases are very close to each other. As time grows the curves depart

from each other as it is expected since the steady profile obtained at the

end of the "blow off" correspondsto a flat profile quite different from the

steady state profile associated to a feed temperature of 227. 6°C.
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The kind of instability which results from a decrease in the feed tem-

oerature below the blow out temperature is of the so-called "snow ball"

type of instability since no oscillation in temperature and composition has

been observed during the transient of the uncontrolled reactor.

In this section it has been seen that the phenomena describing the first

instants af the "blow out' of the reactor are of the same nature as the

shenomena presented in Section B, Chapter VI. In the next section the

effect of the initial step in feed temperature on temperature changes

occurring in the first instantsof the transient will be investigated quantitatively.

D. NONLINEARITY OF THE SYSTEM

Since the mathematical system describing the transient behavior of

the reactor includes two nonlinear differential equations, the response of

the simulation to large changes in the feed temperature is expected to be

a function of both the location in the reactor and the magnitude of the step

changes from a given steady state.

Figure 6. 16 presents at time 6'=0,964 the variations of the ''gain"

defined as ari with position in the reactor for the conditions reported

in Table 6.2. Even though step changes of - 10° and -15°C result in "blow

off" of the reactor the '""gains'' for these transients appear on the same

figure, During the first instantsof the transient, the nonlinearity of the

process affects very little the response of the reactor, At time 0'=0, 964

when the thermal wave has almost traveled down the entire length of the

reactor , the results obtained for a +5°C or a +10°C step never differ by

more than 10 percent. The discrepencies between the results corresponding

to a +5 and -5°C steps are much larger, particularly in the second half of

the reactor
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The results corresponding to the '"blow-off'' cases depart already at

3'= 0.964 from the results obtained with a +5°C change, Figure 6,17 pre

sents the gain at 6'=2, 10 for step changes of -15, -5 and +5°C. The

difference between the +5 and -5°C step results has further increased.

The position at which the two '"gain profiles" intersect has moved towards

the outlet of the reactor. If the transient had been followed until steady

state was reached the gain profile corresponding to a -5°C step would have

been above the gain profile corresponding to a +5°C step since the steady

state gain for the outlet temperature is larger in the case of a -5°¢C step

than in the case of a +5°C step.

Figure 6,18 presents the variation with time of the ''gain' for position

1=0.374 where the hot spot was located at the beginning of the transient,

for different values of the step change in feed temperature, At 8'=1,0

the results obtained for the stable runs do not differ by more than 10 percent,

[n the case of ""blow off" the difference is already more than 20 percent at

that time, and will continue to increase. For the stable runs as the new

steady state is approached the values of the gain will be expected to depart

further from one another since the ''steady state gains" are respectively

2.61, 1.24 and 1.09 for step changes in the feed temperature of -5, +5 and

+10°C. Figure 6, 19 presentsthe variation with time of the temperature

"gain'' at the outlet of the reactor. During the first part of the transient

resulting from changes in the wall temperature, the results are very

linear and the gain is independent of the size of the step. As soon as 6:

is larger than unity, that is to say, as soon as the thermal wave has

traveled the entire length of the reactor the nonlinearity starts to appear

in the transient. The steady state gain approached in the stable runs are

respectively 1,08, 0.840 and 0.830 for step changes of -5, +5 and +10°C.
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From the results of Section A of this chapter the steady state gains

corresponding to an infinitesimal change in feed temperature can be

obtained for the location a =0,0 as the slope of the tangent to the curve of

Fig. 6,1 at the point of operation.

In Table 6.3 the differential gain for positions a=0, a=0, 374, and

a=1.0 are compared with the steady state gains corresponding to step

changes of -5, +5 and +10°C.

Table 6.3

Steady State Gains

Position

a=0

a=0, 374

1=1.0

Differential

Gain
nt——

1.43

1.57

0 85

Step
-59C

Step
+5°C

2.0 1.30

2.61 1,24

1 08 0 84

Step
+10°C

1,22

1.09

0 83

The steady state gains of Table 6.3 and the dynamic results presented

in the first part of this section confirm the strong nonlinearity of the

described process. From these considerations it appears that two different

approaches can be used to describe the transient of the T.V. A, reactor.

1) For small changes in the feed temperature resulting in stable

operation of the reactor its dynamic behavior can be considered as

approximately linear and describable mathematically by transfer functions

relating the changes in desirable variable to changes in the feed temperature

The transfer functions so defined will be valid only for small perturbations

around the steady state conditions of operation considered. If the reactor is

to be operated under different flow and feed composition conditions these

transfer functions will have to be reestimated.

2) For large changes in feed temperature and for changes resulting in

"hlow off!" of the reactor the simulation presented in Chapter V is the only
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way to describe the dynamics of the reactor, Under these conditions the

concept of transfer function loses its meaning. The results presented

in this section show that a 5°C change in the feed temperature around the

optimum conditions of operation is the maximum tolerable change in con-

sidering the system as linear. Even though the steady state '"gain'' for

the outlet temperature differs only by 1 percent from the differential steady

state gain, at the location a= 0,374 the difference between the two gains is

already of the order of 70 percent. From the shape of the steady state

relations presented in Section A of this chapter it is expected that the

reactor will respond more linearly if it is operated in the stable region

further away from its optimum conditions of operation.

In the next chapter, the results chiuined with a +5°C step change in

the feed temperature will be used to derive approximate transfer functions

relating changes in temperature at various locations in the reactor to

changes in the feed temperature. These approximate transfer functions

will be checked in both time and frequency domain with the results of the

simulation.
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E. DESCRIPTION OF THE REACTOR IN ITS LINEAR

RANGE OF OPERATION

When the T.V.A. reactor operates in its linear range as is the case

for feed temperature perturbations smaller than 5°C around 227. 6°C,

its dynamic behavior can be described mathematically in terms of a "transfer

function''. The transfer function of a process G(s) (where 8 is a complex vari-

a ble called the Laplace variable) is defined as the ratio of the Laplace trans-

form of an output variable of the process to the Laplace transform of an

input variable called forcing variable. In the present situation the forcing

variable investigated is the change in feed temperature AT which is defined

as the difference between the feed temperature at any time t and the feed

temperature at the beginning of the transient. The output variable correspond-

ing to a given location in the catalyst section of the reactor, consists of the

change in temperature AT defined as the difference between the temperature

observed at any time t and the steady state value of the temperature existing

at the beginning of the transient.

The transfer function or system function relating the variables just

defined is written as

G(s)
AT (8)
BT, (8)

¢)

the bar above aT and ATL means the Laplace transform of these quantities

has been taken. It should be noted that one can determine a system function

for each location in the reactor one wishes to investigate. The results

presented in this section concern three locations only: the entrance of the

catalyst section, (a=0),the location a = 0,374 where the hot spot is located

at the beginning of the transient and the outlet of the reactor (a = 1.0).
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A physical interpretation of a transfer function is obtained in

considering the results of sinusoidal input to a process. It is well known

that if a sinusoidal input variable of amplitude unity and frequency wis

imposed on a linear process, sinusoidal oscillations in the output variable

are observed. The magnitude and phase lag angle of the sinusoidal oscilla-

tions in the output variable are given by the magnitude and the angle of the

complex number obtained by replacing the Laplace variable s by the imaginary

number jw in the transfer function.

In cases where the equations describing the dynamic behavior of a

process are ordinary differential equations it is possible to derive directly

from them closed form expression for G(s). The linearization of the system

of partial differential equations describing the dynamics of the T.V.A. reactor

4 oes not simplify them to the point where closed form transfer functioms can be

&gt;btained. This results from the distributed effect present in reactorsofthis

ype

The well known method? of determination of the transfer function in

the frequency domain from transient results in the time domain has been

used in this research. This method is briefly presented in Appendix D. The

numerical solution obtained for a 5°C step change in the feed temperature

has been used to determine the exact form of the system function. These

results have suggested simplified closed form transfer function which are

presented in the following part of this section.

The simplified transfer functionshave been tested in both the frequency

and the time domain against the results obtained directly from the simulation.

The variations with frequency of the magnitude and the angle of the system

function corresponding to the 3 locations investigated are presented in Fig. 6.20

 Fh. 21. 6.22.
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The magnitude is expressed as

magnitude of G(}w)
0 logo [ magnitude of G

The magnitude of the system function for a frequency equal to zero is

equivalent to the steady state gain of the process. The values of G(w=0)

corresponding to the three locations investigated are respectively 1.326,

1.292 and 0.860, The angle of the system function are expressed in degree.

In: Fig. 6.20 corresponding to the entrance of the reactor it appears that

the angle never becomes smaller than -90° throughout the range: of

frequencies investigated.

This observation suggests that the dynamics of the reactor for that

bcation be approximated by a first order system whose transfer function

appears on Eq. 6.9

“1
C8) = ——=1 (6 9)

In Fig. 6.20 the magnitude and the angle corresponding to this simplified

transfer function are presented for a value of the time constant Ty = 1.25

normalized time unit. The agreement between the frequency response of the

simplified transfer function and the frequency response obtained from the

simulation results is excellent f or the low frequencies. At high frequencies

the agreement is not as good but the simplified model retains the fact that

the angle approaches -90°.

In Fig. 6.21 corresponding to the location a = 0.374 it appears that

the angle decreases without bound as the frequency increases. This observa-

tion characterizes a series of distributed resistancesand capacitances.

Similar variations of the angle are obtained with systems involving a pure

delay represented by e”T8
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The form of the simplified transfer function proposed for this

location is

T,8

ky oe 2
we) = rT

p +L

9)

It represents a first order system coupled with a pure delay time.

In Fig. 6.21 the magnitude and the angle corresponding to the simplified

transfer function are presented for the following values of the time constants

expressed in normalized time unit

at 1.25

0 374

The agreement reported for the angle is surprisingly good and justifies the

choice of the parameter T,. T, was chosen equal to the normalized location

a investigated. It already appeared in Section B Chapter VI that it corresponds

to the time at which the thermal wave reaches the location under investigation.

In Fig. 6.22 corresponding to the location a = 1.0 it appears that the

a ngle never becomes smaller than -135° and as frequency increases tends

to oscillate around a value close to 100°. The amplitude curve presents

8 imilarly a series of maxima and minima. -. The order of magnitude of

the difference in frequency corresponding to two consecutive maxima is

of 6 radians per normalized time unit.

The approximate transfer functiomsproposed for this location consists

of the sum of two transfer functionsand appears in Eq. 6.11

-T3 8
k k,e °

G(s) = 1 + 2

em te
-7 11)

The first part of G(s) characterizesa first order system with a time

constant T,. The second part corresponds to a first order system and a

pure delay. For larger values of the frequency the proposed transfer
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function simplifies to

. kT, + k,7y e
38) = ——————————— 238 5.

12

—-Ta9

It can be seen that if kT, is greater than k,Ty the angle of the system

function increases indefinitely on the contrary if kT, is smaller than k,Ty

the angle will oscillate around -90°, or -450° or -810° and so on.

In approximating the frequency response curve obtained for the outlet

of the reactor by the simplified transfer function of Eq. 6.11 the following

choice of the coefficient is proposed

k. = 0.44

iE 0.30

K
 7’

= 0.42

T, = 1.4 T-=1.0

Under these conditions the angle of the approximate transfer function

oscillates around -90°. In Fig. 6.22 the angle and the magnitude curve for

the approximate transfer function presents also a series of maxima and

minima. It can be proven that the values of the frequency corresponding

to two consecutive maxima is only a function of Ts and is equal to 6.30

radians /unit of time. The accordance of this observation with the results

presented before supports the choice of 1,0 made for the value of Ty.

In order to interpret physically the signification in the time domain

of the proposed simplified transfer functions, the next paragraph analyses

the response to a step change in the feed temperature predicted by these

transfer functions.

Equation 6.9 predicts that a unit step change in feed temperature is

followed immediately bya. ngnotonic increase in the temperature at the

inlet. of the reactor represented by Eq. 6.12

iY

___'

-0'/T,
CO) =k (1-e I r

&gt;

"y 12)
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AT

In Fig. 6.23 the variations with time of ¢ predicted by the

ATy
simplified transfer function and obtained during the simulation are presented.

The agreement between the two curves is good. The transfer function

represented in Eq. 6.10 predicts that no change in temperature is experienced

as long as ©' is smaller than 0.374. After ©' = 0.374 the temperature

changes are described by the same equation as Eq. 6.12 where © is

replaced now by (©'-0.374). The poor agreement between the approximation

and the results of the simulation during the first part of the transient is

apparent in Fig. 6.23. It was shown in Section B, Chapter VI that small

changes in temperature resulting from changes in the wall temperature and

in the reactants concentration occur.before the passage of the thermal wave.

Nevertheless, the magnitude of these changes are so small that they have been

neglected in the derivation of an approximate transfer function. The use of a

second order system to represent the early instant of the transient could be

proposed but will defeat the objective of this approach which is to provide

simplified transfer function retaining the major characteristics of the transient

The first part of Eq. 6.11 means that the temperature at the outlet of

the reactor changes as it was described in Eq. 6.12 as long as ©' is smaller

than T,:when ©O' is greater than Ty» to this response is added a second first

order response delayed by a time equal to Tae Equation 6.13 describes

mathematically the transient resulting from a unitv step change in the feed

temperature

oy

= N

ip ~

-0'/~
AT = k, (1-e I

-0Y/~ o'-1.l/TAT =k (1-e h + ee ! 2 (6.13)
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In Fig. 6.23 it appears that Eq. 6.13 does not represent exactly

the early instant of the computed transient. The improvement proposed for

the location a = 0.374 could also apply in this case.

In this section the frequency response curves corresponding to three

locations in the reactor have been presented. In order to interpret physically

the signification of these system functions a simplified transfer function of

the form presented in Ey. 6.11 has been proposed. The relative magnitude

of the two parts of this transfer function depends on the location in the reactor

At the entrance of the catalyst section the magnitude of the first part of the

transfer function is so small that it can be neglected and Eq. 6.11 reduces to

Eq. 6.9 and 6.10.

The numerical value of the constants appearing in this expression

depends on the conditions around which the transient is performed as the

nonlinearity of the T.V.A, reactor described in Section D, Chapter VI

showed it.

 EF EFFECT OF "BLOW OUT" PERTURBATION IMPOSED DURING

A FINITE AMOUNT OF TIME

[n this section the dynamic behavior of the T.V.A. reactor is investi-

gated when a perturbation in the feed temperature which, if sustained,

would "blow off'' the reactor, is imposed for a finite length of time. At the

beginning of the run the reactor operates under the steady state conditions

corresponding to a feed temperature of 227, 6°C,a stepchange of -15°C in the

feed temperature is imposed at ©' = 0, The feed temperature is then

restored to its initial value of 227.6°C at ©' = 1.139, Under these conditions

the results presented in this section show that the reactor can be restored

to its starting conditions. Figure 6.24 presents the variations with time

of the temperature at the locations corresponding toa = 0.1 and a = 0. 3,
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Figure 6.25 presents the same variations at the locatiorscorresponding

toa=0, a=0.,6anda =1.0.

At location a = 0, the +15°C step change in the feed temperature

occurring at time ©' = 1.139 is immediately felt. Restoration of the

feed temperature to its original value affects the temperature at location

a = 0.10 only after a delay time AO' = 0.1. From ©' = 1.140 to ©' = 1.24

Fig. 6.25 shows that the temperature of the reactor continues to decrease

as if no correcting action had taken place. After &amp;' = 1.24 the temperature

at a = 0.1 returns to its original value in a similar fashion as described in

Section B, Chapter VI. The existence of the initial delay appears also at

location a = 0.3. For all the locations presented so far the effect of changes

in the wall temperature and ammonia concentrations are almost negligeable

and the transient response at these locations can be completely described

in term of the travel of two thermal waves down the reactor. The first one

resulting from the original step of -15°C, the second one from the restoration

of the feed temperature to 227. 6°C.

At location a = 0.6 the effect of the return of the feed temperature to

its original value is felt almost immediately. It was already seen that the

wall responds very fast to temperature changes onthe empty tube section

side and consequently forces the temperature of the catalyst to change more

rapidly at the locationswhere energy transferred to the wall becomes the

predominant term of the energy balance.

During the first instant of the return process, rapid changes in the

wall temperature slow'down the temperature decrease originated by the

15°C step change, When the wall temperature stops changing rapidly,

the initial decrease in temperature is resumed until the second thermal wave

reaches location a = 0.6: the remaining part of the transient for that location

being equivalent to the one described in Section B, Chapter VI.
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The initial temperature recovery due to the change in the wall

temperature is more pronounced at the outlet of the reactor and

results in an increase followed by a decrease of the temperature at that

location.as it appears in Fig. 6.25. Figure 6.26 presents the variations of

the ammonia mole fraction at the outlet of the reactor during the same

transient. An overshoot in the production of ammonia is observed at time

©! = 1.80. The explanation of this observation lies in the fact that at ©' = 1. 80

the temperature is minimum in the center part of the reactor as it appears in

t he curve for a = 0.6 of Fig. 6.25. At these locations the rate of production

of ammonia is larger than at the beginning of the transient. Since at the

same time the temperature near the entrance and at the outlet of the reactor

has : already started to recover the reactor is under conditions more favorable

for the production of ammonia than the conditions existing at steady state

at the beginning of the transient. As it appearsin Fig. 6.26these conditions

do not persist and the ammonia mole fraction at the outlet returnsto its initial

value as the feed is brought back to 227. 6°C. The results presented in this

section show that after a -15°C offset in the feed temperature lasting for

O= 1.139 (approximately 7 minutes) it was possible to restore the reactor

to its original temperature by using the same feed temperature at which

it was operated before.

If the -15°C offset had been sustained during a very large period of

time, such that the average bed temperature of the bed had fallen below the

ignition temperature (defined in Chapter III) associated with a feed tempera-

ture of 227.6°C it would have been impossible to restore the reactor to its

original conditions of operation by bringing the feed temperature back to
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227. 6°C. The reactor would have continued to "blow off" and would

have ended up operating under the low conversion steady state conditions

associated with this feed temperature.

No proof of this statement is given in this research since the computer

ime required to carry out such a run appeared too large. Nevertheless a

run was done starting from an arbitrary temperature profile in the reactor

below the ignition temperature associated with a feed temperature of 227, 6°C

Bringing the temperature to 227. 6°C resulted in a "blow off" of the reactor,

that is to say, to a further decrease in the bed temperature and in the ammonia

production. In the next section the modification of the feed temperature is

d one by automatic control using the temperature at the entrance of the reactor

as the controlled variable.

G. AUTOMATIC CONTROL OF THE T.V.A. REACTOR

In Chapter III it was seen that the only variable at the disposition

of the operator to compensate for perturbations in the feed conditions is

the setting of the by-pass valve of the heat exchanger.

The first method of control suggested to avoid the "blow off'' of the

reactor consists in using the measured temperature at a given location in

the reactor to operate on the by-pass valve setting. Changes in the by-pass

flow will in turn affect the temperature of the gases leaving the heat ex-

changer section and the temperature of the gases fed to the reacting section

under investigation (See Fig. 3.1). The mrsponses of changes in feed tem-

perature to changes in the controller output depends in practice on the

dynamics of the heat exchanger. In order to avoid the coupling of the two

sections of the T.V.A. reactor the following control scheme is proposed.
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The by-pass setting of the heat exchanger section is fixed by a second

controller using the feed temperature to the reacting section as measured

variable. The temperature inside the reactor is used in a cascade type

of control to fix the set point of the second controller just described. Fig-

are 6.27 represents a schematic diagram of the process with the control

connections presented by dotted lines.

In this research since the dynamic behavior of the reacting section

only has been investigated it will be assumed that the second control loop

representing the heat exchanger and the by-pass valve is ideal, that is to

say, the temperature Teed at the entrance of the reacting section is at

each instant equal to the value required by the controller 1. This is

equivalent to saying that the heat exchanger, controller 2, and the control

valve behave as a servomechanism of gain unity and zero angle (independent

of frequency) which forces the feed temperature to follow exactly the

changes of its reference value. The process block diagram corresponding

to this simplified case appears in Fig. 6.28. G is the transfer function

which relates the temperature where the thermocouple is located to the

feed temperature, G. is the controller system function which relates

the error in measured temperature € = T -T to the
measured “reference

correcting effect on the feed temperature.

From linear control theory it is known that the stability of the

closed loop system is determined by the zeros of the function

1+ GG
 Nn Ce

In the following part of this section the case of a pure proportional

controller, for which the system function G_ reduces to a constant K_.

will be considered.
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The linear results obtained in Section E, Chapter VI have been used

in defining the limitations imposed on the value of K. for stability ac-

cording to the location of the thermocouple in the reactor. Since LE

has the same angle as the process transfer function £1 the largest gain

K. that one can tolerate for stability is the value for which the magnitude

of K.G, is equal to unity when its angle is -180°.

Table 6.4 presents for different locations in the reactor the values

of the frequency at which the angle of LE becomes -180° and the values

of the proportional gain K_ which would make the magnitude of the quantity

K.G, equal to unity.

Table 6.4

Location

0.374

0.6

i 3

w -180°

no limitation

4 _ 3

—

-

no limitation

K
max

no limitation

4 51

14. 5

no limitation

Since the angles of the transfer function defined in Section F, Chapter VI

for the locations a = 0 and a = 1.0 never become smaller than -180° in

theory the value. of the proportional gain associated with these locations

is not limited by the stability of the feed back loop. In order to determine

t he location of the thermocouple in the reactor, the steady state results of

Logeais®? have been analyzed. It was found that for all the perturbations

investigated by Logeais it is possible from a steady state point of view to

avoid the '"blow out'' of the reactor by keeping the top temperature of the

reactor constant. It should be noted that keeping the top temperature constant
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wads the reactor blow off but does not maximize the production after the

introduction of the perturbation. Consequently the control scheme

presented in this section does not constitute the ultimate control for this

installation.

In the simulation of the reactor under close loop conditions the

thermocouple has been located near the inlet of the reactor in order to allow

the use of large controller gains. The results of a typical controlled run are

presented in Fig. 6.29 and 6.30. At the beginning of the transient the

reactor operates at steady state. A step change in the ammonia mole frac-

tion in the feed from 5% to 6°/o occurs at time zero. From the steady state

results of Logeais such a disturbance will blow the uncontrolled reactor out.

The proportional gain used in this study is equal to 10. In Fig. 6.29 the

changes with time of the measured temperature are presented. After a time

equal to 10 minutes the reactor has recovered from this perturbation and

the offset present at the inlet of the reactor is equal to 1. 87°C. It was

observed that the low value of the proportional gain used in this study assures

a very damped response of the temperature everywhere in the reactor and an

over shoot of the temperature is only experienced near the outlet of the reactor

as it appears in Fig. 6.30. On this example the possibilityoavoidingthe blow

off of the reactor by using a proportional controller is demonstrated when an

ncrease in the ammonia recycled occurs.

The use of larger values of the proportional gain will result in a faster

recovery of the T.V.A. reactor but also in a less damped response. In order

to avoid the existence of the offset in the controlled variable at the end of

the transient the use of a pure integral controller was simulated. The trans-

fer function retained was of the form a and the value of the gain tested was 50.



47-7

fr 1|

Q
*

O~
2

N
“0

NO
0 5

&gt; 8
=

 «Q
=r

wn

0 ..
=
Le of
5 =

3
70
ao
da
+ 9

J

0

oS
I

&gt; (\
-

v
\

428

-

IN

—

— PROPORTIONAL CONTROL

— =— — INTEGRAL CONTROL

'

pr
on
OS

427
al

a

™

—

iu]
Sei

42¢

 Nn A 1.0 , KR

NORMALIZED TIME (8')



i
2

fo3

1)
=

0 450
&gt; 0

53
Oo 3
3 «@

20

~3
0 o
=
+ 5
Oo
———

0 9
ad = wi

&gt; 0 &gt;
Pq 1
3 -t =
D C.
a 2 2

Al i
a

*

~~

—— PROPORTIONAL CONTROL

— = — INTEGRAL CONTROL

1

fret

o~
BR

2
mn

hI.  yu 4

NORMALIZED TIME (0')



.{68.

Undertheseconditionstherecoveryofthetemperatureinsidethereactor

experienced oscillations as Fig. 6.29 and 6.30 show it. The oscillations

were still present in the reactor after 15 minutes but had the tendency to

die out. It is expected that the use of a smaller gain will reduce these

oscillations.

The scope of this section was to test the simulation under closed loop

control conditions. Runs made with the control thermocouple located near

the hot spot temperature (that is to say at location a = 0.374) with gain values

that were too large resulted in instability and oscillations which blew the

reactor out. With the present assumption concerning the response of the

feed temperature to controller output, it is demonstrated that the stabilization

of the reactor presents very few. problems when the measuring element is

located near the top of the reactor.

The type of control considered so far did not take into consideration the

problem of hot spot temperature nor of optimum production. Sincethe location

and the magnitude of the hot spot “vary: during a transient, the entire temperature

distribution in the reactor needs to be sampled in order to locate and measure

the hot spot accurately during a transient. This problem falls outside the

range of standard control theory and beyond the scope of this research.

The optimum control of the reactor affected by random changes in the

feed conditions is also a very difficult problem which is not considered in this

research. Nevertheless, the simulation presented here constitutes a tool

to test economical criteria of optimization on this installation.



CHAPTER VII

CONCLUSION AND RECOMMENDATION

During this research a mathematical model describing the dynamic

behavior of an ammonia synthesis reactor was derived. This mathematical

model provides (at the end of a transient) steady-state profiles which are in

fair agreement with experimental results obtained for a specific T.V.A,

reactor. Despite the absence of experimental results to support the transient

results obtained in this research the mathematical model is expected to

describe adequately the reactor since:

I'he equations derived take into account the major

transport phenomena of enthalpy and matter known
to occur in such a reactor.

The assumptions made can be justified on the grounds

of experimental evidences obtained by previous investi-

gations on similar reactors.

The values of the parameters used in this research come

from previous investigations which were able to predict

experimental steady state temperature and composition

profiles.

The transient results obtained from this simulation have been justified and

interpreted by considering the changes occurring during a transient on each

enthalpy transport and generation process. The predicted effects of changes

in model parameters have been confirmed by the simulation results. The

mathematical system of partial differential equations describing the dynamics

&gt; f the reactor has been solved by a series of finite difference approximations,

The finite difference analog of the enthalpy equation in the catalyst used the

Stone-Brian method of approximation. This method, which was demonstrated

by its authors to represent more accurately the solution of linear partial

~169-
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differential equation, was applied successfully to the . solution of a nonlinear

partial differential equation. Even though a complete comparison of the

present method with other schemes was not carried through it is believed

that the Stone-Brian method represents a definite improvement for the solu-

tion of parabolic equations.

The transient behavior ot the T.V.A, reactor resulting from step changes

in the feed temperature was characterized by two major effects.

The effect of changes in temperature orginated at the

entrance of the catalyst section and travelling down the

reactor.

A

7 The effect: of changes in temperature resulting from the

coupling between the catalyst section and the empty tube

section through the metal of the tube wall.

At the beginning of the transient the only effect felt near the top of the

reactor was the first effect, resulting in a 'thermal wave'' which pro-

pagated down the reactor at a speed which was only a function of the ratio of

heat capacity of the gases to that of the catalyst. The fact that the travel of

t his thermal wave was weakly affected by the extent of the chemical reaction

was explained by the poor reactivity of the catalyst. Near the end of the

reactor the first instants of the transient could be completely described in

terms of changes in the wall temperature of this section. To this initial

change in temperature is then added after a delay function of the position

In the reactor, the thermal wave resulting from the perturbation at the

entrance of the catalyst bed.

Because of the coupling between the empty tube section and the catalyst

section, the time required for the reactor to recover from a change in the

feed temperature is much longer than in the uncoupled case.

As a result of a drop in the feed temperature below the "blow off" limit.

the reactor was demonstrated to cool down uniformly; the type of instability

encountered in this case being of the '""'snow-ball type!'. The effect of the

size of the feed temperature perturbations on the response of the reactor was
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investigated to test the linearity of this process. It was demonstrated that

the dynamic behavior of the reactor was highly non-linear. For small

changes (less than 5°C) in the feed temperature around the optimum con-

ditionsof operation the behavior of the reactor could, nevertheless, be treated

as linear without introducing errors that are too large. Under these con-

ditions the transient behavior of the reactor was represented by frequency

response curves and, fora few positions, by simplified transfer functions.

If the conditions of operation change, so do the frequencyresponse and

the values of the constants introduced in the simplified transfer function.

For large changes in the feed temperature resulting in "blow off" of the

reactor the results previously obtained do not apply, and changes in temperature

and composition can only be obtained through the solution of the simulation.

The impossibility to generalize quantitatively the results of this investi-

gation to other types of operating conditions has appeared. The form of the

proposed simplified transfer function nevertheless remains unchanged and the

quantitative determination of the frequency response and of the constants

involved in the transfer function can be obtained through the use of the proposed

simulation under different operating conditions.

The results obtained for the T.V.A. reactor around its optimum condition

of operation were used to design an ideal controller acting on the feed tem-

perature of the reactor.

Both a proportional and a pure integral controller were demonstrated as

adequate to avoid the'blow off" of the reactor resulting from an increase in the

amount of ammonia recycled in the feed. The sensing element was located at

the entrance of the reactor in order to allow for large gain values. No attempt

w as made to optimize the proposed control scheme.
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The recommendations for further work concern two areas:

l.

/
l,

The description of the uncontrolled reactor during a

transient in its linear range.

The description of the reactor under close loop control

conditions and the derivation of an automatic controller

optimizing the production of this reactor.

In investigating further the dynamic behavior of the uncontrolled reactor, the

proposed simulation should be used to derive the values of the time constants

of the simplified transfer function under different operating conditions. The

sensitivity of these time constants to the steady state around which the tran-

sient is performed, should be investigated. An attempt should be made

to correlate these time constants with the dimensionless groups appearing

in the mathematical model. A particular attention should be paid to the ef-

fect of the design variables and the catalyst activity on the values of the

time constants.

In investigating the ammonia reactor under close loop control conditions

the coupling between the reacting section investigated in this thesis and the

heat exchangersection preceding it should be investigated. As a first ap-

proach to this problem the simplified transfer functions derived in this

thesis should be used with transfer functions reported in the literature for

countercurrent tubular. heat exchanger,

As a second step, the present simulation should be used for the design

of an automatic controller fulfilling the three requirements.

I. Avoid the 'blow off" of the reactor.

2. Avoid the peak temperature to be greater than the

value at which the catalyst is deteriorated.

3 Optimize the production during a transient.



APPENDIX A

The design characteristics of the T.V. A. reactor under investigation

have been reported by Logeais. 2 In this section the pertinent numerical

values required for the estimation of the model parameters are presented

with the values of the parameters retained for the simulation.

{. DESIGN CHARACTERISTICS

Catalyst

Total volume 144 cu. ft.

Depth in reactor 17 ft.

Bulk density 169 1b/cu. ft.

Total charge of catalyst 24,340 1b

Particle size: equivalent diameter 0.2"

2.

b) Cooling Tubes

Number

Total inside area

Total outside area

Total flow cross section

Total mass of metal in tube wall

OPERATING VARIABLES

84

2

S, =540 ft.
S,=1750 ft, 2

A=0.572 ft. °

M=7810 1b

The operating variables corresponding to the standard conditions under

investigation are presented below.

Space velocity

Molal flow rate

Mass flow rate inside tubes

Mass flow rate in catalyst

Pressure

Feed mole fraction

Hydrogen
Nytrogen
Ammonia

V_=13800 1/hr
F =5540 1b mole/hr

G..= 106, 300 lb/hr sq. ft.

G'=7,260 lb/hr sq. ft.

300 atm

0.653

0.217

0.05

0.08

~172_
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THERMODYNAMICS DATA

The following molal heat capacities are taken from Kelley? at a tem-

serature equal to 427°C

Co =7.19
H,

C =7.20

PN,
C_ =11.12 Btu/lb mole °F

PNH,
C_=6.67

B

C_ =17.35

Py

AC =3. 26 Btu/1b mole °F

C =C =0.172 Btu/lb mole °F
be Pm

The enthalpy of formation of ammonia at 298 °K is taken from Rossini and a1*’

1 HEAT TRANSFER DATA

A © = .19.870 Btu/lb mole

IR

The heat transfer data used in this simulation are obtained from the

results reported by Logealet’ An overall heat transfer coefficient

US =55, 000 was retained since this value was found by Logeais to provide

the best fit between the steady state experimental temperature profiles

of Slack, Allgood and Maune®’ and his computed profiles. The distribution

of the estimated resistances to heat transfer between the catalyst side and

the cold gas side are presented below

Nature of resistance

film resistance in the catalyst

side wm
h_

(ilm resistance in the cool gas

% of total resistance

.. yd

373
0.
”

-

-

L

. Z

side Sh



Nature of resistance

resistance to conduction in the

metal of the wall

resistance due to fouling

17° —

% of total resistance

“’

13 %

100 %

In the present model the total resistance to heat transfer is broken down

into two terms only

Loo, Te
U h, S; by

Under this assumption the fouling factor and the resistance due to conduction

across the metal of the wall are lumped with each film resistance;the heat

transfer coefficient corresponding to the standard conditions of operation

are, respectively

h, = 250
aA

h = 124

Btu/hr sq. ft °F

Btu/hr sq. ft °F
Z,

The value of the longitudinal Taylor diffusion D' has been computed from

the modified longitudinal Peclet number Pe reported for gas flow through

packed bed by McHenry and Wilhelm. 22

The expression proposed for D!' is:

C
DG o

DD: =
T ES

7

where

c is the heat capacity of the gas

—~

J the mass flow rate

D_ the particle diameter

D' the Taylor heat diffusivity

BTU

TRF

1b

ft hr

f+

BTU

hr ft Or
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With a Peclet number of 2.0 as it has been reported the Taylor heat

diffusivity corresponding to the operating conditions of the T.V.A, reactor

is equal to 40 Btu/hr ft. °F

5 PARAMETERS USED IN THE SIMULATION

The reference temperature used in the simulation is Toef™ 800°K. The

values of the groups defined in Chapter IV corresponding to the standard

conditions of operation appear in Table A. 1.

Table A.1

Numerical Valuesof the Groupused in the Simulation

Group

SE
P
z

2)
D

x,

Ra

Numberical Value

0.1952

0.8584

0.8584

. 3550

0.0002

1.4550

1.8783

0.3209

0.4444

0.4382

3.320

3.2855 101

’5 375



APPENDIX B

SOLUTION OF THE STEADY STATE EQUATIONS

The system of ordinary differential equations representing the steady

state behavior of the reactor where longitudinal diffusion is neglected, can

be obtained from Eqs. 5.2, 5.3 and 5.5 by eliminating the time derivatives

the second derivative with respect to distance and replacing everywhere it

appears - the normalized wall temperature m by its value obtained in

Eq. 5.4

 mn A oo 8
=a Vt13a

wh

For simplicity of presentation the distance derivatives have been rewritten in

terms of the function FF, G, and H as it appears in Egs. B.l, B.2 and B.3

+ = F(y,Vv)

$F = Glv, wv)

= = H(w.v)

(B.1)

(B.2)

(B. 3)

The signification of the functions so defined appears in Eqs. B.4, B.5 and B.6

 bh

| 2

v,v) = (1+y) £1
14~r r(y, Vv

[e+h(v-0.375)] sr(v,y) += (w-v)
A : 1+d

G(v,w,v) = x

S y-y

rr(1-h £5)

(13. 4)

(B.5)

177-
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f! _
H(w,v) = fg (w-v) (B.6)

As proposed by Logeais, 22 the Runge-Kutta formulas! have been used to

approximate and solve these differential equations simultaneously. Becauseof

the boundary conditions associated with this problem, the starting conditions

of the computation are presented in Eq. B.7

£E=0

y =

v4
= W = Ytop

‘B.7)

The approximating equations used to derive the values of the increments Ay,

Av and Aw corresponding to the increment A§ of the distance variable are

presented in Table B.l.

The computation process is a marching process, which has been demonstrated

stable and convergent when a 100 mesh distance grid is used.

The next pages presenttheFartmnprogram corresponding to this algorithm.

In Table C.1 the variable names used in the Fortran program are defined in

terms of the symbols presented in this research.

Table B.2 presents the dependence of reactor temperatures and outlet

ammonia mole fraction with the feed temperature
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Table.B.1

Runge Kutta Formulas

A
-
-

Lop v= Top

Kk =F(y, v) AE l, =G(v,w, vy) AE m, = H(v,w) AE

ky Y 4 my ky 4 my

k 1 m k 1 m2 2 L 2 2 2 2

1,=G(vt1l;, wtmg, ytky)AE

Av = a +21, +21,+1,)
6 ‘V1 2 3 “4

1

Ay = (ky+2k,+2k,tk)

x
rr $+Av

1
AW = (m,+2m,+2m +m)

"

 mn
y AV N r

To
+ Aw

n
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SORTRAN PROGRAM FOR THE RESOLUTION OF THE STEADY

STATE FQUATIONS (RUNGE-KUTTA METHOD)

NRMAT STATMENTS

G

» 5

hb

i)

ol

2B

J:

y
)

yy

DIMENSION CATEM(RCD)Y os CASTEM(AND) $f FTFMI2AS

COFK (LY os COFLILYsCOFMA4YaALRPHARNAY
TORMAT(4F1R4R)
TORMAT (L118)

TORMAT (BH DNATA)

SORMAT(IBs4F 1868)
SORMAT (8H RESULTS)

EORMAT(5E16648)

TARMAT I(T IXEHAL PHA oT IXSHCATEM,

p—  1 ~~ ) CRTA L2AN

VAHGASTEMa 1 2X LUHETEM»TIXRHCONCT)

SRINT 3

FFEAD 2 L,NSTOP

DRINT 2¢NSTOP

EAD 1 3 AGROUP sBGROUP ys CGROUP 3 DGROP 4PRESS § SPACE 4 BETAR $DNIIBLE

CONsSETAWDORIS
DRINT 19sAGROUP ¢BGROUP s CORUUP aDGRUNIP JPRESS $ SPACE ZRF TAR $DOURLE ¢ SHC

TCONSSETASDORIS

READ 1 4DFELDTSsVOL

PRINT 14DFLDTISeVNL

READ 1 .COAFFED

PRINT 14CAFFED

[FICAFFD=0,41000)y700
NTORD=NCTOAD=1

s SHC —

3

VARIABLE DISTANCE GRID

SECOND=242%(1e0=VOL)

NO 23 J=1eNSTOP

DARTAL (J) =VOL+SECONDH*DELDIS*FLOATF(J=-1)
ALPHA (J) =VOL#DFLDISHFLOATFIU=1)1+(1eN=VOLY* ((FLOATF(J=1)*DFLDTS #7

)

CONTINUE

PRINT 72°F

FORMAT (22X1HJ es TOXBHALPHA31XAHDARTAL)
FORMAT(12442F2448)
PRINT 260 (Je ALPHA{( JY os PARTALI(J)no

RUNGE-KUTTA METHOD

CATEM(1)=CAFED

GASTFEM{1)=CAFFD

“ONCTU(1Y=S5TCON
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$3

Bu

70

78

GAMMA=BETAR/(LeN+DORTIS|
NO 500 J=14NTOP

PART=CATEM(J)

CORT=CONCT(J)
GART=GASTFM(J)

TEMCA=PART

CETCON=CORT

CALL RATSER(TEMCASCETCONGPRESSSAGROIIP¢HGROUP4CGROUP¢NGROUP4STCON
TPACE RATE)

COFK{1)=(((1a0+CORT)I*¥%2405)/(1aN+STCON))H¥RATEXDELDIS*(PARTAL(J)+PAF
LTALGU+1Y)Y/260
COFL(1)=DFILDISH(CAMMAN(GART=PARTI+(DNURLF+SHC*(PART=(;“7258))*#RATH

T# ((PARTAL(JY+PARTAL(U+1)1/2e0)/(1a0=SHOH*(CORT=STCANY/(140+CORT))
COFMIT1)=GAMMAXDELDIS®(7RT=PARTYI®*(PARTAL(JI+PARTAL(J+1))/240
CORT=CONCT(JY+COFK(TT
GART=GASTEM{UN+COFM(’

PART=CATFM(J)Yy+COFL(1
TEMCA=PART

CETCON=CORT

CALL RATSER(TEMCASCETCONSPRESSsAGROUPoBGROUD3CGROUFR¢DGROUP3STCON
LPACFSRATE)

COFK(2)=(((1e0+CORT)*%240)/(1eN+STCON))HRATEXRDFLOTSH(PARTAL(J)+PAF
CTALGJ+1))/267
COFLI2)=DELDISH*(GAMMAX (GART=PART)+(NDOUSLF+SHCH (PART=Ne2372R))*RATF

1¥ ((PARTAL(JI+PARTAL(J+1))1/2e0)/(1eN=SHCK(CORT=STCON)/(1sN+CNRT))
127 COFMI(2) =GAMMA#DELDIS* (GART=PARTI®* (PARTAL(J)+PARTAL(J+1))/7.
128  CORT=CONCT(J)+COFK(2)/2

120 GART=GASTEM(JIVY+COFM(2)/.

120 PART=CATEMUJY+COFLI(2)/?

131 TEMCA=PART

132 CETCON=CORT

133 CALL RATSoR(TEMCASCETCCON

1PACE RATE)
COFKI(3)={(({(1eO0+CORTI*#*¥2eD)/(1e00+STCON))VHRATFEH#DELDISH(PARTAL(J)+PAE

ITAL(J+1))/267
COFL(2)=DFLDISH(GAMVAX (GART=CART)I+H(DOURLF+5HCH (PART =NRT728) ) ¥RATE,

Pt ((PARTAL(J)+PARTAL(J+1))/2e0)/(1e0=8HCH (CORT=STCON)/(147+CORTY)
137 COFM(3)=0GAMMARDEDISH(CART=PARTI¥(PARTAL(JIY+PARTAL(J+1)Y/2a"

200 CORT=CONCT(J)+COFK(3)

201 GART=GASTEM(J)+COFM(3)

202 PART=CATEM({J)+COFL(3)
233  TEMCA=RPART

204 CETCON=CORT

205 CALL RATSER(TEMCASCETCONPRESS4AGRONP4BGROUPsCGROUP¢DGRNUIP$ySTCON
TPACE 4RATE)

COFK(A)=(((1eN+CORT)**¥2e0)/(1aN+ETCONVIYHRATFHDELDISHIDARTAL(J)+PAR
ITAL (J+1))/2e0

COFL (4) =DELD ISH (GAMMAR (CART=PART)I+(DOUBLF+SHCH*(PART=N,2728))*RATF

PE (PARTAL(GJ)+PARTAL(JF1I)NN/2eN)/{1e0=CHCH#(CORT=STCON)/(1eN+CORT))
220  COFM(4)=GAMMAXDELDIS*(GART-PART)*(PARTAL(J)+PARTAL(J+1))/2.N

250 DELCON=(COFK(1)+2e0%COFK(2)+2e0%COFK(3)+COFK(4))/6eD

260 DELCAT=(COFL(1)+42e0%COFL(2)420%¥COFL(3)+COFL(4))/6e0

270 DELGAS=(COFM(1)+2e0%COFM(2)+2«0%COFM(3)+COFMI4))/6D
R00 CONCTUJ+I)Y=CONCT(JVY+DELCON

30

35

36
N77

3.)

NE

LUO

113

115

120

122

123

124
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310 CATEM(J+1)=CATFEM(J)+DELCAT

320 GASTEM(J+1)=GASTEM(J)+NELGAS

500 CONTINUF

51C DO 520 J=14NSTOD

515 ETEM(J)=(CATEM(J)Y+DORT:

520 CONTINUE

YRE-ATNTATION OF TH-  = SUL

/ C2 O+DORTS

350 PRINT

260 PRINT

400 PRINT Ae (ALPHA(U)&gt;CATEM(J)¢GASTEM(J)$sETFMJ)sCONCT(J)9J=1sNSTOP
610 PUNCH Le (JoeCATEM(J) ¢GAST=M(J) oe" TEMIJ) os CONCT (J) 9J=1eNETOP)

A5N GO TO 15

0 CALL FXIT

EAD

Co Ri-ACTION

SUBROUTINE RATSER(TEMCASCETC.,

TCONGSPACE 3RATF)

X==114590978+5437023725/TFMCA=
Ne273L4NRF(TIMCARRD)

CONTEN=(EXPE(X)*¥PRFCQ)%%)D

NAP =(RAERGUP=CFTOON)¥SQRTF(RERDUP=CFTCON|
FIRST=CONTFQH*AGRQOUPHDDPH(CARMIP=CETCANY /CETCOR

SECP=NGROUPHCETCON/NDD

RATE=CPACE® (EXPF(=2,378/TEMCAII(FIRGT=SF(CD)/JTEML
RFETHRN

= ND

PRESS GAGROUP ¢RGROUP 9 CGROLIP ys NGEROYD ,

CLUGLRELOGF(TEMCAY=n221 2ANLALE TEMA

A

{
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Table B.2

Steady State Relations

I. °c Tteeq © Le
a=0 a=0, 374

360

370

380

385

397.3

402.3

407.3

412.3

417.3

422.3

427.3

432.3

442.3

447.3

457.2

462.2

467.2

472.2

251.9 408.0

243.4 427.2

234.4 447.3

230.26 457.6

222.6 483

221.03 493

220.5 502.6

220.9 511.5

222.72 519.5

224.4 526.5

227.4 532.6

231.0 537.6

240.0 545.6

245.2 548.9

256.8 554.6

263.1 557.2

269.8 559.8

276.7 562.4

aJ

IT.
out

C~ T
c
maximum

393.5 418.80

405, 6 438.7

416.0 458.8

420.2 468.6

427.8 491.0

430.1 499.3

432.3 507.0

434.4 514.1

436.7 520.70

439.3 526.8

442.20 532.6

445.4 536.2

452.7 547.7

456.8 552.5

465.8 560.7

470.1 564.7

474.8 568.5

479.6 572.2

°C a
maximum Ya=1.0

0.614

0.600

0.572

0.559

0.527

0.492

0.471

0.439

0.418

0.399

0.374

0.408

0.316

0.299

0.266

0.250

0.234

0.219

0.1475

0.1628

0.1775

0.1840

0.1959

0.1990

0.2011

0.2024

0.20311

0.2033

0.2031

0.2026

0.2009

0.1998

0.1971

0.1955

0.1937

0.1918



APPENDIX C

FORTRAN PROGRAM FOR THE COMPUTING

ALGORITHM PRESENTED IN CHAPTER V

AND NUMERICAL RESULTS

The computer program corresponding to the algorithm derived in

Chapter V is written in Fortran language and presented on the following pages

Table C.1 gives the correspondance between the namesof the variables

used in the program and the nomenclature already defined. The variables

appearing in this program but not defined in this table correspond to parts

of an equation computed separately so as to decrease the time of computation.

I" Ns  ]

A. Non-subscript Variables

Fixed point Variables

Fortran Name Nomenclature

Signification or equation
where the variable is defined

time subscript

[CHANT

[FL

[TF&amp;

[3

[PUT

T

Tk;

NSTOP

number of changes of the
time increment

Total number of prints

output requested

Subscript used for DELA

I PE) and ICHAN (IPE)

Subscript used for

IPUNCH (I1PU)

Total number of punch output

Distance subscript

Subscript used for
I PRINT (JPE)

Total number of points

in the distance grid

184
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2. Floating Point Variables

Fortran Name

A GROUP

ART

BERT

BETAR

B GROUP

C GROUP

DELDIS

DERT

D GROUP

DIF

DORIS

DOUBLE

GAP

GASFED

PRESS

SECOND

SEMA

SEMB

SEMC

SETA

SHC

SMALA

SMALB

SMAILC

SPACE

STCON

JOTI,

Nomenclature

n.

a

3

a

(=

AE

ol

A)
D

Weed

J

crt
i

2

-

-

|

A

,

5

 Tr caf’ O

Signification or equation

where the variable is defined

1

5 22

5.22

45

4 2

4 2

Distance increment

5 22

4.2

4 10

4 7

4.10

1

Normalized feed temperature

Pressure

5 8

5.12

5.12

5 12

4 10

4 10

5 20

5 20

5 20

4 10

ammonia mole fraction in the feed

oy a he
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B. SUBSCRIPT VARIABLES

|. Fixed Point Variables

Fortran Name

[CHAN (IPE

[ PRINT (JPE)

( PUNCH PU)

2 Floating Point Variables

Fortran Name

ALPHA (J)

BETA (J)

CATEM (J)

CERT (J)

CONCT (J)

DELA (IPE)

ETEM (J)

GAMMA (J)

GASTEM (J)

OCATEM (J)

OGASTE (J)

PARTAL (J)

RATEP(J)

Nomenclature

Nomenclature

3

vi , n+l

C

Ys , n+l

A 6

m4 and a

1
A

N

n+l

1%

n

x7

Signification or equation

where the variable is defined

Value of the time subscript
at which the time increment

is changed

Value of the time subscript at

which a printed output is

represented

Value of the time subscript at

which a punch output is requested

Signification or equation

where the variable is defined

3
/

5.32

5.14

5.22

5 36

time increment

5

5.33

5.9

5.14

5 Q

5.7

5 17
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~ORTRAN PROGRAM FOR THE RESOLUTION OF THE TRANSIENT BFHAVIOR

NF AN AMMONIA REACTOR

DIMENSION CATEMI30 CASTEM(30O0) es ETEFMI3N0) s CONCT (RRND) dRATFRP{3NNY 44

LLPHA(3NDO) os PARTAL (300) , CERT (INA) 9 B3ZTALINN) og GAMMA (3NNY) IPRINT (200) 4f

PELA(RO)Y o ICHAN(S ZT) os TRPUNCHI(2M0) s OGASTE(ZNN Yd QCATEFM(20NY oCONTFG (2300

ARATO(RDOC)YoDCONCTHARACOYLCDERE(30D)

FORMAT STATEMFEN

FORMAT (451848)

FORMAT (4118)

FORMAT (I8+4E1848)

FORMAT (5H DATA)

FORMAT(5E1648)

FORMAT (11XBHALFPHA

FORMAT(124¢2F24LeR

FORMAT (253M 48)

ENRPMAT(TRe«3AFTRG8)

—

 MN 1 + HETFMe 1TIXSHCONCT,

PROBLFM DOCHMENTATI On

13

2

27

&gt;]

Tr

30

YM)

35

GC

45

46

READ 20 IFLeICHANT oNSTOP SPIT

READ 24 (IPRINTI(I)eI=1sI1FL)

READ 29 (ICHAN(I)eoI=1s CHANT)

READ Te (DELA(T)eoI=1sICHANT)

READ 1 4DFELDISsVOL

READ 1 +s AGRQOQUP ¢BGROUP $s CGROURP,

TAP DOP [Sea STCONSGASFFDaDIFoC
READ Re (Jos CATEM{J)9CASTEM(J

READ 24 (TPUNCH(TYeI=14T1RPUT)

PRINT

PRINT 29 IFLeICHANT oNSTOP IPT

PRINT 24 (IPRINT(I)sI=1sIFL)

PRINT 2¢{(ICHAN(I)sI=1eICHANT)

PRINT 1s (DELA(I)sI=14ICHANT)

PRINT 1+sDELDISsVOL

PRINT 1sAGROUP ¢BGROUP ¢CGROUP ¢DGIROUP ¢PRE SS os SPACE 4 BFETAR 4 SE

"GAP 9s DORISsSTCONsGASFEDDIF4SHC
PRINT 39 (JeCATEM(J) sGASTEM(J) a= TEM (UI)

PRINT 26 (TRPINCH(TIYel=1esIPHTH

y PRESS yy SPACE 3 3FTAR$SETA $DOURL:

ek  yy DOL

VARTARLE NISTANCF AR]

SECOND=24C%(140=VOL)
NO 572 J=1+4NSTCP

PARTAL (J) =VOL+SECOND*DELDISH*FLOATF(J=-1)

ALPHA(J)=VOL*¥DELDIS*FLOATF(J=1)+(1e0=VOL)*¥((FLOATF(J=1)#DFLDIS)**

J

TONTINUE

 7’
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~

n 72
1

PRINT B72

FORMAT (22X1HJ es 10X5HALPHA, TAXAHPARTAL

PRINT 7 (JesALPHA(J)sPARTAL(J)oJ=1sNETOD

STARTING CONDITION:

&gt; 5

&gt; 6
5 7

1pPU=1

1=1

IPF=1

JPE=1

NTOP=NSTOP-]

NOP =NGTOP=2
PO 75 J=1sNSTCP

X==114590978+5457023725/CATEM(J)=244943*LOGF(CATEM(J)
ICATEM (J) +0a2736408%(CATEM(J)x32)

CONTEND (J) = (EXPF(X)*PRESS)#2

ODP=(RGROUP=CONCT(J))¥SARTF(3GROUP=-CANCT(J)
RATEP (J) =SPACE* (EXPF(=254375/CATEM(J)))%((CONTED(J)#AGROUPODE#(CC

IROUP=CONCT (J) )/CONCT (JY) =DGROUP*CONCT (J) 70ND) /CATEM( J)

CONTINUE

DELTIM=DFLA(IPF)

SMALA=DFLTIM/(240%(CAD
SMALR=DORTS*SMALA

SMALC=140-240%(SMALA+S?
SIDFV=(140-SMALA)/12

CENTV=(1e0=SMALA)/340
SIDW=SMALR/12,40

SIDET=(1e0+SMALC)/1240
CENTET=(1e0+SMALC)/3,40
SIDTIM=140/(64N#DELTIM,

CENTIM=240/(34N#NTLTIM)

FENTW=SMALR/240

5 A

-

’-

v

-

po

~

5.

55

58

75

RN

Q 4

]7

28

RG

NO

2

22

23

34

25

1A

RESOLUTION OF THE ENTHAD©

GASTEM(NSTOP)Y=GASFED

SEMA=DELTIM/ (CAP+D ¢BDEL

SEMB=N¢5#SEMAXDORIS

SEMC=1e0=SEMA=2¢"*SEME

NO 176 J=1.NSTOP

OCATEM(J)=CATEM(J)
OGASTE(J)=GASTEM(J)
CONTINUE

GASTEM(INSTOP)=GASFED

DO 115 K=14NTOP

J=NSTNP+1-K

COF=BETAR®DELDISH*(PARTAL(J)Y+PARTAL(J=1))/4e0

CASTEM{J=1)=(GASTEM(J)*(1eN=COF*(1eN=SEMR))+(QCATEM(UI+0QCATENM(J=1)

IY *SEMA#COR+(ETEM(JI+ETEM(J=1))#*COF#*SEMCH(OGASTE(JY+0OGASTE(J=1))%*CO

2FE#SEMB)/(16C+COF*(140-SEMBY)
15 CONTINUE

’

37

28

3G

' NN

bz.

112

CECT TON
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RESOLUTION OF THE ENTHADID
’

“OAT DN TET|

120 J=1

121 CORECT=SETA¥*(1eN=SHC* (CONCT(2)=STCON)/(2.n+CONCTI(2)Y+STCON

LPHA(2))

DIFCO=DIF/ (ALPHA (2)%3%2)

BERT=5e0/ (6 0#¥DELTIM)+CORECT+DIFCO+5e0%{1eN=SMALAY/12e0

CERT(1)=1eD/{(6e*DELTIMI+CCRECT=DIFCO4(1eN=SMALAY/12eN
BETA(1)=BERT

NERT=QCATEM((1)3#(H D/L (OXDFLTIMI=CORFCT=DIFTO=8,Nn3(]14N=CMALAY/12..

1VY+OCATEMII2)#¥ (1a 0/ (a0 DELTIM)=CORECTH+DIFCO=11,0=5MALAY/12eN)+{RAST

ZEMIIY+0GASTF(LY)XRISETA/ALPHA(2)+54NI¥AMALR/12NW)+(GASTEM(2)+0GARTFE|
A2V)HSMALB/ 12ND + (0 N# STEMI N+F TIMI) IR (SMALCHT oY / 12 aN+(DOHRLFE~N, 2"

425% SHC) ¥SFETAX (DB JO*RATEP (IV +RATIR(2)Y/A0

S36 GAMMA (1)=DERT

L140 DO 200 J=24NTQOP

141 CORFCT=(DIF*SECOND/({PARTAL(J)#*%2)#PARTAL(JY)+SETA¥(1e)=SHCHICONC
(J)=STCON) /(1eQ+CONCTII)))/RPARTAL(INYN/(L440¥DFLDTS)

DIFCO=DIF/ (20% ((PARTAL(UY¥DELDIS)*#24010
ART==DIFCO=-CORFCT+SIDTIM+S5NEY
BERT=24D#DIFCO+CENTIMACENT

CERT(J)==DIFCO+CORFCTHSINTIM+aIDEY
DERT=CATEM(J+1)*¥(DIFCO=CORFOCTH+EINTIM=SINETVIFCATFM(JYH#(CENTIM=240%D

1 IFCO=CENTVYI+CATFM(J=1)#{(DIFCO+ 0ORFCTHSINTIM=SIDFV)+{GRAQTEM{ J+1)+RA

PETEM(J=1)+0GASTF(J+T)+0GASTE (J=T1))*#CIDW+(GASTEM( JY+DGACTE (JY) CENT

AWH(FETEM(J=IV+ETEMIJ+1YYRSIDETHETEMIIIHCENTETH(DOUSRLFE+CHCH(CATEM(J=
41) =0e3725 1 )*SETAXRATEP(J=1)/6e0+(DOURLFE+SHCH(FTATEM(J)=0e2725))SFT
SA¥RATEP (UJ) ¥2eN/ 3a 0+ (D0UBLE+CSHCH(CATEM(J+T1)=N 2728) RQETAXDATFED(J+

6)Y/6e"

60 BETA(J)Y=BERT—=(ARTH®*CERT(J=1))/BETA(I=-1)

165 GAMMA(J)=DERT=(ART*GAMMA(J=1))/“=TA(J=-1)

200 CONTINUF

201 J=NSTOP

205 DIFCO=DIF/((1e0=ALPHA(NTOPY))*%72)

270A CORECT=SETA#(1e0=SHC*(CONCTIUINTC2)+CONCTINSTOR)=24N*STCONY/(2eN+CNN

"CTINTORPY+CONCT(NSTOPYYI)/(2eNF(1eM=ALPHA(NTOD)YY)
207 ART =140/(60%¥DFELTIMY=CORFCT-DIFIO+({1e0~=SMALAY/1260

208 BERT=5e0/(6e0*¥DELTIM)=CCRECTHDITCO+5eN%*(1e0=SMALAY/1240+SFETA¥(1eN=

ISHC* (CONCT(NSTOP)=STCON) /(1e0+CONCTUINSTOP)I IY / {le N=ALPHA(INTODY)

DERT=0CATEM(INTOP )* (1e0/ (Ge N¥DELTIM)+CORECTHNIFCO=(1eN=CSMALAY/1240)

1+OCATEMINSTOP)I* (56 0/ (6 O¥DELTIM)+CORECT-DIFCO=5eN#*(16N=SMALAY/124"

2=SETA¥(1ea0-SHC*¥ (CONCT(NSTOP)Y=STCON)/(1eN+CONCTINSTOPYIY/(1eN=-ALPHA
3(NTOP)Y) J+ (GASTEM(NTOPRP)+0OGASTE(NTOPYY*SMALB/12e0+(GASTEM{NSTOP)+0GA
GSTE(NSTOP) I) *B5¢N¥*SMALB/ 120+ (5a NH*ETEMI(NSTOPY+ETEM(NTOR))*(QMALC+14"
51/7126 M+ (DOUBLE=Ne3725%SHC)#SETAR(BS4OX¥RATEP(INSTORPY+RATEFP(NTOPY)Y/6ha

BETA(NSTOP )=BERT—-ART*CERT(NSTOP-1)/RETA(NSTOL~-1)

GAMMA(NSTOP )=DERT-ART*GAMMA (NSTOE=1)Y/RFTA(NSTCOP=-1)

CATEM(NSTOP)=GAMMA(NSTOFP) /BRETA(NSTOP

DO 250 L=14oNTOP

J=NSTOP-L

CATEMU J) = (GAMMA (JY =CFRTI(IUVHCATEM(J+T1YVY/RFTAL.

122

123

124

125

125
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250 CONTINUE

RESOLUTION QF THE ENTHALPY EFQUATION IN THF TURES WALL SFCTINA

260 DO 277 J=1.NSTQP

265 ETEM(JY=ETEM(J)YHRSMALCHICATFMEJY+NCATEMYY#RAMALAIGAITEMJY+NGASTE
1 (J) )*#SMALR

270 CONTINUE

RESOLUTION OF THE MASS BALANCE FOQUATION IN THF CATALYST

2810

281

285

290

300

210

350

370

32M

ARK

390

385

0A

410

415

470

475

A880

300

305

210

911

712

213

320

922

oR

NO

X==11,929" 784+5,87023725/CATEM(J)=2eLQ43%OGF(CATFM

LCATEM( J) +06 2734408% (CATENM( J) #%2)

CONTEQU J) = (SXPF(X)#PRESS)*%2

COFRE (J) =SPACEX (FXPE(=25,375/CATH
CONTINUF

CONCT(1)=5STCON

DO 47" J=14NTOP

ODP=(BGROUL=CONCT{UY)*SQARTF(RGRCUIP=CONCT(J)

RATEP (J)Y=COFRE(JYF((CONTEQ(UYFACROURRODEXR(CERMIIPCONCT(J)Y/CONCTUL.
1YY=DGROUPXCONCT(J)/0DP)
ROI=NgB*DELDISH(PARTAL(JIY+PARTAL(J+TIYYHFRATIFR(JY(1

1Y/ (1D +STCON)

OCONCT (JY=CONCT (JU) +RCI

ODP=(RGROUP=OCONCT{J)I#*SARTF(BEGROUP=-QCONCT(JY)
RATO(J)Y=COFRE(J+1L)#( (CONTEQ(J+1)FAGROUPH#ODPXICERONP=OCONCT (JY) 70C0

INCT (UY) =DGROUP*#OCONCT(J)/0ODP)

ROB=0e3*DELDISH (PARTAL(JIY+PARTALJ+T) I H#RATO(JVH#( 1"
ie )/ (1 e0+STCON)

CONCT(J+1)=CONCT(JV+05(ROT+ROB)
CONTINUZ

ODP=(RGROUP=CONTZTINSTOP))Y*SQRTF(IEGRCUP=CONCT(NESTOR)

RATEP(NSTOP)=COFRE(NSTOF)Y®*{{CONTEQINSTOR)*AGRQOUPHODP*(CARONP=CONCT
TJ{NSTOPYY/CONCTUINSTOPRPYY=DGERANPAECONCTINSTORY/ODDY

CHANGE OF TIME TNCRFMENT

[F(I=-TCHAN(IPF))1001+90541NN07

IPF=1DP=+1

DELTIM=DELA(CIPF)

SMALA=DELTIM/ (2eN*(GAP+0e5%DELT un

SMALB=DORIS*¥SMALA

SMALC=1e=260%(SMALA+SMALE)
SIDEV=(1e0=SMALA)/12."

CENTV=({1e0=SMAlA)/3,
STDW=cMALR/1"™

FORT SYD
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230

935

940

945

Q50

955

B41

265

966

°67

968

969

270

SIDET=(.s +SMALT)/1260

CENTET=(1a0+5SMALC)/340

SIDTIM=1.0/(660%DELTIM)

CENTIM=2.0/(3,0%DELTIM)

CENTW=5VALR/2,0

SEMA=DELTIM/ (GAP+Ce5%D™!

SEMB="ogGXSEMA#DORIS
SEMC=1e N=SEMA=D NSM

COF1=DELTIM/ (240nxDER)

CTOF2=DELTIM/(240%TIMC)
COFR3=(1e0=CCF1)Y/(1eN+C0OF1)

COF4=GAIN*(1s0+COFZY/ (1e0+COF 1,

COFS=GAIN#*(140=COF2)/(1e0+COF1

YOR TS)

PRESENTATION OF THf RESULT:

IF(I-IPRINT(JPF)I)LO1Nel1109101"
I=1+1

~O0 TO 1071

PRINT 1171

.. FORMAT (8H RESULTS)

102 PRINT Zs

L103 PRINT 6

1104 PRINT 5s (ALPHA(J)of

T2A IF(I=-TPUNCH(IPU)Y)1129,

127 PUNCH 3s (JsCATEM(J)«GAS

28 IPU=TIPU+]

1129 JPE=JPE+]

1120 IF (JPFE=1F

1200 CALL EXIT

FND

VJ) a ETEM(J) 9 CONCH (J)

2FEFTENMIJ)Y oCONCT (J) ed=1eNSTOR)

9s J=1 4NSTOR:

A]
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The results of the computations are filed in a separate data book kept

in Professor R.F. Baddour office.

In the following pages the numerical results corresponding to the figures

appearing in the text have been tabulated.
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Table C.2

Temperature ChangegsDuring a
+50C Step Transient

Time § Time 6' AT_- °C AT_ °C aT °C aT °C aT, 0.
a=0 a=0. 0=0.2 a=0.6 a=1.0

AN

0.10 0.044 0.45

0.20 0.088 0.70

0.30 0.132 0.93

0.45 0.197 1.23

0.65 0.285 1.47

0.75 0.329 1.72

1.0 0.438 2.09

1.10 0.482 2.20

1.30 0.570 2.46

1.45 0.635 2.64

1.75 0.767 2.97

2.0 ° 0.876 3.23

2.20 0.964 3.43

2.60 1.140 3.78

3.0 1.315 4.11

1.0 1.753 4.79

5.0 2.191 5.30

5.0 2.629 5.69

7.0 3.067 5.97

8.0 3.506 6.18

9.0 3.944 6.34

10.0 4.382 6.45

10. 6 4.645 6.51

0.01

0.02

0.52

1.12

1.80

2.09

2.76

2.97

3.40

3.71

4.29

4.73

5.06

5.66

6.22

7.39

8.27

8.94

9.43

9.79

10.07

10.27

10. 36

0.02

0.05

0.07

0.08

-0.04

0.25

1.23

1.51

2.07

2.43

3.06

3.53

3.87

4.51

5.05

6.20

7.06

7.70

8.18

8.53

8.78

8.97

9.06

0.03

0.09

0.17

0.28

0.40

0.44

0.45

0.44

0.39

0.44

0.79

1.02

1.18

1.45

1.70

2.16

2.52

2.79

2.98

3.13

3.24

3.32

3 36

0.11

0.26

0.45

0.74

1.09

1.24

1.57

1.65

1.82

1.91

2.02

2.07

2.19

2.27

2.53

3.02

3.37

3.64

3.74

3.99

4.10

4.19

4.23
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Table C.?

Ammonia Mole Fraction Changes
During a +5°C Step Transient

Time © Time 9!

0.10

0.20

0.30

0.45

0.65

0.75

1.0

1.10

1.30

1.45

1.75

2.0

2.20

2.60

3.0

4.0

5.0

5.0

7.0
3.0

9.0

10.0

10. 6

0.044

0.088

0.132

0.197

0.285

0.329

0.438

0.482

0.570

0.635

0.767

0.876

0.964

1.140

1.315

1.753

2.191

2.629

3.067

3.506

3.944

4,382

4 645

3 3

10 XY _0o 1 10 XOY 20. 3

0.04

0.13

0.24

0.38

0.53

0.60

0.76

0.81

0.91

0.99

1.13

1.24

1.32

1.47

1.61

1.90

2.12

2.28

2.40

2.50

2.56

2.61

2. 64

0.01

0.05

0.11

0.25

0.49

0.60

0.83

0.90

1.05

1.15

1.32

1.46

1.56

1.73

1.89

2.21

2.44

2.61

2.73

2.81

2.88

2.92

2 94

3 3

10 XY 020. 6 10 XY 0=1.0

-0.004

-0.007

-0.005

0.015

0.G8

0.12

0.18

0.18

0.14

0.09

0.002

-0.058

-0.110

-0.180

-0.249

-0.393

-0.506

-0.606

-0.678

-0.732

-0.773

-0.803

-0.818

0.006

-0.009

-0.012

-0.006

0.022

0.042

0.078

0.080

0.065

0.041

-0.024

-0.081

-0.121

.0.187

0.243

-0.358

0.453

.0.526

0.582

-0.625

-0. 656

-0. 680
~0.692
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Table C.4

Location and Magnitude of Peak Temperature

Time ©

0

0.10

0.20

0.30

0.45

0.65

0.75

1.0

1.10

1.30

1.45

1.75

2.0

2.20

2.60

3.0

1.0

5.0

5.0

7.0

8.0

9.0

10.0

10.6

Time 06!

0

0.044

0.088

0.132

0.197

0.285

0.329

0.438

0.482

0.570

0.635

0.767

0.876

0.964

1.140

1.315

1.753

2.191

2.629

3.067

3.506

3.944

4.382

4 645

I.ocation a

0.373

0.373

0.373

0.373

0.373

0.374

0.375

0.365

0,365

0.364

0.363

0.362

0.360

0.360

0.358

0.357

0.353

0.351

0.349

0. 348

0.347

0.346

0.345

0.345

Magnitude

532.67

532. 69
532.72

532.76

532.79

532.75

532.69

533.11

533.35

533.85

534,16

534. 68

535,05

535, 34

535. 84

536.26

537.19

537.88

538. 39

538.77

539.04

539.31

539.47

539.52

T.
a=0.374

532.67

532.69

532.72

532.76

532.80

532.76

532.69

533.07

533.31

533.79

534.09

534.59

534.95

535.21

535.69

536.10

536.93

537.57

538.03

538. 37

538.63

538.81

538.95

539 01



Table C.5

Transient Dynamic ""Gain' of the Reactor During
A +5°C Step Transient

Location a

Time

0'=0.110

0'=0.372

0'=0.964

0'=2.10

8'=4_ 65

0.812 0.912 1,0

0.164 0.030 0.006 0.011 0.015- 0.020 0.025 0.035 0.044 0.057 0.070

0.373 0.472 0.363 0.130 0.004 0.052 0.090 0.135 0.181 0.230 0.276

0.686 1.025 1,064 0.774 0.418 0.276 0.235 0.245 0.276 0.325 0.418

1.003 1.578 1.722 1.315 0.768 0.536 0.462 0.463 0.499 0.556 0.634

0.773 0.671 0.663 0.701 0.763 0.8452.346 1.811 1.082
oA—

 S$
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Table C. 6

Enthalpy Generation and Transport

Location a 1 S43
Jv

-0.0002 0.2611

-0.0356 0.2589

-0.0720 0.2242

0.30 -0.0594 -0.0961 0.1555

0.374 -0.0049 -0.1092 0.1141

0.408 0.0195 -0.1138 0.0943

0.506 0.0514 -0.1244 0.0730 -1.141

0.6 0.0674 -0.1328 0.0654 -0.737

0.702 0.0806 -0.1409 0.0603 -0.410

0.812 0.0947 -0.1488 0.0541 -0.058

0.912 0.1082 -0.1548 0.0466 +0. 156

2.541

. 0 0.1209 -0.1592 0.0383 +0.247

oq,
dv

-6.066

-4.278

-3.690

-3.538

-3.354

-3.139

-2.557

-1.988

-1.445

-0.986

-0.669

-0.462



- 198.

Table C.7

Temperature Changes During a Blow Off Transient

I'ime 6

0.10

0.20

0.30

J.45

0.65

0.75

1.0

1.30

1.50

1.75

2.0

2.20

2.70

3.0

4.0

5.0

5 40

Time 6!

0.044

0.088

0.131

0.197

0.285

0.329

0.438

0.570

0.657

0.767

0.876

0.986

1.183

1.315

1.753

2.191

2.36

-AT

Ca=0

1.34

2.10

2.78

3.66

4,67

5.12

6.16

7.31

8.03

8.89

9.70

10.49

11.84

12.70

15.38

17.83

18. 77

-AT

a=0.1

0.0

0.03

1.52

3.28

5.29

6.15

8.02

9.96

11.16

12,57

13.89
16.15

17.30

18. 66
22.85

26.64

28.07

-AT

a=0 3

0.02

0.07

0.13

0.13

-0, 27

0.62

3.58

6.46

8.05

9.86

11.55

13.16

15,88

17,61

23.06

28.08

40.00

-AT -AT
€a=0.6 ~ Ca=1.0

0.07

0.25

0.48

0.82

1.16

1.25

1.26

0.95

1.20

2.04

2.77

3.40

4.41

5.06

7.07

9.07

 QO 87

0.22

0.75

1.35

2.23

3.27

3.72

4.64

5.44

5.77

5.99

6.05

6.00

6.51

7.00

8.26

9.29

9.68
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Table C. 8

Changes in Ammonia Mole Fraction

During a Blow Off

Time © Time gt

0.10 0.044

0.20 0.088

0.30 0.131

0.45 0.197

0.65 0.285

0.75 0.329

1.0 0.438

1.30 0.570

1.50 0.657

1.75 0.767

2.0 0.876

2,20 0.986

2,70 1.183

3.0 1.315

4.0 1.753

5.0 2.19

5.40 2.36

10 OY _o. 1

0.116

0.376

0.697

1.098

1.474

1.737

2.167

2.624

2.905

3.236

3.547

3,843

4,345

4,663

5.631

6.49

6.82

3
-1 0 XOY 20. 3

0.059

0.172

0.355

0.767

1.496

1.853

2.667

3.536

4.076

4.728

5.358

5.965

7.03

7.718

9.948

12.039

12. 852

3 3

-10 XAY 20.6 -10 XAY 21.0

0.004

0.000

0.010

0.078

0.285

0.415

0.678

0.732

0.661

0.610

0.613

0.652

0.783

0.903

1.443

2.170

2 508

0.003

-0.003

-0.003

0.028

0.145

0.224

0.398

0.47

0.447

0.387

0.334

0.315

0.365

0.421

0.725

1.156

1.364



Table C.9

Dynamic Gain During a '"Blow Off"

Location a

Time

6'=0.110

0'=0.372

0'=0.964

8'=2.10

O'= 2.37

0.106 0.208 0.30 0.408 0.506 0.60 0.702 0.812 0.912 1.0

0.163 0.028 0.003 0, 007 0,012 0,018 0.024 0.032 0.045 0.060 0.070

0.370 0.463 0.361 0.125 -0.005 0.045 0.086 0.129 1.82 0.234 0.276

0.689 1.007 1.084 0.856 0.475 0.283 0.219 0.213 0.252 0.316

1.156 1.755 1.807 1.196 0.778 0.578 0.499 0.504 0.552

1.251 1,903 2.2156 2.00 1.354 0.890 0.658 0.559 0.553 0.595 0.645

+

DY

 oO
 oO



Table C. 10

Effects of the Magnitude of the Step Change
on the Dynamic Gain at 6'=0.964

Location a

Magnitude
of step change 0

15°C

10°C

le

5%

10°C

0.408 0.505 0.60 0.702 0.812 0.912 1.0

0.689 1.007 1.084 0.856 0.475 0.283 0.219 0.213 0.252 0.316 0.401

0.684 1.006 1.074 0.830 0.454 0.276 0.219 0.217 0.258 0.322 0.403

0.678 1.001 1.057 0.798 0.430 0.266 0.218 0.218 0.263 0.331 0.405

0.686 1.025 1.064 0.774 0.418 0.276 0.235 0.245 0.276 0.336 0.418

0.679 1.019 1.043 0.741 0.400 0.269 0.235 0.246 0.282 0.234
¥

IN
-
eed

Table C.11

Effects of the Magnitude of the Step Change

on the Dynamic Gain at 6'=2.10

Location a

Magnitude
of step change 0

15°%¢

0
=GC

ye. |

§

0.106 0.208 0.30 0.408 0.505 0.60 0.702 0.812 0.912 1.0

1.156 1.755 2.029 1.807 1.196 0.778 0.578 0.499 0.504 0.552 0.606

1.079 1.675 1.893 1.564 0.950 0.626 0.503 0.470 0.508 0.574 0.626

1.043 1.648 1.805 1.382 0.810 0.568 0.490 0.490 0.526 0.583 0.658



T'able C. 1.

Effect of the Magnitude of the Step Change
‘on the '""Gain'" ata = 0,374

Magnitude
of Step

Time ©

0.044

0.088

0.131

0.175

0.219

0.329

0.438

0.548

0.657

0.767

0.876

0.986

1.095

1.315

1.534

1.753

1.972

2.20

2 37

Steady State

15°C

0.002

0.007

0.013

0.019

0.020

-0.001

0.065

0.203

0.320

0.420

0.512

0.600

0.684

0.845

1.001

1.154

1.303

1.448

Blow Off

\.

0.002

0.007

0.013

0.018

0.019

-0.002

0.064

0.199

0.311

0.406

0.492

0.572

0.649

Rlow Off

0.001

0.006

0.011

0.027

0.017

0.008

0.061

0.192

0.299

0.388

0.468

0.542

0.612

0.741

0.858

0.968

1.068

»

3

1

LLC
x

0.003

0.010

0.018

0.024

0.026

0.004

0.080

0.202

0.303

0.385

0.456

0.519

0.581

0.686

0.784

0.853

0.925

0.979

1.020

 rR  &gt; 4

+10°C

0.003

0.009

0.016

0.022

0.024

0.001

0.072

0.195

0.292

0.369

0.436

0.495

0.548

~ ~~,
!

§¥

-

I.



Table C. 13

Effect of the Magnitude of the Step Change

on the gain ata = 1.0

Step
Magnitude

Time ©

0.044

0.088

0.131

0.175

0.219

0.329

0.438

0.548

0.657

0.767

0.876

0.986

1.095

1.315

1.534

1.753

1.972

2.10

2.20

2 37

Steady State

115°C

0.0145

0.050

0.090

0.129

0.167

0.248

0.311

0.356

0.385

0.399

0.403

0.400

0.412

0.466

0.512

0.551

0.586

0.606

0.619

0.645

Blow Off

10°C

0.0135

0.050

0.090

0.130

0.167

0.248

0.311

0.355

0.384

0.399

0.404

0.403

0.417

Blow Off

“»
 4

0.0106

0.049

0.090

0.130

0.167

0.248

0.310

0.354

0.383

0.398

0.404

0.405

0.421

0.480

0.529

0.570

0.606

0.626

) N&amp;

4 5°C

0.022

0.052

0.090

0.129

0.170

0.248

0.313

0.356

0.386

0.404

0.414

0.419

0.441

0.506

0.558

0.604

0.638

0.657

0.674

0.697

0 RA

+10°C

0.0195

0.051

0.090

0.129

0.166

0.248

0.310

0.355

0.385

0.403

0.413

0.421

0 444

3 3

»

™
-
 %,
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Table C. 14

Changesin Temperature During Restoration
of the Reactor to its Original Conditions

Time ©

1.139

1.143

1.183

1.227
1.270

1.314

1.358

1.402

1.446

1.489

1.577

1.709

1.752

1.796

2.015

2.059

2.103

2.147

2.235

2.454

2.673

2.892

3.111

3.461

AT
“a=0

11.54

10.94

10.50

10.03

9.64

9.31

9.04

8.81

3.61

8.43

8.11

7.77

7.53

7.40

6.76

5.64

6.52

6.40

6.16

5.58

5.05

4,55

4.10

3.69

3.45

AT
~“a=0.1

16.83

16.88

17.29

17.71

16.70

16.00

15,35

14,81

14, 35

13.97

13.34

12.58

12.35

12.12

11.08

10.88

10.69

10.50

10.13

9.21

8.34

7.53

6.79

6.11

5 73

-AT_
“a=0.3

15.29

15.35

15.86

16.37

16.87

17.39

17.99

18,72

19.06

18.02

16.49

14,86

14,47

14.12

12.72

12.47

12.23

11.99

11.54

10.48

9.46

8.51

7.64

6.86

6 42

-AT_
“a=0.6

4.19

4,22

4,34

4, 37

4,36

4.34

4,33

4, 37

4,45

4.59

5.05

6.18

6.48

5.26

5.05

4,83

4.76

4.64

4.43

3.98

3.59

3.24

2.91

2.61

2.44

-AT

a=1.0

6.34

6.35.

6.26

5.92

5.49

5.05

4,64

4,26

3.92

3.62

3.16

2.79

2.75

2.75

3.21

3.39

3.59

3.79

3.82

3.26

2.89

2.61

2.37

2,15

2.02
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Table C. 15

Ammonia Mole Fraction During Restoration

of the Reactor to its Original Condition

Time ©!

0.0

1.139

1.143

1.183

1.227

1.270

1.314

1.358

1.402

1.446

1.489

1.577

1.709

1.752

1.796

2.015

2.059

2.103

2.147

2.235

2.454

2.673

2.782

3.001

3.220

3,330

3 461

Va=0.1

0.08035

0.076118

0.076113

0.076119

0.076255

0.076445

0.076597

0.076726

0.076835

0.076927

0.077006

0.077142

0.077316

0.077370

0.077423

0.077670

0.077717

0.077762

0.77808

0.077898

0.0781206

0.078331

0.078430

0.078616

0.078787

0.078857

0.078959

Ya=0.3

0.13525

0.128452

0.128431

0.128276

0.128173

0.128146

0.128201

0.128342

0.128563

0.128839

0.129095

0.129501

0.129938

0.130059

0.130172

0.130679

0.130771

0.130862

0.130980

0.131122

0.131535

0.131923

0.132104

0.132440

0.132762

0.132882

0.133040

Ya=0.6

0.17217

0.171427

0.171425

0.171405

0.171392

0.1714008

0.171439

0.171513

0.171624

0.171768

0.171931

0.172237

0.172448

0.172443

0.172426

0.172389

0.172392

0.172396

0.172400

0.172410

0.172435

0.172457

0.172463

0.172466

0.172462

0.172458

0.177451

Ya=1.0

0.20313

0.202783

0.202782

0.202778

0.202784

0.202802

0.202837

0.202892

0.202969

0.203066

0.203175

0.203387

0.203572

0.203590

0.203592

0.203491

0.203471

0.203458

0.203450

0.203455

0.203460

0.203458

0.203448

0.203432

0.203423

0.203412



Table C.16

Changes in Temperature for an Active Catalyst

- Oo

9 AT _o Cc AT _0.106

0.10 0.044 0.44

0.20 0.088 0,70

0.30 0.131 0.93

0.90 0.175 1.135

0.50 0,220 1.32

0.60 0.263 1.48

0.70 0.307 1.63

0.85 0.372 1.82

1.0 0.438 1.98

1.20 0.526 2.17

1.40 0.613 2.33

1.60 0.701 2.47

1.80 0.789 2.59

2.0 0.876 2.69

-0.016

-0.20

0.22

0.59

0.95

1.28

1.57

] .93

2.24

2.58

2.85

3 08

3.28

3 44

2.40 1.051 2.86 3 71

o o 0 0 o

AT0.208°CBTo_0.30°CATi0.408°C ATu0.6C ATg1,0 ©

0.005 0.010 0.014 0.025 0.081

-0.008 0.028 0.049 0.086 0.256

-0.085 0.023 0.086 0.164 0.464

-0.108

0.005

0.125

0.23

-0.008

0.010

0.106 0.244

0.315

0.375

0.678

0.116 0.887

0.100

0.215

0.322

0.151 1.085

0.227 0.431 1.28

1.470.38 0.330 0 53

0.50 0.51 0.53 0. 66 1.75

0.63 0.66 0. 70 0.85 2.00

2,22

2.42

0.74 0. 77 0.84 1.02

0.83 0.871 0.95 1 16

0.90 0.95 1.04 1.28 2,62

0.97 1.02 1.12 1.38 2.81

1.07 1 13 1.24 ! 53 3.15



APPENDIX D

The method used to obtain the frequency response of a system from

transient results in the time domain is well Known. 25 It consists of the

determination of the Fourier Transform of the transient response to an

input signal. The Fourier transform of the function AT _(t) is defined as

+o

AT(jw) = e IE AT(1) dt

/ —-e

It is complex number whose real part A and imaginary part B are given

by the two equations

A

™)

[+e

To AT (t) cos wt dt

[+ .

| AT(t) sin wt dt

The transfer function of the process is obtained as the ratio of the two

Fourier transforms of AT and AT. 4

5T_ (9)
G(jw) = ———

ATL (jw)

The advantage of using input perturbations such as unit impulse or unit

step. is that their Fourier transforms are respectively 1, and 1/j » and

consequently only the determination of the Fourier transform AT (3 w) of the

response AT is required,

= 207-
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The values of AT resulting from a step change in the feed temperature

remains finite at the end of a transient and for this reason the Fourier

transform of the quantity AT is not defined. To avoid this difficulty a step

change of magnitude equal to minus the steady state gain or D.G. level of the

process is superposed on AT at each instant, and the Fourier transform

F(jw) of the function.

F(t) = AT_ - step change at t = 0 of magnitude AT ie determined.

Since the Fourier transform of the step change AT is —

the Fourier transform of AT | is obtained as

AT = Fi(jw) Ales Cs

and the transfer function G(jw) defined as

 AT (jw
G{jw) = —

Th

equals

G(jo) = jo F(jo) + AT__

The real part R and the imaginary part I of G(jw) are expressed as functions

of the frequency w by the two relations

 -~

4-0

AT - © [ (AT (t) - AT) sin wt dt

I”o |:
(AT_(t) - AT_.) cos wt dt
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because of the definition of AT and AT the integrant is zero for negative

time and becomes practically zero after a finite amount of time T after which

the new steady state is obtained. Consequently, the value of the finite

integral is only computed between 0 and T.

A subroutine available in the M.I.T. Computation Center library called

AA HAN3 has been used to estimate these finite integrals. The computer program

written to generate the quantities R and I from the results obtained by the

simulation is presented on the following page.

Once these quantities are obtained it is possible to generate the frequency

surface curve since

Magnitude =

An rle

a

[RZ +77

- artang Gh

The magnitude and the angle of the frequency responses for the locations

1=0,0a=3.74 and a=1.0 are tabulated in the next pages.

Table D-4 presents the numerical values appearing on Fig, 6.24 where the

results of the simulation are compared with the response of the simplified

transfer functionsfor a step change in temperature of 5°C
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72

73

¥
¢ 1

7A

2

3 1

3?

34

35

2A

SX

0

-

”’

2

170

200

YERVATION OF THE FREQURNC &lt;ESPONSES

FROM TRANSIENT DATA

DIMENSION D{E1I200)oA(

 INGO Y$CATFMTID0NY

FORMAT (4T1R)

FORMAT(4F1R48)

FORMAT (5H DATA)

FORMAT (BH RESULTS)

PRINT3

READ 2 4DFLFRE 4PERIONSDTF

PRINT 2 ¢DFLERFGPERIND¢DI

READ 1 oNsJeK

PRINT 1 eNgJeK

READ 24 (CATHFM(INS)sNS=|

DO 25 NS=14N

DATA(NS)=(CATEM(NS)V=CATEWM
CONTINUE

NO 78 NS=1eN

Y(INSY=DATA(NS)=DATA(N)

CONT INUF

PRINT 29 (DNS) oeNS=14N)
A{1 )="FL FRT

A(2)=DERTAN

CALL HARANZR(NeJoNak

PRINT 4

FORMAT(HF1648)

EFORMAT(T7XOHFREQUENCYoBXEHREAL
| 9 2X 14H IMAGINARY PARTY

PRINT 773

JK=J+1

NO 170 L=1.JK

K1=l

K?2=L+ JK

K3=L+2%JK

REAL(KYY=DATA(N)Y+R(KT)*R(K2)
CIMIKTIY=R((KT)*R(K?)

PRINT 72sR(KT)eR(K?2)eR(KZ)
CONTINUE

FORMAT (21XI9HFREQUENCY

PRINT 105

FORMAT (2E3748)

O12 L=1.JK

Z(LY)Y=SQRTF(RFAL(L)##2+CIML)#*

PRINT 1N08sR(L)e7(L)
CONTINUE

CALL EXIT

FND

\

COF VV YT 3HIMAGINARY

SEAL (x) yo ILM (K 1)

XGHMAGGN] TUDE

J

PROACFS

yREAL(CINN

OHREAL PART

3 1 r}
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Table D. 1

Frequency Response for a = 0.0

Frequency w

radian/unit time

)

J.1

0.3

0.6

1.0

2.0

3.0

4,0

5.0

6.0

7.0

8.0

9.0

10.0

15.0

20.0

25 0

Transfer Function

Magnitude Angle (°)

1.326

1.330

1.254

1.045

0.758

0.448

0.328

0.272

0.242

0.217

0.194

0.179

0.171

0.160

0.119

0.095

0.079

{

21

39

52

50

9

0

A0

61

61

62

63

-64

-70

77

-80

Approximate Transfer
Function

Magnitude Angle (°)

1.326

1.316

1.241

1.061

0.828

0.491

0.341

0.260

0.209

0.175

0, 150

0.131

0.117

0.106

0.070

0.053

0.042

0

7° 11

-20° 34

-36° 52!

-51° 21°

-68° 13"

-75° 5!

-78° 42

-80° 55

-82° 257

-83% 29!

84° 18"

-84° 55!

-85° 26°

-86° 57

-87° 43!

.83°9 10
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Table D.2

Frequency Response for a = 0.374

Frequency w

radian/unit time

p,

0.1

0.3

0.6

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

15.0

20.0

25.0

T'ransfer Function

Magnitude Angle (0)

1.292

1.283

1.220

0,764

0.704

0.455

0.320

0.258

0.215

0.176

0.155

0.139

0.126

0.124

0.086

0.049

0.017

26°30!

50930!

J)

3

109

130

-155

180

206

-233

-257

-283

-310

-420

-512

-603

Approximate Transfer
Function

Magnitude Angle(0)

1.292

1.282

1.210

1.034

0.807

0.479

0.333

0.253

0.204

0.170

0.146

0.128

0.114

0.103

0.068

0.051

0.041

0

8° 15

27°

49° 40!

72° 50°

-110° 40°

-139° 20!

-164° 12°

188°

211°

234°

256°

-279°

-300°

-408°

-516°

_623°
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Table D.3

Frequency Response for a = 1,0

Frequency Ww

radian/unit time

J

0.1

0.3

0.6

1.0

2.0

3.0

1.0

5.0

6.0

7.0

8.0

2.0

10.0

11.0

12.0

15.

L6.

18.

20

22

24

&gt; 5

Transfer Functior

Magnitude Angle (9)

0.860

0.847

0.797

0.656

0.452

0.262

0.239

0.259

0.267

0.241

0.186

0.127

0.0815

0.0692

0.0793

0.0837

0.0397

0.0340

0.0397

0.0287

0.0197

0.0216

0.0206

-

Ww

22

41

36

33

i 5

23

59

7h

106

-120

117

QQ

Q4

106

-127

-113

-114

-130

-112

-110

-114

Approximate Transfer
Function

Magnitude Angle (°)

0.860

0.830

0.790

0.62

0.46

0.225

0.225

0.306

0.275

0.275

0.20

0.15

0.125

0.108

0.132

0.137

0.078

0.106

0.078

0.080

0.075

0.064

0.048

0

10

20

38

51

490

32

35

45

51

7 FF

78.5

72FE

62

60

69

96.5

83 5

101

98

81

-100

QR
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Table D. 4

Comparison of Transient Data with

Results of Approximate Transfer Functions

a=0.374

ime AT AT AT AT AT AT

91 Csimulation °PPTOX: “simulation Capprox “simulation Cappr ox

“wd

0.044 0.45

0.088 0.70

0.132 0.93

0.197 1.23

0.285 1.47

0.329 1.72

0.438 2.09

0.482 2.20

0.570 2.46

0.635 2.64

0.767 2.97

0.876 3.23

3.964 3.43

1.140 3.78

1.315 4.11

1.753 4.79
2.191 5.30

2.629 5.69

3.067 5.97

3.506 6.18

3.944 6.34

4.382 6.45

4.645 6.51

0.23

0.45

9.61

0.815

1.35

1.53

1.96

2.12

2,43

2.64

3.05

3.34

3.64

3.86

4.32

5.00

5.48

5.82

6.06

6.23

6.35

6.36

6.37

0.02

0.05

0.09

0.13

0.09

0.02

0.44

0.69

1.18

1.49

2.01

2,38

2.66

3.02

3.43

4.26

4.90

5.36

5.70

5.96

6.13

6.28

6.34

0.00

0.00

0.00

0.00

0.00

0.00

0.40

0.53

0.94

1.15

1.68

2.14

2,43

2.96

3.42

4.31

4.95

5.40

5.77

5.93

6.09

6.21

6 22

0.11

0.26

0.45

0.74

1.09

1.24

1 57

0.26

0.53

0.75

0.99

1.29

1.42
1.61

1.68

1.78

1.84

1.93

1.98

2.01

2.29

2.52

3.01

3.36

3.61

3.80

3.93

4,03

4.10

4 14

1.65

1.82

1.91

2,02

2,07

2.19

2,27

2.53

3.02

3.37

3.64

3.74

3.99

4.10

4.19

4 23
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APPENDIX F

NOMENCLATURE

The subscripts "HY, "IN, "NH,", "inert" used with the mole fraction

y and the molal heat capacity C, denote the specie under consideration. The

subscript "feed! used with the temperature denotes the conditions of the gas

entering the reactor. The subscript ""a=0,374'" associated with the temperature

changes refer to the location 0.374 in the reactor where this change takes place.

The subscript j and n are used with the variables appearing in the finite difference

equation to characterize a location and an instant.

x

The superscript is used to denote the mole fraction in the feed gas.

The presence of a bar above a variable means that the Laplace transform

or the Fourier transform of it has been taken
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LIST OF SYMBOLS

\

A

3

A

t

4

1

A

%)
2

€

Co
C -

Pm

TT -

Py

To -

mM)

yt

+
. h

Cross sectional area of the catalyst ft

Symbol used to represent the quantity 6.2825 108p-0- &gt;

Total cross sectional area of the tubes ft”

Weighting coefficient used in the accuracy analysis of Chapter V

Constant appearing in the definition of function f(Eq. 5.6)

Coefficient of Eq. 5.20

Coefficient of Eq. 5.12

Coefficient of Eq. 5.22
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Weighting coefficient used in the accuracy analysis of Chapter V

Dimensionless group characterizing the feed composition

Heat capacity of the catalyst he

Heat capacity of the metal Er

Average molal heat capacity [Pao

Molal heat capacity of specie x [elo

Dimensionless diffusion group 2

1 h,S

Tavlor longitudinal heat diffusion Bl ......
hr OF

h.%
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Total pressure
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