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ABSTRACT

This work is an investigation of the dynamic behavior of an ammonia reactor.
The objective was to understand the dynamic behavior of this reactor in order
to allow for stable and optimum conditions of operation,

A mathematical model retaining the major transport, generation and accumu-
lation processes of enthalpy was derived and solved by finite difference
approximation methods on a digital computer. The results of the simulation
were interpreted physically by considering the changes occurring during a
transient for each transport and generation process of enthalpy. The changes
in temperature during the first instants of the transient resulting from a step
change in the feed temperature were described in terms of the propagation of
a thermal perturbation introduced at the entrance of the catalyst section, and
of the results of changes in the wall temperature separating the catalyst from
the feed gases,.

It was shown that because of the poor reactivity of the catalyst investigated the
rate of propagation of the thermal perturbation is almost unaffected by the

extent of the chemical reaction. The instability resulting from the ""blow out"

of the reactor was described as a '"snow ball' type of instability. The dynamics
of the reactor were demonstrated linear for perturbations in the feed temperature
smaller than 5°C around the conditions of maximum production. Under these
conditions the dynamics of the ammonia reactor were described by frequency
response curves, and by simplified transfer functions retaining the major
features of the transient,

The results of the present investigation were used to design and test an ideal
controller which was shown adequate to avoid the blow off of the reactor when
changes in ammonia mole fraction in the feed, occurred, but which did not
optimize the production of the reactor.
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Title: Professor Chemical Engineering Assoc. Professor of Chem. Eng.
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CHAPTER I

SUMMARY

The derivation and the solution of a mathematical model describing the
dynamic behavior of a Haber-Bosh reactor is the objective of this research.
All the previous investigations concerning this type of reactor have been
limited to its steady state behavior. They have demonstrated the extreme
sensitivity of the reactor to changes in the operating variables when it is
operated under the conditions of maximum production. As a first step
towards the design of an automatic controller providing safe and optimum
operation of this reactor, a description of its dynamics was needed. Since
experimental results on the dynamics of a Haber-Bosh reactor have not
been published, a mathematical model has been derived. The proposed
mathematical model lumps radially the reactor in three sections and takes
into account the longitudinal variations in temperature and composition .
Despite many simplifying assumptions, the proposed model is believed to
retain the characteristic features of the behavior of the reactor.

The proposed model consists ot four partial differential equations (one
mass balance equation and three enthalpy balance equations), Because of the
nonlinear terms representing the rate of reaction and the release of energy
by chemical reaction, there is no analytical solution to the mathematical
system to be solved. Finite difference analogs of these equations have been
derived and solved on a digital computer (IBM-7090). The convergence of
the numerical solutions obtained has been demonstrated. During the investiga-
tion of the computation method the use of the Stone-Brian method of approximat-

ing first order time and distance partial derivatives have appeared more effective
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in terms of computer time than the Courant-Isaacson and Rees method
recommended in the literature to solve the same type of equation.

The transient resulting from a step change in the feed temperature
to the reactor has been described both during an approach to a new
stable steady state and during the blow out of the reactor. During the
first instants of the transient the changes in temperature observed in this
reactor have been explained in terms

1. of the propagation of a thermal perturbation introduced
at the entrance of the catalyst bed,

2. and the results of changes in the wall temperature of
the tube separating the catalyst from the feed gases.

Near the entrance of the catalyst bed, the magnitude of the second effect
has been found so small that it could be neglected. Near the outlet of the
reactor it has been found predominant during the first instantsof the trans-
ient. A second change in temperature has been observed after the passage
of the initial thermal perturbation. The regenerative character of this
process has been found responsible for the slow approach to steady state after
the passage of the initial thermal perturbation through the reactor. The
changes in temperature and composition have been interpreted turough the
effects of the transient on each transport and generation process of enthalpy.
An analysis of the rate of propagation of the thermal perturbation shows
that it is dependent on the ratio of heat capacity of the gases and catalyst
charge but is almost unaffected by the extent of the reversible chemical
reaction under consideration. The poor reactivity of the catalyst
present in the reactor which never brings the reacting gases close to their
equilibrium conditions has been used to explain this observation.

It has been shown that the instability, resulting from the decrease of

the feed temperature below the '"blow off'' feed temperature, is of the ""'snowball"
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type: never before have oscillations in temperature and composition been
observed on the present model. To investigate the nonlinearity of the
process, the effect of step changes of different magnitudes has been in-
vestigated. For the standard conditions under investigation, perturbations

in the feed temperature have to be smaller than 5°C in order toconsider

the response as linear. Under these conditions the dynamics of the reactor
have been described quantitatively by frequency response curves generated from
t he transient results of the simulation. Simplified transfer functions

have been proposed to approximate the frequency response curves at these
locations. The physical interpretation of the proposed transfer functions has
confirmed the qualitative explanation otffered for the transient. For perturba-
tions outside the linear range of operation, resulting in the '"blow off'' of

the reactor, the simulation has been recommended as the only way to

d escribe and compute the dynamics of the reactor.

The resulis obtained from the linear behavior of the reactor have been
used to design an ideal controller which has been demonstrated to avoid the
"blow off'' of the reactor caused by an increase in ammonia recycled in
the feed. The proposed control scheme does not allow for optimization of the
production and the simulation derived in this research has been proposed to
test more elaborate control schemes which can both avoid the '""blow off' of the
reactor and optimize its production,

The recommendations for further work concern two areas

1. The description of the uncontrolled reactor during a transient
in its linear range.

2. The description of the reactor under close loop control conditions
and the derivation of an automatic controller optimizing the production
of this reactor.



CHAPTER 1II

INTRODUCTION

Every time one considers a reversible exothermic catalytic reaction,
the problem of optimum temperature arises. At low temperature when
equilibrium is favorable the rate of reaction are too small for industrial
purposes, at high temperature equilibrium is limiting and high degree of
conversion cannot be obtained.

For a single reaction, once the dependence of the rate equation with
temperature is known, it is possible to obtain the optimum temperature
profile as a function of the degree of conversion by setting the partial
derivative of the reaction rate with respect to temperature equal to zero,
Annable2 and Kjaerzl computed such profiles for the case of the ammonia
synthesis, using kinetic equations derived from Temkin works; ey A2
Calde rbank9 did a similar study for the sulfuric acid contact process.

In all cases the optimum temperature is infinite at the entrance of the
reactor when no products are present in the feed stream. This is due to
the fact that the reverse reaction has a rate equal to zero under these
conditions. As one proceeds down the reactor the optimum temperature
decreases as the conversion increases.

Because of the exothermicity of the reaction considered, the tempera-
ture inside the catalyst bed has the tendency to increase rather than to
follow the optimum trend, and consequently, such optimum profiles can
only be approximated in industrial reactors. One of the first attempts to
approximate such a profile was to use a series of adiabatic beds provided
with interstage coolers. The Chemico or Monsanto designed converter for
the synthesis Sulfuric acid and the Montecantini converter for the synthesis

of ammmonia still use this principle.
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But the most widely used type of equipment to carry out a reaction of
this nature is the Haber-Bosh converter, first designed for the ammonia
synthesis. In this reactor gas flow and heat exchange are arranged to
reduce the increase in temperature associated with the reaction and in the
case of stable operation to suppress the need for an external source of heat.
A specific design of the Haber-Bosh converter is described in the first sec-
tion of Chapter III.

The Haber-Bosh ammonia synthesis belongs to the category of "auto-
thermic process''; this term was introduced by Van Heerden34 to describe
exothermic reaction in which the heat required to bring the reactants to the
reaction temperature, is produced by the heat of reaction alone. Stable
conditions of operation for these processes are obtained when the heat
consumption is balanced by the heat produced by the reaction. Van 1’.—Ieerc;1er134E
was the first to explain the properties of such processes as the need of an
ignition by external heating, and the existence of a minimum reaction
temperature below which the reaction will ""blow out'"'. For such reactors
he reported that the most economical condition of operation, productionwise,
corresponds to the limit of stability. Logeais work22 along this line showed,
in fact, that the blow out temperature is different from the maximum pro-
duction temperature but is still very close to it: less than 5°C in the cases
he studied.

The actual problem in operating a Haber-Bosh reactor (Tennessee-
Valley- Authority Design) was reported by Slack Allgood and Maune. 29 The
existence of an optimum inlet temperature which is affected by the process
variables and the catalyst activity was described. As the rate at which gases
are fed to the reactor increases they reported that the stability of the reactor

decreases and that the reactor tends to '""blow out." In order to avoid this
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problem Slack, Allgood and Maune reported that the reactor was operated
away from its blow out limit and consequently away from the maximum
production conditions of operation.

In order to investigate the stability of the Haber-Bosh converter from
a steady state point of view, Van Heerden34 Kjaer,2'1 Annable2 and Logvs:a,is22
derived mathematical models describing the steady state behavior of the
reactor and studied on such models, the effect of the various design and
operating variables. The results of Logeais' investigations presented in
Chapter III, Section B confirmed the general findings of Van Heerden, and
demonstrated that the difference between the optimum temperature of op-
eration andthe "blow out'' temperature is very small under most operating
conditions.

Since the optimum feed temperature for a given feed rate is very close
to the blow out temperature, the reactor must be closely controlled if it is
to be operated at maximum capacity. The control philosophy proposed for
the ammonia reactor is presented in Chapter VI, Section G. To design
such a control scheme the dynamic behavior of the Haber-Bosh reactor
needs to be investigated around its optimum conditions of operation. The
objective of this thesis is to describe the dynamic behavior of an autothermic
reactor, in a way to improve the understanding of this widely used class of
reactor.

Dynamic studies of a packed bed reactor have been limited in most
cases to mathematical analysis, Furthermore, the amount of results
published to date is very small; due to the fact that any mathematical
model describing the transient behavior of packed bed catalytic reactors
includes nonlinear partial differential equations, without analytical solu-
tion, which have to be solved numerically. In Chapter III, Section C, the
attempts made to simulate the transient behavior of chemical reactors

are briefly reviewed,
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For both control and design purposes the necessity to undertake a
study of the dynamic behavior of the Harber-Bosh reactor arose, This
study with objectives and goals presented in Chapter III Section D is made
by deriving a mathematical model describing the changes in temperature
and composition as a function of time and distance within the catalyst sec-
tion of the reactor. The derivation of the mathematical model and the
assumptions built into the model are presented in Chapter IV. Since a
n umerical method of solution had to be used, rather than arbitrary kinetics
data and design characteristics, the present model uses the kinetics data
and the design parameters retained by Logeais22 in his steady state analysis
of a Tennessee Valley Authority (T.V.A.) reactor. The model as derived
will, in fact, apply to any type of reaction (sulphuric acid synthesis,
Methanol Synthesis) if provided with different kinetics or to other size of such a
design of reactor. Chapter IV, Section C considers the major assumptions
made in the derivation of the mathematical model, and estimates how close
the results of the simulation represent the behavior of a real Tennessee
Valley Authority ammonia reactor.

Chapter V presents the numerical method of computation used in solving
the mathematical model. The extensive computation required to solve the
mathematical model for any transient has been made feasible through the
use of a digital computer (IBM 7090). Most of the numerical methods
available to solve first order nonlinear partial differential equations are
excessively time-consuming. In this research finite approximations to
partial derivatives proposed by Stone and Brian30 for the solution of con-
vection problems are used.

The convergence of the finite difference approximations to the system
of partial differential equations describing the dynamics of the reactor was

tested and the results of this study are presented in Chapter V Section C.
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To specify the steady state gain of this process, the equations repre-
senting the steady state behavior of the reactor are solved by the same
method proposed by Logeais. The steady state conditions corresponding
to the beginning and the ends of the transient under investigation are
reported in the first section of Chapter VI.

The transient behavior of the reactor is investigated by making step
changes in the feed temperature. Chapter VI, Section B describes the
behavior of the reactor when the step change results in a stable condition
of operation. Chapter VI, Section C presents the same results when the
step brings the temperature beyond the '""blow out" temperature,.

The influence of the step size on the dynamic response of the reactor
is investigated and the results reported in Chapter VI, Section D. From
these results a region of dynamic linearity is defined. Within this region
of linear behavior, the dynamics of the T.V.A. reactoraredescribed by
the classical methods of linear control theory: frequency response curves
and approximated transfer functions. The results of this analysis presented
in Chapter VI, Section E are used to design an ideal controller operating on
the feed temperature of the reactor. The location of the thermocouple is
chosen to allow for large values of the controller gain.

In Chapter VI, Section F the effect of '""blow out" perturbations lasting for
a finite amount of time are investigated. The scope of this section is to con-
firm that the return of the feed temperature to its initial value brings the
reactor back to its optimum conditions of operation as long as the average
bed temperature has not decreased below the ignition temperature associated
with the optimum feed temperature,

In Chapter VI, Section G the results obtained with an ideal automatic
controller are reported during perturbations which would have resulted in

the '""blow out'' of the uncontrolled reactor.



CHAPTER II1

LITERATURE SURVEY AND OBJECTIVES OF THE THESIS

A, DESCRIPTION AND CONDITIONS OF OPERATION
OF A HABER-BOSCH REACTOR

The Tennessee Valley Authority reactor, (abbreviated T.V.A. reactor)
is a particular design of the Haber-Bosh reactor. Van Heerden used it to
characterize an autothermic process. The T.V.A. reactor was described in
several papers by G. L. Bridger, G.R. Pole and A.W. Beinlich, 71_.. B. Hein, 17
A.V. Slack, H.Y. Allgood and H.E. Maune, < J. Kjaer, 21, i, Annable‘2 and
B Logeais.22

A simplified diagram of the T.V.A. reactor is shown in Fig. 3.1. The

converter consists of two sections;:

1. A heat exchanger section presented at the lower
part of the diagram

2. A catalyst bed section presented at the upper part
of the diagram.

In the heat exchanger section, the feed gases A enter the shell side of a con-
ventional heat exchanger and are heated by the hot gases leaving the catalyst
bed section., The purpose of this heat exchanger section is to bring the feed
gases to a temperature high enough to insure a stable condition of operation
inside the catalyst bed section.

The feed gases leaving the heat exchanger section are mixed in G with
fresh feed gas entered in H and which has bypassed the heating section.

The temperature of the gases entering the catalyst bed section can be
consequently controlled within some limits by a proper setting of the bypass flow.

The catalyst bed section acts as a conventional heat exchanger and as a
fixed bed catalytic reactor. The preheated feed flows inside a large number of
small tubes imbedded in the catalyst. The heat produced by the exothermic
reaction is transferred to the feed gases ascending through the tubes and

raises their temperature until the gases reach the top of the reactor. There

=G
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Fig. 3-1
SIMPLIFIED DIAGRAM OF A TVA REACTOR
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the feed gases reverse their direction and flow down the catalyst bed where
the reaction takes place.

The outlet gases D from the catalyst bed section enters on the tube side
of the heat exchanger section before leaving the reactor. In order to prevent
the decomposition of steel by hydrogen at the high temperature (SOOOC) and
under the high pressure (300 atm) where the T.V.A, reactor is operated, the
reactor walls are insulated and cooled by a stream of fresh synthesis gas
entering the reactor at the top F and which is mixed withthe remaining of the feed
gas in A,

Operating data taken from a T.V.A. reactor were reported by A.V. Slack,
H.Y. Allgood and H.E. Maune, 29 and B. Logeais. &

Figure 3.2 represents a steady-state temperature profile measured in the
catalyst section of a T.V.,A. reactor whose characteristics appear in Appendix A,
The operating conditions corresponding to this run, as reported by Logeais,
appear in Table 3.1.

TABLE 3.1

OPERATING CONDITIONS CORRESPONDING TO THE
EXPERIMENTAL TEMPERATURE PROFILE OF FIG. 3.2

Space Velocity* 13,800 1/hr
Pressure 287 atm
Feed Composition mole fraction
H, 0.650
N, 0. 212
NI—I3 0.052
INERT 0.072
Production 120 T/day

%
- The space velocity used to characterize the feed rate of synthesis gases

is defined as the number of cubic feet of feed gases (under standard con-
ditions of temperature and pressure), per cubic foot of catalyst, per hour.
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The experimental temperature profile presents a maximum called
the '"hot spot''. In this run the "hot spot'' is located 6 feet down the reactor
and corresponds to a temperature of 518°C. The location and the magnitude
of the '""hot spot'" was reported to vary with operating conditions and catalyst
activity.

Since the catalyst used in this reactor (reduced Iron promoted with A1203
and KZO) is deteriorated when exposed to high temperatures, in operating the
T.V.A. reactor efforts are made to keep this temperature at as low a level
as is possible.

For a given space velocity and feed composition, changes in the hot spot
temperature can be achieved by changes in the inlet temperature to the reacting
section, that is to say, by different settings of the bypass stream to the heat
exchanger section. In fact, it will appear in the next section that changes in feed
temperature to the reactor affect not only the hot spot temperature but the

production and the stability of the reactor giving rise to the general problems

associated with the operating of an "autothermic process''.
B. STEADY STATE ANALYSIS OF THE TVA REACTOR

Van Heerden34 was the first to simulate the steady state behavior of a
T.V.A. reactor in his study of autothermic processes. Kjaer21 later proposed
a model which takes into account temperature and concentration variations in
both longitudinal and radial directions. The system of three partial differential
equations describing this reactor was then approximated by finite difference
equations and solved by hand computations. Because of this time-consuming
method of solution, the T.V.A. reactor was simulated for one set of parameters
only,

Logeaiszz returning to the one dimensional model of Van Heerden and with

the use of a digital computer carried out an extensive investigation of the
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effect of the design and operating variables on the steady state behavior
of the T.V.A. reactor,

For a given reactor, and for a given choice of the operating parameters:
space velocity, feed composition and operating pressure, Van Heerden and
Logeais reported that there is a feed temperature which maximizes the
production.

Figure 3.3, obtained from Logeais' results, describes the dependence of
the production rate with the top temperature of the reactor. Figure 3.4 relates
this top temperature to the feed temperature of the reacting section. The
optimum feed temperature which corresponds to a top temperature of 426°C
in the present case, is 2290(3. Furthermore, the feed temperature of 224°C
is found very critical as it is described below:

a. If the feed temperature is larger than 224°C: there are two top

temperatures corresponding to one value of the feed temperature. This
is to say that there are two different steady state conditions of operation
feasible for the reactor. Logeais reported that there are, in fact, two different
temperature profiles which would satisfy the steady state equations for the same
value of the feed temperature.

Van Heerden and Logeais described the steady state corresponding to
the higher conversion as a stable steady state; that is to say, a steady state
at which the reactor can operate.

They described the equilibrium corresponding to the lower conversion
as an unstable one. The reactor will not operate under these conditions unless
provided with the proper control scheme.

In differentiating between stable and unstable conditions of operation,
Van Heerden and Logeais used the following concept illustrated in Fig. 3.5

(which is a different method presenting the results described in Fig. 3.4).
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In Fig. 3.5 the difference between the top temperature and the feed

temperature (AT = Ttop B Tfeed) is plotted against the top temperature Ttop

for various steady state conditions computed by Logeais. For a given feed
temperature T;. Fig. 3.5 allows one to determine the corresponding top tem-
perature by intersecting the curve already presented with a straight line of
equation

AT =T - T (3.1)

e
-~

According to the values of TF it is seen that the straight line representing
Eq. 3.1 intersects the curve at one, two or three points corresponding to one,
two or three possible equilibrium top temperatures.

If the ordinates of Fig. 3.5 are multiplied by the average heat capacity
of the synthesis gas, it represents a quantity of heat., The straight line
represents the amount of heat which is absorbed by the synthesis gases
during their ascending travel in the tubes. The curve represents the amount
of heat which is available for heat transfer when the top temperature of the
reactor is allowed to vary. This amount of heat corresponds to the enthalpy
generated by the chemical reaction minus the excess sensible heat convected
by the gases at the outlet of the reactor over the sensible heat of the feed gases.
The intersections of the straight line and the curve correspond to equilibrium
conditions of operation for an autothermic process.

It can be demonstrated that the lower temperature (3 690C) represents
an unstable equilibrium by considering the effects of small pertubations in
the top temperature around this equilibrium value: A slight drop in the top
temperature results in the production of too little heat to maintain this tem-
perature since the heat transferred to the feed gas is larger than the heat
generated by chemical reaction; this will cause a further decrease in the
top temperature. On the contrary, a slight increase in the top temperature
results in production of too much heat to be absorbed by the snythesis gases

and gives a further increase in the top temperature. For this last reason
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the lower equilibrium temperature is called the 'ignition temperature''.
It is the lowest temperature at which the top temperature must be brought to,
before high conversion steady state can exist,

On the other hand, the higher temperature is demonstrated to be a
stable equilibrium since small perturbations around this condition will
bring back the top temperature to its equilibrium value.

b. 1If the feed temperature is smaller than 224°C there are no steady

state conditions of operation possible in the temperature range investigated.
There is, in fact, a steady state condition achievable for feed temperature
lower than 224°C but it corre sponds to almost no reaction.,

This minimum feed temperature of 224°C was called the ""blow out feed
temperature' by Logeais. In the case presented here the difference between
the optimum feed temperature and the blow out feed temperature is of the
order of 5°C. The fact that a small difference in feed temperature may create
such a large difference in the production of the reactor, shows the sensitivity
of the process under investigation to the temperature of the feed.

Logeais showed that the production of the T.V.A, reactor is similarly
sensitive to changes in other operating conditions: space velocity, ammonia
and inert mole fraction in the feed.

Figures 3.6 and 3.7 obtained from Logeais' work represent the relation
between the top and the feed temperature for various values of the space
velocity and ammonia concentration in the feed.

An increase in space velocity, that is to say, in feed rate to the reactor
or an increase in ammonia recycled in the feed have the effect of increasing
the "blow off'" feed temperature since the minimum of the curves presented
herehasincreased. Consequently, an increase in flow rate or ammonia mole
fraction in the feed which are not compensated by an increase in feed

temperature to the reactor will result in a ""blow off' of the reactor. Similar
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"blow off" will result from an increase in the concentration of inert in

the feed to the reactor or in a decrease in the catalyst activity. To

characterize the stability of the T.V.A ., reactor, Logeais determined the

changes in operating variables which would result in an increase by 10°C

of the '""blow off feed temperature'. These results appear in Table 3.2.

TABLE 3.2

EFFECT OF OPERATING VARIABLES ON THE
STABILITY OF THE T.V.A, REACTOR

Operating Reference
zariable condition
Space Velocity 13, 800
Ammonia Mole Fraction
in the Feed 0.05
Inert Mole Fraction
in the Feed 0.08
Catalyst Activity 1.0

Changes which result

ina+10°C change
of the ''blow out
feed temperature"

+600

+0.008

+0.024

-0.05

Assuming that the feed temperature to the reactor remains constant,

the changes in operating conditions described in Table 3.2 will ""blow out"

the reactor if the margin of security existing between the operating feed

temperature and the ""blow off feed temperature' is smaller than 10°C.

Since it was seen previously that the difference between the optimum feed

temperature and the ""blow off temperature' is equal to SOC, the perturbations

described in Table 3.2 will, in fact, blow off the reactor operating at its

optimum conditions of operation.

Slack, Allgood and Maune>?

reported that, in practice, the way to avoid

the blow off of the reactor is to operate with a security margin of 15 to 2556,

With the present conditions of operation such a security margin results in a
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daily production varying from 141 to 138.5 T/Day comparedtothe 143 T/Day
reported under the optimum conditions of operation.

If the reactor is already designed and is to be operated at maximum
production the extreme sensitivity of such a process to changes in the operating
conditions suggests the use of automatic control on this equipment. If the
reactor is to be designed for a given production, the engineer can avoid operat-
ing under the optimum conditions of production by overdesigning the catalyst
guantity to be placed in the reactor. For example, a 5 percent increase in
catalyst quantity will secure the required production with a 25°G operating
margin. At that time economical considerations need to be brought into the
picture. In this research the incentive to study the dynamic behavior of
the reactor comes from the existence of an optimum feed temperature which
is very sensitive to changes in operating variables. Since in this section gain
in productivity varying from 1 to 2 percent of the total production on already
designed equipment appeared feasible by the use of automatic control, it is
the scope of this research to provide the control engineers with the transient

data required to design and test various control schemes.

C. LITERATURE SURVEY ON DYNAMICS OF CHEMICAL REACTORS

The control of chemical reactors is playing an important role in
maintaining smooth performance of today's chemical plants and in assuring
the operation of a process under conditions as close as possible to the most
economical operating conditions.

To be able to achieve such a goal, the need to understand the dynamic
behavior of each class of chemical reactor emerges. Alan S, Fossl4 defines
the dynamics of a reactor as what '"encompasses the interplay of the rates
of heat generation, heat removal, chemical conversion, material transport

and fluid mechanical aspects, and their effects on the transient excursions
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of the major reactor variables such as temperature, concentration and
pressure. '

The first investigations in the field of reaction dynamics began in 1908
with the work of Hirniale on autocatalytic reactions. Both Hirniak and
Lotka23 discovered the effect of positive feedback on the reaction system.
Later on the autocatalytic effect of the heat produced by exothermic reac-
tions was studied by Frank Kz:\.nw.enetskii15 and Sa.linkov25 in relation with
their study of flame stability.

Denbigh13 for a reaction taking place in a continuously well stirred
reactor and Van Heerden34 for a tubular catalytic reactor, demonstrated
the existence of inherently stable and unstable steady states for exothermic
reactions whose rate dependence followed the Arrhenius law., Van Heerden
classified such processes under the name '"autothermic processes''. He
chose the Haber-Bosh reactor presented before as an example of reactor
to characterize the stability problems associated with autothermic processes.,

The phenomena describing the dynamics of well stirred reactors are re-
presented by ordinary first order differential equations. For this reason
the study of the dynamics of this type of reactor was the first to receive

attention. Amundson and his co-worker sl’ 4,31

carried an extensive study
of the stability of reactions performed in stirred tank reactors,.

They used the method of nonlinear mechanics as developed by Poincarre,
Liapunoff and Minorsky to describe the dynamic behavior of the reactor around
a steady state condition of operation. The perturbation method was used to
derive transfer functions characterizing the process. Bilous, Block and
Piret6 have reported transfer functions for several occurring kinetic
systems and for the case of a series of well stirred reactors,

The dynamics of tubular reactors are usually described by nonlinear

partial differential equations. For this reason the solution of the mathe-

matical systems describing these dynamics is more complex.
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Until today, two approaches have been used in this area.

1. Derivation of stability criteria from the steady state
condition of operation

2. Description of the dynamic behavior of the reactor
through simulation with the hope of defining transfer
functions when the reactor operates in the linear range.

Van Heerden,34 by steady state considerations, presented the stability problems
associated with the Haber-Bosh reactor in the case of the ammonia synthesis.
Logeaiszz extended Van Heerden's results by studying the effect on stability

of the design and operating variables. Derivation of empirical stability
criteria from a large number of steady state results obtained in a tubular
reactor were reported by Barkelew, 3 but are, in fact, limited to the geometry
and the form of kinetics studied. Bilous and Ammundson4’ ? using the per-
turbation theory presented a method to derive transfer functions for a tubular
reactor. The method they proposed results in expressions too complicated

to be used for control purposes and limited to small perturbations around a given
steady state. As soon as the kinetics becomes complicated or the geometry of
the reactor different from a simple tube with constant wall temperature the only
source left is the simulation.

Grotch and I‘(ipiniakl6 have simulated on a digital computer the transient
behavior of a fixed bed adiabatic reactor where butadiene synthesis is per-
formed. They assume that the fluid flowing through the catalyst is at the
same temperature as the catalyst particles and that overall rate constants are
valid all along the reactor; the expressions describing this system are identical
to the equations describing the dynamic of a tubular reactor. Their results were
not generalized to other kinetics but used to control and optimize the pro-
duction of this adiabatic catalytic reactor.

The most recent treatments in the field of reactor dynamics consider the
difference between the catalyst temperature and the fluid temperature.
Furthermore the effect of the resistance to mass and heat transfer between

the catalyst and the fluid is taken into account.
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Denbigh and Cannon12 considered the stability of a catalyst particle from

26,2

a steady state point of view. Liu Ammundson and Aris™ "’ ¢ extended Wicke

and Vortmayer's35’ 36,37,38

work simulating the transient behavior of a
packed bed reactor in which the first order reaction A-B, is occurring., Their
investigation considered both the case of an adiabatic bed, and the case of a
constant wall temperature reactor. Their model accounted for mass and heat
transfer resistance at the surface of each particle. Under these conditions
they reported that some particles along the bed can have one, two or three
steady states, one of which is always unstable.

According to Liu, Ammundson and Aris, when in the final steady state
each particle has a unique state, the reactor is absolutely stable and unique
temperature and composition profiles are obtained from all initial particle
temperatures. On the other hand, if any particle in the bed has multiple steady
states, the system will be unstable for a certain value of the feed condition and
the steady state profile obtained will depend on the initial particle temperature.
Even though they computed transients from one steady state condition to another
they did not attempt to describe these transients, concerning themselves only
with some pathological case of this system.

This brief review of the different attempts to represent mathematically
the dynamic behavior of fixed bed catalytic reactors shows that the problems
associated with autothermic processes have never been treated from a dynamic
point of view. Until today, the only data reported are dealing with the steady

state behavior of such processes as it was is presented in Chapter III, Section B.

D. OBJECTIVE OF THE THESIS
In Section B of this chapter the necessity to investigate the dynamic
behavior of the T.V.A., reactor appears fromthe extreme sensitivity of its

production to changes in the operating variables. Since the T.V.A, reactor is
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a packed bed flow reactor it falls into the class of distributed systems whose
dynamics have not been investigated extensively, as it appeared in Section C of
this chapter.

The objective of this research is to provide a mathematical model for
a T.V.A. reactor which could be solved numerically and would describe the
dynamic behavior of this widely used type of reactor. It is the scope of this
research to confirm dynamically the unstable nature reported by Logeais and
Van Heerden.

The dynamic behavior of the reactor will be described both during
a transient resulting in a stable equilibrium, and during a ""blow out' of the
reactor, in order to characterize the internal feedback existing between the
catalyst part and the heat exchanger part of the reacting section. Since the
results of this investigation are to be used for the control of the reactor,
the linearity of the dynamic results will be investigated. The method of linear
control theory will be applied to describe the transient data corresponding
to small perturbations. These results will be used in the derivation of a control
scheme, which will be tested on the simulation to control for perturbations in
the operating variables.

Besides the simulation of the dynamic behavior of the reactor, a major
objective of this research lies in the computational method used to solve the
mathematical model describing the reactor: It is the scope of this research
to test the Stone-Brian method of approximating time and distance derivatives

for convective problems in a nonlinear case.



CHAPTER IV

MATHEMATICAL MODEL OF THE T.V.A, REACTOR

A. ASSUMPTIONS USED IN THE DERIVATION OF THE MATHEMATICAL MODEL

In this research the mathematical model representing the dynamic

behavior of the reacting section of a T.V.A. reactor is a one dimensional

model. The temperature within the catalyst, the cooling tube, and the walls
of these tubes varies only in the longitudinal direction. This assumption
allows one to lump radially the reactor into four sections:

1. The empty tube section which includes all the feed gases
during their ascending travel.

2. The tube wall section which includes all the metal of the
wall separating the catalyst from the feed gases.

3. The catalyst section which includes all the catalyst
granules.

4. The reacting gas section which consists of the gas
flowing through the porous catalyst.

Furthermore, in this investigation the temperature of the reacting gases has
been assumed constantly equal to the temperature of the catalyst materials
through which they flow.

This additional assumption reduces the model into a three-lump model
which is shown in Fig, 4.1.

1. The empty tube section, represented by the temperature TT
2. The tube wall section, represented by the temperature TW

3. The reacting section, represented by the catalyst temperature TC
Throughout the model TT, TW and TC are only functions of two variables

time, and distance measured from the point in the reactor where the gases

reverse their flow direction.

It has been seen in the description of the reactor that the gases leaving
the empty tube section reverse their direction and flow into the catalyst
section. In this model the ""turn around section,' where this change of

direction takes place, is assumed to have a negligible hold-up. This is

B
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Fig. 4-1 Lumped Model of the Reacting Section
of the T.V.A. Reactor
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equivalent to say that at each instant the gas fed to the ""reacting section"
has the temperature and the composition of the gas leaving the empty tube
section.

In order to reduce the number of variables the catalyst basket has been
neglected in this study. This is equivalent to say that the exchange of heat
between the catalyst and its surrounding basket is negligible.

The geometry of the reactor considered, affects the model through the
total mass of catalyst, through the total weight of metal in the tube wall
section, through the amount of surface area available for heat transfer on
each side of the wall and through the coefficients of heat transfer on both
sides of the wall, since they are functions of the linear velocity of the gases.
The source of perturbation which can affect the reactor are classified into:

flow perturbation corresponding to the changes in feed
flow rate and operating pressure.

composition perturbations corresponding to changes of
the feed composition.

thermal perturbations corresponding to the changes of
the feed temperature.

With each of these sources of perturbation can be associated a time constant
which characterizes how fast the system will respond to such a perturbation.
If the reactor is at steady state and if the inlet flow to the reactor
suddenly changes, a pressure wave will propagate through the reactor at
roughly the speed of sound and the gas velocity at each point in the reactor
will start to vary as a function of time and distance. As a result of this
change in gas velocity changes in temperature profile will occur until a new
steady state distribution of temperature and concentration is achieved in the
case of a stable operation or until the reactor ""blows out'' in the case of an
unstable operation. The thermal transient which establishes this new steady
state is much slower than the phenomena involved in establishing a new flow
pattern. This study only considers the transient behavior resulting from

thermal perturbations. It is assumed that changes in flow rate, pressure
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and composition propagate instantaneously throughout the reactor and reach
at once the steady state value associated with the thermal condition prevailing
in the reactor at the considered instant. The results of this study are reported
for constant flow rate, pressure and feed composition and present transients
due to changes made in the feed temperature.

With the assumptions already presented, a material balance written in
the catalyst section and an enthalpy balance written within each of the three
sections completely describe the transient behavior of the reactor. In
deriving a material balance equation around an infinitesimal volume of
reactor the proposed model neglects the

accumulation of mass within this volume,

longitudinal diffusion of the reactants,

effect of pressure drop along the reactor on the

rate of reaction.
It is further assumed that the rate of reaction is expressed as a function of
temperature, reactant concentration and total pressure only. The same form
of overall rate of reaction is considered valid throughout the entire reactor.
In deriving an enthalpy balance around an infinitesimal volume of the empty

tube section the proposed model neglects the

accumulation of enthalpy in the gas phase,

transfer of enthalpy by conduction within the
gas phase,

transfer of enthalpy resulting from radiation
from the tube wall.

The only two fluxes of enthalpy considered in this section are:

the bulk flow enthalpy flux which represents the enthalpy
carried across the surface of the control volume by the
mass flow of gas and

the convected enthalpy flux between the gas and the
tube wall.

In deriving an enthalpy balance on the tube wall the proposed model neglects:

the longitudinal conduction along the metal of the wall

the energy radiated to the empty tube section and from
the catalyst
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The only mode of enthalpy transfer considered in this section is the convection

of enthalpy from the catalyst section and towards the empty tube section.

Provision is made in this model to store enthalpy within the metal of the wall.
In deriving an enthalpy balance in the catalyst section, the proposed

model neglects.

the temperature difference between the catalyst and the
gas in this section

enthalpy accumulation in the gas phase present in
this section.

The enthalpy modes of transport retained in this section are:

bulk flow enthalpy transfer as defined previously

convection of enthalpy between the catalyst and the
tube wall

enthalpy production by chemical reaction

enthalpy diffusion which represents apparent conduction

within the gas phase, solid-solid conduction, and radiant

energy transmission.

Enthalpy is stored inside the catalyst particles. It will be seen in Chapter V
that the introduction of the diffused heat is required to allow for the solution
of the simulation. In computing the enthalpy of the flowing gases it has been
assumed that, over the range of temperatures prevailing in the converter,
molal specific heats remain constant and independent of pressure.

In conclusion, the proposed model is a one-dimensional model which
allows for enthalpy storage only inside the catalyst and the metal of the tube
wall. The mass balance equation in the catalyst section and the enthalpy
balance in the same section are coupled through the temperature and composition
dependence of the rate of reaction. The distributed feed back effect due to
the coupling between the reacting section and the empty tube section is
accounted for through the convected heat term across the tube wall.

In spite of the numerous assumptions built into this model, it is expected

to provide the specific dynamic properties of an autothermic process.
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Chapter IV, Section C analyses the major assumptions to estimate how
close such a model will describe the dynamic behavior of an ammonia

reactor as the Tennessee Valley Authority reactor.

B. DERIVATION OF THE MATHEMATICAL MODEL DESCRIBING THE
T.V.A. REACTOR

1. Material Balance in the Catalyst Section

The mathematical model under investigation neglects both accumulation
of mass in the gas phase, and longitudinal dispersion. Consequently for a
given feed composition, the knowledge at a position in the reactor of the mole
fraction of one of the four components of the gas mixture (hydrogen, nitrogen,
ammonia and inert) is sufficient to determine completely the composition of
the gas mixture and the total number of moles flowing per unit of time past
that position.

In this investigation the mole fraction y of ammonia is used to express
the mole fraction of the three other components. If the feed composition

expressed in mole fraction is

% * * o

Yer 2 Yo 2 V¥ 3 ch
H2 N2 NH3 1

at a point down the reactor where the mole fraction of ammonia is y the
mole fraction of hydrogen, nitrogen and inert obtained by material balance

on each of these elements are respectively

£ *
(YH + I'SYNH )' (1-5 B YH )Y

y = 2 3 2
H - 3
2 14
NH,
b e B ey |~ BB~ . )
y 5y - (0.5 -y )y
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y; (1+y)

Y3 1+ %
YNH
3
As the ammonia synthesis proceeds with a decrease in the number of moles
present, the number of moles flowing past a position in the bed is a function
of the feed rate (F1b mol/hr) and of the degree of conversion at this position.
In term of y, the number of moles flowing past a position in the catalyst bed

is expressed by the following expression:

E
F(1+YNH3)
(I1+y)

(z)

A material balance on ammonia around an element of volume dV = A dz of

the catalyst bed results in the following terms:

F(1+YNH3)
(1+y) *

moles of ammonia entering
the section

% *
F(l+y ) F(l+y )
NH3 NH

T y+ 'c%li e d y| dz moles of ammonia leaving
y y the section
r A dz moles of ammonia produced
by chemical reaction
with:
s number of moles of ammonia produced per unit of time
and per unit volume of bulk catalyst (for the conditions
of temperature, pressure and reactants concentration,
present at that time, and position). —1-1—)—{%:)—13
hr ft
7L cross-sectional area of the catalyst bed ft2
Z: distance along the catalyst bed (measured from the

entrance of the gases into the catalyst section). ft
As mass accumulation is neglected the material balance equation reduces
to Eq. 4.1 where A has been replaced by the ratio of the catalyst volume V to

the total depth of catalyst 1.
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The boundary condition associated with this first order ordinary differential

equation is:
Y=%
NH3

The rate expression used in this investigation is of the form

3/2
PHZ PNH3
= 1 e = - !
t=K) Py, P B —372
2 " NH B
3 H
2
where:
K’l and K:Z are two specific rate constants
PN 5 PH and PNH are the partial pressures of nitrogen,
2 2 3 hydrogen and ammonia.

This expression where fugacities replace partial pressures has been
proposed by Mlills‘24 in his study of the kinetics of ammonia synthesis under
high pressure, Logeaisz2 has used the same expression with partial pressure
to correlate experimental results obtained by Sidorov28 and to successfully
simulate the steady state behavior of the T.V.A. reactor.

The following expression of the rate of reaction proposed by Logeais has

been used in this research:

where:

Kp is the equilibrium constant of the reaction
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P is the total pressure of the system in
atmospheres.

The specific rate constant K'Z is expressed in terms of temperature by

the following equation proposed by Logeais.

1.75 . 16 20,300 b, misle (Atm) Y 2
¢ € hr ft~ of catalyst

The rate expression can be expressed as a function of the mole fraction of

ammonia alone by Eq. 4.2

e LT5 5 1016 L 20,300, | 202 OQ;(@_Y);.S(e-y)
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The dimensionless groups a%l ‘%)({ and@ are function of the feed composition

(4.2)

alone through the relations:
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After replacing the rate expression r by its value in Eq. 4.1 and normalizing

for distance,and temperature, the material balance equation is written

1

d A 25.375 | 1 2(74’(@— b 12
a—% exp (- -—7-—'—) e [L sz ( y)

ref o

) @Y (lJrg)2
B -y 7] 14y

(4.3)

normalized distance = z/1

with a =

1 = total length of the catalyst section
v = Tc‘/Tref = normalized catalyst temperature
A = 1.75 1016 _P_0'5x359 = 6,283 1018 P-O'5
v = space velocity = number of cubic feed of gas

P (under normal conditions) fed per unit time

and per unit volume of catalyst

v _ Faieg L

o V hr

= K P
P

The effect of catalyst activity on this equation appears in the dimensionless

group
A

rerO
The dependence of the ammonia mole fraction y with feed rate is included
inside the same group through the space velocity Vo' As the reaction is
reversible and proceeds with a change in the number of moles, the effect of
pressure on the rate expression appears inside two groups ,I—,—P;—/_—— and L.,
ref o

As the reaction is reversible the effect of temperature on the rate expression

appears also in two groups

25,375

% exp (- ) and L

It was shown before that the effect of feed composition appears inside groups

A® € e,
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2. Energy Balance

a. Energy balance in the empty tube section: An energy balance around

an element of gas of volume a dz inside the empty tube section results in the

following terms:

F ﬁpo(TT—TB) enthalpy convected in
— d
F CPO(TT—TB) = {F CPO(TT-TB)J dz enthalpy convected out
hlsl
—r— (TW—TT) dz enthalpy transferred from the wall
with a cross sectional area of the tubes
TT = Temperature of the gas inside the tube
TW = Temperature of the tube wall
TB = Base temperature used to express the
enthalpy (298°K will be used)
[ =  Average molal heat capacity of the feed gas
P2 measured from the base temperature BTU/lb mole °F
hl = Average heat transfer coefficient between the tube o
wall and the gas in the empty tube section BTU/hr sq ft F
S1 = Total surface area available for heat transfer between

the tube wall and the gas in the empty tube section ft

The mathematical model under investigation neglects heat conduction along
the gas phase, radiation from the tube wall, accumulation of enthalpy within the
gas phase and assumes that Cpo is a constant independent of temperature; with
these assumptions the energy balance equation for the empty tube section is

written

4T  hS,
T = (Tp - T
1FC

pO

(4.4)

w)

which after normalization for temperature and distance reduces to Eq. 4.5

dw
- =B (w-m) (4.5)
TT
with W normalized temperature in the empty tube section = T
T... retf
ms: normalized temperature of the tube wall section = L

Tref
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B = 11 is the number of transfer units which characterizes
F-cpo one heat exchanger,

The boundary condition on associated with this first order ordinary differential
equation is

w:wfeedfor a=1.0

b. Energy balance in the tube wall: @ With the assumptions presented at

the beginning of this chapter an energy balance around an element of length dz

of tube wall results in the following terms

h.S
—-%—E (TC - TW) dz heat transferred from the catalyst
hlsl
o (TW - TT) dz heat transferred to the empty tube section
MC dTWr
lpm - dz heat stored inside the metal of the tube
with h2 average heat transfer coefficient between the wall and
the catalyst E——Z———TU =
hrft " F
S2 = total surface area available for heat transfer between
the catalyst and the tube wall. ft
’I‘C = temperature of the catalyst section °F

M = total weight of the metal inside the tube wall 1lb
C_= average heat capacity of the metal of the wall BTU/1b °F

t = time hr
The energy balance inside the tube wall is

aT
W = — — -
MC_ | —gp~ = BpS; (T - T,) - byS (T - To)

This equation normalized for temperature and time takes the form of Eq. 4.7

g ____dren =v -m - d(m-v) (4.7)
with T
v = normalized catalyst temperature
h.S ref
d = %S—l ratio of the resistance to heat transfer
2 2

on both side of the wall.
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_ 4 Cpm _ total heat capacity of tube wall
g h W <C ~ total heat capacity of catalyst
pc 4
w i total mass of catalyst 1b
C = average heat capacity of the catalyst BTU/Ib °F

pc
The normalized time 6 is given by Eq. 4.8

h.S
0 = ot (4.8)
pc
WC
H—g—l—)-s— is the time in hours re%uired to lower the temperature of the
272 whole catalyst bed by 1°C when the difference of temperature

between the catalyst and the wall is 1°C.

The boundary condition associated with Eq. 4.7 is

mia) = fla) at 6 = 0,
which is equivalent to say that the temperature distribution in the wall of the
tube is known at time zero.

c. Energy balance in the catalyst: As the reaction proceeds, the total

heat capacity of the flowing gas changes. If F_Cpo is the heat capacity of the
gas fed per unit time, at a position down the reactor where the mole fraction

of ammonia is y the heat capacity of the gas flowing per unit time past this

position is *
Y'YNH
3
where
B =y O Gy € e O fr
po” TN, “py TN, Upy TUNH; Tpyy iRy
2 2 3
is the average feed molal heat capacity. (C y & 3 o , C_ are
P, fn, P, *

average molal heat capacity of each component measured between the base
temperature and an average bed temperature assumed constant).

AG = 1.5 Cp + 0.5 C -C is the decrease in molal heat capacity

p P,
H, N, NH,

of the mixture resulting from the formation 1 1b mole of ammonia. In the
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remaining part of this chapter the ammonia mole fraction in the feed will

b
be represented by y only.

The total enthalpy of the gas flowing past a position in the bed is equal

to the sum of the sensible heat of the gas and of the enthalpy of the ammonia

expressed as function of the standard enthalpy of formation at the base

temperature AHO.

chapter, this amounts to:

%
_ Y=y
po Ac 1+vy

F[T

With the assumptions presented at the beginning of this

e
o

J[T, - Tal +F[AH ][y + 555

1+v

The energy balance written around an element of volume A dz of catalyst

results in the following terms:

enthalpy convected in:

e
_~

- ¥y
F[Epo Ac T
enthalpy diffused in:
3 TC
- DV A —5
enthalpy convected out
*
” ) A
F[Cpo Ac TG ] [Tc

E
Y—
¥y *T%

) o

3T _
- D' A ==

enthalpy diffused out

Enthalpy transferred to the wall

h,S,

1

[T, -T

-T

2 AeTY
g {f{ﬁpo Ac1+y
Y'l

als
L

* ¥y
+FAHO[V + 1+Y]

Bl

4 ¥y
+FAH0[Y + ]

NH3

Bl

][TC—TB] +FAHO[

aT

3
t 35— [-D‘A-jag-] dz

(T_-T_)dz

Enthalpy accumulated inside the catalyst
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W cpc 3 'I‘c
= FEE G
where D' = effective Longitudinal diffusion = e
o
ftxhrx 'F
The enthalpy balance in this section writes
aZT * BT h, S
D'V & _ y-v C AR
1 azz F[CPO'AC 1+y] 5z 1 (TC_TW)
1 +y* oV chc aTc
-F[AH -Ac(T_-Tg) y =L 55 (4.9
(1+y)
oy

The term in =5 tam be replaced by its value taken from Eq. 4.1

F(lty) 3y .V .
T

dZ
(1+y)
The normalized energy equation in the catalyst section writes
2 %

hYY y 8V .
+s(lhl+y)aa+vm

o |
o)

+ S¥ - [e+h(v-0.3725)] s vy 2wy [ ]

N [leﬁ(ﬁ -y)l'si& =) %, y -
y (B -y)

] =0 (4.10)

with
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The dimensionless group D represent the ratio of the effect of diffusion to

the effect of heat transfer towards the wall of the reactor.

s is equal to the length of a heat transfer unit for the catalyst
section taken as a tubular reactor.

e is a function of the starting composition through C = and repre-
sent, how many times T the temperature of 1 Role of feed
. o :
increases every time 1 mole of ammonia is produced at the
base temperature.

The fact that the reaction proceeds with a change in sensible heat and
at various temperatures is taken into account through the two correcting

factors.

3

e il
(1-n )

and

e + h (v-0.3725)

d. Boundary conditions associated with the energy equation inside the

catalyst section: The boundary condition imposed at the entrance of the

catalyst section is obtained by computing the enthalpy flux flowing past the
entrance position of the reactor from the left end side and from the right
end side of this position.

At the beginning of this section the assumption is made that the gas
leaving the tube section enters a 'turn-around section' of no heat capacity
where, the gases are well mixed. Consequently the temperature of the gas
in this Section is uniform and equal at each instant to the temperature of
the gas at the exit of the tube section. On the side of the entrance location
facing this section no diffusion occurs. The enthalpy flux entering the
reactor reduces to the enthalpy transported by bulk flow, which is written

F Cpo (TT(1= 0— TB) + F /_\.Hoy

The enthalpy flux flowing past the location inside the catalyst section within

an infinitesimal distance of the entrance is composed of the enthalpy trans-
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ported by bulk flow and of the enthalpy diffused longitudinaly. It is written

sk aTC
B)+FAHOY —DA(aZ)
a=0 a=0

FT _ (T - 4p
po €

D' being the effective heat diffusion in the catalyst section. By equating

the two values of the enthalpy flux the relation between TC and T
a=0 a=0
is obtained

D'A &L,

( )
CO.-:O Ta=0 FE: 0z a=0
Po

The boundary condition expressed under this form is equivalent to the
expression proposed by Danck\;\.fertsl:l and later discussed by Wilhelm and
‘.f\fe]:].ner.39

In the section dealing with finite approximation of the partial differential
equation the entrance boundary condition will be introduced by making a
similar enthalpy balance on a slice of finite dimension rather than to approxi-
mate directly Eq. 4.11.

The same concept of enthalpy flux applied at the end of the reactor

results in the equation

D'A aTc
Tc - * (az)
gzeili~g y =1-y Z=] -
F[C__ -Ac ]
L " po 1 z=1
D'A o
=Tc h % (oz )
z=1+¢ y l‘y z=14¢

72
F[ po—AC L+ y

where D' is the effective conductivity in the section following the catalyst.
Intuitively one cannot imagine a discontinuity at the outlet of the reactor
and as ¢ becomes smaller the temperature on both sides of the outlet boun-

dary must tend to the same limit.
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Tc = TC as € —- O
z=1-¢ = 1.+ e
Under these conditions the boundary equation reduces to
oT . 3T
c C

( ) = wr | )
@8 z=1-¢ ’ S z=1+4e€

When the packed section is followed by a section where no diffusion occurs
(D" = 0) the boundary equations reduces to the form proposed by Danckwertsll

that is to say

< ) =0 (4'12)
V4

In the section dealing with the finite approximation of the partial differential
equation the same flux balance will be made on a slice of finite dimension
and use will be made of Eq. 4.12 in computing the heat diffused out of the

considered volume of catalyst.

C. DISCUSSIONS OF THE ASSUMPTIONS INCLUDED
IN THE MATHEMATICAL MODEL

In this section the more critical assumptions introduced into this
model are discussed and the steady state results obtained with the present
model will be compared with the experimental results presented in Section

B of Chapter III obtained by Slack, Allgood and Maune. e

1. Effect of Neglecting Radial Temperature Gradient

In the T.V., A reactor previously investigated by Kjaeer and Logeaiszz
experimental results provided by Allgood and reproduced in Table 4.1 show
a strong dependence in the temperature at various depths in the reactor with
the radial location of the thermocouple measuring this temperature. The off
center thermocouple indications differ from the center temperature by more
than 80°C near the outlet of the reactor. This temperature difference which

if representative of what happens in the reactor will invalidate the present
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Table 4.1

Experimental Temperature Profile

Location Center Thermocouple off Center Thermocouple
Ft. o °c
0 428 421
1 439 432
2 456 446
3 493 475
4 528 500
5 544 514
6 549 518
7 549 516
8 546 509
9 543 500
10 540 493
11 535 481
12 532 468
13 529 463
14 523 455
15 517 444
16 511 438

17 505 424
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assumption, was explained by both Kjaer and Logeais in terms of the location
of the thermocouple well with respect to the cooling tubes. Figure 4.2

shows the thermocouple arrangement for both the center thermocouple and
the outer therimocoupie. The center thermocouple well replaces a cooling
tube while the off center well is located in the middle of the equilateral
triangle formed by three cooling tubes.

The hatched area of Fig., 4.2 is cooled by two cooling tubes in the case
of the outer thermocouple and by three cooling tubes in the case of the off
center thermocouple. This qualitative explanation proposed first by Kjaer
was confirmed quantitatively by Logeais who was able to match the indica-
tions of the center thermocouple for the same feed conditions by using in
his model a heat transfer area equal to 2/3 the heat transfer area really
present. Kjaer, furthermore, computed radial temperature profiles inside
the T.V.A, reactor due to the existence of the basket surrounding the
catalyst and the cooling tube embedded in the catalyst. He concluded that
the radial temperature variations are practically negligible for converters
with internal cooling.

Even though complete experimental evidence supporting this assumption
is lacking, it is the author's belief that the assumption of uniform radial
temperature and composition is justified as a first approach to the descrip-

tion of the dynamic behavior of this class of reactor.

2. Temperature Difference between Catalyst and Gas

The magnitude of the steady state difference in temperature between the
catalyst and the gas flowing through it has been investigated experimentally
by Jakobzo for the case of hydrogenation of ethylene. He found a temper-
ature difference of the order of 1°C. Wilhe:lrn40 reported that experiences

in his laboratory indicate this order of magnitude for moderate reactions.
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Since the reaction takes place on the catalyst particle, the steady state dif-

ference in temperature between the catalyst Tc and the gas flowing through

it TG can be expressed to a first approximation by the equation
AHr
Ty -TG: hv (4.13)

where AH is the heat of reaction (BTU/lb mole), r the reaction rate
(Ib mole/hr ft cube of catalyst), hv the heat transfer coefficient per unit

19

volume of catalyst. Gamson, Thodos and Hougen have proposed a cor-
relation for the heat transfer coefficient between gas and solids in packed

beds which can be used in this section to estimate the steady state temper-

ature difference between the catalyst pellet and the gas flowing through it.

=t

he-¥-1,064GC N _"2/3 @ 04
& P pr

') (4.14)

re

<

for 350 < N_ ,< 4000
Te

where a_ is the particle surface area per unit bed volume sq ft/cubic ft.

-

G mass velocity 1b/sq ft, hr

CP heat capacity of gas B'I'U/l()OF
" DpG

Nre’ modified Reynolds number _—B—H

N Prandlt number

pr
DP particle diameter (ft)

Under the conditions existing in the T.V.A, reactor the maximum tempera-
ture difference computed exists at the entrance of the reactor where the
rate of reaction is maximum and amounts to 2.3°C. This difference in
temperature decreases as one proceeds down the reactor to amount to
0.6°C at the middle of the reactor and 0.4°C at the outlet. These results
confirm the 2.2°C maximum figure reported by Kjaer. i

It appears that neglecting the temperature difference between the
catalyst and the gas flowing through it; is justified for steady state computa-

tions, In order to prove that this justification can be extended to the
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transient case a very simple model is proposed which can show how fast
the gases flowing through the bed at a certain location will respond to changes

in the catalyst temperature at that location.

Te
T
5 1:; SIS

The dynamic heat balance equation relating the temperature of the gas in
the slice of length § L, considered as a well stirred tank, to the temperature

of catalyst is

dT
G
= + o} S~ s
GAC (TG TF) eAdLp_ Cp Tt Aéth(TC TG) (4.15)

where A is the cross-sectional area of the reactor (empty), ¢ L is the length
element over which the temperature can be considered as constant pg the
density of the flowing gases, € the void fraction of the catalyst.

If one considers only changes in the catalyst temperature the transfer
function relating the Laplace transform of the changes in gas temperature
5 TG to the Laplace transform of the changes in catalyst temperature ¢ TC

is written

hv
6 T € C
ol PgPg (4.16)
5 T G hv
C s + [6 -+ ]
Le € C
Pg Pg Pg

This equation represents the response of a first order system whose time

constant T is represented by Eq. 4.17
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T = c + hv (4.17)
d Le € C
pg pg Pg

In order to estimate how fast the temperature of the gas changes with changes
in the catalyst temperature it is useful to compare the value of T so defined
with the time constants associated with the other transient phenomena.

It should be noted that the present model is only approximate since it
breaks the reactor down into a series of well stirred tanks of length 6 L, At
the limit, as & L goes to zero the series of ordinary differential equations

becomes a partial differential equation of the form

ﬁﬂj - _
NT 5—'1—;— + (‘TT S+l) TG = TC (4.18)
where

G

N =

T €
pg

€ p Cp
PRl S |
T h

Conclusions are almost impossible to derive from this partial differential
equation without solving it since TC is in this case function of distance .

Nevertheless Eq. 4.17 shows that always

€ p Cp
T<._._._.g._._._g_.

hV

The upper limit of T encountered in this reactor is of 0.07 seconds. Con-~
sequently if the catalyst temperature at any location changes suddenly
because of changes in the rate of reaction it would take less than 0.3 sec.
(4 time constants) for the gas flowing through it to approach the new steady
state value associated with this catalyst temperature. The analysis pre-
sented in this section justifies the assumptions made in neglecting the tem-

perature difference between the catalyst and the gases.



5] -

3. Relative Magnitude of Enthalpy Storage

The enthalpy is stored in the reactor inside the gas phase in the empty
tube section and in the catalyst section, inside the wall metal and inside the
catalyst pellets. The enthalpy storage will arise primarily into the system
having the higher heat capacity, that is to say, inside the metal of the wall
and in the catalyst pellets.

Table 4.2 presents the relative magnitude of the heat-capacity in
each section of the reactor. For comparison purposes, the results are
presented as the ratio of the heat capacity of each section to the heat

capacity of the catalyst, )

Table 4.2
Total heat capacity of catalyst 1.0
Total heat capacity of tube wall 0.30
Total heat capacity of gas in the tube section 0.007

Total heat capacity of gas in the catalyst section 0. 025%

A void fraction of 1/2 was used in this estimate

From the figures reported in Table 4,2 it is clear that the accumulation of
energy inside the metal of the wall cannot be neglected in this investigation.
Furthermore, the accumulation of enthalpy in the gas phase both in the
empty tube section and in the catalyst representing less than 3 percent of

the total heat storage capacity can be neglected.

4. Residence Times Compared to Thermal Time Constants

In Section A of Chapter IV it was seen that the proposed model does
not take into consideration the flow and pressure variations during a

transient and, furthermore, neglects the accumulation of mass in the gas
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phase. This simplification was proposed in view of the small residence time
experienced by the gas in the reactor compared to the time constants as-
sociated with the transient of the system.

For the standard conditions investigated the residence time of the gas
in the empty tube section amounts to 2 sec. while in the catalyst section it
amounts to 15 seconds. On the contrary, if by analogy with a heat exchanger
the time required for a perturbation entering the top of the reactor to travel
the entire reactor is computed, a value of 375 seconds is found. Always by
analogy with a heat exchanger if the ratio of heat capacity of the catalyst
per unit volume of reactor to the amount of heat transferred per unit vol-
ume of reactor per unit time for a one-degree driving force is used to
characterize the rate at which the reactor responds to a thermal perturba-
tion it is found that the value of this time constant is equal to 160 seconds.

From these figures it has been found that the transient associated with
the establishment of a flow and pressure pattern are much faster than the
transient resulting from the establishment of a thermal profile. Consequently,
under the flow conditions at which the reactor is operated, the assumptions
uncoupling the pressure and flow transient from the thermal transient and

considering the first one as extremely rapid appears justified.

5. Comparison of Computed and Experimental Steady State Results

With the choice of parameters corresponding to the conditions of Table 3.1
the agreement between the experimental results and the computed steady state
profiles appears in Fig, 4.3. A relatively good agreement is obtained as far
as temperature profile is concerned, however the model production is 120/0
higher than the reference production. The assumptions of uniform radial
temperature and composition, and the use of a rate of reaction obtained for a

22 ;
different catalyst have been offered by Logeais ~ as explanation of these
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discrepencies. The results of this simulation will only approximate
quantitatively the dynamic behavior of the T.V.A, reactor from which
Allgood, Slack, and Maune results were taken., Nevertheless, it is
believed that the transient computed by the proposed mathematical model

retain the main features of an industrial ammonia synthesis reactor of this

type.



CHAPTER V

COMPUTATION METHOD

There is no analytical solution tothe system of nonlinear partial dif-
ferential equations describing the dynamic behavior of the autothermic reactor

which is presented below:

dv + s(1 hy-y* ov " DBZV

Rt Rl R e

-[e+h (v-0.3725)] s v =0 (4.10)

ow

& - B (w-m) (4.5)
om

g g = v+ dw - m(l+d) (4.7)

2
)
o - A (4.3)

1+y

Consequently, finite difference approximations to these equations were
derived and the resulting finite difference equations were solved on a digital
computer.

Let j be the subscript used for distance and n the subscript used for
time such that the normalized temperature v at a distance a = jAa from the
top of the reactor and at an instant € = nAOfrom the beginning of a run is v,

In the first part of this chapter the finite difference analogs used to repre-
sent each equation are presented.

The sequence of computation retained to solve the system is as follows:

| S olution of the ordinary differential equation representing the

energy balance inside the empty tube section (Eq. 4.5) coupled with the equation

55
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representing the energy balance inside the tube wall section (Eq. 4.7). In
solving this last equation use is made of the old value of the catalyst tem-
perature; (Vj,n)'

2. Solution of the partial differential equation representing the
energy balance inside the catalyst section (Eq. 4.10). In this solution the
temperature of the wall is expressed implicitly as a function of the old and
new temperatures on both sides of it,

3. Solution of the mass balance equation inside the catalyst
section (Eq. 4.3) using the values of the catalyst temperature derived in
Step 2. Once this cycle is terminated the time is advanced by A© and the pro-
cess is resumed. The Fortran program of the computer scheme so derived
appears in the Appendix.

In Section B of this chapter, the computer scheme used to approximate
Eq. 4.10 is tested for stability and accuracy on a linear partial differential
equation obtained by linearization of Ey. 4.10. In Section C of this chapter,
the convergence of the proposed scheme is demonstrated for both Aa and A©G.

In approximating Eq. 4.10 a method directly derived from the Stone—Brian3O
method of solving convection problems is used. In Section D of this chapter

the results obtained in the present simulation are compared for efficiency with

the results obtained with the Courant Isaacson and Rees methodlo of approximation,

A, DERIVATION OF THE COMPUTER ALGORITHM

1. Variable Distance Grid

In preliminary investigations the need for a variable distance grid along
the bed appeared. The distance increment must be very small at the entrance
of the catalyst section and can be fairly large at the outlet.

In order to achieve these results, the following change in variable is used:

a = £(€)
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The new distance variable £, so defined, varies from 0 to 1.0 as a
varies from 0 to 1.0 and is divided in increments of equal size AE. The
original distance position aj is represented in terms of the new variable £
by equation

a; = f(j x Ag) (5.1)

From Eq. 5.1it is seen that the increments Aa are variable if f(£) is a nonlinear
function of £ and can be varied as desired by a proper choice of the function f.

The system of partial differential equation rewritten in terms of € reduces to

*

y-y
8y . [ Di" 8(l-hSs) oy
L) 3 = ] JE
£ £
D 8°
+ v-m - _‘:’2- [e+h (v-0.3725)] sr= 0 (5.2)
f 9E
8 1
5‘%’ = Bf (w-m) (5.3)
g ag}e} = vidw - m(l+d) (5.4)
oy _ ¢ () (5.5)
=3f o ~
-rg 1ty

The function f used in this study is of the form
. 2
a=af + (l-a) € (5.6)

the case a = 1.0 corresponding toa = g,

The first and second derivatives of f are, respectively,
1
f = a+2(l-a)E (5.7)

£ = Pl-a) (5. 8)

1 1"
The functions f and f are known at any position and can be entered into the

finite difference analogs without difficulty, as will be shown later,
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2. Solution of the Energy Equation for the Gas in the Empty Tube Section

The ordinary differential equation

ow

oE = B f!(w-m) (5.3)

is solved by using the implicite finite difference approximation appearing

in Eq. 5.9.

1 1
s

Wkt 15 bl b g o e, AT, ael
= = | z

AE Pl

T T e R |
; z

(5.9)

In this expression the values of the wall temperature at time n+l (mj’ n+1) are
unknown, They are given by solving simultaneously the energy equation for
the tube wall (Eq. 5.4).

The ordinary differential equation (5.4) is approximated by the following

finite difference analog

m, -m., dw, dw,
j,ntl j,n _ v + j.ntl + jg,n

g ADO j,n S

(1+4d) mj,n+l (1+4d) mj,n

- 3 o 5 (5.10)

The value of the catalyst temperature at time n+l being still unknown, v is only
expressed in terms of its value at the old time.

Equation 5,10 can be solved for m.

jantl
(1+d)A ©
= i + —(I—H)—fG—AC v
mj,n+l_ g+__2___(j+ DAC m’n g+—_.|__zé— J

dAG
E [w +w. ]
54 (I+d) AC j,n+l § g1

(5.11)
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which is rewritten for simplicity as

1= 23V; + b (w )+c rnJ " (5.12)

mj,n+ j,n i n+l ’

After substituting the value of nnj expressed by Eq. 5.12 into Eq. 5.9 and

,nt+l

solving for WJ. iy S8 obtains

1. B8 5 (f'j+l ¥ f;) (1-b )

W, = . — X W,
ool PR gy fj)x(l-b') Ly el

1
A 1 .t
E’-—%—;— X (f'+l + j.)
+ = J J x [ v. +v. ]
1+PBS o (5 4+ £ x(1-b ) jthn = g,
Z! jtl 7 )
t[SA 1
C g !
T“ £.,: = I,
. Jtl J) x |1, m ] (5.13)
j+l,n {48 :

5 (£ +fJf ) x (1-b')

The computation process is a marching process originated at

j4+1 = NSTOP (E=1) with

“NSTOP = Vfeed
This marching process is stable as long as
1 ! !
Bifgy & 1.} fl=b)
is positive which is always the case in this study. As a result of this

investigation the temperature of the gas leaving the empty tube section Wi

is known.
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3. Solution of the Energy Equation in the Catalyst Section

A finite difference analog derived from the method presented by Stone
and Brian30 is used to approximate the partial differential equation repre-
senting the energy balance inside the catalyst section (Eq. 5.2). The dis-
tance and time derivative are respectively approximated by the following

expressions poposed by Stone and Brian.

8% Ve g oYy et ¥ Youn, aa
5E “ 20E%

T Rt L ST

+ (5.14)
2AE
dv  Vi+l,n+l ~ Vj-1,n+l |, Vj+l,n ~ Vj-1,n
5% - IRE + nE (5.15)
ov _ Vitln#l” Vj+l,n (% g1™Vi 0l P
20~ 6A0 3A0
Ve - V.
+ j-1,n+l j-1,n (5.16)

6A0
The remaining part of Eq. 5.2 is called a source or sink term according to
the position along the reactor,

It is of the form

V= v-m- [e+h(v—0.3725)] sr

Because of the nonlinearity of the rate of reaction term r, it is impossible

without iteration to express r in terms of its value at new time represented by

rj’ e Consequently the source or sink term has been weighted in time and
distance for the part v-m and only in distance for the remaining part. Equation 5.17

represents the approximation adopted for y



wp ] =

v = VitLntl T My+lntl o Yjindl” Mondl L Yi-1,n41” Mol a4l
B 12 3

Vitl,n ~ ™j+l,n

e 1z

1
-z [e + h(vj+l,n - 0.3725)] sr (Vj+l,n’ ¥i%L, o
: 0.3725
-3 [e+h(vj’n- S128)] &= (Vj,n’yj,n)
1
mop [e + h(vj-l,n - 0.3725)] sr (vj-l,n' yj-l,n) {5.17)

In this last equation the value of m,

5, akl could be replaced by its value obtained

in the previous section (Eq. 5.12). However, it is preferable to rewrite the
energy equation onthe metal of the tube in order to use both values of v and w
at new time. The ordinary differential Eq. 5.6 is now approximated by the

following finite difference analog,

mj,n-l-l B rnj,n B Vj,n+1 * Vj,n + d(Wj,n+l+wj,n)
AO N 2 2
(I+d) x (m. - ,, + m. )
A j,ntl Joim
o > (5.18)
Equation 5.18 solved for m., is written:
j,ntl
(1+d)A©
_ 2
M ndl = (I+d)AD * ™Myn
g + —
2
+ waa  * [¥,aet Y0l
g + S S
dAO
=3
bmsarmre =Y aat Y sl (5.19)
g+ ey
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AC
g- (I+d)=
This finite difference analog is stable since — A AD is always smaller
i i
than 1 as (1+d) > 0. For simplicity Eq. 5.19 is written as
ST L VR LA L L
+ ¢[m, ] (5.20)
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After replacing the derivatives by their values in Eq. 5.2 and the source
or sink term by Eq. 5.17 the energy balance in the catalyst section takes

form of Eq. 5.21

Y . =Y
” Js 11
D f!! il - B g
5 1 B D + j + Jja - 1
j+1, ntl 6 AO ij Agz PE fJ! 4 A
l1-a 2 D l1-a
i o i + +
12 } jyntl { 3A0 f'ZAgz 3 }
Yo =¥
D " S(l-h ]_J,n )
+v S, . - [ L. D J
j-1,n+l 6A O Zf!2A§2 fJ!S fJ‘
1 l-a
Y aar T iz
S
~§
_3 dsnm
i " D ! S T4y, o ) g
. o bl
2f1°AE J
J j
_ l1-a iy 2 _ D _ ] =id
12 jyn {380 T 7.2 3
J ala
Y p—
8L~ B 2
i 5 DAY ( 1+y, ) .
r Y aadtaet = * 3 + 2 X TAE
J7 % 2f1°AE fj j

b B
P gl By B g PV B e P & S

¢4l

iz *

+ (mj+1,n+ mj-l,n) x
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1
7 [e+h (Vj-l,n‘ 0.3725)] sr (Vj_l’

n’Vj-l,n)
+ = [e+h (v, -0.3725)] sz (v, ,y. )
3 jy B P
1
ul [e+h(vj+1,n- 0.3725)] Sr(vj+l,n’Yj+1,n) (5.21)

which can be arranged in the form of Eq. 5.22

a. b

5 Vj-1,n+1 d (882

i Vientl b S5 Vnel, nt1 T 9

The stability of such a finite analog is impossible to analyze rigorously be-
cause of the nonlinearity present. In Section B of this chapter a stability
analysis will be carried out on the equation obtained by linearizing Eq. 5.2,

that is to say, on an equation of the form

2
D 5'2 v &Y _3Y _Rv=o0 (5.23)
3E g 3

As each equation 5.22 contains three unknowns, the solution of the finite
difference analog consists of solving a system of linear equations whose
matrix of coefficient is a tridiagonal matrix.

In order to truncate this matrix, use is made of the boundary conditions
at the entrance and at the exit of the reactor as expressed in Chapter IV. In
this Chapter the boundary condition associated with the partial differential

Eq. 4.10 has been presented as

= X3 (5.24)

Rather than approximate the derivative (—a—g—) in terms of finite differences,

)
the concept of enthalpy flux presented in Chapter IV to derive Eq. 5.24 is

used here to make an energy balance around a slice of finite dimension.
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Using the same notation as in Chapter IIl an energy balance written around

the volume of catalyst enclosed within the planes located at a=0 and a= Az—a

from the entrance of the catalyst section results in the following terms:

S %
enthalpy convected in: F Cpo [TT =l TB] + FAH y
Yo =7
enthalpy convected out: F [?0 -AC —_iz_l__———-—— ] [TC - TB] +
P YAa Aa
2 . -3
Tam ~ ¥
2
FAH [y + q477—]
o I+ YAq
2
5 o T
enthalpy diffused out - D'A (=—
Az
Aa
&
enthalpy transferred to the wall
h,s
2"2 AZ
1 z (Tc‘ Tw)
enthalpy accumulated
WC =
Pe Az aTc:
1 2 at

where the subscript %i refers to the position located at _AZE_ from position

1. The energy transferred to the wall and the enthalpy accumulated inside

the catalyst are expressed as functions of an average temperature within the
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slice 0 + ézi (represented by a bar). After rearrangement and normalization

the enthalpy balance around the slice 0 ézi is written:

28 W YAa - ®
b 28 1y 7z Y) 4 2D' (v,
Aa, Ao, VT Ity VAa Aa Da 'Aa
: Ao T 23
=
— v
- (v=m) + (e-0.3725h) s T = g5 (5.25)

In deriving a finite difference analog to this equation, the weighting coefficients
proposed by Stone and Brian are used. Wherever possible the variables are
expressed both at new time and at old time. The value of the variables at the
position QZE is taken as the arithmetic average of the value of the variables

at position 1 and 2.

= — (5.26)

The finite difference analog of Eq. 5.15 is written

Yi,n Y2

b3

s 1 TR I
SXWl’n-l-l wal,n s p Y
Aa R - Aa (b T ) x
i i i Y1,n" 2,0
} o B Sl
2
v +v +v +v
I Zan SR BB 4 s e 0, 172501
[-2_ - (V iy )+ L (r(Vl’n, Yl’n)'!'r(vz, n’ YZ, n) )]
3 1,n’Y1,n' " 3 2
D
y N [ L LT
1 1 ™1, 041" ™2, 041
— 3 2
+ 3 [rnl,n+l+rnl’nl + == [ >
m 1
l,n 2,n L 1
¥t ] m o (Y ani T ¥ sl



21 V1,n+1+VZ,n+1 5 lym " Zen _

'6"[ 2 2 1=

Y i [Vl,n+l+V2,n+1 T
2 "1,n+l Y1,n . A 2 2 ] (5.27)
3 AO 3 AO '

This expression can be rearranged in the required form to truncate the tri-
P g

diagonal matrix, that is to say

b (5.28)

+ =
L ¥ e 1 YO i &Y

The same concept of rewriting the energy equation for half a slice is used in

deriving the end boundary equation. The enthalpy flux leaving the reactor is

equal to
B b
- YN_Y . sk YN-Y
FIC, - 8¢ Tayg I [Ten Mol + FAR [V + 15— ]

An enthalpy balance around the column of catalyst enclosed within the planes

located at - ézE and 0 from position NSTOP results in the following terms:

Enthalpy convected in:

s *
F[C.p -AC Ty ] [TC - TB] + FAHO[Y Ty ]
B N. 4o N - A2 N- Ao
2 2 2
enthalpy diffused in:
STC
-D'A {55)
Aa
Lkt

enthalpy transferred to the wall:

2 2 z ———
1 é.?._ (TC-TW)

enthalpy accumulated inside the catalyst




_68-

In these expressions the subscript N- Aa/2 refers to the position distant by

Aa
2

the enthalpy balance is:

from the outlet of the reactor. After rearrangement and normalization

YN__A_G' -Y y V*
2s 5 2s N~
— {l=h ) v - (1-h ) v
x TFy e @ n. Q¢ ~ Aaj ¥y W
N- 5= .
| I -
e ilz (aZ) +(e-0.3725h)s r - (v-m) = —S—Y— (5.28)
Aa
L

With the same method of approximation, the finite difference analog to this

equation is:

S_ (1-n P R ) VN-1, n+1TVN, ntl " N Ln TR o

Aa B y y [ 2 7 ]

o 14 N-1,n ‘"N, n

2
%
Yor ¥

_ _s " N,n _ D

Aa_ L 11'???&?;')[Vmgn+rFVN,n] A [¥N, n+17 YN-1, n+1]

]
0]

- (v -V )+ s (e-0 3"(’2511)[‘2 r (v v )

A 2 ‘"N,n N-1,n : 3 N,n’ 'N, n

o]

+_L_rWNJfYN”9+ﬂVN4,wYN-Ln)+_L N L1

3 2 3 N,n+l © 3 "'N,n
o1 [mN}m1+mN-Ln+l+n%%n+mN~Ln |

6 2 2

v +

1 1 N,n+l1’ 'N-1,n+l
-3 [Nattt 'l - z
+VN;ﬂ+VN-Ln]_ 2 YN,nt1” VN, n

Z =g AD

e VN, n+1t YN-1,n41 YN, 0 YN-1,n
3 2 ' z
~0 (5.29)
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A N-1, 241 T PN, okl

In matrix form the system to be solved is written

=
b1 cl 0
az b2 CZ 0
0 a5 b, c
i i i
0 aN-l
0 0

0
Bigi °N-1
AN B

d

-

—Vl, n+l )
V2,n+1
Vi, nt1
YN-1, ntl

_VN, n+1

-
9

)

a,

1;
dN-1
d

N L

(5.30)

A method of solution applicable to such a system of linear equations having a

. e - 8
tridiagonal matrix of coefficients is well known

and is used in this thesis.

The computing process consists in transforming the matrix Eq. 5.30 into Eq.

B..31
By & ®
0 [32 CZ 0
o B
0
ke

¢, 0

1

PN-1 °N-1
0 B

- -

vl,n+1

¥ 2.0l
Vi, ntl

VN-1, n+l

LVN, n+1

{5, 31)

The coefficients ﬁi and y; are related to a.ibic:idi by the following relations

B. = b,

i7i-1

ﬁi--l

R Y-

Py

(5.32)

(5.33)
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The computing process is started with

Pi = By

By =

and proceeds for i varying from 2 to N,
From Eq. 5.31 it is seen tnat the v can be computed by a marching

process starting with

y
N
= . - 5.34
VN, n+1 P (3.34)
and for which the general equation is:
* _ 575341, ol G, 55
i, 0¥l B. ’

J

Once the values of v. are known the temperature of the tube wall is com-

jsntl
puted by using Eq. 5.20

mj,n+1 = +b 4 i@ mj - (5.20)

alvj,n+1 +Vj,n] le,n+1+ Wj,n] ’

4. Solution of the material balance equation

In order to solve the nonlinear ordinary differential equation representing
the mass balance inside tne catalyst section (Eq. 5.5) Heun's first method of
: o &k : . :
approximation = has been used. This method consists of computing a first

approximation to yj+1 by using the simple Euler equation. This first
2

n+1

is then used in the ''trapezoidal'' equation to obtain a

estimate of Vj+1, ntl

better estimate of Yj The integrating scheme is written

+1,n+1°

2
f! + f! 1+ v,
+ AE ]2 jt+1 |- ,n+1l

Vi1, n+1 = Vi, n+l r

)

Y v
1+ J,n+1,y_],n+1

(5.36)
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| 2
Agx[f!+f.+l_] (14vy. n+1)
y =3 1 * i A R T
j+1,n+l o of | 4 1+Y’F j,n+l? i, ntl
_ 2
X (1+Y541, nt1) . - ) 5 3
% Vitl,n+1’ Yj+1,n+l {5.37)

1+y'

This marching process is started with the boundary condition

%*

Yi,n+41 = Yfeed =Y (5.38)
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T, i.e., data at small B where diffusion is unimportant. This method
depends on the fact that the Inf vs. T curves are relatively straight,
even for large values of § so that an effective first-order rate constant
may be assigned to each B. Note that as the fnf. vs. T curves are not
exactly straight, the value of the effective rate constant will depend some-
what upon how these curves are approximated by straight lines. The
procedure adopted is for the curve for each value of B to draw a straight
line through the points f=1, 7=0 and £=0.1, TETo where To. 1 is
the value of T for f = 0.1. The effective rate constants obtained from the
slopes of the straight lines will best represent the time required to reach
a value of f=0.1. If accurate correlations are required at other values
of f the correlation procedure must be repeated drawing the straight
lines through this new value of f rather than through f = 0,1,

Now £n (-%—) =kpo t=T at B = 0 and for the straight line approximations

for > 0

In (%—)=(ek) p0t=8TB=‘T (3.4)

where e is the slope of the straight line at the given value of B and ‘TB is
the normalized time required to regenerate to f at the given value of B.
The effective rate constant is then ek wheree=1 atp = 0 and e<1 for
f>0. From the model solutions a table of values of e and B can be
obtained, Further, for the limiting case of very large values of 3 the

solution of Weisz and Prater, Eq. 3.3 applies.

Hence

-

Bo_ m(1/f) _ 1 _2/3) 1 4 g

B ef 2 3

: . 1 2/3
and for a given f and large B, ep is a constant, For f= 0.1 -2-(1—-f ) -

3 (1=£) = 0.0923 and Aa(1/£) = 2.303. Then e = 2.303/0.0923 = 24.95.
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#
‘ y-y
86y D' 0%y 215l 2 (1=b ) L ossw
O 2 o T 3 f I =2
0 % *
st i TR - [(e+h(v - 0.3725) sr (v )] (5.41)

Equation 5.41 is a linear partial differential equation of the form of Eq. 5.42

9y dy 9y _

In Eq. 5.42 the dependent variable is now y, and x and t are the independent
variables, The coefficient D,V, R are obtained by identification of Eq. 5.42
with Eq. 5.41. Because of the geometrical configuration of the reactor and the
temperature dependence of the rate of reaction, the values of R varies with
distance. Near the entrance and the outlet of the reactor R is found negative
and Eq. 5.42 contains a source term. On the contrary, in the center section
of the reactor, R is positive and Eq. 5.42 contains a sink term. In this
section it will be assumed that the coefficient D, V,R are constant, both cases
of a sink and a source being considered.

Since Eq. 5.42 is linear, it is possible to solve it analytically for certain
boundary conditions and to compare this solution for accuracy with the numerical
solutions obtained with the finite difference analogs.

The investigation reported in this section is an extension of the work
reported by Stone and Brian30 who studied the accuracy of various finite difference

analogs to the following partial differential equation

b 2%y vl _dy _ g 5,43
= BEEC "
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The scope of this investigation is to justify the choice of the finite difference
approximations used in this research and to point out the problems of in-

stability associated with the solution of this type of equation.

1. Analysis of Stone-Brian's Results

Stone and Brian30 have studied the accuracy of various finite difference
approximations to the linear partial differential equation represented by
Eq. 5.43.

They have written a general difference equation which contains arbitrary
weighting of all the possible approximations to -g}-i a,nd-g%I involving three
d istance positions at two time levels. The final difference analog they in-
vestigated was

Visl, 041~ 2 Y5, 041 ¥ Y4-1, 0l

-1 [
ZAXZ

Yitl,n ~ Zyj,n ¥ Yi-1,n
+ > ]

v
+ x= [aly, -y L)
2Ax Ax jtl,n j,n

€
gl e = Ty, ol S = F ) YO, e Py, wen) ]

1 ©
tael 8055, ne1 = Yj,0) *Z Wyo1,nt1 - ¥y, m

+ m (y. 0 (5.44)

41,041 = Y41, 0]

The weighting coefficients a, -; g ©y dy g, —?l, m are subject to the restrictions:

E —
a+—2+c+d_l

g+—§z+m:l



-75-

Stone and Brian tested the choice of the coefficients by comparing the solu-
tion of the resulting difference equation with the analytical solution of

Eq. 5.43 for a special boundary condition. The initial condition used is a
sine wave of frequency proportional to w. The reason for studying the
behavior of a sine wave initial condition is that any other type of starting
condition can be broken down into a Fourier series. Since Eq. 5.43 is
linear, the solution can be obtained by a superposition of the solutions for

the various harmonics. The analytical solution to this problem is

gix, t) = et x exp[-wZﬂZDt] X

sin w T (x-Vt) (5.45)

In absence of diffusion the phenomena described by Eq. 5.45 is the propagation
of a sine wave down the bed at a velocity V independent of the frequency of the
initial sine wave.

In presence of diffisuion the wave is still propagated at the same velocity

: -w2 12 Dt

V but is decayed at a rate equal to e . In the case of a complex
initial condition the higher frequency harmonics are decayed at a much faster
rate than the fundamental, such that after a while the lower frequency har-
monics only need to be considered in the superposition process.

The solution of the finite difference equation, 5.44, for the same boundary

condition can be expressed in the form

b f o = cst pn sin w M (jJAx -V ¢ n At) (5.46)

where p and ¢ are expressed as functions of the new parameters

a =222 andp - Y2 by the following relations derived by Stone and Brian
Ax Bx



"

2
{8 + p(a- -%) + [(—?+m) - [3(3.-%)] cos WTAX - a sim‘2 _w_ﬁzéf}
2
2 + {[ﬁ(a"‘%)‘*(%-m)] sin umAx}
= O e (5.47)
{g + B(d-c) + [(—2-+m) - B(d-c)] cos w TAX + a sin > }

2
+{[[3(c+d) - (% - m) ] sin w TAx }

1 [ B(at —26)‘*'(% - m)] sin w TAX
N :{B VAX} {artang [ € S Z wﬁAx]
- g"'ﬁ(a"-z)'}'[('z‘l' m)—B(a—%)] cos WTAx-a sin e

[ B(ctd) - (% -m)]| sin wTAx
+ artang[ T ] (5.48)

g+ pB(d-c) + [(% +m)-p(d-c)]| cos wrAx + a sin2 e

Physically, Eq. 5.46 describes the propogation of a sine wave at a speed
equal to V ¢ and the decay of a sine wave at a rate proportional to p. Stone and

Brian satisfied the condition that p should be equal to 1.0 in absence of diffusion

for every value of B and every frequency by setting c = -g a=dand m = %
With this new restriction the expression for ¢ reduces to
2 2 sin WA x

1+ [ﬁ(—% -€) - O|[1l-cos wm Ax]

Equation 5.49 shows that the velocity of travel of the sine wave, V ¢, is a
function of the frequency of the sine wave. For example, for wnAx = 0

¢ is equal to 1,0 but for w mAx = 1, & = 0, which means that such a frequency
does not travel at all, Furthermore, there is no choice of € or © which would

make ¢ independent of wmAx for all the values of B.
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Stone and Brian have proposed to use € = —é and O= -é as the optimum
choice of weighting coefficient. This choice of weighting coefficient makes
6 remain close to unity over a wider ran ge of frequency of the initial sine
wave. This choice of coefficients insures a travel of the lower frequency at
a rate very close to V. However, Stone and Brian concluded that there was
no scheme which would cause the highest frequency to travel at a correct rate
(for wnm Ax = 7, ¢ will always be equal to zero).

In absence of diffusion, this phenomena will result in oscillation in distance
of the solution, the high frequency shifting out of phase with the fundamental.
In presence of diffusion, the high frequencies are decayed much faster than the
fundamental, and the fact that they do not travel at the right rate becomes less

important.

As a conclusion of this study, Stone and Brian recommended the introduc-
tion of an amount of diffusion which would prevent the largest frequencies from

getting out of phase with a magnitude still noticeable.

2. Extension of Stone-Brian's Results to the Case with a Sink or Source Term

At the beginning of this section it was seen that the sink or source term
obtained by linearization of Eq. 5.2 can be expressed as

R:l—-af-a;ir [e+h(v—0.372.5)] s (v)

Since r is nonlinear, it has been shown in Section A of this chapter that the
rate of reaction is always expressed at old time. In order to take this into
account in this analysis, the source or sink term has been expressed in two
parts., Returning to the present notation where y is the independent variable,

the source or sink terms has been written as

Ry =y - Iy (5.50)
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In deriving the finite difference analog of Eq. 5.51

2
oy oy _ 9y N
D—-—-—ZBX --V-az -'—sf‘— Y+PY = 0 (5.51)

the weighting coefficients defined by Stone and Brian are used for the
approximation of the derivatives. Furthermore, the most general way to ap-
proximate source or sink term wusing values at three locations and two

time levels (when possible) is presented in Eq. 5.52.

¥ =Yt %Y, a7 % Bt a T ST, nt

+ a 2a Fy.

5 Y, nt1 T % Y5-Lntl - “™1 " Yifl,n

_Zquyj’n—2a3 i Yj—l,n {5, 52)

The restriction attached to the new weighting coefficients is

¥ &g - 8, + a +a5+a6:1.0 (5. 53)

Gy Ty Ty TGy

When the same initial condition is used in this analysis, as in Stone and Brian

analysis.the analytical solution to Eq. 5.51 is

y = cst exp [-(D UJZTTZ +1-I) t] sin w 7 (x-Vt) (5.54)

Equation 5,54 describes a sine wave which is travelling at a velocity V

independent of the frequency of the initial condition and which is decayed at

2 2
a rate equal to e'[ wom“D + 1-T't the frequency of the starting condition

2 2
affects the rate of decay only through the term Dwzﬂz. Iy T LD

the coefficient of the exponential is >0 and the analytical solution tends toward
+ = as t tends towards ., If 1"<1+Du)2ﬂ2', the analytical solution decays and

approaches zero as time approaches infinity.
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The solution of the finite difference equation obtained by adding

Eq. 5.52 to Eq. 5.44 is

I 1
Y. = cst p " sin wr [jAx -Vé n At] {5.55)

J,n
1 1
with p and ¢ expressed in function of a, B, At and I' At through the

relations 5.56 and 5.57.
{g+ﬁ(a--§) - o, (1-2T) At 4 ('?+m) -Bla- —E)—(alms)(l-zr)m] cos Wi A x

2 2
i -C szﬁfzéx__} T [[[3(&'1' %) +(~?— -m)+(a;-a;) (1-2r)At] sin umAx}
p = O

(5.56)
{g +p(d-c) +a At+[ 5+m)-(d-c) + (a, + ag) At] cos wTAX

i RS 2+ S + i y
+ a sin S [ﬁ(c )-—(—z-m) (0.4-u6) At] sin WA x

1 [ ﬁ(a+%) + (-? -m)+(u1—u3)(1—2f)At] sin WTTAX

= ———— ¢{artang

[ g+ﬁ(a—%)-az(l—ZI} At+[ (—?-I—m)-f?)(a-—% )-—((11-}-0,3)(1—21')At]

W TAX
x cOo8 WTAX - a 51n ——2——-]

[[3(‘3+d) (-z m)+(a —06) At] sin w TAX
+ artang (5.57)
[g+[3(d—c) + 0-5At + [(? + m)-ﬁ(d-c)+(a4+a6)At] cos WITAX

wTTAX

. B
+ a sin —-—--2-——]

Equations 5.56 and 5.57 reduce to Eqs. 5.47 and 5.48 in absence of a source
or sink term. Furthermore, in Eq. 5.55, p' and ¢' have the same physical

significance as p and ¢ of Eq. 5.46.
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If the weighting coefficients proposed by Stone and Brian for the

approximation of the derivatives are used (a=c=d= -g :7}1-, g :% ; e % :_é)

Eqgs. 5.56 and 5.57 reduce to:

2
{%4— aZ(ZT-l)At +(—% + (u1+u3) (2T'-1)At) cos wmAx - a sinzw_%.}_c }

2
2 + {[% + (0-1-03)(1—-2.1_‘)A t] sin W TAx }
s £ 1 2 W TAX ) {5.58)
{-g + G.5At + [—5 +(u.4+0.6) At] cos W TAx + a sin }

2
1’{[% + (ay-a,)At] sin w '”AX}

2 WTAX

5 ta,(2T-1)At +[a1+o.3)(2 I-1) At] cos wmAx-a sin” —s—

1 [-g +(a1—a3) (1-2 ) At] sin w TA x
! = BoT A% artang »

(5.59)

+ artang > AT Y

["% + (u4-u6)At] sin W TAX
3 + (15/_\.1: + [%-+ (a4+a6)At] cos WITAX + a sin —
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The major difference between the present case and the case studied by Stone
and Brian is that the value of ¢' corresponding to the zero frequency is not
equal to unity. The value of ¢' for a zero frequency is expressed by Eq. 5.60

1 ﬁ/2+(a3- a J(2T-1)at
g = 7@'{1+(2111hmﬂu1+a2+a;)

+

B/2+(a,-a,)At
4% } (5.60)

1+At(a4+t15+(16)

Equation 5.60 shows that there is no choice of the weighting coefficients a,
which would make ¢' equal to unity for any value of B and I'At. Consequently,
the finite difference analogs will always introduce an error in the rate of
travel of a perturbation. Six choices of the weighting coefficients a; have
been investigated.and the values of p' and ¢' corresponding to the zero fre-
quency are presented in Table 5, 1.

In cases Nos. 1, 2 and 3 the linear part of the source or sink term is
expressed at early and late time. This scheme can be considered as
implicit. On the contrary, in cases Nos. 4, 5 and 6 the source or sink term
is only expressed at early tirme, Cases Nos. 1, 3, 5 and 6 allow for weighting
the values of the sink or source term at three locations. Cases Nos. 2 and 4
consider only the value of the sink or source term at one location. Table 5.1
also presents the values of p' and ¢' corresponding to the exact solution
(Eq. 5.54) for the present values of I'and At. Table 5.1 shows that the
accuracy for both p' and ¢' is greater for the implicit schemes,

In the remaining of this section, the weighting coefficients a; corresponding
to case No. 1 are retained to investigate the accuracy of the finite difference
analog for different values of the parameters B, and At. Even though such a

choice of weighting coefficients is used in this research, it has not been

demonstrated optimum.,
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Table 5.1

Effect of Various choices of weighting coefficients a,

on the values of p' and ¢' for the zero frequency

Fixed parameters p = 0.80
= 2.5
At = 0.01
Case
Number Choice of a, p' i;_'_
1
= o = i 7
]. (11 0.3 (14 0.6 17— 1.0149 0.38.7
_ S |
Ga=8p= W
2 a1=u3=a4=a6=0 1.0149 0.988
u,2=a5=l/2
3 a1=a2=a3=a4=a5=a6 1.0153 0.9870
=1/6
4 a1=a3=u4=a5=a6=0 1.04 0.9807
a2=1.0
5 i =g B 1.04 0.9807
17376 y :
a2-2/3
a4=a5=a6=0
6 a. =i, =i = 1.040 0.2807
1 2 3 3 : ;
u4=a5=a6=0

Exact solution 1.0151 1.0
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With the choice of values of a; corresponding to case No. 1

_ _ . _ 1
01—0.3—0,4-(16- '—1—-2—
= =1
a, = ag /3
the expressions for ¢' and p' reduce to:
2
2 2
{_3__&3_?___4_[ lzrl_\.t]cos mrAx-asinZE—%é-}i}
> + {'% sin wwA)}Z
P = 2 T
{3 ik %’i + [—l- + %p)— 1 08 @ TAX + asin” (‘-‘)—1% %
¥ S wtagmum I (5.61)
2
B
g = sin  TAX
' = artang
Pl T 2 _(l-2m)at _-2nat t- g 5in 2@ TAL
3 e [T —-——6—A]coswm§. -asin >
B sin
-Z w TAX

+ artang > I il T (5.62)

-3-+—--+[-3--}-T]Cosw1TAx+asin ——

The values of the paramters a and B corresponding to the various choices of
At investigated appears in Table 5.2

Figure 5.1 shows the dependence of the growth factor p' with the frequency
of the starting sine wave for the three sets of parameter presented in Table 5.2,
The growth factor p' corresponding to the zero frequency is larger than unity
as it is expected in the case of a source term. In presence of diffusion, as
the frequency increases the growth factor decreases and becomes smaller
than unity. This observation is in agreement with the analytical solution
presented in Eq. 5.54. In presence of diffusion the highest frequency will
consequently be decayed and will not affect the stability of the computer scheme.

On the contrary it can be shown in Eq. 5.61 that in absence of diffusion the
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Table 5.2
Parameters hold constant D = 2, 10-4
T s B D
Ax = 0.005
V = 0.4

Parameters changed during investigation

Time increment At Parameter 3 Parameter a
0.00125 U, 10 0.020
0.010 0.80 0.160
0.040 3.20 0.64

growth factor for the highest frequency is equal to the growth factor for

the fundamental, that is to say, is greater than unity. Figure 5.2 illustrates
the dependence of the velocity factor with the frequency of the starting sine
wave. for the same set of parameters a, § and At.

The departure from unity of the value ¢' corresponding to the zero
frequency increases as B increases, Furthermore, as B increases the
departure of the entire curves from the horizontal axis ¢' = 1.0 increases
and becomes important for smaller and smaller frequencies. This is
equivalent to say , the number of higher harmonics being shifted out of phase
with the fundamental, increases as P increases. The use of time and distance
increments corresponding to a value of B = 3.2 are expected to show oscillations
in distance since the curve ¢' corresponding to those conditions departs from the
horizontal even for very low frequencies. These oscillations were observed
on the computer solutions using the corresponding value of A©= 0, 04.

From Fig. 5.2 it appears that the conclusions drawn by Stone and Brian
apply in this case: since the highest frequencies are not travelled at the same
rate as the lower frequencies, they have to be decayed.

In absence of a diffusion term the highest frequencies cannot be decayed
since it has been seen previously that their growth factor is greater than

unity. It has been found, in fact, that the computation results obtained with



BT

a zero value of the diffusivity D experience oscillations even with very
small time and distance increments.

In Figs. 5.1 and 5.2 the values of p' and ¢' corresponding to a different
choice of the weighting coefficients a, are pres ented for a given set of para-
meter. (The choice of a; corresponds to case No. 2 of Table 5,1.) Under
these conditions, the values of B' and ¢' never differ by more than one half
percent. It should be pointed out that this comparison has not been carried
to the point where the choice of weighting coefficients a; used in this
research, can be called optimum.

The conclusions reached in this section, for a source term, apply also
to the case of a sink, With the choice of parameters a, B and At investigated,
the growth factor corresponding to a sink is always smaller than unity. Under
these conditions any error introduced in the computation is expected to decay.

The results presented in this section show the influence of the time
increment on the rate of travel and decay of a sine wave present in the bed
at the beginning of a computation. It has been seen that the presence of
diffusion is required to eliminate the highest frequencies which are shifted
out of phase, and this even more so in the case of a source term,

Since the equations solved on the computer are nonlinear, the results
obtained in this section can only be qualitative and must be canfirmed by a
convergence study of the proposed algorithm. The results of this study are

presented in the next section,

C. CONVERGENCE STUDY OF THE PROPOSED SCHEME
To test the convergence of the proposed computer scheme a 5°C step change
in the input temperature is imposed on the reactor which was operated at a
steady state. The effect of the distance and time increment on the variation of
the temperature in the catalyst section are studied for several positions in the bed.

The conditions of the runs performed during this investigation are presented in

Table 5.3,
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Table 5.3

number

distance
Run n° AO slices max A a min Aa
F-II-1 0.01 200 0.00898 0.00102
F-I11-2 0.01 100 ¢.01792 0.00208
F-III-3 0.01 50 0.03568 0.00432
F-I-1 0.005 100 0.01792 0.00208
F-I1-2 0.010 100 0.01792 0.00208
F-I-3 0.020 100 0.01792 0.00208
F-I-4 0.040 100 0.01792 0.00208

Since the computer program uses a variable space grid, the number of slices
is complemented by the maximum and the minimum value of Aa used in the
run.

Figures 5.3, 5.4, 5.5, and 5.6 present the results obtained with a 200-,
100-, and 50- mesh space-grid at four locations in the reactor. The results
obtained with a 200- and 100-mesh space-grid never differed by an amount
larger than 0. 04°C and did not present any oscillation. The results obtained
with a 50-mesh grid presents oscillations when the temperature at the position
considered changes rapidly. The oscillations decay but the error introduced
travels down the reactor. Figures 5.7 and 5, 8 represent the temperature
variation for two locations inside the catalyst bed when ABGtakes the values
0,005, 0.01, 0.020, and 0.04. The results obtained with AG= 0,005 and 0.0l
show a perfect agreement and do not present oscillations. The results obtained
with larger values of AO present oscillations as the temperature starts to

c hange rapidly. The presence of these oscillations can be explained through
the results of the stability analysis of Section B of this chapter. When used
with large values of B the finite difference equations do not allow even the

low frequency to travel at the proper rate.
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The oscillations so generated, however, die rapidly and do not affect
the change in temperature at points further down the reactor. Furthermore,
the results obtained with large values of AOagrees with the results obtained
with the smallest values of ADat every position before the temperature
starts to change rapidly., Good agreement also exists when the change has
occurred for some length of time. For this reason a small time increment
is only needed as long as rapid changes in temperatures occur inside the bed.
In Chapter VI it will be seen that the changes in temperature inside the
catalyst section can be described as a temperature wave travelling through
the bed followed by a slower approach to a new steady state. Small values
of the time increment are required as long as the temperature wave remains
inside the bed, Since the time required for this wave to travel through the
bed can be estimated, it is possible to determine at what time the time
increment can be modified.

The following time and distance increment have been used to describe

the transient resulting from step changes in the feed temperature.

number of distance slices 100
max Aa 0.01792
min Aa 0,00208

Time increment
as long as the wave travel
inside the bed AG0,01

Time increment after AG=0.04

During the runs simulating the converter under automatic control the value
of AG@= 0,01 was kept throughout the computation since the feed temperature of

the reactor keeps changing with time.
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D. COMPARISON WITH THE C.I.R. SCHEME

Stone and Brian have reported that their method of approximating dis-
tance and time first derivatives is the most effective for the solution of
linear problems. In order to check this result in the nonlinear case under
investigation, the Courant-Isaacson and Reeslo method of solution
abbreviated C.I.R. method was used to solve the energy equation inside

the catalyst

av s y—‘y* ov
-[e+h(v-0.3725)] sr =0 (5;2)

The approximation used for the time and distance derivatives are as follows

ov ‘ij,n+1_ Vj,n

AB
v _ Vj,n_ Yj-1,n
oF A

The source or sink term present in Eq. 5.2 is always expressed at position

j and at early time n. The finite difference approximation of Eq. 5.2

expressed in terms of *.r‘]."n_i_1 is written
H
¥i ™Y
S Jy AB
v, = WV, 1- 4~ (1-h ) - AB
, nt1l n{ f! 1+y. A }
J Js i YJ,n g€
¥ -
s Y
& o s Yo A8
+Vj-1,n[?}_ Gh = T+y; n) A% |

+ mj,nAB 4 [e+h (Vj,n - 0.3725)] s r (Vj’n, Yj,n) A6 (5.63)
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The computing process in this case is a simple marching process since

The entrance boundary bondition

each equation is explicit in Vj’ 1l

retained in this case is:

(5.64)

A6 PETS M PEYY |

Figures 5.9 and 5,10 present the time variations of the temperature at the
location a = 0.028 and a = 0.0528 in the early instants of a transient resulting
from a + 5°C step change in the feed temperature.

On each of the figures is plotted the results obtained with 50-, 100-
and 200-mesh distance grid and a time increment A® = 0.00125, The
results show that under these conditions the convergence of the numerical
solution is not obtained.

In Fig. 5.9 it appears that the effect of increasing the distance mesh
size is equivalent to a smearing effect on the wave front traveling down the
reactor. This effect could be predicted from the results reported by Stone

and Brian30 for the linear Eq. 5.65
oy 2Y o

The approximations of the C.I.R. method result in the introduction of a
dispersion term of the form
VAx 82

y
2 axz

since the approximations are only first-order correct in distance. To be
able to reduce the diffusion effect introduced by the C.I.R. method to the
same order of magnitude as the physical diffusion existing in this reactor,
the size of the distance grid must be reduced to 10-3, that is to say, one
must use a distance grid of 1000 meshes., Furthermore the results of the
Stone and Brian analysis have proven that the C.I.R. method is unstable

unless the following restriction is observed
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_ Vat

For a value Ax = 10_3 the corresponding value of time increment is then
10_3, The only advantage of the C.I.R. method, which is that it is explicit,
is offset by the extremely small values of the time and distance increments
required to obtain convergence of the solution. In the present problem more
of the computer time was taken by the estimate at each time and distance
step of the rate of reaction. Under these conditions the excess time required
to solve the linear system of equations resulting from the Stone Brian method
is negligible. Under these conditions the Stone Brian method, in computation
time, can be compared directly to the C.I.R. method on the basis of the time
and distance increments acceptable for convergence. The present study of
the C.I.R. scheme was not carried to the point where convergence of the
solution was obtained. But, already with a 200-mesh space-grid, representing

an added diffusion five times larger than the physical diffusion, the computer

time was greatly in favor of the Stone Brian method of solution.



CHAPTER VI
RESULTS AND DISCUSSION
A, STEADY STATE OF THE REACTOR

In order to characterize the conditions of the T.V.A. reactor at the
beginning of a transient the steady state equations describing it, are solved
first.

Equations 4.3 and 4.5 apply unchanged to the steady state case since the
variable time does not appear explicitly in them. In Eqs. 4.7 and 4,10 the
time derivatives 2% and e must be removed in order to use these

90 90
equations for the steady state case.

Logea.iszz method of solution of this system of ordinary differential
equations provides the steady state profiles in the case where longitudinal
diffusion of heat is neglected, that is to say, for the case where Eq. 4.10
is a first-order differential equation,.

The presence of the diffusion term forces us to use the method of solu-
tion of the transient case, presented in Chapter V, to generate steady state
profiles: the transient is computed until the temperature in the reactor stops
changing with time. This last method consumes much more computer time
in order to generate one steady state profile corresponding to a given feed
temperature; furthermore, it was observed that this method of computation
allows us to reach only the stable steady state.

It is known42' that in industrial reactors of this type the importance of
the longitudinal diffusion on the temperature and concentration profiles
existing at steady state in the reactor is very small. Nevertheless the
longitudinal diffusion has been retained in describing the transient behavior
of the reactor in order to obtain stable numerical solutions for the finite

difference approximations of Eq. 4.10 as was shown in Chapter V.

-100-
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The effect of longitudinal diffusion on the steady state behavior of
the T.V.A, reactor has been investigated in computing the concentration
and temperature profiles corresponding to a feed temperature of 227, 6°C

1. for the case where longitudinal diffusion of enthalpy is
neglected ( the method of solution is the method proposed
by Logeais).
2. for the case where longitudinal diffusion of enthalpy, (as it
can be estimated for packed bed similar to the reacting section
of the T.V.A., reactor) is taken into consideration and the transient
method of solution presented in Chapter V is applied in this case,
The results of this investigation are presented in Table 6.1 where the
temperature inside the catalyst section, inside the tube wall,inside the empty
tube section and the ammonia mole fraction are presented for both cases at
different positions in the reactor. The largest temperature differences are
encountered in the catalyst section as can be expected. The maximum tem-
perature difference is of the order of 0. 6°C and correspond to a location
close to the entrance of the reactor,

The temperature profile obtained in the case where longitudinal diffusion
is considered is above the temperature profile obtained in absence of the
diffusion during the first part of the reactor. This can be explained by the
fact that the catalyst temperature at the entrance of the reactor is larger in
the case with diffusion. This difference in temperature at a =0 results from
the entrance boundary condition associated with each problem. In absence
of diffusion the temperature of the catalyst at a =0 is set equal to the
temperature of the gas leaving the empty tube section. In presence of
diffusion, as shown by Danckwerts, 11 the temperature experiences a
discontinuity at the entrance of the bed. The existence and the magnitude

of the discontinuity was presented in Chapter IV, Since the reacting gas

seen by the catalyst located immediately downstream is at a higher



Table 6.1

Effect of longitudinal diffusion on the reactor steady state profile

Normalized

Distancg for T s TT i TW ¥

ggzc?cf):he Tc:D= , ‘D= physical ‘T _, D=physical Wy _ D=physical Y,_o  D=physical

diffusion diffusion diffusion diffusion

0.0 427,25 427.61 427,25 427,39 427.25 427,38 0. 0500 0. 0500
0.100 471, 64 472,12 424,04 424,13 443.43 443,68 0.08227 0.08036
0.208 510.18 510.63 413,42 413,45 452,83 453,03 0.11266 0.11286
0.30 528. 66 528.91 399.22 399.21 451.94 452, 04 0.13510 0, 13525
0.408 531,92 531.97 378.40 378.37 440, 93 440,94 0.15238 0.15246
0.506 524,97 524,94 357.07 357.04 425, 46 425,43 0.16322 0.16328
0.600 514,19 514. 14 334,97 334,94 407,97 407.93 a. 17213 0.17217
0.719 499,73 499,66 309.50 309. 47 386.98 386.93 0.18112 0.18116
0.812 481.29 481,21 280, 45 280,42 362,26 362,21 0.19016 0.19019
0.912 461,69 461,61 252,62 252,61 337.78 337.74 0.19756 Q, 19756
1.0 442.20 442,21 227,58 227.58 314, 88 314. 88 0.20310 0.20313

=201~
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temperature, the catalyst temperature at this position will have the tendency

to be higher. The original temperature difference, which is of 0.36°C,

will be amplified and then attenuated as the gases proceed down the reactor
according to the signe and the magnitude of the temperature and concentra-

tion dependence of the heat generation by chemical reaction, This amplification
and attenuation concept will be discussed in detail in the next section,.

Since the effect of the diffusion present in the T.V.A ., reactor on the
steady state profile was so small, it was neglected and Logea.is12 method
of computation was retained in generating steady state profiles for the
determination of the '"blow out'' temperature associated with the present
conditions of operation.

The dependence of the temperature at the outlet of the empty tube
section with the feed temperature is presented in Fig. 6.1. Under the flow
rate and feed conditions investigated, the '""blow out'" temperature is equal
to 220°C. If the feed temperature is larger than 220°C two different
temperature profiles would satisfy the steady state equations for the given
boundary condition, but the steady state corresponding to the higher con-
version only is stable as the considerations of Chapter III show, If the
feed temperature to the reactor is lower than 220°C the reactor will "blow
out'',

Figure 6.2 presents the dependence of the feed temperature on the
outlet ammonia mole fraction. The maximum ammonia production corresponds
to a feed temperature of 225°C. Since a steady state corresponding to a
feed temperature of 227, 6°C generated by the transient method of solution
was available, the transient behavior of the T.V.A, reactor has been
investigated around this temperature which is considered for practical pur-

poses as the optimum temperature of operation,
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In investigating the transient behavior of the reactor around this tempera-
ture, step changes in the feed temperature were performed and the effect
of these changes on the temperature and concentration profiles was analysed.

The different values of the feed temperature investigated are presented

in Table 6.2.

Table 6.2

Conditions of Transients Performed in this Investigation

New Feed
Run No. Starting condition temperature Size of the step

1 steady state corresponding 212.6 -15°C

to a feed temperature

= 227, 6%

TW 7.6°C .
2 e B 217.6 -107°C
3 1" " 222-6 N 5OC
4 " " 232.6 + 5°¢
5 f g 237.6 +10°C

The steady state considerations reported before show that the feed
temperature used in runs 3, 4 and 5 are above the ""blow out'" temperature
for the flow rate and feed compositions investigated. It is expected that as
a result of such a step in the feed temperature the reactor will approach a
new stable steady state.

In the same way, since the feed temperature used in runs 1 and 2 are
below the '"blow out" temperature, the reactor is expected to "blow off"
that is to say--to experience a decrease in temperature and conversion
which would force the operator after a certain time to use the heater to
restore the reactor in its optimum conditions of operation.

In this chapter, Section B describes qualitatively and discusses the
changes in temperature and concentration generated during run 4.

Section C describes the same changes when the reactor blows off

(run 1). Since the magnitude of the step change in feed temperature affects
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so strongly the final steady state approached, the present reactor is tested
for dynamic linearity in Section D. A linear range of operation is defined
and the transient results obtained within this range are used, in Section E
to generate frequency response curves and derive the form of simplified
transfer function relating the changes in temperature at various locations in
the catalyst section to changes in the feed temperature,

In order to introduce the concept of control, the effect of '""blow out!
perturbations of finite duration are investigated in Section F'. In Section
G a closed loop ideal controller is tested on the simulation for changes in

the amount of ammonia recycled in the feed.
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B. DYNAMIC OPERATION OF THE REACTOR UNDER STABLE CONDITION

1. Description of the Results

At the beginning of the transient the temperature and concentration pro-
files in the reactor correspond to the steady state profiles computed with a
feed temperature of 227.6°C. At time zero the feed temperature is stepped
by 5°C to 232.6°C. As itis expected the reactor approaches the stable
steady state corresponding to the new value of the feed temperature.

Figure 6.3 describes the variations with time of the changes in the
catalyst temperature ATC at different locations in the reactor. The tem-
perature change ATC is defined in Eq. 6.1 as the difference between the
temperature at any instant and the steady state value of the temperature at

the same location at the beginning of the transient.
AT = E_wl (6.1)
c c
Figure 6.4 is an enlargement of the part of Fig. 6.3 corresponding to the
early instants of the transient, On both figures an in the remaining figures

of this chapter the time is expressed in a dimensionless unit ©', defined by

Eq. 6.2
FC

- po
Pc
It will be seen later that this unit of time corresponds in the present
model to the time required for a thermal perturbation introduced at the
entrance of the catalyst section to travel the entire catalyst bed when no
reaction takes place. For the conditions under investigation in the T.V.A.
reactor, one time unit corresponds approximately to six minutes and 15
seconds. The temperature at the entrance of the catalyst section (a = 0) as

shown in Fig. 6.3 and 6.4 experiences a rapid change in temperature in the
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early instant of the transient, followed by a slower approach to the new

steady state value. The temperature at a position a = 0.10 experiences

little change in temperature as long as O' is smaller than approximately

0.10 and then an increase in temperature until the new steady state value

is approached., The same phenomena is observed for the variations in
temperature at a position corresponding toa = 0,30. The temperature

at that position increases slowly during the first instant of the transient,

then slightly dips down before recovery and again initiates an increase until

the steady state value is obtained. This last increase in temperature happens at
approximately ©' = 0,30,

The existence of this delay before any appreciable variation in tem-
perature occurs, is characteristic of a perturbation generated in the feed to
the catalyst section which travels down the reactor at a finite speed.

The increase in temperature observed at the beginning of the tran-
sient experienced by the position a = 0.30, becomes more and more pro-
nounced as the value of a increases. Theairves of Fig, 6.4 for a = 0.6
and a = 1.0 show a larger increase in temperature during the first instants
of the transient., This phenomena results from changes in the wall temperature
o f the tubes,

The temperature variations during the first instants of a transient resulting
from a step change in the feed temperature can be qualitatively represented
as the sum of the perturbations due to the changes in the feed temperature to
the catalyst section and of the perturbations due to the variations of the bound-
ary conditions of the catalyst section: the wall temperature. The results

of the first type of perturbation can be represented during the first part of
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the transient as a ''thermal wave''travelling down the reactor at a finite
speed, being amplified or attenuated according to the location in the
reactor,

The term ''thermal wave' is used in this research to describe at a
given location rapid changes in temperature occuring at a finite amount of
time after the introduction of the feed perturbation; the time delay experienced
in the temperature response is a function of the location. In absence of
diffusion a thermal wave is characterized by no change in temperature before
the arrival of the wave front, then by an instantaneous temperature change
as the front passes the location. In this research the presence of diffusion
smears the front of the wave and changes in temperature occur before and
after the passage of what is still considered the front of the wave.

Figure 6.5 presents the same results but in a different way. The '"gain"
of the reacting section defined as the ratio of the temperature variations at
a certain position to the magnitude of the step change in the feed temperature
—i%—-— is plotted versus the position a in the reactor at different times ek

fe]?gr '=0.11 Fig. 6.5 shows that rapid changes in temperature occur

around the location a=0.11, For all the locations corresponding to values
of a smaller than 0. 11 changes in temperature have already been experienced;
on the contrary, at the locations corresponding to values of a between 0. 13
and 0.5, the steady state conditions prevailing at the beginning of the tran-
sient are still observed. Already at that time the second half of the
reactor has experienced temperature changes felt everywhere at the same
time but whose magnitudes are functions of the location. For this reason
these changes are notdescribable by a thermal wave.

At time 6'=0,. 37 the zone of rapid changes in temperature has penetrated
inside the bed as far as location a=0.37. At the same time the magnitudes

of the changes experienced in the second half of the reactor have increased
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and only a small section of the reactor near a=0.4 is still under the tem-
perature conditions existing at the beginning of the transient. At 6'=0, 964
the two effects presented before are now blended together. There is no
location in the reactor where the temperature has been left unchanged.

It further appears from the curves corresponding to #=2.37 and 4.65 that
the catalyst temperature continues to change even after the original pertur-
bation has traveled down the entire bed, This results from the fact that
the boundary conditions associated with the catalyst section (feed tempera-
ture and wall temperature profile) continue to change with time. For this
reason the time required for the T.V. A, reactor to reach a steady state
corresponding to a new value of the feed temperature is expected to be much
larger than the time required for an identical packed bed whose feed does
not exchange heat with the catalyst section before entering it. This result
is in agreement with Boy-le's43 observations of regenerative processes.

From the'shape of the curves presented in Fig. 6.5 it appears that the
temperature ''gain'' is a strong function of the location in the reactor even
when the new steady state is reached as is almost the case for, 8'=4,65,

A temperature perturbation introduced at the entrance of the catalyst section
is amplified during the first 4/10 of the reactor and then attenuated during
the remaining part of the reactor,

The strong dependence of the ""gain'' of the process with the location in
the reactor results in the travel of the maximum temperature in the reactor
during the transient. Figure 6.6 presents the variations with time of the
location and of the magnitude of this hot spot temperature. The delay
phenomena described before appe ars also in this figure. During the tran-
sient resulting from a five-degree step increase in the feed temperature,
the peak temperature has moved by 0.5 foet or 3 percent of the total reactor

length., The magnitude of the peak temperature has changed by 7°C. In the
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same figure is plotted the variation with time of the temperature at
position a = 0,374 where the peak temperature was located at the beginning
of the transient. As long as 8' is smaller than 0.374, that is to say, before
the thermal wave reaches the considered location, the two temperatures
are similar. As the transient proceeds the difference between the peak
temperature and the temperature at a = 0.374 increases to reach the maxi-
mum value of 0.5°C at steady state.

Figure 6.7 presents the variation with time of the changes in ammonia
mole fraction Ay at the locations reported in Fig. 6.3. At each location the
change in ammonia mole fraction, Ay, is defined as the difference between the
ammonia mole fraction at any instant and the steady state value existing at
the beginning of the transient.

Figure 6.7 shows that the changes of the ammonia concentration during
the transient do not experience delays as the temperature did. This results
from the fact that the mathematical model under investigation neglects the
accumulation of mass in the gas phase. A change in temperature at the
entrance of the reactor affects the reaction rate at this point which in turn
affects, instantaneously, the reactant concentration and the rate of reaction
at each location downstream of it. For the positiona = 0.1 anda = 0.30
Fig. 6.7 shows that the step change of 5°C in the feed temperature results
in 2 monotonic increase of the ammonia mole fraction. For the positions
a=0.6anda = 1.0 a slow initial decrease in the ammonia concentration is
followed by a recovery and then a further decrease until a new steady state
value is reached. From the steady state considerations discussed in
Section A of this chapter it has been established that a step change in the feed
temperature of +5°C would result ultimately in a decrease in the ammonia
mole fraction at the outlet (a = 1.0) of the reactor.

The next section will discuss the fact that the phenomena described
in this section can be explained through the temperature and concentration

dependence of the rate of reaction.
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2. Discussion of the Results

In order to discuss qualitatively the temperature changes during the
transient, each term of the energy equation written in the catalyst section is
considered as a function of the location in the reactor.

If diffusion is neglected, for simplicity of presentation, the energy

equation in the catalyst at steady state reduces to Eq. 6.3

*
ov

e (l-h%) 5z t (m-v) + [eth(v-0.3725)" sr(v,y) =0 (6.3)

ale
s

q; = s(l-h %y-y—) %% represents the amount of energy carried in by bulk flow

q, = (m-v) represents the amount of energy convected from the wall

dy = [e-I—h(v—O. 3725)] s r(v,y) represents the amount of energy produced
' by the chemical reaction.

The magnitude of these three terms are presented as a function of the position
in the reactor in Fig. 6.8for the steady state conditions existing at the beginning
of the transient, Near the entrance of the reactor the only source of enthalpy
is by chemical reaction. The elimination of enthalpy by transfer to the wall is
much less important than the elimination by bulk flow. Omn the contrary, near
the outlet of the reactor the heat released by chemical reaction is much smaller
than the heat convected to the wall and enthalpy transported by bulk flow makes
up for the difference. The dependence on position in the reactor of the relative
magnitude of heat generated by reaction and heat removed by transfer to the wall
will be used later to explain the phenomena described in the previous section,

It is advantageous to know the effect of a change in temperature or
reactant concentration on the heat generation by chemical reaction at each

position in the reactor since this is represented in Eq. 6.3 by a highly nonlinear

term.
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Figures 6.9 and 6.10 present the values of the derivatives S and——a?

as a function of the location in the reactor. The ordinates of these figures
are proportional to the amount of additional BTU released per hour per cubic
foot of catalyst when the temperature at the considered location increases by
1° or when the ammonia mole fraction at that position changes by one unit.
Figure 6.9 shows that an increase in temperature at any position corresponding
to a<0,275, results in an increase in the amount of heat generated by the
chemical reaction. The same phenomena occurs at the location corresponding
toa > 0.845, On the other hand, for all the positions located between a=0.275
and a =0.845, an increase in temperature results in a decrease in the amount
of heat generated. This behavior is characteristic of a reversible exothermic
reaction., Figure 6.10, on the other hand, shows that an increase in ammonia
mole fraction, that is to say, a decrease in reactant concentration, always
results in a decrease in the amount of heat generated by the chemical reaction.
With the assumptions built into the mathematical model of the rea ctor,
the temperature in the empty tube section is given by Eq. 6.4 obtained by

integration of Eq. 4.3

1
W= W g e_ﬁ(l_o') + ﬁeﬁu[ m(E) P& dg} (6.4)

a

A step change in the feed temperature affects instantaneously the temperature

w(a) through the term
-p (1-a)

wfeed €
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then as a function of time through the value of the finite integral which
involves the wall temperature profile. Since the outlet temperature of

the empty tube section constitutes the feed to the reacting section, the
catalyst section experiences an initial step change in its feed temperature
whose magnitude is equal to e—pAered' It should be noted that the magnitude
of this initial step depends on the number of heat transfer units in the empty
tube section.

The rate of travel of the thermal wave generated at the entrance of
the bed is a function of the heat capacity of the flowing gases, of the heat
capacity of the solid particles and of the extent of the chemical reaction.

To prove these points the two extreme cases which can happen in a packed
bed reactor are considered:

1. when non-reacting gases flow through the packing.

2, when the gases flowing through the bed are so reacting that
equilibrium exists at any location along the bed.

The last case corresponds to an excellent catalyst which is so active that
equilibrium is instantaneously reached.

In the case of non-reacting gases Aris44 reported that a perturbation
moves through the bed at a constant velocity up related to the gas flow

velocity U~ by the equation

B " Total heat capacity of the gases in the reactor
Yp 7 UG * Total heat capacity of the gases and of the catalyst

(6.5)

Aris considered the effect of longitudinal diffusion and reported that the thermal
pulse introduced at the entrance of the bed becomes ''smeared' as it proceeds

d own the bed. The spreading effect on the pulse was reported to be a function
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of the particles shape as well as the other system parameters, but the
average flow velocity of the heat wave was reported independent of the
particle shape and given by Eq. 6.5.

To investigate the effect of the chemical reaction on the rate of travel
of the thermal wave let us return to Eq. 4.9 which represents an enthalpy

balance around an infinitesimal slice of catalyst section

0T h,s

: Y-Y* c 2
_Frcp;Ac e ] 0z

2

(T _-T)

(1+y)
_ c c ( 9)
=71 5t 4.

In the case where equilibrium exists everywhere, y, the ammonia mole
fraction, becomes dependent of temperature through an algebraic relation

of the form

y = £(T )

obtained by writting the equilibrium condition

This relation does not involve time, distance or boundary conditions and
consequently the value y can be eliminated from Eq. 4.9 by replacing its

partial derivative with respect to distance by the following expression:

e

_ 9T dy
- Dz ('H'_I‘) equilibrium
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Under these conditions Eq. 4.9 reduces to Eq. 6.6

s AH .
-F Cpc{ -AEC— (TL) + [— -25-’ (T .-Ty)] =
P

—z lar oz -1 (T T
(I+y) c
wC aTc
- ﬂpc ot (6. 6)

In computing the velocity of travel of the thermal wave the heat capacity

of the flowing gases (Tpo (1- %—g ({i_—-yy—) must now be replaced by the effective
o

heat capacity Cpe

3¢

Ity dy
x (1)
(1+Y)2 & eql.}

which is no longer a constant but a function of the extent of the reaction,
that is to say, of the composition of ammonia at equilibrium. The value of
%

the correcting factor 2. Ak (T -T.)] 1y (dy) pas has been

- - c b 2 ‘dT’ equilibrium

Cpo CpD (1+vy) g
computed for various values of the ammonia mole fraction y in the case where
there is no inert present and when hydrogen and nitrogen are in the ratio of
3 to 1. This case was chosen for reasons of simplicity. Figure 6.1l presents
the variation of the correcting factor with the ammonia mole fraction at
equilibrium. The correcting factor is maximum for an ammonia mole fraction
of 0.42 and is equal to 1.55. Under these conditions the effective heat capacity

of the flowing gases is two and a half times larger than their sensible heat

capacity. Consequently the speed of travel of the thermal perturbation

(represented by Eq. 6.7)
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is two and a half larger than the speed of travel of the perturbation in
absence of chemical reaction.

If the ammonia mole fraction is equal to five percent, the magnitude
of the correcting factor is only 0.3 and the rate of travel of the thermal
wave is 1,3 times faster in presence of chemical reaction.

In the present case where equilibrium is not obtained, the relation
between y and ’I‘Cis no longer an algebraic relation but a differential equation
involving time, distance and the associated boundary conditions. Mathematically
the substitution of%y— by %r-r— x (%) has no meaning and the only method left

P Z

is to solve simultaneously the two equations as was done in this research.
The results of the simulation shows that the rate of travel of the thermal
wave is almost unaffected by the chemical reaction. Figure 6.4, presented
before, shows that the thermal wave reaches the location 0.10, 0.3 and

0.6 at times very close to the time evaluated if the gases were non-reacting
gases (O©' =0.1, ©' = 0.3 and 6' = 0.6). The explanation given of this result
lies in the very poor reactivity of the catalyst present in the reactor. In
order to check this explanation a run was done in which the activity of the
catalyst was increased by a factor of 5. This result was achieved by increasing
the frequency factor associated with the Arrhenius expression of the rate

of reaction by a factor of five. A new steady state profile was obtained and
starting from these conditions a 5% step in the feed temperature was

performed,
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Figure 6.12 presents the changes in temperatures during the first
instantgsof this transient. The response at location a = 0.1 shows little
effect of the catalyst activity on the rate of travel of the heat wave. But
for locations 0.2, 0.3, 0.4, 0.6 it is seen that the thermal wave reaches
these locations at an earlier time than it would be if estimated for the
case of non-reacting gases.

The fact that the time at which location a = 0.20 and a = 0.30 are
reached by the thermal wave is more affected by the catalyst activity
results from the fact that at these locations the reacting gases are closer
to the equilibrium condition.

The previous results show that the perturbation originated in
the feed temperature to this reactor propagates down the reactor at a rate
almost unaffected by the extent of the chemical reaction because of the
poor reactivity of the catalyst present in the T.V.A. reactor.

To this inlet perturbation are infact added all the perturbations
generated within the reactor by changes in the wall temperature or in the
reactant concentration and which travel also down the reactor at approxi-
mately unit speed. Figure 6.4 shows that at a position a = 0.10 before
the arrival of the thermal wave the temperature has a tendency to increase
since the wall temperature at that position has increased. On the contrary
the increase in ammonia concentration apparent in Fig. 6.7 has the tendency
to decrease the temperature since it decreases the amount of enthalpy
generated by the chemical reaction, The magnitudesof these two effects
are expected to be very small and apparently almost cancel each other
during the first instantsof the transient. When the thermal wave reaches the

location a = 0,10 the increase in temperature felt by the catalyst becomes
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predominant over the negative effect of the conversion increase.

Furthermore the magnitude of the thermal wave reaching that location

is further amplified since the rate of heat generation by chemical

reaction increases as the temperature increases. It has been seen before
that the relative magnitude of the energy transferred to the wall over the
energy released by chemical reaction increases as one proceeds down the
reactor. At position a = 0.3, during the first instants of the transient the
increase in wall temperature forces the temperature to increase. Since

Fig., 6.9 and 6.10 show that an increase in temperature and in amn?onia mole
graction decrease the amount of energy generated by the reaction :32; and
—;;— are both negative) the temperature at a=0.3 will soon stop increasing
and, once the wall temperature has stopped to change rapidly will dip down
before the arrival of the thermal wave. When the thermal front passes that
position the temperature will increase since the gas reacting at that position
arrives hotter, and this despite the two negative effects on the heat generation
by reaction., The two negative effects of temperature and conversion increase
nevertheless appear in the fact that the ''gain' obtained at the location a = 0.30
is smaller than the '"gain'' obtained at position a = 0.2,

The same sequence of phenomena is described in Fig. 6.3 and 6.4 for
the position a = 0.6. By now the energy transferred to the wall is predominant
and as a result of the increase in the wall temperature the temperature at
that position increases during the first in stantsof the transient despite the
two negative effects of temperature and conversion changes on the heat
generation by reaction.

No dip down in the catalyst temperature is experienced ata = 1.0.

The increase in the wall temperature stops only at the time when the ammonia

mole fraction at the outlet of the reactor starts to decrease as it appears on
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Fig. 6.7. Consequently both reactants concentration and temperature
changes occurring at the end of the reactor increase the amount of
energy produced by the chemical reaction, further increasing the tem-
perature at that location.

The effect of temperature and ammonia concentration variations on the
rate of reaction can be represented by similar curves as Fig. 6.9 and 6.10,
At the entrance or near the outlet of the reactor, an increase in temperature
results in an increase in ammonia production; on the contrary, in the center
part of the reactor an increase in the temperature results in a decrease in the
rate of reaction,

Figure 6.7 shows that during the first instants of the transient
the increase in temperature at the entrance of the reactor results in an
increase in ammonia mole fraction leaving this section. Despite the decrease
in ammonia production (due to a decrease in reactants concentration) down-
stream of the first half of the reactor, this initial increase generates an
increase in the ammonia mole fraction observed, The magnitude of this
variation decreases as one proceeds down the reactor to ultimately
correspond to a decrease in the ammonia mole fraction observed in the
second half of the reactor. It should be pointed out that the decrease in
ammonia mole fraction is less pronounced at the outlet of the reactor than
at location a = 0,6 since the temperature variations reported for the outlet
of the reactor on Fig. 6.4 result in an increase in the ammonia production.

As the ammonia mole fraction leaving the first half of the reactor
further increases the decreasing trend of the ammonia mole fraction for the
locations in the second half of the reactor is reversed. This increase lasts

as long as the 'thermal wave'' does not reach the region where a decrease in
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production corresponds to an increase in temperature. At location

a =0,5Fig. 6.9 shows that an increase in temperature decreases the
amount of reaction. The ammonia mole fraction leaving this section

after the passage of the thermal wave will be smaller than before since less
ammonia will be produced. As a consequence, the mole fraction observed
at locations further down the reactor will also decrease, The simplified
attempt presented in this section to interpret qualitatively the temperature
and ammonia concentration variations during a transient has shown the
complexity of the phenomena encountered in the T.V.A. reactor. To obtain
any quantitative information one must consider simultaneously all the
elementary processes analyzed before and the solution of the simulation

as presented in Chapter V is the only method available for this purpose.
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C. "BLOW OUT'" OF THE REACTOR

At the beginning of the transient the reactor operates under the steady
state conditions corresponding to a feed temperature of 227, 6°Cc. A step
of -15°C in the feed temperature brings it to 212, 6°C which is below the
"blow out temperature' of 220°C reported in Section A. It has been shown
in Chapter III that there is a stable steady state corresponding to a ieed
temperature below the '"blow out'' temperature, but that it corresponds to
almost no production of ammonia since the temperature inside the catalyst
is uniformly equal to the feed temperature. The negligible conversion
obtained under these conditions makes that condition of operation unaccept-
able. The instability encountered in the reactor, when the feed temperature
falls below the ""blow out' temperature, corresponds to an approach to a
new steady state under which no reaction takes place.

Since large temperature changes occur before the new steady state is
reached (the average bed temperature has to cool from 475°C to 212°C)
the time required for the present transient is expected to be very large.
The results reported in this section were obtained during the first 15
minutes of the '"blow off'', Fifteen minutes after the change in feed
temperature the temperature drop experienced at any location in the
reactor never exceeds 35°C,

The variations with time of the changes in temperatures experienced
at the locations a=0, a=0.1, a=0.3, a=0.6 and a=1.0 are presented in
Fig, 6.13, The variations with time of the changein ammonia mole frac-
tion at the same positions are presented in Fig. 6.14, These results
show that the nature of these changes encountered during the first part of
the blow off are similar (in absolute value) to those presented in Section B,

Chapter VI for a +5°C step in the feed temperature.
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Figure 6.13 shows that the temperature at the entrance of the catalyst
section responds instantaneously by a decrease to the step change in the
feed temperature. The temperature at the entrance of the bed keeps
decreasing monotonically during the whole transient., The temperatures at
locatimns a =0, 10 and 0.3 experience very little change until the thermal
wave reaches these locations, respectively, at time 6'=0,1 and 6'=0. 3,
After the passage of the thermal wave the temperature at these locations
decreases monotonically. Figure 6,13 shows that at location a=0,6 and
a=1,0 the temperature of the catalyst decreases as soon as the feed
temperature is changed and follows the temperature changes generated in
the tube wall., The passage of the thermal wave originated at the entrance
of the catalyst section further decreases the temperature at these locations.

The results presented in Fig., 6. 14 show that for a=0.1 and 0, 3 the
ammonia mole fraction experiences an immediate decrease. As it was
explained in Section B this results from the instantaneous propagation of
concentration in the present model. The passage of the thermal wave
through the section of the reactor where a decrease in temperature is
accompanied by an increase in production results in Fig. 6. 14 in a temporary
increase in the ammonia mole fraction observed at location 0.6 and 1.0,

Figure 6.15 shows the gain of the reactor (defined as the ratio of the
change in temperature at any location to the change in feed temperature)
plotted versus location at different times. The gains reported in Fig. 6.5
appear also in Fig, 6.15. For small values of time the gains obtained in
both cases are very close to each other, As time grows the curves depart
from each other as it is expected since the steady profile obtained at the
end of the "blow off" correspondsto a flat profile quite different from the

steady state profile associated to a feed temperature of 227, 6°cC.
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The kind of instability which results from a decrease in the feed tem-
perature below the blow out temperature is of the so-called '"snow ball"
type of instability since no oscillation in temperature and composition has
been observed during the transient of the uncontrolled reactor.

In this section it has been seen that the phenomena describing the first
instants af the "blow out' of the reactor are of the same nature as the
phenomena presented in Section B, Chapter VI. In the next section the
effect of the initial step in feed temperature on temperature changes

occurring in the first instantsof the transient will be investigated quantitatively.

D. NONLINEARITY OF THE SYSTEM

Since the mathematical system describing the transient behavior of
the reactor includes two nonlinear differential equations, the response of
the simulation to large changes in the feed temperature is expected to be
a function of both the location in the reactor and the magnitude of the step
changes from a given steady state,

Figure 6, 16 presents at time 8'=0.964 the variations of the ''gain"
AT

C
ATfe&d N o
in Table 6,2. Even though step changes of -10" and -15 C result in ""blow

defined as with position in the reactor for the conditions reported

off" of the reactor the ''gains' for these transients appear on the same
figure., During the first instantsof the transient, the nonlinearity of the
process affects very little the response of the reactor. At time 6'=0,964
when the thermal wave has almost traveled down the entire length of the
reactor , the results obtained for a +5°C or a +10°C step never differ by
more than 10 percent. The discrepencies between the results corresponding
to a +5 and -5°C steps are much larger, particularly in the second half of

the reactor,
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The results corresponding to the '"blow-off'" cases depart already at
8'=0,964 from the results obtained with a +5°C change, Figure 6,17 pre-
sents the gain at 6'=2, 10 for step changes of -15, -5 and +5°C. The
difference between the +5 and -5°C step results has further increased.

The position at which the two ''gain profiles' intersect has moved towards
the outlet of the reactor. If the transient had been followed until steady
state was reached the gain profile corresponding to a -B%¢ step would have
been above the gain profile corresponding to a +5°C step since the steady
state gain for the outlet temperature is larger in the case of a -5°C step
than in the case of a +5°C step.

Figure 6,18 presents the variation with time of the "gain'' for position
a=0.374 where the hot spot was located at the beginning of the transient,
for different values of the step change in feed temperature, At 6'=1,0
the results obtained for the stable runs do not differ by more than 10 percent,
In the case of '"blow off" the difference is already more than 20 percent at
that time, and will continue to increase. For the stable runs as the new
steady state is approached the values of the gain will be expected to depart
further from one another since the ''steady state gains'' are respectively
2.61, 1.24 and 1,09 for step changes in the feed temperature of -5, +5 and
+10°¢. Figure 6,19 presentsthe variation with time of the temperature
""gain' at the outlet of the reactor. During the first part of the transient
resulting from changes in the wall temperature, the results are very
linear and the gain is independent of the size of the step. As soon as 6'
is larger than unity, that is to say, as soon as the thermal wave has
traveled the entire length of the reactor the nonlinearity starts to appear
in the transient, The steady state gain approached in the stable runs are

respectively 1,08, 0.840 and 0.830 for step changes of -5, +5 and £30%¢,
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From the results of Section A of this chapter the steady state gains
corresponding to an infinitesimal change in feed temperature can be
obtained for the location a=0,0 as the slope of the tangent to the curve of
Fig. 6,1 at the point of operation.

In Table 6.3 the differential gain for positions a=0, a=0,374, and
a=1,0 are compared with the steady state gains corresponding to step

changes of -5, +5 and +10°C,

Table 6.3

Steady State Gains

Differential Step Step Step
Position Gain -5°C +5°C +10°C
a=0 1,43 2.0 1,30 1,22
a=0,374 1.57 2.61 1.24 1.09
a=1.,0 0.85 1.08 0.84 0.83

The steady state gains of Table 6.3 and the dynamic results presented
in the first part of this section confirm the strong nonlinearity of the
described process. From these considerations it appears that two different
approaches can be used to describe the transient of the T.V. A, reactor,

1) For small changes in the feed temperature resulting in stable
operation of the reactor its dynamic behavior can be considered as
approximately linear and describable mathematically by transfer functions
relating the changes in desirable variable to changes in the feed temperature.
The transfer functions so defined will be valid only for small perturbations
around the steady state conditions of operation considered, If the reactor is
to be operated under different flow and feed composition conditions these
transfer functions will have to be reestimated,

2) For large changes in feed temperature and for changes resulting in

"blow off'" of the reactor the simulation presented in Chapter V is the only
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way to describe the dynamics of the reactor, Under these conditions the
concept of transfer function loses its meaning. The results presented
in this section show that a 5°C change in the feed temperature around the
optimum conditions of operation is the maximum tolerable change in con-
sidering the system as linear. Even though the steady state '"gain'' for
the outlet temperature differs only by 1 percent from the differential steady
state gain, at the location a=0, 374 the difference between the two gains is
already of the order of 70 percent. From the shape of the steady state
relations presented in Section A of this chapter it is expected that the
reactor will respond more linearly if it is operated in the stable region
further away from its optimum conditions of operation.

In the next chapter, the results obtained with a +5°C step change in
the feed temperature will be used to derive approximate transfer functions
relating changes in temperature at various locations in the reactor to
changes in the feed temperature. These approximate transfer functions
will be checked in both time and frequency domain with the results of the

simulation.
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E. DESCRIPTION OF THE REACTOR IN ITS LINEAR
RANGE OF OPERATION

When the T.V.A. reactor operates in its linear range as is the case
for feed temperature perturbations smaller than 5°C around 227. 6OC,
its dynamic behavior can be described mathematically in terms of a ''transfer
function''. The transfer function of a process G(s) (where s is a complex vari-
a ble called the Laplace variable) is defined as the ratio of the Laplace trans-
form of an output variable of the process to the Laplace transform of an
input variable called forcing variable. In the present situation the forcing
variable investigated is the change in feed temperature AT which is defined
as the difference between the feed temperature at any time t and the feed
temperature at the beginning of the transient. The output variable correspond-
ing to a given location in the catalyst section of the reactor, consists of the
change in temperature ATC defined as the difference between the temperature
observed at any time t and the steady state value of the temperature existing
at the beginning of the transient,

The transfer function or system function relating the variables just

defined is written as

BT (o)
G(s) = ——— (6.8)
T\TF(B}

the bar above ATC and ATF means the Laplace transform of these quantities
has been taken. It should be noted that one can determine a system function
for each location in the reactor one wishes to investigate. The results
presented in this section concern three locations only: the entrance of the

catalyst section, (a=0),the location a = 0.374 where the hot spot is located

at the beginning of the transient and the outlet of the reactor (a = 1.0).
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A physical interpretation of a transfer function is obtained in
considering the results of sinusoidal input to a process. It is well known
that if a sinusoidal input variable of amplitude unity and frequency w is
imposed on a linear process, sinusoidal oscillations in the output variable
are observed. The magnitude and phase lag angle of the sinusoidal oscilla-
tions in the output variable are given by the magnitude and the angle of the
complex number obtained by replacing the Laplace variable s by the imaginary
numberJ'w in the transfer function.

In cases where the equations describing the dynamic behavior of a
process are ordinary differential equations it is possible to derive directly
from them closed form expression for G(s). The linearization of the system
of partial differential equations describing the dynamics of the T.V.A, reactor

d oes not simplify them to the point where closed form transfer functiom can be
obtained. This results from the distributed effect present in reactors of this
type.

The well known method45 of determination of the transfer function in
the frequency domain from transient results in the time domain has been
used in this research. This method is briefly presented in Appendix D. The
numerical solution obtained fora 5°C step change in the feed temperature
has been used to determine the exact form of the system function. These
results have suggested simplified closed form transfer function which are
presented in the following part of this section.

The simplified transfer functiorshave been tested in both the frequency
and the time domain against the results obtained directly from the simulation.
The variations with frequency of the magnitude and the angle of the system

function corresponding to the 3 locations investigated are presented in Fig. 6.20;

b.21, 6,22,
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The magnitude is expressed as

magnitude of G(jw)
10 logy [ —masnitade of G (@=0} )

The magnitude of the system function for a frequency equal to zero is
equivalent to the steady state gain of the process. The values of G(w=0)
corresponding to the three locations investigated are respectively 1.326,
1.292 and 0.860., The angle of the system function are expressed in degree.
In  Fig. 6.20 corresponding to the entrance of the reactor it appears that
the angle never becomes smaller than -90° throughout the range of
frequencies investigated.

This observation suggests that the dynamics of the reactor for that
Iocation be approximated by a first order system whose transfer function

appears on Eq. 6.9

ky

G(s) = 'rlT-I-l_ (6.9)

In Fig. 6.20 the magnitude and the angle corresponding to this simplified
transfer function are presented for a value of the time constant T = 1.25
normalized time unit. The agreement between the frequency response of the
simplified transfer function and the frequency response obtained from the
simulation results is excellent f or the low frequencies. At high frequencies
the agreement is not as good but the simplified model retains the fact that
the angle approaches -90°,

In Fig. 6.21 corresponding to the location a = 0.374 it appears that
the angle decreases without bound as the frequency increases. This observa-
tion characterizes a series of distributed resistancesand capacitances,
Similar variations of the angle are obtained with systems involving a pure

delay represented by e °
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The form of the simplified transfer function proposed for this

location is

G(s) = (6.10)

It represents a first order system coupled with a pure delay time.
In Fig. 6.21 the magnitude and the angle corresponding to the simplified
transfer function are presented for the following values of the time constants

expressed in normalized time unit

‘I"l = 1.25

'I'2 :0.374

The agreement reported for the angle is surprisingly good and justifies the
choice of the parameter 7,. T, was chosen equal to the normalized location
a investigated., It already appeared in Section B Chapter VI that it corresponds
to the time at which the thermal wave reaches the location under investigation,
In Fig. 6.22 corresponding to the location a = 1.0 it appears that the
a ngle never becomes smaller than -135° and as frequency increases tends
to oscillate around a value close to 100°. The amplitude curve presents
s imilarly a series of maxima and minima, . The order of magnitude of
the difference in frequency corresponding to two consecutive maxima is
of 6 radians per normalized time unit.
The approximate transfer functiomsproposed for this location consists
of the sum of two transfer functiomsand appears in Eq. 6.11
-T3 8

k k, e

1 2
G(s) _'rls+1 + 1—2 s+1 (6.11)

The first part of G(s) characterizesa first order system with a time

constant T,. The second part corresponds to a first order system and a

1

pure delay. For larger values of the frequency the proposed transfer
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function simplifies to

-T38
leZ + k Ty e
s

G(s) =

A8 B »®

T4T

2
12

It can be seen that if lez is greater than kz’r the angle of the system

1
function increases indefinitely on the contrary if leZ is smaller than kZTl
the angle will oscillate around -90°, or -450° or -810° and so on.

In approximating the frequency response curve obtained for the outlet

of the reactor by the simplified transfer function of Eq. 6.1l the following

choice of the coefficient is proposed

k, = 0.44 k

1 0.42

1

T, = 0.30

1 = 1.4

1.0

T2

Under these conditions the angle of the approximate transfer function
oscillates around -90°. In Fig. 6.22 the angle and the magnitude curve for
the approximate transfer function presents also a series of maxima and
minima. It can be proven that the values of the frequency corresponding
to two consecutive maxima is only a function of T3 and is equal to 6.30
radians/unit of time. The accordance of this observation with the results
presented before supports the choice of 1.0 made for the value of Ty

In order to interpret physically the signification in the time domain
of the proposed simplified transfer functions, the next paragraph analyses
the response to a step change in the feed temperature predicted by these
transfer functions.

Equation 6.9 predicts that a unit step change in feed temperature is
followed immediately bya mmotonic increase in the temperature at the

inlet of the reactor represented by Eq. 6.12

-6 /T
AT (8 =1(1-e 5 (6.12)
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AT
In Fig. 6.23 the variations with time ofﬁ— predicted by the

simplified transfer function and obtained during the simulation are presented
The agreement between the two curves is good. The transfer function
represented in Eq. 6.10 predicts that no change in temperature is experienced
as long as ©' is smaller than 0.374. After ©' = 0,374 the temperature
changes are described by the same equation as Eq. 6.12 where ©' is

replaced now by (0'-0.374). The poor agreement between the approximation
and the results of the simulation during the first part of the transient is
apparent in Fig. 6.23. It was shown in Section B, Chapter VI that small
changes in temperature resulting from changes in the wall temperature and

in the reactants concentration occur before the passage of the thermal wave.
Nevertheless, the magnitude of these changes are so small that they have been
neglected in the derivation of an approximate transfer function. The use of a
second order system to represent the early instant of the transient could be
proposed but will defeat the objective of this approach which is to provide
simplified transfer function retaining the major characteristics of the transient.

The first part of Eq. 6.11 means that the temperature at the outlet of

the reactor changes as it was described in Eq. 6.12 as long as €' is smaller
than T3;when ©' is greater than T3 to this response is added a second first
order response delayed by a time equal to Ty- Equation 6,13 describes
mathematically the transient resulting from a unity step change in the feed

temperature
-e'/'rl
1 = -
e<1‘3 ATc_kl(le )

-0/ {e'-J/,

o >, AT = ky(l-e bk ,(1-e ) (6.13)
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In Fig. 6.23 it appears that Eq. 6.13 does not represent exactly
the early instant of the computed transient. The improvement proposed for
the location a = 0.374 could also apply in this case.
In this section the frequency response curves corresponding to three
locations in the reactor have been presented. In order to interpret physically
the signification of these system functions a simplified transfer function of
the form presented in E4. 6.1l has been proposed. The relative magnitude

of the two parts of this transfer function depends on the location in the reactor.
At the entrance of the catalyst section the magnitude of the first part of the
transfer function is so small that it can be neglected and Eq. 6.1l reduces to
Eq. 6.9 and 6.10,

The numerical value of the constants appearing in this expression
depends on the conditions around which the transient is performed as the
nonlinearity of the T.V.A, reactor described in Section D, Chapter VI

showed it.

F. EFFECT OF "BLOW OUT' PERTURBATION IMPOSED DURING
A FINITE AMOUNT OF TIME

In this section the dynamic behavior of the T.V,A. reactor is investi-
gated when a perturbation in the feed temperature which, if sustained,
would "blow off' the reactor, is imposed for a finite length of time. At the
beginning of the run the reactor operates under the steady state conditions
corresponding to a feed temperature of 227, 6od,a stepchange of -15°C in the
feed temperature is imposed at ©' = 0. The feed temperature is then
restored to its initial value of 227.6°C at ©' = 1,139, Under these conditions
the results presented in this section show that the reactor can be restored
to its starting conditions. Figure 6.24 presents the variations with time

of the temperature at the locations corresponding toa = 0.1 anda = 0.3,
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Figure 6.25 presents the same variations at the locatiomscorresponding
toa=0,a=0.6anda =1,0,.

At location a = 0, the +15°C step change in the feed temperature
occurring at time ©' = 1.139 is immediately felt. Restoration of the
feed temperature to its original value affects the temperature at location
a = 0,10 only after a delay time AO' = 0.1. From ©' = 1,140 to ©' = 1.24
Fig. 6.25 shows that the temperature of the reactor continues to decrease
as if no correcting action had taken place. After G' = 1,24 the temperature
at a = 0.1 returns to its original value in a similar fashion as described in
Section B, Chapter VI. The existence of the initial delay appears also at
location a = 0.3 . For all the locations presented so far the effect of changes
in the wall temperature and ammonia concentrations are almost negligeable
and the transient response at these locations can be completely described
in term of the travel of two thermal waves down the reactor. The first one
resulting from the original step of -15°C, the second one from the restoration
of the feed temperature to 227, 6765,

At location a = 0.6 the effect of the return of the feed temperature to
its original value is felt almost immediately. It was already seen that the
wall responds very fast to temperature changes onthe empty tube section
side and consequently forces the temperature of the catalyst to change more
rapidly at the locations where energy transferred to the wall becomes the
predominant term of the energy balance.

During the first instant of the return process, rapid changes in the
wall temperature slow down the temperature decrease originated by the
-15°C step change. When the wall temperature stops changing rapidly,
the initial decrease in temperature is resumed until the second thermal wave
reaches location a = 0, 6; the remaining part of the transient for that location

being equivalent to the one described in Section B, Chapter VI.



-158-

a=1.0
a=06

3.0

2.0

NORMALIZED TIME (8')

1.0 1.13¢9

| |
~ ©
1 i

=12+

(Ds) IDONVHD F¥NLVYIIWIL

Fig. 6,25 Temperature Variations during a Perturbation
of Finite Duration



-159-

The initial temperature recovery due to the change in the wall
temperature is more pronounced at the outlet of the reactor and
results in an increase followed by a decrease of the temperature at that
location.as it appears in Fig. 6.25. Figure 6.26 presents the variations of
the ammonia mole fraction at the outlet of the reactor during the same
transient. An overshoot in the production of ammonia is ocbserved at time
O' = 1,80, The explanation of this observation lies in the fact that at ©' = 1, 80
the temperature is minimum in the center part of the reactor as it appears in
t he curve for a = 0.6 of Fig. 6.25., At these locations the rate of production
of ammonia is larger than at the beginning of the transient. Since at the
same time the temperature near the entrance and at the outlet of the reactor
has already started to recover the reactor is under conditions more favorable
for the production of ammonia than the conditions existing at steady state
at the beginning of the transient. As it appearsin Fig. 6.26these conditions
do not persist and the ammonia mole fraction at the outlet returnsto its initial
value as the feed is brought back to 227, 6°C. The results presented in this
section show that after a -15°C offset in the feed temperature lasting for

=

©=1.139 (approximately 7 minutes) it was possible to restore the reactor
to its original temperature by using the same feed temperature at which
it was operated before.
If the -15°C offset had been sustained during a very large period of
time, such that the average bed temperature of the bed had fallen below the
ignition temperature (defined in Chapter III) associated with a feed tempera-

ture of 227.6°C it would have been impossible to restore the reactor to its

original conditions of operation by bringing the feed temperature back to
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227.6°C. The reactor would have continued to "blow off'* and would
have ended up operating under the low conversion steady state conditions
associated with this feed temperature.
No proof of this statement is given in this research since the computer
time required to carry out such a run appeared too large. Nevertheless a
run was done starting from an arbitrary temperature profile in the reactor
below the ignition temperature associated with a feed temperature of 227, 6°C.
Bringing the temperature to 227, 6°C resulted in a '"blow off' of the reactor,
that is to say, to a further decrease in the bed temperature and in the ammonia
production., In the next section the modification of the feed temperature is

d one by automatic control using the temperature at the entrance of the reactor

as the controlled variable.
G. AUTOMATIC CONTROL OF THE T.V.A. REACTOR

In Chapter III it was seen that the only variable at the disposition
of the operator to compensate for perturbations in the feed conditions is
the setting of the by-pass valve of the heat exchanger.

The first method of control suggested to avoid the '""blow off'" of the
reactor consists in using the measured temperature at a given location in
the reactor to operate on the by-pass valve setting., Changes in the by-pass
flow will in turn affect the temperature of the gases leaving the heat ex-
changer section and the temperature of the gases fed to the reacting section
under investigation (See Fig. 3.1). The esponses of changes in feed tem-
perature to changes in the controller output depends in practice on the
dynamics of the heat exchanger. In order to avoid the coupling of the two

sections of the T.V.A, reactor the following control scheme is proposed.
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The by-pass setting of the heat exchanger section is fixed by a second
controller using the feed temperature to the reacting section as measured
variable, The temperature inside the reactor is used in a cascade type
of control to fix the set point of the second controller just described. Fig-
ure 6,27 represents a schematic diagram of the process with the control
connections presented by dotted lines.

In this research since the dynamic behavior of the reacting section
only has been investigated it will be assumed that the second control loop
representing the heat exchanger and the by-pass valve is ideal, that is to
say, the temperature Tfeed at the entrance of the reacting section is at
each instant equal to the value required by the controller 1. This is
equivalent to saying that the heat exchanger, controller 2, and the control
valve behave as a servomechanism of gain unity and zero angle (independent
of frequency) which forces the feed temperature to follow exactly the
changes of its reference value. The process block diagram corresponding
to this simplified case appears in Fig. 6.28. Gp is the transfer function
which relates the temperature where the thermocouple is located to the
feed temperature. GC is the controller system function which relates

the error in measured temperature € = T to the

measured_Treference
correcting effect on the feed temperature.

From linear control theory it is known that the stability of the

closed loop system is determined by the zeros of the function
1+G_G
p ¢
In the following part of this section the case of a pure proportional

controller, for which the system function Gc reduces to a constant Kc’

will be considered,
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The linear results obtained in Section E, Chapter VI have been used
in defining the limitations imposed on the value of K  for stability ac-
cording to the location of the thermocouple in the reactor. Since Kpo
hasthe same angle as the process transfer function GP the largest gain
Kc that one can tolerate for stability is the value for which the magnitude
of Kpois equal to unity when its angle is -180°,

Table 6.4 presents for different locations in the reactor the values
of the frequency at which the angle of Kpo becomes -180° and the values
of the proportional gain Kc which would make the magnitude of the quantity

Kpo equal to unity.

Table 6.4
Location w -180° —
0 no limitation no limitation
0.374 4.8 4,51
0.6 3.8 14.5
1.0 no limitation no limitation

Since the angles of the transfer function defined in Section ¥, Chapter VI
for the locations a = 0 and a = 1.0 never become smaller than -180° in
theory the value of the proportional gain associated with these locations
is not limited by the stability of the feed back loop. In order to determine
t he location of the thermocouple in the reactor, the steady state results of
Logeais22 have been analyzed. It was found that for all the perturbations
investigated by Logeais it is possible from a steady state point of view to
avoid the '"blow out' of the reactor by keeping the top temperature of the

reactor constant. It should be noted that keeping the top temperature constant
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avdds the reactor blow off but does not maximize the production after the
introduction of the perturbation, Consequently the control scheme
presented in this section does not constitute the ultimate control for this
installation.

In the simulation of the reactor under close loop conditions the
thermocouple has been located near the inlet of the reactor in order to allow
the use of large controller gains. The results of a typical controlled run are
presented in Fig., 6.29 and 6.30. At the beginning of the transient the
reactor operates at steady state. A step change in the ammonia mole frac-
tion in the feed from 50/0 to 60/0 occurs at time zero. From the steady state
results of Logeais such a disturbance will blow the uncontrolled reactor out.
The proportional gain used in this study is equal to 10. In Fig. 6.29 the
changes with time of the measured temperature are presented. After a time
equal to 10 minutes the reactor has recovered from this perturbation and
the offset present at the inlet of the reactor is equal to 1. 87°C. It was
observed that the low value of the proportional gain used in this study assures
a very damped response of the temperature everywhere in the reactor and an
over shoot of the temperature is only experienced near the outlet of the reactor.
as it appears in Fig. 6.30. On this example the possibility of avoiding the blow
off of the reactor by using a proportional controller is demonstrated when an
increase in the ammonia recycled occurs.

The use of larger values of the proportional gain will result in a faster
recovery of the T.V,A. reactor but also in a less damped response. In order
to avoid the existence of the offset in the controlled variable at the end of
the transient the use of a pure integral controller was simulated. The trans-

fer function retained was of the form — and the value of the gain tested was 50,
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Under these canditions the recovery of the temperature inside the reactor
experienced oscillationsasFig. 6.29 and 6.30 show it. The oscillations
were still present in the reactor after 15 minutes but had the tendency to
die out. It is expected that the use of a smaller gain will reduce these
oscillations.

The scope of this section was to test the simulation under closed loop
control conditions. Runs made with the control thermocouple located near
the hot spot temperature (that is to say at location a = 0.374) with gain values
that were too large resulted in instability and oscillations which blew the
reactor out. With the present assumption concerning the response of the
feed temperature to controller output, it is demonstrated that the stabilization
of the reactor presents very few problems when the measuring element is
located near the top of the reactor,

The type of control considered so far did not take into consideration the
problem of hot spot temperature nor of optimum production. Since the location
and the magnitude of the hot spot vary during a transient, the entire temperature
distribution in the reactor needs to be sampled in order to locate and measure
the hot spot accurately during a transient. This problem falls outside the
range of standard control theory and beyond the scope of this research.

The optimum control of the reactor affected by random changes in the
feed conditions is also a very difficult problem which is not considered in this
research. Nevertheless, the simulation presented here constitutes a tool

to test economical criteria of optimization on this installation.



CHAPTER VII

CONCLUSION AND RECOMMENDATION

During this research a mathematical model describing the dynamic
behavior of an ammonia synthesis reactor was derived. This mathematical
model provides (at the end of a transient) steady-state profiles which are in
fair agreement with experimental results obtained for a specific T.V.A,
reactor. Despite the absence of experimental results to support the transient
results obtained in this research the mathematical model is expected to
describe adequately the reactor since:

The equations derived take into account the major
transport phenomena of enthalpy and matter known

to occur in such a reactor.

The assumptions made can be justified on the grounds

of experimental evidences obtained by previous investi-
gations on similar reactors.

The values of the parameters used in this research come
from previous investigations which were able to predict

experimental steady state temperature and composition
profiles,

The transient results obtained from this simulation have been justified and
interpreted by considering the changes occurring during a transient on each
enthalpy transport and generation process. The predicted effects of changes
in model parameters have been confirmed by the simulation results. The
mathematical system of partial differential equations describing the dynamics
o f the reactor has been solved by a series of finite difference approximations.
The finite difference analog of the enthalpy equation in the catalyst used the
Stone-Brian method of approximation. This method, which was demonstrated

by its authors to represent more accurately the solution of linear partial

-169-
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differential equation, was applied successfully to the solution of a nonlinear
partial differential equation. Even though a complete comparison of the
present method with other schemes was not carried through it is believed
that the Stone-Brian method represents a definite improvement for the solu-
tion of parabolic equations.
The transient behavior ot the T.V.A. reactor resulting from step changes
in the feed temperature was characterized by two major effects,
1. The effect of changes in temperature orginated at the
entrance of the catalyst section and travelling down the
reactor.
2. The effect of changes in temperature resulting from the

coupling between the catalyst section and the empty tube
section through the metal of the tube wall,

At the beginning of the transient the only effect felt near the top of the
reactor was the first effect, resulting in a 'thermal wave' which pro-
pagated down the reactor at a speed which was only a function of the ratio of
heat capacity of the gases to that of the catalyst. The fact that the travel of
t his thermal wave was weakly affected by the extent of the chemical reaction
was explained by the poor reactivity of the catalyst. Near the end of the
reactor the first instants of the transient could be completely described in
terms of changes in the wall temperature of this section. To this initial
change in temperature is then added after a delay function of the position

in the reactor. the thermal wave resulting from the perturbation at the
entrance of the catalyst bed.

Because of the coupling between the empty tube section and the catalyst
section, the time required for the reactor to recover from a change in the
feed temperature is much longer than in the uncoupled case.

As a result of a drop in the feed temperature below the '"blow off'' limit,
the reactor was demonstrated to cool down uniformly; the type of instability
encountered in this case being of the '"snow-ball type''. The effect of the

size of the feed temperature perturbations on the response of the reactor was
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investigated to test the linearity of this process. It was demonstrated that
the dynamic behavior of the reactor was highly non-linear. For small
changes (less than SDC) in the feed temperature around the optimum con-
ditionsof operation the behavior of the reactor could nevertheless, be treated
as linear without introducing errors that are too large . Under these con-
ditions the transient behavior of the reactor was represented by frequency
response curves and, fora few positions, by simplified transfer functions.
If the conditions of operation change, so do the frequency r esponse and

the values of the constants introduced in the simplified transfer function.
For large changes in the feed temperature resulting in '""blow off" of the
reactor the results previously obtained do not apply, and changes in temperature
and composition can only be obtained through the solution of the simulation.

The impossibility to generalize quantitatively the results of this investi-
gation to other types of operating conditions has appeared. The form of the
proposed simplified transfer function nevertheless remains unchanged and the
quantitative determination of the frequency response and of the constants
involved in the transfer function can be obtained through the use of the proposed
simulation under different operating conditions.

The results obtained for the T.V.A. reactor around its optimum condition
of operation were used to design an ideal controller acting on the feed tem-
perature of the reactor,

Both a proportional and a pure integral controller were demonstrated as
adequate to avoid the'blow off' of the reactor resulting from an increase in the
amount of ammonia recycled in the feed. The sensing element was located at
the entrance of the reactor in order to allow for large gain values. No attempt

w as made to optimize the proposed control scheme,
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The recommendations for further work concern two areas:

1. The description of the uncontrolled reactor during a
transient in its linear range.

2. The description of the reactor under close loop control
conditions and the dervation of an automatic controller
optimizing the production of this reactor.

In investigating further the dynamic behavior of the uncontrolled reactor, the
proposed simulation should be used to derive the values of the time constants
of the simplified transfer function under different operating conditions. The
sensitivity of these time constants to the steady state around which the tran-
sient is performed, should be investigated. An attempt should be made

to correlate these time constants with the dimensionless groups appearing

in the mathematical model. A particular attention should be paid to the ef-
fect of the design variables and the catalyst activity on the values of the

time constants.

In investigating the ammonia reactor under close loop control conditions
the coupling between the reacting section investigated in this thesis and the
heat exchangersection preceding it should be investigated. As a first ap-
proach to this problem the simplified transfer functions derived in this
thesis should be used with transfer functions reported in the literature for
countercurrent tubular heat exchanger.

As a second step, the present simulation should be used for the design
of an automatic controller fulfilling the three requirements.

1. Avoid the 'blow off' of the reactor.

2. Avoid the peak temperature to be greater than the
value at which the catalyst is deteriorated.

3. Optimize the production during a transient.



APPENDIX A

The design characteristics of the T.V.A. reactor under investigation
have been reported by Logeais. ek In this section the pertinent numerical
values required for the estimation of the model parameters are presented

with the values of the parameters retained for the simulation.

1. DESIGN CHARACTERISTICS

a) Catalyst

Total volume 144 cu, ft.
Depth in reactor 17 £E,

Bulk density 169 1b/cu. ft.
Total charge of catalyst 24,340 1b

Particle size: equivalent diameter 0.2"

b) Cooling Tubes

Number &4

Total inside area S1 =540 ft. 2
Total outside area S‘2 =750 fE.
Total flow cross section A=0,572 ft. .

Total mass of metal in tube wall M=7810 1b

2. OPERATING VARIABLES
The operating variables corresponding to the standard conditions under

investigation are presented below.

Space velocity vV =13800 1/hr

Molal flow rate F =5540 1b mole/hr
Mass flow rate inside tubes G = 106, 300 1b/hr sq. ft.
Mass flow rate in catalyst G'=7,260 1b/hr sq. ft.
Pressure 300 atm

Feed mole fraction

Hydrogen 0.653
Nytrogen 0.217
Ammonia 0.05
Inert 0.08

XT3
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3. THERMODYNAMICS DATA
The following molal heat capacities are taken from Kelle'y'46 at a tem-

perature equal to 4277

Hydrogen C =7.19 Btu/1b mole’F
PH2
Nitrogen C =7.20 Btu/1b mole °F
pNZ
Ammonia C =11.12 Btu/1b mole °F
PNH 5
Inert Cp=6.67 Btu/1b mole e
i
T. =7.35 Btu/1b mole °F
Py
AC, =3.26 Btu/1b mole °F

G, =C, =0.172 Btu/lb mole °F

c Im

The enthalpy of formation of ammonia at 298 °K is taken from Rossini and al47

AH® = -19,870 Btu/lb mole

238

4, HEAT TRANSFER DATA

The heat transfer data used in this simulation are obtained from the
results reported by cheais?z An overall heat transfer coefficient
US =55, 000 was retained since this value was found by Logeais to provide
the best fit between the steady state experimental temperature profiles
of Slack, Allgood and Mza.une29 and his computed profiles. The distribution
of the estimated resistances to heat transfer between the catalyst side and

the cold gas side are presented below

Nature of resistance 36 of total resistance
film resistance in the catalyst 48 %
side 1
hZ
film resistance in the cool gas 33 %
S
i 2
side —=————o
S1by
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Nature of resistance % of total resistance

resistance to conduction in the 6 %
metal of the wall

resistance due to fouling 13 %
100 %

In the present model the total resistance to heat transfer is broken down

into two terms only.

DI __l_ + _Sz
U h2 S1 hl

Under this assumption the fouling factor and the resistance due to conduction
across the metal of the wall are lumped with each film resistancejthe heat
transfer coefficient corresponding to the standard conditions of operation
are, respectively

h

1

B

I

250 Btu/hr sq. ft °F

124 Btu/hr sq. ft °F

The value of the longitudinal Taylor diffusion D' has been computed from
the modified longitudinal Feclet number Pez reported for gas flow through
packed bed by McHenry and Wilhelm. £

The expression proposed for D' is:

D GC
p P
1 —-—
i Pe
Z
where
; ; BTU
cp is the heat capacity of the gas TE0F
1b
G themass flow rate o
ft" hr
Dp the particle diameter ft
BTU

D' the Taylor heat diffusivity —
hr £t °F



-176-

With a Peclet number of 2.0 as it has been reported the Taylor heat
diffusivity corresponding to the operating conditions of the T.V. A, reactor

o

is equal to 40 Btu/hr ft. F,

5. PARAMETERS USED IN THE SIMULATION
The reference temperature used in the simulation is Tref= 800°K. The
values of the groups defined in Chapter IV corresponding to the standard

conditions of operation appear in Table A, 1.

Table A.1

Numerical Valuesof the Groupsused in the Simulation

Group Numberical Value

0.1952
0.8584
0.8584
. 3550
.0002
. 4550
.8783
.3209
. 4444
.4382
.320
.2855 101
.375

g W w O O O = = O

(aS]

~3‘<_@“’5'U°WQJU&7[QL%%D



APPENDIX B

SOLUTION OF THE STEADY STATE EQUATIONS

The system of ordinary differential equations representing the steady
state behavior of the reactor where longitudinal diffusion is neglected, can
be obtained from Egs. 5.2, 5.3 and 5.5 by eliminating the time derivatives,
the second derivative with respect to distance and replacing everywhere it

appears the normalized wall temperature m by its value obtained in

Eq. 5.4
m = L vk d W
“Id I+d
For simplicity of presentation the distance derivatives have been rewritten in

terms of the function ¥, G, and H as it appears in Egqs. B.1l, B.2 and B.3

dy

-H-g = F(Y,V) (B.l)
%Eg’ = Glv,w,¥) (B.2)
%% - H(w,v) (B.3)

The signification of the functions so defined appears in Eqs. B.4, B.5 and B.6

2
Fy,v) = —(1—+Zl_.3,— £ ely,v) (B.4)
I+y

d
[e+h(v-0.375)] sx(v,y) +=55(W-V)
Gl Wiy = s (B.5)

S Y=y
Fril-breyd
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H(w,v) = £y (w-v) (B.6)

As proposed by Logeais, e the Runge-Kutta for:rrm.las41 have been used to
approximate and solve these differential equations simultaneously. Becauseof
the boundary conditions associated with this problem, the starting conditions

of the computation are presented in Eq. B.7

£=0

3 L

-k (B.7)
V=W=vV

The approximating equations used to derive the values of the increments Ay,
Av and Aw corresponding to the increment Af of the distance variable are
presented in Table B.1.

The computation process is a marching process, which has been demonstrated
stable and convergent when a 100 mesh distance grid is used.

The next pages presenttheFortranprogram corresponding to this algorithm.
In Table C.1 the variable names used in the Fortran program are defined in
terms of the symbols presented in this research.

Table B.2 presents the dependence of reactor temperatures and outlet

ammonia mole fraction with the feed temperature



IAE

y=Y
kle(Y,V)Aﬁ
Ky 4
kzzF(y-l-—Z—-,v-P -—Z)Aﬁ

k 12

2
ky=F(yt—, v o)At

k, =F(ytk,, v+ L)A £

4 =
Ay :’16 (k 2k, +2kytk,)

y=y tAy
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Table B.1
Runge Kutta Formulas

V= VTop

11: G(V: W, Y) Ag

11 my kl
12 = Gl{v ¥ - , Wt i Y+—2')A§

L m, k

2
1, =G(vt — wt —, yt—)AE

W+ m

1 :G(v+13, 3

4 Y+k3)A'§

1
Av = (L#21, + 215 +1,)

v = VTOP+AV

m, = H(v,w) AE

1 m

m, = H(v+71—, wt —-21-)A§

) iy
m4:H(v+13,w+m3)AE,
B Bt i S )
w =7 (my+2m,+2Zm,tmy

W o=V + Aw

Top
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FORTRAN PROGRAM FOR THE RESQLUTICON OF THE STEADY
STATE EQUATIONS (RUNGE-KUTTA HMFTHOD)

FORMAT STATMEMTS

DIMENSTON CATEM{3CD)sGASTEM(ROC)YsETFM{3AN),CONCT (20NYPARTAL (3NN

1COFK(4YsCOFL{A) s COFM{4)sALPHA(3INN)

FORMAT (4F18,48)

FORMAT(4T118)

EODMAT(5H DATA)Y

FORMAT (IR +4F18B48)

FORMAT(8H RESULTS)

FORMAT(5E1648)

FORMAT (1 1XBHALPHA s 11XSHCATEMy INXAHGASTEM g 12XLHETEM s 11 XRHCONCT)

PRORBRLFM DOCUMENTATION

PRINT 3

RFAD 2 NSTOP
PRINT 24NSTOP
READ 1 +AGROUP sBGROUP yCGROUR ¢ DGROIP 4PRESS 3 SPACE 4B

m
=

AR yDOIIBLE $ SHC ST

1CONSSETASDORIS

PRINT 1sAGROUP ¢BGROUP sCGROUP sDGRUUP 4PRESSsSPACE +BETARSDOURLE ¢ SHC S

1TCONsSETASDORIS

READ 1.DELDIS»VOL

PRINT 1sDFELDISsVOL

READ 14CAFFD

PRINT 1sCAFED
IF(CAFEN=0,1000)700418,518
NTOP=NSTNP-1

VARTABLE DISTANCE GRID

SECOND=2.0%(1e0=VOL)

DO 23 J=1sNSTOP

PARTAL {J)=VOL+SECOND*DELDIS*FLOATF(J-1)
ALPHA(J)=VOL#DFLDIS#FLOATFIJ=1)1+(10=VOL)*¥((FLOATF(J=1)%*DFELDIS)**2

)

CONTINLIF

PRIMNT 25
FORMATI(23X1HJ s 19X5HALPHA 1 ’RXAHPARTAL)
FORMATI(IZ2442E2448)

PRINT 269 (JsALPHA(J) sPARTAL(J) sJ=1,MSTOR)

RUNGE=KUTTA METHOD
CATEM(1)=CAFED
GASTFM{1)=CAFFN
CONCT(1)=STCON
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70
75
RD
85
B6
87

an

95

100
110
115
120
122
123
124

=
™o
n

126

127
1238
129
130
131
132
133

137
2050
201
202
203
204
205

210

215

220
250
260
2 T
300
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GAMMA=BETAR/(1.0+DORIS)
DO 50N J=1sNTOP
PART=CATEM(J)
CORT=CONCT (J)
GART=GASTEM(J)
TEMCA=PART
CFTCON=CORT
CALL RATSER(TEMCACETCONSPRESS4AGROIIP BGROUP 4CGROP 4DGRNOUP 4STCON 4 S
PACERATE)
COFKI(1)=({((1leO+CORTI®H*D240)/(1«0+STCON) ) *¥RATE*DELDISH(PARTAL(J)+PAPR
TAL(J+1)Y/ 2
COFL(l)=WFLDTQ%(PA””””{GA@T DART)I+(DNOURLF4+SHC# (PART=N,2725))#RATE)
#{(PARTAL(JY+PARTAL (J+1)) DY/ {1aD=SHOH(CORT=STCONY /(] «O+CORT )
COFM(T)KGANMA‘ﬁELDIS*(L9Q1—PLRT)‘(p RTALIJY+PARTAL(J+1)) /28D
CORT=CONCT (J)+COFK113/240
GART=GASTEMIJY+COFM(1)/2.0
PART=CATEM(J)+COFL(T1)/2eD
TEMCA=RPART
CETCON=CORT
CALL RATSER(TEMCASCETCONSsPRESS sAGROUP s BGROUP s CGROUP 4 DGROUP 3 STCON 95
1PACF4RATE)
COFK(2)=(((1e0+CORT)*#%*240)/{1eN+STCON))*RATEXDFLDISHIPARTAL(J)+PAR
1TAL{J+1))Y /2T
COFLE?2)=DELDIS* (GAMMA® (GART=PART)I+(DOUSLE+SHC#(PART=Ne3725))%*RATF)
1# ((PARTALCJ)+PARTAL(J+1))/260)/ 11 e0=5HCH(CORT=STCON) /(1 N+CORT Y
COFMI(?2) =GAMMA#DELDIS* (GART-PART)I®* (PARTAL(J)+PARTAL(J+1)) /2N
CORT=CONCT(J)+COFK(2)/240
GART=GASTEM(J)Y+COFM(2)Y /20
PART=CATEM{JY+COFL(2)/240
TEMCA=PART
CETCON=CORT
CALL RATSERI(ITEMCASCETCONIsPRESSSAGROUP oBGROAUP s CGROUP o DGROUP s STCON 4 S
1PACE 4RATE)
COFK(3)1={((]1a0+CORTI*#2e0)/(Las0+STCON} ) *RATES*DELDIS*(PARTAL(J)+PAR
ITAL(J+1)) /260
COFL({2)=DELDIS*#{GAMMA# (GART=PART)I+(DOUBLE4SHC*#[(PART=0N437258))%RATE)
1*((PAuTﬁL(J)+~AﬁTAL(J+1)1/2.W)/(1 O=SHCH ({CORT~STCON) /(1 .0+CORT ))
COFM(3)=GAMMARXRDFELDIS* (GART—PART I (PARTAL(J)+PARTAL(IJ+1)) /20
CORT=CONCTLJY+COFK (32}
GART=GASTEM(J)+COFM{3)
PART=CATEM(J)+COFL(3)
TEMCA=PART
CETCON=CORT
CALL RATSER(TEMCASCETCONsPRESSSAGRDIIP 4BGROLIP yCGROUP o DGRAIIP 3 STCON
1TPACESRATE)
COFKI{A)=(((1laN+CORT)I¥#2a0 )/ 1eN+ETCON) )#RATERDELDISH#(PARTAL(J)+PAR
1TAL(J+1)}/2.C
COFL(&4)=DELDIS*(GAMMA# (CART=PART)+(DOUBLE+SHCH(PART=Ne3725) ) *¥RATF)
r((PA”TAL(J)+~A“TAI (JF+1))/2eN) /{1 e0=SHCH* (CORT=STCON) /{1 0D+CORT))
COFN(a)—GANMAmL:L)ISr(GAQT PART)I®(RPARTAL(J)+PARTAL(J+1)) /26N
DELCON=(COFK (1) +2 0#COFK(2)+2:0#COFK (3 )+COFKI4)Y)/6a0
DELCAT=(CRFE (] ) #2«08COFL[.28+2 «B*COFL { 3 ) ®#COFL {43 ) /& @
DELGAS=(COFM(1)+20%COFM(Z2)+2 « O*¥COFM(3)+COFM(4)) /60
CONCT(J+1)=CONCT(J)+DELCON

il

[

—
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310 CATEM(J+1)=CATEM(J)+DELCAT

320 GASTEM(J+1)=GASTEM(J)I+DELGAS

500 CONTINUE

51C DO 520 J=1,NSTOR

515 ETEM(J)=(CATEM(J)+DORISH*#GASTEM({J) )/ (1e0+DORTS)
520 CONTINUE

PRESENTATION OF THE RESULTS

560 PRINT &

560 PRINT 7

600 PRINT 6 (ALPHA(J) s CATEM(J) sGASTEM(J) s ETEM(J) 9 CONCT(J) 9 J=19NSTOP)
610 PUNCH &y (JsCATEM(J) s GASTEM(J) 9 TTEMIJ) sCONCT(J) s J=1sNSTOP)

650 GO TO 15

700  CALL FXIT
END

RATE OF REACTION

SUBROUTINE RATSER(TEMCASCETCON'PRESSSAGROUP $BGROUPSCGROUPsDGROUP & 5
LTCONSSPACE $RATF)
Xe=11,590978+54,5T7023 725/ TEMCA~24943 % OGF(TEMCA)-Ne2313N46XTEMCA+
10427344608 % (TEMCA#¥®2)
CONTEN=(EXPF (X} #PRESS ) #%2
ONP=(RGROUP—-CFTCONY*SOARTF (RGROUP=CFTCON)
FIRST=CONTEQ*AGRQUP®*DDP* (CGROURP=CETCON) /CETCON
SECP=DGROUP*CETCON/ODP
RATE=SPACE#[EXPF(=25.375/TEMCA) )*(FIRST=8ECE )/ TEMCA
RETHRN
END

144

TOTAL 1Ll
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Table B.2

Steady State Relations

[0} (o] 0

374 o Tcout = Tkﬁnaxhnunl “maximum Ya=1.0
0 393.5 418, 80 0.614 0.1475
2 405.6 438.7 0,600 0.1628
3 416.0 458, 8 0.572 0, 1775
6 420.2 468.6 0.559 0.1840
427.8 491.0 0,527 U, 1959
430.1 499.3 0.492 0.1990
6 432.3 507.0 0.471 0.2011
5 434 .4 514.1 0,439 0.2024
5 436.7 520.70 0.418 0.20311
5 439.3 526.8 0.399 0.2033
6 442,20 532.6 0.374 0.2031
6 445, 4 536, 2 0.408 0.2026
6 452, 7 547.7 0.316 0.2009
9 456, 8 552.5 0.299 0.1998
6 465, 8 560.7 0.266 0.1971
2 470.1 564.7 0.250 0.1955
8 474.8 568.5 0.234 0, 1937
4 479.6 572, 2 0.219 0.1918



APPENDIX C
FORTRAN PROGRAM FOR THE COMPUTING

ALGORITHM PRESENTED IN CHAPTER V
AND NUMERICAL RESULTS

The computer program corresponding to the algorithm derived in
Chapter V is written in Fortran language and presented on the following pages.

Table C.1 gives the correspondance between the namesof the variables
used in the program and the nomenclature already defined. The variables
appearing in this program but not defined in this table correspond to parts

of an equation computed separately so as to decrease the time of computation,

Table C.1
A, Non-subscript Variables
1. Fixed point Variables
Signification or equation
Fortran Name Nomenclature where the variable is defined
L n time subscript
ICHANT number of changes of the
time increment
IF L Total number of prints
output requested
IPE Subscript used for DELA
(I PE) and ICHAN (IPE)
IPU Subscript used for
IPUNCH (IPU)
1PUT Total number of punch output
J j Distance subscript
JPE Subscript used for
I PRINT (JPE)
NSTOP N

Total number of points
in the distance grid
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2., Floating Point Variables

Signification or equation

Fortran Name Nomenclature where the variable is defined
A GROUP J% 4,2
ART aj B 24
BERT bj 5.22
BETAR B 4.5
B GROUP 9 4.2
C GROUP o5 4,2
DELDIS A€ Distance increment
DERT d.] 5,22
DGROUP o) 4,2
DIF D 4.10
DORIS d 4.7
DOURBLE e 4,10
GAP g 4,7
GASFED Waad Normalized feed temperature
PRESS p Pressure
SECOND f'j‘ 5.8
SEMA a' 5,124
SEMRB b! 5.12
SEMC i 5,12
SETA s 4.10
SHC h 4.10
SMALA a 5.20
SMALB b 5.20
SMALC c 5.20
SPACE - 4.10
refvo
STCON y* ammonia mole fraction in the feed

VOL 2 5.6



B. SUBSCRIPT VARIABLES

1. Fixed Point Variables

Fortran Name
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Signification or equation

Nomenclature where the variable is defined

ICHAN (IPE

I PRINT (JPE)

I PUNCH (IPU)

2, Floating Point Variables

Fortran Name

Value of the time subscript
at which the time increment
is changed

Value of the time subscript at
which a printed output is

represented

Value of the time subscript at
which a punch output is requested

Signification or equation

ALPHA (J)
BETA (J)
CATEM (J)
CERT (J)
CONCT (J)
DELA (IPE)
ETEM (J)
GAMMA (J)
GASTEM (J)
OCATEM (J)
OGASTE (J)
PARTAL (J)

RATEP(J)

Nomenclature where the variable is defined
a. 5.6
J
ﬁi 5.32
Vj,n-l—l 5.14
c, 5. 22
J
Yi, ntl 5.3k
AB ' time increment
mj,n+l and mj,n 5,9
: 5. 33
'YJ
Wj,n+l 5.9
Vi 5,14
J,n
5.9
J.
£1. B T
J
T, 5,17
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FORTRAN PROGRAM FOR THE RESOLUTION OF THE TRANSIENT BFHAVIOR
OF AN AMMONIA REACTOR

DIMENSION CATEM(300)sGASTEM(300)+ETEMI300) sCONCT(300) ¢RATERP(300) 44
ILPHA(3IDD ) s PARTAL (300)«CERT(3NA) sBETAL3ON) 3 GAMMA(3INN) 4 IPRINT(2N0) 4D
2ELA(S0D) s ICHAN{(SC) s IRPUNCH(200) +QGASTE(3DNO) sQCATEM( 300 sCONTFQL3NNY »
SRATO(200) sOCONCT (300 s COFRE(3200)

FORMAT STATEMENTS

FORMAT(4E18.8)

FORMAT(4118)

FORMAT(18.4FE1848)

FORMAT (5H DATA)

FORMAT (5E1648)

FORMAT (11X5HALPHAs 11X5HCATFM s 10X6HGASTEM 12X4HFTEMs 11 XAHCONCT)
FORMAT (124 +2E2448)

FORMAT(2E304.8)

FORMAT(IB+23E1848)

DD d WP WN =

PROBLEM DOCUMENTATION

READ 2 IFLsICHANTeNSTOP s [FPUT

READ 2+ (IPRINT(I)seI=14s1FL)

READ 24 (ICHAN(T)sI=1sICHANT)

READ 1 (DELACT)sI=14ICHANT)

READ 1eDELDISsVOL

READ 1 sAGROUP +BGROUP s CCGROUR o+ NGRUUP 9 PRESSySPACE s BFETARWSETASDOURBLE LG
AP sDORISsSTCONSGASFFED oD IF 9 SHE

16 READ 39 (JoCATEM(J) o+ GASTEMI UYL SETEMIL) 9 CONCT{ ) s J=1sNSTOD)

Iy READ 25 (IPUNCH(TI)sI=1s1PUT)

18 PRINT &4

26 PRINT 2s1FLsICHANTsNSTOP,IPUT

27 PRINT 2+ (IPRINT(I)sI=1sIFL)}

28 PRINT 2+ {ICHAN(T)aI=1sICHANT)

29 PRINT 1s{DELA(TI)sI=1sICHANT)

30 PRINT 1sDELDISSVOL

31 PRINT 1sAGROUP ¢sBGROUP sCGROUP s DGROUP yPRESS s SPACEZBETAR ¢ SETASDOUBLE
GAP+DORISsSTCONsGASFEDsDIF 4 SHC

32 PRINT 32 (JsCATEM(J) ¢GASTEM(J) oFTEM(J) 9CONCT(J)Y 9 J=1,NSTOR)

33 PRINT 2s(IPUNCH({I)sI=1sIPUT}

I =
L N O

H
W
»

ot

VARTABLE DISTANCE GRID

35 SECOND=240%(1+0-VOL)

40 DO 50 J=14NSTCP

45 PARTAL(J)=VOL+SECOND#DELDIS*#FLOATF(J=1)

46 ALPHA(J)=VOL*DELDIS#FLOATF(J=1)+(1s0=VOL)*¥{(FLOATF(J=1)#DFLDIS)**2
1)

50 CONTINUE
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51  ORINT 52
52  FORMAT(23X1HJs10X5HALPHA, 18XAHDARTAL )
53  PRINT 7s(JsALPHA(J) sPARTAL(J) sJ=1sNSTOP)

STARTING CONDITICNS

55  1PU=1

56  1=1

57  1PF=1

58  JPF=1

59 NTOP=NSTOP=1

60 NOP=NSTOP-2

61 DO 75 J=1sNSTOP

62  X==11.590978+5457023725/CATEM(J)=244943%LOGF (CATEM(J)1=0e231304696%

1CATEMJ)+0.,2734408% (CAT—N(J)**P)

63 CONTEQ(J)=(EXPF{X)*PRESS ) **

65 ODP=(BGROUP-CONCT (J) ) *50R TF(Z“JC”D-fP“"*(J)l

68 RATEP(J)=SPACE*®(EXPF(=25.375/CATEM(J) ) ) #( (CONTEQ(J)#AGROUP*DDP % (CG
1ROUP—=CONCT (J) } /CONCTHLJ )V )=DGROUPHCONCT ( J)/0ODP ) JCATEM )

75 CONTINUE

80 DELTIM=DELA(IPE)

8& SMALA=DELTIM/{240% (CAP+OL5*¥DELTIM*{140+DORISYY)
87 SMALB=DORIS#SMALA

88 SMALC=140-24C# {SMALA+EMALS)
89 SIDEV=(140=SMALA)/124C

90 CENTV=(1le0—-SMALA) /3.7

91 SIDW=5MA| B/1240

92 SIDET=(1.,C4+SMALC) /1240

93 CENTET=(1e0+SMALC) /340

o4 SIDTIM=1.0/7(6+0#DELTIM)

95 CENTIM=240/(34N*DELTIM)

96 CENTW=SMALR/ 340

RESOLUTTION OF THE ENTHALPRPY EQUATION TN THF EMDTY TURF SFCTINN

Sl GASTEMINSTOP )=GASFED
2R SEMA=DELTIM/ (GADHN JB#DFLTIM# (1 0+D0ORTIS))
elie) SEMB=N 5#SEMA¥NDORIS
100 SEMC=1.0=SEMA=Z2 « O *SEMB
101 DO 176 J=1.NSTOP
102 OCATEM(J)=CATEM(J)
03 OGASTE(J)=GASTEM(J)

3

176 CONTINUE

107  GASTEMINSTOP)=GASFED

109 DO 115 K=1,NTQOP

119  J=NSTOP+1-K

111 COF=BETAR®DELDIS*#(PARTAL(J)+PARTAL(J=1))/440

112 GASTEM{J-1)=(GASTEM(J)# (1 D-COF¥(1le0-SEMBRY )+ (OCATEMIJ)+OCATEMII=1)
1)V #SEMA#COF+(ETEM(JI+ETEM(J=1) ) #COF#*SEMCH+{OGASTE(J)Y+0QGASTE (J=1))*CO
Z2FE#SEMBY /(1 e 0+COF*(1+0-3EMB) )

115 CONTINUE



122
123
124
L 2%
133

220
225
230
240
241
245
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RESOLUTION OF THE ENTHALSY EQUATION IN THE CATALYST SECTION

J=1

CORECT=SETA¥(1«0-SHC#(CONCT(2)=STCON) /(2.0+CONCT(2)+STCON) /(240N %A
1ILPHALL2))

DIFCO=DIF/ (ALPHA(Z2)%%Z)

BERT=5¢0/ (6« O¥DELTIM)+CORECTHDIFCO+540%{1aD=SMALA) /1240
CERTU1)=1a0/ {6« 0#DELTIM+CORECT=DIFCO+ (14 D=SMALAY /124D
BETALL)Y=BERT

DERT=0CATFM( 1)1 ¥ (5e0/ (6« D0#DFLTIM)~CORFCT-DIFCO=5aN%({]1eN=SMALAY /1240
1}+0OCATEMIZ2) ¥ 1aD/ {6 0FDELTIMI—CORECT+DIFCO—(1e0=SMALAY/12eD )+ (0GAST
ZEMILI+OGASTELL)Y )R {SFTA/ALPHA (2)+5 4N*SMALB /12 eN)+(GASTFM(2)4+00GASTFE({

e RE EER

B2V )HESMALB/ 120+ (B a0#ETEMIIY+FTEMIZ2))IH(SMALC+1 4N )/ 12N+ (N0OIIBLF-Ng27
L2E5¥SHC) #SFETA¥ (5 JO#RATEP(II+RATERP(2)) /6N

GAMMA(1)=DERT

DO 200 J=2.NTOP
CORFCT=(DIF#*SECOND/ ((PARTAL (J)##2)1#PARTAL(JY ) +SETA®(1en=SHCH (CONCT
TEJY=STCONY /0]« Q+CONCT LY )Y IPARTALLI) Y/ {4 OKBELDTS)
DIFCO=DIF/(2«0#( (PARTAL(J)H*DELDISI*#240))
ART==DIFCO=CORFCTH+SIDTIM+SINEY

BERT=2+s0%DIFCO+CENTIM+CENTY

CERT(UJ)==DIFCO+CORECT4+SIDTIM+SINDEY

DERT=CATEM(J+1 ) ¥ (DIFCO~CORFCTHSINTIM=SIDEVI+CATEM[JY®R(CENT IM=2 ,0%D
1IFCO=CENTY)+CATEM{ =T ) ¥ (DIFCO+CORECT+SIDTIM=SIDFV)+{GASTFM{ J+1)+GA
2ETEM{J=1Y+0GASTE (J+1 ) +0GASTE(J=1 ) ) *SIDW+{ GASTEM{ J)+DGASTFE (. J) ) HCFENT
AW+ (ETEM{J=1Y+ETEMIJ+] ) ) #STDETHETEM( JYFCENTET+H(DOURLE+SHCH* (CATEM( J=-
41)—0e3725) ) %#SETAXRATEP(J—=1) /6« 0+ (DDURLE+SHC* (CATEM(J) =04 3725) ) ¥SFT
S5A%RATEP(J)*2e0/3a0+(DOUBLE+SHCH(CATEMII+1 ) =N o3 725 ) ) ¥SFTA*RATEP (J+1
&Y feal

BETA(J)=BERT=(ART#CERT(J=1))/BETA(J=1)

GAMMA( J)=DERT=(ARTH*GAMMA (J=1))/2ETA(J=1)

CONTINUE

J=NSTOP

DIFCO=DIF/{(1e0—ALPHA(NTOP}) ) *x2)

CORECT=SETA#*(140—-SHCH (CONCT(NTOP)+CONCTINSTOP)=2aN¥STCZONY /(2 e0+CON
ICTINTOP)+CONCT(NSTOP) ) )/ (20%(1a0—-ALPHAI(NTOD) ))
ART=]140/(6+0#DELTIM)=CORECT=DIFIO+{1e0—=SMALA) /124D

BERT=540/(64 0#¥DELTIM)=CORECTHDIFCO+540% (1 e0=SMALAY/12.0+SETA*(1eN—-
1SHC* (CONCT(NSTCP)Y=STCON) /{1 ea0+CONCTINSTOPI I/ (1aN—=ALPHA(NTOR))
DERT=0QCATEMINTOPI*¥(1e0/ (6 N#DELTIM)+CORECT4NIFCO=({1a0N=SMALA)/1240)
1+O0CATEMINSTOP ¥ (54 0/ {64 O#¥DELTIM)+CORECT-DIFCO=5eN¥{14N~=SMALA) /1240
2=SETA#*#({1e0-SHC* (CONCTINSTOR)Y=STZON)/(1eN+CONCTI(NSTOPII I/ {1eO~ALPHA
B3INTOP)Y)Y Y+ (GASTEM(INTOP ) +0GASTE(NTORP ) )*SMALB/12e 0+ (GASTFM(NSTOP)+0GA
LSTE(NSTOP) ) *¥54 0% SMALB/12e0+({ 5« N#ETEM(NSTOP)Y+ETEM(NTOR ) ) # (SMALC+1 40
51/12eN+(DOUBLE=Na3725%SHC)*SETA* (S .O¥RATEP (NSTOP)+RATFRP(NTOP) ) /6D
BETA(NSTOR)=BERT—-ART*CERT(NSTOP=1)/BFETA(NSTOE~1)

GAMMAINSTOP )=DERT—-ARTH*#GAMMA (NSTOE=1)/RETA(NSTOP=1)
CATEM(NSTOP) =GAMMA (NSTOR) /BETA(NSTOP)

DO 250 L=1sNTOP

J=NSTOP-L

CATEM(J)=(GAMMA(J)=CERT(JY*CATEM(J+1))Y/BETAC(J)



2,30

23g 0
395
400

410

415
470
475
480

a0
905
910
911
912
913
920
22
925
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CONTINUE

RESOLUTION QOF THE ENTHALPY FQUATION IN THE TURF WALL SFCTION

DO 270 J=1sNSTOP
FTEM(J)=ETEM(J)*SMALCH (CATEM (J)+OCATEMIJ) ) #SMALA+ (GASTEM(J)+0GASTE
(J))*SMALB

CONTINUE

[}

RESOLUTION OF THE MASS BSALANCE EQUATION IN THE CATALYST

DO 300 J=14NSTOP

Xe=]11eH590Q 7845497023725/ CATEM(J)=2e4943% 1 DGF(CATFM(JY ) =Ne?23130404%
1CATEMEI Y +0e 2734408 ( CATEM(J) %%2)

CONTEQ( J)={EXPFI(X])#*ER EQF)~*7

COFRE(JY=SPACE#(EXPF{=25. S5/CATEM{JY)Y)ZCATEM( )

CONTINUFE

CONCT (1 )=STCON

DO 470 J=1.NTOP

ODP=(BGROUP-CONCT (J) ) #=SQARTF ([ BGROUP=CONCT (J M)

RATEP(J)=COFRE{J)®{ {CONTEQ(J)*ACGROUP*ODP*¥ {CGROUB~CONCT(J} ) /CONCT (.J

il

) )=DGEROUPHCONCT {J)/QDP Y
ROI=CeS#*DELDISH*(PARTAL(JI+PARTALCJ+IYIHRATEP(IIFL (] «N+CONCT(J) )y H#x%2
)/ (1 aO+STCEN)

QCONCT U J)Y=CONCT (JIVI+RDO

ODP=(BGROUP-QOCONCT {J) ) #SARTF (BGROUP-QCONCT(J) )

RATO(J)=COFRE(J+1 ) ( (CONTEQ(J+1)1#*AGROUP*ODP* (CGROUP-OCONCT (J)) /0C0
INCT (JY)Y=DGROUP#OCONCT (J) /0ODP)

ROB=Q45*DELDIS* (PARTAL(J)+PARTAL(J+1) ) ¥RATO(II* ({1 QO+DCONCT(J) ) #%2
1,0)/110+5TCON)

CONCT(J+1)=CONCT (J)}+0e5*(ROI+ROL

CONTINUE

ODP={RBGROUP=CONCTINSTOP))*5QRTF(BGRCUP-CONCT (NSTOP) )
RATEP(NSTORP)=COFRE(NSTOF)Y®*({{CONTEQ(NSTOP)*AGROUP*ODP*#{CGROUP—-CONCT
1(NSTOP) )Y ZCONCTUIMNSTOP) ) =DGROUP*CONCT(NSTOP ) 70ODP)

il

CHANGE OF TIME TNCREMENT

IF(I-TCHAN{IPE))1081+490541001

IPE=1PE+1

DELTIM=DELA(IPE)
SMALA=DELTIM/(2e0% (GAP+0 «S#DELTIM®(1s0+DORIS)))
SMALB=DORIS#SMALA

SMALC=1e0=240% ( SMALA+SMALE)
%IWCV—tl.W—QMALA)/l? 8]

CENTV= «O=5MAL A} /340

SIDW:QMAL?/]? n



i

930
935
940
945
950
955
050
265
966
967
968
969
970

1041
1010
1011
1100
1101
1102
1103
1104
1126
1127
1123
1 RE25
1120
1200
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ET=11s048MALC) /1260
NTET=(1.04+5MALC) /3.0
SIDTIM=140/(6e0#DELTIM)
CENTIM=2¢0/(30%DELTIM)
CENTW=5MALB /340
SEMA=DFLTIM/(GAP+0 «8*DFLTIM*(1.0+DORIS) )
SEMB=N 6% SEMA*DORIS
SEMC=1e D=SEMA=2 4 N SFME
COF1=DELTIM/(2+0#DER)
COF2=DELTIM/(240D%TIMC)
COF3={1e0~COF1) /{1 eD+COF1}

(

M -
i)

M
=

COF4=GAIN#*#(1e0+COFZ2)/ (1 0+COF 1}
COFS=GAIN#(140=COF2)/(1a0+C0OF1)

PRESENTATION OF THE RESULTS

IF(I-IPRINT(JPE))Y10104110C4101N

=1+
GO TO 101
PRINT 1171

FORMAT(8H RESULTS)

PRINT 21

PRINT 6

PRINT 58 (ALPHALJ) sCATEMI(J) s GASTEM(JTSETEM(J) o CONCT(J)Ysd=1sNSTOP)
IF{I=TIPUNCH(IPU))1129s1127e1120

PUNCH 39 (JsCATEMIIJ) sGASTEMIJ) sFTEMIJY sCONCTIJ) s Jd=1+NSTOP)
IPU=TPU+1

JPE=JPE+]

IF(JPE=TIFL)1010s1010,1200
CALL EXIT

END

261N

TOTAL 25N%
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The results of the computations are filed in a separate data book kept

in Professor R.F. Baddour office.

In the following pages the numerical results corresponding to the figures

appearing in the text have been tabulated.



-193-

Table C.2

Temperature ChangesDuring a

Time 8 Time 6' ATC- C ATC AT
a=0 a=0.1 a=0
0.10 0. 044 0.45 0.01 0.02
0.20 0.088 0.70 0.02 0.05
0,30 0. 132 8.93 0,52 0.07
0.45 0.197 ls23% 1.12 0.08
0.65 0.285 1.47 1.80 -0.04
.75 0.329 1.72 2.09 0, Z5
1.0 0.438 2.09 2.76 1.23
1; 10 0.482 2,20 2,97 1.51
1.30 0.570 2.46 3.40 2,07
1.45 0.635 2.64 3.71 2.43
1,75 0.767 2.97 4.29 3.06
2.0 0.876 3.23 4,73 9: 53
2,20 0.964 3.43 5.06 3.87
2.60 1.140 3.78 5.66 4.51
3.0 1.3158 4,11 6.22 5.05
4.0 1:t5a 4.79 T4:39 6.20
5.0 2.191 5.30 82T 7.06
6.0 2,629 5.69 8.94 7.70
7.0 3.067 5.97 9.43 8.18
8.0 3.506 6.18 9.79 8.53
9.0 3,944 6.34 10. 07 8.78
10.0 4,382 6.45 10,27 8:97
10.6 4.645 b.51 10. 36 9.06

O

+50C Step Transient

W W W w NN NN = =2 = = O O O O O O O o O O O

.03
.09
.17
.28
.40
.44
.45
44

.44
<19
02
.18
.45
.70
.16
.52
« 79
- 98
s 13
.24
: 32
.36

B R bR W W W W W NN NN N - = = == O O O O

.11
.26
.45
L
.09
wdik
57
.65
.82
91
.02
.07
<19
A
873
.02
s O
.64
o T2
+99
.10
«19
5203
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Table C.3

Ammonia Mole Fraction Changes
During a +5°C Step Transient

3 3 3 3
. . gr =
Time © Time 10 XéyazO.l 10 XAWQ=O.3 10 xAYa:O_b 10 xAyu=l.O

0.10 0.044 0.04 0.01 -0.004 -0.006
0.20 0.088 0.13 0.05 -0.007 -0.009
0.30 0.132 0.24 0. 21 -0.005 -0.012
0.45 0.197 0.38 0.25 0.015 -0.006
0.65 0.285 0.53 0. 49 0.G8 0.022
0.75 0.329 0.60 0.60 0.12 0.042
1.0 0.438 0.76 0.83 0.18 0.078
1.10 0.482 0.81 0.90 0.18 0.080
1.30 0.570 0.91 1.05 0.14 0. 065
1.45 0.635 0.99 1.15 0.09 0.041
1'Th 0.767 113 1,32 0.002 -0.024
2.0 0.876 1.24 1.46 -0.058 -0.081
2.20 0.964 1.32 1.56 -0.110 -0.121
2.60 1.140 1:47 1.73 -0.180 -0.187
3.0 1.315 1.61 1.89 -0. 249 -0.2453
4.0 1.753 1. 90 2. 21 -0.393 -0.358
5.0 2191 2. 12 2,44 -0.506 -0.453
6.0 2.629 2.28 2. 51 -0.606 -0.526
a0 3.067 2.40 2. 13 -0.678 -0.582
8.0 3.506 Z.5U 2.81 -0.732 -0.625
9.0 3.944 2. 56 2.88 -0.773 -0.656
10. 0 4,382 2.61 2,92 -0.803 -0.680
10. 6 4.645 2.64 2.94 -0.818 -0.692
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Table C.4

Location and Magnitude cf Peak Temperature

Time © Time 8' Location a Magnitude Tc
a=0,374

C 0 0.373 532.6T7 532.67
0.10 0.044 0.373 532,69 532.69
0.20 0.088 0.373 532.72 T A
0.30 0.132 0,375 B32.76 532, b
0.45 0.197 0.373 532.79 532.80
0.65 0.285 0.374 532.Th 532. 16
0 75 0.329 0.375 532 .69 532,69
1.0 0.438 0.365 533.11 533.07
1.10 0.482 0, 365 533.35 533. 31
1.30 0.570 0.364 533.85 5%.3. 19
1.45 0.635 0.363 534,16 534, 09
1.75 0.767 0.362 534.68 534,59
2.0 0.876 0. 360 35 ; B5 534,95
2,20 0.964 0.360 535,34 535,21
2.60 1. 140 0, 358 535. 84 535,69
3.0 1.315 0.357 536.26 536.10
4.0 1.753 0, 353 537 .19 536,93
5.0 2,191 0. 351 537.88 537, 5%
6.0 2,629 0.349 538. 39 538.03
(%0 3.067 0. 348 38 T 538, 37
8.0 3.506 0. 347 539, 04 538.63
9.0 3.944 0. 346 539, 31 538.81
10.0 4,382 0. 345 539,47 558,95
10.6 4,645 0. 345 539, 52 539.01



Location a

Time
9'=0.110
e'=0.372
6'=0.964
g'=2.10
8'=4,65

. 164
#3103
.686
003

- 302

Table C.5

Transient Dynamic "Gain'' of the Reactor During

. 106

. 030
.472
025
« 578

. 108

0.208

0.006
0.363
1,064
L. T22

2.346

A +5°C Step Transient

0.

30

.011
. 130
174
315

«811

0.408

0.015-

0.004
0.418
0.768

1.082

0.506

0.020
0.052
0.276
0. 536

0.773

.60

. 025
. 090
<235
.462

N i

s 08

. 055
¢ 2O
.245
.463

. 663

.812

. 044
. 181
.276
299

.701

o912

. 0b7
WFc )
e
+ 556

.763

.-96'[_



Location a

1.

.106
. 208
.30

. 374
. 408

. 506

.702
.812

.912
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Table C.6

Enthalpy Generation and Transport

9

.2609
L2233
. 1522
. 0594
. 0049
.0195
.0514
.0674
. 0806
. 0947
.1082

. 1209

q;

-0

-0.

.0002
0356
.0720
. 0661
. 1092
.1138
w1244
. 1328
. 1409
. 1488
. 1548

. 15692

43

0.2611
0.2589
0.2242
0.1555
0.1141
0.0943
0.0730
0.0654
0.0603
0.0541
0.0466

0.0383

6q3
oV

2,953
2,541
1.23%
-0,248
-0.948
-1.177%
-1.141
=, 737
-0.410
~-0.058
+0; 156

+0. 247

8q3
EY

-6.

066

278
.690
.538
.354
. 159
s DD
. 988
. 445
. 986
.669

.462



Time 6

. 10
0.20
0.30
0.45

g

.30

20

5 1D

+ 20

Ul Ul R W NN N~ e O

.40

N N = = O O O O 0O 0O O O o o O o

Time 6

. 044
. 088
. 131
. 197
. 285
- 329
.438
.570
5T
.767
876
. 986
. 183
. 315
sT5B
. 191
« 36

11.
12,
15,
17
18.

o 0 =~ o~ kR W NN
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Table C.7

—AT
Ca=0.

0.02
0.07
0.13
0.13
=0, 27
0.62
3.58
6.46
8,05
9.86
11,55
13.16
15,88
17561
23.06
28.08
40.00

Temperature ChangesDuring a Blow Off Transient

O O =1 U1 b W NN = O+~~~ OO O

€a=0.6

< O
.25
48
.82
.16
i 25
.26
.95
.20
.04
ol 1
.40
.41
. 06
L0
.07
- B

a=1.

O O 0 =1 o~ OO U U R W W N O O

B2
.15
=95
D
.27
w2
. 64
44
S0
99
.05
.00
. 21
.00
.26
.« 29
.68

0
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Table C.8

Changes in Ammonia Mole Fraction
During a Blow Off

Time 6 Time 9! —103xA'ya=0_ 1 _IOSXAYG.=O. 3 _lOBXAyg:O. 6 -103XAY(1=1. 0
0.10 0.044 0.116 0.059 0.004 0.003
0.20 0.083 0.376 0, T2 0.000 -0,003
0.30 0.131 0.697 0. 355 0.010 -0.003
0.45 0.19% 1.098 0.767 0.078 0.028
0.65 0.285 1,474 1.496 0.285 0.145
0. 75 0.329 1. 737 1.853 0.415 0.224
1.0 0.438 2, 167 2,667 0.678 0. 398
1.30 0.570 2,624 3.536 0.732 0.47
1.50 0.657 Z2.905 4,076 0.661 0. 447
1.75 0.767 5.236 4,728 0.610 0. 387
2.0 0.876 3.547 5.358 0.613 0,334
2. 20 0.986 3.843 5.965 0.652 0.315
2.70 1,183 4,345 7.03 0.783 0.365
3i; 0 1.:315 4.663 7.718 0.903 0.421
4.0 1.753 5,631 9.948 1.443 0.725
b, 0 2,19 6.49 12.039 2,170 1. 156
5.40 2:.36 6.82 12,852 2.508 1.364



Location a

Time
6'=0.110
0'=0.372
0'=0,964
er'=2,10
@'=2,37

0, 163
0.370
0.689
1,156

1.251

.106
.028
.463
. 007
s 155

. 903

.208
.003
« 6l
. 084
. 029

. 215

Table C.9

Dynamic Gain During a "Blow Off"

0.30
0. 007
0.125
0.856
1,807

2.00

0.408 0.
0,012 0.
-0.005 0.
0.475 0.
1.196 0.
1,354 0.

506
018
045
283
778

890

« &0

.024
. 086
. 219
+B18

. 658

.702
032
- 129
;213
« 499

; 259

.812
. 045
.82

s 252
. 504

: 553

912
. 060

.234

1.

-002-



Location a

Magnitude
of step change

~15%¢
«10°C
-~ B
+ 8%

+10°%c

Location a

Magnitude
of step change

-15°8
(8]
=5

+ 590

0.689
0.684
0.678
0.686
0.679

1.156
1.079

1.043

0.106

1.007
1.006
1.001
1.025

1.019

0.106

1.755
1.675

1.648

Effects of the Magnitude of the Step Change
on the Dynamic Gain at ©'=0.964

0.208

1.084
1.074
1,057
1.064

1.0453

Effects of the Magnitude of the Step Change
on the Dynamic Gain at 6'=2,10

0.208

2.029
1.893

1.805

.30

886
830
.798
L7174

741

.30

1.807
1.564

1.382

Table C.10

0.408 0.505
0.475 0.283
0.454 0.276
0.430 0.266
0.418 0.276
0.400 0.269
Table C.11

0.408

1.196
0.950

0.810

0.505

0.778
0.626

0.568

0.60

0.219
0,219
0.218
0,235

0.235

0.60

0,578
0.503

0.490

« 102

.213
217
.218
. 245

. 246

.702

409
.470

.490

.812

D
~LD8
-oh3
2B

282

.812

. 504
.508

< 526

L9122

. 316
. 322
s 331
.336

.234

. 912

» DDE
.574

.5B83

L

1.

0.
0.

0.

.401
.403
.405
<418

. 420

606
626

658

=102~



Magnitude
of Step
Time 6 -15°C
0.044 0.002
0.088 0.007
0. 131 0.013
0.175 0.019
0.219 0.020
0.329 -0.001
0.438 0.065
0.548 0.203
0.657 0.320
0.767 0.420
0.876 0.512
0.986 0.600
1.095 0.684
1.315 0.845
1.534 1,001
1.7563 1.154
1.972 1.303
2,20 1.448
2. 37 1.563

Steady State Blow Off

Effect of the Magnitude of the Step Change
‘on the "Gain'' at a = 0.374

o o o O O O o O O O o o O

Blow Off

-10°C

. 002
. 007
.013
.018
. 019
. 002
. 064
. 199
.311
. 406
.492
. B2
. 649

Table C.12

-5

0.001
0. 006
0.011
0.027
0.017
0.008
0.061
0.192
0.299
0.388
0.468
0.542
0.612
0.741
0.858
0.968
1.068

2.61

+5 C

0.003
0.010
0.018
0.024
0.026
0.004
0.080
0.202
0.303
0.385
0.456
0.519
0.581
0.686
0.784
0,853
0.925
0. %09
1.020

1,24

o O C o 0o C o o 0 o 0 Qo O

+16°6

. 003
. 009
.016
.022
.024
001
.072
. 195
. 292
. 369
.436
. 495
. 548

=202~



Step
Magnitude

Time @'

0. 044
0.088
0.131
0.175
0.219
0. 329
0.438
0. 548
0.657
0.767
0.876
0.986
1.1095
1.315
1.534
1,753
1972
2.10

2.20

2 T

Steady State

Table C.13

Effect of the Magnitude of the Step Change

on the gain at a

-15°C A6
0.0145 0.0135
0.050 0.050
0.090 0.090
0.129 0.130
0.167 0.167
0.248 0.248
0.311 0.311
0.356 0.355
0.385 0.384
0.399 0.399
0.403 0.404
0.400 0.403
0.412 0.417
0.466

0.512

0.551

0.586

0.606

0.619

0.645

Blow Off Blow Off

g 1.0

-5 C

0.0106
0.049
0.090
0.130
0.167
0.2458
0.310
0.354
0,383
0. 398
0.404
0.405
0.421
0.480
0.529
0.570
0.606
0.626

1.08

LG

0.022
0,052
0.090
0.129
0.170
0.248
0,313
0.356
0.386
0.404
0.414
0,419
0.441
0.506
0, 558
0.604
0.638
0.657
0.674
0.697

0. 86

4+10°6

0.0195
0.051
0.090
0.129
0.166
0.248
0.310
0. 355
0.385
0.403
0.413
0.421
0.444

-¢0¢-



Time 6

1; 139
1.143
1.183
1.227
1.270
1.314
1.358
1.402
1.446
1.489
1,577
1.709
L, 1H&
1.796
2. 015
2,059
2.103
24147
2235
2.454
2:673
2.892
5,111
35 330
3.461

Changesin Temperature During Restoration
of the Reactor to its Original Conditions

~AT
o

11,54
10,94
10,50
10.03
9.64
9.31
9.04
8.81
8.61
8.43
8.11
T dT
T« 58
7.40
6.76
6.64
6.52
6.40
6.16
5.58
5, 05
4.55
4,10
3.69
3,45

-204-

Table C. 14

=AT
c

a=0.1

16.83
16.88
17.29
17,71
16.70
16.00
15,35
14, 5l
14..35
13,97
13,34
12,58
12.35
12,12
11.08
10. 88
10.69
10.50
10.13
9.21
8.34
153
6.79
6.11
bi; 1.3

=AT
c

o]
I

15,29
15,25
15,86
16..37
16.87
17. 39
17.99
18,72
19. 06
18,02
16,49
14.86
14, 47
14.12
12,72
12,47
12.23
11.99
11,54
10.48
9.46
8.51
7.64
6.86
6.42

0.

I
5

R TR T VO SURN ST SR SO ST B Y. NUo NUNC S B G Y Gt O S SO N N S

o}
il
o
o

NG N T SRR G : SRR SN N e AR o s T s SN o © N R~ o NG ) B S O S CF S VS S G GNP %
N N e T - N L R S A W VS BT ) Y~ NI = - B e - I €1 BN B G B B UL S« A B S © e

B

NN YN OW W W W W W NN W W Wk oy OO

Cc1=l.

.34
35
.26
.92
. %9
03
.64
.26
o 92
.62
oilB
S e
15
gD
sl
D8
99
-79
. 82
&b
s B8
;61
.37
. 15
.02



Time 9!

0.0

I.139
1.143
1.183
1: 227
1.270
1.314
1.358
1.402
1,446
1.489
1,877
1.709
1.752
1.796
i, 05
2,059
2.103
2. 141
2,235
2.454
2,673
s 182
3.001
5,220
3,350
3.461

-205-

Table C.15

Ammonia Mole Fraction During Restoration
of the Reactor to its Original Condition

Y0.:0.1

O O O 0O O 0O 0O 0O O O O 0O 0O o o o o o0 O o o0 o o o o o o

.08035
.076118
.076113

076119

. 076255
. 076445
. 076597
.076726
.076835
. 076927
. 077006
077142
077316
LOTT570
. 077423
.077670
LO077TT17
.077762
.77808
.077898
.0781206
.078331
.078430
.078616
. 078787
.078857
.078959

o 0 O o 0 OO0 D 0 0 o 0 o 060 0 o o o o o0 o o o

a=0.3

« 13525

. 128452
. 128431
.128276
« 128173
. 128146
. 128201

128342
128563

. 128839
. 129095
. 129501
.129938
. 130059
. 130172
.130679
. 130771
. 130862
. 130980
. 151122
.131535
. 130923
.132104
. 132440
.132762
.-132882
. 133040

ycL=0.6

o o O o0 o o0 o0 0 O a0 0 0 00 000 0D o o 0 Qo oo

+ L1207
171427
. 171425
- 171405
.171392
. 1714008
. 171439

.

1715153

171624
.171768
: 171931
« 172237

172448
172443

.172426
. 172389
. 172392
. 172396

172400

.172410
. 172435
. 172457
.172463
. 172466
. 172462
. 172458
. 177451

a=1.0

0, 20313
0.202783
0.202782
0.202778
0.202784
0.202802
0.202837
0.202892
0.202969
0.203066
0,203175
0.203387
0.203572
0.203590
0.203592
0.203491
0.203471
0.203458
0.203450

0.203455
0.203460
0.203458
0.203448
0.203432
0.203423
0.203412



Table C. 16

Changesin Temperature for an Active Catalyst

@ 6 AT, 96 AT o 106 BTaz0.208°C BT 0.30%C ATy 408"C 8T.58°C ATuuy o C
0.10 0.044 0.44 ~0.016 0.005 0.010 0.014 0.025 0.081
0.20 0.088 0,70 -0.20 -0.008 0.028 0.049 0.086 0.256
0.30 0.131 0.93 0.22 ~0.085 0.023 0.086 0.164 0.464
0.90 0.175 1.135 0.59 ~0.108 ~0.008 0.106 0.244 0.678
0.50 0.220 1.32 0.95 0.005 0.010 0.116 0.315 0.887
0.60 0.263 1.48 1.28 0.125 0.100 0.151 0.375 1.085
0.70 0.307 1.63 1.57 0.23 0.215 0.227 0.431 1.28
0.85 0.372 1.82 1.93 0.38 0.322 0.330 0.53 1.47
1.0 0.438 1.98 2.24 0.50 0.51 0.53 0.66 1.75
1.20 0.526 2.17 2.58 0.63 0.66 0.70 0.85 2.00
1.40 0.613 2.33 2.85 0.74 0.77 0.84 1.02 2.22
1.60 0.701 2.47 3.08 0.83 0.871 0.95 1536 2.42
1.80 0.789 2.59 3.28 0.90 0.95 1.04 1.28 2, b2
2.0 0.876 2.69 3.44 0.97 1.02 1.12 1.38 2.81

2.40 1.051 2.86 3.71 1.07% 1:13 1.24 1.53 2.15

=902~



APPENDIX D

The method used to obtain the frequency response of a system from
transient results in the time domain is well lmown.zj[5 It consists of the
determination of the Fourier Transform of the transient response to an
input signal, The Fourier transform of the function ATc(t) is defined as

-[-oo
KT _(jo) = e It AT () at

It is complex number whose real part A and imaginary part B are given

by the two equations
Fo

A= AT (t) cos wt dt

+ @
B =- AT(t) sin wt dt

The transfer function of the process is obtained as the ratio of the two
Fourier transforms of AT and AT
& feed

AT (jw)
(] ) 2 e

AT (5)

The advantage of using input perturbations such as unit impulse or unit
step 1is that their Fourier transforms are respectively 1, and 1/j w and
consequently only the determination of the Fourier transform A"Tc(jw) of the

response AT 1is required.
(o]

-207-
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The values of ATC resulting from a step change in the feed temperature
remains finite at the end of a transient and for this reason the Fourier
transform of the quantity ATC is not defined. To avoid this difficulty a step
change of magnitude equal to minus the steady state gain or D.C. level of the

process is superposed on ATC at each instant, and the Fourier transform

F(jw) of the function.

F(t) = AT - step change at t = 0 of magnitude AT __ is determined.

Since the Fourier transform of the step change ATSS is @

the Fourier transform of ATC is obtained as

o ATSS
AT (j9) = F(e) +—2

and the transfer function G(j«) defined as

AT ()
G(je) = —F—

Jw

equals
G(j«) = jw F(ju) + AT

The real part R and the imaginary part I of G(jw) are expressed as functions

of the frequency w by the two relations
+00

R=AT__- (AT _(t) - AT_ ) sin ot dt

1= & (ATc(t) - ATSS) cos wt dt
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because of the definition of AT _and ATSS the integrant is zero for negative
time and becomes practically zero after a finite amount of time T after which
the new steady state is obtained. Consequently, the value of the finite
integral is only computed between 0 and T.

A subroutine available in the M,I.T, Computation Center library called
AA HAN3 has been used to estimate these finite integrals. The computer program
written to generate the quantities R and I from the results obtained by the
simulation is presented on the following page.

Once these quantities are obtained it is possible to generate the frequency
surface curve since

+1

N
FU

Magnitude

Angle

- artang (%)

The magnitude and the angle of the frequency responses for the locations
a=0.0a=3.74 and a=1.0 are tabulated in the next pages.

Table D-4 presents the numerical values appearing on Fig. 6.24 where the
results of the simulation are compared with the response of the simplified

transfer functionsfor a step change in temperature of 5°C.



XN
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%)

21
22
23
24
25
26

27
28

29

7 )
71
72
73

=210

DERVATION OF THE FRFOQUENCY
FROM TRANSIENT

DIMENSION D(1000)sAL10)sR{1OOOYsDATALLIONNYZ (1D

11000y CATEM{ 10007

FORMAT (4118}

FORMAT (4F1R,8)

FORMAT (5H DATA)

FORMAT(8H RESULTS)
PRINT 2

READ 2?2 4DFLFRESPERIODSDIFT
PRINT 2+DFLFRFSGPERIOD«DIFT
READ 1 aNsdaK

PRINT TeNesJeK

READ 24 (CATEMINSYsNS=14N)
DO 25 N&=1sN

RESPONSES
DATA

DATA(NS)=(CATEM(NS)=CATEMI1 )Y /DIFT

CONTINUE

NoO 28 NS=14N
NDINSY=DATA(NS)Y=DATA(N)
CONTINUE

PRINT 24 (D(NS)eNS=T4N)
A{1)Yy=NFELFRE

A(2)=PERTON

CALL HARANZ(NsJsNaR Kok
PRINT 4

FORMAT (5FE16.8)

FORMAT (TX9HFREQUENCY » BXEHREAL

—

s 2X1T4HIMAGINARY PART)
PRINT 773

JK=J+1

DB 190 L=l .JK

Kl=L

K2=L+JK

K3=L+2% JK

REAL(KTY=DATA{NY+R (K] )R {K3)

CIMIKTI)=R{KT)#*#R(K?2)

OF

PRINT 72sR(K1)sR(K2)sR(K3) 4REALIKL) CIMIKL)

CONTTINUF

FORMAT { 21 X9HFREQUENCY o2 L XIHMAGNI TUDE)

PRINT 105
FORMAT (2E30N48)
e 120 L=1leJdK

Z(LY=SQRTF(REAL (L)##2+CIM{IL)**2)

PRINT 108sR(L)s7Z (L)

CONTINUE
CARLL EXETE
END

THE

COF $ 3X13HIMAGINARY

PRACFSS

DYsRFALI10D0) s CIM{

COF « TXO9HREAL PART

TOTA|

Sk
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Table D. 1

Frequency Response for a = 0.0

Frequency w Approximate Transfer
radian/unit time Transfer Function Function
Magnitude Angle (°) Magnitude Angle (°)
0 1.326 0 1.326 0
0.1 1.330 7% 1.316 = 0
0.3 1.254 a2 1.241 -20° 34
0.6 1.045 -39 1.061 -36° 52!
1.0 0.758 -52 0.828 ~517 g1
2.0 0.448 -59 0.491 -68° 13"
3.0 0.328 -59 0.341 -75° 5!
4.0 0.272 -59 0.260 -78° 42!
5.0 0.242 -60 0.209 -80° 55
6.0 0.217 -61 0.175 -82° 251
7.0 0.194 61 0, 150 -83% 29
8.0 0.179 -62 0.131 -84° 18!
9.0 0.171 63 0.117 -84° 55!
10.0 0.160 64 0.106 -85° 26!
15.0 0.119 -70 0.070 -86° 57
20.0 0.095 7T 0.053 87" 43!
25.0 0.079 -80 0.042 -88° 10!
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Table D, 2

Frequency Response for a = 0.374

Frequency w Approximate Transfer
radian/unit time Transfer Function Function
Magnitude Angle (©) Magnitude Angle(0)
0 1.292 0 1.292 0
0.1 1.283 s g 1.282 « 8%4im
0.3 1.220 - 26030" 1.210 . 27°
0.6 0,764 - 50930 1.034 - 49° 40
1.0 0.704 = 73 0.807 - 72° 500
2.0 0.455 -109 0.479 -110° 40
3.0 0.320 ~130 0.333 -138° 26
4,0 0.258 -155 0.253 -164° 12!
5.0 0.215 -180 0.204 -188°
6.0 0.176 -206 0.170 213"
7.0 0.155 -233 0.146 054"
8.0 0.139 -257 0.128 -256°
9.0 0.126 «283 0.114 2279°
10.0 0.124 -310 0.103 -300°
15.0 0.086 -420 0.068 -408°
20.0 0.049 -512 0.051 -516°
25.0 0.017 -603 0.041 -623°
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Table D. 3

Frequency Response for a = 1.0

Frequency W Approximate Transier
radian/unitthne Transfer Function Function
Magnitude Angle (9) Magnitude Angle (°)
0.860 0. 860 0
0.847 - 7 0.830 - 10
0.797 - 22 0.790 - 20
0.656 - 41 0.62 - 38
1.0 0.452 - 56 0.46 - 51
2.0 0.262 - 53 0.225 - 49
3.0 0259 - 45 0,225 - 32
4.0 0,259 - 53 0.306 - 35
5.0 0.267 - 69 0.275 - 45
6.0 0.241 - 75 0.275 - 51
T:0 0.186 -106 0.20 - 75
8.0 0.127 -120 0.15 - 78,5
9.0 0.0815 -117 0.125 - 72.5
10.0 0.0692 = 99 0.108 - 62
11.0 0.0793 - 94 0, 132 - 60
12,0 0.0837 -106 0.137 - 69
15, 0.0397 -127 0.078 - 96.5
16. 0.0340 -113 0.106 - D
18. 0.0397 -114 0.078 -101
20 0.0287 -130 0.080 - 98
22 0.0197 -112 0.075 - 81
24 0.0216 -110 0.064 -100
25 0.0206 -114 0.048 - 85
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Table D, 4

Comparison of Transient Data with
Results of Approximate Transfer Functions

a=20 a=0,374 @ = 1.0
Time AT AT AT AT AT AT
g? Cgimulation ZPPTOX. simulation Capprox. “simulation capprox.

0.044 0.45 023 0.02 0.00 0,11 0.26
0.088 0.70 0.45 0.05 0.00 0.26 0.53
0.132 0.93 0.61 0.09 0.00 0.45 Q.75
0.197 1.23 0.815 0.13 0.00 0.74 0'.99
0.285 1.47 1.35 0.09 0.00 1.09 1.289
0.329 1,72 L83 0.02 0.00 1.24 1.42
0.438 2.09 1.96 0.44 0.40 1.57 1.61
0,482 2,20 2.12 0.69 0.53 1.65 1.68
0.570 2.46 2.43 1.18 0.94 1.82 1.78
0.635 2,64 2,64 1.49 1.15 .91 1.84
0.767 297 3.05 201 1.68 2,02 1.93
0.876 3.23 3.34 2.38 2,14 2,07 1.98
0.964 3.43 3.64 2.66 2.43 2.19 2.01
1.140 3.78 3.86 3:.02 2.96 2,27 289
1.315 4.11 4,32 3.43 3.42 2,53 2,52
1,753 4.79 5.00 4,26 4,31 3.02 3.01
2.191 5.0 5,48 4.90 4,95 3.37 3.36
2.629 5..69 5.82 5.36 5.40 3.64 3.6l
3.067 5.97 6.06 5,70 i €1 3.74 3,80
3.506 6.18 6.23 5.96 5. 93 3.99 3.93
3.944 6.34 6,35 6.13 6.09 4,10 4,03
4,382 6.45 6.36 6.28 6.21 4,19 4.10
4. 645 6.51 6,37 6.34 6.22 4,23 4,14
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APPENDIX F

NOMENCLATURE

The subscripts ”HZ”, ”NZ”' ”NH3", "inert' used with the mole fraction
y and the molal heat capacity CP denote the specie under consideration. The
subscript '"feed' used with the temperature denotes the conditions of the gas
entering the reactor. The subscript "a=0,374" associated with the temperature
changes refer to the location 0.374 in the reactor where this change takes place.
The subscript j and n are used with the variables appearing in the finite difference
equation to characterize a location and an instant.

The superscript " is used to denote the mole fraction in the feed gas.

The presence of a bar above a variable means that the Laplace transform

or the Fourier transform of it has been taken.
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LIST OF SYMBOLS

Cross sectional area of the catalyst ft2

18 ,-0.5

Symbol used to represent the quantity 6.2825 107 P~

Total cross sectional area of the tubes ftz

Weighting coefficient used in the accuracy analysis of Chapter V
Constant appearing in the definition of function f(Eq. 5.6)
Coefficient of Eq. 5.20

Coefficient of Eq, 5.12

Coefficient of Eq, 5,22

Dimensionless group characterizing the feed composition
Coefficient of Eq. 5.12

Coefficient of Eq. 5.20

Coefficient of Eq. 5.22

Dimensionless group characterizing the feed composition
Weighting coefficient used in the accuracy analysis of Chapter V

Dimensionless group characterizing the feed composition

Heat capacity of the catalyst —%%—

Heat capacity of the metal %%—

Average molal heat capacity 131%%]%"0?

Molal heat capacity of specie x ]EBrE;JIeOF

1
Dimensionless diffusion group —-—TD-VT
1 hZS
BTU

Taylor longitudinal heat diffusion :
hr ft °

F
85
Ratio of heat transfer resistance onboth sides of the wall d = ———

h,s,



“’&9;.?“1‘

£(7)
fl

fl'l

-220-

LIST OF SYMBOLS (Continued)

Weighting coefficient used in the accuracy analysis of Chapter V
Coefficient of Eq. 5.22
Dimensionless group characterizing the feed composition

Dimensionless group characterizing the liberation of enthalpy

by reaction
ref Py

Molal feed rate —l—tllrln——:k

Function defining the distance var iable §
First derivative of f with respect to £

Second derivative of f with respect to £

Mass flow rate in the catalyst -——EET

hr ft

Controller transfer function
Process transfer function

Ratio of the total heat capacity of the wall to the total heat capacity
M C

Pm

of the catalyst g = wr—
Pe

Weighting coefficient appearing in the accuracy analysis of Chapter V

Heat transfer coefficient between the feed gas and the tube wall —E'I—‘g—o
hr ft F
v BTU
Heat transfer coefficient between the catalyst and the tube wall. e
hrft™ "F
Dimensionless group characterizing the change in heat capacity
due toreaction AC
e
Po

Gains appearing in simplified transfer function

1b mole

Specific rate constant (formation of ammonia) 3 T
hr ft™ (atm) ™"

=



1
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LIST OF SYMBOLS (Continued)

5

) 1b mole (atm)o'
hr ft3

Specific rate constant (dissociation
Proportional gain of the controller

Integral gain of the controller

Maximum tolerable gain for stability

Equilibrium constant for the synthesis of ammonia

atm
Reactor length ft
Dimensionless group 1 KP
Total mass of catalyst 1b
Normalized wall temperature TT;-—\Zf

Weighting coefficient used in the accuracy analysis of Chapter V
Total number of position in the distance grid

Total pressure atm

Partial pressure of specie x atm

Heat introduced by bulk flow (dimensionless form)

Heat transported from the wall (dimensionless form)

Heat generated by the chemical reaction (dimensionless form)
Coefficient for sink or source term in the accuracy analysis

1b mole

Rate of reaction 3
hr ft~ catalyst

Rate of reaction dimensionless form
Total inside area of the tube ftz
Total outside area of the tubes ftz
Dimensionless group characterizing the heat transfer on the
catalyst side of the wall s = g s
22

Laplace variable
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LIST OF SYMBOLS (Continued)

Base temperature for the estimation of the sensible heat

Catalyst temperature °R
Reference temperature °R

Gas temperature in the tubes °R

)

Wall temperature R

Time

Linear velocity of the gas in the catalyst %t-i—
Velocity of propagation of a thermal perturbation %'i:
Volume of catalyst ft3

Velocity term in the accuracy analysis

Space velocity ‘Hli'_
il
Normalized catalyst temperature
ref
T
Normalized gas temperature in the tubes
ref

Ammonia mole fraction
Ammonia mole fraction in the feed

Mole fraction of specie x

Estimate of Yj-l-l, -

Distance along the reactor ft

in the solution of the mass balance equation



AT

At
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GREEK SYMBOLS

Normalized distance in the reactor z/{

Diffusion parameter in the accuracy analysis of Chapter V

2DAt
i =

Ax

Weighting coefficients, used in the accuracy analysis of Chapter V

Number of heat transfer units in the empty tube section

h;S,

—_——

FC

Py

Velocity parameter in the accuracy analysis of Chapter V

VAL
P2z

Coefficient of Eq. 5.31

= : A
Dimensionless group ™
ref o

Coefficient of Eq. 5.31

Change in molal heat capacity of the mixture resulting

from the formation of 1b mole of ammonia

Enthalpy of formation of ammeonia _I%_Trﬁ%le

Temperature change °F
Time change hr
Distance increment ft

Normalized distance increment %—Z—

Normalized time increment

Size of a distance grid mesh

BTU
1b mole®F
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