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Chapter One

Introduction

We are concerned with the problem of geographically separated sources
(stations) sharing a common communication channel. In many situations it
is impractical to share the channel capacity by classical methods such as
frequency division multiple access (FDMA) where each source is allocated
a fixed portion of the frequency spectrum in which it is allowed to transmit,
and time division multiple access '(TDMA) where each source is allocated
a fixed subset of time during which it is allowed to transmit. For example,
consider a satellite channel that is to be shared among a very large number
of earth stations. Fixed allocation schemes such as TDMA and FDMA may be
impractical for a variety of reasons. In many applications, each source
in fact has no data to transmit most of the time, which results in ineffi-
cient utilization of channel capacity. Secondly, it may be that since the
number of sources is so large, only a small amount of channel capacity can
be allocated to each source. This can lead to unacceptable message delays
when a source does in fact have data to transmit. Another, perhaps most im—
portant reason why these fixed allocation schemes fnay be inappropriate is
that it may be incorrect to assume that the sources can agree a priori upon
how the communication resources are to be divided among all the sources.
For example, TDMA may be impossible because the sources have no way to
agree on which subsets of time are to be allocated to which sources; FDMA
could have an analogous problem. This type of situation arises when the

number of sources is a random function of time. That is, it may be that new



sources are continually entering the system, and that sources may cease to be
functional. Thus there is a need for more suitable access schemes which will
circmnvent the problems mentioned above.

We will focus our attention on the following model for the communication
channel to be shared and for the sources that share it. Time is divided into
slots of equal length. All message lengths are such that it takes one slot of
time to transmit a message. We will assume that there are an infinite number
of users, each of which generates at most one message during its lifetime. In
this way, we can focus on the more fundamental aspects of sharing the channel.
We will assume that generation times of messages from all sources from a Poisson
point process with intensity A messages/slot. When two or more soﬁrces trans-
mit a message in the same slot, the messages, “collide" and all messages involved
in the transmission must be retransmitted at a later time. When exactly one
source transmits a message in a given slot, we assume that the message is re-
ceived at its destination error-free and hence need not be transmitted again.

A number of types of feedback have been considered in the literature for
the above model. Thel\tg.':)tted "Aloha" channel has been used for the above chan-
nel when the only feedback available to the sources is acknowledgements of their
own successful transmissions. A common access algorithm for this channel is known
as the "Aloha" algorithm [ 3 ] which can be described simply as follows. When
a source retransmits a message and does not receive an acknowledgement, that
source retransmits that message in subsequent slots with a fixed probability f
until the source transmits the message and hears an acknowledgement of his suc-
cessful transmission. The Aloha algorithm is known to be unstable in the sense

that eventually a large backlog of messages to be



retransmitted will cause the probability of a successful transmission to
approach zero. However, if messages are permanently rejected fram the system
after a finite number of retransmissions the system is stable and has maxi-
mm throughout Y& = .36% | where throughout is defined as the
expected long—texin rate of successful transmission of messages over the
channel [ 4 ].

A different feedback model has been considered in the literature
which can be described as follows. In addition to the acknowledgement
feedback available in the Aloha channel, each source can determine at the
end of each slot whether that slot was empty (no transmissions, denoted by
"0"), that slot 'had a successful transmission (denoted by "1"), or there
was a collision in that slot (denoted by "e"). We will term this type of
feedback as (0, 1, e) feedback. With this additional feedback there are
known access algorithms that maintain stability. One particular access
‘algorithm, the Gallager-Humblet algorithm [ & ], has throughout .488, which
is the highest known throughput for this channel model. In [ 9 ]- [ I4 ]
upper bounds are derived for the throughput of such systems. The lowest
known upper bound is about .587.

For the same channel model I-Ha'j,-\ek and Van Ioon [ 2 ] introduced multi-
access protocols similar to the simple Aloha protocol but different in that
they maintain stability [ | ] by using the (0, 1, e) feedback to steer
the traffic intensity toward an optimum level. Specifically, they allow
the retransmission probability for sources to depend on past (0, 1, e) feed-
back.

In chapters 2 and 3 we consider the following model. Number the slots



1,2,3..... Defie ﬁ'k't 0, 1,2 according to whether in slot k there were no
attemtped {ransmissions, exactly one attempted transmission, or more than
one attempted transmission respectively. At the end of slot K all stations
observe the value of 2, where Zx is the output of a discrete memory-
less channel (DMC) with input ég . This type of model has been considered
in[ 7 ] and [ 8 ]. For a specific form of the error probability matrix
P describing the DMC, Ryter [ 7 ] devised and analyzed a modification of
the algorithm in [ 6 ].

The type of algorithm introduced by Hajek and Van Ioon [ 2 ] is
particularly well suited to this type of noisy feedback. We show that there
exist stable algorithms of this typewhen A\ < 7€ as long as the DMC
has non-zero capacity. In chapter 2 we analyze the performance of the algor-
ithm in [ 2 ] when P is of a certain form. In Chapter 3 we describe how
the algorithm analyzed in Chapter 2 can be modified to maintain stability for
any P that describes a DMC with non-zero capacity.

In Chapter 4 we consider the situation in which the stations do not have
access to the same feedback. Specifically, each station observes the output
of a DMC with input ix but the DMC's for any distinct stations are
independent. In addition we assume that any station observes the output of
the channel‘o‘:;.ter the arrival of a message to be transmitted (continuocus en-
try) . We conjecture that there are algorithms that maintain stability for
this type of feedback, and we describe an algorithm which we believe is sta-
ble. |

In Chapter 5 we consider algorithms that transmit messages in the order
they were generated (we assume all stations are able to observe the inls

directly). For examplé the Gallager-Humblet algorithm [ 5§ ], [ @ ] is of



this type and has a maximum throughput of about .488. We show the throughput

of any algorithm of this type cannot be greater than %.
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CHAPTER TWO

A Stable Algorithm When P is of a Certain Form

2.1 Introduction

In this chapter, we assume that in addition to the acknowledgement
feedback mentioned in Chapter 1 each station observes Zg at the end of slot

k, where Zx is the output of a discrete memoryless channel (DMC) with input

fa g

Zkf More _specifical]‘.yr r

P"’Ob(zk:j\ik-i): Pi; hj=on2 (1)

Define
P=1pi) (2)

Define Ny to be the number of packets waiting to be retransmitted
at the end of slot k. We will show that as long as A< €' and the cap-
acity of the DMC described by P is non-zero, there exist algorithms that the
stations can execute such that EUNg)  remains bounded over k. We des-
cribe a method of analyzing a class of algorithms that maintain stability in
the sense just mentioned. Specifically, for this class of algorithms we can

compute numbers N ,K , and ¥V such that

lim supE[NKl <N (3)
K
and

|imsuPProE(Nk>b\$I<€-7b (1)
K

In section 2.2 we present an explicit algorithm that maintains stability

when the channel error probability matrix P is of the form



P°° POI Pox
P = O Pu |‘P,| (S)
L O Pzi 1= Pay

with Poo >0 . In addition we describe a procedure for explicitly
computing N ) K., Y/ satisfying (3) and (4) for the algorithm presented

when P is of the form (5).

2.2 A Stable Algorithm When P Satisfies (5)

2.2.1 Description of AlgorlthlB

The algorithm presented here is essentially identical to that presented
by Hajek and Van Ioon [ 2 ], the stability of which is established in °
ajek [ 1 ].

We now describe the algorithm. When a packet is generated at a station,
that station transmits the packet in the slot immediately following the slot
in which it was generated. If the packet collides then the packet is retrans-
mitted in subsequent slots, with proability ‘FK in slot k, until the
packet is successfully transmitted. That is, if a station has a packet to
be retransmitted it will decide whether or not to retransmit in slot k by »
flipping a biased coin that lands heads with proability fy and tails
with probability |-f, . If the coin lands heads then the station re-
transmits the packet in slot k. If the packét collides, or if f.he coin lands
tails, the station repeats the same procedure in slot k + 1 flipping'heads
with proability  f,,, . The £.'s are generated according to the

recursive equation



Fear = min{ B, £ - (2] ()

where a is a function, QA ¢ {O)Iﬂ-.} — R
¥ >0
0<p<l

Intuitively the function a is chosen so that when the channel is experi-
encing a "high" rate of collisions the Fk's will decrease, and when there
are many empty slots the #£,'S will increase. ¥ controls the rate at
which changes take place and should be small when A\ is close to e' . when
Nk  is "large" or §, is "small" the mumber of attempted transmissions
;i.n slot k is approximately Poisson with mean )\ + NK'FK (see Lama 8).

Thus for N, large or ¢ small we have

Prob (%=1 N, ) = (e N exp AN 0 (1)

The expression on the right side of (7) is maximized for NK{:K ==X .

pefine

Du =In ((NV D £,) (2)



SD* =In(1=-)) (1)

Mg = @, = * (10)

where (aV b)=m0\X(Q_\b).

We now motivate how ac) is chosen so that NK‘FK drifts to-

ward |- AN , or eqivalently so that M, drifts toward zero. Note that

E L, -mulfd = ELIn gy 1N R+ ELIn 2 k) ()

If NK is large enough it can be easily seen that the first term on the
right side of (11) can be made to be negligible with respect to the second
term. If £,  is small enough the min in (6) will not be taken by 8. Hence

for Ny 1large enough, f’& small enough we have

E[mkﬂ" mK\NK,"\'gl A \‘YY\((PK) | ()
where
M(P) = (€% 6% 1=t e+ (Pe) (13)

G_:X.}ECPK (l"f)
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In alo)

c = | lna)
In a(2)

T denotes transpose.

(15)

Based on (7), (12) we choose the function QU(*) or equivalently

c so that M(P) =0 for ('PK'—'(P* , W\(CPK\<O for CPK>(P*,

and M(P)> 0 for Py < P* . Note that this holds if

€-1|

Pce = -
—I

A sufficent condition (neccessary if P_l exists) is

e _
Poo
¢ =1 “l
~|
This yields e
(75, ! .
L)
)
. > 1 .
atly = e '|-:.‘

.;.l\
I\J

We also make the choice

(16)

(17)

(1%)



R =" (19)

Throughout section 2.2 we assume that Q& ('), B in (6) are giveh by
(18) and (19). The choice of PC  in (16) was made somewhat arbitrarily to
simplify expressions used in the proof. Other choices for P ¢ (or equivalently
other choices for a(:) ) might lead to better performance of the algorithm,

We will show that the intuitive reasoning that lead us to choose the val—
ues of (A(*) above was correct, and that for all A< él , ¥ suffi~
ciently small insures stability of the algorithm. This could be shown by argu—
ments in Hajek [ 1 ] which show the stability of the algorithm presented in
Hajek and Van Ioon [ 2. ]. We choose an alternative approach, suggested also
by Hajek in. [ 1 ]. We commence our approach in section 2.2.3. In section
2.2.2 we repeat for reference results from Hajek [ 1 ] which we willvuse in

our proof.

2.2.2 Results from Hajek [ ]| ]

et (Yy) k3o De a sequence of random variables on a probability
space (_0., T, P) adapted to an increasing sequence (aT:K ) k30 of
sub- 0" fields of “F -- thus Yy is fy, measurable for each k.

If Y and Z are random variables, then Z is said to stochastically dom-
inate Y, written Y< 2, if P(Y>c)<£P(Z>C) for -®w< C< o ,
1f ) is a sub -0 -field of °F we write (Y|D)< Z if
P(Y>c|D) €P(Z>c) for - < C < v,

suppose (Y, )”F;( )l@o is such that



E[Y\@,.‘YK*‘ E.,}YK>°<\°'F,:] <0 Ykzo (20)
for some o and ED > O . In addition suppose there is a random
variable Z and positive constants q )D such that

(Y| EY < 2 (21)
and
127 -«
Then (20), (21), and (22) imply that
k 1Y, | — o(
E[e"™|F] < ple’™ + ,,; De’ (23)
and
PNb|%) € pr @bl o 2P preety
- p
where
7=min(q,%) (25)
_ £,
[ (26)



= — q K
c n — Z < ELZ"] (27)
We now repeat the proof given in Hajek [ 1 ] of (23), (24).

Iemma 1  Suppose X and Z are random variables such that ‘X\ < £ and

E[eq-zl < + for some q > O . Then for osgscL ,

Ele® ) <1+ ¢E[X]+6%¢ (23)

where C is given by (27). Hence if E[ X} $-¢, < 0 ad 1 ,P

satisfy (25), (26) then

E[e"xlsl—')so»r')‘cs/oq (29)

To prove the lemma note that since ]X\ < ‘Z'Z_ }EHX\K] -ﬁE{ Zz]
so that if O < & = q , then E[ ei_x } has an absolutely

convergent series expansion and

EIE—EX] =1+ EE[X] + :: %E[Xkl

A

[E ]

<ireEIX v e S EDE1Z)

K=2

<+ eEIX+ g™

(23) clearly holds for K=0O . For X 20 ,



ELe™ B = E[E [ ot e | E ) (30)

Now

Bl R ) = B[/ sy s | )

(31)
y’(Ykﬂ-Yk .
+E[e ‘)Yk5°<|c7:,<]
By the lemma,
700 Y) |
Ele®e™ Y oa| B <p Ty g2p (2]
and by the hypothesis (21), (22)
PNen— YD
Ele"™ K))Yksd\wﬁ]éDIfYksd% (33)
. : e : A 7«
Combining (30) - (33) and using the trivial inequality IfY sd}e- e
yields that
7 o
E[C Ykﬂ\a}:;‘l sPE[CqYK\OFo]"’De (Slf)

(23) now follows for all k from (34) by induction. (24) follows from (23) by

Chebyshev's inequality.



2.2.3 Proof that algoritim is_stable

2.2.3.1 Description of approach and definitions

Our approach to proving stability of the algoritm will be as follows.

We consider the random sequence defined by -

v, =N, + (m
K K raﬁ k) (25)
where
& M RAERA
ﬂb(t) = 72A-2) ; t>a (36)
A .
SLA(BS) <A
Y, A are constants to be specified later.
To prove stability we first note that Vyx > N . We then show
that Vi satisfies the hypothesis of section 2.2.2 ((20}, (21), (22))
with =V, = Ny and appropriate choices for £, , X , and Z. (Note

that Vi can be v’iéwed as a Liapunov function). This will immediately imply
stabj.lity and we can compute numbers N ) X ) 1 satisfying (3), (4) from
(23) and (24).

To begin the proof let us first make some definitions. The following

parameters in (37) are arbitrary.
o< P° < | (31a)

O<F'< ‘ (37b)



-lb-

0<p, <
o*:%p;<|
O<s < |
O< s' < |
O<q
Let

w=é'- )\
)L=|n(|+—mlf_"T_—‘—)|)

~ o -(1-X\)Jw(i-0)
M = | exP[l—A+qu-a)]

S
ZPOD +e

-\ -2
K\ze + e+
2

Poo

2X(1-SYMP, W

¥ = =
(AP WY (K, ¥ 2 XS M) + K, P,w

0<% <%

r=2b"

¥(KF2XS ﬁ\)

" . 62 € 3

(37¢)
(37d)

(37e )
(37F)

(3']3)

(3%)

(34)

(40)

(40.5)

(41)

(H2.)

(43)

(43.3)



We will show in section 2.2.3.3 that with these definitions

_|r-’..

Ky=H+56'+&*

- 8 rK, P W + A
L\ = mox —_— 2 [o
a,=ATr
=0+ a,

E[VKH_VK"'PoW ; Vx > X ‘E] < O

where "L is the ¢ -field generated by (N; ,'F'»)isk

where

In section 2.2.3.3 we also show

(‘VKH—VK\\GIT{() < Mo"MIU

U ~ Poi(\)

|

(43,7)

(44)

(45)

(+6)

(47)

(H3)

(49)



-1%€-
Mo = L¥HrA (50)

Ml:|+er (S'\\

In section 2.2.3.4 we cambine the results of sections 2.2.2, 2.2.3.3
to compute N r K , and 7 satisfying (3) and (4). In the next section

we present several lemmas which will be useful in section 2.2.3.3.

2.2.3.2 Facts to be used in sectlon l“2‘\.\2.3".3

In lemmas 2-5 we state miscellaneous relationships and properties of

the quantities defined in section 2.2.3.1 which will be useful later.

ILemma 2
ay X<\ (52)
""\(l"’W’ \’W(I)O‘) é\rvv-<\
b) <l (53)
c) ¥<1 (54)
—  2X0-35)M 2KU-S)m | 2
<Y = < < =<
e e (ki xs ) + Ky “ o
d) ‘d(%;*l)ﬂ (55 )
5 5 2 2.¢' P
< = 5 o 1 = e < e _ e _
RS TET SEAR) T G T 6
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¥ (5,1
e) max O:‘('\\ =e P <

¢ (56)

Iemma 3 For all C‘D satisfying l(p—q)*|<2( we have
A— (\t e(P)epo—e(") £-0W (57)

Proof

x=|n(i-A+fwime) ) = In(1-3) € InC=-2)=In(I-3- Jwa-6y )

Thus if  |@-@¥| < X we have
In (=27 ) = In(-X) < @-¢* < In(-x+wamer ) = In(i-\)
Hence
I-fwi-ey <« A+ e® < 1+ fmoen

Equivalently

(1-x~ef Y < wa-o)
or

Arow<e - (1-x-ef)” (53)

Taylor's theorem gives



-20~

he'h 2 €' —(h-1) ¥helR (59)

Combining (58) and (59) gives (57).
lema 4 a). If @ > pFex then M(Q)<-M .
b). If @< @¥-X  then m(p)3Z M |

Proof From (13), (16) we have

-G

mgy=e | (60)
where G =eT+), .
Pirst note that M( P) is a decreasing function of P . Now
~m(g¥ex) = |— g™
7 1- exp [N = &
m(@F-x) =exp[GE |y
Z m
Lemma 5
At PW € v[2x0-5)M¥ - k¥ ] (61)

Proof From (41), (42) we have



-21\-

| Xl[()\’rpow)(K,*r)_xsﬁ\Vk, P,w] < 25[2%('-5)'7\'0. w] (62
or equivalently
(/\+Pow Z 2-71("5)?“1"'le1 : (63)
P w YUK+ 2XS ) °
Fran (43) we have
(64)

PW =¥ (K 2LxsM)

Multiplying (63) and (64) we obtain (61).

‘lerma 6 bounds the error in approximating Prob(X = © ) and

Prob(X=1) by Prob(q)i’-‘O) and Prob ( X = Al) respectively, where X is a
is a Poisson random

~

binominal random variable with parameters n and f, and X

variable with mean nf.

Lemma 6

For O0<f< /2, N> O we have



- Zz-

b)
-nf - 5y4é?
Infe™ _nfa-8y" | € 3=
Proof
a)
—-n{: -Nn nn—‘F
ose—u#) 1ce“I ‘

-n{:( n = nin(i- F))

ch ot
< 8¢
=~ oon

a b a
The first inequality follows by noting € —€ <€ (a-b) if a 2b . The

second inequality follows fram Taylor's theorem and using £/, Finally,

2 -nf
the third inequality follows from maximizing 2 nf e over f.

b)

—n{:-—ﬂ{:(‘ {:\ - ér\-F(e-mc—(l-F)n)

”\
-h

i



nf - \C\ "_nfe ot = “F (-fy" - nke"

[IAN
>
™,
>
ﬂ’
i
)
—r

The next lemma bounds the same quantities as in the previous lemma, but

the bounds are in terms of f.

Lemma 7

Let f be given. Suppose

Then a)

Oéais{:s'h I=052,...,N
~Zoi s 2£

b)



_2L'_

Proof

a) From Taylor's theorem,

=9 - E5 < Inl-g) -9,

S

_“ ___3; ) n - 5 .
e ™V 2 T (19, £ € 7Y

. ~Z9; - _f -f -2
7 (299" 5w 7 Teamyr ¥ e
b) Now
| n n n n n
mF EOT 09 2 ZTO-9) 2 Z a1 0-g)) (65)
Hence
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(1-F)* 6 %)

-t -2
(67) follows from part a). (68) follows by noting that t- € <4€° for all

t.
Also fram (65) we have

('Z‘ﬂ;) e-?‘a: - ég; E;(l—gj) Z (‘:‘Lﬂ:)é'za‘ - Tl_—P-icj;[ﬁ(l—ag\]

n . "
= 'Zﬂileg‘zg'—(“’%)f'r(l—ﬂ;)]

= ‘le;[é"z%;*‘ﬁ’(l’j;)] —'Znta; fr(l—‘j;)%

I-h

7 - ,Z-‘J; (1-9;)

n
1

—

-f

This campletes the proof of lemma 7.

Let
wnfy =, T, T.)

-_-(é'&')‘ ()ﬁrr?)é)*—"{é |—(l+f\¥+>\3é>‘-n¥)
) J



-Zb.—

- N n
= (é)‘(l'hﬂ) >\é)‘(|-1c)n+ ék n?(l*?)ﬂ : l—éx((kf )n+>\(\-$\ enf-£) )

Note that T, f,, fl, are the prohébilities that a Poisson random variable
‘with mean )\ * n'F is zero, one, or greater than one respectively. Also note

that
ﬁ'i = PVOE(iF: ! \Ni’-zn) {1\4:-p ) i=04\‘7_

The next lemma bounds the error in approximating 1T (n,f) by 17 ( f\)F) .
The inequalties in the lemma are meant in a component wise sense, and the

BN X =t
proof follows easily from lemmas 6, 7 and the facts € =1, rerce,

Lema 8
For N> o , O$'F5'/‘Lwehave
a)
| -] - ger
|
m-m) | £ 7| e _ (69)
b)“z’ﬁz' l 8é"+57_€3
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b)
-~ I[To.—ﬁ('o|1 r 2él '\
Im-|| ¢ f| 280 (70)
i |1r1' sz| Z(e:'i-élﬂ)k
L .

We now use lemmas 6 and 7 to show
Leamma 9

If Ng > a, , then
JEING-NE] =X 6e€) < pw (1)

where G = NK‘FK 7.

Proof

[EINN | ]-N+ 6 e

E - Nl ‘ o0 -\ _
= l"e')‘NKFK("FF) +)\e-}‘(|‘(“ﬂc;a )+ g—f %e -A+6eE” \

Nl 3 _
- l‘ékngk(\‘ﬁg\ —Xexfl'Fg)N + GQG \
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‘_x -N .F N‘|
< &N ey b -8 | +)‘é"‘ e "
-3
5 s_q _& + l_ g_é_?_-
Nk € Ne
62é>
= ™ (72)

53
62¢
(71) follows immediately fram (72) since Ng > @, > S

The next two lemmas bound the error of the approximation in (12).

lema 10 If Ny > G, ,and @, > @° then
E[¢K+I_¢K‘ﬁ]bvm(?|g) é 81Sm (.’3)
Proof
Nlmvl ~ A
E[‘PKH—CPK“’F;L] sE["\ NKV‘ \OFK] t x W(NK,FK)PS ("I'{)

ELR.r o\ -¥mig) < E[In % | Fe 1 +¥ (it - 1)y, §)Pe (75)

; N, =N -~ e-1)
<E[ %-K | ]+ ¥ @ -1y, £ » (%)

< L 1882462634987 46283
S\ [H(e N8e+¢ze®+e* +62¢€ ] (1)
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The last inequaltiy follows from E[Npr N.J'E‘ ]S)&\ JX < | , and from
. 1 i )
lema 8 a). Since N > Q, > wom and (1+8€'+ 124 e3 )<l |l w

conclude (73) holds.

Lema 11 If Ng > @, and CPK‘S?* then

¥m@) -El@, -9, |F ] < *sm 78)

Proof If @, € @¥ we have (NI €1-X £ | . Noting that a,>2e

we must have 'F,‘< 3’? in this case. Since ,3-_-’/2-,’7 'Pg . a“(?-)

so that

Npw V1

ElPePc| %] =ELIn o IR ] 38N, foPe (19)

. N+ o e-t
Mo -E[9, 0, |1 =~E[In :r.: I’Fk]+xc1r.+:ﬂ>(wx,¢.z)l-.) (30)

< Ell 35 ] +z(rr—.ﬁ)_(N,,ﬂ.)‘(’f,') RETT)
"

! - -
3 N1t -&;[(e-t)%eﬂsze‘i-ﬂe“wzé;] (22)

L -1 -
S N1 [i+38e tizdeé? | (225 )

(23)
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K
Since Ny >a, > m—= + | | (78) follows fram (83).

¥ts m
Lemmas 12 and 13 show that if Pr is "far away" from (P* then
Pr  will arift toward @¥ .
Iemma 12

If mk> N then

E[cpm—cp,(\’[—;:] € Y (s'-) M (84)

Proof

2 rK, +pW X 3
A'—'max{ln NS mi-xy ! 2ra-sfmY

3
2 ln —=

¥ s' m-A)
Thus if my :.@l‘—cp‘k > /A we have

ORI

¥s' M

Noting that ﬁ < '/7__ we obtain

16 (25)
Nk ¥s!

WV

By following a line of argument identical to (74) - (77) we obtain

|
L A Ay



< E‘a’s ™M
L ¥s'm (46)
Note that
g
Az ln ¥' M O-2)
Z Ing
> |
> % (87)

Thus &> X and

mep,) £ mie¥ + o)

$ 1~!\(¢“E 2.

< — (2%)

Cambining (88) and (86) we obtain (84).

Lemma 13 If m_kg’—A then

E[‘P}:ﬂ”cph\aﬂ‘l >/\gu—s')v7\ (29)
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Proof: If png<4—A then

¥s' A O-N)

m,‘=cpk—cp*<ln{ %

¥ ARU-My o |, (X
P < In(———) (=)
' ¥s'm
(NKV\)‘FK < ? (‘Io)
< —
ze ar)
From (90), (91) we have
¥s'm
10'( < 2 (91)
and
|
f <22 (13)

¥, ..
Since )37"/1 and Max A (1) <€ e observe from (93) that the min

in (6) will not be taken by 8. Thus for My < ~A

ELPaP | E 1= ElIn 2l |2 ) + #onpypes

NVt
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Y Ng-\ -0Vl ~
7/ e NK$K(|_F|‘) * . lr\ (—Mﬁ% + ﬁ(Nk)'ek)PsY
| 3

2 ENAU-F) In (k) + T (NFI P
2 Nef In(RY) # N, £,)Pe¥

SO -E[R %l B] € Np, In2) + Cov-FUN£,) Pe (4y)

SNAIGR) F A [T et vaneen) @s)

¥ '
2 [In2 +6 +y4&* (26)

<

(95) follows from (94) by lemma 7. (96) follows from (95) by (90) and (92).

Since m,:cpp-cp* - A
M9y) 2 mp¥-s)

7 m(qo*-x)
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(47)

W
3

Cambining (97) and (96) we cbktain (89).

Lemmas 14 and 15 bound the tail of the distribution of Iﬂzﬂ-Cp"\ given

x

Lema 14 5 (|9, =0l | T ) < Url (a%)
where U“'Poi()\),
Proof

‘ jq’a.’%, < ]lh Nen VL l N \In (Fea(2,) Af \

N vt 'FK

!
S NSOV Nl‘«‘\"Nlﬂ1 + MQX,IAQ\‘(HI
= = |Nn, |+ =-1) )
- (N-DV) AU ( Poo (2

S ‘Nm—Nk\ + |

The last inequality follows from Lemma 2d). Since

\Nku' NK_\ “< U"" ‘ (100)

the lemma is proved.

If Nk is large the previous lemma can be strengthened.



Lemma 15 If Nk>a\ , then

U =@l |B) < $(U +£)

Proof

" g2é°

NK>Q|=M‘*X1‘6"5& v, Paw K

]
>’ xis—v \
I [
? 37. +| 3 \6+|
all
2 ¥ +|

(101) follows fram (99), (102), and (100).

2.2.3.3 Derivation of (47) and (48)

(47) is repeated here for convenience.
ElVarve+rpw;vy>4 | ] £ 0

First note that

fue> af ¢ (N >3 U rg,m) > aa g

(lo1)

Cloz)

(47, (13)

(lo4)
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(104) is clear once we note that A=, + A4, |

Hence to show (103) it suffices to show the following two equations (105) and

(106) hold:

E[ VeV vpow j N >a, | R ] < 0

EDViem Vi + pow 5 re.ma e, | Rl <0

Note the inequality

%A(Mm)'?}n(ml‘\ S (CPK“‘SO,‘\ SL(M"\ ¥ (¢Hr %4)2

where
2t tl<a
Cj; (t) = 7 2a ; tza
B SN

We now prove (105). For NK > Qa4 , My >%X we have

(105)

(106)

(lo7)

(10%)

r E[ﬂn('“k*»l\‘ﬂut”‘t\lag] S CElgy 9| %] GalMe) +T E[“Pm.' Al ”E: ] (104)

S 1A Cimg) r2si )+ rELg 4l % | (o)

< TGL(M,\ R rysm)+r E[(%ﬂ_cpz\z} 7';] (“')
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S 20K (-¥RrvsiA ) +r s E[(Us &1 ] (1)
< =\ -
2 =)\ Po W (14

(109) follows from (107). (110) follows from (109) by lemma 10. (111) follows

from lemma 4 a) and ¥< | . (112) is obtained from Q'A(Mﬂ > %’A(z) =X

and from lemma 15. (113) follows by noting E[(U-l»;: )‘] < Ki . (114)
follows from lemma 5.
A similar argument shows that for N, > A, M ¢-% we have
rEL9amu)-,m0) | E ) € -\ -Aw (s
Since we always have
E[Nku'—Nqu{‘] ~<->\ (”6)

then (116), (115), and (114) yields for Ny>a, , [m | >x

E [V~ Ve ’D"_’; ] < -pW )



Now consider N,< >a, ,0Em, X

Y‘E ( 1= A" K s ' %
[ Q) ~gatm VR ) rﬂu("'=)[?‘ml¢,)+x‘sm]+ K,

(lg)
< 2o~ 2
= AW (120)
(118) follows fram (107), lemma 10, and E[(pm—qog)‘lﬁ]sg[(w%j] =< K,
(119) follows since M ¢« . (120) follows from (64).
(120) can be shown similarly to hold when N, > a, , ~X ¥ Mg €O
By lemma 9 we obtain for N, >a,, Im| < %
ELNG N T € X —te™ e expl-a-eP )+ (
K+) k k -~ )(P PZW ll‘)
S (p-0IW (122)
< -p-PIW (123)

(122) follows from lemma 3. Combining (123), (120), (117) we obtain (105).
We now show (106). Note that since q,= " at then Y’q,.("\r-\ >4,

implies either M, > & or My <€ = A | Thus by (107), lama 12, lema

13, and lemma 14 we have
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~ 2
rE [%b(”‘m\"jb(’“ﬂ lﬁ] <=2ty -y o F rE[(UaY ] (oY)
< -2r¥ (- YR +rk, (126)
S AR (126)
(125) follows from E[( UV+2 )z ] < Kz_ . (126) follows by noting that
YK, HpW + A
A > 2ra-symy from the definition of & | Canbining (116) and (126)
we obtain (106). This completes the proof of (47).
We now show (48). Note that
I%L(t)\ <£2A ) -—o<t < t2n)
Now
\VM‘VK \ = | N Ny 11, (Mer)) - ro. (™M) )
€ N Ny |1 | 2atme )-8 |
(12%)

S \Nkﬂ— NK\ t2A7 \cpn+l-.cpl¢\

Thus by (128), (100), and Lemma 14,

(W Vel | Y4 (U*1) + 280 (U+2)



which proves (48).

2.2.3.4 Ccmputatioh of N,¥. % satisfying (3) and (4)
Note that for any 7_'7'0 we have

AR Mo = AK -\, WK
E[e™ 7 = 247

>

M
UM, Mua—,\[eq' i
:eQMo eAe- e-x - e? ] (lz‘l)

Thus the correspondence between the hypothesis of section 2.2.2 and (47), (48)

is

Eozloow (13 0)

Z =M0+M)U (131)
qmo +A [0

D=e €132)

All other parameters in section 2.2.2 have the same meaning as in section
2.2.3.

Fram (23) we have (assuming N, =© and ‘P°=}3 )

3 I-p
Efe | «pfe ” + ’,:7")9— (123)



Using the concavity of the l'\ (‘) function we have fram Jensens inequality

A 1-p¥  9x
ELv s 5[ pre’™ + .T:f;-oe ] ()

From (134) we obtain

I

Since Vi 3 NK ¥k we have

D
“MKSMP EIN,] < "-;' 'V‘(T_‘;) X (136)

From (24) we have

7(Vo-b) 1-p* RIS

Prob (v, 2 b) < p¥e + TL}—D (137)
From which we cbtain

. % -nh

l;tMKSuP ProHN,‘?b) < DIfP e agg)

Thus K , N ,% in (3), (4) can be obtained from (136) and (138).
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CHAPTER THREE

Stable Algorithms when P is not
of the form in (5)

3.1 ' Introduction

In this chapter we describe algorithms that maintain stability when P
is not necessarily of the form in (5) but P corresponds to a DMC with non-

zero capacity. Recall that

- - - T
M(P) = ( e_G'J Ge_c’, l—-(l+G)eG) *(Pc)

where G = )\"‘ECP
In a(o)
c=\ Inaw)

[na(2)

Suppose P is such that there exists a choice of the function a()

that yields the following properties for m(-):

m(e¥*) =0 (139)
m(@Y>0 for @<P* (140)
M(P)<O for cp><P* (141)

Consider the algorithm identical to the one analyzed in Chapter 2 with

a () chosen to satisfy (139) -~ (141). Examination of the proof of sta-

bility in Chapter 2 reveals that the same proof can be used to prove stabil- -

ity for this algorithm except for different choices for the parameters in
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(40) - (45).
If P is invertible then a&() (equivalently & |} can obviously be

chosen to satisfy (139) - (141), for example let

e-1\

Define di’ i=0,1, 2 as

d P

i = Pior Pigpr Py

If P is not invertible but corresponds to a DMC with non—-zero capacity then

one of the following must hold (note o+ L' =1 in each case):
- | \
) d,#d,  dzxdor pld, with 02 0<p’

2a) d,#d.,_)o\,:o('olﬁp'dllwi{'k Z‘—_f <u's] 05514%3__

2b) di#d, d, ='d, +g'd, with osn' € g— & _p'c

V,e-) <

3a) do#dn,dz"“'do*ﬁ'ﬂll with oswi<ly L<gis

3b) ola#J,)dz =a'd,+gld, , with of# —— Loy'cl o2p'sll

[
l"')\)_l- )

3¢) doial.) d, = I_-'l-;\—d" + ":'\ o,

In cases 1), 2a), 3a) it turns out that ¢ can be chosen so that
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(139) - (141) holds. This is shown in section 3.2, In section 3.3, we
describe a modified form of the algorithm in Chapter 2 which is stable in
cases 2b), 3b), 3c).

3.2 Choice of & in cases 1), 2a), 3a)

Ilet

h"—'—d;'& i=0,1,2

6= h,,éc* +h, 674 h, (1- 1+6)e® )

so that
me) = L(e®+))
Note that

f;ﬂték e (hihy +thh6) (42)

From (142) we see that dig: (6) has at most one root for G in the interval
[0, R ) . Thus if f(0) > O andGLin,Q(G—) < O then

20 & ) has exactly one root for G in the interval [ 0, ]. Since

At 'C'P is a monotone increasing function of q) sufficient condi-

tions for (139) - (141) are

Loy >0 (43)
bty =0 (14Y)
[im Q(G') <0 (145)

Gow
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(143) - (145) are equivalent to

d-c >0 (146 )
(d°:l')'9’ =2-e (41)
'
2
d,re <o (19%)

To satisfy (148) we will arbitrarily set

e = o (149)

d,-e =-1
We will use the following lemma to show that c can be chosen to satisfy

(146), (147), (149) and hence (139) - (141) in cases 1), 2a), 3a).

Lemma 16:

3

If 0‘, # d 2 and W is a negative scalar there exists & & R

such that the following holds:

d ¢ >o (150)

= U | as1)
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d,-¢ =-! (1s2)

Proof: If do:td 2 it is obvious geometrically that (151) can be satisifed

for & of the form
E=Y|°|D+Y7.°l7. (Is3)

where Y,,VY, € [R . One can substitute (153) into (151) to obtain Y,
in terms of Y. - \/,_ can be determined from (152). (150) follows
from (151) and (152). This proves the lemma.

In case 1) (147) becomes

CUra )+ B'd, )

—2-€
d." <
This can be rewritten as
dooc_; Z-B'—e

dz". -+ !

!
2-g'-¢ 2-B-e
Since ‘,—,.E;,—' < O the lemma applies with U= =, o so that (146),

(147), (149) can be satisfied, and hence (139) - (141). Similarly in case
(z-e)a' + @'

‘2a) the lemma applies with U = _l_-i:('—_- , and in case 3a) the lemma
(2-e)8'-\

applies with Y = FIETTI

3.3 A Stable Algorithm in Cases 2b), 3b), 3c)

We will show for cases 2b), 3b) (using the notation of section 3.2)

there exists a &  such that for some G6* > X\
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m@)>o  Ffor @< In(6¥-)) (is4)
m(In(e*-2) =0 (Iss)
m@)<o for @> In(6*-)\) (154)

Defining P* = In(6%A) e see that (154) - (156) imply that € can
be chosen so that the algorithm "steers" P towards a * | In cases
2b), 3b) it can be shown that (154) - (156) cannot be satisfied with
G¥ = |} , or equivalently we can not have a" = SD“ . We would like (PK
to be "steered" towards QD* (see (7)). The algorithm we describe for
ases 2b), 3b) achieves this in the following way. Divide the slots into frames
of length M ( a frame is M consecutive slots). Roughly speaking, the
algorithm periodically "scales" the probabilities f; so that if ¢, |
is near @l"‘ in the first slot of a frame then ?P«  will be near '(P’r
for the remaining M-1  slots of the frame. We now describe the algorithm
more precisely.

Assume for the moment that there exists a choice of € ,say %o

such that (154) - (156) hold for some G't > M\ . Let a, L) be

the corresponding choice for a(:) , i.e.

In o,l0)
Co = | Ina,00)
Ina iy

The algorithm we describe for cases 2b), 3b) is identical to that described
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in Chapter 2 except that the -PK‘S are not computed as in (6) but as

follows:

f,- 8

'FKMV. = ’g:f'\x‘ﬂm 1=1,2,..,M-| (Is1)
'F(p.l)M = m:h {ﬁ) FKM Q:,J (2’-&"\33 (15%)

Note that this algorithm requries frame synchronization and is non-stationary.
Note also the algorithm only uses the output Zx from the DMC only every
N\ slots.

Define ?K as
‘?k= n (N V1 £ )

Intuitively, as in Chapter 2, for Nk,,,\ large and 'FKM small we
have

EL G Px | Fon 1 = ¥ midy) (159)

~ ~~
Noting (154) - (156) we see the algorithm attempts to steer ¢, toward ?"'
M-

2 ey

If ?& is near 66” then NKMFKN\ is near G'*-')\.For =12

—_ [-X
NKM*‘iPLMH - Nqu—’.FkM G-\
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= A
~ NKM fKM G*-X

where the approximation holds since N“"\ is large, 'Plc M is small, Since
NKM ‘ng is near G—* -\ we conclude that NKMH'PKMH for
i=1,2,.,,M=| isnear |— X .

The stability of this algorithm can be shown in a manner very similar to

that of the proof of stability in Chapter 2. Specifically if we define

~ ~
Ve = Ny + 7 3;@.‘-?* )

then for suitable choices of ¥ and Z we can show that Vk
satisfies the hypothesis of Section 2.2.2. The proof would proceed in a manner
almost identical to that in Chapter 2. It is seen that for a frame length of
length M, then stability of this algorithm is guaranteed for A < (1- ,}T)é'
and sufficiently small Y.

We now show that there exists a choice of & in cases 2b), 3b) such

that (154) - (156) holds. By the same arguments used to derive (143) - (14%5),

sufficient conditions for (154) - (156) to be satisfied for some G-* are:
A) >
20A) >0 (160)
[im L(6) <0 (161

G—=>
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(160), (16l1) are equivalent to

(hy-hy) X +(h=hINE™ +h, > © (162)
h, <0 (163)

Consider case 2b). By the same arguments used to prove lemma 16, it is

seen that & can be chosen so that for any u,

’

;\| dl'ﬁ

—_ = < - le4

b ae ", Clet)
hl: dZ-_C; = —| (lbg—)

(165) implies (163). By substituting (164), (165) into the left hand side of
(162) we have

(X'u+1-8" YN + (uryhe> — | (166)

For sufficiently large u, the expression in (166) can be made positive,
Thus for case 2b) there exists a choice of € satisfying (162) and (163)
and hence (154) - (156) for some G*> X,

Consider case 3b). For any W, , € can be chosen so that

d,. e

:M,_

h,
-h: T e (167)
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h,= (' +B'UzYh, = (X '+8'up)dyre =) (163)

(168) implies (163). By substituting (167) and (168) into the left hand side
of (162) we have
eXrAétu,

-X - X _ |
e +)\e_ bt o\‘+3‘u,_ ' (lb"l)

Since o' ,T';;: in case 3b) it is seen that the expression in (169) can be

made positive for some choice of U, . Thus in case 3b) there exists a choice

of c so that (162), (163) hold and hence (154) - (156) for same ¢¥> )
In case 3c) the expression in (169) is independent of W, and is

negative. Thus no choice of &  exists satisfying (162), (163). However

we can modify the algorithm so that effectively A =0 in the expression

in (169). This is done as follows. When a packet is generated at a station

that packet is transmitted in the slot in which it was generated, except if it

was generated in a slot numbered K M- (k is any positive integer).
If a packet is generated in a slot numbered KM = | théen the packet is
transmitted in slot KM + | . The result of this is that no new packets
are transmitted in slots kM , k=1,2,3, ... . . Packets that have
collided retransmit in slot K with probability -F-K . The £, 's are
camputed as

‘e =f (170)
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-2
.PKMH = = P“,\ D)
= =X .
'Pkm_‘.i - -E__r 'FKM '=2)3/“/M-‘ ('77—)
. ¥
'anM = Mmf.ﬂ) ﬁ:M’q (ng)g (173)

~
In (171), (172) G—* is a constant which is described below. We have

for large NKM small 'PKM ’

EL@ur P, ] = ™) (1Y)

where Y?f\(cp‘) = ,Q (ecp) . In case 3c) it is easily verified that c

can be chosen so that

Q@) > o (ns)

Iim J(6) <o C16)
G>v

By the arguments preceding (146), this implies that 2 G) has exactly
one root for Gé€ (0, ) | Let 2;'-* be that root. Defining 9’3“: In g*

we have:

m(Q) >o for q94§3*
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A
Thus by (174) ;rf,‘ is steered towards ?" . The "scaling" factors
"éi ) ';'t in (l'll),) (172) have been aPPrOPi'iately choosen so that if
i X 3 A . .
,@g»,ls near ?* J NKMH FKM + i will be near their

desired values for 1=12,...,M-1,

Thus, in conclusion, there exist stable algorithms when the DMC

described by P has non-zero capacity.
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CHAPTERFOUR

A More Restrictive. Feedback Mode}

Consider the following model for feedback to the stations. At the end
of slot K, K=1,2,3, ... .. each station observes Eg through a DMC.

The DMC's for any distinct stations are independent. That is, the feedback
received in slot K by individual stations are independent conditioned on the
value of ~Z,. . The channel error probability matrix for each station is
identical. We make the additionai restriction that stations do not listen

to the channel output prior to the arrival of a message to be transmitted

(we assume a statjéon generates at most one message during its lifetime), so
that stations c:;: the same retransmission probability, as assumed in Chapters
2 and 3.

We now describe an algorithm which the stations can follow for this
feedback model. The algorithm is identical to the one described in Chapter
2 except that when a station transmits a packet for the first time and that
message collides, the initial retransmission probability for that station
is set at£. There-after the station uses (6) to compute the retransmission
probabilties.

Suppose we index the stations which will have a packet to transmit by
the integers. Let -FK.; be retransmission probability for station i in
slot k ( define f,;, = 0 if station i does mot have a packet to transmit
in slot K).

Let
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S, = =F

.
N 9

where the summation includes all i such that station i is active at time K.

Intuitively, we would like to choose the function a(:) in (6) to
steer Sk towards |—A . If the algorithm is to be stable then when
N« gets "large" the algorithm must be able to keep Sk "near" I-X
for "long" amounts of time, "long" emough so that N,  will decrease to
the point where it is no longer "large." Thus 8 must be small enough to
guarantee that Sy will mot change significantly when a message leaves
the system, or when a message enters the system.

We had initially hoped to prove stability of this algorithm by using

a Ligpunov function of the form in (35) with MMy replaced by:

IY\(SKV §3-—|n(")\) ‘Fsr Some cans{'un{’ sS.

The reason this fails is that because of the max in (6) Sk will not
increase if all the retransmission proabilities 'Fk, ; at time K are
saturated at 8. Thus we cannot guarantee that Sy increases when

S¢ < I= A . Perhaps it is possible to construct a Liapunov function to
demonstrate stability, but it is evident that the Liapunov function must
depend not only on S K , but also on the individual retransmission
probabilties F,g,; . It seauns reasonable that the algorithm described

above is stable, although we have been unsuccessful in proving so.
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CHAPTER FIVE

A Bournd of One-Half for the Throughput of First

Come First Served Protocols

5.1 Introduct_ion

An upper bound of one-half is established for the throughput of a
time slotted multi-access broadcast channel subject to an infinite
population of user stations (whose message generation times are
modelled by a Peisson process) using (0), (1), (e) - feedback to denote
a slot with none, one, or at least two packets, respectively. The upper bound
applies to any algorithm which has the property that packets are

successfully transmitted in the order that they are generated.
5.2 Model

The generation of information packets by remote stations will be
modelled by a Poisson point process {0 & ¢ «¢+ & o, € T3
on the time interval [0, T] with intensity A 7> O . Each of the
packets can thus be identified with the time that it was generated, A
conflict resolution algorithm (CRA) is a protocol that the remote stations
follow to access a central broadcast channel. Time is divided into slots
numbered K= 1, 2, .... At the beginning of the k™ slot, the CRA designates
a subset O of [0, T]. All packets in eg that were
not successfully transmitted in slots 1,2, ..., k = 1 are then transmitted
during that slot. A transmitted packet is successfully transmitted only if
no other packet is transmitted in the same slot. If more than one packet

is transmitted on a slot, the packets "collide" and must be retransmitted.
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It is assumed that, by listening to the channel “output during slot K,
each station learns %’g where i, =0, AZ,‘= 1, or é‘"-if e
depending on whether zero, one, or more than one packet was transmitted
during the K™ slot. The set ©x specified by the CRA is required
to be a function of the past channel information (i,, e ,%u-l) S0
that the algorithm can be implemented in a distributed fashion.

A CRA is completed when it becomes known that all packets have been
successfully transmitted. Let o be the (random) number of slots until

ETLW1
canpletion. The efficiency of a CRA is defined to be n= EC 71

A CRA is called first come-first serve (FCFS) if packets are always
successfully transmitted in the order that they were generated. For
example, see [ & ] and [ 6 ] in which FCFS - - CRA's are described

with efficiencies of about .488. We will prove the following theorem.

Theorem:
‘7 < '/7_ for any FCFS CRA.

The tightest known upper bound for any CRA (not necessarily FCFS)
is about .587 [ I4 ]. The proof of the theorem proceeds: in the same
manner as the proof of the theorem in [ )3 ]. One idea of the proof,
suggested first by Molle [ |2 ], is to consider CRA's which use certain -
additional information which is not provided under the original channel
model.More specifically, at the end of slot K all stations are told a
subset Ay of the set {d,,...,%,} of packet locations, where
Ay is determined according to the rules specified below. We will then allow
the set =M chosen by a CRA to depend on 2.)...,f:p, )q,).,,)qn_”
Since the auxiliary information could be ignored, any upperbound on the

efficiency of such possibly unrealizable algorithms is also an upper bound
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on the efficiency of the original class of algorithms.

5.3 Description of the Auxiliary Information

Iet "f‘K , “f’k (a8 fO(.). ..Idwi,bethearrival times of all
packets which still remain to be transmitted at the end of K-1 slots, For exam—
ple, °1" = fo, . ..,%w} . For any set A, AC[ 0, T], let N, (3) be the cardin-

. . A A A
ality of the set AN, . We define F = ‘(2»,.-;%,“»,--,%) to be the ¢~field
LY A
generated by 2, 1;10., Ayg.

)II') Y

The rules for specifiying the sets ai have been chosen to satisfy
the following important property. For any FCFS CRA and at the beginning of the
Kth slot, the conditional distribution of ﬁ; given ’F;_' is of the follow-—

ing form:

i). The elements of ’7",( are known to liein.,BUo';UF '

where ﬂ , 0, ,and F are disjoint sets.

ii). The arrival times of m packets are known. 8 consists of

the arrival times of these m packets.

iii). If g; is not empty then /!\(.0‘:) >0 ard the arrival
times in a; form a Poisson point process with intensity
) conditioned on N k(6) 2 | . The permissible values

for iarei=1lor i=2 ( M) denotes Lebesque measure) .

iv). Each of the m known arrival times are greater than any

arrival time in @; ( See Figure 1). Any arrival ime in F ig greater
than any arcival Hime in 6.

v). The arrival times contained in F form a Poisson point process

with intensity A\ .
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vi). Arrival times contained in disjoint sets 6;, F are

independent.

\ ﬂi\\ :
5 \\7—‘// RN

T

Fig. 1. TIllustration of the relationship between
6, F , and B.

After each slot . we can describe the "state" of any FCFS CRA
by a variable ¥, , where Y. is defined below. In the definition
m= I B , and B

d; are as above.
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( m — if the conditional distribution of °ﬁ‘ given
0;_:" is such that the location of M arrival
times are known, and the remaining elements

of ¥, are distributed as a Poisson point

process.

4 ((‘X,jf ))m) —— if the conditional distribution of % given
7{_. is such that the location of m arrival

times are known, the arrival times in ¢; are

a Poisson point process conditioned on |

Ne C o3y 2 o= A M6

J

and the remaining elements of ')UK are distrib-

L uted as a Poisson point process.

It is seen that ¥y is simply a parametric representation of the conditional

distribution of *, given 'E,, .

Any set

QK which a CRA can specify for slot K can be expressed as:

ekzﬂluo,-ilUF-l

pep
F'cF
66

For any FCFS CRA the set ©, must satisfy at least one of the following:
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i) ©, is an interval with left endpoint .‘?f (xeAU6 UR)
ii) 6;'=5;
iii) Nk(\B') z2
The rules which specify the sets d; are stated below. Note that Q. depends
on ¥, é,‘ , and Oy . For convenience to the reader in verifying that
the conditional distribution of ‘ﬁ( given %:_ ; 1is of the form stated above
we also state the value of ¥y  for each case below. Note that ‘6’0 = 0O

et t=XM(6:)

Case 1: Xk-l =m

A
A) If Nk(ﬁ')?z then 0.,‘=¢ . Note we must have Zx=€ , thus
%= %,

B) If Ng(B') = | then

i) if Eo=l then OQu=¢ and Ypzm-|

i) if ék"& then Q= fMPn(GK/\('ff‘-,B')); and ¥y = M+
¢ If N.(B8Y)=0 then Q= @

A A
1) ¥e=Ypny if 2,0 or Z:~|
ii) Y = ((AuB),2), m) if Z"€

Case 2: XK": ((7‘-,”,‘”‘)

A, If Ng(8)>0 then 7 9 ¢ . If Nk(ﬁ')=| we must have

B, © 0, for any FCFS CRA. Thus é"= e and ¥, =%¥g-
i, If t = %X then O g =@ (see Figure 2)
a) if &, =0 then Y= ((x-t,1), m)
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b) if

c) 1if

K | then ¥k =M
= e  then ¥p=((t,2),m)

iil) 1t > X then
a) if Z,= | then QA = # ad Y, =m
b) if Z,=e then Ax= {min((8-G)NY)S
1) ¥ = ((X,2),m) if Ak is ewty

2) Y= ((X.)I)) m+l ) if Qg is not empty.

Case 3: XK_‘ =((x)7')Jm)

A) If b 2 X then Qr=@ . Note that ©y must contain 6, for
A
any FCFS CRA, thus Zx .= € . and ¥x = ¥x-\

B) If t<% then Qg=¢

i) if Nk(-;BI) =0  then (see Figure 2)
a) if 2, = O then ¥, =((2-t,2),m)
b) if 2, = | then ¥ =((z-t,1),m)

c) if 2.‘ = e then xK - (ttlz),)m )
ii) if N (B') » O then for any FCFS CRA we must have N (8) = 2,
Thus Zx= € and ¥, = ¥k
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M.(Ov.\"t/X < ®/\ MB6; )= S (x-t)
¢ O —e—— B GF—>
| |
B 1 l
¢ g; —>
MGy = X/ )

Ficj. 2 . Lllustration oF the sets G;,Bk for
Cases 2 and 3 with Ng(g)=0 and £t <%

The bound of one-half we obtain is the best possible bound for FCFS
CRA's which have the previously defined auxiliary information available, as
there exists a FCFS CRA with efficiency approaching one-half as T —> O .
The following idea can be used to construct a CRA with an asymptotic
efficiency of one-half. Suppose the state at time K is ¥y = (x)), m)
and the CRA chooses ©, = 6, U F |, with ‘-i.(.-'-_'-:l % | . If F contains
any arrival times, the set Qg will contain the first arrival time in F.
This process can be repeated until all arrival times after those in 6, are
known. After the messages in o, are successfully transmitted, the
e K 'S can be chosen by the CRA so that a successful transmission occurs in

every slot until the algoritlm terminates.

5.4 Proof of the Theorem

Define a real valued function V  defined on the set of values that

26 can take as follows:
K
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V(%) + +wn ’i-F ¥ = (L), M)
V(¥) = V(%) + ;'_-m ¥ =u2),m)
zm if y=m
vwhere
~X
e ,
z_x(_l-—'e?). ,ne o<x 2|
v|(X) = |
2e(1-€%) )i# x>
Uib(l—e""‘)i-g(x-u)é‘."
V.00 = max| sup ( — )
ceger \ 2(1- (r)EF ) ,

35‘5(|—e‘*"‘) + \57&‘59‘.‘ )

“u -
Sup ( 2 (1-0+xye*)
0<Yy< A

We define the supremum over an empty set to be zero. Now suppose a particular
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FCFS CRA is chosen. The algorithm can be extended to slots beyond 7 by

setting ©y = $ for kK>,

Let
K
YK = V(XK\ + Z Ii%.'):‘l
=1

where IA denotes the indicator random variable of the event A.
Lemma: For all K = | , E[YK‘YK-\‘ aE:,] < '/2_ .
Assuming the lemma for a moment, we first establish the theorem. Clearly

Y, = W  sothat ELY,] = ELW] . on the other hand,

v

ELY,] = [éYj-Yj-\-\
( )If\,cy}]

E[§
[f}E[(Y T I er |E]
>

E[(Y Y_,\\ ] Iﬁ_‘_.ﬁ]
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u
The fdrth equality is justified by the fact that f j& 73 isan 7§ﬂ

measurable event since ‘:)5-7'3 =f1‘53-l1g.Hence
ELW] < 1

ECLr)] — <+

which proves the theorem.
Proof of Lemma
et A =E[ Y- Yk_\ ],t = A M(Ek)
Case 1: ¥, =M
N Ne(fY %22 1 A=0
B Ne(BY =] 1 a=tef+r(-¢%y=y
A Ng(p)=0

a=tets (1- arbyet yv,(E)

- -t -t
= max[ Sup (’oét+ 3 gefj(l- e* )+ T ylt-y)e ))
o¢y<t

e N R T

0<¢y< t-)

-t
To evaluate SWP (te +3 ‘jeau e? )+' wie- "-\)e ) we fix Yy and

0‘5‘
examine the + , if any, that maximizes 'Flt,g)_te L \je (.-e‘i )+;.uj(t-5)e_
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=0 only for t=+ 3‘:4-\5'2_ 79

Hence we have

Sup f(t,y) = max{suf Fa+ \;: L), qu £lu,9), sup F(x, a)i
Y>o Y2o
>y

where f(w,4) =||M'F(t)‘j) Now SMP'F(H' hreel .3) can be easily evaluated

numerically. ThJ.s yields

T

+4
sup £ 01+ 2 Ger, ) T.HI53 £y
\ﬂ)b
ary zupF(H rey ,5)”

Also it is easily established that SuP'F(u&)\ﬂ e ‘< '/2. whereas SU\F'F(W wy= s ze < '/7.
Y0
so that SU\F 'P('(: wys'a.
o<yt
Similarly, letting g(t,ig) =te +—\jeﬁ(l -e" ) +4 cge e we find

Sup  gqlty)= max[Sup 3(9+,9) ) sup \m\ 'F(fa)]
0<y<t-| 'j>o

= Sup ?)(‘i\*")‘ﬁ)
Y>o
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Case 2.: XK‘\:- ((1)\))"\)
Fact: 1) V(%) € R ¥x>o
2) Vo(w) &l ¥x >0

1) is easily seen. 2) Follows easily once we note that

- -%
we3d-e¥ ")

|- Ci+xye* )

V,(x) £ sup (
o0<cye

n N(B)Y>o @ a=o0

B) NK(WB|)=O
iyt =X
-t t-% -t ~t
etu-e ) te - (1+E) €
A= ——F% Vit) ¥ =z o V, (£) -V, x)
-t
1 1 te
é > + -Z- l_éx —Vl(.z')
<

The first inequality follows from the facts above.

ii) t>%x .

-x x-t
xe' e 5%y 5t
= = _r. x-t ('-(+v)e)e
A= -]+ L[1-€7F) + [0V
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-

= (V- Vi)

) ~%
2 8= 14 B lmvm) - (1-

- 5 % 5%
2 & L= 2 (-voo) - (1- B ) (4 -vio) ]

t xe”
= |
= e [vl(x)—z” '__e-x -l
Z0
But lim A = '/L
tow
Case 3:
a tzx: A=0O
B) t<X !
LYN(BY=0:
-t t-x t-x
ev(I-(hx-tye'™*) tet(-& t
- -t I-Ci+t)e
A -G+ x)e™ Vo (x-t)+ I-Q+xye* (v t))+l-u+ )e"‘vm )
< L0 ték(l—et-x) . tét(z—et"‘

N
e
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The first inequality follows from fact 2) above
ii) N (B'Y >0 1 A=0

QED



1.

10.

11.

12.

_"”-

REFERENCES

Hajek, B., "Hitting Time and Occupation Time Botmds Implied by
Drift Analy515 with Applications," to appear in. Advances* m AEle.ed

\Probablllty, Vol. 14, September 1982,

Hajek, B., and Van ILoon, T., "Decentralized Dynamic Control of a
Multi-access Broadcast Channel," to appear in IEEE Trans. Automatic
Control, Vol. 27, June 1982.

Abramson, N., " The ALOHA Systen Another Alternative for Computer
Communications," AFIPS Conf\ > ., Fall Joint Comp. Conf. Vol. 37,
pp. 281- 285, 1970

Hajek, B., "Acknowledgement Based Retransmission Control - An
Equilibrium Analysis,"\._\ICC Conf. Ree., Philadelphia, June, 1982.

Gallager, R.G., "Conflict Resolution in Random Access Braodcast
Networks," preliminary manuscript, 1979.

Mosely, J., "An Efficient Contention resolution Algorithm for
Multiple Access Channels," Tech. Rpt. LIDS - TH - 918, Lab. Info.
Dec. Sys., Mass. Inst. of Tech., Cambridge, MA, June 1979.

Ryter, D.M., "A Conflict Resolution Algorithm for Noisy Multi-Access,
Channels," M.I.T. LIDS - TH . 1007, June 1980.

Massey, J.L., "Collision - Resolution Algoithms and Random Access
Communications," UCLA Tech. Rept. UCLA - ENG - 8016, April 1980.

Pippenger, N., "Bounds on the Performance of Protocols for a Random
Access Broadcast Channel, "\ IEEE 'Irans Inform. Theory, Vol. IT - 27,
pp.145 - 151, March, 1981. ™

Hajek, B., "Information of Partitions with Applications ‘to Random
Access Communications," to appear in ]I:EE: Trans. Inf@rm.\Theory,
Vol. IT - 30, September 1982.

Hunblet, P.A., "Bounds on the Utilization of AIOHA - Like Multiple-
Access Broadcast Channels," M.I.T. Cambridge, MA, Rep. LIDS - P -
1000, June 1980.

Molle, M.L., "On the Capacity of Infinite Population Multiple Access
Protocols," IEEE Trans. Info. Theer, Vol. IT - 28, pp. 396- 401,
May 1982.

Cruz, R., and Hajek, B., "A New Upper Bound to the Throughput of
a Multi-Access Broadcast Channel," IEEE Trans. Info. Theory, Vol.
IT - 28, pp. 402 « 405, May 1982




-12-

REFERENCES (Continued)

14. Tsybakov, B.S., and Mikhailov, V.A., "An Upper Bound to Capacity
of Random Multiple Access Systems," Presented at the 1981 IEEE
Inform. Theory Symp., Santa Monica, CA, February 1981, Probl.
Peredach. Inform., Vol. 17, No. 1, pp. 90 = 95, Jan. - March, 1981.




