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ABSTRACT

A PRN (packet radio network) is a collection of geographically
distributed, possibly mobileusers where each user is capable of trans-
mitting and receiving messages over a shared broadcast medium. 1In a
PRN, messages are divided into packets, which may be fixed or variable
in length, and each packet is transmitted through the network individually.
Packets are assembled at their destinationmsto reconstruct the original
messages. : :

_ . The data traffic in a PRN is characterized by specifying the average
message arrival rates to the network for each o-d (origin-destination)

pair. A set of o-d rates is called feasible if there exist network

protocols under which the number of packets in the network still not

delivered to their destinations remains finite with probability one.

The capacity region of a PRN is defined to be the set of all feasible

sets of o-d rates.

In this thesis, PRNs! are studied from the viewpoint of feasibility,
i.e., we take an arbitrary set of message input rates as given and try
to determine if it is feasible. Our main conclusion is that, unless
P = NP, there exists no practical algorithm for characterizing the
capacity region of a PRN, in the sense that the decision problem regarding
the feasibility of a given set of o-d rates is NP-complete.

Thesis Supervisor: Robert G: Gallager

Title: Professor of Electrical Engineering and Computer Science
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CHAPTER I. INTRODUCTION

1.1 Background Information

Recently there have been attempts. to extend the domain of data
communications ;o.netwbrks'df geographically distributed mobile radio -
users. Radio networks ha?e traditionally been used for voice communi-’
- cations. such as in police cars; emergency thicles,.etc..V We. consider
here radio networks designed mainly for computer data communications.
Such networks present armultitude of problems which must be resclved to.
make the idea a feasible one.

One of the problems results from the bursty nafure of computer
data traffic. Typically, a long period of silence is followed by a
‘sudden burst of ‘huge amounts of data which must be transmitted through the
network -to the desired destination.

The fact that a station need not be (and typically is not) within
ﬁhe transmission range of every other station further complicates the
matter. . Unlike a wire network, transmissions may interfere with one
another and this causes failure to detect messages correctly.

It is a challenging task to design network protocols which are
distributed in natﬁre and which satisfy the service demands of the.
users. In this thesis we study two well-known protocols, namely
ALOHA and TDMA, under a model which is refined of all non-essential
features so. as to.simplify_the analysis..

For a,general.gurVey of packet radio networks. we refer the reader

to [T and [KGBK 78].



1.2 . The PRN Model

We assume that messages to be transmitted from one station to
another are first framed into packets which may be of fixed or variable
length. Subsequently, each packet is transmitted separately. The
packets contain the information necessary for their travel through the
’network, such}as the identities of the origin node, the destination nqde,
etc... | |

“We shall représent a PRN (packet radio network) by a directed graph
G = (N,A). (For definitiéns of graph theoretic terms used in this
thesis, see e.g}‘tB].) To each station in the netwérk there corresponds
a node of G, and conversely. Throuéhout the thesis. we use the words
user, node, and station inﬁerchangeably.

For any two distinct nodes a, b e‘N, there is a link (a,b) iff
node 5 is within the transmissionkrange of node a. We do not assume
that (a,b) € A implies (b,a) € A.

We shall study only PRN's with finite numbers of usersy accordingly,

(N,A) will always be a finite graph.

G =
The graphical representation of a PRN will be simple, that is,
G = (N,A) will not contain self-loops or multiple links from one node

to another.

Throughout the thesis L will denote. the number of links in
G= (N,A), i.e. L = |a].

A PRN is said to be connected if packets can be routed from.eﬁery
user to every other'user; Equivalently, a PRN is connected if the

corresponding graph .G is connected, i.e. if there exists a:directed
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path from every node to every other node in G.

In our model, each user of the PRN has a single transmitter and a
single receiver, thus, a user can transmit or receive only one packet
at a time.

When a user transmits a packet, it is possible that all stations
- within its transmission range receive this packet without error; however,
the packet may be intended only for a certain subset of them. 1In fact,
in this thesis we shall assume that each transmitted packet has exactly
one intended receiver.

If a packet_is received without error by its intended receiver,
the transmission‘is said to be successful. We assume that the only
source of unsuccessful packet transmissions is inberference. A packet
which has not been received successfully is said to have suffered a
collision.

Let (a,b) be a link; we say that a packet is transmitted over link
(a,b) if the packet is transmitted by node a with the intended
receiver being node b. We say that link (c,d) conflicts with link

(a,b) lf 51multaneous transmlsSLOns on links (c,d) and (a, b) elther are

precluded (when c=a, d#b) or cause a colllslon at node b (when c—b, or

(c b) is a llnk) We define cab to. be the set of llnks which conrllct

with (a,b). Therefore, we have that

Cab = {(c,d) €a: c # a, (c,b) € A} U

{(a,d) € a: 4 # b} U {(b,d) e a}
Sometimes we shall consider the set

* ' . . = W ; | e ] y . 3 ; )
Cp = {amtuc, =1{m,a ealyu {(c,a en : (c,b) €a}
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Remarks:
1) (e,d) €Cyy = (a,b) € C 4
* * .
2) Cab = ch for any two links (a,b), (c,b) € A

This completes the description of the physical structure of the
network. In the next section, we shall look at another aspect of the

network; namely, the data traffic.

1.3 Data Traffic in a PRN

The origin of a packet is the node at which the packet enters the
netwofk; the desfination-of a packet is the node at which the packetv
leaves the network. in our model each packet has‘a'unique destination.

With every o-d (origin-destination) pair we associate two random
processes pafametrized on thé time interval [0,=). Thé’x—y arrival
process ny(t) is the number of packets which have arrived at origin x
with destination y in the interval [0,t], t > 0. The x-y departure
proceés ny(t) is the number of packets which havé been delivered from
origin x to destination y in the time interval [O,t],t > 0. We
assume that prior to time 0, there are no packets in the network.

Let W be the set of all o-d pairs; let |w| = w; and let the o-d
pairs be labeled .by integers 1,...,w.‘

We collect the arrival and departure processes associated with
all o-d pairs into w-dimensional vectors'ﬁ(t) and E(t), respectively.
Notice that, R(t) > B(t) and 1 - (R(t) - D(t)) is the number of

packets. in the network at time t.
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The process B(t) depends both on E(t).and,the.decisions made by
all the protocols that determine the flow of packets through the net-
work.

The primary objective in a PRN is to find network protocols such
fhat

lim lim 2{1 - (R(t) - D(t)) <a} =1 - (1.1)
Qo oo ) .

In this thesis, we restrict our attention to the following class

of o-d arrival processes.

1) E(t) is independent of the network .protocols.

2) For all i€W,there exists r; >0 ; and, given -

A

€ 5 0., § >0 we can find T(e,8) > 0 such that

Ri(t)
t

p{

- >e} <§ vt > T(g,0).

Clearly, ri with the above property is uniqge when it exists. We
define T to be the column w-vector whose ith row equals X T is
called the mean o-d (arrival) rate vector.

The mean o-d rate vecto;’ T will be used to characterize the
arrival process E(t). We shall say that ; is feasible if there
exists network protocols such that (1.1) is satisfied.

We define the capacity region of G = (N,A) to be the following set:

c@ = {f : T is feasible} .
It is of extreme interest to determine the region C(G). A second

problem, which is also interesting, is to determine whether a particular
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mean o-d rate vector is feasible undex a particular set of network
protocols. By network protocols we essentially mean the routing and
link-level multi-access schemés. The interaction between routing and
access schemes makes it difficult to study the feasibility problems.
Therefore, we examine multi-access schemes in isolation from routing

schemes by assuming that:

1) r. =0 if (x,y)¢A
) | xy ~ (x,y)¢
2) Every (x-y) packet, i.e. a packet with origin x and

destination y, is transmitted directly over link (x,y).

When we consider the feasibility problem under fhese assumptions,
we shall use the column L-vector ? insteéd of ;. lThe mean link
(arrival) rate vector f has one element for each link (a,b) € A,
Thus, £

which equals r is the mean link rate of (a,b). Under

ab ° ab
thg above assumptions, the analogues of ny(t), ﬁ(t), ny(t) and
D(t) will be denoted by‘ny(ﬁ),vF(t), S,y (€) and 3(t), respectively.
For example, ny(t) - Sxy(t) is the number of packets waiting at
node x to be déli&ered to node y over the link (x,y) at t
(including a packet in transmission, if any). |

With this notation, we can now define the two main problems

we shall study in this thesis.

Definition.

The ; - feasibility problem

1

: ' A S . :
Given a PRN G (N,A) and a w-vector r > 0, is r feasible, i.e.,

does . T belong. to: C(G) 2
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Definition.

>
The £ - feasibility. problem
: . > -
Given a PRN G = (N,A), a multi-access scheme, and an L-vector £ 20,

-> .
is f feasible under the given multi-access scheme? -

We shall study the ¥ffeasibi1ity problem under two extreme ways of

/ ->
multi-accessing, namely ALOHA and TDMA. The r-feasibility problem will

‘be studied in connection with TDMA. Before we give an outline of .our

results on the feasibility problems, we shall review some of the relevant .

work in this area.

1.4 Review of Earlier Work

.

In a B.S. thesis Shapiro'[s79] analyzes an Alocha scheme for PRNs
and obtains conditions for minimizing average system delay in terms of
routing variables.

A different approach to the analysis of Aloha type systems is
taken by Sidi and Segall [SS(1)81l] who consider the PRN as a network
of interfering gueues and obtain approximate results for the steady-
state packet distribution in the buffers of the PRN.

PRNs have also been studied under different assumptions and

multi-access schemes, e.g. [SS(2)81].

1.5 Thesis Outline

, >
In Chapter 2, the f-feasibility problem is studied under slotted
Aloha. We examine conditions for stability from a feasikility view-

point;. routing variables and link delays do not enter into the analysis.
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In Chaﬁter'a, we formulate and state a number of facts about
TDMA schemes, among these facts are the'NP—completéness of the
f-feasibility problem under TDMA,and the NP—completeﬁess of the
;-feasibility problem. |

The fourth chapter consists of NP-completeness proofs of the
feasibility problemsvand an alternative formulation of TDMA schemes.

In Chapterys; we show why not even a polynomiai—time approxiﬁation
algorithm-is likely to be found for the NP-complete feasibility
problems.

‘The main result of tﬁis thesis is the conclusion that, unless
P = NP, there exists no practical algorithm forAchgracterizing the

capacity xegion of a PRN.
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CHAPTER II. SLOTTED ALOHA IN PRNS.

2.1 Introduction

In this chapter we study the ?—feasibility problem under slotted
Aloha. We assume familiarity with Aloha as it is used in single-
receiver multi-access communication systems. The scheme considered here
is a simple extension of the well-known Aloha systems; we do not claim
that it is original or practical. Our purpose is to study this scheme
along the lines outlined in Chapter I. |

The main difficulty in the study of Aloha in PRNS is encountered
at the modelling stage. Our model must account for the essential
features of Aloha and yet it must be tractable. We can make the model
more and more sophisticated only to render it useless. On the other
hand, anvovérsimplified model may lead to erroneous conclusions. The
modelling issue is further complicated by the variability of network
topology and data traffic.

Our analysis of Aloha is based on a model which is as simple as
it can be. We introduce the equilibrium hypothesis and discuss the
meaning of equilibrium. The analysis provides results which on the
whole conform with intuition provided by the single-receiver Alcha
systems. Howeve:,‘some of the resulté are non-obvious and seem to be

useful.
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2.2 Thé Aloha MddelA

» We consider a slotted Aloha scheme where all stations are synchronized
so that packet transhissions occur only in globally defined time slots.,
Packets are fixed in length and the duration of a slot is long enough to
accommodate the time it takes to transmit a packet plus any delays‘
associated with/propagatibn and detection of éackets. We assume pro-
pagation delay is ﬁegligible felativé to the lengthvof a slot, but we do
not ignore it altogether.

In Aloha, transmitted packets mayrsuffer collisidns, and when they
do, they must be fetransmitted. Thus, there are three random processes

associated with each link that we have to distinguish:

l) The process of new packet arrivals,
2) The process of successful packet transmissions,

3) The scheduling process of packet transmissions.

Following the notation introduced in Chapter 1 in connection with

> .
the f-feasibility problem, we define Fab(n) ne {1,2,...} to be the
number of (a-b) packets that have arrived at origin a to be transmitted

‘over (a,b) € A to destination b before the beginning of the nth slot. Each

arrival process .. . Fab(.) : (a,b) € A is independent and Poisson with
rate £, i.e., £
: k ab
fab e
- = = = > >
p{F_, (n+l) - F, (n) = k} ki k>0, n>1.

We define S, (n) ne{1,2,...} to be the number of (a - b)

b

packets that have been successfully transmitted from origin a to

destination b over (a,b) before the beginning of the (n+l)St slot.
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Note that a packet leaves the network following its first successful trans-

mission,. so >
n, ’ Fab(n) __Sab

(n) for all n > 1, and all (a,b) € A.

A packet is scheduled for transmission in the first slot following
its arrival. Each packet which is waiting for retransmission over link
(a,b) is scheduled for the current slot with probability 0 < Uy <1
independently of all other packets. As a consequence, we admit the
possibility of more than one packet being scheduled for transmission by
the same node in the samé slot. When this happens, all packets involved
are treated as if they have suffered collisions and the corresponding
node transmits a blank sighal in that slot. Clearly, this system can be
improved at no dost, but we wish to keep it this way to facilitater
the analysis.

- We shall assume that acknowledgements are available to the trans-
mitting stations immediately following the transmissions. This
assumption is made for definiteness and can be relaxed without altering
our results.

We define the scheduling process of packets over link (a,b) as

follows:

Gab(l) = Fab(l)

G p(+l) = G, (n) + B_, (n+1) ne {1,2,...}

where Bab(n) is the number of packets scheduled for transmission over

(a,b) in the nth slot.

2.3 The Equilibrium Hypotheésis

‘Suppose the mean iink arrival rates are sufficiently small so.that,.
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with high probability, packets are transmittea-successfully at the

first transmission attempt. Occasionally, there will be collisions;

but if the retransmission probabilities are small enough, and if they

are adjusted with respect to the prevailing traffic density in the network,
we expect resolution of contehtions for channel use and an eventual

return to‘normql conditions.

| The above argument is the basis of the equilibrium hypothesis,

which approximates the probability assignment for Bab(n) by

k Jap

=]
(n) =k} = ab

P{B .

ab (2.1)

k!

where the constant is called the mean packet scheduling rate on link

(a,b). . : .

The equilibrium hypothesis does not hold for the Aloha model we have

described in the previous section, because if £

ab >0, Fhen

Bab(n) - ® asn-+® with probability 1.

Despite this inherent instability, the possibility of "stable"

operation over long periods of time motivates the analysis we offer

in the next section.

2.4 Analysis of Slotted Aloha Under the Equilibrium Hypothesis

Let sab be the probability that in an arbitrarily chosen slot there

is a successful packet transmission over (a,b). Under the equilibrium

hypothesis, we have that

-g ’ ‘ =g
e ab e cd . - (2.2).

s, =g
ab  “ab (c,d)ec

* ‘ 5 o
S . = g_. exp {— « 9 } - (2.3)
ab  “ab (¢, dec.

ab
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The summation in the exponent depends only on node b (see the

*

second remark following the definition of C in Chapter 1). Therefore,

ab

we define

A =

b L+ 9gq

(c,d)ecab
and express (2.3) as
...)\b .
sab =9, ¢ _ for all (a,b)ea . (2.4)
In equilibrium we must have sab = fab for all (a,b)€A. To see why

this must be so, suppose sab < fab for some link (a,b). Then, the

numberlbf packets waiting for retransmission over (a,b) increases
continually, thus, increasing the value of b’ which in tuin causes Sab
to decrease. As é result equilibrium éannot exist.

On the other hand, sab > fab implies that the expected number of
packets that are successfully transmitted over (a,b) in a time period
exceeds the expected number of new packets entering the network for
transmission over (a,b) in the same time period. This is clearly

contrary to equilibrium.

Therefore, under equilibrium conditions we must have

e for all (a,b)ea (2.5)

If we take {gab} as given, then {fab} is uniquely determined by
(2.5). Therefore, there are sets {fas} and'{gab} which satisfy (2.5),
and the equilibrium hypothesis does‘not immediately lead to an inconsistent
set of equations.

We would like to have necessary and ‘sufficient conditions on
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{fab} which guarantee the existence of solutions to (2.5), and which are
easily verifiable. We do not know of any such necessary and»sufficient
conditions short of solving (2.5).
Howeve:; a simple necessary condition on {fab} for the existence of
solutions to (2.5) is available through the following observation.
Suppose {gab}« is a solution to (2.5). Let us rewrite (2.5) as
e}‘b_gab Jab

) e - ;  :for_éllv(a,b)eA. s (2.6)

The term Ab in the expphent does not explicitly depend on Ib’

thus, (2.6) is an equation of the form x = aex, for which we have three

cases.
i) a > e-l : there is no solution. |
ii) a = e_l : x =1 isvthe only solution.
iii) a < e_l : there are two distinct solutiéns;

one greater than 1, and the other less than 1.

Therefore, we conclude that (2.6) has a solution only if

A -9 ' :
fabebabiel @

or

Y ' (2.8)

-1n fab 2.1 - gab b

Since 9.p 2> f_ . for all (a,b)eA, we have obtained the following

ab

necessary condition:

(2.5) has a solution only if

n £ 21+ Z fq V(a,b)ea s.t. £ >0 . (2.9
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Notice that (2.9) can be satisfied only if £

- (a,b)ea.

In the rest of this chapter we shall investigate a computational

algorithm which converges to a particular solution to (2.5), if one

<
ab —

el for al1

exists. For this purpose, we find it convenient to express our equations

-

"in vector form. We define 3 and f to be column L-vectors

corresponding to. {gab}&and {fab}" respectively, and consider the

following iterative algorithm.

g(n+l) = R(3(n))
s =1
. (n)
. A,
where : hab(g(n)) .= fab e
‘A (n) = Z g _.(n)
& (.c,d)ec;b‘ cd

A vector ; is called an equilibrium point of (2.10) if ;

The equilibrium points of (2.10) correspond to the solutions of (2.5).

n=1,2,...

(2.10)

> 5
h(x).

We shall show that (2.10) converges to an equilibrium point if and

only if (2.5) has a solution.

-> > -> >
Let X and y be non-negative column L-vectors such that x >y.

>

Then, since each row of h(+) is a non-decreasing function in each

T T
variable, h(x)> h(y).

> - > > > -
Thus, in (2.10), g(2) > g(1) = f because g(2) = h(f) and

-> > R

->
g(1) = h(0), and £ > 0. This argument also shows that (2.10) is

non-decreasing.

Let .3 be any equilibrium point of (2.10), if one exists.




> * -+ -
We have already arqued that g > f. So, in (2.10), g(1) < g. Now
- - - > 5 > -+
suppose, for some n > 1, g(n) <g, then g(n+l) = h(g(n)) < h(g) = g.
By induction, (2.10) is bounded above.
Thereforé, (2.10) converges (because it is non-decreasing and
bounded) if and only if (2.10) has an equilibrium point (equivalently,
if and only if (2.5) has a solution).
% > ’
- Suppose (2.10) converges to g . Note that g* is an equilibrium point
‘ ->
of (2.10). The above argument shows that if g is any equilibrium point
) -> >% - o :
of (2.10), then g 2> g . In other words, if (2.5) has solutions, there
exists a smallest equilibrium point of (2.10) and (2.10) converges to this
point.
. . *
In fact, if (2.10) converges to E , then, starting from any initial
. - . L e T R
point g(1) in the region 0<g(1l)<g*, g(n+l) = h{(g(n)) converges to g*. To
see this, suppose 04§_x(1)<§_g* is arbitrary and let y(l)'= 0. Since
- > > - - % . - - %
y(2) = h(0) = f, y(n) *g as n—+ o . But y(n) < x(n) < g for all n;
v - %
therefore x(n) converges to g as well.
->% - . .
Suppose again that (2.10) converges to g . Let x(1) be such that
>% > >* | . . .
(1 -elg <x(1) <g where 0<e<1. If € is sufficiently small,
. > . . > >+ .
we can approximate x(n), defined recursively by x(n) = h(x(n-1))

(n > 2), as follows:

-> >% - >* A .
x(n+l) = g + H(x(n) - g ), n>1, (2.11)

' *
where H is the Jacobian matrix of h(-). evaluated at‘; .
> ->* - k
By defining 6(n) = g - x(n), (2.11) can be expressed as

- - :
S(n+l) = H 6(n) ) n>1 P (2.12)
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-5
Since 6(n) > 0 as n -+ © , the eigenvalues of H must lie within

the unit circle in the complex plane.

The elements of H are as follows:

9ab ab cd
3h_, (%) )
Bxcd
ok 0 otherwise
x=qg

We observe that H is non-negative: therefore, by the Perron-
Frobenius Theorem, H has a real and non-negative eigenvalue which is
not smaller than any other eigenvalue of H in magnitude. The eigenvalue
with this property, denoted by YH' is called the dominant éigenvalue
of H. Thus, (2.5) has a solution if and only if Yy < 1.

This argument is instructive and usefﬁl even though YH cannot be

> - .
computed easily from the knowledge of f alone. For example, we can

¥
show that 3 f_i is satisfied by making use of some properties of non-
negative matrices.
. . . . >% ' th _. .
Consider the diagonal matrix diag(g ) whose (a,b) ~ . diagonal entry
. . ES ' . . ->%
is Iap7 diag(g ) is non-negative and H > diag(g ). The dominant

*
eigenvalue of diag(; ) is

*
Y. = max {gab : (a,b)en} . It follows that Yo <Yy

G

- (see, e.g., [KT] pages 542-551).

*
Therefore, (2.10) converges to E only if Ya <1, or in other

. >% >%k . >
words, if (2.10) converges to g , then g <1.
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We conclude the analysis of slotted Aloha by obtaining a lower bound
on YH.

Define the matrix F as follows:

*
>
fab (c,d)ecab v fcd 0
Fab,ca =
‘ 0 otherwise

*
F is obtained from G by replacing 9.b with £ for each (a,b)ea.

ab

This, 0 < F < H, and,if YF is the dominant eigenvalue of F, then

V<
e S Yy

It is clear that (2.5) has a solution only if YF < 1.

To obtain a lower bound on YF (and also on YH), let us define

aab and Bab to be the sum of the elements in the row and the column of F,

both corresponding to link (a,b), respectively. That is,

oy, = E fab = fab Nab
* = )
ab

(c,d)ecC

>
fcd 0

*
where Na is the number of links in C_, with positive arrival rates,

b ab

and
E £ >
cd * £ 0

‘ ab
(c,d) : (a,b)€Ccd

ab
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Let

Yo = max{min{dab + (a,b)en, aab >0} )

min{Bab H (alb)eAp Bab > 0}} .

By the general properties of non-negative matrices (see, e.g.,
‘page 194 of [L]), we have that YO E-YF' The computation of Yo is easy
and (2.5) has a solution only if YO < 1.

The results of this section can be summarized as follows.

Proposition 2.1.

(2.5) has a solution if and only if (2.10) converges. (2.10)

converges only if

STIDY
R £

¥ (a,b)en, s.t. £ .> 0,
(Cld)ecab )

ab

.-ln f cd

and YF_E 1.

2.5 Discussion of Results

As we have remarked before, the Aloha system we have considered in
this chapter is inherently unstable; the main reason for the analysis
of Aloha was to understand the conditions under which the system could
be expected to operate satisfactorily before the throughput collapsed.

The equilibrium hypothesis implies that stable operation is not
possible, e?en temporarily, unless (2.5) has a solution. If (2.5) has
a solution, étabilization of Aloha may be possible by the introduction

>

of a control mechanism; in this sense we can say that f is feasible

under slotted Aloha if (2.5) has a solution.
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However, our results are subject to the limitations of the
equilibrium hypothesis, which totally ignores the interdependencies
among'the packet scheduling rates of different links. It would be
desirable to study the ;—feasibility problem on a model which at least

partially accounts for these dependencies, but, mainly because of

tractability problems, we do not pursue this matter any further.
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- CHAPTER - IIT. = TDMA in PRNS

In this chapter we consider TDMA (timé-division-multi-access)
schemes for PRNs > After formulating TDMA in terms of the transmission
vectors of a PRN, we address the feasibility problems, which were
introduced in chapter 1. |

The main result of this chapter is the NP-completeness of the
feasibility problems. The reader, unfamiliar with NP concepts, is

referred to [PS] or [GJ] for the essentials of algorithmic complexity.

3.1 Notation and Definitions

We change our notation slightly in this and the following chapters
to avoid cumbersome subscripts.

As ﬁsual, G = (N,A) will represent a PRN. Nodes will be denoted
by the small case letters a,b,c,d and e. L = IAI will be the number
of links, and the links will be labelled by integers 1 through L.

The letters i,j,k and £ are reserved for denoting the links.

With the new notation, fi will stand for the mean packet arrival .
rate on link i. The collection of all arrival rates will be represented
as a set {fi}: and alternatively, as a column L-vector ;, the i*P
component of which equals fi'

TDMA analysis is based on the concept of collision-free transmission
vectors. To every time instant we associate a column L-vector ; with

the following property: ti = 1 if there is a transmission .over link i

at that time in'stant;yti = 0 otherwise.
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A vector %,Hwith.the,aboﬁe property is called a transmission vector.

A collision-free transmission vector T is a transmission vector
with. the following additional property:,ti + tj.f_l if i € Cj for
all i,j € A.

Since we are interested only in collision-free transmission Vectors
in our study of TDMA, from here on we shall refer to . collision-free -
transmission‘vectors simply as transmission vectors.

We say that link ' i€A is enabled (or used) by a transmission
vector S if"i:i = 1. The transmission set of a transmission vector t
is defined to be the set of links that are enabled by %. Thus the
transmission set éf T is the set{ieA: tiA= 1} . |

By convention, the all zeroes vector 0 is a £ransmission vectbr,
and the null set is a transmission set.

A maximal transmission set is a transmission set“wbich is not
properly contained in another transmission set. A maximal trans-
mission vector is a transmission vector whose transmission set is
maximal.

The total number of all transmission vectors, denoted by K, is
obviously bounded by 2L. We let %1,32,..,,¥K be an ordéring of all
transmission vectors.

The transmission matrix T is defined to be an LxK matrix whose
ith column is.%i for i =1,...,K.

In the L—dimensioﬁal real space RP, the transmission vectors
can be thought of as points. The conQex;hull of all those points,
denoted by CH(T), is a closed bounded polytope which lies in the non-.

negative orthant of RL.
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3.2 . TDMA in PRNS

We are now in a position to introduce the TDMA scheme. For
simplicity of exposition, in this chapter we consider Qariable slot
length TDMA schemes. In the variable slot length case, each user has
a sequence of posifive numbers. The sequences are identical. The
terms of the éequence represent the duration of slots. BAll users are
synchronized so that thérslots as perceived by different users always
start and end simultaneously.

In TDMA, we associate a transmission vector with every slot. The
sequence of transmission vectors associated with the slots is assumed
to be the common knowledge of all users. In our study, we do not
distinguish the order in which the transmission vectors are used.

If in some period of time the same transmission vector is used more
than once, we can combine all the slots in which it is used into a
single larger slot whose duration is the sum of the durations of
the individuai slots.

Since we are studying the feasibility problems in a static setting,
we restrict our attention to periodic sequences of transmission &ectors.
We let xg denote. the duration of time the transmission vector %i is
used in one period. The column K-vector ; will denote the vector
whose ith row is X, . We put a normalization constraint on ; by
demanding that I . ;.5 1.

After this introduction, we give a formal definition of TDMA.



~31-

Definition‘: Let G = (N,A) be a PRN and. let . T be the transmission
matrix of G. A TDMA scheme (for G) is a system
> > : '
<T,x>, where x 'is a non-negative column K-vector
such that I . ; < 1.
" In a PRN, ‘all links have the same capacity. We normalize link

. ; > > ->
rates with respect to this capacity and require that 0 <f<1.

Definition. Let G = (N,A) be a PRN and let f be a link rate vector
for G. % is called feasible under TDMA if there

. > . > >
exists a TDMA scheme <T,x> such that Tx > £,

We wiil now state a series of straightforward facts. about TDMA
schemes. Facts 3.1 - 3.5 are stated in reference to a fixed but

arbitrary PRN G=(N,A).

FACT 3.1.

t is feasible under TDMA iff u < 1 where u is defined as follows:

LPl:
‘ u = min T . ;
s.t. T; z_f
x>0 .
FACT. 3.2 .

1f ¥ is feasible under TDMA, then there exists a TDMA scheme

<T,§> such that Tx > ¥ and

(i £ x, >0} <1.
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->
Proof.. If £ is feasible under TDMA, then. there .exists a basic
feasible solution which optimizes LPl (the linear program

defined in the statement of Fact 3.1).

FACT 3.3.
Let T be the set of all transmission sets of G = (N,A). The

system (A,T) is an independence system.

Proof. A system (E,S) is an independence system if S is a set of sub-
sets of E with the following property: Eles_and E2(:El implies
EZES.

Since a subset of a transmission set is a transmission set, (A,T)

is an independence system.

FACT 3.4.

Let . u be as given in Fact 3.1, let v be as follows:

LP2:

=y
]

v = min

- >
s.t. Tx = £

Then, u = v.
Proof. Fact 3.4 follows from the independence system property of (A,T).
FACT 3.5.

% ic feasible under TDMA iff £ € CH(T).
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FACT 3.6.

FACT 3.7.

Proof.

- 3;3”.

-> ) -
f € CH(T) iff £ . can be expressed as a convex combination of the

extreme points of CH(T), which are,by definition, the transmission

vectors of G.

> v
If f is feasible under TDMA, then there exists a TDMA scheme

1

>
<T,x> such that

> >
(1)  Tx > €,
- RN R e . .
(ii) jeli: x; > 0} =7 tj is maximal,
(iii)  |{i : x; >0} <r.

Given a polynomial p(°*), we can always find a PRN with the

property that K > p(L).

An example suffices. Consider the PRN in Figure 3.1 with
(1 + %0 nodes and L 1links (L is even). There is a trans-
mission set with L/4 elements. Therefore, the total number

of transmission vectors is at least 2(L/4{._

.A Chain PRN

Figure 3.1
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As a result, linear programming as applied to.LP1l, or LP2 ‘does
not guarantee an efficient solution to,theA;—feasibility,problem.

Can we reduce the size of LP1 (or LP2). by discarding non-maximal
transmission vectors, so that linear Programming can be used to solve
the ?—feasibility problem.efficiently?, The following fact suggests

that we cannot.

FACT 3.8.

Given a polynomial p(°®), we can always find a PRN with the property
~ that K”>p(L), where K’ is the number of all maximal transmission

vectors.

Proof. Consider a chain PRN Gm, such as the one in Figure 3.1 with
3m+2 nodes and L = ém+2 links for some integer m> 1l. By
induction we will show that Gm has at least 2+3™ maximal trans-

mission vectors.

Gm+1 is constructed by adjoining three nodes to Gm, as in Figure 3.2.

mt1

Figure 3,2
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ILet S . be a maximal transmission set of-Gm,,_There are four cases:

1)  (3m+l, 3m+2) € S
In this case SKJ{(3m+4) '3m+5)}(, StJ{(3m+4, "3m+3)}
and SLJ{(3m+5, 3m+4)} are maximal transmission sets of IR
2) - (3m+2, 3m+l) € S
In this case sU{(3m+3, 3m+4)} , syu{(3m+4, 3m+5)} , and

sU{(3m+5, 3m+4)} are maximal transmission sets of G ..

3) (3m, 3m+l) € S
In this case SU{(3m+3, 3m+2), (3m+4, 3m+5)}, sU{(3m+3,3m+4)},

and s U{(3m+5, 3m+4)} are maximal transmission setsd9f>qm+1?.

4) (3m+l, 3m) € s

: In this case SU{(3m+2, 3m+3), (3m+5, 3m+d4)} , sU{(3m+3, 3m+4)} ',_

sU{(3m+4, 3m+3)} , and SU{(3m+4, " 3m+5)} are maximal
transmission sets of G .
: m¥l- .
Since every maximal transmission set of Gm must fall into one and only

one of the four cases listed above, we have shown that Gm+ has at least .

1
three times as many maximal transmission sets as Gm.

For m = 1, by enumeration, we see that there are at least 2'-31 maxiﬁal
transmission sets. Therefore, we conclude that Gm has at least 233m
maximal transmission sets.

In order to discuss the complexity pf~theuf-feasibility problem

- under TDMA, we need to define a sizé for the problem. This forces us to
make the following assumption.: The'link;arriQal rates are rational

.numbers . . such that there exists a fixed : (but arbitrary) positive integer P
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with the following property: P'fi is integer for all i€A. .It is
important to. note:that P stays fixed over all instances of the problem,

but otherwise, P is arbitrary.

Definition.
>
‘FF (TDMA - f - Feasibility Problem)

>
Instance: A PRN G = (N,A), a link arrival rate vector f.

>
Question: Is £ feasible under TDMA?

We define the size of an instance of FF to be L.

We now state the major result of this section as a theorem, the

proof of which is deferred to the next chapter.

Theorem 3.1.

FF is NP-complete.

3.3 The r—Feasibility Problem

> .
Let r be an o-d arrival rate vector of a PRN, G = (N,A). We assume
>
. that r is rational; that is, there exists a fixed, but arbitrary,

-
integer P .such that P r is integer.

Definition.
+ » . -
RF (r-Feasibility Problem)
>
Instance: A PRN G = (N,A), an o-d arrival rate vector r.

> ->
Question: Is r feasible, that is, is it true that r € C(G)?

The above problem is the same as the problem defined in section: 3

. > .
of -Chapter 1  except for the assumption:that r. is a rational vector.




-37-~

We shall discuss the significance of.this assumption in the next chapter.
We close this section by stating a theorem which will be proved in

Chapter IV.

Theorem 3.2,

RF is NP-complete.

7

3.4 Discussion of Results

The fact that such fundamental problems as FF and RF are NP-complete
is discouraging, because the lack of adaptability of the network protocols
to unexpected changes in network topology or in data traffic makes proper

operation of the PRN uncertain,




-38=~

CHAPTER IV. NP COMPLETENESS PROOFS AND AN ALTERNATIVE FORMULATION OF TDMA

In this chapter we shall proﬁe the theorems we .stated in Chapter III,’
and give a formulation of TDMA for the case where all slots are the same
in length.

The transformation algorithms we use in this chapter and the next
require constructions of certain sets from other sets. The set notation
that we use in these algorithms is not a standard one, so, we should
explain the notation first.

Let V be a set, say V ='{3,y;2};‘then \'Al dénotes the set
{x“,y”, z”}. In general, we write vi=1{a"t ae v} . Likewise, V~°~
is the sét {a®” : aev}.

Often, we use indices instead of primes. If, for example,

Y = {a, b}, then¥ ={a, b}, ¥ =1{a, b .}, and so on. In general,
g 1 1 1 2 . 2 2. i

we write Yi = {aif a€yY}.

This notation applies to. sets of ordered pairs as well. For

example, let E = {(a,b), (c,d), (a,d)}, then the setF{(xi,yi) : (x,y) € E}

written by its.elements.is~{(ai, b.), (c;.4)), (ai,di)}; Similarly,

{(xiryj)= (XIY)e E} = { (ailbj)r' (cil dj)’ (a‘il dj)} .

Finally,,let us note the following type of equivalences:
{a,a":aev}l = vuv ,
{(a,p"), (a",b) : (a, b) € E} = =

{{a,b”) : (a, ») € E} U{2"/b) : (a,b) € E} .
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In this chapter, H = (V,E) denotes an undirected, -finite, and

simple graph.

4.1 NP-Completeness of FF

The NP-completeness proof for FF will be given in two steps. First,
we. shall consider a related problem and prove that it is NP-complete.
Then, it will be shown that this problem is polynomially transformable

to. FF.

,ﬁ:}aﬁ NP-Completeness of the Maximum Transmission Set Problem

Defini£ion. MTS (The Maximum Transmission Sét Proplem)
Instance: PRN G = (N,A) set B& A, positix-re integer k < |B|.
Question: Does there exist a transmission set S of G such
that |s NB| = k?
We will prove the NP-completeness of MTS by polynomially trans-—

forming the following NP-complete problem to MTS.

Definition. MC (The Maximum Clique Problem)

Instance: Graph H = (V,E), positive integer k < |V| .
Question: Does G contain a clique of size  k ?
- (A clique of H = (V,E) is a set Q CV .such that (a,b) € E for every

pair of distinct nodes. a, b € Q).
Fact 4.1. MC is NP-complete.

Proof. See, e.g., page 360 of [PS].
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MC is polynomially transformable to MTS by using the following

algoxithm."

Algorithm Al..

Input:,‘Graph H =.(V,E)'f
Output: PRN G = (N,A), set BC A  vwhere

N

-V. » L’s}_‘\.["’

A ?{(aflbf‘); (af?ﬁb’): aeV1 beVi (afb) ¢ E}‘
B =T{(af, g") : aev}

We illustrate the transformation by an example.

~ Example. Let H = (V,E) be as in Figure 4.l.a.

G = (N,A), the output of Al, is shown in Figure 4.1.b.

B ='{(a‘la‘l)l (b’lb’?)ri(C'rc‘A)} .

(a) ' (b)

Figure 4.1
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Fact 4.2.. Let H = .(V,E) and G = (N,A) be the input and the output of

Al, respectively. H has a clique of size k iff there exists a

transmission set S of G -such that |sMN B|

[
~

proof. (i) -Suppose Q is a clique of H with |Q| = k.
Then, S = {(a”,a”) : a€Q} is a transmission set of G and lsn B = x.
- (ii) Suppose S is a transmission set of G with the property

that |[S NB| = k. Then, 0 ={aev: (a",a”") € (SN B)} is a clique of

H and IQI = k.

Fact 4.3. MTS is NP - complete.

Proof. It is clear that the set S is a concise'certificate that can be

checked in polynomial time for validity for a YES instance of MTS.

By Facts 4.1 - 4.2, we know that MTS is as hard as any problem in NP.

Therefore, MTS is NP-complete.

4.1.2 . MTS is Polynomially Transformable to FF.

The algorithm that polynomially transforms MTS to FF makes use of

the following special device.

o th _ .
pefinition. The m  power of G = (N,A) is G" = (Nm, a™

m
where N' = U N,
. \ i
L i=1
N, = {a; :.aeN'} i=1,...,m
i i v .

no "
A.,=U L_)lAij

iﬂlj=
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b
I

i3 = (a;b) s aeN, beN, , a # bi} i=1,...,m

[ '

A .
i)

yeuo M

, J
"{(a.,b.) : a.€ N,, beN. , a=D>b or (a,b)e a}
3 * . J ¥ l,...,m

[ PRy N

The best way to understand the structure of " is to consider an

example.

'Example. Let G be as in Figure 4.2a. G2 is the graph in Figure 4.2.b. 
Verify the following on Figure 4.2..
1) ~(N1, All) and (N2,A22) are complete directed graphs.

2) (b,a) € A does not conflict with (c,d) € A in G; (b;,a)) €A,

does not conflict with (cz,dz) in Gz. More generally, if
- (x,y) € A does not conflict with (u,v) € A, then (x,,7,) €35,

does not conflict with (u2,v2) € A it is also. true that

i

(x ) does not conflict with~(u ,vl).

2'¥5! 1
With the above observations, we can prove the following general

result about the powers of G.

Fact 4.4. Let G = (N,A) and BC A be given, let Gk be the kth power of

k
G, and let Bk = l ' B, where
o 1

B, = {(a.,b.) + (a,b) € B}
i i’7i !

Then, the following statements are equivalent.

(1)  There exists a transmission set S  of G such that

|sN B| = k.
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(A link without an arrow stands for two oppositely directed
links in this figure.) o

) &% = 2, a%

Figure 4.2
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- (ii) There exists a .transmission set'Sk bfka,such that
|s*M B¥| = k.
Proof. Suppose (i) is true. Let -

SMB = {21'22'f"’2k}f Let.lij be the copy of li in

A.., that is, if R,
33 - i

’

(a,b), then £, = (a /b))  for j = 1,...,k.

Then, Sk:é{zii :i=1,...,k} is a transmission set of ¢,
because, for any two distinct links'lii, zjj e S#, if lii conflicts
with zjj’ then Ri € S conflicts with Rj € S; thus, S cannot be a

transmission set contrary to the hypothesis.

s* contains one link in B, (i =1,...,k); hence,|Sk(W Bk| = |Sk| = k.

Suppose (ii) is .true. Then we note that Sk coﬁtains one link in
, Bi (i=1,...,k), because any ﬁwo distinct links in Bi (i=1,....,k)
conflict Qith each other. 1In fact, Sk cannot  contain more than one
link in Ay (i=1,...,k). Thus,

s = {(a,b) : (a;/b;) € s* for some i € {1,...,k}} has exactly

k elements. Mofeover, SC Band S is a transmission set of G.
This completes the proof.
MTS is polynomially transformable to FF by using the following

algorithm.

Algorithm A2.

- (The. graph E = (N,A) which appears at the .output of.this algorithm
has a special structure which .can be visualized easily by first skimming
over the following definitions, skipping the part about Exy,.Studying

the example, and then carefully reading the algorithm again.)
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Input: PRN .G

(N,A), set BC A, positive integer k < 1B].

Output: PRN G

,(1:‘1,2.;) P setﬂ{fxy' : (x,y) € A} " where

N

"
2,
C
o
C
10

A
]

'{ai : a € N} i=1,...,k
P = {Pi'P2(7'f'pk}

Q: = {qi’qzl ce- ’qk}

k

o
n

AF\J YkkJ Z

Kk k
a=U U a;
i=1

j=1

0
]

{(aysb;) = a;, €N, b, €N, a#b} i=1,....k

>
I

{(ai,bj) : a, €N, bj € Nj' a=Dbor (a,b) € A} i #»j ;

i=1,...,k ; j=1,....,/k

(Note that (N.k, Ak) is just the kth power of (N,A) decribed before.)

% kK k
Yy = U &.) L
i=1

j=1
L ='{(pi.qj);,(qj,pi) i p; €P, qy € e} i=1,...,k;

J = 1,000k

L ’Cj' Cj_
z. = - Z,.

i=1 =1
i
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Zij =‘{(Pilale (aeri) : Pi € Pl_aj e Nj} j#F Lo

i=1,..0,k: 3 =1,....,%

§ (x,y) € g®
fxy = (lBl - 1)68 - (x,y) €D
' 0 otherwise
where
1
§ =
1+Xk (|| -1)
k
Bk = Bi
i=1
B; = {(a;/b)) : a; €N, b, €N, (a,b) € B} i=1,...,x
D = {(Pi,qi) t 1= l,...,k}

Example. Consider an instance of MTS <G,B,k> where G = (N,a) is a
PRN, BC A is a subset of links, and k < |B| is a positive integer.

Suppose [B| = 4 and k = 3.

With <G,B,k> as the input, the output of A2 is illustrated in
bFigure 4.3.

In Figure 4.3.a, we see the general structure of é = (ﬁ,g). The
part of G that is enclosed in the dashed rectangle is the same as G3.

Yij is shown in Figure 4.3.b; we note that (P,Q,Yk) is a complete

bipartite directed graph, that is, .(x,y) € Yk iff either x €P and y eQ,

or x € Q and y €P. In other words, each node in P is connected to each
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iy @A)

{c)

1]

(b) v..

(d)

Figure 4.3
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node in Q, and vice versa. Thus, a transmission set .S of G .can
. . . k
have at most one link in common with Y .

The cross-hatched area in Figure 4.3.c represents the links in

Zij(i¢j); we note that ({pi}{ Nj’ Zij).is also a complete bipartite

directed graph. Hgnce, a transmission- by node P, interferes with a

- simultaneous txansmission §§er any link in Ajj (3#i). So, if a
transmission set g of E contains a link‘(pi,x) € ;, then 'E cannot .
contain any link in Ajf Cj%i).

Finally, in Figure 4.3.d, we see the links in D. Each of the
links. in D is assigned a mean link arri&al rate. of (IBI - 1) § = 0.3
units. : (Here we do not use packets/slot as the unit of arri§a1 rates,
because slot, as a time unit, does not have a meaning in a Qariable
slot length. TDMA scheme. Instead, we interpret the arriﬁal rates as
service fequirements; thus, a mean link arrival rate of, say, 0.1 units
implies that the link in question must be enabled 0.1 fraction of time
to satisfy its service requirement; sometimes, we express the same
fact by saying that the link has a serQice requirement of 0.1 units;)‘

The following result is based on the properties of transmission

sets of G which have been pointed out in the above example.

Pact 4.5.

Let the instance <G,B,k > of MTS be the input of A2, and let
<G,E>.be the corresponding ‘output. ' Then, the following statements are
equivalent..

(i) - There exists a transmission set S of G such that |s NB| = k.

: (ii)"{fxy ¢ (X,y). € A}  is feasible under TDMA.
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Proof. There are le]‘links.in‘ Bk .each.with § units of service
requirement, i.e., each link in Bk,must.beAenabled' § fraction of time
on the average; .otherwise, packets start piling up. There are k - links
in D each with a service requirement of ([B] - 1) 8 units. so, the

sum of the service requirements on all links of G is kS + 2k:(|§| ;l)d
unitsA(or‘k§ + 2(1 ; §)units).

Now, . suppose.- (i) is true. Then, there exists a transmission set
>; of ,6 _.such that Igfﬁ BklM= k. ; can be used 5 fraction of time to
satisfy the service requirements of k ‘1inks'in'Bk.' So, if, in the
remaining (1 - §) fraction of time, we can complete the service of
k(|B| - 1) links in B each with a requirement of § units, and k links
in D each with a requirement of (IB[ - 1)§  units, then statement (ii)
will be true. We shall show that this is indeed the case.

We know that 5 has one link in each B, (i=1,...,k). so, let

us write.

Bi -8 ='{jS : j'= l,..,,k-i}' i= ;,...,k. The set

Sij ='{(pi,qi), Rji}' is a transmission set of G for each_lji e (Bi - ;),
i=1,...,k..

It is easy to see that the TDMA scheme which uses g and Sij
i=1,....k;: 3 = 1l,...,k-1) each for § fraction of time satisfies
the service requirements on all links of & -just on time.

Suppose (ii) is true. We note that exactly k(|B| - 1S - (or (1-8)) -
fraction of time must be spent in satisfying the service requirements

of the links in D. In the remaining '§ fraction of time, . the TDMA scheme

under which'{f;&},'is‘feasible,mustusatisfy_a total of at least k& units
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of service requirements on the.average;.(This.last.sentence follows by
noting that the TDMA scheme cannot use transmission sets of size larger
than 2 in the (l—§),fraction of time that .it spends while ser&ing the
links in D). Therefore, the average number of links-in Bk that must be
enabled by the transmission sets used in the remaining 5 fraction of
‘time is at lea§t k.  This implies that there exists a transmission set
S of G such that |§ C\Bk| = k. But, the existence of S implies that
there exists a transmission set S of G . such that |s F\Bl = k. This
completes the proof.

To prove that FF is NP-complete, we need to show that every YES
instance of FF has a concise certificate which can be checked in time
bounded polynomially in the size of the instance.

Let f . be feasible under TDMA. There exists linearly independent

;o ’ g > >
transmission vectors Ei,%é,...,tLAsuch that, for some x > 3, Bx = f

T > . . .th .7 .
and 1 « x <1 where B is the LxL matrix whose i column is ty (i=1,...,L).

-
We propose B and X as a concise certificate for FF. First, let us
see if _; can be encoded concisely.

-1 >
We have ; =B 1 £.

Let .(B‘-l)ij be the i-jth element of'B-l; that is,

_ adj(B,.)
e, = 5

ij det B
Since adj(Bji) is the determinant of an (L-1) x(L—l)-O—l‘matrix,
|adj(Bji)|*< (L-2)! . Likewise, |det B| < (L-1)!. Therefore, each of
>

|det (B) |: and Iadj(Bij)l ~can be encoded in fewer than Lz;bits. ~Since £

: . . : > .
is assumed to be rational, we conclude that .x can be encoded in space
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bounded polynomially in L.

The columns of B can. be checked in polynomial time for being
transmission Qectors., The operation B; can. also be carried out in’
polynomial time. Therefore, if’ ;- is feasible under TDMA, then there
exists a concise certificate. This proves that FF belongs to NP.

Notice th§t we have not used the assumption: that ; is rational in

proving the fact that MTS is polynomially transformable to FF. This

assumption was only necessary to show that FF belongs to. NP.

4.2, NP - Completeness of RF

We define the total o-d rate associated with. node x of PRN

G = (N,A) as follows:

R = .2 :'r + 2 : r .
X Xy yx

VEN ' YEN
Rx can be interpreted as the fraction of time node x is receiving
or transmitting packets which either originate from x or. leave the

>
network at x. If r is feasible, then R* < 1 for all xeN.

The following algorithm polynomially transforms FF to RF.

Algorithm A3.

|

Input: .PRN G (N,A), set'{fab + (a,b) € A}'

. Output: PRN G

(N,8), set {r, : xeN, yen}

-

' {.avr‘a,’»l‘ah‘ :aé€ N} .

where 'N

A=AyAUA, .

A= {(a%a*") : aent
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3, ={(a,a™, (@a""a), (a",a), (a,a”), (a”7,a") : aen}

e = f - (a,b) ea

T e =1 -‘gg.’(fab *E ) (a‘La  ) en

r =0 . x,y) ¢ & or (x,y) € A
Xy ,

Note that ra’a" =1 - Ra: Without loss of generality, we shall assume

thath§ 'Rx <1 for all x € N. When'{fab : (a,b) e A}' is feasible under
TDMA, this assumption will always be true.

We illﬁstrate the algorithm by an example.

Example. Let G = (N,A) be the PRN in Figure 4.4.a.

G = (N,A) is'shown in Figure 4.4.b.

= 0.2
fab
= .3
fba 0
fbc = 0.1
ﬁja =0
f = 0.5
ca

(a) G = (N,A)

E;b = 0.2 an = 0.3
ch = 0.1 . ?cb

¥ = 0.5 E .-

Fooee =0.4 g . o

All other o-d rates are zero.

Figure 4.4
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' Fact 4.6. Let the PRN G = (N,A), and. the set of mean link arrival rates

£, : (ab) € A}. be the input of A3, and let G = (N,A) and

Ty

are equivalent..

X € ﬁ,,y_e N} be the corresponding .output. The following statements.

(1) :{fab ¢ (a,b) € A} 1is feasible under TDMA

- (i) i{fxy : X €N, vy € N} is feasible.
Proof. .Suppose there exists - a TDMA scheme for G under which

{£__ = (a,b) € A}¥ is feasible. We shall show that‘{fxy : Xx €N, y € N}

ab
is feasible in 5. Since ;xy f 0 when (x,y) ¢ ;, each packet in the
network can be transmitted directly from its origin to its destination.
Let this be .our rule for the assignment of paths té packets; that is,
every (x - y) packet is transmitted directly over link (x,y) for

all (x,y) € ;. With. this path assignment, we have ;xf = ;xy for-all

- (x,y) € A, where fxy is the mean arrival rate of link (x,y).

If S is a transmission set of G such that
Sr\‘{(xuy)_e A:x=a ory=a}l=¢.,

then S'L){(af1af')}'is a transmission set of G. Thus, given a TDMA
scheme for G . under which'{fab ¢ (ab) € A}‘is feasible, we can
-augment the transmission sets used by this TDMA scheme to obtain a

TDMA scheme for G .. under which'{fxy v (X,y) € A}‘ is feasible.

-~

Suppose (ii) is true. Consider nodes a, a”, a”” € N. Node a”
must be transmitting at least T enee fraction of time,and node a cannot
transmit or receiveé from nodes other than a";during this time. Node . a

~

must spend .at least 1 - ra‘a" = Ra'fraction-of*time receiving from and
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transmitting to nodes other than .a2”. and a”” . Thus, all (a” - a”’) traffic
must be transmitted directly over (a”, a”7’). "But, if <all (a” - a“’’)

traffic is sent directly over (a”, a””), node a cannot handle any

packets other than those which eifher originate. at node a or.lea§e~the
network at node a. Therefore, one must be able to send each packet
directly from.its o&igin to its destination if"{;gy : X € ﬁ,.y € ﬁ}

1

is feasible. This completes the proof.

A concise certificate for a YES instance of RF is a set of routing
variables and a TDMA scheme under whiqh the induced set of mean link
arrival rates are feasible.

Thus, we have proved that RF is NP-complete.

4.3 Fixed Slot Length TDMA Schemes

é Until now, we have considered Qariable'slot length TDMA schemes.
Sometimes, it may be desirable to have a scheme with all slots fixed
in length. 1In this section, we shall show that this can be done without
loss of capacity, in the sense that, if a set of mean link arriQal rates
are feasible under TDMA, then there exists a fixed slot length (FSL)
TDMA ‘scheme under which the same set of mean link arrival rates are
feasible. The converse of this statement is also true.

' g
‘Definition. Let G = (N,A) be a PRN, and let f be a mean link

arrival rate vector. A FSL - TDMA scheme with period J . is a system
> - : >

<T, u,J> where T is a transmission matrix of G, u. is a column

k - vector with non-negative integer elements and J . . is integexr such

' -> - >
that . J 21 s, We say f is feasible under FSL-TDMA if there exists

PR . L e RS PR
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. : >
-
a FSL-TDMA scheme.<$;ﬁ}J>,suchvthat . Tu 3_J £ .

> -
Fact 4.7. If for some P, P . f has integer elements, and if £

is feasible under TDMA, then there exists a FSL-TDMA scheme <T,u,JT>.

> . > '
such that Tu >J f and J <P « (L - 1).,

> , .
Proof. If £ 1is feasible under TDMA, then, as we have shown in the

i

NP-completeness proof of FF, there exists a TDMA scheme<T,;$ ‘'such that
> -+ . > . . . .

Tx = £ and Pe Mx has integer elements, where M is the determinant

of an LxL 0-1 matrix. Since the determinant of an LxL O0-1 matrix

must be less than (L-1)! , we have that M < (L-1)% . Let u = Pe M x

> > > >
and J =P «M. Then, Tu=P ¢M+«Tx=Pe Mf=J e« f and
> > > > ’ ->- . '
1 eu=MeP ¢«1 ¢x <MP =J. Therefore, <T,u,J> , as defined above,

: -+
is a FSL - TDMA scheme under which f is feasible and J < P « (L-1)! .
Fact 4.8. If f is feasible under a FSL-TDMA scheme <T,u,J> , then
->
there exists a TDMA scheme <$,§> under which f is feasible.

3 » we obtain the desired TDMA scheme.

Gl

Proof. By letting ; =
. -> ' ‘
Thus, we have shown that if £ is a rational vector, then feasibility
- under TDMA is equivalent to feasibility under FSL-TDMA.
Sometimes, we may wish to find a FSL-TDMA scheme with a fixed J.
-

In this case the feasibility. of £ is'eqﬁiValent to. the non-emptiness

of the region defined by the following inequalities

J
Z xi.'iJf k=1,...,L
i=1. M J
X + x,..0 <1 Jjec ;. i=1,...,J3 ;
Sik — 2 ‘
ot 3=~_1]f...,L; k=1,...,L
x.. € {0,1} i=1,...,3; §=1,...,L
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We interpret the binary variables xij as-. follows:

1 . if ‘a transmission over link j

is to be made at slot i

0 otherwise

-
If the above region is empty for a certain J, f may still be

'feasible under FSL-TDMA for some J"# J.

We finish thié chapter by stating the NP-completeness of a restricted
. -> ’
version of the f-feasibility problem under FSL-TDMA.

. e
Instance: PRN G = (N,A), mean link arrival rate vector £ such that
->
P * f has integer elements for some fixed - but arbitrary - positive

integer P, integer Jo such that 3 < J < P * (L-1) ¥

' -
Question: Does there exist a FSL-TDMA scheme <T,u,J> such that J i-Jo

> ->
and Tu>J £ ?

Comment: ‘Thig problem remains NP-complete for all fixed Jo > 3. (&as
stated above, Jd is part of the input énd is arbitrary in the specified
range.)

. We omit the proof of this fact, but let us note that a simple proof
is possible by a transformation from the PARTITION INTO CLIQUES problem

(see page 193 of [GJ] for the definition).

MW wm ek e e wm W § Rt t v ¢ i em s o - - et - M - — —
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CHAPTER V. POLYNOMIAL TIME APPROXIMATION ALGORITHMS FOR FF AND RF

In this chapter we discuss polynomial time approximation algorithms

for the feasibility problems, and show why it is difficult to solwve them

efficiently, even in an approximate sense.

5.1 Terminology [PS]

Let P be an optimization problem with a positive cost function;

let I be an instance of P; let G(I) be an optimal solution to I; and
. | . o .
let c(V(I)) be the cost of $(I).

Let A be an algorithm which returns a feasible solution Va(I)
when supplied with an instance I; and let c(Va(I)) be the cost of
Va(I).

The algorithm A is called an € - approximate algorithm if,

for any instance I of P, we have

e (1) - evan]
a )

<€ .

c(V(I))

An € - AA (€-approximate algorithm) which operates in polynomial
time is called an € - PTAA (€ - polynomial time AA).

The solution Va(I) returned by an e—AAAA is called an € - approximate
sdlution.

A polynomial time approximation scheme (PTAS) for P is an
algorithm which, when supplied with an instance I of P and a number

€ > 0, returns an € - approximate solution in time bounded polynomially.
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in the size of the instance, where the polynomial. depends on € .
A PTAS is called a FPTAS (fully PTAS) if its .running time is

bounded polynomially in 1/€ and the size of the instance.

5.2 Negative Results About FF

The optimization version of FF, which we shall still denote by FF,
is the problem of finding a vector '; > 3,Jsuch that, for a given mean

- -> >
. > > .
link arrival rate vector £, Tx > £ and 1 * x is minimized. This

B S
problem has a solution whether or not £ is feasible. We shall denote
the cost of an optimal solution to.an instance I = <G,f> of FF by
%(I); the cost of an approximate solution will be denoted by Zé(I).

We now list the main results about FF and prove them in the

following sections.

Theorem 5.1.

For FF, there are two possibilities: either there is no € - PTAA

for any value of €, or there exists a PTAS for-all € > O.

Theorem 5.2.

If there is a PTAS for FF, then there is a PTAS for MC (i.e. the

optimization version of the maximum clique problem).

Theorem 5.3.

Unless P = NP, there is no FPTAS for FF.

We are unable either to find an € - PTAA for FF or to. prove that,

R I E T R TR RS ER T

S EEET YT MR CEES € - i ST R crv e
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unless P = NP, there exists no € - PTAA for FF. However, in view of
Theorem 5.2 and the fact that a PTAS for MC - an extensively studied
problem - is yet to be found, the evidence about the difficulty of

finding an €-PTAA for FF is conclusive.

5.3 Proof of Theofem 5.1

il

+
Let I = <G,f>" be an instance of FF. We define 0I to be the

-> .
instance <G, af> where o > 0.
i >

~ ~ ~

The instance I = I(I) = <G,E> is defined as follows:

G
]

(N,A)

N o= {a : aeN,.ie {iea : £, > o}}

a = {(a.,b.) : a,eN, b.eN, (a,b)ealu

1 1 1 1
{(ai,bj),_ (bjfai) i # 3, ajeN, ben, 1ecj}
| fl . fab i=3
f‘aib. =
3 1o i#3

(Note that fi is the mean link arrival rate on link i of G; faﬁ is
the rate on link (a,b) of G.)
g ->
Since the case f = 0 is trivial, we shall always assume that there
is at least one link in G with a positive mean packet arrival rate,
and we shall let k denote the number of links in G with positive

mean arrival rates. The links will be labeled such that fl>0,...,fk>0,

and fk+l = e T fIAl = 0.
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The subgraph

G, = .({aieN : aeu}, {(ai.bi)GA: (a,b)eal)

. .th L o :
of G will be referred to as the i copy of G in G, because Gi is isomorphic

-~

to G. Thus, there are k copies of G in G.
Before we proceed with the proof, let us illustrate the graph

-~ o~

G = (N,A) by an example.

*
- -~ ~
Example. Let I = <G,f> be as in Figure 5.l.a. The instance I = <G,f>

is shown in Figure 5.1.b.

The cross-hatched areas between the copies represent links ;
thus, e.g., each node in copy G1 is connected to each node in copy G2
o by directed links, and vice versa.

g In general, .for any two copies Gi and Gj' there are two cases:
(1). If iecj‘in G, i.e. if link i€A conflicts with link j€aA, then each

link in copy Gi conflicts with each link in Gj;

(2) 1If i¢cj in G, then there is no link in Gi that conflicts with any

link in Gj.

The mean link arrival rate vector associated with the links in Gi
-> -~
will be denoted by fi. The instance I contains k instances Il,...,Ik
—)
where Ii = <Gi,fi>'. Notice that Ii and fiI are identical.

A~ ~

We shall first argue that Z(I) < (Z(I))z.

Let

A > >
V(I) = <ui,yi1 i=1, IAl> be an optimal solution to. I where ui

s ey

is a transmission vector of G and Ys is the time duration associated

->
with u,.
i
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(N, 2)

(a)

.1

-
-

Figure
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~ >
The system ij(I) = <ui, iji : i= 1,...,|A|> is an optimal solution

to the instance ij and has a cost of ij(I) for each j = 1,..;,k.

A

Thus, V(I) can be used to solve each of the instances Ii (i=1,...,k)
optimally. Moreover, the solutions of these instances can be performed
concurrently since certain collections of copies of G are independent

. >
of each other. To be more precise, let u be a transmission vector of G

'

- [ :
such that ui =0 for i > k, i.e., u wuses only those links of G with non= - i e

zero mean packet arrival rates. Consider the set {Gi fug o= 1} ; copies
of G in this set are independent in the sense that, if si is a trans-
mission set of Gi' then

-~

LJ s; is a transmission set of G.
ie{i:ui=1}

It is now easy to see that there is a feasible solution to E with
a cost of'(;iI))z. Therefore, E(E).i (2(1))2.

Now, we shall give a reverse arqument. A feasible édlutionlv(i)
to ; induces a solution to each instance Ii (i=1,...,k). More
precisely, if V(E) = <_1:j,xj :j=1,...,r> , then the induced solution
v(Ii) to I; is the system <Eij' yij :j=1,...,r> wheré Gij is the
0 - 1 column IAl - vector obtained by deleting all rows of :j ﬁhat

correspond to links which do not belong to Gi and

N >
X. u, . 0
3 Mt
yij=

0 otherwise.

-
The reader should verify that uij is a transmission vector of

r

a > F. (i=1
_z Uiy Y5 2 (i=1,...,k).

G, (i=1,...,k; j=1l,...,r), and
i : S
. 3=1
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r
The cost of V(I.), denoted by Z,, is ) y.. -
i i 52143

: ->
Let us associate a column O-1 |A|-—vector q; with transmission

- ~ :
vector ti of G as follows:

1 je{l,...,k} and at least one link in Gj

-
is used by ti.

0 otherwise .

' >
It should be clear a is a transmission vector of G.

>
Now, consider the instance I” = <G,£”> where

z i=1,....k

0 i=k+l,..., |a]

- rd + . ) . . .
The system V(I') = <qi,xi :i=1,...,r> is a feasible solution

to I' and the cost of.V(I'), denoted by*Z(I'), equals Z(I).
Let us define a = min {(Zi/fi): i=1,....,k} , and compare
the instance I with % 1' . Since the mean link arrival rates of

é-;' dominate the corresponding mean link arrival rates of I, the

X, : .
) N - > . . . :
system %-V(I ) = <q, ai :i=1,...,r> is a feasible solution to I

with a cost of %-Z(I‘).

-~ ~

Therefore, any feasible solution V(I) to I induces k+1 feasible
solutioné to I; k of which are on the copies of G, and one is on the
instance éi). The solution induced on~Gi is the system
l—-‘.V(I.)

i

£,
i

-
< : j= PO > N . °
uij' (Yij/fi) j=1, ,x> , and has a cost of (Zl/fl)

The induced solution with the least-cost has a cost of
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zZ(I) = min {a, (2(I")/a)} since o = min{(Zi/fi) : i=1,...,k}. Therefore,

Z (1)

2(1) > Z2(D) o > Z(1)°.

The optimal costs associated with I and I must also satisfy

A . A 2 A~ A 2
Z(I) < (z(I)) . Thus we conclude that zZ(I) = (z(I))°.
Now suppose we have an € - PTAA for FF; when we apply this

algorithm to an instance I of FF, we are guaranteed a solution Va(I)
Z (1)

S!Ch that <1 + € , where Za(I) = c(Va(I)).

z2(1)

If we apply this € - PTAA to I instead of I, we still obtain
Z_(I) |
<.1 + €. But then, by searching through

~ —

Z(1)

a solutién such that

the induced solutions, we can obtain a solution V(I), whose cost

satisfies %izl- f_#l + . - Thus, the existence of an € - PTAA
Z(I) :

implies the existence of a ( V1 + € - 1) - PTAA. (We leave it to the
reader to prove that the new algorithm is still polynomial time.)
Suppose, for an instance I of FF, a 0- approximate solution is
desired (6>0). How do we use the € - PTAA - which we assume exists -
to obtain the desired accuracy? 1If 6.3 €, then there is no problem.
Let us consider the case § < €, and let m be the smallest integer

such that 1 + § > (1 + 6)2 . Then, we apply the € - PTAA to the
th . ~(m) . . . .

m  order instance I , which is obtained from I by recursively
applying the construction of E m times, and descend to a

-m
(1 + 6)2 -~ 1) - approximate solution to I by following the

least-cost induced solutions at each stage.

This completes the proof of Theorem 5.1.
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5.4 Proof of Theorem 5.2

The proof is based on two observations:

(1) There exists a PTAS for MTS if there exists a PTAS for FF,
(2) There exists a PTAS for MC if there exists a PTAS for MTS.

Thé second observation readily follows from the transformation
algorithm Al of Chapter IV; we leave out the proof.

To prove the first observation, we shall consider the transform-
ation algorithﬁ A2 of Chapter IV.

Suppose there is a PTAS for FF and we wish to obtain a
Y - approximate solution to an instance I =_<G,B? of MTS, where
G‘= (N,A) is a PRN, and B S A. By using A2, we can transform I to
an instance of FF. But, there is a difficulty since we do not know
what value of k to use in the transformation. The difficulty is
overcome by trying all values of k between 1 and lBl. For each
value of k, we transform the instance I of MTS to an instance of FF,

and we operate the PTAS for FF with an accuracy requirement of € such

Y
that 0 <€ < = : : . Each time we obtain an approximate
= (1-y) - |B|+|B]%) PRI

solution to MTS by simply searching through the transmission vectors

used by the PTAS. We claim that the best of these approximate
solutions is a Y- approximate solution to the instance I of MTS.

To see why, -suppose the optimal valﬁe of the instance I is k*. When
the PTAS is operated on the instance of FF with k = k*, an

€ - approximate solution must have a cost less than or equal to

1 + €, because the optimal cost equals 1. But any feasible solution
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must spend ét least Gk*(|B| - 1) fraction of time in satisfyingbthe
service requirements of the links in D. 1In the remaining
(1 +e) - 'ak*(|B| - 1) =8 + € fraction of time the PTAS must use
transmission vectors which on the average enable at least 6k*/(6+€)
links of Bk. Therefore, the PTAS uses a transmission set which

- constitutes a, €/(8+€) - approximate solution to the instahcé I of
MTS. If we solve S%E'EPY for €, we obtain e_g-—l— $ . Replacing S

1-Y

by its smallest value as k ranges from 1 to |B|, i.e.

b L =
S e [-D ¢
we see that

. e ey '
€ X T a-EHBEE

:Quarantees a Y - approximate solution to the instance I of MTS.

5.5 Proof of Theorem 5.3

In section 5.4, we héve seen that a PTAS for FF can be used to
obtain approximate solutions to instances of MTS.

In this section we shall prove that if there is a FPTAS for FF,
then we can obtain an optimal solution to any instance of MTS in
polynomial time.

‘Suppose 1= <G,B> 1is an instance of MTS. Let k* denote the
optimal value pf I.

As in the previous section, we shall transform I to an instance
of FF for all values of k between 1 and [Bl. When k=k*, the FPTAS
for FF, which we assume exists, guarantees a solution V(I) such

1

cv(T) | 8
* 1+% (8] - 1

that —
X §+e

where § =
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We would like to choose € small enough so that k - <

) *
because this would guarantee that C(V(I)) = k .

Solving for €, we obtain the following condition:
1 * . *
S >k -1A+k (8] - D).

*
Since we do not know the value of k in advance, we choose

%= (s8] - 1@+ |8| (|B] -1)) +1.

’ 1 . . . X
We note that E-requlred for obtaining an optimal solution is
polynomially bounded in the size of the problem. This completes the

proof.

5.6 Negative Results About ' RF

Theorem 5.4

There exists a PTAS for FF if there exists a PTAS for RF.
There exists an € — PTAA for FF if there exists an €-PTAA for RF;
Unless P = NP, there exists no FPTAS for RF. |
The proof of this theorem follows immediately when one considers
the transformation algorithm A3 of Chapter IV.
The implications of Theorem 5.4 about the existence of approximation
algorithmsfor the ;—feasibility problem should be clear in Qiew of

Theorem 5.2,
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CHAPTER VI. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

At the end of this thesis, we can say with some certainty that
PRNS are complex; even the most fundamental problems are not likely
to be solved in a practical way. For example, if NP # P, there
exists no polynomial time élgorithm for deciding whether a given set
of mean o-d arrival rates belongs to the caéacity region of a given PRN.
We have proved several negative results about TDMA schemes; let
us note as an extension that similar results are readily obtained
for ¥DMA (frequency-division-multi-access) schemes by using a PRN
model in which each station is capable of transmitting and receiving
simultaneously as many packets as desired, provided, of course,

the frequency bands that are used do not overlap. We should remind

the reader that the above conclusions are based on worst-case considera-

tions and should be interpreted accordingly.

Our initial interest in studying TDMA schemes in the course of
this thesis work was to obtain a benchmark against which the perform-
ance of other multi-access schemes could be compared. As is implicit

in the proof of Theorem 3.2, no multi-access scheme is superior to

‘TDMA as far as throughput is concerned. However, there are situations

where TDMA is undesirable, because it leads to extremely long delays;
e.g. a single-receiver PRN with many small users is one such case.
When TDMA is undesirable, a multi-access scheme such as Aloha becomes

attractive. In this sense TDMA and Aloha are complementary to each
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other, but this tradeoff still remains to be quahtified.
As a second suggestion for research, TDMA schemes'.can be“studied
in PRNs where connectivity between the nodes of the network depends

on the distance between them.
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