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ABSTRACT

A viscously damped arm restraint as a mechanical loading
method for the suppression of abnormal intention tremor in
the upper extremity was analyzed to: 1) determine deviations
from ideal omni-directional damper behavior; 2) test the fea-
sibility of independent restraint of each arm restraint.

The design of a constrained, compliant arm restraint was
proposed and a mathematical analysis of' a model of the system
was conducted using normalized equations.

The best damping characteristics were found with a re-
straint with equal length links, a reach of about twice that
of the arm, and variable continuous rotational dampers which
could be adjusted for each system configuration,
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Chapter 1-lntroduction

1-1 Statement of Thegis

The objective of this thesis is the analysis of a viscous-
ly damped arm restraint as a mechanical loading method for the
suppression of intention tremor in the upper extremity. Frar-
ticularly, the goal is to: 1) determine deviations from ideal
omni-directional damper behavior; 2) test the feasibility of

independent restraint of each arm joint.

1-2 Clasgification of Tremor

Tremor is most generally defined as a series of rhyth-
mie, involuntary movements caused by the contraction of op-
posing muscle groups. (1) wnormal physiological tremor is pre=
sent in all individuals to some extent, but is of such high
frequency and low amplitude that it does not usually inter=-
fere with ordinary activity. Ftathological tremor, however,
can be sufficiently severe to impair the individual's ability
to perform normal tasks.

Tremors can be roughly classified as "resting tremors",
"postural tremors", or "action tremors”. Resting tremors,
such as that seen in Farkinson's disease, occur when the mus=-
cles are completely at rest. rostural tremors involve the
muscle. groups concerned with maintaining support of the body.
Action tremors occur during the execution of motor tasks. (1%

This thesis deals with a means of suppressing intention
tremor, a type of action tremor involving purposeful, "in-

tended" movements of a limb. Intention tremor, hereafter to
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be called simply "tremor", is characterized by low frequen-
cy, high amplitude oscillationsg(8):which are accentuated by

direction changes of the affected 1imb,(1) The oscillations'
can be so severe that they;completely obscure the intended
movenrent, making'actiona which require any degree of preci-

sion impossible. (8)

Tremor usually is a result of neurological damage or
disease. Damage to the spino-cerebellar and midbrain centers
associated with head injury, stroke, or tumors, as well as
lesions from multiple sclerosis on neurological pathways,
often results in tremor. It is also seen in individuals with
Friedreich's Ataxia, Cerebral Palsy, chronic alecohol intoxi-
cation, metabolic poisoning, and other degenerative diseases. (\7)
Although exact figures are not available, it has been esti-
mated that about 800,000 people in the United States alone are
disabled by tremor. (8) Clearly, there is a need to determine

an effective and safe method of tremor suppression.:

1-l4 Methods of Tremor Suppresgion

Suppression of tremor by surgical methods and drugs
have beén attempted, but have shown genersally poor and incon=-
sistent results. Thalamic surgery, surgical ablation of parts
of the thalamus, was reported by Cooper to be completeiy suc-
cessful, but those results were contradicted by van Manen,
who reported complete failure for tremors of several etiolo-

gies. (8) GUonsidering the risks involved in surgery, such a



method does not appear to be a viable alternative. Treatment
with drugs effective on rarkinsonian tremors, such as L-dopu
and amantadine, are not effective on intention tremor. (4)
Administration of propanolol or ethanol do attenuate tremor,
but the effect is transient. (7,11) The possible side effects
of drug treatment must also be. considered.

External mechanical methcds have also been examined for
their effectiveness in the reduction of tremor. thase gt al
was able to successfully reduce the magnitude of the oscilla-
tions by cooling the muscles involved in the tremor. Uhase
also investigated the effects of applying a constant force
against the tremor, however, he found that although the tre-
mor was reduced on extension, the force increased the ampli-
tude of the tremor on flexion. Morgan, lHewer, and Loorer
noted appreciasble reduction of tremor when upper extremity
tremors were mechanically loaded by attaching weights to the
affected 1imbs. (5) Rosen gt gl has demonstrated a signi-
ficant decrease in tremor with maintained accuracy in track-
ing tasks, by applying viscous damping to the affected limbs
through a mechanical damping device. (8)

Mechanical loading of the affected limbs appears to be
a promising method for the suppression of intentiorn tremors,
especially considering the low level of safety risk. This
thesis concentrates entirely upon mechanical loading of the
upper extremity through a viscously damped arm restraint.
This work represents a practical application of an approach
to tremor management which has for the most part been con-

fined to laboratory sxperiments.



Chapter 2-Apparatus

2-1 De Alternatives

An apparatus, which would provide tremor suppression and
be usable for such tasks as writing, eating , or other preci-
sion arm movements, would have great clinical value. A com-
pliant restraint, which would suppress tremor without imped-
ing_arm movement, is a viable solution to this problem. OCne
type of compliant restraint which has been investigated is a
device specific interface, such as the damped joystick for
use with a communication device designed at the MIT Rehabili-
tation Engineering Center (9,10), or the writing machine in-
vented by James Fee, Jr. (2). A second type of compliant re-
straint is a wearable orthosis, which would be portable and
useful in many applications. Although this is perhaps the
cptimal alternative, very little study has been done on the
subject.

Another such device is a fixed base compliant restraint,
which would act as a general purpose arm restraint within a
defined work-space, limited in area by either the size of the
apparatus or the length of the arm. This would provide two
degrees of freedom, constrained by the anatomical character-
istics of the human elbow, the location of the user's shoulder
with respect to thg base of the restiraint, and the location
of the restraint base itself. This thesis proposes a tenta-
tive design of such an apparatus, and considers its practical-

ity in terms of the size and power requirements.



2-2 Tentative Description of Apparstus

One alternative design of the apparatus is based on a
commercially available ball bearing feeder. The feeder, de=-
signed to attach to the arm of a wheelchair, consists of two
links, each inserted in a swivel post, with an arm support
at the terminal and pivot stops at the swivel posts may be

adjusted to limit the range of movement.(6)

ARM SOLPPORT ,;r j

REA% PweT REAR Y;_\\‘lzob‘,\"
> To FORWARD P W 0T ARM

FORWARD PWoT S5To?

SWIVE L "~
0% CRWARD SWWNEL POST
Post AN GLE ADJUSTMENT PLATE FOR '

Y REAR UPRIGHT POST OF WHE ELCHAIR

FIGURE 2 -1
BALL BEARING FE EDER

The analysis of the device should determine if the feeder is
sufficient as a basis for the apparatus, or if the restraint
must be built in its entirety, If the feeder is sufficient
as a viscously damped arm restraint by preloading the bearings
to minimize play at the joints, and attaching continuous ro-

tational dampers to the base of the pivot arms at the swivel
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posts , as shown in Figure 2-2.
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?R_o‘posED MODIF|CATIONS ¢F RALL BEARING FEEDER

A velocity applied at the terninal point of the ortho-
sis by the movement of individual's arm produces torques at
the joints of the orthosis, and, consequently, a resistive
force at the terminal point. Since the resistive force is
proportional to the applied velocity, the dampers act as a
mechanical filter, analogous to an RC filter, where only low
frequency movements are passed. Thus, the high frequency,
tremor-induced movements are filtered out,

For the purpose of this thesis, ideal restraint is de-
fined as that which would prbvide omnidirectional damping
at every point in the work-space, and independent restraint
of each arm joint, since tremor could originate at either or
both joints. For the analytical calculations, the ability
of humans to produce the desired position and velocity tra-
jectory is being assumed, and the resistive force is being

computed from that. However, 1t must be considered that an
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orthosis requiring large differences between the direction

of the velocity and the force would be difficult to use.



Chapter 3-Analysis

3-1 Ubjective of Analysis

The objective of this analysis is to determine to what
extent trh? arm restraint acts as an ideal omni-directional
damper;, and if independent restraint of human joints can be a-
chieved.

The first step in this analysis is to determine the re-
sistive force at the terminal point of the restraint, in re-
aponse to a controlled velocity applied through that point.
This can be accomplished by realizing that a velocity through
the terminal point determines angular velocities through the
orthosis joints, and those velocities, acting through rota-
tional dampers, produce joint-torques which determine the re-

sistive force at the terminal point.

3=-2 Method of Analysis

‘The orthosis is attached to the wheelchair, at some dis-
tance away from the shoulder, and to the patient's arm, near
the wrist. The orthosis can rotate at the point where it is
attached to the wheelchair, and at a hinged joint, roughly
corresponding to the human elbow. The patient can also ro-
tate his arm about the shoulder and elbow. All movement 1is
constrained to a piane perpendicular to the vertical axis of
the body. Another constraint is put on the system since the

elbow can not extend beyond an angle of 180.



Thus, the system can be modeled as a four-bar linkage
with five joints, and two degrees of freedom. Ground is de-
fined along a line in the plane corresponding to the back of
the wheelchair.

TERMINAL POINT

LPPER ARM DlSTRL,GEll'\agSlS

ELBOW HINGED JOINT

LOWER ARM PROXIMAL

ORT HOS5(S LINK

SHOVLDER

7777777777777
FIGURE 3-1
MODEL OF APPARATUS

ORTHOSIS ATTACHMENT
To WHEELCHAR

Using cartesian coordinates, basic trigonometric iden-
tities, and the law of cosines, the angles at the orthoslis
joints can be determined. It is being assumed that the or-

thosis is essentially massless.

3-3 Mathematical-Analysis

Let:

{ = the distance between the shoulder and the orthosis
attachment

Py = the lengths of the upper and lower arm respective~
1y

r,,ry= the lengths of the distal and proximal 1links of the
orthosis respectively
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©¢ = the angle between the upper arm and ground (back of
wheelchair) '

© = the angle between the upper arm and forearm

14

the angle between the two orthosis links

Y = the angle between the proximal orthosis link and
ground (back of wheelchair)
(0,0)= origin; at the point of attachment of orthosis to

wheelchair
(x1,y1)= location of elbow (in cartesian coordinates)

\32.y2)= location of terminal point (in cartesian coordinates)

as shown in Figure 3-2

(xﬁqyaj

M

Yt d a4 (/7//77///7/////7

£
FIGURE -
MODEL FOR MATHEMATICAL ANALYSIS

Although it is not actually necessary for the purposes
of this thesis, the locations of the elbow and terminal point

can be expressed in terms of the arm angles.
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From basic trigonmetric identities:

\For the purpose of this thesis, it is only necessary to
know the location of the terminal point, (xe,yzl in carte-
gian coordinates.)

The angle between the two orthosis angles,vo, is de-
fined by the location of the terminal point, \xz,yz), and
the lengths of the orthosis 1inks,.r2 and r3.

Using the law of cosines, and referring to Figure 3-3

- .

(X2,Y2)

S/ S
FIGURE 3-3
DERIVATION OF 7"

i 1

Since the human elbow is not a true pin joint,-but
“rather a hinge joint, a constraint is put on\f » to approx-

imate the range of motion of the arm about the elbow:
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‘The angle between the proximal orthosis link and the

back of the wheelchuir can be defined as a sum of three an-

gles:
Let W = -g_-ru-l'A
as shown in Figure 3.l

f

to,0)

LS S S
FI6G URE 3-4°°
DERIWATION oF ‘f )

By the trigonometric identity for tangent:

. -1 x
(J‘= -
tan kyg)

By the law of cosines

1 2 2

2, 2
(xpa7*yp Jirq rp

2 2
21‘3 J;z +',Y2

- A= cos”

Thué:

LP = g+t§h-1 \X_Q)‘-rco's'd [(

2+y22)+r 2-r 2

xz >
; !-f- z
21"3 x2 y2

Yo
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A velocity through the terminal point, expressed as:
e’ .
W =T 2,478,

will produce angular velocities, y’ and)" , at the orthosis
joints, such that: '

= xAty08,

and A =2rary
- e 2,02, 2. 2
= (3ptp=x5¥5) (xA5,3585) (x5 72 try -ry )
2, 2 > 2. 213/2 = = 2
(x,+y,) rylx,"+7,%) 1- [ix.24y.2)+r,2p 2
| 2 7> 2
f‘%a
2r 4 (x;747, )

If there are rotational viscous dampers at the orthosis joints,

there will be torques produced at those joints such that:

T)a = D)ol)o
and T?a = D‘/’W
where Df and D?; are the damping coefficients at the orthosis
joints with angular velocities}b and)v respectively.
The torques about these joints will produce a resistive

force at the terminal point, which can be expressed in x and ¥

components. .
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v
T AT P T T T T I
FIGURE 3-5
RESISTIVE FORCE COMPONENTS

where:

Fx= racos(f +‘f’ )Tt)u -£P3005(180-? )"'PZOOS(')D "“f’)] T)ﬂ
sin(180-Y% )

ror,
and
Fy= -r,sin(Y +¥ )Ty = [r,sin(180-Y )-r sinly +y J] Ty

r2r351n(160- )0 )

A

\adapted from- "Kinematics, Statics, and Dynamics of Two-D
Manipulators", by Bernard K.r. Horn, June 1975, mLT Al Lab.)

Thus, given a point within the work-space of the ortho-
sis, an instantaneous velocity through that terminal point,
the length of the links of the arm restraint, and the damp;
ing coefficients at the joints, the resulting resistive force

at the terminal point can be determined.



To diagrsm this:

input (xz.yz)

V= [T,473,|

TpsTy
Df’D.,u
processing
1.2, 2, 2 _2
)ﬁ =cos (JI:2 412 )-»r'a -r,
-2 r2r3
-1, - 2
?’é%?tan 1(§2)+cos 1 (x22+y22)+p -p22
2
.2p3 x2 +32
>\ 2
; . s . 2,2 2
9’=(3212-xa$z) ) (x2x2+3272)(x2/+12.+r22-r3)
2, 2 2, 2,3/2 2
(x2 +y2 ) 2r3lx2 +y24) 1= |ix 2+y 2)+r 2~r22
. 2-
2r3 jx2§+y2
T-f:Dt}oﬁﬂ-

‘I'y; =D,fi’U




output

F = rycos(p+if )Ty - [rycos(180-y )4 cosly +PJ] Ty
3in(180- )

rory

Fe= «rosin(P +¢ )Ty - [r 3in(180-)-r sinly +¥ J] Ty
r, 3sin(150-f)

3-l Normalization of Equations

Analysis of the force at the terminal point would be
facilitated by the normalization of the determining equa-
tions. This would make a general analysis, based only on
the location of the point and the direction of the velocity
going through that point, as well as the link size and damp=-
ing ratios, possible. Based on this analysis, a "real world"
prescription, determined by the patient's tremor character-
istics, 1imb size and strength, and task requirements, could
be made on an individual basis. |

What is desired are normalized equations for the force

components, derived from the original equations:

F = Ezf:oa&'ﬁ +¥ )Ty - [r,cos(180-¥ )+r, cos(f +¢p J] T

2r331n(180-‘f )

Fy= -r,sin(yP +¥ )Ty - [Dsin(180-w )-rgin(‘f +y )j Ty

rarBsinuBo-f )



First, the size of the links can be normalized so that

it can be expressed in terms of a size ratio and factor.

Let 2‘30“3 1
and rsos R where H is the dimensionless ratio of link lengths

so r,=K
3

r2=KR where K is the link size factor in units of length (L)
The velocity at the terminal point can also be moralized:

Wi=T2,+3,l

—
where V 1is the velocity vector, and i2 and yz are the components

¥
\V can be expressed in terms of magnitude and direction:

Let: 1205 1
Vo Y20 - and §,4= tanf
where © ia the angle of the
Q@ﬁﬁ éi 3 velocfg; vector
X0
FIGURE 3-6

NORMALIZATION OF .
TERMINAL VELOCITY .

and 32='ﬁtanf?
where V is the velocity magni-

tude in units of length and in-
versetime (L/T)

The distance to the terminal point can be expressed in

terms of the fraction of the total reach of the orthosis:



(0000770777777 77 7777777
FIGURE 3-7
NORMALIZED DISTANCE
' TO TERMINAL POINT ,'

r= digtance to terminal point
total reach of orthosis

 m—

P= 2+ 2

xg Io where P is a dimensionless ratio
K(1+R)

The terminal point can be defined in terms of the di-

rection from the origin, and the distance to that point.

i

.

(Xz J“](’J-) I

v/

| where J is the an=-

A& gular direction from
Y ' ‘the origin to the ter-
minal point

OC£¥&eTr

P\

(0,0)

ey RE 3
ANGLE TO TERM\NAL Poa NT




So: x,= cos 4 V. x2§+y22J
Yo" sinx (\/;2:;_2-2)

I,= tan Y ; x,= tan(B-Y)
AR

Combining expressions:

x,= cos | (KP)(1+R)
7= sin f (Kr)(1+4R)

These normalized values can be substituted into the ex=-

pressions for the angles at the orthosis joints.

rrom before:

% =cos™] [(x22+’22)-r£.r32J
- 21'2!'3

Y =g-'l-tan'1(§2)+cos'1 (x 2+y 2)4p.2.p 2
2 B )?f"z'i
2 r3 X5 +y2

Making the substitutions and simplifying:
Sp =cos~1| r2u1+R)2.(R%+
=2H

and

k/j =7 = X ‘*cos'1 [P2H+R)2+ 1-321]

2r(1+R

Since, by the law of cosines,:

(122+y22 )=k? (R%+1-2Rcos f)
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Y can also be expressed as:

[ ﬁ'ﬁ—;ry;z

Similar substitutions can be made for the expressions

Y =77 =Y +cos”

for the angular velocities.
Thus:

—

l.ﬁzl\é [P +“, Rsin;ﬂ : Lﬂ

and
Y = vV (r(1+R)
‘f’ K (mﬁcos}a [(sin?f -cosy tanlg F%ﬂhﬂﬁ{}

(l;ﬂand‘/'are in units of ,Ii'i =71
L

The damping coefficients may also be normalized:

Let: D)"OE 1 where B is the dimensionless ra=
. tio of damping coefficient
and D‘P o= P where D is the damping factor

(in units of rLT)

Using the expressions for torque

Tf = Df}%
TT = Df‘f

and substituting normalized expressions for D)o and D\I} » and

defining,

v ,
k,f K[‘-f ] ([\P']andy_‘;”i‘are dimensionless)

¢ - 307
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The torques can be expressed in normalized expressions:
Tyu=DdDV{ | H~
r= LY

and Ty = LV Bl
v= LU B[y7]

The normalized expressions may now be substituted into the

equations for the x and y force components:

Fo= DY (Roos( +¢ JBIY¥7] - Loos(160=# Jakooa (¥ +¢ )[ 97}

K2 © Rein(180- )

and

Fo= DY (=Rein(Y+w)B Y. [ ain(180- ¥ )-Rain( ¥ +¥ [y *]
K

Rsin(180- )

and, by defining:

[kx*]=(%é’ﬁx

and

Completely dimensionless expressions for the force components

are obtained,



independent variables
P,Y,E

Controlling parameters

B, R

(’ﬂ = 003-1 l' ra +H 2- l‘t2+

=2H

VJ=1¢'-X+003'1[1¥2 +H 2+ -R2 .
2r(1+RH)

[L,p f{: +it + X

Rsin

L'I) ]= (ﬁi;_x-téficosy ) {(sin&' ~-cos B tan,g )=Acos ) +§jnsbin;a}cnﬂ ){R=gosY 32

[F,"]= Heoat P +¥ )BI¥7] - [cog (I - )+Hooa(¥ +¥ hixail

Hsin(wm =y )

[F 3] =teins +v 8097 (ain(r =¥ oetneg s 0P

Rein(fT - )
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Chapter L- Results

L4-1 Introduction

Results of the system analysis were obtained using soft-
ware written for the VAX computer at the MIT Joint Computer
Facility. Plots wére obtained showing the relative magnitudes
and directions of the resistive force components for various
specified independent variables and system parameters. The
forcé components are shown within a defined work-space, with

a radius of one dimensionless unit.

Several examples are included and discussed in this sec-
tion. All other plots, and the software which generated them,

are located in the Appendices A and B.

L-2 Verification of Results

In order to verify that the force components shown in
the plots represent the actual components, two cases are pre-

sented, one special, and one general.
L-2-1 Specisl_Case

ln the case where the applied velocity vector is axial
to the proximal link of the restraint and perpendicular to
the distal 1link, the resistive force should be entirely a re-
sult of the action of the distal damper, and should have no
norizontal component. This can be ascertained by choosing

variable and parameter values which will yield such a config-

uration.
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Letting R=1, B=1,5 =T/L,Y =VW/2, and P= 0.5, and using the
equations derivied in Chapter 2:

-1 2 2 2
= cos ( 0.8)°(1+1)<=-(1°+1)
f= co [ (1) ]

Y =Tr/2

W =Y -cos™ [5_9.5‘)?(1»«1 E+L1-121]
2( 0:5)(1+1)

= 3T/L
{‘fi .(_Q...S.LL_)J.QQ_?I).LZ_MILM_AD
1)8inT /2
W= 1.1
[‘f’] ‘%o .5)(1+1) 6inT/2+cosT/2. tan™/L)-{cod/2+sifl/2 tan™/l )(ucos" /)
+12{)osT2 - sin T /2

[¥]= o

Since the joint-torque is proportional to the angular

velocity, there is no torque at the proximal joint.

So, to compute the force components:

] = ()eoss T/L(1)(0)=(cos T /L ooes /L) (1., 11L)
(1)sin™/2

since cos V/l= =cos5 T/l
G:¥ﬂ= 0 There is no horizontal force component

However, there is a vertical force component:

[ﬂﬂ: (=1)sins ™/L(1)(0)-(sin w/h-sins ™/h)(1,041k)
(1)sinr/2

* - =
[F‘l]' 2
The configuration of this special case is shown in Figure -1,

and the resistive force compcnents calculated with thé computer -

program are shown in Figure L-2.
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4j-2-2 General Case

The configurationé of two plots are considered. In eazh
plot, the links have a length ratio of one, and a damping re-
tio of one. The damped velocity is applied at an angle ofT/L
radians,

In plot 1, the terminal point is at an angle of 5 T/12
radians at a distance of 0.66 units. As shown in Figure }-3,
the velocity vector is closer to being perpendicular to the
distal 1link than to the proximal link, Based on intuition,
and what was shown previovsly in the special case, it would
be expected that the vertical component of the resistive force
would be larger than the horizontal component. This is veri-
fied by the components plotted by the computer.

The opposite is true in plot2, with the terminal point
at angle of 5T7/6 radians and a distance of 0.8 units. The
velocity vector is more perpendicular to the distal link, and,
hence, the horizontal force component is larger.

Thus, it can be seen that the plots do correspond to the

actual behavior of the force components.
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L-3 Interpretation of Results

L-3-1 Reading of Plots

The results are plotted in an area representing the
work-space of the orthosis, where the rﬁdius of the semi-
circle is the total reach of the orthosis. Normalized force
components are shown for velocities at different points with-
in the area. unless noted otherwise, the points are at
angle increments of 15 degrees along radii representing
33%, 50%, 66%, and 80% of the total reach. The link length
and damping ratios, and the angle of the velocity vector

are noted,

Ideal damping has been defined as being omni-direction~-
al, such that the resistive force vector is axial to the ap-
plied velocity vector. If the angular difference between
the velocity and force vectors is defined as<§, ideal damp-

ing is achieved atd =0.

FIGURE 4-4

PERIVATION GF § TERMINAL LINK
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*
where = tan™! LFV‘]
[Fe]
and §= -ﬂ
So, in the case where ﬁ'='ﬂ7h, ideal damping is achieved where

[F \"’j =[Ff’]

Figure -5 shows points where ideal damping is achieved
for a velocity vector at 45 degrees, and Figure 4~6 shows
ideal damping at various vector angles. In.both cases, R=1 and B=1,
Consequently, for any given set of parameters and inde-
pendent variables, the angle of the velocity vector at which

there is ideal damping can be predicted using:

[

Reos( ¥+ V)B - oa(*rr-\V)+Rcos(!€+‘¥)—JE‘;”+]
Azin(w - y)

==Rsin(Y +¥)B(§7] - (sin(r =% )=sin(@ +y¥ Ir¥*]
Rein(w -y )

For the case when R=1 and B=1, a relationship can be noted

between the angle between the velocity vector and the ter-

minal link. (j)

where ‘{ =\ +{ - 43

F1GURE 4-H4-A

DE RIVATION OF j MIVSTAL LINK
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Data For Figure L4-5 Table L-1
R=1, B=1 llB =Ll-50
P in dimensionless units
‘-fp Y, b/. ?, in degrees
P | v | ¥ 3
0.33 39 | 176 75 o
0.33 39 86 165 =10
0.50| 60| 225 15 | 150
0.50 60 1135 105 60
0.66 83 | 202 27 | 150 |
0.66 83 ] 110 | 119 58 |
0.80| 106 | 179 | 38 | 150
0.80 106 .91 126 62
Data For Figure L -¢ Table U-2
R=1, B=1
P in dimensionless units
Y8, 8,0 » {1, in degrees
P Y Y ¥y 18 4
0.33 39 | 176 75 | 4S 20
0.50 | 60 [ 120 [120 |60 | 60 |
0.66 | 83 21y | 15 |33 | 150 |
0.80 | 106 [ 157 | 60 |67 | 150 |
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This relationship is plotted in Figure L4-7 for three values
of P, Figure Lj-7 shows that the deviation from ideal damp~
ing increases for larger values of P, especially above P=0,5.
This can also be seen in Figure [;-8, which shows the
normalized force components at distances representing 33%,
50%, 66%, and 80% of the total restraint reach, where R=1,
B=1, andf = W/4. Thus, the best damping characteristics
would be obtained with a restraint that is substantially
larger than the arm. Consequently, independent restraint
of each arm joint is not feasible, since it would require

that the arm length and orthosis length be coincident.

4-3-3 Effects of Varying Parameters

oy aoeacecaesoeoecacaaboeoniloaomeeeeoames

When the two restraint links are not the same length,
the results become inconsistent, and the area in which'there
is ideal damping decreases dramatically. Cases in which the
distal 1link is shorter and in which the proximal link is
shorter are shown in Figures 4-9 and 4-10 respectively. Con-
sequently, it can be concluded that a one-to-one ratio of
link lengths is optimal for this application.

The effect of varying the damping ratio is less drama-
tic, but more informative. By changing the damper ratio,
ideal damping can be obtained at points in the work-space
where otherwise it could not be achieved. Cases in which
the distal joint has a larger damping coefficient and in
which the proximal joint has a larger damping coefficient
are shown in Figures L;-11 and L-12 respectively. Thus, it
can be concluded that the best damping characteristics would

be obtained with adjustable dashpot with feedback control,
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Lata For Figure -7 Table L-3

B=1, R=1,@=L;,50 (all angles in degrees)

P Y ¥ ¥ 3 Fy/Fx |5 S
0.33] 39| 236 15 | 140 2.03 | 6L 19

0.33]| 39| 221 30 | 125 2.96 | 71 26
0.33| 39| 206 | 45 [ 110 | 3.66 [ 75 | 30
0.33( 39| 191 60 95 2.59 | 69 oL
0.33] 39| 176 75 80 1.02 | 46 1
0.33 39| 161 | 90 | 65 | o0.40 | 22| .23
0.33| 39 ( 146 | 105 50 0.27 | 15| =130
2.33| 39| 131 | 120 35 0.33] 18 | -27

0

0

0

0.33| 39| 116 | 135 20 LuB ] 26| -19
0.33| 39| 101 | 150 5 .69 | 35| =10
39 86 | 165 | =10 .99 | L5 0
60 | 225 15 | 150 1.01 | U5 0
60 | 210 30 | 135 1.41 | 55 1n
60 | 295 45 | 120 2.07 | 64 19
60 | 180 | 60 | 105 3.03 | 72 el
60 | 165 75 90 3.73 | 75 2

60 | 150 | 90 | 75 | 2.7 7= | =24
60 | 135 | 105 60 1.00 | 45 0
60 | 120 | 120 45 0.39 | 23 | -2k
60.| 105 | 135 30 0.21 | W | -33
60 90 | 150 15 0.33 | 17 | -27
60 75 | 165 0 0.49 | 27 | -19
0.66 | 83 | 21l 15 | 162 0.66 | 33 | -12
0.66 83 169 30 147 1.02 L‘;6 1
0.66 | 83 | 184 us | 132 1.58 | 58 13
0.66 | 83 | 169 60 | 117 2.68 | 69 2l
0.66 | 83 | 154 75 | 102 5.68 | 80 35
0.66 | 83 | 139 90 87 | 28.50 | 88 L3
0.66 | 83 | 124 | 105 72 | 13.20 | 85 Lo
0.66 | 83 | 109 | 120 57 0.58 | 30| -15
0.66 | 83 | 9 | 135 | L2 | 0.6 | L | =1
0.66 | 83 79 | 150 27 0.05| 3| =42
0,66 | 83 6L | 165 12 0.19 [ 11| =34

o
w
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which would adjust the damping ratio to provide ideal damping

at every configuration.

Chapter 5- Summary and Conclusions

he analysis determined that the most consistent damp-
ing behavior is obtained with a restraint witn links of e=-
qual length. It was also shown that the extent of idesal,
omni-directional damping can varied by adjusting the damp-
ing coefficients at two restraint joints., A restraint reach
greater than that of the arm was found to be preferable, so
independent restraint of each arm joint was determined to
not be feasible, since it would require that the restraint
and the srm be completely coincident. Consequently, the
ball-bearing feeder is not an acceptable basis for the re-
straint design.

Thus, it can be concluded that with a fixed-base compli-
ant restraint for the suppression of arm tremor during pre=-
cision movements within a work-space, the best damping char-
acteristics would be obtained with a restraint of equal length
links, a reach of aspproximately twice that of the arm, and
variable continuous rotational viscous dampers with feedback

control providing positional and directional information.
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Appendix B

Plots of Normalized Force Components
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