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ABSTRACT

Mathematical formulations for an elastostatic inverse
problem to determine incremental stresses in the earth were
recognlzed as a Cauchy problem for elliptic equations and the
uniqueness and stability of solutions were investigated. A
general approach for this inverse problem is (1) to define a
body (domain) under the earth beneath an area over which
displacements are known, (2) to apply eigenfunction expansions
to operators, (3) to reduce the problem to ordinary
differential equations, and (4) to convert two point boundary
value problems into initial value problems as is done in a
shooting method for ordinary differential equations. The
necessary initial values, i.e. the Cauchy data are obtained
from stress free conditions at the surface and displacements
measured on the surface by means geodimeter networks and
levelling surveys.

The solution for the two-dimensional elastostatic inverse
problem is obtained by expanding Airy's stress function into
polynomials along a horizontal axis and by imposing stress
free conditions to determine coefficients of the reduced
system of linear equations. Remaining coefficients are
determined by matching the displacements expanded into
polynomials on the surface with an integrated form of the
stress function. For the three dimensional inverse
elastostatic problem the solution is obtained via the Galerkin
vector instead of Airy's stress function. By expanding the
Galerkin vector into polynomials, we obtain a system of linear
equations, which can be solved by imposing stress free
conditions and known displacements on the surface.

The uniqueness of these solutions within a domain in
which we seek solutions is assured by repeated applications of
the Cauchy-Kowalewsky theorem which states that analytic
Cauchy data can be continued locally into the domain. The
stability of solutions depend on the horizontal wave number
exponentially and therefore become unstable unless data with
short wavelengths decrease exponentially with the wave number.



In the case of elastostatic inverse problems this condition is
always satisfied due to the elliptic nature of the Navier's
equation which governs the problem. Therefore, if data are
due to a source located cutside the domain in which we seek
the solution, the solution is stable,

A numerical solution for the three dimensional
elastostatic inverse problem is also obtained by discretizing
a variational form of Navier's equation using the finite
element method. The resultant linear matrix equation is then
re—-assembled to impose the stress free conditions and
displacements on the surface nodes. Even though the original
matrix is positive definite and thus well conditioned, the
resultant matrix for the inverse problem is very
ill-conditioned and thus special care is taken about the mesh
configurations to obtain an appropriate solution. These two
methods of inversion are tested by using artificial data
generated by a buried point force and a buried strip of
dislocation. The distribution of errors as a function of
depths of sources show that if the source is deep or is
distributed over broad areas as in the case of the strip of
dislocation, the analytic method of inversion gives superior
results than the finite element inversion. Considering that
it is in principle easier in the finite element method to
improve the order of accuracy than in the analytic method, it
is recommended that these two methods should be used to
complement each other. Large-scale smoother variation can be
handled effectively by the analytic method while detailed
analysis of localized stress field can be done by the finite
element method.

The analytic method of inversion is then applied to the
geodetic data obtained in southern California where anomalous
uplift called Palmdale bulge has been observed between 1959 to
1974 along the San Andreas fault. Results of inversion for
stress show that the principal stresses at 10km depth have
significantly different patterns from the horizontal stresses
obtained at the surface. At the surface the principal
stresses are the nearly N-S horizontal compression of 3.5 to
4.5 bar, the nearly E-W horizontal compression of 0.0 to 0.1
bar and vertical stress of zero magnitude. At 10km depth the
nearly N-S compression reaches to 12 bars and the nearly E-W
compression reaches to 6 bars under the central region of the
Palmdale Bulge. Thus the incremental shear stress along the
. fault at 10km depth near Palmdale is only slightly greater
than at the surface, but the incremental normal compressional
stress increases with depth considerably, suggesting a locking
mechanism on the San Andreas fault during the period of
Palmdale uplift. This result is consistent with the swarm of
microearthquakes which occurred in this area during 1977 to
1978 after the uplift stopped and then turned to downwarp. It
is shown that while our method of inversion is quite useful in
earthquake prediction researches, currently obtainable
geodetic data are not satisfactory for our inversion scheme.



We need a matched data on vertical and horizontal components
of displacement vector at the same points, but the current
geodetic measurements are independent and unmatched between
the vertical and horizontal components. The use of new
methods based on space technology such as VLBI, ARIES and GPS
which enable matched 3-component measurements at all points is
required for an adequate application of our inversion method
to the determination of the incremental stress in the Earth.
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CHAPTER 1. INTRODUCTION

In order to put the earthquake prediction research on a
firm ground of quantitative science it is necessary to obtain a
precise knowledge of the state of stress in the earth in a
seismically active region because the stress is believed to be
the cause of an earthquake, and all precursors will depend on
the stress. Reflecting the importance of this subject, many
studies have been done to infer the state of stress in the
earth. Laboratory studies suggest high shear stress up to 2kb
along the San Andreas fault (Stesky and Brace, 1973, Stesky,
1975), while heat flow studies give low upper limit around 250
bar for possible shear stress there (Brune et al., 1969,
Lachenbruch andASass, 1973). This low shear stress is
consistent with the value suggested from the studies of driving
force for plate tectonics (Forsyth and Uyeda, 1975, Richardson
and Solomon, 1977, Richardson, 1978), and seismic studies on
~stress drop (Aki, 1966, Wyss, 1970, Wyss and Molnar, 1972),
although recent discussion on plate tectonics and ear thquake
stress-drop (Hanks, 1977) suggests high shear stress of the
order of a kilobar.

The lack of agreements among these studies show a
fundamental difficulty to know the state of stress in the
lithosphere precisely. On the other hand the stress increment

in the earth may be easier to estimate than the absolute stress
since the incremental stress changes are directly related to
the incremental changes of displacements which can be measured

by repeated geodetic measurements on the surface of the earth.



If we can determine the incremental stress in the earth,
we may be able to understand various earthquake precursors
that are supposedly caused by the stress increase. Sassa and
Nishimura (1956) reported rapid tilt changes in which
so-called S-shaped changes in the tilt-vector diagram were
observed to occur a few hours prior to the Nanki earthquake of
1950. The magnitude of tilt was of the order of 0.1" at a
distance of 100 km from the epicenter. They observed similar
tilt changes prior to some other earthquakes. Tilt changes
before earthquake have been widely reported. Alewine and
Heaton (1973) reported rapid tilt changes before Pt. Mugu
earthquake of 1973 and similar changes were reported before
Hai-Cheng earthquake of 1975. Even though they do not give
systematic variations that allow quantitative analysis, tilt
vectors are éonsidered to be very effective precursors because
of its simplicity of obtaining measurements continuously in
comparison with other measurement such as levellings and
triangulations. There have been many precursory anomalous
changes in land ievel such as reported for the Niigata
earthquake of 1964 (Danbara, 1973). Castle et al., (1974)
studied levelling data near San Fernando and found that
anomalous level changes with the maximum value of 200 mm had
taken place in a few years preceding the San Fernando
earthquake of 1971. An aseismic creep along the fault at
depth or a dilatancy was considered as causing these land
deformations prior to the occurrence of this earthquake (Wyss,
1977, Thatcher, 1976). These land deformations are believed

to be one of the most promising precursors for earthquakes



because they have been frequently observed prior to many
shallow éarthquakes such as near Izu-Oshima island earthquake
of 1978 (Tsumura, 1976, Rikitake, 1979) and Hai-Cheng
earthquake of 1975 (Raleigh et al., 1977).

The determination of incremental stress in the earth may
throw a new light on the reality of other precursors such as
changes in Vp/Vs, resistivity and geomagnetic field that were
once considered very promising precursors, in view of the
dilatancy-diffusion hypothesis (Nur, 1969). Semenov's (1969)
observation that the ratios of travel times of P and S waves
significantly varied prior to earthquakes in the Garm region,
USSR has been followed by both verifications and |
contradictions. For example Whitcomb et al. (1973) reported
10% change in Vp/Vs over the three yearé prior to the San
Fernando earthquake of 1971 and Stewart (1973) showed a Vp
decrease by 20% prior to the Pt. Mugu earthquake of 1973 while
no change in Vp/Vs was observed in the Bear Valley earthquake
of 1972 (Bakun et al., 1973). Bakun et al. attributed their
negative results to the stress level at shallow depths which
might be too low for dilatancy to take place. The laboratory
experiments showed that the stress needed to produce the
observed large Vp/Vs anomaly was much greater than the stress
level expected in the Bear Valley (Hadley, 1975). The above
discrepancies suggest that the effective prediction based on
the Vp/Vs anomaly may require an identification of the region

of high stress concentration.
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Electrical resistivity change up to 24% was observed two _
months before the Bear Valley earthquake of 1972 by Mazzella
and Morrison (1974). Laboratory experiments showed dramatic
changes in the electrical properties of rock prior to failure
(Brace énd Orange, 1968) in agreement with some field
observations. On the other hand, a theoretical study of
resistivity change based on a model of strike slip fault
showéd that the observed resistivity changes were several
orders of magnitude larger than predicted for the expected
stress change.

The geomagnetic change due to the piezomagnetic property
of rock under incremental stress is known to be very effective
as a precursor as well as an indirect way to estimate the
incremental stress at depth. Theoretical studies show,
assuming optimal material constants, tﬁat is, highest possible
magnetization and highest possible stress sensitivity, the
stress change caused by slip on a fault at shallow depth is
sufficient to produce observable geoﬁagnetic field change on
the surface (Johnston, 1978, Johnston et al., 1979).

Some of the discrepancies between the laboratory
results on stress-induced precursors and actual phenomena
observed in the field may be attributed to the scale effect of
specimen as well as our uncertainty about the state of
incremental stress at depth. The purpose of this thesis is to
investigate the incremental stresses in the earth as an

inverse problem in elasticity and to develop an inversion
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method which uses geodetic data (three-component displacement
vector ) obtained on the earth's surface to obtain the
distribufion of incremental stresses at depths in the
seismically active region.

In the above inverse problem, we want to calculate the
stress and displacement inside the earth without specifying
anything on the internal boundary inside the earth. The only
boundary conditions available to us are displacements and free
surface conditions on the surface boundary. Since a problem
in elasticity is reduced ﬁo a system of elliptic equations in
static case (Fung, 1965, Sokolnikoff, 1956), mathematically
our inverse problem is equivalent to so-called Cauchy's
problem for elliptic equations which is known to result
generally in unstable solutions unless special conditions are
met (Morse and Feshbach, 1953, Garabedian, 1968, Lieberstein,
1972).

In subsequent chapters we shall study theoretical aspects
of the above inverse problem. We start with the simplest
problem of all, i.e. Cauchy's problem for the Laplace equation
and then proceed to two and three dimensional elastostatic
inverse problems, for which we obtain exact solutions based on
a simultaneous use of an eigenfunction expansion method and a
shooting method. We shall compare the method with a numerical
technique based on a finite element method which is more
.flexible but costly for a given accuracy. Finally, we shall
apply the inversion method to southern California where an

anomalous uplift known as the Palmade bulge was discovered
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over a large area along the San Andreas fault in{1975 and
extensive geodetic measurements have been conducted since
then. The resultant three-dimensional distribution of
incremental stress at depths is considerably different from
the horizontal stress determined from the horizontal
displacement at the surface and shows an interesting

systematic variation in relation to the Palmdale bulge.
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CHAPTER 2. CAUCHY'S PROBLEM FOR THE LAPLACE EQUATION

2.1 1Ill-posed Problems

Since a problem in elasticity can be reduced to a problem
of a system of elliptic equations in a static case (Fung, 1965,
Sokolinikoff, 1956), we can obtain many basic properties of a
solution for the problem in elasticity by studying the Laplace
equation with appropriate boundary conditions. Therefore to
study an inverse boundary value problem in elasticity, we
shall start with the study of the Laplace equation with
Cauchy's boundary condition, i.e. Dirichlet's condition and
Neumann's condition specified on a part of the boundary
simultaneously.

Hadamard showed in his famous treatise on hyperbolic
partial differential equations that Cauchy's problem for.the
Laplace equation is ill-posed because the solution does not
depend on data continuously (Hadamard, 1953). His example was

the Laplace equation

22¢ 3%
——= 4 == = 0 (1)
ax 2 3y2

with boundary conditions at y=0 as

¢ =0 (2)
y=0
3¢ 1
- = - sin nx (3)
dy y=0 n

The coordinate system is shown in Fig. 1.
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The solution of this problem is given by

L
¢ = -3 sin nx sinhny. (4)
n

Since this solution becomes infinitely large if we make n
infinitely large while the boundary value becomes infinitely
close to zero, it does not depend on the boundary data
continuously and therefore the problem is ill-posed.

Though the problem is ill-posed, the uniqueness of the
solution i.e. eq. (4) can be shown by the Cauchy-Kowalewsky
theorem which states that a system of partial differential
equations with analytic coefficients has at most one solution in
the neighborhood of non-characteristic boundaries if the Cauchy
data specified on this boundary are analytic. Although this
theorem uses a method of majorants to prove the existence of
solutions and therefore is very complicated (Treves, 1975,
Courant and Hilbert, 1963), we do not have to use the method of
majorants because all that we need to prove here is the
uniqueness of solution.

By expanding ¢ in the neighborhood of a line y=0 with

a Taylor series, we have

¢(x,48y) = ¢(x,0) + —————=- Ay + ————-oeo Ay “+.. (5)

where Ay denotes a small increment in y direction. Since we
have first two terms in R.H.S. of eqg. (5) as boundary

conditions, i.e.
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4 =0 | - (6)
y=0
3¢ 1
- = - sin nx (7)
dy y=0 n

we can determine remaining terms from the Laplace equation.

That is,
224 324
—_—— = = e (8)
ay 3x
2% 3 324 32 a9
——— = —— (— ———) - (—-) (9)
ay3 oy ax 2 ax 2 oy
a%e 3 339 2 32 3¢ 3z 3%y
——— = == (===) = == (= == _(==)) = = === (===), etc. (10)
3y“ dy 3y3 y 3x2 Iy . 3x2 ay2 '

It is apparent that if we have vanishing Cauchy's boundary

conditions, i.e.

¢ =0 (11)
y=0
3¢
-- =0 (12)
dy y=0

all terms in R.H.S. of eqg. (5) also vanish. By repeating this

procedure from kAdy to (k+l)Ay, the uniqueness of the solution

in the whole domain can be proved by a mathematical induction.
The above example of the Cauchy problem for the Laplace

equation shows that while the solution is unique
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mathematically,in practice we cannot avoid the possibility of a
highly oscillating solution because of the error in the
boundary data (Atkinson, 1978). On the other hand if we know
beforehand that the solution should be fairly smooth and that
there is no highly oscillating solutions, we can obtain the
solution in a unique manner. This situation is similar to a
discrete inverse problem in which one is often forced to use a
dampéd least squares method (Levenberg, 1944) or a stochastic
inverse (Franklin, 1970) to eliminate unwanted oscillations due
to small eigenvalues of matrices governing the corresponding
forward problem.

2.2 Methods for Inverse Problems

There have been many methods presented for solving the
Cauchy problem for elliptic equations both analytically and
numerically. Garabedian (1960) showed £hat the problem can be
solwed by introducing auxiliary complex variables and then
continuing boundary conditions into a complex domain in which
the eliiptic equation is converted to a hyperbolic equation.,
Garabedian and Lieberstein (1958) used a finite difference
analogue of this technique to solve an inverse problem relaﬁing
to two-dimensional detached shock waves due to a blunt bow in
aerodynamics successfully. Though their method gives a very
flexible and general way to solve inverse problems numerically,
a computational labour may become prohibitively large in case
of higher dimensional problems because that additional numbers
of dimensions must be introduced to continue solutions into the

complex domain. The quasi-reversibility method which was
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introduced by Lattece and Lions (1969) gives another numerical
method for the problem. It uses an auxiliary biharmonic term
as a perturbation factor of the original equation and then
solving this perturbed but now well-posed problem. The
solution of the original equation can be obtained by
diminishing the perturbation term and taking a limit. The
difficulty associated with their method is that it does not
assure an unique solution at all even in the sense discussed in
the previous section. The regularization method of Tikonov
(1963) gives another very general and stable method for solving
the problem and it gives essentially a similar solutions to the
damped least squares method (Levenberg, 1944) if it is applied
to discrete problems.

Contrary to these numerical methods for the Cauchy problem -
for elliptic equations, analytic methodé are studied only in
formal ways and very little application appears in literature.
Lavrentiev's (1967) work using Carlman function, which is a
kind of modified Green's function, and logarithmic convexity
method (Knops, 1973, Payne, 1975) are among them. Although
these methods give formally acceptable solutions, we need to
see more applications to find their effectiveness.

In case that the problem is governed by ordinary
differential equations, there is one group of methods that
provides very powerful solutions to both forward and inverse
problems. They are known as shooting method and dynamic
programming method. The former is a technique in which one
converts a two point boundary value problem to an initial value

problem and solves the problem by forward integrations
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while arranging initial values to satisfy all boundary values
(Keller, 1968, Meyer, 1973). The latter is a technique in
which one converts a two point boundary value problem into an
initial value problem governed by a set of first order partial
differential equations and then solves the problem by
integrating equations along characteristic lines (Bellman,
1957, Bellman and Kalaba, 1965). This method was applied to an
inverse problem relating to a transport phenomena

successfully and is called sometimes Bellman-Kagiwada-Kalaba
method (Bellman, Xagiwada, Xalaba, 1967, Scott, 1973).

2.3 Eigenfunction Expansion Method

Eigenfunction expansions are commonly used when we are
seeking solutions for a boundary value problem governed by
partial differential equations with finite ranges of
independent variable, i.e. within a finite domain, to reduce
the problem to the two point boundary value problem governed by
ordinary differential equations (Sommerfeld, 1949, Morse and
Feshbaéh, 1953). Power polynomials and the Fourier series are
used as eigenfunctions if the domain is rectangular or cubic
while Legendre functions and Bessel functions are used for
spherical and cylindrical domains respectively. The counterpart
of the above method is, of course, integral transform methods
for infinite domains. The Fourier transform and the Hankel
transform are commonly used methods for the infinite domain

with rectangular and cylindrical coordinates respectively.



19

Since these eigenfunction expansions of paftial
differential equations leave us with two point boundary value
problems; we have usually two options to choose to solve the
forward problem, i.e. option (1) solve the resultant two point
boundary value problem directly, or option (2) solve the
resultant two point boundary value problem by shooting method,
i.e. by converting it to the initial value problem and then
arranging the initial value to satisfy all boundary conditions.
If the two point boundary value problem is linear, these two
choices are merely matter of taste and they give identical
answers. If the two point boundary value problem is
non-linear, however, the choice between option (1) and option
(2) must be made while considering a stability and complexity
of solution procedures because we usually are forced to resort
to a numerical technique to solve the problem. In most cases
the option (2) is preferable and gives stable solutions
(Collatz, 1966, Meyer, 1973).

If we are dealing with an inverse boundary value problem,
we do not have any choice but to choose option (2) because all
that we have are initial values on a part of the boundary and
we do not have any conditions to specify boundary values in
remaining part of the boundary. The maip difference between
the forward problem and the inverse problem in choosing
option (2) is that while the initial values are tentative
and must be arranged to satisfy all boundary conditions in the

former, the initial values are a part of the problem and



determined initially and therefore they do not have to be
varied to satisfy boundary conditions in the latter. Since
solutions obtained by these two methods coincide with each
other when the problem is linear, it is concluded that we can
obtain exact solutions for the inverse problem by using option
(2) if we have initial values that are given as a consequence
of the forward problem. We shall show this by using the Cauchy
problem for the Laplace equation as an example.

First we set up the forward problem for the Laplace
equation in a two-dimensional rectangular coordinate system as

shown in Fig. 1. The equation is

a2¢ 3%
——— et ——— = (13)
ax? 3y2

with boundary conditions as

¢y = f(x) (14)
y=b

3¢

- = 0. (15)

dy y=0

The solution is obtained by expanding the equation into a

Fourier series. That is

= I ————Z (Apsinix + Bp cosAx) (16)
m=1 coshlb
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where A, Ap, Bp are

2mm
A = ——m (17)
a
1 a -
Ap = —— [ f(x) sinix dx (18)
2a 0
1l a
By = —- J f(x) cosix dx. (19)
2a 0
At y=0 the solution becomes
o 1
¢ S [Am sinix + Bp cosix], (20)

y=0— m=1 coshAb

which shows that if f(x) is a well-behaved function, say in L?
class, the solution of the Laplace equation at y=0 is
exponentially decaying as a function of A.

The inverse problem is set up as the Cauchy problem for
the Laplace equation in the same coordinate system as before.

That is

3%¢ 3%
——= + === = 0 (21)
ax 2 ay2



with boundary conditions as

| = g(x)
y=0
3¢
- = 00
dy y=0

By using Fourier series expansion, we obtain the solution

¢ = L coshly (Cp sinix + Dp cosix)
m=0

where Cp, Dy are

1l a

Cm = -- J g(x) sinix dx
2a
l a

Dp = == J g(x) cosix dx.
22 0

(22)

(23)

as

(24)

(25)

(26)

This solution becomes highly oscillatory when A becomes large

unless coefficients Cp and Dy are exponentially decaying

functions of A. For a general setting of the Cauchy problem

22

for the Laplace equation with arbitrary initial values, this is

a very restrictive condition and makes the whole problem

impractical. For the inverse problem, however, the initial

value g(x) is always a consequence of boundary conditions on

the other side of boundaries, i.e. f(x) and is given by eq.

(20) which is an exponentially decaying function of .

Therefore in the case of inverse boundary value problems we can



solve the problem by expanding the equation by suitable

eigenfunctions and then solving the resultant two point

boundary value problem by the shooting method. 1Inserting (18)

and (19) into (20), and replacing (22) by (20), we obtain

© coshly N
¢ = I ——-——- (C*psinix + D*p cosAx) (27)
m=0 coshlb
where C*; and D" are
Am a a
C*m = --3 J f(x)sinix dx [/ sin2ix dx (28)
4a” 0 0
Bm a a
D*p = ——5 / f£(x)cosix dx J cos?ix dx (29)
4a” 0 0
which gives a stable and well-defined solution for our inverse

problem.

23



Figure Captions for Chapter 2

Fig. 1. Coordinate system used for the Laplace equation.
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CHAPTER 3. INVERSE ELASTOSTATIC PROBLEM

3.1 1Inverse Elastostatic Problem

Ouf inverse elastostatic problem, is to find a solution
in a domain B when displacement (Dirichlet's boundary
condition), and traction (Neumann's boundary condition), are
both given only on 3B* which is a part of the boundary 9B but
no condition is given on the remaining part of the boundary,
i.e. 3B-93B*, This problem is a natural extension of the
Cauchy problem for the Laplace equation studied in the
preceding chapter and the only difference is that we have to
deal with a system of elliptic equations in elastostatic
. inverse problems.

Compar ing with the amount of works relating to inverse
problems for the Laplace equation, the inverse elastostatic
problem has been studied very little. Most of works seen in
literature are on earthquake problems and are concerned with
surface deformations associated with a dislocation source.
The inversion for displacement due to a dislocation source
and associated stress change in the earth based on surface
displacement using two-dimensional finite element method
(McCowan et al., 1977, Jungles and Frazier, 1973),
three-dimensional dislocation source using the generalized
inverse method (Alewine and Jordan 1973, Matsu'ura 1977),
visco-elastic two-dimensional finite element model inversion
with generalized inverse method (Smith, 1974) are among
them. Although these works gave more or less acceptable
state of stress associated with observed surface displacement

on the earth, they have a shortcoming in common. These
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methods are highly model dependent and solutions are variable
with respect to small change of model parameters, especially
the geometry and configuration of dislocation sources. Our
inverse method is an attempt to remedy this shortcoming by
less restrictive assﬁmptions about the source that generated
surface displacements. In the following sections we only
assume that the source is located outside the domain in which
we seek a solution and we make no assumption about the nature
of the source, i.e. it can be a dilatancy source, a
dislocation source, an explosive source, or anything else as
long as they are located outside.

As is mentioned before our inverse problem is Cauchy's
problem for a system of elliptic equations, and therefore the
same general line of attacking the problem as used for the
Laplace equation, i.e. eigenfunction expansion - shooting
method technique can be used. This method is in a sense
similar to well-known semi-inverse method of Saint Venant in
which one starts with a trial solution which satisfies a part
of the boundary condition and then modify it to satisfy
remaining boundary conditions (Fung, 1965). Our trial

solution is provided by the eigenfunction expansion.

3.2 Inverse Elastostatic Problem iﬂ Two Dimensions

It is well-known that in two-dimensional elasticity,
Airy's stress function simplifies the problem considerably
and one has to only solve one biharmonic equation (Fung,
1965, Timoshenko and Goodier, 1951, Sokolinikof 1956).

Denoting Airy's stress function by ¢, we have
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Vo= 10 (30)

4 . .
where V denotes a biharmonic operator. Stress components

are expressed as
32¢
Ogx = === (31)
ay2
a%¢
a = ——— (32)
ax 2
329
o = = ———- (33)
XY
where Oyxy, Oyy, Oyxy are components of a stress tensor. We
shall start with the simplest inverse problem which has a
configuration of domain and boundary conditions as shown in
Fig. 2. This configuration will be used for all

two-dimensional problems in this chapter. We have boundary

conditions at y=0 as

u .= X (34)
v =V (35)
oyy = 0 (36)
ogy = 0 (37)

where u, v, are x,y components of displacement, v is
Poisson's ratio and oyy, Oy, are components of stress tensor

In a geodetic inverse problem these boundary



conditions correspond to the case in which we have uniform
vertical displacements and lateral extensions on the surface

of the earth.

We shall expand Airy's stress function ¢ into a second
order polynomial that is

® = Ax2 + Bxy + Cy? (38)

where A,B,C, are constants. Substituting this into eq. (31)

through (33) we have

oxy = -B (39)
oyy = 2A (40)
oxx = 2C. (41)

Using stress boundary condition i.e. eq. (36) and eq. (37),

we determine these coefficients as
A=0 (42)
B = 0. (43)
Thus Airy's stress function becomes
® = Cy?2. (44)

To obtain displacements we have to integrate stress

components using formulas as



1
U = Sfeyudx = E J(ogx = voyy)dx (45)
1

where oy, oyy are components of a strain tensor and E is

Young's modulus. Performing integrations we have

2C
u = --x+ f(y) (47)
E
2V
vV == ==y + g(x) (48)
E .

where‘f(y) and g(x) are a function that only depends on y or
X respectively., Noting that Ixy vanishes on the boundary

i.e. at'yv= 0, we have

daf dg
-+ == =0 (49)
dy dx ~

at y=0. Since f(y) and g(x) should be at most first order,

we have
f(y) =Dy + F (50)
g(x) = Gx + H (51)
D+G=0 (52)

where D,F,G,H are constants. We obtain equations to be

solved for coefficients C,D,F,G,H, as

30
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2C
u=-=x +Dy + F (53)
E
2vC
V== ~---y + Gx + H (54)
E
D+ G-= 0. (55)

Applying displacements boundary conditions at y = 0, i.e. eq.

(34) and eq. (35), these coefficients are determined as

E

C = - (56)
2

F=0 (57)

G=0 _ (58)

H=v (59)

D = 0. (60)

Solutions for the inverse problem are,

u =X (61)
v = v(l-y) (62)
Oxx = E (63)
oxy = 0 (64)
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Thus we obtained an expected result that shows a pure tension
in the x direction in the domain under the surface. The above
simplesf case illustrates the essence of our method of the
eigenfunction expansion and the shooting to satisfy the
boundary conditions.

If data on the surface are given by not only linear terms
but also quadratic terms in x we should expand Airy's stress

function into a polynomial of the third order, that is

® = Ax3 + Bx2y + Cxy?2 + Dy?3 (66)

Substituting this into eq. (31) through (33), we have

Ogxx = 2CX + 6Dy (67)
Oyy = 6AXx + 2By (68)

Using the stress free condition at y=o, we have

B =20 (70)

A

0. (71)

Displacement components can be obtained by integrations as
before. They are
1

-(Cx2+6Dxy)+£(y) (72)
E

]
]

v
- = (2Cxy+3Dy?2)+g(x) (73)
E

<
]



f(y) and g(x) can be determined by using the relation

v au
Oxy = M=+ o) (74)
X Yy

where u is a rigidity. This gives an equation

2v dg 6 df 4(1+v)
S l-Cy +-m 4 D4 - = - —mmmm Oy, (75)
E dx E dy E

Remembering g and f are functions only depending on x and y

respectably, we have

dg 6Dx
e (76)
dx E
af 2(v-2)C
- = = mm—————y, (77)
dy E

Assuming g and £ to be at most second order integrations

of these equations give g and f as

-3D ”
g(x) = -- x~ + F (78)
E
(2-v)C )
f(y) = ====-- v + G. (79)
E
Therefore displacements are
1
u = - [Cx2+6Dxy+(2-v)Cy2]+G (80)
E
1 2
Vv = - - [3Dy“+2Cxy + 3Dx2]+F (81)
E



at y = O these displacements turn to be

(o
u=-x2%2+G (82)
E .
3D
V = = = x2 + F (83)
E
if we have displacement boundary conditions at y = 0 as
u = ax? (84)
v = bx?2 (85)

we can determine coefficients C,D,E,G by solving eq. (82) to

eq. (85). They are

C = Ea (86)

G=0 (87)
Eb

D= = == (88)
3

F = 0. (89)

Thus solutions for our problem are
Oxx = 2E(ax-by) (90)
O’YY = 0 (91)

Oxy = - 2Eay (92)
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ax 2-2bxy-( v+2)ay? (93)

(=]
n

bx 2-2axy+by 2. (94)

<
[

If we superpose these solutions with solutions obtained in
the preceding example, we obtain a complete solution for the
inverse problem in which quadratic displacement functions are
given as boundary conditions on the free surface.

By using higher order polynomials we can solve an
inverse problem with more complicated boundary displacements
condition although algebraic operations become increasingly
laborious. More general approach can be made in terms of
Fourier series expansion of Airy's stress function. It is
noted, however, that as long as geodetic inverse problems are
concerned the power series expansion gives sufficiently
accurate solutions within measurement errors because numbers
of measurements of data are usually not enough for using a
- Fourier analysis effectively.

3.3 Inverse Elastostatic Problem iﬂ Three Dimensions

A three-dimensional inverse elastostatic problem can be
solved by the same procedure used in the two-dimensional
inverse problem, i.e. the eigenfunction expansion-shooting
method'technique. The only difference is that we have to use
so-called Galerkin vector instead of Airy's stress function
and therefore have to solve three coupled biharmonic
equations. Because this process leads to very lengthy

calculations, we shall deal with each of the components of
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the Galerkinvvector separately as far as possible. It turns
oﬁt that while a complete decoupling of each component is
only poésible for lower order eigenfunction expansions, a
decoupling between vertical and horizontal components is
always possible.

Denoting the Galerkin vector and its components by F and

¢1, ¢2, ¢3, respectively, they satisfy equations
Vi = 0 i=1,2,3 (95)

+ > >

F=1i¢; + jo2 + ko3 (96)

> > >
where V% denotes a biharmonic operator and i, j, k denote

unit vector components. Stress and displacement components

associated with this Galerkin vector are represented in terms

of ¢1, ¢2, ¢3 as

) 32
Oxx = 2(1-v)-—V2¢1+(vV2--—-)9 (97)
9xX ax?
3, ) 32
Opy = 2(1=V)==V ¢+ ( vV ====) 8 (98)
dy 3y ?
. ) 32
Ozz = 2(1l=-v)—=V 93+ ( vV ====)0 (99)
3z 3z 2
3 CR 32
Oy = (1=-V)(==V ¢2+=-=V ¢])===== 6 (100)
X 9y 9x dy
3, 3, 32
Ogz = (1=V) (==Y " $3+—=V"¢1)====- G (101)
ox 9z dx oz
° 2, 32
Oyz = (1=V) (==Y ¢3+==V"¢3) ==um 8 (102)
y’ 9z dy 9z
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]
2uu = 2(1-v)VZ4; - ——p (103)
, - 9X
) 2
20V = 2(1=v)V%¢y - ——8 (104)
2 3
2uW = 2(1-v)V 3 - --0 (105)
0z
. 9 9 9
0 = ——¢7 + ——¢2 + ——93 (106)
ax ay 0z

where 0j4 are components of a stress tensor, u, v, w are x,

Yr Zz components of a displacement vector, and v, u are
Poisson's ratio and the rigidity respectively. The
coordinate system used is shown in Fig. 3.

We shall start our eigenfunction expansion with the
lowest dégree polynomial, i.e. a power polynomial of second

order. Using this polynomial, we have ¢3 represented as
$3 = ax? + by? + cz?2 + dxy + exz + fyz (107)

which clearly satisfies eq. (95). Substituting this into eq.

(97) to eq. (106), we have

Oxx = o'yy = Ogxz = Oxy = Oxz = Gyz = 0 (108)
2uu = -e o (109)
2uv = -f (110)

2uw = 4(1-v)(a+b+c). (111)



38

Therefore this eigenfunction represents a pure rigid body
motion.

If we expand ¢3 by a third order polynomial, we have

$3 = ax3+byd+cz3+dx2y+ex2z+fy2x (112)

+ gy2z+hz 2x+iz 2y+ixyz

which satisfies eq. (95). Substituting this into eg. (97) to

eq. (106), we have

= 2v(3c+g)-2(1l-v)e (113)

Oxx =

Oyy = 2v(3c+e)=-2(1-v)g (114)

Oxy = =3 (115)

Ozz = 2(2-v)(g+e)+6(1l-v)c (116)
Oxz % 2(1l-v)(3a+f)-2vh (117)

Oyz = 2(1-v)(3b+d)-2vi (118)

2pu = =-2ex-jy-2hz (119)

2uv = =jx-2qy-2iz (120)

2uw = {4(1—v)(3a+f)+2(l-2v)h}x+t4(l-v)(3b+d) (121)

+ 2(1-2v)ily + {4(1l-v)(e+g)+6(1-2v)clz.
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Coefficients of the polynomiai, i.e. a,b...j can be

determined by solving eq. (116) to eq. (121) together with

boundary conditions for stresses and displacements at z = 0,
i.e.

Ozz = Ozx = Ozy = 0 (122)

2yu = 2uv = 0 (123)

2uw = A3x + B3y (124)

Coefficients are therefore

c=e=g=73=0 (125)
Aj
h = -- (126)
2
B3
i= == (127)
2
A3
3a + f = ———Zo- | (128)
2(1-v)
Bj
3b + d = ==——eea . (129)
2(1-v)

Substituting these coefficients into eq. (97) to eq. (106) we

have a solution for stresses and displacements as

Oxx = Oyy = 0zz Oxy = Oxz = Oyz = 0 (130)



2uu = -A3z

2uv = -B3z

2uw = A3x + B3y.

These solutions represent a rigid body rotation.

(131)

(132)

(133)

Expanding ¢; by the third order polynomial, we have

$1 = ax3 + by? + cz? + dx?y + ex?z + fy2x
1

+ gyzz + hz2x + izzy + jxyz.

Substituting this into eq. (97) to eq. (106) we have

Oxx = 2(2-v)(f+h) +6(1-v)a

Oyy = V(6a+2h)-2(1-v)f
Oxy = 2(1-v)(3b+i)-2vd
Ozz = 2v(3a+f)-2(1-v)h

Oxz = 2(1-v)(3c+g) - 2ve

Oyz = J

(134)

(135)
(136)
(137)
(138)
(139)

(140)

40



2uu = {4(1-v)(f+h)+6(i—2v)a}x + {4(1-v)(3b+i)
+ 2(1-2v)dly +.{4(l-v)(3c+g) + 2(1-2v)elz

2V = =2dx-2fy-kz

2uW = =-2ex-jy-2hz,

0 as

Using boundary conditions at z

Oxx = Oxz = oyz = 0

2uu = A1x + B1y

0.

2uv 2w

We solve eq. (138) to eq. (143) to obtain coefficients

Solutions for stresses and displacements are

(141)

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)

41
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l1-v
\)Al
Oyy = i:; (152)
B)
oxy = —- (153)
Y 2
Ozz = Oxz = Oyz = 0 (154)
2uu = Alx + Bly (155)
2uv = 0 (156)
VA1
2W = = ———==2Z, (157)
(1-v)

42

Stresses and displacements corresponding ¢2 with a polynomial

expansion of the third order are obtained by merely

interchanging x and y. Assuming boundary condition as

Oxz = Oyz = Oxz = 0 (158)
2uv = Aox + B2y A (159)
2umu = 2pw = 0, (16 0)

solutions for stresses and displacements are obtained as
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\Y

Oxx = I—; B2 (161)

B2

A2
Oxy = 5- (163)
Ozz = Oxz = Oyz = 0 (164)
2uv = Azx + B2y (165)
2uu = 2uw = 0. (166)

These solutions associated with ¢7 and ¢ represent a plane
stress condition which is obtained by conventional
triangulation geodetic measurements. To obtain a state of
stress which is varying along z axis, we need higher order
polynomials to expand the Galerkin vector.

A fourth order polynomial expansion of ¢3 is given as

L

¢3 = ax + by“ + cz®

3

+ dx3y + ex’z + fyix (167)

2 2_2

+ kx"z" + 2y222

+ gyaz + hzax + izay + szy

+ mxzyz + nyzxz + ozzxy.



Substituting this into eq. (97) to eq. (106), we have

{2v(n+3h)=-6(1l=-Vv)elx + {6v(g+i)-2(1-v)m}ly (168)

Q
»
<

1

+ {4v(2+6c) - 4(1-v)k}z
oyy = {6v(e+h)-2(1-v)n}x + {2v(m+3i)-6(1-v)gly (169)
+ {4v(k+6c)=-4(1=-v)L}z
Oxy = —2mx-2ny-20z (170)
¢
Oz = {2(2-v)(3e+n)+6(1l-v)h}x + {2(2-v)(3g+m) (171)
+ 6(1-v)ily + {4(2?v)(k+1) + 24(1-v)c}z
oxz = {4(1-v)(6a+j) - 4vklx + {6(1l-v)(d+f)-2voly (172)
+ {2(1-v)(3e+n) - 6vhlz
Oyz = {6(1-v)(d+£)-2vo}x + {4(1-v)(6b+j)-4vely  (173)

+ {2(1-v)(3g+m) - 6vilz

- {3ex? + ny? + 3nz? + 2mxy + 4kxz + 20yz} (174)

2uu

2 2

+ 3gy2 + 3iz

2uv - {mx + 2nxy + 20xz + 42%yz} (175)



2uw = {4(1-v)(6a+j) + 2(1-2v)k}x? + {4(1-v)(6b+])

+ 2(1-2v) 2}y2 + {4(1-v)(k+8)+12(1-2v)c}z?

+ {12(1-v)(d+f) + 2(1-2v)olxy + {4(1-v)(3e+n)

+ 6(1-2v)hl}xz + {4(1-v)(3g+m) + 6(1-2v)ilyz.

(176)

Since ¢3 should satisfy a biharmonic equation, i.e. eq. (95),

we have an auxiliary condition as
3(a+b+c) + (j+k+2) = 0.

Assuming boundary conditions at z = 0 as

Ozz = Oxz = Oyz = 0

2uu = Alx2 + Bly2 + Cixy

2uv 2uw = 0

we can solve eq. (171) to eq. (177) for coefficients

a,b,...0. They are,

(177)

(178)

(179)

(180)



vA3
6a + = mm————
2(1-v)
VB3
6b + = -
2(1-v)
vC3
f+d=—=-==
6(1-v)

(2-v) (A3+B3)
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(181)

(182)

(183)

(184)

(185)

(186)

(187)

(188)

Solutions for stresses and displacements are, therefore,

2
Oyx = - I-- (A3 + vB3)z
-\
. 2
Oxy = ;C3Z
Ozz = 0Ozx = ozy = 0

(189)

(190)

(191)

(192)
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2uu = -2A3xz - C3yz (193)
2uv = -C3xz - 2B3yz (194)
) 2 v 2
2uw = A3x“® + B3y + C3xy + ---(A3+B3)z . (195)
1-v

Other components of the Galerkin vector are obtained in the
same way. Expanding ¢; by the fourth order polynomial, we

have

[N

1 = ax + byq + czq

32 + fy3x + gy3z  (196)

+ dx3y + ex
+ hz3x + iz3y + jx2y2 + kx2z2 + zyzz2 + mxzyz
+ nyzxz + ozzxy.
Stresses and displacements are, using ed. (97) to eq. (106),
Oyx = {4(2-Vv)Cj+k) + 24(1l-v)alx + {2(2-v)(3f + o) (197)
+ 6(1-v)dly + {2(2—v)(3h+n) + 6(l=-v)elz

oyy = {4v(6a+k) - 4(1-v)jlx + {2v(3d+o) (198)

- 6(1-n)fly + {6v(e+h) - 2(l;v)n}z



2pu

2uv

2uw

Oxy = {2(1-v)(3f+0) - 6vdlx + {4(1l-v)(6b+2)

- 4vjlu + {6(l-v)(g+i) - 2vm}z

+ {2v(3e+n) - 6(1-v)hlz

{4v(6a+j) - 4(1l-v)kl}x + {6v(d+f)-2(1l-v)oly

{2(1-v)(3h+n)-6velx + {6(1l-v)(g+i)-2vml}y

+ {4(1-v)(6c+L) - 4vklz
Oyz = —2mx-2ny-20z
’{4(1-v)(j+k) + 12a(1—v)}x2 + {4(1-v)(6b+2)

2(1-2v)j y? + {4(1-v)(3f+0)

{4(1-v)(6c+2) + 2(1-2v)k}z?2

6(1-2v)elxz + {12(1-v)(i+g)
—(3dx2 + 3fy2 + 4jxy + 2mxz

2

-(3ex” + 2ny2 + 2mxy + 4kxz

+ 6(1-2v)d} xy

+

{4(1-v)(3h+n)

+

2(1-2v)mlyz
2
+ 2nyz + oz")

+ 20yz + 3hzz).

(199)

(200)

(201)

(202)

(203)

(204)

(205)

48
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Assuming boundary conditions at z = 0 as
Ozz = Oxz = Oyz = 0 (206)
2uu = A1x2 + B1y2 (207)
2uv = Coxy (208)
2uw = 0 (209)

we can solve a set of linear equations, i.e. eq. (200) to eq.
(205) together with the auxially equation, i.e. eq. (177) to

obtain coefficients as

d=e=f=h=m=n=o0=g+1i=020 (210)
A1+C>
a = ————=t (211)
12
C2
j o= - - (212)
4
v
K = ————— (2A] + C») (213)
4(1-v) -
1
6b + & = ———ee {2B] + (1-2v)C>y} (214)
8(1-v)
1
6C + & = - —————= {4(1+V)A] + 2B] + (1l+2v)Ca} (215)

2(1-v)
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Solutions for stresses and displacements are

1
Oxx = I—'\; (2A1 + \’C2)x (216)
1
oyy = T (2vA] + C2)x (217)
1
Oxy = 5(231 + C2)y (218)
-1
Ogz = = ——————= {477 + 2(1-V)B] + (l+4v)C3p}z (219)
2(1-v)
2 2 1 ' 2
2uu = A} X° + By - ;?I-;; {2(2-v)A] +2(1-v)B] + Calz
(221)
2uv = Cy xy (222)
-1
2uw = I-- (2A1 + C2)xz (223)
-V

Solutions for stresses and displacements based on D)
can be obtained by 'interchanging x and y. Assuming boundary

conditions as
Ozz = Oxz = Oyz = O (224)

2uu = Cixy (225)



2uv = A2x2 + Bzy2

2uw = 0,
Solutions are
1
Oxx = === (2vBy + C1)y
1l-v
1
Oyy = === (2B2 + VCl)y
1-v
1
Oxy = = =(2A2 + C1)x
2
1
Oyz = = ———=== {4By + 2(1-Vv)Ay + (1+v)C1}2
2(1-v)
Ozz = Oxz = 0 .
2uu = Cixy
2 2 1
2uv = Agx® + Byy - ———-—- {2(2-Vv)Bo+2(1=-v)A2+C1}2
2(1-v)
\Y)
2uw = - --— (2B + Cy)y=z.
1-v

(226)

(227)

(228)

(229)

(230)

(231)

(232)

(233)

(234)

(235)

By superposing these solutions based on the Galerkin

vector expanded by the fourth order polynomial to solutions

obtained by lower order polynomials, we can obtain stresses

and displacements inside the elastic body when

51
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displacements up to a quadratic variation are specified on
the free surface boundary. Boundary conditions and solutions

are as follows.

Boundary conditions at z = O0:
2
u| = A1x2+B1y + C1xy+D1x+E1y+F] (236)
z=0
‘ 2 2
Vi = A2x +Boy "+Coxy+Dox+EQy+F2 (237)
z=0
W = A3x2+B3y2+C3xy+D3x+E3y+F3 (238)
z=0

solutions:

Oyx = §§; {(2A1+VvCo)x+(2vBy+Cy)y - 2(A3+VB3)z (239)
+ Dj+VE3}
2u '
Oyy = I:; {(2vA1+C2)x + (2B2+VvCy)y - 2(VA3+B3)z (240)
+ VDj+Eg}
Ozz = 0 (241)

oxy = u{(2A2+C1)x + (2B1+C2)y - 2C3z + E] + D2} (242)

--- {4A7 + 2(1-V)B] + (1l+v)Crlz (243)
1-v

»
N
I
l

Oyz = - - {4B2 + 2(1-v)A] + (1l+v)C1}z (244)
-V
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u = Alx2+B1y2+C1xy+Dlx+Ely+F1 (245)
1 2
- —————— {2(2-v)A] + 2(1-v)By + Cplz" - 2A3xz
2(1-v)
- C3yz - D3z
2 2 ‘ 1
V = Agx +Boy +Coxy+DoxXx+EQy+FQ = —===-- (246)
2(1-v)
{2(1-v)A2+2(2-v)B2+C1}z2 - C3xz - 2B3yz - E3z
2 2 v 2
w = A3x +B3y +C3xy+D3x+E3y+F3+I—-(A3+B3)z (247)
-V
v v v
- === (2A1+C3)xz - --- (2B2+C))yz - === (D1+E3)z
1-v l1-v l-v

Since there are six parameters to specify the
displacements on the boundary, we must have at least six data
points on the boundary.

Although solutions for the inverse problem given by eq.
(239) to eqg. (247) are exact and thus describe a complete
state of stress in certain situations i,e. when
displacements vary quadratically on the boundary, they have a
limitation that they present only linearly varying stress
components. Thus a higher order eigenfunction expansion
might be necessary for some situations. It is given by a

fifth order polynomial expansion of the Galerkin vector. For

$3 we have
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4

$3 = axs + bys + cz5 + dx“y + ex z + fy“x (248)

2 3,2

+ gy“z + hz'x + iz“y + jx3y2 + kx3z? + Ly “x

2 3.2

+ myaz + nz'x° + ozay2 + px3yz + qyaxz

+ rzaxy + sxzyzz + txzzzy + Eyzzzx

where u denotes a coefficient. Substituting this into eq.

(97) to egq. (106), we have

{v(2s+6n)~(1-v)12e}x? + {v(12g+60)-(1-v)2s}y2 (249)
+ {v(6g+6r)-(1-v)6plxy+2{v(2u+12h)-(1-v)6k}xz
+ 2{v(6m+12i)=-(1-v)2t}yz+3{v(20+20c)~(1-v)2n}z>

{v(12e+6n)-(1-v)2s}x2+{v(2s+60)-(1-v)12g}y?  (250)

+ {v(6p+6r)-(l-v)6qlxy+2{v(6k+12h)-(1-v)2ulxz
+ 2{v(2t+12i)=-(1=-v)6m}yz+3{v(2n+20c)=-(1-v)20}z2

Oxy = _(3px2+3qy2+3rz2+4sxy+4txz+4ﬁYz) (251)
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3{(2-v)(2n+20)+(1-v)20C}z> + 2{(2-v)(6k+27T) (252)
(1-v)12h}zx + 2{(2-v)(6m+2t)+(1-v)12i}zy
{(2-v)(12e+2s)+(1-v)6n}ix? + {(2-v)(12g+2s)

(1-v)60}y? + {(2-v)(6p+6g) + (l-v)6r }xy

3{(1-v)(20a+2j)-2vklxz + 2{(1-v)(12d+6&)-2vtlxy (253)
{(1-v)(12£465)-2vuTyz + {(1-v)(6k+2uT-12vh}z?

2{(1-v)(1l2e+2s)-6vnlxz + {(1-v)(6p+6q)-6'r }yz

oz = 3{(1-v)(20b+22)-2vmly” + {(1-v)(124+62) (254)
- 2vt}x? 4+ 2{(1-v)(12£46)-2vTlxy + {(1-v)(6m+2t)
- 12vi}z? + 2{(1-v)(12g+2s)-6volyz + {(1-v)(6p+6q)
- 6vrlxz
2pyu = - (4ex3+4hz3+6kxzz+6nzzx+3px2y+qy3 (255)
+ 3rzzy+25xy2+rtxzy+2ﬁyzz)
2uv = - (4gy’+4iz +6my z+60z 2y+px S+3qy 2x (256)

2

+ 3rz x+25x2y+2txzz+4ﬁkyz)



2uw =

Since ¢3

have the
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{2(1-v) (20a+23)+(1-2v) 2k}x > + {2(1-v)(24+20b) (257)
(1-2v)2mty? + (2(1-v)(12d+62)+(1-2v)2t}x%y

{2(1-v) (6+12€)+(1-2v)2t}yZx + (2(1-v)(2n+20)
(1-2v)20ctz® + {2(1-u)(6k+2ﬁ) + (1-2v)12h}z2x
{2(1-v) (2t+6m) + (1-2v)12i}z?y + {2(1-v)(1l2e+2s)
(1-2v)6ntx2z + {2(1-v)(2s+12g) + (1-2v)6oly’z

{2(1-v) (6p+6q) + (1-2v)6rlxyz.

should satisfy the biharmonic equation as before, we

auxialiary equation as

{15a+3(f+h+j+k)+ulx + {(15b+3(d+i+2+m) (258)

+ t}ly + {15c+3(e+g+h+o) + s}z = 0
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This set of linear equations, i.e. eq. (252) to eq. (258) can
be solved for coefficients a to u, assuming boundary

conditions as

Ozz = Oxz = Oyz = 0 (259)
2pu = 2uv = 0 (260)
_ 3 3 2 2
2uw = A3x°~ + B3y~ + C3x“y + D3xy*“. (261)
Coefficients are,
"c=e=g=n=0=p=q=1r =8 =20 (262)
2-v
h = - c—=—-u-o- (3A3+D3) (263)
12(1-v)
2=V
i=- - (3B3+C3) (264)
12(1-v)
A3
K = —- (265)
2
B3
m= == , (266)
2
C3
£t = == (267)
' 2
_ D3
U = —— (268)



20a

20b

124

12f

\)A3

+ ZJ = ——— (269)
l1-v
vB3

+ 28 = === (270)
l1-v

: vC3

+ 684 = —-=- (271)
1=v
\)D3 .

+ 6] = === . (272)
1-v

Substituting these coefficients into eq. (249) to eg. (257)

we obtain solutions for stresses and displacements as

2
Oxx = — ===
1-v
2
g = e me——
44 1-v
Oxy
Oxz
ayz

2
(vD3+3A3)xz - --—-(3VvB3+C3)yz (273)
1-v
2
(3vA3+D3)x2 - —=--(3B3+VvC3)yz (274)
l-v
Ogzz = O (275)
= -2C3xz - 2D3yz (276)
1
= --= (3A3+D3)z? (277)
1-v
1 2
= —-—- (3B3+C3)z (278)

1-v

58
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2=V
2UU = ———m— - (3A3+D3)z > - 3A3x’z (279)
3(1-v)

- D3yzz - 2C3xyz}

2-v 3 2 2
20V = —————e (3B3 + C3)z - C3x z - 3B3y 2 (28 0)
3(1-v)
- 2D3xyz
3 3 2 2
2uw = A3x  + B3y~ + C3x'y + D3xy (281)
v 2 v 2
+ ——- (3A3+D3)z " x + —--- (3B3+C3)z vy .
1-v l-v

The other components of the Galerkin vector, i.e. ¢3
and ¢, are obtained in the same manner but we have to deal
them simultaneously because no decoupling of horizontal
displacements occurs. Thus fifth order polynomial expanéions
for ¢; and ¢, are represented as

5

¢ = ax  + bys + cz®

y

+ dx"y + ex 'z + fy“x (282)

+ gyuz + hz'x + izhy + jx3y2 + kx’z? + £y3x2

3_2 3.2
+my'z° + nz x° + ozay2 + pxayz + qyaxz + rzaxy

+ sxzyzz + txzzzy + Gyzzzx



$2

60

= a*x5'+ b*y5 + c*z° + d*x“y + e*x'z + f*yux | (283)

+ g*y"z + h*z'x + i*z“y + j*xay2 + k*x3z2 + z*yax2

3 2 2 3.2 3 3
+ m*y“z" + n*z3x? + o*z y~ + p*x'yz + q*yaxz+r*z Xy

+ s*xzyzz + t*xzzzy + U*yzzzx.

where stars denote another set of coefficients. Substituting

them into

eq. (97) to eq. (106) as before, we have

Ogyx = [3{(2-v)(2+2k)+(1-v)20a} + {v(62*+2t*) (284)

(1-v)12d*}1x? + [{(2-v)(12f+2ﬁ)+(1-v)6j}
3{v(20b*+2m*)-(1-v)22*}y? + 2[{(2-V)(62+2t)
(1-v)12a}+{Vv(12£*+2T*) - (1-v)63*}]lxy

[{(Z—V)(Zﬁ+12h) + (1-v)ek} + {v(6m*+l2i*)—(l—v)2t*}]z2
[2{(2=-V)(2s+6n) + (i-v)lze} + {v(6g*+6r*)

(1-v)6p*}lxz + [{(2-v)(6g+6r) + (l-v)6p}

2{v(12g*+60*) - (1l-v)2s*}]lyz



+

O'xy
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[3{v(20a+2k) - (1-v)2j} + {(2-v)(l2d*+2t* (285)

-+

(1-v)62*}1x2 + [{v(63+20) - (1-v)12f}

+ 3{(2-v)(22%+2m*) + (1-v)20b*}y? + 2[{v(12d+2t)

(1-v)6L} + {(2-v)(6j*+2ﬁ*) + (1-v)12f*}]ixy
[{v(6k+12h) - (1-V)2ﬁ} + {(2-v)(2t*+12i*) +
(1-v)6m*}1z2 + [2{v(12e+6n) - (l-v)2s} +
{(2-v)(6p*+6r*) + (l-v)6g*}Ixz + [{v(6p+6r)

- (1-v)e6ql + 2{(2-v)(2s*+60*) + (l-v)129;}]yz

[{(1-n)(6P+2t)-v12d} +3{(1-v)(20a*+2k*) (286)

- v23*}1x? + [3{(1-v)(20b+2m) - v22}

+ {(1=-v)(6j*+2u*)-v12£*}1y? + 2[{(1-v)(12f+2ﬁ)

= V65 }+{(1-v)(l2d*+2t*)=v62*}]xy + [{(1-v)(6m+12i)
- v2t}+{(1-v) (6k*+12h*)-v2u* ]z?>

+ [{(1-v)(6g+6r)-v6pl}+2{(1l-Vv)(l2e*+6n*)-v2s*}]xz

+ [2{(1-v)(12g+60)=-v2s} + {(1-v)(6p*+6r*)-v6q*}]yz
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2 (287)

[3{v(20a+23)-(1-v)2k} + {v(12d*+62*%)=(1-v)2t*}]x
[{v(5j+12f)-(1-v)2ﬁ} i 3{v(22%+20b%)~(1-v)2m*}]y?
2[{v(12d+62)-(1-v)2t} + {v(sj*+12f*)-(1-v)2ﬁ* }‘j'xy
[{v(6k+2u)=(1-v)12h} + {v(6m*+2t*)=(1-v)12i*}]z?2

[2{v(12e+2s)-(1-v)6n} + {v(6p*+6g*)-(1-v)6r*}]xz

[{v(6p+6g)-(1-Vv)6r} + 2{v(2s*+12g*)-(1l-v)60*}]yz

[{(1-v)(2s+6n)-v12e} - 3P*]x> + [{(1-v)(l2g+60)  (288)
v2s}—3q*]y2 + [{(1-v)(6g+6r)-v6pl-4s*]xy
[3{(1-v)(20+20c)-v2n}-3r*1z2 + [2{(1-v)(20+12h)

4t*}xz + [2{(1l-v)(6m+12i)-v2t}-4u*]yz



6yz

2uu

[{(1-v)(12e*+6n*)-v2s*}-3p]x2 + [{(1-V)(2s*+60*) (289)

v12g*}-3qly? + [{(1-v)(6p*+6r*)-v6q*}
4s]xy + [3{(1-v)(2n*+20c*)=v2i*}-3r]z?
[2{(1-V)(6k*+l2h*)—v2ﬁ*}-4t]xz + [2{(1-Vv)(2t*+12i*)

vém* }-4ulyz

[{2(1-v)(25+2k)+(1-2v)20a} - 4d*]x° + [{2(1-v)(20b+2m)
' (29 0)

(1-2v)22}-4£*1y 3 & [{2(1-v)(62+2t)+(1-2v)12d}

65*1x2y + [{2(1-v)(l2£+2u)+(1-2v)67}

6 2%y 2x+[{2(1-v) (20420c)+(1-2v)2n}-r*]z >

[{2(1-v)(20+12h) +(1-2v)6k}-2t*]z 2x+[ {2(1-V) (6m+12i)

(1-2v)2t}-2U*1z2%y + [{2(1l-v)(2s+6n)+(1-2v)12e}

3p*1x%z + [{2(1-v)(12g+60)+(1-2v)2s}-3q*]1y 2z

[{2(1-v)(6g+6r)+(1-2Vv)6p} - 4s*]xyz

63
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[
2uv = [ 2(1-v)(20a*+2k*)+(1-2v)23*}-4d]x >+[{2(1-V) (291)

° (20%42m*) +(1-2v) 20b* }-4F]y +[{2(1-v)(12d%+2t*)

+ (1-2v)62*}—6j]x2y+[{2(1-v)(6j*+zﬁ*)+(1-2v)12f*}
° - 62]1y%x + [{2(1-Vv)(2n*+20c*)+(1-2v)20*]-r]z’

+ [{2(1-V)(6k*+12h*)+(1-2v)2u*}-2t]1z 2x+[ {2(1-V)
® (2t*+12i.*)+(l—2v)6m*}-Zﬁ]zzy+[{2(1—v)(12e*+6n*)

+ (1-2v)2s*}-3p]x2z+[ {2(1-v) (25*+60*)
® + (1-2v)12g*}-3qly2z+[{2(1-v) (6p*+6r*)+(1-2v)6q*}

- 4s]xyz
¢ 2uw = '-{(4e+p*)x3+(q;f4g*)y3+(3p+2s*)x2y (292)

+ (25+3q*)y2x + (4h+4i*)z3 + (6n+3r*)z2x
+ (3r+60*)z%y + (6k + 2t*)x2z + (20+6m*)y’z

+ (4t + 4u*)xyz

{15a+3(f+h+j+k)+ulx + {15b+3(d+i+2+m) (293)

+ t}ly + {15¢c + 3(e+g+h+o)+sltz = 0.

{15a*+3(£f*+h*+j*+k*)+u* }x+{15b*+3(d*+i*+2*+m*) (294)

+ t*}y+{15c*+3(e*+g*+h*+o*)+s*}i = 0.



This set of linear equations, i.e. eq.

(287) to eq.

can be solved together with boundary conditions at z =

Ozz = 0zx = Ozy =

0

2uu = A1x3 + Bly3 + Cix?y + Dlxy2

2uw = Azx3 + B2y3 + czxzy + szy2

to obtain coefficients a to u and a* to u*.

12g + 60 0
20c + 20 0
1 Co
a=-- (A -=)
20 6
C1
d = —=
12
Dy
f = —=
24
v C2
k = —————- (A1+--)
2(1-v) 6

Solutions

(294)

0 as

(295)

(296)

(297)

are,

(298)

(299)

(300)

(301)

(302)

(303)

(304)
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t = ———==- C3
2(1-v)
v
u = —-—==-- Dy
4(1-v)
1 Do
200 + 2m = ————m- (By+--)
2(1-v) 3
1
2u + 12h = = —==-== {(1+V)6A1+(1+Vv)C2+D1}
2(1-v)
1l
6m+12i = = —===== {3B1+2(14+V)C1+D32}
2(1-v)
=j*=2*=o*=p*=q*=r*=s*
12e* + 6n* 0
20c* + 2n* 0
1 Dy
b* = == (B2 4+ ——)
20 6
C2
d* = —-
24
D2
£f* = —-
12
v Dy
m* = ————e-= (Bo+--)
2(1-v) 6

(305)
(306)

(307)

(308)

(309)
(310)
(311)

(312)

(313)

(314)

(315)

(316)

66
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t* = o Co (317)
4(1-v)
v
u* = —————o Dy (318)
2(1-v)
1 Cy
20a* + 2k* = ——=e-- (Ax+--) (319)
2(1-v) 3
1
6k* + 12h* = = —————- {3A5+C1+2(1+Vv)D3} (320)
' 2(1-v)
1
2t* + 12i* = - —————— {6(14+V)By + Cp + (1+v)Dy}. (323)
. 2(1-v) .

Substituting these coefficients into eq. (284) to eq. (322),

we obtain solutions for stresses and displacements as

Ogx = =——==m (6A1+2vC2)x2 + ————— (6v82+201)y2 (322)
2(1-v) 2(1-v)
2 1
+ === (C1+VDo)xy = —==——- {12A1+6vB2 + 2(1+v)C2+2D1}z
l1-v 2(1-v)
1l ) 1 ) .
Oyy = ——==== (6VA1+2Co)x + —————- (6Bo+2vDy)y (323)
2(1-v) 2(1-v)
2 1
+ === (VC14D2)Xy = —=—==== {6 vA1+ 12Bo+ 2C»
1-v 2(1-v)

+ 2(14v)Dy}z2



1
Opp = =————m (6A1+632+2C2+2D1)Z2
2(1-v)

1 1
“xy = 3 (3A2+C1)x> + =(3B1+D2)y> + (C+D1)xy
2

1
- ————— {3(1-v)(A2+Bl)+(1+v)(c1+D2)}z2
2(1-v)

1 .
Ogz = = === [{6A14+(1+V)Co+(1-V)D] }xz
1-v

+ {(1-v)3B) + (1+v)D2 + 2Cjlyzl

1
Oyz = = === [{3(1=V)A2+(1+V)C1+2D)}xz
1-v

-+

{6B2+(1-v)C2+(1+Vv)D] }yz]

3 3 2 2 1
2uu = Ajx " +B1y +C1x y+D1xy "= -——{3(2—v)A1
l-v

1

+ C24(1-M)D1}a’x = === (3(1-)B14(2-v)C14D2)z "y
-V

3 3 2 2 1
2uv = Axx "+Boy "+Cox "y+Doxy "= -—-{3(l—v)A2
‘ 1-v

1
+ C1+(2—V)D2}z2x - —— {3(2—v)Bz+(1-v)C2+D1}z2y
1-v

(324)

(325)

(326)

(327)

(328)

(329)
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1+v v
2UW = ———ee (3A1+43By + Cp + D1)z° = --- (3A1+C2)x°z  (330)
3(1-v) l1-v
v 9 2v
= -== (3By+D1)y"z -~ --- (Cyj+D3)xyz.
1-v 1-v

By superposing these solutions based on the fifth order
polynomial expansion of the Galerkin vector to solutions
already obtained by lower order expansion, i.e. eq. (239) to
eq. (247), we obtain a complete solution for stresses and
displacements in the elastic body when displacements of cubic
polynomials are specified on the free surface boundary.

They are represented in the following equations,
Bouﬁdary condit;ons at z = 0:

uj o= Alx3+B1y3+C1x2y+Dlxy2+E1x2+Fly2 (331)
+ G1xy+H1x+I1y+J1

v = A2x3+B2y3+C2x2y+D2xy2+E2x2+F2y2 (332)
+ Goxy+Hox+Ioy+J2

LA = A3x3+B3y3+C3x2y+D3xy2+E3x2+F3y2 (333)

'+ G3xy+H3x+I3y+J3



Solutions:

yy =

2u 2 2
Ogxx = === [(3A1+VvC3)x" + (3VBo+D])y
1-v

- {6A1+3sz+(1+v)C2+D1}22]

4u
+ - {(Cy+vD2)xy - (vD3+3A3)xz
-V
2u
- (3vB3+C3)yz} + —--- {(2E1+VvG2)x
l1-v

+ (2VF2+Gl)y - 2(E3+VF3)z+H]1+VvIQ}

2u
-—- [(3\’A1+C2)x2 + (3Bg+vD1)y2 - {3vA1+6B>
1-v

4u

C2+(1+v)D1}22] + - {(VC1+Dé)xy - (3VvA3+D3)xz
1-v
2u
(3B3+vC3)yz} + ——- {(2VE1+G2)x + (2F2+VvG])y
l1-v

2(VE3+F3)2z+VH1+I2)}

‘ 2y 2
Oggz = I*— (3A1+3B2+C2+D1)z
-V

H
oxy = u{(3A2+C1)x2 + (3Bl+Dz)yz} - ——
’ l1-v
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(334)

(335)

(336)

(337)

{3(1-V)(A2+Bl)+(3—v)(C1+D2)122 + 2u{(Co+D1)xy

-2C3x2z-2D3yz} + w{2E2+G]1)x+(2F1+G2)y

-2G3z+H2+1I1}
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2y

Oxz = ——— [(3A3+D3)z° - {6A1+(1+Vv)Cp+(1-v)Dy }xz (338)

1-v

u
- {3(1-v)B1+2C1+(1+v)D2}yz] - === {4E1+2(1-V)F]
1-v
+ (1+\))G2]’Z

2u 2
Oyz = I—_ [(3B3+C3)z" - {3(1-Vv)Ap+(1l+v)C1+2Do}xz (339)

-\

u
- {6B+(1-v)C2+(1+v)D]1 }yz] - I-- {4F2+2(1=-Vv)E2
-V
+ (1+Vv)Gy lz
u =A1x3+B1y3+Clx2y+D1xy2+E1x2+Fly2 (340)
. 2_\, 3
+ G1xy+H1x+I1y+J1+ —-——-—- (3A3+D3)z
3(1-v)
2 2 1
= 3A3x 2-2C3xyz-D3y 2z - --= [{3(2-V)A]+C>p
1-v

+ (1-v)Dy}z%x + (3(1-V)By+(2-v)Cq+Dy}z2y]

1
- ———— {2(2-v)El+2(l-v)F1+G2}z2-2E3XZ
2(1-v)

- G3yz-~-H3z
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v = A2x3+Bzy3+C2x2y+D2xy2+E2x2+F2y2+G2xy (341)

3
+ Hox+I2y+J2+ —===—- (3B3+C3)2
( )

1
- C3x2z-2D3xyz-3B3y22 - === [{3(1-Vv)Ay+Cy
l-v

+ (2_V)D2}zzx+{3(2—v)B2+(l—V)C2+D1}ZZY]

1
- ————— {2(l—v)E2+2(2—v)F2+G1}zZ-G3xz
2(1-v)

- 2F3yz-132z
2
w = A3x3+B3y3+C3x2y+D3xy2+E3x +F3y2+G3xy (342)
+ H3yx+I3y+J3+ -——---- (3A1+332+C2+D1)z3
v

- - {(3A1+C2)xzz+(3B2+D1)yzz+2(C1+D2)xyz
1-v

- (3R3+D3)z°x - (3B3+C3)z’y - (E3+F3)z>
+ (2E1+Gp)xz + (2F2+G1)yz + (H1+Ip)z}.
Since these displacements on the boundary are presented
by ten parameters, we need at least ten data points on the

boundary to obtain solutions. Possible networks are shown in

Fig. 6.
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3.4 Inversion by Finite Element Method

The finite element method has been used in inverse
problem; especially in parameter estimation and optimization
problems, in many fields of science and engineering during
the last decade (Lions, 1977) because this method provides
very general and flexible approach to the problems in spite
of sometimes prohibitively high computer cost.

An application of the finite element method to the
elastostatic inverse problem in three dimension was first
made by Tkeda (1980). He studied basic numerical procedure
for obtaining a finite element inversion scheme and analyzed
errors involved in the method. Because of its generality and
wide applicability to the inverse problems not only in the
elastostatics but also in electromagnetics or fluid
mechanics, we shall briefly summarize Ehe inversion method
based on the finite element method. Detailed derivation of
general finite element families and special purpose programs
as well as error analysis of the method are described
elsewhere (Ikeda, 1980).

Using a standard finite element method based on a
displacement formulation such as given in Zienkiewicz (1972),

we have a discretized form of the operator equation as

[K1[U] = [R] (343)
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where [K] is the so-called stiffness matrix, [U] and [R] are
matrices that consist of displacement and load at each

node. Written explicitly, this equation is in a partitioned

form,
X 5 m n | (344)
k[ K11 K12 K13 k1a] [0 [
L K21 K22 K23 K24 U2* | R2
m K31 K32 K33 K34 U3 R3
n | K41 K42 K43 K44 L U4 | \ R4 |

where k, %2, m, n denote numbers of rows and columns of each
block, and thus Kjj) is a (kxk) matrix, Ki2 is a (kx%) matrix,
K13 is a kxm matrix, K14 is a (kxn) matrix, Koo is a (2x2)
matrix, Kp3 is a (2xm) matrix, K24 is a (%xn) matrix, K33 is a
(mxm) matrix, K34 is a (mxn) matrix, K44 is a (nxn) matrix, and
K21, K31, K32, K41, K42, K43 are transpose of K12, Ki3, K23,
K14, K24, K34, respectively. Ul* is a (kxl) matrix, U2* is a
(2x1) matrix, U3z is a (mxl) matrix. U4 is a (nxl) matrix. R}*
is a (kxl) matrix, Ry is a (%&x1) matrix, R3* is a (mxl) matrix,
and R4 is a (nxl) matrix, and a star represents that elements
of matrix that are known quantities. These known quantities
are observed three components of displacement vectors on the
surface, stress free conditions on the surface and force
balance conditions inside the boundaries. The latter two
conditions give zero values to the load matrix [R]. It is
noted that free surface conditions are not satisfied exactly in

this formulation because only the continuity of displacements
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is assured between elements in the displacement based
formulation.
The above matrix equation can be modified to give a more

convenient form to analyze, that is: (345)

m n L n k L k m
k (ki3 K14 0 o[ us] ("Kll -K12 I 0] rUl*\’
L | Kp3 K24 -I 0]l Uy -Kp1 -Kgp O 0 Uz*,’
m | K33 K34 0 0| Ry i -K3] -K39 0 I| |Ry*!
. :
n \K43 Kgq 0 -IJL Ry \-K41 ~Kyg2 0 0) (R3%

where [I] denotes a unit matrix of appropriate order. As can
be seen from the above equation, our problem is
overdetermined if g+m+2n<k+2+m+n, underdeterined if
k+24m+n< L+m+2n, and ill-posed if rank of Ln<k+g+m+n and rank
of Ln<&+m+2n, and well-posed if rank of Ln = k+2+m+n =
L+m+2n, where Ln represents the matrix on L.H.S. of eq. (345).
We need, therefore, to have the rank of Ln = k+2+m+n = ¢
+m+2n which reduces to k=n. Since k is the number of
components of which we know both displacements and forces and
n is the number of components for which we know neither of
them, the last equation shows that the number of surface
nodes where we have both stress free conditions and observed
displacements (this excludes the boundary ndédes on the
surface) need to be the same as the number Qf boundary nodes
inside the earth where we know neither tracﬁions nor
displacements. To attain this condition, wé need to choose a
special family of finite element mesh confiéuration. Thié is

mathematically equivalent to specify a base of a solution
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space and thus gives a discrete analogue of the eigenfunction
expansion method studied iﬁ previous sections. Because
stress free conditions are not satisfied exactly, we use no
discfete analogue for the shooting method.

The simplest mesh configuration which satisfies the
above condition is shown in Fig. 7. This mesh configuration
has a certain advantage that it allows us to increase the
order of interpolation function without changing the whole
configuration. This is shown in Fig. 8. The value of k, %,
m, n in cases of 8 nodes interpolation and 20-nodes
interpolation are presented in Table 1.

Since in the parabolic interpolation using 20 nodes in
an element the highest term is square, we expect that a
strain change in the element is at most linear. Thus if we
have to approximate a rapidly changing stress field inside a
block, the block must be further subdivided. We can improve
the accuracy of solution by subdividing the inner block in
Fig. 8 into 7 small blocks as shown in Fig. 9. The values
of kX, £, m, n are also shown in Table 1. It is clear that
the condition k=n still holds after this subdivision.

Even though the above method enables us to solve the
discretized three dimensional inverse problem without using
any stabilizing or regularizing techniques such as a
generalized inverse or a singular value decomposition,
computational cost is still very large because the resultant
matrix Ln is fully populated and therefore we need to use a

large in-core memory. Therefore while the above method of



inversion based on the finite element discretization of the
problem gives quite general and flexible approach to our
inverseAproblem, the analytic solutions obtained in the
previous sections has computational advantage as long as
three dimensional elastostatic inverse problem is concerned.
For other inverse problems such as the inverse potential
problem studied by Garabedian and Lieberstein (1958) the
above method of inversion based on the finite element method

may provide a very effective numerical technique.

77
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Table 1. Values of k, %, m, n

Case k | 2 m n Total
1 12 12 12 12 48

2 36 36 36 36 144

3 36 36 120 36 228

Case 1. Five 8 nodes clement are used (Fig. 5)
Case 2. Five 20 nodes element are used (Fig. 6)

Case 3. Twelve 20 nodes element are used (Fig. 7)



Figure Captions for Chapter 3

Fig. 2. Coordinate system and boundary conditions used for
the two dimensional elastostatic inverse problem.

Fig. 3. Coordinate system used for the three dimensional
elastostaﬁic inverse problem. |

Fig. 4. Example of 10 points network for data input for the
inversion.

Fig. 5. Mesh configuration by 8 nodes element used in the
finite element inversion.

Fig. 6. Mesh configuration by 20 nodes element used in the
finite element inversion.

Fig. 7. Mesh configuration by 20 nodes element used in the

finite element inversion.
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CHAPTER 4. ERROR ANALYSIS

4.1. Exactness and uniqueness of solutions

Solutions obtained for the three dimensional elastostatic
inverse problem using the eigenfunction expansion-shooting
method teéhnique applied to the Galerkin vector in the
preceding chapter are exact solutions. Their validity can be
proved by substituting these solutions into equatuions of
balance and equations of compabibility in elasticity. Those

equations are,

BUXX acxy aO'xZ
———— et ——m= 4 ———= = 0 (346)
X Ay 9z '
chy a()'yy adyz
——— et === 4 ——Z- =0 (347)
ax L)% 9Z
30xz aO'yz Bczz
————f m—=me 4 ———— = 0 (348)
X Ay 3z
au oV 3w
oxx = (A+2u)== + A(=—+--) (349)
ax dy 9z
Vv au  Iw '
opy = (A+2u)== + A(==+-=) (350)
3y X 292
aw au v
Ozz = (A+2u)-= + A(-=-+--) (351)
3z 9X dy
v~ 3u
oxy = u(=-—- + --) (352)
Ix Yy ‘
ow au
Oxz = ul=-— + —-=) (353)
X 92 '
ow v
Oyz = u(-- + --) (354)

Yy 3z
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where )\, u are Lame's constants.

Applying the Cauchy-Kowalewsky theorem to the set of
equations, from eq. (346) to eq. (354)Awith zero boundary
conditions as we have done in Chapter 2 for the Cauchy
problem for the Laplace equation, we can easily prove ihat
these solutions are also unique.

Although those solutions are proved to be valid and
unique, we have to know errors involved in the solutions if
we are going to apply those solutions to actual problems.
An error is possible because our solutions are based on the
eigenfunction expansion up to a certain order and therefore
they cease to be exact if actual boundary conditions require
eigenfunction expansions of the order higher than the one
used in obtaining the solutions.

4.2. Geodetic network

As shown in the preceding chapter, the solutions based on
the eigenfunction expansion of the Galerkin vector by the
polynomial of fifth order, we need 10 parameters for each
component of displacement vector to be specified on the
boundary where displacement components are approximated by
cubic polynomials. Since we are dealing with the geodetic
inverse problem, these parameters on the surface must be
chosen so that error introduced by the cubic approximation of
displacements is kept minimum while geodetic measurement
procedure on the surface to obtain displace&ents is kept as
simple as possible, i.e. these paraméters s&ould be obtained
from geodetic measurements directly without:any interpolation

and extrapolation that usually introduce another error.
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Since current measurement techniques to obtain horizontal
components of displacement vectors are based on triangulation'
measurements or trilateration measurements witﬁ geodimeters,
geodetic networks used have always a shape of polygon with
straight side lines which is constructed by adding many
triangular networks (Bomford, 1971, Ewing and Mitchell, 1970).
The leveling measurement to obtain the vertical component of .
displacement vectors on the surface is conducted on a closed
>loop which consists of curved 1line segmenté whose shapes
depend on the topography. Most of the data obtainable to us,
such as Fig. 16 which present the shape of the Palmdale uplift
between 1959 to 1974 are the consequence of heavy use of
interpolations and extrapolations of original data to obtain
meaningful contour lines (Castle, personal communication).

Considering the above factors in current geodetic
measurements, the shape of geodetic network on which we obtain
necessary components of displacement vectors becomes very
suitable for this purpose if we choose it as a polygon. A
triangle with equal side lengths as shown in .Fig. 4 is one of
the best choices because of its simplicity to obtain geodetic
data on the side lines. It also minimizes the
interpolations of data requiring only one internal data point
at the center. This shape also has an advantage of reducing
unnecessary bias due to orientations of the;network which can
be introduced if an arbitrary polygonal sha%e is used. (A
circular net has no orientation problem, bu& it leads to
unstable results). The use of a least squares method to

obtain polynomial coefficients may not be advisable because we



89

need further interpolations to’obtain necessary data. If we
increase the number of data points along each side line of the
geodetic network to use for the least square fitting the.
result may give better approximations for displacement vectors
provided that we are dealing withvdata obtained on the network
directly. If we are dealing with published data such as the
case of the Palmdale uplift, the increase of data points may
not necessarily bring better accuracy.

The size of the geodetic network is also an important
factor for our inversion scheme because it is related to the
accuracy of approximation of compohents of displacement vector
on the surface by the polynomial expansion. It also
determines how deep an error on the surface is propagated and
amplified. 1If we use a smaller network we can match the data
of higher frequency component, but the continuation of the
data downward become more unstable unless data is error free
as in the example of Chapter 2. In order to analyze errors
involved in our inversion scheme, we shall use artificial data
such as those generated by a buried point source or by a

buried dislocation source.
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4,3. Testing with Artificial Data

In order to analyze the error involved ih the inversion
especially its dependence on the size of geodetic network, two
sets of artificial data will be used. One is the displacement
on the surface generated by a buried point force in a
homogeneous half sbace (Mindlin, 1936) and the other is the
displacement generated by a buried strip of dislocation in a
homogeneous half space (Chinnery, 1958). The calculated
stresses at depth by the inversion scheme are then compared
with true stresses generated by‘these sources.

We used a configuration shown in Fig. 8 for the testing
by the buried point force; A point force directed upward.is
placed along the vertical axis at.various depths while a
triangular geodetic network with various side lengths is set
up at the center of coordinates on the surface. The
configuration used for the testing by the buried dislocation
source is shown in Fig. 9. An infinite vertical strip of
dislocation with the horizontal Burger's vector with width of
60 km are placed along the x axis with its top at 20 km depth.
The triangular geodetic network with various side lengths is
set up at 15km off the center of coordinates on the surface.
It is noted that the configuration used for the testing by the
dislocation source is essentially similar to those used by
Brown (1975) and Prescott and Savage (1976) to model the slip
along the San Andreas fault in the big bend section. The
rigidity and Poisson's ratio are assumed to be 3.0 x 1011

dyne/cm?2 and 0.25 respectively.
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Fig. 10 shows the absolute error betwecen the exact
solution and inverted solution at (0, 0, -5km) for a point
force placed at various depths. The inverted solution was
obtained by the use of a triangular network with 10km side.
Fig. 11 shows the absolute error at (0, 0, -5km) again as a
function of the depth of the point force. 1In this case the
side of the triangular network was chosen to be 30km. These
figures show that the absolute errors are in general one order
of magnitude smaller than the magnitude of the maximum
principal stresses, when the artificial data generated by a
point force is used.

In order to compare errors between our new analytic
method the finite element method used previously (Ikeda, 1980),
we inverted the artificial data due to the point force by both
methods to obtain stress at (15, 15, =-3.75km). The depth of
the point force is varied from 30km to 80km. The difference
between the exact solution and inverted one computed by the
analytic method is shown in Fig. 12 as a function of the depth
of the point force. A similar plot for the finite element is
shown in Fig. 13.

It is shown that when the point source is located at a
depth shallower than 30km, érrors in both‘methods would be of
the same order of magnitude, 10% or more of the maximum
principal stress. When the location of the point force is
deeper than 30km, however the analytic method gives errors of
one order of magnitude smaller than the finite element method.
For depth of the source greater than 50km, the error in the

analytic method is less than 1% of the maximum principal
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stress. The dependence of error on the depth of the point
force, that is, the little difference between the two methods
at shallow depths can be attfibuted to the fact that the
finite elément method with twelve 20 nodes isoparametric
elements as shown in Fig. 7 has greater number of data
sampling points on the surface than the analytic method. Thus
even though the stress free conditions are not satisfied
exactly in the finite element method solutions, it can
accomodate small scale lateral variations in displacement
somewhat more faithfully than the analytic method.

When the depth of the point force increases the lateral
variation in displacement becomes smoother at the surface .and
the fit by polynomials in the analytic method beccme effective
and the exactness of its solution gives better results than
the finite element method.

The above examples show that these two methods of
inversion, i.e. the analytic method and the finite element
method may complement each other. Since it is easier in
principle to improve the accuracy in the finite element method
comparing to the formidable task of obtaining solutions with
higher order of polynomials in the analytic method, we
recommend the use of the analytic method to obtain a
large-scale picture of the distribution of stress in the earth
while the local, small-scale variation of stress may be better
treated by the finite element method by introducing higher
order interpolant such as 32 nodes isoparametric elements.
Since the latter method requires a huge amount of memory space

and computational time, it is recommended for application only
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to important local spots requiring a special attention.

The efficiency of the analytic method when long
wavelength componenté are dominant in data is'demonstrated.in
Fig. 14 and Fig. 15 where the displacement due to a strip of
dislocation is used as the artificial data and errors aré
presented as a function of thé depth of the upper edge of the
strip of dislocation. Fig. 14 shows that in the case of a
triangular network with 10km side length, the absolute error
between exact solution and inverted one is less than 1% of the
absolute value of the maximum principal stress. The choice of
30km side length would increase the error, but still gives the
errors smaller than a few % of the maximum principal stress.

Since most of the sources expected in nature are not as
concentrated as the point source, we expect that when we apply
our inverse scheme to real data errors are closer to those
obtained for the strip of dislocation. This implies that if
we use a triangular network of 30km side length, we can obtain
solutions up to 10km depth with a reasonable accuracy provided
that sources are located deeper than 20km. This situation may
be applicable to the San Andreas fault region to which we

apply our analytic method to find stresses at depths in the

next chapter.
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4.4 Theoretical error estimagg

Even though the numerical experiment using artificial
sources such as the point force and the dislocation source in
the previous section gives certain feelings about an error
associated with the solution obtainéd by our analytic inverse
method, there arises a question whether the accuracy of the
inversion scheme holds for other types of source or not, and
if not, what are contributing factors to affect the accuracy
of the analytic inversion scheme. To resolve this question we
must analyze the error theoretically and derive a theoretical
bound of the error associated with the scheme.

Since the analytic scheme is essentially based on the
application of the Cauchy-Kowalewsky theorem to Navier's
equation in the elastostatics, i.e. eqg. (346) to eg. (354),
and the method is based on a generalized Taylor expansion of
the solution in the neighborhood of a surface where Cauchy
data are given and a determination of derivatives in this
generalized Taylor expansion using Navier's equation and
Cauchy data, we can analyze the error associated with the
solution by analyzing errors associated with these Cauchy data
and its derivatives.

We shall analyze the error associated with Cauchy data at
first. Since Cauchy data for the inversion scheme are
obtained using the triangular network and the stress free
condition, the problem turns out to be an estimatioén of errors
in an interpolation of a function in a triangular region when

values are given at points on side lines of the triangle.

et g e
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In the theoretical error estimate it is usually necessary
to assume a differentiability.ofvthe exact solution up to a
certain order. Since we are using the cubic polynomial as an
interpolation function on the surface, we assume that the
exact solution belongs C%4, i.e. a class of functions that have
fourth order derivatives. Then we shall use a theorem for the
interpolation of a function in the triangular region. That
is:

Theorem: Given a function f(x,y) € c4 and a cubic Lagrange
polynomial P3(x,y) which has values coincide with those of £
at 9 nodes on sides of the triangle and a center node of
the triangle, there exist a constant Cyx which is independent

of £, h, 6 such as

|-——=-=f - ———=--P3| < Cx ---—- max |----——- £] (355)

where 86 <1 + j =k <3, m+n =4, 6 is a minimum angle of
the triangle, and h is a maximum distance between nodes. A
proof of this theorem is given in Prenter (1975) or Zlamal
(1968).

Using this theorem we have error bounds for the
displacement component u and its derivatives on the free

surface. They are, explicitly (Zlamal, 1968)



3h4 24y

lu - up] < ---- max |------ | (356)
sine axM 3yn
u dup 5h3 24u
|-- = ===| ¢ ---- max |------ | (357)
X X sin® axT gy
U Bup 5h3 34u
|-- = ===| < =-=-=- max |------ | (358)
3y 3y sineg axMayn '
32u 32un 9h2 3du .
|--= = ====| < ===- max |------ | (359)
ax 2 3x 2 sin®g axMayn
32u  32uy 9h2 34u
|-=== = === | < =—=- max |------ | - (360)
ox 3y X 3y sing axMayn
32u 32y, 9h2 adu
| ~~= = ==—==| < -=-- max |------ | (361)
ay 2 ay2 sine axM gyn
a3u a3un 12h 34u
|--= = ====| < ---- max |------ | (362)
ax 3 ax3 sin® axM 3y N
32u 32up, 12h a4u
e T - | ¢ ---- max |--=--- | (363)
ax 23y ax23y sine axMayn
a3u a3up, 12h adu
———————————— | € ——=- max |------| (364)
ax 3y 2 ax ay 2 sing axM3yn
a3u a3un 12h atu

|--= = ====] < -=-- max |---—=-- |. (365)
ay3 ay3 sine axM 3y N
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where up, is an approximated value and m, n = 1,2,3,4 with m +
n = 4. Similar error bounds for other displacement components
are obtained by replacing u and up in eq. (356) to eq. (365)
with V, W, V, and W,. These equations represent the error
associated with Caqchy data énd their derivatives on the
surface. It is apparenﬁ from Ehese equations that the
truncation error on the surface is governed by fourth order
derivatives of data functions and parameters h and 6. Thus an
equal length triangle with equal distances between nodes is an
optimal choice to interpolate surface data with minimum
truncatiqn error.

The error associated with the stress components below
the free surface is obtained by using these error estimates
for Cauchy data and their derivatives in applying
Cauchy-Kowalewsky theorem to Navier's equation.

To obtain the error estimate associated with stress
components, we shall assume that the solution belongs to a
class of function e R3, i.e. differentiable up to third order
Expanding the solution near origin (0, 0, AZ) into the

generalized Taylor series we have for oyy as

. d0xx 32 oy x
oxx (0,0, 82) = oxx| + —=——=| AZ + —=—== | az2 (366)
z=0 9z z=0 22922 z=0
330xx
+ ————= Az 3.
03z3 z=0

i
Eq. (366) shows that the error associated with ogx is
equivalent to a sum of errors associated with these Cauchy

data and their derivatives.
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Using Navier's equation, i.e. eq. (346) to eq. (354) the

first term in R.H.S. of eqg. (366) is represented as

au v W
oxx = (A+2u)—--= + p—— + p-——, (367)
9x oy 3z

Since we have, by stress free condition on the surface

ow 0 au v
—— = = =——e (== + ==) (368)
3z A2 X y '
ou ow
— = - - (369)
A 39X
v ow
-— = - - ’ (370)
9Z oy
eq. (367) is further modified as
(M21)2-42 du (a+2p) p-p2 av
Uxx T oemmmmmm———e —— + e - (371)

The second, third and the fourth terms of R.H.S. of eq.

(366) are represented as

doxx  E-(A21)2 32w u2-(a+2u) 32w
Tmmm = s oo t o oo . (372)
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Bzoxx u2—( A2 u)2 3 92w u2—( AMt2u)u 2 32w
—————— IE e - ———— —_— (———) 4+ e _—— ———
3z 2 A+2 1 3z 9x 2 A+2 1 3z ay?2
p2-(A+2u)2 32 -y w3V |
= ———- ————- —e= {mmmm (—= 4 =o) ) 4
A+2u a2 A+2u 8 3y
(373)
p2=( x+2u)u 22 -4 u v
————————————— {-===(== + ==)}
A2 u ay2  A+2u 3x Ay
—w+ (2w 2 d3u 33v —w+ (2w 2 32u 33v
S — (=== + ———m—m I (m=—mm + o———)
(A+2u)2 ax3  axZ2ay (A+2u)2 axay2  ay3
(374)
33oxx W3- a2u)2y  dtw 34w o2 2w 24w
=2l = o (m—= + ———mmm I iy QU — -
az3 (A+21)2 ax4 ax2 3y 2 (A+2u)2 ax23y2  ayé

Since error bounds for derivatives in eq. (367) to eq.
(374) are given by eq. (356) to eq. (365), we obtain the error
bound by summing them up. This summation of these error
bounds can be simplified further if we assume a Poisson solid,
i.e. X = u. The error bounds for each term in R.H.S. of eq.

(366) are therefore



8 wsh3 2 u5h3
oxx | oxx | < - -—-- max |D4u] + - ——=- max |Div|
z=0 n z=0 3 sin® 3 sineg
17 ph3
< ———- max {|p%u|, |piv|} (375)
sin®g
2
BOXX aoxx 30 uh
- - ——=-n < —---- max |D4w]| (376)
93z z=0 9z Z=0 sine
2ogy 32 oy« 10 12h 10 12h
————— | - ———— < —= ---- max |D%u| + -- ---- max |D4v|
3z z=0 9z2  z=0 9 sing 9 sinsg
14 yh
< ---- max {|Dp%u|, |pdv]} (377)
sineg
830'xx 330xx 20].]
————— | - —--—--N < -- max |D%w| (378)
3z3  z=0 0z3  z=0
where oyxy denotes an approximation of the solution and
n
34u
Ddu= —————- 0<m, n<4 m+n = 4, (379)
axM gyn

Plugging these error bounds
derivatives into the generalized

(366), we have total error bound

as

100

for Cauchy data and their
Taylor expansion i.e. eq.

for oyxx at the depth of AZ
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. 17 yh3 30 pyh?2
oxx — Oxx | € -—=- max {|D%u|, |D4v|} + ---- max | D4w | Az
n sin® sine
7 uh A
---= max {|D%u|, |D%v|}az2
sin 8
(380)
20
+ ——= max |Dgw]Az3
54
(17h3+30h2Az+7haz2+0.4423)
s e e e e max {|D4u|, |D4Vl, |D4w|}¢

Error bounds for other stress components can be obtained
in a similar manner and thus we have a general expression for

the theoretical error bounds for stresses at depth as
| oiq - oijnl < ————- max {|Dp4u|, |p4v|, |D4w| } (381)

where hg = max {|h|,|AZ|} and K is a constant which is
independent with the triangle and u, v, w.

The above general expression for the error bound shows that
contributing factors for the error involved in our analytic
inversion scheme based on the cubic polynomial expansion are the
minimum angle of the triangle, the maximum distance between
nodes along the side of the triangle, the depth at which

solution should be obtained, and the fourth order derivative
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of the solution. If the displacement on the surface are
represented by the second order polynomial i.e. fe R3, then
the analytic inversion scheme gives an exaét solution
throughout the half space as expected.

It should be stated that actual errors involved in the
analytic scheme are usually smaller than those indicated'by
previous analysis because these estimates are giving only
upper bounds of possible errors. It is also well known that
errors are considerably less on each node when one is
approximating a function by polynomials (Douglas and Dupont,
1974). Therefore constants in the error estimate can be taken
to be smaller ones if we calculate solutions along an axis
which passes the center node.

It is also clear from this analysis that we should use
the equal angle triangle geodetic network as small as possible
to obtain necessary Cauchy data because the error bound
decreases when the maximum distance between nodes on the
triangle decreases. Therefore a limitation of the analytic
inversion scheme is imposed by an availability of necessarily
dense coverage of geodetic networks. Since current geodimeter
measurements are performed along the line which has commonly
30 km of length, it is useless to use geodetic triangles with
side lengths less than 30 km as long as the error contribution
from geodimeter measurement is concerned. pn the other hand
the error contribution from levelling measu;ement can be
improved if we use smaller triangulat netwoéks provided that
we can use initially obtained data along such a small closure

for the levelling route.
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Figure Captions for Chapter 4

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

8. Model of the point force ﬁsed for generating
artificial data.

9. Model of the dislocation source used for generating
artificial data; | |
10. Absolute error by the analytic method at (O.Q,
-5km) as a function of depth of the point force in‘the
case of the triangle network of 10km side length. The
top curve shows a maximum signal level.

11. Absolute error by the analytic method at (0.0,
-10km) as a function of depth'of‘the point force in the
of the triangle network of 30km side length. The top
curve shows a maximum signal level.

12. Absolute error by the analytic method at (15km,
15km, -3.75km) as a function of depth of the point force
in the case of the triangle network of 10km side length.
The top curve shows a maximum signal level.

13. Absolute error by the finite element method at
(15km, 15km, =-3.75km) as a function of depth of the point
force in the case of depth of the rectangular cube of
10km side length. The top curve shows a maximum signal
level.

l4. Absolute error by the analytic method at (15km;
15km, -5km) as a function of depth of;the dislocation
source in the case of the triangle neéwork of 10km side

3

length. The top curve shows a maximuﬁ signal level.
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15. Absolute error by the analytic method at (15km,
15km, -10km) as a function of depth of the dislocation
source in the case of the triangle network of 30km side

length. The top curve shows a maximum signal level.
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CHAPTER 5. PALMDALE UPLIFT

5.1 Geodetic data

In Southern California an uplift called Palmdale bulge,
over an area of 300kh x 150 km albng the San Andreas‘fault,
was first discovered iﬁ 1975 from the levellihg work relative
to a bench mark called "tidal 8" a£ San Pedro and reported by
Castle et al. (1976). The patfern 6f,uplift is shown in Fig.
16. This observation was mainly based on the levelling survey
conducted between 1959 and 1968, and large scale high
precision levelling survey was conducted since then. The
result of these continued measurements revealed that the bulge
was wider than estimated at first and also greater in
displacement (Castle, 1978). It waé'also found that part of
initial uplift subsided_Since‘l974 although the space-time
history of this subsidence or "downwarp" is quite uncertain.
These results are shown in Fig. 17.

According to Castle (1978), the whole episode of uplift
consists of three stages.

Stage 1: The uplift began neaf the intersection of the
Garlock fault and the San Andreas fault in late 1959 and
spread eastward which is confirmed by the continuous levelling
near Palmdale showing that this area uplifted by 20 cm during
1959-1962 period. This is shown in Fig. 18. Thevuplift
gradually increased by anbther.ls_cm in the next 10 years.

Stage 2: Between late 1972 and early 1974, the area of
uplift expanded to the southeast, where a maximum uplift of

45 cm occurred near Yucca Valley.
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Stage 3: Between late 1974 and late 1976, much of the
uplift subsided. This downwarp reached 18 cm near Palmdale,
16 cm near Cajon, and 24 cm in Mojave.

Although there have been some arguments that attribute
some parts of the uplift to measurement errors associated with
calibrations of rod (Lee and Jackson, l978f, in thelpresent
paper, we shall accept that the uplift shown in Fig. 18 was
real. |

Since Reid's suggestion on monitoring a strain
accumulation as an earthquake precursor (Reid, 1910),
extensivé triangulation survey has been conducted in
California by several agencies (Savage et al., 1973,

Thatcher, 1976). Tﬁese data show that the general trend of
horizontal strain accumulation near Big Bend is 0.370.4
microstrain per year of contraction in NS direction and 0.0"
0.1 microstrain per year of extension in EW direction. This
pattern of strain accumulation is consistent with the regional
stress expected here from plate tectonics (Atwater and Molnar,
1973). |

After the discovery of the Palmdale Bulge, interest in the
relationship between horizontal strain accumulation and uplift
during the uplift period is increased and many data were
reanalyzed.

Using triangulation network near Big Bend shown in Fig.
19 Thatcher (1976) discussed that the diréction of strain axes

were significantly different from the lonq term regional trend
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during the'uplift period 1959-1963. He suggested that the
compressional axes are perpendicular to the contour of uplift
almost everywhere. But his conclusion was based on Frank's
method that uses only the éhange of angle in a triangulation
network and therefore we éan superpose an arbitrary amount of
dilatation on his result. As Savage and Prescott stated, this
fact makes his result model dependent.

Savage et al. (1973) analyzed geodimeter data along the
San Andreas fault as shown in Fig. 19 and revealed no special
change during the period 1950-1972 The obtained data shows 0.4
microstrain per year of contraction in N13°E direction and 0.1
microstrain per year of extension in the direction of N77°W
near the intersection of Garlock fault and San Andreas fault.
Near Palmdale, they observed 0.31 microstrain per year of
contraction in the direction of N7°E and 0.07 microstrain per
year of extension in the direction of N83°W. These results
are based on the change of the»;ength of line and are

therefore not model dependent.

5.2 Inversion

In order to apply our inversion scheme to Palmdale Bulge,
we used the triangular network as shown in Fig. 4 with the
length of each side to be 30 km. The horizontal displacements
at points of each triangular network are obtained using
Savage's data for accumulated strains between 1959 to 1974,

assuming a constant strain rate uniform within each triangle.
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Vertical displacements are read from the contour map given by
Castle et al., (1976). Rigidity of 3%x10 %} dyne/cm? and
Poisson's rétio of 0.25 are assumed. Since the space-time
.distributioh_of downwarp is not well-defined, we analyze only
the data obtained during 1959-1974 which is based on the map
of the bulgé shown in Fig. 16.

With these data on three-components of the displacement
vector as input to our inversion scheme, we obtained
incremental stresses inside each triangular network that are
distributed along the San Andreas fault as shown in Fig. 20.
Denoting centers of each triangle as point 1, ...8, 1N...8N,
1S...8S, points 1 to 8 are set up along the San Andreas‘faglt
with 25 km intervals between each other. Points 1N to 8N are
set up 25 km north of points 1 to 8 and points 1S to 8S are
set up 25 km south of points 1 to 8. Data for each triangular
network are listed in Table 2.

Principal axes of incremental stresses accumulated during
the period 1959 to 1974 are calculated below the center of
each triangle at 5 km and 10 km depth as listed in Table 3.

At the surface, the principal stresses are composed of a
horizontal compressional stress directed nearly-in the
north-south, a horizontal vanishingly small stress directed
nearly in the east-west, and a vertical stress with zero
magnitude. We shall call these three principal stresses as
the E-W principal stress, the N-S principal stress and the

‘near vertical principal stress.
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It is easy to identify these three principal stresses at
depths although their direction rotates with deéth. The near
vertical stress is identified as the one with the greatest dip:
angle. The_E-W stress 1is identified, then, as one of the‘
two remaining stresses having the azimﬁth closer to the
east-west. Once the identification is made, the magnitude and-
orientation are shown separately for each stress on the map in
Fig. 21 to Fig. 30.

The N-S principal stress at lOkm_depth is everywhere
compressional. 1Its azimuth and dip are nearly the same as at
the surface, with rotation up to 28°. The magnitude, however,
increases up to 12 bars froﬁ the surface value of 3.5-4.5 bar.
The maximum increase occurs along the fault near Palmdale
where the vertical displacement has also the maximum value.

The E-W principal stress, on the other hand, changes the
orientation considerably with depth especially with respect to
the dip angle (up to 44°). This stress is compressioﬁal almost
everywhere, and again shows the maximum of 6 bars in the same
area where the N-S principal stress reaches the peak value.
This result shows that the incremental shear stress along the
fault at 10km depth near Palmdale is only slightly greater than
at the surface, but the incremental normal compressiohal stress
increases with depth considerably, suggesting a lockihg
mechanism on the San Andreas fault during the period of
Palmdale uplift. »

It is interesting to note that a swarm of

microearthquakes occurred in this area during 1977 to 1978
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(McNally et al., 1979) which may be attributed to a sudden
release of this high compressional'stress due to the downwarp
of the bulge.

Finally, the near verﬁical principal stresé at lbkm depth
‘shows quite a variable orientation from place to place. It
is, however, significant that this stresé is tensional almost
everywhere with the'magnitude up to 1.7 bars. Thus, the state
of incremental stress at 10km depth under the Palmdale bulge
is characterized by an increased horizontal compression. and an
increased vertical tension while the shear stress on the fault

was only slightly greater than at the surface.

5.3 Error estimate for the result from Palmdale data

In the preceding chapter we observed that the error
associated with the triangle of 30 km side length at the point
(0, 0, -10 km) was an order of magnitude smaller than the
magnitude of the maximum principal stress when artificial data
from the point source was used. Although this error bound is
very attractive it is based on an assumption that data
obtained at nodes are original data, i.e. without any
processingbof data such as linear interpolations and also they
are not contaminated by measurement errors. This assumption
is obviously not applicable when we use real geodetic data to
apply our inverse scheme to real problems such as Palmdale
uplift.

The first part of the assumption, i.e. no processing or
manipulation on original data is most’severely viblatéd in
triangulation or geodimeter measurementé for horizontal

displacements because these measurements are performed along



single lines with two nodes at the end of line and

therefore we can obtain only a linear variation of horizontal
displacements along each measurement line. If these
measurements along lines are connecﬁed together we can obtain
higher order variations of horizontal displacements by using
piecewise linear interpolations but usually this is ncot the
case. At Palmdale network, geodimeter measurements are
performed along lines that have typically 30 km length and
therefore we can obtain only linearly interpolated data of
actual horizontal displacements if wé use a triangle of 30 km
side length for our inversion.

On the other hand, levelling data are in a better
position than geodimeter data even though they are processed
heavily to draw meaningful contours for vertical
displacements. This is because measurements are made usually
at short intervals along a levelling route, and, therefore,
the use of many sampling points is worthwhile even after
original data are processed by some countering schemes. This
higher spatial resolution is the advantage of levelling data
as compared to the geodimeter data. Thus, the truncation
error would be less serious for levelling data than for
geodimeter data.

To analyze the effect of the.truncation error in
horizontal displacement data due to linear interpolations, we

again use the numerical experiment with the point source

3
{

i
'
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because this extreme case gives us certain upper bouhdsvfor
errors involved in the inversion with actual geodetic data.
We use the same configuration as Fig. 8 bﬁt use linearly
interpolated horizontal displacements and original vertical
displacements. The linear interpolation'of horizontal
componenﬁs is done by taking data at three peaks of the
triangle and then interpolating the data linearly along each
side of the triangle. Vertical components are used without
any processing. The absolute errors between solutions of our
inversion scheme and theoretical ones at a point (0, 0, -10
km) are plotted as a function of depth of the pdint source in
Fig. 31.

This figure shows that it is very dangerous to use
interpolations of different orders for different components of
displacements because the error reaches the same order of
magnitude as the magnitude of maximum principal stress if
point source is placed very shallow. Since a configuration of
vertical contours of Palmdale uplift near Palmdale is more or
less comparable with displacements generated by the point
source located at depths 30 km to 40 km, we can estimate an
‘upper bound of absolute errors involved in our inversion.at
Palmdale using real geodetic data with linearly interpolated
horizontal components to be 90% of maximum principal stresses
from Fig. 31.

This rough estimate for the upper bound of erroré is
éonsiderably large and may cause a question about a

practicality of our inversion scheme as long as currently
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available geodetic data aré being usea. Fortunately, we can
lower this upper bound of errors for the inversion near Palmdale
because we have horizontal displacement data from another
geodimeter network which consists of lines of short length less
than 10 km (Prescott and Savage, 1976). Since data from this
émaller network are showing the same linear horizontal |
displacements as those obtained by the larger geodimeter network
with 30 km line lengths that provides basic data used in the
inversionrin the previous secfion, we can assume that near
Palmdale. The linearity of horizontal displacement is not a
result of a small number of sampling points but is reflecting
real linearly varying displacements. In that case we can assume
that the error bound in our inversion solutions are those
obtained in the numerical experiment with the point force and
cubic interpolations of displaéements as shown in Fig. 11,
Therefore we conclude that our solution near Palmdale, i.e.
solutions at point 5 in the previous section is not contaminated
by the error due to insufficiency of horizontal data and has
maximum error less than 10%. For other parts of Southernv
California the situation is not so good as near Palmdale because
we do not have separate measurements for horizontal
displacements along the San Andreas fault. Therefore it is
possible that solutions obtained at points along the San Andreas
have considerably large error up to 90% although the linear
consistent variation of horizontal displacements seems to be
typical in Southefn California and is cbnsistent with an

implication from plate tectonic theory.
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Assuming we have enough number of observations to allow
us to use cubic polynomial interpolations in all displacement
components; we still have to consider errors originated from
the geodetic measurement itself at each node. This error can
be studied by calculating the sensitivity of solution to
small perturbations of data at each node.

In Fig. 32 the maximum perturbations in inversion
solutions at the point (0, 0, -10 km) are plotted as a
function of perturbations_in horizontal displacement
components and as a function of perturbations in vertical
displacement components. -Data at each node of the triangle
with 30 km side length are perturbed separately and the
maximum perturbation in the solution associated with these
data perturbations is plotted. It is shown that a sensitivity
of solutions to the perturbation of horizontal components 1is
one third of the sensitivity of solutions to the perturbation
of vertical components. This is a very nice character of our
inversion scheme because we usually have greater accuracy in
vertical components than horizontal components as mentioned
before. At Palmdale, we have the error in geodimeter
measurements estimated as #*30% and the error in levelling
measurements estimated as *5% within the triangle of 30 km
side length. Therefore we con estimate the error involved in
the inversion near Palmdale due to geodetic measurements is
ciose to 20% as a whole._ Combining this etror to the error
generated by the finiteness of the order of interpolations, we
conclude that our inversion solution near Palmdale has a

possible error within 30%.



123

The-above analysis shows that the combined use of smaller
geodimeter nétworks are crucial to bound errors in our
inversion scheme. In order to apply the cubic interpolation,
wé need data at least 10 points. One simple way to achievé
this is to divide the triangle into pieces of émallerv
triangles and perform geodimeter measurements along each side
of small triangles as shown in Fig. 33. This procedure may
improve the accuracy of our inversion scheme by one order of
magnitude as can be seen from the comparison of Fig. 31 with
Fig. 11.

If, on the other hand, we use the data at only 6 points
as shown in Fig. 34, we can not apply the cubic interpolation
but the quadratic, which would give about 50% increase in
accuracy, because from the numerical experiment using the
finite element method (Ikeda, 1980). The error in inverse
solution generally decreased linearly with the number of
nodes.

If we cut down to 4 points as shown in Fig. 34, we cannot
use a full quadratic interpolation, the improvement in

accuracy would even be less.
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45
u

-.2570641
-1.120489
-1.983891
-2.847305

-.8634135

1.120489

3.104369

1.983891

.8634135
.0

55
u

-2.045119
-.9653528
.1144336
1.194210
1.079776
«9653528
.8509092
-.1144336
-1.079776
.0

6S
u

-2.045119
-.9653528
1144336
1.194210
1.079776
9653528
.8509092
-.1144336
-1.079776
.0

v

7.333315
1.643909
-4.045531
-9.734953
-5.689423
-1.643909
2.401639
4.045531
5.689423
.0

v

2.919487
-.6894846
-4.298442
-7.907406
-3.608964
.6894846
4.987919
4.298442
3.608964
00

v

2.919487
~.6894846

—-4.298442

-7.907406
-3.608964
.6894846
4.987919
4.298442
3.608964
.0

w

4.00000
8.00000

13.60000

20.20000
18.00000
15.00000
11.70000

8.80000

5.00000
11.50000

w

2.50000
9.20000
15.10000
24.80000
17.80000
12.50000
8.00000
6.00000
4.80000
11.30000

w

.60000
5.80000
12.00000
18.70000
12.50000
8.00000
3.70000
3.00000
2.20000
8.00000
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Network at point

Node

=
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75
u

-2.045119
-.9653528
1144336
1.194210
1.079776
.9653528
.8509092
-.1144336
-1.079776
.0

85
u

-2.045119
-.9653528
.1144336
1.194210
1.079776
.9653528
.8509092
-.1144336
.0

v

2.919487
-.6894846
-4.298442
-7.907406
-3.608964
.6894846
4.987919
4.298442
3.608964
.0

v

2.919487
-.6894846
-4.298442
-7.907406
-3.608964
.6894846
4.987919
4,298442
3.608964
.0

«0
2.00000
6.80000

11.50000
6.30000
2.00000

.0

.0

.0
2.50000

.0
.0
.0 ,
4.000000
.0
.0
.0
.0
.0
.0
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Table 3. Principal Incremental Stresses at Depth

Point Depth (km) Magnitude (bar) Azimuth (deg.) Dip (deg.)

1N 0.0 0.0 N103E 0
' 0.0 0 90

-4.5 N13E - 0

5.0 0.3 N102E 1

0.0 N93W : 90

10.0 0.5 N102E 1

0.0 N109W 89

-4.4 N11E 1

1 0.0 0.0 N103E 0
0.0 0 90

5.0 0.5 N106E 43

-0.4 N78W 47

-5.2 N14E 2

10.0 2.0 N111E 44

-1.7 N85W 44

-6.1 N13E 8

1S 0.0 0.0 N103E 0
0.0 0 90

-4.5 N13E 0

5.0 0.0 N60W 89

-0.3 N103E 1

-4.4 N167W 10

10.0 0.0  N4sW 87

-0.6 N102E 2

-4.3 Nl68W 2

2N 0.0 0.0 N103E 0
0.0 0 90

-4.5 N13E 0

5.0 0.3 N104E 24

-0.1 . N74W 65

-4.4 N165W 1

10.0 0.9 N104E 33

: : -0.4 N79W 56

—-4.,2 N164W 4
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Point Depth (km) Magnitude (bar) Azimuth (deg.) Dip (deg.)

2 0.0 0.0 N103E 0
: 0.0 0 90

-4.5 N13E 0

5.0 0.1 N149E : 83

-1.0 N83W 4

-7.7 N7E 5

10.0 0.7 N170E 75

-2.0 N87W 4

2S5 0. 0.0 N103E 0
0.0 0 90

5.0 0.5 N73W 30

-0.1 N95E 60

-3.0 Nl66W 5

10.0 1.7 N59W 40

-0.4 N73E 39

-2.6 N174W 27

3N 0. 0.0 N103E 0
0.0 0 90

-4.5 N13E 0

5.0 0.3 N81W 73

-0.3 N102E 17

10.0 0.2 N84W 73

-0.7 N10OlE 17

-5.2 N11lE 1

3 0.0 0.0 N103E 0
0.0 0 90

5.0 0.4 N10OE 44

-0.3 N70W 45

-5.7 N165W 5

10.0 1.7 N9OE 48

-7.5 NI61W 16

)
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Point Depth (km) Magnitude (bar) Azimuth (deg.) Dip (deg.)

3S 0.0 0.0 N103E 0
0.0 0 90

-4.5 N13E 0

5.0 0.2 , N85W 46

-0.2 N102E 44

10.0 1.0 N10OW 46

-0.7 N108E 40

-3.9 , N6E 14

4N 0.0 0.0 N103E 0
0.0 0 90

-4.5 N13E 0

5.0 0.3 N76W 0

0.0 N14E 88

-3.9 N166W 2

10.0 0.7 N75W 1

0.1 N23E 79

-3.4 N165W 11

4 0.0 0.0 N103E 0
0.0 0 90

5.0 0.1 N52E 85

-2.0 N69W 3

-7.4 N159W 5

10.0 0.6 N39E 77

-5.0 N63W 3

-12.4 N153W 12

45 0.0 0.0 N103E 0
0.0 0 90

-4.5 N13E 0

5.0 0.3 N99E 49

-0.4 N87W 41

-4.6 N168W 2

10.0 1.2 N94E 47

3
-4.8 N168W - 7
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Point Depth (km) Magnitude (bar) Azimuth (deg.) Dip (deg.)

5N 0.0 0.0 0 90
. =0.1 N83E 0
-3.5 ‘ . NTW. . 0
5.0 0.2 - N87E ‘ 50
-0.2 N94W 40
-3.6 NS5W : 1
10.0 ‘ 0.7 N91E 46
-0.7 N10OW : 44
-3.7 N4W : 6
5 0.0 0.0 0 90
-0.1 N83E 10
5.0 0.1 N122E 82
-3.0 N84W 7
-7.6 N6E 4
10.0 0.7 N129E 73
-6.0 N81W 15
-12.2 N12E 8
55 0.0 0.0 0 90
5.0 0.3 N109W 60
-0.7 N82E 30
-4.0 N11W 5
10.0 0.5 N121W 52
-1.9 N94E 33
-4.9 N8W 17
6N 0.0 0.0 0 90
-0.1 N83E 0
-3.5 N7W 0
5.0 0.3 N97W 6
0.0 N69E 84
10.0 0.1 N97W 5
0.0 N36E , 82
-3.5 N173E 6
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Point Depth (km) Magnitude (bar) Azimuth (deg.) Dip (deg.)

6 0.0 0.0 0 90
-0.1 N83E 0
-3.5 N7W 0
5.0 . 0.1 ' N121w 80
-7.5 N3W 5
10.0 0.9 N140W 71
-4.3 N93E 14
-12.1 NOE 13
65 0.0 0.0 0 90
-3.5 : N7W 0
5.0 0.0 ' N134E 89
-1.1 , N97W 1
-4.0 : N7W 1
10.0 0.0 N147E 86
-2.0 N97W 2
7N 0.0 0.0 0 90
-0.1 N83E 0
5.0 0.0 N132W 89
10.0 0.0 N141W 87
-0.8 NS1E 2
-5.3 N9W 2
7 0.0 0.0 0 _ 90
-0.1 N83E 0
5.0 0.1 N69E 70
-0.3 N103W 19
-3.4 N175E 6
10.0 0.6 N46E 62
-0.6 N83W 18
-3.8  N1BOE 20

!
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Point Depth (km) Magnitude (bar) Azimuth (deg.) Dip (deg.)

7S 0.0 0.0 ' 0 90
-0.1 N83E 0

5.0 0.1 N63E 70

-0.3 N95W 18

-2.7 N172E 7

10.0 0.8 N30E 58

-0.6 N85W 14

-2.5 N177E 28

gN 0.0 0.0 0 90
-0.1 N83E 0

-3.5 N7W 0

~-0.4 N94W 24

-4.2 N3W 4

10.0 0.7 N107E 55

-1.0 N99W 32

-5.1 N1W 12

8 0.0 0.0 0 90
5.0 0.0 N18W 84

-1.1 N82E 1

10.0 0.6 N12W 70

-4.,7 N170E 20

gS 0.0 0.0 0 90
-0.1 N83E 0

-3.5 N7W 0

5.0 0.1 N123W 69

-0.1 N86E 18

-3.6 N7W 10

10.0 1.3 N164W 61

—4,8 : N5W 27
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Figure Captions for Chapter 5

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

16. Palmdale uplift 1959-1974 (from Castle et al.,
1976).

17. Palmdale uplift between 1959 to 1974 and subsidence
between 1974‘t6 1978. Numerals with minus signs show |
the amount of the subsidence.

18. Elevation of bench mark 3219 located just south of
Palmdale as a function of time from 1926 to 1977.

19. Geodimeter and triaﬁgulation network used for the
analysis of strain accumulations in Southern California.
20. Location of points at which stress is calculated

at depths, 5 and 10km.

21. Orientation of the axis of the N-S principal

stress on the surface. Upper number corresponds to the
azimuth measured from north clockwise. Lower number
shows the dip angle of the axis measured downward from
the direction of azimuth.

22. Magnitude of the N-S principal stress on the
surface.

23. Orientation of»the.axis of the E-W principal stress
on the surface. (See Fig. 21 for detail).

24. Magnitude of the E-W principal stress on the
surface.

25. Orientation of the axis of the N-S principal stress
at the depth of 10km. (See Fig. 21 for detail).

26. Magnitude of the N-S principal stress at the

depth of 10km.
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Fig. 27. Orientation of the E-W principal stress at the
depth of 10km, (See'ﬁig. 21 for detail).

Fig. 28.7 Magnitude of the E-W principal stress at the depth
of 10km.

Fig. 29. Orientation of -the axis of the near vertical
principal stress at the depth of 10km. (SeevFig. 21 for
detail).

Fig. 30. Magnitude of the near vertical principal stress
at the depth of 10km.

Fig. 31. Absolute error by the analytic method at (0, O,

-10 km) as a function of depth of the point force in the
case of 30 km side length. Data for horizontal
components are given only at peaks of the triangle and
are interpolated linearly to be given at other nodes.
Data for vertical components are directly given from
theoretical solutions for the point surface.

Fig. 32. Maximum rational perturbation in the solution at
(0, 0, -10 km) in the caée of 30 km side length.
Horizontal components and vertical components of data are
perturbed separately. Thevratio of perturbations in data
are shown in %.

Fig. 33. Possible devision of a conventional geodetic
network which allows piecewise cubic interpolations in
displacements.

Fig. 34. Possible devisioﬁ of a conventiogal geodetic
network which allows piecewise quadraéic interpolations

in displacements.



Fig.

Fig.

Fig.

14]

33. Possible devision of a conventional geodetic
network which allows piecewise cubic interpolations in
displacements.

34. Possible devision of a conventional éeodetic
network which allpws piecewise quadratic interpolations
in displacements.

35. Additional point in a center of a conventional

geodetic network.
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CHAPTER 6. CONCLUSIONS

We formulated our geodetic inverse problem for stress in
the earth as an inverse boundary value problem in elasticity.
This problem is mathematically-equivélent to the Cauchy
problem for elliptic equations which is known to be
ill-pcsed.

We developed a general method to solve this problem based
on the simultaneous use of eigenfunction expansion method and
shooting method. We first applied it to the Cauchy problem
for the Laplace equation to illustrate the essence of method
by solving the simplest problem of all. The solution of the
inverse problem obtained by this eigenfunction
expansion-shooting method was shown to be exact if we can
avoid the possibility of highly oscillating solutions
beforehand.

Next, the eigenfunction expansion-shooting method was
applied to the two-dimensional elastostatic inverse problems
for which polynomial expansions of Airy's stress function give
exact solutions for the inverse problems with boundary
conditions expanded in the polynomial. Polynomial expansions
up to fourth order are carried out to illustrate the
technique. The three-dimensional elastostatic inverse problem
was then solved by the same method where we had to use the
Galerkin vector instead of the Airy's stresé function. The

!
exact solutions based on the eigenfunction expansion of the
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Galerkin vector by polynomials up to fifth order are
obtained.

We then discussed practical aspects of the application of
our method to solving a geodetic inverse problem for stressvin
the earﬁh. Because sqlntione obtained by the fifth order
polynomial expansion require ten parameters to be specified
for each component of displacement vector observed on the
surface, an equal-sided triangular geodetic network with three
data points on each side and one data point in the center was
considered to be advantageous because current geodetic
measurements are conducted along polygonal networks that can
be split into triangles. To analyze the error due to
truncating the eigenfunction expansion up to the fifth order,
we used data generated by a buried point source and a strip of
dislocation in half space. The solutions based on the
eigenfunction expansion by polynomials up to the fifth order
were shown to be superior to those obtained by the finite
element method when inversion results are compared with the
known true solution. The triangular network with side length
of 30km gives an adequate accuracy as shown by comparison with
the true solutions.

The inversion for stress using a triangular network with
equal side length of 30km are then applied to geodetic data
obtained by levelling and geodimeter measurement in southern
California where anomaiOus uplift ealled Palmdale bulge is
observed along the San Andreas fault. The principal stresses
at 10km depth obtained by the inversion method showed

significantly different patterns from those at the surface.
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At the surface; the principal stresses are the nearly N-S
horizontal compression of 3.5 to 4.5 bars, the nearly E-W
horizontal compression with very small magnitude anq vertical
stress of zero magnitude. At 10km depth, the N-S compression
reaches to 12 bars and the E-W compression reaches to 6 bars
_under the central region of the Palmdale buige. Thus, the
incremental shear stress along the fault at 10km depth near
Palmdale is only slightly greater than at the surface, but the
incremental normal compressional stress increasees with depth
considerably, suggesting a locking mechanism on the San
Andreas fault during the period of Palmdale uplift. The
result is consistent with the swarm of microearthquakes which
occurred in this area during 1977 to 1978 when the uplift
trend stopped and turned to downwarp.

The state of incremental stress at 10km depth under the
Palmdale bulge during the uplift period may be summarized as
an increased horizontal compression and increased vertical
tension while the shear stress on the fault was only slightly
greater than at the surface.

These results show the usefulness of our inversion scheme
in earthquake prediction research. It gives a framework for
tying geodetic data with other geophysical measurements on
precursors by finding incremental stress at depth from
geodetic data and then relating the incremental stress with
the precursory phenomena which are believed to be stress

dependent.

'~ Our method requires data consisting of matched three
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component displacemeht measured at the same geodetic network.
These data are not available currently. New methods based on
space technology, such as ARIES (MacDoran, 1973) would be
useful for obtaining data needed for the application of our

inversion scheme.
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