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ABSTRACT

The U.S. Navy is seeking to increase the number of ships in the fleet due to growing threats,
however shipyards are facing numerous issues leading to a delay in the delivery of naval
warships along with cost overruns. At the same time, there is significant data available
from the construction process, creating an opportunity for data analysis with the intention
of identifying and hopefully resolving some of these issues. Addressing these concerns, this
thesis scrutinizes Earned Value Management (EVM) data from actual shipbuilding projects,
capitalizing on the datasets available to help identify the root causes of such delays. The
study begins with data cleaning, an essential step that ensures the real-world data’s integrity
and relevance. Preliminary data analysis was then conducted to explore cost variance, sched-
ule adherence, and the learning curve effect observed across different hulls, setting the stage
for deeper investigative modeling. Following model exploration and selection, the core of
the thesis is a predictive model that uses polynomial and linear regression to predict the
progression of costs over time and comparison to the prediction metrics currently in use.
A regression model was chosen over more complex models like a long short-term memory
(LSTM) neural network due to its simplicity, interpretability, and ease of retraining with
new data, ensuring that stakeholders can readily understand and apply the model’s insights
while maintaining its relevance over time. The target prediction metric for this model is the
Actual Cost of Work Performed (ACWP), however similar models could also be leveraged
to predict schedule. In creating this model, several features were analyzed including both
the Budgeted Cost of Work Scheduled (BCWS) and the Budget at Completion (BAC), both
known metrics at the start of construction. After testing various combinations of these fea-
tures and comparing the mean squared error (MSE), the chosen model uses time and BCWS
divided by BAC as input features, serving as a budgeted completion percentage. The model
is tailored further to reflect industry-specific cost behaviors, enforcing non-negative, cumu-
lative cost predictions. This model was trained, tested and validated using EVM data from
one key event (KE), a specific subset of the overall ship construction process with the intent
that it could be applied to all key events and aggregated to provide cost predictions for an

2



entire hull. This thesis will ideally serve as a framework for shipyards to improve project
cost predictions and identify indicators of large cost overruns early enough to correct them
within the ship construction timeline.
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Thesis supervisor: Luca Daniel
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The United States shipbuilding industry is struggling more than ever, unable to compete
with the likes of China, South Korea, and Japan. China alone now accounts for nearly 40%
of the global commercial shipbuilding output, compared to 0.002% in the United States [1].
With limited commercial shipbuilding in the country, the ability to produce large ships and
complex submarines for the Navy and the military as a whole has suffered. The cancellation
of large programs such as the Seawolf-class submarine and more recently the Zumwalt-class
destroyer has contributed to an unsteady demand, making it difficult for shipbuilders to
invest in infrastructure upgrades and maintain a proficient work force. The COVID-19
pandemic exacerbated these issues by hindering an already struggling material vendor base
and forcing a mass exodus of retirement-eligible workers, leaving a deficit of experienced
shipbuilders.

Amid these challenges, the Chief of Naval Operations (CNO) Navigation Plan 2022 lays
out the desired fleet layout by 2045, as shown in Figure 1.1, with the desire to grow the fleet
by over 50 manned ships [2]. As the budget for new construction warships increases, the
shipbuilders are unable to meet this demand. For example, the Navy is funding the construc-
tion of three Arleigh Burke Flight III destroyers and two Virginia-class attack submarines
per year, but the shipyards are delivering only 1.5 and 1.2 of each platform, respectively [3],
[4]. At the same time the shipbuilders have been collecting large amounts of earned value
management (EVM) data as a performance and progress metric. The analysis of this data
may provide an opportunity to identify areas of improvement in the construction process.

1.1 Industry Overview

Ship construction techniques have matured from traditional "stick building" (shown in Figure
1.2) to the currently favored modular construction (shown in Figure 1.3). Stick building
construction begins with the laying of the keel after which the ship is built from the bottom
up. Modular construction is the process in which the ship is built and outfitted in large
sections, or modules, that are ultimately assembled together. This construction technique
results in increased efficiency due to the widely accepted "1-3-8 rule" among shipbuilders.
This rule states that 1 hour of work in a workshop is equivalent to 3 hours of work in
an assembly area or 8 hours of work after fabrication (or launch) based on compounding
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Figure 1.1: Visual Layout of Fleet Makeup as Defined by Force Design 2045 [3]

limitations of access, services, and ergonomics as the construction progresses [5].
As described previously, the U.S. commercial shipbuilding industry has declined to its

lowest point for various reasons, to include a lack of government subsidies and the rise in the
East Asian shipbuilding industry (China, South Korea, and Japan specifically). Without
the infrastructure, workforce, and knowledge of a commercial shipbuilding force, military
shipbuilding has similarly struggled. Adm. Mike Gilday, the senior U.S. Navy officer at the
time, stated in 2022 that the industrial base capacity is the “biggest barrier" to increasing the
number of ships in the Navy [3]. As the U.S. struggles, China has made significant growth
in both commercial and military shipbuilding in recent years, with a navy now surpassing
the U.S. Navy in number of ships (about 350 compared to less than 300) [1].

There are several active shipbuilders in the U.S. that build naval ships to include Hunt-
ington Ingalls Industries (HII), General Dynamics, Fincantieri Marine Group, and Austal
USA [6]. The common challenge that these shipbuilders face is difficulty with delivering ships
on schedule and within budget. As mentioned previously the delivery of Arleigh Burke-class
destroyers and Virginia-class attack submarines are significantly below the contracted rate.
This will not improve as the contracts for the Columbia-class missile submarines, more sur-
face combatants, and unmanned vessels are added to the already struggling workforce. These
struggles stem from issues with the vendor and supply base, retirement of many experienced
workers, and difficulty in hiring new workers to fill these gaps.
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Figure 1.2: The Construction of a Liberty Ship at the Bethlehem-Fairfield Shipyards, Balti-
more, Maryland, in March/April 1943 [7]

Figure 1.3: Final Superlift Marks Structural Completion of CVN 79 [8]
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1.2 Earned Value Management Overview

Earned Value Management (EVM) is a powerful project management tool that integrates
cost, schedule, and performance metrics to provide a comprehensive overview of a project’s
health and progress. It is widely used in industries such as construction, defense, and infor-
mation technology to measure project performance, identify potential issues, and facilitate
informed decision-making. There are minor differences in the terms used in EVM, but this
project uses the definitions as laid out by the Defense Acquisition University (DAU) [9].
Figures 1.4 and 1.5 show examples of an EVM project on a graph of cost vs. time and the
organizational breakdown, respectively [9].

Some key terms used in EVM include:

• Budgeted Cost of Work Scheduled (BCWS): BCWS represents the time-phased budget
plan for work scheduled. It is the equivalent of the planned value.

• Budgeted Cost of Work Performed (BCWP): BCWP is the value of completed work in
terms of the work’s assigned budget. It is the equivalent of work done or earned value.

• Actual Cost of Work Performed (ACWP): ACWP is the cost actually incurred in
accomplishing work performed. It is the equivalent of actual cost.

• Performance Measurement Baseline (PMB): PMB is the contract time-phased budget
plan of a project as shown in Figure 1.5.

• Total Allocated Budget (TAB): TAB is the sum of all budgets for work on a contract
as shown in Figure 1.5.

• Budget at Completion (BAC): BAC is the sum of all budgets for the contract through
any given Work Breakdown Structure (WBS) level.

• Estimate at Completion (EAC): EAC is the estimate of total cost for the contract
through any given level generated by the contractor.

• Management Reserve (MR): MR is the amount of the total budget withheld for man-
agement control purposes for future considerations to handle execution risks. It is not
part of the PMB as shown in Figure 1.5.

• Cost Performance Index (CPI): CPI is a measure of cost efficiency, calculated by di-
viding BCWP by ACWP. A CPI greater than 1 indicates cost efficiency, while a value
less than 1 suggests cost overruns.

• Schedule Performance Index (SPI): SPI measures schedule efficiency by dividing BCWP
by BCWS. An SPI greater than 1 indicates that the project is ahead of schedule, while
a value less than 1 suggests delays.

• Cost Variance (CV): CV is defined as BCWP minus ACWP and represents the differ-
ence in budgeted and actual cost of the work performed. It is illustrated on the graph
in Figure 1.4.
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• Schedule Variance (SV): SV is defined as BCWP minus BCWS and represents the
difference in budgeted and actual schedule. It is illustrated on the graph in Figure 1.4.

Figure 1.4: Sample Graph of an EVM Project [9]

Figure 1.5: Block Diagram of an EVM Project Structure [9]

In the context of this thesis, the unit of cost is measured in the form of time (i.e. man-
hours) as opposed to actual money. This eliminates inconsistencies from the changing value
of money over time or changes in the contract structure. It also removes the rates ($/hr)
which can fluctuate with the cost of health care, inflation, overhead, etc. EVM enables
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project managers to assess project performance against the baseline plan. By comparing
BCWP, BCWS, and ACWP, project managers can determine if the project is on budget
and on schedule. CPI and SPI provide insights into cost and schedule performance trends,
allowing proactive measures to be taken to address potential issues before they escalate.
EVM also facilitates accurate forecasting, helping project teams make data-driven decisions
to optimize project outcomes. Overall, EVM serves as a valuable tool for project control,
performance measurement, and continuous improvement.

1.3 Project Motivation

With the obstacles facing the U.S. shipbuilding industry as a whole, the military industry
is unable to produce ships and submarines at the contracted rate. Beyond the challenges
with new ship construction, the U.S. Navy is similarly struggling with the maintenance of
existing ships. A Government Accountability Office (GAO) report published in January of
2023 reviewed 10 classes of surface ships from 2011-2021 and reported three key findings
(summarized in Figure 1.6) [10]:

• An increase in the number of maintenance cannibalizations, which is when a mainte-
nance part is taken from another ship instead of replaced through the supply system.

• An increase in casualty reports, which are messages sent when the material condition
of the ship inhibits the ability to conduct a primary mission.

• A decrease in steaming hours, or the hours when a ship is in an operating or training
status.

Figure 1.6: Changes in Sustainment Metrics per Ship across Selected Navy Ship Classes,
Fiscal Years 2011 through 2021 [10]

Alone these challenges with ship construction and maintenance are concerning, but with
the growing threat of our adversaries’ navies they have become dire. The fleet size currently
sits at 291 ships as of November 2023, but the goal of 355 ships became official policy in
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the FY2018 National Defense Authorization Act [11]. In order to achieve this goal not only
do the shipbuilders need to start delivering the contracted number of ships on time, but
the maintenance community must be able to keep ships operational through their expected
service lives.

Major ship maintenance periods, or overhauls, also use EVM to track and manage
projects, meaning there is substantial data available. However, in both ship maintenance
and new construction projects, EVM analysis is currently limited to the use of spreadsheets
with significant manual analysis to identify issues. Access to more sophisticated software
tools could significantly improve the data analysis process and have a lasting impact on the
industry. While this project deals with only one shipbuilder and one type of ship, any find-
ings that may improve efficiency in the construction process can potentially help in chipping
away at this daunting task.

1.4 Problem Statement and Approach

This thesis aims to draw meaningful insights into the ship construction process based on EVM
data for 20 hulls with the goal of improving management’s ability to use EVM information
to make decisions. This project is split into two major pieces: an exploratory data analysis
and the implementation of an ML model as a predictive tool. Chapter 2 details the data
cleaning process and explains the results of the exploratory data analysis. The intention was
to ask and subsequently answer questions the shipbuilder would find valuable and actionable.
Chapters 3 & 4 cover the second half of the project to include the ML model selection process,
prediction goals, and results.

1.5 Thesis Overview

The remainder of this thesis consists of four chapters:

Chapter 2 provides a discussion on the data used in this thesis. It begins with sharing the
steps associated with data cleaning followed by the results from an exploratory data analysis
using Python.

Chapter 3 provides the necessary background on various machine learning models. It begins
with a presentation of relevant criteria for this type of prediction problem, then transitions
to a discussion of the models considered and ultimately the model selected.

Chapter 4 shares the model development process used in this thesis. It begins by describing
the model architecture before transitioning into the feature engineering process. It then
describes the final model training, evaluation and results.

Chapter 5 provides a conclusion to this thesis. It begins with a summary, shares important
lessons learned throughout the work, and concludes with a set of ideas for future work on
related topics.
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Chapter 2

Data Analysis

2.1 Data Introduction

2.1.1 Data Source & Collection

Located at each of the Navy’s major shipbuilders is a detachment of government employees
(civilians and military) called the Supervisor of Shipbuilding (SUPSHIP). The role of the
SUPSHIP is "to independently administer and manage the execution of Department of De-
fense (DoD) contracts awarded to assigned commercial entities at the contractors’ facilities
in the shipbuilding and ship repair industry [12]." The data used in this thesis is from a
specific U.S. naval ship construction program and was provided by the SUPSHIP with per-
mission from the shipbuilding company. It contains all the EVM data from the construction
of a ship class over multiple hulls.

The data that was collected and analyzed in this project focuses on the EVM metrics of
BCWS, BCWP & ACWP. The BCWS is a fixed baseline budget schedule that the shipbuilder
sets. The BCWP, or progress, is collected by the shipbuilder at a low level, and can be
summed to provide information on the desired level of work. The ACWP, or actuals, is
collected based off of what jobs were actually charged. The actuals come in through a
system in which an employee clocks in and charges a shop order for the work they are
currently performing. The shipbuilders collect the data weekly with progress and actuals.
All of this sums up to the official reports that are distributed to the SUPSHIP. This data is
received generally every two weeks from the shipbuilder, however the data used in this thesis
is end of month data.

2.1.2 Data Attributes

The data consists of over four million rows, with each row representing a discrete entry of
EVM data. The dates of the data span from 2014 until 2023 when it was provided for analysis
in this thesis, and includes information on twenty different hulls. A list and explanation of
relevant attributes (columns) in the data is provided below:

• Hull: A unique two digit code identifying the specific hull
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• Corp: The shipbuilding corporation. Many ships now have different modules con-
structed by different builders.

• LT: Lead trade (see Figure 2.1)

• MM: Major milestone (see Figure 2.1)

• KE: Key event (see Figure 2.1)

• BAC: Budget at completion (see Section 1.2)

• BCWS: Budgeted cost of work scheduled (see Section 1.2)

• BCWP: Budgeted cost of work performed (see Section 1.2)

• ACWP: Actual cost of work performed (see Section 1.2)

• Code: The code is the concatenation of Hull, Corp, MM, KE & LT (in that order).
This identifies each row of data to the lowest level.

• FileName: This contains the date of the entry and whether the data is patched, among
other things.

• Personnel columns of names at various levels to include Vice President (VP), Director,
and Cost Account Manager (CAM).

There are other columns in the original data that were not applicable in this thesis.
Figure 2.1 shows a visual representation of the breakdown of the ship construction process.
The modular construction process is broken down into major milestones and key events,
both of which are the same across each hull of a given ship class. An example of a major
milestone is the construction of a ship module, and that is broken down even further into key
events such as outfitting, inspections, and fabrication. A lead trade is a specific workshop
such as pipefitters, welders, electricians, etc. As shown in Figure 2.1, each key event consists
of jobs requiring multiple lead trades. On top of that, there is always more than one hull
under construction at any given time.

As illustrated in Figure 2.1, the lowest level of data available is for a lead trade within
a specific key event (and associated major milestone) on a given hull (referred to as LT/KE
combination moving forward). That said, the data can be aggregated in numerous ways to
make the results meaningful and/or actionable.

2.2 Data Cleaning

Python is the programming language used throughout this project along with pandas, an
open source data analysis tool built to use with Python, and Matplotlib for graphing [13],
[14]. The primary data structure in pandas is a ‘DataFrame’, a table with labeled columns
and rows that makes it easy to visualize and manipulate the data [15]. After familiarization,
some pre-processing of the data was conducted to include the steps described below:
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Figure 2.1: Ship Construction Organization Chart

• Extract the date from the ‘FileName’ and convert to date/time format

• Remove rows with missing data in necessary EVM columns (BAC, BCWS, BCWP &
ACWP)

• Verify the data types of each column

• Clean columns with any extra spaces

• Handle "patched" data (explained below)

Patched data are manual adjustments that the shipbuilder makes to the data when there
is an error or the data needs corrections. After exploring the patched data present in the
dataset it was determined that there were two different types of patched entries made:

• A new row (with non-zero BAC, BCWS, BCWP, and/or ACWP) with no other corre-
sponding unpatched data entry for the same code & date.

• An additive row (with non-zero BAC, BCWS, BCWP, and/or ACWP) that is summed
with the unpatched data entry for the same code & date.

To account for the patched data, the entire dataset DataFrame was grouped by Code &
Date, with the numerical EVM categories summed together. This preserved any patched
rows that had no other entries for the same code & date while summing all rows that did.
The resulting DataFrame was used for all further analyses.
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2.3 Exploratory Data Analysis

2.3.1 Sources of Error

This dataset, as with all real-world data, contains errors because the collection process relies
on human inputs. This was determined early on in the analysis process and while data
cleaning helped to some extent, there was no way to fully remove all irregularities or sources
of error. For this reason, the correct level to analyze the data had to be determined both by
minimizing the impact of these errors and by the desired task.

Another source of inconsistency in the data comes from the practice of changing the
schedule known as "re-baselines." Re-baselines can occur for a variety of reasons and are in-
ternal to the shipbuilder’s Baseline Change Request (BCR) system in which they re-baseline
hours, requiring reviews and signatures from the stakeholders. Following the approval of a
BCR the hours become re-baselined. An example of a re-baseline from the data is shown in
Figure 2.2. While this graph is for one specific key event on one hull, the inconsistencies and
differences from the graph in Figure 1.4 are apparent.

Figure 2.2: Example of a Re-baseline Event

2.3.2 Cost Variance Analysis

As defined in Section 1.2, cost variance is BCWP minus ACWP. This represents the difference
between the predicted and actual cost of the work that has been performed. A negative cost
variance means that the actual cost of the work was higher than predicted, and as such has
negative implications on the budget. For this reason this analysis focuses on negative cost

20



variance. Additionally, the decision was made to only consider direct labor and therefore
service and support trades were excluded from these analyses. This decision was made due
to the fact that the service and support trades dwarfed all other trades with respect to cost
and time, which is both expected and not especially insightful.

The first question to be answered is which LT/KE combinations are the most over-budget
(largest negative CV) at the end of the work (or the most recent date). This was done with
the use of a Pareto chart depicting the cost variance on the left y-axis and the cumulative
percentage of negative cost variance on the right y-axis. The plots for the 50 largest negative
cost variances for hulls XJ and XK are shown in Figures 2.3 & 2.4, respectively.

Figure 2.3: 50 LT/KE Combinations with the Largest Negative Cost Variances for Hull XJ

Figure 2.4: 50 LT/KE Combinations with the Largest Negative Cost Variances for Hull XK
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These graphs show which LT/KE combinations are the most over-budget for a given hull,
but they do not necessarily capture any common issues across hulls. Even in two consecutive
hulls as shown in Figures 2.3 & 2.4, the top contributing LT/KE combinations were not the
same. The logical next question to answer is which LT/KE combinations have the largest
negative CV across all hulls (of those with provided data). This was also done at the KE
level and the LT level separately and the results are shown in Figures 2.5 - 2.7. These graphs
will help the shipbuilders identify areas in the construction process in which the budget is
either predicting far too low or the work is taking far more resources to complete.

Figure 2.5: 50 LT/KEs with the Largest Negative Cost Variances Across All Hulls

Figure 2.6: 50 KEs with the Largest Negative Cost Variances Across All Hulls
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Figure 2.7: 50 LTs with the Largest Negative Cost Variances Across All Hulls

The final question to answer with cost variance is how it changes across hulls. Ideally
the negative cost variance would decrease as the predictions improved or the work was
performed more efficiently. Choosing the three largest contributors to negative cost variance
from Figures 2.5 - 2.7, the resulting changes across hulls are shown in Figures 2.8 - 2.10.
These graphs highlight one of the difficulties with this data - when to define the work as
complete. Clearly some of the newer hulls are only partially complete on these LT/KE
combinations, and therefore are skewing the graphs.

Figure 2.8: Cost Variance Across Hulls for LT:915, KE:25569
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Figure 2.9: Cost Variance Across Hulls for KE:13514

Figure 2.10: Cost Variance Across Hulls for LT:915

In terms of EVM, work is complete when BCWP equals BAC. After applying this across
the aggregated groups of LTs, KEs, and the combinations of both, it became clear that it did
not make sense to do this at the LT level as only 2 LTs met this criteria across 3 hulls, and
none met it over more than 3 hulls. At the KE level there were 45 KEs that were complete
on 5 or more hulls, an improvement over LT but the most useful results were still shown at
the lowest LT/KE level. After applying the definition of complete as BCWP equals BAC
(within some margin shown here using 0.1%), the resulting graphs are shown in Figures 2.11
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& 2.12. Even after applying the EVM definition of completed work there are still outliers in
the graphs, both satisfying this definition. This highlights another difficulty in this data as
the budgeted EVM values can be inconsistent. Regardless, these graphs are still useful and
show meaningful trends across hulls.

Figure 2.11: Cost Variance Across Complete Hulls for LT:915, KE:25569

Figure 2.12: Cost Variance Across Complete Hulls for KE:30114
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2.3.3 Schedule Analysis

While cost variance is a useful metric to track when assessing trends or problem areas relating
to cost, schedule variance poses some issues. Specifically, schedule variance when work is
complete is zero because BCWP equals BCWS, whereas cost variance at the end captures
the overall difference across the entire job. One thought was to use the maximum (negative)
schedule variance, but it was ultimately determined that calculating the time it took to
complete the work was a better metric. This was then compared across hulls to determine
if the time was improving as hoped, as shown in Figures 2.13 & 2.14. These graphs make it
easy to spot outliers and see an overall trend, but with over 7,000 LT/KE combinations this
is not as broadly useful. For this reason, the next section discusses finding a metric that can
be calculated and compared across any level of the data.

Figure 2.13: Days to Complete Work for LT: X11A, KE: 9A198 Across Hulls

Figure 2.14: Days to Complete Work for LT: X15, KE: 9A235 Across Hulls
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2.3.4 Learning Curve

The learning curve is a concept widely used in various fields, depicting the relationship
between experience and performance improvement. In the context of project management
and cost forecasting, it’s employed to understand how costs evolve as a project advances.
The model assumes that as more units (hulls in this case) are produced, the cumulative
average cost per unit decreases due to increased efficiency and learning. The formula used
in the learning curve model is y = a ∗x−b, where ‘y’ is the cumulative average cost, ‘a’ is the
initial cost per unit, ‘x’ is the cumulative number of units produced, and ‘b’ is the learning
coefficient [16]. If b is positive, it indicates a positive learning curve or a situation where the
cumulative average decreases as the cumulative number of hulls completed increases. If b is
negative, it indicates a negative learning curve or a situation where the cumulative average
increases as the cumulative number of hulls completed increases. Clearly a positive learning
curve is desirable and expected following the assumption that learning & experience increase
efficiency.

To implement this concept using ACWP for cost, a function was written to calculate
the learning curve metric using the SciPy library for curve fitting to estimate the learning
coefficient ‘b’ [17]. As discussed in Section 2.3.2, because this can only be measured on
completed work it should only be analyzed on the LT/KE and KE levels where there is
enough data across hulls. The same definition and margin of complete was applied. This
function sets the value of ‘a’ to the ACWP at completion of the first hull. The graphs for
the same LT/KE and KE from Section 2.3.2 are shown in Figures 2.15 & 2.16. In both
these cases there is a slightly negative learning coefficient and therefore a negative learning
curve. A related function was created to iterate through a DataFrame containing various
KE and LT combinations, applying the learning curve function and collecting the results
in a structured format. As an example, when run on LT/KE combinations with at least
5 complete hulls approximately 55% had negative learning coefficients. Similarly when run
on KE combinations also with at least 5 complete hulls nearly 69% had negative learning
coefficients. This demonstrates a method for a comprehensive analysis of cost trends in
shipbuilding, shedding light on the learning dynamics within different project parameters.
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Figure 2.15: ACWP Learning Curve for LT:915, KE:25569

Figure 2.16: ACWP Learning Curve for KE:30114
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Chapter 3

Machine Learning and Model Selection

3.1 Introduction to Machine Learning

In recent years the integration of machine learning techniques has revolutionized the land-
scape of data analysis, offering new opportunities for extracting insights and patterns from
complex datasets. Machine learning, a subset of artificial intelligence, empowers systems to
learn from data patterns, adapt, and make informed predictions or decisions without ex-
plicit programming. This chapter delves into the introduction of machine learning and its
applicability to the analysis of EVM data in the construction of US naval ships.

EVM serves as a foundational framework for assessing project performance, offering a
structured approach to monitor and control costs and schedules. However, as projects grow
in complexity, so does the volume and intricacy of the data generated. Traditional analytical
methods may face challenges in effectively harnessing this amount of information. Machine
learning, with its ability to discern hidden patterns, predict trends, and categorize data,
presents a compelling solution for deriving deeper insights from EVM datasets. The dynamic
nature of naval ship construction projects, with evolving variables and dependencies, aligns
well with the adaptability and predictive capabilities inherent in machine learning models.
By leveraging these models, the aim is to enhance the precision of performance assessments
and contribute to more informed decision-making processes within the naval construction
industry. This chapter will explore various types of machine learning models and their
potential to address the specific demands of EVM data.

3.1.1 Types of Machine Learning Models and Applicability

While there are more types of machine learning, four types will be briefly introduced here: su-
pervised learning, unsupervised learning, semi-supervised learning, and reinforcement learn-
ing [18]. Supervised learning involves training a model on labeled data, making it suitable
for predicting predefined outcomes. Unsupervised learning, on the other hand, operates on
unlabeled data to reveal hidden patterns and relationships. Semi-supervised learning com-
bines aspects of both, utilizing limited labeled data alongside a larger pool of unlabeled data.
Reinforcement learning is a trial and error based method in which rewards and penalties are
used to train a model.
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In the context of predicting cost and time in the construction of US naval ships, only
supervised learning is considered in this thesis. This approach was chosen due to the avail-
ability of labeled datasets, where historical EVM metrics are paired with corresponding
project outcomes. Supervised learning models, like regression for cost prediction and classi-
fication for time estimation, align well with the goal of making accurate predictions based on
well-defined labeled data. By concentrating on supervised learning, the aim was to harness
the precision and predictive power it offers, tailoring the machine learning approach to the
specific needs and characteristics of the EVM data in naval ship construction projects.

3.2 Model Selection Criteria, Considerations and Limi-
tations

3.2.1 Key Criteria for Model Selection

In selecting machine learning models for EVM data analysis, several key criteria were con-
sidered to ensure the appropriateness and effectiveness of the chosen models.

Interpretability

In ship construction projects, interpretability is essential for stakeholders to comprehend
the factors influencing cost and time predictions. Models like regression, which provides
clear relationships between input features and outcomes, enhance interpretability and foster
confidence in decision-making. These relationships allow the stakeholders to take corrective
actions early on in projects when the predictions indicate a potential problem.

Performance Metrics

Selecting appropriate performance metrics is crucial in assessing the accuracy and efficacy
of predictive models in machine learning. Metrics like Mean Squared Error (MSE) and R2

score are valuable in evaluating regression models, providing insights into the model’s ability
to capture the variance in the data and the magnitude of prediction errors. However, the
choice of metrics should align with the specific objectives of the predictions.

Computational Efficiency

Considering the dynamic nature of naval construction projects, models must be computa-
tionally efficient to allow for timely decision-making. The efficiency of the chosen models
impacts their feasibility for real-time or near-real-time applications. Efficient models are im-
perative for timely insights into project performance. Regression models for cost prediction
are an excellent example of a computationally efficient model.
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3.2.2 Challenges in Applying Machine Learning to EVM Data

Limited Dataset Size

One notable challenge lies in the potential limitations of the dataset size. Machine learning
models, particularly complex ones, may require extensive amounts of labeled data for robust
training. In scenarios where the dataset is limited, the risk of overfitting or underfitting
must be addressed to ensure the generalizability of the models.

Real-World Data Complexity

Naval ship construction projects are inherently complex, involving numerous variables and
dependencies. This complexity, coupled with real-world data issues such as noise and human
error in data collection and entry, may pose challenges for machine learning models. Noise
can introduce variability in the data that does not reflect actual patterns, while human error
can lead to inconsistencies or inaccuracies. Identifying models that can effectively process
and learn from such complex and potentially noisy data is crucial for accurate predictions.

Handling Outliers and Data Anomalies

EVM data, like any real-world dataset, may contain outliers or anomalies—data points that
deviate significantly from the norm due to various factors, including measurement errors,
data entry errors, or unexpected events in the project. Some machine learning models
are particularly sensitive to outliers, which may yield skewed predictions or biased results.
Developing strategies to detect, understand, and address these outliers and anomalies is vital
for maintaining the integrity of the analysis and ensuring that the models produce reliable
and robust predictions.

3.2.3 Models Not Suitable for EVM Data

Overly Complex Models

Machine learning models that are excessively complex may not be suitable for EVM data
analysis, especially if the dataset is not sufficiently large. Models that demand a high number
of parameters relative to the dataset size might overfit the data, providing overly optimistic
predictions that do not generalize well to new instances.

Sensitivity to Outliers

Models sensitive to outliers (e.g., certain clustering algorithms or distance-based methods)
may introduce biases in the analysis of EVM data. Given the presence of potential outliers
in cost and time metrics, selecting models robust to extreme values becomes imperative to
ensure the reliability of predictions.
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3.3 Models Considered

3.3.1 Prophet

Description

Prophet is a forecasting tool developed by Facebook’s Core Data Science team, designed
for making precise and flexible forecasts, especially for time series data that exhibits strong
seasonal effects and historical trends [19]. It is particularly well-suited for data with daily
observations that display patterns on different time scales, such as yearly, weekly, and daily
seasonality, as well as holiday effects. Prophet was considered as a potential model as it
works well with missing data, handles outliers robustly, and is available for open-source use.

Implementation & Decision Rationale

Prophet was not implemented in this thesis primarily because it requires data in a very
specific format, which did not align well with the nature of the provided data. Prophet
typically expects a time series dataset with two columns: one for the timestamp and one
for the metric to be forecasted. This format constraint makes it challenging to use Prophet
with EVM data, which is approximately monthly and not strictly regular, thus complicating
the direct application of a daily cycle-based model like Prophet. Moreover, the EVM data
encompasses multiple input features that influence the forecasts, but Prophet is primarily
designed to handle univariate time series forecasting, limiting its ability to directly model
the complex, multivariate relationships present in EVM data. Additionally, Prophet’s "black
box" nature, while offering ease of use and automatic detection of seasonal patterns, also
means it lacks transparency in how predictions are derived. This makes it difficult to interpret
the model’s behavior and understand the influence of different factors on the forecasts, which
is a critical aspect for gaining insights and making informed decisions in the context of ship
construction. Despite Prophet’s strengths in handling seasonality and trend changes in time
series data, its structural limitations and lack of transparency made it an unsuitable choice
for the specific needs of this thesis.

3.3.2 Autoformer/Transformer

Description

The Autoformer is a time series forecasting model that builds upon the Transformer archi-
tecture by adapting it to handle the specific challenges of time series data. Unlike traditional
Transformers that treat all parts of the input sequence equally, the Autoformer incorporates
a decomposition mechanism that separates the trend and seasonal components from the time
series data, allowing for more efficient and accurate modeling of long-range dependencies [20].

This model is designed to automatically identify and model complex patterns in time
series data, leveraging attention mechanisms to focus on the most relevant parts of the input
sequence for making predictions. The Autoformer excels in handling long sequences and
can capture both long-term trends and short-term fluctuations in the data. On platforms
like Hugging Face, the Autoformer is made available with pre-trained options, facilitating
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easy implementation and experimentation [20]. It is particularly useful for datasets where
understanding and modeling intricate temporal dynamics are crucial, making it a powerful
tool for advanced time series forecasting tasks.

Implementation & Decision Rationale

The Autoformer was not chosen for implementation in this thesis due to several key factors.
First, its requirement for regular, structured time series data did not work well with the
EVM data’s approximately monthly and somewhat irregular intervals. Similar to Prophet,
Autoformer’s format and frequency preferences made it less suitable for the nuanced and
sporadic nature of EVM data. Furthermore, the Autoformer, being a complex deep learning
model, often demands large datasets to train effectively and can be sensitive to outliers,
which could skew predictions if not adequately addressed. This model’s sophisticated ar-
chitecture, while powerful for capturing temporal dependencies, also leads to challenges in
interpretability. Understanding the "why" behind its predictions is not straightforward,
making it difficult to derive clear, actionable insights from its forecasts, which is crucial
for this project. These considerations, combined with the potential need for extensive data
and computational resources, led to the decision against deploying the Autoformer for this
project.

3.3.3 Long Short-Term Memory (LSTM) Network

Description

LSTMs (Long Short-Term Memory networks) are a type of recurrent neural network (RNN)
designed to handle the challenges of learning from sequences with long-term dependencies.
They are characterized by their unique structure of memory cells and gates (input, forget, and
output gates) that regulate the flow of information, enabling them to capture and remember
patterns over extended periods [21]. This makes LSTMs highly effective for time series
forecasting tasks. Their ability to process and learn from data with varying time intervals
and incorporate multiple input features aligns well with the complexities and irregularities of
EVM data, providing a useful modeling approach for project cost analysis and forecasting.

Implementation & Decision Rationale

An LSTM model was trained on the EVM dataset using TensorFlow, an open-source machine
learning framework known for its robust support for deep learning models [22]. The LSTM
model was designed to utilize time series data, one-hot encoded hull identifiers, as well as
other EVM metrics like BCWS & BAC to forecast the Actual Cost of Work Performed
(ACWP). This setup aimed to leverage the LSTM’s strength in handling sequential data
to model the intricate temporal relationships and patterns inherent in the ship construction
projects’ cost and progress data.

Despite the initial implementation, several factors led to the decision that the LSTM
model was not the ideal choice for this project. One significant limitation was the model’s
lack of interpretability; as a complex deep learning model, the LSTM’s internal workings
and decision-making processes were not easily understandable, making it challenging to
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derive actionable insights or explain the forecasts in a transparent manner. Additionally, the
available dataset posed constraints: only 4 out of 20 hulls had sufficient data to be considered
"complete" (here defined as BCWP/BAC >= 99%), limiting the amount of training data and
potentially affecting the model’s ability to learn and generalize across different construction
projects. Computational efficiency also emerged as a concern, with the LSTM requiring
considerable resources for training and inference, which could be impractical for real-time or
large-scale applications. The sensitivity to outliers, a common issue in real-world datasets,
might have necessitated further data preprocessing and model tuning efforts to ensure robust
predictions. These challenges, combined with the need for a more transparent, data-efficient,
and computationally viable model, led to the decision to explore alternative approaches
better suited to the constraints and objectives of ship construction prediction.

3.3.4 Autoregressive Integrated Moving Average (ARIMA)

Description

The ARIMA (AutoRegressive Integrated Moving Average) model is a statistical technique
for time series forecasting, combining autoregressive (AR) components, differencing (I) for
stationarity, and moving average (MA) elements [23]. It leverages past data points to pre-
dict future values, adjusting for trends and seasonality through differencing, thus offering a
balanced approach for analyzing time-dependent data. An ARIMA model’s strength lies in
its simplicity, interpretability, and effectiveness in capturing linear relationships and trends
in historical data, making it a go-to method for many forecasting tasks where understanding
the time series behavior is crucial.

Implementation & Decision Rationale

An ARIMA model was implemented using the statsmodels library, which is well-suited for
statistical analysis in Python [24]. However, it became apparent that ARIMA was not the
optimal model for this dataset due to several inherent challenges:

• Non-Stationary Data: ARIMA models require the data to be stationary, meaning the
statistical properties of the series must not depend on the time at which the series is
observed. The EVM data exhibited non-stationary characteristics, with varying mean
and variance over time, complicating the model’s ability to generate accurate forecasts.

• Frequency Definition Issues: The approximately monthly data in the EVM dataset,
without exact regularity, posed difficulties in defining a specific frequency for the
ARIMA model. This irregularity made it challenging to set the appropriate model
parameters that align with the data’s inherent temporal structure.

• Long-Term Forecasting Limitations: ARIMA models are generally better suited for
short-term rather than long-term forecasting. Predicting far into the future with
ARIMA can be problematic, especially when the future trend deviates significantly
from historical patterns, which seemed to be a concern with the extended timeline of
ship construction projects.
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Given these issues, particularly the non-stationary nature of the data and the challenges
with irregular intervals and complex seasonal trends, ARIMA did not prove to be the most
effective tool for forecasting ACWP in this context. The need for a model capable of handling
the EVM data’s unique characteristics led to the exploration of alternatives more suited to
these complex, real-world project scenarios.

3.3.5 Regression

Description

Regression models are statistical methods used to estimate the relationships between a de-
pendent variable and one or more independent variables. The goal is to find a linear or
non-linear function that best fits the observed data, allowing for the prediction of the depen-
dent variable based on known values of the independent variables. Regression is widely used
in various fields for its simplicity, interpretability, and effectiveness in predicting outcomes,
making it a fundamental tool for both descriptive and predictive analysis.

Implementation & Decision Rationale

In exploring various machine learning approaches for the EVM data, different regression
models were tested using the scikit-learn library and ultimately found to be the most suitable
choice [25]. These models stood out for their computational efficiency, allowing for quick
processing and analysis, which is crucial to train a large number of models quickly. Their high
interpretability is another significant advantage, as it provides clear insights into how different
variables affect the ACWP, allowing stakeholders to take action early in the construction
process. Additionally, regression models can effectively manage the intricacies of real-world
data which is essential for the provided EVM datasets. For these reasons, the decision was
made to move forward with a regressive prediction model in this thesis.
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Chapter 4

Model Development

4.1 Model Selection

A comprehensive review of models considered for this prediction task is discussed in Section
3.3 to include LSTM, Autoformer, and ARIMA models.

4.1.1 Regression Justification

The choice to use a regression prediction model was primarily due to the following reasons:

Interpretability

• Clear Understanding of Relationships: Regression models offer straightforward inter-
pretability, allowing stakeholders to understand how changes in predictor variables
(e.g., hull classifiers, BCWS) impact the predicted ACWP.

• Model Coefficients: The coefficients of the regression model provide quantitative in-
sights into the magnitude and direction of the relationship between each predictor
variable and ACWP. This information can guide project managers in identifying criti-
cal factors affecting cost outcomes and taking early action to address issues that would
cause an overrun in cost or schedule.

• Visualizations: Regression models facilitate the creation of intuitive visualizations such
as scatter plots and coefficient plots, which further enhance interpretability. These vi-
sual aids help stakeholders grasp complex relationships and trends in the data, fostering
better understanding and communication of project cost dynamics.

Computational Efficiency

• Scalability: Regression models are computationally efficient, especially for datasets
with moderate to large numbers of observations and features. Their scalability makes
them well-suited for ship construction projects, which often involve extensive datasets
spanning multiple hulls and construction phases.
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• Real-Time Updates: The computational efficiency of regression models enables real-
time or near-real-time updates, allowing for continuous monitoring and retraining as
new data becomes available throughout the ship construction process. This capability
is essential for maintaining the model’s accuracy and relevance in dynamic project
environments.

Lower Learning Curve

• Ease of Implementation: Regression models have a lower learning curve compared to
more complex machine learning algorithms like neural networks or ensemble methods.
Their simplicity and intuitive nature make them accessible to project stakeholders
with varying levels of technical expertise, including project managers, engineers, and
decision-makers.

• Reduced Training Time: The straightforward nature of regression models streamlines
the model development process, requiring less time and resources for training and
implementation.

• Minimal Hyperparameter Tuning: Regression models typically have fewer hyperparam-
eters to tune compared to more advanced machine learning techniques. This simplifies
the model development process and reduces the need for extensive hyperparameter
optimization, further lowering the barrier to implementation.

This does not mean that a regression model is the optimal model to use in this task or that
there are not better suited models, but the combination of interpretability, computational
efficiency, and lower learning curve are the reasons why regression was chosen for this thesis.

4.1.2 Regression Models Considered

In the process of model selection various regression models were considered and compared
against each other using the Mean Squared Error (MSE) metric to assess their suitability
and performance. The range of models evaluated include classic linear regression, regular-
ized regression techniques (Ridge and Lasso regression), tree-based methods (Decision Tree
and Random Forest regression), and support vector regression (SVR). Additionally, polyno-
mial regression models of different degrees (2nd and 3rd degree) were explored to capture
potential nonlinear relationships between predictor variables and ACWP. Each regression
model offered distinct advantages and trade-offs in terms of interpretability, flexibility, and
predictive accuracy.

The choice of regression model to move forward with has to be balanced with the feature
engineering, but eventually a decision has to be made to continue moving forward. Following
some initial comparative analysis between models and discussions with my thesis advisor,
a combination of polynomial and linear regression was chosen for its ability to balance
interpretability with the flexibility to capture nonlinear patterns in the data. This approach
leverages the strengths of both regression techniques to provide a robust model for predicting
ACWP while ensuring transparency and ease of implementation in practical settings.
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4.2 Model Architecture

4.2.1 Model Objective

While there are countless prediction goals that could be useful in a ship construction project,
the goal of this specific model is to predict ACWP at the end of construction. The end of
construction here is defined as the earliest date when BCWP

BAC
≥ 99%. The target variable

of ACWP at this point represents the total actual cost of the work done and often exceeds
the budget of the project. Even within this specific context there is some uncertainty in
determining the date of the end of construction as the schedule often also faces overruns.
To isolate the goal of cost prediction in this model the known dates were used during model
testing, but this highlights the relationship between cost and schedule in these projects.

The goal of predicting ACWP at the end of construction is important at various mile-
stones throughout the length of the project. Initially the model was designed to predict
ACWP at any point within the project without any ACWP data of the specific hull being
tested. The model was then adjusted to allow for retraining at a certain milestone (defined
as a percentage of BCWS

BAC
). For example, at a milestone of 15% the model is retrained with

the ACWP data up to BCWS
BAC

= 15%. This leverages the known data from a project to ideally
better predict future ACWP.

4.2.2 Data Granularity

As discussed in Section 2.1.2, the lowest level of the EVM data is a lead trade (LT) within
a key event (KE) within a major milestone (MM) for a given hull. From there the data can
be aggregated either by LT for different KEs (and/or MMs) or by KE (or MM) for all LTs.
After data exploration and based on the goal of predicting final ACWP for a given hull,
the decision was made to begin with analysis of a single KE (for a given hull). At a lower
level than KE there was too much noise and inconsistency within the data. Even for a given
KE the data could be inconsistent (as evidenced in Figure 2.2). Working with my advisor,
a specific KE was selected to initially train and test the model based on minimizing these
inconsistencies and choosing an event early in the process to maximize the amount of hulls
with complete data. Creating and training a model for each KE preserves the unique features
& patterns of each, while still allowing an overall ship cost prediction by simple aggregation
of each KE model prediction. The graph of ACWP vs. Date for each hull for the chosen KE
is shown in Figures 4.1. This graph again highlights some of the inconsistencies with the
data and the importance of preprocessing for use in the model.

4.2.3 Regression Model Type, Equation and Interpretation

The regression model used in this project consists of a combination of linear and polynomial
regression. To preserve the hull data in the model, the hulls were translated to one-hot
encoded categorical features. One-hot encoding is discussed further in Section 4.3. The
other features incorporated into the model are the date (treated as number of days from
earliest date referred to from this point forward as ordinal date) and BCWS/BAC. A third
order polynomial regression is applied to the date, while the other features (hull variables
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Figure 4.1: ACWP vs. Date for Each Hull

and BCWS/BAC) use linear regression. The features are discussed more in depth in Section
4.4.

Model Equation

The regression equation for predicting ACWP in ship construction projects using this model
is shown in Equation 4.1.

ACWP = β1∗
BCWS

BAC
+Σ(βhull∗Hull Dummy V ariables)+βx1∗x+βx2∗x2+βx3∗x3+c (4.1)

Where:

• β1, βx1, βx2, βx3 are the coefficients for BCWS/BAC and the polynomial terms of the
ordinal date, respectively.

• Hull Dummy Variables represent the one-hot encoded hull identifiers, with each co-
efficient βhull indicating the differential impact of a particular hull compared to the
baseline hull.

• x is the ordinal date, transformed into polynomial terms to capture non-linear time
effects on ACWP.

• c is the intercept of the regression, representing the baseline ACWP when all predictors
are set to zero.
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Model Interpretation

A basic interpretation of the components in the model is as follows:

• BCWS/BAC: This coefficient β1 indicates how changes in the planned budget utiliza-
tion ratio impact the actual costs. A positive coefficient suggests that higher efficiency
or faster consumption of the budget relative to the plan increases ACWP.

• Hull Dummy Variables : These coefficients βhull measure the influence of constructing
specific hulls on the ACWP. Positive values indicate a higher cost relative to the base-
line hull, while negative values suggest lower costs. The baseline hull is discussed in
Section 4.3.1.

• Ordinal Date Polynomial Terms:

– βx1 ∗ x: The linear term reflects the direct effect of time on ACWP.

– βx2∗x2: The quadratic term captures the acceleration or curvature in the cost-time
relationship.

– βx3 ∗ x3: The cubic term allows for the modeling of more complex fluctuations in
cost over time.

• Intercept (c): The constant term represents the estimated ACWP at the start of the
project timeline if it were possible for all other variables to be zero (often theoretical
unless all variables are mean-centered).

4.2.4 Model Assumptions

In regression analysis, the reliability and validity of the model are underpinned by several
key statistical assumptions. These assumptions ensure that the model provides meaningful
and accurate estimates of the relationships between the predictor variables and the response
variable. In the context of polynomial regression, the analysis is based on the premise that
certain conditions hold. These include the linearity in the parameters, independence of
errors, homoscedasticity of errors, normality of the error distribution, and absence of multi-
collinearity among predictor variables. In the following sections, each of these assumptions
are evaluated in the context of this polynomial regression model, assessing their validity and
discussing the implications of any deviations from these ideal conditions.

Linearity

In traditional linear regression, the assumption of a linear relationship between predictor
variables and the response variable is fundamental. However, in the context of this model
the relationship between time (Ordinal Date) and ACWP is inherently non-linear, as evident
in Figure 4.1. To address this, the model uses polynomial regression which allows for the
modeling of non-linear relationships by incorporating polynomial terms of the predictor
variable (Ordinal Date) in the regression equation. This approach provides the flexibility
needed to capture the curvature and non-linearity observed in the data, thereby improving
the accuracy of predictions.
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Despite deviating from the assumption of linearity, the use of polynomial regression
enhances the model’s flexibility and interpretability. By accommodating non-linear relation-
ships, the model can better capture the complexities inherent in the cost dynamics of ship
construction projects. This approach ensures that the model can effectively capture the
nuances of the relationship between time and ACWP, leading to improved performance in
predicting cost outcomes. Therefore, while the assumption of linearity may not hold, the
adoption of polynomial regression provides a suitable framework for modeling the non-linear
relationship between time and ACWP in this context.

Independence of Errors

The next assumption assessed in this polynomial regression model is the assumption of er-
ror independence. The resulting Durbin-Watson statistic value of 0.01 indicates a positive
autocorrelation among residuals. This finding is consistent with the cumulative and increas-
ing characteristics of ACWP, where present values are inherently influenced by past ones.
Such autocorrelation underscores the sequential nature of ACWP measurements, thereby
deviating from the assumption of error independence in regression models.

While the detected autocorrelation poses methodological challenges, potentially impact-
ing regression coefficient estimates and their standard errors, it aligns with the expected
behavior of ACWP data. This property suggests that linear regression may not be suitable
for this data context without adjustments or additional techniques accommodating tempo-
ral dependency. Despite the deviation from the assumption of independent errors, this does
not denote a flaw in the model but rather highlights the necessity for modeling enhance-
ments to better capture the data’s inherent sequential nature. Further exploration of such
enhancements is delineated as future work in Section 5.4.

Homoscedasticity

The assumption of homoscedasticity, ensuring constant variance of error terms across inde-
pendent variable levels, is needed in regression models for optimal coefficient estimates and
accurate calculation of standard errors. In this polynomial regression model, homoscedas-
ticity is evaluated through a residuals vs. fitted values plot. While slight widening at higher
fitted values was observed, potentially indicating heteroscedasticity, its impact on predic-
tive performance may be minor given the model’s primary focus on prediction. While ideal
adherence to homoscedasticity is recognized, the model’s effectiveness in predicting ACWP
as indicated by a high R-squared value mitigates practical concerns related to potential
heteroscedasticity.

Normality of Residuals

The assumption of normality of residuals in regression analysis is baseed on the expectation
that the error terms should follow a normal distribution. This assumption enables the
reliable estimation of confidence intervals and hypothesis tests for the regression coefficients.
In the polynomial regression model, the normality of residuals was assessed using a Quantile-
Quantile (Q-Q) plot. Ideally, if the residuals were normally distributed, the points on this
plot would fall along the reference line. However, the model’s Q-Q plot displays deviations
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from normality, particularly at the tails of the distribution, suggesting that the residuals
may not be perfectly normal, possibly due to outlier values or the non-linear nature of cost
over time.

While the assumption of normality is crucial for inferential statistics, it is less critical
in the context of prediction-focused models, where the primary objective is the accurate
forecasting of values rather than understanding the precise behavior of individual predictors.
The slight departure from normality in the residuals of this model does not necessarily
impede its predictive capabilities, as evidenced by the high R-squared value. Consequently,
for the practical purposes of this study, which centers on forecasting rather than hypothesis
testing, the normality of residuals, while noted as a deviation from assumptions, does not
diminish the model’s utility in predicting future ACWP for ship construction projects.

Multicollinearity

Multicollinearity in regression analysis refers to the phenomenon where predictor variables
are highly interdependent, leading to redundancy and instability in the coefficient estimates.
Because this regression model incorporates polynomial terms to capture the non-linear pro-
gression of ACWP, it inherently introduces multicollinearity. This is because polynomial
terms are derived from the same underlying variable (Ordinal Date), causing the predic-
tors (e.g., x, x2, x3) to be correlated. The Variance Inflation Factor (VIF) for these terms
confirms their interdependence; high VIF values are indicative of multicollinearity and are
expected due to the nature of polynomial regression.

Despite the anticipated multicollinearity introduced by polynomial terms, the model’s use
of one-hot encoding for hull identifiers with a baseline hull helps prevent the issue for these
categorical variables. By designating one hull as the baseline and comparing all other hulls
against it, this ensures that only the incremental effects of hull differences on ACWP are mod-
eled, thereby reducing multicollinearity among hull-type predictors. While multicollinearity
remains a consideration due to polynomial terms, its effect is somewhat contained within
the model structure, and it does not preclude the model from making accurate predictions,
as reflected in the model’s high R-squared value.

4.3 Data Preprocessing

The initial steps of data cleaning were covered in Section 2.2, but further processing of the
data was required prior to training the regression model. As mentioned in Section 4.2.2, this
model was initially trained and tested on a single key event, so the data was filtered by this
key event. The data was then grouped by hull and date and aggregated by summing BCWP,
BCWS, BAC, and ACWP, effectively summing across the different lead trades. The results
were then plotted as shown previously in Figure 4.1.

Focusing on the graph of ACWP vs. Date (Figure 4.1), it is clear that only some of
the hulls would be useful in training the model. The following steps were implemented to
determine the appropriate "complete" hulls:

• Filter for hulls with a final BCWP/BAC of at least 0.99
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• Eliminate hulls where the initial value of ACWP was not zero (or near-zero)

• Trim the data:

– Remove all data after the earliest date when BCWP/BAC is at least 0.99

– Remove all data when ACWP and BCWP are both zero

It was important to trim the data as described so that the potential long "tails" at either
end of the data did not skew the model. The last step at this point in preprocessing was
to convert the datetime format "Date" column into the number of days from the first date
in the trimmed data (for each hull). This was necessary to create a usable time format for
linear regression. The results of this data preprocessing is shown in Figure 4.2.

Figure 4.2: ACWP vs. Ordinal Date for Each Hull

The final data preprocessing steps were done within the function prep_data_with_milestone,
the code for which is shown in Appendix A. This function takes three inputs: a pandas
DataFrame (df), the string identifier of the test hull (test_hull), and a percentage of project
"completion" (milestone). The outputs of the function are the train and test DataFrames
df_train and df_test, respectively. These DataFrames are created through the following
steps inside the function:

• The "Ordinal Date" column of the input df is scaled to between 0 and 1 to match the
scale of BCWS/BAC. This is done using MinMaxScaler from scikit-learn [25].

• df_test is filtered to only include the test hull.

• df_train is filtered to remove the test hull.

• The BCWS/BAC column is defined in both DataFrames.

• df_test is split as defined by the milestone based on BCWS/BAC.
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• df_test is filtered to only contain the data after the defined milestone.

• The data for the test hull prior to the milestone is added to df_train.

• The "Hull" column is one-hot encoded and the baseline hull column is removed.

• All other columns not used as features in the regression model are removed.

The returned DataFrames df_train and df_test from this function are properly formatted
for the polynomial regression model.

4.3.1 One-hot Encoding & Baseline Hull

One-hot encoding is a common method for converting categorical variables into a format
that can be provided to machine learning algorithms to improve prediction accuracy. This
technique transforms each categorical value into a new binary column, where each category is
represented by a column of zeros and a single one. This binary representation allows models
to better handle categorical data by treating each category as a distinct entity without
assuming any ordinal relationship between them. In the context of this model, one-hot
encoding is applied to the hull identifiers, turning each distinct hull into its own predictor
within the regression framework. This method ensures that the model can assess and quantify
the impact of each hull on the project costs independently.

The selection of a baseline hull when applying one-hot encoding is crucial as it serves as
the reference category against which the effects of other hulls are compared. By omitting
one hull from the binary encoding process, multicollinearity is avoided ensuring that the
model coefficients remain interpretable and the computational process stable. The choice of
a baseline hull should be guided by the desire for a representative or typical category within
the dataset. Often, the most common or the median category is selected as the baseline to
provide a meaningful comparison point. Taking this into account and analyzing Figures 4.2
and 4.3 led to the choice of hull XV as the baseline hull.

Figure 4.3: ACWP vs. BCWS/BAC for Each Hull
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4.4 Feature Engineering

Feature engineering is a crucial component of predictive model development, involving tech-
niques to transform raw data into informative features that boost a model’s predictive ef-
ficacy. By selecting, creating, or altering features, this process aims to extract pertinent
information from data, enhancing the model’s capacity to capture underlying patterns and
relationships. In this thesis, feature engineering was done in order to refine the regression
model’s predictive accuracy. Feature engineering began by creating a baseline model that
used only time ("Ordinal Date") as a feature and added or modified features from there.
These steps are discussed in the following sections.

4.4.1 Feature Preprocessing Techniques

Most of the feature preprocessing is covered in Section 4.3, including the one-hot encoding
of the hull variables and the format of the date into number of days for a given hull. By
only choosing hulls with "complete" datasets for this KE, there was no need to handle any
missing values. The polynomial features are created in the function described in Section 4.5
using PolynomialFeatures from scikit-learn [25]. Scaling of the input features was also done
to preserve the interpretability of the model’s equation.

4.4.2 Polynomial Features

After deciding on the use of polynomial regression for the "Ordinal Date" feature in the
model, the appropriate order of polynomial had to be selected. Following some experimenta-
tion with the data, the choice came down to a second or third order polynomial as anything
higher unnecessarily complicated the model without any additional value. Second and third
order polynomial regression models were then applied to the data and the results were com-
pared. This was done by systematically removing one hull as the test hull, training the
model on all the remaining hulls, and comparing the test hull’s actual ACWP values to the
model’s predictions. This was done for every hull (except the baseline hull), and the MSE
was averaged across each test hull. The resulting average MSE values for the data were
1.95× 107 and 1.72× 107 for second and third order, respectively. Because these errors are
relatively close and have the same order of magnitude, the graphs of the results were also
very important to consider. The graphs of predicted vs. actual ACWP values for test hull
XR are shown below in Figures 4.4 & 4.5.
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Figure 4.4: Actual & Predicted ACWP for Test Hull XR with Second Order Polynomial

Figure 4.5: Actual & Predicted ACWP for Test Hull XR with Third Order Polynomial

Postprocessing of Predictions

Figures 4.4 & 4.5 also highlight the need for some postprocessing of the predictions based
on rules for ACWP. ACWP is a cost metric that is both nonnegative and increasing, so
these rules were enforced on the predictions. Specifically, the postprocessing code shifts all
negative predictions to zero and applies an enforce_increasing function on the predictions
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that chooses the maximum value between the current and previous prediction. The results
for hull XR are shown in Figures 4.6 & 4.7. With the added postprocessing of the predictions,
the average MSE values for the data dropped to 1.68 × 107 and 1.43 × 107 for second and
third order, respectively. With the postprocessing, the shape of the third order polynomial
is more consistent as it flattens out at the end as compared to the still increasing second
order polynomial. This in addition to the lower MSE led to the decision to move forward
with the third order polynomial for the "Ordinal Date" feature.

Figure 4.6: Actual & Predicted ACWP for Test Hull XR with Second Order Polynomial &
Postprocessing

Figure 4.7: Actual & Predicted ACWP for Test Hull XR with Third Order Polynomial &
Postprocessing
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4.4.3 Feature Engineering Results

Following the decision to apply a third order polynomial to the "Ordinal Date" feature, the
next steps were determining what other features should be included in the model. This was
done by adding one feature at a time and comparing the results and test metrics.

BCWS

The first feature that was added to the model was BCWS. BCWS was chosen as it represents
the scheduled budget of the project and is determined prior to the start of construction. It
also provides a good indicator of where a project is projected to be both with cost and
schedule. The decision to add it as a linear term to the regression model was based on the
relationship shown in Figure 4.8. While not perfectly linear, there is enough of a linear trend
that it was worth exploring the effect on the model. With BCWS added, the average MSE
dropped to 1.08× 107 and the resulting graph for hull XR is shown in Figure 4.9.

Figure 4.8: Actual Cost (ACWP) vs. Budgeted Cost (BCWS) for Each Hull

BAC

The next potential feature considered was BAC, however BAC itself should be a constant
value that does not change with time or ACWP as it simply represents the budget at com-
pletion. In order to still incorporate BAC into the model, the idea of adding BCWS/BAC
as a sort of budget utilization ratio was tested. As alluded to in previous sections describing
the final model, this feature was implemented instead of BCWS and the results are shown
in the final results of the model.

No other features were assessed in this thesis due to time limitations, but further feature
engineering is discussed as potential future work in Section 5.4.
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Figure 4.9: Actual & Predicted ACWP for Test Hull XR with BCWS

4.5 Model Training

As alluded to in Section 4.4.2, one hull at a time was removed from the data as a test
hull and the model was trained on the data from the remaining hulls. This technique is
an adaptation of the Leave-One-Out Cross-Validation (LOOCV) method except instead of
removing a single data point, here an entire hull’s dataset is removed [26]. This validation
method is typically used to ensure that the model does not overfit to the data and can
generalize well to unseen data. This technique is well-suited to this scenario because it
simulates using historical data to predict ACWP for a new hull.

Parameter tuning, particularly the selection of polynomial degree, was performed manu-
ally with an emphasis on optimizing performance metrics MSE and R-squared (discussed in
Section 4.4.2). This approach not only aids in preventing overfitting but also ensures that
the model retains its predictive power when applied to unseen data. The choice of validation
technique and careful parameter adjustment focus on the ability to provide reliable ACWP
predictions, the ultimate goal of this model.

4.5.1 Milestone Prediction

Up to this point most of the discussion has been around predicting ACWP for a test hull
in which no data for the hull is known or trained on. This represents the performance of
the model before a project begins or shortly after, with little to no useful data recorded.
While this is still useful to the shipbuilder, perhaps even more valuable is a model that takes
into account the construction data up to the current time for a given hull and leverages it
to aid the prediction model. In the discussion about data preprocessing in Section 4.3, the
idea of inputting a construction milestone was introduced. This milestone was defined as
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a percentage of BCWS/BAC, which is also a feature of the model. By inputting a certain
milestone, the data is split such that the model is trained on the data up to that milestone
of the test hull along with all the data from the other hulls. The ACWP predictions are then
compared to the actual ACWP values of the test hull after the chosen milestone.

The model training was done within the function poly_regression_final, the code for
which is shown in Appendix A. This function takes the following steps up to and including
the training of the linear regression model:

• Prepares features for training:

– Creates a DataFrame of all features on which a linear model is trained (BCWS/BAC,
all one-hot encoded hulls).

– Creates a DataFrame of only "Ordinal Date" for polynomial transformation.

– Creates a DataFrame of the target variable, ACWP.

• Prepares features for testing (same as above).

• Applies polynomial transformation to "Ordinal Date" using PolynomialFeatures from
scikit-learn [25].

• Combines the transformed polynomial features with the other features.

• Fits a linear regression model to the training data using LinearRegression from scikit-
learn [25].

4.6 Model Evaluation

The final model was evaluated and trained in the function poly_regression_final, the code
for which is shown in Appendix A. The steps up to the model training in this function are
described in Section 4.5. The remaining steps in the function do the following:

• Print the regression equation of the trained model.

• Make predictions on the test data using the trained model.

• Apply postprocessing to the predictions as described in Section 4.3.

• Evaluate and print performance metrics MSE and R-squared.

• Optionally plot the predicted vs. actual ACWP values.

MSE and R-squared were chosen as the performance metrics for evaluating this model for
several reasons. MSE is useful as it measures the average magnitude of the model’s prediction
errors, providing a clear and straightforward indication of model accuracy in terms of how
close the predicted values are to the actual values. This makes MSE practical for assessing
the performance of regression models where minimizing error is a priority. R-squared offers
a measure of the proportion of variance in the dependent variable that is predictable from
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the independent variables, providing insight into the goodness of fit of the model. It is a
relative measure, making it particularly useful for comparing the predictive power of models.
Together, these metrics provide a comprehensive view of both the absolute accuracy (via
MSE) and the relative efficacy (via R-squared) of the model.

Based on discussions with the shipbuilders, it was determined that results at the following
milestones would be insightful: 15%, 25%, 50%, & 75%. The performance metrics at these
milestones along with pre-construction (0%) are summarized in Table 4.1 for each test hull.

Table 4.1: MSE [∗106] and R-squared for Each Milestone and Test Hull

Milestone 0% 15% 25% 50% 75%
Test Hull MSE R2 MSE R2 MSE R2 MSE R2 MSE R2

X2 36.5 0.89 53.6 0.63 53.6 0.63 53.6 0.63 64.4 0.32
XL 10.0 0.95 7.19 0.91 6.48 0.90 6.34 0.88 7.72 -0.01
XM 6.54 0.97 8.58 0.92 9.07 0.88 8.88 0.20 9.41 -3.37
XN 4.19 0.98 11.4 0.81 11.4 0.81 11.4 0.81 6.48 0.60
XP 5.80 0.97 13.6 0.83 14.1 0.80 12.9 0.73 5.61 0.70
XR 3.65 0.98 5.75 0.93 5.75 0.93 4.67 0.91 2.32 0.87
XS 4.07 0.98 5.64 0.95 4.95 0.94 4.92 0.91 5.45 0.80
XT 2.74 0.99 2.57 0.97 2.52 0.97 2.73 0.94 3.29 0.78

Average 9.19 - 13.5 - 13.5 - 13.2 - 13.1 -

Analyzing the MSE and R-squared values for different milestones across various test hulls
in the polynomial regression model reveals significant insights into the model’s performance
and adaptability. Initially, the model displays consistent and stable performance for early
project stages across several hulls, suggesting it effectively captures the general cost trends.
This is also driven by a lack of fidelity in BCWS/BAC (i.e. large, unevenly spaced jumps).
However, as projects progress beyond 50%, significant fluctuations and deteriorations in
model performance are observed, particularly for hulls like XM and XL where R-squared
values drop sharply, even turning negative at the 75% milestone. This indicates potential
issues to include overfitting, where the model learns noise rather than useful predictive signals
from the training data.

Despite the challenges observed with the model’s performance at higher milestones, where
increased variability and potential overfitting impact its accuracy, the model still holds sub-
stantial value for predicting ACWP. Particularly at earlier stages of the projects, the model
demonstrates predictive capabilities, providing reliable estimates that can help in early-stage
financial planning and resource allocation. Its ability to capture and reflect the general cost
trends across different hulls up to the mid-project milestones allows project managers to
make informed decisions based on predicted expenditures. This predictive utility, especially
in the initial and middle phases of construction, facilitates proactive project management
and cost control, helping to mitigate risks associated with budget overruns and scheduling
delays.

The equations and plots are shown below for hull XS at each of these milestones. Hull
XS was chosen as it had higher fidelity data, specifically with respect to BCWS/BAC.
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Milestone: 0%

Model Equation:
ACWP = 17251∗ BCWS

BAC
+2951∗HullX2+2333∗HullXL+482∗HullXM+73∗HullXN−955∗

HullXP +612∗HullXR+365∗HullXS−712∗HullXT +5000∗x+75227∗x2−57920∗x3−740

Figure 4.10: Actual & Predicted ACWP for Test Hull XS at 0% Milestone

Milestone: 15%

Model Equation:
ACWP = 17230 ∗ BCWS

BAC
+ 2948 ∗HullX2 + 2336 ∗HullXL + 483 ∗HullXM + 75 ∗HullXN −

955 ∗HullXP + 613 ∗HullXR − 711 ∗HullXT + 5272 ∗ x+ 74722 ∗ x2 − 57625 ∗ x3 − 767

Figure 4.11: Actual & Predicted ACWP for Test Hull XS at 15% Milestone
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Milestone: 25%

Model Equation:
ACWP = 17246∗ BCWS

BAC
+2951∗HullX2+2333∗HullXL+482∗HullXM+73∗HullXN−955∗

HullXP +612∗HullXR−112∗HullXS−712∗HullXT +4374∗x+76649∗x2−58814∗x3−676

Figure 4.12: Actual & Predicted ACWP for Test Hull XS at 25% Milestone

Milestone: 50%

Model Equation:
ACWP = 17161∗ BCWS

BAC
+2942∗HullX2+2343∗HullXL+481∗HullXM+77∗HullXN−958∗

HullXP +611∗HullXR−426∗HullXS−712∗HullXT +3963∗x+77992∗x2−59745∗x3−631

Figure 4.13: Actual & Predicted ACWP for Test Hull XS at 50% Milestone
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Milestone: 75%

Model Equation:
ACWP = 16983∗ BCWS

BAC
+2922∗HullX2+2362∗HullXL+480∗HullXM+87∗HullXN−962∗

HullXP +611∗HullXR−765∗HullXS−709∗HullXT +3556∗x+79743∗x2−61012∗x3−582

Figure 4.14: Actual & Predicted ACWP for Test Hull XS at 75% Milestone

In analyzing the polynomial regression model for hull XS, notable changes in the co-
efficients were observed across various project milestones. Initially, at the 15% milestone,
coefficients for BCWS/BAC and the hull XS indicator (HullXS) are positioned to reflect early
project estimations, with HullXS showing a positive influence on ACWP. As the project pro-
gresses through 25%, 50%, and up to the 75% milestone, there is a gradual decrease in the
coefficient for BCWS/BAC, suggesting a diminishing rate of cost increase as the project nears
completion, which aligns with a typical project expenditure curve where major costs are in-
curred during the middle phases. Additionally, the coefficient for HullXS shows a decline,
turning increasingly negative, indicating that as more specific data from hull XS becomes
available, its deviation from baseline predictions becomes more pronounced, possibly due to
unique project complexities or management efficiencies becoming more influential.

4.7 Sensitivity Analysis

Sensitivity analysis is an important component of predictive modeling that assesses how the
variation in the output of a model can be attributed to different sources of variability in its
inputs. This process is fundamental for validating the robustness and reliability of models,
especially when they are used for decision-making in complex and dynamic environments.
By systematically varying key input parameters and observing the resulting changes in the
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output, sensitivity analysis provides insight into which factors most significantly influence
the model’s predictions.

One-at-a-Time (OAT) sensitivity analysis is an approach where each input variable of a
model is varied independently while holding all other inputs constant to observe the resulting
change in the model’s output [27]. This technique is used for its simplicity and interpretabil-
ity, providing clear insights into the direct relationship between individual variables and the
outcome. Employing OAT sensitivity analysis to this regression model allows for evaluation
of the individual contribution of input variables to the cost predictions.

4.7.1 Ordinal Date

For the purpose of sensitivity analysis the model was trained on all hulls without removing
a test hull. The first variable analyzed with the OAT method was Ordinal Date. Because
Ordinal Date is scaled as described in Section 4.3, this analysis was conducted over ordinal
dates varying from zero to one. BCWS/BAC was held constant at the its mean value, and
all hull identifiers were set to false thus aligning with the baseline hull. The resulting ACWP
predictions were then plotted against the varying Ordinal Date as shown in Figure 4.15.

Figure 4.15: Sensitivity Analysis: Predicted ACWP vs. Ordinal Date

Figure 4.15 reveals a smooth and progressive relationship between the Scaled Ordinal
Date and Predicted ACWP, validating the model’s continuous and stable predictive capacity
over time. The observed trend indicates a gradual increase in ACWP with time, suggesting
that project costs naturally accumulate as work progresses. Notably, the curve begins with
a modest incline, gains momentum, and eventually levels off, which mirrors the typical cost
behavior in ship construction—initially conservative, escalating with active development,
and stabilizing as completion approaches.
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4.7.2 BCWS/BAC

The next step was assessing ACWP when varying BCWS/BAC from zero to one and holding
the remaining variables constant. Ordinal Date was held constant at 0.5, the midpoint of the
scaled timeline, while the hull identifiers were again all set as false to align with the baseline
hull. The resulting ACWP predictions were plotted against the varying BCWS/BAC as
shown in Figure 4.16.

Figure 4.16: Sensitivity Analysis: Predicted ACWP vs. BCWS/BAC

Figure 4.16 presents a clear linear correlation between BCWS/BAC and Predicted ACWP
while holding the scaled date constant. This depicts a model where costs predictably rise
in direct proportion to project completion, without nonlinear escalation or unexpected cost
spikes as completion nears. Such uniform sensitivity across the BCWS/BAC spectrum im-
plies that cost forecasts can be reliably based on project progress, a valuable insight for
managing budgets effectively. The linear trend suggests that early project cost estimates re-
main consistent throughout the project lifecycle, providing a straightforward interpretation
that underscores the model’s predictive strength. However, it’s essential to validate whether
this simplified relationship fully captures the nuances of actual cost behavior as projects
advance, to ensure the model’s applicability in real-world scenarios.

4.7.3 Hull Identifier Variables

Conducting sensitivity analysis on the hull identifiers was deemed unnecessary for several
reasons. Primarily, the hulls represent individual construction projects that are expected to
share similar structural and cost characteristics, rendering the analysis of hull-specific effects
less informative for the overall objective. Additionally, sensitivity analysis on categorical
variables like these can be computationally intensive and complex, especially when the num-
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ber of categories is large. This complexity does not align with our goal of a streamlined
and computationally efficient analytical process. The potential computational overhead and
limited actionable insights that such an analysis might offer do not justify its inclusion at
this point.

4.8 Results Analysis

Perhaps the best way to evaluate the potential contribution of this model is to compare it
to prediction metrics currently in use. Within EVM there is a metric known as Estimate at
Completion (EAC) which is used to forecast the total cost of a project upon its completion
based on the project’s current performance. There are several methods for calculating EAC,
including using actual costs to date, projecting future costs based on current performance
trends, or incorporating management’s revised estimates. For the purpose of comparison to
the model, a composite EAC formula as shown in Equation 4.2 was used. The individual
terms of the equation are as defined in Section 1.2.

EACComposite = ACWPCUM + [(BAC − BCWPCUM)/(CPICUM ∗ SPICUM)] (4.2)

Because EAC only predicts the cost at the end of a project, the comparison to the
model’s predictions was only done at this single point. This highlights another benefit of
the prediction model in that it predicts the ACWP at any point within the project, not
just at the end. The prediction model was run for a variety of milestones and on each test
hull, recording the results. These were then compared to calculations of EAC under these
conditions. In order to effectively visualize these results, bar graphs were created for each
test hull comparing the results at each evaluated milestone. The graph for hull XP as the test
hull is shown in Figure 4.17, while the plots for all other test hulls are shown in Appendix
B.

Figure 4.17: ACWP Prediction Comparison for Test Hull XP
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There is significant variation in EAC among the test hulls, largely driven by the reliance
of the EAC calculation on complete, accurate data. Comparatively, the regression model
is better equipped to handle outliers or missing data and still make reasonable predictions.
In Figure 4.17 the EAC predictions are more reasonable than those for the other test hulls,
however they all follow a similar trend. From this graph it is clear that by the 80% milestone
and later EAC is a very good prediction metric, even outperforming the regression model.
To confirm this result, the difference between the two predictions and actual ACWP was
averaged over all the test hulls and plotted on a logarithmic scale in Figure 4.18.

Figure 4.18: Average ACWP Prediction Difference on a Logarithmic Scale

Figure 4.18 confirms the fact that from the onset of the project until a milestone of 7̃5-
80%, the polynomial regression model consistently outperforms EAC, as evidenced by the
lower magnitude of difference between the model’s predictions and actual ACWP values.
This graph also highlights the fact that the regression model maintains a relatively stable
magnitude of difference throughout the project, despite training on more project specific data
at later milestones. In contrast, the EAC’s higher and more fluctuating line underscores
larger errors, especially pronounced at earlier project stages. Notably, the EAC method
exhibits a sharp decline in the magnitude of difference after the initial milestone, which is
consistent with the EAC formula which without enough data simplifies to just the cumulative
ACWP.

The model’s strength is particularly significant at early milestones, where its predictive
capability allows for more accurate forecasting and thus better project planning and budget-
ing. The constancy in the performance of the polynomial regression model across different
milestones, rather than an expected improvement in accuracy, may indicate that the model’s
initial training captured the primary cost-driving patterns of the construction projects quite
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effectively. Additionally, this could imply that the complexities and variations introduced
in the later stages of ship construction are not substantially influencing the cost predictions
or are not being captured effectively due to potential model limitations. This consistency,
while demonstrating robustness in early stages, highlights a potential area for refinement in
the model to better incorporate and react to new data, allowing for a more nuanced and
precise prediction as a project progresses and more information becomes available.

The constant model predictions could also be due to the postprocessing step where pre-
dictions are enforced to be nonstrictly increasing based on the nature of ACWP. However,
this constraint might inadvertently dampen the model’s responsiveness to genuine variations
in the data at later milestones. Instead of allowing the model’s predictions to naturally re-
flect the project’s progression, the increasing-only enforcement could be masking subtleties
and nuances in the cost development, leading to a plateau in predictive performance im-
provement. Such postprocessing might help avoid unrealistic dips in predicted costs, yet it
also prevents the model from fine-tuning its accuracy with the influx of new data points,
which ideally should provide a more detailed and accurate representation of the project’s
cost trajectory as it advances. This reveals a delicate balance between incorporating domain
knowledge into model predictions and preserving the model’s ability to adapt and learn from
new data. While there was not time within this thesis to address these model limitations, it
is discussed further in Section 5.4.
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Chapter 5

Conclusion

The U.S. Navy faces growing demands to expand and modernize its fleet amidst increasing
global maritime threats. However, the shipbuilding industry is facing significant challenges
that hinder its capacity to deliver warships timely and within budget. In response to these
critical issues, this thesis focused on leveraging EVM data to enhance predictive accuracy
and operational efficiency in naval ship construction projects. Despite the widespread col-
lection of EVM data, its potential to significantly improve project management practices
remains underutilized. Through a detailed analysis of this data, the thesis aimed to develop
an interpretable predictive model that forecasts costs more accurately and earlier in the
shipbuilding process. This research serves as a starting point for more sophisticated tools
in naval project management to enhance the efficiency and reliability of shipbuilding opera-
tions. This is done with the goal of ensuring that new ships are delivered faster and within
budget, which is vital for maintaining naval supremacy.

5.1 Summary of Findings

This thesis began with the analysis of EVM data from 20 hulls of a specific shipbuilding
project. The data was cleaned and processed into useful visual graphics highlighting which
project subsets (MM, KE, LT/KE) contributed the most to cost and schedule overruns.
Analysis was also done to measure the learning curve across hulls, illustrating if the ship-
builders were improving over time. For subsets with at least 5 complete hulls, approximately
55% of LT/KE combinations and nearly 69% of KE combinations had negative learning co-
efficients. This means the cumulative cost average is trending up across hulls in these cases
and the shipbuilders are becoming less efficient despite any learning and experience.

This thesis then moved on to examine the effectiveness of predictive modeling of these
shipbuilding projects. Through the analysis of various ML models with a focus on the EVM
data, a predictive model was developed using polynomial and linear regression techniques.
The model primarily aimed to forecast ACWP over time, providing stakeholders with a
tool to anticipate potential cost overruns. The findings demonstrate that the model can
successfully predict the progression of costs, which align well with the actual expenditures
recorded during ship construction. Key features such as BCWS and BAC were identified
as significant predictors of cost outcomes along with time. The model’s ability to integrate
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these features into its forecasts allows for a dynamic adjustment of predictions in response
to project updates, enhancing the reliability of cost management practices. Furthermore,
sensitivity analyses conducted as part of the research highlighted the model’s responsiveness
to changes in key input variables, affirming its utility in managing the inherent uncertainties
of large-scale construction projects.

When compared to EAC, the EVM metric currently used to predict the cost at the end
of construction, the predictive model outperformed EAC up to nearly 80% of completion (as
measured by BCWS/BAC). This means that the model provides a more accurate prediction
than currently exists for most of the project, highlighting its potential for immediate positive
contributions to shipbuilding projects.

5.2 Lessons Learned

Throughout the course of this research, several valuable lessons were learned, not only in
the application of EVM data but also in the broader context of predictive modeling within
naval engineering. The study highlighted the importance of data preparation, the selection of
appropriate modeling techniques, and the interpretation of data to support effective decision-
making in shipbuilding projects.

Throughout this research, one of the foremost lessons learned was that data cleaning is
an ongoing process rather than a one-time event at the beginning of a study. The initial
phases of data handling revealed numerous inconsistencies within the EVM data sets, which
required continuous attention and refinement throughout the study. This iterative cleaning
process was crucial to maintain the integrity of the data as new insights and discrepancies
were uncovered. It emphasized the need for vigilance and adaptability in working with real-
world data, particularly in dynamic project environments like shipbuilding where data inputs
are frequently updated and revised.

Another significant insight gained was the importance of validation at every level of
coding. Ensuring that each segment of the code was correctly implemented and produced
expected outcomes was vital for the reliability of the entire model. This involved regular
debugging sessions and cross-validation with subsets of data to verify the consistency and ac-
curacy of the results. Such meticulous validation practices helped in building a robust model
that stakeholders could trust, and also facilitated easier troubleshooting and refinements in
the modeling process.

The research also highlighted the sheer amount of data required for some machine
learning models to function effectively. Complex models, such as deep learning networks,
often demand large volumes of data to train on, which can be a challenge to procure in
specialized fields like naval engineering. This requirement can limit the choice of feasible
models and necessitates a careful balance between model complexity and the availability
of adequate training data. It led to an appreciation for simpler, yet powerful, models that
could deliver comparable predictive accuracy without the extensive data demands of more
complex systems.

Lastly, the time-consuming process of selecting the right machine learning
model was a critical learning point. Each model required thorough evaluation to assess
its suitability for the data and the specific predictive tasks at hand. This involved not only
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understanding the theoretical underpinnings of each model but also conducting empirical
tests to compare their performance on the actual EVM data. The process was iterative and
sometimes required going back to the drawing board to redefine the modeling approach based
on preliminary results. This aspect of the research underscored the importance of patience
and persistence in machine learning endeavors, where there often is no "optimal" model.

5.3 Limitations

While the research conducted provides valuable insights into the predictive modeling of ship-
building costs using EVM data, it is important to acknowledge the limitations encountered
during the study. These limitations affect the scope and applicability of the findings and are
crucial for contextualizing the conclusions drawn from the research. Understanding these
constraints helps to frame future research directions and refine the methodology employed.
Below is a detailed discussion of the key limitations that were identified during the course
of this thesis project.

• Model Performance at Later Milestones: The predictive accuracy of the model
did not significantly improve when trained with more data at later milestones. This
suggests a potential plateau in the learning curve of the model, where additional data
inputs do not necessarily contribute to better predictions.

• Limited Data Availability: The study was constrained by the initial dataset pro-
vided by the shipbuilders. The limited amount of data, particularly complete hulls that
span all stages of construction, restricted the model’s training and may have impacted
its generalizability to other shipbuilding projects or KEs.

• Model Development for a Single KE: Currently, the predictive model is developed
and validated only for a specific key event within the shipbuilding process. This limits
the scope of application and necessitates additional development for other KEs to create
a more comprehensive predictive tool across the entire ship construction project.

• Challenges with Model Assumptions: The regression model relies on certain
statistical assumptions (such as linearity, normality, and homoscedasticity) that were
not fully met. This misalignment might have influenced the accuracy and reliability
of the model’s predictions. Issues like residual non-linearity, heteroscedasticity, or
non-normal distribution of errors could potentially skew the results and impact the
interpretability of the model.

5.4 Future Work

The findings of this thesis help pave the way for several promising directions for future
research, which could enhance the robustness, applicability, and accuracy of the predictive
model in shipbuilding projects. Addressing the limitations and building upon the groundwork
laid by this research will allow for more sophisticated analyses and more comprehensive
predictive capabilities. Below are key areas identified for future work:
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• Find a way to apply this to all KEs to make total cost predictions. This could be ac-
complished by creating a model for each KE and aggregating the predictions. Another
option is to extend the developed model to include all KEs within the shipbuilding
process. Both options would provide a more holistic view of the project costs and
improve resource allocation and planning at a macro level.

• Create a parallel predictive model focused on the schedule to complement the cost
prediction model. This would help in providing a comprehensive project management
tool that addresses both cost and time, critical factors in project success.

• Explore additional features that could enhance the model’s predictive power. Inves-
tigate the integration of other EVM metrics, categorical variables, etc. that could
influence project costs.

• Conduct a more thorough investigation into alternative machine learning models that
might offer better accuracy or different insights. With more data, time and resources,
models such as ensemble methods, advanced regression techniques, or neural networks
could be re-evaluated for their suitability.

• Experiment with different performance metrics, to include using MSE calculations at
different project milestones or considering other statistical measures that might better
capture the accuracy and reliability of predictions throughout the project lifecycle.

• Assess the impact of using a weighted average approach for hulls instead of one-hot
encoding to potentially improve the model’s performance. The hull weights could be
assigned based on recency or numerous other metrics.

• Address the assumptions that were not fully met in the current model to include
non-linearity and heteroscedasticity. Implementing techniques like transformation of
variables or adopting models that inherently manage these issues could refine predic-
tions.

• Explore why additional data from later milestones does not significantly enhance model
performance. This could involve a deeper dive into the data quality or incorporating
dynamic project features such as updated expenditure rates or risk assessments. Con-
tinuous model refinement and testing, to include regularization techniques to help
prevent overfitting, could also improve the model’s accuracy and reliability throughout
the project lifecycle.

5.5 Final Thoughts

The journey of this research has been both challenging and rewarding, illuminating the
complexities of predictive modeling within the shipbuilding industry. This thesis represents
an important starting point in the exploration and development of more advanced predictive
models within the shipbuilding industry. While the current model provides valuable insights,
it also underscores the necessity for continued refinement and testing in predictive analytics.
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The work completed serves as a foundational layer upon which future research can build,
incorporating more complex algorithms and broader datasets.

As we look to the future, the integration of advanced analytics and machine learning into
traditional industries like shipbuilding is poised to transform how projects are managed and
executed. It is hoped that the foundations laid by this thesis will inspire further research
and innovation, driving the shipbuilding industry towards a more data-driven and precision-
oriented approach. In closing, the experience garnered through this research underscores the
importance of persistence, creativity, and rigorous analysis in tackling complex engineering
challenges. It is a vivid reminder that at the intersection of data and domain expertise lies
the potential to effect substantial improvements and achieve operational excellence.
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Appendix A

Code Listing

1 # Define a function that preps the train & test data
2 def prep_data_with_milestone(df , test_hull , milestone =0):
3

4 # Scale Ordinal Date to be consistent with BCWS/BAC
5 scaler = MinMaxScaler ()
6 df_scaled = df.copy ()
7 df_scaled[’Ordinal Date’] = scaler.fit_transform(df[[’Ordinal

Date’]])
8

9 # Filter df for the test hull and preserve it in df_test
10 df_test = df_scaled[df_scaled[’Hull’] == test_hull].copy ()
11 df_test.reset_index(drop=True , inplace=True)
12

13 # Define BCWS/BAC column and fill any NaN values with 0
14 df_test[’BCWS/BAC’] = df_test[’BCWS’] / df_test[’BAC’]
15 df_test[’BCWS/BAC’].fillna(0, inplace=True)
16

17 # Find the index where BCWS/BAC first reaches the milestone based
on BCWS/BAC

18 milestone_index = df_test[df_test[’BCWS/BAC’] >= milestone]
.index.min ()

19

20 # Split the test hull data at the milestone
21 df_test_train = df_test.iloc [: milestone_index]
22 df_test_test = df_test.iloc[milestone_index :]
23

24 # Remove the test hull data from df to create a training dataset
25 df_train = df_scaled[df_scaled[’Hull’] != test_hull].copy ()
26

27 # Combine the first part of the test hull data with the data from
other hulls for training

28 df_train = pd.concat ([df_train , df_test_train ])
29

30 # One -hot encode the hull identifiers & remove the baseline hull
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31 df_train = pd.get_dummies(df_train , columns =[’Hull’])
32 df_train.drop(baseline_hull_column , axis=1, inplace=True)
33

34 # Define BCWS/BAC column and fill any NaN values with 0
35 df_train[’BCWS/BAC’] = df_train[’BCWS’] / df_train[’BAC’]
36 df_train[’BCWS/BAC’].fillna(0, inplace=True)
37

38 # Drop all other columns
39 columns_to_drop = [’Date’, ’BCWP’, ’BAC’, ’BCWS’, ’

Completion_Ratio ’]
40 df_train.drop(columns_to_drop , axis=1, inplace=True)
41

42 # Add missing one -hot columns for the test set that are present
in the training set

43 df_test = pd.get_dummies(df_test_test , columns =[’Hull’])
44 missing_cols = set(df_train.columns) - set(df_test.columns)
45 for col in missing_cols:
46 df_test[col] = 0 # Add missing columns with default value of

0
47

48 # Ensure the order of columns in the test set matches that of the
training set

49 df_test = df_test[df_train.columns]
50

51 return df_train , df_test , test_hull

1 # Define a function to train and test the model
2 def poly_regression_final(df_train , df_test , test_hull , degree=3,

show_plot=False):
3 # Prepare features for training
4 features_train = df_train.drop ([’ACWP’, ’Ordinal Date’], axis =1)
5 ordinal_date_train = df_train [[’Ordinal Date’]]
6 y_train = df_train[’ACWP’].values
7

8 # Prepare features for testing
9 features_test = df_test.drop ([’ACWP’, ’Ordinal Date’], axis =1)

10 ordinal_date_test = df_test [[’Ordinal Date’]]
11 y_test_true = df_test[’ACWP’].values
12

13 # Apply polynomial features to ’Ordinal Date’ only
14 poly = PolynomialFeatures(degree=degree)
15 ordinal_date_train_poly = poly.fit_transform(ordinal_date_train)
16 ordinal_date_test_poly = poly.transform(ordinal_date_test)
17

18 # Concatenate polynomial features of ordinal date with other
features

19 X_train = np.concatenate ([ features_train.values ,
ordinal_date_train_poly [:, 1:]], axis =1) # Skip the first
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column to avoid multicollinearity
20 X_test = np.concatenate ([ features_test.values ,

ordinal_date_test_poly [:, 1:]], axis =1)
21

22 # Fit the linear regression model
23 model = LinearRegression ()
24 model.fit(X_train , y_train)
25

26 # Print regression equation
27 feature_names = features_train.columns.tolist () + [f’x^{i}’ for i

in range(1, degree + 1)]
28 equation_terms = [f"{coef:.3f }*{ name}" for coef , name in zip(

model.coef_ , feature_names)]
29 equation = " + ".join(equation_terms) + f" + {model.intercept_:

.3f}"
30 print(f"Regression Equation for Test Hull {test_hull }: ACWP =",

equation)
31

32 # Make predictions on test data
33 y_test_pred = model.predict(X_test)
34

35 # Apply postprocessing to predictions
36 y_test_pred = enforce_increasing(y_test_pred)
37 y_test_pred[y_test_pred < 0] = 0
38

39 # Evaluate and print test metrics
40 mse = mean_squared_error(y_test_true , y_test_pred)
41 r2 = r2_score(y_test_true , y_test_pred)
42 print(f"Mean Squared Error for Hull {test_hull} predictions: {mse

:.2e}")
43 print(f"R-squared for Hull {test_hull} predictions: {r2:.2f}")
44

45 # Plot results (if desired)
46 if show_plot:
47 plt.figure(figsize =(10, 6))
48 plt.scatter(df_test[’Ordinal Date’], y_test_true , label=’

Actual Values ’, color=’blue’)
49 plt.scatter(df_test[’Ordinal Date’], y_test_pred , label=’

Predicted Values ’, color=’red’)
50 plt.title(f’Comparison of Actual and Predicted ACWP for Hull

{test_hull}’)
51 plt.xlabel(’Ordinal Date’)
52 plt.ylabel(’ACWP’)
53 plt.legend ()
54 plt.show ()
55

56 return mse , y_test_true [-1], y_test_pred [-1]
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Appendix B

Additional Graphs

B.1 Graphs of ACWP Prediction Comparisons

Figure B.1: ACWP Prediction Comparison for Test Hull X2
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Figure B.2: ACWP Prediction Comparison for Test Hull XL

Figure B.3: ACWP Prediction Comparison for Test Hull XM
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Figure B.4: ACWP Prediction Comparison for Test Hull XN

Figure B.5: ACWP Prediction Comparison for Test Hull XR
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Figure B.6: ACWP Prediction Comparison for Test Hull XS

Figure B.7: ACWP Prediction Comparison for Test Hull XT
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