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ABSTRACT

Models of preprocessors are developed for a boundedly rational
decisionmaker. These models may be wused to model either internal
preprocessing in the situation assessment stage or external decision aids.
Several preprocessing functions are analyzed including filtering and
aggregation of data. It is shown that properly designed preprocessors can
reduce the workload of the decisionmaker and relax the bounded rationality
constraint. Finally, a dual task is defined and the trade-off between
workload and performance is analyzed. The results are shown to be in
agreement with experimental observatiosms.
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CHAPTER 1

INTRODUCTION

1.1 BACEGROUND

The current advances in sensor technology vastly increase the volume and
complexity of battlefield information. For instance, the electronic
intelligent receiver/locator and the near real-time photo recomnaissance data
transmission produce an extremely high unfiltered data rate for processing,
storage and dissemination. In addition, the development of sophisticated
weapon systems demands quick reaction capability. Therefore, the time
allowed for decision response in a tactical enviromment is severely
constrained [1]. Consequently, the designer of military decisionmaking
organizations faces a great challenge: how to handle the large amount of data
in a timely manner without overloading the components, human or machine, of

the organization.

The decisionmaking organization of interest is one supported by a
command, control and communication (C?) system. The C’ system is a tactical
decisioh-support system made up of "a collection of equipment and procedures
used by commanders and their staff to process information, arrive at
decisions, and communicate these decisions to the appropriate organization
units” [2] at the right time. Essential components of such an organization

are the commanders, the human decisionmakers.

Due to the high data rate, the decisionmaker will receive many data to
process and disseminate. In order to avoid overloading the decisionmakers
with the frequent arrival of unfiltered data, a preprocessor is inserted
between the data source and the decisionmaker to alleviate his heavy
worklcad, In reality, the preprocessing function can be performed by a human
or a machine; hence, its workload can count as being either part of the human
workload or not. There may be more than one preprocessor within an

organization to support the decisionmakers. If the workload of the
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preprocessors does not add to the human workload of, (i.e., the preprocessors
function as decision aids for the decisionmakers) then the organization's

performance can be greatly enhanced.
1.2 GOALS

The objective of this thesis is to develop mathematical models for
various preprocessors capable of reducing: the decisionmaker’s high processing
load. Such a purpose can be achieved by means of several mechanisms. One
way is to restructure the decision strategy for processing the input
according to the input’s characteristics, and thus reduce the decisionmaker's
workload. Another mechanism is to slow down the input rate by filtering the
jrrelevant data through the preprocessor. The latter mechanism saves time
and processing resources; the decisionmaker need attend only to the
significant data. Therefore, the system performance is enhanced. Examples
and applications employing these models are also presented to illustrate the

utility of the approaches.

The model of the human decisionmaker adopted in this thesis is the
descriptive ome developed by Boettcher [3], [4]. It is a two—stage
information—theoretic model of a decisionmaking process with limited
processing capacity. It differs from previous models in that it
characterizes the input—output relationship in terms of the total internal
processing activity rather than only its throughput behavior. The capacity
limitation is modeled as a constraint on the total internal processing

activity.
1.3 OUTLINE OF THESIS

This thesis has been organized into six chapters as follows. In Chapter
2, the basic tools of information theory and the partition law of information
used in analyzing the varioms models are given. The basic deterministic
decisionmaker model is then reviewed; it is followed by the development of

the stochastic counterpart. The modeling of the limited processing capacity

—14=




of a decisionmaker is briefly discussed. 1In Chapter 3, the basic model of
rreprocessor and its extemsior to include filtering are presented. The
preprocessor model is connected to the decisionmaker model for system
evaluation. A numerical example is provided at the end of the chapter to
illustrate the utility of a preprocessor in a decisionmaking system. In
Chapter 4, two gemeric designs of preprocessors with well-defined purpose are
described to illustrate some of the possible applications. Also, guidelines
for the role of a preprocessor in a decisionmaking system are developed. In
Chapter 5, the question of how a preprocessor can facilitate dunal—-task
processing by a decisionmaker is investigated by formulating two versioms of
a doal-task problem. Different approaches are employed to examine the
effects of dual-task processing on system performance as well as individual
task performance. Finally, in Chapter 6, the main points of this thesis are

summarized, and some promising areas of future research are suggested.

-15~
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CHAPTER 2
THE DECISIONMAKING MODEL
2.1 INFORMATION THEORETIC FRAMEWORK

Information theory, originally developed as communicatjop theory [51,161
is useful in the analysis of information—processing Systems, In this
section, two fundamenta] quantities jg information theory gare reviewed:
éntropy and transmission, In addition, the Partition Law of Information [7]
which cap be used for decomposing the total activity of ap informatjon~

Processing System, is discussed.

Entropz

For a variable x, which is ap element of the alphabet X, with probability

distribution p(x), its entropy H(x) js defined to pe

H(z) = - 5 p(2) Iog p(x) 2.
X

is also defined as the average information or the uncertainty of X, where

For two variables x and vy, elements of the alphabets X and Y with
distributionsg p(x) and rly) Tespectively, the transmission or average mutug]

informatijon between x and y, T(x:y), is defined to be

T(x:y) = B(z) - E&(x) (2.2)

~17-
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where Hy(x) is the conditional entropy in the variable x, given full
knowledge of the value of the variable 7. With p(xly) as the conditional
probability of x given the value of y, Hy(x) is defined to be

Hy(z) = - 2 p(y) 2 p(xly) 1log p(xly) (2.3)
y x

Transmission measures the relatedness or constraint holding between two
variables. It can be interpreted as the amount by which knowledge of y
redunces the uncertainty in x, or vice versa, as it is a synmetric quantity in

x and y.

N-Dimensional Mutual Information

McGiil [8] extended the concept of mutual information to N variables.

Equation (2.2) can be written as
T(x:y) = H(z) + H(y) - H(x,y) (2.4)

McGill’'s extension to N dimensions, namely,

T(xl:x :...:xN) = 2 H(xi) - H(xl,xz,....xN) (2.5)

2
i=1

seems quite natural, The N-dimensional mutual information measures the total
constraint or interrelatedness holding among all N variables of a system.
Conant [7] has pointed out that this measure may be expressed as the sum of
simplier quantities. For example, a system may be decomposed into
subsystems, and the N—dimensional mutual information of this system is the
sum of two quantities: the transmissions of the individeual subsystems and the
transmission between subsystems. With N=4, this might be expressed:

T(xx:xz:x::x4) = T(‘l’xz) + T(x3:14) + T(xl,xzzxa,x4) (2.6)

-18-




Partition Law of Information

The Partition Law of Information [7] is defined for a system with n

variables, say, n-1 internal variables w through w__

1 n—1+ 8&nd an output

variable y, also called w,. The law states that

N
} H(wi) = T(x:y) + Ty(x:wl,wz.....wn_l) + Hx(wx"z"""n—x'y)
=1

+ T(wlzwz:...:w 'y) 2.7

n—1

and is easily derived using information theoretic identities. The sum of the
marginal entropies of the n variables within the system on the left—hand side
of Eq. (2.7) is defined as the total information-processing activity G of the
system. Each of the quantities on the right-hand side of Eq. (2.7) has its

own interpretation and will be discussed now.

The first term, T(x:y), is called the throughput of the system and is
denoted by Gt' It describes the input-output relationship of the system and
measures the amount by which the output of the system is related to the
input. This is the quantity that a communications channel tries to maximize.
The second term
»y) - T(x:y) (2.8)

T}(x:wl,wz,...,w ) = T(x:wl.wz,....wn_

n—1i 1
is called the blockage of the system, Gb' As the above expansion
demonstrates, blockage may be thought of as the amount of information in the
input to the system that is not included in the output. The third term,

HI(WI,WZ,...,Wn_l,y) is called the noise of the system, G_. It represents

n
the uncertainty that remains in the system variables when the input is
completely known. Such uncertainty may come from noise generated within the

system. It may also be thought of as internally-generated informatiom, i.e.,

-19-.
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information supplied by the system to supplement the input and facilitate the
decisionmaker. The last term, T(x:wl:wz:...:wn_lzy) is called the

coordination of the system, G It is just the n-dimensional mutual

c*
information of the system, the amount by which all of the internal and output
variables in the system constrain each other. It reflects all system
variable interactions and can be interpreted as the coordination required
among the system variables to accomplish the processing of the inputs to
obtain the output. As mnoted before, if the system is broken wup into
independent subsystems, then this coordination term may be expressed as a
simple sum of the coordinations of the individual subsystems. Finally, the
Partition Law of Information may be abbreviated as:

G=6G +G, +G +G (2.9)
t n [+

b

2.2 THE BASIC DECISIONMAKING MODEL

The model of the preprocessor that is developed in this thesis will be
linked with the model of decisionmaker so that its utility in alleviating the
pfocessing workload of the decisionmaker can be analyzed. In this sectiom, a
brief overview of the concepts and results of the basic decisionmaking model
will be presented. The detailed description and analysis of the determimstic
version of this model can be found in [3], [4]. The stochastic version of

the model will be developed in detail in the next section.

The basic model of the decisionmaker is illustrated in Fig. 2.1 as a
two—stage process. The decisionmaker receives an input symbol x from his
environment. If the input symbols are gemerated every < seconds on the
average, then t, the mean symbol interarrival time, is a description of the
tempo of operations. The situation assessment (SA) stage consists of a
finite number of well-defined deterministic algorithms that the decisionmaker
can choose from to process the measurement x and obtain the assessed

situation z. The internal decisiommaking in this stage is the choice of

-20-
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algorithm fibto process x. Therefore, each algorithm is considered to be
active or imactive, depending orn the internal decision u. In the response
selection (RS) stage, which is similar to the situation assessment stage, ome
of the deterministic algorithms hj is chosen according to the response
selection strategy p(vlz) to process the sitmation assessment z into an
appropriate response y. Since no learning takes place during the performance
of a sequence of tasks, the successive values taken by the variables of the
model are uncorrelated, i.e., the model is memoryless. Hence, all

information theoretic expressions presented later are on a per symbol basis.

f,(x) h,(z)

XL el ho@ e

\— fU:(x) \— hV:(z)

SA RS

Figure 2.1. Basic Model of Decisionmaking Process

The model of the decisionmaking process shown in Fig. 2.1 may be viewed
as a system S comsisting of two subsystems, sSA and SRS. that correspond to
each one of the two stages. The input to this system S is x and the output
is y. Furthermore, let each algorithm fi contain oy variables denoted by

v o= W, Wi, ..., Wi} i=1,2,...,0 (2.10)
1 2 a

i

and let each algorithm hj contain a} variables denoted by

~21-



LS BN LS LS S W) j=1,2,0..,V (2.11)

It is assumed that the algorithms have no variables in common:

wnw =9 for i#j » i,j = 1,2,..., U4V (2.12)
The subsystem SSA is described by a set of variables

sSA = (o, Wh,...,W0, 2) (2.13)

and subsystem SRS by

SRS = [V, WU+1,c'o’wU+v. y} (2-14)

The: four quantities stated in the Partition Law of Information for this

system S can be evaluated with the following results.

(]
]

T(x:y) = H(y) - Hx(y) (2.15)

6, = T (x:u, W, WY ,2,y) = H(x) - 6, (2.16)

In this case, inputs not received or rejected by the system are not taken

into ‘account,

6 = nx(sSA. s%%) = @) + B (v) (2.17)

T(u:wl:...:wUTv tziviy) = GSA + GRS + T(SSA: SRS) (2.18)
1 ay c c

@
It
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where

U
63" = ) Ipysl (p(x)) + aH(p)) + H(z) (2.19)

i=1

vV

RS U+ j . '

G, =§bﬁ:%ﬂﬂwﬁ)+%m%n+HW) (2.20)

i
(s34 . s®5) - m(q (2.21)

The expression for G, shows that it depends onm the two internal strategies
p(u) and p(vlz). 1In the subsystem coordination expressionms 654 and GRS, P;
and p; are, respectively the probabilities that algorithms f; and hj have

5 represent

been selected, i.e., p;=p(u=i) and pj=p(v=j). The quantities g
the internal coordination of the corresponding algorithms and depend on the
probability distributions of their respective inputs. The quantity H is the

entropy of a Bernoulli random variable with parameter p:
H(p) = - p log p - (1-p) log (1-p) (2.22)

Eq. (2.18) states that the total coordination in the system S can be
expressed according to Eq. (2.6) into the sum of the internal coordination
within each subsystem given by Eqs, (2.19) and (2.20) and the coordination

due to the interaction between the two subsystems given by Eq. (2.21).

The subsystem coordinations comsist of terms reflecting the presence of
switching due to the internal decision strategies p(u) and p(vlz). If there
is no switching, i.e., if for example p(u=i)=1 for some i, then H will be

identically zero and Eg. (2.19) will reduce to:

¢S4 - gi(p(x)) + H(z) (2.23)
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Finally, the quantity G, defined in Eq. (2.9) and interpreted as the total
information processing activity of the system S, can serve as a measure of

the workload of the decisionmaker in carrying out his task.
2.3 THE STOCHASTIC DECISIONMAKING MODEL

A crucial assumption in the basic decisionmaking model is that the
algorithms are deterministic. Such an assumption, though restrictive as it
seems, has simplified a great deal the evaluation of the various information
theoretic expressioms, particularly the noise G, and the coordinmation G.
The same basic model will be analyzed in detail in this section but with the
assumption of deterministic algorithms removed. First, a stochastic
algorithm needs to be analyzed using the information theoretic framework. A
stochastic algorithm is different from a deterministic algorithm in that at

least one of its variables is stochastic.

Consider an arbitrary algorithm in the decisionmaking model discussed: in
Section 2.2. The noise gj and the coordination g, of the algorithm are the
two relevant quantities when the assumption of deterministic algorithms is
removed. Suppose this typical algorithm, which receives an input x and
yields an output y, is described by n variables, w;, W,,...,W,, of which
w,=x and w Sy (see Fig.2.2). Then g, is a measure of the inherent
uncertainty in the algorithm’'s variables when the algorithm’s input is fully

known. Mathematically, it is defined as

8, = Hx(wl, wz....,wn) (2.24)

The algorithm coordination g, ijs a measure of the constraints or interactions
existing among all the variables within the algorithm. Mathematically, it is

defined as

8, = T(wl:wz:...:wn) (2.25)

—24-




It will be interesting to determine how the two quantities, gn and 8¢ of a

stochastic algoritim differ from those of a deterministic algorithm.

Figure 2.2, A Typical n-Variable Algorithm

Deterministic Algorithm

Since the variables w4 (i=1,2,...,n) of a deterministic algorithm are
well-defined without any stochasticity, each of them can be reexpressed as a
deterministic function of the input variable x. Hence, when the input value
X is known, there is no ambiguity in determining the values of the wi's.
Thus, the g, in Eq. (2.24) reduces to zero, implying there is no inherent

uncertainty within a deterministic algorithm, i.e.,

g =0 (2.26)

According to the identities in informatiom theory, the g, in Eq. (2.25) can

-25~.




be rewritten as

n
s, = E H(wi) - H(wl,wz,...,wn) (2.27)
i=1

The second term of Eq. (2.27) can be decomposed into

H(Wi,wz;.--,wn) = H(w’.) + Hw’.(w’) + le, wz(w3) + LI +

: (w) (2.28)
W _ oW _,0cs,W n
1 2 i n—1i

Since w,=x and the wi's are all deterministic functions of x, all the terms

in Eq. (2.28) except the first ome reduce to zero; i.e.,

H(w_,w,,. .-.;,wn) = H(w ) ' (2.29)

Substitution of Eg., (2.29) into Eg. (2.27) yields
» S
8, = E H(w,) (2.30)
=2

This result implies that the coordination of a deterministic algorithm
is the sum of the marginal entropies of each individual variable within the
algorithm except the one duplicating the input valume. (In this case, the

input variable is w,).

Stochastic Algorithm

Since a stochastic algorithm has at least one stochastic variable, let
the n variables describing the algorithm be partitioned into two mutually

exclusive, collectively exhaustive subsets, D and D, defined and enumerated

-26-




as follows:

D = The set of all the stochastic variables within the algorithm
= {wi, LFPPERETIL wj] ~ where 2 $i £ j<n (2.31)
D = The set of all the deterministic variables within the algorithm
= {wl.wz,...,wi_l. Via? 'j+z""'wn} (2.32)

Since the order of the variables in a joint entropy expression is immaterial,

the g, in Eq. (2.24) can be written as:

o
[

Hx(wl,wz,...,wi_l. wi"i+1’""'j—l’wj"j+1'°""n)

H LW, ceesW, w,,W . w, csW
I(wl'wl’ i+’ » J_l, Jl 2’ ’ » yeesy n)

i-17 " j+a

B _(w,,D, D-{v_})

H(w) +H (D) + H
X 1 X X, W

» 1'

o 5 (D-{wll) (2.33)

The first term of Eq. (2.33) is equal to zero since w,=x. Consider the last
term of Eq. (2.33), the conditioning of this joint entropy can provide
sufficient information to determine the values of the deterministic variables
D, hence, this term reduces to zero. The second term of Eq. (2.33) is the
joint entropy of all the stochastic variables conditioned on the full
knowledge of the input value. Suppose the stochastic variables within the
algorithm are defined to be independent of any other variables. Then the
conditioning present in the second term is nullified. Consequently, Eq.
(2.33) becomes

-27-
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Suppose the stochastic variables in D are defined to be independent of
each other, then their individual marginal entropies will not be affected by
the presence of any kind of conditioning. Hence, all the conditional
entropies in Eq. (2.34) can equate to their marginal counterparts. As a

result, g, in Ea. (2.34) can Ve written as

[
1

H(wi) + H(wi+1) + H(wi+z) + ... F H(wj)

2 H(v,) (2.35)
w.e D

A
This result shows that the inherent uncertainty of a stochastic
algorithm is the sum of all the marginal entropies of each individual

stochastic variable within the algorithm.

Accordingly, g, can be evalunated as- follows:

o
It
s
F
2
4
o
E
%
=
£
o

c i—-1 1 i+2 j-r 3 Jt2 n
= ) HGw) + > H(w) - ED,D) (2.36)
wxs D wxe D
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The last term of Eq. (2.36) can be reduced in a mannmer similar to that used

in reducing 8q+

2(D,D) = H(w,D , D-{v })

H(w,) + B (D) + H_ & (D~(w }) (2.37)

1 1’

The last term of Eq. (2.37) reduces to zero since the values of the
variables in D can be determined unambiguously when the values of input x=w,
and the variables in D are known. The second term in Eq. (2.37) is equal to
HE(D) since its conditioning can be nullified by the independence assumption
made in defining the stochastic variables in D, Furthermore, H(D) has been
explicitly analyzed in 8, and the result is expressed in Eq. (2.35), Hence,
Eq. (2.37) can be written as

BD.D) = Htw,) + ) Hlw) (2.38)

wxe D

Finally, substituting Eq. (2.38) into Eq. (2.36) yields

g, = } H(w, ) (2.39)

wleD—[wll

This result implies that the coordination of a stochastic algorithm is
the sum of all the marginal entropies of each individual deterministic
variable within the algorithm except the one duplicating the input value.
(Bere the variable is w,). It is interesting to note that this conclusion is
the same as that of the case where all the variables are deterministic

(i.e., D = ¢).

In conclusion, when the Partition Law of Information applies to anm
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algorithm whose stochastic variables, if any, are independent of each other
and of any other variable within the algorithm, the inherent uncertainty -

and the intermal coordination g, are analyzed to be:

8, = sum of individual marginal entropies of all the

stochastic variables within the algorithm.

gc = sum of individual marginal emtropies of all the
deterministic variables within the algorithm except

the one duplicating the input value.

Analytic Expressions of the Stochastic Decisionmaking Model

In order to find out how the various activity terms of the decisionmaker
model are affected by introducimg stochastic algorithms, the SA stage of the
model is analyzed first. The DM model with its SA stage shown in Fig. 2.3
is the same¢ as the one illustrated in Fig. 2.1 except that the variables

within the algorithms can be either determimistic or stochastic.

N N

f,(x)

f,(x) |

Figure 2.3, Situation Assessment Stage
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Since the analytic expressions for the throughput and the blockage of the
stochastic DM model are unaffected by the presence of stochastic variables
within the model, only the expressions for the noise and the coordination of

the model will be derived.

Noise

By definition, the noise present in the SA stage GEA is given by

G:Aﬁ Hx(u,w‘.w',...,wu,z) (2.40)

which can be written as

SA _ 1 2 U
G11 = Hx(“) + Hx’h(w )+ Hx u'wz(W ) oot Hx,u,w‘,w‘....,\v“—‘ (W)

i

L w,wA,... .40 (2 (2.41)

Since preliminary processing of the input does not exist in the SA stage, the

decision strategy p(u) is independent of the input value x, i.e.
p(ulx) = p(u);

hence the first term of Eq. (2.41) equates to H(u). The last term of Eq.
(2.41) reduces to zero because the output value of the SA stage, z, can
certainly be determined when all the algorithms’ output values are known.
Furthermore, given the valoes of the input variable x and the decision
variable u, the knowledge of the values of the ith algorithm’s variables Wi
will not provide any more information to determine the values of the jth
algorithm’s variables WJ (i#j) in the SA stage. Hence, all the remaining
terms in Eg. (2.41) can be simplified to be their corresponding entropies
conditioned on the knowledge of only the variables x and u. Equation (2.41)

thus becomes
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¢34 - m(w) + 1 %) + 5 (F) +...+ H (w0)
n X,a, X,u I,u
U
= H(u) +§ o whH (2.42)
x,0
i=1

By definition, the term H u(Wi) can be expressed as

Hx u(Wi) = - } p(x,u) E.p(wi|x,u) log p(Wilx.u) (2.43)

»
I,u yt

Since the input variable x and the decision variable u are independent, their

joint distribution is
p(x,u) = p(x)p(u) (2.44)
Substituting Eq. (2.44) into Ea. (2.43) and factoring p(u) out yields

g u(wi) = - 2 p(u) } p(x) E.p(Wi|x,u) log p(Wilx,u) (2.45)

X,
u b4 v

when u#i, the variables Wl are all inactive and so their values are fixed
without any uncertainty; the value of the expression in Eq. (2.45) is zero.

Hence Eq. (2.45) can be written as

B W) = plami) [- ) p(x) J p(W'lx,umi) log p(W'lx,u=id]  (2.46)

2
x wt
The summation expression in the brackets of Eq. (2.46) is equivalent to

the inherent uncertainty of the ith algorithm g; when considered as a system

with input x and output z according to Eg. (2.24). Therefore, Eag. (2.46)
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becomes

Hx u(Wl) = plu=i) g;(p(x)) (2.47)

»

Finally, substituting Eq. (2.47) into Eq. (2.42) yields

v
g .
GnA = H(u) + 2 p,8.(p(x)) (2.48)
i=1

where p; = p(u=i) as defined in Section 2.2.

The analytic expression GEA in Eq. (2.48) shows that the noise within
the SA stage of a DM model with stochastic algorithms consists of two parts.
The first part is the uncertainty in choosing the algorithm in the SA stage.
It accounts for the amount of internal activity due to the decision strategy
p(u). The second part is the summation of the inherent uncertainty of each
individual algorithm weighted by the relative frequency of use. It measures
the amount of stodhasticity existed within the SA stage algorithms.
Therefore, when the DM model has only deterministic algorithms, the second

part of the expression for the noise does not exist.

The expression for the noise for the RS stage GES of the stochastic DM

model can‘be derived in a similar mannmer with the following result:

Y
RS U+j .
G.o= H_(v) + 2 P gn+J(p(z|v=J)) (2.49)

i=1
where gi(k=U+1,U+2,...,U+V) is the inherent uncertainty of the xth algorithm

in the RS stage. The interpretation of the expression in Eq. (2.49) is the
same as that of GEA in Eq. (2.48).
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Coordination

According to the principle of decomposition of coordination (i.e. Eq.
(2.6)), the coordination terms within the SA stage and the RS stage as well
as between the two stages are needed to evaluate the coordination of the

entire stochastic DM model, i.e.,

G = GSA +GRs + T(S
[+] [+ C

SA:SRS)

Since the assumption that the algorithms are deterministic was never used in
deriving the analytic expressions of GEA and G%s for the basic DM model [31],
the expressions of GEA and Gﬁs for the stochastic DM model should be
identical to those of the basic model (Egs. (2.19) and (2.20)).

The last term, coordination between the two stages, is evaluated as

follows:

(s34 8% = ns®) - ﬁSsA(sRS) (2.50)

Recall that SSA and SRs denote the sets of all the variables within the SA
and the RS stages respectively. Since z is the only variable present in the
SA stage, which has a direct influence on the variables in the RS stage.

Hence, the second term of Eq. (2.50) can reduce to
A sA(S™) = B_(s°) (2.51)
Substituting Eq. (2.51) into Eq. (2.50) yields

SA_ RS RS

1(s38. 588 - p(s®S) - az(sRs> = T(z:5™) = B(2) - BRs(z)  (2.52)
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Since all the algorithms in the model are stochastic algorithms, there
always exists a variable wf+v duplicating the input valuwe z within the
(T+v) tR algorithm which is active in the RS stage. Therefore, as inv is a
variable in the RS stage, its knowledge reduces the second term of Ea, (2.52)

to zero. Thus Eq. (2.52) becomes

T(SSA:SRS

) = H(z) ' (2.53)
Hence, the entire expression for the coordination of the DM model with
stochastic algorithms is the same as that with deterministic algorithms in
Eqs. (2.18) - (2.21)., It is interesting to note that under the same input
distribution p(x) and decision strategies p(u) and p(vlz), if all the
stochastic variables within the algorithms are removed from the model in such
a way that the distributions p(z) and p(y) are not affected, them all the
activities within the DM model will remain the same except for the noise G,
This happens because when no stochastic variable exists in an algorithm, its
inherent uncertainty gi (i=1,2,...,0+V) will be equal to zero and the G,

expressions in Eqs. (2.48) and (2.49) will thus reduce to

G:A = H(uw) (2.54)
& =B (v) ' (2.55)
n z

Consequently, the total activity within the entire DM model will decrease.

2.4 BOUNDED RATIONALITY

The qualitative notion that the rationality of a human decisionmaker is
not perfect, but is bounded, has been modeled as a comstraint on the total

activity G:
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G=6G6 +6 +6 +6 fLF= (2.56)
t T o c 0o

where T, is a critical valme of the mean symbol interarrival time and F is
the maximum rate of information processing that characterizes the
decisionmaker. With such an interpretation for F and Ty the total activity
G is dependent on the mean symbol processing time t according to the

following relatiom.
G = Ft (2.57)
Consequently, the constraint in Eq. (2.56) becomes

Ft £ F< or t $ < (2.58)
(o} [}

Eq. (2.58) implies that the decisiommaker must process his inputs at a rate
that is at least equal to the rate with which they arrive. For a detailed
discussion of this particvlar model of bounded rationmality, see Boettcher and
Levis: [4].
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CHZAPTER 3
THE PREPROCESSOR MODEL

3.1 INTRODUCTION

A preprocessor (PP) is located between a source and a decisionmaker (DM).
The PP may be included as a subsystem in the decisionmaker model (Fig. 3.1).
when viewed as an extension of the basic DM model. On the other hand, the PP
may be seen as a separate, external decision aid to the decisionmaker
(Fig. 3.2). The presence of PP within both contexts is expected to reduce

the subsequent processing load.

There are several reasons for including preprocessors in a decisionmaking
organization. The fundamental one is to reduce the workload of the
decisionmakers (DMs) by doing some of the data processing. Another ome is to
filter out extrameous data, thus giving the DM more time and resources to
process the significant data. Inevitably, the increase in the capability of .
a PP will necessitate greater complexity in its internal structure,

accompanied with higher processing activity, and longer processing time.

DM

PP SA RS —

Figure 3.1. Preprocessor as an Internal Subsys i=m

There are two types of imput variables feeding into the basic DM model,
the input variable x that describes the arriving inputs and the decision

variable u that describes the decision strategy used to process the inmputs,
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Figure 3.2. Preprocessor as an External Decision Aid

The PP operates on these two variables to achieve its purpose. ﬂence, the
PP simply consists of a single algorithm for preliminary processing of the
input. It yields a SA decision strategy, and sometimes a modified input to
the DM. Consequently, if the funmction of a PP is specified, i.e., the
algorithm and the inmterconnections of the intermal variables, the activity
within the PP is computable, just like for the other algorithms within the SA
and RS stages of the DM model. A simple example of a PP is given in the
following section to illustrate how the various activity terms can be

computed for a specified algorithm with well-defined internal variables.
3.2 THE BASIC PREPROCESSOR

Based on the above discussion, an example of a basic PP model, which
yields only ome output, the decision strategy u for processing the input in
the SA stage of a DM model, is illustrated in Fig. 3.3. From its
environment, the PP receives an input datum x, an element of a finite
alphabet X. Most of the input elements of the alphabet X can be processed
better (i.e., more efficiently with more accurate results) by some subset of
the SA algorithms. This special set of algorithms is termed the "desired
decision strategy” specific to that particular input element. On receiving
an input element, the PP first examines it, then outputs a desired decision
strategy to the DM. This decision strategy will determine how the algorithms

in the situation assessment stage of the DM will process the input datum x.
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<<

Figure 3.3. Basic Model of Preprocessor

Usually, there are more than one input elements in X with the same
desired decision strategy. Hence, the input alphabet X can be divided into a
number of mutually exclusive, collectively exhaustive subsets, or
partitions, (11,13,....Xk) by grovping those input elements with the same
desired decision strategy into the same partition. The desired decision
strategy can be described by a probability vector whose elements specify the
relative frequencies of employing the various algorithms in the SA stage of
the DM,

The function of the PP is to identify every arriving input and match it
tc a desired decision strategy. Mathematically, there exists a many—to—one
mapping from the finite set of input alphabet X to the fimite probability
vector space P, or a one-to—-ome mapping from the finite set of input
partitions {xl,x,,...,xk} to the finite probability vector space P. To model
such a mapping (only one-to-one mapping is considered here since it is
simpler) within the information theoretic framework, the two sets of interest

have to be clearly defined.

Let X be a set of disjoint subsets X (i=1,2,...,k) of thke input alphabet

X, i.e., for each xcX,

x g X, for some i
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and
x ¢ xJ. for j#i, i,j=1,2,...,k.

Bence, the sets Xi can be defined as

k
X = }J Xi where Xi e X
i=1
m N = > - .
Xi Xj ) for xi,xj e X, i#j

Let P be defined as a set of U-dimensional vectors p whose elements
describe the relative frequencies of employing the U algorithms in the SA

stage of the DM, i.e.,
P = (pli Pz: cae g PU)

where

o £ p. L1 i=1,2,...,0

and
U
E p; =1
i=1

The one—to—one mapping from X to P can be defined now. Let Ty, TyreeesTy
be the intermal variables in the basic PP model that distinguish to which
partition an arriving input x belomgs. The r;’'s (i=1,2,...,k) are boolean
variables assuming vaiues "true” and "false® according to the validity of the

. statement: "The input x belongs to the input partition Xi", i.e.,

Given an input x, then
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5 "true” if x ¢ Xi

S

(o1
fl

1,2,...,k
"false" otherwise : :

Another internal variable in the PP model is s, a numeric variable,
giving explicit account of which partition the arrivihg input x belongs to.

It yields the value i whenever r; yields a "true” value, 1 £ifk,
Specifically,

s =i if and omnly if r, = "true” for some i
and rj = "false” where j#i ; i,j=1,2,...,k

The output variable of the PP model is a U-dimensional probability
vector w ¢ P. This vector u gives the DM a specific decision strategy for
processing each arriving input x, Its value is determined by the variable s
which specifies the input partition. Since each input partition is
associated with a desired decision strategy, let gi be the desired decision
strategy for the partition Xi. i=1,2,...,k. Hence u can be precisely defined
as follows:

= gi if s =i, for some pi e P,
 When the internal variables in the PP are defined as above, the one-to-
one mapping from the input partition set X to the probability vector space P

can be modelled. The activity within the PP can now be analyzed within the

information theoretic framework.

"The addition of the PP to the DM model will necessarily increase the
total activity or workload of the system, because of the k+1 extra variables,
TysTy3se+.,T and s. The type and amount of additiomal activity can be

determined as follows.

—41-.

T AR - 2 B mo——n e e = rat oe e



If the preprocessor PP is comsidered as a separate subsystem of the
overall DM system, with input x, internal variables I ,T,,...,Ty,» $ and

output variable 1, then throughput Gt’ blockage Gb’ noise G and

n’
coordination Gc for the PP can be calculated according to the Partition Law
of Information imn Section 2.1. (Refer to APPENDIX A for the detailed

derivation.)

6, = B(x:m) = H(z) - H_(a) - | (3.1)
Gb = H(x) - Gt (3.2)
6 =B (r,r,,....5., 5,0 = B (2 =K () | (3.3)
Gb'= T(ti;rz:...:rk;s:g)

= H(s) + H(z) - H_ (@) + T(r :r :...i1y) (3.4)

The noise Gn, which represents the uncertainty in the PP system when the
input is known, is computed, as expected, to be H _(m) in Eq. (3.3). The
dependence of the decision variable u on the input variable x shows that the
pp has‘ utilized the input information to affect the intetnal decision
strategy in the SA stage of the DM. How the dependence of u on x affects the
’ teduction;in,activity in the DM and hence offsets the increase in processing

load due to the presence of PP requires further investigatiom.
The noise in the whole DM svystem is the sum of the noise within the PP

and the noise within the DM. Since the latter is zero due to the presence

of deterministic algorithms, the noise of the whole system is H_(m).
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The total coordination in the whole DM system S, Gf, can be decomposed
into the sum of the internal coordination within each subsystem and the
coordination due to the interaction between the two subsystems. The latter
coordination T(SPP:SDM) can be calculated to be (for the derivation, see
APPENDIX 4), |

(s :s™M) = B(x) (3.5)

The second subsystem of the DM system, other than the PP, is the DM
itself. Its coordination expression has been derived in the previous
chapter, in Eq. (2.18). Hence, the total coordination of the whole DM system
can be found, using Eqs. (3.4), (2.18), (3.5), according to the expression:

cf = GEP + GEM + T(sFF; sPH,) (3.6)

where Gﬁ is the coordination of subsystem A.

- With the noise G, and coordination G, for the whole DM system defined,

the total activity Gs of the system can be determined since

Gf + G§ = H(x). (3.7)

By introducing the preprocessor which utilizes input information in order
to select better strategies, the activity within the DM may be appropriately
reduced. However, the equations show that unless the selected strategy can
exploit the behaviour of the arriving inputs and thke capacity of the
available algorithms to achieve an extremely low processing activity level in
the DM on the average, the processing load within the PP will definitely
exceed the reduct;on in activity within the DM. The circumstances under which

the presence of the PP will improve the overall system performance subject to
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various time and resource constraints require precise formulation of

performance measures within such a context.

To see how the processing activity of a DM system is affected by the
presence of a PP which acts either as an internal subsystem or as an
external decision aid to the decisionmaker, the expressions for various
activity terms are listed below for the three decisionmakers for comparisomn
and discussion. These DM systems are made uvp of a basic DM model, as
described in the last chapter, and a PP, as described in the last section,

which functions either as a subsystem or a decision aid to the DM,

(a) Unaided Basic DM Model

G + Gb = H(x)
GsA = H(uw)
n
& - 51 (v
n z
v
SA i
Gc = } [pigc (pfx)) + ain(pi)] + H(z)
i=1
v |
RS T+j ’ :
el } [pjgc+'1 (pzlv=})) + a}H(p)] + H(z)
j=1
T(SSA:SRS) = H(z)

S




e

e - 2 -

(b) DM with PP as an internal Subsystem

Gt + Gb = H(x)
GSA = H (u)
n x
& - 5 ()
n z
Gzp = T(rlzrz:...:rk) + T(s:u) + H(s)
U
S .
GcA = 2 [Pig: (p(xlu=i)) + aiH(pi)] + H(z)
i=1
Vv
U+j . 4
Ggs = 2 [pjgc+J (plzlv=j)) + ajﬂ(pj)] + H(y)
j=1
T(SPP:SSA:SRS) = H(x,u) + H(z)

{(c) DM with PP as an External Decision Aid

G + Gb = H(x,u)
GSA = H (u)
n x
GRs = H (v)
n z
U
SA _ i .
Gc = 2 [pigc (p(x]o=1i)) + aiH(pi)] + H(z)
i=1
v
RS U+j ] ’
6o = ) 2,5, 3 (plzlv=j)) + alH(p,)] + H(y)
j=1
T(s34:s85%) - m(y)
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In order to analyze how the terms in the activity expressions change, it
is necessary to know how the addition of a PP to the basic DM system has
influenced the probability distributioms of individual variables within the
system. If a PP affects omly the decision variable u of the DM system, then
the probability distributiom p(u) is mnot predetermined as in the unaided
system, but rather is derived from the desired decision strategy p(ulx)

according to the formula

p(u) = } p(ulx) p(x)

X

where p(x) is the distribution of the arriving inputs and p(ulx) is the given
strategy im the SA stage. Since z is the output of the deterministic
algoritbms in the SA stage, it is a function of u and x. Furthermore, since
the presence of a preprocessor affects the distribution p(u), the
distribution p(z) will be different as a result. The term p{v=j) is derived

from the expression

p(v) = } p(vlz) p(2)

z

where p(vlz) is the given strategy in the RS stage; so if p(z) has changed,
p(v) will no longer be the same. Again, since y is the output of the
deterministic algorithms in the respomse selection stage, it is a function of
z and v; hence the distribution p(y) will not remain the same when the
distributions p(z) and p(v) have changed. Consequently, the addition of such
a simple PP to a DM system affects the distribution of every variable in the
‘above activity expressioms except p(x). Therefore, the only terms that will
remain unchanged in the above expressions by the introduction of a PP to the
i a}, and gi. It follows that whether a PP will make a
significant improvement in the total system activity of the DM system depends

system are H(x), a

on the specific problem, i.e., it requires specification of the input

distribution, the decision strategies and the algorithmic structures and
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functions within the PP as well as within the DM model.

3.3  PREPROCCESSOR WITH FILTERING

Sometimes the PP modifies the input to the DM system in order to reduce
the processing activity within the DM. For instance, when the arriving
inputs contain much extraneous data which should be ignored by the DM, the PP
can filter them out by blocking them so that no such input will be
transmitted to the DM. Such a function may be realized im the previous

and x_. (See Figure 3.4).

example by adding two more internmal variables, T, o

PPr, 1, 1 ey Ty oM

Fig, 3.4, ‘Preprocessor Model with Filtering

The boolean variable r,» like the other boolean variables, r;, is to
distinguish whether the input x belongs to a specific input partition X, of
the input alphabet X. The partition Xo contains all those extrameous input
elements in the input alphabet X. The variable x, will duplicate the inmput
valoe x and transmit it to the DM process accordingly, if it is identified as
not belonging to Xo. Otherwise, the variable x, will remain inactive so
that the input, identified to be one of those irrelevant data, will be

blocked within the PP, Mathematically, r, and x, are defined as follows.

Given an input x,

j "true” if x ¢ X
o

r = (3.10)
0 l”false" otherwise
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s O if x & Xo
. = (3.11)
° l bd otherwise

The additionm of these two variables, r, and x to the PP requires some

0o o’
modification in the definition of the pumeric variable s and the output

variable 1.
s = i if and omnly if T, = "true” for some i

and 1:.i = "false" where j#i i,j=0,1,2,...,k (3.12)

21 if s=1i, 1%£ifx , or some Bis P
n= (3.13)

O
e
L]
[
L]
o

In other words, no decision strategy will process an irrelevant input
datum which is blocked within the PP. When the PP has internal variables
defined as above, the various kinds of activity within the PP can be analyzed

with the following resmlts. (For the derivations, see APPENDIX B).

G = T(x:u,x ) = H(u,x) (3.14)
t N +] -0
Gb = H(x) - Gt
6, = Hx(ro,rl,...,rk,xo,s,g) = H_(m) (3.15)
Gé = T(ro:rlz...:rk:xo:s:g)
= T{r :r :...:7,) + H(r ) + H(s) + H(u) - HE (u) (3.16)
c 1 k 0 - s -

Hence, the total activity of the PP can be computed as
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PP

0
]

+ + +
Gt Gb Gn Gc

H(x) + H(s) + B(u) + H(ro) + T(rozrl:...:rk) (3.17)

Again, the effect of introducing such a PP to a DM system can be analyzed
by listing the activity expressions for comparison. But since the presence
of the PP will certainly affect all the probability distributioms, including
the input distribution p(x) to the DM, to discover under what conditions will

the addition of such a PP improve the DM system is again problem—dependent.

Although no gemeral result about the design of a PP to ascertain the
reduction of processing activity within the DM model is known, the above
example of the PP model with filtering guarantees a more preferable DM system
when the DM exhibits bounded rationality behaviour. In previous work, [3],
[4], the bounded rationality constraint on the DM is modelled as a maximum
allowable rate of total processing activity F. Mathematically, the

constraint is expressed as

6 £ F< (3.18)

where G is the total processing activity within the DM model and t is the
mean interarrival time of input symbols to the DM model. Equation (3.18) can

be re—expressed as

¢ £ 6 where G = F <

Since F is a parameter specific to a decisionmaker with bounded
rationality, the threshold of total processing activity Gr within the DM
depends on t, the mean symbol interarrival time. The retention of extraneous
data within the PP model with filtering reduces the rate of arriving inputs

to the DM, thus increases the mean symbol interarrival time T, resulting in a
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higher threshold of total processing activity Gr for the DM, The increase of
the threshold wvalue G, implies a less constrained DM. Therefore, the
introduction of a PP with filtering to a basic DM system with bounded
rationality behavior will not degrade performance but may actually improﬁe

Cit.
3.4 A NUMERICAL EXAMPLE

In order to demonstrate how a prepfocessor can assist a decisionmaker, a
numerical example of a PP with filtering is comnstructed below. The objective
is to illustrate how a preprocessor reduces the activity level and increases
the processing threshold of a stochastic decisionmaking system. The internal
structure of the PP as well as the associated DM are shown in Fig. 3.5. PFor

simplicity, only the SA stage of the DM model is considered here.

The elements of the input alphabet X = {x,, x,, X,, x,} arrive at the PP
in an equally likely manner at a rate of A symbols per second. Altogether,

three partitions are defined in X. They are

X = (x5} 4 %= (x) L X=dx)

Each of these partitions has its own desired decision strategy defined as

follows. Again for simplicity, only pure strategies are considered.

p(alx) yt - »-0 (3.19)
o l 0

R otherwise

p(ule) (3.20)
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Figure 3.5. Detailed Internal Structure of a PP with a DM System

p(ulxz) = (3.21)
0 » otherwise

The notation u = [] means that no further processing is required for the
elements in the partition X . The job of the PP is to identify to which
partition the arriving input belongs, then yield the appropriate desired

decision strategy and input data to the DM for processing.

The two stochastic algorithms in the DM can be specified as

J x+1 w.p. 0.5

fl(x) = (3.22)
( x w.p. 0.5
‘ x -1 w.p. 0.5

fz(x) = (3.23)
( X w.p. 0.5

With the functions of the PP and the two algorithms f, and f, defined, the
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internal variables and the interconnections among them can be defined.
Eence, once p{x) is given, the activities within the PP as well as the DM can

be evaluated.
According to Eq. (3.17) the activity within the PP is

GPP = H(x) + H(s) + H(um) + H(ro) + T(ro:rlzrz) (3.24)

According to Egs. (3.8), (2.48), and (3.9), the activity within the DM system

is

2
M ; . ; .
¢™ = H(z_,u) + H_(u) + Y pel (eGlumi) + p gl p(xlu=1)

i=1

+ o, H(p,) + B(z) (3.25)
it

Based on the PP and the DM defined above, Egqs. (3.24) and (3.25) can be used
to compute the total activities withf the following results. (Refer to

APPENDIX C for the detailed computation).

T = 7.12

DM

Now consider the overall activity of the DM system as well as its system
performance. If the PP is considered as a subsystem of the DM system (Fig.
3.6), then the total activity of the DM system will be '

6* = 6T + ¢™ - 14.12
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Figure 3.6. PP as a Subsystem of the DM system
If the PP is considered as an external decision aid of the DM system (Fig.

3.7), then the total activity of the DM system will not include the activity
within the PP. The system activity is

J 2

Gz

— PP g OM

Figure 3.7. PP as an External Decision Aid of the DM System

It is obvious that the system with PP as a decision aid has reduced the
system’s activity level by moving some of the pProcessing work outside of the
system. Here in this example, it is assumed that the moving of the boundary
line of the DM system does not create any interface problem to increase the
system activity. As for the system performance, since the same task is
processed with the same input and output behavior, i.e., same p(x) and p(z),

both realizations shown in Figs., 3.6 and 3.7 will produce the same system
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performance, However, this is not true when the DM exhibits bounded
rationality. Two reasons account for this. First, the activity of the DM
system with PP as a subsystem is gemerally greater than that with PP as a
decision aid. Hence, the workload of the former is more likely to exceed the
system threshold Gr' Second, the addition of the PP as a decision aid
reduces the input arrival rate of the DM system from A to A/2. As a result,
the interarrival time t and thus the system threshold Gr = F v are doubled.
An increase in the threshold Gr implies a smaller possibility of leading to
overload in the DM. The two facts can be demonstrated by a typical
performance—workload (i.e., J-G) plot for a DM system with non—-deterministic

decision strategy (Fig. 3.8).

@

= J

S'! system with PP gs subsystem

S%: system with PP as decision aid

Figure 3.8. A typical J-G Plot for Systems with Preprocessor

Two features are shown on the plot when the PP’'s role in the DM system
has changed from subsystem to decision aid. First, the moving of the

PP

performance-workload locus down by the amount is due to the removing of

some of the processing load out of the system. Second, the translation of
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the threshold line up is due to the less frequent arrival of input symbols,

In general, when a DM exhibits bounded ratiomality, the unaided system
(Fig. 3.6) will have more decision strategies leading to overload than the

aided system (Fig. 3.7).

On the other hand, there are times when a decision aid may not be
appropriate. It is becaumse in reality, decision aids are extemsions of the
decisionmaker’'s ability to gather, process and disseminate information. If
they are not designed properly, they may make serious mistakes, impairing the
performance of the decisionmaker. In the PP model developed so far, such a
phenonmenon can be illustrated by including stochastic variables to describe
possible error generation within the decision aid. Under such circumstances,
the input entropy and the input arrival rate to the DM are 1likely to
increase. Thus, the processing load within the DM may increase up to the
point of éxceeding the decreasing system threshold Gr' indicating a
degradation of performance. Hence, a decision aid does not always improve

system performance.

Finally, a stochastic DM system has a greater need of a properly designed
PP than a deterministic DM system to improve performance. This is due to the
greater activity within a stochastic DM system resulting from the
stochasticity within the algorithms of the system (i.e., including the
increase of the number of stochastic variables as well as the increase in the

entropy of these individual variables).
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CHAPTER 4
APPLICATIONS

4.1 INTRODUCTION

At the end of the last chapter, a numerical example illustrating the use
of a preprocessor was presented. It was stated in the discussion that it is
not always advantageous to introduce a PP as a decision aid because the PP
may not be properly designed and error-free. 1In this chapter, two generic
examples of preprocessors with well-defined purposes are described as well as
their corresponding decisionmaking systems. The first PP, which will act as
a2 decision aid, processes the imput data; while the second one aggregates the

input data,

So far, the criteria for determining whether a PP is a subsystem or a
decision aid for a DM system have not yet been specified. They often depend
on the usage of the PP, and on the evalunation of system activity and system
performance. Since it is assumed that no filtering occurs in both examples,
the input arrival rate for the preprocessors will remain constant and thus
the bounded rationality comstraint will remain unchanged. Hence, the system
performance depends entirely on the system activity. The total activity of
the DM system with and without a preprocessor in the two examples that follow
will then be evaluated to determine the role of the PP in the system. As a
result, guidelines for determining the role of a PP in a DM system will

evolve,

In the two examples, the aspect of determining the decisiom strategy
conditioned on the knowledge of the input values in the PP js ignored. The
preprocessor’s functipn is to modify the input data to affect redunction in

the processing workload within the DM,
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4.2 PREPROCESING OF DATA

The functicn of the preprocessor in this case is to reduce the workload
of the decisionmaker by processing some of the data before they are received
by the DM. In order to evaluate the utility of the PP, two different

decisionmaking systems, shown in Figs. 4.1 and 4.2, are considered.

" The first one represents an unaided DM while the second one represents a
DM with a preprocessor, The DMs in both systems have identical structures
and algorithms. The PP in the second system is an algorithm that performs
the same function as the SA stage of the first DM system. Since the PP is
just an algorithm without any decisionmaking capability, the SA stage of the
first DM system has to employ a pure strategy, i.e., the same algorithm is
always selected to process the arrivimg imputs. Under such conditions, the
decisionmaking process in both systems are identical. In order to allow the
two systems to do the same task with the same performance, so that the
activity or workload can be properly compared, the algorithms within the
processes are assumed to be deterministic and their output distributions p(y)
identical. The latter result will be ensured, if the RS stage in the DM of
both systems has the same input distribution p(z) and decision strategy
p(vlz). Since the second system has executed the SA jbb within its PP, its
SA stage simply transmits its input to an identity algorithm so that the
distribution p(z) within both systems will be identical.

SA RS

§ D 4PRE s | y_

DM,

Fignre 4.1. Basic DM System
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With such a processing setup, the two systems are capable of doing the
same task with the same performance, To demonstrate the utility of the PP in

the second system, the total acivity within each system has to be evaluated.

SA RS
u
2 fi(-) X ;>( f's =21 h's y

DM,

Figure 4.2. Aided DM System
Define:

Activity within First System = G, (4.1)
1

Activity within Second System = GDM2+ GPP (4.2)

where G; is the total activity with subsystem i.

In accordance with the results presented in Chapter 2, the general

expression for a decisionmaker is given by:

U U
Gy = B(x) + H(u) + } ps. + } aH(p,) + H(z) +H_(v)
i=1 i=1
v \'J
+ } png+J(p(z|v=j)) + } a;H(pj) + H(y) + H(z) (4.3)
j=1 j=1
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Since the response selection process, input distribution p(z) and
decision strategy p(vlz) of the RS stage in both systems are assumed
identical, the activity within the RS stage of the two system is the same,

denoted by GRS'

\' v

- U+j s e

= Hz(v) + } pjgc (p(zlv=j)) + 2 ajH(pj) + H(y) + H(z) (4.4)
j=1 j=1

Grs

Assume that the pure strategy in the SA stage of the first system is such
that the itRh algorithm is always selected (i.e., p(u=i)=1) whereas in the
second system the first algorithm, which is an identity algorithm, is always
selected. Then the activity of each decisionmaker in the two systems is

obtained from the expressioms in Eqs. (4.3) and (4.4)

(]
]

H(x) + gi + H(z) + G (4.5a)

DM RS
1

[}
]

H(x') + g: + H(z) + G (4.5b)

DM RS
2

The preprocessor in the second system consists of a single algorithm without
any decisionmaking capability. The algorithm in this case is identical to

th

the i algorithm of the SA stage, hence the activity within the PP is simply

i
= +
GPP H(x) g, (4.6)
The function of the identity algorithm f,(°) is to transmit its input to its
output without any intermnal processing. Therefore, there is only ome output
variable z which doplicates the input valwe x and there are no internal

variables. (See Fig. 4.3)
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fi(-)

Figure 4.3. The Identity Algorithm

Hence, its internal coordination is
. .
8, = T(g:2z) =0 (4.7)

Since the internal coordination of any nontrivial algorithm (i.e., other than

the identity algorithm) is greater than zero, gé >0, it follows that
1
g8, > 8 (4.8)

Given that the PP contains a deterministic algorithm without any

decisionmaking capability, then
H(x) 2 H(z') ) 0. (4.9)

Accordihg to Eqs. (4.5a) to (4.9), the following two inequalities will always

be valid.

GDM1 > GDM2 (4.10)

GDM1 < 'GDM2+ GPP (4.11)
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From the expressions of the total activity within the two DM systems given in
Eqs. (4,1) and (4.2), the inegualities in Egs. (4.10) and (4.11) show that
even though the workload of the first system is less than that of the second
system, the presence of the PP makes the workload of the second decisionmaker
to be less than that of the first onme. Such a result verifies the utility of

the PP in terms of its ability to reduce the activity within a decisionmaker.

This result illustrates the utility of moving some processing function
out of the situation assessment stage of a decisiommaker by designing

preprocessors that carry out mechanistic tasks, e.g., signal processing.
4.3 AGGREGATION OF DATA

In a decisionmaking process, information aggregation is necessary when
the data complexity is high and the time available for decision is short. Am
aggregation process reduces the imput entropy by grouping the input data imto
several zomes of indifference [9]. All the data in the same 2zome of
indifference are recognized as the same super datum in the decisionmaking
process. As a result, the modified input alphabet with a reduced entropy
‘will affect the processing workload of the DM. This concept will be

jllustrated by a simple example.

In this exzample, the aggregition, process in the PP is a truncation
operation that converts any rational number into the greatest integer equal
to or less than the original number. For instance, any number x in the semi-
closed interval [n,n+l) will be truncated to the integer mn. Suck an

operation can be denoted by the operator L°l, i.e., lx] = n.

The interval [n,n+l) is interpreted as a zomne of indifference in the input
alphabet since the truncation algorithm in the PP, upon receiving any input
from the interval, will yield the same integer n as its output. (See Fig.
4.4)
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xe[n,n+1) ,— ‘I X =n

Figure 4.4, The Truncation Algorithm

To illustrate how the inmput entropy is reduced by such an algorithm,
consider an input alphabet X consisting of 2n equally probable elements, in
the form of

x = [0,0.5’ 1' 145. 2, 2.5,...,11"1, n-O.S}
After the truncation operationm in the PP, the output alphabet X' of the PP,
which is the new input alphabet to the DM, comsists of n equally probable
elements in the form of

x' =10, 1, 2,...,0-1} (4.12)

The entropy of the original alphabet, is

H(x)

1 1
- E p(x) log, p(x) = - 2n h log, =] = log,2n
X

log:n +1 (4.13)

while the entropy of the second alphabet is

H(x') =-n [-%-logz'%] = log,n (4.14)
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Clearly, the entropy of the input alphabet is reduced by the truncation

operation.

In genmeral, if the input alphabet consists of nt equally probable

elements (where n and t are both positive integers), then

3 t-1 1 2
t

- 1 2 _1
x—{oleT)_)IOOI tf1p1+t11+tp--¢.n ?}c

After the truncation operation in the PP, the new input alphabet X' will be

in the same form as in Eq. (4.12).

The entropy of the original input alphabet X,
H(x) = - nt 1 lo Y log.n + log.,t (4.15)
. Int B, nt g, 8y *

From Eqs. (4.14) and (4.15), it follows that the truncation operation reduces
the input entropy by the amount log,t, i.e.,

H(x) = H(x') + logzt (4.16)

where X and X' are the original and the new input alphabets to the DM
respectively, and t is the number of intervals within two consecutive

integers defined in the original input alphabet X,

The function of the PP in this example is to perform the aggregation task
within the SA algorithms of the DM and thus reduce the workload of the DM 1In
order to evaluate the utility of such a PP, two different DM systems are

given, as shown Figs. 4.5 and 4.6, to do tbe same task,
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DM,

Figure 4.5. Basic DM System

X, L _J X2 ;>{

PP

DM,

Figure 4.6, Aided DM System

As in Section 4.2, the first system consists of a DM only while the
second system has a DM aided by a preprocessor., The decisionmakers in both
systems have identical internal structure except that each of the SA
algorithms in the first system has a truncation operation whereas that in the
second system does not. The truncation operation in the second system is
done by a PP, which consists of a single truncation algorithm. When
identical decision strategies are employed by the two systems, both will
perform the same task equally well. It follows from the discussion on

entropies, that the presence of such a PP in the second system renders the
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entropy of the input to its DM to be less than that to the DM in the first
system, i.e., H(x,) > H(xz,). To understand how the PP affects the processing
.load of éach DM as well as the activity of the whole system, it is mecessary
to investigate the activity ezpression for the DMs of the two systems. The

general activity expression of a DM was given in Chapter 2 as

v U
Gpy = Bx) + B() + 2 pg. + 2 aH(p,) + H(z) + E (V)
| - i=1 i=1
v \'S
U+j . ’
+2 pigg ) (p(zlv=i)) +) alH(p)) + B(y) + B(z) (4.17)
j=1 j=1

Since the two processes have identical internal structures for the RS
stage, the number of internal variables in the RS algorithms, aé, j=U0+1,
U+2,...,0+V, will be the same, Furthermore, when deterministic algorithms
are employed, the same task will be executed by the identical decision
strategy in the two systems with the same performance. These facts imply

identical a, p(u), p(vlz) and p(y) in the two processes. If the

JI
distributions p(z) in both processes are assumed to be identical, then a
large part of the GDM expression in Eq. (4.17) will have the same value, Go.

where

v v
_y
6, = H(w) +H(z) + B (v) +) p.g  (plzlv=i))

j=1

v
‘H(p.) + B H | .
+§ aBp,) + B(y) + B(z) (4.18)

j=1

Hence, the expressions for the workload of each DM are
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U U

~ i
GDM = H(xi) + § P8, + } a, H(pi) + Go (4.19)
1 . 1, 1
i=1 i=1
U U
G =H(x)+§ i+§ Hpp,) + 6 (4.20)
DM, 2 Pi‘cz “iz P’ T 5, .
i=1 i=1

where the subscripted variables of x, g: and a; refer to the different input

distributions and SA algorithms of the two DMs.

If the input alphabet modelling the task is finite and evenly distributed
with t intervals between two consecutive integers, then the following

relation between the two input alphabets holds according to (Eq. (4.16)

H(xl) = E(xz) + log,t - (4.21)

To compare the coordination terms in both systems, .a typical SA algorithm
is chosen from each DM for analysis, say f:(') and f;('). respectively. The
algorithm f;(') receives input x, and yields output z while the algorithm
f;(') receives input x, and yields output z. Since each of the SA algorithms
in the first system has a truncation operation, when the algorithm f;(‘)
processes its imput x,, its truncation operation always yields an intermal
variable within the algorithm f;(') which has the same distribution as x,,
the input variable of the corresponding algorithms f;(') in the second
system. Hence the algorithp f;(') can be viewed as consisting of two
subsystems. The first, the truncation operation, has internmal coordination
2| and ay | internal variables. The other is just identical to the algorithm

f;(') in the second system. (See Fig. 4.7)
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I

Figure 4.7. Typical algorithms from the Two DM Systems

By the decomposition property of coordination, the internal coordination
gg of the algorithm f;(') can be expressed as follows:

1

i i
sc1 g + gcz + H(x,) (4.22)

where g% is the internal coordination of the~a130rithm‘f;(‘); The last term
of Eg. *(4.22), H(x,), is due to the intersystem coordination (assuming that

‘f;(') is a deterministic algorithm).
'As the algorithm f;(’) is made up of two subsystems as shown in Fig, 4.7,

the number of internal variables o; within the algorithm f;(') is the sum of

the internal variables within each lindividual subsystem

Q, =a + a, (4.23)

where a; is the number of internal variables of the algorithm f;(‘).

2

The following inequalities are direct results of Egs. (4.21) to (4.23).

H(xl) > H(xz) : (4.24)
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g > g ' (4.25)

a, > a (4.26)

From Eqs. (4.19) and (4.20) and the above inequalities, it can be concluded
that the workload of the first DM, the unaided ome, is greater than that of

the second omne, i.e.,

Gmi1 > Sou, (4.27)

The utility of the PP is thus shown since it reduces the processing workload

of the second DM,

Consider now the workload of the two systems. The equations (4.1) and

(4.2) of the example in Section 4.2 also hold for this example.

Activity within First System = GbM (4.28)
1

Activity within Second System = GDM1+ GPP (4.29)

Since the PP in the second system is a truncationm algorithm with input z,,

the activity within the PP is simply

GPP = H(xl) + g (4.30)

where 8] is the internal coordination of the truncation algorithm and has

the same value as the intermal coordination of the subsystem respomsible for

the truncation operation within every SA algorithm of the first system.
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To investigate the relatiomship between the workloads of the two systems,

substitute Eqs. (4.22) and (4.23) into Eq. (4.19).

U U
_ i
Gy = Blx,) * D pileyy t e, *EE) ¢ JIECTARARL CRIR
i=1 i=1
U U
= [E(xl) + gl]] + ﬁﬂ(xz) + 2 P8, + E e, l(pi) + Go ]
i=1 P g '
U .
+a 2 H(p,) (4.31)

i=1

According to Egs. (4.30) and (4%20}, the first and second brackets of Eqg.
(4.31) are Gpp and Gpy respectively. Therefore, Eq. (4.31) becomes

2

U

Som, - Spp * Spn, * 9 } Bp) (4.32)
i=1

If Q| > 0 and a nondeterministic decision strategy is assumed, i.e., 0 < p;
¢ 1, for some i, then the last term of Eq. (4.32) is strictlyvpositive. It
can be concluded from Eq. (4.32) that

GDM1 > Gpp +c;DMz (4.33)

The inequality inm (4,33) states that the total processing workload of the
first system is greater thanm that of the second system. The difference of
the activities between the two systems, as revealed in the last term of Egq.

(4.32) is reasonable because moving the truncation operation out from every
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SA algorithm within the DM to the PP outside the DM will definitely reduce
the workload due to each algorithm in the SA stage. In other words, the DM
in the second system no longer needs extra resources to reinitialize the

variables required for the truncation operation in each SA algorithm.

In this example, the introduction of the PP in the DM system not only
reduces the workload of the DM but also reduces thé activity within the whole
DM system. In general, the kind of preprocessors that satisfy the
inequalities Egs. (4.27) and (4.33) can be implemented as external decision
aids. They also suggest an internal structure within the SA stagevof a DM

that leads to reduced workload.
4.4 CONCLUSION

The two examples analyzed in the previous sections lead to the following

remarks. The utility of a PP in a DM system can be evaluated by:

(1) Investigating the presence of any improvement in system performance

while the DM's workload remains unchanged.

(2) Investigating any reduction in the DM's workload when the system

performance remains the same.

In the two examples, when the system is evaluated to demonstrate the
utility of the respective PP, the intermal structures (i.e., the internal
variables and their interconnections) of the PP'’s are never defimed. The
only constraint required is the inequalityvof the input and output entropies
of the preprocessor i.e., H(xin) 2 H(xout). Such a condition can be made

possible by satisfying ome of the following three requirements:
(1} The preprocessor contains determiristic algorithms

(2) No stochastic variables exist in the PP
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(3) No decisionmaking capability is allowed in the PP.

Therefore, the evaluation of the effectiveness of the two DM systems is
totally independent of the implementation or modelling of the‘PP. One may
try to gemeralize along this line fo determine the system effectivenmess of
any DM system with a PP given that H(xin) > B(x ) to be a condition of the
PP,

The role of a PP played in a DM system depends on how the boundaries of
the system are drawn which in tura is determined by how much the PP can

reduce the workload in the system. If

DM DM
1
and:
DM_ DM, © PP
then the boundaries of the DM system should not enclose the PP because the
jnclusion will increase the system activity. Consequently, the PP can

function as a decision aid but not as a subsystem. On the other hand, if

Gpy > Spm
b § 3

and

DM DM PP
1 2

then the boundaries of the DM system can enclose the PP since including the
PP still reduces the system activity. So in this case, the PP can function

as a subsystem as well as a decision aid. (The system activity is further




reduced when the PP functions as a decision aid).
The example in the last section justifies the need of having a PP as a
subsystem in a DM system; i.e., it indicates that redefinition of the

algorithms or procedures in such a way that idenmtical processing is dome in

one place reduces the overall workload.
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CHAPTER 5
DUAL-TASK PROBLEM

5.1 INTRODUCTION

Another application of the preprocessor is to facilitate a decisionmaker
in handling dual-task processing. Depending on how the dual-task problem is
formulated, the system performance of the dual-task case can be compared with
that of single-task case when the measure of performance is properly defined.
The difference of performance may account for the presence of switching

between the two tasks during the execution of the dmal-task.

Two variants of the dual-task problem will be presented in this chapter.
One is the sequential dunal-task problem in which inputs of two different
tasks arrive one after another in a sequential manner. The other is the
parallel dual-task problem in which inputs of the two tasks arrive in
parallel in a synchronous manner. The two tasks in both variants are non-
synergistic, i.e., they are dissimilar and do not reinforce each other, and
so their performance may decline from what it should be in the single—-task
case. For the single—task case, the input arrival rate will be identical to
the rate of the dunal-task case in order to compare properly the levels of

workload in the performance-workload space.

In the subsequent sections, models of the two dual-task problems will be
formulated in the comtext of a single decisionmaker aided by a preprocessor
and then analyzed to determine the effect that executing two non—synergistic
tasks can have on system performance. In the process of demonstrating dual-
task behavior, various graphs of single—task performance and activity or
workload against several parameters are required to be drawn. All of these
will be used in constructing the performance curves for single—task as well

as dual-task processing.
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5.2 SEQUENTIAL DUAL-TASK PROBLEM

The model of the sequential dual-task processing shown in Fig. 5.1

consists of a preprocessor and a decisicnmaker,

u/x

X : Z
X .

PP

DM

Figure 5.1. Sequential Dual-Task Processing Model

The input x of the system may be from task A with input alphabet XA, or task
B with input alphabet 'XB. The PP examines each individual input to
distinguish the task to which the particular input belongs. If it is a task
A input, then the PP will yield a decision strategy uy pertaining to task A
to the DM for processing the imput; otherwise strategy up pertaining to task
B will be genrated. Essentially, the preprocessor acts as a ‘matching

algorithm yielding decision strategies as described in Chapter 3.

The decision strategies are the variables determining system activity and
system performance. A pure or deterministic strategy means that a specific
algorithm is always chosen to process the inputs from that particular task.
A mizxed or stochastic strategy is one obtained as a convex combination of
pure strategies. In order to simplify the analysis that follows, which
demonstrates how the system performance is affected by dumal-tasking, it is
assumed that there are only two pure strategies available for each individual
task. When the four pure strategies of the two tasks are denoted by ui, uz,
ug, ug, the mized strategies uy and ug of the two tasks can be writtem as
functions of decision strategy parameters SA or SB which correspond to the

probabilities of employing pure strategies nx and uﬁ respectively.
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A=8,m t (l-BA)uA G A (5.1)
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IA

1 2
up = Spup + (1-8)u) 0fs; L1 (5.2)

Again, for the sake of simplicity, only the decision strategies of the SA
stage are considered. The situation assessment variable z is the system

output.

Given that z’ is the desired decision response, the performance of a
deciéionmaking task can Be defined as the probability of error in determining
z which is presented by J. Since two tasks are being performed, their
measures of performance J, and Jg are defined as the probabilities of error

in executing task A and task B respectively.

(=
1}

p(z#z')lxsXA) (5.3)

o«
[}

p(z#z'lxsz) (5.4)

If the performance measure evaluated when a pure strategy is in effect is
denoted by J* and J3%, respectively, then by the linearity of probability, the
quantities JA and JB can be rewritten as functions of the parameters SA and

8g that specify the decision strategies ujand up as in Egs. (5.1) and (5.2):

1

A

F
IA(SA) SAI + (I-SA)JA (5.5)

1 2
JB(SB) SBIB + (I—SB)IB (5.6)
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Typical plots of performance versus the parameter 8 of individual tasks may

look as shown im Fig. 5.2,

[
01]

_ e - ———

Figure 5.2. Performance Versus Decision Strategy Parameter 8 For Each Task.

Now the measure of overall performance for the system can be defined by
the probability of making a task A error or a task B error. If a is the
probability of the system processing task A inputs, then by assuming errors
on both tasks to be equally detrimental, and by the linearity of probability

the system performance J can be written as

A
R
[PaN
[

J(a) = a IA(5A) + (l-a)JB(SB) 0 (5.7

Graphically, for a fixed a, the system performance J can be plotted as a
tilted plane with boundaries at the planmes 6A=0 and 1 and GB=0 and 1. The
plane in the 3-dimensional space (I,SA,SB) is shown im Fig. 5.3.
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li 2
UA+JB

Figure 5.3. Total Performance Versus Decision Strategy Parameters SA and SB

The total activity of the system for single—~task processing is a convex
function of the decision strategy parameters SA and SB' whereas that of dnal-
task processing is a convex function of the task division parameter a as well
as the decision strategy parameters SA and 5B' The covexity of the system

activity G in e as well as in SA and GB had been demonstrated (10], i.e.,

3

> 1
GA(SA) Z SA G! + (1_8!)GA (5.8)
> 1 - 3
GB(SB) z BB GB + (1 BB)GB (5.9)
D) -
G(a) 2 a GA(SA) + (1 a)GB(SB) (5.10)

Typical graphs of GA' GB and G for a fixed ¢ are shown in Figs. 5.4 and 5.5.
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Figure 5.4. Workload Versus Decision Strategy Parameter & For Each Task

Gla)

] 2
GK+GB.

3

pa

A

Figure 5.5, Total Workload Versus Decision Strategy Parameters SA and SB

The system activity or workload in Fig. 5.5 is a curved bounded surface

with four corners (somewhat like a tent). When, for a fixed a, J is ploted
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against G, parametrically with respect to (SA,SB) the performance-workload

locus for the whole system can be constructed.

To simplify the construction of the locus, but without any loss of
generality, it is assumed that SA = SB = &, i.e., both task A and task B
employ the same rule in decisiommaking (but the content of the decisions may
be different). For example, if there are four algoritbms f,, f,, f,, and f,
in the DM, the pure strategies of the two tasks can be defined as employing
different algoritbhms. For instance, for task A: “X means u=l; “Z means u=2;
while for task B: uﬁ means u=3 and nﬁ means u=4., Then the mixed strategies,
uy and up, will have the same form but different content in the

decisionmaking process.

u, =& u, + (1-8)u, (5.11)
=8 o, + (1-8)u, (5.12)
s y: s

With such a formulation, Fig. 5.3 and Fig. 5.5 will degenerate into the 2-

dimensional plots shown in Figs. 5.6 and 5.7.

J(a)4

[

Figure §5.6. Performance Versus Decision Strategy Parameter &
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Figure 5.7. Workload Versus Decision Strategy Parameter &

Therefore, the J-G plot of the system for a fixed a can be drawn

parametrically with respect to & (Fig. 5.8).

Gyt Gy

ONgCH

Figure 5.8. System Workload Performance Locus

If for all the different ways of task divisiom, i.e., 0 £ g £ 1, the
assumption &4 = 8 = & is always kept, then similar J-G plots like Fig. 5.8
can be drawn for all values of a. To display all these J-G plots in such a
format that the performance of single—task processing and dual-task
processing can be compared, G can be plotted in a polar coordinmate plane

with its radial coordinate being the system performance J and the angular
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coordinate being proportiomal to the task division parameter a, (Fig. 5.9)

i.e.,
n
e ¢ [0, EJ e ¢ [0,1]

where

@ = -
n/2°

Therefore, a typical J-G plot of the system for all possible values of a
may look like the curved surface in Fig. 5.10 which resembles part of the
surface area of a toroid with curved edges. Its edges at 8=0 and &=1 are
curved upward with respect to G because for a particular decision strategy,
the system activity G is a convex function of the task division parameter a.
The other two edges of the curved surface in Fig. 5.10 are the J-G plots for
the single task processing. The projection of the surface will be a curved

area in the shape of a quarter toroid as shown in Fig., 5.11 on a J-a plane.

G4

—=J(a=1)

©
sl

Figure 5.9. Coordinate System for Plotting J-G Curves of Varyimng a
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J(a=0)

Figure 5.10. System Workload Performance Loci of Changing
Task Division Parameter a.

When the system exhibits bounded ratiomality behavior, the plane of the
activity threshold G may cut through the curved surface in Fig. 5.10. The
surface above the cut corresponds to the region where the workload exceeds
the bounded rationality comstraint. The remaining surface represents the
region with admissible strategies. The projection of the remaining surface
on the J-a plane will allow comparison of performance between single—task
processing and dual-task: processing. Depending on the numerical
specifications of the problem, the projection of the region that results from

admissible strategies may look like Fig. 5.12.
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Figure 5.11. Projection of Fig. 5.10 on J—¢ Plane

J’(‘a=1)'

—=J(a=0)

Figure 5.12. Projection of Locus Due to Admissible Strategies
on the J-a plane.

The locus in Fig. 5.12 is obtained by considering a plane of constant G
in Fig. 5.10 that is above the 8=1 boundary of the (G,JA,JB) surface and
intersects the =0 boundary. This is illustrated in Fig. 5.13, For 3=0.3, a
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large central segment of the G-a curve exceeds the threshold 1level Gr'
. Because of the convexity of the G-a curves, the eliminated segment is defined
by the interval (a,,a,). Similarly, a segment of the 8=0 curve, the 6=0.6
curve, and the ones for intermediate values of &, are eliminated. This

results in the shape showan in Fig. 5.12.

G

Figure: 5.13. G—a curves for various values: of &

‘It can be observed in Fig., 5.12 that under the constraint of bounded
rationality (G kS Gr)' the decisionmaker doing a single, or almost a single
task, achieves a wider range of performance values, including the optimum
ones. This is evidenced by the locus near the axes ¢=0 and a=1. When both
tasks have to be carried out, the range of values of the performance is
smaller; many of the better values are not achievable. Such a deficiency can
be explained by the need for extra time and energy for a decisionmaker to
adjust in handling a different task. Hence, in gemeral, a decisionmaker
performs better in processing a single task rather than processing two
different tasks in sequence, even through the incoming task rate for both

cases are the same.
5.3 PARALLEL DUAL-TASK PROBLEM

The model of parallel dual-task processing is similar to that of the
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sequential dual-task processing except that it has two input ports where the
input elements from task A and task B are arriving simultaneously in a

synchronous manner (see Fig. 5.14).

XA u/x

" z
Xg X >< : ——

PP —

DM

Figure 5.14. Parallel Dual-Task Processing Model

It is assumed that a human decisionmaker can handle only ome task at a
time even though two inputs, two different tasks, arrive at the same time.
Naturally, he will select the input of the highest priority to process, while
the other input data are either stored for later processing when resources
are available, or simply ignored. So, the parallel task problem considered
is a psuedo—seqnentiai task problem, since tasks are still processed one
after another rather than simultaneously. Consequently, in order to

transform a parallel task problem into a sequential omne, a properly designed

. preprocessor is needed. Depending on how the PP handles the parallel tasks,

different versions of the parallel dual-task problem result. In the one
defined here, no buffer is available in the PP to store the unprocessed task
input. The decisionmaker selects ome of the two tasks and ignores the other

one.

If the two inputs ports always receive inputs from task A and task B
respectively, and it is assumed that task A always has a bigher priority than
task B, then the internal structure of the PP model is such that task A
inputs always get processed and task E inputs are ignored. This is a trivial

case that deserves no further discussion.
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To allow processing of the lower priority task, input B, nuli variables ¢
are added to the input alphabet X, of task A where ¢ does not need to be
processed at all. Imn other words, task B will get processed when the task A
input is a null variable to the PP. This dual-task formulation has been
motivated by an experiment conducted at the Navy Personnel Research and
Development Center [11], [12]. An air defemse task and a communication task
were performed concurrently, with the former task having a higher priority
than the latter. The result of the experiment was that the performance of
the air defense task was not affected by the presence of the communication
task, whereas the performance of the communication task was degraded under
the dual-task conditionms. Moreover, the performance decrement in the
communication task was linearly related to the track load in the air defense
task. These phenonmena may be explained by formulating the parallel dual-

task problem as follows.

“0f the two input alphabets, XA and XB, only the alphabet of the higher
priority task, X, in this case, possesses the null variable ¢. So there are
altogetber two forms of synchrononsapdrallel inputs to- the PP: xkt#fﬁ,xgﬁe Xp
and x;=¢, xB,e.XB, where xA,and,xB.are elements of'XAhand XB respectively.
For each type of synchronous parallel inputs the PP receives, a definite

output x will be gemerated by the PP for the decisionmaker to process:

If x, ¢ then =X

if X, = '] then x = xp

In addition to the output x, a decision strategy u, and up will be generated
by the PP for processing the output of x, or xp, respectively, When the PP
functions as described, its intermal variables and their interconnections can

be structured as shown in Fig. 5.15.
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W, W, u/x

DM

PP

—#

Figure 5.15 A Typical Parallel Dual-Task Preprocessor

Here, w, is a boolean variable whose function is to identify whether the
value of Xp is a non-null variable or not. If y is the frequency of x, not

being null, then w, can be defined as follows:

true w.p. y if x, ¢
fagse w.p. 1-vy if X, = 9

Both w, and w, are the output variables u and x, respectively; their values
depend on whether X, is a non—null variable, or whether W, is true nor not.

So they can be defined in a similar way.

. - ‘ u,  W.p. Y if W = true
2 . _
I g W.D. 1-y if w = false
.- ‘ X, Ww.p. 7Y if w, = true
3 . _
( xB w.p. 1-v if w,o= false

From the definitions of the internal variables and their interconnections it

is very clear that the three variables in the PP will have the same entropy,
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denoted by H(y). Thus the total activity of the PP is 3H(y).

Again, as in the previous sectionm, given that there are omly two pure
strategies available for each individual task, the mixzed decision strategies
of each task , uy and up, can be rewritten as linear combinations of the pure

strategies with decision strategy parameters SA and SB’ respectively.

Since not all the inputs of the two parallel tasks are processed in the
decisionmaker, the task division parameter for dual-task processing has to be
re-interpreted. In this case, it is the proportion of xA's and xB's in the
Brocessed input =x. In transforming parallel dual-task processing into
equivalent sequential processing through the use of a preprocessor, only a
fraction y of task A input data and a fraction (1—y) of task B input data are
sent to the decisionmaker to be processed. Hence, the task division
parameter for the decisionmaker's processed input is y, the frequency of non—

null task A inputs to the preprocessor.

In order to compare the individual task performance as the task input
distribution changes, J-5 plots of the two tasks have to be drawn for various
values of 7. Since the inputs from the two tasks arrive at the PP
simultaneously and not all the input data are processed by the decisionmaker,
the measures of performance J, and Jg for task A and task B respectively have
to be defined precisely. Given xA and xé to be the desired output respomnses

of inputs x, and xg respectively, JA and Jg can be defined as follows.

For task A, the desired responmnse x; can only apply to non-anull input
elements since all the null elements p are retained within the PP and thus
their desired responses are undefined. As a result, only non—null variables

are significant in defining the performance measure of task A. Therefore,

IA = p(xA # xé!xA # 9) (5.13)

For task B, the desired respomnse xé is well-defined for all the elements

in alpbabet Xg. Due to the task’'s lower priority status, the inputs xg have
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to be retained within the PP when Xy # ¢, resulting in definite errors or

cost for inputs Xp at these times. Mathematically
1 ’
JB = p(xB F xB) = p(xA= 9) p(xB # xleA= $)

+ plx, # 9) plx, # xl;le# $)

Since p(x,=p) = 1—y; p(xp#¢) = v and p(xB#xéle#¢) =1

IB = (1—y) p(xB # xéle =¢) + v (5.14)

Rewriting Eq. (5.14) yields

Tg = plagt xplx,=g) + v plxy= zllx,= ) (5.15)

In accordance with expressions (5.13) and (5.15), the individual task
performance JA and IB can be plotted against the task division parameter v:

these will be straight linmes as shown in Fig. 5.16,

-
|
|
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|
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|
|
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Y 0 1 ‘}

Figure 5.16. Performance Versus Parameter v For Each Task

Given the two parameters & and 3§ that specify thé mixed decision
A B
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strategies, it is known that the task performance J, (or JB) is independent
of B3y (or &,). Moreover, according to Egs. (5.5) and (5.6), the
relationships between J, and 8,, and between Jg and &g, are both 1linear.
Hence, the IAfaA plot and JB—SB plot should both be straight lines as shown

in Figure 5.2.

Finally, in order to investigate how the individual task performance
variés with the task input distribution for all the decision strategies for
task A, J, is plotted against v and 8, in Fig. 5.17. The locus is a plane

tilted in one direction.

Figure 5.17. Task A Performance Versus Parameters y And &,

A similar locus is drawn for task B in Fig. 5.18. It is a plane tilted in

two directions,

The projections of the loci in Figs. 5.17 and 5.18, drawn on the J,-v
plane and Jgp-v plaxe, respectively (Figs. 5.19 and 5.20) show how, for all
the decision strategies the individual task performance varies with the task

input distribution.
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Figure 5.19. Task A Performance Versus Task Division Parameter
If task A and task B model the air defense task and the communication
task, respectively mentioned at the beginning of this section, them in Fig.
5.19, the constant range of task A performance throughout the whole range of -
Y implies that the performance of the air defense task is unaffected by the
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presence of any amount of communication task. In the special case of y=0,
it is noted that all the task A inputs are null variables, and therefore;

task A performance is undefined,

= d

Y

Figure 5.20. Task B Performance Versuns Task Division Parameter

e o e — e e — ——— —

O

On the other hand, in Fig. 5.20, with increasing valwe of <y, the
increasing value and decreasing range of task B performance imply that when
the communicationm task occupies a smaller share between the two tasks, its
perfofmance degrades with a smaller variability. The value Jg=1 at v=1
means that when all the task A inputs are non—null, all the task B inputs
will be retained in the PP without any output response at all. Since v is
the fraction of non—null variables in the task A inputs and only non-null
variables will be processed by the decisionmaker, y cam also be interpreted
as the amount of processing load in the task A input channel. Hence, in Eq.
(5.15), the presence of the coefficient y in the Jy expression indicates that
the performance decrement (i.e., the increase of Jp value) in the

communication task is linearly related to the track load in the air defemnse

task.

vBasically, the above results justify the model of the parallel dual-task
problem developed so far for the air defense task and communicatiom task

experiment [12],
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CHAPTER 6
CONCLUSIONS

The main results developed in the thesis are summarized in this section.
The basic preprocessor model employs a matching algorithm to partition the
input alphabet so that its input elements can be processed by their
respective desired decision strategies. The utility of the preprocessor in
reducing the workload of a decisiommaker is found to depend on the input
uncertainty, the decision strategies and the algorithmic structures in the
preprocessot. The filtering preprocessor model upgrades a decisionmaking
system with bounded rationality by withholding the irrelevant inputs and
reducing the input rate to the system. As a result, more time will be
available to the decisionmaker to process the relevant inputs. The latter

phenomenon is illustrated by a numerical example,

One of the uses of a preprocessor is to reduce the processing load in the
sitvation assessment stage of a decisionmaker by preprocessing the input
data, Another use is to aggregate the input data, thus reducing the
uncertainty in the input. In both cases, the workload of the decisionmaker

is reduced.

A preprocessor can also be used to facilitate a decisionmaker in handling
a dual-task., Such a preprocessor functioms as a matching algorithm to yield
appropriate decision strategies for processing two kinds of imputs. It has
been shown that a decisionmaker carrying out a dual-task performs at best as
well as when he executes a single task. This is due to the readjustment
effort required by the decisionmaker to handle the different tasks. In the
case of parallel dual-tasks, the preprocessor accepts two inputs of different
task priority simultaneously and yields one input to the decisionmaker with
its associated decision strategy. In tkis case, the individual task
performance is investigated to verify the performance of the human

decisionmaker in a combined air-defemse communication task experiment.
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APPENDIX A
DERIVATION OF BASIC PREPROCESSOR EXPRESSIONS
The analytic expressions of the noise, coordination and intersystem
coordination for the basic preprocessor in Sectiom 3.2 are evaluated in this
appendix, using the information theory identities.
Noise

The noise G, was defined in Eq. (3.3)

Gn = Hx(rl,rz....,rk,s,g)

By repeatedly applying the identity
H(x,y) = H(x) + H_(y) (A.1)

Gn can be written as

G =H(r ,r ,...,7r.) + H (s) + H (u) (A.2)
n x 1’72 k X, ,T ,eee,T X, ,T_,e005L,,8S —
1 73 k 1’72 k

Since the variables r,,r,,...,r, are all well-defined boolean functions of x,
the first term of Eq. (A.2) is zero. The variable s is a well-defined
function of TysTgseee,Ty, SO the second term of Eq. (A.2) is zero agaim. As
the value assumed by the variable u depends only on the value of s, the last
term of Eq. (A.2) reduces to H.(a). Hence, Eq. (A.2) becomes

G =H (u)
n s -

By definition,
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H () = - ) o(s) p ptals) log p(uls) (A.3)

1] o

The variables in the basic PP model are defined in such a way that, given an

input x belonging to the input alphabet X,

s =i if and only if x e Xi for some i

and x & Xj, i#j i,j=1,2,...,k

Hence, Eq. (A.3) can be written as

k
B (m) = - 2 p(z e X,) 2 plulx e X,) log plulz e x.) (A.4)
i=1 ]

Since the distribution p(ulx) is the same for: all x & X; and the union of all

the partitions X;’s is the input alphabet X, Eq. (A.4) is equivalent to

Hs(g} = - } p(x) } p(ulx) 1log p(ulx) = H_(u)

X o

Thus,

Coordination

The coordination G, was defined in Eq. (3.4),
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G, =T(r :r,:...ir ts:m)

According to the definition of n-dimensional coordination, G, can be written

[
as

k
6, =) Hiz) + B(s) + (@) - Bz 1, ,eeerzy,s,0) (A.5)
i=1

Consider the last term of Eq. (A.5). Using the identity in Eq. (A.1),

Bz ,r ,...,rp,s,8) = H(rl,r’,....rk) + er'rz""’rk(S)

+ H (u) (A.6)
Il,rz,....rk,s

The second and the third terms of Eq. (A.6) reduce to zero and H (),
respectively, because of the presence of appropriate conditioning in the

terms. Hence, Eq. (A.6) is simplified into

H(rl,rz.....rk,s.g) = H(rl.rz,...,rk) + H () (A.7)

Substituting Eq. (A.7) into Eq. (A.5) yields
k
6, = } H(r.) + H(s) + H(m) - H(rl,rz.....rk) - Hs(g)

i=1

= H(s) + H(w) - Hs(g) + T(r1:rz:...:rk)
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Intersystem Coordination

The intersystem coordination was defined in Eq. (3.5),
(st s™) = ms™) - mgpp(s™ (A.8)

Since the preprocessor of the example is a deterministic algoritbm, the input
variable x determines every other variable in the algorithm. The second term

of Eq. (A.8) is thus equivalent to Hx(SDM); hence Eq. (A.8) becomes

1(sfF: Py = m(sPY) - Hx(SDM)

= H(x:SDM)

If the input value x to the decisionmaker is duplicated by some variable
within the DM model, then the second term of Eq. (A.9) reduces to zero.

Hence, Eq. (A.9) becomes

1(stf: s™) = n(x)
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APPENDIX B
DERIVATION OF FILTERING PREPROCESSOR EXPRESSIONS
This appendix presents the derivation of the throughput, noise and

coordination expressions for the preprocessor model with filtering discussed

in Section 3.3,
Throughgnt
The throughput G, of this preprocessor is defimed in Eq. (3.14) as

G, = T(x:g,xo) = H(g.xo) - Hx(g.xo) (B.1)

Since the preprocessor with filtering is a deterministic algorithm, knowledge
of its input x will determine all the variables within the algorithm.
Therefore, the second term of Eq. (B.1) equates to zero. Thus, Eq. (B.1)

becomes

G = H(ulxo)
Noise
The noise G, of the preprocessor in Eq. (3.15) is defined as

G = Hx(ro.rl,...,rk,xo,s.g)

By applying the identity in Eq. (A.1) repeatedly, G, can be written as
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Gn = Hx(ro.rl,...,rk) + H

X,T T (xo) + 8
» on---l x

E,T ,eee,T,,% (s)
» o’ s k’ 0

+ H (u) (B.2)
x,r ,...,1’ 2X ,8 —
0 k'"o

Due to the presence of ép@ropriate conditioning in the first, second and
third terms of Eq. (B.2), all of them are zero. The last term reduces to

H (u) because the value of u depends only on the value of s. Therefore, Eq.
(B.2) is simplified into |

G =E (u)
n s =

Coordination

The coordinatiom G, of the preprocessor, Eq. (3.16), is

G, = T(rozrl;...:rk:xo;szg)

According to the definition of n-dimensional coordination, Gc can be written
as

k
Gc = E’ H(ri) + H(xo) + H(s) + H(u) - H(ro,rl....,rk,xo,s,g) (B.3)
i=0

Consider the last term of Eq. (B.3). Using the identity in Eq. (A.1l)
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H(ro,rl,...,rk,xo,s.g) = H(ro,rl.....rk) + Hro’rl’-_.’r (x)

+H1‘ b o T, ,X (s) +Hr r r.,X S(‘—l)
o’Fare Ty %, o’ 1'...f %0’

(B.4)

Again due to the presence of appropriate conditioning, the third term of Eq.
(B.4) is zero while the last term reduces to Hs(g). The second term reduces

to Hr (xo) since the variables TyseeesTy give no information abount X, that T,
-]

does not give. Hence, Eq. (B.4) becomes

H(r ,r ,.c0,r,x ,s,8) = H(r ,r ,..oor) + B (x)) + H (5) (B.5)

[+]

k

Substituting Eq. (B.5) into Eq. (B.3) yields

k
G =y H(r) +H(z) +H(s) + H(m) - H(z_,r_,....r) - B_ (x) - H_(2)
c i o - o’ 1 k T o s —
i=0 °
=T(r :r t...:1r,) + T(r :x ) + H(s) + H(u) - H (u) (B.6)
o 1 k o o0 - s -

Consider the term T(r,:x ); by definitionm,

T(rozxo) = H(ro) - on(ro) (B.7)

The variables r, and x, are defined in Eqs. (3.10) and (3.11) in such a way

that I, will assume a "true” value if 3% is inactive, otherwise T, will

assume a "false” value. Hence, the full knowledge of x, leaves mo

uncertainty in determining the value of r The second term of Eq. (B.7) is

0"
zero and Eq. (B.7) becomes
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T(r :x ) = B(zr ) (B.8)
o "o o

Substituting Eq. (B.8) into Eq. (B.6) yields

G, = T(r ir t...iry) + H(r ) + H(s) + H(u) - Hs(g)
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APPENDIX C
- COMPUTATION OF TOTAL ACTIVITIES FOR NUMERICAL EXAMPLE
This appendix shows all the steps in computing the total activities of

the preprocessor and the decisionmaker of the numerical example discussed in
Section 3.4,

GPP:

To evaluate GPP, the numerical value for each of the terms in Eq. (3.24) is

computed as follows:

Given p(xi) =0.25 , i=1,2,3,4.

then H(x) = 2 (c.1)

According to the definition of s in Eq. (3.12), its distribution is

0.5, s =0
p(s) = 0.25, s =
0.25, s =2
Hence, H(s) = 1.5 (C.2)

Similarly, according to Eq. (3.13), the distribution of variable u is

(‘O.S, a = []
plu) = 0.25, u=1
10.25, =2
So, H(u) = 1.5 (C.3)
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According to Eq. (3.10), tke distribution for variable r, is

(=]
.
wn
H
I

true
p(ro) = (C.4)
' false

r—
o
¥ )
H
It

Thus, H(ro) =1 ) (C.5)

To compute T(ro:rlzrz). the distributions of r,, r,, r, as well as the

joint distribution of the r;'s are needed.

The distribution p(r,) is given in Eq. (C.4). In order to compute
p(rl).’ p(rllro) is needed. According to the internal structure of the

prepro¢essor in Fig; 3.4,

S 1)' r = false
b §
p(zllro = true) =- i
l 0, r = true
0.5, r, = true
p(rllr o false) = (C.6)
0.5, r = false.
Since p(x) = 2 p(zly) p(y) (C.7)

y

it follows that
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‘ 0.25, r, = true
p(rl) = . (C.8)
l 0.75, r,= false.
Then, p(r,lro,rl) is needed to compute p(r,).
‘ 1, r_= false
2
p(r lr or r, = true) =
2 o 1
l 0, r_ = true
1
‘1, r, = true
p(r_|lr and r = false) =
2 (] 1
IO. r, = false.
Since r, = true and r;, = true are mutually exclusive but not independent

events, it follows from Eqs. (C.4), (C.6) and (C.8) that
p(r° or r = true) = p(ro = true) + p(r1 = true) = 0.5 + 0.25 = 0.75

and

p(r° and r = false) p(r_ = falselr = false) p(r° = false)

1 o
=0.5 x 0.5 =0.,25,

Hence, using Ea. (C.7),

0.25, r = true
p(rz) =
0.75, r = false

By computing the various entropies from the above distributions and applying

the identity of Eq. (A.1) on the term H(ro, r,, 1,),
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-

~

H

o

2]

o]

~—
fl

H(ro) + H(rl) + H(rz) - H(ro, T, tz)

H(rl) + H(rz) - Hro(rl) - Hro’rl(rz)

3.5 - 1.5 log,3

Therefore, according to Eq. (3.24) and using Egs. (C.1), (C.2), (c.3), (c.5)
and (C.8), the total GFP is obtained:

6P =2 + 1.5+ 1.5 +1 +3,5-1.5 log,3 = 7.12.

To evaluate GDM; the numerical value for each of the terms in Eq. (3.25) is
computed as follows. In order to compute H(xo,n); it is necessary to know

the distributions p(xo) and p(ulxo), since

p(xo,n) = p(ulxo) p(xo). (C.9)

According to the definitiom of x, in Eq. (3.11),

0.5, x =1[

)
p(xo) = <0.25, x =z,
0.25, x =x
o 4

Since only deterministic decision strategies are employed in this exzample,
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1, w=10 ,
p(ulxo) =41 , uv=1 »
1 , u=2 R
Hence, by Eq. (C.9)
0.5 , w=0 ,
p(xo,n) =40.25 , u=1 ,
0.25 , uw=2 »
and so
BE(x ,u) =1.5
o

Since u can be determined entirely

Hx(u) =0,

In the term
2
} P gi(p(x|n=i))
i®n

i=1

where

|

\——\
o O
[ A ]
W
- -
[ L]

(] ]

o
.
(%]
-
[
n

i

X =
o = O
=z

(o] 3
0=x‘
x =
o =-4
x =x
o

x =x
o

2
a

8, is the inherent uncertainty of the jth

f; is chosen to process the input.

1
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(C.11)

(C.12)

algorithm given that the algorithm
To evaluate gi, the probability



distributions of the internal wvariables within the ith algorithm are
required., The stochastic algorithm with function f,(z) defined in Eq. (3.22)

has several internal variables interconnected as shown in Fig. C.1.

1
W w
i 2
X —— —- Z

Figure C.1. The Stochastic Algorithm f,

The probability distributions of the- two. internal variables in the

algorithm £, are

N ‘ 1 , wi =x
p(wl) = (C.13)
l 0 , otherwise
1 1
. 0.5 , w, =W, + 1
p(wz) = 1 (C.14)

0.5 , w =w

According to Egq. (2.35), g, of £,(7) is

g, = E —H(wk).
w.e D

A
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In this algorithm, D = {w:}, therefore
1 1
g, = H(wz)

It follows from the distribution of w: defined in Eq. (C.14) that

1
g, =1
Similarly,
2 1
B, = 8 = 1 (C.15)

Therefore, from Egs. (C.12) and (C.15)

2

i . _ 1 3 _ _
} pign(p(xlu—x)) =p,8 + P8 = 0.25(1) + 0.25(1) = 0.5 (C.16)

i=1
To compute the term
2
2 ) gi(p(x|n=i))
i®¢c

i=1

it is necessary to compute g_. According to Eq. (2.39), g of f_(*) is
c c 1

In tkis case, D = {w:} and w, = wi. hence

EE RS R CUUTTUCREE 5 H BN ¥R oneammams - 8 e micame = e e o e



D - {wl} = ¢

and

Similarly, g: = g: = 0. Therefore,

2

‘ i s _ 1 2 _
} pigc(p(xln—ﬂ) = p,8 +p,8, = 0 (€.17)
i=1

Since there are only two internal variables in each of the two stochastic
algorithms, a¢, = ¢, = 2. With H(p) defined in Eag. (2.22), and the values of
p, and p, defined in Eq. (C.12), the term

2
3 oHp,) = 2 [2(-0.25 10g,0.25 - 0.75 10g,0.75)] = 3.25 (C.18)
i=1

Finally, by enumerating all the possible outputs of the two algorithms,

0.5 , z = U

0.25 , z=x
p(z) 0.125 , z=x + 1

0.125 , z =x - 1

and 50

H(z) = 1.75 | ' (C.19)

Therefore, according to Eg. (3.25), and using Eqs. (C.10), (C.11), (C.16),
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(C.17), (C.18) and (C.19), the total 6P is obtained:

" - 1.5 +0+0.54+0+3.25+1.75 =1




