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I. INTRODUCTION

The successful application of the finite element method to the

solution of ultimate load problems has been demonstrated through a variety

of analyses. Nayakand Zienkiewicz [1] performed elastic-plastic stress

analyses to determine limit loads for several metal forming processes and

the collapse load for a pressure vessel. Close agreement with experimental

and theoretical results were obtained for both force and displacement bound-

ary conditions. Application of this method to geomechanics problems, partic-

ularly in investigating the bearing capacity of foundations,hasbeeninvesti-

gated recently by Yamada and Wifi [2] and by Christianetal.[3],using

very coarse meshes. Finite element formulations designed specifically for

analyzing ultimate load problems have been developed and successfully

implemented by a number of researchers [4-6]. In these formulations linear

or non-linear programming techniques are used and they therefore differ from

conventional elastic-plastic analysis techniques in their solution procedures.

Rather than incrementally solve for the displacement field, these methods

determine upper and lower bounds on the 1imit load through direct application

of 1imit theorems (e.g. see Martin [7]) and attempt to minimize their differ-

ence. The application of these methods has been demonstrated on a number of

problems [8].

An important consideration in the use of finite element techniques

on this class of problems is the type of formulation to be used. The choice

will depend on the particular problem and on the desired detail and accuracy

required of the solution. This paper will investigate various aspects of
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the elastic-plastic stress analysis techniques. The presence of both plastic

regions undergoing large plastic straining and elastic regions in the same

structure is a feature of ultimate load problems which requires special

attention. Formulations which account for large strain plasticity may be

necessary to describe the behavior of the plastic regions. The optimum

integration order to use in isoparametric element analysis is also unclear.

The effect of integration order on stress calculations becomes particularly

important when such elements become fully plastic. Finally, the necessary

detail in the finite element model to obtain accurate estimates of both the

limit load and the stress and strain distributions through the structure

needs to be examined.

The investigation outlined in this paper was performed on the two-

dimensional plane strain element implemented in the ADINA program fol.

The example chosen was one whose classical solution is well known, a rigid

flat punch indenting an infinite half space of elastic-perfectly plastic

material. The punch problem is similar to many metal working applications

(e.g. stamping operations) and geomechanics problems (e.g. bearing capacity

of foundations).
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2. LARGE STRAIN PLASTICITY FORMULATION

The large plastic strains which may be encountered in local areas

of a structure as it approaches its limit load requires accounting for both

geometric and material non-linearities. Finite element analyses using

total or updated Lagrangian formulations for problems of large elastic-plastic

deformations, such as those surveyed by Key, Biffle and Krieg [15], have

been used with some success to model finite straining. Large strain elastic-

plastic analysis in ADINA uses an updated Lagrangian formulation, which

refers all static and kinematic variables to the configuration at the current

time t. A complete derivation of the updated Lagrangian formulation used in

ADINA can be found in [16], a summary of the derivation for static analysis

can be found in Table 1.

2.1 Updated Lagrangian Formulation - Kinematics

For the updated Lagrangian formulation, the virtual work theorem can

be written in incremental form (using Cauchy stress tensor T. ;)

i

'

WA

~y

| iE dV = R
fv,

1)

or, in the form

teat LeAt_ op £+At

4 06(Edv= RK 1
yy! )

t+At

where ty is the volume of the body at time t, £341 is the 2nd Piola-

Kirchhoff stress tensor at time t+At referred to the configuration at time

tit cL : t+At, .

ts £5 is the strain increment tensor at time t, and AR. 1s the external

7



TABLE 1. UPDATED LAGRANGIAN FORMULATION

Equations of Motion

Comat tet to tet

53 6 fig WT

wk are

(p=specific mass)

tat t ( 3s ) t+At ( &gt;i) Ftii © THAT, | Strat Csr t+at_
) POT x, 3 Xp)

/

t+At 1

5 4 - oz (gus; Tdi, Tt tk, £Uk, 5)

Incremental Decompositions

a. stresses

t+At t

345 5 Git 154;

J. strains

L+At

E15 = +€i

Ci5 = 85 + li;

= b

£835 = 7 Gly5* guy5)

 1
tli “7 9.1 Yk,j

3. Equations of Motion with Incremental Decomposition

Using £343 = tCiirs {Cis the equations of motion become

~
t

Cs OLEi.CAV+ [oe t,, _ t+At IE tt’ijrs Cre t~ i] J. Gis6¢ 75; dv = wo - . Ui50 845 dv

.Q.



TABLE 1. (continued)

/] Linearized Equations of Motion

Using the approximations £513 = tlijrs 8s? 3 £13 =0, €;5 the

approximate equations of motion are

t
. + a» . = TJ tCdrs ters t ©ij dv in Gi Ot t,, ij t71

-0.



virtual work at time t+At. The stresses can be decomposed into components

of a Cauchy stress tensor at time t,  ;,and the 2nd Pjola-Kirchhoff stress

tensor at time t,,5;;.as8

bk

LA
-~ ot ‘.

YF Ty; Te Oi (24

while the strain increment tensor can be separated into a linear strain

increment 843 and a non-linear increment i (both referred to the

configuration at time t) as

Cast Lm c
+ 1) Tt (§

NY =.Cu Tf : ij (2 i

Introducing the incremental material property tensor referred to the

configuration at time t, tbijrs’ and using the approximation £343 = tbijrs tps

and 0 E53 = Oy e550 the virtual work theorem can be rewritten, using Egs.

f2) and (3), as:

Ear

he - ne 5,6: dv
[~
Yo *

which is the linearized equilibrium equation used in the updated Lagrangian

Formulation. The finite element implementation of Eq. (4) can be written

in matrix form as
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+ ot +A +

(¢K, + IK, Iu = A - 2 (5)

t t

where ny and nn are the linear and nonlinear strain incremental stiffness

matrices, u is the vector of incremental nodal displacements, tate is the
t

external nodal force vector, and ¢£ 1s the vector of nodal forces equivalent

to the element stresses at time t. In terms of the integral formulation of

Fq. (4), the terms of the matrix Eq. (5), approximate

2,7 _ t .

£0, YF () 8 &amp; By : Cis Crs0,6; dV (6)

Ku «= (f 28. ‘z “Bu % ).°%; 0.7; Al)

Zz TT +N 4 x ‘TLS e.. dV (8)Eo= BT dvE | ys,

t t

where £81 and in: are the linear and non-linear strain-displacement trans-
A

formation matrices, ty and tr are a matrix and vector of Cauchy stresses

and +&amp; is the incremental stress-strain material property matrix, all

referred to the configuration at time t.

2.2 Evaluation of the Constitutive Tensor

Assume that at time t the stresses, strains, and any other important

variables are known. In elastic-plastic analysis the stress-strain material

11.



property matrix +&amp; uses the elastic stress-strain relations, ck, along with

a yield condition, a flow rule, and a hardening rule to account for plastic

material behavior. The yield condition, te, for the von Mises yield condi-

tion and isotropic hardening can be written as

-
| t t ty *

(fof)= 2 "S'S; —F £ © (y)

where Ss. is the deviatoric stress and ‘o, is the yield stress at time t.

The flow rule expresses the normality condition for plastic strain increments
P

833 as a function of the yield condition tr

a eyOF
WN (101

or, in matrix form

oo" = XN g vil)
4

where Eis a scalar and tq for two-dimensional analysis can be obtained

from Eq. (9)

Fo

 a
aid”

»

12 | 11° )

During plastic deformation, te = 0 requires

&lt; +

Jt = OF oF LP
(13°/
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where Oi 4 is the total stress increment, which can be written in matrix form

”

o = tp ef pb CE
-

’ 1 4 J

t OF
The matrix “P (= - ~~) can be obtained from

ite. .

t,P HH
Jnit volume ~“W .

the plastic work per unit

‘.

AW

oe,’
; i) "

— +

(15

and can be written

+ TT +

"=H [o, ‘, of “os, (16 )

Lala

£ 2 4 o “oy
HH = 3 oF AEW’ (1r)

For perfectly plastic material, ps = 0 and ty = 0, where for linear strain

hardening with tangent modulus E-, Th can be calculated from

| -

SEE ra (18 J
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Returning to Eq. (14), the stress increments o can be found from the total

strain and plastic strain increments, e and e, and the elastic material

property matrix ct

J
—_——

= C°(e _ ef) (19)

The scalar factor DY can be found from Eqs. (11), (14), and (19)

 ,F

(*q CteMp—" Qo)
/

J

Jc
J

H “q + ‘q" CEbe tq] “3dl

Substitution of Eqs. (11) and (20) into Eq. (19) allows the stress-strain

relation for elastic-plastic material to be written

:ai

x y~
a —"

EP

=, Ce [91 )

where, the elastic-plastic material matrix tekP is given by

~

%

a—

_ - ~ CE ¢ E T

C tp’ ak 2&amp; Tt
“————r

(22°}

2.3 Evaluation of Stress at Time t+At

We assume that the Cauchy stress at time t is known and the strain

increments have been calculated from Eq. (5). The large strain plasticity

formulation accounts for rigid body rotation on the current stresses using

—
1

Cc — tr 50)-° Cp Dp; Lim pl 19,-)

14-



v ts . y

where Zs is the Jaumann stress rate tensor at time t and Tj is the time

derivative of the Cauchy stress tensor evaluated at time t. The spin tensor

0; is defined by

(1, = 7 ( utrat™i yj Trak Uy) (2¢ )

where ,.u; j is the derivative of the displacement increment with respect to

the jth coordinate direction at time t+t.The material relationship used to

evaluate the Jaumann stress rate tensor is

Crs=, Cris r 25 J

and,if small time increments are used,the stress increment over At can be

found from Egs. (23) and (25)

LAF

Z A. C.. Cc + 5 (2, ()= C;; -+ ‘ irs +

The final two terms in Eq. (26) are the correction terms to be added to

Eq. (21) to obtain the stress increments for finite strain plasticity.

The implementation of these plasticity relations in ADINA is illustra-

ted in the following flow chart:
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Evaluate Strain Increment

obese othmS — 2 | foi -+ 2s
4 0 Xe_

—

 —————————————

Calculate Stresses from Strain

Increment

t+At—= _ t

Ci = Gg * | tfi5rs 9 rs
£84

 spttAnte

Add Rotation Corrections

t+At | tats t t ¢

Tis = © Cis * Tip (ps * Tipp

When iterating
 &gt;» Return

Update Material Property

Matrix

t+at¥isrs

Return

-1F=



2.4 Equilibrium Iteration

The step-by-step solution of the linearized equation of motion, Eq. (4),

can be made more effective and efficient through equilibrium iteration during

a time step. The equilibrium iteration scheme used in ADINA can be written

in matrix form as

t

( K +tK (0) t+At, rat (i=)+t —=L °° £ a AU KR LEAT F (27;

where putt) is the displacement increment during the i’'th iteration and
t+At ,.

car) can be evaluated from

HT A) DE ©)
CHAE (0) tHAE RB tat £00) IvFE - tat =] —
Catt — tHAE, , ©)

(28°

similar to Eq. (8). Iteration proceeds until the displacement increments Au

calculated by Eq. (27) are within a specified tolerance. Solution of the

equilibrium equations through iteration over a time step reduces errors

caused by the linearization of these equations and prevents the calculated

solution from drifting away from the exact solution. In plastic analysis,

where the current solution depends on the prior history solution, this is

a particularly important consideration. Equilibrium iteration allows larger

time steps to be taken without introducing large integration errors and

instabilities.

2.5 Sample Solutions

To test the validity of this formulation in predicting large strain

pehavior, a single, 2-dimensional isoparametric element, with a strain

_17-



hardening modulus equal to one-half the elastic modulus, was loaded axially

to 30% plastic strain under different boundary conditions. As shown in

Figs. 1 and 2, for both one-dimensional and two-dimensional stress situa-

tions, the updated Lagrangian formulation follows the path indicated by

the material stress-strain law up to large plastic strains. The strain

plotted in these figures is the true, logarithmic strain, which is derived

from referring displacement increments to the current configuration. The

comparison of the updated Lagrangian formulation with analyses accounting

for only material non-linearities, as shown in the figures, indicates that

a special large strain formulation is needed for plastic strains larger than

5%, as seen in many ultimate load problems. It should be noted that the

material non-linear analysis will correctly predict the engineering stress-

strain relation (which refers displacement increments to the initial config-

uration) rather than the logarithmic strain.

-18-
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3. EFFECT OF INTEGRATION ORDER ON STRESS

CALCULATIONINTHEFULLY PLASTIC REGION

The inadequacy of some 2-D isoparametric elements in calculating

stresses when the element becomes fully plastic has been examined by

several investigators. Nagtegaal, Parks and Rice [17] summarized that

accurate plasticity solutions depend on the number of kinematic constraints

that are present in the deformation modes of an element, and examined the

implications of using various 2-D and 3-D isoparametric elements with

incompressibility constraints. De Lorenzi and Shih [10] found that the

1imit load for a beam in bending was correctly predicted using straight-

edged, eight-node elements, while the load-deflection curve for the same

problem showed no limit load when four node elements were employed. In

earlier work, Herrmann [11] observed that the conventional displacement

formulation produced poor accuracy in stress calculations for any incompres-

sible or nearly incompressible material (Poisson's ratio close to 0.5) and

developed a special constrained displacement formulation for such materials.

The incompressibility conditions imposed on an element when plastic strains

become large compared with elastic strains necessitates an examination of

the appropriateness of the displacement formulation in analyzing large

strain plasticity. Naylor [12] investigated the effect of integration

order on stress calculations in incompressible, eight-noded isoparametric

elements through a number of examples. The study found that the calculated

stresses were in close agreement with theoretical values when taken at

the 2 x 2 Gauss integration points, but oscillated about the theoretical

values when taken at the 3 x 3 integration points. It was also

_921-



observed that the average element stresses for 2 x 2 integration were

accurate while element averages for 3 x 3 integration showed large errors

as Poisson's ratio approached 0.5.

As shown by Nagtegaal et al. [17], the effect of incompressibility

constraints on finite element solutions for 1imit load problems is

illustrated by considering the incremental virtual work theorem (Eq. (1a))

K = &gt; | T. &amp; dv
mw] J J

m
(29:

where R is the external virtual work rate (dot indicates time derivative)

and Tis and 3 are the stress and strain rates, which are related by the

material constitutive relations. The stress rate can be decomposed into

a deviatoric rate, 54 and a hydrostatic rate, I Sie using the Kronecker

delta di;

 8 Lc oe

Li= Sy + 39; Che
[EET 1)

The hydrostatic stress rate is tied to the dilatational strain rate by the

elastic bulk modulus, WH

L
3 OL — w Clk (ot)

A

Substitution of Eqs. (30) and (31) into Eq. (29), and introducing the

deviatoric strain rate és gives

R= « *D . L

Ss [L380 + (Gud Tav (32)

As the limit load is approached in perfectly plastic conditions, the

-29.



deviatoric stress rates will approach zero, but will always be positive

(due to the normality conditions for plastic strain increments, see [7]),

and Eq. (32) can be written in inequality form when near the ultimate load

R = Z | on 3 (Ee) dv (33)
The limit load is defined as the load at which displacement increments are

possible without additional load increment, which is equivalent to saying

2 goes to zero. By Eq. (33), this is only possible if €, goes to zero

throughout the finite element mesh. If this condition is not met, the

boundary traction rates will always be positive and no 1imit Toad will be

reached. For general incompressible materials where the elastic modulus HK

goes to infinity, it can be seen immediately from Eq. (32) that ©, must

vanish everywhere in the mesh or the external work input will be infinite.

Therefore, for proper stress calculations (and hence ultimate loads) in

incompressible materials (including fully plastic materials as the limit

load is approached), the dilatational strain increment epi must be zero

everywhere in the finite element mesh.

The Naylor study [12] arrived at a similar observation and noticed

that the inaccuracy in stresses is in the mean hydrostatic stress component

while the deviatoric components of stress were accurate for all models and

integration schemes, a result consistent with the above discussion. The

conclusion arrived at by Naylor and later extended by Bercovier [13] to

general isoparametric elements ties the accuracy of stress calculations to

both the integration order and the total number of degrees of freedom in

the model. Specifically, the constraint of zero volumetric strain increment

must be satisfied at each integration point. Since the strain increments

and nodal displacements are related by the shape functions, Naylor reasoned

that the satisfaction of the strain constraints is possible only if the

212



number of integration points is less than the total number of degrees of

freedom (an observation consistent with the results of de Lorenzi and Shih

[10]). While this may be a useful rule of thumb for establishing a finite

element model, it is not the absolute determinant of whether a model can

predict stresses accurately. In plane stress problems, the condition

Ok = 0 can be satisfied regardless of the number of integration points

or degrees of freedom. Further, boundary conditions, either applied

displacements or tractions, may produce a displacement pattern which

satisfies strain constraints. Finally, if a significant portion of the

structure remains elastic while large plastic regions develop, as in many

limit load problems, incompressibility conditions need to be satisfied in

only part of the mesh. Therefore, in plasticity analysis and limit Toad

problems, it is necessary to satisfy the incompressibility condition

© = 0) in the plastic region in order to properly calculate stresses

and obtain an accurate load-displacement relationship.

The finite element model and the selection of the optimum integration

order for the analysis of ultimate load analyses must account for both

the plasticity and elasticity which exist in the structure. The presence

of large regions of plastic, incompressible material as the structure

approaches the 1imit load requires satisfaction of volumetric strain

constraints. However, the simultaneous presence of a large elastic region

makes the use of special incompressibility formulations (e.g. Herrmann [11]

and Bercovier [13]) or use of mixed integration schemes (2 x 2 integration on

hydrostatic part and 3 x 3 integration on deviatoric part) inefficient. The

conventional displacement formulation is sufficiently accurate if certain

24.



kinematic constraints are satisfied, either by reducing the integration

order or special arrangement of the finite element model. The effect of

reducing integration order on the elastic solution also needs consideration

since 2 x 2 Gauss integration introduces a fourth rigid body mode which may

be excited during the solution. The determination of the optimum integra-

tion order for a particular problem is important in order to obtain accurate

limit load results.

“92K_



4. FINITE ELEMENT ANALYSIS OF PLANE STRAIN PUNCH

4.1 Problem Definition

The example chosen to illustrate the various features of finite element

limit load analysis was a rigid, plane strain punch indenting an infinite

half space of elastic-perfectly plastic material. The problem is similar

to those analyzed in metal working processes and is encountered in founda-

tion analyses [2], [3]. The theoretical solution to the problem is well

known and has been determined through different analytical techniques.

Hi11 [14] uses slip-line field theorems to arrive at the limit load. Martin

[7] employed upper and lower bound limit theorems and arrived at the same

result. Anderheggen [5] used a finite element formulation specially

designed for limit analysis and duplicated the results of Hill. The advan-

tages of this example for this analysis include a well documented theoretical

result for comparison, the interaction of large plastic and elastic regions,

and localized regions of large plastic strains.

The problem geometry is illustrated in Fig. 3. The punch with width

2b is subjected to an applied load P causing it to settle a distance w into

the material. The limit load for perfectly plastic material is reached when

an increment in settlement can be obtained with no increase in load. The

approximate plastic zone shape and slip mechanism as postulated by Hill are

also shown in Fig. 3. The theoretical limit load Piso is given by

&gt; = (2 +m) (2b) (hk) (3 J

26-
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Figure 3. Plane Strain Punch Problem
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where k is the critical shear stress for the material and is equal to the

uniaxial yield stress divided by +v 3 when the von Mises yield criteria

is used.

Two finite element models were used to find the ultimate load: a fine

mesh with 160 elements and a coarse mesh with 25 elements. Plane strain

conditions were assumed throughout and the symmetry of the problem allowed

only half the punch to be modelled. In order to simulate a rigid, flat

punch, displacement boundary conditions specifying w were imposed over a

distance b from the centerline. The corresponding applied load was found

by integrating the stress distribution at a fixed distance below the surface.

To account for variations within an element, the average load across an

element layer was used rather than the load across an integration point

layer. All stresses were determined at the integration points. A small

strain analysis (accounting for only material non-linearities) was employed

in all cases.

4.2 Fine Mesh

The first finite element model, shown in Fig. 4a, used 160 2-D elements

and 366 nodal points for a total of 696 degrees of freedom. The limit load

was determined using 2 x 2 and 3 x 3 Gauss integration.

As a test of the element mesh and of the effect of integration order

on the elastic solution, the model was used with a point load applied at

the centerline. The resulting stress distribution was compared with the

Boussinesq solution [18] and the results, taken at a fixed distance below

the free surface, are shown in Figs. 5a and 5b. Both integration schemes

show good agreement with theory at a distance from the stress singularity,

indicating the reliability of elastic solution.
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The Toad-displacement curve obtained for the punch problem is shown

in Fig. 6. The 2 x 2 integration scheme obtained a normalized limit load

Pim” (2kb) of 5.28, only 2.7 percent higher than the theoretical value of

5.14. For 3 x 3 integration, the Timit load was higher, Py spf (2kD) reach-

ing 5.62 before leveling off, a value 9.5 percent above the theoretical

value. In both analyses, the load-displacement curve did level off and

did not exhibit the continuing increase in slope that some investigators

noticed in similar problems.

The development of the plastic zone under the punch with increasing

settlement is shown in Fig. 7a. The plastic zone growth is very similar

in both cases and slightly larger for 3 pt. A zone of plastic material

extends a distance of approximately &amp;b under the punch and extends roughly

3.5 punch widths to either side of the punch. Comparison with the plastic

zone size postulated by Hill and shown in Fig. 3 shows that the finite

element model predicts a much deeper extent of plasticity under the punch

but approximately the same plastic zone width at the surface. The theore-

tical analysis assumes a slip mechanism extending one to two punch widths

below the surface, the finite element analysis agrees with this postulate.

The plastic strains calculated by the model were of the order of 10% one

punch width deep and dropped to the order of 1% three punch widths down.

The plastic strain distribution for 2 x 2 integration at a settlement of

(w/b) = 0.2 (when the limit load mechanism is fully established) is shown

in Fig. 8a. The magnitude and direction of the strains correspond to the

assumed sTip mechanism (shown in Fig. 3) used to calculate the theoretical

limit Toad. The three point integration results are similar. Therefore,
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although the plastic zone size is larger than that assumed by Hill, the

slip mechanism and the 1imit load for the punch problem are adequately

modelled using the fine mesh.

4.3 Coarse Mesh

The coarse finite element mesh, Fig. 4b, used 25 2-D elements and

58 nodal points (101 degrees of freedom). It should be noted that this

mesh is similar to that used by Yamada and Wifi [2] to analyze footing

problems. The Toad-settlement curves for 2 point and 3 point integration

are shown in Fig. 6. Unlike the fine mesh results, the coarse mesh

exhibits no Timit load, but reaches a terminal slope at large settlements

at values much larger than what theory predicts. Again, results for

3 x 3 integration are consistently higher than those for 2 x 2 integration.

Examination of the plastic zone growth, illustrated in Fig. 7b, shows

the extent of plasticity all the way through the mesh underneath the punch

and extending roughly four punch widths from the centerline. Again 3 x 3

integration predicts a larger plastic region than predicted by 2 x 2

integration. The plastic strain distribution (Fig. 8b) is similar to the

pattern found in the fine mesh, but much coarser, particularly near the

edge of the punch.

4.4 Analysis

The two questions about this analysis which need to be considered are:

(1) Why did the analysis not predict a Timit load using the coarse mesh

(2 and 3 point integration)? (2) Why did the analysis predict larger limit

loads when three point integration was used in the fine mesh than when

two point integration was used?
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The failure of the coarse mesh to attain a limit load illustrates the

inadequacy of the Naylor criteria [12] that accurate stress solutions depend

on having fewer integration points than degrees of freedom. As shown in

Table 2, three point integration in the fine mesh predicts a 1Timit load

TABLE 2. DEGREES OF FREEDOM AND INTEGRATION

POINTS FOR PUNCH MODEL

Finite Element

Model

Fine

Mesh

Coarse

Mesh

Integration
Order

(2 x 2)

(3x3)

(2 x 2)

(3x3)

No. of
Integration

Points

640

1240

1(,.3)

oF

4

5

No. of Degrees
of Freedom

596

596

 IN

ul

—

(even though there are twice as many integration points than degrees of

freedom) while two point integration in the coarse mesh does not, despite

having one more degree of freedom than integration points. From Figs. 7a

and 7b it is observed that the plastic region extends entirely through the

coarse mesh under the punch, while the plastic region in the fine mesh is

entirely surrounded by a compliant, elastic region. In view of the conclu-

sions of Nagtegaal, etal., [17] that accurate plasticity analysis depends

on the satisfaction of the kinematic incompressibijlity constraints, it is

possible that the inadequacy of the coarse mesh is due to its inability

to satisfy the constraints under the imposed displacement boundary condi-

tions because of the spread of plasticity entirely through the mesh. The
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results do demonstrate the inability to quickly determine when a finite

element model is appropriate to analyze a limit load problem and points

to the need for further investigation.

The loads predicted by three point integration are higher than two

point integration loads in both cases due to the displacement constraints

present at more points in the mesh. Satisfaction of incompressibility

constraints at more points in the mesh constrains the displacement field

to a greater extent for three-point integration and tends to drive the

loads higher in the plastic solution. From Fig. 6, the Toad-displacement

curves for different integration schemes separate only when plastic regions

begin to become large, indicating that the plastic part of the solution is

responsible for the larger loads. The similarity of the elastic solution

(Boussinesq problem, Fig. 5) for either integration procedure also indicate

this point. It should be noted that use of two point integration may not

always be the optimum choice, particularly if the fourth rigid body mode

(present in only 2-pt. integration) becomes excited in either the elastic

or plastic solution. The type of model used and the integration scheme

employed will depend heavily on the type of analysis to be performed,

universal guidelines for integration order or number of elements are

difficult to establish.

Finally some measure of the relative cost of each analysis should be

provided. Table 3 indicates the times for different phases of the solution

process along with the total solution time on a Control Data Cyber 175,

illustrating the trade-off between model refinement and solution cost.
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TABLE 3. SOLUTION TIMES FOR PUNCH ANALYSIS

~

ND

Analysis Run

Updating Load Solution tT Eieend Print .

No. of Vector and of Equilibrium Displace- ri Total
Steps Stiffness Matrix Equations (sec.) ments (sec.) (sec.)

{sec.) (sec.) REL (sec.) :

Fine
Mesh 2 le

(2 x 2) 3 12
4 16

Total 46

A 9.23

16.22

18.10

23.18

66.73

(.335)

6.42

12.97

13.24

17.41

50.04

(.251)

=? 1.29

2.64

2.61

1.72

8.26

(.041)

9.10 32.65

20.06 53.06
21.01 56.13

13.89 57.38

64.06 199.22
(.322) (1.000)

k

B.52

(.028)

rine 6

Mesh : on
(3 x3) Total 43

11.18

22.38

74.29

107.85

(.438)

6.30

9.53

29.77

45.60

(.185)

9.40

k

9.40

(.038)

1.27

1.06
2.03

4.36

(.018)

20.36 49.52
18.90 53.22

35.38 143.74

74.64 246.48
(.303) (1.000)

Coarse 1 24
Mesh 2 30

(2 x 2) Total 54

3.28

4.11

7.39

(.243)

70

.88

1.58

(.032)

2.15

2.69

4.84

(.159)

91

1.14

2.05

(.067)

6.23 13.53

7.79 16.91

14.02 30.44
(.461) (1.000)

Coarse 1 24
Mesh 2 24

{3 x 3) Total 48

5.38

6.70

12.08

(.307)

71

70

1.41

(.036)

3.79
*

3.79

(.096)

.83

.40

1.23

(.031)

12.94 24.33
6.49 14.98

19.43 39.31
(.494) (1.000)

Figures in parantheses represent fraction of total time.

fe indicates that no equilibrium iteration was used due to unloading in some parts

of the model.



5. CONCLUSIONS

Accurate finite element analysis of limit load problems may involve

consideration of large strains and displacements and satisfaction of

incompressibility constraints in plasticity zones. As shown from the

example punch problem, careful modelling of a structure is sometimes

sufficient to produce accurate results, and proper refinement of the mesh

can be more important than the integration scheme used. Thus, ultimate

load problems can often be successfully analyzed without going to special

incompressibility formulations or linear programming schemes.

The suitability of the displacement formulation (with consideration

of large displacements conditions) in solving limit load problems has

important implications. The development costs of special purpose programs

(e.g. incompressibility formulations) along with their lack of general

applicability and relative inefficiency often make such programs undesirable.

Special limit load programs, that may be based on linear and non-linear

programming schemes, may be more efficient in determining limit loads,

but fail to provide information on the failure mechanism, strains, and

stresses, including the development of plasticity and slip mechanisms within

the structure. While elastic-plastic analysis with the displacement formu-

lation may be costly in the number of steps required to find a solution,

the amount of information obtained from such an analysis is much more

complete than a linear programming solution provides. When coupled with

the generality of the displacement formulation, it appears desirable to

use elastic-plastic analysis in 1imit Toad problems and invest the effort

in the appropriate modelling of the structure.
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The development of criteria that assure an "appropriate" model for

a limit load analysis requires further attention. With respect to the

punch problem, a further investigation of the reasons for the failure of

the coarse mesh to predict an ultimate load should be undertaken. The

large strain plasticity formulation outlined above should be used to

analyze both models and determine the effect of including geometric non-

linearities into the modeling of the problem. Finally, the development

of some criteria on what integration order, degree of mesh refinement,

and finite element formulation (small or large strain) should be used in

a particular analysis (without incurring large computational costs or

undergoing an expensive trial and error procedure) would be}significant

help in ultimate load analysis.
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