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ABSTRACT

The analysis of ultimate load problems with the finite element
method may involve difficulties due to the large geometric and material
non-linearities that need be taken into account. A formulation for the
analysis of problems involving large strain plasticity is presented and
consideration is given to the difficulties encountered when incompressi-
bility constraints are imposed in plasticity analysis. The determination
of the 1imit load for a rigid punch indenting a half-space of perfectly-
plastic material is examined as an illustration of both the difficulties

involved in ultimate load analysis and the effect of different finite
element models on the solution.
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1. INTRODUCTION

The successful application of the finite element method to the
solution of ultimate load problems has been demonstrated through a variety
of analyses. Nayakand Zienkiewicz [1] performed elastic-plastic stress
analyses to determine 1imit loads for several metal forming processes and
the collapse load for a pressure vessel. Close agreement with experimental
and theoretical results were obtained for both force and displacement bound-
ary conditions. Application of this method to geomechanics problems, partic-
ularly in investigating the bearing capacity of foundations, has been investi-
gated recently by Yamada and Wifi [2] and by Christian et al. [3], using
 very coarse meshes. Finite element formulations designed specifically for
analyzing ultimate load problems have been developed and successfully
implemented by a number of researchers [4-6]. In these formulations linear
or non-linear programming techniques are used and they therefore differ from
conventional elastic-plastic analysis techniques in their solution procedures.
Rather than incrementally solve for the displacement field, these methods
determine upper and lower bounds on the 1imit load through direct application
of 1imit theorems (e.g. see Martin [7]) and attempt to minimize their differ-
ence. The application of these methods has been demonstrated on a number of
problems [8].

An important consideration in the use of finite element techniques
on this class of problems is the type of formulation to be used. The choice
will depend on the particular problem and on the desired detail and accuracy

required of the solution. This paper will investigate various aspects of

-



the elastic-plastic stress analysis techniques. The presence of both plastic
regions undergoing large plastic straining and elastic regions in the same
structure is a feature of ultimate load problems which requires special
attention. Formulations which account for large strain plasticity may be
necessary to describe the behavior of the plastic regions. The optimum
integration order to use in isoparametric element analysis is also unclear.
The effect of integration order on stress calculations becomes particularly
important when such elements become fully plastic. Finally, the necessary
detail in the finite element model to obtain accurate estimates of both the
1imit load and the stress and strain distributions through the structure
needs to be examined.

The investigation outlined in this paper was performed on the two-
dimensional plane strain element implemented in the ADINA program [al.
The example chosen was one whose classical solution is well known, a rigid
flat punch indenting an infinite half space of elastic-perfectly plastic
material. The punch problem is similar to many metal working applications
(e.g. stamping operations) and geomechanics problems (e.g. bearing capacity

of foundations).



2. LARGE STRAIN PLASTICITY FORMULATION

The large plastic strains which may be encountered in local areas
of a structure as it approaches its 1imit load requires accounting for both
geometric and material non-linearities. Finite element analyses using
total or updated Lagrangian formulations for problems of large elastic-plastic
deformations, such as those surveyed by Key, Biffle and Krieg [15], have
been used with some success to model finite straining. Large strain elastic-
plastic analysis in ADINA uses an updated Lagrangian formulation, which
refers all static and kinematic variables to the configuration at the current
time t. A complete derivation of the updated Lagrangian formulation used in
ADINA can be found in [16], a summary of the derivation for static analysis
can be found in Table 1.

2.1 Updated Lagrangian Formulation - Kinematics

For the updated Lagrangian formulation, the virtual work theorem can

be written in incremental form (using Cauchy stress tensor??ij)

f’z:..é.- dV = R (1a)
or, in the form ¥

Z+At

R (1b)

£

t+At t+ At +
Sv e & (& dV =

t+At
where 'V is the volume of the body at time t, tsij is the 2nd Piola-
Kirchhoff stress tensor at time t+At referred to the configuration at time

t4At . .. " t+at, .
s teij is the strain increment tensor at time t, and R 1is the external
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TABLE 1. UPDATED LAGRANGIAN FORMULATION

Equations of Motion

tHAL bttt teAt
S.. § L. dv= R
t

tTij t7ij
v
where
yﬂzspecific mass)

t t
t+AtS“ i ;O (a X ) t+A% o X
tMij ot 450 St sr at+Atx

S r

t+at :
6 E45= 00z (eugg * 95,1 % 9,1 ¢V,

Incremental Decompositions

a. stresses

t+AL .
545 % Gj * t54;
b. strains
t+at
tEij - tgij

1]

€55 = %5 * i3
e.. = l-( U, . + .U, )
t-ij 2 MU, thi.i

1
7 tY%,i Yk,j

iy *

Equations of Motion with Incremental Decomposition

19 éavs the equations of motion become

t
s g O E ;s tdv + t t o tHAt _jt t
tCigrs thrs Ot jtv 504y V= "R 6, 3330 45"V

Using tsij = tC

J;
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4.

TABLE 1. (continued)

Linearized Equations of Motion

Using the approximations tsij = tcijrs ters’<5 fEij =‘5t ey the

approximate equations of motion are

t . £, _ tHAt £
ﬂvtcijr‘s tersO ¢ €53 dV +£v Tigotiy V= & -iv Tij 84

t

dv



virtual work at time t+At. The stresses can be decomposed into components
of a Cauchy stress tensor at time t,tt%j,and the 2nd Piola-Kirchhoff stress

tensor at time t’tsij’as

T +AL _
tESU h ?:U Ty Esi' (2)

while the strain increment tensor can be separated into a linear strain

increment .e.. and a non-linear increment fqij (both referred to the

N

configuration at time t) as

T +At E - E
=y T

sy =48y t £ Mij (3)

Introducing the incremental material property tensor referred to the
configuration at time t, tcijrs’ and using the approximation tsij = tC
and StEij = 81: €50 the virtual work theorem can be rewritten, using Egs.

(2) and (3), as:

ijrs tors

s
\S'ﬁv thJ'r-S ters 5‘661.) tC{V -+ Sﬁ:v tu 5.{ /)Z!J tdl/ =
T+AL 2 €
R ~J: L; 6,8, dv (4)

which is the linearized equilibrium equation used in the updated Lagrangian
formulation. The finite element implementation of Eq. (4) can be written

in matrix form as
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€ + _ t+AE _E
(f-/—<L +-¢L<.N¢)-9-‘ h -’—Q iy (5)

t t
where tEL and tENL are the linear and nonlinear strain incremental stiffness

matrices, u is the vector of incremental nodal displacements, t+At5_is the
t

. 1s the vector of nodal forces equivalent

to the element stresses at time t. In terms of the integral formulation of

external nodal force vector, and

Eq. (4), the terms of the matrix Eq. (5), approximate

T t # ;

f-/SL -Cé{ - (_lvf.grfg ;52_ dv).(:( :Lt C{J‘rs f_ergé;_eg'tc[v (6)
a . .
t_/{NL &= (L; 5., ‘t f..Bm.fG/V)Q = Stvt?:{,‘ 5{’2@ Al ()
¢ T+ & .

.3 :£ B E @’\/:Stvt’&h 0, €,V ®

t 1
where tEL and tENL are the linear and non-linear strain-displacement trans-

A
formation matrices, tz;and tg;are a matrix and vector of Cauchy stresses
and tg_is the incremental stress-strain material property matrix, all
referred to the configuration at time t.

2.2 Evaluation of the Constitutive Tensor

Assume that at time t the stresses, strains, and any other important

variables are known. In elastic-plastic analysis the stress-strain material

-11-



property matrix _C uses the elastic stress-strain relations, QF, along with

t
a yield condition, a flow rule, and a hardening rule to account for plastic
material behavior. The yield condition, tF, for the von Mises yield condi-

tion and isotropic hardening can be written as

2
tF (ﬁo_; t_C)';,) - Tij_, é\SJ'J' tSU' _t—%‘z' < O (9)

where tSij is the deviatoric stress and Qj} is the yield stress at time t.

The flow rule expresses the normality condition for plastic strain increments
P

eij as a function of the yield condition tF
2
T e O F
. = +
EEJJ )\ d Cjb (10)

or,in matrix form

e’ - t%*% (11)

where t)\is a scalar and tg_for' two-dimensional analysis can be obtained

from Eq. (9)
‘g’ = [fS s, 2t ‘S 1 (12)
3’ f 22 812 33
During plastic deformation, tF = 0 requires
d'ﬁp - th at F P

-12-



where Cﬁj is the total stress increment, which can be written in matrix form

+ AT & T P
g o = *p'e (14)
t > -
The matrix E_(= - B ) can be obtained from the plastic work per unit
e,
unit volume twp,
<+, P te‘Jp
= P
W = o e (15)
of L
0
and can be written
t T_t [{ + + ” 1
p=Hlo ¢ 0, (16)
where
4 2 d oy
I
H= 3 Sy WP (17)
For perfectly plastic material, tPij = 0 and ty - 0, where for linear strain

hardening with tangent modulus ET’ tH can be calculated from

(tH)_i'-‘ ‘?’Z ("Tli B i?) (18)

-13-



Returning to Eq. (14), the stress increments o can be found from the total
strain and plastic strain increments, e and g?, and the elastic material

property matrix QF,

o = Cf(e-g) (19)

The scalar factor t>\can be found from Eqs. (11), (14), and (19)
E
(o Ce)y

Substitution of Eqs. (11) and (20) into Eq. (19) allows the stress-strain

relation for elastic-plastic material to be written

EP

o =_,C & (21)

EP

where, the elastic-plastic material matrix tC is given by

o e CCtg(cteq)
tQ = Q_ —tTQTf%"’f% (-;E t% (22)

2.3 Evaluation of Stress at Time t+At

We assume that the Cauchy stress at time t is known and the strain
increments have been calculated from Eq. (5). The large strain plasticity

formulation accounts for rigid body rotation on the current stresses using

t

v.‘ -~ - £ ot
Tyo= -0, T

4

£0) (23)

e

o Tillies



7 't-
where tZ;j is the Jaumann stress rate tensor at time t and’C}j is the time

derivative of the Cauchy stress tensor evaluated at time t. The spin tensor

Ej%j is defined by

% o
QiJ 7 (-t.rAtu;_JJ —H&UM) (24)

whereAtu j is the derivative of the displacement increment with respect to
the gth coordinate direction at time t+At.The material relationship used to

evaluate the Jaumann stress rate tensor is

v
‘ 2:j ~ ¢ <j¢jr5 f—Gzrs (25)

and,if small time increments are used,the stress increment over At can be

found from Egs. (23) and (25)

T+AL . - t £ t =
=77 + C. s+ CpHly +7T;, Xy (26)

JJV‘S 7,"
The final two terms in Eq. (26) are the correction terms to be added to
Eq. (21) to obtain the stress increments for finite strain plasticity.

The implementation of these plasticity relations in ADINA is illustra-

ted in the following flow chart:

B



Evaluate Strain Increment

I o Uy 0 Ay
_te'U = i a‘:+¢tx‘j -+ at+AtXL .

'

Calculate Stresses from Strain
Increment

teht=  _ t
1= Cig ¥ f tCi5rs 9 Cps
e

toiJ

I

Add Rotation Corrections

t+ht _ tHAt= t t ¢
Cis = Tt Tip og * e

When iterating

» Return

|
Update Material Property

Matrix

t+4tcijrs

'

Return
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2.4 Equilibrium Iteration

The step-by-step solution of the linearized equation of motion, Eq. (4),
can be made more effective and efficient through equilibrium iteration during
a time step. The equilibrium iteration scheme used in ADINA can be written

in matrix form as

+ t+AE  (L—1)

¢ O t+h
( ttgL +'i£§w) é&&é( =5 é% T aeas ff (27)

wheretﬁgﬁj) is the displacement increment during the i'th iteration and

t+At£' ' can be evaluated from
tHAL () _ t+AE B('-':)T—f-y-[rt- A (o) E+DE ©)
trat — - teat 2 /_(: ol V (28)
‘t-!-Atv(i}

similar to Eq. (8). Iteration proceeds until the displacement increments Au
calculated by Eq. (27) are within a specified tolerance. Solution of the
equilibrium equations through iteration over a time step reduces errors
caused by the linearization of these equations and prevents the calculated
solution from drifting away from the exact solution. In plastic analysis,
where the current solution depends on the prior history solution, this is

a particularly important consideration. Equilibrium iteration allows larger
time steps to be taken without introducing large integration errors and
instabilities.

2.5 Sample Solutions

To test the validity of this formulation in predicting large strain

behavior, a single, 2-dimensional isoparametric element, with a strain

P s



hardening modulus equal to one-half the elastic modulus, was loaded axially
to 30% plastic strain under different boundary conditions. As shown in
Figs. 1 and 2, for both one-dimensional and two-dimensional stress situa-
tions, the updated Lagrangian formulation follows the path indicated by

the material stress-strain law up to large plastic strains. The strain
plotted in these figures is the true, logarithmic strain, which is derived
from referring displacement increments to the current configuration. The
comparison of the updated Lagrangian formulation with analyses accounting
for only material non-linearities, as shown in the figures, indicates that

a special large strain formulation is needed for plastic strains larger than
5%, as seen in many ultimate load problems. It should be noted that the
material non-linear analysis will correctly predict the engineering stress-
strain relation (which refers displacement increments to the initial config-

uration) rather than the logarithmic strain.

-18-



—6 L_

/S>/’
o MATERIAL LAW
6

ame Eq = O.5x|07p$i27/
o E = [.0x |07 psi

° o, = 20,000 psi
o
L r i
. /

2 xIOG- /
- O
2
2 o /
= /
> i / O U.L. formulation with iteration
) 2—dim. elements
o]
8 d / ® M.N.O. formulation with iteration
// 2 -dim. elements
I x108- o /
&
/
y /:519
0 ' : ' 0.4

0.2 03 _,
EQUIVALENT PLASTIC STRAIN, €

Figure 1, Large Strain Plasticity Solution of One-Dimensional Stress Problem
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3. EFFECT OF INTEGRATION ORDER ON STRESS
CALCULATION IN THE FULLY PLASTIC REGION

The inadequacy of some 2-D isoparametric elements in calculating
stresses when the element becomes fully plastic has been examined by
several inyestigators. Nagtegaal, Parks and Rice [17] summarized that
accurate plasticity solutions depend on the number of kinematic constraints
that are present in the deformation modes of an element, and examined the
implications of using various 2-D and 3-D isoparametric elements with
incompressibility constraints. De Lorenzi and Shih [10] found that the
1imit load for a beam in bending was correctly predicted using straight-
edged, eight-node elements, while the load-deflection curve for the same
problem showed no 1imit load when four node elements were employed. In
earlier work, Herrmann [11] observed that the conventional displacement
formulation produced poor accuracy in stress calculations for any incompres-
sible or nearly incompressible material (Poisson's ratio close to 0.5) and
developed a special constrained displacement formulation for such materials.
The incompressibility conditions imposed on an element when plastic strains
become large compared with elastic strains necessitates an examination of
the appropriateness of the displacement formulation in analyzing large
strain plasticity. Naylor [12] investigated the effect of integration
order on stress calculations in incompressible, eight-noded isoparametric
elements through a number of examples. The study found that the calculated
stresses were in close agreement with theoretical values when taken at
the 2 x 2 Gauss integration points, but oscillated about the theoretical

values when taken at the 3 x 3 integration points. It was also

<7 =



observed that the average element stresses for 2 x 2 integration were
accurate while element averages for 3 x 3 integration showed large errors
as Poisson's ratio approached 0.5.

As shown by Nagtegaal et al. [17], the effect of incompressibility
constraints on finite element solutions for 1imit load problems is

illustrated by considering the incremental virtual work theorem (Eq. (1a))

R = > | ¥ & dv™ (29)
) N
whered@ is the external virtual work rate (dot indicates time derivative)
and’f}j and éij are the stress and strain rates, which are related by the
material constitutive relations. The stress rate can be decomposed into
a deviatoric rate, éi" and a hydrostatic rate, %’d}kk’ using the Kronecker

J
delta o;;

. e
Ti= S; + 36,0k (30)

The hydrostatic stress rate is tied to the dilatational strain rate by the

elastic bulk modulus, W
. .
3 Ole = X Ckk (31)

Substitution of Eqs. (30) and (31) into Eq. (29), and introducing the

D

deviatoric strain rate CHp gives

J

R => f [S;85 + % (&) ]dy™ (32)
m Ay

(54))

As the 1limit load is approached in perfectly plastic conditions, the

-22-



deviatoric stress rates will approach zero, but will always be positive
(due to the normality conditions for plastic strain increments, see [7]),

and Eq. (32) can be written in inequality form when near the ultimate load

@ = % fvfm} K ( éua)z o v (33)

The 1imit load is defined as the load at which displacement increments are
possible without additional load increment, which is equivalent to saying
gé goes to zero. By Eq. (33), this is only possible ife§kk goes to zero
throughout the finite element mesh. If this condition is not met, the
boundary traction rates will always be positive and no 1imit load will be
reached. For general incompressible materials where the elastic modulus X
goes to infinity, it can be seen immediately from Eq. (32) thatfékk must
vanish everywhere in the mesh or the external work input will be infinite.
Therefore, for proper stress calculations (and hence ultimate loads) in
incompressible materials (including fully plastic materials as the limit
load is approached), the dilatational strain increment éékk must be zero
everywhere in the finite element mesh.

The Naylor study [12] arrived at a similar observation and noticed
that the inaccuracy in stresses is in the mean hydrostatic stress component
while the deviatoric components of stress were accurate for all models and
integration schemes, a result consistent with the above discussion. The
conclusion arrived at by Naylor and later extended by Bercovier [13] to
general isoparametric elements ties the accuracy of stress calculations to
both the integration order and the total number of degrees of freedom in
the model. Specifically, the constraint of zero volumetric strain increment
must be satisfied at each integration point. Since the strain increments
and nodal displacements are related by the shape functions, Naylor reasoned

that the satisfaction of the strain constraints is possible only if the

-23-



number of integration points is less than the total number of degrees of
freedom (an observation consistent with the results of de Lorenzi and Shih
[10]). While this may be a useful rule of thumb for establishing a finite
element model, it is not the absolute determinant of whether a model can
predict stresses accurately. In plane stress problems, the condition
Eékk = 0 can be satisfied regardless of the number of integration points
or degrees of freedom. Further, boundary conditions, either applied
displacements or tractions, may produce a displacement pattern which
satisfies strain constraints. Finally, if a significant portion of the
structure remains elastic while large plastic regions develop, as in many
1imit load problems, incompressibility conditions need to be satisfied in
only part of the mesh. Therefore, in plasticity analysis and 1imit load
problems, it is necessary to satisfy the incompressibility condition
“ékk = 0) in the plastic region in order to properly calculate stresses
and obtain an accurate load-displacement relationship.

The finite element model and the selection of the optimum integration
order for the analysis of ultimate load analyses must account for both
the plasticity and elasticity which exist in the structure. The presence
of large regions of plastic, incompressible material as the structure
approaches the 1imit load requires satisfaction of volumetric strain
constraints. However, the simultaneous presence of a large elastic region
makes the use of special incompressibility formulations (e.g. Herrmann [11]
and Bercovier [13]) or use of mixed integration schemes (2 x 2 integration on
hydrostatic part and 3 x 3 integration on deviatoric part) inefficient. The

conventional displacement formulation is sufficiently accurate if certain

P



kinematic constraints are satisfied, either by reducing the integration
order or special arrangement of the finite element model. The effect of
reducing integration order on the elastic solution also needs consideration
since 2 x 2 Gauss integration introduces a fourth rigid body mode which may
be excited during the solution. The determination of the optimum integra-
tion order for a particular problem is important in order to obtain accurate

Timit load results.
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4. FINITE ELEMENT ANALYSIS OF PLANE STRAIN PUNCH

4.1 Problem Definition

The example chosen to illustrate the various features of finite element
1imit load analysis was a rigid, plane strain punch indenting an infinite
half space of elastic-perfectly plastic material. The problem is similar
to those analyzed in metal working processes and is encountered in founda-
tion analyses [2], [3]. The theoretical solution to the problem is well
known and has been determined through different analytical techniques.

Hi11 [14] uses slip-line field theorems to arrive at the 1imit load. Martin
[7] employed upper and lower bound 1imit theorems and arrived at the same
result. Anderheggen [5] used a finite element formulation specially
designed for 1limit analysis and duplicated the results of Hill. The advan-
tages of this example for this analysis include a well documented theoretical
result for comparison, the interaction of large plastic and elastic regions,
and localized regions of large plastic strains.

The problem geometry is illustrated in Fig. 3. The punch with width
2b is subjected to an applied load P causing it to settle a distance w into
the material. The limit load for perfectly plastic material is reached when
an increment in settlement can be obtained with no increase in load. The
approximate plastic zone shape and slip mechanism as postulated by Hill are

also shown in Fig. 3. The theoretical Timit load Pli is given by

m

P = (2 +m)(2b) (k) (34)
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Figure 3. Plane Strain Punch Problem
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where k is the critical shear stress for the material and is equal to the
uniaxial yield stress divided by V3" when the von Mises yield criteria
is used.

Two finite element models were used to find the ultimate load: a fine
mesh with 160 elements and a coarse mesh with 25 elements. Plane strain
conditions were assumed throughout and the symmetry of the problem allowed
only half the punch to be modelled. In order to simulate a rigid, flat
punch, displacement boundary conditions specifying w were imposed over a
distance b from the centerline. The corresponding applied load was found
by integrating the stress distribution at a fixed distance below the surface.
To account for variations within an element, the average load across an
element layer was used rather than the load across an integration point
layer. A1l stresses were determined at the integration points. A small
strain analysis (accounting for only material non-linearities) was employed
in all cases.

4.2 Fine Mesh

The first finite element model, shown in Fig. 4a, used 160 2-D elements
and 366 nodal points for a total of 696 degrees of freedom. The limit load
was determined using 2 x 2 and 3 x 3 Gauss integration.

As a test of the element mesh and of the effect of integration order
on the elastic solution, the model was used with a point load applied at
the centerline. The resulting stress distribution was compared with the
Boussinesq solution [18] and the results, taken at a fixed distance below
the free surface, are shown in Figs. 5a and 5b. Both integration schemes
show good agreement with theory at a distance from the stress singularity,

indicating the reliability of elastic solution.
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The load-displacement curve obtained for the punch problem is shown
in Fig. 6. The 2 x 2 integration scheme obtained a normalized 1imit load
P11m/(2kb) of 5.28, only 2.7 percent higher than the theoretical value of
5.14. For 3 x 3 integration, the Timit load was higher, P]im/(Zkb) reach-
ing 5.62 before Teveling off, a value 9.5 percent above the theoretical
value. In both analyses, the load-displacement curve did level off and
did not exhibit the continuing increase in slope that some investigators
noticed in similar problems.

The development of the plastic zone under the punch with increasing
settlement is shown in Fig. 7a. The plastic zone growth is very similar
in both cases and slightly larger for 3 pt. A zone of plastic material
extends a distance of approximately &b under the punch and extends roughly
3.5 punch widths to either side of the punch. Comparison with the plastic
zone size postulated by Hi1l and shown in Fig. 3 shows that the finite
element model predicts a much deeper extent of plasticity under the punch
but approximately the same plastic zone width at the surface. The theore-
tical analysis assumes a slip mechanism extending one to two punch widths
below the surface, the finite element analysis agrees with this postulate.
The plastic strains calculated by the model were of the order of 10% one
punch width deep and dropped to the order of 1% three punch widths down.
The plastic strain distribution for 2 x 2 integration at a settlement of
(w/b) = 0.2 (when the 1imit load mechanism is fully established) is shown
in Fig. 8a. The magnitude and direction of the strains correspond to the
assumed s1ip mechanism (shown in Fig. 3) used to calculate the theoretical

1imit load. The three point integration results are similar. Therefore,
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although the plastic zone size is larger than that assumed by Hill, the
slip mechanism and the 1imit load for the punch problem are adequately
modelled using the fine mesh.
4.3 Coarse Mesh

The coarse finite element mesh, Fig. 4b, used 25 2-D elements and
58 nodal points (101 degrees of freedom). It should be noted that this
mesh is similar to that used by Yamada and Wifi [2] to analyze footing
problems. The Toad-settlement curves for 2 point and 3 point integration
are shown in Fig. 6. Unlike the fine mesh results, the coarse mesh
exhibits no Timit load, but reaches a terminal slope at large settlements
at values much larger than what theory predicts. Again, results for
3 x 3 integration are consistently higher than those for 2 x 2 integration.

Examination of the plastic zone growth, illustrated in Fig. 7b, shows
the extent of plasticity all the way through the mesh underneath the punch
and extending roughly four punch widths from the centerline. Again 3 x 3
integration predicts a larger plastic region than predicted by 2 x 2
integration. The plastic strain distribution (Fig. 8b) is similar to the
pattern found in the fine mesh, but much coarser, particularly near the
edge of the punch.
4.4 Analysis

The two questions about this analysis which need to be considered are:
(1) Why did the analysis not predict a 1imit lToad using the coarse mesh
(2 and 3 point integration)? (2) Why did the analysis predict larger limit
loads when three point integration was used in the fine mesh than when

two point integration was used?
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The failure of the coarse mesh to attain a 1imit load illustrates the
inadequacy of the Naylor criteria [12] that accurate stress solutions depend
on having fewer integration points than degrees of freedom. As shown in
Table 2, three point integration in the fine mesh predicts a 1imit load

TABLE 2. DEGREES OF FREEDOM AND INTEGRATION
POINTS FOR PUNCH MODEL

No. of
Finite Element Integration Integration No. of Degrees
Model Order Points of Freedom
Fine (2 x 2) 640 696
Mesh (3 x 3) 1440 696
(2 x 2) 100 101
Coarse
Mesh (3 x 3) 225 101

(even though there are twice as many integration points than degrees of
freedom) while two point integration in the coarse mesh does not, despite
having one more degree of freedom than integration points. From Figs. 7a
and 7b it is observed that the plastic region extends entirely through the
coarse mesh under the punch, while the plastic region in the fine mesh is
entirely surrounded by a compliant, elastic region. In view of the conclu-
sions of Nagtegaal, et al., [17] that accurate plasticity analysis depends
on the satisfaction of the kinematic incompressibjlity constraints, it is
possible that the inadequacy of the coarse mesh is due to its inability

to satisfy the constraints under the imposed displacement boundary condi-

tions because of the spread of plasticity entirely through the mesh. The

-40-



results do demonstrate the inability to quickly determine when a finite
element model is appropriate to analyze a 1imit load problem and points
to the need for further investigation.

The loads predicted by three point integration are higher than two
point integration loads in both cases due to the displacement constraints
present at more points in the mesh. Satisfaction of incompressibility
constraints at more points in the mesh constrains the displacement field
to a greater extent for three-point integration and tends to drive the
loads higher in the plastic solution. From Fig. 6, the load-displacement
curves for different integration schemes separate only when plastic regions
begin to become large,indicating that the plastic part of the solution is
responsible for the larger loads. The similarity of the elastic solution
(Boussinesq problem, Fig. 5) for either integration procedure also indicate
this point. It should be noted that use of two point integration may not
always be the optimum choice, particularly if the fourth rigid body mode
(present in only 2-pt. integration) becomes excited in either the elastic
or plastic solution. The type of model used and the integration scheme
employed will depend heavily on the type of analysis to be performed,
universal guidelines for integration order or number of elements are
difficult to establish.

Finally some measure of the relative cost of each analysis should be
provided. Table 3 indicates the times for different phases of the solution
process along with the total solution time on a Control Data Cyber 175,

illustrating the trade-off between model refinement and solution cost.
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Analysis

Fine
Mesh
(2 x 2)

Fine
Mesh
(3 x 3)

Coarse
Mesh
(2 x 2)

Coarse
Mesh
(3 x 3)

Run
#

P whrhy—

Total

W PR -

Total

No. of
Steps

12
12
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TABLE 3.

SOLUTION TIMES FOR PUNCH ANALYSIS

Updating Load Solution
Vector and of
Stiffness Matrix Equations
(sec.) (sec.)
9.23 6.42
16.22 12.97
18.10 13.24
23.18 17.41
66.73 50.04
(.335) (.251)
11.18 6.30
22.38 9.53
74.29 29.77
107.85 45.60
(.438) (.185)
3.28 .70
4.11 .88
7.39 1.58
(.243) {.032)
5.38 .71
6.70 .70
12.08 1.41
(.307) (.036)

Equilibrium
Iteration
(sec.)

5.82

*
*
*

5.52
(.028)

9.40

*
*

9.40
(.038)

2.15
2.69
4.84
(.159)

3.79
*

3.79
(.096)

Figures in parantheses represent fraction of total time.

Print

Displace-

ments
(sec.)

— ) =

~00 — PPN~

—~ BN
. s

<28

Print
Stresses
(sec.)

9.10
20.06
21.01
13.89
64.06
(.322)

20.36
18.90
35.38
74.64
(.303)

6.23

7.79
14.02
(.461)

12.94
6.49

19.43

(.494)

* indicates that no equilibrium iteration was used due to unloading in some parts

of the model.

Total
(sec.)

32.65
53.06
56.13
57.38
199.22
(1.000)

49.52

53.22
143.74
246.48
(1.000)

13.53

16.91

30.44
(1.000)

24.33

14,98

39.31
(1.000)



5. CONCLUSIONS

Accurate finite element analysis of 1imit load problems may involve
consideration of large strains and displacements and satisfaction of
incompressibility constraints in plasticity zones. As shown from the
example punch problem, careful modelling of a structure is sometimes
sufficient to produce accurate results, and proper refinement of the mesh
can be more important than the integration scheme used. Thus, ultimate
load problems can often be successfully analyzed without going to special
incompressibility formulations or linear programming schemes.

The suitability of the displacement formulation (with consideration
of large displacements conditions) in solving limit load problems has
important implications. The development costs of special purpose programs
(e.g. incompressibility formulations) along with their lack of general
applicability and relative inefficiency often make such programs undesirable.
Special 1imit load programs, that may be based on linear and non-linear
programming schemes, may be more efficient in determining 1imit loads,
but fail to provide information on the failure mechanism, strains, and
stresses, including the development of plasticity and slip mechanisms within
the structure. While elastic-plastic analysis with the displacement formu-
lation may be costly in the number of steps required to find a solution,
the amount of information obtained from such an analysis is much more
complete than a linear programming solution provides. When coupled with
the generality of the displacement formulation, it appears desirable to
use elastic-plastic analysis in 1imit load problems and invest the effort

in the appropriate modelling of the structure.
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The development of criteria that assure an "appropriate" model for
a 1imit Toad analysis requires further attention. With respect to the
punch problem, a further investigation of the reasons for the failure of
the coarse mesh to predict an ultimate load should be undertaken. The
large strain plasticity formulation outlined above should be used to
analyze both models and determine the effect of including geometric non-
linearities into the modeling of the problem. Finally, the development
of some criteria on what integration order, degree of mesh refinement,
and finite element formulation (small or large strain) should be used in
a particular analysis (without incurring large computational costs or
undergoing an expensive trial and error procedure) would befsignificant

help in ultimate load analysis.
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