```
                        by
                    ROBERT MALCOLM REID
SB, Massachusetts Institute of Technology
    (1968)
    Submitted in partial fulfillment
of the requirements for the degree of
    Master of Science
    at the
Massachusetts Institute of Technology
    June 1971
```

Signature of Author.
Signature redacted
Department of Civil Engineering, (May 14, 1971)
Certified by Signature redacted
Accepted by. . . . Signature redacted
Chairman, Departmental committee on Graduate Students
of the Department of Civil Engineering

Archives

```
```

 Thens
    ```
```

 Thens
 Cas C.E. That

```
```

Cas C.E. That

```
```



```
```

 (8.2.
    ```
```

```
```

 (8.2.
    ```
```


$$
\text { somgio3 } 10 \text { xsyasM }
$$

9rIJ さ\&

ᄃ「 1 smbl

yoevux9que

$-\Delta+3+$
, 12.
. . . . vd b93g9004

ABSTRACT

YARD UNRELIABILITY IN RAIL FREIGHT MOVEMENT
by
ROBERT MALCOLM REID
Submitted to the Department of Civil Engineering on May 14, 1971 in partial fulfillment of the requirements for the degree of Master of Science.

Transit time unreliability provides a major explanation for the railroad industry's low rate of return on investment and declining share of the freight transportation market.

Although rail terminals have long been suspected of being the major contributor to erratic car movement performance, there has been little previous investigation into the causes for unreliability. Using data from a major railroad terminal, this study identifies the causes of freight car delays and develops relationships between yard time parameters and a car's performance through a terminal.

The major findings of this study (for the yard analyzed) are:

1. One-third of all loaded cars and two-thirds of all empty cars miss their scheduled outbound train connection.
2. Over two-thirds of all car delays are the result of the cancellation of outbound trains or the holding of cars in yards because of limitations on train capacity.
3. Cars which must be repaired, cars which are placed on an incorrect outbound train, and cars which are held because they lack destination information - delay types often sited as major causes of unreliability - account for only five percent of all car delays.

While definitive conclusions can not be drawn from a single terminal, it appears from this study that reductions in transit time are possible only with major improvements in the consistency of line haul freight train operation.

Thesis Supervisor:
A. Scheffer Lang

Title:
Professor of Civil Engineering

ACKNOWLEDGEMENT

The author is indebted to the following individuals and organizations:

Professor A. Scheffer Lang for his continuous guidance and direction throughout this project.

Mr. John O'Doherty for his assistance in the development of the computer programs essential to this project.

My wife Evelyn for her encouragement, perseverance, comments, typing, and proofreading.

The Federal Railway Administration and the Burlington Northern and Union Pacific Railroads for their grants.

TABLE OF CONTENTS

Page
Title Page 1
Abstract 2
Acknowledgement 3
Table of Contents 4
List of Figures 6
Chapter I: Introduction 7
Chapter II: Car Movement Through a Railroad Network
2.1 Relationship of Line Haul and Terminal 9 Performance to Transit Time Unreliability
2.2 General Policies for Reducing Transit 12 Time Unreliability
Chapter III: Development and Analysis of Study 14 Results
3.1 Segregation of Cars into Car-Types and 14 Movement Performance Categories
3.2 Performance of Cars Through a Terminal 15
3.3 Analysis of Car Movement Performance 18 Through a Terminal
3.3.1 Delays Due to the Late Switching of 18 Inbound Trains
3.3.2 Delays Due to Cancelled Outhound 19 Trains
3.3.3 Example of Car Delays Resulting from 20 a Train Cancellation
3.4 Effect of Yard Time Parameters Upon Car 22 Movement Performance
Chapter IV: Implications of Study Results for 33 Railroad Operating Policies
4.1 Introduction 33
4.2 Train Cancellations 33
4.3 Late Train Arrivals 35
Chapter V: Summary and Conclusions 38
5.1 Introduction 38
5.2 Summary 38
5.3 Conclusions 39
5.4 Future Study 40
Appendix I: A Computer Program to Analyze 41 Yard Car Movement Performance
Appendix IT: Listing of Main Program 51
Appendix III: Listing of Summary Program 74
Appendix IV: Summary Tables of Car Movement 83 Performance versus Yard Time Parameters

LIST OF FIGURES

Page
1 Car Movement from Everett, Mass. to 10 Toledo, Ohio
2 Railroad Car's Terminal Time 11
3 Performance of Cars Through Terminals 16
4. Scheduled Switching Pattern 18
5 Definition of Yard Time Parameters 23
6 Yard Time versus Car Movement Performance: 26All Loaded Cars and All Empty Cars
7 Yard Time versus Car Movement Performance: 27 Eastbound Loaded Cars and Westbound Empty Cars
8 Yard Time versus Car Movement Performance: 28 Local Cars
9 Discrete Distribution of Inbound Train 31 Arrival Delays
10 Cumulative Distribution of Inbound Train 32 Arrival Delays

CHAPTER I

INTRODUCTION

Although railroads handle over 40% of all United. States freight ton-miles, the industry is plagued with a low rate of return on capital and a dwindling market share. The majority of traffic still handled by railroads is low-value (and low revenue) raw materials. High-value (and high revenue) merchandise is increasingly handled by truck.

Although government regulation is partly to blame for the poor health of American railroads, the market split between rail and truck is largely explained by examining the costs of transporting merchandise. These costs can be subdivided into four basic components:

1. the rate charged
2. loss and damage to merchandise in transit
3. transit time
4. transit time unreliability

Rail rates are generally lower than those of trucks. Loss and damage experience for both modes is equivalent. Iransit time, although longer for rails, is not a primary concern of the shipper (except for perishable commodities or for rush orders to meet extraordinary demands) . Transit time unreliability, however, known to be a serious problem in rail service, frequently constitutes a major
additional cost to the shipper. (While a longer transit time may require a receiver to maintain somewhat larger inventories, unreliability greatly increases the possibility of very costly inventory shortages, often necessitates rush orders shipped by high-cost modes, and can result in low productivity of warehouse employees.) It must be concluded that transit time unreliability is the major explanation for the declining rail market share.

Although railroad terminals have long been suspected of being the major contributor to car delays, there has been little previous research into the causes of transit time unreliability. This report identifies the causes of unreliability and investigates the causal relationships between yard time parameters and car movement performance.

CHAPTER II

CAR MOVEMENT THROUGH A RAILROAD NETWORK

2.1 RELATIONSHIP OF LINE HAUL AND TERMINAL PERFORMANCE TO TRANSIT TIME UNRELIABILITY

To better understand the railroad unreliability problem, an introduction to the operation of rail networks is necessary.

When a shipment is available, the highest level of service - lowest transit time and unreliability - is obtained when this one shipment is handled directly from shipper to receiver (e.g., handled by truck). This type of service, however, is also expensive. A lower-cost alternative is the railroad. At each yard, shipments moving in a common direction are consolidated into a car "block", placed in a train consisting of one or more blocks, and handled together to the next yard which may be twenty to several thousand miles distant. At each yard the car enters, it is reswitched and consolidated with other traffic to build a new train. This procedure is repeated until the car reaches its final destination.

Necessarily, the consolidate-switch process results in a longer transit time than required for direct movement. More important, however, is the fact that this process is unreliable. As an example of car movement through a network, let us follow the movement of a car from Everett, Mass. to

Toledo, Ohio.

O yard
train movement
Car Movement from Everett, Mass. to Toledo, Ohio Figure 1

Each operation in the diagram above involves some degree of unreliability. Trains can be delayed for numerous reasons such as mechanical failures, track congestion, changing crews, and so on. In addition, a train may not run at all due to a lack of traffic, lack of locomotives or crews, or for other causes. In each yard a car can miss a connection, be classified into the wrong outbound train, require mechanical repairs, be missing destination information (a "no bill"), and so on.

There is no direct relationship between line haul train performance and the movement of a car through a terminal, nor hence, to the unreliability of transit time between car origin and destination. Note the following diagram:
T_{a} : Scheduled arrival time of the inbound train
T_{d} : Scheduled departure time of the connecting outbound train
T_{L} : Latest time the inbound train can arrive and still connect to the outbound train

Railroad Car's Terminal Time
Figure 2

It should be noted that if the total delays suffered by the inbound train are less than $T_{L}-T_{A}$ the car remains on schedule. However, when inbound train delays exceed this level, the car generally suffers a quantum increase in transit time equal to the time until the next outbound train departs. For the remainder of this report, $T_{L}-T_{A}$ will be referred to as "slack" time, and $T_{D}-T_{L}$ as the "threshold" time.

Two comments are in order. First, the threshold time for a yard will vary depending upon the time of day and traffic patterns. Cars with less than the threshold time available can make their proper connection, but only if they are given special handling or the outbound train is delayed for these cars. However, within the threshold region the probability of missing a connection is very high. Second, it should be clear that the greater the slack time available for a connection, the less sensitive car performance becomes to line haul delays.

Because of this relationship between line haul performance and yard performance and the unreliability of a connection, each train and the following yard can be viewed as a
single operation with an anticipated delay probability which is different for each outbound connection. In the example above of a car moving from Everett to Toledo, there are six such line haul/yard combinations. For a car traveling over this route, a 5\% probability of missing a connection at each terminal delays one car out of four ($1-.95^{6}=.73$). One car in two is delayed with a missed connection delay probability of 11%. Thus, even small probabilities of missing each connection - when coupled in series - will produce high levels of overall movement unreliability.

2.2 GENERAL POLICIES FOR REDUCING TRANSIT TIME UNRELI-

 ABILITYClearly, there are two policies the railroads can follow to overcome this unreliability: reduce the level of unreliability at each yard, or accept the present level of unreliability at each yard and reduce the number of yards through which a car must pass. (Traveling through three yards, each with a failure probability of . 20 , results in almost exactly the same transit time distribution as traveling through six yards, each with a delay probability of only .lo.) Railroads have traditionally chosen the second alternative wherever traffic volumes have been sufficient. Few attempts have been made to identify the causes of unreliability in rail networks in order to improve
performance at each yard through which a car must pass. This study tests a procedure for better understanding the causes of car movement unreliability.

CHAPTER III

DEVELOPMENT AND ANALYSIS OF STUDY RESULTS
3.1 SEGREGATION OF CARS INTO CAR-TYPES AND MOVEMENT PERFORMANCE CATEGORIES

The data base for this study consisted of the records of the movement of over 13,000 cars through a major terminal. Each car was classified (computer programs are discussed in Appendix 1) into one of the following car-type classes:

Car-type class | Percent of |
| :---: |
| total sample |

Eastbound loaded cars 39\%
Eastbound empty cars 4\%
Westbound loaded cars 8%
Westbound empty cars 26%
Local loaded cars 12%
Local empty cars 11%
Note: A car was classified as "local" if it was handled by either an inbound or an outbound local train.

Based upon the car's scheduled outbound connection, each car was also classified into one of the following categories:
A. Cars moving in advance of their scheduled connection due to:

1. Early arrival of the inbound train
2. Expedited movement through the terminal
3. Late departure of the outbound train
B. Cars making scheduled connection due to:
4. Normal yard performance
5. Expedited yard performance
6. Late departure of the outbound train
C. Cars missing their scheduled connection due to:
7. Late arrival of the inbound train
8. Delay in switching the inbound train
9. The outbound train's not carrying that car's classification block, or not rumning
10. Other reasons, including cars which must be repaired ("rips"), no-bills, and empty cars being cleaned

Cars were tabulated according to type, movement category, and both actual and scheduled yard time. As a result, it was possible:

1. To analyze present car movement performance and identify major causes of delay (See section 3.2); and parameters and car movement performance (See section 3.4). 3.2 PERFORMANCE OF CARS THROUGH A TERMINAL

Figure 3 summarizes the distribution of car movements by car-type class. Recall that the predominant flow of loaded cars is eastbound, and of empty cars, westbound. The following points can be noted from this table:

1. On-schedule performance (for the total sample or on a disaggregate basis) is poor. Only 68% of loads and 32%

| CAR CARS
 GROUPS IN
 OF S | S MOVING ADVANCE | CARS MOVING ON SCHEDULE DUE TO: | | | CARS DELAYED DUE TO: | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | SCHEDULE | $\begin{aligned} & \text { NORMAL } \\ & \text { YARD } \\ & \text { MOVE } \end{aligned}$ | EXPEDITED YARD MOVE | LATE DEPARTURE OF OUTBOUND | LATE INBOUND TRAIN | $\begin{aligned} & \text { LATE } \\ & \text { SWITCH } \end{aligned}$ | OUTBOUND TRAIN CANCELLATION | ```OTHER (RIPS, NO-BILLS, ETC.)``` |
| EASTBOUND: | | | | | | | | |
| LOADED CARS | 2% | 57\% | 7\% | 13\% | 8\% | 2\% | 9\% | 1\% |
| EMPTY CARS | 1\% | 49\% | 0\% | 6\% | 8\% | 6\% | 27\% | 2\% |
| WESTBOUND: | | | | | | | | |
| LOADED CARS | 1\% | 30\% | 0\% | 1\% | 14\% | 2\% | 48\% | 2\% |
| EMPTY CARS | 1\% | 23\% | 0\% | 0\% | 13\% | 3\% | 57\% | 3\% |
| LOCAL | | | | | | | | |
| LOADED CARS | 2% | 50\% | 0\% | 2% | 9\% | 5\% | 29\% | 3\% |
| EMPTY CARS | 1\% | 41\% | 0\% | 1\% | 5\% | 8\% | 40\% | 5\% |
| TOTALS | | | | | | | | |
| LOADED CARS | 2\% | 52\% | 5\% | 9\% | 9\% | 2\% | 18\% | 2\% |
| EMPTY CARS | 1\% | 30\% | 0\% | 1\% | 11\% | 4\% | 50\% | 3\% |
| ALL CARS | 2\% | 43\% | 3\% | 6\% | 10\% | 3\% | 31\% | 2\% |

PERFORMANCE OF CARS THROUGH TERMINAL
Figure 3
of empties leave on the correct train (regardless of how late that train is when it departs). Best on-schedule performance (for both loaded and empty cars) is achieved by eastbound cars - 79% of all eastbound loads and 68% of all eastbound empty cars made their proper connection. (Included in these percentages are cars which made proper connection due only to the late departure of the outbound train - 13% of eastbound loads and 6% of eastbound empties fall into this category.)
2. The delays due to blocks of cars, or total trains, not being run are striking - one-third of all cars and onehalf of all empties moving through the yard are so delayed. This one delay category outnumbers all other delay categories combined by more than two-to-one.
3. Delays due to the late arrival of inbound train or to excessive queue time in the receiving yard before a train is switched account for 13% of all car movements, and over one-quarter of all delays. (The reason for combining these two delay groups is discussed below.)
4. All other delays - including cars which are shopped, no-bills, shipper ordered hold cars, and cleaned cars account for only 2% of all car movements and 5% of all delays.

Clearly, car delays resulting from the late arrival
of inbound trains are beyond the control of yard personnel. The situation with late switch delays and outbound train build-up delays, however, requires further investigation. 3.3 ANALYSIS OF CAR MOVEMENT PERFORMANCE THROUGH A TERMTNAL
3.3.1 DELAYS DUE TO THE LATE SWITCHING OF INBOUND TRAINS Efficient operation of large yards requires that inbound and outbound train demands be spread throughout the day. As a consequence, train movements are scheduled to avoid (as much as possible) high peaks in yard demands. Due to capacity constraints, one scheduling method employed to ameliorate the movement of cars through the terminal is "fleet scheduling" - the yard switches several trains in one direction, then handles traffic in the opposite direction. In the yard analyzed in this study, the following switching pattern must be adhered to if traffic is to move as scheduled:

Scheduled Switching Pattern
Figure 4

Consequently, a westbound train arriving at llPM (instead of 8 PM , for example) may not be switched until 8 AM the
next morning, missing connections even though the threshold delay times were exceeded.

Although other situations can result in switching delays, it is clear from the analysis that the two factors discussed above accounted for nearly all excessive switching times.
3.3.2 DELAYS DUE TO CANCELLED OUTBOUND TRAINS

An additional consideration in train scheduling is the balancing of train movements in opposite directions so as to balance crew and locomotive requirements. Inbalances which do occur can only be corrected by non-productive transfer of locomotives and crews between terminals. If locomotives or crews are not available, trains are delayed until the deficiency is made up, or simply not run, seriously affecting car movement performance.

An analysis of the data sample used in this study indicates that:
I. of the 18 trains scheduled into this yard (other than thru trains), on the average day two did not arrive;
2. a corresponding daily fluctuation in the number of outbound trains from a low of 14 to a high of 20 . Eastbound trains (ll outbounds scheduled) fluctuated from a low of 9 to a high of 11 ; lower priority westbounds (6 scheduled) fluctuated between 5 and 9 trains.

In addition to fluctuations of resources, traffic
volume variations can also have a serious effect upon car movement. If too many cars are available for a given train, a traffic block is often removed and held for the next outbound train. Train length can be limited by track configuration, terrain, or the strength of car couplers. If too few cars are available, the train may be cancelled and the cars held in the yard.

An analysis of eastbound car delays revealed most delays resulted from the holding of traffic blocks and not the cancellation of trains. The relatively low percentage of eastbound cars suffering outbound build-up delays attests to the few cars delayed by removing blocks from trains.

Westbound build-up delays, however, were primarily the result of train cancellations. The predominantly empty westbound traffic, given lower priority than the loaded eastbound traffic, was more severely disrupted by resource limitations.
3.3.3 EXAMPLE OF CAR DELAYS RESULTING FROM A TRAIN

CANCELLATION

To illustrate the effect of a westbound train cancellation upon car movement performance, the following example is drawn from the data used in this study.

RECORD OF CAR MOVEMENTS, FEBRUARY 20 - 24, 1971 scheduled departure of train: 4PM, daily

| DEPARTURE FROM TERMINAL | ARRIVAL TIME | | CARS HANDLED: | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | TRAINS | schedule | previous train | Total |
| | Earlies train | Latest train | | | |
| (on 2/20) | CANCELLED | | | | |
| 3AM $2 / 22$ | 2PM 2/18 | 11AM 2/20 | 22 | 107 | 135 |
| $6 \mathrm{PM} \mathrm{2/22}$ | 10AM 2/20 | 1PM 2/21 | 5 | 96 | 108 |
| 11PM 2/23 | 8AM 2/21 | $5 \mathrm{AM} \mathrm{2/23}$ | 32 | 84 | 117 |
| 1OPM 2/24 | IAM 2/23 | 7AM 2/24 | 52 | 17 | 88 |
| | | TOTAL: | 111 | 304 | 448 |

Cancellation of a train on February 20 resulted in:

1. The train of the 21 st (departed $3 \mathrm{AM}, 2 / 22$) carrying (except for 22 cars) only those cars available for the cancelled train;
2. The trains of the 22 nd and $23 r d$, because of tonnage limits, leaving cars behind in the yard;
3. The train of the 24 th returning cars to schedule, but still handling 17 cars delayed as the result of the cancellation four days earlier.

The total number of cars actually delayed due to the cancellation of one train was 304 (almost 70% of all cars handled during the five day period).

It should be noted that even if the train of the 20 th
were held in the yard one full day, the train still could have been run with a resulting reduction in the number of cars delayed from the actual 304 to a maximum of 107, depending upon the delivery pattern at the destination yard.

This example, by choice, is somewhat extreme - over 100 cars were available for movement by the cancelled train. However, cancellation of trains for a lack of traffic (a common occurrence on many railroads) will follow this same pattern of cars being held back for the following train. Clearly, as the average traffic volume of a train approaches its capacity, the more time is required to recover from the effect of a cancellation. 3.4. EFFECT OF YARD TIME PARAMETERS UPON CAR MOVEMENT PERFORMANCE

Beyond identifying the sources of transit time unreliability, a second purpose of this study was the development of causal relationships between yard-time parameters and a car's movement performance through a terminal. The two parameters investigated and the value of their relationship to car movement performance are listed below:

1. Scheduled yard time (SYT). The relation of SYT to car performance provides insight into the effect of changes in scheduled connection patterns or the arrival and departure times of trains.
2. Actual yard time (AYT). The relation of AYT to car movement performance illustrates the effect of a late train arrival upon car delays. With the advent of real time decision making, these relationships will be a necessary input if the effects of alternative decisions upon car movements are to be analyzed.

$t_{S}=$ Scheduled arrival time of the inbound train
$t_{A}=$ Actual arrival time of the inbound train
$t_{D}=$ Scheduled departure time of the outbound train

Definition of Yard Time Parameters
Figure 5

Prior to initiating the study, the following results were anticipated:

1. Only cars with the longest AYT or SYT would move in advance of schedule (where an early arrival or late departure could advance cars);
2. The percentage of cars moving on schedule would increase with longer SYT (where more slack time was available as a buffer against late train arrivals). Cars moving on schedule due to the late departure of an
outbound train or due to expedited yard movement would be clustered in the shortest SYT.
3. On-schedule performance for cars with an AYT below the threshold would be very poor. Most cars in this category would be delayed due to late train arrivals.
4. Delays due to late train arrivals or late switching would decrease sharply as SYT increased.

The results of the analysis are presented in sixteen tables (an AYT and SYT table for each of the six car types, plus "ALL LOAD"D CARS" and "ALL EMPTY CARS") in the Appendix. Of these sixteen tables, ten contain a large enough sample to provide meaningful results. The performance of these car groups is summarized in the figures below.

In studying these figures the following points should be kept in mind:

1. For the yard studied, the shortest scheduled yard time between connections was eight hours; the longest, 31 hours.
2. AYT can range from negative values (for cars on inbound trains arriving after the departure of the appropriate outbound train) to values greater than 31 hours (for cars on inbound trains arriving in advance of schedule). To restrict the length of the table, all cars with an actual yard time of one hour or less were assigned a yard time of
one hour. Cars with an AYT of 32 to 35 hours were assigned an AYT of 32 ; cars with an AYT of more than 35 hours were assigned an AYT of 33 hours.
3. There is a discontinuity in several AYT movement categories at an AYT value of eight hours (the minimum scheduled connection time). However, since the distinctions between different on-schedule (and delay) performance classes is a definitional one, a smooth progression from the total percentage of cars moving on-schedule (or delayed) in the one-to-seven hour range, to cars moving on-schedule (or delayed) in the eight-to-thirty-three hour range, should result.
4. Cars delayed due to "outbound build-up" and "other reasons" were removed from this portion of the study. These delays have no causal relationship to yard time parameters.

The results of the analysis verify the hypotheses stated above. Some additional comments on the results follow.

The priority given eastbound loaded cars over westbound empty cars explains much of the difference between the performance of these two car-type categories:

1. While only few westbound empty cars with an AYT below eight hours move on schedule, the majority of shorttime eastbound loaded cars move on schedule due to expedited

Yard Time versus Car Movement Performance: All loaded Cars and All Empty Cars
Figure 6

YARD TIME VS. CAR MOVEMENT PERFORMANCE: EASTBOUND LOADED CARS AND WESTBOUND EMPTY CARS Figure 7

yard handling (primarily for cars with an AYT of less than five hours) or due to the late departure of the outbound train (for cars with an AYT between five and seven hours).
2. This expedited handling of some eastbound trains, and the holding of outbound trains, not only returns much traffic to schedule, but also results in a larger number of eastbound cars moving in advance of schedule than westbound cars.
3. Delays due to late switching, and hence, on-schedule performance of cars with an AYT greater than eight hours, are largely the result of traffic priorities. Consequently, while eastbound loaded cars attain an on-schedule percentage of 90% for an AYT of eight hours and a SYT of fourteen hours, westbound empty cars attain this level of performance only at an AYT of fifteen hours and a SYT of twentytwo hours.

Local cars must necessarily interface with either inbound or outbound "main-line" trains, and hence the performance tables for these cars largely reflect the results found for eastbound or westbound through cars. The composite tables of all loaded cars or all empty cars, while illustrative of general movement patterns, tend to obscure the comparisons possible with disaggregated samples.

The overriding effect of delayed inbound trains upon the performance of short yard-time groups was unexpected. (Cars moving on-schedule due to expedited yard move or late departure, and most cars delayed by late switching, are so classified because of a late inbound arrival.) Not until scheduled yard time approaches twenty hours are late arrivals no longer a serious problem.

An analysis of the delays to arriving trains indicated that inbound trains characteristically exhibit long delay times, resulting in missed connections and late departures, and making efficient scheduling of yard operations impossible. The two figures below indicate the discrete and cumulative arrival distributions of inbound trains (broken down into eastbound and westbound trains) during the study period. The magnitude of inbound train delays is better understood by noting the following two points:

1. 50% of all eastbound trains arrive more than four hours late; and 50% of all westbound trains arrive more than five hours late; and
2. 10% of all eastbound, and nearly one quarter of all westbound trains arrive more than ten hours late.

Some explanations for the erratic nature of train arrivals are presented in section 4.3 .

Discrete Distribution of Inbound Train Arrival Delays Figure 9

Cumulative Distribution of Inbound Train Arrival Delays Figure 10

CHAPTER IV

IMPLICATIONS OF STUDY RESULTS
FOR RAILROAD OPERATING POLICIES

4.1 INTRODUCTION

The analysis of car movement performance has identified the major cause of unreliability as the wide disparity between scheduled and actual train performance. (The effects of late arrival or cancellation of inbound trains was discussed in sections 3.2 and 3.3. An example of the effect of outbound train cancellations was presented in section 3.3.3.) A discussion of the causes of, and possible solutions to, erratic train performance follows.

4.2 TRAIN CANCELLATIONS

It is clear from this study that the cancellation of trains because of a lack of resources (notably, locomotives and cabooses) is a major cause of erratic performance. Trains held in their originating yard can be expected to arrive late at their destinations. The late arrival of one train can cause delays to connecting trains, even though resources are available to move those trains. Trains which are not run at all can delay trains at other locations for lack of resources. As a result, train movements become traffic responsive (e.g. the number of loaded cars on each train determining which train will
run) and only loosely follow schedules.
A lack of resources implies that shortages occur throughout the network. However, rail networks often exhibit a cyclic pattern of resource shortages, with shortages progressing across the railroad from one end to the other during the cycle. This pattern implies that the resource problem may be one not so much of scarcity, but of distribution.

One alternative is the strict compliance of train movements to schedules. Unfortunately, schedules are presently so designed as to make strict adherence at best extremely costly, at worst, impossible. The major problem arises from the inbalances built into the schedules the numbers of trains scheduled into and out of terminals are seldom equal, and over many rail links the numbers of trains in each direction do not balance. Naturally, any ensuing deficit of resources at a terminal must result in cancelled trains.

Train movement inbalance also requires that physical and human resources be transferred from points of surplus to points of deficit. Since crews are paid the same rate whether moving a train or deadheading to another terminal, and since locomotive operating costs are primarily dependent upon the ton-miles produced (and not the number
the number of trains run), there appears to be little possible justification for any inbalance in the number of train movements on links or into and out of terminals. (Even the curtailment of service on weekends appears to only be justified if balancing curtailments are possible in the reverse direction.)

The benefits accruing from a tightly controlled scheduling policy are not limited to a reduction in the number of trains delayed (or cancelled) due to resource limitations. As discussed in section 3.3.2 trains are often cancelled due to fluctuations in traffic volume, often resulting in delays not only to cars for that train but cars arriving later as well. A second result of train cancellations is the accentuating of traffic fluctuations for future yards - other trains may be cancelled for lack of traffic, or excessive demands (when a train is run the next day) may require traffic be left behind in the terminal. Thus, a "no-cancellation" policy would substantially reduce the need to drop cars because of excessive traffic and to run extra trains. 4.3 LATE TRAIN ARRIVALS

Up to this point, the discussion has revolved around the problem of train cancellations and delays due to resource limitations. Another problem is the irregular
performance of trains over road links. It became clear during the study that schedules for several trains were entirely unrealistic - arrival times for some trains were never within six or eight hours of schedule. Random delays, while explaining irregularities between the performance of trains on consecutive days, do not explain average delays of this magnitude. Two explanations for the very late arrival of trains at terminals follow:

1. Trains are delayed at their originating terminal (and thus arrive late at destinations even though no delays are encountered en route). An analysis of outbound train performance during this study adds weight to this hypothesis - the average delay in leaving the terminal for eastbound trains was 3.2 hours; for westbound trains, over 9 hours. Of the 15 trains regularly operated each day, 5 trains (4 of which were westbounds) had a minimum departure delay (for the entire study period) of more than 5 hours. (That westbound trains suffered high departure delays indicates that a lack of resources, and not the holding of trains for late arriving cars, is the cause of major terminal delays.)
2. Train schedules exhibit little relation to the amount of yard work a train performs en route - schedules are not amended to reflect changes in traffic blocks
handled, yard work performed, and in some cases, changes in the route of the train. The result is that over many routes trains making two, and sometimes three, stops are scheduled for less time than trains making no stops. Differences in yard layouts and train priorities can not explain inconsistencies of this magnitude. (Priority and drag freight trains have been excluded from this analysis.)

Thus, it appears that limited resources (locomotives and crews) are a major factor in both train cancellations and the late arrival of trains at terminals. Since these two factors account (directly or indirectly) for a vast majority of car delays, large reductions in transit time unreliability will result from a solution to resource limitations (through either the redistribution or the procurement of locomotives and crews).

CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 INTRODUCTION

This study was initiated to provide additional insight into the nature of rail freight transit time unreliability. The investigation centered on four areas:

1. The relationship of car movement performance through terminals to total transit time unreliability;
2. the causes of car delays in terminals;
3. the causal relationship between car movement performance and yard time parameters; and
4. the implications of the study findings for railroad operating policies.

5.2 SUMMARY

During its journey through a rail network, a car is consecutively aggregated with other traffic to form a train, moved to the next yard, switched, reaggregated, and so on until the car reaches its destination. Because of the serial nature of this process, even a low probability of delay at each terminal can result in wide dispersions in total transit time.

The analysis of car movement performance through a terminal produced the following major findings:

1. One-third of all loaded cars and two-thirds of all empty cars miss their scheduled outbound train connection.
2. Over two-thirds of all car delays are the result of the cancellation of outbound trains or the holding of cars in yards because of limitations on train capacity.
3. Cars which must be repaired, cars which are placed on an incorrect outbound train, and cars which are held because they lack destination information - delay types often sited as major causes of unreliability - account for only five percent of all car delays.

An investigation of the relation of yard time parameters to car movement performance revealed the overriding effect of late train arrivals upon the probability of a car's being available for its outbound connection. Because late trains often arrive out of phase with yard operations, cars on late trains often miss not only "tight" connections but also outbound trains which depart from the yard 12 to 15 hours after the actual arrival of the inbound train.

5.3 CONCLUSIONS

The results of this study indicate major reductions in transit time unreliability will only result from the improved consistency of line haul train operation. The erratic nature of train movements (both cancellations and late arrivals at terminals) appears to be the result of three factors:

1. scarcity, or poor distribution, of locomotives and crews;
2. poor scheduling; and
3. operating policies which attempt to minimize direct operating costs without regard to car movement performance. 5.4 FUTURE STUDY

Future research into car movement performance through terminals should be centered in two areas. First, the results of this study should be verified through the analysis of additional rail terminals. Second, resource utilization and the economics of train cancellation should be investigated if the rail unreliability problem is to be resolved.

APPENDIX I

A COMPUTER PROGRAM TO ANALYZE YARD CAR MOVEMENT RELIABILITY OBJECTIVE

The program is designed to aid the analysis of rail car movement unreliability. The program computes onschedule performance, classifies delays into three categories, and tables movement performance versus scheduled and actual yard time.

GENERAL CONSIDERATIONS

Throughout the development of this progran, two considerations were paramount:

1. Core requirements for the program approach 150,000 bites. Reducing the number of car movement classifications or the number of trains analyzed in each run can reduce core requirements to the 128,000 bite capacity standard on many second generation computers. (These alternatives will be discussed in more detail below.)
2. The performance of both the yard and the trains entering and leaving the yard have a major effect upon the logic and structure of the program. Without prior knowledge of either of these factors, the program, of necessity, was designed to handle major irregularities in yard or train performance.

INPUT STRUCTURE

Three groups of input are necessary for the running of this program:

1. A listing of scheduled inbound and outbound trains, and their scheduled arrival, or departure, time;
2. A listing of the closest outbound connection for each inbound train;
3. Inbound and outbound train data (symbol, actual arrival or departure time) for each car.

As mentioned above, this program is designed to classify car movements based upon scheduled performance. A first impulse, and - if certain conditions are met often a correct one, is to develop a connection table listing the scheduled inbound connections for each outbound train. ${ }^{1}$ The difficulty with this approach lies in

1 A connection table could be developed as follows:
a. List of inbound trains (and their scheduled arrival time)
b. List of outbound trains, associated with each the latest connecting inbound train.
c. With extra trains (inbound) scheduled arrival would be set equal to actual arrival time and car performance determined based on the relation of this arrival time to the closest connection of the nex arriving (time-wise) inbound train.
d. Outbound extra trains would be assigned the latest inbound connection of the nearest earlier scheduled outbound train.
the necessary underlying assumptions:

1. Inbound (and outbound) trains consistently arrive at (and depart from) the yard close enough ${ }^{1}$ to schedule that the program can determine which day's train the car is on. For example, if an inbound train is scheduled to arrive at 6PM and actually arrives at noon, is the train six hours early or eighteen hours late?
2. Actual train movements are consistent with schedules, e.g., a train scheduled to leave at 2AM is not actually leaving at 4PM and receiving additional traffic.
3. Symbols for trains are unique and all trains with symbols which are not listed in schedules are truly extras with no scheduled arrival (or departure) time.
4. Train symbols associated with car data are correctly recorded. (If the true train symbol is ABl and the train is incorrectly recorded as ACl, the train will be assumed to be an extra train with no scheduled arrival time)

1 As long as a consistent rule can be applied to all inbound or outbound trains, train delays are not a serious problem. For example, if the maximum delay is 18 hours, and the earliest train arrival or departure is 6 hours, then this rule can be applied to all train times to determine scheduled arrival (or departure) day.

When these assumptions are invalid - as in the data set used for this study - a second approach is necessary. Each train in the data sample is listed, along with that train's actual and scheduled arrival (or departure) time. The structure of this input will be detailed below. REMOVING NON-SWITCH CARS

The data set used in this analysis included cards for not only those cars switched in the terminal, but also cabooses, cars on through trains, and block-switched cars. Cabooses were rejected by a check on the car type. (In the sample, cabooses were indicated by a "z" in the car-type column.) Through cars were rejected by checking the actual time of the car in the yard (actual departure time minus actual arrival time) against a minimum "switch time". For this study, all cars with a yard time of less than five hours were rejected as through cars. Some through cars are accepted using this approach (no cars actually switched in the yard were rejected), the number of misclassifications - less than . 5% of all cars is too small to justify the construction of a table of through trains and block-switched train pairs. Only when a satisfactory cut-off time is impossible should a table be constructed.

LOCATION OF INBOUND AND OUTBOUND TRAIN SYMBOLS

The program searches the input list of outbound trains, and their associated actual and scheduled departure time to find a match (of both symbol and actual time) with the outbound train data on the card. If a match is recorded, the location of that outbound train on the input list is assigned to the car. If no match is found, the car's initial, number, destination, and inbound and outbound train (symbol and time) is listed with an associated error message "INVALID TRAIN SYMBOL". This message provides a check against mispunched input data.

As noted above, the number of inbound trains (symbol, actual and scheduled arrival time) must be limited to minimize core requirements. (The maximum number of inbound trains is 100.) Those inbound trains which, because of the delay in leaving the yard, must necessarily have carried only cars delayed due to cancellation or "other" reasons, are not listed. Cars which are not necessarily delayed (decision rule: yard time less than 48 hours) are matched with the input data just as with outbound trains. Cars which are delayed are handled as follows:

1. The input list of inbound train symbols is surveyed for a match with the inbound symbol for the car.
2. If a match is found, the car is assigned the
scheduled arrival hour (but not day) of the matched symbol for future calculations.
3. If no symbol match is located, the car is listed with the accompanying message - "DELAY - INVALID IB SYM" and rejected. The number of cars so classified is less than . 3%.

CAR MOVEMENT
Nine car movement classes are used in this program: A. Cars moving in advance of their scheduled connection due to:

1. Early arrival of the inbound train
(EARLY ARR)
2. Expedited movement through the terminal (YARD MOVE)
3. Late departure of the outbound train
(LATE DEP)
B. Cars making scheduled connection due to:
4. Normal yard performance
(NORMAL)
5. Expedited yard performance
(YARD MOVE)
6. Late departure of the outbound train
(LATE DEP)
C. Cars missing their scheduled connection due to:
7. Late arrival of the inbound train
(LATE ARR)
8. The outbound train's not carrying that car's classification block, or not running
(OB BUILDITP)
9. Other reasons (including rips, no-bills, and empty cars being cleaned)

YDTIMS: Scheduled Yard Time
YDTIMA: Actual Yard Time
YDTMLA: Late Arrival Yard Time
$t_{S A}$: Scheduled Arrival of Inbound Train
$t_{A A}$: Actual Arrival of Inbound Train
$t_{S D}$: Scheduled Departure of Outbound Train
$t_{A D}$: Actual Departure of Outbound Train

Cars are classified as follows:

| | YDTIMS (IN HOURS) | | | |
| :---: | :---: | :---: | :---: | :---: |
| | | 0 | | 32 |
| YDTIMA | 0 7 | ADVANCED- YARD MOVE OR LATE DEP ${ }^{\text {I }}$ | ON TIME-
 YARD MOVE OR
 LATE DEP ${ }^{1}$ | $\begin{aligned} & \text { DELAYED- } \\ & \text { LATE ARR } \end{aligned}$ |
| (IN HOURS) | 8 | ADVANCEDEARLY ARRIVAL | ON TIMENORMAL | DELAYED- OB BUILDUP OR OTHER |

I A car is classified as "due to late departure" if YDTMLA is greater than seven hours. Otherwise, the car is classified as "due to expedited yard move".

There is no analytic method to distinguish between cars delayed due to outbound train cancellation or other reason (rips, no-bills, etc). The heuristic rule used in this program was to classify cars as "due to outbound buildup" if YDTIMA was less than 78 hours. While resulting in some misclassifications, this rule correctly classified over 90% of all cars in these categories. (It should be noted that all cars in these categories are listed to enable a manual check of classifications and to identify cars actually "delayed due to late switching"•)

OUTPUT

To provide meaningful results, all YDTIMS and YDTIMA values are corrected (by subtracting the proper number of days) so that YDTIMS falls within the 8 to 31 hour range of published schedules. If a delayed car has for example YDTIMS $=65$ hours and YDTIMA $=58$ hours (the inbound train arrived seven hours late), $2 \times 24=48$ hours would be subtracted from each parameter, yielding YDTIMS $=17$ hours, and YDTIMA $=10$ hours.

In addition, each car is classified as either eastbound, westbound or local, based upon the structure of the input listing of inbound and outbound trains:

1. If the IB symbol location is between 70 and 100 ,
the car is classified as "local".
2. Otherwise, the outbound train location determines the classification: 1 through 15, eastbound; 16 through 30, westbound; and 31 through 45 local. (Outbound train symbols are restricted to 45 entries.)

Three outputs are produced from the progran:

1. A listing of all cars (including destination and IB and $O B$ train information) classified as "Delay due to $O B$ buildup", and "Delay due to other reasons", and all cars rejected as "Invalid Train Symbol" or "Delay - Invalid IB Symbol". This listing allows a manual check of the correctness of input train listings and the classification of delayed cars.
2. An inbound-to-outbound train mapping of all cars moving in advance of schedule, on schedule or delayed due to late arrival. This table identifies major connections and indicates the performance of cars on individual trains.
3. Sixteen tables of car movement performance versus scheduled and actual yard time. The output for this table is also punched on cards to provide input for the summary program.

SUMMARY PROGRAM

The restrictions on the number of inbound and outbound trains which could be listed in the main program
made it impossible to use more than one day's data for each run. A second program takes the output of NDAYS punched output from the main program, adds the proper figures from each table and recalculates percentage performance.

The performance of cars delayed due to late switching and any corrections to the classification of "OB BUILDUP" or "OTHER" delays must be manually added to the cards output from the main program. As constructed, input for this program must be arranged such that the NDAYS cards for each row are grouped together instead of the total punch output of each run from the main program being input as a block.

51

APPENDIX II
LISTING OF MAIN PROGRAM

```
    REAL⿱宀%8 CONTNT,OFFJUN,ONJUN,CARNUM 
    REAL LORE,NETONS,CARDES(3),IBSYM,ZBLANK/'Z '/,E/'E'/,IBSARR(100)/
0002
    1100*' '/,OBSDEP(45)/45*' '/
    INTEGER*2 YDTIME,IBHARR(100)/100*0/,IBDARR(100)/100*0/,
    1OBHDEP(45)/45*0/,OBDDEP(45)/45*0/,OBSLOC,I BSLOC,OBHACT(45),
    ZOBCACT(45), IBHACT(100), I BDACT(100),OBHSCH,IBHSCH,OBDSCH,IBDSCH,
    3YDTIMS,YDTMLA,MOVLE,OTLTCT(45,10C)/4500*0/,OBHOLL(45)/45%0/,
    4OBOTLL(45)/45*0/,OBOTLE(45)/45*0/,LATCT (45,100)/4500*0/,
    5JBLATL(45)/45*0/,OBLATE(45)/45*0/,TOTLD/0/,TOTEMP/0/,
STDCOLE(18)/18*0/,TDCOLW(18)/18*0/,TDCOLL(18)/18*0/,TLDXD,TEMPXD, 0010
    7L(33,9)/297*0/,TROW,TOTAL,IPC(33,9)/297%0/,Y,IF/0/,LOAD,EMPTY,
8DELAYI,TIBOB (45,100)/4500*0/,YDTIMA, ADVECT (45,100)/4500*0/, 0012
    9OBADEL(45)/45*0/
    INTEGER*2 OBHOLE(45)/45*0/,OBOTHL(45)/45*0/,OBOTHE(45)/45*0/,
    1TOBL(45)/45*0/,TOBE(45)/45*0/, OBHR,OBDAY,DELAY,TCOL(18)/1 8*0/,
    2 JBADEE(45)/45*0/, ADVYCT(45,100)/4500*0/,OBADYL(45)/45*0/,
    3OBADYE(45)/45*0/,ADVLCT(45,100)/4500*0/,CBADLL (45)/45*0/,
    4OBADLE(45)/45*0/,OTNCT(45,100)/4500* 0/,OBOTNL(45)/45*0/,
    5OBOTNE(45)/45*0/,OTYDCT (45,100)/4500*0/,OBOTYL (45)/45*0/,
    6SPERW(31,18)/558*0/, APERW(33,18)/594*0/,SPERE(31,18)/558%0/,
    7APERE (33,18)/594*0/,SPERL (31,18)/558*0/, APERL( 33,18)/594%0/,
    8SPERF (31,18)/558*0/, APERF (33,18)/594*0/, PSPER (31, 18)/558*0/,
    9JBOTYE(45)/45*0/
    WRITE (6,11)
    FORMAT('l', 'SELKIRK: FEBRUARY 22,1971'/)
1 1
C) SEAD THE INBOUND TRAINS
READ(5,17)((IBSARR(J),IBHACT(J),IBDACT(J),IBHARR(J),IBDARR(J)),
    1J=1,100)
17 FORMAT(5(A4,4I2))
C尔年: READ THE LISTING FOR CUTBOUND TRAINS
    REAC}(5,17)((OBSDEP(J),OBHACT(J),OBDACT(J),OBHDEP(J),OBDDEP(J))
    1 J=1,45)
C目 READ THE INPUT DATA CARDS
100 REA[(9,1,END=500)CHAR,CARINT,CARNUM,LORE,CARTYP,NETONS,CONTNT,
ICARDES,OFFJUN,ONJUN,IBSYN, IBHR, IBDAY,OBSYM,OBHR,OBDAY
    1 FORMAT(A1,A4,A6,A1,A2,A3,A6,2A4,A3,9X,2A8,5X,2(A4,2I2))
0 0 0 3
0 0 0 4
0 0 1 0
0 0 1 1
0013
```



```
0014
0 0 1 5
0016
0017
00180
0019N
0 0 2 0
0021.
0 0 2 2
0023
0 0 2 3
0024
0025
0 0 2 6
0 0 2 7
0 0 2 8
1 7
0029
0 0 3 0
0031
    ROM THE INPUT DATA CARDS (0)
0032
0034
0035
0036
```

```
        IF=0
```

 IF THIS CAR IS A CABIN CAR (CARTYP='Z '), SKIP TO NEXT CARD
    ```
        IF THIS CAR IS A CABIN CAR (CARTYP='Z '), SKIP TO NEXT CARD
ClNy. IF (CARTYPOEQOZBLANK)GO TO 100
ClNy. IF (CARTYPOEQOZBLANK)GO TO 100
ClFAB IF (CARTYPOEQOZBLANK)GO TO IOO IS CAR IS ON A THRU TRAIN OR IS BLOCK SWITCHED, SKIP TO THE
ClFAB IF (CARTYPOEQOZBLANK)GO TO IOO IS CAR IS ON A THRU TRAIN OR IS BLOCK SWITCHED, SKIP TO THE
        0 0 3 9
        0 0 3 9
CW% ; NEXT CARD (DECISION RULE-TIME IN YARD IS LESS THAN 4 HOURS)
CW% ; NEXT CARD (DECISION RULE-TIME IN YARD IS LESS THAN 4 HOURS)
        YDTIMA=24*(OBDAY-IBDAY) +(OBHR-I BHR)
        YDTIMA=24*(OBDAY-IBDAY) +(OBHR-I BHR)
        IF (YOTIMAOLT。4)GO TO 1.00
        IF (YOTIMAOLT。4)GO TO 1.00
        IF(YDTIMAOGE。48)GO TO 5
        IF(YDTIMAOGE。48)GO TO 5
C**: FIND THE LOCATION IN INPUT OF INBOUND AND OUTBOUND TRAIN SYMBOLS
C**: FIND THE LOCATION IN INPUT OF INBOUND AND OUTBOUND TRAIN SYMBOLS
        DO 4 J=1,100
        DO 4 J=1,100
        IF(IBHARR(J)。EQ.25)GO TO 545
        IF(IBHARR(J)。EQ.25)GO TO 545
        IF(IBSYM॰NE。IBSARR(J)。OR^IBHR॰NE。IBHACT(J)。OR॰IBDAY。NE。IBDACT(J))
        IF(IBSYM॰NE。IBSARR(J)。OR^IBHR॰NE。IBHACT(J)。OR॰IBDAY。NE。IBDACT(J))
    1GO TO 4
    1GO TO 4
        I BSLOC=J
        I BSLOC=J
        GO TO 5
        GO TO 5
CONTINUE
CONTINUE
        GO TO 545
        GO TO 545
5 DO 6 J=1,45
5 DO 6 J=1,45
        IF(OBHDEP(J)。EQ.25)GO TO 545
        IF(OBHDEP(J)。EQ.25)GO TO 545
        IF(OBSYM॰NE,OBSDEP(J)。OR^OBHR॰NE`OBHACT (J)。OR॰OBCAY。NE。OBDACT(J))
        IF(OBSYM॰NE,OBSDEP(J)。OR^OBHR॰NE`OBHACT (J)。OR॰OBCAY。NE。OBDACT(J))
    1GO TO 6
    1GO TO 6
    OBSLOC=J
    OBSLOC=J
        IF(YOTIMA。GE&48)GO TO 351
        IF(YOTIMA。GE&48)GO TO 351
        GJ TO }
        GJ TO }
6 CONTINUE
6 CONTINUE
545 WRITE(6,2) CHAR,CARINT,CARNUM,LORE,CARTYP,NETONS,CONTNT,CARDES,
545 WRITE(6,2) CHAR,CARINT,CARNUM,LORE,CARTYP,NETONS,CONTNT,CARDES,
    IOFFJUN,ONJUN, IBSYM, IBHR, IBLAY,OBSYM, OBHR,OBDAY
    IOFFJUN,ONJUN, IBSYM, IBHR, IBLAY,OBSYM, OBHR,OBDAY
2 FORMAT(2X,'INVALID TRAIN SYMBOL',5X,A1,A4,A6,A1,A2,A3,A6,2A4,A3, 0064
2 FORMAT(2X,'INVALID TRAIN SYMBOL',5X,A1,A4,A6,A1,A2,A3,A6,2A4,A3, 0064
    19X,2A8,5X,2(A4,2I2))
    19X,2A8,5X,2(A4,2I2))
        GO TO 100
        GO TO 100
351 DO 352 J=1,100
351 DO 352 J=1,100
        IF(IBSYM`NE。IBSARR(J))GO TC 352
        IF(IBSYM`NE。IBSARR(J))GO TC 352
        IBSLOC=J
        IBSLOC=J
        IF=1
        IF=1
    GO TO }80
    GO TO }80
        CONTINUE
        CONTINUE
        0 0 4 0
        0 0 4 0
0041
0041
        0 0 4 2
        0 0 4 2
        0
        0
0 0 4 4
0 0 4 4
0 0 4 5
0 0 4 5
0046
0046
0047
0047
0048
0048
        0049
        0049
        0 0 5 0
        0 0 5 0
        0 0 5 1
        0 0 5 1
4 CONTINUE
4 CONTINUE
0052
0052
0 0 5 3
0 0 5 3
0054v
0054v
0055w
0055w
0 0 5 6
0 0 5 6
0057
0057
0
0
    0 0 5 8
    0 0 5 8
    0059
    0059
    0060
    0060
0 0 6 1
0 0 6 1
0062
0062
0 0 6 3
0 0 6 3
0064
0064
    0065
    0065
0066
0066
0 0 6 7
0 0 6 7
    0068
    0068
0 0 6 9
0 0 6 9
0 0 7 1
0 0 7 1
0 0 7 2
```

0 0 7 2

```

```

 WRITE(6,9) CHAR,CARINT,CARNUM,LORE,CARTYP,NETONS,CONTNT,CARDES, 0073
 1OFFJUN,ONJUN, IBSYM, IBHR, IBDAY,OBSYM, OBHR,OBDAY
 0074
 9
FORMAT(2X,'DELAY-INVALID IB SYM',5X,A1,A4,A6,A1,A2,A3,A6,2A4,A3,
0075
19X,2A8,5X,2(A4,212))
GO TO 100
C*: is DEFINE SCHEDULED ARRIVAL CAY
8 IBHSCH=IBHARR(IBSLOC)
IBDSCH=IBDARR(IBSLOC)
C*** DEFINE SCHEDULED DEPARTURE DAY
OBHSCH=OBHDEP(OBSLOC)
OBDSCH=OBDDEP(OBSLOC)
C* DEFINE SCHEDULED YARD TIME (YDTIMS), ACTUAL ARRIVAL TO SCHEDULED
Clow* DEPARTURE YARD TIME(YDTMLA), AND ACTUAL YARD TIME (YDTIMA)
YDTIMS=24*(OBDSCH-IBDSCH)+(OBHSCH-IBHSCH)
YOTIME=24*(OBDSCH-IBDAY)+(OBHSCH-IBHR) 0087
C\#\&: DETERMINE CAR MOVEMENT PERFORMANCE
IF(YDTIMSOLEO31)GO TO 800
IF(YDTIMEoLE_31)GO TO 170
802 IF(YOTIMA。LT.78)GO TC 180
GO TO }21
800 IF(YDTIMS\<,8)GO TO 801 0093
IF(YOTIME`GE.8)GO TO 90
IF(YOTIMAOLT 8)GO TO }21
GO TO 210
801 IF(YDTIME.GE。8)GO TO 15
IF(YDTIMAOLT 8)GO TO 13
GO TO 19
C**SAR ACVANCED DUT TO EARLY ARRIVAL OF IB TRAIN
15 IF(LOREOEQ。E)GO TO 16
ADVECT(OBSLOC, IBSLOC)=ADVECT (OBSLOC,IBSLOC)+100
OBADEL (OBSLOC)=OBADEL(OBSLOC)+1
MOVLE=1
GO TO 101
16 ADVECT(OBSLOC,IBSLOC)=ADVECT (OBSLOC,IBSLCCC)+1
16 ADVECT(OBSLOC,IBSLOC)=ADVECT(OBSLOC,IBSLCC)+1
MOVLE=2
0077
0078
-0079
0 0 7 9
0080
OBHSCH＝OBHDEP（OBSLOC）
OBD SCH＝OBDDEP（OBSLOC）
0082
0083
0084
0 0 8 5
YDTIMS=24*(OBDSCH-IBDSCH)+(OBHSCH-IBHSCH) 0086
0088
IFOTMMELEOSIIOO TO
0089
0090r
0091 F
0 0 9 2
0 0 9 3
0094
0 0 9 5
C096
0 0 9 7
0098
0 0 9 9
0100
0101
0102
0 1 0 3
0 1 0 4
0 1 0 5
0106
0 1 0 7
0 1 0 8

```
```

 GO TO 102 0109
 C)
 13 IF(LORE EQOE)GO TO 18 0111
 ADVYCT(OBSLOC,IBSLOC)=ADVYCT(OBSLOC,IBSLOC)+100 0112
 OBADYL(OBSLOC)=OBADYL(OBSLOC)+1-0113
 MOVLE=3
 GO TO 101
 18 ADVYCT(OBSLOC,IBSLOC)=ADVYCT(OBSLOC,IBSLOC)+1
OBADYE(OBSLOC)=OBADYE(OBOLOC)+1
MOVLE=4
GO TO }10
C**;棌 CAR WAS ADVANCED DUE TO LATE DEPARTURE OF OB TRAIN
19 IF(LORE。EQ*E)GO TO 20
ADVLCT(OBSLOC, IBSLOC)=ADVLCT(OBSLOC,IBSLCC)+100
OBADLL(OBSLOC)=OBADLL(OBSLOC)+1
MOVLE=5
GO TO 101
20 ADVLCT(OBSLOC,IBSLOC)=ADVLCT(OBSLOC,IBSLCC)+1
OBADLE (OBSLOC)=OBADLE(OBSLOC)+1
MOVLE=6
GO TO 102
CAR MADE PROPER CONNECTION DUE TO NORMAL YARD HANDLING
IF(LORE。EQ*E)GO TO 165
OTNCT(OBSLOC,IBSLOC)=OTNCT (OBSLOC,IBSLOC)+100
OBOTNL(OBSLOC)=OBOTNL(OBSLOC) +1
MOVLE=7
GO TO 101
165 OTNCT(OBSLOC,IBSLOC)=OTNCT(OBSLOC,IBSLOC)+1
OBOTNE (OBSLOC) =OBOTNE (OBSLOC)+1
NOVLE=8
GO TO 102
C*F% CAR MADE PROPER CONNECTION DUE TO EXPEDITED YARD MOVEMENT
140
212 IF(LOREOEQ\&E)GO TO 213 0141
JTYDCT(OBSLOC,IBSLOC)=OTYDCT(OBSLOC,IBSLOC) +100
0142
OBOTYL(OBSLOC)=OBOTYL(OBSLOC)+1 0143
MOVLE=9
0144

```
```

 GO TO 101 0145
 213 OTYDCT(OBSLOC,IBSLOC)=OTYDCT(OBSLCC,IBSLOC) +1
OBOTYE(OBSLOC)=OBOTYE (OBSLOC)+1
MOVLE=10
GO TO 102
C*) CAR MADE PROPER CONNECTION DUE TO LATE OB DEPARTURE
210 IF(LGRE。EQ。E)GO TO 211
OTLTCT(OBSLOC,IBSLOC)=OTLTCT(OBSLOC,IBSLOC)+100
JBOTLL(OBSLOC)=OBOTLL(OBSLOC)+1
MOVLE=11
GO TO 101
211 OTLTCT(OBSLOC,IBSLOC)=OTLTCT(OBSLOC,IBSLOC) +1
OBOTLE(OBSLOC)=OBOTLE(OBSLCC)+1.
MOVLE=12
GO TO }10
CAR WAS DELAYED DUE TO LATE ARRIVAL OF INBOUND TRAIN
170 IF(LOREOEQ\&E)GO TO 175
170 IF(LOREOEQ\&E)GO TO 175
OBLATL(OBSLOC)=OBLATL(OBSLOC) +1
MOVLE=13
MO TO 101
175 LATCT (OBSLOC,IBSLOC)=LATCT (OBSLOC, IBSLOC)+1
OBLATE(OBSLOC)=OBLATE(OBSLOC) +1
MOVLE=14
GO TO 102
C*$% CAR WAS DELAYED - HELD FCR BUILDUP OF OUTBOUND EXTRA TRAIN
 180 IF(YDTIMA。GE。78)GO TO 215
WRITE (6,89)CHAR,CARINT,CARNUM,LORE,CARTYP,NETONS,CONTNT,C ARDES,
1OFFJUN, INJUN, IBSYM, IBHR, IBCAY, OBSYM, OBHR,OBDAY
 FORMAT(2X,'DELAY-OB BUILDUP ', SX,A1,A4,A6,A1,A2,A3,A6,2A4,A3,
 19X,2AB,5X,2(A4,2I2))
IF(LORE*EQ&E)GO TO 1.84
OBHOLL(OBSLOC)=OBHOLL(OBSLOC)+1
 MCVLE=15
 GO TO }77
 OBHOLE(OBSLOC)=OBHOLE(OBSLOC) +1
0 1 4 6
0147
0148
0149
0150
0 1 5 1
0152
0153
01.54
0155
0156
0157
0158
0159
C事家缺
0161
0161
0162r
0163
0164
0165
0166
0167
0168
C*$ CAR WAS DELAYED - HELD FCR BUILDUP OF OUTBOUND EXTRA TRAIN
0 1 6 9
0170
0171
0172
0173
89
0174
0175
0176
0177
0179
0180

```
```

 MOVLE=16 0181
 GO TO 779
 0182
 C*) CAR WAS DELAYED FOR OTHER REASONS
0 1 8 3
215 WRITE (6,3)CHAR,CARINT,CARNUM,LORE,CARTYP,NETONS,CONTNT,CARDES,}018
IOFFJUN, ONJUN, IBSYM, IBHR, IBDAY,OBSYM, OBHR,OBDAY
0185
FORMAT (2X, 'UNEXPLAINED DELAY', 8X,A1,A4,A6,A1,A2,A3,A6,2A4,A3,9X, 0186
12AE,5X,2(A4,2I2))
IF(LOREOEQ\&E)GO TO 201
OBOTHL(OBSLOC)=OBOTHL(OBSLOC) +1
MOVLE=17
GO TO }77
201 OBOTHE(OBSLOC)=OBOTHE (OBSLCC) +1
MOVLE=18
GO TO 779
0187
3
C*水: OUTPUT VARIABLES INCLUDING COUNT
101 TLDXD=TLDXD+1
TIBOB (OBSLOC,IBSLOC)=TIBCB (OBSLCC,IBSLOC)+100
778
778
GO TC 103
0188
0189
0189
0 1 9 1
0192
0 1 9 3
0194
0195
0196
0197
0198u
0199~
102 TEMPXD=TEMPXD+1 0201
TIBOB (OBSLOC,IBSLOC)=T IBOB (OBSLCC, IBSLOC)+1 0202
779 TOTEMP=TOTEMP+1
0203
TOBE (OBSLOC) = TOBE (OBSLOC) +1
0204
103 TCOL(MOVLE)=TCOL(MCVLE)+1
0205
IF(IFOEQO 1)GO TO 354
0206
IF(YDTIMS。LE。7)GO TO 955
0207
IF(YDTIMSoLE。31)GO TO }90
0208
IF(YDTIMSoLE_55)GO TO 951
0209
IF(YDTIMS.LE.79)GO TC 952 0210
YDTIMS=31
0211
YDTIMS=31
0212
GO TO }90
0213
955 YDTIMS =YDTIMS +24
0214
YDTIME=YDTIME +24
0215
GO TO SO3
0 2 1 6

```
951 YOTIMS＝YDTIMS－24 ..... 0217
YDTIME＝YDTIME－24 ..... 0218
GO TO 903 ..... 0219
952 YOTIMS＝YDTIMS－48 ..... 0220
YDTIME＝YDTIME－48 ..... 0221
903 IF（YDTIME。LE。31）GO TO 104 ..... 0222
IF（YCTIME。GEo 35）GO TC 905 ..... 0223
YOTIME＝32 ..... 0224
GO TO 104 ..... 0225
905 YDTIME＝33 ..... 0226
104 IF（YDTIMS。GE。8）GO TO 131 ..... 0227
YDTIMS＝8 ..... 0228
131 IF（YDTIME。GE。1）GO TO 904 ..... 0229
YOTIME＝1 ..... 0230
904 SPERF（YDTIMS，MOVLE）＝SPERF（YOTIMS，MOVLE）＋1 ..... 0231
APERF（YDTIME，MOVLE）＝APERF（YDTIME，MOVLE）＋1 ..... 0232
354 IF（OBSLOC。GE，31。OR。IBSLOC。GE。71）GO TO S21 ..... 0233
IF（OBSLOC。LTol6。OR。OBSLOC。GE。44）GO TO 920 ..... 0234 r
TDCOLW（MOVLE）＝TDCCLW（MOVLE）+1 ..... 023500236
SPERW（YDTIMS，MOVLE）＝SPERW（YOTIMS，MOVLE）＋1 ..... 0237
APERW（YDTIME，MOVLE）＝APERW（YDTIME，MOVLE）＋1 ..... 0238
GO TO 100 ..... 0239
TDCOLE（MOVLE）＝TDCOLE（MCVLE）+1 ..... 0240
IF（IFoEQ，I）GO TO 100 ..... 0241
SPERE（YDTIMS，MOVLE）\(=\) SPERE（YDTIMS，MOVLE）＋ 1 ..... 0242
APERE（YDTIME，MOVLE）＝APERE（YDTIME，MOVLE）＋1 ..... 0243
GO TO 100 ..... 0244
TDCOLL（MOVLE）\(=\) TOCOLL（MCVLE）+1 ..... 0245
IF（IF。EQ。1）GO TO 100 ..... 0246
SPERL（YDTIMS，MOVLE）＝SPERL（YOTIMS，MOVLE）＋1 ..... 0247
APERL（YDTIME，MOVLE）＝APERL（YOTIME，MOVLE）＋1 ..... 0248
GO TO 100 ..... 0249
C＊及 FINAL OUTPUT－INBOUND TO CUTBCUND MAPPING ..... 0250
500 WRITE \((6,11)\) ..... 0251
WRITE \((6,980)\) ..... 0252
980 FORMAT（1X，＇PERFORMANCE OF CARS MCVING BETWEEN GIVEN INBOUND AND OU ..... 0253
1TBOUND TRAINS \(/ / /\) ）
\[
\Lambda=5
\]
WRITE \((6,981)\)
FORMAT \(1 \mathrm{X},{ }^{\prime}\) DUTBOUND TRAIN＇\(/ 2 \mathrm{X},{ }^{\prime}\) SYMB＇， \(3 X,{ }^{\prime}\) SCH DEP＇， \(1 X,{ }^{\prime}\) ACT DEP＇， \(1 X\) ， 981 ..... 025702550256
 ..... 0258
2AINS＇， \(17 X{ }^{\prime}\)＇CARS ADVANCED DUE TO：＇， \(8 X,{ }^{\prime}\) CARS ON SCHEDULE DUE TO：＇， ..... 0259
\(36 X,^{\prime}\) CARS DELAYED DUE TO：＇， \(11 X,^{\prime}\) ROW＇／4X，＇SYMB＇， \(1 X,{ }^{\prime}\)＇SCH ARR＇， \(1 X\) ， ..... 0260
\(4^{\prime}\) ACT ARR＇， \(1 X,^{\prime}\) DELAY＇， \(1 X\) ，\(^{\prime} E A R L Y\) ARR＇， \(1 X,{ }^{\prime} Y A R D\) MOVE＇， \(2 X,{ }^{\prime}\) LATE DEP＇， ..... 0261
\(53 X\) ，＇NORMAL＇， \(2 X,{ }^{\prime}\)＇YARD MOVE＇， \(2 X,{ }^{\prime}\)＇LATE DEP＇， \(2 X,{ }^{\prime}\)＇LATE ARR＇， \(1 X,{ }^{\prime}\)＇OB BUIL ..... 0262
 ..... 0263
\(7^{\prime}{ }^{\prime}\) HRS＇\({ }^{\prime}\) ， ..... 0264
 ..... 0265
\({ }^{\prime}\) LDS＇， \(1 X,{ }^{\prime} E M P ', 3 X,^{\prime} L D S^{\prime}, 1 X,{ }^{\prime} E M P ', 3 X,{ }^{\prime} L D S^{\prime}, 1 X,{ }^{\prime} E M P ', 3 X\), ..... 0266
 ..... 0267
1 ＇LDS＇，IX，EMP＇， 2 ＇LDS＇， \(1 \times\), EMP＇／） ..... 0268
DO 609 \(J=1,45\) ..... 0269
IF（NoLT。47）GO TO 834 ..... 0270
\(\operatorname{WRITE}(6,11)\) ..... 0271
WRITE \((6,981)\) ..... 02726
\(\mathrm{N}=3\)0273
IF（TOBL（J）。EQ。O。AND。TCEE（J）。EG。O）GO TO 609 ..... 0274
IF（OBHDEP（J）。EQ。25）GO TO 700 ..... 0275
DELAY＝24＊（OBDACT（J）－OBDDEP（J））＋（OBHACT（J）－OBHDEP（J）） ..... 0276
WRITE \((6,821)\) OBSDEP \((J)\) ，OBHDEP \((J), O B D D E P(J), O B H A C T(J), O B D A C T(J)\) ， ..... 0277
1 DELAY，OBADEL（J），OBADEE（J），OBADYL（J），OBADYE（J），OBADLL（J），OBADLE（J）， ..... 0278
2 JBOTNL（J），OBCTNE（J），OBOTYL（J），OBOTYE（J），OBOTLL（J），OBOTLE（J）， ..... 0279
3OBLATL（ J），OBLATE \(J\) ），OBHOLL（J），OBHOLE（J），OBOTHL（J），OBOTHE（J）， ..... 0280
4 TOBL（J），TOBE（J） ..... 0281
821 FORMAT（／／ \(2 \mathrm{X}, \mathrm{A} 4,2 \mathrm{X}, 5(2 \mathrm{X}, \mathrm{I} 2), 3 \mathrm{X}, 10(\mathrm{I} 3,1 \mathrm{X}, \mathrm{I} 3,3 \mathrm{X}) /\) ） ..... 0282
\(\mathrm{N}=\mathrm{N}+4\) ..... 0283
DO 610 \(K=1,100\) ..... 0284
IF（IBHARR（K）。EQ。25）GO TO 600 ..... 0285
IF（TIBOB（J，K）©EQ。O）GO TO 610 ..... 0286
LLI \(=\operatorname{LOAD}\)（ADVECT \((J, K))\) ..... 0287
LE1＝EMPTY（ADVECT（J，K）） ..... 0288
```

 LL2 = LOAD (ADVYCT (J,K)) 0289
 LE2 =EMPTY(ADVYCT(J,K))
 0290
 LL3 =LOAD (ADVLCT (J,K)) 0291
 LE3 =EMPTY(ADVLCT (J,K))
 0292
 LL4 = LOAD (OTNCT (J,K))
 0293
 LE4 = ENPTY(OTNCT (J,K))
 0294
 LL5 = LOAD (OTYDCT(J,K)) 0295
 LE5 =EMPTY(OTYDCT (J,K)) 0296
 LLG = LDAD (OTLTCT(J,K)) 0297
 LE6 = EMPTY(OTLTCT(J,K)) 0298
 LL7 = LOAD (LATCT (J,K)) 0299
 LE7 = EMPTY(LATCT (J,K))
 0300
 LL10=LOAD (TIBOB (J,K)) 0301
 LE1O=EMPTY(TIBOB (J,K))
 O302
 DELAYI=24*(IBDACT(K)-IBDARR(K))+(IBHACT}(K)-IBHARR(K)
 0303
 WRITE(6,822)IBSARR(K),IBHARR(K),IBDARR(K),IBHACT(K),IBCACT(K),}030
 IDELAYI,LL1,LE1,LL2,LE2,LL3,LE3,LL4,LE4,LL5,LE5,LL6,LE6,}0305,
 2LL7,LE7,LL10,LE10
 FORMAT(4X,A4,5(1X,I3),3X,7(I 3,1X,I3,3X),20X,I3,1X,I3)
 N=N+1
 IF(NoLTo51)GO TO 610
 0307
 WRITE (6,11)
 WRI TE (6,981)
 N=3
 0310
 ONTNUE-0313
 CONTINUE 0314
 WRITE(6,11) 0315
 WRITE (6,470) 0316
 FORMAT(2X,'SUMMARY TABLE OF INBCUND TO CUTBOUND TRAIN MAPPING'///) 0317
 WRITE (6,469)
 FORMAT(35X,'C ARS ADV ANCEL
 16X,'CARS DELAYED DUE TO:', 11X,'RCW'/ 0320
    ```

```

33X,'NORMAL',2X,'YARD MCVE',2X,'LATE DEP', 2X,'LATE ARR',IX,'OB BUIL O322
4DUP',2X,'OTHER',5X,'TOTALS'/29X, 0323
53X,'LDS',1X,'EMP',3X,'LDS',1X,'EMP',3X,'LDS',1X,'EMP',3X,}

```

```032
```

7 'LDS', $1 \times,{ }^{\prime}$ EMP', $3 X,{ }^{\prime}$ LDS', $1 X,{ }^{\prime}$ EMP', $3 X$, 'LDS', $1 X$, EMP', $3 X$, ..... 0327
WRITE $(6,823)((\operatorname{TCOL}(M O V L E), M O V L E=1,18)$, TOTLD,TOTEMP) ..... 0328
FORMAT(//4X, 'COLUMN TOTALS: ', 12X,10(I4, I4,2X)) ..... 0329
TROW=TOTLD ..... 0330
$J=1$

```0331
```

DO 526 MOVLE $=1,17,2$ ..... 0332
$L(1, J)=T C C L(M C V L E)$ ..... 0333
$J=\mathrm{J}+1$ ..... 0334
CONTINUE ..... 0335
IF IN=3 ..... 0336
$K=9$ ..... 0337
GO TO 521 ..... 0338
WRITE $(6,471)(\operatorname{IPC}(1, \mathrm{~J}), \mathrm{J}=1,9)$ ..... 0339
FORMAT $\left(/ 4 \mathrm{X},{ }^{\prime}\right.$ LOADED PERCENTAGE: ' / $6 \mathrm{X},{ }^{\prime}$ ALL LOADED CARS: ', $9 \mathrm{X}, 9\left(\mathrm{I} 3, \mathrm{~m}^{\prime} \mathrm{m}^{\prime}\right.$, ..... 0340
26XI) ..... 0341
TROW=TLDXD ..... 0342
I FIN=4

```GO TO 52203430344 Н
```

WRITE $(6,472)(\operatorname{IPC}(1, \mathrm{~J}), \mathrm{J}=1,7)$ ..... 0345
FORMAT $\left(6 X,{ }^{\prime}\right.$ EXCEPT HOLD \& UNEXP。: $\left.{ }^{\prime}, 4 X, 7\left(I 3,{ }^{\prime} \%^{\prime}, 6 X\right)\right)$ ..... 0346
TROW=TOTEMP ..... 0347
$J=1$ ..... 0348
DO 527 MOVLE $=2,18,2$ ..... 0349
$L(1, J)=T C C L(M O V L E)$ ..... 0350
$J=J+1$ ..... 0351
527 CONTINUE ..... 0352
IFIN=5 ..... 0353
$K=9$ ..... 0354
GO TO 521 ..... 0355
520 WRITE $(6,473)(\operatorname{IPC}(1, J), J=1, \varsigma)$ ..... 0356
473 FORMAT $/ / 4 X$, 'EMPTY PERCENTAGE'/6X, 'ALL EMPTY CARS: ', $14 \mathrm{X}, 9(\mathrm{I} 3$, '\% ', ..... 0357
26X1) ..... 0358
TROW=TEMP $\times D$ ..... 0359
I F IN=6 ..... 0360
GO TO 522 0361
WRITE $(6,474)(\operatorname{IPC}(1, J), \mathrm{J}=1,7)$ ..... 0362474 FORMAT(6X,'EXCEPT HOLD \& UNEXP。: ',8X,7(I3, $\left.{ }^{\prime} \%{ }^{\prime}, 6 X\right)$0363
C* PR PRINT OUT PERFORMANCE VERSUS SCHEDULED YARD TIME FOR LOADED CARS620
WRITE $(6,11)$
WRITE $(6,983)$
FORMAT(IX,'PERFORMANCE TABLE: ALL LOADED CARS VERSUS SCHEDULED YAR
1D TIME'//)
WRITE $(6,984)$
984 FORMAT $\left(2 X,{ }^{\prime}\right.$ SCHEDULED', $9 X,^{\prime}$ CARS ADVANCED DUE TO: ${ }^{\circ}, 8 \mathrm{X},{ }^{\prime} \mathrm{CARS}$ ON SCHED
IULE DUE TO: ' $6 \mathrm{X},{ }^{\prime}$ CARS DELAYED DUE TO:')
WRITE $(6,990)$
FORMAT $2 X,{ }^{\prime}$ YARD TIME' $5 \mathrm{~S},{ }^{\prime}$ 'EARLY AR
2R', $1 X,{ }^{\prime} Y A R D$ MOVE', $2 X,{ }^{\prime}$ LATE DEP', $3 X,^{\prime}{ }^{\prime} \mathrm{NORMAL'}^{\prime}, 2 X,{ }^{\prime} Y A R D$ MOVE', $2 X$,
$3^{\prime}$ LATE DEP', $2 X$, 'LATE ARR', $1 X$, 'OB BUILDUP', $2 X,{ }^{\prime}$ 'OTHER' $/ 17 \mathrm{X}$, 0375


6 'LDS' $^{\prime} 1 \times,{ }^{\prime} \%{ }^{\prime}, 3 X,{ }^{\prime} \operatorname{LDS}{ }^{\prime}, 7 X,{ }^{\prime} \operatorname{LDS}{ }^{\prime}$ )
DO $511 \quad Y=8,31$
$J=1$
DO $512 M=1,13,2$
$L(Y, J)=\operatorname{SPERF}(Y, M) \quad 0382$
$\mathrm{J}=\mathrm{J}+1$
512 CONTINUE 0384
511 CONTINUE
$\operatorname{TCOL}(8)=\operatorname{TCOL}(15)$
$\operatorname{TCOL}(9)=\operatorname{TCOL}(17)$
$\mathrm{I}=1$
$N=8$
$N=31$
I F IN=1
$\begin{array}{ll}600 & \text { TOTAL }=0 \\ \text { DO } 515 \mathrm{~J}=1,7 & 0392 \\ & 0393\end{array}$
$\begin{array}{lll}600 \text { TOTAL }=0 \\ \text { DO } 515 \mathrm{~J}=1,7 & 0392 \\ & 0393\end{array}$
$\operatorname{TCOL}(J)=0$
515 CCNTINUE 0395
DO $501 \mathrm{Y}=\mathrm{M}, \mathrm{N}$
§83 FORMAT(IX,'PERFORMANCE TABLE: ALL LOADED CARS VERSUS SCHEDULED YAR
0368
0369
0370
UULE DUE TO: ${ }^{\prime \prime} 6$ ' $^{\prime}$ CARS DELAYED DUE TO:') 0371
0372
0373
0374
0378
0380 N
0381
0382
0383
0384
0385
0385
0386
0387
N
0388
$N=8$
0389
N=31
0390
$\begin{array}{ll}600 \text { TOTAL }=0 \\ \text { DO } 515 \mathrm{~J}=1,7 & 0392 \\ & 0393\end{array}$
0394
0395
0396

```
 TROW=0 0397
 DO 502 J=1,7
0398
 TOTAL=TOTAL+L(Y,J)
0 3 9 9
 TCOL (J)=TCOL(J)+L(Y,J)
0400
 TRCW=TROW+L(Y,J) 0401
5 0 2
 0 4 0 1
 CONTINUE
0 4 0 2
 IF(TROWOEQOO)GO TO 503
 0 4 0 3
 DO 504 J=1,7
 0404
 TOP=L(Y,J)
 0405
 3OT=TROW
0 4 0 6
 PC=100.0%TOP/BOT+0.5 0407
 IPC (Y,J)=PC
0 4 0 8
5 0 4 ~ C O N T I N U E ~
 GO TO 505
503 00 506 J=1,7 0411
 IPC}(Y,J)=
506 CONTINUE
505 WRITE (6,244)(Y,(L(Y,J),IPC(Y,J),J=1,7),TROW)
244 FORMAT(5X,I2,7X,7(2X,I3,1X,I3,'%'),22X, I3)
 WRITE(7,25)((L(Y,J),J=1,9),TROW)
25 FORMAT(10(I3,2X))
5 0 1 ~ C O N T I N U E ~ 0 4 1 8 ~
 0 4 0 9
 0 4 1 0
0 4 1 2
0413
0414
244 FORMAT(5X,I2,7X,7(2X,13,1X,I3,'%'),22X, I3)
0415の
0416\omega
0417
50` WRITE (6,510)((TCOL(J),J=1,5),TOTAL)
0418
0 4 1 9
510 FORMAT(/1X,'COLUMN TOTALS:',1X, 8(I3,7X),13,6X,I4) 0420
 WRITE(7,441)((TCOL(J),J=1,S),TOTAL)
 0 4 2 1
441 FORNAT(8(I3,2X),I3,1X,I4) 0422
 TROW=0
 0423
 DO 507 J=1,9 0424
 TROW=TROW+TCOL(J)}042
 L(I,J)=TCOL(J) 0426
0426
```



```
 IFIN=2
 0 4 2 8
 GO TO 521
0429
522 K=7
0 4 3 0
GO TO 321
0431
521 K=9
0 4 3 2
```

```
321 IF(TROW。EQ。O)GO TO 302
0433
 DO }304\textrm{J}=1,\textrm{K
 TOP=L(1,J)
0435
 BCT=TRCW
0436
0437
 PC=100.0丞TOP/BOT+0.5
 IPC (1,J)=PC
0438
 -MCM,
0439
 GONTINUE
0440
 GO TO 301
 DO 303 J=1,K
IPC}(1,j)=
 CONTINUE
0442
301 L (1,8)=0 0444
 L(1,G)=0
0445
 GO TO (505,319,518,519,520,524,306), IFIN_0446
 WRITE (6,320)(IPC (1,J),J=1,9) 0447
 FORMAT(/1X,'PERCENTAGE:'/3X,'ALL CARS:',4X,9(I3,'%',6X))}044
 TROW=TROW-(TCOL(g) +TCOL(8))
 I F IN=7
 GO TO 522
 WRITE (6,307)(IPC(1,J),J=1,7)
 FORMAT(3X,'EXCEPT HOLD'/4X,'& OTHER:',4X,7(I3,'%',6X))}045
```



```
0454
 I F IN=1.
 GO TO (571,572,573,574,575,576,577,578,579,580,581,582,583,584,
0455
 0456
C隶貢 PRINT OUT PERFORMANCE VERSUS SCHEDULED YARD TIME FOR ENPTY CARS
0 4 5 7
571 WRITE (6,11) 0458
 WRITE(6,985) 0459
 WRITE(6,985) 0459
 FORMAT(IX,'PERFORMANCE TABLE: ALL EMPTY CARS VERSUS SCHEDULED YARD 0460
 l TIME'//)
 WRITE(6,984) 046 0-4,
 WRITE(6,991) 0463
91% FORMAT(
2X,'YARD TIME',5X,'EARLY AR
 CX,'YARD TIME',5X,'EARLY AR
0464
 2R',1X,'YARD MOVE', 2X,'LATE DEP',3X,'NORMAL', 2X,'YARD MCVE', 2X,
0465
 3'LATE DEP',2X,'LATE ARR',1X,'JB BUILDUP', 2X, 'OTHER'/17X,
 'EMP', 1X,' % ',3X,'EMP',1X,' % ', 3X,'EMP',1X,' % ',3X,}
 'EMP', IX,' % ',3X,'EMP', IX,' % ',3X,'EMP',1X,' % ',3X,}
```



```
 00 513 Y=8,31 0470
 J=1 \ % 31
 OO 552 M=2,14,2
 0471
 0472
 L}(Y,J)=SPERF (Y,M
 J= J+1
 CONTINUE
 CONTINUE
 TCCL(8)=TCOL(16)
 TCOL(9)=TCOL(18)
0478
 N=8
 N=31.
 I=2
 GO TO }60
C**** PRINT OUT PERFORMANCE VERSUS ACTUAL YARD TIME FOR LOADED CARS
572 WRITE (6,11)
 WRITE (6,986)
 FORMAT(IX,'PERFORMANCE TABLE: ALL LOADED CARS VERSUS ACTUAL YARD T
 1IME'//)
 WRITE(6,989)
 FORMAT(2X,'ACTUAL', 12X,'CARS ADVANCED DUE TO:',8X,'CARS ON SCHED
 IULE DUE TO:',}6X,'CARS DELAYED DUE TO:'),
 WRITE (6,990)
 DO 551 Y=1,33
 J=1
 DO 514 M=1,13,2
 L(Y,J)=APERF}(Y,M
 J=J+1
 CONTINUE
 CONTINUE
 TCOL(8)=TCOL(15)
 TCOL(9)=TCOL(17)
 M=1
 N=33
 I=3
 GO TO 600
0503
0504
```

```
C*) PRINT QUT PERFORMANCE VERSUS ACTUAL YARD TIME FOR EMPTY CARS O5O5
573 WRITE (6,11)
 WRITE (6,987)
0506
0507
 FORMAT (IX,'PERFORMANCE TABLE: ALL EMPTY CARS VERSUS ACTUAL YARD TI 0508
 1ME'//)
 WRITE (6,589)
 WRITE (6,991)
 D0 523 Y=1,33
 J=1
 D] 554 M=2,14,2
 L(Y,J)=APERF}(Y,M
 J=J+1
554 CONTINUE
523 CONTINUE
 TCOL}(8)=TCOL(16
 TCOL}(9)=TCOL(18
 M=1
 N=33
 I=4
 GO TO }60
C** EB LOADS--SCHEDULED 0525
574 WRITE (6,11)}052
 WRITE (6,750)
0527
7 5 0 ~ F O R M A T (I X , ' P E R F O R M A N C E ~ T A B L E : ~ E A S T B O U N D ~ L O A D E D ~ C A R S ~ V E R S U S ~ S C H E D U L ~ O 5 2 8 ~
 IED YARD TIME'//) 0529
 WRITE (6,984)
 WRITE (6,990)
 0530
 DO 595 Y=8,31
 J=1
 0
 <4,0532
 0533
 DO 516 M=1,13,2
 0534
 L(Y,J)=SPERE (Y,M)
 0535
 J=J+1
 0536
 516 CONTINUE
 0537
595 CONTINUE
0538
 TCOL(8)=TDCOLE(15)}053
 TCCL(9)=TDCOLE(17)
 0540
```

```
 M=8 0541
 N=31
 I=5
 GO TO 600
C**: EB EMPTIES--SCHEDULED
0544
0545
575 WRITE (6,11)
0 5 4 6
WRITE (6,751)
0 5 4 7
751 FORMATIIX,'PERFORMANCE TABLE: EASTBOUND EMPTY CARS VERSUS SCHEDULE
 10 YARD TIME'//)
 WRITE (6,984)
0548
 0549
 WRITE(6,991)
 00 517 Y=8,31
 J=1 0553
 DO 556 M=2,14,2
 L(Y,J)=SPERE (Y,M)
 J=j+1
```



```
517 CONTINUE
 TCCL(8)=TDCOLE(16)
 TCOL(9)=TECOLE(18)
 M=8
 N=31
 I=6
 GO TO 600 0564
 0550
 0551
 0552
 0553
 0555
 0556
 0557
 0558
 0559
 0590
 0561
 0562
 0563
C* WB LOADED--SCHEDULED 0565
0564
5 7 5 ~ W R I T E ~ (6 , 1 1)
 WRITE(6,752) 0567
 0566
752 FORMATIIX,'PERFORMANCE TABLE: WESTBOUND LOADED CARS VERSUS SCHEDUL 0568
 IED YARD TIME'//)
 WRITE(6,984)
 0569
 WRITE(6,984) 0570
 WRITE(6,990)
 0571
 DO 531 Y=8,31
 0572
 J=1
 OO 537 M=1,13,2
 0573
 JO 537M=1,13,2
 0574
 L(Y,J)=SPERW(Y,M)
 0575
 J=J+1
0576
```



```
531 CONTINUE 0578
TCOL(8)=TDCOLW(15) 0579
TCOL(9)=TDCOLW(17)
0580
M=8
N=31
I=7
GO TO 600
0582
0581
0583
0584
C**** WB EMPTIES--SCHEDULED 0585
577 WRITE (6,11)
WRITE(6,753) 0587
0586
753 FORNAT(1X,'PERFORMANCE TABLE: WESTBOUND EMPTY CARS VERSUS SCHEDULE O588
ID YARD TIME'//) 0589
NRITE (6,984)
WRITE (6,991) 0591
0590
DO 533 Y=8,31 0592
J=1
J=1
0593
OO 536 M=2,14,2
0594
L(Y,J)=SPERW(Y,M)
J= J+1
CONTINUE
0595%
059600
0597
533 CONTINUE 0598
TCCL(8)=TDCOLW(16)
0 5 9 9
TCOL(9)=TDCOLW(18) 0600
M=8
0
0601
N=31
I=8
GO TO 600
0602
0603
0604
Ci*is LOCAL LOADS--SCHECULED
578 WRITE (6,11)
578 WRITE (6,11)
0605
0606
754 FORMAT(IX,'PERFORMANCE TABLE: LOCAL LOADED CARS VERSUS SCHEDULED Y O6O8
LARD TIME'//)
0609
WRITE(6,984) 0610
WRITE (6,990)
0611
DO 535 Y=8,31
0612
```

```
 J=1 0613
 DO 529 M=1,13,2
 LO 529 M=1, LI,2
 J=J+1
529 CONTINUE
535 CONTINUE
535 CONTINUE
TCOL(9)=TDCOLL(17)
 M=8
 N=31
I=9
 GO TO 600
 0 6 1 4
 0620
LOCAL EMPTIES--SCHEDULED
WRITE(6,11)
 WRITE (6,755)
FORMAT(IX,'PERFORMANCE TABLE: LOCAL EMPTY CARS VERSUS SCHEDULED YA
 IRD TIME'//I
 WRITE (6,984)
 WRITE(6,991)
 DO 561 Y=8,31
 J=1
 J=1
 L(Y,J)=SPERL}(Y,M
 J=J+1
540 CONTINUE
540 CONTINUE
TCOL(8)=TDCOLL(16)
TCOL(8)=TDCCLL(16)
M=8
N=31 0642
I=10
G0 TO 600
C**:EB LOADS--ACTUAL
580 WRITE (6,11)
WRITE (6,756)
756 FORMATIIX,'PERFORMANCE TABLE: EASTBOUND LOADED CARS VERSUS ACTUAL
0 6 1 5
0 6 1 6
0 6 1 7
0 6 1 8
0619
0621
0622
0623
0624
0625
C**
579
0626
0627
PERFORMANCE TABLE: LOCAL EMPTY CARS VERSUS SCHEDULED YA 0628
 0629
 0 6 3 0
 0631
 0632%
 0633
 0634
 Y,J)=SPERL(Y,M) 0635
 0636
0637
0 6 3 7
0638
0 6 3 9
0640
0641
0642
0643
0.0644
0645
0646
0647
0648
```

```
 LYARD TIME'//) 0649
 WRITE (6,989)
 0 6 5 0
 NRITE (6,990)
 0 6 5 1
 OO 525 Y=1,33
 0652
 J=1
 0 6 5 3
 0654
 L(Y,J)=APERE (Y,M)
 J=J+1
 5 4 8 ~ C O N T I N U E ~
 525 CONTINUE
 TCOL(8)=TDCOLE(15)
 TCOL(9)=TDCOLE(17)
 TCOL(9)=TDCOLE(I7)
 0 6 6 1
 M=1
 N=33
 I=11
 GO TO 600
 C** EB EMPTIES--ACTUAL
 51 WRITE (6,11)
 WRITE (6,757)
 757 FORMATIIX,'PERFORMANCE TABLE: EASTBOUND EMPTY CARS VERSUS ACTUAL Y
 IARD TIME'//)
 WRITE(6,989)
 WRITE (6,991)
 0671
 00 557 Y=1,33
 J=1
 DO 528 M=2,14,2
 L(Y,J)=APERE(Y,M)
 J= J+1
 J=J+1
 0676
 528 CONTINUE 0677
55i CONTINUE
0678
TCOL (8)=TDCOLE(1.6)
0679
TCOL(9)=TCCOLE(18) 0680
M=1
N=33
I=12
0 6 8 1
0682
0 6 8 3
GO TO }60
0684
```



```
582 WRITE (6,11)
0686
WRITE (6,758)
$53 FORMAT(IX,'PERFORMANCE TABLE: WESTBOUND LOADED CARS VERSUS ACTUAL O688
153 FORMAT(IX,'PERFORMANCE TABLE: WESTBOUND LOADED CARS VERSUS ACTUAL O
153 FORMAT(IX,'PERFORMANCE TABLE: WESTBOUND LOADED CARS VERSUS ACTUAL O688
 WRITE (6,989)
 WRITE (6,990)
 DO 532 Y=1,33
 J=1
DO 539 M=1,13,2
L(Y,J)=APERW (Y,M)
J=J+1
5 3 9 ~ C O N T I N U E ~
532 CONTINUE O698
TCCL(8)=TDCOLW(15)
TCOL(9)=TDCOLW(17)
 M=1
 N=33
 I=1.3
 GO TO 600
C**** WB EMPTIES--ACTUAL 0705
583 WRITE (6,11)
WRITE (6,759) 0707
WRITE (6,759) 0707
757 FORMATIX,'PERFORMANCE TABLE: WESTBOUND EMPTY CARS VERSUS ACTUAL Y O7O8
 IARD TIME'//)
 WRITE (6,989)
WRITE(6,991) 07111
 DO 534 Y=1,33
 J=1
 DO 530 M=2,14,2
 L(Y,J)=APERW(Y,M)
 J=J+1
5 3 0 ~ C O N T I N U E ~ 0 7 1 7 ~
534 CONTINUE 0718
TCOL(8)=TDCOLW(16)
TCOL(9)=TDCOLW(18)
0690
0691
0692
0693
0694
0695
0696
0 6 9 7
 0700
 M=1
0701
 0702
 0703
 0704Ю
0705
0706
0709
0 7 1 0
0 7 1 1
0712
0713
0714
0715
0 7 1 6
0718
0719
0720
```

```
 M=1 0721
 N=33
 I=14
 GO TO 600
 0722
C*) LOCAL LOADS--ACTUAL
584 WRITE (6,11)
 WRITE (6,760)
7 6 0 ~ F C R M A T (I X , ' P E R F O R M A N C E ~ T A B L E : ~ L O C A L ~ L O A D E D ~ C A R S ~ V E R S U S ~ A C T U A L ~ Y A R D ~ O T 2 8 ~
 1 TIME'//)
WRITE(6,989)}073
 WRITE (6,990)
 DO 538 Y=1,33
J=1
J=1
L(Y,J)=APERL}(Y,M
 J=J+1
5 4 2 \text { CONTINUE 0737}
```



```
 TCOL(8)=TDCOLL(15)
 TCOL(9)=TDCOLL(17)
 M=1
 N=33
I=15 0743
GO TO 600 0744
C*** LOCAL EMPTIES--ACTUAL
585 WRITE (6,11)
WRITE (6,761)
761 FORMAT(IX,'PERFORMANCE TABLE: LOCAL EMPTY CARS VERSUS ACTUAL YARD O748
1TIME'//) 0749
WRITE (6,989)
WRITE (6,991)
OO 546 Y=1,33
J=1
J=1
L (Y,J)=APERL(Y,M)
J=J+1
 0723
0724
C*)
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0736
0738
0739
0740N
 M=1
0741
0742
0744
0745
70L NRINET47
0748
0749
0750
0.0.0-0751
0752
J=1,
0753
0754
0755
544 CONTINUE 0757
546 CONTINUE 0758
TCOL \((8)=\) TCCOLL (16) 0759
\(\operatorname{TCOL}(9)=\operatorname{TDCOLL}(18)\) 0760
\[
M=1
\]
\[
0761
\]
\[
N=33
\]
\[
I=16
\]
\[
\text { GO TO } 600
\]
CALL EXITEND07640765
END
INTEGER FUNCTION EMPTY*2(N) 0767
INTEGER* 2 N 0768
EMPTY \(=\mathrm{N}-100\) * \((\mathrm{N} / 100)\) 0769
RETURN 0770
END 0771
INTEGER FUNCTION LOAD*2(N) 0772
INTEGER*2 N 0773
LOAD \(=\) N/ 100 0774
RETURN 0775END0776

APPENDIX III
LISTING OF SUMMARY PROGRAM
```

            INTEGER TOTXD,L(33,11)/363*0/,TROW(33),TCOL(11),LL(33,11), 0001
        2IPC(33,11)/363*0/,\gamma,TOTAL
        C* PRINT OUT PERFORMANCE VERSUS SCHEDULED YARD TIME FOR LOADED CARS OOO3
        WRITE (6,11)
    11 FORMAT('1','SUMMARY: JANUARY 14,15 \& 17 AND FEBRUARY 17, 20, 22 \&
1 23, 1971')
NC AYS=1
WRITE(6,983)
933 FORMAT(IX,'PERFORMANCE TABLE: ALL LOADED CARS VERSUS SCHEDULED YAR
10 TIME'//)
WRITE(6,984)
98+ FORMAT(2X,'SCHEDULED',9X,'CARS ADVANCED DUE TO:',8X,'CARS ON SCHED
IULE DUE TO:',9X,'CARS DELAYED DUE TO:',11X,'ROW')
WRITE(6,990)
990 FQRMATI 2X,'YARD TIME',5X,'EARLY AR OOI5

```


```

    1'TOTAL'/17X,8( 'LDS',1X,'% ',3X),'LDS',7X,'LDS')}001
        I=1
        N=8
        N=31
        I F IN=1
    ```

```

        DO 19 Y=M,N
        DO 12 J=1,11
        L(Y,J)=0
    12 CONTINUE 0027
CONTINUE
DO 318 J=1,11 0029
TCOL(J)=0
0002
0004
0005
0006
0007
0008
MerformaNce Table: ALL LOADED CARS vERSUS SCHEDULED YAR
0009
0010
0011
0016
0018
0019
0020ज
0021
0023
*)
0025
0026
19 CONTINUE 0028
3 1 3 CONTINUE 0031
DO }1\textrm{K}=1,NDAYS 003
Dว }2\textrm{Y}=\textrm{M},
REAL (5,13) (LL(Y,J),J=1,8)}0003
13 FORMAT( 8(I 3,2X))
0035
TROW(Y)=0
0036

```
```

    00 3 J=1,8 0037
    L(Y,J)=L(Y,J) +LL(Y,J)
    0038
    TROW(Y)=TROW(Y)+LL(Y,J).0039
    CONTINUE 
    cONTINUE
    0040
CONTINUE
0041
READ(5, 5)(LL(1, J),J=1,11)
0042
GORMAT(I3,1X,10(I4,1X))}004
FORMAT(13,1X,10(14,1X))
DO 4 J=1,11
TCCL}(J)=TCOL(J)+LL(L,J
CONTINUE
CONTINUE
TOTXD=TCOL(11)
TOTAL=TOTXD+TCOL(9)+TCOL(10)
OO 501 Y=M,N
IF(TROW(Y)\&EQ\&O)GO TO 503
DO 504 J=1,8
TOP=L(Y,J)
BOT=TROW(Y)
PC=100.O* TOP/BOT +0.5
IPC}(Y,J)=P
CONTINUE
GO TO 505
00 506 J=1,8
IPC(Y,J)=0
CONTINUE
WRITE (6,244)(Y,(L(Y,J),IPC(Y,J),J=1,8),TROW(Y))
FORMAT (5X,I2,7X,8(2X,I3,1X,I3, '%'),21X,I4)
CONTINUE
WRITE (6,510) (TCOL(J),J=1,11)
FORMAT(/1X,'COLUMN TOTALS:',11(I4,6X))
TROW(1)=TOTAL
DO 6 J=1,10
L(1,J)=TCOL(J)
CONTINUE
I FIN=2
0
0071
GO TO 521
0072

```
```

522 K=8 0073
GO TO 17 0074
521 K=10
17 IF(TROW(1),EQOO)GO TO 303 0076
OO 304 J=1,K
TOP=L(1,J)
BOT=TROW(1)
PC = 100.0*TOP /BOT +0.5
IPC (1,J)=PC
304 CONTINUE
GO TO 307
303 DO 306 J=1,K
IPC(1,J)=0

```

```

3C7 IF(IFIN。EQO1)GO TO 18
14 WRITE (6,512)(IPC (1,J),J=1,10)
l4 WRITE(6,512)(IPC (1,J),J=1,10)
TROW(1)=TOTXD
IFIN=1
GO TO }52
18 WRITE(6,511)(IPC(1,J),J=1,8)
5 1 1 ~ F O R M A T ( 3 X , ' E X C E P T ~ H O L D ' / 4 X , ' \& ~ U N E X P : ' , 3 X , 8 ( I ~ 3 , ' \% ' , 6 X ) ) ,
GO TO (571, 572,573,574,575,576,577,578,579,580,581,582,583,584,
1585,586),I
C*\&% PRINT OUT PERFORMANCE VERSUS SCHEDULED YARD TIME FOR EMPTY CARS
571 WRITE (6,11)
WRITE (6,985)
9 8 5 ~ F O R M A T ( I X , ~ ' P E R F O R M A N C E ~ T A B L E : ~ A L L ~ E M P T Y ~ C A R S ~ V E R S U S ~ S C H E D U L E D ~ Y A R D ~
1 TIME'//)
WRITE (6,584)
WRITE (6,991)
991 FORMATI 2X,'YARD TIME',5X,'EARLY AR
2R',IX,'YARD MOVE',2X,'LATE DEP',3X,'NORMAL',2X,'YARD MCVE', 2X,',
2R',1X,'YARD MOVE',2X,'LATE DEP',3X,'NORMAL',2X,'YARD MCVE',2X,',
417X,8('EMP',1X,' % ',3X),'EMP',7X,'EMP')
M=8
0074
0076
17 304 J=1,K
0077
0078
0079
0081
0082
0083
0084
0085
0086
0087
0088
TROW(1)=TOTXD
0089
0090
0 0 9 1
0092こコ
0093
0094
0095
0096
0097
OC98
0
0099
0100
0 1 0 1
NRITE(6,984) 0102
0103
0104
0105
0 1 0 6
0107
0108

```
```

        N=31 0109
        I=2
        GO TO 600
        0110
    C**** PRINT OUT PERFORMANCE VERSUS ACTUAL YARD TIME FOR LOADED CARS
    572 WRITE (6,11)
WRITE(6,986)
FORMATIIX,'PERFORMANCE TABLE: ALL LOADED CARS VERSUS ACTUAL YARD T
IIME'//)
WRITE(6,989)
FORMAT(2X,'ACTUAL', 12X,'CARS ADVANCED DUE TO:',8X,'CARS ON SCHED
IULE DUE TO:',6X,'CARS DELAYED DUE TO:'।
WRITE(6,990)
M=1
N=33
I=3
GO TO 600
C*** PRINT OUT PERFORMANCE VERSUS ACTUAL YARD TIME FOR EMPTY CARS
573 WRITE (6,11)
WRITE(6,987)
S87 FORMATIIX,'PERFORMANCE TABLE: ALL EMPTY CARS VERSUS ACTUAL YARD TI
1ME'//)
WRITE(6,989)
WRITE(6,991)
M=1
N=33
I=4
GO TO 600

```

```

574 WRITE (6,11) 0137
WRITE(6,750) 0138
FORMAT(IX,'PERFORMANCE TABLE: EASTBOUND LOADED CARS VERSUS SCHEDUL 0139
lED YARD TIME'//)
0 1 4 0
WRITE (6,584)
0 1 4 1
WRITE (6,990)
0142
N=8
0143
N=31
0144

```
```

        I=5 0145
        GO TO 600
    0146
C*2**EB EMPTIES--SCHEDULED
575 WRITE (6,11)
0 1 4 7
0148
WRITE (6,751)
751 FORMATIIX,'PERFORMANCE TABLE: EASTBOUND EMPTY CARS VERSUS SCHEDULE 0150
0149
10 YARD TIME'//)
0 1 5 1
WRITE (6,984)
WRITE(6,991)
M=8
N=31
I=6
GO TO 600
0156
0 1 5 7
C******** LOADED--SCHEDULED
576 WRITE (6,11)
WRITE (6,752)
FORMAT(1X,'PERFORMANCE TABLE: WESTBOUND LCADED CARS VERSUS SCHEDUL
IED YARD TIME'//।
WRITE (6,984)
WRITE (6,990)
M=8
N=31
I=7
GO TO 600
*, ,
C*F WB EMPTIES--SCHEDULED}016
577 NRITE(6,11) 0170
WRITE (6,753)
0 1 7 1
753 FORMATIIX,'PERFORMANCE TABLE: WESTBOUND EMPTY CARS VERSUS SCHEDULE 0}
ID YARD TIME'//)
WRITE (6,984)
WRITE(6,951)
M=8
N=31
I=8
GO TC 600
0178
0179
C** LOCAL LOADS--SCHEDULED
0180

```
```

57J WRITE(6,11) 0181
WRITE(6,754) 0182
FORMAT(1X,'PERFORMANCE TABLE: LOCAL LOADED CARS VERSUS SCHEDULED Y 0183
IARD TIME'//)
WRITE (6,984)
WRITE(6,990)
V=8
N=31
I=9
GO TO 600
0189
0190
C** LOCAL EMPTIES--SCHEDULED 0191
579 WRITE(6,11) 0192
WRITE (6,755)
FCRMAT(1X, PERFORMANCE TABLE• COCAL EMPTY GARS VERSUS SCHEDULED YA
PERFORMANCE TABLE: LOCAL EMPTY CARS VERSUS SCHEDULED YA
RO TIME (V)
WRITE (6,584)
WRITE(6,991)
M=8
N=31
I=10
GO TO 600
C***** EB LOADS--ACTUAL 0202

```

```

    WRITE (6,756)
    FORMAT(IX,'PERFORMANCE TABLE: EASTBOUND LOADED CARS VERSUS ACTUAL O2O5
    0204
IYARD TIME'//) 0206
WRITE(6,989) 0207
WRITE(6,990) 0208
N=1 0209
N=33 0210
GO TO 600 0212
0211
C* EB EMPTIES--ACTUAL 0213
581 WRITE(6,11)
0214
WRITE (6,757) 0215
757 FORMAT(IX,'PERFORMANCE TABLE: EASTBOUND EMPTY CARS VERSUS ACTUAL Y O2I6

```
```

    LARD TIME'//) 0217
    WRITE (6,989)
    NRITE (6,991) 0219
    M=1 
    N=33
    I=12
    GO TO 600
    C*** WB LOADS--ACTUAL 0224
    582 WRITE(6,11) 0225
WRITE (6,758)}\mathrm{ FORMAT(1X,'PERFORMANCE TABLE: WESTBOUND LOADED CARS VERSUS ACTUAL
0226
758 FORMAT(IX,'PERFORMANCE TABLE: WESTBOUND LOADED CARS VERSUS ACTUAL O227
1 YARD TIME'//)
0228
0229
NRITE(6,990) 0230
N=1 0231
N=33
0232
I=13 0233
0233
GO TO 600
0234
C*** WB EMPTIES--ACTUAL
5\&3 WRITE (6,11)
WRITE (6,656)

```

```

    IARD TIME'//)
    0239
0240
WRITE(6,951) 0241
M=1 0242
N=33 0243
I=14 0244
GO TO 600 0245
C***** LOCAL LOADS--ACTUAL
0246
584 WRITE(6,11) 0247
WRITE(6,760) 0248
700 FORMAT(1X,'PERFORMANCE TABLE: LOCAL LOADED CARS VERSUS ACTUAL YARD O249
1 TIME'//)
0250
0251
WRITE (6,990)
0 2 5 2

```
\(M=1\) 0253
\(\mathrm{N}=33\) 0254
\(\mathrm{I}=15\) 0255
GO TO 600 0256
C) 1 웅 LOCAL EMPTIES--ACTUAL 0257
585 WRITE \((6,11)\) 0258
WRITE \((6,761)\) 0259
761 FORMAT(1X,'PERFORMANCE TABLE: LOCAL EMPTY CARS VERSUS ACTUAL YARD 0260ITIME'//)0261
WRITE \((6,989)\) 0262
WRITE 6,991\()\) 0263
\(N=1\) 0264
\(N=33\) 0265
\(\mathrm{I}=16\) 0266
GO TO 600 0267
586 CALL EXIT0268
END

\section*{83}

\author{
APPENDIX IV \\ SUMMARY TABLES OF CAR MOVEMENT PERFORMANCE VERSUS \\ YARD TIME PARAMETERS
}

SLMMARY: JANUARY 14, 15 \& 17 AND FEBRUARY \(17,20,22\) \& 23,1971
PERFCRMANCE TAELE: ALL LOADED CARS VERSLS SCHEDLLEU YARU TIME
\begin{tabular}{|c|}
\hline SihE CJLED & \multicolumn{2}{|r|}{CARS} & \multicolumn{4}{|l|}{ACVAIVCEC DUE TO:} & \multicolumn{4}{|r|}{CARS CA SCHEDULE} & \multicolumn{3}{|l|}{CUE TU:} & CAR & & AYED & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DUE TO: } \\
& \text { OB BUILDUP }
\end{aligned}
\]} & \multirow[b]{3}{*}{OTHER LDS} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { ROW } \\
\text { TOTAL }
\end{array}
\]} \\
\hline YARJ TIME & EARLY & AKR & YARD & MOVE & LATE & CEP & NCRM & MAL & YAR D M & MOJE & LATE & DEP & LATE & ARR & LATE & HUMP & & & \\
\hline & LUS. & -\% & LDS & \% & LDS & \% & LDS & \% & LDS & \% & LES & \% & LDS & \% & LDS & \(\%\) & LDS & & \\
\hline H & C & \(0 \%\) & 0 & 0\% & 0 & 0\% & 41 & 8\% & 207 & 43\% & 115 & 24\% & 99 & 20\% & 22 & 5\% & & & 484 \\
\hline 3 & C & \(0 \%\) & 0 & \(0 \%\) & 0 & C\% & 64 & 25\% & 25 & 10\% & 74 & 29\% & 56 & 22\% & 36 & 14\% & & & 255 \\
\hline 10 & C & \(0 \%\) & 0 & 0\% & C & C* & 164 & 34\% & 38 & 8\% & 145 & 30\% & 115 & 24\% & 22 & 5\% & & & 484 \\
\hline 11 & 0 & 0\% & 0 & 0\% & 0 & C\% & 222 & 42\% & -1 & 6\% & 150 & 36\% & 67 & 13\% & 17 & 3\% & & & 527 \\
\hline 12 & C & 0\% & 0 & \(0 \%\) & C & 0\% & 231 & 56\% & 7 & 2\% & o3 3 & 20\% & 81 & 20\% & 12 & 3\% & & & 414 \\
\hline 13 & C & 0\% & 0 & 0\% & 0 & 07 & 225 & 63\% & 26 & 7\% & 23 & 6\% & 83 & 23\% & 1 & 0\% & & & 358 \\
\hline 14 & 0 & \(0 \%\) & 0 & \(6 \%\) & 0 & 0\% & 204 & 78\% & 19 & \(7 \%\) & 4 & \(2 \%\) & 16 & 6\% & 17 & 7\% & & & 260 \\
\hline ij & C & 0\% & C & 0\% & 1 & 0\% & 266 & 72\% & 19 & 5\% & 14 & 49 & 60 & 16\% & 8 & 2\% & & & 368 \\
\hline 15 & 0 & 0\% & 0 & 0\% & 0 & C\% & 154 & 60\% & 9 & 3\% & 25 & 10\% & 50 & 17\% & 12 & 4\% & & & 294 \\
\hline 17 & C & 0\% & 0 & 06 & 0 & C\% & 165 & 70\% & 0 & 0\% & 5 & 4\% & 19 & 5\% & 24 & 11\% & & & 217 \\
\hline 18 & C & 0\% & 0 & 0\% & 0 & 0\% & 171 & 96\% & 2 & 2\% & 1 & \(1 \%\) & 0 & 0\% & 1 & 1\% & & & 105 \\
\hline 13 & C & \(0 \%\) & 0 & 0\% & \(c\) & 0\% & 147 & 73\% & 0 & 0\% & 14 & 7\% & 31 & 15\% & 10 & 5\% & & & 202 \\
\hline 23 & 0 & 03 & 0 & 0\% & 1 & 1\% & 165 & 94\% & 0 & 0\% & 5 & 5\% & 0 & 0\% & 0 & 0\% & & & 175 \\
\hline 21 & 0 & \(0 \%\) & 0 & 0\% & 4 & 1\% & 253 & S3\% & 0 & C\% & 2 & 1\% & 14 & 5\% & 0 & 0\% & & & 283 \\
\hline 22 & C & 0\% & 0 & O\% & 0 & 0\% & 247 & 76\% & 0 & \(0 \%\) & C & 0\% & 7 & 3\% & 2 & 1\% & & & 256 \\
\hline 23 & C & - \(0 \%\) & 1 & 0\% & C & C\% & 248 & 99\% & 0 & 0\% & 0 & \(0 \%\) & 0 & 0\% & 2 & 1\% & & & 251 \\
\hline 24 & C & \(0 \%\) & 0 & 0\% & 4 & 2\% & 157 & 38\% & 0 & C\% & 0 & 0\% & \(?\) & 0\% & 0 & 0\% & & & 161 \\
\hline 25 & C & \(0 \%\) & \(u\) & 0\% & 12 & \(5 \%\) & 231 & 95\% & 0 & \(0 \%\) & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & 243 \\
\hline 26 & C & \(0 \%\) & 2 & 1\% & 0 & C\% & 215 & 99\% & 0 & \(0 \%\) & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & \(221 \%\) \\
\hline 37 & 0 & 0\% & 7 & 4\% & 0 & 0\% & 190 & 96\% & 0 & C\% & C & 0\% & 0 & 0\% & 0 & 0\% & & & 197 \\
\hline 23 & C & 0\% & 0 & 0\% & 31 & <7\% & 85 & 73\% & 1 J & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & 116 \\
\hline 23 & 1 & 1\% & 11 & 10\% & 7 & 7\% & \(\varepsilon \epsilon\) & 82\% & - & C\% & 0 & 0\% & 0 & 0\% & 0 & O\% & & & 105 \\
\hline 30 & 11 & 13\% & 0 & 0\% & 6 & 7\% & 7 C & 80\% & 0 & 0\% & C & 0\% & 0 & 0\% & 0 & 0\% & & & 87 \\
\hline 31 & 12 & 12\% & 2 & 2\% & 45 & 45\% & 42 & 42\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & 101 \\
\hline CCLUMA TOTALS: & 24 & & 23 & & 111 & & 4027 & & 383 & & 712 & & 698 & & 186 & & 1410 & 129 & 6164 \\
\hline \multicolumn{20}{|l|}{PEREEATAGE:} \\
\hline ALL CARS: & 0\% & & \(0 \%\) & & 1\% & & 52\% & & 5\% & & 9\% & - & S\% & & 2\% & & \(18 \%\) & 2\% & \\
\hline EXLとアT FCLD & & & & & & & & & & & & & & & & & & & \\
\hline \& UNEXF: & \(0 \%\) & : & 0\% & & \(2 \%\) & & 65\% & & 6\% & & 12\% & & 11\% & & \(3 \%\) & & & & \\
\hline
\end{tabular}

SJMNARY: JANUARY 14,15 \& 17 ANO FEGKUARY 17, 20,22 \& 23,1571
PEAF:RAANGE TABLE: ALL EMPIY CARS VERSUS SChECULED YARC TIME
\begin{tabular}{|c|}
\hline SGMEUULED & \multicolumn{2}{|r|}{\(C A R S\)} & \multicolumn{4}{|l|}{ACVANCED DUE TC:} & \multicolumn{4}{|r|}{CARS CN SCHEDULE} & \multicolumn{3}{|l|}{CUE TO:} & CARS & \multicolumn{2}{|l|}{DELAYED} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
DUE TC: \\
OB BUILDUP
\end{tabular}}} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { OTHER } \\
& \text { EMP }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ROW } \\
& \text { TOTAL }
\end{aligned}
\]} \\
\hline Y ARJ TIME & EARLY & ARR & YARD & MOVE & LATE & DEP & & RMAL & YARE & Múve & LATE & CEP & LATE & ARR & LATE & HUMP & & & & \\
\hline & EMP & \% & EMP & \% & EMP & \% & EMP & * & LMP & \% & EMP & \% & EMP & \% & EMP & \% & EMP & & & \\
\hline 4 & \(C\) & 0\% & 0 & \(0 \%\) & 0 & C\% & 15 & 12\% & 0 & \(0 \%\) & 9 & 7\% & S 8 & 78\% & 3 & 2\% & & & & 125 \\
\hline 1 & c & 0\% & 0 & 0\% & 0 & C\% & 9 & \% & 0 & 0\% & 0 & 0 \% & 54 & 48\% & 50 & 44\% & & & & 113 \\
\hline 13 & C & O* & 0 & 0\% & 0 & C\% & 23 & \(32 \%\) & \(\checkmark\) & \(0 \%\) & 4 & 5\% & 38 & 52\% & 8 & 11\% & & & & 73 \\
\hline 11 & c & 0\% & 0 & 0\% & C & 0\% & 53 & , \(0 \%\) & 1 & 1\% & 13 & \(7 \%\) & 103 & 59\% & 6 & 3\% & & & & 176 \\
\hline 12 & C & \(0 \%\) & 0 & \(0 \%\) & 0 & C\% & 13 & 12\% & 0 & \(0 \%\) & 14 & 13\% & 73 & 67\% & 9 & \(8 \%\) & & & & 109 \\
\hline 13 & C & 0\% & 0 & 0 \% & 0 & C* & 46 & 36\% & 0 & \(0 \%\) & 2 & 2\% & 33 & 20\% & 46 & \(36 \%\) & & & & 127 \\
\hline 14 & c & 0\% & 0 & \(0 \%\) & 0 & C\% & 26 & 32\% & 0 & 0\% & 3 & 4\% & 30 & 37\% & 22 & 27\% & & & & 81 \\
\hline 15 & 0 & \(0 \%\) & 0 & 0\% & 0 & C\% & 112 & 75\% & 0 & C\% & 4 & 3\% & 23 & \(15 \%\) & 10 & 7\% & & & & 149 \\
\hline 1. & C & 0\% & 0 & 0\% & 0 & C\% & 30 & \(35 \%\) & 1 & 1\% & 2 & 2\% & 24 & \(28 \%\) & 29 & 34\% & & & & 86 \\
\hline 11 & C & \(0 \%\) & C & 0\% & 0 & O\% & 118 & 76\% & 0 & 0\% & 1 & 1\% & 30 & 19\% & 6 & \(4 \%\) & & & & 155 \\
\hline 13 & C & \(0 \%\) & 0 & 0 \% & 0 & C\% & 1:3 & 75\% & 0 & 0\% & 0 & 0\% & 26 & \(18 \%\) & 5 & 3\% & & & & 146 \\
\hline 13 & C & \(0 \%\) & 0 & 0\% & 0 & 0\% & 27 & 56\% & 0 & 0 \% & 0 & 0\% & 21 & 44\% & 0 & 0\% & & & & 48 \\
\hline 2 J & c & \(0 \%\) & 0 & 0\% & 4 & 3\% & 1C5 & \(66 \%\) & 0 & 0\% & 3 & \(2 \%\) & 13 & 8\% & 33 & 21\% & & & & 158 \\
\hline 21 & c & 0\% & 0 & 0\% & 0 & 0\% & \(\llcorner 2\) & 93\% & 0 & 0\% & 0 & C\% & 5 & 7\% & 0 & 0\% & & & & 67 \\
\hline \(2=\) & c & . \(0 \%\) & 0 & 0\% & 1 & 1\% & 55 & 73\% & 0 & 0\% & 0 & 0\% & 10 & 13\% & 9 & 12\% & & & & 75 \\
\hline 23 & 0 & 0\% & 0 & 0\% & 0 & 0\% & 74 & 100\% & 0 & 0\% & c & 0\% & 0 & 0\% & 0 & 0\% & & & & 74 \\
\hline 24 & C & 0\% & 0 & 0\% & 1 & 1\% & 152 & 95\% & 0 & 0\% & 0 & C\% & C & \(0 \%\) & 7 & 4\% & & & & 160 \\
\hline く 3 & C & 0\% & 0 & 0\% & 9 & 0\% & 56 & 100\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & & 96 \\
\hline 23 & C & 0\% & 0 & 02 & 0 & C\% & 106 & 93\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 1 & 1\% & & & & 10700 \\
\hline \(\angle 1\) & \(\stackrel{\square}{ }\) & 0 \% & J & 3\% & 0 & 0\% & 103 & 97\% & 0 & 0 \% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & & 1069 \\
\hline 2d & C & 0\% & 0 & 0\% & 6 & 6\%. & 100 & 54\% & u & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & & 106 \\
\hline \(2 ;\) & 0 & \(0 \%\) & 0 & 0\% & 34 & 28\% & 87 & 72\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & & 121 \\
\hline 30 & C & 0\% & 0 & 0\% & 0 & 0\% & 50 & 100\% & 0 & 02 & 0 & 0\% & 0 & 0\% & C & 0\% & & & & 50 \\
\hline 31 & 1 & 2\% & 0 & 0\% & 7 & 11\% & 55 & 87\% & 0 & C\% & \(i\) & 0\% & 0 & 0\% & 0 & 0\% & & & & 63 \\
\hline COLUA.V TOTALS: & 1 & & 3 & & 53 & & 1632 & & 2 & & 55 & & 581 & & 244 & & 271) & & 173 & 2571 \\
\hline \multicolumn{21}{|l|}{PERCEMTAGE:} \\
\hline ALL SARS: & 0\% & & 0\% & & 1\% & & 30\% & & 0\% & & 1\% & & 11\% & & 4\% & & 50\% & & 3\% & \\
\hline EX: \(2 P T\) HCLD & \\
\hline \(\varepsilon\) UNEXP. & 0 & & 0\% & & 2\% & & \(63 \%\) & & O\% & & 2\% & & 23\% & & 9\% & & & & & \\
\hline
\end{tabular}

SJiNARY：JAVLARY 14，15 \＆ 17 ANO FEBRUARY 17，20， 22 \＆23，1571 PERFJ\｛YANCE TABLE：ALL LUAUEU CARS VERSLS ACTLAL YARC TIME
\begin{tabular}{|c|}
\hline Aこ「J」L & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{CARS AIVANCED DUE TU：}} & & \multicolumn{2}{|r|}{CARS} & \multicolumn{4}{|r|}{hecule cue to：} & \multicolumn{6}{|c|}{CARS DELAYEU CUE TU：} & \multirow[b]{2}{*}{TOTAL} \\
\hline YARU TIME & & & & & & DEP & NCRM & MAL & YARD M & MUJE & LATE & DEP & LATE & ARR & LATE & HUMP & OB BUILDUP & OTHER & \\
\hline & LOS． & 右 & LDS & \％ & LDS & \％ & LCS & \％ & LDS & LDS & \\
\hline \(\pm\) & C & 0\％ & 0 & \(0 \%\) & 0 & C\％ & C & \(0 \%\) & 55 & 21\％ & 0 & 0\％ & 206 & 75\％ & C & C\％ & & & 261 \\
\hline 2 & C & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & C & 0\％ & 16 & 15\％ & 5 & 6\％ & 64 & 75\％ & C & 0\％ & & & 85 \\
\hline 3 & 6 & 0\％ & 0 & 0\％ & 0 & C\％ & 0 & U\％ & 115 & 57\％ & 9 & 4＊ & 77 & 38\％ & C & 0\％ & & & 201 \\
\hline ＇ & C & \(0 \%\) & 0 & \(0 \%\) & C & C\％ & c & 0\％ & 01 & 27\％ & 59 & 26\％ & 109 & 48\％ & 0 & 0\％ & & & 229 \\
\hline \(j\) & C & 0\％ & 0 & 0\％ & 0 & C\％ & C & 0\％ & 109 & 21\％ & 158 & 45\％ & 84 & 24\％ & C & \(0 \%\) & & & 351 \\
\hline j & C & \(0 \%\) & 0 & 0： & 0 & 0\％ & 0 & 0\％ & 25 & \(7 \%\) & 222 & \(64 \%\) & 98 & 28\％ & 0 & C\％ & & & 345 \\
\hline 7 & 0 & 0\％ & 0 & 0\％ & 0 & C\％ & C & 0 \％ & 2 & 1\％ & 255 & \(81 \%\) & 60 & 19\％ & 0 & 0\％ & & & 321 \\
\hline 3 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 278 & 89\％ & 0 & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & 35 & 11\％ & & & 313 \\
\hline ； & C & 06 & 0 & 0\％ & C & C\％ & 166 & 82\％ & 0 & C\％ & C & \(0 \%\) & 0 & 0\％ & 36 & 18\％ & & & 202 \\
\hline 13 & C & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 251 & 8ら\％ & 0 & 0\％ & 0 & C\％ & 0 & 0\％ & 31 & 11\％ & & & 282 \\
\hline 11 & c & 0\％ & C & 0\％ & 0 & 0\％ & 285 & 93\％ & 0 & 0\％ & C & 0\％ & 0 & \(0 \%\) & 22 & 7\％ & & & 307 \\
\hline 12 & C & 0\％ & C & \(0 \%\) & \(u\) & C\％ & 230 & 92\％ & 0 & ¢．\％ & C & 0\％ & 0 & 0\％ & 20 & 8\％ & & & 250 \\
\hline 13 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 156 & 98\％ & 0 & 0\％ & C & 0\％ & 0 & 0\％ & 4 & 3\％ & & & 160 \\
\hline 1＇ & C & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 234 & \(92 \%\) & 0 & 0 P & 0 & 0 \％ & 0 & 0\％ & 21 & 8\％ & & & 255 \\
\hline 15 & 0 & \(0 \%\) & 0 & 0\％ & 0 & C\％ & 184 & \(96 \%\) & 0 & 0\％ & C & 0\％ & 0 & 0\％ & 7 & 4\％ & & & 191 \\
\hline 15 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 251 & 98\％ & 0 & 0\％ & 0 & 02 & 0 & 0\％ & 5 & 2\％ & & & 256 \\
\hline 17 & C & \(0 \%\) & 0 & \(0 \%\) & 0 & C\％ & 255 & 95\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 3 & 1\％ & & & 258 \\
\hline 13 & 0 & \(0 \%\) & 0 & \(0 \%\) & 0 & 0\％ & 151 & 9u\％ & 0 & 0\％ & C & 0\％ & 0 & 0\％ & 4 & 2\％ & & & 195 \\
\hline 13 & c & 0\％ & 0 & 0\％ & 0 & 0\％ & 227 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 227 \\
\hline 20 & C & \(0 \%\) & \(n\) & C\％ & C & C\％ & 239 & 100\％ & c & \(\checkmark \%\) & 0 & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & & & 239 \\
\hline 21 & c & 0\％ & 0 & 0\％ & 0 & 0\％ & 2 18 & 100\％ & 3 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 208 \\
\hline 22 & 6 & 0\％ & 0 & 0\％ & 0 & 0\％ & 1 CS & 100\％ & \(u\) & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 109 \\
\hline 23 & 0 & \(0 \%\) & c & 0\％ & 1 & 1\％ & 150 & 94\％ & 0 & C\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & & & 151 \\
\hline 24 & C & 08 & 0 & C\％ & 2 & 1\％ & 18 C & 99\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 182 \\
\hline 2 j & C & \(0 \%\) & 0 & 0\％ & 0 & C\％ & 65 & 100\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 65 \\
\hline 25 & C & 3.8 & 1 & \(1 \%\) & 1 & 1\％ & 154 & 99\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & C & 0\％ & & & 156 \\
\hline 27 & C & 0\％ & 4 & \(7 \%\) & 7 & \(11 \%\) & 50 & 82\％ & 0 & 0\％ & 0 & ． \(0 \%\) & 0 & 0\％ & 0 & 0\％ & & & 61 \\
\hline 23 & 6 & 08 & 0 & 0\％ & 29 & 59\％ & 2 C & 41\％ & 0 & C\％ & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 49 \\
\hline 23 & c & 0\％ & 11 & 15\％ & 12 & 17\％ & 45 & 68\％ & 0 & 0\％ & c & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & & & 72 \\
\hline 36 & C & \(0 \%\) & 7 & \(12 \%\) & 13 & 22\％ & 40 & 67\％ & 0 & O\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & & & 60 \\
\hline 31 & 0 & O\％ & 0 & 0\％ & 46 & 61\％ & 29 & 39\％ & C & C\％ & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 75 \\
\hline 32 & \(\varepsilon\) & 24\％ & 0 & C\％ & 0 & 0\％ & 25 & 76\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 33 \\
\hline 33 & 16 & S4\％ & 0 & 0\％ & 0 & C\％ & 1 & 6\％ & 6 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & \(0 \%\) & & & 17 \\
\hline CJLLM，TJTALS： & 24 & & 23 & & 111 & & 4027 & & 383 & & 712 & & 698 & & 186 & & 1416 & 129 & 6164 \\
\hline \multicolumn{20}{|l|}{PENCENTAGE：} \\
\hline \begin{tabular}{l}
tLL CARS： \\
EXCEPT トELD
\end{tabular} & 0\％ & & 2\％ & & \(1 \%\) & & 52\％ & & \(5 \%\) & & 9\％ & & 9\％ & & 2\％ & & 18\％ & 2\％ & \\
\hline \＆LAEXP： & C & & 0\％ & & 2\％ & & 65\％ & & 6\％ & & 12\％ & & 11\％ & & 3\％ & & & & \\
\hline
\end{tabular}

SUAMIRY：JANUARY 14，15 \＆ 17 AND FEBRUARY 17， 20,22 \＆23， 1571
PEßFU \(3 M A N C E\) TABLE：ALL EMPTY CARS VERSUS ACTUAL YARO TIME
\begin{tabular}{|c|}
\hline \(A C T J A L\) & \multicolumn{6}{|c|}{CARS ACVANCED DUE TO：} & \multicolumn{6}{|r|}{CAKS GN SCHECULE CUE TO：} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{CARS DELAYED DUE TC： LATE ARR LATE HUMP OB}} & \multirow[b]{3}{*}{BUILDUP OTHER EMP} & \multirow[b]{2}{*}{TOTAL} \\
\hline YARJ TIME & EARLY & Y \(A R R\) & YARD & MOVE & LATE & CEP & & CRMAL & YARD & move & LATE & DEP & & & & & & & \\
\hline & EMP & \％ & EMP & \％ & EMP & 2 & EMP & \％ & EMP & \％ & ENP & \％ & ENP & \％ & ENP & \％ & EMP & & \\
\hline 1 & C & 0\％ & 0 & \(0 \%\) & 0 & C\％ & 0 & 0\％ & 1 & 1\％ & 0 & 0\％ & 171 & 99\％ & 0 & 0\％ & & & 172 \\
\hline 2 & C & \(0 \%\) & 0 & 0\％ & c & C\％ & C & \(0 \%\) & 0 & 0\％ & C & 0\％ & 521 & 100\％ & 0 & 0\％ & & & 52 \\
\hline 3 & C & \(0 \%\) & 0 & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & C & 0\％ & 531 & 100\％ & C & 0\％ & & & 53 \\
\hline 4 & C & 0\％ & 0 & 0\％ & C & 0\％ & 2 & 0\％ & 0 & \(0 \%\) & 10 & 14\％ & 62 & 86\％ & 0 & 0\％ & & & 72 \\
\hline 5 & C & \(0 \%\) & 0 & 0\％ & 0 & C\％ & 0 & 0\％ & 1 & 1\％ & 10 & 10\％ & 92 & 89\％ & 0 & 0\％ & & & 103 \\
\hline \(\epsilon\) & C & \(0 \%\) & 0 & ก\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 4 & 4\％ & 85 & 56\％ & 0 & 0\％ & & & 89 \\
\hline 7 & 0 & 0\％ & 0 & 0\％ & 0 & C\％ & C & 0\％ & 0 & C\％ & 31 & 32\％ & 66 & 68\％ & 0 & 0\％ & & & 97 \\
\hline 3 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 19 & 53\％ & 0 & 0\％ & C & 0 。 & 0 & 0\％ & 17 & 47\％ & & & 36 \\
\hline 5 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 28 & 32\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 59 & 68\％ & & & 87 \\
\hline 10 & C & \(0 \%\) & 0 & 0\％ & 0 & C\％ & 7 C & 84\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 13 & 16\％ & & & 83 \\
\hline 11 & C & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 117 & 85\％ & 0 & 0\％ & C & 09 & 0 & 0\％ & 21 & 15\％ & & & 138 \\
\hline 12 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 41 & 60\％ & 0 & J\％ & 0 & 0\％ & 0 & 0\％ & 27 & 40\％ & & & 68 \\
\hline 13 & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 28 & 44\％ & 0 & C\％ & C & \(0 \%\) & 0 & 0\％ & 36 & 56\％ & & & 64 \\
\hline 14 & c & 0\％ & 0 & 0\％ & 0 & 0\％ & 55 & 86\％ & 0 & 0 \％ & 0 & 0\％ & 0 & 0\％ & 9 & 14\％ & & & 64 \\
\hline 13 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 118 & 94\％ & 0 & C\％ & 0 & U\％ & 0 & 0\％ & 8 & 6\％ & & & 126 \\
\hline 10 & C & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 53 & 5．9\％ & 0 & 0\％ & C & 0\％ & 0 & 0\％ & 37. & 41\％ & & & 90 \\
\hline 17 & C & \(0 \%\) & 2 & \(0 \%\) & 0 & 0\％ & 137 & 94\％ & 0 & 0\％ & C & 0\％ & 0 & 0\％ & 8 & 6\％ & & & 145 \\
\hline 13 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 74 & 89\％ & 0 & C\％ & C & \(0 \%\) & 0 & 0\％ & 9 & 11\％ & & & 83 \\
\hline 17 & C & 0 \％ & 0 & C\％ & 0 & 0\％ & 76 & 1レ0\％ & 0 & ก\％ & C & \(0 \%\) & 0 & 0\％ & C & 0\％ & & & 76 \\
\hline 20 & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 64 & 100\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 6400 \\
\hline 21 & c & 0\％ & C & 0\％ & 0 & O\％ & 64 & －00\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 69 \\
\hline 22 & C & \(0 \%\) & 0 & 0\％ & 1 & 2\％ & 82 & 99\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 83 \\
\hline 23 & 6 & 0\％ & U & \(0 \%\) & C & C\％ & \(6^{-}\) & 1CJ\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 67 \\
\hline 24 & 0 & 0\％ & 0 & 0\％ & 7 & 5\％ & 134 & 95\％ & 0 & C\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & & & 141 \\
\hline 25 & C & \(0 \%\) & 0 & 0\％ & 38 & 35\％ & 70 & 65\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 108 \\
\hline 23 & C & 0\％ & 0 & 0\％ & 4 & 4\％ & 95 & 56\％ & 0 & \(3 \%\) & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 103 \\
\hline 27 & C & 0\％ & 3 & 6\％ & 1 & \(2 \%\) & 44 & 9？\％ & 0 & 0\％ & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 48 \\
\hline 28 & C & 0\％ & C & 0\％ & 1 & 2\％ & 4 C & 58\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 41 \\
\hline 2. & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 53 & 100\％ & 0 & C\％ & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 53 \\
\hline 30 & C & \(6 \%\) & 0 & 0\％ & \(\bigcirc\) & 0\％ & 35 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & C & 0\％ & & & 39 \\
\hline 31 & C & \(0 \%\) & 0 & 0\％ & 1 & \(3 \%\) & 38 & 55\％ & 0 & 0\％ & 1 & 3\％ & 0 & 0\％ & 0 & 0\％ & & & 40 \\
\hline 32 & 0 & O\％ & 0 & \(0 \%\) & 0 & C\％ & 14 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 14 \\
\hline 33 & 1 & \(25 \%\) & C & 0\％ & 0 & 0\％ & 3 & 75\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 4 \\
\hline GJLLAA TUTALS： & 1 & & 3 & & 53 & & 1632 & & 2 & & 55 & & 581 & & 244 & & 2711 & 173 & 2571 \\
\hline PERCEATAGE： & & & & & & & & & & & & & & & & & & & \\
\hline ALL こARS：三XL EPT FCLD & 0\％ & & 0\％ & & 1\％ & & \(30 \%\) & & C\％ & & －\％ & & 11\％ & & 4\％ & & 50\％ & 3\％ & \\
\hline \＆UNEXF： & \(0 \%\) & & 0\％ & & 2\％ & & 63\％ & & 0\％ & & 2\％ & & 23\％ & & 9\％ & & & & \\
\hline
\end{tabular}

JUANIKY: JAINURY 14, 1j \& 17 AND FESRUARY 17, 20, \(22 \& 23,1971\)
PENFJRYANCE TAELE: EASTBJUNC LUADEU CARS VERSUS SCHELULEU YAKU TIME
\begin{tabular}{|c|}
\hline 3こHEiJLEC & \multicolumn{2}{|r|}{CARS} & \multicolumn{2}{|l|}{ACVANCEC DUE} & TC: & & \multicolumn{4}{|r|}{CARS CN SCHEDLLE} & \multicolumn{2}{|l|}{DUE TU:} & \multicolumn{2}{|r|}{CARS} & \multicolumn{2}{|l|}{DELAYEC} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { DUE TO: } \\
& \text { OB BUILDUP } \\
& \text { LDS }
\end{aligned}
\]} & \multirow[b]{3}{*}{\begin{tabular}{l}
OTHER \\
LDS
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { ROW } \\
\text { TOTAL }
\end{array}
\]} \\
\hline Y\&:) TIME & EARLY & \(A R R\) & YARU & MUVE & LATE & LEP & NCK & YAL & Y ARU Y & MCIVE & LATE & UEP & LATE & ARR & LATE & HUMP & & & \\
\hline & L[S & \% & LDS & \% & LDS & \% & LCS & \% & I-DS & \% & 1 CS & \% & LDS & \% & LDS & \% & & & \\
\hline 3 & C & \(0 \%\) & 0 & \(0 \%\) & 0 & 0\% & 35 & Y\% & 207 & 48\% & 107 & 25\% & 72 & 17\% & 9 & 2\% & & & 434 \\
\hline 3 & C & 0\% & C & \(0 \%\) & 0 & C\% & 5 S & 29\% & 25 & 12\% & 74 & 36\% & 29 & 14\% & 16 & 8\% & & & 203 \\
\hline iJ & C & 0\% & 0 & 0\% & C & C\% & \(13 t\) & 36\% & 38 & 10\% & 143 & 38\% & 59 & 16\% & 3 & 1\% & & & 379 \\
\hline 11 & C & 0\% & 0 & O* & 0 & 0\% & 158 & +5\% & 31 & \(7 \%\) & 175 & 40\% & 29 & 7\% & 5 & 2\% & & & 442 \\
\hline 12 & C & 0\% & 0 & 0\% & 0 & C* & 155 & 58\% & 7 & 2\% & 76 & 22\% & 52 & 15\% & 7 & 2\% & & & 341 \\
\hline 13 & C & \(0 \%\) & 0 & 0\% & 0 & 0\% & 153 & 57\% & 20 & 10\% & 15 & 7\% & 70 & 26\% & 0 & \(0 \%\) & & & 268 \\
\hline 14 & C & 0\% & 0 & 0\% & C & C\% & 151 & 83\% & 19 & 8 \% & 2 & 1\% & 9 & 4\% & 8 & 3\% & & & 229 \\
\hline 13 & C & O* & C & 0\% & 1 & C\% & 25 C & 80\% & 19 & 6\% & 14 & 4\% & 28 & 9\% & C & 0\% & & & 312 \\
\hline 15 & 0 & 0\% & 0 & 0\% & 0 & C\% & 150 & 72\% & 9 & 4\% & 20 & 10\% & 27 & 13\% & 2 & 1\% & & & 208 \\
\hline 17 & C & 0\% & 0 & 0\% & \(\bigcirc\) & C\% & ¢9 & 72\% & 0 & 0\% & 9 & 6\% & 13 & 9\% & 18 & 13\% & & & 139 \\
\hline 13 & C & \(0 \%\) & 0 & 0\% & 0 & C\% & 58 & 97\% & 2 & 3\% & C & 0\% & 0 & 0\% & 0 & , 0\% & & & 60 \\
\hline 1 1 & 0 & 0\% & 0 & 0\% & 0 & C* & 112 & 69\% & 0 & 0 * & 14 & 5\% & 26 & 16\% & 1 C & 6\% & & & 162 \\
\hline 20 & 0 & 0\% & 0 & 0\% & 0 & C\% & 116 & 93\% & 0 & 0\% & 9 & 7\% & 0 & O\% & 0 & 0\% & & & 125 \\
\hline 21 & 0 & 0\% & 0 & 0\% & 4 & 2\% & \(1 \times 7\) & S7\% & 0 & C \({ }^{\text {P }}\) & 1 & 1\% & 0 & 0\% & 0 & 0\% & & & 192 \\
\hline 2; & C & 0\% & 0 & 0\% & 0 & 0\% & 189 & 99\% & 0 & \(0 \%\) & 0 & 0\% & 0 & 0\% & 2 & 1\% & & & 191 \\
\hline 21 & C & O\% & 1 & 1\% & C & 0\% & 183 & 99\% & 0 & C\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & 184 \\
\hline 24 & C & \(0 \%\) & 0 & 0\% & 4 & 4\% & 57 & S6\% & 0 & 0\% & C & C\% & 0 & 0\% & 0 & 0\% & & & 101 \\
\hline - 2 j & 6 & 0\% & 0 & 0\% & 8 & 46 & 170 & 96 & 0 & C6 & 0 & 0\% & 0 & 0\% & 0 & \(0 \%\) & & & 178 \\
\hline 20 & 6 & 0\% & 0 & 0\% & 0 & 0\% & 144 & 102\% & 0 & 0\% & C & C\% & 0 & 0\% & 0 & 0\% & & & 144 \\
\hline 27 & C & 0\% & ; & 5\% & 0 & 0\% & \(\pm 18\) & 95\% & 0 & C: & 0 & 0\% & 0 & 0\% & C & 0\% & & & 12400 \\
\hline 23 & C & 0\% & 0 & 0\% & 30 & 46\% & 35 & 54\% & \(\checkmark\) & C\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & 65 \\
\hline 27 & C & \(0 \%\) & 11 & 46\% & 3 & 13\%. & 10 & 42\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & 24 \\
\hline 30 & C & 0\% & 0 & 0\% & 6 & 19\% & 26 & 81\% & 0 & 0\% & 0 & \(0 \%\) & 0 & 0\% & 0 & \(0 \%\) & & & 32 \\
\hline 31 & C & O\% & 2 & \(3 \%\) & 40 & 66\% & 19 & 31\% & 0 & 0\% & \(\bigcirc\) & 0\% & 0 & 0\% & 0 & 0\% & & & 61 \\
\hline CJLLMA TOTALS: & C & & 20 & & ¢6 & & 2938 & & 383 & & 663 & & 414 & & 84 & & 464 & 59 & 4598 \\
\hline \multicolumn{20}{|l|}{PERCENTAEE:} \\
\hline ALL CARS: & \(0 \%\) & & 0\% & & 2\% & & 57\% & & 7\% & & 13\% & . & 8\% & & 2\% & & 9\% & 1\% & \\
\hline EXCEPT HCLD & & & & & & & & & & & & & & & & & & & \\
\hline \& LNEXF. & 0\% & & 0\% & & 2\% & & 64\% & & 8\% & & 14\% & & 9\% & & 2\% & & & & \\
\hline
\end{tabular}

SUMNTRY: JANUARY 14,15 \& 17 AND FE甘RUARY \(17,20,22\) \& 23,1571 PĖRGRMANCE TARLE: EASTBJUNU ENPTY CARS VERSUS SCHEUULED YARL TIME
\begin{tabular}{|c|}
\hline Sこhí UJLED & \multicolumn{6}{|c|}{CARS ALVANCED DUE TO:} & \multicolumn{4}{|r|}{CARS CN SCHEDLLE} & \multicolumn{3}{|l|}{CUE TO:} & CARS & \multicolumn{2}{|l|}{DELAYED} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
nUE TO: \\
OB BUILDUP EMP
\end{tabular}}} & \multirow[b]{3}{*}{OTHER EMP} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ROW } \\
& \text { TOTAL }
\end{aligned}
\]} \\
\hline YARJ TIME & EARLY & AKR & YARD & MOVE & LATE & E DEP & & KMAL & YARD & MÜVE & LATE & CEP & LATE & \(A R R\) & LATE & HUMP & & & & \\
\hline & ENP & \% & EMP & \% & & & & \\
\hline 3 & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & C* & 0 & 0\% & 3 & 50\% & 3 & 50\% & & & & 6 \\
\hline ; & C & 0* & 0 & 0\% & 0 & C\% & 4 & 12\% & 0 & C\% & C & 0\% & 13 & 38\% & 17 & 50\% & & & & 34 \\
\hline 10 & C & 0 \% & 0 & 0\% & 0 & 0\% & 9 & 50\% & 0 & 0\% & 4 & 25\% & 3 & 19\% & 0 & 0\% & & & & 16 \\
\hline 11 & C & \(0 \%\) & 0 & 0\% & 0 & C\% & 5 & 50\% & 1 & 11\% & 1 & 11\% & 2 & 22\% & 0 & 0\% & & & & 9 \\
\hline 12 & C & \(0 \%\) & 0 & 0\% & 0 & 0\% & 3 & 17\% & 0 & 0\% & 10 & 56\% & 5 & 28\% & 0 & 0\% & & & & 18 \\
\hline 13 & c & 0\% & 0 & 0\% & 0 & C\% & 7 & 37\% & 0 & 0\% & 2 & 11\% & 9 & 47\% & 1 & 5\% & & & & 19 \\
\hline 14 & C & 0\% & 0 & 0\% & 0 & 0\% & 15 & 68\% & 0 & 0\% & 3 & 11\% & 0 & 0\% & 6 & 21\% & & & & 28 \\
\hline 15 & 0 & 0\% & 0 & 0\% & 0 & C\% & 28 & 76\% & 0 & 0\% & 4 & 11\% & 5 & 14\% & C & 0\% & & & & 37 \\
\hline 16 & 0 & 0\% & 0 & 0\% & 0 & 0\% & 10 & \(71 \%\) & 1 & 7\% & 0 & 0\% & 0 & 0\% & 3 & 21\% & & & & 14 \\
\hline 17 & 0 & 0\% & 0 & C* & 0 & C\% & 25 & 89\% & 0 & 0\% & 1 & 4\% & 2 & 7\% & 0 & 0\% & & & & 28 \\
\hline 13 & C & 0\% & 0 & 0\% & 0 & C\% & 5 & 100\% & 0 & 0\% & C & 0\% & 0 & 0\% & 0 & 0\% & & & & 5 \\
\hline 18 & c & 0\% & 0 & 0\% & 0 & C\% & 4 & 100\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & & 4 \\
\hline 20 & 0 & 0\% & 0 & 0\% & 0 & C\% & 5 & 56\% & 0 & 0\% & 3 & 33\% & 0 & 0\% & 1 & 11\% & & & & 9 \\
\hline 21 & C & \(0 \%\) & 0 & 0\% & 0 & 0\% & 16 & 100\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & & 16 \\
\hline 22 & C & 0\% & 0 & 0\% & 0 & C\% & 7 & 100\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & & 7 \\
\hline 23 & C & 0\% & 0 & 0\% & 0 & 0\% & 22 & 100\% & 0 & 0\% & 0 & 0\% & 0 & 07 & 0 & \(0 \%\) & & & & 22 \\
\hline 24 & C & 0\% & C & 0\% & 1 & \(33 \%\) & 2 & 07\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & & 3 \\
\hline 25 & C & 0\% & 0 & 0\% & 0 & C\% & 8 & 100\% & 0 & 0\% & C & 0\% & 0 & 0\% & 0 & 0\% & & & & 8 \\
\hline 23 & 0 & \(0 \%\) & 0 & 0\% & 0 & 0\% & 6 & 100\% & 0 & C\% & C & 0\% & 0 & 0\% & 0 & O\% & & & & 6 \\
\hline 27 & c & \(0 \%\) & 3 & 14\% & 0 & C\% & 18. & 86\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & & 2100 \\
\hline 23 & C & 0\% & 0 & 0\% & 0 & 0\% & 12 & 100\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & & 120 \\
\hline 23 & C & 0\% & 0 & 0\% & 0 & C\% & 27 & 100\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & & 27 \\
\hline 30 & C & \(0 \%\) & 0 & 0\% & 0 & 0\% & 2 & 100\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & & 2 \\
\hline 31 & 0 & 0\% & 0 & 0\% & & 10C\% & 0 & 0\% & 0 & \(0 \%\) & 0 & C\% & 0 & 0\% & 0 & 0\% & & & & 1 \\
\hline CJLLAA TOTAL3: & 0 & & 3 & & 2 & & 244 & & 2 & & 28 & & 42 & & 31 & & 136 & & 10 & 352 \\
\hline \(P \equiv R C \equiv \cap T A G E:\) & \\
\hline ALL CARS: & 09 & & 1\% & & 0\% & & 49\% & & 0\% & & 6\% & & 8\% & & 6\% & & 27\% & & 2\% & \\
\hline EXCERT HCLD & \\
\hline \(\varepsilon\) UNEXP: & \(0 \%\) & & 1\% & & 1\% & & 69\% & & 1\% & & 8\% & & 12\% & & 9\% & & & & & \\
\hline
\end{tabular}

SUNAl?Y: JANLARY 14, 15 \& 17 AND FEBRLARY 17, 20, 22 \& 23, 1571
PĖFJRMANCE TABLE: GESTZJUIVD LOADED CAKS VERSLS SCHEDLLED YARD TINE
\begin{tabular}{|c|}
\hline SUhEOULED & \multicolumn{2}{|r|}{CARS} & \multicolumn{4}{|l|}{AUVANCED DUE TC:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CARS NORMAL}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{- A SCHEDULE YAKD MCVE}} & \multicolumn{2}{|l|}{LUE TO:} & \multirow[b]{3}{*}{LATE LDS} & CARS & \multicolumn{2}{|l|}{DELAYED} & \multirow[t]{3}{*}{DUE TO: OB BUILDUP LDS} & \multirow[b]{3}{*}{CTHER LDS} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { RUW } \\
& \text { TOTAL }
\end{aligned}
\]} \\
\hline - varu time & EARLY & Y \(A R R\) & YARD & MUVE & LATE & CEP & & & & & LATE & DEP & & ARR & LATE & HUMP & & & \\
\hline & LOS & \(\%\) & LDS & \% & LDS & \% & LCS & \(\%\) & LLS & \% & LCS & \(\%\) & & \% & LDS & \(\%\) & & & \\
\hline 9 & C & 0\% & C & 0\% & C & C\% & C & 0\% & 0 & 0\% & C & 0\% & 15 & 100\% & 0 & 0\% & & & 15 \\
\hline 3 & C & \(0 \%\) & 0 & 0\% & 0 & 0\% & c & 1\% & 0 & \(0 \%\) & 0 & 0\% & 11 & \(\bigcirc 1 \%\) & 7 & 35\% & & & 18 \\
\hline 10 & C & 0\% & C & 0\% & C & C\% & 14 & \(34 \%\) & 0 & \(0 *\) & 0 & 0\% & 19 & 46\% & 8 & 20\% & & & 41 \\
\hline 11 & C & \(0 \%\) & 0 & 0\% & 0 & C\% & 11 & \(22 \%\) & 0 & 0\% & 11 & 22\% & 29 & 57\% & 0 & 0\% & & & 51 \\
\hline i 2 & C & \(0 \%\) & 0 & 0\% & 0 & C\% & \(c\) & 60\% & 0 & 0\% & 1 & 7\% & 4 & 27\% & 1 & 7\% & & & 15 \\
\hline 13 & C & 0\% & 0 & 0* & 0 & C\% & 34 & 85\% & 0 & こ\% & 0 & C\% & 6 & 15\% & 0 & 0\% & & & 40 \\
\hline 14 & C & 0 \% & 0 & 0\% & 0 & C\% & 0 & 0\% & 0 & \(0 \%\) & 2 & 25\% & 6 & 75\% & 0 & 0\% & & & 8 \\
\hline 15 & C & \(0 \%\) & 0 & 0\% & \(\checkmark\) & C\% & 6 & L2\% & 0 & 0\% & 0 & 0\% & 17 & '3\% & 4 & 15\% & & & 27 \\
\hline 13 & C & 0\% & 0 & 0\% & 0 & C\% & 9 & 82\% & 0 & C\% & 0 & 0\% & 2 & 18\% & 0 & 0\% & & & 11 \\
\hline 17 & c & 0\% & 0 & 0\% & 0 & C\% & 29 & 85\% & 0 & 0\% & 0 & 0\% & 5 & 15\% & 0 & 0\% & & & 34 \\
\hline 13 & C & 0\% & 0 & 0\% & C & 0\% & 17 & S4\% & 0 & 0\% & 1 & 6\% & 0 & 0\% & 0 & 0\% & & & 18 \\
\hline 13 & 0 & 0 \% & 0 & 0\% & 0 & 0\% & 11 & 79\% & 0 & C\% & C & 0\% & 3 & 21\% & 0 & 0\% & & & 14 \\
\hline 20 & 0 & 0\% & 0 & 0\% & 0 & 0\% & 11 & 100\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & 11 \\
\hline 21 & C & 0\% & 0 & \(0 \%\) & 0 & 0\% & 14 & 50\% & 0 & C\% & 0 & 0\% & 14 & 50\% & 0 & 0\% & & & 28 \\
\hline 22 & C & C\% & 0 & 0\% & 0 & C\% & 8 & 53\% & \(u\) & 0\% & 0 & 0\% & 7 & 47\% & C & 0\% & & & 15 \\
\hline 23 & C & 0\% & 0 & 0\% & 0 & 0\% & 7 & 100\% & 0 & 0\% & \(\checkmark\) & C\% & 0 & 0\% & 0 & 0\% & & & 7 \\
\hline 24 & C & 0\% & C & 0\% & 0 & C\% & 10 & 100\% & 0 & C\% & 0 & C\% & 0 & 0\% & 0 & 0\% & & & 10 \\
\hline <j & 6 & 0\% & 0 & 0\% & 0 & 0\% & 5 & 100\% & 0 & C\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & 9 \\
\hline 26 & C & 0\% & 0 & 0\% & 0 & C\% & 18 & 100\% & 0 & C\% & 0 & \(0 \%\) & 0 & 0\% & 0 & 0\% & & & 180 \\
\hline 21 & c & \(0 \%\) & 0 & 0\% & 0 & 0\% & 15 & 100\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & 19 \\
\hline 23 & C & 0\% & 0 & 0\% & 0 & C\% & 18 & 100\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & 18 \\
\hline 23 & C & \(0 \%\) & 0 & 0\% & 0 & C\% & 21 & 100\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & 21 \\
\hline 30 & 11 & 30\% & 0 & 0\% & 0 & C\% & 26 & 70\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & 37 \\
\hline 3.1 & 3 & \(33 \%\) & 0 & 0\% & 1 & 11\% & 5 & 56\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & 0 & 0\% & & & 9 \\
\hline GOLLMA TOTALS: & 14 & & 0 & & 1 & & 306 & & 0 & & 15 & & 138 & & 20 & & 486 & 25 & 494 \\
\hline \multicolumn{20}{|l|}{PERCENTACE:} \\
\hline ALL CARS: & \(1 \%\) & & 0\% & & 0\% & & 30\% & & 0\% & & 1\% & & 14\% & & 2\% & & 48\% & 2\% & \\
\hline EXLEPT FCLD & & & & & & & & & & & & & & & & & & & \\
\hline \(\varepsilon\) LNEXP: & 3\% & & 0\% & & 0\% & & 62\% & & \(0 \%\) & & 3\% & & 28\% & & 4\% & & & & \\
\hline
\end{tabular}
```

JN:MA \Y: JANUARY 14,1J \& 17 ANU FEBRUARY 17, 2C, 22 \& Z3, 1S71
PENFJRMANCE TABLE: WESTBJUND ENPTY CARS VERSUS SCHECULED YARL TIME

```
\begin{tabular}{|c|}
\hline SCHELJLE［ & \multicolumn{2}{|r|}{CARS} & \multicolumn{4}{|l|}{advaincec due to：} & \multicolumn{4}{|r|}{CARS CN SCHEDULE} & \multicolumn{2}{|l|}{DUE TO：} & \multicolumn{2}{|r|}{CARS} & \multicolumn{2}{|l|}{UELAYED} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
DUE TO： \\
P OB BUILDUP
\end{tabular}}} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { OTHER } \\
& \text { EMP }
\end{aligned}
\]} & \multirow[t]{2}{*}{ROW TOTAL} \\
\hline YtRJ TIME & EARLY & ARR & YARJ & MJVE & LATE & LEP & & ．．MAL & YARD & MC＇E & LATE & CEP & LATE & ARR & LATE & HUMP & & & & \\
\hline & EMP & \％ & EMP & \％ & EMP & \％ & EMP & \％ & ERP & \％ & EMP & \(\%\) & EMP & \％ & EMP & \％ & EMP & & & \\
\hline 3 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 7 & \(9 \%\) & 0 & 0\％ & C & C\％ & 71 & 91\％ & C & 0\％ & & & & 78 \\
\hline ； & C & \(0 \%\) & 0 & 0\％ & C & C\％ & C & 18 & 0 & 0\％ & 0 & 0\％ & 34 & とっ\％ & 28 & 45\％ & & & & 62 \\
\hline 10 & C & 0\％ & 0 & \(0 \%\) & 0 & C\％ & 2 & 6\％ & 0 & C\％ & C & 0\％ & 28 & 80\％ & 5 & \(14 \%\) & & & & 35 \\
\hline 11 & C & 0\％ & 0 & \(0 \%\) & 0 & C\％ & 22 & 15\％ & 0 & 0 O & 12 & ¢\％ & 101 & \(74 \%\) & 1 & 1\％ & & & & 136 \\
\hline 12 & c & 0\％ & 0 & 0\％ & C & C\％ & 2 & 3\％ & 0 & 0\％ & 2 & 3\％ & 52 & 84\％ & 6 & 10\％ & & & & 62 \\
\hline 13 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 28 & 46\％ & 0 & \％ & C & C\％ & 23 & 38\％ & 10 & 16\％ & & & & 61 \\
\hline 14 & c & 0\％ & 0 & 0\％ & 0 & C\％ & 3 & 8\％ & 0 & \(0 \%\) & 0 & 0\％ & 29 & 81\％ & 4 & 11\％ & & & & 36 \\
\hline 1 1 & c & \(0 \%\) & C & 0\％ & 0 & C\％ & 21 & 55\％ & 0 & 0\％ & 0 & 0\％ & 17 & 30\％ & 8 & 14\％ & & & & 56 \\
\hline 15 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 16 & 40\％ & 0 & 0\％ & 2 & 5\％ & 22 & う5\％ & 0 & 0\％ & & & & 40 \\
\hline 17 & C & 0\％ & c & 0\％ & 0 & 0\％ & 67 & 84\％ & 0 & 0\％ & 0 & 0\％ & 13 & 16\％ & 0 & 0\％ & & & & 80 \\
\hline 13 & 0 & 0\％ & 0 & 0\％ & 0 & C\％ & 63 & 68\％ & 0 & C\％ & C & 0\％ & 20 & 28\％ & 4 & 4\％ & & & & 93 \\
\hline 13 & 6 & C＊ & 0 & 0\％ & 0 & C\％ & 10 & 36\％ & 0 & \(0 \%\) & 0 & 0\％ & 18 & 64\％ & C & 0\％ & ． & & & 28 \\
\hline 20 & C & 0\％ & 0 & C\％ & c & 0\％ & 48 & 52\％ & 0 & \(0 \%\) & 0 & 0\％ & 13 & 14\％ & 32 & 34\％ & & & & 93 \\
\hline 21 & C & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 20 & 83\％ & 0 & 0\％ & C & C\％ & 4 & 17\％ & 0 & 0\％ & & & & 24 \\
\hline 22 & 0 & 0\％ & C & 0\％ & 0 & C\％ & 12 & 55\％ & \(\checkmark\) & 0\％ & 0 & 0\％ & 10 & 45\％ & 0 & 0\％ & & & & 22 \\
\hline 23 & C & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 26 & 100\％ & 0 & C\％ & 6 & C＊ & \(\checkmark\) & 0\％ & 0 & 0\％ & & & & 26 \\
\hline 24 & 6 & \(0 \pm\) & 0 & 0\％ & 0 & 0\％ & 112 & 99\％ & 0 & C\％ & C & 0\％ & 0 & 0\％ & 1 & 1\％ & & & & 113 \\
\hline 25 & c & \(0 \%\) & 0 & 0\％ & c & C\％ & 52 & 100\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 52 \\
\hline 23 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 73 & S 9\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 1 & 1\％ & & & & 74 \\
\hline 27 & C & 0： & 0 & 0\％ & 0 & U\％ & 37 & 100\％ & 0 & 0\％ & \(\checkmark\) & 0\％ & 0 & 0\％ & 0 & C\％ & & & & 370 \\
\hline 23 & C & 0 名 & 0 & 0\％ & 0 & C\％ & 52 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 52. \\
\hline 23 & C & 0\％ & 0 & 0\％ & 34 & 41\％ & 48 & 59\％ & 0 & 0\％ & C & C\％ & 0 & 0\％ & C & 0\％ & & & & 82 \\
\hline 30 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 24 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 24 \\
\hline 3.1 & 1 & 3\％ & 0 & 0\％ & 2 & 6\％ & 33 & 52\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 36 \\
\hline CJLLA \(\downarrow\) TOTALS： & 1 & & 0 & & 26 & & 788 & & 0 & & 16 & & 461 & & 100 & & 1983 & & 94 & 1402 \\
\hline \multicolumn{21}{|l|}{PEACENTAGE：} \\
\hline ALL CARS： & 0\％ & & 0\％ & & 1\％ & & 23\％ & & 0\％ & & 0\％ & & 13\％ & & 3\％ & & 57\％ & & 3\％ & \\
\hline EXCEPT トCLD & \\
\hline \＆LNEXF： & \(0 \%\) & & 0\％ & & 3\％ & & 56\％ & & 05 & & 1\％ & & 33\％ & & 7\％ & & & & & \\
\hline
\end{tabular}
```

jUi.fIIY: JANUARY 14,1j \& 17 AND FEBRUARY 17, 20, 22 \& 23, 1571

```
- \(2 F G R M A N E E\) IABLE: LUCAL LEAUED CARS VERSLS SCHEUULED YAKÚ TINE

SJMNARY：JAVUARY 14,15 \＆ 17 AND FEBRUARY \(17,20,22\) \＆23，197． PETFJRMANCE TAELE：LUCAL EMPTY CARS VERSUS SCHECULED YARD TIME
\begin{tabular}{|c|}
\hline うこHELJL？ & \multicolumn{6}{|c|}{CARS ACVAINCED DUE TO：} & \multicolumn{2}{|r|}{CARS} & CH & DLLE & \multicolumn{2}{|l|}{LUE TO：} & & CARS & \multicolumn{2}{|l|}{CELAYEC} & \multicolumn{2}{|l|}{DUE TO：} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ROW } \\
& \text { TOTAL }
\end{aligned}
\]} \\
\hline YARJ TIME & EARLY & ARR & YARD & MUVE & LATE & CEP & & RMAL & YARD & ：\({ }^{\text {JVE }}\) & LATE & CEP & LATE & ARR & LATE & HUMP & OB & BUILDUP & OTHER & \\
\hline & EMP & \％ & EMP & \％ & EMP & \％ & ENP & \％ & EMP & & EMP & \\
\hline 3 & 0 & 0\％ & 0 & 0\％ & 0 & C\％ & 8 & 20\％ & 0 & 0\％ & S & 22\％ & 24 & 59\％ & 0 & 0\％ & & & & 41 \\
\hline \(\xi\) & c & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & － & 29\％ & 0 & 0\％ & C & 0\％ & 7 & ＋1\％ & 5 & 29\％ & & & & 17 \\
\hline 10 & 0 & 0\％ & 0 & \(0 \%\) & 0 & C\％ & 12 & 55\％ & 0 & \(0 \%\) & 0 & 0\％ & 7 & 32\％ & 3 & 14\％ & & & & 22 \\
\hline 11 & 0 & \(0 \%\) & 0 & 0\％ & 0 & C\％ & 26 & 84\％ & 0 & C6 & C & 0\％ & 0 & 0\％ & 5 & 16\％ & & & & 31 \\
\hline 12 & C & 0\％ & 0 & \(0 \%\) & 0 & C\％ & ！ & 28\％ & 0 & 0\％ & 2 & 7\％ & 16 & 55\％ & 3 & 10\％ & & & & 29 \\
\hline 13 & \(n\) & 0\％ & 0 & 0\％ & 0 & C\％ & 11 & 23\％ & 0 & 2\％ & 0 & －\％ & 1 & 2\％ & 35 & 74\％ & & & & 47 \\
\hline 14 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 4 & 24\％ & C & Cb & C & 0\％ & 1 & 6\％ & 12 & 71\％ & & & & 17 \\
\hline 1 j & C & 0\％ & 0 & 0\％ & 0 & 06 & 53 & 55\％ & 0 & 0\％ & 0 & 0\％ & 1 & 2\％ & 2 & 4\％ & & & & 56 \\
\hline 10 & C & \(0 \%\) & 0 & 0\％ & 0 & C\％ & 4 & 13\％ & 0 & C\％ & C & 0\％ & 2 & 6\％ & 26 & 81\％ & & & & 32 \\
\hline 17 & 6 & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & 26 & 55\％ & 0 & 0\％ & 0 & 0\％ & 15 & 32\％ & 6 & 13\％ & & & & 47 \\
\hline 18 & 0 & 0\％ & C & \(0 \%\) & 0 & C\％ & 47 & 58\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 1 & 2\％ & & & & 48 \\
\hline 18 & C & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 13 & 81\％ & 0 & \(0 \%\) & 0 & 0\％ & 3 & 15\％ & 0 & 0\％ & & & & 16 \\
\hline 20 & c & \(0 \%\) & 0 & 0\％ & 4 & 7\％ & 52 & 93\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 56 \\
\hline 21 & C & つ\％ & 0 & \(0 \%\) & 0 & C\％ & 26 & 56\％ & 0 & C\％ & C & 0\％ & 1 & 4\％ & 0 & 0\％ & & & & 27 \\
\hline 22 & C & 0\％ & 0 & \(0 \%\) & 1 & 2： & 36 & 78\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0. & \(\varsigma\) & 20\％ & & & & 46 \\
\hline 23 & C & 0\％ & 0 & \(0 \%\) & C & C\％ & 26 & 100\％ & 0 & 0\％ & \(\checkmark\) & 0\％ & 0 & 7\％ & 0 & 0\％ & & & & 26 \\
\hline 24 & 0 & 0\％ & 0 & 0\％ & 0 & C\％ & 38 & E6\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 6 & 14\％ & & & & 44 \\
\hline 25 & C & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & 36 & 100\％ & \(\checkmark\) & C\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 36 \\
\hline 26 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 27 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 27 \\
\hline 27 & 0 & 0\％ & 0 & 0\％ & 0 & C\％ & 48 & 100\％ & 0 & 0\％ & \(\sim\) & C\％ & 0 & 0\％ & 0 & 0\％ & & & & 48 L \\
\hline 23 & 0 & \(0 \%\) & 0 & 0\％ & 6 & 14\％ & 36 & 85\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 42 \\
\hline 23 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 12 & 100\％ & 0 & C\％ & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 12 \\
\hline 30 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 24 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & c & 0\％ & & & & 24 \\
\hline 31 & C & 0\％ & 0 & 0\％ & 4 & 15\％ & 22 & 85\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 26 \\
\hline CILLAN TCTALS： & C & & 0 & & .15 & & 600 & & 0 & & 11 & & 78 & & 113 & & 592 & & 69 & 817 \\
\hline PERCENTAGE： & & & \(\checkmark\) & & & & & & & & & & & ． & & & & & & \\
\hline ALL CARS： & C\％ & & 0\％ & & 1\％ & & 41\％ & & 0\％ & & 1\％ & & 5\％ & & 8\％ & & 40\％ & & 5\％ & \\
\hline EXLEPT HCLD & \\
\hline \(\varepsilon\) UNEXP： & \(0 \%\) & & 0\％ & & 2\％ & & 73\％ & & \(6:\) & & 1\％ & & 10\％ & & 14\％ & & & & & \\
\hline
\end{tabular}

SJ: NARY: JANJARY 14, Lう \& 17 AND FEBRLARY \(17,2 \mathrm{C}, 22\) \& 23,1971
P \(2 F:\) ? \(1 A N C E\) TAELE: EASTBJUNE EMPTY CARS VERSUS ACTUAL YARD TIME

SU：MA：Y：JAVUARY 14,15 \＆ 17 ANE FEBRUARY \(17,20,22\) \＆ 23,1971
○ㄹ \＆J Y YANCE TARLE：WESTBUUND LUADED CARS VERSIS ACTUAL YARU TINE
\begin{tabular}{|c|}
\hline AこTUAL & \multicolumn{2}{|r|}{CARS} & \multicolumn{2}{|l|}{ADVAINCED DUE} & TO： & & \multicolumn{4}{|r|}{CARS CA SCHELLLE} & \multicolumn{2}{|l|}{LUE TO：} & \multicolumn{4}{|r|}{CARS DELAYED LUE} & T0： & \multirow[b]{2}{*}{CTHER} & \multirow[b]{2}{*}{TOTAL} \\
\hline ジアコ TIME & EARLY & \(Y\) YFR & YARD & MOVE & LATE & CEP & NCRM & MAL & YARD & \(v=\) & LATE & DEP & LATE & ARR & LATE & HUMP & OB BUILDUP & & \\
\hline & LCS & \％ & LDS & \％ & LDS & \％ & LES & \％ & LUS & \(\%\) & LES & \％ & LDS & \％ & LDS & \％ & LDS & LDS & \\
\hline 1 & C & \(0 \%\) & C & \(0 \%\) & 0 & C＊ & 0 & 0\％ & 0 & C\％ & C & 0\％ & 28 & 100\％ & C & 0\％ & & & 28 \\
\hline 2 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & C & ）\％ & 0 & 0\％ & 0 & C\％ & 10 & 190\％ & 0 & \(0 \%\) & & & 10 \\
\hline 3 & C & 0\％ & C & 0\％ & 0 & C\％ & C & 0\％ & 0 & C\％ & C & 0\％ & 17 & 100\％ & 0 & 0\％ & & & 7 \\
\hline 4 & C & 0\％ & 0 & \(0 \%\) & 0 & C\％ & C & 0\％ & 0 & \(\mathrm{C}_{0}\) & 1 & 25\％ & 3 & 75\％ & 0 & 0\％ & & & 4 \\
\hline s & C & \(0 \%\) & 0 & \(0 \%\) & 0 & 0\％ & \(\bigcirc\) & Ot & 0 & \(0 \%\) & C & 0\％ & 34 & 100\％ & 0 & 0\％ & & & 34 \\
\hline 6 & C & 0\％ & C & 0\％ & C & 0\％ & c & 0 ： & 0 & 3\％ & 3 & \({ }^{\circ}\) & 29 & 91\％ & 0 & 0\％ & & ， & 32
28 \\
\hline 17 & C & 0 \％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & C\％ & 11 & 39\％ & 17 & \(61 \%\) & 0 & 0\％ & & & 28 \\
\hline E & C & 0\％ & 0 & 0\％ & 0 & 00 & 4 & \(57 \%\) & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 3 & \(43 \%\) & & & 12 \\
\hline 3 & c & 0\％ & 0 & 0\％ & C & C\％ & 5 & 42\％ & 0 & \(0 \%\) & 0 & \(0 \%\) & 0 & 0\％ & 7 & 58\％ & & & 12 \\
\hline 10 & c & 0 \％ & C & 0\％ & 0 & 0\％ & 9 & 56\％ & 0 & C\％ & C & \(0 \%\) & 0 & 0\％ & 7 & 44\％ & & & 6 \\
\hline 11 & \(C\) & U\％ & 0 & 0\％ & 0 & 0\％ & 22 & ४8＊ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 3 & 12\％ & & & 25 \\
\hline 12 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 20 & 100\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & ， & & 20 \\
\hline 13 & C & 0 名 & 0 & 0\％ & 0 & C\％ & 39 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 39
5 \\
\hline 14. & c & ก\％ & C & 0\％ & 0 & C\％ & 5 & 100\％ & 0 & 0 \％ & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 5 \\
\hline ij & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 1 & 100\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 1 \\
\hline 1\％ & C & 0\％ & 0 & 0\％ & 0 & C\％ & 17 & 100\％ & 0 & 0\％ & \(u\) & r\％ & 0 & C\％ & C & 0\％ & & & 17 \\
\hline 17 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 23 & 100\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 23 \\
\hline 18 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 20 & 100\％ & G & O\％ & C & 0\％ & 0 & C\％ & 0 & 0\％ & & & 20 \\
\hline 13 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 9 & 100\％． & ． 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & \({ }_{6} 9\) \\
\hline 20 & 0 & 0\％ & 0 & 0\％ & 0 & C\％ & \(t\) & 100\％ & 0 & C\％ & C & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & & & \\
\hline 21 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 14 & 100\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 14 \\
\hline 22 & C & \(0 \%\) & 0 & 0\％ & C & C\％ & 1 & 100\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 1 \\
\hline 23 & 0 & \(0 \%\) & 0 & 0\％ & 0 & C\％ & 8 & ．00\％ & 0 & \(0 \%\) & C & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & & & 8 \\
\hline 24 & c & 0\％ & c & 0\％ & 0 & 0\％ & 19 & 100\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 19 \\
\hline 25 & 6 & 0\％ & C & 0\％ & 0 & C\％ & 10 & 100\％ & 0 & C\％ & C & C\％ & 0 & 0\％ & 0 & 0\％ & & & 10 \\
\hline 29 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 34 & 100\％ & 0 & 0\％ & C & 0\％ & 0 & 0\％ & C & O\％ & & & 34 \\
\hline 21 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 15 & 100\％ & 0 & 0. & 0 & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & & & 15 \\
\hline 23 & C & \(0 \%\) & 0 & 0\％ & 1 & 7\％ & 14 & 93\％ & 0 & 0\％ & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 15 \\
\hline 28 & c & 0\％ & 0 & 0\％ & 0 & C\％ & 4 & \(100^{\circ}\) & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 4 \\
\hline 30 & C & \(0 \%\) & 0 & 0\％ & 0 & C\％ & 4 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 4 \\
\hline 31 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 1 & 100\％ & j & 0\％ & C & 0\％ & 0 & 0\％ & C & 0\％ & & & 1 \\
\hline 22 & C & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & 2 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & C\％ & 0 & 0\％ & & & 2 \\
\hline 33 & 14 & 100＂： & 0 & 0\％ & 0 & 0\％ & C & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 14 \\
\hline CELLAN TOTALS： & 14 & & 0 & & 1 & & 306 & & \(\checkmark\) & & 15 & & 138 & & 20 & & 486 & 25 & 494 \\
\hline PERCEATAGE： & & & & & & & & & & & & & & & & & & & \\
\hline 1LL CARS： & 12 & & 0\％ & & 0\％ & & 30\％ & & 0\％ & & 1\％ & & 14\％ & & \(2 \%\) & & 48\％ & \(2 \%\) & \\
\hline ExEEPT YCLD & & & & & & & & & & & & & & & & & & & \\
\hline \＆LINEXP： & \(3 ま\) & & \(0 \%\) & & 0\％ & & 62\％ & & \(0 \%\) & & 32 & & \(28 \%\) & & \(4 \%\) & & & & \\
\hline
\end{tabular}

\section*{ \\ PE\｛FJ\} IA:VOE TA己LE: WESTDZUND EMPTY CARS VERSLS ACTUAL YARD TIME}
\begin{tabular}{|c|}
\hline di 1 JtL & \multicolumn{6}{|c|}{CARS ALVANCEL DUE TO：} & \multicolumn{4}{|r|}{CARS UN SCHECULE} & CUE T & U： & \multicolumn{5}{|r|}{CARS DELAYED DUE TO：} & & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { OTHER } \\
& \text { EMP }
\end{aligned}
\]} & \multirow[b]{2}{*}{TOTAL} \\
\hline y＋て）TIME & EARLY & \(Y\) Y \(A R\) & YARD & MOVE & LATE & LEP & & RMAL & YAF．D & ヶ．LVE & LATE & CEP & LATE & \(E\) ARR & LATE & HUMP & P OB & BUILDUP & & \\
\hline & ENP & \％ & EMP & \％ & EMP & \(\underset{ }{*}\) & EMP & \％ & ENP & \(\%\) & ENP & \％ & EMP & \％ & EMP & \％ & EMP & & & \\
\hline 1 & C & 08 & 0 & \(0 \%\) & 0 & C\％ & 0 & \(0 \%\) & 0 & O名 & 0 & 0\％ & 122 & 100\％ & 0 & 0\％ & & & & 122 \\
\hline 2 & \(C\) & 0\％ & 0 & C\％ & 0 & C\％ & C & 0\％ & c & C\％ & c & 0\％ & 511 & 100\％ & 0 & 0\％ & & & & 51 \\
\hline 3 & C & \(0 \%\) & 0 & 0\％ & 0 & C\％ & C & 0\％ & 0 & \(0 \%\) & C & C\％ & 42 & 100\％ & 0 & 0\％ & & & & 42 \\
\hline 4 & c & \(0 \%\) & C & 0\％ & 0 & C\％ & C & C\％ & 0 & \(0 \%\) & 2 & 3\％ & 59 & 97\％ & C & 0\％ & & & & 61 \\
\hline \(j\) & 6 & \(0 \%\) & 0 & 0\％ & 0 & C\％ & C & 0\％ & 0 & C\％ & C & 0\％ & 69 & 100\％ & 0 & C\％ & & & & 69 \\
\hline \(j\) & C & 0\％ & 0 & \(0 \%\) & C & C\％ & c & O\％ & 0 & 0\％ & 3 & 5\％ & 59 & 55\％ & C & \(0 \%\) & & & & 62 \\
\hline 1 & C & 0 \％ & c & 0\％ & 0 & C\％ & 0 & 0\％ & 0 & \％\％ & 14 & 17\％ & 69 & 83\％ & 0 & 0\％ & & & & 83 \\
\hline 3 & c & 06 & 0 & 0\％ & 0 & C\％ & \(\varsigma\) & 50\％ & 0 & 0\％ & C & C\％ & 0 & C\％ & \(s\) & 50\％ & & & & 18 \\
\hline ； & C & \(0 \%\) & 0 & ก\％ & C & 0\％ & 13 & 30\％ & 0 & 0\％ & C & 0\％ & 0 & 0\％ & 31 & 70\％ & & & & 44 \\
\hline 1 J & \(c\) & \(0 \%\) & 0 & \(0 \%\) & 0 & C\％ & 16 & 64\％ & 0 & C\％ & C & C＊ & 0 & 0\％ & 9 & 36\％ & & & & 25 \\
\hline 11 & C & 03 & 0 & 0\％ & 0 & 0\％ & 73 & 87\％ & 0 & 0\％ & C & 0\％ & 0 & 0\％ & 11 & 13\％ & & & & 84 \\
\hline 12 & C & 0\％ & 0 & C： & \(\cup\) & 0\％ & 20 & 49\％ & 0 & 2\％ & 0 & \(0 \%\) & 0 & 0\％ & 21 & 51\％ & & & & 41 \\
\hline 13 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 18 & 100\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 18 \\
\hline 14 & 6 & 0\％ & 0 & 0\％ & 0 & C 6 & 22 & IUU\％ & 0 & C & 0 & 0\％ & 0 & C\％ & 0 & 0\％ & & & & 22 \\
\hline \(\therefore\) & 6 & 0\％ & 0 & 0\％ & 0 & 0\％ & 26 & 100\％ & 0 & C\％ & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 26 \\
\hline 15 & C & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & く3 & 68\％ & 0 & O\％ & C & \(0 \%\) & 0 & 0\％ & 11 & 32\％ & & & & 34 \\
\hline 17 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 84 & 100\％ & 0 & C\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & & & & 84 \\
\hline 13 & C & 0 \％ & 0 & 0\％ & 0 & 05 & 22 & 73\％ & 0 & C\％ & C & 0\％ & 0 & 0\％ & 8 & 27\％ & & & & 30 \\
\hline 19 & C & 0\％ & 0 & 0\％ & 0 & C5 & 46 & 1）0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & \(0 \%\) & & & & 46 \\
\hline 2.3 & 0 & \(0 \%\) & 3 & \(0 \%\) & 0 & C\％ & \(2 t\) & 100\％ & 0 & 0\％ & 0 & C\％ & 0 & \(0 \%\) & C & 0\％ & & & & 260 \\
\hline 21 & 0 & 0\％ & 0 & 0\％ & c & C\％ & 26 & 100\％ & 0 & 0\％ & C & 0\％ & 0 & \(0 \%\) & C & 0\％ & & & & 22 \\
\hline \(\angle 2\) & \(\checkmark\) & 0 \％ & 0 & 0\％ & 0 & 0\％ & 37 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & C & 0\％ & & & & 37 \\
\hline 23 & C & \(0 \%\) & 0 & \(0 \%\) & C & C\％ & ミミ & 100\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 0 & \(0 \%\) & & & & 33 \\
\hline 24 & C & 0\％ & C & 0\％ & 0 & 0\％ & \(5 ¢\) & 100\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & C & 0\％ & & & & 99 \\
\hline 25 & 0 & 0\％ & 0 & 0\％ & 35 & 53\％ & 31 & 47\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 66 \\
\hline ＜\({ }^{\text {j }}\) & C & 0\％ & 0 & 0\％ & 0 & C\％ & 45 & 100\％ & 0 & C\％ & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 45 \\
\hline 27 & 6 & 0\％ & 0 & 0\％ & 0 & 0\％ & 17 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & C & 0\％ & & & & 17 \\
\hline 23 & 0 & \(0 \%\) & 0 & \(0 \%\) & 1 & 4\％ & 26 & 96\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 27 \\
\hline 23 & C & 0\％ & 0 & 0\％ & 0 & C\％ & 31 & 100\％ & 0 & \(0 \%\) & C & 0\％ & 0 & 0\％ & C & 0\％ & & & & 31 \\
\hline 30 & c & ？\({ }^{\circ}\) & C & 0\％ & 0 & 0\％ & 22 & 100\％ & 0 & 08 & 0 & 0\％ & 0 & 0\％ & C & 0\％ & & & & 22 \\
\hline 31 & 6 & 0\％ & 0 & \(0 \%\) & 0 & C\％ & 21 & 100\％ & 0 & C\％ & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 21 \\
\hline 32 & C & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 6 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & C & 0\％ & & & & 6 \\
\hline 32 & 11 & \(100 \%\) & 0 & 0\％ & 0 & C\％ & 0 & 0\％ & \(\checkmark\) & 0\％ & 0 & O\％ & 0 & 0\％ & c & 0\％ & & & & 1 \\
\hline GJLLAA TUTALS： & 1 & & 0 & & 36 & & 788 & & 0 & & 16 & & 461 & & 100 & & 1983 & & 94 & 1402 \\
\hline \multicolumn{21}{|l|}{PEFCENTAGE：} \\
\hline ALL CARS： & C＊ & & 0\％ & & 1\％ & & 23\％ & & 0\％ & & 0\％ & & 13\％ & & \(3 \%\) & & 57\％ & & 3\％ & \\
\hline ExCEPT HCLD & \\
\hline \＆UVEXF： & 0\％ & & 0\％ & & \(3 \%\) & & \(56 \%\) & & 0\％ & & 1\％ & & 33\％ & & 7\％ & & & & & \\
\hline
\end{tabular}
```

jJAN+2Y: JANUARY 14,1ל \& 17 ANU FEBKUARY 17, 2C, ¿2 \& 23, isil
Pこ{FJRNANCE TACLE: LJGAL LCAUEC CARS VERSUS ALTUAL YAKL TIME

```
\begin{tabular}{|c|}
\hline \(A: 1 J T L\) & \multicolumn{2}{|r|}{CARS} & \multicolumn{4}{|l|}{ADVaincec cue to：} & \multicolumn{4}{|r|}{Cars cn sihluule} & \multicolumn{2}{|l|}{LUE TU：} & \multicolumn{5}{|c|}{CARS delayed vue tu：} & \multirow[b]{3}{*}{OTHER LDS} & \multirow[b]{2}{*}{TOTAL} \\
\hline ४＋2J TIME & \(\dot{\triangle A R L Y}\) & \(A R R\) & YARD & MOVE & LATE & CEP & NCR & MAL & YARD M & MOVE & LATE & CEP & LATE & ARR & LATE & HUMP & OB BUILDUP & & \\
\hline & LES & 6 & LCS & \％ & LDS & \％ & LCS & \％ & LDS & \％ & LCS & \％ & LDS & \({ }^{\prime}\) & LCS & \％ & LDS & & \\
\hline 1 & c & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & C & 0 \％ & 0 & C\％ & C & C\％ & 50 & \(100 \%\) & C & 0\％ & & & 56 \\
\hline 3 & 6 & 0\％ & 0 & \(0 \%\) & C & C\％ & C & 0\％ & 0 & －C\％ & 1 & 8＊ & 12 & 92\％ & C & \(0 \%\) & & & 13 \\
\hline 3 & C & Ub & 0 & 0\％ & 0 & C\％ & C & 0\％ & c & C\％ & \(t\) & 15 令 & 20 & \(01 \%\) & 0 & \(0 \%\) & & & 32 \\
\hline 4 & C & \(0 \%\) & 0 & 0 \％ & 0 & C\％ & 0 & \(0 \%\) & 0 & \(0 \%\) & 4 & \(17 \%\) & \(\angle 0\) & 83\％ & C & 0\％ & & & 24. \\
\hline 三 & C & U＊ & 0 & 0\％ & 0 & C\％ & C & C\％ & 0 & 0 \％ & 1 & 14\％ & \(\bigcirc\) & 86\％ & 0 & 0\％ & & & 7 \\
\hline \(s\) & C & \(0 \%\) & 0 & 0\％ & 0 & C\％ & 0 & 0\％ & 0 & Ct & 0 & C\％ & 21 & 100\％ & 0 & 0\％ & & & 21 \\
\hline 7 & C & 0\％ & 0 & \(0 \%\) & 0 & \(0 \%\) & 0 & O\％ & 0 & 0＊ & 22 & 81\％ & 5 & 15\％ & 0 & 0\％ & & & 27 \\
\hline 3 & c & \(0 \%\) & 0 & 0\％ & C & C\％ & 7 & 35\％ & C & C\％ & C & 0\％ & 0 & 0\％ & 13 & 65\％ & & & 20 \\
\hline ； & C & 0\％ & 0 & 0\％ & 0 & O\％ & 6 & 30\％ & 0 & Oも & C & 0\％ & 0 & 0\％ & 14 & 70\％ & & & 20 \\
\hline 10 & C & \(0 \%\) & C & \(0 \%\) & 0 & C\％ & 30 & 73\％ & 0 & Cも & 0 & \(0 \%\) & 0 & O\％ & 11 & 27\％ & & & 41 \\
\hline 11 & C & 0 \％ & 0 & \(0 \%\) & 0 & 0\％ & 13 & 68\％ & 0 & 0\％ & C & C\％ & 0 & 0\％ & 6 & 32\％ & & & 19 \\
\hline 12 & C & \(0 \%\) & 0 & 0 \％ & 0 & C\％ & 21 & 06？ & 0 & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & 11 & 34\％ & & & 32 \\
\hline 13 & C & 0\％ & 0 & C\％ & 0 & C\％ & 19 & 100\％ & 0 & \(0 \%\) & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 19 \\
\hline \(1+\) & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 25 & 73\％ & 0 & 0\％ & C & 0\％ & 0 & 0\％ & 11 & 28\％ & & & 40 \\
\hline 13 & c & \(0 \%\) & C & 0\％ & 0 & C\％ & 30 & 83\％ & 0 & 0\％ & C & 0\％ & 0 & 0\％ & \(\epsilon\) & 17\％ & & & 36 \\
\hline 10 & C & 0\％ & 0 & O\％ & 0 & C\％ & 64 & 93\％ & 0 & C＊ & C & 0\％ & 0 & 0\％ & 5 & 7\％ & & & 69 \\
\hline 17 & \(c\) & \(0 \%\) & 0 & 0\％ & 0 & C\％ & 32 & 91\％ & 0 & 0\％ & C & 0\％ & 0 & 0\％ & 3 & \(9 \%\) & & & 35 \\
\hline 13 & C & 0 \％ & 0 & 0\％ & 0 & C\％ & 41 & S1\％ & 0 & C\％ & 0 & \(0 \%\) & 0 & 0\％ & 4 & 9\％ & & & 45 \\
\hline 13 & 0 & 0\％ & 0 & 0\％ & 0 & C\％ & 41 & 100\％ & 0 & C\％ & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 41 \\
\hline 20 & 0 & 0 \％ & 0 & 0\％ & 0 & C＊ & 70 & 100\％ & 0 & \(0 \%\) & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & & & 700 \\
\hline 21 & C & 0\％ & c & 0\％ & 0 & C\％ & ¢ 4 & \(100 \%\) & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 6400 \\
\hline 22 & 0 & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 13 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & & & 13 \\
\hline ＜3 & c & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & 34 & 100\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & C & 0\％ & & & 34 \\
\hline 24 & \(C\) & 0\％ & 0 & 0\％ & 2 & 4\％ & 53 & ¢6\％ & 0 & C\％ & C & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & & & 55 \\
\hline 25 & 0 & 0 \％ & 0 & \(0 \%\) & 0 & C\％ & 30 & 100\％ & 0 & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & C & 0\％ & & & 30 \\
\hline 2j & C & 0\％ & C & 0\％ & 1 & 1\％ & \(t \in\) & ¢¢\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 67 \\
\hline 27 & 0 & 0\％ & 1 & 3\％ & 4 & 12\％ & 29 & 85\％ & 0 & 0\％ & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 34 \\
\hline 23 & C & 0\％ & 0 & 0\％ & 2 & 25\％ & 6 & 「5\％ & 0 & 76 & 0 & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & & & 8 \\
\hline 23 & 0 & 0\％ & C & 0\％ & 5 & 15\％ & 29 & 85\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 34 \\
\hline 33 & C & 0\％ & 2 & 8\％ & 0 & 0\％ & 22 & 52\％ & 0 & 0\％ & C & C\％ & 0 & C\％ & 0 & 0\％ & & & 24 \\
\hline 31 & C & 0\％ & 0 & 0\％ & 0 & \(0 \%\) & 15 & 100\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & C & 0\％ & & & 15 \\
\hline \(3 i\) & \(\varepsilon\) & 31\％ & 0 & 0\％ & 0 & C\％ & 18 & 69\％ & 0 & C\％ & C & 0\％ & 0 & 0\％ & 0 & 0\％ & & & 26 \\
\hline \(3 \vdots\) & 2 & 67\％ & 0 & 0\％ & 0 & \(0 \%\) & 1 & －33q & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & C & 0\％ & & & 3 \\
\hline GElumid totals： & 10 & & 3 & & 14 & & 783 & & 0 & & 34 & & 140 & & 82 & & 461 & 45 & 1072 \\
\hline \multicolumn{20}{|l|}{\(P ミ\{L こ へ T A G E:\)} \\
\hline ILL CARS： & \(1{ }^{1}\) & & 0\％ & & 1\％ & & 50\％ & & 0\％ & & 2\％ & & 9\％ & & 5\％ & & 29\％ & 3\％ & \\
\hline \(\pm X C \angle P T+C L D\) & & & & & & & & & & & & & & & & & & & \\
\hline \(\varepsilon\) JINEXP： & 1＊ & & 0\％ & & \(1 \%\) & & 73\％ & & 0\％ & & 32 & & 14\％ & & 8\％ & & & & \\
\hline
\end{tabular}

SUMKAKY：JANLARY 14，15 幺 17 AND FEBRUARY 17，20， 22 \＆23， 1971
\(P E R F I R M A N C E\) TABLE：LJCAL EMPTY CARS VERSUS ACTLAL YARC TIME
\begin{tabular}{|c|}
\hline 4：IUAL & \multicolumn{6}{|c|}{CARS ACVANCED DUE TC：} & \multicolumn{4}{|r|}{CARS UN SCHEDULE} & \multicolumn{2}{|l|}{DUE TO：} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{CARS CELAYED LUE TO： LATE ARR LATE HUMP OB}} & \multirow[b]{2}{*}{BUILDUP} & \multirow[b]{3}{*}{CTHER EMP} & \multirow[b]{2}{*}{TOTAL} \\
\hline VARJ TIME & EARLY & \(A K R\) & YARD & MOVE & LATE & CEP & & RMAL & YARD & MOVE & LATE & CEP & & & & & & & & \\
\hline & ENP & \％ & EMP & \％ & EMP & ＊ & ENP & \％ & EMP & z & ENP & \(\%\) & EMP & \％ & EMP & \(\%\) & EMP & & & \\
\hline 1 & C & 0\％ & C & C\％ & 0 & C\％ & C & 0\％ & 0 & C\％ & C & C\％ & 26 & 100\％ & 0 & 0\％ & & & & 26 \\
\hline ＜ & C & 0\％ & 0 & \(0 \%\) & 0 & \(0 \%\) & 0 & O\％ & 0 & C\％ & C & 0\％ & 0 & \(0 \%\) & C & 0\％ & & & & 0 \\
\hline 3 & 6 & 0： & 0 & 0\％ & C & C\％ & C & 0＊ & 0 & C＊ & 0 & 0\％ & 5 & 100\％ & 0 & 0\％ & & & & 5 \\
\hline \(i\) & 0 & \(0 \%\) & 0 & \(0 \%\) & 0 & 0\％ & C & C\％ & 0 & C\％ & 4 & 57\％ & 3 & 43\％ & 0 & \(0 \%\) & & & & 7 \\
\hline \(\xi\) & C & \(0 \%\) & 0 & 0 \％ & 0 & \(0 \%\) & 0 & U\％ & 0 & C＊ & \(<\) & 10\％ & 18 & 90\％ & 0 & 0\％ & & & & 20 \\
\hline \(\vdots\) & C & \(0 \%\) & c & Cも & 0 & C\％ & C & 0\％ & 0 & C\％ & 0 & 0\％ & 25 & 100\％ & 0 & \(0 \%\) & & & & 25 \\
\hline 1 & C & 0\％ & 0 & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & 0 & C\％ & 5 & \(83 \%\) & 1 & 17\％ & 0 & 0\％ & & & & 6 \\
\hline \(\stackrel{\text { ch }}{ }\) & C & 0 0 & C & 0 \％ & C & C\％ & 3 & －8\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 5 & 63\％ & & & & 8 \\
\hline 3 & 6 & 0 \％ & c & C\％ & 0 & C\％ & 5 & 33＊ & C & C\％ & 0 & 0\％ & 0 & 0\％ & 10 & 67\％ & & & & 15 \\
\hline 40 & c & Ј： & 0 & \(0 \%\) & 0 & C\％ & 27 & 67\％ & 0 & 0 \％ & C & C\％ & 0 & 0\％ & 4 & 13\％ & & & & 31 \\
\hline 1. & C & \(0 \%\) & 0 & \(0 \%\) & 0 & C\％ & 27 & \(84 \%\) & \(\cup\) & 0 \％ & 0 & U\％ & \(u\) & 0\％ & 5 & 16\％ & & & & 32 \\
\hline 12 & C & \(0 \%\) & 0 & 0\％ & 0 & C\％ & 17 & 勺1\％ & 0 & C\％ & C & 0\％ & 0 & \(0 \%\) & 4 & \(15 \%\) & & & & 21 \\
\hline 13 & c & U： & 0 & \(0 \%\) & 0 & 0\％ & 6 & 15\％ & 0 & C\％ & 0 & 0\％ & 0 & \(0 \%\) & 33 & \(85 \%\) & & & & 39 \\
\hline 14 & C & Ј & 0 & C\％ & 0 & C\％ & 10 & 53\％ & C & C\％ & 0 & \(0 \%\) & 0 & 0\％ & 9 & 47\％ & & & & 19 \\
\hline 15 & C & 0\％ & 0 & 0\％ & 0 & \(0 \%\) & \(\varepsilon 7\) & ¢ 2 \％ & 0 & \(0 \%\) & C & C\％ & 0 & 0\％ & \(\varepsilon\) & 8\％ & & & & 95 \\
\hline i3 & c & 0\％ & C & \(0 \%\) & 0 & 0\％ & 20 & 43\％ & 0 & C＊ & U & 0＊ & 0 & 0\％ & 26 & 57\％ & & & & 40 \\
\hline 11 & c & \(0 \%\) & 0 & 0\％ & 0 & C\％ & 24 & 7う\％ & 0 & C \({ }^{8}\) & c & C \({ }^{\text {\％}}\) & 0 & 0\％ & 8 & \(25 \%\) & & & & 32 \\
\hline 23 & 6 & \(0 \%\) & 0 & \(0 \%\) & 0 & \(0 \%\) & 49 & ¢8\％ & 0 & C \({ }^{6}\) & 0 & C\％ & 0 & 0\％ & 1 & 28 & & & & 50 \\
\hline 15 & C & 0\％ & C & 0\％ & C & Cz & 23 & 100\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 23 \\
\hline \(\leq 0\) & C & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & \(3 \in\) & 100\％ & C & C\％ & C & C\％ & 0 & 0\％ & C & \(0 \%\) & & & & 36 \\
\hline 21 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 33 & 100＊ & U & Oも & 0 & \(0 \%\) & 0 & 0\％ & C & 0\％ & & & & 330 \\
\hline cis & c & \(0 \%\) & 0 & 0\％ & ． & シ\％ & 34 & S \(7 \%\) & 0 & C\％ & C & C\％ & 0 & 0\％ & 0 & 0\％ & & & & 3510 \\
\hline 23 & 6 & 0\％ & 0 & 0\％ & 0 & \(0 \%\) & 23 & 100\％ & 0 & C\％ & C & Oz & 0 & 0\％ & C & 0\％ & & & & 23 \\
\hline 24 & C & 0\％ & 0 & 0\％ & 7 & \(19 \%\) & 29 & 81\％ & 0 & C\％ & 0 & 0\％ & 0 & 0\％ & C & 0\％ & & & & 36 \\
\hline 25 & c & \(0 \%\) & 0 & 0\％ & 3 & 10\％ & 28 & S0\％ & 0 & C\％ & C & 0\％ & 0 & \(0 \%\) & 0 & 0\％ & & & & 31 \\
\hline 26 & c & \(0 \%\) & 0 & \(0 \%\) & 4 & ¢\％ & 39 & Si\％ & 0 & C\％ & C & 0\％ & 0 & 0\％ & 0 & C\％ & & & & 43 \\
\hline 21 & C & \(0 \%\) & C & \(0 \%\) & 0 & C\％ & 27 & 100\％ & 0 & \(C\) \％ & 0 & \(0 \%\) & 0 & 0\％ & C & \(0 \%\) & & & & 27 \\
\hline 2 1 & C & 0\％ & 0 & 0\％ & 0 & C \({ }^{7}\) & 12 & 100\％ & 0 & \(0 \%\) & c & C6 & 0 & 0\％ & C & C\％ & & & & 12 \\
\hline 2.3 & C & 0\％ & 0 & 0\％ & 0 & 0\％ & 9 & 100\％ & 0 & 0\％ & C & 0\％ & 0 & 08 & C & 0\％ & & & & 9 \\
\hline 36 & C & U \({ }^{\circ}\) & 0 & 0\％ & 0 & C\％ & 15 & 100\％ & c & C． & C & \(0 \%\) & 0 & 0\％ & 0 & 0\％ & & & & 15 \\
\hline 16 & C & 0\％ & 0 & U\％ & 0 & C\％ & \(\leqslant\) & 100\％ & 0 & \(0 \%\) & C & \(0 \%\) & 0 & 0\％ & C & 0\％ & & & & 6 \\
\hline 12 & c & 0\％ & 0 & 0\％ & c & \(0 \%\) & \(\varepsilon\) & 100\％ & 0 & \(0 \%\) & C & 0\％ & 0 & 0\％ & C & 0\％ & & & & 8 \\
\hline 3.3 & 0 & 0\％ & 0 & 0\％ & 0 & 0\％ & 3 & 100\％ & 0 & C\％ & c & 0\％ & 0 & 0\％ & 0 & 0\％ & & & & 3 \\
\hline CJLUA，TJTALS： & C & & 0 & & 15 & & 600 & & 0 & & 11 & & 78 & & 113 & & 592 & & 69 & 817 \\
\hline \multicolumn{21}{|l|}{P ミRG：ATAGE：} \\
\hline ALL SARJ： & 0 も & & 0\％ & & 1\％ & & 41\％ & & 0\％ & & 1\％ & & \(5 \%\) & & 8\％ & & 40\％ & & 5\％ & \\
\hline ExUEPT HCLD & \\
\hline \＆UNEXP： & C\％ & & 0\％ & & 2\％ & & 73\％ & & 0\％ & & 1\％ & & 10\％ & & 14\％ & & & & & \\
\hline
\end{tabular}```

