## YARD UNRELIABILITY IN RAIL FREIGHT MOVEMENT

by

### ROBERT MALCOLM REID

SB, Massachusetts Institute of Technology (1968)

Submitted in partial fulfillment of the requirements for the degree of Master of Science

at the

Massachusetts Institute of Technology

June 1971

Signature of Author. Signature redacted Department of Civil Engineering, (May 14, 1971) Certified by .....Signature redacted //Thesis Supervisor Accepted by. Signature redacted Chairman, Departmental Committee on Graduate Students

of the Department of Civil Engineering



YARD UNRELIABILITY IN RAIL FREIGHT MOVEMENT

ROBERT MALEUR REID SB, Massachusetts (FPLitute of Technology , 2. [M8]

Submitted in partial fulfillment of the requirements for the degree of Master of Science

at the

Massachusetts Institute of Technology

June 1971



### ABSTRACT

### YARD UNRELIABILITY IN RAIL FREIGHT MOVEMENT

### by

#### ROBERT MALCOLM REID

Submitted to the Department of Civil Engineering on May 14, 1971 in partial fulfillment of the requirements for the degree of Master of Science.

Transit time unreliability provides a major explanation for the railroad industry's low rate of return on investment and declining share of the freight transportation market.

Although rail terminals have long been suspected of being the major contributor to erratic car movement performance, there has been little previous investigation into the causes for unreliability. Using data from a major railroad terminal, this study identifies the causes of freight car delays and develops relationships between yard time parameters and a car's performance through a terminal.

The major findings of this study (for the yard analyzed) are:

1. One-third of all loaded cars and two-thirds of all empty cars miss their scheduled outbound train connection.

2. Over two-thirds of all car delays are the result of the cancellation of outbound trains or the holding of cars in yards because of limitations on train capacity.

3. Cars which must be repaired, cars which are placed on an incorrect outbound train, and cars which are held because they lack destination information - delay types often sited as major causes of unreliability - account for only five percent of all car delays.

While definitive conclusions can not be drawn from a single terminal, it appears from this study that reductions in transit time are possible only with major improvements in the consistency of line haul freight train operation.

Thesis Supervisor:

A. Scheffer Lang

Title:

Professor of Civil Engineering

### ACKNOWLEDGEMENT

The author is indebted to the following individuals and organizations:

Professor A. Scheffer Lang for his continuous guidance and direction throughout this project.

Mr. John O'Doherty for his assistance in the development of the computer programs essential to this project.

My wife Evelyn for her encouragement, perseverance, comments, typing, and proofreading.

The Federal Railway Administration and the Burlington Northern and Union Pacific Railroads for their grants. TABLE OF CONTENTS

Dog

|                   |                                                                                   | rage |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------|------|--|--|--|--|
| Title Page        | e                                                                                 | 1    |  |  |  |  |
| Abstract          |                                                                                   | 2    |  |  |  |  |
| Acknowledgement   |                                                                                   |      |  |  |  |  |
| Table of Contents |                                                                                   |      |  |  |  |  |
| List of F         | igures                                                                            | 6    |  |  |  |  |
| Chapter I         | : Introduction                                                                    | 7    |  |  |  |  |
| Chapter I         | I: Car Movement Through a Railroad<br>Network                                     | 9    |  |  |  |  |
| 2.1 R<br>P        | elationship of Line Haul and Terminal<br>erformance to Transit Time Unreliability | 9    |  |  |  |  |
| 2.2 G<br>T        | eneral Policies for Reducing Transit<br>ime Unreliability                         | 12   |  |  |  |  |
| Chapter I         | II: Development and Analysis of Study<br>Results                                  | 14   |  |  |  |  |
| 3.1 S<br>M        | egregation of Cars into Car-Types and<br>Novement Performance Categories          | 14   |  |  |  |  |
| 3.2 P             | erformance of Cars Through a Terminal                                             | 15   |  |  |  |  |
| 3.3 A<br>T        | nalysis of Car Movement Performance<br>hrough a Terminal                          | 18   |  |  |  |  |
| 3.3.              | l Delays Due to the Late Switching of Inbound Trains                              | 18   |  |  |  |  |
| 3.3.              | 2 Delays Due to Cancelled Outbound<br>Trains                                      | 19   |  |  |  |  |
| 3.3.              | 3 Example of Car Delays Resulting from a Train Cancellation                       | 20   |  |  |  |  |
| 3 <b>.4</b> E     | ffect of Yard Time Parameters Upon Car<br>Novement Performance                    | 22   |  |  |  |  |

|          | 5                                                                                  | Page       |
|----------|------------------------------------------------------------------------------------|------------|
| Chapter  | IV: Implications of Study Results for<br>Railroad Operating Policies               | 33         |
| 4.1      | Introduction                                                                       | 33         |
| 4.2      | Train Cancellations                                                                | 33         |
| 4.3      | Late Train Arrivals                                                                | 35         |
| Chapter  | V: Summary and Conclusions                                                         | 38         |
| 5.1      | Introduction                                                                       | 38         |
| 5.2      | Summary                                                                            | 38         |
| 5.3      | Conclusions                                                                        | 39         |
| 5.4      | Future Study                                                                       | <b>4</b> 0 |
| Appendix | X I: A Computer Program to Analyze<br>Yard Car Movement Performance                | 41         |
| Appendix | II: Listing of Main Program                                                        | 51         |
| Appendix | K III: Listing of Summary Program                                                  | 74         |
| Appendix | X IV: Summary Tables of Car Movement<br>Performance versus Yard Time<br>Parameters | 83         |

## LIST OF FIGURES

| 1  | Car Movement from Everett, Mass. to Toledo, Ohio                                                | 10 |
|----|-------------------------------------------------------------------------------------------------|----|
| 2  | Railroad Car's Terminal Time                                                                    | 11 |
| 3  | Performance of Cars Through Terminals                                                           | 16 |
| 4  | Scheduled Switching Pattern                                                                     | 18 |
| 5  | Definition of Yard Time Parameters                                                              | 23 |
| 6  | Yard Time versus Car Movement Performance:<br>All Loaded Cars and All Empty Cars                | 26 |
| 7  | Yard Time versus Car Movement Performance:<br>Eastbound Loaded Cars and Westbound Empty<br>Cars | 27 |
| 8  | Yard Time versus Car Movement Performance:<br>Local Cars                                        | 28 |
| 9  | Discrete Distribution of Inbound Train<br>Arrival Delays                                        | 31 |
| LO | Cumulative Distribution of Inbound Train<br>Arrival Delays                                      | 32 |

### CHAPTER I

### INTRODUCTION

Although railroads handle over 40% of all United States freight ton-miles, the industry is plagued with a low rate of return on capital and a dwindling market share. The majority of traffic still handled by railroads is low-value (and low revenue) raw materials. High-value (and high revenue) merchandise is increasingly handled by truck.

Although government regulation is partly to blame for the poor health of American railroads, the market split between rail and truck is largely explained by examining the costs of transporting merchandise. These costs can be subdivided into four basic components:

1. the rate charged

- 2. loss and damage to merchandise in transit
- 3. transit time
- 4. transit time unreliability

Rail rates are generally lower than those of trucks. Loss and damage experience for both modes is equivalent. Transit time, although longer for rails, is not a primary concern of the shipper (except for perishable commodities or for rush orders to meet extraordinary demands). Transit time unreliability, however, known to be a serious problem in rail service, frequently constitutes a major additional cost to the shipper. (While a longer transit time may require a receiver to maintain somewhat larger inventories, unreliability greatly increases the possibility of very costly inventory shortages, often necessitates rush orders shipped by high-cost modes, and can result in low productivity of warehouse employees.) It must be concluded that transit time unreliability is the major explanation for the declining rail market share.

Although railroad terminals have long been suspected of being the major contributor to car delays, there has been little previous research into the causes of transit time unreliability. This report identifies the causes of unreliability and investigates the causal relationships between yard time parameters and car movement performance.

#### CHAPTER II

# CAR MOVEMENT THROUGH A RAILROAD NETWORK 2.1 RELATIONSHIP OF LINE HAUL AND TERMINAL PERFORMANCE TO TRANSIT TIME UNRELIABILITY

To better understand the railroad unreliability problem, an introduction to the operation of rail networks is necessary.

When a shipment is available, the highest level of service - lowest transit time and unreliability - is obtained when this one shipment is handled directly from shipper to receiver (e.g., handled by truck). This type of service, however, is also expensive. A lower-cost alternative is the railroad. At each yard, shipments moving in a common direction are consolidated into a car "block", placed in a train consisting of one or more blocks, and handled together to the next yard which may be twenty to several thousand miles distant. At each yard the car enters, it is reswitched and consolidated with other traffic to build a new train. This procedure is repeated until the car reaches its final destination.

Necessarily, the consolidate-switch process results in a longer transit time than required for direct movement. More important, however, is the fact that this process is unreliable. As an example of car movement through a network, let us follow the movement of a car from Everett, Mass. to

Toledo, Ohio.

|   | origin | Bosto | n Cl        | eveland 1      | ocal<br>yard |
|---|--------|-------|-------------|----------------|--------------|
|   | 0      | ett   | O<br>Albany | -0 0<br>Toledo | destination  |
| 0 | yard   |       |             |                |              |

----- train movement

Car Movement from Everett, Mass. to Toledo, Ohio

## Figure 1

Each operation in the diagram above involves some degree of unreliability. Trains can be delayed for numerous reasons such as mechanical failures, track congestion, changing crews, and so on. In addition, a train may not run at all due to a lack of traffic, lack of locomotives or crews, or for other causes. In each yard a car can miss a connection, be classified into the wrong outbound train, require mechanical repairs, be missing destination information ( a "no bill"), and so on.

There is no direct relationship between line haul train performance and the movement of a car through a terminal, nor hence, to the unreliability of transit time between car origin and destination. Note the following diagram:

- T<sub>a</sub> : Scheduled arrival time of the inbound train
- T<sub>d</sub>: Scheduled departure time of the connecting outbound train
- T<sub>L</sub>: Latest time the inbound train can arrive and still connect to the outbound train



Railroad Car's Terminal Time

## Figure 2

It should be noted that if the total delays suffered by the inbound train are less than  $T_L - T_A$  the car remains on schedule. However, when inbound train delays exceed this level, the car generally suffers a quantum increase in transit time equal to the time until the next outbound train departs. For the remainder of this report,  $T_L - T_A$  will be referred to as "slack" time, and  $T_D - T_L$  as the "threshold" time.

Two comments are in order. First, the threshold time for a yard will vary depending upon the time of day and traffic patterns. Cars with less than the threshold time available can make their proper connection, but only if they are given special handling or the outbound train is delayed for these cars. However, within the threshold region the probability of missing a connection is very high. Second, it should be clear that the greater the slack time available for a connection, the less sensitive car performance becomes to line haul delays.

Because of this relationship between line haul performance and yard performance and the unreliability of a connection, each train and the following yard can be viewed as a

single operation with an anticipated delay probability which is different for each outbound connection. In the example above of a car moving from Everett to Toledo, there are six such line haul/yard combinations. For a car traveling over this route, a 5% probability of missing a connection at each terminal delays one car out of four  $(1 - .95^6 \pm .73)$ . One car in two is delayed with a missed connection delay probability of 11%. Thus, even small probabilities of missing each connection - when coupled in series - will produce high levels of overall movement unreliability.

## 2.2 GENERAL POLICIES FOR REDUCING TRANSIT TIME UNRELI-ABILITY

Clearly, there are two policies the railroads can follow to overcome this unreliability: reduce the level of unreliability at each yard, or accept the present level of unreliability at each yard and reduce the number of yards through which a car must pass. (Traveling through three yards, each with a failure probability of .20, results in almost exactly the same transit time distribution as traveling through six yards, each with a delay probability of only .10.) Railroads have traditionally chosen the second alternative wherever traffic volumes have been sufficient. Few attempts have been made to identify the causes of unreliability in rail networks in order to improve performance at each yard through which a car must pass. This study tests a procedure for better understanding the causes of car movement unreliability.

#### CHAPTER III

## DEVELOPMENT AND ANALYSIS OF STUDY RESULTS

## 3.1 SEGREGATION OF CARS INTO CAR-TYPES AND MOVEMENT PERFORMANCE CATEGORIES

The data base for this study consisted of the records of the movement of over 13,000 cars through a major terminal. Each car was classified (computer programs are discussed in Appendix 1) into one of the following car-type classes:

| Car-type class      | Percent of<br>total sample |
|---------------------|----------------------------|
| Eastbound loaded ca | rs 39%                     |
| Eastbound empty car | s 4%                       |
| Westbound loaded ca | rs 8%                      |
| Westbound empty car | s 26%                      |
| Local loaded cars   | 12%                        |
| Local empty cars    | 11%                        |

Note: A car was classified as "local" if it was handled by either an inbound or an outbound local train.

Based upon the car's scheduled outbound connection, each car was also classified into one of the following categories:

A. Cars moving in advance of their scheduled connection due to:

- 1. Early arrival of the inbound train
- 2. Expedited movement through the terminal
- 3. Late departure of the outbound train

B. Cars making scheduled connection due to:

1. Normal yard performance

2. Expedited yard performance

3. Late departure of the outbound train

C. Cars missing their scheduled connection due to:

1. Late arrival of the inbound train

2. Delay in switching the inbound train

3. The outbound train's not carrying that car's classification block, or not running

4. Other reasons, including cars which must be repaired ("rips"), no-bills, and empty cars being cleaned

Cars were tabulated according to type, movement category, and both actual and scheduled yard time. As a result, it was possible:

 To analyze present car movement performance and identify major causes of delay (See Section 3.2); and parameters and car movement performance (See Section 3.4).
3.2 PERFORMANCE OF CARS THROUGH A TERMINAL

Figure 3 summarizes the distribution of car movements by car-type class. Recall that the predominant flow of loaded cars is eastbound, and of empty cars, westbound. The following points can be noted from this table:

1. On-schedule performance (for the total sample or on a disaggregate basis) is poor. Only 68% of loads and 32%

| CAR CARS     | ADVANCE | CARS MOVING ON SCHEDULE CARS DELAYED DUE TO: |                        |                                     |                          |                | :                                   |                                       |
|--------------|---------|----------------------------------------------|------------------------|-------------------------------------|--------------------------|----------------|-------------------------------------|---------------------------------------|
| OF S         | CHEDULE | NORMAL<br>YARD<br>MOVE                       | EXPEDITED<br>YARD MOVE | LATE<br>DEPARTURE<br>OF<br>OUTBOUND | LATE<br>INBOUND<br>TRAIN | LATE<br>SWITCH | OUTBOUND<br>TRAIN CAN-<br>CELLATION | OTHER<br>(RIPS,<br>NO-BILLS,<br>ETC.) |
| EASTBOUND:   |         |                                              |                        |                                     |                          |                |                                     |                                       |
| LOADED CARS  | 2%      | 57%                                          | 7%                     | 13%                                 | 8%                       | 2%             | 9%                                  | 1%                                    |
| EMPTY CARS   | 1%      | 49%                                          | 0%                     | 6%                                  | 8%                       | 6%             | 27%                                 | 2%                                    |
| WESTBOUND:   |         |                                              |                        |                                     |                          |                |                                     |                                       |
| LOADED CARS  | 1%      | 30%                                          | 0%                     | 1%                                  | 14%                      | 2%             | 4.8%                                | 2%                                    |
| EMPTY CARS   | 1%      | 23%                                          | 0%                     | 0%                                  | 13%                      | 3%             | 57%                                 | 3%                                    |
| LOCAL        |         |                                              |                        |                                     |                          |                |                                     |                                       |
| LOADED CARS  | 2%      | 50%                                          | 0%                     | 2%                                  | 9%                       | 5%             | 29%                                 | 3%                                    |
| EMPTY CARS   | 1%      | 41%                                          | 0%                     | 1 %                                 | 5%                       | 8%             | 40%                                 | 5%                                    |
| LANI II CARS | 170     | -11/0                                        | 070                    | 170                                 | 570                      | 070            | -2070                               | 370 16                                |
| TOTALS       |         |                                              |                        |                                     |                          |                |                                     |                                       |
| LOADED CARS  | 2%      | 52%                                          | 5%                     | 9%                                  | 9%                       | 2%             | 18%                                 | 2%                                    |
| EMPTY CARS   | 1%      | 30%                                          | 0%                     | 1%                                  | 11%                      | 4%             | 50%                                 | 3%                                    |
| ALL CARS     | 2%      | 43%                                          | 3%                     | 6%                                  | 10%                      | 3%             | 31%                                 | 2%                                    |

Note: OUTBOUND TRAIN CANCELLATION includes blocks removed from trains actually operated.

PERFORMANCE OF CARS THROUGH TERMINAL

Figure 3

of empties leave on the correct train (regardless of how late that train is when it departs). Best on-schedule performance (for both loaded and empty cars) is achieved by eastbound cars - 79% of all eastbound loads and 68% of all eastbound empty cars made their proper connection. (Included in these percentages are cars which made proper connection due only to the late departure of the outbound train - 13% of eastbound loads and 6% of eastbound empties fall into this category.)

2. The delays due to blocks of cars, or total trains, not being run are striking - one-third of all cars and onehalf of all empties moving through the yard are so delayed. This one delay category outnumbers all other delay categories combined by more than two-to-one.

3. Delays due to the late arrival of inbound train or to excessive queue time in the receiving yard before a train is switched account for 13% of all car movements, and over one-quarter of all delays. (The reason for combining these two delay groups is discussed below.)

4. All other delays - including cars which are shopped, no-bills, shipper ordered hold cars, and cleaned cars account for only 2% of all car movements and 5% of all delays.

Clearly, car delays resulting from the late arrival

of inbound trains are beyond the control of yard personnel. The situation with late switch delays and outbound train build-up delays, however, requires further investigation. 3.3 <u>ANALYSIS OF CAR MOVEMENT PERFORMANCE THROUGH A</u> TERMINAL

## 3.3.1 DELAYS DUE TO THE LATE SWITCHING OF INBOUND TRAINS

Efficient operation of large yards requires that inbound and outbound train demands be spread throughout the day. As a consequence, train movements are scheduled to avoid (as much as possible) high peaks in yard demands. Due to capacity constraints, one scheduling method employed to ameliorate the movement of cars through the terminal is "fleet scheduling" - the yard switches several trains in one direction, then handles traffic in the opposite direction. In the yard analyzed in this study, the following switching pattern must be adhered to if traffic is to move as scheduled:



## Scheduled Switching Pattern

## Figure 4

Consequently, a westbound train arriving at 11PM (instead of 8PM, for example) may not be switched until 8AM the

next morning, missing connections even though the threshold delay times were exceeded.

Although other situations can result in switching delays, it is clear from the analysis that the two factors discussed above accounted for nearly all excessive switching times.

### 3.3.2 DELAYS DUE TO CANCELLED OUTBOUND TRAINS

An additional consideration in train scheduling is the balancing of train movements in opposite directions so as to balance crew and locomotive requirements. Inbalances which do occur can only be corrected by non-productive transfer of locomotives and crews between terminals. If locomotives or crews are not available, trains are delayed until the deficiency is made up, or simply not run, seriously affecting car movement performance.

An analysis of the data sample used in this study indicates that:

1. of the 18 trains scheduled into this yard (other than thru trains), on the average day two did not arrive;

2. a corresponding daily fluctuation in the number of outbound trains from a low of 14 to a high of 20. Eastbound trains (11 outbounds scheduled) fluctuated from a low of 9 to a high of 11; lower priority westbounds (6 scheduled) fluctuated between 5 and 9 trains.

In addition to fluctuations of resources, traffic

volume variations can also have a serious effect upon car movement. If too many cars are available for a given train, a traffic block is often removed and held for the next outbound train. Train length can be limited by track configuration, terrain, or the strength of car couplers. If too few cars are available, the train may be cancelled and the cars held in the yard.

An analysis of eastbound car delays revealed most delays resulted from the holding of traffic blocks and not the cancellation of trains. The relatively low percentage of eastbound cars suffering outbound build-up delays attests to the few cars delayed by removing blocks from trains.

Westbound build-up delays, however, were primarily the result of train cancellations. The predominantly empty westbound traffic, given lower priority than the loaded eastbound traffic, was more severely disrupted by resource limitations.

## 3.3.3 EXAMPLE OF CAR DELAYS RESULTING FROM A TRAIN CANCELLATION

To illustrate the effect of a westbound train cancellation upon car movement performance, the following example is drawn from the data used in this study.

RECORD OF CAR MOVEMENTS, FEBRUARY 20 - 24, 1971

Scheduled departure of train: 4PM, daily

| DEPARTURE ARRIVAL TIME |                                                                                 |          | CARS HANDLED: |      |                |                                |             |
|------------------------|---------------------------------------------------------------------------------|----------|---------------|------|----------------|--------------------------------|-------------|
| FI<br>TERI             | FROM OF CONNECTING<br>TERMINAL INBOUND TRAINS<br>Earliest Latest<br>train train |          |               |      | On<br>schedule | Held from<br>previous<br>train | Total       |
| (on                    | 2/20)                                                                           | CANCEL   | LED           |      |                |                                |             |
| ЗАМ                    | 2/22                                                                            | 2PM 2/1  | L8 11AM       | 2/20 | 22             | 107                            | 135         |
| 6PM                    | 2/22                                                                            | 10AM 2/2 | 20 1PM        | 2/21 | 5              | 96                             | 108         |
| llpm                   | 2/23                                                                            | 8AM 2/2  | 21. 5AM       | 2/23 | 32             | 84                             | 117         |
| 10PM                   | 2/24                                                                            | 1AM 2/2  | 23 7AM        | 2/24 | 52             | 17                             | 88          |
|                        |                                                                                 |          | T             | TAL: | 111            | 304                            | <b>44</b> 8 |

Cancellation of a train on February 20 resulted in:

1. The train of the 21st (departed 3AM, 2/22) carrying (except for 22 cars) only those cars available for the cancelled train;

2. The trains of the 22nd and 23rd, because of tonnage limits, leaving cars behind in the yard;

3. The train of the 24th returning cars to schedule, but still handling 17 cars delayed as the result of the cancellation four days earlier.

The total number of cars actually delayed due to the cancellation of one train was 304 (almost 70% of all cars handled during the five day period).

It should be noted that even if the train of the 20th

were held in the yard one full day, the train still could have been run with a resulting reduction in the number of cars delayed from the actual 304 to a maximum of 107, depending upon the delivery pattern at the destination yard.

This example, by choice, is somewhat extreme - over 100 cars were available for movement by the cancelled train. However, cancellation of trains for a lack of traffic (a common occurrence on many railroads) will follow this same pattern of cars being held back for the following train. Clearly, as the average traffic volume of a train approaches its capacity, the more time is required to recover from the effect of a cancellation. 3.4 EFFECT OF YARD TIME PARAMETERS UPON CAR MOVEMENT PERFORMANCE

Beyond identifying the sources of transit time unreliability, a second purpose of this study was the development of causal relationships between yard-time parameters and a car's movement performance through a terminal. The two parameters investigated and the value of their relationship to car movement performance are listed below:

1. Scheduled yard time (SYT). The relation of SYT to car performance provides insight into the effect of changes in scheduled connection patterns or the arrival and departure times of trains.

2. Actual yard time (AYT). The relation of AYT to car movement performance illustrates the effect of a late train arrival upon car delays. With the advent of real time decision making, these relationships will be a necessary input if the effects of alternative decisions upon car movements are to be analyzed.



t<sub>S</sub> = Scheduled arrival time of the inbound train t<sub>A</sub> = Actual arrival time of the inbound train t<sub>D</sub> = Scheduled departure time of the outbound train

## Definition of Yard Time Parameters

### Figure 5

Prior to initiating the study, the following results were anticipated:

 Only cars with the longest AYT or SYT would move in advance of schedule (where an early arrival or late departure could advance cars);

2. The percentage of cars moving on schedule would increase with longer SYT (where more slack time was available as a buffer against late train arrivals). Cars moving on schedule due to the late departure of an outbound train or due to expedited yard movement would be clustered in the shortest SYT.

3. On-schedule performance for cars with an AYT below the threshold would be very poor. Most cars in this category would be delayed due to late train arrivals.

4. Delays due to late train arrivals or late switching would decrease sharply as SYT increased.

The results of the analysis are presented in sixteen tables (an AYT and SYT table for each of the six car types, plus "ALL LOADTD CARS" and "ALL EMPTY CARS") in the Appendix. Of these sixteen tables, ten contain a large enough sample to provide meaningful results. The performance of these car groups is summarized in the figures below.

In studying these figures the following points should be kept in mind:

1. For the yard studied, the shortest scheduled yard time between connections was eight hours; the longest, 31 hours.

2. AYT can range from negative values (for cars on inbound trains arriving after the departure of the appropriate outbound train) to values greater than 31 hours (for cars on inbound trains arriving in advance of schedule). To restrict the length of the table, all cars with an actual yard time of one hour or less were assigned a yard time of

one hour. Cars with an AYT of 32 to 35 hours were assigned an AYT of 32; cars with an AYT of more than 35 hours were assigned an AYT of 33 hours.

3. There is a discontinuity in several AYT movement categories at an AYT value of eight hours (the minimum scheduled connection time). However, since the distinctions between different on-schedule (and delay) performance classes is a definitional one, a smooth progression from the total percentage of cars moving on-schedule (or delayed) in the one-to-seven hour range, to cars moving on-schedule (or delayed) in the eight-to-thirty-three hour range, should result.

4. Cars delayed due to "outbound build-up" and "other reasons" were removed from this portion of the study. These delays have no causal relationship to yard time parameters.

The results of the analysis verify the hypotheses stated above. Some additional comments on the results follow.

The priority given eastbound loaded cars over westbound empty cars explains much of the difference between the performance of these two car-type categories:

1. While only few westbound empty cars with an AYT below eight hours move on schedule, the majority of shorttime eastbound loaded cars move on schedule due to expedited



Figure 6





## YARD TIME VERSUS CAR MOVEMENT PERFORMANCE: LOCAL CARS Figure 8

yard handling (primarily for cars with an AYT of less than five hours) or due to the late departure of the outbound train (for cars with an AYT between five and seven hours).

2. This expedited handling of some eastbound trains, and the holding of outbound trains, not only returns much traffic to schedule, but also results in a larger number of eastbound cars moving in advance of schedule than westbound cars.

3. Delays due to late switching, and hence, on-schedule performance of cars with an AYT greater than eight hours, are largely the result of traffic priorities. Consequently, while eastbound loaded cars attain an on-schedule percentage of 90% for an AYT of eight hours and a SYT of fourteen hours, westbound empty cars attain this level of performance only at an AYT of fifteen hours and a SYT of twentytwo hours.

Local cars must necessarily interface with either inbound or outbound "main-line" trains, and hence the performance tables for these cars largely reflect the results found for eastbound or westbound through cars.

The composite tables of all loaded cars or all empty cars, while illustrative of general movement patterns, tend to obscure the comparisons possible with disaggregated samples.

The overriding effect of delayed inbound trains upon the performance of short yard-time groups was unexpected. (Cars moving on-schedule due to expedited yard move or late departure, and most cars delayed by late switching, are so classified because of a late inbound arrival.) Not until scheduled yard time approaches twenty hours are late arrivals no longer a serious problem.

An analysis of the delays to arriving trains indicated that inbound trains characteristically exhibit long delay times, resulting in missed connections and late departures, and making efficient scheduling of yard operations impossible. The two figures below indicate the discrete and cumulative arrival distributions of inbound trains (broken down into eastbound and westbound trains) during the study period. The magnitude of inbound train delays is better understood by noting the following two points:

1. 50% of all eastbound trains arrive more than four hours late; and 50% of all westbound trains arrive more than five hours late; and

2. 10% of all eastbound, and nearly one quarter of all westbound trains arrive more than ten hours late.

Some explanations for the erratic nature of train arrivals are presented in Section 4.3.



Discrete Distribution of Inbound Train Arrival Delays Figure 9





### CHAPTER IV

# IMPLICATIONS OF STUDY RESULTS FOR RAILROAD OPERATING POLICIES

## 4.1 INTRODUCTION

The analysis of car movement performance has identified the major cause of unreliability as the wide disparity between scheduled and actual train performance. (The effects of late arrival or cancellation of inbound trains was discussed in sections 3.2 and 3.3. An example of the effect of outbound train cancellations was presented in section 3.3.3.) A discussion of the causes of, and possible solutions to, erratic train performance follows.

### 4.2 TRAIN CANCELLATIONS

It is clear from this study that the cancellation of trains because of a lack of resources (notably, locomotives and cabooses) is a major cause of erratic performance. Trains held in their originating yard can be expected to arrive late at their destinations. The late arrival of one train can cause delays to connecting trains, even though resources are available to move those trains. Trains which are not run at all can delay trains at other locations for lack of resources. As a result, train movements become traffic responsive (e.g. the number of loaded cars on each train determining which train will run) and only loosely follow schedules.

A lack of resources implies that shortages occur throughout the network. However, rail networks often exhibit a cyclic pattern of resource shortages, with shortages progressing across the railroad from one end to the other during the cycle. This pattern implies that the resource problem may be one not so much of scarcity, but of distribution.

One alternative is the strict compliance of train movements to schedules. Unfortunately, schedules are presently so designed as to make strict adherence at best extremely costly, at worst, impossible. The major problem arises from the inbalances built into the schedules the numbers of trains scheduled into and out of terminals are seldom equal, and over many rail links the numbers of trains in each direction do not balance. Naturally, any ensuing deficit of resources at a terminal must result in cancelled trains.

Train movement inbalance also requires that physical and human resources be transferred from points of surplus to points of deficit. Since crews are paid the same rate whether moving a train or deadheading to another terminal, and since locomotive operating costs are primarily dependent upon the ton-miles produced (and not the number

the number of trains run), there appears to be little possible justification for any inbalance in the number of train movements on links or into and out of terminals. (Even the curtailment of service on weekends appears to only be justified if balancing curtailments are possible in the reverse direction.)

The benefits accruing from a tightly controlled scheduling policy are not limited to a reduction in the number of trains delayed (or cancelled) due to resource limitations. As discussed in section 3.3.2 trains are often cancelled due to fluctuations in traffic volume, often resulting in delays not only to cars for that train but cars arriving later as well. A second result of train cancellations is the accentuating of traffic fluctuations for future yards - other trains may be cancelled for lack of traffic, or excessive demands (when a train is run the next day) may require traffic be left behind in the terminal. Thus, a "no-cancellation" policy would substantially reduce the need to drop cars because of excessive traffic and to run extra trains.

## 4.3 LATE TRAIN ARRIVALS

Up to this point, the discussion has revolved around the problem of train cancellations and delays due to resource limitations. Another problem is the irregular
performance of trains over road links. It became clear during the study that schedules for several trains were entirely unrealistic - arrival times for some trains were never within six or eight hours of schedule. Random delays, while explaining irregularities between the performance of trains on consecutive days, do not explain average delays of this magnitude. Two explanations for the very late arrival of trains at terminals follow:

1. Trains are delayed at their originating terminal (and thus arrive late at destinations even though no delays are encountered en route). An analysis of outbound train performance during this study adds weight to this hypothesis - the average delay in leaving the terminal for eastbound trains was 3.2 hours; for westbound trains, over 9 hours. Of the 15 trains regularly operated each day, 5 trains (4 of which were westbounds) had a minimum departure delay (for the entire study period) of more than 5 hours. (That westbound trains suffered high departure delays indicates that a lack of resources, and not the holding of trains for late arriving cars, is the cause of major terminal delays.)

2. Train schedules exhibit little relation to the amount of yard work a train performs en route - schedules are not amended to reflect changes in traffic blocks

handled, yard work performed, and in some cases, changes in the route of the train. The result is that over many routes trains making two, and sometimes three, stops are scheduled for less time than trains making no stops. Differences in yard layouts and train priorities can not explain inconsistencies of this magnitude. (Priority and drag freight trains have been excluded from this analysis.)

Thus, it appears that limited resources (locomotives and crews) are a major factor in both train cancellations and the late arrival of trains at terminals. Since these two factors account (directly or indirectly) for a vast majority of car delays, large reductions in transit time unreliability will result from a solution to resource limitations (through either the redistribution or the procurement of locomotives and crews).

#### CHAPTER V

## SUMMARY AND CONCLUSIONS

## 5.1 INTRODUCTION

This study was initiated to provide additional insight into the nature of rail freight transit time unreliability. The investigation centered on four areas:

1. The relationship of car movement performance through terminals to total transit time unreliability;

2. the causes of car delays in terminals;

3. the causal relationship between car movement performance and yard time parameters; and

4. the implications of the study findings for railroad operating policies.

## 5.2 SUMMARY

During its journey through a rail network, a car is consecutively aggregated with other traffic to form a train, moved to the next yard, switched, reaggregated, and so on until the car reaches its destination. Because of the serial nature of this process, even a low probability of delay at each terminal can result in wide dispersions in total transit time.

The analysis of car movement performance through a terminal produced the following major findings:

1. One-third of all loaded cars and two-thirds of all empty cars miss their scheduled outbound train connection. 2. Over two-thirds of all car delays are the result of the cancellation of outbound trains or the holding of cars in yards because of limitations on train capacity.

3. Cars which must be repaired, cars which are placed on an incorrect outbound train, and cars which are held because they lack destination information - delay types often sited as major causes of unreliability - account for only five percent of all car delays.

An investigation of the relation of yard time parameters to car movement performance revealed the overriding effect of late train arrivals upon the probability of a car's being available for its outbound connection. Because late trains often arrive out of phase with yard operations, cars on late trains often miss not only "tight" connections but also outbound trains which depart from the yard 12 to 15 hours after the actual arrival of the inbound train.

## 5.3 CONCLUSIONS

The results of this study indicate major reductions in transit time unreliability will only result from the improved consistency of line haul train operation. The erratic nature of train movements (both cancellations and late arrivals at terminals) appears to be the result of three factors:

1. scarcity, or poor distribution, of locomotives and crews;

2. poor scheduling; and

3. operating policies which attempt to minimize direct operating costs without regard to car movement performance.

# 5.4 FUTURE STUDY

Future research into car movement performance through terminals should be centered in two areas. First, the results of this study should be verified through the analysis of additional rail terminals. Second, resource utilization and the economics of train cancellation should be investigated if the rail unreliability problem is to be resolved.

#### APPENDIX I

A COMPUTER PROGRAM TO ANALYZE YARD CAR MOVEMENT RELIABILITY OBJECTIVE

The program is designed to aid the analysis of rail car movement unreliability. The program computes onschedule performance, classifies delays into three categories, and tables movement performance versus scheduled and actual yard time.

#### GENERAL CONSIDERATIONS

Throughout the development of this program, two considerations were paramount:

Core requirements for the program approach
150,000 bites. Reducing the number of car movement
classifications or the number of trains analyzed in each
run can reduce core requirements to the 128,000 bite
capacity standard on many second generation computers.
(These alternatives will be discussed in more detail below.)

2. The performance of both the yard and the trains entering and leaving the yard have a major effect upon the logic and structure of the program. Without prior knowledge of either of these factors, the program, of necessity, was designed to handle major irregularities in yard or train performance.

## INPUT STRUCTURE

Three groups of input are necessary for the running of this program:

1. A listing of scheduled inbound and outbound trains, and their scheduled arrival, or departure, time;

2. A listing of the closest outbound connection for each inbound train;

3. Inbound and outbound train data (symbol, actual arrival or departure time) for each car.

As mentioned above, this program is designed to classify car movements based upon scheduled performance. A first impulse, and - if certain conditions are met often a correct one, is to develop a connection table listing the scheduled inbound connections for each outbound train.<sup>1</sup> The difficulty with this approach lies in

A connection table could be developed as follows:

a. List of inbound trains (and their scheduled arrival time)

b. List of outbound trains, associated with each the latest connecting inbound train.

c. With extra trains (inbound) scheduled arrival would be set equal to actual arrival time and car performance determined based on the relation of this arrival time to the closest connection of the nex arriving (time-wise) inbound train.

d. Outbound extra trains would be assigned the latest inbound connection of the nearest earlier scheduled outbound train.

the necessary underlying assumptions:

1. Inbound (and outbound) trains consistently arrive at (and depart from) the yard close enough<sup>1</sup> to schedule that the program can determine which day's train the car is on. For example, if an inbound train is scheduled to arrive at 6PM and actually arrives at noon, is the train six hours early or eighteen hours late?

2. Actual train movements are consistent with schedules, e.g., a train scheduled to leave at 2AM is not actually leaving at 4PM and receiving additional traffic.

3. Symbols for trains are unique and all trains with symbols which are not listed in schedules are truly extras with no scheduled arrival (or departure) time.

4. Train symbols associated with car data are correctly recorded. (If the true train symbol is ABl and the train is incorrectly recorded as ACl, the train will be assumed to be an extra train (with no scheduled arrival time).

<sup>&</sup>lt;sup>1</sup> As long as a consistent rule can be applied to all inbound or outbound trains, train delays are not a serious problem. For example, if the maximum delay is 18 hours, and the earliest train arrival or departure is 6 hours, then this rule can be applied to all train times to determine scheduled arrival (or departure) day.

When these assumptions are invalid - as in the data set used for this study - a second approach is necessary. Each train in the data sample is listed, along with that train's actual and scheduled arrival (or departure) time. The structure of this input will be detailed below. REMOVING NON-SWITCH CARS

The data set used in this analysis included cards for not only those cars switched in the terminal, but also cabooses, cars on through trains, and block-switched cars. Cabooses were rejected by a check on the car type. (In the sample, cabooses were indicated by a "z" in the car-type column.) Through cars were rejected by checking the actual time of the car in the yard (actual departure time minus actual arrival time) against a minimum "switch time". For this study, all cars with a yard time of less than five hours were rejected as through cars. Some through cars are accepted using this approach (no cars actually switched in the yard were rejected), the number of misclassifications - less than .5% of all cars is too small to justify the construction of a table of through trains and block-switched train pairs. Only when a satisfactory cut-off time is impossible should a table be constructed.

#### LOCATION OF INBOUND AND OUTBOUND TRAIN SYMBOLS

The program searches the input list of outbound trains, and their associated actual and scheduled departure time to find a match (of both symbol and actual time) with the outbound train data on the card. If a match is recorded, the location of that outbound train on the input list is assigned to the car. If no match is found, the car's initial, number, destination, and inbound and outbound train (symbol and time) is listed with an associated error message "INVALID TRAIN SYMBOL". This message provides a check against mispunched input data.

As noted above, the number of inbound trains (symbol, actual and scheduled arrival time) must be limited to minimize core requirements. (The maximum number of inbound trains is 100.) Those inbound trains which, because of the delay in leaving the yard, must necessarily have carried only cars delayed due to cancellation or "other" reasons, are not listed. Cars which are not necessarily delayed (decision rule: yard time less than 48 hours) are matched with the input data just as with outbound trains. Cars which are delayed are handled as follows:

1. The input list of inbound train symbols is surveyed for a match with the inbound symbol for the car.

2. If a match is found, the car is assigned the

scheduled arrival hour (but not day) of the matched symbol for future calculations.

3. If no symbol match is located, the car is listed with the accompanying message - "DELAY - INVALID IB SYM" and rejected. The number of cars so classified is less than .3%.

#### CAR MOVEMENT

Nine car movement classes are used in this program: A. Cars moving in advance of their scheduled connection due to:

1. Early arrival of the inbound train (EARLY ARR) 2. Expedited movement through the terminal (YARD MOVE) 3. Late departure of the outbound train (LATE DEP) B. Cars making scheduled connection due to: 1. Normal yard performance (NORMAL) 2. Expedited yard performance (YARD MOVE) 3. Late departure of the outbound train (LATE DEP) C. Cars missing their scheduled connection due to: 1. Late arrival of the inbound train (LATE ARR) 2. The outbound train's not carrying that car's classification block, or not running (OB BUILDUP) 3. Other reasons (including rips, no-bills, and empty cars being cleaned)

(OTHER)



YDTIMS: Scheduled Yard Time YDTIMA: Actual Yard Time YDTMLA: Late Arrival Yard Time  $t_{SA}$ : Scheduled Arrival of Inbound Train  $t_{AA}$ : Actual Arrival of Inbound Train  $t_{SD}$ : Scheduled Departure of Outbound Train  $t_{AD}$ : Actual Departure of Outbound Train

Cars are classified as follows:

YDTIMS (IN HOURS)

|            |    | 0                                                     | 7 | 8                        | 3                                      | 1 | 32                                    |
|------------|----|-------------------------------------------------------|---|--------------------------|----------------------------------------|---|---------------------------------------|
| YDTIMA     | 0  | ADVANCED-<br>YARD MOVE<br>OR<br>LATE DEP <sup>1</sup> |   | ON<br>YARD<br>OI<br>LATE | TIME-<br>MOVE<br>R<br>DEP <sup>1</sup> |   | DELAYED-<br>LATE ARR                  |
| (IN HOURS) | 8- | ADVANCED-<br>EARLY<br>ARRIVAL                         |   | ON<br>NOI                | TIME-<br>RMAL                          |   | DELAYED-<br>OB BUILDUP<br>OR<br>OTHER |

A car is classified as "due to late departure" if YDTMLA is greater than seven hours. Otherwise, the car is classified as "due to expedited yard move".

There is no analytic method to distinguish between cars delayed due to outbound train cancellation or other reason (rips, no-bills, etc). The heuristic rule used in this program was to classify cars as "due to outbound buildup" if YDTIMA was less than 78 hours. While resulting in some misclassifications, this rule correctly classified over 90% of all cars in these categories. (It should be noted that all cars in these categories are listed to enable a manual check of classifications and to identify cars actually "delayed due to late switching".)

#### OUTPUT

To provide meaningful results, all YDTIMS and YDTIMA values are corrected (by subtracting the proper number of days) so that YDTIMS falls within the 8 to 31 hour range of published schedules. If a delayed car has for example YDTIMS = 65 hours and YDTIMA = 58 hours (the inbound train arrived seven hours late), 2x24 = 48 hours would be subtracted from each parameter, yielding YDTIMS = 17 hours, and YDTIMA = 10 hours.

In addition, each car is classified as either eastbound, westbound or local, based upon the structure of the input listing of inbound and outbound trains:

1. If the IB symbol location is between 70 and 100,

the car is classified as "local".

2. Otherwise, the outbound train location determines the classification: 1 through 15, eastbound; 16 through 30, westbound; and 31 through 45 local. (Outbound train symbols are restricted to 45 entries.)

Three outputs are produced from the program:

1. A listing of all cars (including destination and IB and OB train information) classified as "Delay due to OB buildup", and "Delay due to other reasons", and all cars rejected as "Invalid Train Symbol" or "Delay - Invalid IB Symbol". This listing allows a manual check of the correctness of input train listings and the classification of delayed cars.

2. An inbound-to-outbound train mapping of all cars moving in advance of schedule, on schedule or delayed due to late arrival. This table identifies major connections and indicates the performance of cars on individual trains.

3. Sixteen tables of car movement performance versus scheduled and actual yard time. The output for this table is also punched on cards to provide input for the summary program.

## SUMMARY PROGRAM

The restrictions on the number of inbound and outbound trains which could be listed in the main program

made it impossible to use more than one day's data for each run. A second program takes the output of NDAYS punched output from the main program, adds the proper figures from each table and recalculates percentage performance.

The performance of cars delayed due to late switching and any corrections to the classification of "OB BUILDUP" or "OTHER" delays must be manually added to the cards output from the main program. As constructed, input for this program must be arranged such that the NDAYS cards for each row are grouped together instead of the total punch output of each run from the main program being input as a block.

# APPENDIX II

# LISTING OF MAIN PROGRAM

|            | DEALSO CONTACT DEE UN ON UN CARNUM                                            | 0001              |
|------------|-------------------------------------------------------------------------------|-------------------|
|            | REAL FORE NETONS (ARDES(3) IBSYM. 7BLANK/17 1/ E/IE// IBSARR(100)/            | 0002              |
|            | 110001 1/ DRSDED(45)/45#1 1/                                                  | 0003              |
|            | INTECEP#2 VDTIME, IBHARR(100)/100#0/. IBDARR(100)/100#0/,                     | 0004              |
|            | 1084058(45)/45*0/.080058(45)/45*0/.08SLOC.18SLOC.08HACT(45).                  | 0005              |
|            | 20BCACT(45), IBHACT(100), IBDACT(100), OBHSCH, IBHSCH, OBDSCH, IBDSCH,        | 0006              |
|            | 3VDTIMS, VDTMLA, MOVIE, 0TLTCT(45,100)/4500×0/.0BH0LL(45)/45×0/,              | 0007              |
|            | 40POTI 1 ( 45) / 45×0/ - 0B0TL E ( 45) / 45×0/ -1 ATCT ( 45, 100) / 4500×0/.  | 0008              |
|            | 5 DBLATL(45)/45×0/, OBLATE(45)/45×0/, TOTLD/0/.TOTEMP/0/.                     | 0009              |
|            | STOCOLE(18)/18*0/, TOCOLW(18)/18*0/, TOCOLI(18)/18*0/, TLDXD, TEMPXD,         | 0010              |
|            | 71 (33, 9) / 297*0/ TROW, TOTAL, IPC(33, 9) / 297*0/ Y. IF/0/ LOAD, EMPTY,    | 0011              |
|            | BDELAVI, TIBOB(45,100)/4500*0/, YDTIMA, ADVECT(45,100)/4500*0/,               | 0012              |
|            | 008ADEL (45)/45×0/                                                            | 0013              |
|            | INTEGER#2 OBHOLE(45)/45#0/.OBOTHL(45)/45#0/.OBOTHE(45)/45#0/.                 | 0014              |
|            | 1 TOBL (45) / 45*0/, TOBE(45) / 45*0/, OBHR, OBDAY, DELAY, TCOL (18) / 18*0/, | 0015              |
|            | 2 OBADEE(45)/45*0/.ADVYCT(45.100)/4500*0/,OBADYL(45)/45*0/,                   | 0016              |
|            | 308ADYE(45)/45*0/.ADVLCT(45.100)/4500*0/.CBADLL(45)/45*0/.                    | 0017              |
|            | 408ADL F(45)/45*0/.0TNCT(45,100)/4500*0/.0BOTNL(45)/45*0/.                    | 00180             |
|            | 50B0TNE(45)/45*0/,0TYDCT(45,100)/4500*0/,0B0TYL(45)/45*0/,                    | 0019 <sup>N</sup> |
|            | 6SPERW(31,18)/558*0/, APERW(33,18)/594*0/, SPERE(31,18)/558*0/,               | 0020              |
|            | 7APERE(33,18)/594*0/, SPERL(31,18)/558*0/, APERL(33,18)/594*0/,               | 0021              |
|            | 8SPERF(31,18)/558*0/, APERF(33,18)/594*0/, PSPER(31,18)/558*0/,               | 0022              |
|            | 90B0TYE(45)/45=0/                                                             | 0023              |
|            | WRITE(6,11)                                                                   | 0024              |
| 11         | FORMAT('1', 'SELKIRK: FEBRUARY 22,1971'/)                                     | 0025              |
| C water by | READ THE INBOUND TRAINS                                                       | 0026              |
|            | READ(5,17)((IBSARR(J), IBHACT(J), IBDACT(J), IBHARR(J), IBDARR(J)),           | 0027              |
|            | 1J=1,100)                                                                     | 0028              |
| 17         | FORMAT(5(A4,412))                                                             | 0029              |
| [湯非常       | READ THE LISTING FOR CUTBOUND TRAINS                                          | 0030              |
|            | READ(5,17)((OBSDEP(J),OBHACT(J),OBDACT(J),OBHDEP(J),OBDDEP(J)),               | 0031              |
|            | 1J=1,45)                                                                      | 0032              |
| Casa       | READ THE INPUT DATA CARDS                                                     | 0033              |
| 100        | REAC(9,1, END=500)CHAR, CARINT, CARNUM, LORE, CARTYP, NETONS, CONTNT,         | 0034              |
|            | 1 CARDES, OFFJUN, ONJUN, IBSYM, IBHR, IBDAY, OBSYM, OBHR, OBDAY               | 0035              |
| 1          | FORMAT(A1,A4,A6,A1,A2,A3,A6,2A4,A3,9X,2A8,5X,2(A4,2I2))                       | 0036              |

|        | IF=0                                                                            | 0037  |
|--------|---------------------------------------------------------------------------------|-------|
| C***   | IF THIS CAR IS A CABIN CAR (CARTYP="Z "), SKIP TO NEXT CARD                     | 0038  |
|        | IF (CARTYPOEQOZBLANK)GO TO 100                                                  | 0039  |
| Carate | IF THIS CAR IS ON A THRU TRAIN OR IS BLOCK SWITCHED, SKIP TO THE                | 0040  |
| Carke  | NEXT CARD (DECISION RULE-TIME IN YARD IS LESS THAN 4 HOURS)                     | 0041  |
|        | YDTIMA=24# (OBDAY-IBDAY) + (OBHR-IBHR)                                          | 0042  |
|        | IF (YDTIMA.LT.4)GO TO 100                                                       | 0043  |
|        | IF(YDTIMA.GE.48)GO TO 5                                                         | 0044  |
| C字家客   | FIND THE LOCATION IN INPUT OF INBOUND AND OUTBOUND TRAIN SYMBOLS                | 0045  |
|        | DO 4 J=1,100                                                                    | 0046  |
|        | IF(IBHARR(J) EQ 25)GO TO 545                                                    | 0047  |
|        | IF (IBSYMONEO IBSARR (J) OR O IBHRONEO IBHACT (J) OR O IBDAY ONEO IBDACT (J))   | 0048  |
|        | 1GO TO 4                                                                        | 0049  |
|        | IBSLOC=J                                                                        | 0050  |
|        | GO TO 5                                                                         | 0051  |
| 4      | CONTINUE                                                                        | 0052  |
|        | GO TO 545                                                                       | 0053  |
| 5      | DO 6 J=1,45                                                                     | 00540 |
|        | IF(OBHDEP(J) EQ. 25)GO TO 545                                                   | 00550 |
|        | IF (OBSYM, NE, OBSDEP (J), OR, OBHR, NE, OBHACT (J), OR, OBCAY, NE, OBDACT (J)) | 0056  |
|        | 1GO TO 6                                                                        | 0057  |
|        | OBSLOC=J                                                                        | 0058  |
|        | IF(YDTIMA.GE.48)GO TO 351                                                       | 0059  |
|        | GO TO 8                                                                         | 0060  |
| 6      | CONTINUE                                                                        | 0061  |
| 545    | WRITE(6,2) CHAR, CARINT, CARNUM, LORE, CARTYP, NETONS, CONTNT, CARDES,          | 0062  |
|        | 10FFJUN, ONJUN, IBSYM, IBHR, IBDAY, OBSYM, OBHR, OBDAY                          | 0063  |
| 2      | FORMAT(2X, INVALID TRAIN SYMBOL', 5X, A1, A4, A6, A1, A2, A3, A6, 2A4, A3,      | 0064  |
|        | 19X,2A8,5X,2(A4,2I2))                                                           | 0065  |
|        | GO TO 100                                                                       | 0066  |
| 351    | DO 352 J=1,100                                                                  | 0067  |
|        | IF(IBSYMONEO IBSARR(J))GO TO 352                                                | 0068  |
|        | IBSLOC=J                                                                        | 0069  |
|        | 1F=1                                                                            | 0070  |
|        | GO TO 802                                                                       | 0071  |
| 352    | CONTINUE                                                                        | 0072  |

|              | WRITE(6,9) CHAR, CARINT, CARNUM, LORE, CARTYP, NETONS, CONTNT, CARDES,      | 0073   |
|--------------|-----------------------------------------------------------------------------|--------|
| 0            | EDPMAT(2X, DELAY-INVALID IB SYM'.5X.A1.A4.A6.A1.A2.A3.A6.2A4.A3.            | 0075   |
| 3            | 10V 249 5V 2(44.212))                                                       | 0076   |
|              |                                                                             | 0077   |
| Cilesi le    | DEETNE SCHEDINED ARRIVAL CAV                                                | 0078   |
| Capacity     | IDHCH-IDHADD/IDCIACIAL CAT                                                  | 0079   |
| 9            |                                                                             | 0080   |
| Cale de la   | IDUSCH-IDUARKTIDSLUCT                                                       | 0081   |
| Cability in  | DEFINE SCHEDOLED DEPARTORE DAT                                              | 0082   |
|              |                                                                             | 0083   |
| Color In In  | DECIME SCHEDULED VARD TIME (VOTIMS), ACTUAL ARRIVAL TO SCHEDULED            | 0.084  |
| Case         | DEPINE SCHEDULED TARD TIME (TOTINS), ACTUAL WARD TIME (VOTIMA)              | 0085   |
| Calender de  | VETING-26*/DRDSCH_IRDSCH)+(DRHSCH-IRHSCH)                                   | 0086   |
|              | VDTIME = 24 # (OBDSCH = IBDAV) + (OBHSCH = IBHR)                            | 0087   |
| C-34 14 14   | DETERMINE CAR MOVEMENT DEDERRMANCE                                          | 0088   |
| Constants    | LE (VDTIMS LE 31) GO TO 800                                                 | 0089   |
|              | IE(VDTIME_LE_31)60 TO 170                                                   | 0090   |
| 902          | $IE(VDTIMA_LT_78)CD TO 180$                                                 | 0091 + |
| 002          |                                                                             | 0092   |
| 90.0         | LE(VOTIMS, LT, 8)CO TO 801                                                  | 0093   |
| 500          | IE (VDTIME, CE, 8) CO TO 90                                                 | 0094   |
|              | $I = (V \cap T = M \cap U = 212)$                                           | 0095   |
|              |                                                                             | 0096   |
| 801          | LE(VDTIME GE 8)GD TO 15                                                     | 0097   |
| COL          | LE(VDTIMA-LT-8)GD TO 13                                                     | 0098   |
|              |                                                                             | 0099   |
| C riggit lig | CAR ADVANCED DUT TO FARLY ARRIVAL OF IN TRAIN                               | 0100   |
| 15           | IE (LORE EQ. E) GO TO 16                                                    | 0101   |
| 1            | $\Delta D V = CT (DBSLOC, IBSLOC) = \Delta D V = CT (DBSLOC, IBSLOC) + 100$ | 0102   |
|              | DBADEL (DBSLOC) = DBADEL (DBSLOC) + 1                                       | 0103   |
|              | MOVIF=1                                                                     | 0104   |
|              | G0 T0 101                                                                   | 0105   |
| 16           | ADVECT(OBSLOC, IBSLOC)=ADVECT(OBSLOC, IBSLOC)+1                             | 0106   |
|              | DEADEE(OBSLOC)=OBADEE(OBSLOC)+1                                             | 0107   |
|              | MOVLE=2                                                                     | 0108   |

| C + + +  | GO TO 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0109  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1344     | TELLORE EO ENCO TO 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0111  |
| 10       | $\frac{1}{1000} = \frac{1}{1000} = 1$ | 0112  |
|          | ADVI(aBSLOC) = aBADVI(aBSLOC) + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0113  |
|          | MOVIE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0114  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0115  |
| 18       | ADVYCT(DBSLOC, IBSLOC) = ADVYCT(DBSLOC, IBSLOC) + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0116  |
| 10       | $\square BADYE(\square BSL \square C) = \square BADYE(\square BOL \square C) + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0117  |
|          | MOVI E=4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0118  |
|          | 60 TO 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0119  |
| Casa     | CAR WAS ADVANCED DUE TO LATE DEPARTURE OF OB TRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0120  |
| 19       | IE(IORE EQ E)GO TO 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0121  |
|          | ADVLCT(OBSLOC, IBSLOC)=ADVLCT(OBSLOC, IBSLOC)+100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0122  |
|          | OBADLL(OBSLOC)=OBADLL(OBSLOC)+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0123  |
|          | MOVLE=5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0124  |
|          | GO TO 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0125  |
| 20       | ADVLCT(OBSLOC, IBSLOC) = ADVLCT(OBSLOC, IBSLOC) +1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01260 |
|          | DBADLE(OBSLOC)=OBADLE(OBSLOC)+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01270 |
|          | MOVLE=6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0128  |
|          | GO TO 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0129  |
| C***     | CAR MADE PROPER CONNECTION DUE TO NORMAL YARD HANDLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0130  |
| 90       | IF(LORE EQ E)GO TO 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0131  |
|          | UTNCT(UBSLOC, IBSLOC)=UTNCT(UBSLOC, IBSLUC)+100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0132  |
|          | OBOTNL(OBSLOC)=OBOTNL(OBSLOC)+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0133  |
|          | MOVLE=7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0134  |
|          | GO TO 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0135  |
| 165      | OTNCT(OBSLOC, IBSLOC) = OTNCT(OBSLOC, IBSLOC) +1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0136  |
|          | OBOTNE(OBSLOC)=OBOTNE(OBSLOC)+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0137  |
|          | MOVLE=8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0138  |
|          | GO TO 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0139  |
| Caracter | CAR MADE PROPER CONNECTION DUE TO EXPEDITED YARD MOVEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0140  |
| 212      | IF (LORE, EQ, E)GO TO 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0141  |
|          | OTYDCT(OBSLOC, IBSLOC) = OTYDCT(OBSLOC, IBSLOC) + 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0142  |
|          | UBOTYL(OBSLOC)=OBOTYL(OBSLOC)+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0143  |
|          | MOVLE=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0144  |

|      | GO TO 101                                                              | 0145  |
|------|------------------------------------------------------------------------|-------|
| 213  | DTYDCT(OBSLOC, IBSLOC)=OTYDCT(OBSLOC, IBSLOC)+1                        | 0146  |
|      | OBOTYE(OBSLOC)=OBOTYE(OBSLOC)+1                                        | 0147  |
|      | MOVLE=10                                                               | 0148  |
|      | GO TO 102                                                              | 0149  |
| Casa | CAR MADE PROPER CONNECTION DUE TO LATE OB DEPARTURE                    | 0150  |
| 210  | IF(LORE EQ. E)GO TO 211                                                | 0151  |
|      | OTLTCT(OBSLOC, IBSLOC)=OTLTCT(OBSLOC, IBSLOC)+100                      | 0152  |
|      | OBOTLL(OBSLOC)=OBOTLL(OBSLOC)+1                                        | 0153  |
|      | MOVLE=11                                                               | 0154  |
|      | GO TO 101                                                              | 0155  |
| 211  | OTLTCT(OBSLOC, IBSLOC)=OTLTCT(OBSLOC, IBSLOC)+1                        | 0156  |
|      | OBOTLE(OBSLOC)=OBOTLE(OBSLOC)+1                                        | 0157  |
|      | MOVLE=12                                                               | 0158  |
|      | GO TO 102                                                              | 0159  |
| Casa | CAR WAS DELAYED DUE TO LATE ARRIVAL OF INBOUND TRAIN                   | 0160  |
| 170  | IF(LORE EQ E)GO TO 175                                                 | 0161  |
|      | LATCT (OBSLOC, IBSLOC)=LATCT (OBSLOC, IBSLOC)+100                      | 01627 |
|      | OBLATL(OBSLOC)=OBLATL(OBSLOC)+1                                        | 01630 |
|      | MOVLE=13                                                               | 0164  |
|      | GO TO 101                                                              | 0165  |
| 175  | LATCT (OBSLOC, IBSLOC) = LATCT (OBSLOC, IBSLOC) +1                     | 0166  |
|      | OBLATE(OBSLOC)=OBLATE(OBSLOC)+1                                        | 0167  |
|      | MOVLE=14                                                               | 0168  |
|      | GU TU 102                                                              | 0169  |
| て認識者 | CAR WAS DELAYED - HELD FOR BUILDUP OF OUTBOUND EXTRA TRAIN             | 0170  |
| 180  | IF (YDIIMA <sub>o</sub> GE <sub>o</sub> 78) GU IU 215                  | 0171  |
|      | WRITE(6,89)CHAR, CARINT, CARNUM, LURE, CARTYP, NETUNS, CUNTNT, CARDES, | 0172  |
| 20   | LUFFJUN, UNJUN, IBSYM, IBHR, IBUAY, UBSYM, UBHR, UBUAY                 | 0173  |
| 39   | FURMATIZX, DELAY-UB BUILDUP , 5X, AI, A4, A6, AI, AZ, A3, A6, ZA4, A3, | 0174  |
|      | 19X,2A0,3X,2(A4,212))                                                  | 0175  |
|      |                                                                        | 0176  |
|      |                                                                        | 0170  |
|      |                                                                        | 0178  |
| 184  |                                                                        | 0100  |
| 201  | 20105510035007-001055(0035007+1                                        | 0100  |

|            | MOVLE=16                                                                | 0181  |
|------------|-------------------------------------------------------------------------|-------|
| Calendaria | CAD WAS DELAVED EDD OTHED DEASONS                                       | 0102  |
| 216        | UPITE (6.3) CHAR, CARINT, CARNUM, LORE, CARTVR, NETONS, CONTNT, CARDES, | 0184  |
| 210        | TOEE HIN. ON HIN. TRSVM. TRUD. TRDAY, ORSVM. ORUP. ORDAV                | 0104  |
| 2          | CODMATION INSTRATIONALIONALIONALIONALIONALIONALIONALIONAL               | 0105  |
| 5          | 12AG EV 2(AA 212))                                                      | 0107  |
|            | 12AC, DA, 21AA, 212/)                                                   | 0107  |
|            |                                                                         | 0188  |
|            |                                                                         | 0189  |
|            | MUVLE=17                                                                | 0190  |
| 0.0.3      |                                                                         | 0191  |
| 201        | OBOTHE(OBSLOC)=OBOTHE(OBSLOC)+1                                         | 0192  |
|            | MUVLE=18                                                                | 0193  |
| -          | GU TU 779                                                               | 0194  |
| Catalitat  | OUTPUT VARIABLES INCLUDING COUNT                                        | 0195  |
| 101        | TLDXD=TLDXD+1                                                           | 0196  |
|            | TIBOB (OBSLOC, IBSLOC) = TIBOB (OBSLCC, IBSLOC) + 100                   | 0197  |
| 778        | TOTLD=TOTLD+1                                                           | 01980 |
|            | TOBL(OBSLOC)=TOBL(OBSLOC)+1                                             | 0199~ |
|            | GO TO 103                                                               | 0200  |
| 102        | TEMPXD=TEMPXD+1                                                         | 0201  |
|            | TIBOB (OBSLOC, IBSLOC) = TIBOB (OBSLOC, IBSLOC) + 1                     | 0202  |
| 779        | TOTEMP=TOTEMP+1                                                         | 0203  |
|            | TOBE(OBSLOC)=TOBE(OBSLOC)+1                                             | 0204  |
| 103        | TCOL(MOVLE)=TCOL(MOVLE)+1                                               | 0205  |
|            | IF(IF <sub>0</sub> EQ <sub>0</sub> 1)GO TO 354                          | 0206  |
|            | IF(YDTIMS.LE.7)GD TO 955                                                | 0207  |
|            | IF (YDTIMS.LE. 31) GO TO 903                                            | 0208  |
|            | IF(YDTIMSoLEo55)GD TO 951                                               | 0209  |
|            | IF(YDTIMSoleo79)GD TO 952                                               | 0210  |
|            | YDTIMS=31                                                               | 0211  |
|            | YDTIME=33                                                               | 0212  |
|            | GO TO 904                                                               | 0213  |
| 955        | YDTIMS=YDTIMS+24                                                        | 0214  |
|            | YDTIME=YDTIME+24                                                        | 0215  |
|            | GO TO 903                                                               | 0216  |
|            |                                                                         |       |

| 951  | YDTIMS=YDTIMS-24                                                                                                         | 0217   |
|------|--------------------------------------------------------------------------------------------------------------------------|--------|
|      | YDTIME=YDTIME-24                                                                                                         | 0218   |
|      | GU TU 903                                                                                                                | 0219   |
| 952  | YDTIMS=YDTIMS-48                                                                                                         | 0220   |
|      | YDTIME=YDTIME-48                                                                                                         | 0221   |
| 903  | IF (YDTIME LE 31)GO TO 104                                                                                               | 0222   |
|      | IF (YDTIME GE 35) GU TU 905                                                                                              | 0223   |
|      | YDTIME=32                                                                                                                | 0224   |
|      | GO TO 104                                                                                                                | 0225   |
| 905  | YDTIME=33                                                                                                                | 0226   |
| 104  | IF (YDTIMS.GE.8)GO TO 131                                                                                                | 0227   |
|      | YDTIMS=8                                                                                                                 | 0228   |
| 131  | IF (YDTIME. GE. 1)GO TO 904                                                                                              | 0229   |
|      | YDTIME=1                                                                                                                 | 0230   |
| 904  | SPERF (YDTIMS, MOVLE) = SPERF (YDTIMS, MOVLE) + 1                                                                        | 0231   |
|      | APERF (YDTIME, MOVLE) = APERF (YDTIME, MOVLE) +1                                                                         | 0232   |
| 354  | IF (OBSLOC <sub>o</sub> GE <sub>o</sub> 31 <sub>o</sub> OR <sub>o</sub> IBSLOC <sub>o</sub> GE <sub>o</sub> 71)GO TO 921 | 0233   |
|      | IF(OBSLOCoLTo16oORoOBSLOCoGEo44)GO TO 920                                                                                | 023401 |
|      | TDCOLW(MOVLE)=TDCCLW(MOVLE)+1                                                                                            | 023500 |
|      | IF(IF <sub>0</sub> EQ <sub>0</sub> 1)GO TO 100                                                                           | 0236   |
|      | SPERW (YDTIMS, MOVLE) = SPERW (YDTIMS, MOVLE) +1                                                                         | 0237   |
|      | APERW (YDTIME, MOVLE) = APERW (YDTIME, MOVLE) +1                                                                         | 0238   |
|      | GO TO 100                                                                                                                | 0239   |
| 920  | TDCOLE(MOVLE)=TDCOLE(MOVLE)+1                                                                                            | 0240   |
|      | IF(IF <sub>0</sub> EQ <sub>0</sub> 1)GO TO 100                                                                           | 0241   |
|      | SPERE (YDTIMS, MOVLE) = SPERE (YDTIMS, MOVLE) +1                                                                         | 0242   |
|      | APERE (YDTIME, MOVLE) = APERE (YDTIME, MOVLE) +1                                                                         | 0243   |
| 1    | GO TO 100                                                                                                                | 0244   |
| 921  | TDCOLL(MOVLE)=TDCOLL(MCVLE)+1                                                                                            | 0245   |
|      | IF(IF <sub>0</sub> EQ <sub>0</sub> 1)GO TO 100                                                                           | 0246   |
|      | SPERL (YDTIMS, MOVLE)=SPERL (YDTIMS, MOVLE)+1                                                                            | 0247   |
|      | APERL (YDTIME, MOVLE) = APERL (YDTIME, MOVLE) +1                                                                         | 0248   |
|      | GU TU 100                                                                                                                | 0249   |
| Casa | FINAL OUTPUT-INBOUND TO CUTBCUND MAPPING                                                                                 | 0250   |
| 500  | WRITE(6,11)                                                                                                              | 0251   |
|      | WRITE(6,980)                                                                                                             | 0252   |

| 980 | FORMAT(1x, 'PERFORMANCE OF CARS MOVING BETWEEN GIVEN INBOUND AND OU<br>1TBOUND TRAINS'//) | 0253<br>0254 |
|-----|-------------------------------------------------------------------------------------------|--------------|
|     | N = 5                                                                                     | 0255         |
|     | WRITE(6,981)                                                                              | 0256         |
| 981 | FORMAT(1X, OUTBOUND TRAIN 1/2X, SYMB, 3X, SCH DEP, 1X, ACT DEP, 1X,                       | 0257         |
|     | 1 DELAY /11X, "HR", 1X, "DAY", 2X, "HR", 1X, "DAY", 2X, "HRS"/4X, "INBOUND TR             | 0258         |
|     | 2AINS',17X, 'CARS ADVANCED DUE TO:',8X, 'CARS ON SCHEDULE DUE TO:',                       | 0259         |
|     | 36X, "CARS DELAYED DUE TO: ", 11X, "ROW"/4X, "SYMB", 1X, "SCH ARR", 1X,                   | 0260         |
|     | 4"ACT ARR",1X, "DELAY",1X, "EARLY ARR",1X, "YARD MOVE",2X, "LATE DEP",                    | 0261         |
|     | 53X, 'NORMAL', 2X, 'YARD MOVE', 2X, 'LATE DEP', 2X, 'LATE ARR', 1X, 'OB BUIL              | 0262         |
|     | 6DUP",2X, "OTHER", 5X, "TOTALS"/10X, "HR", 1X, "DAY", 2X, "HR", 1X, "DAY", 2X,            | 0263         |
|     | 7"HRS",                                                                                   | 0264         |
|     | 83X, "LDS", 1X, "EMP", 3X, "LDS", 1X, "EMP", 3X, "LDS", 1X, "EMP", 3X,                    | 0265         |
|     | 9 "LDS",1X, "EMP",3X, "LDS",1X, "EMP",3X, "LDS",1X, "EMP",3X,                             | 0266         |
|     | 1 "LDS",1X, "EMP",3X, "LDS",1X, "EMP",3X, "LDS",1X, "EMP",3X,                             | 0267         |
|     | 2 *LDS*,1X,*EMP*/)                                                                        | 0268         |
|     | DO 609 J=1,45                                                                             | 0269         |
|     | IF(NoLTo 47)GO TO 834                                                                     | 0270         |
|     | WRITE(6,11)                                                                               | 0271         |
|     | WRITE(6,981)                                                                              | 02720        |
|     | N=3                                                                                       | 0273         |
| 834 | IF(TOBL (J) EQ. O. AND. TOBE (J) EQ. O)GO TO 609                                          | 0274         |
|     | IF(OBHDEP(J) EQ. 25)GO TO 700                                                             | 0275         |
|     | $DELAY = 24 \times (OBDACT(J) - OBDDEP(J)) + (OBHACT(J) - OBHDEP(J))$                     | 0276         |
|     | WRITE(6,821)OBSDEP(J),OBHDEP(J),OBDDEP(J),OBHACT(J),OBDACT(J),                            | 0277         |
|     | 1DELAY, OBADEL(J), OBADEE(J), OBADYL(J), OBADYE(J), OBADLL(J), OBADLE(J),                 | 0278         |
|     | 20BOTNL(J),OBOTNE(J),OBOTYL(J),OBOTYE(J),OBOTLL(J),OBOTLE(J),                             | 0279         |
|     | 30BLATL(J),OBLATE(J),OBHOLL(J),OBHOLE(J),OBOTHL(J),OBOTHE(J),                             | 0280         |
|     | 4TOBL(J), TOBE(J)                                                                         | 0281         |
| 821 | FORMAT(// 2X,A4,2X,5(2X,I2),3X,10(I3,1X,I3,3X)/)                                          | 0282         |
|     | N=N+4                                                                                     | 0283         |
|     | DO 610 K=1,100                                                                            | 0284         |
|     | IF(IBHARR(K) EQ. 25)GO TO 600                                                             | 0285         |
|     | IF(TIBOB(J,K) EQ. 0)GO TO 610                                                             | 0286         |
|     | LL1 =LOAD (ADVECT(J,K))                                                                   | 0287         |
|     | LE1 = EMPTY(ADVECT(J,K))                                                                  | 0288         |

|     | LL2 = LOAD (ADVYCT(J,K))                                                | 0289  |
|-----|-------------------------------------------------------------------------|-------|
|     | LE2 = EMPTY(ADVYCT(J,K))                                                | 0290  |
|     | LL3 =LOAD (ADVLCT(J,K))                                                 | 0291  |
|     | LE3 = EMPTY(ADVLCT(J,K))                                                | 0292  |
|     | LL4 =LOAD (OTNCT (J,K))                                                 | 0293  |
|     | LE4 = EMPTY(OTNCT (J,K))                                                | 0294  |
|     | LL5 =LOAD (OTYDCT(J,K))                                                 | 0295  |
|     | LE5 = EMPTY(OTYDCT(J,K))                                                | 0296  |
|     | LL6 =LOAD (OTLTCT(J,K))                                                 | 0297  |
|     | LE6 = EMPIY(OTLTCT(J,K))                                                | 0298  |
|     | LL7 = LOAD (LATCT (J,K))                                                | 0299  |
|     | LE7 = EMPTY(LATCT (J,K))                                                | 0300  |
|     | LL10=LOAD (TIBOB (J,K))                                                 | 0301  |
|     | LE10=EMPTY(TIBOB (J,K))                                                 | 0302  |
|     | DELAYI=24*(IBDACT(K)-IBDARR(K))+(IBHACT(K)-IBHARR(K))                   | 0303  |
|     | WRITE(6,822)IBSARR(K),IBHARR(K),IBDARR(K),IBHACT(K),IBDACT(K),          | 0304  |
|     | 1DELAYI, LL1, LE1, LL2, LE2, LL3, LE3, LL4, LE4, LL5, LE5, LL6, LE6,    | 0305  |
|     | 2LL7,LE7,LL10,LE10                                                      | 0306  |
| 322 | FORMAT(4x, A4, 5(1x, I3), 3x, 7(I3, 1x, I3, 3x), 20x, I3, 1x, I3)       | 0307  |
|     | N=N+1                                                                   | 03080 |
|     | IF(NoLTo 51)GO TO 610                                                   | 0309  |
|     | WRITE(6,11)                                                             | 0310  |
|     | WRITE(6,981)                                                            | 0311  |
|     | N=3                                                                     | 0312  |
| 10  | CONTINUE                                                                | 0313  |
| 90  | CONTINUE                                                                | 0314  |
| 00  | WRITE(6,11)                                                             | 0315  |
|     | WRITE(6,470)                                                            | 0316  |
| 70  | FORMAT(2X, 'SUMMARY TABLE OF INBOUND TO CUTBOUND TRAIN MAPPING'///)     | 0317  |
|     | WRITE(6,469)                                                            | 0318  |
| 69  | FORMAT(35X, *CARS ADVANCED DUE TO:*,8X, *CARS ON SCHEDULE DUE TO:*,     | 0319  |
|     | 16X, CARS DELAYED DUE TO: 11X, RCW1/                                    | 0320  |
|     | 2 31X, 'EARLY ARR', 1X, 'YARD MOVE', 2X, 'LATE DEP',                    | 0321  |
|     | 33X, NORMAL', 2X, YARD MOVE', 2X, LATE DEP', 2X, LATE ARR', 1X, OB BUIL | 0322  |
|     | 4DUP", 2X, "OTHER", 5X, "TOTALS"/29X,                                   | 0323  |
|     | 53X, "LDS", 1X, "EMP", 3X, "LDS", 1X, "EMP", 3X, "LDS", 1X, "EMP", 3X,  | 0324  |

|      | 6 "LDS",1X, "EMP",3X, "LDS",1X, "EMP",3X, "LDS",1X, "EMP",3X,<br>7 "LDS",1X, "EMP",3X, "LDS",1X, "EMP",3X, "LDS",1X, "EMP",3X, | 0325<br>0326 |
|------|--------------------------------------------------------------------------------------------------------------------------------|--------------|
|      | 8 "LDS",1X, "EMP")                                                                                                             | 0327         |
|      | WRITE(6,823)((TCOL(MOVLE),MOVLE=1,18),TOTLD,TOTEMP)                                                                            | 0328         |
| 823  | FORMAT(//4X, COLUMN TOTALS: 12X, 10(14, 14,2X))                                                                                | 0329         |
| 010  | TROW=TOTID                                                                                                                     | 0330         |
|      | .1=1                                                                                                                           | 0331         |
|      | DD 526 MOVLE=1.17.2                                                                                                            | 0332         |
|      | I(1, I) = TCOI(MOVIE)                                                                                                          | 0333         |
|      |                                                                                                                                | 0334         |
| 526  | CONTINUE                                                                                                                       | 0335         |
| 120  | IEIN=3                                                                                                                         | 0336         |
|      | K=0                                                                                                                            | 0337         |
|      | CO TO 521                                                                                                                      | 0338         |
| 51.8 | WRITE(6, 471)(IPC(1, 1), 1=1, 9)                                                                                               | 0339         |
| 471  | EDRMAT(/4X, "LOADED PERCENTAGE: "/6X. "ALL LOADED CARS: ".9X.9(13. %".                                                         | 0340         |
| 111  | 24X1)                                                                                                                          | 0341         |
|      |                                                                                                                                | 0342         |
|      | TETN-A                                                                                                                         | 0343         |
|      |                                                                                                                                | 0344         |
| 610  | WOITE(6, 472)(IDC(1, 1), 1=1, 7)                                                                                               | 0345         |
| 473  | ENDMATICY IEVCEDT HOLD & LINEYD . 1.44.7(12.191.64))                                                                           | 0346         |
| 412  | TORMATION, ENCEPT HOLD & UNEXPORT 97A 11139 & 30ATT                                                                            | 0347         |
|      | IRUW-IUTEMP                                                                                                                    | 0348         |
|      |                                                                                                                                | 0340         |
|      | UU DZI MUVLE=2,10,2                                                                                                            | 0350         |
|      |                                                                                                                                | 0351         |
| 537  | J=J+1                                                                                                                          | 0352         |
| 221  | LEINE                                                                                                                          | 0352         |
|      |                                                                                                                                | 0355         |
|      |                                                                                                                                | 0355         |
|      |                                                                                                                                | 0355         |
| 320  | WKITE(0,4/3)(IPU(1,J),J=1,5)                                                                                                   | 0350         |
| 413  | FURMAIL/4X, 'EMPIY PERCENTAGE'/0X, 'ALL EMPIY CARS: ',14X,9(13, %')                                                            | 0357         |
|      | 2001                                                                                                                           | 0358         |
|      | IKUW=IEMPXD                                                                                                                    | 0359         |
|      | 1+1N=6                                                                                                                         | 0360         |

| 504   | GO TO 522                                                         | 0361  |
|-------|-------------------------------------------------------------------|-------|
| 524   | WKIIE(0,4/4)(IPO(1,1),1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,          | 0363  |
| 414   | ADINI OUT DEPENDMANCE VEDSUS SCHEDULED VARD TIME FOR LOADED CARS  | 0364  |
| 620   | UDITE(4 11)                                                       | 0365  |
| 020   | WRITE(0911)                                                       | 0366  |
| 000   | EDDMATINY IDEDEODMANCE TABLE ALL LOADED CARS VERSUS SCHEDULED VAR | 0367  |
| 203   | ID TIME 1//)                                                      | 0368  |
|       | WPITE(6,084)                                                      | 0369  |
| 084   | EDRMAT(2X. SCHEDULED'.9X. CARS ADVANCED DUE TO: 8X. CARS ON SCHED | 0370  |
| 304   | THE DIE TO:                                                       | 0371  |
|       | WRITE(6.990)                                                      | 0372  |
| 990   | FORMAT( 2X, 'YARD TIME', 5X, 'EARLY AR                            | 0373  |
|       | 2R'.1X. YARD MOVE'.2X. LATE DEP'.3X, NORMAL'.2X, YARD MOVE'.2X.   | 0374  |
|       | 3'LATE DEP',2X, 'LATE ARR',1X, 'DB BUILDUP',2X, 'OTHER'/17X,      | 0375  |
|       | 4 'LDS',1X, "% ',3X, 'LDS',1X, "% ',3X, 'LDS',1X, "% ',3X,        | 0376  |
|       | 5 'LDS',1X,' % ',3X,'LDS',1X,' % ',3X,'LDS',1X,' % ',3X,          | 0377  |
|       | 6 'LDS',1X, "% ',3X, 'LDS',7X, 'LDS')                             | 0378  |
|       | DO 511 Y=8,31                                                     | 0379  |
|       | J=1                                                               | 03800 |
|       | DO 512 M=1,13,2                                                   | 0381  |
|       | L(Y, J) = SPERF(Y, M)                                             | 0382  |
|       | J = J + 1                                                         | 0383  |
| 512   | CONTINUE                                                          | 0384  |
| 511   | CONTINUE                                                          | 0385  |
|       | TCOL(8) = TCOL(15)                                                | 0386  |
|       | TCOL(9) = TCOL(17)                                                | 0387  |
|       | I=1                                                               | 0388  |
|       | M = 8                                                             | 0389  |
|       | N=31                                                              | 0390  |
| 100   | IFIN=1                                                            | 0391  |
| 600   | IUTAL=0                                                           | 0392  |
|       |                                                                   | 0393  |
| C 1 C |                                                                   | 0394  |
| 212   | DO FOI NEM N                                                      | 0395  |
|       | DU SUI Y=M,N                                                      | 0396  |

|             | TROW=O                                                   | 0397 |
|-------------|----------------------------------------------------------|------|
|             | DO 502 J=1,7                                             | 0398 |
|             | TOTAL=TOTAL+L(Y,J)                                       | 0399 |
|             | TCOL(J) = TCOL(J) + L(Y, J)                              | 0400 |
|             | TROW=TROW+L(Y,J)                                         | 0401 |
| 502         | CONTINUE                                                 | 0402 |
|             | IF (TROW, EQ. 0)GO TO 503                                | 0403 |
|             | DO 504 J=1,7                                             | 0404 |
|             | TOP=L(Y,J)                                               | 0405 |
|             | BOT=TROW                                                 | 0406 |
|             | PC=100.0#T0P/B0T+0.5                                     | 0407 |
|             | IPC(Y,J) = PC                                            | 0408 |
| 504         | CONTINUE                                                 | 0409 |
|             | GO TO 505                                                | 0410 |
| 503         | 00 506 1=1.7                                             | 0411 |
|             | IPC(Y,J)=0                                               | 0412 |
| 50.6        | CONTINUE                                                 | 0413 |
| 505         | WRITE $(6, 244)$ (Y, (L(Y, J), IPC(Y, J), J=1, 7), TROW) | 0414 |
| 244         | FORMAT(5X+12+7X+7(2X+13+1X+13+"%")+22X+ 13)              | 0415 |
|             | WRITE(7.25)((L(Y,J),J=1.9),TROW)                         | 0416 |
| 25          | FORMAT(10(13.2X))                                        | 0417 |
| 501         | CONTINUE                                                 | 0418 |
| 509         | WRITE(6.510)((TCOL(1), 1=1.5), TOTAL)                    | 0419 |
| 510         | FORMAT(/1X. COLUMN TOTALS: 1X. 8(13.7X).13.6X.14)        | 0420 |
|             | WRITE(7.441)((TCOI(1),1=1.9),TOTAL)                      | 0421 |
| 441         | FORMAT(8(13,2X),13,1X,14)                                | 0422 |
| 1.1.4       | TROW=0                                                   | 0423 |
|             | 00.507.1=1.9                                             | 0424 |
|             | TROW = TROW + TCOL(L)                                    | 0425 |
|             | (1, 1) = T(0) (1)                                        | 0426 |
| 507         | CONTINUE                                                 | 0427 |
| 201         | IFIN=2                                                   | 0428 |
|             | G0 T0 521                                                | 0420 |
| 522         | K=7                                                      | 0420 |
| at has been | GO TO 321                                                | 0430 |
| 521         | K=9                                                      | 0431 |
| I in do     |                                                          | 0432 |

| 321   | IF (TROW EQ. 0) GO TO 302                                                    | 0433  |
|-------|------------------------------------------------------------------------------|-------|
|       |                                                                              | 0435  |
|       |                                                                              | 0436  |
|       | BUT=TRUW                                                                     | 0437  |
|       |                                                                              | 0438  |
| 204   |                                                                              | 0439  |
| 304   | CONTINUE                                                                     | 0440  |
| 202   |                                                                              | 0441  |
| 302   |                                                                              | 0442  |
| 202   |                                                                              | 0443  |
| 203   |                                                                              | 0444  |
| 301   |                                                                              | 0445  |
|       | CO TO (505 210 518 519 520 524 306) JEIN                                     | 0446  |
| 21.0  | $U_{10} (505,519,510,519,520,524,5007,171)$                                  | 0447  |
| 373   | ECOMAT(/1V IDEDCENTACE • 1/2V IAHI CARC • 1.4V Q(12.191.6V))                 | 0448  |
| 520   | TOOM-TOOM-(TCOL(Q))                                                          | 0449  |
|       |                                                                              | 0450  |
|       |                                                                              | 0451  |
| 206   | WPITE(6, 207)(IPC(1, 1), 1=1,7)                                              | 04525 |
| 300   | EDPMAT(28, 1EXCEDT HOLD!/48, 18 OTHER: 1.48, 7(13, 121, 68))                 | 0453  |
| 301   | IEIN-1                                                                       | 0454  |
|       | CO TO (571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, | 0455  |
|       | 1595,596), 1                                                                 | 0456  |
| Casha | DRINT OUT DEREARMANCE VERSUS SCHEDULED VARD TIME FOR EMPTY CARS              | 0457  |
| 671   | WRITE (6.11)                                                                 | 0458  |
| ~1.6  | WRITE(6,985)                                                                 | 0459  |
| 985   | FORMAT(1X, PERFORMANCE TABLE: ALL EMPTY CARS VERSUS SCHEDULED YARD           | 0460  |
| 101   | 1 TIME!//)                                                                   | 0461  |
|       | WRITE(6,984)                                                                 | 0462  |
|       | WRITE(6,991)                                                                 | 0463  |
| 991   | EDRMAT( 2X. YARD TIME . 5X. FARLY AR                                         | 0464  |
|       | 2RI.IX. YARD MOVEL.2X. LATE DEPI.3X. NORMAL . 2X. YARD MOVEL.2X.             | 0465  |
|       | 3'LATE DEP' 2X. LATE ARR' 1X. OB BUILDUP' 2X. OTHER'/17X.                    | 0466  |
|       | 4 "EMP".1X." % ".3X."EMP".1X." % ".3X."EMP".1X." % ".3X.                     | 0467  |
|       | 5 "EMP",1X," % ",3X,"EMP",1X," % ",3X,"EMP",1X," % ",3X,                     | 0468  |

|                | 6 'EMP',1X, * % ',3X, 'EMP',7X, 'EMP')                              | 0469  |
|----------------|---------------------------------------------------------------------|-------|
|                |                                                                     | 0471  |
|                | 00 552 M=2-14-2                                                     | 0472  |
|                | 1/V = 1) = SDERE(V,M)                                               | 0473  |
|                | L(1)J-JFL(1)                                                        | 0474  |
| 552            | CONTINUE                                                            | 0475  |
| 513            | CONTINUE                                                            | 0476  |
| 212            | TCO(19) = TCO(16)                                                   | 0477  |
|                | TCOL(S) = TCOL(18)                                                  | 0478  |
|                | N=8                                                                 | 0479  |
|                | N=21                                                                | 0480  |
|                | I=2                                                                 | 0481  |
|                | G0 T0 600                                                           | 0482  |
| C the life ite | PRINT OUT PERFORMANCE VERSUS ACTUAL YARD TIME FOR LOADED CARS       | 0483  |
| 572            | WRITE(6.11)                                                         | 0484  |
| 215            | WRITE(6.986)                                                        | 0485  |
| 98.6           | FORMAT(1X. PERFORMANCE TABLE: ALL LOADED CARS VERSUS ACTUAL YARD T  | 0486  |
| 200            | 1 IME*//)                                                           | 0487  |
|                | WRITE(6,989)                                                        | 04880 |
| 989            | FORMAT(2X, "ACTUAL", 12X, CARS ADVANCED DUE TO: ",8X, CARS ON SCHED | 0489  |
|                | 1ULE DUE TO: ', 6X, 'CARS DELAYED DUE TO: ')                        | 0490  |
|                | WRITE(6,990)                                                        | 0491  |
|                | DQ 551 Y=1,33                                                       | 0492  |
|                | J=1                                                                 | 0493  |
|                | DO 514 M=1,13,2                                                     | 0494  |
|                | L(Y, J) = APERF(Y, M)                                               | 0495  |
|                | J=J+1                                                               | 0496  |
| 514            | CONTINUE                                                            | 0497  |
| 551            | CONTINUE                                                            | 0498  |
|                | TCOL(8) = TCOL(15)                                                  | 0499  |
|                | TCOL(9)=TCOL(17)                                                    | 0500  |
|                | M = 1                                                               | 0501  |
|                | N=33                                                                | 0502  |
|                | I=3                                                                 | 0503  |
|                | GO TO 600                                                           | 0504  |

| C水本年  | PRINT OUT PERFORMANCE VERSUS ACTUAL YARD TIME FOR EMPTY CARS        | 0505<br>0506 |
|-------|---------------------------------------------------------------------|--------------|
| 112   | WRITE(6,987)                                                        | 0507         |
| 087   | FORMAT(1X. PERFORMANCE TABLE: ALL EMPTY CARS VERSUS ACTUAL YARD TI  | 0508         |
| 501   | 1ME!//)                                                             | 0509         |
|       | WRITE(6,989)                                                        | 0510         |
|       | WRITE(6,991)                                                        | 0511         |
|       | DO 523 Y=1.33                                                       | 0512         |
|       |                                                                     | 0513         |
|       | DD = 554 M = 2.14.2                                                 | 0514         |
|       | (Y, I) = APERE(Y, M)                                                | 0515         |
|       | l = 1 + 1                                                           | 0516         |
| 554   | CONTINUE                                                            | 0517         |
| 623   | CONTINUE                                                            | 0518         |
| 123   | T(0 (8)=T(0 (16))                                                   | 0519         |
|       | TCOL(9) = TCOL(18)                                                  | 0520         |
|       | M=1                                                                 | 0521         |
|       | N=33                                                                | 0522         |
|       | I=4                                                                 | 0523         |
|       | GO TO 600                                                           | 05240        |
| C === | EB LOADSSCHEDULED                                                   | 0525         |
| 574   | WRITE (6.11)                                                        | 0526         |
|       | WRITE(6,750)                                                        | 0527         |
| 750   | FORMAT(1X, 'PERFORMANCE TABLE: EASTBOUND LOADED CARS VERSUS SCHEDUL | 0528         |
|       | 1ED YARD TIME //)                                                   | 0529         |
|       | WRITE(6,984)                                                        | 0530         |
|       | WRITE(6,990)                                                        | 0531         |
|       | DO 595 Y=8,31                                                       | 0532         |
|       | J=1                                                                 | 0533         |
|       | DU 516 M=1,13,2                                                     | 0534         |
|       | L(Y, J) = SPERE(Y, M)                                               | 0535         |
|       | J = J + 1                                                           | 0536         |
| 516   | CONTINUE                                                            | 0537         |
| 595   | CONTINUE                                                            | 0538         |
|       | TCOL(8)=TDCOLE(15)                                                  | 0539         |
|       | TCOL(9)=TDCOLE(17)                                                  | 0540         |

|            | M-9                                                                 | 0541   |
|------------|---------------------------------------------------------------------|--------|
|            | N=31                                                                | 0542   |
|            | I=5                                                                 | 0543   |
|            | GO TO 600                                                           | 0544   |
| Cale de la | EB EMPTIESSCHEDULED                                                 | 0545   |
| 575        | WRITE(6,11)                                                         | 0546   |
|            | WRITE(6,751)                                                        | 0547   |
| 751        | FORMAT(1X, 'PERFORMANCE TABLE: EASTBOUND EMPTY CARS VERSUS SCHEDULE | 0548   |
|            | 10 YARD TIME'//)                                                    | 0549   |
|            | WRITE(6,984)                                                        | 0550   |
|            | WRITE(6,991)                                                        | 0551   |
|            | DO 517 Y=8,31                                                       | 0552   |
|            | J=1                                                                 | 0553   |
|            | DO 556 M=2,14,2                                                     | 0554   |
|            | L(Y, J) = SPERE(Y, M)                                               | 0555   |
|            | J=J+1                                                               | 0556   |
| 556        | CONTINUE                                                            | 0557   |
| 517        | CONTINUE                                                            | 0558   |
|            | TCCL(8)=TDCOLE(16)                                                  | 05590  |
|            | TCOL(9)=TDCOLE(18)                                                  | 0560-7 |
|            | M = 8                                                               | 0561   |
|            | N=31                                                                | 0562   |
|            | I=6                                                                 | 0563   |
|            | GU TU 600                                                           | 0504   |
| Cwak       | WB LOADED-SCHEDULED                                                 | 0505   |
| 576        | WRITE(6,11)                                                         | 0500   |
| -          | WRITE(6,752)                                                        | 0567   |
| 152        | FORMAT(1X, "PERFORMANCE TABLE: WESTBOUND LUADED CARS VERSUS SCHEDUL | 0508   |
|            | LED YARD TIME //)                                                   | 0509   |
|            | WRITE(6,984)                                                        | 0570   |
|            | WRITE(0,990)                                                        | 0572   |
|            | UU 551 Y=8,51                                                       | 0572   |
|            | J=1<br>00 527 M=1 12 2                                              | 0574   |
|            | UU = 557 M = 19139Z                                                 | 0575   |
|            | LIT9JJ-SPEKWIT9MJ                                                   | 0576   |
|            |                                                                     | 0110   |

|      |                                                                    | 0577   |
|------|--------------------------------------------------------------------|--------|
| 531  | CUNTINUE                                                           | 0579   |
| 231  |                                                                    | 0570   |
|      |                                                                    | 0519   |
|      | TCOL(9) = TOCOLW(17)                                               | 0580   |
|      | 8=M                                                                | 0581   |
|      | N=31                                                               | 0582   |
|      | I=7                                                                | 0583   |
|      | GO TO 600                                                          | 0584   |
| C*** | WB EMPTIESSCHEDULED                                                | 0585   |
| 577  | WRITE(6,11)                                                        | 0586   |
|      | WRITE(6,753)                                                       | 0587   |
| 753  | FORMAT(1x. PERFORMANCE TABLE: WESTBOUND EMPTY CARS VERSUS SCHEDULE | 0588   |
|      | 1D YARD TIME!//)                                                   | 0589   |
|      | WRITE(6.984)                                                       | 0590   |
|      | WRITE(6,991)                                                       | 0591   |
|      | DD 522 V-9.21                                                      | 0592   |
|      |                                                                    | 0592   |
|      | J-1<br>DD 524 M-2 14 2                                             | 0595   |
|      | DU DDO M=291492                                                    | 0594   |
|      | L(Y,J)=SPERW(Y,M)                                                  | 05950  |
|      | ]=]+]                                                              | 059600 |
| 536  | CUNTINUE                                                           | 0597   |
| 533  | CONTINUE                                                           | 0598   |
|      | TCOL(8)=TDCOLW(16)                                                 | 0599   |
|      | TCOL(9)=TDCOLW(18)                                                 | 0600   |
|      | M=8                                                                | 0601   |
|      | N=31                                                               | 0602   |
|      | I=8                                                                | 0603   |
|      | GO TO 600                                                          | 0604   |
| Cirk | LOCAL LOADSSCHEQULED                                               | 0605   |
| 578  | WRITE(6.11)                                                        | 0606   |
|      | WRITE(6.754)                                                       | 0607   |
| 754  | FORMAT(1X, PERFORMANCE TABLE: LOCAL LOADED CARS VERSUS SCHEDULED Y | 0608   |
| 121  | 1ARD TIMET//)                                                      | 0600   |
|      | WDITE (6.004)                                                      | 0609   |
|      | WPITE(6 000)                                                       | 0610   |
|      | NATIE(0, 990)                                                      | 0011   |
|      | 10,557 Y=0,51                                                      | 0612   |

|        |                                                                     | 0613  |
|--------|---------------------------------------------------------------------|-------|
|        |                                                                     | 0614  |
|        | DU 529 M=1,13,2                                                     | 0615  |
|        | L(Y, J) = SPERL(Y, M)                                               | 0616  |
|        | [+L=L                                                               | 0417  |
| 529    | CONTINUE                                                            | 0619  |
| 535    | CONTINUE                                                            | 0610  |
|        | TCOL(8)=TDCOLL(15)                                                  | 0019  |
|        | TCOL(9) = TDCOLL(17)                                                | 0620  |
|        | M=8                                                                 | 0621  |
|        | N=31                                                                | 0622  |
|        | I=9                                                                 | 0623  |
|        | GO TO 600                                                           | 0624  |
| C**    | LOCAL EMPTIESSCHEDULED                                              | 0625  |
| 579    | WRITE(6,11)                                                         | 0626  |
|        | WRITE(6,755)                                                        | 0627  |
| 755    | FORMAT(1X, 'PERFORMANCE TABLE: LOCAL EMPTY CARS VERSUS SCHEDULED YA | 0628  |
|        | 1RD TIME'//)                                                        | 0629  |
|        | WRITE(6,984)                                                        | 0630  |
|        | WRITE(6,991)                                                        | 0631  |
|        | DO 561 Y=8,31                                                       | 06320 |
|        | J=1                                                                 | 0633  |
|        | DO 540 M=2.14.2                                                     | 0634  |
|        | $L(Y \cdot J) = SPERL(Y \cdot M)$                                   | 0635  |
|        | J=J+1                                                               | 0636  |
| 540    | CONTINUE                                                            | 0637  |
| 561    | CONTINUE                                                            | 0638  |
|        | TCOL(8) = TDCOLL(16)                                                | 0639  |
|        | TCOL(S) = TDCOLL(18)                                                | 0640  |
|        | M=8                                                                 | 0641  |
|        | N=31                                                                | 0642  |
|        | I=10                                                                | 0643  |
|        | GO TO 600                                                           | 0644  |
| Carles |                                                                     | 0645  |
| 580    | WRITE(6.11)                                                         | 0646  |
| 100    | WRITE (6.756)                                                       | 0647  |
| 756    | EDRMAT(1X, PERFORMANCE TABLE: FASTBOUND LOADED CARS VERSUS ACTUAL   | 0648  |

|         | 1YARD TIME'//)<br>WRITE(6,989)<br>WRITE(6,990)<br>DO 525 Y=1,33<br>J=1<br>DO 548 M=1,13,2 | 0649<br>0650<br>0651<br>0652<br>0653<br>0654 |
|---------|-------------------------------------------------------------------------------------------|----------------------------------------------|
|         | L(Y, J) = APERE(Y, M)                                                                     | 0655                                         |
|         | J = J + 1                                                                                 | 0656                                         |
| 548     | CONTINUE                                                                                  | 0657                                         |
| 525     | CONTINUE                                                                                  | 0659                                         |
|         | $T_{COL}(8) = T_{COL}E(12)$                                                               | 0660                                         |
|         |                                                                                           | 0661                                         |
|         | M=1<br>N=3.3                                                                              | 0662                                         |
|         | I=11                                                                                      | 0663                                         |
|         | GQ TQ 600                                                                                 | 0664                                         |
| CHE & R | EB EMPTIESACTUAL                                                                          | 0665                                         |
| 581     | WRITE(6,11)                                                                               | 0666                                         |
|         | WRITE(6,757)                                                                              | 0667_                                        |
| 757     | FORMAT(1X, 'PERFORMANCE TABLE: EASTBOUND EMPTY CARS VERSUS ACTUAL Y                       | 06680                                        |
|         | 1ARD TIME ///)                                                                            | 0669                                         |
|         | WRITE(6,989)                                                                              | 0670                                         |
|         | WRITE(6,991)                                                                              | 0671                                         |
|         | DO 557 Y=1,33                                                                             | 0672                                         |
|         | J=1                                                                                       | 0673                                         |
|         | DU 528 M=2,14,2                                                                           | 0674                                         |
|         | L(Y, J) = APERE(Y, M)                                                                     | 0675                                         |
| 529     |                                                                                           | 0677                                         |
| 520     | CONTINUE                                                                                  | 0678                                         |
|         | TCOL(8) = TDCOLE(16)                                                                      | 0679                                         |
|         | TCOL(9) = TDCOLE(18)                                                                      | 0680                                         |
|         | M=1                                                                                       | 0681                                         |
|         | N=33                                                                                      | 0682                                         |
|         | I=12                                                                                      | 0683                                         |
|         | GO TO 600                                                                                 | 0684                                         |

| C***<br>582 | WB LOADSACTUAL<br>WRITE(6,11)                                      | 0685<br>0686 |
|-------------|--------------------------------------------------------------------|--------------|
|             | WRITE(6,758)                                                       | 0687         |
| 758         | FORMAT(1X, PERFORMANCE TABLE: WESTBOUND LOADED CARS VERSUS ACTUAL  | 0688         |
|             | 1YARD TIME *//)                                                    | 0689         |
|             | WRITE(6,989)                                                       | 0690         |
|             | WRITE(6,990)                                                       | 0691         |
|             | DO 532 Y=1,33                                                      | 0602         |
|             | J=1                                                                | 0695         |
|             | DO 539 M=1,13,2                                                    | 0405         |
|             | L(Y, J) = APERW(Y, M)                                              | 0696         |
|             |                                                                    | 0697         |
| 539         | CUNTINUE                                                           | 0698         |
| 532         |                                                                    | 9930         |
|             |                                                                    | 0700         |
|             |                                                                    | 0701         |
|             | M = 2 2                                                            | 0702         |
|             | I-13                                                               | 0703         |
|             |                                                                    | 0704         |
| Calk Is     | WB EMPTIESACTUAL                                                   | 0705         |
| 593         | WRITE(6.11)                                                        | 0706         |
| 202         | WRITE(6.759)                                                       | 0707         |
| 759         | FORMAT(1X, PERFORMANCE TABLE: WESTBOUND EMPTY CARS VERSUS ACTUAL Y | 0708         |
| 1.2.7       | 1ARD TIME!//)                                                      | 0709         |
|             | WRITE(6,989)                                                       | 0710         |
|             | WRITE(6,991)                                                       | 0711         |
|             | DO 534 Y=1,33                                                      | 0712         |
|             | J=1                                                                | 0713         |
|             | DO 530 M=2,14,2                                                    | 0714         |
|             | L(Y, J) = APERW(Y, M)                                              | 0715         |
|             | J=J+1                                                              | 0716         |
| 530         | CONTINUE                                                           | 0717         |
| 534         | CONTINUE                                                           | 0718         |
|             | TCOL(8) = TDCOLW(16)                                               | 0719         |
|             | TCOL(9)=TDCOLW(18)                                                 | 0720         |
|           |                                                                    | 0723  |
|-----------|--------------------------------------------------------------------|-------|
|           | M = 1                                                              | 0721  |
|           | N=33                                                               | 0722  |
|           | I=14                                                               | 0723  |
|           | GD TO 600                                                          | 0724  |
| Calculate | LOCAL LOADSACTUAL                                                  | 0725  |
| 584       | WRITE(6.11)                                                        | 0726  |
| 20.       | WRITE(6.760)                                                       | 0727  |
| 760       | CORMATINY, DEREORMANCE TABLE: LOCAL LOADED CARS VERSUS ACTUAL YARD | 0728  |
| 100       | I TIME 1//)                                                        | 0729  |
|           |                                                                    | 0720  |
|           | WK11E(0,989)                                                       | 0730  |
|           | WRITE(6,990)                                                       | 0731  |
|           | DO 538 Y=1,33                                                      | 0732  |
|           | J=1                                                                | 0733  |
|           | DO 542 M=1,13,2                                                    | 0734  |
|           | L(Y, J) = APERL(Y, M)                                              | 0735  |
|           | J=J+1                                                              | 0736  |
| 542       | CONTINUE                                                           | 0737  |
| 533       | CONTINUE                                                           | 0738  |
| 225       | TCOL(8) = TOCOLL(15)                                               | 0739  |
|           | $T_{OI}(0) = T_{O}C_{OI}(17)$                                      | 07400 |
|           |                                                                    | 0741  |
|           |                                                                    | 0742  |
|           | N=33                                                               | 0742  |
|           | 1=15                                                               | 0743  |
|           | GO TO 600                                                          | 0744  |
| C###      | LOCAL EMPTIESACTUAL                                                | 0745  |
| 585       | WRITE(6,11)                                                        | 0746  |
|           | WRITE(6,761)                                                       | 0747  |
| 761       | FORMAT(1X, 'PERFORMANCE TABLE: LOCAL EMPTY CARS VERSUS ACTUAL YARD | 0748  |
|           | 1TIME!//)                                                          | 0749  |
|           | WRITE(6.989)                                                       | 0750  |
|           | WPITE(6,001)                                                       | 0751  |
|           | DD 546 V-1 23                                                      | 0752  |
|           |                                                                    | 0752  |
|           |                                                                    | 0755  |
|           | UU 344 M=211412                                                    | 0754  |
|           | L(Y, J) = APERL(Y, M)                                              | 0755  |
|           | 1+L=C                                                              | 0756  |

| + / A | CONTINUE                    | 0757 |
|-------|-----------------------------|------|
| 544   | CUNTINUE                    | 0759 |
| 546   | CONTINUE                    | 0758 |
|       | TCOL(8)=TDCOLL(16)          | 0759 |
|       | TCOL(9) = TDCOLL(18)        | 0760 |
|       | M = 1                       | 0761 |
|       | N=33                        | 0762 |
|       | 1=16                        | 0763 |
|       | CO TO 400                   | 0764 |
|       | GU IU GUU                   | 0765 |
| 290   | CALL EXIT                   | 0105 |
|       | END                         | 0766 |
|       | INTEGER FUNCTION EMPTY#2(N) | 0767 |
|       | INTEGER#2 N                 | 0768 |
|       | EMPTY = N - 100 = (N/100)   | 0769 |
|       | RETURN                      | 0770 |
|       | END                         | 0771 |
|       | INTEGED EUNCTION LOAD#2(N)  | 0772 |
|       | INTEGER FUNCTION LUAD#2(N)  | 0772 |
|       | INTEGER#2 N                 | 0113 |
|       | LOAD=N/100                  | 0774 |
|       | RETURN                      | 0775 |
|       | END                         | 0776 |
|       |                             |      |

# APPENDIX III

LISTING OF SUMMARY PROGRAM

|            | INTEGER TOTXD,L(33,11)/363*0/,TROW(33),TCOL(11),LL(33,11),                            | 0001  |
|------------|---------------------------------------------------------------------------------------|-------|
| 0.00.00.00 | 21PC(33,11)/363#U/, Y, TUTAL                                                          | 0002  |
| Cole de de | PRINT UUT PERFURMANCE VERSUS SCHEDULED TARD TIME FUR LUADED CARS                      | 0005  |
|            | WKIIE(0,11)<br>CODMAT(111 CUMMADY, IANUADY 1/ 15 5 17 AND EEPDUADY 17 20 22 5         | 0004  |
| 77         | FURMALL'I', SUMMART. JANUART 14,15 G IT AND FEDRUART IT, 20, 22 G                     | 0005  |
|            |                                                                                       | 0000  |
|            | NLAIS-1                                                                               | 0001  |
| 001        | MATIE (0, 900)<br>ECOMATINY (DEDEODMANCE TABLE · ALL LOADED CADS VEDSHS SCHEDHLED VAD | 0000  |
| 90.5       | 10 TIMET//)                                                                           | 0010  |
|            | UDITE/A CRAI                                                                          | 0011  |
| 08%        | EDEMATION ISCHEDULEDI, GY, ICARS ADVANCED DUE TO                                      | 0012  |
| 907        | THE DIE TO: 1.92. (CARS DELAYED DIE TO: 1.112. ROW!)                                  | 0012  |
|            | WRITE(6.090)                                                                          | 0014  |
| 990        | EORMATI 2X. VARD TIME . 5X. FARLY AR                                                  | 0015  |
| ,,,,       | 2RI.1X. YARD MOVEL 2X. LATE DEPL 2X. NORMALL 2X. YARD MOVEL 2X.                       | 0016  |
|            | 3 LATE DEP . 2X. LATE ARR . 2X. LATE HUMP . 1X. OB BUILDUP OTHER . 2X.                | 0017  |
|            | 1 'TOTAL'/17X.8( 'LDS'.1X.' % '.3X). (LDS'.7X. (LDS')                                 | 0018  |
|            | I=1                                                                                   | 0019  |
|            | M=8                                                                                   | 00200 |
|            | N=31                                                                                  | 0021  |
|            | IFIN=1                                                                                | 0022  |
| 600        | TOTXD=0                                                                               | 0023  |
|            | 00 19 Y=M.N                                                                           | 0024  |
|            | DO 12 J=1,11                                                                          | 0025  |
|            | L(Y, J)=0                                                                             | 0026  |
| 12         | CONTINUE                                                                              | 0027  |
| 19         | CONTINUE                                                                              | 0028  |
|            | DO 318 J=1,11                                                                         | 0029  |
|            | TCOL(J)=0                                                                             | 0030  |
| 318        | CONTINUE                                                                              | 0031  |
|            | DO 1 K=1, NDAYS                                                                       | 0032  |
|            | DD 2 Y=M, N                                                                           | 0033  |
|            | READ(5,13) (LL(Y,J),J=1,8)                                                            | 0034  |
| 13         | FORMAT( 8(13,2X))                                                                     | 0035  |
|            | TROW(Y)=0                                                                             | 0036  |
|            |                                                                                       |       |

| L(Y,J)=L(Y,J)+LL(Y,J) 0038<br>TROW(Y)=TROW(Y)+LL(Y,J) 0039<br>3 CONTINUE 0040<br>2 CONTINUE 0041<br>READ(5, 5)(LL(1,J),J=1,11) 0043<br>5 FORMAT(I3,1X,10(I4,1X)) 0043<br>DD 4 J=1,11 0044<br>TCCL(J)=TCCL(J)+LL(1,J) 0045<br>4 CONTINUE 0046<br>1 CONTINUE 0046<br>1 CONTINUE 0047<br>TOTAL=TOTXD+TCOL(9)+TCOL(10) 0049<br>DC 501 Y=M,N 0050<br>IF(TROW(Y),EQ,0)GD TD 503 0051<br>DD 504 J=1,8 0052<br>TOP=L(Y,J) 0054                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TROW(Y)=TROW(Y)+LL(Y,J) 0039   3 CONTINUE 0040   2 CONTINUE 0041   READ(5, 5)(LL(1, J), J=1, 11) 0042   5 FORMAT(I3,1X,10(I4,1X)) 0043   D0 4 J=1,11 0044   TCCL(J)=TCOL(J)+LL(1,J) 0045   4 CONTINUE 0046   1 CONTINUE 0046   1 CONTINUE 0046   1 CONTINUE 0046   1 CONTINUE 0047   1 CONTINUE 0048   1 CONTINUE 0048   1 CONTINUE 0050   1 CONTINUE 0050   1 CONTINUE 0050   1 DU 504 J=1,8 0051   1 DU 504 J=1,8 0053   1 |
| 3 CONTINUE 0040   2 CONTINUE 0041   READ(5, 5)(LL(1, J), J=1, 11) 0042   5 FORMAT(I3,1X,10(I4,1X)) 0043   D0 4 J=1,11 0044   TCCL(J)=TCOL(J)+LL(1,J) 0045   4 CONTINUE 0046   1 CONTINUE 0046   1 CONTINUE 0047   1 TOTXD=TCOL(11) 0046   1 CONTINUE 0047   1 TOTAL=TOTXD+TCOL(9)+TCOL(10) 0049   00 501 Y=M,N 0050   00 504 J=1,8 0051   00 504 J=1,8 0052   1 TOP=L(Y,J) 0053   80T=TROW(Y) 0054 0054                                                                                                                                  |
| 2 CONTINUE 0041   READ(5, 5)(LL(1, J), J=1, 11) 0042   5 FGRMAT(I3,1X,10(I4,1X)) 0043   DD 4 J=1,11 0044   TCOL(J)=TCOL(J)+LL(1,J) 0045   4 CONTINUE 0046   1 CONTINUE 0047   1 CONTINUE 0047   1 CONTINUE 0049   00 501 Y=M,N 0050   00 501 Y=M,N 0050   00 504 J=1,8 0051   TOP=L(Y,J) 0053   BOT=TROW(Y) 0054                                                                                                                                                                                                                         |
| READ(5, 5)(LL(1, J), J=1,11) 0042   5 FORMAT(13,1X,10(14,1X)) 0043   D0 4 J=1,11 0044   TCOL(J)=TCOL(J)+LL(1,J) 0045   4 CONTINUE 0046   1 CONTINUE 0047   1 CONTINUE 0048   1 CONTINUE 0049   0 501 Y=M,N 0050   0 503 0051   0 503 0051   0 504 J=1,8 0052   TOP=L(Y,J) 0053 0053   80T=TROW(Y) 0054 0054                                                                                                                                                      |
| 5 FGRMAT(I3,1X,10(I4,1X)) 0043   DC 4 J=1,11 0044   TCCL(J)=TCOL(J)+LL(1,J) 0045   4 CONTINUE 0046   1 CONTINUE 0047   1 CONTINUE 0047   1 CONTINUE 0047   1 CONTINUE 0048   1 CONTINUE 0049   0 501 Y=M,N 0050   0 503 0051   0 504 J=1,8 0052   TOP=L(Y,J) 0053 0054   0054 J0054 0053   0054 J0054 0054                                                                                                                                                                                                                               |
| D0 4 J=1,11 0044   TCOL(J)=TCOL(J)+LL(1,J) 0045   4 CONTINUE 0046   1 CONTINUE 0047   TOTXD=TCOL(11) 0048   TOTAL=TOTXD+TCOL(9)+TCOL(10) 0049   D0 501 Y=M,N 0050   IF(TROW(Y), EQ, 0)GO TO 503 0051   D0 504 J=1,8 0052   TOP=L(Y,J) 0054   BOT=TROW(Y) 0054                                                                                                                                                                                                                                                                            |
| TCOL(J)=TCOL(J)+LL(1,J) 0045   4 CONTINUE 0046   1 CONTINUE 0047   10TXD=TCOL(11) 0048   TOTAL=TOTXD+TCOL(9)+TCOL(10) 0049   DC 501 Y=M,N   DC 503   DC 504 J=1,8   TOP=L(Y,J) 0053   BCT=TROW(Y) 0054                                                                                                                                                                                                                                                                                                                                   |
| 4 CONTINUE 0046   1 CONTINUE 0047   TOTXD=TCOL(11) 0048   TOTAL=TOTXD+TCOL(9)+TCOL(10) 0049   D0 501 Y=M,N   D0 504 J=1,8   TOP=L(Y,J) 0053   BOT=TROW(Y) 0054                                                                                                                                                                                                                                                                                                                                                                           |
| 1 CONTINUE<br>TOTXD=TCOL(11)<br>TOTAL=TOTXD+TCOL(9)+TCOL(10)<br>00 501 Y=M,N<br>00 501 Y=M,N<br>00 503<br>00 504 J=1,8<br>TOP=L(Y,J)<br>00 504 J=1ROW(Y)<br>00 504 J=1ROW(Y)<br>00 504 J=1ROW(Y)<br>00 504 J=1ROW(Y)<br>00 504 J=1ROW(Y)<br>00 504 J=1ROW(Y)                                                                                                                                                                                                                                                                             |
| TOTXD=TCOL(11) 0048   TOTAL=TOTXD+TCOL(9)+TCOL(10) 0049   DO 501 Y=M,N 0050   IF(TROW(Y).EQ.0)GO TO 503 0051   DO 504 J=1,8 0052   TOP=L(Y,J) 0053   BOT=TROW(Y) 0054                                                                                                                                                                                                                                                                                                                                                                    |
| TOTAL=TOTXD+TCOL(9)+TCOL(10) 0049   DD 501 Y=M,N 0050   IF(TROW(Y).EQ.0)GD TD 503 0051   DD 504 J=1.8 0052   TOP=L(Y,J) 0053   BOT=TROW(Y) 0054                                                                                                                                                                                                                                                                                                                                                                                          |
| DD 501 Y=M,N 0050   IF(TROW(Y) EQ.0)GD TD 503 0051   DD 504 J=1,8 0052   TDP=L(Y,J) 0053   BDT=TROW(Y) 0054                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IF(TROW(Y)_0 EQ_0)GO TO 503 0051   DO 504 J=1,8 0052   TOP=L(Y,J) 0053   BOT=TROW(Y) 0054                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DO 504 J=1,8<br>TOP=L(Y,J)<br>BOT=TROW(Y)<br>0054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TOP=L(Y,J)<br>BOT=TROW(Y)<br>0054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BOT=TROW(Y) 0054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PC=100=0*TOP/BOT+0=5 0055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IPC(Y,J)=PC 0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 504 CONTINUE 0057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GO TO 505 0058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 503 DD 506 J=1.8 0059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| IPC(Y, J) = 0 0060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 506 CONTINUE 0061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 505 WRITE(6,244)(Y,(L(Y,J),IPC(Y,J),J=1,8),TROW(Y)) 0062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 244 FORMAT(5X,12,7X,8(2X,13,1X,13,*%*),21X,14) 0063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 501 CONTINUE 0064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 509 WRITE(6,510) (TCOL(J), J=1,11) 0065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 510 FORMAT(/1X, 'COLUMN TOTALS:', 11(14,6X)) 0066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TROW(1)=TOTAL 0067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DD 6 J=1.10 0068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| L(1,J) = TCOL(J) 0069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6 CONTINUE 0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LEIN=2 0071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GO TO 521 0072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 522  | K=8                                                                 | 0073  |
|------|---------------------------------------------------------------------|-------|
| 521  | K=10                                                                | 0075  |
| 17   | IF(TROW(1), EQ. 0)GO TO 303                                         | 0076  |
|      | DO 304 J=1.K                                                        | 0077  |
|      | TOP=L(1,J)                                                          | 0078  |
|      | BOT=TROW(1)                                                         | 0079  |
|      | PC=100,0*TOP/BOT+0,5                                                | 0080  |
|      | IPC(1, J) = PC                                                      | 0081  |
| 304  | CONTINUE                                                            | 0082  |
|      | GO TO 307                                                           | 0083  |
| 303  | DO 306 J=1,K                                                        | 0084  |
|      | IPC(1,J)=0                                                          | 0085  |
| 30.6 | CONTINUE                                                            | 0086  |
| 307  | IF(IFIN, EQ. 1)GO TO 18                                             | 0087  |
| 14   | WRITE(6,512)(IPC(1,J),J=1,10)                                       | 0088  |
| 512  | FORMAT(/1X, 'PERCENTAGE: '/3X, 'ALL CARS: ', 3X, 10(13, '%', 6X))   | 0089  |
|      | TROW(1)=TOTXD                                                       | 0090  |
|      | IFIN=1                                                              | 0091_ |
|      | GO TO 522                                                           | 0092- |
| 18   | WRITE(6,511)(IPC(1,J),J=1,8)                                        | 0093  |
| 511  | FORMAT(3X, "EXCEPT HOLD"/4X, "& UNEXP: ', 3X, 8(13, 1%', 6X))       | 0094  |
|      | GO TO (571,572,573,574,575,576,577,578,579,580,581,582,583,584,     | 0095  |
|      | 1585,586),I                                                         | 0096  |
| C*** | PRINT OUT PERFORMANCE VERSUS SCHEDULED YARD TIME FOR EMPTY CARS     | 0097  |
| 571  | WRITE(6,11)                                                         | 0098  |
|      | WRITE(6,985)                                                        | 0099  |
| 985  | FORMAT(1X, 'PERFORMANCE TABLE: ALL EMPTY CARS VERSUS SCHEDULED YARD | 0100  |
|      | 1 TIME !//)                                                         | 0101  |
|      | WRITE(6,984)                                                        | 0102  |
|      | WRITE(6,991)                                                        | 0103  |
| 991  | FORMAT( 2X, "YARD TIME", 5X, "EARLY AR                              | 0104  |
|      | 2R*,1X, YARD MOVE ,2X, LATE DEP ,3X, NORMAL ,2X, YARD MOVE ,2X,     | 0105  |
|      | 3'LATE DEP',2X, LATE ARR',2X, LATE HUMP OB BUILDUP OTHER TOTAL'/    | 0106  |
|      | 417X,8("EMP",1X," % ",3X),"EMP",7X,"EMP")                           | 0107  |
|      | M=8                                                                 | 0108  |

|            |                                                                     |     | ~   |
|------------|---------------------------------------------------------------------|-----|-----|
|            | N=31                                                                | 010 | 9   |
|            | I = 2                                                               | 011 | 0   |
|            | GO TO 600                                                           | 011 | 1   |
| Carat      | PRINT OUT PERFORMANCE VERSUS ACTUAL YARD TIME FOR LOADED CARS       | 011 | 2   |
| 572        | WRITE(6.11)                                                         | 011 | 3   |
| ~ . ~      | WRITE(6.986)                                                        | 011 | 4   |
| 085        | EDRMAT(1X, PERFORMANCE TABLE: ALL LOADED CARS VERSUS ACTUAL YARD T  | 011 | 5   |
| 900        | ITMEI//)                                                            | 011 | 6   |
|            | UDITE ( 6 000)                                                      | 011 | 7   |
| 0.0.0      | CODMATION LACTUALL 128 LCARS ADVANCED DUE TO 1.88. CARS ON SCHED    | 011 | 8   |
| 984        | FURMATIZA, ACTUAL, IZA, CARS ADVANCED DUE TO. JON, CARS ON SCHED    | 011 | q   |
|            | IULE DUE TU: , 6X, CARS DELATED DUE TU: T                           | 012 | 0   |
|            | WRITE(6,990)                                                        | 012 | 1   |
|            | M = 1                                                               | 012 | 1   |
|            | N=33                                                                | 012 | 2   |
|            | I=3                                                                 | 012 | 3   |
|            | GO TO 600                                                           | 012 | .4  |
| Cole and a | PRINT OUT PERFORMANCE VERSUS ACTUAL YARD TIME FOR EMPTY CARS        | 012 | 5   |
| 573        | WRITE(6,11)                                                         | 012 | .6  |
|            | WRITE(6,987)                                                        | 012 | 7_  |
| 987        | FORMAT(1X, 'PERFORMANCE TABLE: ALL EMPTY CARS VERSUS ACTUAL YARD TI | 012 | .80 |
|            | 1ME*//)                                                             | 012 | .9  |
|            | WRITE(6,989)                                                        | 013 | 0   |
|            | WRITE(6,991)                                                        | 013 | 1   |
|            | M = 1                                                               | 013 | 2   |
|            | N=33                                                                | 013 | 3   |
|            | I=4                                                                 | 013 | 14  |
|            | G0 T0 600                                                           | 013 | 5   |
| C lie le   | EB LOADSSCHEDULED                                                   | 013 | 16  |
| 674        | UDITE (4.11)                                                        | 013 | 7   |
| 214        | NOTIE (0)III                                                        | 013 | 8   |
| 750        | CODMATINE ADEDCODMANCE TADLE. CASTROLIND LOADED CARS VEDSUS SCHEDU  | 013 | 10  |
| 150        | FURMAT(1X, PERFORMANCE TABLE. EASTBOUND LUADED CARS VERSUS SCHEDOL  | 015 | 0   |
|            |                                                                     | 014 | 1   |
|            | WKI1E(0,984)                                                        | 014 | 1   |
|            | WRITE(6,990)                                                        | 014 | 4   |
|            | M = 8                                                               | 014 | -3  |
|            | N = 31                                                              | 014 | 4   |

| C 18 4 18 18 | I=5<br>GO TO 600<br>EB EMPTIESSCHEDULED |                   |                            | 0145<br>0146<br>0147 |
|--------------|-----------------------------------------|-------------------|----------------------------|----------------------|
| 575          | WRITE(6,11)                             |                   |                            | 0148                 |
|              | WRITE(6,751)                            |                   |                            | 0149                 |
| 751          | FORMAT(1X, PERFORMANCE                  | TABLE: EASTBOUND  | EMPTY CARS VERSUS SCHEDULE | 0150                 |
| - P          | LD YARD TIME //)                        |                   |                            | 0151                 |
|              | WRITE(6,984)                            |                   |                            | 0152                 |
|              | MRIIE(0,991)                            |                   |                            | 0154                 |
|              | N=31                                    |                   |                            | 0155                 |
|              | I=6                                     |                   |                            | 0156                 |
|              | GO TO 600                               |                   |                            | 0157                 |
| C本本水本        | WB LOADEDSCHEDULED                      |                   |                            | 0158                 |
| 576          | WRITE(6,11)                             |                   |                            | 0159                 |
|              | WRITE(6,752)                            | TIOLES HECTOOLING | LOADED CARE VERSUE CONFORM | 0160                 |
| 152          | FURMAILIX, PERFURMANCE                  | TABLE: WESTBOUND  | LUADED CARS VERSUS SCHEDUL | 0161                 |
|              | WRITE (6.984)                           |                   |                            | 0163                 |
|              | WRITE(6.990)                            |                   |                            | 01640                |
|              | M=8                                     |                   |                            | 0165                 |
|              | N=31                                    |                   |                            | 0166                 |
|              | I = 7                                   |                   |                            | 0167                 |
|              | GO TO 600                               |                   |                            | 0168                 |
| Cast         | WB EMPTIESSCHEDULED                     |                   |                            | 0169                 |
| 577          | WRITE(6,11)                             |                   |                            | 0170                 |
| 750          | WRITE(6,753)                            | TADLE . HECTROUND | CHOTH CARS VERSUS CONTRULE | 0171                 |
| (23          | FURMAI(1X, PERFURMANCE                  | TABLE: WESTBOUND  | EMPTY CARS VERSUS SCHEDULE | 0172                 |
|              | WRITE (6,984)                           |                   |                            | 0174                 |
|              | WRITE(6,991)                            |                   |                            | 0175                 |
|              | M=8                                     |                   |                            | 0176                 |
|              | N=31                                    |                   |                            | 0177                 |
|              | 8 = I                                   |                   |                            | 0178                 |
|              | GO TO 600                               |                   |                            | 0179                 |
| C**          | LOCAL LOADSSCHEDULED                    |                   |                            | 0180                 |

| 573     | WRITE(6,11)                                                          | 0181  |
|---------|----------------------------------------------------------------------|-------|
|         | WRITE(6, 194)                                                        | 0102  |
| 154     | FORMAT(IX, PERFORMANCE TABLE: LUCAL LUADED CARS VERSUS SCHEDULED 1   | 0105  |
|         | 1ARD TIME //)                                                        | 0184  |
|         | WRITE(6,984)                                                         | 0185  |
|         | WRITE(6,990)                                                         | 0186  |
|         | M = 8                                                                | 0187  |
|         | N=31                                                                 | 0188  |
|         | I=9                                                                  | 0189  |
|         | GO TO 600                                                            | 0190  |
| C**     | LOCAL EMPTIESSCHEDULED                                               | 0191  |
| 579     | WRITE(6,11)                                                          | 0192  |
|         | WRITE(6,755)                                                         | 0193  |
| 755     | FORMAT(1X, 'PERFORMANCE TABLE: LOCAL EMPTY CARS VERSUS SCHEDULED YA  | 0194  |
|         | 1RD TIME //)                                                         | 0195  |
|         | WRITE(6,984)                                                         | 0196  |
|         | WRITE(6,991)                                                         | 0197  |
|         | M=8                                                                  | 0198  |
|         | N=31                                                                 | 0199  |
|         | I=10                                                                 | 02000 |
|         | GO TO 600                                                            | 0201  |
| C本市市市   | EB LOADSACTUAL                                                       | 0202  |
| 580     | WRITE(6.11)                                                          | 0203  |
|         | WRITE(6.756)                                                         | 0204  |
| 756     | FORMAT(1X. PERFORMANCE TABLE: EASTBOUND LOADED CARS VERSUS ACTUAL    | 0205  |
|         | 1YARD TIME 1//)                                                      | 0206  |
|         | WRITE(6.989)                                                         | 0207  |
|         | WRITE(6,990)                                                         | 0208  |
|         | N=1                                                                  | 0209  |
|         | N=33                                                                 | 0210  |
|         | I=11                                                                 | 0211  |
|         | GD TO 600                                                            | 0212  |
| Casas a | EB EMPTIESACTUAL                                                     | 0213  |
| 581     | JPITE(6.1)                                                           | 0214  |
| 201     | UDITE(6.757)                                                         | 0214  |
| 757     | EDDMAT(1 V IDEDEDDMANCE TARLE + EACTRONNE EMBTY CARS VERSUS ACTUAL V | 0215  |
| 121     | FURNATIZA, FERFURMANCE TADLE. EASTDUUND EMPTT CARS VERSUS ACTUAL Y   | 0210  |

|            | LARD TIME //)          |              |                 |                  |     | 0217  |
|------------|------------------------|--------------|-----------------|------------------|-----|-------|
|            | WRITE(6,989)           |              |                 |                  |     | 0218  |
|            | WRITE(6,991)           |              |                 |                  |     | 0219  |
|            | M = 1                  |              |                 |                  |     | 0220  |
|            | N=33                   |              |                 |                  |     | 0221  |
|            | I=12                   |              |                 |                  |     | 0222  |
|            | GD TD 600              |              |                 |                  |     | 0223  |
| C# ##      | WB LOADSACTUAL         |              |                 |                  |     | 0224  |
| 582        | WRITE(6,11)            |              |                 |                  |     | 0225  |
|            | WRITE(6.758)           |              |                 |                  |     | 0226  |
| 758        | FORMAT(1X. PERFORMANCE | TABLE: WESTE | BOUND LOADED C  | ARS VERSUS ACTU/ | AL  | 0227  |
| 1.5.4      | 1YARD TIME!//)         |              |                 |                  |     | 0228  |
|            | WRITE(6.989)           |              |                 |                  |     | 0229  |
|            | WRITE(6.990)           |              |                 |                  |     | 0230  |
|            | M = 1                  |              |                 |                  |     | 0231  |
|            | N=33                   |              |                 |                  |     | 0232  |
|            | I=13                   |              |                 |                  |     | 0233  |
|            | GO TO 600              |              |                 |                  |     | 0234  |
| Cilericite | WB EMPTIESACTUAL       |              |                 |                  |     | 0235~ |
| 503        | ADITE(6.11)            |              |                 |                  |     | 0236  |
| 203        | UDITE (6. 656)         |              |                 |                  |     | 0237  |
| 454        | CODMAT(1 V DEDEODMANCE | TABLE . WEST | ROUND EMPTY CAL | RS VERSUS ACTUAL | I Y | 0238  |
| 000        | TADD TIMES //)         | TADLE. MEST  | DOUND LINITI CA | NO VERSOO ACTOR  |     | 0239  |
|            | LARD TIME ///          |              |                 |                  |     | 0240  |
|            | WRITE(0,909/           |              |                 |                  |     | 0241  |
|            | WRITE(0, 5517          |              |                 |                  |     | 0242  |
|            | W=T                    |              |                 |                  |     | 0243  |
|            | N=33                   |              |                 |                  |     | 0244  |
|            | 1=14                   |              |                 |                  |     | 0245  |
| a hard in  |                        |              |                 |                  |     | 0245  |
| ( 建建油 建    | LUCAL LUADSACTUAL      |              |                 |                  |     | 0240  |
| 584        | WRITE(6,11)            |              |                 |                  |     | 0241  |
|            | WRITE(6,760)           |              |                 | USS ACTUAL M     | 100 | 0240  |
| 160        | FURMAT(1X, PERFURMANCE | TABLE: LOCAL | LUADED CARS     | VERSUS ACTUAL Y  | ARD | 0249  |
|            | 1 (IME //)             |              |                 |                  |     | 0250  |
|            | WRITE(6,989)           |              |                 |                  |     | 0251  |
|            | WRITE(6,990)           |              |                 |                  |     | 0252  |

|         | M = 1                                                              | 0253 |
|---------|--------------------------------------------------------------------|------|
|         | N=33                                                               | 0254 |
|         | I=15                                                               | 0255 |
|         | GD TD 600                                                          | 0256 |
| C & los | I DCAL EMPTIESACTIAL                                               | 0257 |
| Carte   | UDITE(6.31)                                                        | 0258 |
| 283     | WRITE(0,11)                                                        | 0250 |
|         | WRIIE(0,101)                                                       | 0239 |
| 761     | FORMAT(1X, 'PERFORMANCE TABLE: LOCAL EMPTY CARS VERSUS ACTUAL YARD | 0260 |
|         | ITIME'//)                                                          | 0261 |
|         | WRITE(6,989)                                                       | 0262 |
|         | WRITE(6.991)                                                       | 0263 |
|         | N = 1                                                              | 0264 |
|         | N=2.2                                                              | 0265 |
|         | N-33                                                               | 0205 |
|         | 1=16                                                               | 0200 |
|         | GO TO 600                                                          | 0267 |
| 586     | CALL EXIT                                                          | 0268 |
|         | END                                                                | 0269 |

## APPENDIX IV

## SUMMARY TABLES OF CAR MOVEMENT PERFORMANCE

# VERSUS

YARD TIME PARAMETERS

## SUMMARY: JANUARY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 1971 PERFERMANCE TABLE: ALL LOADED CARS VERSUS SCHEDULED YARD TIME

| SCHECJLED               |    | C     | ARS  | ACVAN | CEC DI | UE TO: |       | C    | ARS | CN SCH | EDULE | CUE  | TU: |      | CAR | S DEI | AYED | DUE TO:    |       | ROW   |
|-------------------------|----|-------|------|-------|--------|--------|-------|------|-----|--------|-------|------|-----|------|-----|-------|------|------------|-------|-------|
| YARD TIME               |    | EARLY | ARR  | YAND  | MOVE   | LATE   | E CEP | NCR  | MAL | YARD   | MOVE  | LATE | DEP | LATE | ARR | LATE  | HUMP | OB BUILDUP | OTHER | TOTAL |
|                         |    | LUS   | 2    | LDS   | 2      | LDS    | 26    | LDS  | る   | LDS    | ž     | LCS  | 2   | LDS  | z   | LDS   | 2    | LDS        | LDS   |       |
| н                       |    | C     | 03   | 0     | 0%     | 0      | 0%    | 41   | 88  | 207    | 438   | 115  | 24% | 99   | 20% | 22    | 5%   |            |       | 484   |
| j .                     |    | C     | 03   | 0     | 0%     | 0      | C%    | 64   | 25% | 25     | 10%   | 74   | 29% | 56   | 22% | 36    | 14%  |            |       | 255   |
| 10                      |    | С     | 08   | 0     | 0%     | C      | C%    | 164  | 348 | 38     | 82    | 145  | 30% | 115  | 24% | 22    | 5%   |            |       | 484   |
| 11                      |    | 0     | 0%   | 0     | 0%     | 0      | C %   | 222  | 42% | _1     | 6%    | 190  | 36% | 67   | 13% | 17    | 3%   |            |       | 527   |
| 12                      |    | C     | 03   | 0     | 08     | C      | 0%    | 231  | 56% | 7      | 2%    | 63   | 20% | 81   | 20% | 12    | 3%   |            |       | 414   |
| 13                      |    | С     | 0%   | 0     | 0%     | 0      | 0%    | 225  | 633 | 26     | 7%    | 23   | 6%  | 83   | 23% | 1     | 0%   |            |       | 358   |
| 14                      |    | 0     | 0%   | 0     | 6%     | 0      | 0%    | 204  | 78% | 19     | 7%    | 4    | 2%  | 16   | 6%  | 17    | 7%   |            |       | 260   |
| 15                      |    | C     | 08   | C     | 03     | 1      | 0%    | 266  | 728 | 19     | 53    | 14   | 49  | 60   | 16% | 8     | 22   |            |       | 368   |
| 15                      |    | 0     | 02   | 0     | 0%     | 0      | CZ    | 154  | 60% | 9      | 38    | 25   | 10% | 50   | 17% | 12    | 4%   |            |       | 294   |
| 17                      |    | C     | 03   | 0     | 06     | 0      | C %   | 165  | 70% | 0      | 0%    | 5    | 4%  | 19   | 5%  | 24    | 11%  |            |       | 217   |
| 18                      |    | C     | 0%   | 0     | 0%     | 0      | 0%    | 101  | 96% | 2      | 2%    | 1    | 1%  | 0    | 0%  | 1     | 13   |            |       | 105   |
| 13                      |    | C     | 0%   | 0     | 0%     | G      | 0%    | 147  | 73% | 0      | 02    | 14   | 78  | 31   | 15% | 10    | 5%   |            |       | 202   |
| 23                      |    | ٥     | 03   | C     | 02     | 1      | 12    | 165  | 94% | 0      | 02    | S    | 5%  | 0    | 0%  | 0     | 0%   |            |       | 175   |
| 21                      |    | 0     | 02   | 0     | 08     | 4      | 1%    | 263  | 938 | 0      | CX    | 2    | 1%  | 14   | 5%  | 0     | 0%   |            |       | 283   |
| 22                      |    | C     | 0%   | 0     | 08     | 0      | 02    | 247  | 96% | 0      | 02    | C    | 0%  | 7    | 3%  | 2     | 1%   |            |       | 256   |
| 23                      |    | C     | . 02 | 1     | 03     | C      | C%    | 248  | 998 | 0      | 0%    | 0    | 02  | 0    | 0%  | 2     | 1%   |            |       | 251   |
| 24                      |    | C     | 08   | 0     | 02     | 4      | 28    | 157  | 38% | 0      | CZ    | 0    | 03  | 0    | 0%  | 0     | 0%   |            |       | 161   |
| 25                      |    | C     | 02   | U     | 0%     | 12     | 58    | 231  | 95% | 0      | 02    | 0    | 02  | 0    | 0%  | 0     | 0%   |            |       | 243   |
| 26                      |    | C     | 03   | 2     | 1%     | 0      | CZ    | 215  | 99% | 0      | 02    | 0    | 0%  | 0    | 0%  | 0     | 0%   |            |       | 221   |
| ?7                      |    | 0     | 0%   | 7     | 43     | 0      | 0%    | 190  | 96% | 0      | しる    | C    | 02  | 0    | 02  | 0     | 0%   |            |       | 197   |
| 23                      |    | Ç     | 03   | 0     | 02     | 31     | 27%   | 85   | 73% | J      | 0%    | 0    | 0%  | 0    | 0%  | 0     | 0%   |            |       | 116   |
| 23                      |    | 1     | 1%   | 11    | 10%    | 7      | 7%    | 53   | 82% | 6      | C %   | 0    | 0%  | 0    | 02  | 0     | 0%   |            |       | 105   |
| 30                      |    | 11    | 13%  | 0     | 02     | 6      | 7%    | 70   | 80% | 0      | 0%    | C    | 0%  | 0    | 0%  | 0     | 0%   |            |       | 87    |
| 31                      | *  | 12    | 12%  | 2     | 2%     | 45     | 45%   | 42   | 42% | 0      | 02    | 0    | 0%  | 0    | 0%  | 0     | 0%   |            |       | 101   |
| CCLUMN TOTAL            | 5: | 24    |      | 23    |        | 111    |       | 4027 |     | 383    |       | 712  |     | 698  |     | 186   |      | 1410       | 129   | 6164  |
| PERCENTAGE:             |    |       |      |       |        |        |       |      |     |        |       |      |     |      |     |       |      |            |       |       |
| ALL CARS:<br>EXCEPT FOL | D  | 03    |      | 03    |        | 1%     |       | 52%  |     | 5%     |       | 52   | •   | 58   |     | 2%    |      | 183        | 2%    |       |
| & UNEXF:                |    | \$ O  | 2    | 03    |        | 2%     |       | 65%  |     | 6%     |       | 12%  |     | 11%  |     | 3%    |      |            |       |       |

## SUMMARY: JANUARY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 1971 PERFERMANCE TABLE: ALL EMPTY CARS VERSUS SCHEDULED YARD TIME

| SCHEDULED      | C     | ARS  | ACVAN | CED DU | E TC: |      | C    | ARS C | N SCH | EDULE | CUE 1 | 10:   |     | CARS  | DE  | LAYED  | DUE   | TC:   |       | ROW   |
|----------------|-------|------|-------|--------|-------|------|------|-------|-------|-------|-------|-------|-----|-------|-----|--------|-------|-------|-------|-------|
| VAR) TIME      | FARIY | ARR  | YARD  | MOVE   | LATE  | DEP  | NC   | RMAL  | YARD  | MUVE  | LATI  | E DEP | LAT | E ARR | LAT | E HUMP | OB BU | ILDUP | OTHER | TOTAL |
| IANS ITTE      | EMP   | 2    | EMP   | 37     | EMP   | g.   | EMP  | × ×   | EMP   | 2     | EMP   | *     | EMP | Z     | EMP | 8      | EMP   | E     | MP    |       |
| 4              | C     | 0 Z  | 0     | OZ     | 0     | 6.2  | 15   | 12%   | 0     | 0%    | 9     | 7%    | 98  | 78%   | 3   | 2%     |       |       |       | 125   |
| 1              | C     | 02   | 0     | 0%     | õ     | 0%   | 9    | 83    | 0     | 0%    | 0     | 0Z    | 54  | 48%   | 50  | 44%    |       |       |       | 113   |
| 11             | C     | 02   | õ     | 02     | õ     | C Z  | 23   | 32%   | 3     | 08    | 4     | 5%    | 38  | 52%   | 8   | 11%    |       |       |       | 73    |
| 11             | c     | 02   | 0     | 02     | C C   | 0%   | 53   | >0%   | 1     | 1%    | 13    | 7%    | 103 | 59%   | 6   | 3%     |       |       |       | 176   |
| 1.2            | Ċ     | 02   | 0     | 02     | C     | 0.2  | 13   | 12%   | ō     | 0%    | 14    | 13%   | 73  | 67%   | 9   | 8%     |       |       |       | 109   |
| 1 2            | C     | 02   | õ     | 08     | 0     | CX   | 46   | 36%   | 0     | 0%    | 2     | 2%    | 33  | 26%   | 46  | 36%    |       |       |       | 127   |
| 14             | c     | 1)%  | 0     | 0.2    | õ     | 0%   | 26   | 32%   | 0     | 0%    | 3     | 42    | 30  | 37%   | 22  | 27%    |       |       |       | 81    |
| 15             | 0     | 0.2  | õ     | 0.8    | 0     | 0.2  | 112  | 75%   | a     | C%    | 4     | 3%    | 23  | 15%   | 10  | 7%     |       |       |       | 149   |
| 1.5            | c     | 02   | 0     | 02     | õ     | 0%   | 30   | 352   | 1     | 12    | 2     | 2%    | 24  | 28%   | 29  | 34%    |       |       |       | 86    |
| 17             | c     | 0.7  | 0     | 08     | č     | 0%   | 118  | 76%   | Ō     | 0%    | 1     | 1%    | 30  | 19%   | 6   | 42     |       |       |       | 155   |
| 1.4            | č     | 0.7  | 0     | 0.7    | õ     | 0.2  | 115  | 792   | 0     | 02    | ō     | 0%    | 26  | 18%   | 5   | 3%     |       |       |       | 146   |
| 13             | c     | 02   | 0     | 08     | 0     | 0%   | 27   | 56%   | 0     | 03    | 0     | 0%    | 21  | 44%   | 0   | 0%     |       |       |       | 48    |
| 21             | č     | 07   | 0     | 02     | 4     | 22   | 105  | 662   | 0     | 0%    | 3     | 2%    | 13  | 8%    | 33  | 21%    |       |       |       | 158   |
| 21             | r     | 0%   | 0     | 0%     | 0     | 0%   | 12   | 332   | 0     | 0%    | 0     | 03    | 5   | 7%    | 0   | 0%     |       |       |       | 67    |
| 2              | č     | 02   | 0     | 0%     | 1     | 1%   | 55   | 73%   | 0     | 0%    | 0     | 0%    | 10  | 13%   | 9   | 12%    |       |       |       | 75    |
| 21             | 0     | 0%   | 0     | 0%     | ō     | 0.2  | 74   | 100%  | 0     | 02    | C     | 02    | 0   | 0%    | 0   | 0%     |       |       |       | 74    |
| 23             | 0     | 0.9  | õ     | 0%     | 1     | 1 2  | 152  | 95%   | 0     | 02    | 0     | 0.2   | C   | 03    | 7   | 4%     |       |       |       | 160   |
| 23             | c     | 0.7  | 0     | 69     | 0     | 0%   | C A  | 100%  | 0     | 02    | 0     | 0%    | 0   | 0%    | Ó   | 0%     |       |       |       | 96    |
| 2.5            | c     | 0.9  | 0     | 0.2    | õ     | 0%   | 106  | 938   | 0     | 02    | 0     | 0%    | 0   | 0%    | 1   | 1%     |       |       |       | 1070  |
| 23             | č     | 0.7  |       | 29     | 0     | 0.9  | 103  | 379   | 0     | 0 2   | 0     | 02    | 0   | 0%    | ō   | 0%     |       |       |       | 1065  |
| 24             | ċ     | 02   | 0     | 0%     | 6     | 62   | 100  | 542   | 0     | 02    | 0     | 0%    | 0   | 0%    | 0   | 0%     |       |       |       | 106   |
| 23             | 0     | 07   | 0     | 0.2    | 34    | 28%  | 87   | 729   | 0     | 02    | 0     | 03    | 0   | 0%    | 0   | 0%     |       |       |       | 121   |
| 20             |       | 0%   | 0     | 0%     | 0     | 02   | 50   | 1002  | 0     | 02    | 0     | 02    | õ   | 02    | c   | 0%     |       |       |       | 50    |
| 21             | 1     | 27   | 0     | 0%     | 7     | 112  | 55   | 872   | 0     | 07    | č     | 0%    | õ   | 0%    | 0   | 0%     |       |       |       | 63    |
| 21             | 1     | 6.10 | U     | 0.0    | *     | 77.0 | 22   | 010   | 0     | 0.0   | Ũ     | 0.0   |     | 0.0   | Ŭ   |        |       |       |       |       |
| COLUMN TOTALS: | 1     |      | 3     |        | 53    |      | 1632 |       | 2     |       | 55    |       | 581 |       | 244 | 2      | 271)  | 1     | 73    | 2571  |
| PERCENTAGE:    |       |      |       |        |       |      |      |       |       |       |       |       |     |       |     |        |       |       |       |       |
| ALL GARS:      | 0%    |      | 0%    |        | 1%    |      | 30%  |       | 0%    |       | 12    |       | 11% |       | 4%  |        | 50%   |       | 32    |       |
| EXCEPT HOLD    |       |      |       |        |       |      |      |       |       |       |       |       |     |       |     |        |       |       |       |       |
| & UNEXP.       | 61    |      | 09    |        | 2%    |      | 63%  |       | 0%    |       | 2%    |       | 23% |       | 9%  |        |       |       |       |       |

SURMARY: JANUARY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 1971 PERFURMANCE TABLE: ALL LOADED CARS VERSUS ACTUAL YARD TIME

| ASTIAL                   | 1    | CARS  | ADVAN | CED DI | JE TO: |      | (    | ARS  | CN SCH | IECULE | CUE  | TO:  | C    | ARS [ | DELAYE | D DUE | TU:        |       |       |
|--------------------------|------|-------|-------|--------|--------|------|------|------|--------|--------|------|------|------|-------|--------|-------|------------|-------|-------|
| YARD TIME                | FARL | Y AKR | YAKD  | MOVE   | LAT    | DEP  | NC   | MAL  | YARD   | MUVE   | LATE | DEP  | LATE | ARR   | LATE   | HUMP  | OB BUILDUP | OTHER | TOTAL |
| TAND TANE                | LOS  | . 2   | LDS   | 2      | LDS    | 2    | LDS  | 5 %  | LDS    | 3      | LDS  | 26   | LDS  | x     | LDS    | 20    | LDS        | LDS   |       |
| 5                        | C    | 0%    | 0     | 0%     | 0      | C %  | C    | 0%   | 55     | 21%    | 0    | 0%   | 206  | 75%   | C      | C%    |            |       | 261   |
| ,                        | C    | 02    | õ     | 0%     | 0      | 0%   | C    | 0%   | 16     | 15%    | 5    | 6%   | 64   | 75%   | C      | 0%    |            |       | 85    |
| 2                        | (    | 0%    | 0     | 02     | 0      | 0.2  | 0    | 11%  | 115    | 57%    | 9    | 4%   | 77   | 38%   | C      | 0%    |            |       | 201   |
| 4                        | c    | 07    | 0     | 0.4    | C      | C 9  | 0    | 0.9  |        | 272    | 59   | 262  | 109  | 48%   | 0      | 0%    |            |       | 229   |
| 1                        | č    | 07    | 0     | 0.9    | 0      | 0.7  | C    | 0%   | 109    | 212    | 158  | 452  | 84   | 242   | C      | 0%    |            |       | 351   |
| 1                        | c    | 0.7   | 0     | 0.0    | 0      | 0.4  | 0    | 0.9  | 25     | 7.2    | 222  | 649  | 6.8  | 282   | õ      | 0%    |            |       | 345   |
| 3                        | 0    | 0.37  | 0     | 0.9    | 2      | 19   | 0    | 0.4  | 22     | 19     | 250  | 81 9 | 60   | 192   | 0      | 02    |            |       | 321   |
|                          | 0    | 0.*   | 0     | 0.%    | 0      | 0.9  | 278  | 80%  | 0      | 0.9    | 0    | 0.9  | 0    | 0%    | 35     | 11%   |            |       | 313   |
| 3                        | č    | 0.8   | 0     | 0.4    | 0      | 0.9  | 166  | 074  | 0      | 0.9    | c    | 0.9  | õ    | 02    | 36     | 182   |            |       | 202   |
| 3                        | č    | 0.8   | 0     | 0.4    | õ      | 0.9  | 261  | 024  | 0      | 09     | 0    | 69   | 0    | 0%    | 31     | 112   |            |       | 282   |
| 13                       | c    | 0.6   | 0     | 0.6    | 0      | 0.8  | 201  | 074  | 0      | 0.4    | 0    | 0.92 | 0    | 0.9   | 22     | 79    |            |       | 307   |
|                          | 5    | 0.6   | 0     | 0.4    | U      | 0%   | 200  | 324  | 0      | 04     | 0    | 0.4  | 0    | 0.9   | 20     | 89    |            |       | 250   |
| 12                       | 5    | 0.0   | 0     | 0%     | 0      | 0.00 | 250  | 724  | 0      | 0.9    | c    | 0.9  | 0    | 0%    | 20     | 29    |            |       | 160   |
| 13                       |      | 0.6   | 0     | 0.6    | 0      | 0.6  | 100  | 304  | 0      | 0.0    | õ    | 0.4  | 0    | 0.9   | 21     | 29    |            |       | 255   |
| F 1                      | L    | 0.6   | 0     | 0%     | 0      | 0.6  | 101  | 966  | 0      | 09     | 0    | 04   | 0    | 04    | 7      | 1.9   |            |       | 101   |
| 1 2                      | 0    | 0%    | 0     | 0.6    | 0      | 0.26 | 164  | 904  | 0      | 0.6    | 0    | 0.9  | 0    | 0.4   | 5      | 24    |            |       | 256   |
| 13                       | C C  | 0%    | 0     | 0 %    | 0      | 6.2  | 221  | 90%  | 0      | 0.2    | 0    | 0.4  | 0    | 0.0   | 2      | 1.9   |            |       | 250   |
| 11                       | C    | 0.5   | U     | 0%     | 0      | 0.2  | 200  | 972  | 0      | 0.6    | 0    | 0%   | 0    | 0.4   | 2      | 1.6   |            |       | 105   |
| 13                       | 0    | 0%    | 0     | 0%     | 0      | 0.8  | 191  | 1008 | 0      | 0.26   | C    | 0.6  | 0    | 0.4   | 4      | 2.6   |            |       | 227   |
| 1 3                      | L.   | 0%    | 0     | 03     | 0      | 02   | 221  | TUOE | 0      | 0.20   | U    | 0%   | 0    | 0.4   |        | 0%    |            |       | 220   |
| 20                       | L    | 0%    | 11    | . 0%   | C      | 62   | 239  | 100% | 0      | 0.00   | 0    | 0%   | 0    | 0.6   | 0      | 0.6   |            |       | 200   |
| 21                       | 6    | 0%    | 0     | 03     | 0      | 02   | 268  | 100% | 3      | 0%     | 0    | 076  | 0    | 0.6   | 0      | 0.6   |            |       | 200   |
| 22                       | L    | 03    | 0     | 02     | 0      | 02   | 105  | 100% | U      | 0%     | 0    | 0%   | 0    | 076   | 0      | 0.4   |            |       | 109   |
| 23                       | 0    | 08    | С     | 0%     | 1      | 1%   | 150  | 99%  | 0      | 0%     | 0    | 0%   | 0    | 02    | 0      | 03    |            |       | 1510  |
| 24                       | C    | 02    | 0     | CZ     | 2      | 1%   | 180  | 99%  | 0      | 08     | 0    | 0%   | 0    | 0%    | 0      | 0%    |            |       | 182   |
| 25                       | C    | 0%    | 0     | 0%     | 0      | 62   | 65   | 100% | 0      | 0%     | 0    | 0%   | 0    | 0%    | 0      | 0%    |            |       | 00    |
| 25                       | C    | 2%    | 1     | 1%     | 1      | 1%   | 154  | 998  | 0      | 0%     | 0    | 0%   | 0    | 0%    | 0      | 0%    |            |       | 150   |
| 27                       | C    | 02    | 4     | 7%     | 7      | 11%  | 50   | 82%  | 0      | 0%     | 0    | . 0% | 0    | 0%    | 0      | 0%    |            |       | 61    |
| 23                       | C    | 08    | 0     | 0%     | 29     | 59%  | 20   | 41%  | 0      | C %    | С    | 0%   | 0    | 0%    | 0      | 0%    |            |       | 49    |
| 23                       | C    | 0%    | 11    | 15%    | 12     | 17%  | 49   | 68%  | 0      | 02     | C    | 02   | 0    | 0%    | 0      | 0%    |            |       | 12    |
| 30                       | C    | 0%    | 7     | 12%    | 13     | 22%  | 40   | 67%  | 0      | 0%     | 0    | 02   | 0    | 0%    | 0      | 0%    |            |       | 60    |
| 31                       | 0    | 0%    | 0     | 0%     | 46     | 618  | 29   | 39%  | С      | CZ     | C    | 0%   | 0    | 02    | 0      | 02    |            |       | 15    |
| 32                       | 3    | 24%   | 0     | C %    | 0      | 0%   | 25   | 76%  | 0      | 0%     | 0    | C %  | 0    | 0%    | 0      | 0%    |            |       | 33    |
| 33                       | 16   | 943   | 0     | 0%     | 0      | C%   | 1    | 6%   | 6      | 0%     | 0    | 03   | 0    | 02    | 0      | 0%    |            |       | 17    |
| CJLLAN TJTALS:           | 24   |       | 23    | •      | 111    |      | 4027 |      | 383    |        | 712  |      | 698  |       | 186    |       | 1416       | 129   | 6164  |
| PERCENTAGE:              |      |       |       |        |        |      |      |      |        |        |      |      |      |       |        |       | -          |       |       |
| ALL CARS:<br>EXCEPT FOLD | 03   |       | 3%    |        | 13     |      | 52%  |      | 5%     |        | 93   |      | 98   |       | 2%     |       | 18%        | 2%    |       |
| & UNEXP:                 | Cł   |       | 0%    |        | 2%     |      | 65%  |      | 6%     |        | 12%  |      | 11%  |       | 3%     |       |            |       |       |

## SURMARY: JANUARY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 1971 PERFERMANCE TABLE: ALL EMPTY CARS VERSUS ACTUAL YARD TIME

| ACTJAL                   | (     | ARS . | ACVANO | CED DL | JE TO: |       | (    | CAKS 4 | N SCH | ECULE | CUE 1 | 10:   | C   | ARS D | ELAYE | D DUE  | TO:              |       |
|--------------------------|-------|-------|--------|--------|--------|-------|------|--------|-------|-------|-------|-------|-----|-------|-------|--------|------------------|-------|
| YARD TIME                | EARLY | ARR   | YARD   | MOVE   | LATE   | E CEP | N    | CRMAL  | YARD  | MOVE  | LATE  | E DEP | LAT | E ARR | LAT   | E HUMP | OB BUILDUP OTHER | TOTAL |
|                          | EMP   | 2     | EMP    | 2      | EMP    | 2     | EMI  | şe c   | EMP   | z     | EMP   | *     | EMP | 2     | EMP   | %      | EMP EMP          |       |
| 4                        | C     | 0%    | 0      | 03     | 0      | C%    | 0    | 0%     | 1     | 1%    | 0     | 0%    | 171 | 992   | 0     | 0%     |                  | 172   |
| 2                        | C     | 0%    | 0      | 0%     | C      | C %   | C    | 02     | 0     | 0%    | C     | 0%    | 52  | 100%  | 0     | 0%     |                  | 52    |
| 3                        | Č     | 0Z    | 0      | 02     | õ      | 0%    | 0    | 01     | Ő     | 0%    | C     | 02    | 63  | 1002  | C     | 0%     |                  | 53    |
| 4                        | ć     | 0%    | 0      | 0.9    | ć      | 09    | 2    | 0.9    | 0     | 00    | 10    | 149   | 62  | 869   | 0     | 0.9    |                  | 72    |
| -                        | č     | 0.3   | 0      | 0.0    | 0      | 0.9   | ó    | 0.9    | 1     | 19    | 10    | 103   | 02  | 000   | 0     | 0.9    |                  | 102   |
| 4                        | ć     | 07    | 0      | 0.0    | 0      | 08    | 0    | 0.4    | -     | 14    | 10    | TUP   | 72  | 076   | 0     | 0.4    |                  | 103   |
| 2                        | 0     | 0.0   | 0      | 0.9    | 0      | 0.40  | 0    | 0.4    | 0     | 0.4   | - 4   | 44    | 85  | 70%   | 0     | 0.8    |                  | 89    |
| 2                        | 0     | 0%    | 0      | 0.6    | 0      | 6.20  |      | 0.26   | 0     | 0.6   | 51    | 222   | 00  | 00%   |       | 0.5    |                  | 91    |
| 3                        | 6     | 0%    | 0      | 0%     | 0      | 62    | 19   | 552    | 0     | 0%    | C     | 0.0   | 0   | 0%    | 17    | 41%    |                  | 36    |
| 3                        | C     | 0%    | 0      | 02     | 0      | 0%    | 28   | 32%    | 0     | 0%    | 0     | 0%    | 0   | 0%    | 59    | 68%    |                  | 87    |
| 10                       | C     | 02    | 0      | 02     | C      | C %   | 70   | 84%    | 0     | C%    | 0     | 0%    | 0   | 0%    | 13    | 16%    |                  | 83    |
| 11                       | C     | 0%    | 0      | 0%     | 0      | 0%    | 117  | 85%    | 0     | 0%    | C     | 0%    | 0   | 0%    | 21    | 15%    |                  | 138   |
| 12                       | C     | 0%    | 0      | 02     | 0      | C%    | 41   | 60%    | 0     | 78    | 0     | 02    | 0   | 02    | 27    | 40%    |                  | 68    |
| 13                       | C     | 0%    | 0      | 0%     | 0      | 08    | 28   | 44%    | 0     | C %   | C     | 0%    | 0   | 0%    | 36    | 56%    |                  | 64    |
| 14                       | C     | 0%    | 0      | 0%     | 0      | 02    | 55   | 86%    | 0     | 02    | 0     | 02    | 0   | 02    | 9     | 14%    |                  | 64    |
| 15                       | C     | . 0%  | 0      | 0%     | 0      | C%    | 118  | 94%    | 0     | C%    | C     | 08    | 0   | 02    | 8     | 6%     |                  | 126   |
| 10                       | C     | 0%    | 0      | 0%     | 0      | 03    | 53   | 598    | 0     | 0%    | C     | 0%    | 0   | 0%    | 37    | 41%    |                  | 90    |
| 17                       | C     | 0%    | 2      | 0%     | 0      | 0%    | 137  | 94%    | 0     | 0%    | С     | 0%    | 0   | 0%    | 8     | 6%     |                  | 145   |
| 13                       | C     | 0%    | 0      | 0%     | C      | C%    | 74   | 89%    | 0     | C%    | С     | 0%    | 0   | 0%    | 9     | 11%    |                  | 83    |
| 13                       | C     | 02    | 0      | CZ     | 0      | 02    | 76   | 102    | 0     | 0%    | C     | 02    | 0   | 0%    | C     | 0%     |                  | 76    |
| 20                       | C     | 0%    | 0      | 0%     | 0      | 0%    | 64   | 100%   | 0     | 0%    | 0     | 03    | 0   | 0%    | 0     | 0%     |                  | 64~   |
| 21                       | C     | 0%    | C      | 0%     | 0      | 0%    | 65   | 100%   | 0     | C%    | 0     | 0%    | 0   | 0%    | 0     | 0%     |                  | 69    |
| 22                       | C     | 0%    | 0      | 0%     | 1      | 18    | 82   | 99%    | 0     | 0%    | 0     | 0%    | 0   | 0%    | 0     | 0%     |                  | 83    |
| 23                       | C     | 0%    | U      | 0%     | C      | C%    | 6-   | 10 38  | 0     | 0.9   | 0     | 07    | 0   | 02    | 0     | 0%     |                  | 67    |
| 24                       | C     | 0%    | 0      | 0%     | 7      | 5%    | 134  | 952    | 0     | 02    | C     | CZ    | 0   | 0%    | 0     | 0%     |                  | 141   |
| 25                       | C     | 03    | 0      | 0%     | 38     | 35%   | 70   | 652    | õ     | 02    | 0     | 02    | 0   | 02    | õ     | 0.8    |                  | 108   |
| 23                       | C     | 0%    | 0      | 0%     | 4      | 4%    | 99   | 56%    | 0     | 72    | 0     | 0%    | ñ   | 02    | õ     | 0%     |                  | 103   |
| 27                       | C     | 05    | à      | 62     | 1      | 28    | 44   | 629    | 0     | 0.9   | C     | 0.9   | 0   | 0%    | 0     | 0%     |                  | 48    |
| 28                       | č     | 02    | c      | 02     | 1      | 29    | 40   | 689    | 0     | 0.9   | õ     | 0.8   | 0   | 0.9   | õ     | 0.9    |                  | 43    |
| 23                       | õ     | 0.8   | 0      | 0.9    | ò      | 09    | 53   | 1009   | 0     | 69    | c     | 0.0   | 0   | 0.4   | 0     | 0.9    |                  | 52    |
| 30                       | ć     | 0.9   | 0      | 0.9    | 0      | 0.9   | 20   | 1009   | 0     | 0.0   | 0     | 0.0   | 0   | 0.0   | 0     | 0.4    |                  | 22    |
| 3.1                      | č     | 0.9   | 0      | 0.9    | 1      | 29    | 20   | 100%   | 0     | 0.8   | 1     | 200   | 0   | 0.0   | 0     | 0.4    |                  | 29    |
| 2.7                      | 0     | 0.2   | õ      | 0.3    | -      | 2.6   | 20   | 1000   | 0     | 06    | 1     | 24    | 0   | 0.6   | 0     | 0.6    |                  | 40    |
| 22                       | 1     | 258   | 0      | 0.5    | 0      | 0.46  | 14   | 1003   | 0     | 0%    | 0     | 0%    | U   | 02    | 0     | 0%     |                  | 14    |
| 23                       | T     | 256   | C      | 03     | 0      | 0%    | 3    | 15%    | 0     | 0%    | 0     | 0%    | 0   | 0%    | 0     | 0%     |                  | 4     |
| CILLAN TOTALS:           | 1     |       | з      |        | 53     |       | 1632 |        | 2     |       | 55    |       | 581 |       | 244   | 2      | 711 173          | 2571  |
| PERCENTAGE:              |       |       |        |        |        |       |      |        |       |       |       |       |     |       |       |        |                  |       |
| ALL CARS:<br>EXCEPT FOLD | 02    |       | 02     |        | 1%     |       | 30%  |        | С 🗶   |       | - 96  |       | 112 |       | 4%    |        | 50% 3%           |       |
| & UNEXF:                 | 0%    |       | 0%     |        | 28     |       | 63%  |        | 0%    |       | 2%    |       | 23% |       | 9%    |        |                  |       |

SU4MARY: JANUTRY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 1971 PERFERMANCE FAELE: EASTBOUND LEADED CARS VERSUS SCHEDULED YARD TIME

| SCHECJLED                | C     | ARS | AEVAN | CED DI | JE TU | :     | (    | CARSI | ON SCH | EDULE | DUE  | Tu: |      | CAR | S DE | LAYED | DUE TO:    |       | ROW   |
|--------------------------|-------|-----|-------|--------|-------|-------|------|-------|--------|-------|------|-----|------|-----|------|-------|------------|-------|-------|
| YARD TIME                | EARLY | ARR | YARD  | MUVE   | LATI  | E DEP | NCH  | KMAL  | YARD   | MOVE  | LATE | DEP | LATE | ARR | LATE | HUMP  | OB BUILDUP | OTHER | TOTAL |
|                          | LES   | 8   | LDS   | z      | LDS   | 20    | LC   | 5 %   | LDS    | *     | IDS  | Z   | LDS  | え   | LDS  | 26    | LDS        | LDS   |       |
| 3                        | C     | 0%  | 0     | 02     | 0     | 0%    | 35   | 78    | 207    | 48%   | 107  | 25% | 72   | 17% | 9    | 2%    |            |       | 434   |
| 3                        | C     | 08  | С     | 0%     | 0     | C %   | 55   | 29%   | 25     | 12%   | 74   | 36% | 29   | 14% | 16   | 8%    |            |       | 203   |
| 10                       | C     | 03  | 0     | 0%     | C     | CZ    | 136  | 36%   | 38     | 10%   | 143  | 38% | 59   | 16% | 3    | 1%    |            |       | 379   |
| 11                       | C     | 0%  | 0     | 0%     | 0     | 0%    | 153  | +5%   | 51     | 78    | 175  | 40% | 29   | 7%  | S    | 2%    |            |       | 442   |
| 12                       | C     | 0%  | 0     | 0%     | 0     | C %   | 199  | 58%   | 7      | 2%    | 76   | 22% | 52   | 15% | 7    | 2%    |            |       | 341   |
| 13                       | С     | 0%  | 0     | 0%     | 0     | 0%    | 153  | 57%   | 20     | 10%   | 19   | 7%  | 70   | 26% | 0    | 0%    |            |       | 268   |
| 14                       | С     | 0%  | 0     | 0%     | G     | C %   | 191  | 532   | 19     | 82    | 2    | 1%  | 9    | 4%  | 8    | 3%    |            |       | 229   |
| 13                       | C     | 0%  | С     | 0%     | 1     | CZ    | 25C  | 80%   | 19     | 68    | 14   | 4%  | 28   | 9%  | С    | 0%    |            |       | 312   |
| 15                       | 0     | 0%  | 0     | 0%     | C     | C X   | 150  | 72%   | 9      | 4%    | 20   | 10% | 27   | 13% | 2    | 1%    |            |       | 208   |
| 17                       | С     | 0%  | 0     | 0%     | 2     | 0%    | 59   | 71%   | 0      | 08    | 9    | 6%  | 13   | 9%  | 18   | 13%   |            |       | 139   |
| 13                       | С     | いお  | 0     | 0%     | 0     | C%    | 58   | 97%   | 2      | 3%    | C    | 0%  | 0    | 0%  | 0    | 20%   |            |       | 60    |
| 13                       | 0     | 0%  | 0     | 0%     | 0     | C %   | 112  | 692   | 0      | 0*    | 14   | 5%  | 26   | 16% | 10   | 6%    |            |       | 162   |
| 20                       | 0     | 0%  | 0     | 0%     | 0     | C %   | 116  | 93%   | 0      | 08    | 9    | 73  | 0    | 02  | 0    | 0%    |            |       | 125   |
| 21                       | 0     | 0%  | 0     | 0%     | 4     | 2%    | 1.7  | 572   | 0      | CZ    | 1    | 1%  | 0    | 0%  | 0    | 0%    |            |       | 192   |
| 2?                       | С     | 0%  | 0     | 0%     | 0     | 0%    | 189  | 99%   | 0      | 0%    | 0    | 0%  | 0    | 0%  | 2    | 1%    |            |       | 191   |
| 23                       | С     | 02  | 1     | 1%     | C     | 0%    | 183  | 99%   | 0      | CZ    | 0    | 0%  | 0    | 0%  | 0    | 03    |            |       | 184   |
| 24                       | C     | 0%  | 0     | 0%     | 4     | 4%    | \$7  | 963   | 0      | 0%    | C    | C%  | 0    | 0%  | 0    | 0%    |            |       | 101   |
| 25                       | C     | 0%  | C     | 0%     | 8     | 42    | 170  | 962   | 0      | CL    | 0    | 0%  | 0    | 0%  | 0    | 02    |            |       | 178   |
| 26                       | C     | 0%  | 0     | 0%     | 0     | 0%    | 144  | 100%  | 0      | 0%    | С    | C % | 0    | 0%  | 0    | 0%    |            |       | 144   |
| 27                       | C     | 02  | í.    | 5%     | 0     | 0%    | 118  | 95%   | 0      | C 2   | 0    | 0%  | 0    | 0%  | C    | 0%    |            |       | 12400 |
| 23                       | C     | 03  | 0     | 0%     | 30    | 46%   | 35   | 54%   | 0      | C%    | 0    | 02  | 0    | 0%  | 0    | 0%    |            |       | 65    |
| 23                       | C     | 02  | 11    | 46%    | 3     | 13%.  | 10   | 42%   | C      | 0%    | 0    | 0%  | 0    | 0%  | 0    | 0%    |            |       | 24    |
| 30                       | С     | 0%  | 0     | 0%     | 6     | 19%   | 26   | 81%   | 0      | 0%    | C    | 0%  | 0    | 0%  | 0    | 0%    |            |       | 32    |
| 31                       | С     | 02  | 2     | 38     | 40    | 66%   | 19   | 31%   | 0      | 0%    | C    | 0%  | 0    | 0%  | 0    | 0%    |            |       | 61    |
| COLLMN TOTALS:           | с     |     | 20    |        | 56    |       | 2938 |       | 383    |       | 663  |     | 414  |     | 84   |       | 464        | 59    | 4598  |
| PERCENTAGE:              |       |     |       |        |       |       |      |       |        |       |      |     |      |     |      |       |            |       |       |
| ALL CARS:<br>EXCEPT FOLD | 0%    |     | 02    |        | 2%    |       | 57%  |       | 7%     |       | 13%  |     | 82   |     | 2%   |       | 92         | 12    |       |
| & UNEXP .                | 0 %   |     | 0%    |        | 23    |       | 64%  |       | 8%     |       | 14%  |     | 92   |     | 2%   |       |            |       |       |

0

SUMMARY: JANUARY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 1971 PERFERMANCE TABLE: EASTBJUND EMPTY CARS VERSUS SCHEDULED YARD TIME

| SCHEDULED      | C     | ARS | ACVAN | CED DL | JE TO | :     | C   | ARS C | N SCH | EDULE | CUE 1 | 10:   |     | CARS  | DEI | LAYED  | DUE TO:   |         | ROW   |
|----------------|-------|-----|-------|--------|-------|-------|-----|-------|-------|-------|-------|-------|-----|-------|-----|--------|-----------|---------|-------|
| YARD TIME      | EARLY | ARR | YARD  | MOVE   | LAT   | E DEP | NO  | KMAL  | YARD  | MUVE  | LATI  | E CEP | LAT | E ARR | LAT | E HUMP | OB BUILDU | P OTHER | TOTAL |
|                | ENP   | X   | EMP   | ×      | EMP   | 2     | EMP | 2     | EMP   | Z     | EMP   | z     | EMP | x     | EMP | z      | EMP       | EMP     |       |
| 3              | 0     | 03  | 0     | 0%     | 0     | 0%    | 0   | 0%    | 0     | C %   | C     | 0%    | 3   | 50%   | 3   | 50%    |           |         | 6     |
| 3              | C     | 05  | 0     | 0%     | 0     | C%    | . 4 | 12%   | 0     | C%    | С     | 0%    | 13  | 38%   | 17  | 50%    |           |         | 34    |
| 10             | С     | 03  | 0     | 0%     | 0     | 0%    | 9   | 50%   | 0     | 0%    | 4     | 25%   | 3   | 19%   | 0   | 0%     |           |         | 16    |
| 11             | C     | 0%  | 0     | 0%     | 0     | CZ    | 5   | 56%   | 1     | 112   | 1     | 11%   | 2   | 22%   | 0   | 0%     |           |         | 9     |
| 1.2            | C     | 0%  | 0     | 0%     | 0     | 0%    | 3   | 17%   | 0     | C%    | 10    | 56%   | 5   | 28%   | 0   | 0%     |           |         | 18    |
| 13             | C     | 02  | 0     | 0%     | 0     | CZ    | 7   | 37%   | 0     | 0%    | 2     | 112   | 9   | 47%   | 1   | 5%     |           |         | 19    |
| 14             | C     | 0%  | 0     | 0%     | 0     | 0%    | 19  | 68%   | 0     | 0%    | 3     | 11%   | 0   | 0%    | 6   | 21%    |           |         | 28    |
| 15             | 0     | 0%  | 0     | 0%     | 0     | C%    | 28  | 76%   | 0     | 0%    | 4     | 11%   | 5   | 14%   | С   | 0%     |           |         | 37    |
| 16             | 0     | 0%  | 0     | 08     | 0     | 0%    | 10  | 71%   | 1     | 7%    | 0     | 03    | 0   | 0%    | 3   | 21%    |           |         | 14    |
| 17             | 0     | 02  | C     | C%     | 0     | CZ    | 25  | 89%   | 0     | 0%    | 1     | 4%    | 2   | 7%    | 0   | 08     |           |         | 28    |
| 13             | С     | 0%  | 0     | 0%     | 0     | C %   | 5   | 100%  | 0     | 0%    | С     | 0%    | 0   | 0%    | 0   | 0%     |           |         | 5     |
| 19             | C     | 0%  | 0     | 0%     | 0     | C%    | 4   | 100%  | 0     | 02    | 0     | 0%    | 0   | 0%    | 0   | 0%     |           |         | 4     |
| 20             | 0     | 08  | 0     | 0%     | 0     | C %   | 5   | 56%   | 0     | 0%    | 3     | 33%   | 0   | 0%    | 1   | 11%    |           |         | 9     |
| 21             | С     | 03  | 0     | 0%     | 0     | 0%    | 16  | 100%  | 0     | 08    | 0     | 0%    | 0   | 0%    | 0   | 0%     |           |         | 16    |
| 22             | C     | 0%  | 0     | 0%     | 0     | C%    | 7   | 100%  | 0     | 0%    | 0     | 0%    | 0   | 0%    | 0   | 0%     |           |         | 7     |
| 23             | C     | 0%  | 0     | 0%     | 0     | 0%    | 22  | 100%  | 0     | 0%    | 0     | 0%    | 0   | CZ    | 0   | 08     |           |         | 22    |
| 24             | C     | 0%  | C     | 0%     | 1     | 33%   | 2   | 07%   | 0     | 0%    | 0     | 03    | 0   | 0%    | 0   | 0%     |           |         | 3     |
| 25             | C     | 0%  | 0     | 0%     | 0     | CZ    | 8   | 100%  | 0     | 0%    | С     | 02    | 0   | 0%    | 0   | 0%     |           |         | 8     |
| 23             | C     | 02  | 0     | 0%     | 0     | 0%    | 6   | 100%  | 0     | 0%    | С     | 0%    | 0   | 0%    | C   | 0%     |           |         | 6     |
| 27             | C     | 0%  | 3     | 14%    | 0     | C%    | 18  | 862   | 0     | 0%    | 0     | 02    | 0   | 0%    | 0   | 0%     |           |         | 210   |
| 23             | C     | 0%  | 0     | 03     | 0     | CZ    | 12  | 100%  | 0     | 03    | 0     | 02    | 0   | 0%    | 0   | 0%     |           |         | 120   |
| 25             | С     | 0%  | 0     | 0%     | 0     | CZ    | 27  | 100%  | 0     | 03    | 0     | 02    | 0   | 0%    | 0   | 0%     |           |         | 27    |
| 30             | С     | 0%  | 0     | 0%     | 0     | 0%    | 2   | 100%  | 0     | 0%    | 0     | 0%    | 0   | 0%    | 0   | 0%     |           |         | 2     |
| 31             | 0     | 0%  | 0     | 0%     | 1     | 100%  | 0   | 0%    | 0     | 03    | C     | C%    | 0   | 0%    | 0   | 0%     |           |         | 1     |
| COLUMN TOTALS: | ٥     |     | 3     |        | 2     |       | 244 |       | 2     |       | 28    |       | 42  |       | 31  |        | 136       | 10      | 352   |
| PERCENTAGE     |       |     |       |        |       |       |     |       |       |       |       |       |     |       |     |        |           |         |       |
| ALL CARS:      | 01    |     | 1%    |        | 03    |       | 498 |       | 0%    |       | 6%    |       | 8%  |       | 6%  |        | 27%       | 2%      |       |
| & UNEXP:       | 03    |     | 13    |        | 1%    |       | 69% |       | 12    |       | 83    |       | 123 |       | 9%  |        |           |         |       |

SUMMARY: JANUARY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 1971 PERFORMANCE TABLE: WESTBOUND LOADED CAKS VERSUS SCHEDULED YARD TIME

| SCHEQULED                | C     | ARS | ADVANC | ED DL | JE TC: |     | C   | AKS  | IN SCH | EDULE | DUE  | TO: |      | CAR  | S DE | LAYED | DUE T   | 0:    |      | RUW   |
|--------------------------|-------|-----|--------|-------|--------|-----|-----|------|--------|-------|------|-----|------|------|------|-------|---------|-------|------|-------|
| VARD TIME                | EARLY | ARR | YARD   | MOVE  | LATE   | CEP | NOR | MAL  | YARD   | MOVE  | LATE | DEP | LATE | ARR  | LATE | HUMP  | OB BUIL | DUP C | THER | TOTAL |
|                          | LDS   | *   | LDS    | 20    | LDS    | *   | LCS | 8    | LLS    | 2     | LCS  | z   | LDS  | z    | LDS  | %     | LDS     | L     | DS   |       |
| 9                        | C     | 0%  | C      | 0%    | C      | C%  | С   | 0%   | 0      | 0%    | С    | 0%  | 15   | 100% | 0    | 0%    |         |       |      | 15    |
| 3                        | C     | 03  | 0      | 0%    | 0      | 0%  | G   | 12   | 0      | 08    | 0    | 0%  | 11   | 212  | 7    | 39%   |         |       |      | 18    |
| 10                       | C     | 0%  | C      | 0%    | C      | C Z | 14  | 34%  | 0      | CZ    | 0    | 0%  | 19   | 46%  | 8    | 20%   |         |       |      | 41    |
| Ĩ.                       | C     | 03  | 0      | 02    | 0      | C%  | 11  | 22%  | 0      | 0%    | 11   | 22% | 29   | 57%  | 0    | 0%    |         |       |      | 51    |
| . 12                     | C     | 08  | 0      | 0%    | 0      | 02  | с   | 60%  | 0      | 0%    | 1    | 7%  | 4    | 27%  | 1    | 7%    |         |       |      | 15    |
| 13                       | C     | 0%  | 0      | 0%    | 0      | C % | 34  | 85%  | 0      | 3%    | 0    | 62  | 6    | 15%  | 0    | 0%    |         |       |      | 40    |
| 14                       | С     | 0%  | 0      | 0%    | 0      | CZ  | 0   | 0%   | 0      | 0%    | 2    | 25% | 6    | 75%  | 0    | 0%    |         |       |      | 8     |
| 15                       | C     | 03  | 0      | 0%    | U      | CZ  | 6   | 22%  | 0      | 0%    | 0    | 0%  | 17   | 13%  | 4    | 15%   |         |       |      | 27    |
| 15                       | С     | 02  | 0      | 0%    | 0      | C%  | 9   | 82%  | 0      | C%    | 0    | 0%  | 2    | 18%  | 0    | 0%    |         |       |      | 11    |
| 17                       | C     | 0%  | 0      | 0%    | 0      | C % | 29  | 85%  | 0      | 0%    | 0    | 0%  | 5    | 15%  | C    | 0%    |         |       |      | 34    |
| 13                       | C     | 0%  | 0      | 0%    | С      | 0%  | 17  | 54%  | 0      | 0%    | 1    | 62  | 0    | 0%   | 0    | 0%    |         |       |      | 18    |
| 13                       | 0     | 03  | 0      | 0%    | 0      | 02  | 11  | 79%  | 0      | C %   | С    | 0%  | 3    | 21%  | 0    | 0%    | 343     |       |      | 14    |
| 20                       | C     | 02  | 0      | 08    | 0      | 0%  | 11  | 100% | 0      | 0%    | 0    | 0%  | 0    | 0%   | 0    | 0%    |         |       |      | 11    |
| 21                       | C     | ()2 | 0      | CZ    | 0      | 0%  | 14  | 50%  | 0      | CZ    | 0    | 02  | 14   | 50%  | 0    | 0%    |         |       |      | 28    |
| 22                       | С     | CZ  | 0      | 0%    | 0      | CZ  | 8   | 53%  | U      | 0%    | C    | 03  | 7    | 47%  | C    | 0%    |         |       |      | 15    |
| 23                       | C     | 0%  | 0      | 0%    | 0      | 0%  | 7   | 100% | 0      | 0%    | L    | CZ  | 0    | 0%   | 0    | 0%    |         |       |      | 7     |
| 24                       | C     | 02  | C      | 0%    | 0      | C % | 10  | 100% | 0      | C%    | 0    | C % | 0    | 0%   | 0    | 0%    |         |       |      | 10    |
| 23                       | C     | 0%  | 0      | 0%    | 0      | 0%  | 9   | 100% | G      | C%    | 0    | 0%  | 0    | 02   | 0    | 0%    |         |       |      | 9     |
| 26                       | C     | 0%  | 0      | 0%    | 0      | C % | 18  | 100% | 0      | CZ    | 0    | 0%  | 0    | 0%   | 0    | 0%    |         |       |      | 18    |
| 21                       | С     | いる  | 0      | 02    | 0      | 0%  | 19  | 100% | 0      | 0%    | 0    | 0%  | 0    | 02   | 0    | 0%    |         |       |      | 19    |
| 23                       | С     | 0%  | 0      | 0%    | 0      | C%  | 18  | 100% | 0      | 01    | 0    | 0%  | 0    | 0%   | 0    | 0%    |         |       |      | 18    |
| 29                       | C     | 02  | 0      | 0%    | 0      | C'Z | 21  | 100% | 0      | 03    | 0    | 0%  | 0    | 0%   | 0    | 0%    |         |       |      | 21    |
| 30                       | 11    | 30% | 0      | 0%    | 0      | C%  | 26  | 70%  | 0      | 0%    | 0    | 02  | 0    | 0%   | 0    | 0%    |         |       |      | 37    |
| 3.1                      | 3     | 33% | 0      | 0%    | 1      | 112 | 5   | 56%  | 0      | 0%    | 0    | 02  | 0    | 0%   | 0    | 02    |         |       |      | . 9   |
| COLUMN TOTALS:           | 14    |     | 0      |       | 1      |     | 306 |      | 0      |       | 15   |     | 138  |      | 20   |       | 486     | 2     | 5    | 494   |
| PERCENTAGE:              |       |     |        |       |        |     |     |      |        |       |      |     |      |      |      |       |         |       |      |       |
| ALL CARS:<br>EXCEPT FOID | 12    |     | 0%     |       | 0%     |     | 30% |      | 0%     |       | 1%   |     | 14%  |      | 2%   |       | 48%     | 2     | 2    |       |
| E UNEXP:                 | 3%    |     | 0%     |       | 0%     |     | 62% |      | 00     |       | 3%   |     | 28%  |      | 48   |       |         |       |      |       |

## SJMMARY: JANUARY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 1971 PERFORMANCE TABLE: WESTBJUND EMPTY CARS VERSUS SCHEDULED YARD TIME

| SCHEDULED                | C     | ARS | ADVAN | CED DU | JE TO: |       | C    | ARS C | IN SCH | EDULE | DUE T | 0:  |     | CARS  | DE  | LAYED  | DUE TO:    |       | RUW   |
|--------------------------|-------|-----|-------|--------|--------|-------|------|-------|--------|-------|-------|-----|-----|-------|-----|--------|------------|-------|-------|
| YARD TIME                | EARLY | ARR | YARD  | MJVE   | LATE   | E CEP | NC   | MAL   | YARD   | MUYE  | LATE  | CEP | LAT | E ARR | LAT | E HUMP | OB BUILDUP | OTHER | TOTAL |
|                          | EMP   | R   | EMP   | 22     | EMP    | ¥.    | EMP  | 2     | ENP    | z     | EMP   | z   | EMP | %     | EMP | 2      | EMP        | EMP   | -     |
| 3                        | C     | 02  | 0     | 0%     | 0      | 0%    | 7    | 92    | 0      | 0%    | C     | C % | 71  | 91%   | С   | 0%     |            |       | 78    |
| ş                        | C     | 02  | 0     | 0%     | C      | C %   | C    | 72    | 0      | 0%    | 0     | 0%  | 34  | 508   | 28  | 45%    |            |       | 62    |
| 10                       | С     | 0%  | 0     | 02     | 0      | C Z   | 2    | 6%    | 0      | CZ    | С     | 0%  | 28  | 80%   | 5   | 14%    |            |       | 35    |
| 11                       | C     | 0%  | 0     | 02     | 0      | C %   | 22   | 15%   | 0      | C io  | 12    | 5%  | 101 | 74%   | 1   | 1%     |            |       | 136   |
| 12                       | C     | 0%  | 0     | 0%     | C      | C %   | 2    | 3%    | 0      | 02    | 2     | 3%  | 52  | 84%   | 6   | 10%    |            |       | 62    |
| 13                       | C     | 08  | 0     | 0%     | 0      | C%    | 28   | 46%   | 0      | %     | С     | C%  | 23  | 38%   | 10  | 16%    |            |       | 61    |
| 14                       | С     | 0%  | 0     | 0%     | 0      | 0%    | 3    | 8%    | 0      | 02    | 0     | 0%  | 29  | 81%   | 4   | 11%    |            |       | 36    |
| 15                       | C     | 0%  | C     | 0%     | G      | C 2   | 31   | 55%   | C      | 0%    | 0     | 0%  | 17  | 30%   | 8   | 14%    |            |       | 56    |
| 15                       | С     | 0%  | 0     | 0%     | 0      | C %   | 16   | 402   | 0      | 0%    | 2     | 5%  | 22  | 55%   | 0   | 0%     |            |       | 40    |
| 17                       | C     | 03  | С     | 0%     | 0      | 0%    | 67   | 84%   | 0      | 0%    | 0     | 0%  | 13  | 16%   | 0   | 0%     |            |       | 80    |
| 13                       | 0     | 0%  | 0     | 0%     | 0      | C %   | 63   | 68%   | 0      | CZ    | С     | 0%  | 26  | 28%   | 4   | 4%     |            |       | 93    |
| 19                       | C     | 0%  | 0     | 08     | 0      | C %   | 10   | 36%   | 0      | 0%    | 0     | 0%  | 18  | 642   | C   | 03 .   |            |       | 28    |
| 23                       | C     | 0%  | C     | 0%     | C      | 0%    | 48   | 52%   | 0      | C Z   | 0     | 02  | 13  | 14%   | 32  | 34%    |            |       | 93    |
| 21                       | С     | 03  | 0     | 0%     | 0      | 0%    | 20   | 83%   | 0      | 03    | C     | C%  | 4   | 17%   | 0   | 0%     |            |       | 24    |
| 22                       | 0     | 0%  | С     | 08     | 0      | CZ    | 12   | 55%   | J      | 0%    | 0     | 02  | 10  | 45%   | C   | 0%     |            |       | 22    |
| 23                       | С     | 02  | C     | 0%     | 0      | 0%    | 26   | 100%  | 0      | C%    | 6     | 03  | J   | 0%    | 0   | 0%     |            |       | 26    |
| 24                       | C     | 03  | 0     | 0%     | 0      | 07    | 112  | 99%   | 0      | C%    | C     | 0%  | 0   | 0%    | 1   | 1%     |            |       | 113   |
| 25                       | С     | 03  | 0     | 0%     | С      | CZ    | 52   | 1002  | 0      | 0%    | 0     | 0%  | 0   | 0%    | 0   | 0%     |            |       | 52    |
| 25                       | C     | 03  | 0     | 0%     | 0      | C %   | 73   | 59%   | 0      | C %   | 0     | 0%  | 0   | 0%    | 1   | 13     |            |       | 74    |
| 21                       | C     | 0%  | 0     | 0%     | 0      | 02    | 37   | 100%  | 0      | 0%    | L     | 0%  | 0   | 03    | C   | C%     |            |       | 37,0  |
| 23                       | C     | 0%  | C     | 0%     | 0      | C%    | 52   | 100%  | 0      | 0%    | 0     | 02  | 0   | 0%    | 0   | 0%     |            |       | 52    |
| 27                       | C     | 0%  | 0     | 0%     | 34     | 41%   | 48   | 59%   | 0      | 0%    | С     | CZ  | 0   | 0%    | C   | 0%     |            |       | 82    |
| 33                       | C     | 02  | 0     | 0%     | 0      | 0%    | 24   | 100%  | 0      | 0%    | 0     | 0%  | 0   | 02    | 0   | 0%     |            |       | 24    |
| 3-1                      | 1     | 3%  | 0     | 0%     | 2      | 6%    | 33   | \$2%  | C      | C%    | C     | 0%  | 0   | 0%    | 0   | 02     |            |       | 36    |
| CJLLIN TOTALS            | : 1   |     | ٥     |        | 56     |       | 788  |       | 0      |       | 16    |     | 461 |       | 100 | 1      | 983        | 94    | 1402  |
| PERCENTAGE :             |       |     |       |        |        |       |      |       |        |       |       |     |     |       |     |        |            |       |       |
| ALL CARS:<br>EXCEPT FOLD | 10    |     | 0%    |        | 1%     |       | 23 % |       | 0%     |       | 02    |     | 13% |       | 3%  |        | 57%        | 3%    |       |
| & LNEXF:                 | 0 %   |     | 0%    |        | 3%     |       | 56%  |       | 05     |       | 1%    |     | 33% |       | 72  |        |            |       |       |

# SUMMARY: JANUARY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 1971 PERFORMANCE TABLE: LOCAL LEADED CARS VERSUS SCHEDULED YARD TIME

| SCHEDULED                | (     | CARS / | ACVAN | CED DU | E TC: |     | C   | ARS  | CN SCH | EDULE | CU E | TO: |      | CAR | S DE | LAYED | DUE TO:    |       | ROW   |
|--------------------------|-------|--------|-------|--------|-------|-----|-----|------|--------|-------|------|-----|------|-----|------|-------|------------|-------|-------|
| YARD TIME                | EARLY | Y ARR  | YARD  | MOVE   | LATE  | DEP | NCR | MAL  | YARD   | MO''E | LATE | DE. | LATE | ARR | LATE | HUMP  | OB BUILDUP | GTHER | TOTAL |
|                          | LCS   | . %    | LCS   | 28     | LDS   | z   | LDS | お    | LDS    | z     | LCS  | z   | LDS  | Z   | LDS  | z     | LDS        | LDS   |       |
| ŝ                        | C     | 0%     | 0     | 0 %    | C     | C#  | 2   | 6%   | 0      | CZ    | 8    | 23% | 12   | 34% | 13   | 37%   |            |       | 35    |
| 3                        | C     | 08     | 0.    | 0%     | 0     | C%  | 5   | 15%  | C      | 0%    | 0    | 0%  | 16   | 47% | 13   | 38%   |            |       | 34    |
| 10                       | C     | 05     | 0     | 0%     | 0     | C%  | 14  | 22%  | 0      | 0%    | 2    | 3%  | 37   | 58% | 11   | 17%   |            |       | 64    |
| 11                       | С     | C &    | С     | 0%     | 0     | CZ  | 13  | 38%  | 0      | 0%    | 4    | 12% | 9    | 26% | 8    | 24%   |            |       | 34    |
| 12                       | С     | 08     | 0     | 08     | 0     | C%  | 23  | 40%  | 0      | C%    | 6    | 10% | 25   | 43% | 4    | 72    |            |       | 58    |
| 13                       | С     | 08     | 0     | 0%     | 0     | 0%  | 38  | 76%  | 0      | 0%    | 4    | 8%  | 7    | 14% | 1    | 28    |            |       | 50    |
| 14                       | С     | 0%     | C     | 03     | 0     | C%  | 13  | 57%  | 0      | 0%    | 0    | 0%  | 1    | 4%  | 9    | 39%   |            |       | 23    |
| 15                       | C     | 0%     | 0     | 0%     | 0     | 0%  | 10  | 34%  | 0      | 08    | С    | 0%  | 15   | 52% | 4    | 14%   |            |       | 29    |
| 15                       | С     | 0%     | 0     | 0%     | C     | C Z | 35  | 47%  | 0      | 08    | 9    | 122 | 21   | 28% | 10   | 13%   |            |       | 75    |
| 17                       | 0     | 0%     | 0     | 0%     | 0     | C % | 37  | 84%  | 0      | C%    | С    | 0%  | 1    | 2%  | o    | 14%   |            |       | 44    |
| 13                       | С     | 08     | 0     | 0%     | 0     | 0%  | 26  | 56%  | 0      | 0%    | 0    | 0%  | 0    | 0%  | 1    | 48    |            |       | 27    |
| 19                       | C     | 0%     | 0     | C2     | 0     | CS  | 24  | 92%  | 0      | 0%    | 0    | 0%  | 2    | 88  | 0    | 0%    |            |       | 26    |
| 20                       | C     | 0%     | 0     | 0%     | 1     | 3%  | 38  | 97%  | 0      | 0%    | С    | 0%  | 0    | 0%  | 0    | 0%    |            |       | 39    |
| 21                       | C     | 0%     | C     | 0%     | 0     | 0%  | 52  | 98%  | 0      | 0~    | 1    | 2%  | 0    | 0%  | C    | 0%    |            |       | 63    |
| 22                       | C     | 03     | 0     | 0%     | 1     | 23  | 50  | 588  | 0      | C%    | С    | C%  | 0    | 0%  | 0    | 0%    |            |       | 51    |
| 23                       | C     | 02     | 0     | 0%     | 0     | 0%  | 58  | 97%  | . 0    | 0%    | 0    | 0%  | 0    | 0%  | 2    | 38    |            |       | 60    |
| 24                       | C     | 02     | 0     | 0%     | 0     | CZ  | 50  | 100% | 0      | 0%    | 0    | 0%  | 0    | 0%  | 0.   | 0%    |            |       | 50    |
| 25                       | С     | 0%     | 0     | 0%     | 5     | 58  | 52  | 91%  | 0      | C%    | 0    | 02  | 0    | 0%  | 0    | 0%    |            |       | 57    |
| 26                       | C     | 03     | 2     | 3%     | 0     | 02  | 57  | 97%  | 0      | 0%    | 0    | 0%  | 0    | 0%  | 0    | 0%    |            |       | 59    |
| 27                       | C     | 0%     | 1     | 2%     | 0     | CZ  | 53  | 98%  | 0      | 68    | 0    | 0%  | 0    | 0%  | 0    | 0%    |            |       | 54    |
| 28                       | . 0   | 0%     | 0     | 0%     | 7     | 18% | 32  | 32%  | O      | .0%   | C    | 0%  | 0    | 0%  | C    | 0%    |            |       | 39    |
| 23                       | 1     | 2%     | 0     | 0%     | 4     | 7%  | 55  | 92%  | 0      | 0%    | 0    | 02  | 0    | 0%  | C    | 0%    |            |       | 600   |
| 30                       | C     | 0%     | C     | 0%     | C     | 0%  | 18  | 100% | 0      | C%    | C    | 02  | 0    | 0%  | 0    | 0%    |            |       | 18    |
| 31                       | ş     | 29%    | 0     | 08     | 4     | 132 | 18  | 58%  | 0      | 0%    | 0    | 0%  | J    | 0%  | 0    | 03    |            |       | 31    |
| CJLUMN TOTALS:           | 10    |        | 3     |        | 22    |     | 783 |      | J      |       | 34   |     | 146  |     | 82   |       | 461        | 45    | 1072  |
| PERCENTAGE:              |       |        |       |        |       |     |     |      |        |       |      |     |      |     |      |       |            |       |       |
| ALL CARS:<br>EXCEPT HOLD | 19    |        | 0%    |        | 12    |     | 50% |      | 0%     |       | 2%   |     | 98   |     | 5%   |       | 29%        | 3%    |       |
| & UNEXP:                 | 11    |        | C%    |        | 2%    |     | 732 |      | 03     |       | 3%   |     | 14%  |     | 82   |       |            |       |       |

### SUMMARY: JANUARY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 197 Performance table: Lucal Empty cars versus scheduled yard time

| SCHECULID                | C     | ARS | ACVANO | CED DU | JE TO: | :     | C   | ARS . | N SCH | DULE | CUE 1 | ro:   |     | CARS | DE  | LAYED  | DUE TO:  |          | ROW   |
|--------------------------|-------|-----|--------|--------|--------|-------|-----|-------|-------|------|-------|-------|-----|------|-----|--------|----------|----------|-------|
| YARD TIME                | EARLY | ARR | YARD   | MUVE   | LATE   | E CEP | N   | RMAL  | YARD  | MOVE | LATE  | E CEP | LAT | EARR | LAT | E HUMP | OB BUILD | JP OTHER | TOTAL |
|                          | EMP   | . 2 | EMP    | R      | EMP    | 26    | EMP | 2     | EMP   | z    | EMP   | %     | EMP | 2    | EMP | z      | EMP      | EMP      |       |
| 3                        | C     | 02  | 0      | 0%     | 0      | C %   | 8   | 20%   | 0     | 0%   | 9     | 22%   | 24  | 59%  | 0   | 0%     |          |          | 41    |
| Ģ                        | C     | 02  | 0      | 0%     | 0      | 0%    |     | 29%   | 0     | 08   | С     | 0%    | 7   | +1%  | 5   | 29%    |          |          | 17    |
| 10                       | ٥     | 02  | 0      | 07     | 0      | C %   | 12  | 55%   | 0     | 02   | 0     | 0%    | 7   | 32%  | 3   | 14%    |          |          | 22    |
| 11                       | C     | 0%  | 0      | 0%     | 0      | C %   | 26  | 84%   | 0     | C &  | С     | 0%    | 0   | 0%   | 5   | 16%    |          |          | 31    |
| 12                       | С     | 02  | 0      | 02     | 0      | C Z   |     | 28%   | 0     | 0%   | 2     | 7%    | 16  | 55%  | 3   | 10%    |          |          | 29    |
| 13                       | n     | 0%  | 0      | 02     | 0      | C %   | 11  | 23%   | 0     | 32   | 0     | 3%    | 1   | 2%   | 35  | 74%    |          |          | 47    |
| 14                       | С     | 0%  | 0      | 0%     | 0      | C Z   | 4   | 24%   | C     | CZ   | С     | 0%    | 1   | 6%   | 12  | 71%    |          |          | 17.   |
| 15                       | C _   | 02  | C      | 0%     | 0      | 0%    | 53  | \$5%  | ú     | 08   | 0     | 0%    | 1   | 2%   | 2   | 4%     |          |          | 56    |
| 10                       | C     | 02  | 0      | 02     | 0      | CZ    | 4   | 13%   | 0     | C %  | C     | 0%    | 2   | 6%   | 26  | 81%    |          |          | 32    |
| 17                       | C     | 02  | 0      | 03     | 0      | 08    | 26  | 55%   | 0     | 0%   | 0     | 02    | 15  | 32%  | 6   | 13%    |          |          | 47    |
| 18                       | 0     | 03  | C      | 02     | 0      | C %   | 47  | 58%   | 0     | 03   | 0     | 03    | 0   | 0%   | 1   | 2%     |          |          | 48    |
| 19                       | C     | 0%  | 0      | 0%     | 0      | 0%    | 13  | 81%   | 0     | 03   | 0     | 0%    | 3   | 1 9% | 0   | 0%     |          |          | 16    |
| 20                       | C     | 03  | 0      | 0%     | 4      | 7%    | 52  | 93%   | 0     | 0%   | 0     | 0%    | 0   | 0%   | 0   | 0%     |          |          | 56    |
| 21                       | С     | 22  | 0      | 03     | 0      | C %   | 26  | 56%   | 0     | CZ   | С     | 0%    | 1   | 4%   | 0   | 0%     |          |          | 27    |
| 22                       | С     | いる  | 0      | 02     | 1      | 23    | 36  | 78%   | 0     | 0%   | 0     | 0%    | 0   | 0    | S   | 20%    |          |          | 46    |
| 23                       | С     | 02  | 0      | 02     | C      | CZ    | 26  | 100%  | 0     | 0%   | U     | 02    | 0   | 7%   | 0   | 0%     |          |          | 26    |
| 24                       | C     | 02  | 0      | 0%     | 0      | C°    | 38  | 863   | 0     | 08   | 0     | 0%    | 0   | 02   | 6   | 14%    |          |          | 44    |
| 25                       | C     | 0%  | 0      | 02     | 0      | 0%    | 36  | 100%  | J     | C %  | 0     | 0%    | 0   | 0%   | 0   | 0%     |          |          | 36    |
| 26.                      | С     | 0%  | 0      | 0%     | 0      | C %   | 27  | 100%  | 0     | 0%   | 0     | 0%    | 0   | 0%   | 0   | 0%     | -        |          | 27    |
| 27                       | 0     | 0%  | 0      | 03     | 0      | C %   | 48  | 100%  | 0     | 0%   | 4     | CZ    | 0   | 0%   | 0   | 02     |          |          | 48    |
| 23                       | 0     | 02  | 0      | 0%     | 6      | 14%   | 36  | 85%   | 0     | 0%   | 0     | 02    | 0   | 02   | 0   | 0%     |          |          | 42    |
| 23                       | C     | 0%  | 0      | 0%     | 0      | C2    | 12  | 100%  | 0     | CZ   | С     | 0%    | 0   | 0%   | 0   | 0%     |          |          | 12    |
| 30                       | C     | 0%  | 0      | 02     | 0      | C %   | 24  | 100%  | 0     | 02   | 0     | 03    | 0   | 0%   | C   | 03     |          |          | 24    |
| 31                       | C     | 0%  | 0      | 0%     | 4      | 15%   | 22  | 85%   | Ó     | 0%   | 0     | °0 Z  | ٥   | 0%   | 0   | 0%     |          |          | 26    |
| COLLAN TOTALS:           | с     |     | 0      |        | 15     |       | 600 |       | 0     |      | 11    |       | 78  |      | 113 | :      | 592      | 69       | 817   |
| PERCENTAGE:              |       |     | J      |        |        |       |     |       |       |      |       |       |     |      |     |        |          |          |       |
| ALL CARS:<br>EXCEPT FOLD | CI    |     | 0%     |        | 12     |       | 41% |       | 0%    |      | 1%    |       | 5%  |      | 8%  | 4      | 40%      | 5%       |       |
| & UNEXP:                 | 0 %   |     | 0%     |        | 2%     |       | 73% |       | 63    |      | 1%    |       | 103 |      | 14% |        |          |          |       |

.

## JURMARY: JANUARY 14,15 & 17 AND FEBRUARY 17, 20, 12 & 23, 1971 PERFURMANCE TABLE: EASTBUIND LOADED CARS VERSUS ACTUAL YARD TIME

| A . T. I A I             | C     | ARS  | AEVAN | CED DU | JE TO: |     | C    | AKS C | N SCH | EDULE | CUE  | TO:  | C    | ARS D | DELAYED | D DUE | T0:    |      |       |       |
|--------------------------|-------|------|-------|--------|--------|-----|------|-------|-------|-------|------|------|------|-------|---------|-------|--------|------|-------|-------|
| VIZI TIME                | -ARLY | ARR  | YARD  | MOVE   | LATE   | CEP | NCR  | MAL   | YAKD  | MUVE  | LATE | CEP  | LATE | ARR   | LATE    | HUMP  | JB BUI | LDUP | OTHER | TOTAL |
| 1413 12112               | LDS   |      | LES   | 8      | LDS    | 2   | LDS  | る     | LLS   | %     | LDS  | z    | LDS  | 3.    | LCS     | 26    | LDS    |      | LDS   |       |
| 1                        | 6     | 0#   | 0     | 0%     | 0      | 02  | C    | 0%    | 55    | 31%   | C    | 0%   | 122  | 59%   | C       | 0%    |        |      |       | 177   |
| 5                        | C     | 02   | 0     | 0%     | 0      | C Z | C    | 0%    | 16    | 20%   | 4    | 6%   | 42   | 00%   | C       | 0%    |        |      |       | 62    |
| 2                        | č     | 02   | 0     | 0%     | C      | Cá  | C    | 0.4   | 115   | 76%   | 3    | 2%   | 34   | 22%   | С       | 0%    |        |      |       | 152   |
| 4                        | ć     | 02   | C     | 0%     | Ő      | 0%  | 0    | 08    | 61    | 30%   | 54   | 27%  | 86   | 438   | С       | 0%    |        |      |       | 201   |
|                          | C     | () 2 | C     | 02     | c      | C % | C    | 0%    | .09   | 156   | 157  | 51%  | 44   | 14%   | С       | 0%    |        |      |       | 310   |
| 4                        | ć     | 02   | õ     | 07     | 0      | 02  | 0    | 0%    | 25    | 32    | 219  | 75%  | 48   | 16%   | C       | 0%    |        |      |       | 292   |
| 1                        | ć     | 02   | 0     | UZ     | 0      | 0%  | 0    | 0%    | 2     | 1%    | 226  | 85%  | 38   | 14%   | С       | 0%    |        |      |       | 266   |
| 4                        | C     | 02   | ñ     | 0%     | G      | 0%  | 267  | 532   | 0     | C%    | C    | 0%   | 0    | 0%    | 19      | 7%    |        |      |       | 286   |
|                          | C     | 02   | õ     | 02     | õ      | 0%  | 155  | 91%   | 0     | 0%    | 0    | 0%   | 0    | 0%    | 15      | 98    |        |      |       | 170   |
| 10                       | ć     | 02   | ñ     | 0.2    | 0      | 0%  | 212  | 94%   | 0     | C %   | C    | 0%   | 0    | 0%    | 13      | 6%    |        |      |       | 225   |
|                          | c     | 0.2  | õ     | OF     | Ő      | 0%  | 250  | 95%   | 0     | 0%    | C    | C%   | 0    | 0%    | 13      | 5%    |        |      |       | 263   |
| 12                       | č     | 07   | 0     | 0%     | 0      | 0%  | 189  | 95%   | õ     | 01    | 0    | 0%   | 0    | 0%    | S       | 5%    | 2      |      |       | 198   |
| 12                       | ć     | 02   | C     | 02     | õ      | CZ  | SA   | 96%   | 0     | C%    | c    | C%   | 0    | 0%    | 4       | 4%    |        |      |       | 102   |
| 14                       | č     | 01   | 0     | 0%     | 0      | 0%  | 200  | 95%   | 0     | C%    | C    | 0%   | 0    | 0%    | 10      | 5%    |        |      |       | 210   |
| 15                       | C     | Of   | õ     | 0ž     | 0      | 02  | 153  | 092   | 0     | 0%    | C    | 02   | 0    | 0%    | 1       | 12    |        |      |       | 154   |
| 15                       | C C   | 0.2  | 0     | 01     | 0      | 0 Ŧ | 170  | 100%  | 0     | C.Z   | č    | 0%   | 0    | 12    | 0       | 0%    |        |      |       | 170   |
| 17                       | c     | ()2  | 0     | OZ     | 0      | 0%  | 200  | 1002  | Ő     | 07    | C    | 02   | 0    | 0%    | 0       | 0%    |        |      |       | 200   |
| 13                       | c     | 02   | 0     | 02     | 0      | 02  | 130  | 100%  | L.    | 07    | õ    | 0%   | 0    | 0%    | 0       | 0%    |        |      |       | 130   |
| 1.3                      | č     | 0.8  | 0     | 01     | 0      | 0%  | 177  | 100%  | 0     | Cž    | C    | 0%   | 0    | 0%    | 0       | 0%    |        |      |       | 177   |
| 2.7                      | č     | 02   | 0     | 07     | õ      | 02  | 163  | 1002  | 0     | 0 Z   | 0    | 0%   | 0    | 0%    | 0       | 0%    |        |      |       | 163   |
| 20                       | c     | 119  | 0     | 0%     | 0      | 0%  | 130  | 1002  | 0     | 02    | 0    | 07   | 0    | 0%    | 0       | 0%    |        |      |       | 130   |
| 22                       | č     | 0%   | 0     | 0.9    | 0      | 0.9 | 65   | 1002  | 0     | 03    | č    | 02   | 0    | 03    | Č.      | 07    |        |      |       | 95    |
| 22                       | c     | 07   | 0     | 0%     | 1      | 12  | 108  | CC2   | 0     | 02    | 0    | () 2 | 0    | 0%    | 0       | 0%    |        |      |       | 109   |
| 23                       | õ     | 07   | 0     | 0.9    | â      | 0.9 | 108  | 1002  | 0     | 0 ž   | C    | 02   | 0    | 02    | 0       | 0%    |        |      |       | 108   |
| 2 4                      | ć     | 01   | 0     | 0.2    | 0      | 0.2 | 25   | 100%  | 0     | 0%    | 0    | 07   | 0    | 02    | 0       | C%    |        |      |       | 25    |
| 1.5                      | č     | 119  | 1     | 2%     | c      | 6%  | 54   | 682   | . 0   | 02    | C    | 02   | 0    | 0%    | 0       | 0%    |        |      |       | 55    |
| 27                       | 0     | 0.2  | 2     | 25%    | 3      | 25% | 6    | 50%   | Ő     | OT    | 0    | 0%   | 0    | 0%    | C       | 0%    |        |      |       | 12    |
| 23                       | a     | 02   | 0     | 0%     | 26 1   | 00% | 0    | 0%    | 0     | 0%    | õ    | 0%   | 0    | 0%    | 0       | 0%    |        |      |       | 26    |
| 23                       | C     | 02   | 11    | 222    | 7      | 212 | 1.5  | 47.0  | Ő     | C.Z   | C    | 0%   | 0    | 03    | 0       | 0%    |        |      |       | 34    |
| 30                       | č     | 0%   | 5     | 16%    | 13     | 41% | 14   | 44%   | 0     | C Z   | C    | 0%   | 0    | 0%    | 0       | 0%    |        |      |       | 32    |
| 31                       | c     | 03   | 0     | 0%     | 46     | 78% | 13   | 22%   | 0     | 0%    | 0    | 0 #  | 0    | 0%    | 0       | 0%    |        |      |       | 59    |
| 32                       | 0     | 0%   | 0     | 0%     | 0      | 0%  | 5    | 100%  | 0     | 0%    | 0    | 0%   | 0    | 0%    | 0       | 03    |        |      |       | 5     |
| 53                       | c     | 0%   | ō     | 0%     | 0      | 0%  | ō    | 0%    | 0     | 0%    | 0    | 0%   | 0    | 0%    | 0       | 0%    |        |      |       | . 0   |
| CJLUMN TOTALS:           | С     |      | 20    |        | 56     |     | 2538 |       | 38 _  |       | 663  |      | 414  |       | 84      |       | 469    |      | 59    | 4598  |
| PERCENTAGE:              |       |      |       |        |        |     |      |       |       |       |      |      |      |       |         |       |        |      |       |       |
| ALL CARS:<br>EXCEPT FOLD | 0%    |      | 02    |        | 2%     |     | 57%  |       | 7%    |       | 13%  |      | 8%   |       | 2%      |       | 9%     |      | 12    |       |
| &. LNEXP:                | 02    |      | 03    |        | 2%     |     | 64%  |       | 8%    |       | 14%  |      | 9%   |       | 2%      |       |        |      |       |       |

SUMMARY: JANUARY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 1971 PERFERMANCE TABLE: EASTBUIND EMPTY CARS VERSUS ACTUAL YARD TIME

| 55 T 1 A 1               |      | CARS  | ALVAND | CED DU | JE 10: |      | C   | ARS C | IN SCHI | DULE | CUE . | TJ:   | C.  | ARS DE | ELAYEI | DCUE   | TO:    |            |       |
|--------------------------|------|-------|--------|--------|--------|------|-----|-------|---------|------|-------|-------|-----|--------|--------|--------|--------|------------|-------|
| VARA TIME                | FARI | V ARR | YARD   | MOVE   | LATE   | CEP  | NO  | RAAL  | YAFD    | HUVE | LAT   | E DEP | LAT | E ARR  | LATE   | E HUMP | OB BUI | LDUP OTHER | TCTAL |
| TAND TIME                | END  | 2     | EMP    | 2      | EMP    | 2    | ENP | 2     | EMP     | ¥    | ENP   | 2     | EMP | ž      | EMP    | z      | EMP    | EMP        |       |
| 1                        | 0    | 0.9   | 0      | 0.92   | 0      | C %  | 0   | 0%    | 1       | 42   | 0     | 0%    | 23  | 96%    | 0      | 03     |        |            | 24    |
| <u>+</u>                 | č    | 0.2   | 0      | 0.3    | 0      | 09   | 0   | 0.2   | ō       | Cž   | 0     | 0%    | 1   | 100%   | 0      | 0%     |        |            | 1     |
| 4 .                      |      | 0.6   | 0      | 0.4    | 0      | Ca   | ć   | 0.7   | 0       | 07   | 0     | 0.1   | 1   | 1002   | 0      | 0%     |        |            | 1     |
| 4                        | C    | 03    | 0      | 0.6    | 0.     | 0.4  | 0   | 0.3   | 0       | 0.9  | 4     | 669   | 5   | 564    | C      | 02     |        |            | 9     |
| 4                        | C    | しる    | 0      | 0%     | U      | 6.46 | U U | 0.4   | 0       | 7.00 | 4     | 579   | 5   | 269    | č      | 0.9    |        |            | 14    |
| â .                      | C    | 18    | 0      | 0%     | C      | C %  | 0   | 0.2   | 1       | 1%   | 8     | 214   | 2   | 206    | c      | 0.9    |        |            | 3     |
| á                        | . C  | 02    | 0      | C %    | 0      | CZ   | C   | 0%    | 0       | 6.2  | 14    | 01%   | 1   | 200    | 0      | 0.0    |        |            | 20    |
| 1                        | C    | 02    | 5      | 0%     | 0      | C %  | 0   | 02    | 0       | 12   | 14    | 162   | 0   | 30%    | 2      | 2.08   |        |            | 10    |
| Э                        | C    | 0%    | C      | 0%     | 0      | CZ   | 7   | 70%   | 0       | 0%   | 0     | 08    | 0   | 0.2    | 3      | 302    |        |            | 10    |
| 3                        | C    | 03    | 0      | 02     | 0      | C Z  | 10  | 36%   | 0       | C %  | C     | 0%    | 0   | 03     | 18     | 643    |        |            | 20    |
| LJ                       | C    | 0%    | 0      | 03     | 0      | 0%   | 27  | 100%  | 0       | 0%   | C     | 0%    | 0   | 0%     | С      | 0%     |        |            | 21    |
| 11                       | C    | 03    | 0      | C %    | 0      | C %  | 17  | 77%   | 0       | C %  | 0     | 0%    | 0   | 0%     | 5      | 23%    |        |            | 22    |
| 12                       | C    | 02    | 0      | 0%     | υ      | 0%   | 4   | 07%   | 0       | 0%   | C     | 0%    | 0   | 02     | 2      | 33%    |        |            | 6     |
| 13                       | C    | 0%    | 0      | 0%     | C      | 0%   | 4   | 57%   | 0       | 0%   | 0     | 0%    | 0   | 02     | 3      | 43%    |        |            | 7     |
| 1.4                      | 0    | 0%    | 0      | 0%     | 0      | CZ   | 23  | 100%  | 0       | CZ   | C     | 0%    | 0   | 0%     | 0      | 02     |        |            | 23    |
| 15                       | C    | 0%    | 0      | 03     | 0      | 0%   | 5   | 100%  | 0       | 0%   | 0     | 0%    | 0   | 0%     | С      | 0%     |        |            | 5     |
| 1.6                      | C    | 01    | 0      | 0%     | 0      | 0%   | 10  | 100%  | 0       | 0%   | 0     | 0%    | 0   | 0%     | 0      | 0%     |        |            | 10    |
| 17                       | C    | 02    | 0      | OZ     | õ      | 0%   | 29  | 100%  | 0       | 0%   | 0     | 0%    | 0   | 0%     | 0      | 0%     |        |            | 29    |
| 1.2                      | č    | 0.    | 0      | 0.9    | 0      | 05   | 2   | 1002  | 0       | 08   | 0     | 02    | 0   | 02     | 0      | 0%     |        |            | 3     |
| 13                       | ć    | 0.3   | 0      | 0.8    | 0      | 68   | -   | 1109  | 0       | 0.9  | õ     | 02    | 0   | 0%     | 0      | 0%     |        |            | 7     |
| T 3                      | 5    | 0.6   | 0      | 0.99   |        | 0.9  | 2   | 1009  | 0       | 0.9  | C C   | 0.9   | 0   | 0.9    | c      | 02     |        |            | 2     |
| 20                       |      | 0.6   | 0      | 0.6    | 0      | 0.0  | , 2 | 1002  | 0       | 0.9  | 0     | 0.9   | 0   | 0.9    | õ      | 0.9    |        |            | 140   |
| 21                       | C    | 0.5   | U      | 0.8    | 0      | 6.6  | 1.1 | 100%  | 0       | 0.00 | 0     | 04    | 0   | 0.9    | 0      | 0.9    |        |            | 110   |
| . 22                     | C    | 03    | 0      | 03     | 0      | 0%   | 11  | 1003  | 0       | 0.3  | 0     | 0.6   | 0   | 0.0    | 0      | 0.9    |        |            | 11    |
| 23                       | C    | 02    | L      | 0%     | 0      | C %  | 11  | 100%  | 0       | 03   | 0     | U Z   | 0   | 0.2    | 0      | 0.6    |        |            | 4     |
| 24                       | C    | 02    | C      | 12     | 0      | C%   | 6   | 100%  | 0       | 03   | 0     | 0%    | 0   | -0%    | U      | 0%     |        |            | 11    |
| 25                       | 0    | . 02  | 0      | 02     | 0      | 0%   | 11  | 100%  | 0       | C %  | C     | 0%    | 0   | 0%     | C      | UZ     |        |            | 11    |
| 25                       | C    | 08    | 0      | 0%     | 0      | 0%   | 15  | 1~52  | 0       | 02   | 0     | 0%    | 0   | 0%     | C      | 02     |        |            | 15    |
| 21                       | С    | 0%    | 3      | 75%    | 1      | 25%  | 0   | 0%    | 0       | 02   | 0     | 0%    | 0   | 0%     | 0      | 0%     |        |            | 4     |
| 28                       | C    | 0%    | 0      | 0%     | 0      | 0%   | 2   | 100%  | 0       | 02   | C     | 0%    | 0   | 0%     | C      | 0%     |        |            | 2     |
| 23                       | C    | 0%    | 0      | 0.6    | 0      | 62   | 13  | 100%  | 0       | 0%   | 0     | 0.%   | 0   | 0%     | 0      | 0%     |        |            | 13    |
| 30                       | 0    | 0%    | 0      | 0%     | 0      | C%   | 2   | 100%  | 0       | 0%   | C     | 0%    | 0   | 0%     | 0      | 0%     |        |            | 2     |
| 31                       | C    | 0Z    | 0      | 0%     | 1      | 8%   | 11  | 92%   | 0       | 0%   | 0     | 0%    | 0   | 0%     | 0      | 0%     |        |            | 12    |
| 32                       | C    | 0%    | G      | C %    | 0      | 0%   | 0   | 0%    | 0       | 0%   | 0     | 0%    | 0   | 0%     | 0      | 0%     |        |            | 0     |
| 43                       | č    | 0%    | 0      | 0%     | 0      | 6%   | 0   | 0%    | J       | CZ   | C     | 0%    | 0   | 0%     | 0      | 0%     |        |            | 0     |
|                          |      | 0.10  |        | 0.0    | -      |      |     |       |         |      |       |       |     |        |        |        |        |            |       |
| COLUMN TOTALS:           | С    | ~     | 3`     |        | 2      |      | 244 |       | 2       |      | 28    |       | 42  |        | 31     |        | 136    | 10         | 352   |
| PERCENTAGE               |      |       |        |        | 0.00   |      | 107 |       | 0.5     |      | 4.99  |       | 0.9 |        | 4.9    |        | 279    | 27         |       |
| ALL CARS:<br>EXCEPT FELD | R O  |       | 1%     |        | 0%     |      | 49% |       | 112     |      | 04    |       | 84  |        | 0.6    |        | 214    | 24         |       |
| & LNEXP:                 | 02   |       | 1%     |        | 18     |      | 69% |       | 12      |      | 84    |       | 123 |        | 98     |        |        |            |       |

## SUMMARY: JANUARY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 1971 PERFORMANCE TABLE: WESTBOUND LOADED CARS VERSIS ACTUAL YARD TIME

| A - TILAL                |     | CARS  | ADVAN | CED DI | UE TO: |      | C    | ARS ( | IN SCHE | ECULE | CUE  | 10: | C    | ARSE | JELAYEI | DUE  | 10:   |       |          |       |
|--------------------------|-----|-------|-------|--------|--------|------|------|-------|---------|-------|------|-----|------|------|---------|------|-------|-------|----------|-------|
| VADO TIME                | FAR | Y AFR | YARD  | MOVE   | LATE   | CEP  | NCR  | MAL   | YARD M  | 10 V= | LATE | DEP | LATE | ARR  | LATE    | HUMP | OB BU | ILDUP | CTHER    | TOTAL |
| 14AD TIME                | LOS | 2     | 105   | 2      | LDS    | 2    | LES  | ×     | LUS     | 26    | LDS  | z   | LDS  | z    | LDS     | z    | LDS   |       | LDS      |       |
| 1                        | 6   | 0.2   | 0     | 03     | 0      | 63   | 0    | 0%    | 0       | C%    | C    | 0%  | 28   | 100% | C       | 0%   |       |       |          | 28    |
| 1                        | C   | OF    | 0     | 0%     | 0      | 0%   | C    | 22    | 0       | 0%    | 0    | C%  | 10   | 100% | 0       | 0%   |       |       |          | 10    |
| 2                        | C   | 03    | C     | 0%     | 0      | 0%   | C    | 0%    | 0       | C %   | C    | 0%  | 17   | 100% | 0       | 0%   |       |       |          | 17    |
| 2                        | C   | () ?  | 0     | 0*     | 0      | C.Z  | C    | 0%    | 0       | Ci    | 1    | 25% | 3    | 75%  | 0       | 08   |       |       |          | 4     |
| 4                        | ć   | 0.8   | 0     | 0.8    | Ő      | 0.2  | õ    | 01    | 0       | 0%    | C    | 0%  | 34   | 100% | 0       | 0%   |       |       |          | 34    |
|                          | 2   | 1.29  | C     | 0%     | C      | 0%   | C    | 02    | 0       | 0%    | 3    | C 2 | 29   | 91%  | 0       | 0%   |       |       | <u>.</u> | 32    |
| 1 2                      | č   | 0.8   | 0     | 0.9    | 0      | 07   | 0    | 0%    | 0       | CK    | 11   | 39% | 17   | 61%  | Ó       | 0%   |       |       |          | 28    |
| 1                        | c   | 0.0   | 0     | 0%     | 6      | 0.0  | 4    | 572   | 0       | 0%    | 0    | 0%  | G    | 0%   | 3       | 43%  |       |       |          | 7     |
| c                        | C   | 0.8   | 0     | 0.9    | 0      | 68   | 5    | 42%   | Q       | 0%    | 0    | 0%  | 0    | 0%   | 7       | 58%  |       |       |          | 12    |
| 2                        | 2   | 0.4   | 0     | 0.9    | 0      | 0.9  | é é  | 562   | 0       | 6%    | C    | 0%  | 0    | 0%   | 7       | 44%  |       |       |          | 16    |
| 1.5                      | 6   | 0.40  | 0     | 0.8    | 0      | 08   | 22   | 888   | 0       | 02    | õ    | 02  | 0    | 0%   | 3       | 12%  |       |       |          | 25    |
| 11                       | c   | 0.4   | 0     | 0.3    | 0      | 08   | 20   | 100%  | 0       | 0%    | 0    | 0%  | õ    | 0%   | 0       | 0%   |       |       |          | 20    |
| 12                       | 5   | 0.8   | 0     | 0.9    | 0      | 0.9  | 20   | 1008  | 0       | 0.8   | õ    | 0%  | 0    | 0%   | 0       | 08   |       |       |          | 39    |
| 13                       | C   | 0.6   | 0     | 0.0    | 0      | 00   | 5    | 1005  | 0       | 0.8   | C    | OZ  | 0    | 0%   | 0       | 0%   |       |       |          | 5     |
| 1 4                      | C   | 1170  | 0     | 0.0    | 0      | 0.9  | 1    | 1004  | 0       | 63    | õ    | 02  | 0    | 0%   | 0       | 0%   |       |       |          | 1     |
| 10                       | 0   | 0.2   | 0     | 0.6    | 0      | 03   | 17   | 1008  | 0       | 08    |      | 0.2 | 0    | 02   | Č.      | 0%   |       |       |          | 17    |
| 15                       | L   | 06    | 0     | 0%     | 0      | 0.0  | 22   | 100%  | 0       | 0.9   | 0    | 0.2 | 0    | 0%   | 0       | 0%   |       |       |          | 23    |
| 17                       | C   | 0.6   | 0     | 08     | U O    | 0.5  | 23   | 1000  | G       | 04    | č    | 0.9 | 0    | 02   | 0       | 0%   |       |       |          | 20    |
| 16                       | C   | 0%    | 0     | 0%     | 0      | . 0% | 20   | 100%  | 0       | 0.9   | 0    | 0.8 | 0    | 02   | õ       | 0%   |       |       |          | 90    |
| 13                       | C   | 08    | U     | 0.6    | 0      | 0%   | 4    | 100%  |         | 0.9   | 0    | 0%  | 0    | 0%   | 0       | 0%   |       |       |          | 60    |
| 20                       | 0   | 0%    | 0     | 0%     | 0      | 0.2  | C    | 1006  | 0       | 0.9   | 0    | 0.9 | 0    | 09   | 0       | 02   |       |       |          | 14    |
| 21                       | C   | 0%    | 0     | 0%     | 0      | 0%   | 14   | 100%  | 0       | 0.8   | 0    | 0.9 | 0    | 0%   | 0       | 02   |       |       |          | 1     |
| 22                       | C   | 03    | 0     | 0%     | C      | 0.4  | 1    | 100%  | 0       | 0.2   | 0    | 0.9 | 0    | 07   | 0       | 0%   |       |       |          | 8     |
| 23                       | 0   | 08    | 0     | 0%     | 0      | 6.2  | 8    | 100%  | 0       | 0.6   | 0    | 0.8 | 0    | 0.9  | 0       | 08   |       |       |          | 19    |
| 24                       | C   | 0%    | C     | 0%     | 0      | 03   | . 19 | 100%  | 0       | 04    | 0    | 0.4 | 0    | 0%   | 0       | 0%   |       |       |          | 10    |
| 25                       | C   | 03    | C     | 03     | 0      | 6.26 | 10   | 100%  | 0       | 0.3   | 0    | 0.4 | 0    | 0.9  | C       | 0%   |       |       |          | 34    |
| 24                       | C   | 08    | 0     | 0%     | 0      | 0%   | 34   | 100%  | 0       | 0.4   | C    | 0.4 | 0    | 0.4  | 0       | 08   |       |       |          | 15    |
| 27                       | C   | 0%    | 0     | 0%     | 0      | 63   | 15   | 100%  | 0       | 0     | 0    | 0.6 | 0    | 0.9  | 0       | 09   |       |       |          | 15    |
| 23                       | C   | 03    | 0     | 0%     | 1      | 12   | 14   | 93%   | 0       | 02    | 0    | 0.6 | 0    | 0.8  | 0       | 0.9  |       |       |          | 4     |
| 23                       | C   | 0%    | 0     | 0%     | 0      | CZ   | 4    | 100-  | 0       | 0%    | 0    | 0.4 | 0    | 0.9  | 0       | 0%   |       |       |          | 4     |
| 30                       | C   | 0%    | 0     | 0%     | 0      | 62   | 4    | 100%  |         | 02    | 0    | 04  | 0    | 0.0  | C       | 0%   |       |       |          | 1     |
| 31                       | C   | 0%    | 0     | 0%     | 0      | 0%   | 1    | 100%  | 5       | 0.6   | 0    | 0.0 | 0    | 040  | 0       | 0.9  |       |       |          | 2     |
| 3 2                      | C   | 02    | 0     | 0%     | 0      | 0%   | 2    | 100%  | 0       | 0.5   | 0    | 04  | 0    | 0.4  | 0       | 0.9  |       |       |          | . 14  |
| 33                       | 14  | 1000  | 0     | 0%     | 0      | 0%   | C    | 0%    | . 0     | 0%    | 0    | 03  | 0    | 0.4  | U       | 0.6  |       |       |          |       |
| COLUMN TOTALS:           | 14  |       | 0     |        | 1      |      | 306  |       | ~       |       | 15   |     | 138  |      | 20      |      | 486   |       | 25       | 494   |
| PERCENTAGE :             |     |       |       |        |        |      |      |       |         |       |      |     |      |      |         |      |       |       |          |       |
| ALL CARS:<br>EXCEPT FOLD | 1%  |       | 0%    |        | 0%     |      | 30%  |       | 0%      |       | 12   |     | 142  |      | 2%      |      | 48%   |       | 2%       |       |
| & LNEXP:                 | 31  |       | 0%    |        | 0%     |      | 62%  |       | 0%      |       | 32   |     | 28%  |      | 48      |      |       |       |          |       |

41

## SUMMARY: JANJARY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 1971 PERFERMANCE TABLE: WESTBOUND EMPTY CARS VERSUS ACTUAL YARD TIME

| ACTIAL                   |      | CARS  | ALVAN | CED DU | E TO: |     | C   | ARS J | N SCHE | CULE  | CUE ' | TÚ:   | C   | ARS DI | ELAYED | DUE  | TO:     |           |       |
|--------------------------|------|-------|-------|--------|-------|-----|-----|-------|--------|-------|-------|-------|-----|--------|--------|------|---------|-----------|-------|
| YARD TIME                | EARL | Y ARR | YARD  | MOVE   | LATE  | CEP | NC  | RMAL  | YARD   | L.CVE | LATI  | E CEP | LAT | E ARR  | LATE   | HUMP | OB BUIL | DUP OTHER | TOTAL |
|                          | EMP  | 5     | EMP   | Z      | EMP   | R.  | EMP | *     | EMP    | ž     | EMP   | る     | EMP | 2      | EMP    | x    | EMP     | EMP       |       |
| 1                        | C    | 0%    | 0     | 0%     | 0     | C % | 0   | 0%    | 0      | 03    | 0     | 0%    | 122 | 100%   | 0      | 03   |         |           | 122   |
| · ·                      | C    | 0.2   | C     | CZ.    | õ     | 6%  | C   | 0%    | C      | C %   | C     | 0%    | 51  | 100%   | 0      | 0%   |         |           | 51    |
| 3                        | č    | 02    | 0     | 03     | 0     | CI  | c   | 0%    | 0      | 03    | C     | C X   | 42  | 100%   | 0      | 0%   |         |           | 42    |
|                          | č    | 07    | ć     | 0%     | 0     | 62  | č   | C¥    | 0      | 0%    | 2     | 32    | 59  | 97%    | C      | 0%   |         |           | 61    |
|                          | 0    | 0.7   | õ     | 0.7    | 0     | 69  | c   | 0.9   | 0      | 02    | c     | 02    | 69  | 100%   | 0      | 0%   |         |           | 69    |
| -                        | ć    | 0.7   | 0     | 0.7    | C     | C 9 | č   | 0.9   | 0      | 0.2   | 2     | 52    | 59  | G 5 2  | c      | 02   |         |           | 62    |
| 3                        |      | 0.9   | 0     | 0.9    | 0     | 09  | õ   | (19   | 0      | 0%    | 14    | 179   | 60  | 832    | õ      | 02   |         |           | 83    |
| 3                        | č    | 0.8   | 0     | 0.9    | 0     | 64  | c   | 50%   | 0      | 09    | 14    | 110   | 0   | CZ     | c      | 5.0% |         |           | 18    |
|                          | c    | 0.32  | 0     | 0.9    | 0     | 0.9 | 12  | 209   | 0      | 0.9   | c     | 0.9   | 0   | 09     | 21     | 709  |         |           | 44    |
| 2                        | ć    | 0.0   | 0     | 0.92   | 0     | 0.4 | 15  | 61.9  | 0      | 69    | C     | 0.4   | 0   | 0.8    |        | 269  |         |           | 25    |
| 10                       | c    | 0.4   | 0     | 0.4    | 0     | 0.4 | 10  | 070   | 0      | 0.9   | C     | 0.9   | 0   | 0.9    | 11     | 129  |         |           | 84    |
| 11                       | C    | 0.5   | 0     | 0%     | U     | 0.4 | 10  | 014   | 0      | 0.6   | 0     | 0.8   | 0   | 0.0    | 21     | 514  |         |           | 61    |
| 12                       | 5    | 0.6   | 0     | 0.2    | 0     | 0.2 | 20  | 49%   | 0      | 16    | 0     | 04    | 0   | 0.8    | 21     | 0.9  |         |           | 10    |
| 13                       | 0    | 03    | 0     | 0%     | 0     | 0.2 | 10  | 100%  | 0      | 0.45  | 0     | 0.6   | 0   | 0.0    | 0      | 0.4  |         |           | 22    |
| 14                       | c c  | 0.2   | 0     | 03     | 0     | 6.4 | 22  | 100%  | 0      | 6.2   | 0     | 04    | 0   | 0%     | 0      | 0.4  |         |           | 26    |
|                          | C    | 05    | U     | 0%     | 0     | 0%  | 20  | 1002  | 0      | 63    | C     | 0%    | 0   | 02     | 11     | 2.2% |         |           | 20    |
| 10                       | C    | 05    | 0     | 0%     | 0     | 0%  | 23  | 58%   | 0      | U Z   | C     | UZ    | 0   | 0%     | 11     | 323  |         |           | 34    |
| 11                       | C    | 0%    | 0     | 0%     | 0     | C%  | 84  | 100%  | 0      | C %   | 0     | 0%    | 0   | 02     | 0      | 02   |         |           | 84    |
| 13                       | C    | 0 %   | 0     | 0%     | 0     | 0%  | 22  | 13%   | 0      | 0%    | C     | 0%    | 0   | 02     | 8      | 21%  |         |           | 30    |
| LS                       | C    | 0%    | 0     | 0%     | 0     | CZ  | 46  | 100%  | 0      | 0%    | 0     | 02    | 0   | 0%     | 0      | 0%   |         |           | 46    |
| 20                       | 0    | 02    | 3     | 0%     | 0     | CZ  | 26  | 100%  | 0      | 02    | 0     | C %   | 0   | 02     | C      | 0%   |         |           | 264   |
| 21                       | 0    | 0%    | 0     | 0%     | C     | C % | 24  | 100%  | 0      | 02    | C     | 0%    | 0   | 02     | C      | 0%   |         |           | 22    |
| 22                       | ~    | 03    | 0     | 0%     | 0     | 03  | 37  | 100%  | 0      | 0%    | 0     | 0%    | 0   | 02     | C      | 02   |         |           | 37    |
| 23                       | C    | 0%    | 5     | 08     | C     | C%  | 33  | 100%  | 0      | C %   | 0     | 02    | 0   | 02     | 0      | 02   |         |           | 33    |
| 24                       | C    | 0%    | C     | 02     | 0     | 0%  | 55  | 100%  | 0      | 0%    | 0     | 0%    | 0   | 0%     | C      | 0%   |         |           | 99    |
| 25                       | C    | 0%    | 0     | 0%     | 35    | 53% | 31  | 472   | 0      | 0%    | 0     | 0%    | 0   | 0%     | 0      | 02   |         |           | 66    |
| 23                       | C    | 03    | 0     | 0%     | 0     | CZ  | 45  | 100%  | 0      | CZ    | C     | 02    | 0   | 0%     | 0      | 0%   |         |           | 45    |
| 27                       | C    | 0%    | 0     | 03     | 0     | 0%  | 17  | 100%  | 0      | 02    | 0     | 02    | 0   | 02     | C      | 0%   |         |           | 17    |
| 23                       | C    | 03    | C     | CZ     | 1     | 43  | 26  | 96%   | 0      | 0%    | 0     | 0%    | 0   | 0%     | C      | 0%   |         |           | 27    |
| 23                       | C    | 0%    | 0     | 0%     | 0     | C % | 31  | 100%  | 0      | 0Z    | С     | 0%    | 0   | 0%     | C      | 0%   |         |           | 31    |
| 30                       | C    | 18    | С     | 0%     | 0     | 0%  | 22  | 100%  | 0      | 02    | 0     | 0%    | 0   | 0%     | C      | 0%   |         |           | 22    |
| 31                       | C    | 0%    | 0     | 02     | C     | C%  | 21  | 100%  | 0      | C%    | С     | 0%    | 0   | 02     | 0      | 0%   |         |           | 21    |
| 32                       | C    | 08    | 0     | 0%     | 0     | 0%  | 6   | 100%  | 0      | 0%    | C     | 02    | 0   | 0%     | С      | 03   |         |           | 6     |
| 33                       | 1    | 100%  | 0     | 03     | 0     | C%  | 0   | 0%    | U<br>U | 02    | 0     | 02    | 0   | 0%     | C      | 02   |         |           | 1     |
| COLLAN TOTALS:           | 1    |       | 0     |        | 36    |     | 788 |       | 0      |       | 16    |       | 461 |        | 100    | 1    | .983    | 94        | 1402  |
| PERCENTAGE:              |      |       |       |        |       |     |     |       |        |       |       |       |     |        |        |      |         |           |       |
| ALL CARS:<br>Except Fold | Cž   |       | 0%    |        | 1%    |     | 23% |       | 0%     |       | 0%    |       | 13% |        | 3%     |      | 57%     | 38        |       |
| & UNEXP:                 | 0%   |       | 0%    |        | 38    |     | 56% |       | 0%     |       | 1%    |       | 33% |        | 7%     |      |         |           |       |

## S JAMARY: JANUARY 14,15 & 17 AND FEBRUARY 17, 20, 22 & 23, 1971 PERFERMANCE TABLE: LOCAL LOADED CARS VERSUS ACTUAL YARD TIME

| ALIUAL         | CARS ADVANCED DUE TO: |       |      |      |      | CARS EN SCHEDULE |      |       |      | CUE   | TÚ:  | C   | ARS [ | DELAYE   | D UUE | TO:  |            |       |       |
|----------------|-----------------------|-------|------|------|------|------------------|------|-------|------|-------|------|-----|-------|----------|-------|------|------------|-------|-------|
| YARD TIME      | EARL                  | Y ARR | YARD | NOVE | LATE | CEP              | NCR  | RMAL  | YARD | MOVE  | LATE | CEP | LATE  | ARR      | LATE  | HUMP | OB BUILDUP | OTHER | TOTAL |
|                | LES                   | 6     | LCS  | *    | LDS  | ž                | LDS  | 5 %   | LDS  | 76    | LCS  | č   | LDS   | 16       | LCS   | %    | LDS        | LDS   |       |
| 1              | C                     | 0%    | 0    | 0%   | 0    | 0%               | C    | 02    | C    | C %   | С    | 6%  | 50    | 100%     | C     | 0%   |            |       | 56    |
| 2              | C                     | 0#    | 0    | 03   | C    | C %              | C    | 0%    | C    | · C % | 1    | 8%  | 12    | 92%      | C     | 0%   |            |       | 13    |
| 3              | C                     | UR    | 0    | 0%   | 0    | 0%               | C    | 0%    | C    | C to  | £    | 193 | 25    | 51%      | C     | 08   |            |       | 32    |
| 4              | c                     | 08    | 0    | 0%   | 0    | C %              | 0    | 0*    | 0    | 07    | 4    | 172 | 20    | 83%      | C     | 0%   |            |       | 24    |
| -              | č                     | 112   | 0    | 01   | 0    | CZ               | C    | C ¥   | 0    | 03    | i    | 142 | 6     | 86%      | 0     | 0*   |            |       | 7     |
| 5              | c                     | 0.2   | 0    | 01   | 0    | C 2              | 0    | 01    | 0    | 0#    | ō    | 62  | 21    | 100%     | 0     | 0%   |            |       | 21    |
| 2              | ć                     | 0%    | 0    | 0.2  | 0    | 0.9              | õ    | 0.9   | Ő    | 0 #   | 22   | 812 | 5     | 192      | 0     | 02   |            |       | 27    |
| 1              | C                     | 03    | 0    | 02   | C    | CE               | 7    | 35%   | C    | 0%    | C    | 0%  | õ     | 0%       | 13    | 65%  |            |       | 20    |
| -              | c                     | 0%    | 0    | 0.2  | 0    | 09               | 6    | 302   | Ő    | OF    | C    | 07  | 0     | 02       | 14    | 701  |            |       | 20    |
| 10             | ć                     | 0.2   | c    | () £ | 0    | 69               | 30   | 739   | 0    | 0 #   | 0    | 0%  | õ     | លឌ       | 11    | 27%  |            |       | 41    |
| 10             | c                     | 0.7   | 0    | 0.9  | 0    | 0.4              | 13   | 6.99  | 0    | 09    | c    | 0%  | 0     | 02       |       | 222  |            |       | 19    |
| 1.2            | 0                     | 0.2   | 0    | 0.4  | 0    | 0.9              | 21   | 200   | 0    | 0.9   | 0    | 0.4 | 0     | 0.9      | 11    | 349  |            |       | 32    |
| 1 2            | č                     | 0.9   | 0    | 0.9  | 0    | 64               | 10   | 100%  | 0    | 0.7   | C    | 0.9 | 0     | 0.9      |       | 0%   |            |       | 19    |
| 1.3            | 0                     | 0.0   | 0    | 0.8  | 0    | 0.9              | 13   | 1004  | 0    | 0.4   | c    | 0.9 | 0     | 0.9      | 11    | 289  |            |       | 40    |
| 14             | 0                     | 0%    | 0    | 0.8  | 0    | 0.2              | 27   | 124   | 0    | 0.9   | 0    | 0.9 | 0     | 0.9      |       | 179  |            |       | 36    |
| 10             | c                     | 0.6   | 0    | 0.4  | 0    | 0.0              | 50   | 024   | 0    | 0.4   | 0    | 0.0 | 0     | 0.4      | 6     | 79   |            |       | 60    |
| 13             | c                     | 0.6   | 0    | 0.4  | 0    | 0.0              | 22   | 726   | 0    | 0.0   | c    | 0.0 | 0     | 0.0      | 2     | 0.4  |            |       | 25    |
| 11             | c c                   | 0.5   | 0    | 0%   | 0    | 0.6              | 24   | 916   |      | 0.4   | 0    | 0.4 | 0     | 0.6      | 2     | 76   |            |       | 55    |
| 13             | L                     | 03    | 0    | 08   | 0    | 62               | 41   | 51%   | 0    | 6.2   | 0    | Už  | 0     | 0%       | 4     | 76   |            |       | 40    |
| 1.4            | 0                     | 03    | 0    | 02   | 0    | 0.2              | 41   | 1002  | 0    | 0.2   | C    | 03  | . 0   | 02       | 0     | 0%   |            |       | 41    |
| 20             | 0                     | 0.2   | 0    | 03   | 0    | CL               | 10   | 1002  | 0    | Ŭ₹    | 0    | Už  | 0     | 03       | 0     | 0.8  |            |       | 100   |
| 21             | C                     | 0%    | C    | 0%   | 0    | CZ               | 64   | ICUZ  | 0    | 0%    | 0    | 02  | 0     | 02       | 0     | 0%   |            |       | 040   |
| 22             | 0                     | 02    | 0    | 02   | 0    | 02               | 13   | 100%  | 0    | 0%    | 0    | 02  | 0     | UZ<br>OZ | 0     | 0%   |            |       | 10    |
| 23             | C                     | 03    | 0    | 0%   | 0    | 0%               | 34   | 100%  | 0    | 0%    | 0    | 0%  | 0     | 0%       | C     | 0%   |            |       | 34    |
| 24             | C                     | 50    | U    | 02   | 2    | 43               | 53   | 96%   | 0    | C %   | C    | 02  | 0     | 02       | 0     | 0%   |            |       | 55    |
| 25             | Q                     | 03    | 0    | 08   | 0    | CZ               | 30   | 100%  | 6 0  | 0%    | 0    | 02  | 0     | 0%       | C     | 02   |            |       | 30    |
| 25             | С                     | 0%    | C    | 08   | 1    | 1%               | 66   | 992   | 0    | 0%    | 0    | 02  | 0     | 02       | C     | 0%   |            |       | 61    |
| 21             | 0                     | 03    | 1    | 3%   | 4    | 12%              | 29   | 85%   | 0    | 0%    | C    | 0%  | 0     | 0%       | 0     | 0%   |            |       | 34    |
| 23             | C                     | 0%    | 0    | 0%   | 2    | 25%              | 6    | 15%   | 0    | 0%    | 0    | 02  | 0     | 0%       | 0     | 0%   |            |       | 8     |
| 23             | 0                     | 02    | С    | 02   | 5    | 15%              | 29   | 85%   | 0    | CZ    | 0    | 02  | 0     | 02       | 0     | 0%   |            |       | 34    |
| 30             | C                     | 03    | 2    | 82   | 0    | 02               | 22   | 52%   | 6 0  | 0%    | C    | CZ  | 0     | C%       | 0     | 0%   |            |       | 24    |
| 31             | C                     | 08    | C    | 0%   | 0    | 02               | 15   | 1002  | 6 0  | C %   | 0    | C % | 0     | 02       | C     | 0%   |            |       | 15    |
| 32             | 8                     | 31%   | C    | 02   | 0    | CZ               | 18   | 69%   | 6 0  | CZ    | C    | 0%  | 0     | 0%       | 0     | 0%   |            |       | 26    |
| 33             | 2                     | 67%   | 0    | 0%   | 0    | 02               | 1    | - 339 | 0    | CZ    | C    | 02  | 0     | 0%       | С     | 02   |            |       | 3     |
| COLUMN TOTALS: | 10                    |       | 3    |      | 14   |                  | 783  |       | 0    |       | 34   |     | 140   |          | 82    |      | 461        | 45    | 1072  |
| PERCENTAGE:    |                       |       | 0.7  |      | 1.0  |                  | 5.00 |       |      |       |      |     | 0.77  |          |       |      | 207        | 2.01  |       |
| EXCEPT FOLD    | TI                    |       | 0.2  |      | 13   |                  | 50%  |       | 0%   |       | 2%   |     | 93    |          | 5%    |      | 29%        | 32    |       |
| & UNEXP:       | 11                    |       | 02   |      | 13   |                  | 73%  |       | 0%   |       | 32   |     | 14%   |          | 8%    |      |            |       |       |

×.

### SUMMARY: JANUARY 14,15 G 17 AND FEBRUARY 17, 20, 22 & 23, 1971 Perfermance Table: Local Empty Cars Versus Actual Yard Time

| ACTUAL                   | (     | ARS | ACVAN | CED D | UE TC | :     | (   | CARS D | N SCH | EDULE | DUE ' | 10:   | C   | ARS C | ELAYEI | D DUE  | TO:      |           |       |
|--------------------------|-------|-----|-------|-------|-------|-------|-----|--------|-------|-------|-------|-------|-----|-------|--------|--------|----------|-----------|-------|
| VARD TIME                | EARLY | ARR | YARD  | MOVE  | LAT   | E CEP | N   | URMAL  | YARD  | MOVE  | LAT   | E DEP | LAT | E ARR | LATI   | E HUMP | OB BUILD | DUP GTHER | TOTAL |
|                          | ENP   | X   | EMP   | 8     | EMP   | *     | EM  | P %    | EMP   | ¥     | EMP   | ž     | EMP | 2     | EMP    | 2      | EMP      | EMP       |       |
| 1                        | C     | 0%  | C     | 0%    | 0     | 6%    | C   | 0%     | 0     | C%    | C     | C %   | 26  | 100%  | 0      | 0%     |          |           | 26    |
| 2                        | ć     | 0X  | õ     | 01    | õ     | 02    | õ   | 07     | Ő     | C %   | C     | 0%    | 0   | 0.2   | C.     | 0%     |          |           | 0     |
| 1                        | č     | 01  | 0     | 0%    | C     | 6%    | C   | 0%     | õ     | 0.2   | G     | 02    | 5   | 100%  | 0      | 0%     |          |           | 5     |
|                          | 0     | 07  | õ     | 0.9   | 0     | 0.9   | 0   | 0.2    | 0     | C 2   | 4     | 57%   | 2   | 432   | 0      | 02     |          |           | 7     |
| 5                        | C     | 0.9 | 0     | 0.7   | 0     | 0.2   | 0   | (1 %   | 0     | 0.1   | i,    | 109   | 18  | 902   | C      | 0%     |          |           | 20    |
| 1                        |       | 0.3 | C     | 0.4   | 0     | C *   | c   | 0.*    | 0     | (19   | 0     | 09    | 25  | 1009  | 0      | 0.2    |          |           | 25    |
| ,                        | č     | 0.9 | 0     | 0.7   | 0     | 0.4   | 0   | 0.9    | 0     | 0.9   | 5     | 6.3.9 | i   | 17%   | 0      | 02     |          |           | 6     |
| 1                        | c     | 17  | C     | 0.7   | C     | 69    | 3   |        | 0     | 0.2   | õ     | 0.9   | Ô   | 0.9   | 5      | 632    |          |           | 8     |
| 3                        | č     | 0.2 | 0     | 0.8   | 0     | 04    | 5   | 200    | 0     | (.4   | 0     | 07    | 0   | 0.4   | 10     | 674    |          |           | 16    |
| ,                        | -     | 1-7 | ő     | 0.0   | 0     | 0.0   | 27  | 574    | 0     | 0.4   | C     | 0.0   | 0   | 0.4   | 10     | 124    |          |           | 21    |
| 10                       | C     | 0.2 | 0     | 040   | 0     | 0.4   | 21  | 0140   | 0     | 0.9   | 0     | 119   | 0   | 0%    | -      | 164    |          |           | 22    |
| 11                       | C     | 0%  | 0     | 04    | 0     | 0.6   | 17  | 046    | 0     | 0.6   | C     | 04    | 0   | 0.8   | -      | 104    |          |           | 21    |
| 14                       |       | 0.6 | 0     | 0%    | 0     | 0.3   | 11  | 116    | 0     | 0.2   | C     | 0.4   | 0   | 0.9   | 22     | 176    |          |           | 20    |
| 1 3                      |       | 0.0 | 0     | 0.4   |       | 0.4   | 10  | 126    | 0     | 6.0   | 0     | 0.4   | 0   | 0.9   | 22     | 6.79   |          |           | 10    |
| 14                       | 6     | 0.2 | 0     | 6.6   |       | 0.6   | 10  | 226    | U O   | 0.8   | 0     | 04    | 0   | 0.4   | 9      | 416    |          |           | 19    |
| 13                       | C     | 0%  | 0     | 0%    | 0     | 0 %   | 87  | 922    | 0     | 0.2   | C     | 6.6   | 0   | 0%    | 5      | 86     |          |           | 72    |
| 1 3                      | 6     | 03  | U     | 0%    | 0     | 03    | 20  | 436    | 0     | C &   | 0     | 0%    | 0   | 0%    | 20     | 2/2    |          |           | 40    |
| 11                       | C     | 02  | 0     | 0%    | 0     | C 2   | 24  | 102    | 0     | Ca    | C     | C Z   | 0   | 0%    | 8      | 25%    |          |           | 32    |
| 13                       | C     | 03  | 0     | 0%    | 0     | 02    | 49  | 582    | 0     | CZ    | 0     | 0%    | 0   | 0%    | 1      | 28     |          |           | 50    |
| 15                       | C     | 0%  | C     | 0%    | C     | CZ    | 23  | 100%   | 0     | CZ    | 0     | 0%    | 0   | 0%    | 0      | 0%     |          |           | 23    |
| 20                       | C     | 08  | 0     | 0%    | 0     | 0%    | 36  | 100%   | C     | CZ    | C     | C%    | 0   | 02    | C      | 0%     |          |           | 36    |
| 21                       | C     | 0%  | 0     | 0%    | C     | 0,%   | 33  | 100%   | U     | 04    | 0     | 02    | 0   | 02    | C      | 0%     |          |           | 330   |
| 4.4                      | C     | いる  | 0     | 0.2   |       | 38    | 34  | \$7%   | 0     | CZ    | C     | C %   | 0   | 0%    | 0      | 02     |          |           | 350   |
| 23                       | C     | 0%  | 0     | 0%    | 0     | 02    | 23  | 100%   | 0     | CZ    | С     | 02    | 0   | 0%    | C      | 0%     |          |           | 23    |
| 24                       | C     | 0%  | 0     | 0%    | 7     | 198   | 29  | 81%    | 0     | CZ    | 0     | 0%    | 0   | 0%    | C      | 0%     |          |           | 36    |
| 25                       | C     | 0%  | 0     | 0%    | 3     | 10%   | 28  | 50%    | 0     | C %   | C     | 0%    | 0   | 02    | 0      | 02     |          |           | 31    |
| 26                       | C     | 0%  | 0     | 0%    | 4     | 53    | 39  | 918    | 0     | C%    | C     | 0%    | 0   | 02    | 0      | CZ     |          |           | 43    |
| 21                       | C     | 0%  | C     | 0%    | 0     | CZ    | 27  | 100%   | 0     | CZ    | 0     | 02    | 0   | 0%    | C      | CZ     |          |           | 27    |
| 23                       | C     | 0%  | 0     | 03    | 0     | CZ    | 12  | 100%   | 0     | 07    | С     | C %   | 0   | 0%    | C      | 0%     |          |           | 12    |
| 23                       | C     | 0%  | 0     | 0%    | . 0   | 0%    | 9   | 100%   | 0     | 03    | C     | 0%    | 0   | 03    | С      | 02     |          |           | 9     |
| 3 C                      | C     | 03  | C     | 03    | 0     | C%    | 15  | 100%   | C     | CZ    | C     | 0%    | 0   | 0%    | 0      | 0%     |          |           | 15    |
| 11                       | C     | 0%  | 0     | 02    | U     | CZ    | 6   | 100%   | 0     | CZ    | C     | 0%    | 0   | 0%    | C      | 0%     |          |           | 6     |
| 12                       | C     | 0%  | 0     | 0%    | С     | 0%    | 8   | 100%   | 0     | 0%    | C     | 0%    | 0   | 02    | C      | 0%     |          |           | 8     |
| 33                       | 0     | 0%  | 0     | 0%    | 0     | 0%    | 3   | 100%   | 0     | C %   | С     | 0%    | 0   | 0%    | 0      | 0%     |          |           | 3     |
| COLUMN TOTALS:           | С     |     | ٥     |       | 15    |       | 600 |        | 0     |       | 11    |       | 78  |       | 113    |        | 592      | 69        | 817   |
| PERCENTAGE:              |       |     |       |       |       |       |     |        |       |       |       |       |     |       |        |        |          |           |       |
| ALL CARS:<br>Except FCLD | 01    |     | 0%    |       | 18    |       | 41% |        | 03    |       | 1%    |       | 58  |       | 8%     |        | 40%      | 5%        |       |
| & UNEXP:                 | CZ    |     | 0%    |       | 2%    |       | 73% |        | 02    |       | 1%    |       | 10% |       | 14%    |        |          |           |       |