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INFINITE DIMENSIONAL FLAG VARIETIES

by Ziad Haddad
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fulfillment of the requirements for the degree of Doctor of Philosophy in

Mathematics

ABSTRACT

To every Coxeter group W, one can associate its Hecke algebra H over

the polynomial ring Z[q], which can be thought of as a deformation of the

croup algebra over Z of W. In the case where W is a Weyl group, H can also

be interpreted, using a canonical basis, as the algebra of intertwinig

operators of the space of functions on the flag variety of the correspon-

ding Chevalley group, In [RK 1s Kazhdan and Lusztig extend the ground
ring of H to be Z[q 12 q- 127, and use a different basis to study repre-

sentations of H (and W). In case W is a Weyl group, the entries of the

matrix of change of basis (the Kazhdan-Lusztig polynomials) turn out to

have have far reaching interpretations in terms of the geometry and rep-

resentation theory of the corresponding Lie algebra and groups.

The present work grew out of an attempt to generalize the geometric

interpretations of the Kazhdan-Lusztig constructions to the case where

#4 is a crystallographic group (i.e. the order of the product of a pair

of generators is 2,3,4,6 or ©). The link with the classical theory is

the fact that crystallographic groups are precisely the 'Weyl groups'of

Kac-Moody Lie algebras.
Section 1 contains a construction of Tits's Z-form of the universal

enveloping algebra of a Kac-Moody algebra g (or, more appropriately, one

of Tits's Z-forms). The idea is as in [ K ], and it allows one to extend

coefficients to an arbitrary field F (of any characteristic), and asso-

ciate to g a 'Kac-Moody group' G over F, which is done in section 2. In

~ase F is finite, the adjoint group of G has already been constructed in

[ MT ]. The construction here is basically the same as the one Peterson

and Kac carry out for F of characteristic O ([PK]), and has the advan-

tage over Tits's of being in the spirit of the classical theory as deve-

lopped in [ S3 ], a fact which allows a more tractable study of the struc-

ture and representations of G. In case ¢§ is finite dimensional, the group

G is a classical Chevalley-type finite dimensional group, while if g is

not, then G is infinite dimensional in the sense that it contains sub-

groups of arbitrarily large finite dimension. As most of the proofs of

the structural facts about the group constructed in [ PK] use a comple-

tion of a subalgebra of g and the ability to exponentiate its elements,

(facts which present essential difficulties in positive characteristic),

the results in §2 are weaker than those in [PKl1] (although the group is

the same one if charF=0). However, they afford a different presentation

of the flag variety, the study of which is taken up in section 3.

As in [PK], the flag variety G/B proves to be a Bruhat-type ( BwB)

disjoint union, indexed by W, of (finite-dimensional) affine cells C(w),

each of which admits a 'Schubert variety' (still finite-dimensional) as

its closure. the geometry of thesevarieties is studied by: 1) generali-

zing the results of Dheodar ([Dh 1): after reproving the lemmas in [Dhl]

in the present setting using the Birkhoff decomposition ( B_wB), the re-

sults of [Dh2-4] carry over almost verbatim; and 2) adapting a construc-

tion of Demazure's ([ D ]), the main tool for which is the fact that 'a



codimension-1 piece of the Borel common to two adjacent minimal parabo-

lics acts trivially', so that one can construct a (finite-dimensional)

'resolution’ Zz; as in [D1] to a closed subset of projective space which
is identified, using the Borel fixed point theorem, as being U C(y)=X,
for weW. y&lt;w v

These facts are applied in section 4 to:

1) showing that X _ is always non-singular in codimension 1,
2) giving geometric interpretations to some of the Kazhdan-Lusztig

constructions for crystallographic W, using the positive charac-

reristic approach of [KL ](the methods of [ § ] do not seem
amenable to direct generalisation because the G orbits in (G/B)?

are not finite dimensional),

3) a study of the case where the reduced expressions of weW consist

of distinct reflexions (e.g. x is then smooth),
4) an explanation (and proof) of a remark made in [ T3 ], which

suggest that no further generalisation (to arbitrary Coxeter groups)

can be made.

and
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Section 1 : Construction of the Enveloping Algebras Uy, Up, and

associated Modules.

Start with an NxN generalized Cartan matrix; that is, A is an NxN

matrix with entries 34 » 1&lt;i,j&lt;N, satisfying:

a;,;=2 for all i,
a,.€zZ” if i#i,

1]

with a, .=0 if and only if a, =0.

ij ji 4,0)
We assume for simplicity that A is indecomposable, i.e. that A# 0 Ag

after any reordering of the index set.

Fix a Q-vector space h of dimension N + corank(A); it can then be

*

shown ([K1]) that there exists subsets lich ,Ich, where I={a_, 1&lt;i&lt;N},

I'={a], 1&lt;i&lt;N}, such that:
*

II is a linearly independent subset of h ,

I' is a linearly independent subset of h.

v
&lt; &gt;= .

and Oys0y 3, 5

The Ka¥-Moody algebra g=gq4 (8) is the Lie algebra over Q generated

by h and elements e;s fs, 1&lt;i&lt;N, with "defining relations":

(h,h]=0 ,
v

[h,e.]=&lt;a,,h&gt;e, , for all heh ,
i i i

== &gt;(h,f,] ah £, , for all heh .,

and (ad ey) HH ey) = (ad eG) = 0 whenever i#j.

[t can then be shown that, identifying he, £; with their respec-

tive images in g, if n= subalgebra of g generated by ess 1&lt;i&lt;N, and

h_= subalgebra of g generated by f£,» 1&lt;i&lt;N, then we have ([KL ]):

1.0 Proposition :

g=n ehen : (the triangular decomposition),

[9,9]=g' is generated by e;»f, , 1&lt;i&lt;N ,
"= v

hang 2 Qa,
hn is its own centralizer in g .

the center of g is contained in hag’

The abelian subalgebra acts, by the adjoint rerresentation, com-



pletely reducibly on g, so that g= €g_,0 eh”, where g,=1xeg such that

[h,x]=&lt;a,h&gt;x for all heh}, and we have g,=h as noted in 1.0 .

Now, since h preserves the decomposition 1.0, one sees that if

3,40, then either gEn, or gen, or gEn_. Writing o,=8 No, eh”,

Q_ = = Q,, this implies that if 96705 either a=0, or a ¢€ Q,-{0l, in

which case g en,; so that if A={ach |g, #0} is the set of roots, then

A=AfA,where A +=40Q +

For each 1&lt;i&lt;N, define reGL(A) by r; W=A-&lt;Aa&gt;a, and let

5={r,, ceo rt. The subgroup &lt;S&gt; of GL(h) is called the Weyl group

of g, and is in fact a Coxeter group; more precisely, &lt;S&gt; is isomorphic

to the quotient W of the free group generated by Tys eee 5 Ty by the

subgroup generated by

(r;)? , 1&lt;4&lt;K,

and (rr), 1&lt;i#j&lt;N,
where m, are computed by the following table ([ K3]):

= | |

255254 0 1]2]3]&gt;2

hen mye |2]3]4 6]
1]

ff

Conversely, given a crystallographic group W (i.e. a Coxeter group

as above with m,; ;€12,3,4,6,=}), one can find a generalized Cartan

matrix A such that the Weyl group of Gq (8) is precisely W: indeed it
2 - 2 iw el 4F 434 ]

suffices to take a5 4eos a, if i&lt;j, a, 5 1 if i&gt;j and a, 470;

The matrix A thus obtained will fail to be indecomposable exactly when

the Coxeter graph of W is disconnected, in which case 39M) is iso-

morphic to 3q(41)894¢ (45), WW, XW, where Ww, is the Weyl group of 3944)
In any case, one gets an embedding of W in GL(h ).

Similarly, one has an action of W on h given by r h=h-&lt;a ,h&gt;0;

and the two representations thus obtained are contragredient (i.e.
*

&lt;r A,r. h&gt;=&lt;)\,h&gt; if Aeh , heh).
i"? 1 m

e.

Write e {™ for the element —7 of the universal enveloping algebra
, * .(m) 1 .m . .

! J

of g' , 1&lt;i&lt;N, meN, and similarly £; ol £, e U(g'). Define u, to be

the Z-subalgebra of U(g') generated by { e™ y ¢® ,» 1&lt;i&lt;N, meN },



and set

U,= the subalgebra of u, generated by e™, 1&lt;i&lt;N, meN

U_= the subalgebra of u, generated by £m, 1&lt;i&lt;N, meN

Also, if R is any Q-algebra with 1, and xeR,neN, define », € R to be

the elementxed)...(ontl). Finally, set
’ v

U= the Z-subalgebra of U(g') generated by ( i) , L&lt;i&lt;N, neN.

( see [T1]).

one then has

1.1 Proposition :

Uel,, UBRQ=UCNg) ,

u,BQ = Ucn) .

U,2Q = U(g'), and u, = usu au, (see [T 1).

broof:
n \'

5iven neN , ey =) g (K) *172Ky  (K) ([
i k=g 1 n-k i

 AY n v

=Co + J eB OM
k=1 *

Now we can find integers a) such that

S2 1)

v n-k v
o,=2k, _ (k) ,o.

Cig) = l a, Gh)
m=0

so that we actually have

v n n-k v

eMe@ _ (@4y 47 7 a0) £R) 4,
i i n m i "mi

, k=1 m=0 ~

£ u,

([s2 1)

“ 1

z

and each i) is seen to lie in u, by induction on n, hence

uel,; that U BQ = U(hNg') is clear as hA{g =8 Qo; so

that U(hNg') is the symmetric algebra in 0 5 ee Cy over Q

and the first statement is proved.

The second statement is clear by the Birkhoff-Witt theorem

applied to n_, so let's verify the last statement:

we have an injection

+

U8Q—U(g), I,(uBe)=c-u



By the Birkhoff-Witt theorem applied to 1.0, the map

I: Un )aU(h0g)RU(n) —~ U(g')

given by I,(u_Bu Bu) =u uu, is an isomorphism, so we

get an isomorphism

-1
I, : U(g') — U(n_)aU(hng)aU(n,)

Using the first two statements just proved, we also obtain

a map

I: Un_)RU(ChNG )BU(N,) — U_BU =U BQ
and a map

I: u_at mlBQ — u,BQ ’ I, (u_Bu Ru Be) =cu_uu,

-11

I, shows that u,aq c U(g'), and I,01501, proves the
reverse inclusion.

Finally, it is clear that I, (U_su aU,) c Uy, so that

L,: ust BU — u, is an injective map, and we need to

check that I," (U,) &lt; U_BU BU, , which follows directly

from the formulas

min(m,n) ,__., v__ _i

2 (Mg (®) = 7 £@ 3) @4 m-nt2j, (n 3)
. J i

j=0 \ )
el

as before

m.@) _ cm) (m) ._ .,.

2s £; £; e; if i#j
v v v

a (m) _ -(m) 0,-m&lt;a,,a.&gt;

GES = £57 CIT)
ell

v Vv °v
(m) a. _ Qa. 4m&lt;a,,a.&gt;, (m)

and e; 7 (3) = (OF 7 _"17737 deg
_ TT

0

all of which can be checked by induction as in [S52].

The decomposition 1.1 can be made more explicit in the case of

a classical Cartan matrix (i.e. when g is a finite dimensional simple

Lie algebra once one extends coefficients to C), and one can then

exhibit a Z-basis for u, ([K 1,[S1]). One problem with generalizing

this result is that the root spaces do mot in general have any cano-

nical bases, indeed they are not necessarily one-dimensional. The ones

that are do however play a central role in the theory, and they can be



easily obtained as follows:

the elements es £; » 1&lt;i&lt;N act, by the adjoint representation, local-

ly nilpotently on u, (indeed, on U(g)), i.e. for every uel, there

exists M(u)eN such that ei u = 0 for all m&gt;M(u), and similarly for

£; ! that is so because of the equality

1.2 ad yo. ( XyeooX ) = ) C. - ) (ad yIl.x )... (ad yin, x )
— n . : Jqyscres] 1 n

jiFe..d om 1 n
which holds in the envelope of any Lie algebra a, when YsXyseeesX, € a,

'

and (, © . ) = — s» and can be easily checked by induction on

Jieeedn gprs
m and n€ N; using 1.2 with y=e;, one gets

1.3 ad e® x ceeX ) = ) (ad el) )...(ad en) )
a i 1 n c+. 4i =m i 1 i n

gt.

from which one concludes that local nilpotence of e; (or £) on U

follows from local nilpotence on the generators of U, and that is an

immediate consequence of the defining relations for g.

So for x ¢ {e nf, ’ 1&lt;i&lt;N}, one can define elements exp x, exp

in End (U,) by
Z (m)

1.4 exp x . v=) adx' ’.v » el, if vel,
m

and exp-x . v=) (-1)%adx™.v ’ el, if vel,
m

2ach sun being of course finite as each term beyond M(v) chosen as

above is 0. }

The decomposition 1.1 and formula 1.4 show that exp#x are actually

endomorphisms of U(g') and that if veg'el(g'), then exp x.veg'again.

Now, using 1.3, one easily checks that exp-x = (exp xy, and that if

y12Y,€8" then (exp (ex). [y;,¥,1)=[exp(ex).y,, exp (ex).y,], €=%1, so that
2xp*x defined as above are Lie algebra automorphisms.

Let's define, for 1Zi&lt;N, te Aut Uy) by I =expe,oexp-f oexpe,.

A classical computation shows that FU (see, e.g., [K2]), and I,

is a Lie algebra automorphism extending ry. We proceed to define for

every weW «»GL(h) such an extension w by choosing a reduced expression

Ty Fi for w, and setting Eg Ey to check that this does
indeed define w uniquely, one needs to verify that

1.5 Proposition :

vw



J

then Bo... = T.,...°T,
1 k J1 Je

proof:
Proceed by induction as follows:

If k=1, there is nothing to prove. Otherwise, the exchange

condition ([K2 ]) implies that for some O&lt;a&lt;k-1, we have

F,eeef, = T,.0af, T, oT. TT,

3 Ix 31 dy dar kk

If #0, the inducticn hypothesis applied to

LC, eee, =X, «as, TIT,

Jo+1 Ix datz Jk

1.6

1.6’

1.7

1.7"

zives

Fr: eae. = T, «..T, tr, ,
Jot1 Ix Jo+2 Jk xk

and, applied to Loe. T, ST...
1 k-1 -

Boon, = Eoeeebl El,
1 -1 J1 do das Jk

hence T....T, = F....T, T, ...T, , by 1.6,
J Jk J1 Ja Jat Ie Tx

=f,...t, 1. by 1.6’
L k-1 "Tk

rr, fk, ...r, gives

Jo da+2 Iv

if a=0, i.e. w=r,...r, Tr, , then we know by induction that
j 3. di.

2 k "x

T....T, =7T,...T, rt, .
 ot J Jk x

We shall also assume that w=r.,...r, r, (otherwise, by sym-
i i, 3

2 k “k

metry, we are back in the case a#0, with i and j exchanged) .

We then have similarly

Foeesd, = EoeooTy Tr, |,
31 0k 2 Jk

and it suffices to show that the right hand sides of 1.7,

1.7' are equal, i.e. that

(E ...T; Et, P, = (F. cnet, 3k, tr,
2 tk-1 kk J2 Jk-1 Jk tk

Proceeding by induction, this reduces to proving that

ee, t, f.,...=%, T, TF, .

b,x x Ix *k Jk

J, eel.= TX, TT, TT,

4, Ta. 1 J
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Now one can compute directly that

if m,,=2, then r..X.=X,,
1] 1]

if m..=3, then r.r,.X,=X.,
ij i733 7d 7)

if m..=4, then r.T.r..X.X,,
ij iJ J 3

if m.,=6, then T.T.T.T.T.X,=X,
i] 13131] 1]

with x €{e,f} (using classical formulas, as in the

proof of 1.1), from which it follows easily that
3 _ . a

if m; 5 2, then t;oexp (Ex, )of, a
] _ ar a i -

if m5 3, then i,t exp (ex, Jof, ry exp (€x,), (e=%1)

and similarly for m; &lt;4 6, and one concludes that

if m..=2, then t £ +71lag
1] 131 J

if m,.=3, then p28 be,
ij i371 4 7]

etc... as needed.

The proof of 1.5 is now complete,

go that w is indeed well-defined.

We thus get a map W —End(U(g')), wi=+w, satisfying

1) w is an automorphism of U(g'), leaving uy, and g' stable,

2) wl = weW &amp;GL(h),
3) If x,yeg', then w.[x,yl=[¥x,wy]

Suppose then that Ac A, x¢ 9,= gd, heh:

we have [h,w.x] = Tot)

= @. [vw L.h,x]

= W. (&lt;A, w L.h&gt;x)

= w. (&lt;w.A,h&gt;%)

= &lt;w.Ahow.x,

i.e. w restricts to a bijection g;— 8.3 in particular, A is W-inva-

riant (W acts on he as above ), and if Ag A, dimg,=dimg_ ,. We know from

1.0 that if AeIl (4i,e. A=, for some i), then dimg,=1 (in fact, 9,=Qe)

and similarly for Ae -Il. So one is naturally led to define subsets

ATE, ATE, ATE of A as follows (see [ K31]) :

FS (Oy , A°= wana, , AT%= AT%nA_

AE ATE, then, as in the finite dimensional case,If



 |

AnZA={+\}, and dimg,=1.

If moreover A=aL, we know that g,=Qe&gt; and that gn, =Ze; (the inter-

section taken in U(g')). We construct such a basis for gy» any Ae ATE,

as follows:

Let X(A) = { tv.e; , WEW and 1&lt;i&lt;N such that woo =A }.

1.8 Proposition :

X(\) has exactly two elements, for any A.

rool
If weW, 1&lt;i&lt;N, then w.e; EUNge, in fact Wee © By, 9h

which is one dimensional. So if Wy +0 =Wy 0p=A, then

wy. e,=c Woes for some ceQ; hence
wy Ve) rl

. 1.
. . Ng - = =

But W,.eq EUMG 5 so wy TWy.e el fg -1, =U Ag, =Ze,.
_ 2k 1 "27k J

hence c=%1.

In other words, if Wy 0 =Wa0, =A, then we ste € gly,
and X()\) does indeed consist of two elements, each the

negative of the other.

So we fix an arbitrary 1&lt;i&lt;N and wyEW satisfving Wy «Gy =A (we take

wy=1 and i=k if A=0,) : and define ey = Wyees , £,= wy of.
The elements of A € are called real roots ([K3 ]); so for every

real root A, say Ae ADS, we now have root vectors es £5 such that

g,=Qe, g_,=Qf, Also, if XEG,y» SY ¥=C.ey with ceQ, and if xel,s then

ix = oi lve, = ;
Wy X= cwyTwW,e, =cey

As w,T.xeg nl, = Ze, one concludes that c £Z. Therefore, we also

have: +

_ re

1.9 gnu, = Zey gl, 2£, ’ for = Aeld, ,
Finally, with A as above, define A" = w,.C, eh. Then Qf, +q) +Qe,

v

is isomorphic to 42.(Q) and one easily proves as in 1.1 that o yell,

for all ned, Ae AS, and that e{™, Exell, ( where xp, x @) for

xc{e,f} ).

Suppose now that K is a field, so that we may form Ug = u,a,K. It

Follows from 1.1 that if UK) = UmK with oe {+,-,0}, then

ug= u (XK) B20 ®a,u, (K)
1.9 shows that for all AeA7, e,H1#0, £,R1#0 in u..and
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Being the tensor product of two Z-algebras, Uy, carries a structure

of associative algebra, with (xR®t).(yBs)= xy8ts. The product is K-linear

so that Up is also a K-Lie algebra. The same holds for Us (X) as above,

so that we have the Birkhoff-Witt decomposition Ue=u_al_&amp;au, (x).

Finally, one has a map W+&gt; Aut (Up), satisfying w. (uBt)=(w.u)Bt;

this map is again injective, for of w#w'e W, one can find o; II such

that wo,Fw a, in which case we Tee while we, =e'e_ (with £,e'=%1)

so that w. (eBl)#w'. (e 81), as needed +

A few basic facts about the representation theory of U will be

needed. To distinguish the ''good" characters of uy (K), let's make the

following definition: for a€Z, ne N, write

a
{
2)

|
\

= al
| (a=-n)

i-1)2
) pen1 —ac1)]

if a&gt;n, as usual

if O&lt;a&lt;n

if a&lt;0 ,

so that &amp; is a well-defined integer.

It is now easy to check that one obtains a homomorphism

@Q")" — Hom(U_(X),K),

where @"” denotes the Z-dual, in h*, of Q"=¥ 2a] , satisfying
v Vv

aC Some) =e (BAY

for all re QF, Aeq', neN, teK. Call the image of this map the cha-

racters of u_ x) (see [T1 ]).

A U,~module M is called integrable if all e;»f, act locally nilpo-

tently on M, i.e. for each ve M, there exists a positive integer m(v)

such that if m(v)&lt;meN,then e{™ v=t™ v=o. A Uy-module is integrable

if all eBl,f Bl act locally nilpotently and U(x acts by characters

as above. Finally, a g=gq(A)-module M is integrable if all e Lf, act

locally nilpotently, and M is completely reducible as an h-module, all

weight spaces being finite dimensional.

A large class of integrable g-modules has been constructed by

V. Ka¥ ([K4 ]): it consists of certain highest- and lowest-weight

modules. To construct these modules, start with a 'weight' Ach” such

that &lt;A, a &gt;eN for all i. Let J(A) be the ideal of U(g) generated by n,



13

together with all (h-A(h)), heh. The g-module U(g)/J(A), on which g acts

by left-multiplication, can be shown to have a unique proper maximal

submodule, such that the quotient L(A) is an integrable g-module in the

above sense (see [K5 ]; L(A) is irreducible by construction).

L(A) has highest weight A, i.e. if viEL(A) is the image under the

quotient maps of 1lel(g), then

1.10 Un) .v*=0
h.vt-&lt;A,b&gt;v=0,forallheh,

and LO)=U(W_).v.
One then knows ([K5 ]) that each EB, acts on L(A) as before, that

dimpL(A), p= dimL (A) 4=1 ,( where if M is a g-module and Ach”, then

M,={meM sich that h.m=&lt;\,h&gt;m, for all heh}) and that, in fact,

Evie ®t, filg-vH)-{0}.
Since we also know, by construction, that (Uy -vOL (A) )=2Zv7, one can

show as in 1.5-1.7 that if ry ree¥y Try ney VEN with length (w)=k,

Fi,” (eve (Bg v9) os Ey (5 Vv) ..), so that for each we W we have
a well defined element w.v'e LAU, .vF. Finally, one knows that if

L(A) 70 , then dimoL (A) 35%

A-A e N.II,

and LIY=)L (0),

L

Given a highest weight g-module M as above, one obtains canonically

lowest weight module Mo as follows:

If w is the involution of g given by we.=f, wl,=-1d, sdefine a new

g-module structure on M by requiring

X.m = w(x) .m , for all x€g, mEM.

(old) (mew)
* -

Writing M for M with this new g-module structure, and v for v¥, ome

obtains a g-module satisfying 1.10 with all * signs reversed.

Let M be an integrable g-module with highest weight A, and let's

prove:

1.11 Proposition :

a) (Uy v7nM, #0if M,#0 (in fact, (Uy vine EG)
b) If velo) ell, .v , with vy EMy then v,Ely.

for every A.
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i . 1

c) MU. = ZwW.V

+ . .

d) U,.v BK is an integrable Uy -module.

the same statements being true of lowest weight

modules.

proof:

To prove a), one needs to observe that Ucg).v=Ucg').v as

both are equal to Un ).v.=NowU(n_)=UBQby1.1, so if

VEM,, then Trae] with c€Q, uel_ hence Le Uyov, and the

reverse inclusion is clear.

Choose a lattice in h* of rank d=M+corankA =dimf containing

A and T, and let S, be its Z-dual in A, say S,=8Zh,. If

hes » and neEN, the element ad (%) of Endg (U(9)) stabilizes

Uy: in fact,

while ad Qf PWT) £59 :

Define a map height: QQ N, by height (In 0,)=2n;. For

every A,ueqQ,, we then have height (A+U)=height (A)+height (1).

and one defines a gradation on the algebra U,) so that

if uel (n,) is in the V-weight space of the adjoint action

of hh on Ue) then degree(u)=height(V). (this is the prin-

cipal gradation as in [Kk] ]). Let U=luell (n) | deg(u)=j},

and let's first show that u, is homogeneous with respect

ta this gradation:

Choose h eS) such that &lt;o,,h &gt;=1 for all i. If uel, say

u=u. Feet with 43,54, and Jee e&lt;dyo then

ad (80) .u Fda, + wu.
3 j=1 9x 1 dy

Proceeding b¥ induction, we find that u. ell, for all i;

hence u,=1 u,nuy.
JEN

One defines a gradation Zu 4_.of U(n_) similarly, and we
J

have U = 0= z CA u.)
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Again, if hes, and neEN, then &amp;) el(g), so acts on M.

We can now show that stabilizes Uy.v's

Indeed, suppose v=u_.v, and assume u_=Luy with uel.

An easy calculation shows that Aya, vt is of the form

&lt;A-m,0 =... m0 ,h&gt; + nd .
Z( 171 n N*"")u,v ,the sum being over some

mi

N-tuples (m5... &gt; Ty) satisfying m,+. . Hme=3. In any case,

this shows that Qyovel,.v"

Assume now that v= y Vy where A is a (finite) subset of

AA

weights, and let YU £ A. One knows that the subring of

QLX,,. - &gt; X41] (polynomials in d variables with coefficients

in Q) generated by all monomials of the form 1), 1&lt;i&lt;N,
i

n,eN, separates points in 29 ([S1 1). So for each AcA-{u},

find such a polynomial ® (X;5 sos 2.9) satisfying

? (&lt;A,hy&gt;, “es »&lt;A,h,&gt;)=0,

E (&lt;ush,&gt;, ER »&lt;H&gt;h;&gt;)=1,
and let F(X,,...,X;)= 1 P,.

1° | A
Aea-{u}

2

If u = F(hy,... hy), then ueli(g), u stabilizes Uy." by

our choice of polynomials Py» and

Luvy =} F(hh&gt;,...&lt;Ah0 7),
AEA AcA-{u} |

+F (Why&gt;, 05h)
8 L

v

As velly-v' , we must have v ely, which proves b).

The proof of c¢) is identical to that of 1.9 (note that

dim Maa=1) ]

proof of d): If v = 1 (u,. vB, then for every i, there

exists a positive inoeger m, such that 2°, (u; .v)=0

and e™, (uy. v)=0 if m&gt;m, . So if ERtV)=mpniny ), then

e™ vy = zel™. (u,.vHEe=0, and similarly for e,,...

So we need only check the action of u, (K) on M :
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By b), it is sufficient to check that if m is of the form

m=(u.v )&amp;s with u.veM and uell,, then u_.o=x (u )m for all

a_el (KX), where Xp is some character of Uo as above.

Without loss of generality, we may take u=0_)&gt; AV eqY,

and compute:

ym) .m = Ay ou.vTBst
n n

= e (HA) vhs

= (MM)

so that Xg is the image character of ne @)”

Finally, we show that

1.12 Proposition:

If K has characteristic p&gt;0, then u, carries a

Frobenius map Fall — Up, satisfying F (x&amp;t)=x8tP

whenever xefa],e 1, 1&lt;i&lt;N}, and every Ug-module

Uy .v BK carries a Frobenius Sach Ehae

F(u.v)=F(u).F(v) whenever vel, .v7BK, uel.

proof:

If Uy (XK) = { Lx; Bt, x;€ u, with degree (x;)=] }, then

Uj (K) is a Q'BK-stable finite dimensional subspace of u_ (x.

Using the Z-basis n° for qv, we obtain a Frobenius F on

Q EK, and F extends uniquely to each uy (K) in such a way

ol P
that F(Ix,8t,)=Ix,Bt; (Il 3 1), hence to all of u, x. .

Define F on U_ similarly, and extend the Frobenius on Q 2K

to uy (XK) by identifying the latter with the symmetric

algebra of QBK. We finally obtain F:l~&gt; U, by using 1.1

so that F(u_Ru Bu )=F(u_)BF (u IBF (u,), with ug -€ Us (KX).

Now, if v eM, say v=Cv_.Bt. with v.e U v, t.cK, then each
{11 i Z i

. A +

vy is of the form Zvys where vi eM al,.v by 1.11, so that,

defining F on a4, .v BK by F(Lv)Bt, )=5v) Bed (recall
i i

that dim, ONL, vIER &lt; dima (4) &lt; © ), one sees ‘that

F(v)=5v Bt does satisfy F(u.v)=F@).F(v).
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Example 1: One always has re, =f; assume that N&gt;2, and aj ,==2. Then

. __ (2) (2) _ ’ . : 2

rie, er’ e,te el eje,e;. In particular, if N=2, then r,

is the identity on U,.

More generally, one has $0 =ade 218.0,
i73 i j

and ££ .=(-1)%ijaqf C213) f,
1] 1 J

if 7T=
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Section 2 : Construction of the group.

, Fix a field K. For every aed”, t eK, let X, (t) be the formal sum

CHE and X(K) the set {x (1), t € K}.

" Defining a product in x, by X (£).X (s)=X (tts), one can easily see

that X, becomes a group, isomorphic to G,» and such that if M is any

integrable Hgznodutes there exists a homomorphism Xx, Aut. (M), with
x (£).v=It%e MaL.v, the sum being finite by integrability.

Similarly, let v, (®O={7,(0)= I Mme”, t € K}, defined for any

oe nS, and consider the group a free product of all Xyr Ya over all

a,BE ALS, so that Gy acts on all integrable Uy-modules as above.

If I= intersection, taken over all u,vEK as ia 1.11, of the

kernels of the representation of ® on u, . vex, and Ip Janoal of the
action of en on Ue , set 1 = INI, , and let G(K)=G,/I : G(K) is the

Kat-Moody group associated to the generalized Cartan matrix A ( or the

crystallographic group W). If A were a classical Cartan matrix, G(X)

would be the universal (simply-connected) group associated to A. Using

I, instead of I would yield the adjoint group .

In order to study the structure of G, let x, (t), Yo (ts x,7, be

the images in G(K) of X_(£),Y, (t),X 7, in Gy, let AT be the subgroup

of G generated by X, ,¥, , 1&lt;i&lt;N, and call Ad:G(K)— Aut (Up) the

representation of oo on U.

It is easy to see that Adah) stabilizes the Lie subalgebra of Ur

spanned by the ordered basis (eR, 0.81, £.81 ) and that with respect

to this basis,

Adx (t) has matrix

(1 -2¢t

K 0 t0 0 1

[1 00
| -t 10

I-t2 2t1
and Adv (t) has matrix

so that: a) the maps X = G(K) , Y G(K)
i i

L ©rxy (8), Y, (6) my, (e)

are injective ,

L
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t =~ PSL, (K)

and b) Ad Axe mevoymire m v
1

On the other hand, one knows that given any integrable module M for

the algebra u,cst,) defined as above, there exists a representation
. . lt _ 10 _

SL, (K) — Aut (M) satisfying ( 1) = X(t).v, (; 1) = Y(t).v, and
0 &lt; v&gt; i

&amp; ER = V% 7 if u se, acts on v by the character v ([T2 1).
LS

Fixing i and applying this theorem to the 4£, sub-Lie algebra of

Uy spanned by e,Bl, al®L, £81, one gets a homomorphism ®, :SL, (X)—G (XK)

such that ®, (SL, (K))=A%; as we also have Ad At = PSL, (K), we can assert

that A" is a group of type Age

Before obtaining commutation relations and structural facts about

G, let's observe that if char (X)=p&gt;0, and if the map K—K, t= tP is

invertible, then G(X) carries a Frobenius map such that Fx, (t)=x_(tP):
% *

indeed, the map FG — Gy given by F(zy (£))=2, (tPF) for ze{x,y} satisfies

Fr y=1" by 1.12, and hence factors to the desired map on G itself.

! fo ~~ t 0 i = 1
Let s denote by H, {H, (t) os 9.) tele A . M, normalizer of

H in At, H= subgroup of G generated by HyseoosHyps M= subgroup of G

generated by Ms» 1&lt;i&lt;N, u,= subgroup of G generated by all xX, s0-€ ALS, :
re

U_= subgroup of G generated by all Yo * EL, , BE, (t)=x, (£)Yq_ (-1/t)x(t)

2.1 Theorem : (see [PR])

a) If M is an integrable U,-module, and if ue Ups

then (Adxy(t)(u)) = x, (t)ouox_, (t), in End (M)

b) If a,BeAl’, &amp; No+HENA,=NotNBnA, = fer, B, a+B] then for
£y y _— -—

some n, g&amp;% and all t,s €X, glad mptes) Xo ny gts).

c) By (Wx55 CD, if aed -{a,}.

d) (H,,H,)=1 for all i,j].

e) hu, h~1=U, if heH.
+ &gt;

£f) w=M/H

roof:

To prove a) we may assume that u=u Bs, uel,, sek, veM, so

that (Ad x (t).(u)).v = x £2 (ade ™ .u_Bs).v , while
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2.2

x (£)ouwox (-t).v = J (-t)Fed(e(Dmi.(u.((e{Pg1).v))
a a i ol o

13H (3), J)
2 (-1)7t7 7 ((ey "ue, )Bs).v
i]

20%) (3), o(21)

Le t (eq, uey )8Bs.v
’ CL 245+, (3) (2i+1)

t (ey ue,” )8Bs.v

» eB 2 e@-21), Clgg
1 i Q o QO

__(@m-2i-1)  (2i+1)
e, ue, Bs.v )

so that a) is proved if we know that

ad c@ = o(m=21) 0 (21) _ o (@-21-1) o (2141)

a Oo i a o QO a oO Q

But one can easily prove by induction, starting with

the formula ade..u = e,u-ue, that
i i i

ad et.u = ) (-1)7 ref Jue , which implies 2.2 if we
3=0

+O. —-1 OL : . Co.

let u=(w) us and apply w to the above equality, with

i chosen so that eos,

—

Now to check all equalities A=B with A,B G, we use a)

to verify that NE el where A and gt are interpreted

as elements of Gc, i.e.

To prove b): let's first compute By, 8° if a+B ¢ ASS set

ny, g~0 for we know that in this case e, and eg commute.

Otherwise, as in 1.9, we know that PL fegue,] is

an element of upg, = Ze, where 1 is such that
i

#**Pa ass, hence FL lege] = ne, for some n€ Z,

and we let n, g~n-
*

We now check that (X, (£),Xg(8)).X, g(ny otS) € I 2

Fix t,s kK, and set R=Z[T,S], the ring of polynomials in

two variables with integer coefficients, and let uy denote
d

u zr. let v_ el,, and let D € EndUp be the operator Tzy -

As ey acts locally nilpotently on Uy, in the adjoint repre-
. Te .

sentation, for any AEA, , we can define elements

E(ce,) = y ade Mae £ Endl, for any ¢c€Z[T,S]. Now write
ic
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2.3

2.4

£(T,5)=E(Te )E(Seg)E(-Te )E(-Seg)E(n, gTSeq pg) VBL

and let's compute Df = T( (ad(e &amp;1))f )

+T.E(Te,) {E(Seg) (-ad (e B1))E(-Te )E(-Seg)E(n, oTSe, q)-V Hl

+E(Seg)E(-Te )E(-Sey) (ade, on, gS)E(n, oTSey 0).
v a}

(using the "product rule"),

T(ade ®1)f - Tad (E(Te )E(Seg).e HL)E

+ n,.gSTad (E(Te DE(Se)E(-Te )E(-Sep).e  H1)E

(using a)),

T.ad(e Rl-e Ri-S[eg,e, |¥l4n, Sey all) E
(as with our assumptionsonO,R,

e, and eq commute with ep’

-
-

J, S50 that

£(T,s)=f (0,5)=v_R1.

Now we form the tensor product UBR=U, where X has the

Z[T,S]-module structure obtained by mapping T +t, S¥s:

Then equations 2.3 and 2.4 give

(X,(£),Xg(s))Xy a(n, gst).v BI = v El,
which is verified for all v els from which one concludes

that
*

x, (t) Xp (8))X p(n, gSE) € I, ’ .

To check that (xy (€)Xg (s))X gn, ost) £ I one proceeds

exactly as above, and b) is proved.

proof of ¢): given aed "-{a l, 1&lt;i&lt;N, we already know

that Biro © UN9r o728 ow so that there exists an integer

k, £2 with
r.e =k, e_ _.
ia i,ar.o

In fact &gt;
&gt; $7le_ ell fg , hence k, _=*1:

i rT. Z “0 ia

*
. . re _

Let's show that £, (LX (01,( DE of k; of) el

If M is an integrable Up-module, and vEM, then

. . , _ m, (m) so,

E, (DX (0),( .v 2 t £, (1). (eg R1).r( 1).v
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= 2 t" (adi, (1). (em) .v , by a),
m

z 0 (,.e Man) .v
m (m)

2 hy, 0% oA
v akg,of) .

, by the definition of I,

As
-] .

x. a®1,08 Er o7hy 0) , we obtain

E. Q)=, (01 (-1)=x, ,(t) , as needed.

proof of d): it is a priori clear that (H,,H;)=1. Now

assume that M is an integrable module as in 1.11, so that

= 3 +

for all veM, v XARA) with vy Elev nM,, ty € K. We know

that H,(s).v = &gt; s 74 VBE, , so that if 1&lt;i&lt;N, and S;»

8 are elements of K, then
v v v

- - &lt; &gt; &lt; &gt; =&lt; &gt;

H.(s.)H.(s.)H, (s, Ly (sh.v = zs g Arig Ss. Aso
iri Ad 33 io vd i

Ss &gt;i v,Rt
j ATTA

=X v4Rt, =v

and hence H, (s.)H. (s.)H. (s TH. oes? .

2-343 dL,
The proof that H; (s;)H, (s4)H; (sy JH (sy ) EI is similar,

and as we already know that H (s D)=H (s) we obtain

(H;,H,)=1 in G, for all i,j.

To prove e), we keep the notation of d), and find that

~l, _ (m)_ m -1

H, (©)X, (s)H, (t ).v = z H,(t).e, Rs JH (te ).v

= I (AdH, (£). (Mash) .v
m i a (m). m

Now u x) acts by the image character of m on e, Hs
v

so that, using 1.11, AdH,(t). (e@g gb = T5057 (mgm
’ A

= eM (&lt;*%17 6)"
Plugging this expression back into the equation above, one

finds that ”

H. (£)X (s)E, (t 1).v = z e{Ma(t** 17s) v
&amp; va. vs

Che s).v , as needed.

Proof of f£): As each M. is generated by t,(1) and H,, M/H
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2.5

is generated by the images under the quotient maps of

(£, @), 1&lt;i&lt;N}, and a classical computation shows that

E, (1) %eH,, so that each generator of M/H has order 2.

Now fix i#j, and assume that m, is finite, so that the

matrix Ags = 341] is a Cartan matrix in the usual

ji
sense. We wish to check that

. . ° a -1_

(EWE; Oe.) EEA) 20) 1.
—J) J

m,, terms m, . terms

1] i]

To this end, let a be the subalgebra of 8) generated

by fegse fini hs letting 2 be the positive root system
+

A (@; 5,Q5+QaY), a, ;8Cis the Lie algebra associated to the
¢ v JV

matrix Aj; and has ley, 5,2 eZ; MWlay,aq) for Chevalley

basis. Order the set Ligssay Iio=lA e000 k. Then the

Kostant Z-form Us of the universal envelope of a; BC has
Vv Vv

Z-basis £71). Po) My 2). en) , and
1 a 41 92 M1 n

u &lt;( ? °
15 Uz by 1.9

Now let Byq be the left hand side of 2.5, and fix 1&lt;k&lt;N,

seN. As each ey and £4 act locally nilpotently on u,,

the a, Be module adll, .et&gt;mC is finite dimensional. Let

Gyy be the associated Chevalley group (with respect to the

lattice adll ;.e*) over K, and let Gs be the group gene-

rated by AdAT, AdAY in Sut (Uy. ef &gt;a) . By construction,

C.€G,,. If R.. is the image of R,. in G.., we then know
ij 1] i] 1] i]

([ s3]) that R;=1s hence MR ef m=e Pal. One proves

similarly that AdR, 4 fixes the remaining generators £8),

and we obtain R; 617 On the other hand if veM as in 1.11

and uell, tek, we have |

tot = “1 +

Rjj-uBt.v [2A (AdR, ; (uBt)) Ry. (v #51)

=u. RIT (vRL).
17

One shows that Rv EL=v'EL as above ( using the Chevalley

sroup with respect to the finite dimensional module Uys-v)
%

hence R,,.v=v for all vell,, .v EK, so that R;:€150 and the
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proof of 2.5 is now complete.

If yy is odd, 2.5 implies that

FRO FLCORERE FREI FRCL FREY . EWE; (Me. 1, (D1, (DE, (1)
 CO | - J

m,. terms m,., terms

ij ij

. 1: Cr : L 3 . Ct . L£,(1E; (1) t,t; (Dr) rr; (1) T(r; (x, (1)
 -—

m,, terms m,. terms

ij if

and the right hand side is in H because £. (1)%eh and each

r,(1) normalizes H, so the equation gives }
. . m,

and similarly if m, is even then (£; (L)E,(1)) 4] eB.

Writing R,=t. (1)H eM/H, we have proved that M/H is gene-

rated by (Rye. Rls and that these satisfy

p2=

Bi i
m

ciq sf ada &lt;eo,

RR) ij=1 if i#j, m; oo

By the definition of W, one obtains a surjective homomor-

phism VY :W—M/H, with ¥(r;)=R,.
We check that ¥ is 1-1: let we W-{1} have reduced expres-

sion w=r, ...r, , and choose i €[1,N] such that wo,€ATS
i 0 i -

1 x 0

then Ad(r. (1)...r, (1)).(e, ®1) ¢ Ke, , hence there exists
i i i i

1 k 0 o

no h in H such that ¥; (1)...%, (Dh e Is

so £. (1)...f. (L)gH. © k
i
k

As 7, (1)...t. (1)H = ¥Y(w), this shows that Y(w)#1.

1 “k
And this completes the proof of f) and of 2.1 .

In the proof above, we used the fact that each tr; () normalizes H.

In fact, if sek, one has

. . -a.

-1) = i

I;(Dhy (se) ( 1) hy (dh, (s 3)
a formula which can be easily checked using 2.la) as before.

Remark: Let's write zy for x, if AeAtS,

V7
. if AeAT€
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Assume that a#B € ATE, a+B#0, let S=(No+NB)NA)-{a,B}, and assume

that SeA™® and that S is finite.

Then one can show as in 2.1b) and [ S2] that there exists inte-

gers c, such that for all s,teEk,

n: m4

(z_(8),z,(t))= II z (c,s tt 1)

the product taken in the ordering n Ctm B&lt;n.o+m.B iff n,m, &lt;n, tm,

or n,¥m,=n,te, and eh

Let us now fix i and write poi for the subgroup of u, generated by all

alements of the form wort with x€x_ , YEYgq» Bg ef Halt.

2.6Proposition : ({PK1])
ol

0, = x, XU 1,

proof -

Suppose Be A={a,l, and let €=J1 if &lt;a, ,87&gt;&gt;0,

-1 if &lt;a ,8"&gt; &lt;0

v

so that e&lt;a,,f &gt;&gt;0.
. re

We now show that there exists a subset S of A {a} such

that

if e=1, (x. ,x%x,) II x,
a PB egA

and if e=-1, (vy. ,x,) II x.
a;" "8 est

Indeed let 8= (Neo +NB) A-{ea,Bl. Then S clearly does not

contain G3 now let A ope 4mB), n,mEN, and assume that
5

A oS then either€ =-1, n=1, and m=0, in which case
bh}

A ==a,, or A €A ; assume that the latter is true, and
n,m i n,m +

let Ig be the reflexion in the real root B: we have

rgh  p=n€o -(n€&lt;o, BV&gt;+m) Bn,m i i

 J
&gt;0 , SO rg A &gt;0.

n,m

Therefore A e{red, | rA&lt;ok;
n,m +

Hence S c {xed | rA&lt;0) , a set which is finite and which

consists entirely of real roots ([K3 ]). By the remark made
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above, there exist integers Cm such that if €=1, then for
9

all s,tekK, (x _(s),x,(t))= II «x (c s"t™y, and if e=-1,
a B A n,m

A nS n,m

then for all s,tek, (v4 (8),xg(t))= II xy (ec se).
1 A nES n,m

(Note that in case A is symmetrizable, i.e. for some dia-

gonal matrix D, D.A is symmetric, Ka¥ and Peterson show

that'c_ _=0 if nm#1 ([PK2]), and one computes c as in
n,m i,1

2.1b)).

Suppose now that &lt;a ,8"&gt;&gt;0: we then have

tr, (Wx, (B)xg(s)x, (-o)r, (-1)= Fi (0 G5 (0), 3g (8) x, (1)
t, (xg (s)t, (&lt;1)

which, by the result above lies in gti,
x xX

while if &lt;a,,87&gt;&lt;0, and teK , we have

Fy 7, (00x (50%, (002, (1) Hy (0; (6), (£)xg (2), (0).
b (0H, (7

where u is chosen so that i, (-t)=t, (DH, (@) 7,

“Hy 3, (78) (7 (71) 5x5 (8) (9), (OH; () 70, which is again
. Qs . .

in U 1 (using 2.1le)). This shows that r, (1) normalizes uti,
Qo, .

It is clear from the definition of U 1 that x, normalizes
i

As © . + i

it, and if g€x NU *, then ©, (1)gt, (-1).v Bl=v B1 for all
i

Os

vFeM as in 1.11 because i,(1)gf,(-1) lies in y, AU * which
i

is contained in Us but the only element of y, that fixes
i

all such v'BL is y, (0) = 1, so i, (1)gt,(-1)=1, i.e. g=l

and we must have ’

Ol«
x, NU 1i=1.

Let's note that, in fact, pti = un BE, (Dur, (1): indeed,
. - Qs

2, (DU,rx ()=(y,*xTU 1)by 2.6, hence .
U eu nt (LUE, (1),

cr ee } OL Co . .

while if g=x (t)g' ev, (with g'eU 1, teK) is in une, (Ur, (-1),
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. [J - v - . re - =

then ALLL r,( 1) eu, i.e. Ya, ¢ tr; (1s r,( 1) eu, so t=0,
. . ol

hence g=g', so Unt, (UE, (-1)eT 1, as needed.

We conclude this section by defining subgroups B_ by B_=HU_. for

€=t1 , and observing that

2.7 Proposition :

a) UNnB, = 1

b) If G(X) carries a Frobenius map F as above, then

FBeB_, FHel, and t, (1)ECK)" for all i.

proof:

indeed, if gg U_, and {g. (v BL) s vim} is linearly dependent

in Uy. v BR for all v'eM as in 1.11, then g=1, whereas if g

is in B,, then g.vBLEKv'Bl, and a) is proved.

b) is clear.

Te _ re,

Example 2: Suppose HU ed, , say U=wd,, and let Mo wr, 0 € AL ; UY and Ho

are 'adjacent' roots. Let's show that x, and x must then

commute: m
. -1,. . . . . co.

If i,jeN, then IV (in _+iw)=ic -jo., and iu +i is

a root if and only if rT (HW) is one; however the

right hand side is neither in A nor in A unless i or j is

zero. Hence Nu _+Nu 0A,= {u_&gt;ul, so %yo%, commute by 2.1b).
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Section 3 : The Bruhat decomposition and Schubert cells

We have seen that if we W has reduced expression w = LieeoTy
i k

and X,Y are subgroups of G such that HeX and H normalizes Y, then one

nay define subsets wX, a of G by requiring that

wX = tt; @.. 2,(Dx, x€X} ,
L

ww©= {#.(@Q)...T,(1)yt (-1)...1.(-1) , yEY}

i, 1p i, iq
ee . _ -1_ -1,.. -1

so that if w=, with w,EW, then wX wy (,X) and wYw wy (WY, Wy

whenever these expressions make sense : indeed, if Wy has reduced ex-

pression ToeeeT and WysT esol then as in 2.1f) one has
1 5 +1 Tk

Y(w)=¥ (w)¥(w,), hence for some h€H, Ty-eeFy =t_...r h.
i k 1

Using this notation, one can define for each weW a subset B,wB

of G, and we shall now show that

3.1 Proposition : (see [PK2])

G = BwB_= (J B_WwB,_
weW weW

The proof of these decompositions will be carried out in stages:

the decomposition itself is proved in 3.1-3.7 and uniqueness is

established by 3.11.

In what follows, we fix weEW, Wersee Ty a reduced exnre&lt;sion,

and write w = £.(1)...r,(1). 1 |

 —_— 1 Jp —

Assume now that gEWwB T,, for some i, so that g=whv

with hel, tek, g UL;

3.2 If wo. EA, then 5 (£03 (1) = (83054 (1) for some

3 -1 . . .

hence g=(whw Ju, (£)E; (1) (£;(¢-Dg (1)
—=t 7 : v . .. v

=h Xa (SVE; (18g with h™ eH, g EUs

i.e. g€ B wr .B,,

whereas
. -1 .

3.3 If wo,eA,and t#0, thenwx, (£)F 5 (=v, ( )x, (E)h , with h_€H,
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Xa {80% (E)h, with eek,

hence g=(whw “)wx_ (©);()(Fy(Digg)

=h'x__.(s)x,(t)h g! , with h'eH, g.EU,

i.e. ge BE. :

One concludes that B wB r.B cB BU Br Bs so that, by induction on

n, if wSr....r, with length(w')=n, then
1 *n

1

3.4  (BwB).(BW'B))e BB, UJ Bitty ty B,

where the second union is taken over all m—~tuples (rg... ) with

s,&lt; &lt;s m&lt;n | n

1 ee o n’ — ®

Hence U B,wB_ is a subgroup of G. Moreover, x eB el) B,wB_, for all
weW weW

QO € ALS, while if WoW is the reflexion in the positive real root B,
-]1 - .

then Yg=WgXgWg (B +B,).(B WB+) so that Us 4WB, contains all Yq

as well. Since the family {x,, aed “Hy, aed} generates G, this

establishes the Bruhat decomposition G={] BWB,.
weW

We now show that G= U B_wB_ (the Birkhoff decomposition as in
weW

With w as before, assume gu, (£)g,7; (1) EwB,T,.

3.5 If wo EA_, then wy (8% (D=hoY gg (8328 (1) with h_€H, sek,
-1 . ’ .

hence g=(whw IY yg (8); (1) (74 (F181, (1)

i.e. gE€B wr..B,,
whereas

 yr -1

3.6 If wo. EA, t#0, then wx (0); (=v, (¢ xy (0B, h eH

=o, (803%, (Dh se XK,
~3 ao 2 ° 1

hence g=(whw Vi (85 (0), (2; (FLEE, (1)
i.e. g €B WB, 3;

One concludes that B_wBFR: No B_wB +U B_wr.B,» and, by induction on

n=length(w'), if A=) B_wB,, and gsB w'B,, then AgeA . As G=]J B,wB_
weW weEW

we see that the subset A of G is invariant under right-translation by
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G, hence A=G as stated above.

Let @(w)={a eal" w Ta&lt;o}. One can then prove by induction on k

([K31) that 8@w)=la, , £0, , ... , T,...r, ©, J. Let U =Unwl_v

11 do Tr dk-1dx

3.7 Proposition :

Given gEU_, then for every Bed(w), there is a unique

tgEK such that

g= II xp(tp)

Bed(w) © °F

the product being taken in the ordering of 2(w) as

above.

proof:

This is clear if WEL, 1&lt;i&lt;N,by 2.1c). Proceeding by induc-

tion on length(w), we assume the result known for W'=T;..T,
2 k

and compute, for wer, w',
gl

U_=UNr, w'U_w' lr, Zr, (zr, ur, Aw'U_w' Lye, 1
Jy 3 0d TI 31

= Qs 1 vr ~

=r (Yo = U 3w'U_w' Tr,
- 31

Now w' la, wr Ta, —v To. &gt;0 because a, ed (w),

as 1 y—1 ! =1

hence 1) U JfWw'U_w' “=U Hv'U_w =U

and 2) Yo € ww TT

Iq

So for all g€U , g=t. (1) (vy, (v). I x, (vo 1. (&lt;1)

LE RERPEICMATS

for some uniquely determined v's in KX,

=x (s). 1 x (sy) , with s_tK,

a | AED w') r A A x

= 0 =x,(,).

BED (w) Bg 8B

In particular, u, is isomorphic’ to plength(w) the k-fold product

of K. In fact,

3.8 Proposition :

J., is, in a natural way, a unipotent algebraic group
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proof:

Indeed, let n_ be the subspace of n_ spanned by le,» acd (w)l}.

if a, d(w), and i,j EN, then wl (10HiB)=1w T (@)+w T(8) is

negative, hence if i0+jB is a root, it must lie in dw) (a

fortiori, it must then be real). This implies that LW is a

Lie algebra, and moreover that if nm) is the m-th component

of the central series of ns then (using the principal gra-

dation as in 1.11)

n(™) cu,
im

So if M = 1 + max {1ength(}), Aed (w)l, then on one hand p00

is contained in n_ and nf} ) U, = 0, while in fact nD 5g
Ww "A j Ww

2M
. . Mm) _ . .

contained in uy . Hence n-"'=0, and n_ is a nilpotent
:&gt;

Lie algebra. 2M

One also concludes from the above that WNBA= Nou+NBAA ©

is finite and contained in ®(w) for any ¢,B€ ®(w), say

NA J. OL le) » .

NoHNB \ {1} sePLITRETE +j_Bl. Since we also know that

each e,, aed (w), spans over Z the root space gnu,, one can

show as in 2.1b) that there exist integers a, such that
m’JIm

n i
- m

(x, (x) x3 (s)) i x; Oj g(a, 3 Ir Ss )
m=1 m ~m m’~m

for all r,s€&amp; K.

Let TK u be the bijection

T(Eysee ty)=xg (£)) cer Xp oL..r. a (ty)
J- J; Jyx-13k

as in 3.7; the above then shows that the map

{ (Egaveratyds(sysrssmy)YPTTL(Est)TITSeva8)
is a morphism of affine k-space, hence T induces a structure

of algebraic group on u.. The fact that u, is unipotent fol-

lows from the nilpotence of n. as above.

Letting u" be the subgroup of u, generated by {axga Ts aeu_, and

3€ AEC-0(w) 1, we see that U_ normalizes uv, and, by 3.7, that u uu”
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contains all the generators of U4» SO U Luu” . One can then show by

induction on length(w) as in 2.6 and 3.7 that v wen,, from which

one deduces that in fact o¥=u New

Before going on to more geometric considerations, let's now com—

plete the proof of 3.1 by establishing the disjointness of the various

cosets on question:

3.9 Fix A, LA\)=L, viel, as in 1.10, with A chosen such that if OeW

satisfies oA=A, then o=l. If geN, then 1.11 implies that

} We @.vHre
height (A-A)&lt;q

where @ is the Z-submodule of U_ spanned by all x with degree (x)&lt;q (the

gradation being again the principal gradation). Given a field K, if

v= GTR, then v= F30- " tgle. (vTEL) and is a non-zero ele-

ment of CL u,v HER. We can therefore assert that for all g€B WB,

g.vi=tv_+Ivy Bt, for some tek, ty eK depending on g, the sum being

over all A with height (A-A)&lt;height (wl), with vyel ZV Ly .

If w'eW has length less than w, say wi=ro...r, with n&lt;k, then

g'=f; (...5; (1) is in B.w'B,, and g'.vial=v 1 which cannot be put in

the form tv_+Iv,Bt, with t#0. This shows that B w'B,_ 4 B,wB.As both

sets are B,-double cosets, they are either equal or disjoint; hence the

latter is true.

One proves similarly that B_wB,=B_w'B 4. if and only if w=w', and

the decompositions 3.1 are now completely proved. In particular,

3.10 ¢/B,=\J cw) =U cw
weW weEW

where C(w), C'(w) are the images in G/B, of B,wB,, B wB, respectively.

We also know that

3.11 Proposition : ([PK2])

the group u, acts simply transitively (by left trans-

lation) on C(w)

proof:
. _ . Ww

Indeed, if bwB eC(w), then bmujuph. , with u EU, u,el ,

so that bwB, =u, w (uw u,¥) (w "hw)B_
 |

EU.

Yo WE
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. . -1, = =

while if u wB =wB_, then w uw €BNAU_ 1, so u,=l.

In particular, each C(w) is isomorphic’tou,.

We now proceed to refine the decompositions 3.1 by decomposing

C(w) itself as follows ([ Dh]):

Given uel, and 0&lt;i&lt;k=length(w), let GO, be the unique element of
W such that ut, (1)...r.(1)€B 0.B,, and write N(u)=(0_,0,,...,0 NT

iq ig - i+ o’ 1 k

Note that Cc is always 1, since u=l.1l.utB_B,. Let us now prove

3.12 Proposition :

the sequence N(u) satisfies o,e{o; 4,0; iF;

for all i.

proof:

Fix i&gt;1, and write w.=r....r. , w,=r,(1)...r,(1).Wethen
= i Ji Jk -1 J. J

i k -1

Wi+1
know that there are elements b.€B_, “nl VEU

1

such that

3.13 uw = by05u41%541Vi4

. -1_ — 1

This is so because uww,© = b0.b, where b Us 1% for some

1 Wit e * *

“4150 u, €U , and we obtain 3.11 by writing

v, =w.r ul w e woo UVitl = gE
i+] iH YHA Ti Yit1

Applying 3.11 to the index i-1, we see that

b;010341%141V5417P1~1%1-1"3¥1"s

*b51%3-1%1% G J¥541%1
hence b.0.u, .W... (Vv. Vi). =b. 0. ui, (1);

171% 41% Viw1Vs Mn 05101-1170

2,14

The left-hand-side is in 3G.B+o while the right-hand-side

. . . . 4 &lt;

is in B03 1B, By 3.5 &amp; 3.6, if %1-1%, 0, then

. . -

BO; 184% c B.Gy.1%y BL while if Cyis 0, then
i i i

BO; _1B4T; C Bo, ,B.U BO; 17; By

so by disjointness in 3.1, o.e{o; +» 04-173 1
i

. . WEL ‘os
Let us now define (as in [Dh2]) the subset D&amp; by requiring



34

= = = &lt; i

D={ 0=(0_,...,0,) | 0.=1, o.efo,_;, 03-171} and 0593-173, for all i.

where &lt; is the Bruhat order in the Coxeter group W. We will need the

following facts about &lt; (see e.g. [ D 1):

1) If y&lt;w, then TEE for some 1,&lt;e..&lt;i,

2) If wo&gt;0, then wiwr

To see that for all u€y_, N(u)ED, we still need to check that

J. &lt;0, .r, . If 0,=0, _r, , this is obvious, while if 0.=0, ., 3.14

j= 3-173, j 3-13; uf

implies that 0, 0, &gt;0, hence 0, .&lt;0, .r., by 2) above. We thus obtain
P j-13; 7 j=1—3-173, 7 ) “

a map n:g — D.

Now define, for each OED, a subset Dy of C(w) by setting

Dg = {uw ecw), where uey | N(u)=0}:

By 3.11, Ds is well-defined, and we have cw)= Dy - Also, if pe€C(w),
oeD

say p=uwB,, then p=b Oyu 13 7V} 93.70 Opti) Viera By 38 Wiyp~Ls SO

PEC’ (9,5 where (C5e-050,)=N(), hence DFC’ (9).

One knows that 0, 5w, for all (0 s++250,)ED ([phl]), so that we

also have

3.15 CwWNNC' (vy) = ISR Dy» for all yeW (in particular, C(w)iC'(y)

O.=Y
is empty if yfw).

To study the subsets Dg in more detail, we put an algebraic struc-

ture on C(w) by requiring the 'isomorphism’ 3.11 to be an isomorphism

of varieties. Note that if charK=p#0, the Frobenius F:G(X)—G(K)

factors to G/B, and that the isomorphism just described ‘commutes’

with F.

Fix 0cD. Then for each i, one knows that either 01 &gt;0,. Or

&lt; = -

J. 4&lt;0,, or 0, ,=0, Set
py

K if 0. ,&gt;0.
i-1 “1

ios if 0, &lt;0,
K if 0;.1704

. . X17 — - a ~~ *

and define Ks 1 U, &gt; U, by £, (thu ) x, (ET (Lug 4%; (1),
i+1 i ig i i

where Us q5Ui0q if Oy 17045 while if 0; 19&gt; Us is the element of

-
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-1 ~ \
3 3 = 1 € i-+1

u, satisfying xq (E Jug=uVe, With v, EU (see[Dh2]).
i+l J;

One can show, as in [Dh2], that £; is injective, Imf is locally closed

in u. , and £, is an isomorphism onto its image. In fact,

U if &gt;
Yi 93-17%

bu, r. if o 1-19
 Yi “i, +

U._r. if 0, _=0.
, W, J. i-1 i
i i Y14

Defining the set V, (0) inductively by letting V (0)=1eU _, and
1 k+1 Wy

writing Vi 0=f; Ks Vin LLL we see that vy ©) el, =U &gt; and

one can show as in [Dh2] that

V,(0).vB, = Ds

Letting m(0)=#{1i | 0; _1&gt;041s and n(o)=#{i | 0, 1%9;} we can identify

the Dheodar components D 5 explicitely, namely

D,_ = g2(0)  (g*yn (0)

For 1&lt;i&lt;k, define subgroups B,, P, of G by letting B =B,,

ER
B= i480 ki

and P. = subgroup of G generated by B, and B. 4 .

= 1 3 P=

As B_ B,, one can easily check, using 3.2 &amp; 3.3, that 1 Bo UBT 55,

so, in particular, E (1) EF,» SO we can also write
k

= " pad kp]

3.17 Py F180 WB: 8, T320MYa, 5 HA ®xU Jk ,
 : Jy i

i.e. By is a standard parabolic subgroup of semisimple rank 1 in case

G is finite dimensional.

To obtain similar decompositions for P., i&gt;2, let B.=w TL. a.
i’ “= i "k=-it2 Jpmi+1

so that if Ss denotes reflexion in the positive real root By» then

s SW oT Wi i490 EW Write sw ot (LW _;40€ G. By induction
3 Jp—g41 °F 3 Jimi1

on i, we have B,=s_B, s-1.
i i4i-171i .

We now prove, again by induction on i , that v xq os B,:
1"
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 eo ig . -1

This is true for i=1 by 3.17 . Assuming *g B. 1 we get Ef! cB»

~4 . 3 ded . : ~1

and S;XpS =vg,&gt; while the definition of B, implies that Fie-1+LV
k~1i

. . -3. _ .

contained in B.» and F141 ei La #8. 11
k-i k~1i

Since P, is generated by B, 15845 we obtain in particular that both
. ° — -1 - . o

xg and yg are contained in Ps hence 55 W105, (1% 540 , which is
i i k=i+1

equal to xg(a)yg(b)xg(a) for some a,b€K , is an element of P,.We can
i i i

now prove that

3.18 Proposition :

| Bi41CB; UBS 4B,
sroof:

Indeed, 3.18 can be rewritten

-1 -1 -1 -

8541-141 Bo¥k-1+1 5141 © Vim 141 { BoM BW 41954114180) ¥i-i41

which is equivalent to

W s, Wr. Bw stwl = 3BUBuw s. wl  B
k=i+1 i+1 k-i+l"o0 k-i+l i+l k-i+l “oo o k-i+1 i+1 k-itl 0’

and, since w Ss wl =w &gt; wl =r this
nes kiTi ki k-iHL TIAL kei gL]

inclusion is true by 3.2,3.3 as above.

Note that one consequence of 3.18 is that B, UB.s, 1B; is equal to
1 . ~ ,

ity Br lBTy Besa and is itself a group, hence

2.12 Pi+17Bs UB;5;498;
and that B,{yB.r. B, =r, (r. B,Uy B,), so that, conjugating

L

Tein” Jaw Jean YT
-1 ~i+2

each term by Wy _qe1° Ve also have

P.,.=s. .B. ly, B,
i+1l Ti+1di Bipgd

We will use the following notation : if A is a group acting on the

set B on the right and on the set C on the left, let BC = BxC/~, where

~ is the equivalence (b,c) (ba,a Tc). If B,C are themselves groups, and

A is a subgroup of both with the action being that induced by multipli-

cation, then B (respectively C) acts on Bxc on the left (resp. right)

by multiplication. Finally, if B and C are in addition themselves sub-

groups of D, we get a map BXC =D satisfying (b,c)+—b.c .
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Using this construction repeatedly, we let Z, be the set (see [ D11])

z= p k-lp  xk-2p . Pl JB

and £3 Z G/B, the map £ (Pyse-e »P1)=W.P, .-P1B, .

The remainder of this section will be devoted to showing that Zz admits

a natural geometric struture in which it is a complete variety of pure

dimension k=length(w), that £.(z) = 1 C(y), and using this, to put

a geometric structure on S.C compatible with the one we alredy have

on C(y).

So we assume K is algebraically closed :-

If we fix i and let P be the 'parabolic' subgroup of G, P=B_ UB rs O¥

we know, as in 3.17, that P=r, B 1) (zr. BT,
Jg-i+2" Ig-i+2" Jk-i+2

_ = aJk-i+ Jk-i+2
Tr, B B =A Ab
Tsp T ha

. k-i+2

Jk-1i+2 y
and therefore that P/B =A /8, X =P", in such a way that

Ee yt

7 ? == . =

r «¥=—P/B,, mM, (8) Va, (s)B_ , and Ty K—P/B_, Tm, (t) xy ®©ry By
Ig-i+2 Jp-i+2 57

)B,

then each my is an isomorphism onto its image, and {m, ®,m, (K)} forms

a cover by open affine lines of the projective line P/B,_ (note that

3.20 m, (s)=T, (t) if and only if st=1 ).

. . -1 . . . 1 }

Conjugating by Myi420 Ve identify P1734 with IP* using 3.19, so

that the maps

i i

Msg iK—P, 1/By,

jefined by ri (e)=y,(t)B,, Tr(t)=x,(t)s. .B.
1 Biry i 2 Bir i+174

give the identification. We can now describe the geometric structure on

Z, by exhibiting it as 2 successive fibration by projective lines:

One starts with Z =P,/By_1&gt; covered by the open affines Tm ,

Immy Define g,:20=P X k1p  /B_,— Z by g (PysPy_1By_)=P By qs

where (Py +Py_1By») denotes the image in px"k-lp, __/B__, of the element

(Py sPy Bn) of P xP _1/By pe Fixing some z€ ze, we see that if
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zZ€E Tors, then there exists a unique t€K such that z=¥g (EIB Define

vce] (z)— Pr_1/By 0% Pr} by V1 @per PegBip) EPP 1 Bp which is

in Pr _1/Byo because Tp THE By similarly, if z€ Iams ©, then there

exists a unique teK such that 5g (05 By and we define vig; (2) —

Pr—1/By2 by Vy CroPi 1Pe2)" Te EPP Brea It is easy to see that
both vq and V, are well-defined and surjective. We check that Vi is 1-1:

J — | ctee——————— -1

&amp; t 1 = ! '

If Vv, (PsPy1By9)=(PpoPi1Byp)»them Py_1By 5=(P PPBype
cnt el yl -1_, — No (oTn

P,=P, (P,P) 7» and Py PIER, 4» SO (Py sPy1By 0) (Py sPy_ By)

And one shows similarly that Vo is 1-1. Hence the maps

cL k-1, k-1 1 .
(8%¥Vv4) gg (Im 1 ) = Imm, x PP! , for ie{l,2},

are bijective, and we put a geometric structure on g (Try) by re-

quiring these maps to be isomorphisms, so that

-1 k-1, _ k-1 k-2 k-1 k-2

81 (Lm )= (Tm; X Ll YU(Tmt X Imm )

is a covering by open affine sets. :

2 _ \ % -1 k-1 k-2 , ‘ _

As Z 1,9501,21 8&amp;1 vy) (Tom; Tu, ) , we will obtain a struc

ture of prevariety on z2 provided we check that the structures on the

-1 k-1 k-2 -1 k=-1 k=-2
= X LX xX

sets Vi,5 (8, Vi) (Tm Lot N(g,*v,) (Im, Tam ) , for

j,j'e{1,2}, inherited respectively from those on (gv) 7 (Tams hx BY)

and on xv) F(Tams x BY) are compatible, which we do by showing

that the map T. ., making the diagram

3 (8V,) kel k-1 k-2,__ k-2
Vg (Tom, To, )&gt; (Tm Pl, )

b 1d 5,94
V, ., ————&gt; k=1 k-1 k=-2 k-2

I X

3,3 (8,%v,). (Tum, Imm, ) (Tor (Tum, )

commute is a morphism, and this follows from the fact that

soix (-1/t)y (t)=w.Th. (-et)x (1/t), that left multiplication by x
k By By "72 3 By By
. . : -1 .

fixes Pr—1/By— pointwise, and that w, Bis acts by morphism on the

projective line Pr 1/Byos (see 2.1, 2.6).

(Intuitively, this says that the 'fibration' 2271 is locally trivial

over the sets Imm 51).
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; -1
€ -

We finally note £hat, as 81-18-11 B, o&gt; we also have a well

defined map h,: Z zZ , given by hy (pyB, _1)=(Py+8; 1B 1)» and satis-

fying 8100 7Hz1-

Repeating the construction above inductively, we obtain fibrations

i B By. = i-1
. = x k~-1 X xk-i+1 . :

251° Z_ Pp Pq “oo Pip Bei Z, , with fibres equal

~ ml : Loil-1 i.

to Prt!Bpmi” P°, sections h, ,:Z_ "&gt; Z_ given by

y= see . . 1

h,_,(2) (258; _ 4418-1) where z denotes the image in Zz of an element 2

Bi — Bi._+
xPk-1 X xPk=-1i-1

of P, Bo q%ee Pr i-1° and such that

zo =U vy
n.e{1,2} “xo Mk-itl

is a covering by open affines, with Ul | = { 22. such that

Birt 5B)

for some ty ceo &gt; Ly i+1 5K z=(p, (t,)&gt; Pa oPy_iv1 Crmgry? Bi) where

p.(t.)=y,(t.) if n.=1, and p.(t.)=x,(t.)s. if n,=2}which is iso-
p, (t.) 78: 3) 3 ’ py (ty) 8 578; i

morphic to Lom x Iam 2 x, XInme , for 1&lt;i&lt;k.
fx k-1 k—i+1

One can now check by induction on i that the images under the

i i
restriction maps of O(U ) and 0(U, , : ) gene-

(ny tee Si) (ny toe &gt; i417
i i i

rate 0(U nu, , . ), so that Z_ is a variety,

(seve snd (sees gu) v

that each he is a morphism , and hence that z. is indeed a fibration

by P! over zit, in particular, each Z is projective.

k k
&lt; z = -~ ( * 0 s

If 2€U0 1) w = LZ, then Fa (2) 7g (807g (Fie-1) Yg{t1)B,

- -1 -1 ~-1

= (yp (£ 0w ) (yg (tye_1)w )ooe (yg (tw JWB_
k k-1

-1
Now wR =~r....r. OQ. » SO WY, W =X , hence by 3.7

3 Jy_23._ B. r....r 0,
1 Thre * Ji Ik-idk-itl

we have £.,(2) € U WB, = C(w) . Also, using 2.1c), 3.7, and 3.21, we see

that £_ | x gives an isomorphism of varieties

3.22 ? YD u¥ = C(w)
Dt (1y.0.,1) ‘

for some t.ckK,

i
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To determine the set x, = Im fc G/B,» we first show that

3.23 Proposition :

There exists a subset E of W such that

1) If y&lt;w, then YEE _.

2) X= yok CO) .
proof:

Suppose gB,=f .gB, Pro -+sP1B) for some gEG, P;EP;, and let DEBS
we then have :

-L -1

 £f (W “bp, sPy qo »P¢B_)=ww bwp, «+ «Py8,

=b.f_(Py ooo »P1B,)

=bgB_ 3

This implies that Xx is a union of B, orbits in G/B, i.e.

= VU
X_ yg C0) for some subset E, of W.

Given a sequence k&gt;i,&gt;1,&gt;...21 21 , an easy computation

shows that WSS, +ee8, ST 0s “. 3
112 tm J IS +l Dw T8090 pa

I of

+]
2

I

i.e. if yeW, then y&lt;w if and only if y=ws ...S; as above.
. _ . rem 3k m—

Fix y Sg eS and define the point y in Z by v (Py&gt;--2P9

where Bi=%, if j=i, and Py=L otherwise. We then have
n

£ (y)=ms,...s; B = yB, hence C(y)eX_.
1 m

Vow fix A,L(\) as in 3.9, write L = U,.v'EK, and for qEN

u_.vinL
} U,.v NLL) ,) BK

height (A-)A)&lt;q

so that if d =dimlL,then d&lt;e. Let P(L)=L-{0}/K, where K acts on L

by scalar multiplication, let v— [v] be the quotient map, and let

y : G/B, -—+TP(L) be the map gB—[g.(vT®1)] , We then see that given

yEW, (CHER EL )= rq for gq=height (A-yA),

Y(C(y)) EP @,) if q&lt;height (A-yl),

and, similarly, for q large, YEIEPL).

3.24 Proposition :

 VY is injective.
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proof:

Given yeW, then by 3.4, there exists a finite set J EY such

-1 J 1 .

that y BYE yes BY B, . Then, as in 3.9,

+ dot J no -

g. (VEL) ¢ Kv'®l if 88 yea B, - B,.
. - . -1 -1 .

So if ¥(b,;yB)=%(b,¥B,), with b.€B_, then y 2 b,y fixes
[vial], which by the above implies that y b, b,y €B,, i.e.

b,yB,=b,¥B . Hence leis) is injective. This, combined with

3.9, shows that ¥ is itself injective.

It is clear from the definition of G that Yof om Ix, x7 is a

voy 71
. k-1 o -1 ~ WK

morphism from (m_ “X.,..Xm_ ) “(U ) 2/A%into IP(L._) , hence
n, ny (ny s-005my) a

fof: ZEA) is one (for q large enough). Z., being complete, its

image must be a closed subvariety of PL). Since Yl], is injective,
W

we can thus put a geometric structure on x, by requiring lg ine

to be an isomorphism onto its image, so that Xx, is in fact a projective

variety, £2 —X a morphism, and, by 3.22, C=f Ui ....1) an

open subvariety. We can now identify the set E, as being {yew y&lt;w}

as follows:

3.25 Theorem :
 Sed SASORET

J = JU

x &lt;u)
Proof:

The subgroup HGS of G acts by morphisms (by 2.le)) on Z,

and X the actions being given by

h. (Pps e oe PIER oe »P1B,)

h.byB “Wh byBx

so that we have h.f (z)=f_(h.2) for all 2€Z_ heH.

With the above action, H fixes all points yB € X , i.e. yeE
-1 -1, -1 -1 .., 1-1" v

because whw“yB =yy “whw "yB,and y "wi (y "w) "«B,. To

compute the fixed points of H on Zz (see [D1 ]), assume that

for some PEF» (hpyseve sP B=(Pys eee 5Py BY) for all heH.

Then for each heH, there exists elements b, (h)€B,, 0&lt;i&lt;k-1,

such that

1) hp, =p, b, _;(h)
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 b(n),
2) Pp 1™Pp1Py_1D

_ -1

©) py=by (1) pb, (1).
The first equality implies that Py Hp, €By 1» so that, using

-1
= i=

3.19, Py by or Sy1Px-1 for some by _1EBp 1° Let Py Pybys
1 =

Py-1"Py-1Pk-1° Then |

1 ' -

(PysPy_12Pg9s + an »P;B,) (py 5 Py_q&gt; 5a »P1B,) s

1) and 2) become

-1
' T—n!

17) B= (By Pyey (WB1)
’ vr -1 v

2") Ppq™pgPrgWyIPByp(B)
. . -1 1

The former implies that by Pq (Wb, _ EH (because peell,s 1)

and in fact takes on all possible values in H as h varies,

v . - -1

so that 2') now implies that Py _1HP _£By _,-

Repeating this process, we see that one actually has

——————————— TT
(Pys&gt;e++sPyB)=(Pyse-5P 1B)

with each piell,s,ls so that the fixed points of H on zZ, are

JN I : 1

exactly the (Pys+-+&gt;P7B,) with piell,s }.
-1 .

Suppose now that YB EX . Then £, (yB,) is a closed, non-

empty, H-stable subset of Ze By the Borel fixed point theo-

rem, £1 (y8,) must contain a fixed point of Z under H, i.e.
. — Ta : Y v_

there exists a (Pys-++&gt;PyB)) as above with wp, ...p; V,

hence y&lt;w.
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Example 3: Suppose w=r,...r. with j_#j_ if m#n. Then U_ is abelian:
317 iy m' “nn Ww

That is so because if o=r_,...r.o. , and B=r....r. OQ,

31 Jodmi 31 Inndmintr

then for any a,beN, aoctbB=r,...r,(ac, +br, ...r, Oo. )

11 dn pr ml mnlmienl

=r,...r, (br....r., Oo. -aol, ).
+ wl Jer? mdm mh

Now w'=r., ...r. is in reduced form, sor. ...r, Oo,

Jp+2  Imintl Jor? mdm

is a positive real root, and is in the Z-span of la, sesees

wn+l wt2

ol. }, hence r, ...r, (ao+bB)=b } c 0, = ao, , with

Jmol Imi 1 {=m+2 * Ji Im+1

c.eN. If ao+bR is a root, then so is r, ...r. (ac+bB), but the
i J J

m+l “1

right hand side is neither in A or in A_ if ab#0; hence for

all o,B ®w), No+NB NA, reduces to {o,B}.

let w=(r1,)°r, (reduced iff my 5 = which we assume). Let
= = = 3 = :

A=, A, r 0s eo A (ryr,)) as, and let Xs ), then u,
is the group Ie, (Eee ix, (2) t,EK} with the

following commutation relations:

Grp (£1) 535 (£0) =x, (R20, yy 85)
(x) (£1) 537 (£7))=x, (a8, 10, 4189)
(x(t) 5%, (£,))=%,(=O,_tot,)
(x5 (t3)»x5(e5))=x,(-a0y,_;t4ts)
(x, (8) 526 (£))=25(=D,_;ET)
(x5 (tg) 5x, (£5) =x (aby, _ tt)

where a=a,,» b=a,,, d=Kronecker delta .

(in paritcular, the central series of u, has length&lt;2, and

if 127 &amp; a,,#-1, then U, is abelian).
Example 5: w=(r T,) , which is in reduced form iff m, ,&gt;6.

If m, 5= U, is the obvious subgroup of the unipotent group

in example 4.

=6 Sin = .

If m ,=7, say a, 1, a5, 3, Hy ¥ has no Series of
2 = 7 = { = i = =

length 4 (dimU_=6, dimU %, dimU 3, dimU 2, &amp; u_ 1)

Example 4:
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Example 6: WET T,ToT (note that X is singular for S1_)s then U, is

abelian unless

a) 21,783,710, as,="1, and chark [ aq in which case

(U_,U )=x &amp; center(U)
ww rT, Ww

b) a;3%257=0, a,7=-1, and chark / aig in which case

TU,» u) r 0, center ©) .

Example 7: W=I ToL, ,Ty

Again x, is singular for S1_, and the commutation relations

in u. reduce to

(x .{s),x (t))=x (-a,,6 _.8t)
3 T1T,T40, ryT,0q 23 A399 1

( Zr r (2135, 0%a ~15%)
1723 21° 31°

or

x (-a, .a,.0 dS S _, st)
| Ir IoC, 12°23 85150 2495 1 a1» 1

and

OE

Example 8: Assume m, ,72, and let WET,TLL. The set E_ of 3.23 consists

of T,=1, T,=Fq&gt; T4=Tys T,=Ty go Ts=I Ty Tg=W&gt; while D has

elements

o°=(1,1,1,1) o'=(,r,,r;,1) 0°=(1,1,1,x,)
m(o)=
n(o)=

0,=

J

7

L
ada

 3)

?

r
!

,

3_ bo 5.
o (1,1,r,,7t,) © (1,1,r,,r,7,) © (1,r. ST T,sT T,)

 Jy

m(C)=
n(0o)=

o.=

-

3:5

2

and 0°=(1,715T,T,5W)
We have B,=0s5 B,=r 0,5 By=r T0002 0 as m, ,72,

WS 8,8, Ty,

WS,8:=T WS,8,=T, (,ws,8,=T,),
WS ,=T, ws,=Tg (,ws,=T.)

T=Teg»
and U ={u=x,(a)x,(b)x,(c), a,b,ceK} with the single non-

Ww BR. By RB

Tg
pe

I
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trivial commutation relation

(x,(a),x,(c))=x,(-S _,a,,.ac).
B. Bq B, a, 1712

We have n(u)=c? if a#0,b#0,ac#1

=o! if a=0,b#0

=0% if a#0,b#0,ac=-1

=? if a#0,b=0,c#0

=o" if a#0,b=0,c=0
=0° if a=0,b=0,c#0
=0® if a=b=c=0,

which verifies 3.16 ;

Assume now that W is the symmetric group on three letters,

and A is chosen as in 81, so that G=SL;. One then knows that

G/B can be identified with the variety of flags in 3-space

(in fact the map Y in 83 gives the isomorphism for appropria-

tely chosen A). Explicitely,

fix a vector space V over K, dim, V=3, choose planes

P.#P_ , and lines L,eP,-(PNP), so that we have

V=P8L_, where P=L ®L_ and L=PDP_;

Labelling the generators TysT, of W in such a way that

c(r)={(v=p 210), LAL,},and C(r,)={(V=P3L 20), PP,},we
obtain:

Dy 6=1(V2P&gt;L&gt; 0)]
= 1

Dgs={(V2P 2130), L#{L_,L]} ]

Dp u={(V2P&gt;L 20), p¢{p, P 1}
and, with F=(V2P&gt;L&gt;0),

Dge={F| 1#P,, P=I+L_]
Dye={F' LP, L=PnP_}
pa={F 1¢P,, L=P, PAL,

poo={F 1#P,, L¢P, PAL.)
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Section 4 : Applications

We start with the following fact:

1) Xx. is non-singular in codimension 1:

Suppose that w'&lt;w, and length(w')=length(w)-1l. We then know that

there exists a reduced expression WEL eee TL such that ([D1 1)
“1 1

 _— - . L,

“k~i_  k-i +2
0 o

, ; _ -1 : ,

As in §3, set W ST, ee eT, B= 102% With our choice of reduced
i k k=-i+1

expressions, we then have

(*) r. .B.&gt;0 4if j&gt;i

w'= seal,

Let Voo=Uy YU,12,1,...,1) C5
4

n,
i

—_—t ae
U

k-1 k-=i _ k-i +1 k-i.+2 0 2

N_,=Imm, “X...xImm ox, 0 ({O}) Tm Ox... xImm; &amp; TU,

so that we have ven © ul. we shall show that ([BGG]))

- '

a) £2) C(w')
2

b) £ (U -N_1) = C(w)

c) £ ly2 is an isomorphism onto a dense subset of £,

proof of a):

From the definition of £ we have pef (N+) if and only if

p=wy,(t,)...y (t, Yr, v, (ty 4)...y,(t;)B
By k By 41tott Bi Bi -1%0 1 RB. 177+

for some tek.

The right hand side is equal to

-1
wr, (r y(t )ee.y (t. dr )y (ty, _J)e..y (x )B ..

Bp By TB KT TTB tol ByTURpte By 10H

Let
P-gp Pie Be—2"Tg Bq: see Bs Tz Bi 41

-

y

4 =f, ° 3 Oe 9 B’
I 4 =1

Ls XL 1,

and let us also renumber  re o L . .. Lr

v . t . ) t

k-i, k-i, +2

amlaw
 gm

J

7
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J =t 9 . eo 0 $ J . =t °

1 1 _ k-1, k-1,’ _

 Ike #1 ki gr2 0 TR

If we now let w!=r.,...r. , an easy computation will show that
i J. Ji k-1

-1
R!=w! aga for all i, and (from the proof of 3.23a)),
i (k=-1)-i+2 3 (k=1)-i+1

Wr, = w'. Hence the right hand side above is Ypres YarBy

Applying 3.22 to w'=r,...r, s We

31 Jka

- v

£4) C(w').

b) is obvious because vlc ut

find

proof of c):

We check that £142 is injective: assume that

V(t, )ee.y (t. Ix, (t. Dr, ¥ (Ey _4)eeeyo(t)B,
By KTR patotl TTB TTRBySpillTAL

t')... t! t! t! ce. y,(t1)B

Valid Ye, (Tip)s(t2878,(1-00 Ve tM
o Oo Oo —o

write Ys for Tasty) yj for OF if j#di,
- ! —_tT

yy for Vg! £0 Yi for 7g! 3.)
0 o

Then we must have

wt. vie gol cy yr r, )y. ...yl!B, = B,; the thing in
1 io =B; iotl k “k i418, "Tig 1+ + S

0 0

parentheses is in U_ by (%*), hence, as U_NB =1, we must have

V oeooVo 11En Fi eee¥q = Ypeeo¥: GE y! ...y! (no B,'s)
14178; = 1 k itl B; io 1

This equation implies that
-1 -1

Ye : Bev » 247; rly ¥i%g, Yi oY
0

Ws

Ww yx w.y! wt w.r, vv! ...y!
TVS tt Sigh RB, Tio

-

Set j=k-i +1 : then w,8.&gt;8 if m&gt;i +1

&lt;Q if m&lt;i,

and we have (=u_)

-1 ~1) -1 -1 -1
‘W.V.W. Jeo (W.V. Ww, )w.r, WwW, (W.Vy. W. Je. (W.y.W, =

5.50D0MELLEL TP.Sl 8. Ys (v3 Jor (y¥19,7)
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(w.y'w.™) ! W : y Vy. Ww
5 4 ceo (W.,y. IW.T *1 3 15 4 8 ¥y (3,4 PY Yeoo(W. yw.)

reed of Le _ i+ = i - —J 1g 3° 1]

-

( r,
wo i.

which implies that
-1 -1 -1 -1 -1 -1

uy.r (W.¥: Wo eos Wy. Ww. )=u'y: x (W.Y) W...W.y.W. )
i, Br—ig+l( J Lt 3 ol at ~~ 3s Cnt +1 371m 371

(=u,) (=u})

i.e.
=1 11-1 —1

y, u_uy. =r (u,u ) Tr

Co Yop Pega TTT Tes
eU

-

and the right hand side is in U, (because wp =-r, cesT Oy
J k-i +1 “k-m k-mtl

if m&lt;i_). So we must have

Volt )evy (Et. ,)¥p(=t. )=yp(t))eoy, (ED L)yp(=tl )
Bk Bj +1tott Bi » Br k Bs filo Zh i,

and y, (t, ()...y,(t.) =v, (tf _)...v,(E0)
Bi -1to 1 B, 1 By ~1%0 1 B.1

which, by 3.7 , implies that t,=t. for all j.

ah
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2) Application to the Hecke algebra:

Define the Hecke algebra H of W to be the algebra

H=9 z(q/2,q471/211
vEW

generated by the ring of polynomials in the indeterminates ql/2,q~1/2

over Z, and generators Ty where the product is defined by

_ Tey if length(r,y)=length(y)+l

PY sens if length(r y)=length(y)-1

for 1&lt;i&lt;N, so that with ergot and length (w)=k, we have

et yy for any yeEW.

Note that if we formally set ql/2=1, then H is simply the group

algebra Z[W].

Fix an algebraically closed field K of characteristic p&gt;0. By 2.7.

the Frobenius F on G(K) factors to a map F:6(K)/B_ &gt; G(K)/B_ which

satisfies F(C(y))=C(y), F(yB )=yB,, F(CT(y))=C"(¥), for all yew. If

XecG(K) or G(K)/B_, and ntEN, let's write x5 for the set {xex|Fx=x}.

Given nEN, let L be a field of characteristic 0 containing a (2n)th

root of p, and fix such a ns L; then the map 2[ql/2 q~1/2]—1,

£(ql/2,q7 2) —£(*V7, AY )~1 allows one to define the algebra

Ho HE, 01/2 =1/24L- We now show that

} . FIL_pn

there is a natural embedding H — End oy FRLE:G(K) /B -—1L})

Call the algebra on the right hand side H, and define {Ts yeW}r cf

oy

@,.£)xBE =] f(z),
zex. C(y)F2

the sum being finite as fc (y)Fiapht- 1ensth(y) Assume that for some

ALLEL, Hrd; and let £ ef be the map £_(zBF)=1 if zeBY 0

otherwise. We must then have IAT E (2)=0 for all zeG(K)F"/ BE".

Plugging in z= BL for the various weA, one finds that A =O for

all weA, hence the T,'s are linearly independent. We thus obtain

an L-linear isomorphism H_-—H, TBL—T ; to check that this is

T
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4.

an algebra isomorphism, we compute -1 0

Ff Fo, _ FR, pl | X_ ueC(y) ,F }

ToT. (xB]) BR IB] | &amp; m1, cont EG)
i _ - n

= ) n LF (C(y)nx Licey? in? £(z)

zeG(K)F/BY
“ " —1 Fr

 —- ) #CINy"Cly' I) Lf(2)
2G (R)F /BE" Hi

x~+zeC(y")

" 1 Fo
 HCOy".Cly' TD) LT WE(2),
“17

so that

o " -1, F2

I .T,= 1 #(C(y)N y Lily? )) v Ton
v eW

the sum being finite by 3.4 and 3.15; assume now that y=r,:

By 3.2,3.3,3.15, we have y" .C(r,)N C(y' )=@ unless

y'=r,y' in case length(r,y')=length(y')+l

 or y'ele,y',y"} in case length(r,y')=length(y')-1

In the first case, the intersection is (0-1 o (D3 BB, cy"),

which reduces to the single point y'B, so that in this case

He tee pne THT = Tee,
and in the second case,

if y"=y', the intersection is {yx (Or 8, }/B, c(y'™h
niin

ford -1 —1
={y Tat dB, }/B, C(y' 7), so that

_ _ n

Fy" lee Ne TINT ="),
while if y'=r.y', the intersection is {x -1 Ly BME, cy")

-— - Tl

so that #(y" C(x InC(y' NF =p”

Now 4.1 implies that o

FLA = I Hence LT
i y vel

- a n n

#(y" Lene! yy F T (because ye) )
yew

yp ' if length(r.y')=length(y')+1
= r-y 1

pt hp-1).T_, if length(r.y')=length(y')-1
»
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by the computations just made, Hence the map ZH T, is an

algebra isomorphism of Ho into H.

One can check by induction on the length of y that all TE Hare

invertible. Define polynomials R, gezlat/2,a72) by requiring that

-— -+ -
4.2 (T —1) 1_ 7 (-1)lensth(y) length(z) od length(y), ]

y zEW Z,y5 y

The sum in 4.2 is finite; in fact, it only involves those elements z

which satisfy z&lt;y, as one can prove that R 470 iff z&lt;y. In [Dh4], the

formula

m (0 n(0

R=] ¢@@nr@
&gt;" geD

J3,.=2

is shown to be valid in any Coxeter group (the notation being as in 3.15)

so that R, 7 is in fact in Z[q]. Applying 3.16 to the present setting,
9 xX n

and using the fact that # x) Fl=p", #(X yF =p ~1, one finds that

4.3

n

rcane' GNF =7 HPO (p12
o

7.=y
n

R, w(P
The Kazhdan-Lusztig polynomials can now be defined as follows: let wx

be the 'anti'-automorphism of H extending the map ql/ 2m q=1/2 Tv Tig.

In [ KL], it is shown that there exists a unique basis {s_, YEW} of

satisfying 1) 5,2,

2) 5, = q~length(y)/2 y P_ oT,
z&lt;y *’

with Pp, .E2lal, and degree(P )&lt;(length(y)-length(z)-1)

if z&lt;y, P, being the constant 1.

Condition 1) is equivalent to the equality

,length(y)-length(z)F y RP
Z,¥ 2&lt;5&lt;y Z,X X,Y

and Kazhdan &amp; Lusztig prove that if W is a (finite) Weyl group, then

LL : dim Hyp (IC) a where H is the stalk cohomology of Deligne's

middle~intersection-cohomeclogy complex of sheaves IC, on the variety x,

One can generalize their proof ([KL4]) to arbitrary crystallographic

groups as follows:
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Assume that W is a crystallographic group, and define

Bo L dim Bac )q 2
] +

for yeW, yB €X as above. With the notation of 3.23-3.25, fix A, v'eL(l),

L=ll .vtex, LALA), mx. Let v ={veL| the 1A coordinate of v is non-zero},

vo=tvev | the 1-conrdinase of v is 0 if height (yA-A)&lt;0 and A#yA}. Now

let LILAC (A=)? Vou height (A=wh) for y&lt;we W. Finally,

define an action of G_ on L by t —p(t), where o(t).v=gheisht (=A)

whenever veL . We can now show that

4.4 a) YEfy. CT ()=¥ ENV, and FEACT = EON, s

so that both XNy.C' (1) and XC" (vy) can be regarded as

subvarieties of affine space.

b) The G -action defined above induces an action of K on vw

such that YX Nyc’ (1)) and Y@EAC (v)) are K -stable

In the natural identification [V, T=K, the point [yvT®1]

maps to the origin, and the K -action on [Vw decomposes

into a sum of positive characters.

proof:

a) Assume veV', say v=yv ®t + % v. At with t_eK,
xr yh u HH

height (yA~nu)&gt;0
. re

v FLA), and fix tek, a ea, : then

I (m) + m Vere §

yo(E).v vv Beoatz Ey yv BE ton + Ly vB)
[— — height (yA-u')&gt;0

g 17AT¢

which lies again in Vie Hence L is B_-invariant, and one

concludes that for weW,

¥(C' lV] if and only if [wv ®1]e (v1.

It is clear from the definition that the latter happens

only when w=y, so we have

(%) ¥(C' Wn) eV] if and only if w=y.

Using the disjointness of the Birkhoff decomposition, and

the fact that KER (Ly eight (Aun)? this proves that

VENT ()=YEINIV) I.
As V,=y. Vo, one can also conclude from (*) that
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t(y.c'@) Nv]. Now assume that PEY(XINIV 1: as pe¥(X ),

we must have yvl.p e¥(G/B), hence, using the disjointness

of the Birkhoff decomposition and the injectivity of V,

there exists a unique zeW such that vy lpe¥(C' (2). As the

TA soordinave of p is non-zero, the 1) coordinate of vip

is non-zero, i.e., by the above, z must be 1, ard pe¥(y.C'(1l)).

This completes the proof of a).

proof of b): one need only observe that

p(2)ox, (08 (6) x, (sr "78% (0),
p(e)oy, ()op (£) Tay (st eB),

c) is clear.

One can now prove that Po Ey exactly as in [KL4]:

Call an IF -variety X pure (resp. very pure) if for all xX" and

all ieN, the eigenvalues of F? on H-(IC) have absolute value pni/2

(resp. —p0/2y The main facts needed to complete the proof are:

4.5 a) If Y is a closed ¥ ~subvariety of KT (some M), which is stable

under a diagonal action of G on gr, the latter action being a

direct sum of positive characters of G &gt; then

if Y-{origin} 1s very pure, then so is Y

b) With Y as above, we have HY, 10)=E, (IC) (where HL denotes

hypercohomology).

Fix weW. For z&lt;w, let Q(z) be the property: "for all xec()F

i (IC _)=0 if i is odd, and the eigenvalues of F2 on H.(IC) are pni/2

if 1 is even". The main lemma (see [KL4]) is that

4.6 Q(z) holds for all z&lt;w. :

proof: Q(w) is clear. Assume that Q(z) is true for y¢zg&lt;w, and let's

prove it for y:

We know by our induction hypothesis that x Ny.c' (1))-C(y) is

very pure. It is easy to see that XNly.c'(1) is isomorphic to

x ne (y))xC(y), and that in this isomorphism X Nyc (1))=-C(y)

corresponds to (EA C'(y))={yB HxC(y). As C(y) is smooth, our

initial remark implies that xNc’ (v))-{yB,! is very pure.

Using 4.4 and 4.5a), we conclude that XNC' (y) is itself very

pure, and, going backwards, that X Ny.C'(l) is very pure.
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We now apply the Lefschetz fixed point formula to the

Frobenius map on the variety X=X Ny.C’ (1) to obtain:
n n

(*) tr. * Fo = Y 0 tr..% TF

HL (X,IC) ext (IC)

where H denotes hypercohomology with compact support, and

Lr *= z (-1) eri . The right hand side of (%*) equals
i

) y Fil Eryx 1c JE (as X=X!y.C' (1)
zeW xe(C(z)0y.C'(1)) Ty = J C(2)yC'(1)

y&lt;z&lt;w
&lt;z2 y&lt;z&lt;w

ye

onlength(y)g (pM) fr x ph
) V.2 H"_ (IC)

Ww zB w

(using 4.3)

On the other hand, the left hand side equals

nlength(w) a! . ~ .

P fa ix, 1c)” (by Poincaré duality)
-n

i ‘ .5b).

_ phlensthi(s) ryt ze)” by 4.4 and 4.5b)
 oy

Hence (*) becomes

(#) griengiile?, “ 0
H _(IC)

yB Ww

_nlength(y) J ” Myer . oF
V2 H”_ (IC)

y&lt;z&lt;w zB, Ww

After a careful comparison of degrees in (*%*) using the

induction hypothesis and the fact that X is very pure,

one concludes as in [KL1] and [KL4] that Q(y) is true.

To see that P =P , one rewrites (*%) using 4.6 to get
YW YW

_ Al . : 5/9 .

 2 A-1G)g (Ly, "2 imu (TC )= I R @™ (1) Zain’ (x0 J
i J de y&lt;z&lt;w ys2 i y + Ww

which is equivalent to FW-1Wy = Z R P (here, 1(x)

YW y&lt;z&lt;w Ys2 2,W

denotes the length of the element x of W). Using the characteristic

properties of IC, it is easy to check that the BE, oS satisfy

&lt; -_ -— 7 = = .

deg (Fy JL) 1(y)-1), with Bow 1, hence Ev Pv

Added in proof: I have recently been informed that G. Lusztig has a

much simpler proof, based on his paper Characters of reductive groups

over a finite field,IHES,1982, of this generalization of the results

of [KL4].
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3) The case of elements of Coxeter type:

Assume that wry Ty 18 such that 373 if m#n. A direct computa-

tion shows that Ry for all y&lt;w, hence one can conclude that if W is

a (finite) Weyl group, then the variety x is rationally smooth ([KL1]).

In fact, if W is any crystallographic group, and w is as above,

then x, is smooth. One can show directly that

a- if we identify C(w) with g* using 3.22, and Y=Ty:eoTy &lt;w

1 to

and ty&lt;ee&lt;ty, then

cw)Ny.C'(1) = {Od A EK) (see
i

1 = gr

and Cw) C'(y) {seer A 01}.

~ ' _ _f1 if jefe ,...t
&gt; x0 y.C' (1) fC, n)? Wish 2 § otherwise. n

and £ ly is injective.

(ny5---50,)

Let us prove instead that £. ZX, is an isomorphism:

First note that if 262.0 q,...,1)° then there exists AER such that

z=(p, (2)5...,P,(2)), with Py (2)elyg(A),s,)s and for some j , Ai78

We now show that

i &lt;...&lt; &lt;...&lt; i ‘nsgiven two sequences s, 5.5 tp to with s;»t;ell, Jk]

if r...e.o¥r. =Tr.....r. =w, then s.=t, for all i,

30 Tag Tia, id
) on 1 n

by induction on n: If n=1, there is nothing to prove; otherwise,

exchange condition, applied to W' 0, &lt;0 gives
s

(1) w'=1,...1, «eT, «es. r, r, for some a,

vo Jt Je Jt Is
1 a-1 a+l n n

and applied to w'.a, &lt;0 gives

Je
n

(2) w'=r,...r. +. TT. «eo. TT. Tr, for some b.

Sod ig ig 3,
° b-1 b+1 n on

Assuming,without loss of generality, that a&lt;b, one sees that if b#n and

a¥n then (1) and (2) imply that £ =S,-1 Co which is impossible because



56

&lt; . . J = . gn . +

E—-2 t so that 3c 7 3. Hence we must have b=a=n, in which case
n-2 n

(2) implies that w'=r.,....r, .r, . Combining this equation with

J4 Js Jt
: n-1 nn

w'=r.,....r. , we see that r, =r, , i.e. . =s_, and

Js Je Is :
n n n

hypothesis gives Lt —175,-1° tvs 3 t,=s,-

The notation being as above, if z€Z -U , then

’ ¥ (Loeeesl)= if 4 &gt; &gt;5 &gt; i

£_(z)=wp, (z)...p,(2)B,. As Tg: eT,” o 0 if 1,200071 m (that is so
1 n

«Tp B= =(r,...r, see YT. esses l LO,

. Ja Ik-1,+1 Tk-1 +1 Jk-m Jk-m+1

= «0, + 2 c,d, where the subset A of {1,..,N}

Ip-m+1 dea 7

joes not contain Se—mt1 ), one sees that f(z) is of the form

. e eas . .

Pwrge + Tg By with b B, and the indices 1iseeeniy are such that

P

py (2)=8; if and only if j is in the set w(z)={iy,...,3}. In particular,

by the disjointness of the Bruhat decomposition and the lemma proved

. = 1 = i e .

above, if £ (z)) £.(z,), then w(z,)=w(z,) (with w(z)=0 if =z U,....1)

ne now proves as in 4.1) (using again the idea in example 3) ) that if

k i. +171 i i.-171 i+1lp i i -1"p 1
1 1 1 D D D

equals

k i +171 i i -171 i+1l7p i i-1p 1
L 1 1 P Pp P

then AM for all j (alternately, multiplying this last equation by w

gives an equality in C(wrg...rg ) on which one can use 3.7). Hence £

is injective.

In particular, XN y.C'{1l) is open, and one can check, using appropriate

i ® i ; phism: izdeed, with A as

coordinates, that lox ave ay) is an isomorphism
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in 3.9, and for all agh", if r, denotes reflexion in &amp;, then r EW,

so that Li; p70; hence A-r AeQ,; but A-r_N=&lt;h,a"&gt;a, so &lt;h,a’&gt;&gt;0;

therefore, by [K51], L(A), _,70- Now using this and the fact that all

£5,° are distinct, one can see, after a tedious but straightforward

computation, that £ ly always looks, in the local coordinates

(nys--.5ng)
i ing K°— KT with Cat) (Es. ..like a mapping K — wit (Ese &gt;t) (tgs cost spy (Eos ti) seen

ees Py (Ese ent)))

t eK, for some MeN, where each Py is a homogeneous polynomial of degree

*

at least 2. Hence fe gives an isomorphism of the rings of functions,

and £ is indeed an isomorphism.

Example 9: If k=2, set u = ¢ (m) £ Mote e U Vv BK;
m,n T.0. ] Z

Jpdq 72

Then f is the map

"Ua,
—————————————————— +
( . + t,.

Op on. (61) 95 )B OF [wv BL + £00)oFt,.0u,4
me 2 5 mn 1

+ t.t,..wu

n.o&gt;2 172 m,n

Similarly, £ ly is the map
(2,1)

————— reese —— —— i ———————— rp

(x (c)r.r.r. , v.(£ )B I) [r.v ® + t_.(-r.u )
2S. 1 353139 Jo 27+ j 1 j,1,0

+ t_.r.u
? 20,1

te) ru]
n,n? 1 ? jom,n

3

2tc. 3
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4) Geometric interpretation of the matrix A:

Suppose k=length(w)=2, so that WELT with i#j, hence Z Xx, is

an isomorphism.

We have zl-p /B =P! ‘and g:Z —r zt the projection so Z__ is a
w 2°71 Ww W Ww

Pl-bundle over PP: In fact, we also have a global section h:zl—z | so

Z. is a ruled surface.

If L=2 -Inh, then gl, iL — 7, is a line bundle on P!. We shall

show that the degree of L is a4». that Imh is the unique rigid section

of z— Zo, hence the self-intersection number of (Imh) is B49 i.e.

the invariant of the ruled surface Xx is =a, ([T3 1). In particular,

the product of the invariant of x. r by that of X. . is 4 (cos——)?

i] ji ij

Since the latter is an integer only when m;€{2,3,4,6,=}, one concludes

that no "nice' flag variety can be attached to a Coxeter group unless

that group is crystallographic.

So we have Zz =z2 _ =P.xBlp_/B , z'=P_/B~P!, and h:Z1—Z given
w TT 2 1" 70&gt; "w "2'71 ? ““w w

SCC _=1 _-1 —

by h(pyB,)=(p,,,B,). Here, B,=F; B,rss B,=w B w, Py B,UB TB,
= " - =u 2

TB UY P,=B, UB T,r;TByTi P UY a Bro L=U;.1H)Y 2,1)

Given a map Bip (By [Byler B D5, satisfying
 L,-1

£(p,by)=b;"E(p,)

we can define Fiz L by E(p,By)=(p,,£(P,)), and conversely, given

Fiz — L satisfying gf (p)=p, we can define a (set) map £:P,— (v,8,)/B,
3

by requiring £(p,) to be that element of P./B, for which T(p,B,) can

be written in the form (Py&gt;£(p,)) (this determines f£ uniquely).

Now B,=(Exy, yxud=L pd, and left translation by By induces the
J

following action of L, on the affine line ¥,B./B,
J

_ Qs -1 _ :

(If b=ucU J, then b yo, (t)B =y, (t)B, )
J J

-1 _

If b=y_(s) , then b ¥, (£)B =v, (t=8)B,
i J J

= -1 =v (221] an

If b hy (21).hy(zy), then b Ta {OP Tal) Jo..zy J)B,.

Let Xs¥:K-—P, be the maps X(E)=x, o (BE; (DE; (DE; W),¥(0)=y, (8)

(%)
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so that given P,EPys either there exists a unique t€K and b EB, such

that P,=X(£)by , or there exists a unique t€K and b,€B, such that

p,=¥ £)b,. Given £:P,—&gt; Gal) 12 , consider £.=foX, £=fot, so that

€,:R—y,B,. If c#0, then X()=¥ (ch, (-e)h, (=e) id)u with weld,

and if f satisfies (*), then

~-a;..—1 -1

(*%) £1 (e)=(hy (eh; (=e) "LI TE (eT)
for all c#0. Conversely, given £58, Ky B, satisfying (¥**), one can

J

construct £:p,—p,/B, ~{r 3}, and such a map f will automatically satis-

fy (*).

We thus obtain a 1-1 correspondence between maps £:p,/B &gt; L

satisfying gf=identity, and pairs £1.£,3K-&gt; (y,B,)/B, satisfying (*%).
i

One can check that, in this correspondence, the map f zo L is a mor-

phism if and only if the maps £55, are morphisms when considered as

functions on Al. Let's see when the latter is true:

» . -— * * Ld

If £, is a morphism, then £2 (E179 (Fp (£005, when £, is a polyno
. - &amp;  -

mial€K[t]:(¥#%)thenbecomes£1(e)=h,((~e) LI), (=e Hy, (Fy Ce YE,
J

. ~23.. %° =

and the right hand side is equal to y,((-e)*13 (-e) 2213,(c ys,
] .. =a... % =1

=y, ((-1)¥ic 2435, (cB,
a:: —32:- 3 -1 X

50 we must have £,(e)=y, ((-1) ile +5(c JIB, for all c€K . If in ad-
J ca. A =

dition £ is to be a morphism, then t “13g,(c 1 has to be a polynomial
* %

also, hence degree(f,)&lt;-a,,. Conversely , any polynomial f£ (t)€K[t] of

degres-a, ; yields a section of L— Z. simply by reversing the process

described above. This correspondence is clearly linear, so one con-

cludes that aimE° (z_,L)= din{polynonials in K[t] of degrees-a, J=l-a ,:

thus, the degree of L is ~a,

We now examine the coordinate chart om z more closely:

Uq,1)~1 a(x1y7)=( By (D7 (x24 (1) , Yal71) )s X;,¥,6K J

Uy 1y=t b(x,,y,)=( By (Dx, Gey); (x5 (1) , Yq (72) ), Xy,¥,EK }
J

U = 9 = r. = y r. “en 9 A

(1.2)=1 © (xg574)=( By (Dy y)E4 C 1) % (IEW ), %q,¥4€K

J. 2y=1 d(x,,y,)=( tr. (Dx (x,)e; (DE. (1), Xo (5,05 (1) )&gt; X,,7,EK }
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Using the relations

r. (-t)h, (-t)=t, (1)

t, (Dh_(£)E, (-1)=h (£)h (t mk)

a, (8)%, (0) (s™Hy=x,("OK6)
one can determine the intersections U nu, , ,, as follows:

(m,n)'' (@',n’)
¥ g . n — _e Yaij

a(xy,y;) b(%,5,5,) if &amp; only if XX, 1 &amp; Yq Yo ( X,)

a(x;,y;)=c(x5,55) if &amp; only if xX)=Xq &amp; y1¥3=1

b(x,,¥,)=d(x,,5,) if &amp; only if Xy=%, &amp; Yo¥,=1
-a ° a

-_— 3 1 — = -— i

c(x3,¥3) d(x,,y,) if &amp; only if X3X, 1¢&amp; Ya ¥,, ( X,) J
a ° 0

= . . - -— —- 1

a(xy,¥q9) d(x,,¥,) if &amp; only if XX, 1 &amp; Y1Y4 ( x, ) J
-_—_. -

= i 1 = =(= 1

c(x4,53) b(x,,Y,) if &amp; only if X,%, 1 &amp; Y3Y, ( X,) J

and Imh ={c(x;,0) Id (x,,0)}.

Using the coordinates X (=x,=x,) &gt; (=y;) A (=y,)&gt;5

1/X(=x,7x,), 1/¥(=y,), 1/Z(=y,),
equations on the right reduce to the single equation

Y = z(-X) ij

for xX. co? and Imh ={zZ=*, Y=}, from which it is easy to see that Imh

i’ j

the

is rigid (e.g.: as a;;20 deformations of the form Z(-X) ~ij=constant

will contain, in the limit, the fiber X=* as well as Imh ; and deforma-

tions of the form Y(-X)Zij=constant will tend to Imh U{X=0})-.
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