INFINITE DIMENSIONAL FLAG VARIETIES
by

Ziad Sami Haddad
 B.A., University of California, Los Angeles
 (1979)

Submitted to the Department of Mathematics in Partial Fulfillment of the Requirements of the Degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1984
(C) Massachusetts Institute of Technology 1984

Signature of Author

Siginature redacted
Department of Mathematics
December 1983

Certified by
Śignature redacted / Signature redacted

Thesis Supervisor
Accepted by \qquad
WAASACHUSETSS INSTITUTE
Head, Ph.D. Committee
of TECHNOLOGY
Archives
JUL 261984
LIBRARIES

INFINITE DIMENSIONAL FLAG VARIETIES
by Ziad Haddad
Submitted to the Department of Mathematics on January 13, 1984 in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics

ABSTRACT

To every Coxeter group W, one can associate its Hecke algebra H over the polynomial ring $Z[q]$, which can be thought of as a deformation of the group algebra over ' Z of W. In the case where W is a Weyl group, H can also be interpreted, using a canonical basis, as the algebra of intertwinig operators of the space of functions on the flag variety of the corresponding Chevalley group. In [KL], Kazhdan and Lusztig extend the ground ring of H to be $Z\left[q^{1 / 2}, q^{-1 / 2}\right]$, and use a different basis to study representations of H (and W). In case W is a Weyl group, the entries of the matrix of change of basis (the Kazhdan-Lusztig polynomials) turn out to have have far reaching interpretations in terms of the geometry and representation theory of the corresponding Lie algebra and groups.

The present work grew out of an attempt to generalize the geometric interpretations of the Kazhdan-Lusztig constructions to the case where W is a crystallographic group (i.e. the order of the product of a pair of generators is $2,3,4,6$ or ∞). The link with the classical theory is the fact that crystallographic groups are precisely the 'Weyl groups' of Kac-Moody Lie algebras.

Section 1 contains a construction of Tits's Z-form of the universal enveloping algebra of a Kac-Moody algebra g (or, more appropriately, one of Tits's Z-forms). The idea is as in [K], and it allows one to extend coefficients to an arbitrary field F (of any characteristic), and associate to g a 'Kac-Moody group' G over F, which is done in section 2 . In case F is finite, the adjoint group of G has already been constructed in [MT]. The construction here is basically the same as the one Peterson and Kac carry out for F of characteristic 0 ([PK]), and has the advantage over Tits's of being in the spirit of the classical theory as developped in [S3], a fact which allows a more tractable study of the structure and representations of G. In case g is finite dimensional, the group G is a classical Chevalley-type finite dimensional group, while if g is not, then G is infinite dimensional in the sense that it contains subgroups of arbitrarily large finite dimension. As most of the proofs of the structural facts about the group constructed in [PK] use a completion of a subalgebra of g and the ability to exponentiate its elements, (facts which present essential difficulties in positive characteristic), the results in $\S 2$ are weaker than those in [PK1] (although the group is the same one if $\operatorname{char} F=0$). However, they afford a different presentation of the flag variety, the study of which is taken up in section 3.

As in [PK], the flag variety G/B proves to be a Bruhat-type (BwB) disjoint union, indexed by W , of (finite-dimensional) affine cells C(w), each of which admits a 'Schubert variety' (still finite-dimensional) as its closure. the geometry of thesevarieties is studied by: 1) generalizing the results of Dheodar ([Dh]): after reproving the lemmas in [Dh1] in the present setting using the Birkhoff decomposition (B_wB), the results of [Dh2-4] carry over almost verbatim; and 2) adapting a construction of Demazure's ([D]), the main tool for which is the fact that 'a
codimension-1 piece of the Borel common to two adjacent minimal parabolics acts trivially', so that one can construct a (finite-dimensional) 'resolution' Z_{W} as in [D1] to a closed subset of projective space which is identified, ${ }^{W}$ using the Borel fixed point theorem, as being $\cup C(y)=X_{w}$, for $w \in W$.

These facts are applied in section 4 to:

1) showing that X_{W} is always non-singular in codimension 1 ,
2) giving geometric interpretations to some of the Kazhdan-Lusztig constructions for crystallographic W, using the positive characteristic approach of [KL] (the methods of [S] do not seem amenable to direct generalisation because the G orbits in ($G / B)^{2}$ are not finite dimensional),
3) a study of the case where the reduced expressions of w\&W consist of distinct reflexions (e.g. X_{W} is then smooth),
and 4) an explanation (and proof) of a remark made in [T3], which suggest that no further generalisation (to arbitrary Coxeter groups) can be made.

Thesis Supervisor: Dr. Victor G. Kac, Professor of Mathematics.

Section 1 : Construction of the Enveloping Algebras U_{Z}, U_{K}, and associated Modules.

Start with an NxN generalized Cartan matrix; that is, A is an $N x N$ matrix with entries $a_{i j}, 1 \leq i, j \leq N$, satisfying:

$$
\begin{aligned}
& a_{i i}=2 \text { for all } i, \\
& a_{i j} \varepsilon Z^{-} \text {if } i \neq j,
\end{aligned}
$$

with $a_{i j}=0$ if and only if $a_{j i}=0$.
We assume for simplicity that A is indecomposable, i.e. that $A \neq\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right)$ after any reordering of the index set.

Fix a Q-vector space h of dimension $N+\operatorname{corank}(A)$; it can then be shown ([KI]) that there exists subsets $\Pi<h^{*}, \Pi{ }^{\mathrm{V}} \subset h$, where $\Pi=\left\{\alpha_{i}, 1 \leq i \leq N\right\}$, $\Pi^{\mathrm{V}}=\left\{\alpha_{\mathrm{i}}^{\mathrm{v}}, 1 \leq \mathrm{i} \leq \mathrm{N}\right\}$, such that:
Π is a linearly independent subset of h^{*}, Π^{V} is a linearly independent subset of h, and $\left\langle\alpha_{j}, \alpha_{i}^{v}\right\rangle=a_{i j}$.
The Kat-Moody algebra $g=g_{Q}$ (A) is the Lie algebra over Q generated by h and elements $e_{i}, f_{i}, 1 \leq i \leq N$, with "defining relations":

$$
\begin{aligned}
& {[h, h]=0,} \\
& {\left[e_{i}, f_{j}\right]=\delta_{i j} \alpha_{i}^{v},} \\
& {\left[h, e_{i}\right]=\left\langle\alpha_{i}, h>e_{i}, \text { for all h} \varepsilon h,\right.} \\
& {\left[h, f_{i}\right]=-\left\langle\alpha_{i}, h>f_{i}, \text { for all h} \varepsilon h,\right.}
\end{aligned}
$$

and $\left(\operatorname{ad} e_{i}\right)^{1-a_{i j}}\left(e_{j}\right)=\left(\operatorname{ad} f_{i}\right)^{1-a_{i j}}\left(f_{j}\right)=0$ whenever $i \neq j$.
It can then be shown that, identifying h, e_{i}, f_{i} with their respective images in g, if $n_{+}=$subalgebra of g generated by $e_{i}, 1 \leq i \leq N$, and $n_{-}=$subalgebra of g generated by $f_{i}, 1 \leq i \leq N$, then we have ([K1]): 1.0 Proposition:
$g=n_{-} \otimes h \oplus n_{+}$(the triangular decomposition),
$[g, g]=g^{\prime}$ is generated by $e_{i}, f_{i}, 1 \leq i \leq N$,
$h^{\prime} g^{\prime}={ }_{i=1}^{\mathbb{H}} Q a_{i}^{V}$,
h is its own centralizer in g,
the center of g is contained in hog',
The abelian subalgebra h acts, by the adjoint representation, com-
pletely reducibly on g, so that $g=\oplus g_{\alpha}, \alpha \varepsilon h^{*}$, where $g_{\alpha}=\{x \varepsilon g$ such that $[h, x]=\langle\alpha, h\rangle x$ for all $h \varepsilon h\}$, and we have $g_{0}=h$ as noted in 1.0 .

Now, since h preserves the decomposition 1.0 , one sees that if $g_{\alpha} \neq 0$, then either $g_{\alpha} \in h$, or $g_{\alpha} \in n_{+}$, or $g_{\alpha} \in n_{-}$. Writing $Q_{+}={ }_{i=1}^{N} N \alpha_{i} \varepsilon h^{*}$, $Q_{-}=-Q_{+}$, this implies that if $g_{\alpha} \neq 0$, either $\alpha=0$, or $\alpha \varepsilon Q_{ \pm}-\{0\}$, in which case $g_{\alpha} \varepsilon n_{ \pm}$; so that if $\Delta=\left\{\alpha \varepsilon h^{*} \mid g_{\alpha} \neq 0\right\}$ is the set of roots, then $\Delta=\Delta_{+} \|_{-} \Delta_{-}$, where $\Delta_{ \pm}=\Delta \cap Q_{ \pm}$.

For each $1 \leq i \leq N$, define $r_{i} \varepsilon . G L\left(h^{*}\right)$ by $r_{i}(\lambda)=\lambda-<\lambda, \alpha_{i}^{v}>\alpha_{i}$, and let $S=\left\{r_{1}, \ldots, r_{N}\right\}$. The subgroup $\langle S\rangle$ of $G L\left(h^{*}\right)$ is called the Weyl group of g, and is in fact a Coxeter group; more precisely, < $S>$ is isomorphic to the quotient W of the free group generated by r_{1}, \ldots, r_{N} by the subgroup generated by

$$
\begin{aligned}
& \quad\left(r_{i}\right)^{2}, 1 \leq i \leq N, \\
& \text { and }\left(r_{i} r_{j}\right)^{\prime} m_{i j}, \quad 1 \leq i \neq j \leq N,
\end{aligned}
$$

where $m_{i j}$ are computed by the following table ([K3]):

If
then

$a_{i j} a_{j i}=$	0	1	2	3	≥ 4
$m_{i j}=$	2	3	4	6	∞

Conversely, given a crystallographic group W (i.e. a Coxeter group as above with $m_{i j} \varepsilon\{2,3,4,6, \infty\}$), one can find a generalized Cartan matrix A such that the Weyl group of $g_{Q}(A)$ is precisely W : indeed it suffices to take $a_{i j}=-4 \cos \frac{2 \pi}{m_{i j}}$ if $i<j, a_{i j}=-1$ if $i>j$ and $a_{j i} \neq 0$;

The matrix A thus obtained will fail to be indecomposable exactly when the Coxeter graph of W is disconnected, in which case $g_{Q}(A)$ is isomorphic to $g_{Q}\left(A_{1}\right) \oplus g_{Q}\left(A_{2}\right), W \approx W_{1} \times W_{2}$, where W_{i} is the Weyl group of $g_{Q}\left(A_{i}\right)$. In any case, one gets an embedding of W in $\mathrm{GL}\left(h^{*}\right)$.

Similarly, one has an action of W on h given by $r_{i} h=h-\left\langle\alpha_{i}, h>\alpha_{i}\right.$; and the two representations thus obtained are contragredient (i.e. $\left\langle r_{i} \lambda, r_{i} h>=\left\langle\lambda, h>\right.\right.$ if $\left.\lambda \varepsilon h^{*}, h \varepsilon h\right)$.

Write $e_{i}^{(m)}$ for the element $\frac{e_{i}^{m}}{m!}$ of the universal enveloping algebra of $g^{\prime}, \quad 1 \leq i \leq N, m \in N$, and similarly $f_{i}^{(m)}=\frac{1}{m!} f_{i}^{m} \varepsilon U\left(g^{\prime}\right)$. Define U_{z} to be the Z-subalgebra of $U\left(g^{\prime}\right)$ generated by $\left\{e_{i}^{(m)}, f_{i}^{(m)}, 1 \leq i \leq N, m \varepsilon N\right\}$,
and set
$u_{+}=$the subalgebra of U_{z} generated by $e_{i}^{(m)}, 1 \leq i \leq N, m \varepsilon N \quad$,
$u_{-}=$the subalgebra of U_{z} generated by $f_{i}^{(m)}, 1 \leq i \leq N, m \in N$.
Also, if R is any Q-algebra with 1 , and $x \in R, n \varepsilon N$, define $\binom{x}{n} \varepsilon R$ to be the element $\frac{x(x-1) \ldots(x-n+1)}{n!}$. Finally, set

$$
U_{0}=\text { the } z \text {-subalgebra of } U\left(g^{\prime}\right) \text { generated by }\left(\begin{array}{c}
\alpha_{n}^{v}
\end{array}\right), 1 \leq i \leq N, n \in N .
$$

(see [Tl]).
one then has
1.1 Proposition:

$$
\begin{aligned}
& u_{0} \subset U_{z}, \quad U_{0} \mathbb{Q Q}=u\left(h \cap g^{\prime}\right), \\
& U_{ \pm} \mathbb{Q Q}=U\left(n_{ \pm}\right), \\
& U_{z} \mathbb{Q} Q=u\left(g^{\prime}\right), \text { and } U_{z}=U_{-} \mathbb{W} U_{0} \mathbb{Q} U_{+} \quad(\text { see }[T]) .
\end{aligned}
$$

proof:

$$
\begin{align*}
\text { Given } n \varepsilon \mathbb{N}, e_{i}^{(n)} f_{i}^{(n)} & =\sum_{k=0}^{n} f_{i}^{(k)}\binom{\alpha_{i}^{v}-2 k}{n-k} e_{i}^{(k)} \tag{S2}\\
& =\binom{\alpha_{i}^{V}}{i}+\sum_{k=1}^{n} f_{i}^{(k)}\binom{\alpha_{i}^{v}-2 k}{n-k} e_{i}^{(k)} .
\end{align*}
$$

Now we can find integers $a_{m}^{(k)}$ such that

$$
\left(\frac{\alpha_{i}^{v}-2 k}{i_{n}-k}\right)=\sum_{m=0}^{n-k} a_{m}^{(k)}\left(\begin{array}{l}
\alpha_{m}^{v}
\end{array}\right)
$$

so that we actually have

$$
\underbrace{e_{i}^{(n)} f_{i}^{(n)}}_{\varepsilon u_{z}}=\binom{\alpha_{i}^{v}}{i}+\sum_{k=1}^{n} \sum_{m=0}^{n-k} a_{m}^{(k)} \underbrace{\varepsilon u_{z}}_{\varepsilon u_{z}^{(k)}\left(\alpha_{m}^{v}\right) e_{i}^{(k)}}
$$

and each $\left({ }_{n}^{\alpha}{ }_{n}^{v}\right)$ is seen to lie in U_{Z} by induction on n, hence $U_{0} \in U_{z}$; that $U_{0} \boxtimes Q=U\left(h \cap g^{\prime}\right)$ is clear as $h \cap g^{\prime}={ }_{i}{ }_{i=1}^{\mathbb{H}} Q \alpha_{i}^{v}$ so that $U\left(h \cap g^{\prime}\right)$ is the symmetric algebra in $\alpha_{1}^{v}, \ldots, \alpha_{N}^{v}$ over Q and the first statement is proved.
The second statement is clear by the Birkhoff-Witt theorem applied to $n_{ \pm}$, so let's verify the last statement:
we have an injection

$$
I_{1}: U_{z^{\mathbb{M}} Q} \rightarrow U\left(g^{\prime}\right), \quad I_{1}(u \mathbb{M} c)=c \cdot u .
$$

By the Birkhoff-Witt theorem applied to 1.0 , the map

$$
I_{2}: U\left(n_{-}\right) \mathbb{\Psi} U\left(h \cap g^{\prime}\right) \mathbb{M} U\left(n_{+}\right) \rightarrow U\left(g^{\prime}\right)
$$

given by $I_{2}\left(u_{-} u_{0} \mathbb{K}_{+} u_{+}\right)=u_{-} u_{o} u_{+}$is an isomorphism, so we get an isomorphism

$$
I_{2}^{-1}: U\left(g^{\prime}\right) \rightarrow U\left(n_{-}\right) \mathbb{M}\left(h \cap g^{\prime}\right) \mathbb{M} U\left(n_{+}\right)
$$

Using the first two statements just proved, we also obtain a map

$$
I_{3}: U\left(n_{-}\right) \mathbb{M} U\left(h \cap g^{\prime}\right) \mathbb{M} U\left(n_{+}\right) \rightarrow U_{-} \mathbb{M} U_{0} \mathbb{\Psi} U_{+} \mathbb{Q} Q
$$

and a map
I_{1} shows that $U_{z} \mathbb{Q} \subset U\left(g^{\prime}\right)$, and $I_{4} \circ I_{3} \circ I_{2}^{-1}$ proves the reverse inclusion.
Finally, it is clear that $I_{2}\left(U_{-} \mathbb{M} U_{0} \mathbb{\mathbb { W }} U_{+}\right) \subset U_{z}$, so that $I_{2}: U_{-} U_{0} U_{+} \rightarrow U_{z}$ is an injective map, and we need to check that $I_{2}^{-1}\left(U_{Z}\right) \subset U_{-} \mathbb{W _ { 0 }} U_{0} U_{+}$, which follows directly from the formulas

$$
\begin{aligned}
& e_{i}^{(n)} f_{i}^{(m)}=\sum_{j=0}^{\min (m, n)} f_{f}^{(m-j)} \underbrace{\alpha_{i}^{v}-m-n+2 j}_{\varepsilon U}) e_{i}^{(n-j)}, \\
& \text { as before } \\
& e_{j}^{(m)} f_{i}^{(n)}=f_{i}^{(n)} e_{j}^{(m)} \text { if } i \neq j \text {, } \\
& \left(\alpha_{n}^{v}\right) f_{i}^{(m)}=f_{i}^{(m)}\left({ }_{j}^{\alpha_{j}^{v}-m<\alpha_{i}, \alpha_{j}^{v}>}\right) \\
& \text { and } e_{i}^{(m)}(\begin{array}{c}
\alpha_{n}^{v} \\
\left.n^{v}\right)
\end{array}=\underbrace{\left(\alpha_{j}^{v}+m\left\langle\alpha_{i}, \alpha_{j}^{v}\right\rangle\right.}_{\varepsilon U_{0}}) e_{i}^{(m)} \text {, }
\end{aligned}
$$

all of which can be checked by induction as in [S2].
The decomposition 1.1 can be made more explicit in the case of a classical Cartan matrix (i.e. when g is a finite dimensional simple Lie algebra once one extends coefficients to C), and one can then exhibit a Z-basis for $U_{Z}([K],[S 1])$. One problem with generalizing this result is that the root spaces do not in general have any canonical bases, indeed they are not necessarily one-dimensional. The ones that are do however play a central role in the theory, and they can be
easily obtained as follows:
the elements $e_{i}, f_{i}, \underline{1<i<N}$ act, by the adjoint representation, locally nilpotently on U_{Z} (indeed, on $U(g)$), i.e. for every $u \varepsilon U$, there exists $M(u) \varepsilon N$ such that $e_{i}^{(m)} \cdot u=0$ for $a l l \mathrm{~m}>M(u)$, and similarly for f_{i} : that is so because of the equality
$\underline{1.2}$ ad $y^{m} \cdot\left(x_{1} \ldots x_{n}\right)=\sum_{j_{1}+\ldots j_{n}=m} \quad\left(j_{1}, \ldots, j_{n}\right)\left(\operatorname{ad} y^{j 1} \cdot x_{1}\right) \ldots\left(\operatorname{ad} y^{j n} \cdot x_{n}\right)$ which holds in the envelope of any Lie algebra a, when $y, x_{1}, \ldots, x_{n} \varepsilon a$, and $\left(j_{1}, \ldots j_{n}\right)=\frac{m!}{j_{1}!\ldots j_{n}!}$, and can be easily checked by induction on m and $n \in N$; using I. 2 with $y=e_{i}$, one gets
$\underline{1.3}$ ad $e_{i}^{(m)}\left(x_{1} \ldots x_{n}\right)=\sum_{j_{1}+\ldots+j_{n}=m}^{i}\left(\operatorname{ad} e_{i}^{\left(j_{1}\right)} \cdot x_{1}\right) \ldots\left(\operatorname{ad} e_{i}^{\left(j_{n}\right)} \cdot x_{n}\right)$
from which one concludes that local nilpotence of e_{i} (or f_{i}) on U follows from local nilpotence on the generators of U, and that is an immediate consequence of the defining relations for g.

So for $\mathrm{x} \varepsilon\left\{\mathrm{e}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}}, 1 \leq \mathrm{i}<\mathrm{N}\right\}$, one can define elements $\exp \mathrm{x}$, $\exp -\mathrm{x}$ in End $\left(U_{Z}\right)$ by
1.4

$$
\exp x \cdot v=\sum_{m} a d x^{(m)} \cdot v \quad, \varepsilon U_{Z} \quad \text { if } v \varepsilon U_{z}
$$

$$
\text { and } \exp -x . v=\sum_{m}(-1)^{m} a d x{ }^{(m)} \cdot v, \varepsilon U_{Z} \text { if } v \varepsilon U_{Z} \text {, }
$$

each sun being of course finite as each term beyond $M(v)$ chosen as above is 0 .

The decomposition 1.1 and formula 1.4 show that exp $\pm x$ are actually endomorphisms of $U\left(g^{\prime}\right)$ and that if $v \varepsilon g^{\prime} \in U\left(g^{\prime}\right)$, then $\exp x . v \varepsilon g^{\prime}$ again. Now, using 1.3, one easily checks that $\exp -x=(\exp x)^{-1}$, and that if $y_{1}, y_{2} \varepsilon g^{\prime}$ then $\left(\exp (\varepsilon x) \cdot\left[y_{1}, y_{2}\right]\right)=\left[\exp (\varepsilon x) \cdot y_{1}, \exp (\varepsilon x) \cdot y_{2}\right], \varepsilon= \pm 1$, so that $\exp \pm x$ defined as above are Lie algebra automorphisms.

Let's define, for $\underline{1}^{\leq} \leq N, \dot{r}_{i} \varepsilon \operatorname{Aut}\left(U_{Z}\right)$ by $\dot{r}_{i}=\operatorname{expe}_{i}$ oexp-f ${ }_{i}$ oexpe ${ }_{i}$. A classical computation shows that $\left.\dot{r}_{i}\right|_{h}=r_{i}\left(\right.$ see, e.g., [K2]), and \dot{r}_{i} is a Lie algebra automorphism extending r_{i}. We proceed to define for every $w \varepsilon^{W} \mathbb{N} \hookrightarrow G L(h)$ such an extension \dot{w} by choosing a reduced expression $w=r_{i_{1}} \ldots r_{i_{k}}$ for w, and setting $\dot{w}=\dot{r}_{i_{1}} \ldots \dot{r}_{i_{k}}$; to check that this does indeed define \dot{W} uniquely, one needs ${ }^{1}$ to verify 1 that 1.5 Proposition:

$$
\text { If } w=r_{i_{1}} \ldots r_{i_{k}}=r_{j_{1}} \ldots r_{j_{k}} \text {, and } w \text { has length } k \text {, }
$$

then $\dot{\mathrm{r}}_{\mathrm{i}_{1}} \ldots \dot{\mathrm{r}}_{\mathrm{i}_{\mathrm{k}}}=\dot{\mathrm{r}}_{\mathrm{j}} \mathrm{H}_{1} . \dot{\mathrm{r}}_{\mathrm{j}_{\mathrm{k}}}$.
proof:
Proceed by induction as follows:
If $k=1$, there is nothing to prove. Otherwise, the exchange condition ([K2]) implies that for some $0 \leq \alpha \leq k-1$, we have $r_{j} \ldots r_{j_{k}}=r_{j_{1}} \ldots r_{j_{\alpha}}{ }^{r}{ }_{j+2} \ldots r_{j_{k}}{ }^{r}{ }_{i}{ }_{k}$

If $\alpha \neq 0$, the induction hypothesis applied to

$$
r_{j_{\alpha+1}} \ldots r_{k}=r_{j_{\alpha+2}} \ldots r_{j_{k}} r_{i_{k}}
$$

gives
1.6 $\quad \dot{r}_{j_{\alpha+1}} \ldots \dot{\mathrm{r}}_{j_{k}}=\dot{\mathrm{r}}_{\mathrm{j}_{\alpha+2}} \ldots \dot{\mathrm{r}}_{\mathrm{j}_{\mathrm{k}}} \dot{\mathrm{r}}_{\mathrm{i}_{\mathrm{k}}}$,
and, applied to $r_{i} \ldots r_{i}=r_{j_{1}-1} \ldots r_{j_{\alpha}} r_{j_{\alpha+2}} \ldots r_{j_{k}}$ gives
1.6^{\prime}
$\dot{r}_{i_{1}} \ldots \dot{r}_{i_{k-1}}=\dot{r}_{j_{1}} \ldots \dot{r}_{j_{\alpha}} \dot{r}_{j_{\alpha+2}} \ldots \dot{r}_{j_{k}}$,
hence $\dot{r}_{j} \ldots \dot{r}_{j_{k}}=\dot{r}_{j} \ldots \dot{r}_{j_{\alpha}} \dot{r}_{j_{\alpha+2}} \ldots \dot{r}_{j_{k}} \dot{r}_{i_{k}}$ by 1.6,

$$
=\dot{r}_{i_{1}} \ldots \dot{r}_{i_{k-1}} \dot{r}_{i_{k}} \text { by } 1.6^{\prime} ;
$$

If $\alpha=0$, i.e. $w={ }_{j} \ldots{ }_{2} r_{j_{k}}{ }^{i_{k}}$, then we know by induction that
1.7 $\dot{\mathrm{r}}_{i_{1}} \ldots \dot{\mathrm{r}}_{\mathrm{i}_{k}}=\dot{\mathrm{r}}_{\mathrm{j}_{2}} \ldots \dot{\mathrm{r}}_{\mathrm{j}_{k}} \dot{\mathrm{r}}_{\mathrm{i}_{k}}$.

We shall also assume that $w=r_{i} \ldots{ }_{i_{k}}{ }^{r} j_{k}$ (otherwise, by symmetry, we are back in the case $\alpha \neq 0$, with i and j exchanged). We then have similarly

and it suffices to show that the right hand sides of 1.7 , 1.7' are equal, i.e. that

$$
\left(\dot{r}_{i_{2}} \ldots \dot{r}_{i_{k-1}}\right) \dot{r}_{i_{k}} \dot{r}_{j_{k}}=\left(\dot{r}_{j} \ldots \dot{\mathrm{r}}_{j_{k-1}}\right) \dot{\mathrm{r}}_{j_{k}} \dot{\mathrm{r}}_{i_{k}} .
$$

Proceeding by induction, this reduces to proving that

$$
\dot{\mathrm{r}}_{i_{k}} \dot{\mathrm{r}}_{j_{k}} \dot{\mathrm{r}}_{i_{k}} \ldots=\dot{\mathrm{r}}_{j_{k}} \dot{\mathrm{r}}_{i_{k}} \dot{\mathrm{r}}_{\mathrm{j}} \ldots
$$

whenever $r_{i_{k}}{ }^{r} j_{k}{ }^{r} i_{k} \ldots=r_{j_{k}}{ }^{r} i_{k}{ }^{r}{ }_{j} \ldots$.

Now one can compute directly that
if $m_{i j}=2$, then $\dot{r}_{i} \cdot x_{j}=x_{j}$,
if $m_{i j}=3$, then $\dot{r}_{i} \dot{r}_{j} \cdot x_{j}=x_{j}$,
if $m_{i j}=4$, then $\dot{r}_{i} \dot{r}_{j} \dot{r}_{i} \cdot x_{j}=x_{j}$,
if $m_{i j}=6$, then $\dot{r}_{i} \dot{r}_{j} \dot{r}_{i} \dot{r}_{j} \dot{r}_{i} x_{j}=x_{j}$
with $x \varepsilon\{e, f\}$ (using classical formulas, as in the
proof of 1.1), from which it follows easily that
if $m_{i j}=2$, then $\dot{r}_{i} \operatorname{oexp}\left(\varepsilon x_{j}\right) \dot{r}_{i}^{-1}=\exp \left(\varepsilon x_{j}\right)$,
if $m_{i j}=3$, then $\dot{r}_{i} \dot{r}_{j} \operatorname{oexp}\left(\varepsilon x_{i}\right) \dot{r}_{j} \dot{\mathrm{r}}_{\mathrm{i}} \dot{\mathrm{r}}^{-1}=\exp \left(\varepsilon \mathrm{x}_{\mathrm{j}}\right), \quad(\varepsilon= \pm 1)$
and similarly for $m_{i j}=4,6$, and one concludes that
if $m_{i j}=2$, then $\dot{r}_{1} \dot{r}_{j} \dot{r}_{i}^{-1}=\dot{r}_{j}$,
if $m_{i j}=3$, then $\dot{r}_{i} \dot{r}_{j} \dot{r}_{i} \dot{r}_{j}^{-1} \dot{r}_{i}^{-1}=\dot{r}_{j}$,
etc... as needed.
The proof of 1.5 is now complete,
so that \dot{w} is indeed well-defined.
We thus get a map $W \rightarrow$ End $\left(U\left(g^{\prime}\right)\right)$, $w \rightarrow \dot{w}$, satisfying

1) \dot{w} is an automorphism of $U\left(g^{\prime}\right)$, leaving U_{Z} and g^{\prime} stable,
2) $\left.\dot{\mathrm{w}}\right|_{h}=\mathrm{w} \varepsilon \mathrm{W} \leftrightarrow \mathrm{GL}(h)$,
3) If $x, y \in g^{\prime}$, then $\dot{w} \cdot[x, y]=[\dot{w} x, \dot{w} y]$.

Suppose then that $\lambda \varepsilon \Delta, \mathrm{x} \varepsilon g_{\lambda} \in g^{\prime}, \mathrm{h} \varepsilon \mathrm{h}$:
we have

$$
\begin{aligned}
{[h, \dot{w} \cdot x] } & =\dot{\mathrm{w}} \cdot\left[\dot{\mathrm{w}}^{-1} \cdot h, \mathrm{x}\right] \\
& =\dot{\mathrm{w}} \cdot\left[\mathrm{w}^{-1} \cdot \mathrm{~h}, \mathrm{x}\right] \\
& =\dot{\mathrm{w}} \cdot\left(\left\langle\lambda, \mathrm{w}^{-1} \cdot \mathrm{~h}\right\rangle \mathrm{x}\right) \\
& =\dot{\mathrm{w}} \cdot(\langle\mathrm{w} \cdot \lambda, \mathrm{~h}\rangle \mathrm{x}) \\
& =\langle\mathrm{w} \cdot \lambda, \mathrm{~h}\rangle \dot{\mathrm{w}} \cdot \mathrm{x},
\end{aligned}
$$

i.e. \dot{w} restricts to a bijection $g_{\lambda} \rightarrow g_{\mathrm{w} . \lambda}$: in particular, Δ is W-invariant (W acts on h^{*} as above), and if $\lambda \varepsilon \Delta, \operatorname{dim} g_{\lambda}=\operatorname{dim} g_{w .}$. We know from 1.0 that if $\lambda \varepsilon \Pi$ (i,e. $\lambda=\alpha_{i}$ for some i), then $\operatorname{dim} g_{\lambda}=1$ (in fact, $g_{\lambda}=Q e_{i}$), and similarly for $\lambda \varepsilon-\Pi$. So one is naturally led to define subsets $\Delta^{r e}, \Delta_{+}^{r e}, \Delta_{-}^{r e}$ of Δ as follows (see [K3]) :
$\Delta^{\overline{r e}} \stackrel{(\mathrm{e}}{=}$ (W. I),$\Delta_{+}^{r e}=$ W. $\Pi \Delta_{+}, \Delta_{-}^{r e}=\Delta^{r e} n_{-}$.
If $\lambda \varepsilon \Delta^{r e}$, then, as in the finite dimensional case,
$\Delta \cap Z \lambda=\{ \pm \lambda\}$, and $\operatorname{dim} g_{\lambda}=1$.
If moreover $\lambda=\alpha_{i}$, we know that $g_{\lambda}=Q e_{i}$, and that $g_{\lambda} n U_{z}=Z e_{i}$ (the intersection taken in $U\left(g^{\prime}\right)$). We construct such a basis for g_{λ}, any $\lambda \varepsilon \Delta^{r e}$, as follows:

Let $X(\lambda)=\left\{ \pm \dot{w} \cdot e_{i}, w \in W\right.$ and $1 \leq i \leq N$ such that $\left.w . \alpha_{i}=\lambda\right\}$. 1.8 Proposition :
proof:
If $w \in W, 1 \leq i \leq N$, then $\dot{\mathrm{w}} \cdot \mathrm{e}_{\mathrm{i}} \varepsilon \mathrm{U}_{\mathrm{Z}} \mathrm{n}_{\mathrm{Q}}$, in fact $\dot{\mathrm{w}} . \mathrm{e}_{\mathrm{i}} \varepsilon g_{\mathrm{w} \alpha_{i}}=g_{\lambda}$ which is one dimensional. So if $w_{1} \cdot \alpha_{j}=w_{2} \cdot \alpha_{k}=\lambda$, then $\dot{w}_{1} \cdot e_{j}=c \dot{w}_{2} \cdot e_{k}$, for some $c \varepsilon Q$; hence

$$
\dot{\mathrm{w}}_{1}^{-1} \cdot \dot{\mathrm{w}}_{2} \cdot e_{k}=\frac{1}{c} e_{j} \cdot
$$

But $\dot{\mathrm{w}}_{2} \cdot e_{k} \varepsilon U_{Z} n^{n} g_{w_{2}} \cdot \alpha_{k}$, so $\dot{w}_{1}^{-1} \dot{w}_{2} \cdot e_{k} \varepsilon U_{z} n g_{w_{1}}-I_{w_{2} \alpha_{k}}=U_{z} n g_{\alpha_{j}}=Z e_{j}$, hence $c= \pm 1$. In other words, if $w_{1} \alpha_{j}=w_{2} \alpha_{k}=\lambda$, then $\dot{w}_{1} e_{j}= \pm \dot{w}_{2} e_{k} \varepsilon g_{\lambda} \cap U_{Z}$, and $X(\lambda)$ does indeed consist of two elements, each the negative of the other.
So we fix an arbitrary $1 \leq i \leq N$ and $w_{\lambda} \varepsilon W$ satisfying $w_{\lambda} \cdot \alpha_{1}=\lambda$ (we take $w_{\lambda}=1$ and $i=k$ if $\lambda=\alpha_{k}$), and define $e_{\lambda}=\dot{w}_{\lambda} \cdot e_{i}, f_{\lambda}=\dot{w}_{\lambda} \cdot f_{i}$.

The elements of $\Delta^{\text {re }}$ are called real roots ([K3]); so for every real root λ, say $\lambda \varepsilon \Delta_{+}^{\text {re }}$, we now have root vectors e_{λ}, f_{λ} such that $g_{\lambda}=Q e_{\lambda}, g_{-\lambda}=Q f_{\lambda}$. Also, if $x \varepsilon g_{\lambda}$, say $x=c . e_{\lambda}$ with $c \varepsilon Q$, and if $x \varepsilon U_{z}$, then

$$
\dot{\mathrm{w}}_{\lambda}^{-1} \cdot \mathrm{x}=\dot{\mathrm{cw}}_{\lambda}^{-1} \dot{\mathrm{w}}_{\lambda} \mathrm{e}_{i}=\mathrm{ce}{ }_{i} ;
$$

As $\dot{\mathrm{w}}_{\lambda}^{-1} \cdot \mathrm{x} \varepsilon g_{\alpha_{i}} \cap U_{Z}=Z e_{i}$, one concludes that $c \varepsilon Z$. Therefore, we also have:
1.9

$$
g_{\lambda} n U_{z}=Z e_{\lambda}, g_{\lambda} \cap U_{z}=2 f_{\lambda}, \text { for any } \lambda \varepsilon \Delta_{+}^{r e}
$$

Finally, with λ as above, define $\lambda^{\mathrm{v}}=\mathrm{w}_{\lambda} \cdot \alpha_{i}^{\mathrm{V}} \varepsilon h$. Then $Q \mathrm{f}_{\lambda}+\mathrm{Q} \lambda^{\mathrm{V}}+\mathrm{Q} e_{\lambda}$ is isomorphic to $s \ell_{2}(Q)$ and one easily proves as in 1.1 that $\left(\lambda_{n}{ }^{\mathrm{V}}\right) \varepsilon U_{0}$ for all $n \varepsilon N, \lambda \varepsilon \Delta_{+}^{r e}$, and that $e_{\lambda}^{(m)}, f_{\lambda}^{(m)} \varepsilon U_{z}$ (where $x_{\lambda}^{(m)}=\dot{w}_{\lambda} \cdot x(m)$ for $x \in\{e, f\}$).

Suppose now that K is a field, so that we may form $U_{K}=U_{Z} \mathbb{X}_{Z} K$. It follows from 1.1 that if $U_{\sigma}(K)=U_{\sigma} \sigma_{z} K$ with $\sigma \varepsilon\{+,-, 0\}$, then

$$
u_{K}=u_{-}(K) \mathbb{Q}_{2} u_{0}(K) \mathbb{W}_{Z} u_{+}(K),
$$

Being the tensor product of two Z－algebras，U_{K} carries a structure of associative algebra，with（ $x \mathbb{M}$ ）．（ y ． Ms ）＝xy Xts ．The product is K－linear so that U_{K} is also a K－Lie algebra．The same holds for $U_{\sigma}(K)$ as above， so that we have the Birkhoff－Witt decomposition $U_{K}=U_{-}(K) \otimes U_{0}(K) \otimes U_{+}(K)$ ．

Finally，one has a map $W \rightarrow \operatorname{Aut}\left(U_{K}\right)$ ，satisfying w．（u冈t）$=(\dot{w} . u) \mathbb{M} t$ ； this map is again injective，for of $w \neq{ }^{\prime} \in W$ ，one can find $\alpha_{i} \varepsilon$ II such that $w \alpha_{i} \neq w^{\prime} \alpha_{i}$ ，in which case $\dot{w} e_{i}=\varepsilon e_{w \alpha_{i}}$ while $\dot{w}^{\prime} e_{i}=\varepsilon^{\prime} e_{w} \alpha_{i}$（with $\varepsilon, \varepsilon^{\prime}= \pm 1$ ） so that w ．（ $\left.e_{i}{ }^{\text {WI }}\right) \neq w^{\prime} \cdot\left(e_{i}\right.$ 区1），as needed．

A few basic facts about the representation theory of U will be needed．To distinguish the＂good＂characters of $U_{0}(K)$ ，let＇s make the following definition：for $a \varepsilon Z, n \in \mathrm{M}$ ，write

$$
\binom{a}{n}=\left\{\begin{array}{cl}
\frac{a!}{n!(a-n)!} & \text { if } a \geq n, \text { as usual } \\
0 & \text { if } 0 \leq a<n \\
(-1)^{n} \frac{(n-a-1)!}{n!(-a-1)!} & \text { if } a<0 ;
\end{array}\right.
$$

so that $\binom{a}{n}$ is a well－defined integer．
It is now easy to check that one obtains a homomorphism

$$
\left(Q^{v}\right)^{*} \rightarrow \operatorname{Hom}\left(U_{o}(K), K\right),
$$

where（ Q^{v} ）＊denotes the Z－dual，in h^{*} ，of $Q^{v}={ }_{i}{ }_{i=1}^{N} Z \alpha_{i}^{v}$ ，satisfying

$$
\Lambda\left(\left(\begin{array}{c}
\lambda_{n}^{v}
\end{array}\right) \otimes t\right)=t \cdot\binom{\left\langle\Lambda, \lambda^{v}\right\rangle}{ n},
$$

for all $\Lambda \varepsilon\left(Q^{v}\right)^{*}, \lambda^{v} \varepsilon Q^{v}$ ，nєN，t εK ．Call the image of this map the cha－ racters of $U_{0}(K)$（see［TI］）．

A U_{Z}－module M is called integrable if all e_{i}, f_{i} act locally nilpo－ tently on M ，i．e．for each $v \varepsilon M$ ，there exists a positive integer $m(v)$ such that if $m(v) \leq m \in N$ ，then $e_{i}^{(m)} \cdot v=f_{i}^{(m)} \cdot v=0$ ．A U_{K}－module is integrable if all e_{i} 区l，$f_{i} \mathbb{W l l}$ act locally nilpotently and $U_{0}(K)$ acts by characters as above．Finally，a $g=g_{Q}(A)$－module M is integrable if all e_{i}, f_{i} act locally nilpotently，and M is completely reducible as an h－module，all weight spaces being finite dimensional．

A large class of integrable g－modules has been constructed by V．Kax（［ K4 ］）：it consists of certain highest－and lowest－weight modules．To construct these modules，start with a＇weight＇$\Lambda \varepsilon h^{*}$ such that $\left\langle\Lambda, \alpha_{i}^{V}>\varepsilon N\right.$ for all i．Let $J(\Lambda)$ be the ideal of $U(g)$ generated by n_{+}
together with all $(h-\Lambda(h))$, heh. The g-module $U(g) / J(\Lambda)$, on which g acts by left-multiplication, can be shown to have a unique proper maximal submodule, such that the quotient $L(\Lambda)$ is an integrable g-module in the above sense (see [K5]; $L(\Lambda)$ is irreducible by construction).
$L(\Lambda)$ has highest weight Λ, i.e. if $\mathrm{v}^{+} \varepsilon L(\Lambda)$ is the image under the quotient maps of $1 \varepsilon \|(g)$, then 1.10

$$
u\left(n_{+}\right) \cdot v^{+}=0
$$

$\mathrm{h} . \mathrm{v}^{+}-\left\langle\Lambda, \mathrm{h}>\mathrm{v}^{+}=0\right.$, for all $\mathrm{h} \varepsilon \mathrm{h}$,
and $L(\Lambda)=U\left(n_{-}\right) \cdot v^{+}$.
One then knows ([K5]) that each \dot{r}_{i} acts on $L(\Lambda)$ as before, that $\operatorname{dim}_{Q} L(\Lambda) r_{i} \Lambda=\operatorname{dim}_{Q} L(\Lambda) \Lambda^{=1}$, (where if M is a g-module and $\lambda \varepsilon h^{*}$, then $M_{\lambda}=\{m \in M$ suich that $h . m=\langle\lambda, h\rangle m$, for all heh $\}$) and that, in fact, $\dot{\mathrm{r}}_{\mathrm{i}} \cdot \mathrm{v}^{+} \varepsilon\left(\mathrm{L}(\Lambda)_{r_{i}} \Lambda^{n} U_{z} \cdot \mathrm{v}^{+}\right)-\{0\}$.
Since we also know, by construction, that $\left(U_{Z} \cdot v^{+} n L(\Lambda)_{\Lambda}\right)=Z_{v}{ }^{+}$, one can show as in $1.5-1.7$ that if $r_{i_{1}} \ldots r_{i_{k}}=r_{j_{1}} \ldots r_{j_{k}}=w \in W$ with length(w) $=k$, $\dot{r}_{i_{1}} \cdot\left(\ldots\left(\dot{r}_{i_{k}} \cdot v^{+}\right) \ldots\right)=\dot{r}_{j_{1}} \cdot\left(\ldots\left(\dot{r}_{j_{k}} \cdot v^{+}\right) \ldots\right)$, so that for each $w \in W$ we have $a^{\frac{1}{w e}} 11$ defined element ${ }_{\dot{w}} \cdot v^{+} \varepsilon L_{w \Lambda}{ }_{\mathrm{k}} \mathrm{n} u_{\mathrm{z}} . \mathrm{v}^{+}$. Finally, one knows that if $L(\Lambda)_{\lambda^{\neq 0}}$, then $\operatorname{dim}_{Q} L(\Lambda) \lambda^{<\infty}$,

$$
\Lambda-\lambda \varepsilon N . \Pi
$$

$$
\text { and } L(\Lambda)=\sum_{\lambda} L(\Lambda) \lambda_{\lambda} .
$$

Given a highest weight g-module M as above, one obtains canonically a lowest weight module M^{*} as follows:

If ω is the involution of g given by $\omega e_{i}=f_{i},\left.\omega\right|_{h}=-I d_{h}$, define a new g-module structure on M by requiring

$$
\begin{aligned}
& \mathrm{x} \cdot \mathrm{~m}=\omega(\mathrm{x}) \cdot \mathrm{m} \quad \text {, for all } \mathrm{x} \varepsilon \mathrm{~g}, \mathrm{~m} \varepsilon \mathrm{M} . \\
& (\text { old) }
\end{aligned}
$$

Writing M^{*} for M with this new g-module structure, and v^{-}for v^{+}, one obtains a g-module satisfying 1.10 with all \pm signs reversed.

Let M be an integrable g-module with highest weight Λ, and let's prove:
1.11 Proposition :
a) $\left(U_{z} \cdot v^{+} \cap M_{\lambda}\right) \neq 0$ if $M_{\lambda} \neq 0$ (in fact, $\left.\left(U_{z} \cdot v^{\dagger} \cap M_{\lambda}\right) \otimes Q=M_{\lambda}\right)$;
b) If $v=\sum_{\lambda} v_{\lambda} \varepsilon U_{z} \cdot v^{+}$, with $v_{\lambda} \varepsilon M_{\lambda}$, then $v_{\lambda} \varepsilon U_{z} \cdot v^{+}$ for every λ.
c) $M_{w \Lambda} \cap U_{z} \cdot v^{+}=2 \dot{w} \cdot v^{+}$.
d) $\left(U_{Z} \cdot v^{+}\right) \otimes_{2} K$ is an integrable U_{K}-module.
the same statements being true of lowest weight modules.
proof:
To prove a), one needs to observe that $U(g) \cdot v^{+}=U\left(g^{\prime}\right) \cdot v^{+}$as both are equal to $U\left(n_{-}\right) \cdot v^{+}$. =Now $\cdot U\left(n_{-}\right)=U_{-} Q Q$ by 1.1, so if $v \varepsilon M_{\lambda}$, then $v=c u . v^{+}$with $c \varepsilon Q$, $u \varepsilon U_{_}$hence $\frac{v}{c} \varepsilon U_{z} \cdot v^{+}$, and the reverse inclusion is clear.
Choose a lattice in h^{*} of rank $d=M+c o r a n k A=d i m h$ containing Λ and Π, and let S_{Λ} be its Z-dual in h, say $S_{\Lambda}=\oplus Z_{i}$. If $h \varepsilon S_{\Lambda}$ and $n \varepsilon N$, the element $\operatorname{ad}\left({ }_{n}^{h}\right)$ of End $Q_{Q}(U(g))$ stabilizes u_{z} : in fact,

$$
\left.\begin{array}{l}
\left.\operatorname{ad}\binom{h}{n} \cdot e_{i}^{(m)}=m\left(\alpha_{i}, h\right\rangle\right) e_{i}^{(m)} \\
\operatorname{ad}\binom{h}{n} \cdot f_{i}^{(m)}=m\left(\left(_{i}^{-\left\langle\alpha_{i}, h\right\rangle}\right) f_{i}^{(m)}\right.
\end{array}\right\} \varepsilon U_{z}
$$

Define a map height: $Q_{+} \rightarrow N$, by height $\left(\sum_{n_{i}} \alpha_{i}\right)=\Sigma_{n_{i}}$. For every $\lambda, \mu \varepsilon Q_{+}$, we then have height $(\lambda+\mu)=$ height (λ) theight (μ). and one defines a gradation on the algebra $U\left(n_{+}\right)$so that if $u \varepsilon l\left(n_{+}\right)$is in the ν_{-}weight space of the adjoint action of h on $U\left(n_{+}\right)$then degree $(u)=$ height (ν). (this is the principal gradation as in [K1]). Let $U_{j}=\left\{u \varepsilon U\left(n_{+}\right) \mid \operatorname{deg}(u)=j\right\}$, and let's first show that U_{+}is homogeneous with respect to this gradation:
Choose $h_{0} \varepsilon S_{\Lambda}$ such that $\left\langle\alpha_{i}, h_{0}\right\rangle=1$ for all i. If $u \varepsilon l_{+}$, say $u=u_{j_{1}}+\ldots+u_{j_{k}}$ with $u_{j_{i}} \varepsilon U_{j_{i}}$ and $j_{1}<\ldots<j_{k}$, then

$$
\begin{aligned}
\operatorname{ad}\left(\mathrm{j}_{k}^{\mathrm{o}}\right) \cdot u & =\sum_{i=1}^{k-1}\left(j_{j_{k}}^{1}\right) u_{j_{i}}+u_{j_{k}} \\
& =u_{j_{k}} .
\end{aligned}
$$

Proceeding by induction, we find that $u_{j_{i}} \varepsilon \|_{z}$ for all i; hence $u_{+}=\sum_{j \varepsilon N}\left(u_{+} \cap u_{j}\right)$.
One defines a gradation $\sum_{j \in \mathbb{N}} U_{-j}$ of $U\left(n_{-}\right)$similarly, and we have $u_{-}=\sum_{j \in \mathbb{M}}\left(u_{-} \cap U_{-j}\right)$.

Again, if $h \varepsilon S_{\Lambda}$, and $n \varepsilon N$, then $\binom{h}{n} \varepsilon U(g)$, so (h_{n}^{h}) acts on M. We can now show that $\binom{h}{n}$ stabilizes $U_{z} \cdot v^{+}$:
Indeed, suppose $v=u_{-} \cdot v^{+}$, and assume $u_{-}=\sum_{u_{j}}$ with $u_{j} \varepsilon U_{-j}$.
An easy calculation shows that $\left(\begin{array}{l}h \\ n^{\prime}\end{array} u_{j} \cdot v^{+}\right.$is of the form $\left.\sum_{m_{i}}\left({ }^{\left\langle\Lambda-m_{1}\right.} \alpha_{1}-\ldots-m_{N} \alpha_{N}, h\right\rangle\right) u_{j} v^{+}$, the sum being over some m_{i} N -tuples $\left(m_{1}, \ldots, m_{N}\right.$) satisfying $m_{1}+\ldots+m_{N}=j$. In any case, this shows that $\left(\begin{array}{c}\mathrm{h}_{\mathrm{n}}\end{array}\right) \cdot v \in \mathrm{U}_{\mathrm{z}} \cdot \mathrm{v}^{+}$.
Assume now that $v=\sum_{\lambda \varepsilon A} v_{\lambda}$, where A is a (finite) subset of weights, and let $\mu \varepsilon A$. One knows that the subring of $Q\left[X_{1}, \ldots, X_{d}\right]$ (polynomials in d variables with coefficients in Q) generated by all monomials of the form $\left(\begin{array}{l}X_{i} \\ n_{i}\end{array}, 1 \leq i \leq N\right.$, $n_{i} \varepsilon N$, separates points in 2^{d} ([S1]). So for each $\lambda \in A-\{\mu\}$, find such a polynomial $P_{\lambda}\left(X_{1}, \ldots, X_{d}\right)$ satisfying

$$
\begin{aligned}
& P_{\lambda}\left(\left\langle\lambda, h_{1}\right\rangle, \ldots,\left\langle\lambda, h_{d}\right\rangle\right)=0, \\
& P_{\lambda}\left(\left\langle\mu, h_{1}\right\rangle, \ldots,\left\langle\mu, h_{d}\right\rangle\right)=1,
\end{aligned}
$$

and let $F\left(X_{1}, \ldots, X_{d}\right)=\prod_{\lambda \varepsilon A-\{\mu\}}{ }^{P}{ }_{\lambda}$.
If $u=F\left(h_{1}, \ldots, h_{d}\right)$, then $u \varepsilon \|(g)$, u stabilizes $U_{Z} \cdot v^{+}$by our choice of polynomials P_{λ}, and

$$
\begin{aligned}
u \cdot v=\sum_{\lambda \varepsilon A} u \cdot v_{\lambda}= & \left.\sum_{\lambda \varepsilon A-\{\mu\}} F\left(\left\langle\lambda, h_{1}\right\rangle, \ldots,<\lambda, h_{d^{\prime}}\right\rangle\right) v_{\lambda} \\
& +F\left(\left\langle\mu, h_{1}\right\rangle, \ldots,\left\langle\mu, h_{d}\right\rangle\right) v_{\mu} \\
= & 0+v_{\mu} \\
= & v_{\mu} .
\end{aligned}
$$

As $v \varepsilon U_{Z} \cdot v^{+}$, we must have $v \varepsilon U_{Z}$, which proves b). The proof of c) is identical to that of 1.9 (note that $\operatorname{dim} M_{w \Lambda}=1$).
proof of d): If $v=\sum_{i}\left(u_{i} \cdot v^{+}\right) \otimes t_{i}$, then for every i, there exists a positive integer m_{i} such that $f_{i}^{(m)} \cdot\left(u_{i} \cdot v^{+}\right)=0$ and $e_{1}^{(m)} \cdot\left(u_{i} \cdot v^{+}\right)=0$ if $m>m_{i}$. So if $m>m(v)=\max _{i}\left(m_{i}\right)$, then $e_{1}^{(m)} \cdot v=\Sigma e_{1}^{(m)} \cdot\left(u_{i} \cdot v^{+}\right) \otimes t=0$, and similarly for e_{2}, \ldots. So we need only check the action of $U_{0}(K)$ on M :

By b), it is sufficient to check that if m is of the form $m=\left(u \cdot v^{+}\right)$ws with $u . v^{+} \varepsilon M_{\mu}$ and $u \varepsilon U_{z}$, then $u_{0} \cdot m=\chi_{m}\left(u_{0}\right) m$ for all $u_{0} \varepsilon U_{0}(K)$, where X_{m} is some character of $U_{0}(K)$ as above. Without loss of generality, we may take $u_{0}=\left(\begin{array}{c}\lambda_{n}\end{array}\right), \lambda^{v} \varepsilon Q^{v}$, and compute:

$$
\begin{aligned}
& =t\left(^{\langle\mu, \lambda v\rangle}\right) u . v^{+} \text {区s } \\
& =t\binom{\langle\mu, \lambda v\rangle}{ n}_{\text {m }}
\end{aligned}
$$

so that X_{m} is the image character of $\mu \varepsilon\left(Q^{\mathrm{V}}\right)^{*}$.
Finally, we show that

1.12 Proposition:

If K has characteristic $p>0$, then U_{K} carries a
Frobenius map $F: U_{K} \rightarrow U_{K}$ satisfying $F(x \mathbb{M} t)=x \bar{M} t^{p}$ whenever $x \varepsilon\left\{\alpha_{i}^{v}, e_{i}, f_{i}, 1 \leq i \leq N\right\}$, and every U_{K}-module $\mathrm{U}_{\mathrm{Z}} \cdot \mathrm{v}^{ \pm} \mathrm{KK}$ carries a Frobenius such that $F(u . v)=F(u) \cdot F(v)$ whenever $v \varepsilon U_{Z} \cdot v^{ \pm}{ }_{s K}, u \varepsilon U_{K}$.
proof:
If $U_{j}(K)=\left\{\sum_{i} x_{i} t_{i}, x_{i} \varepsilon U_{+}\right.$with degree $\left.\left(x_{i}\right)=j\right\}$, then $U_{j}(K)$ is a $Q^{V}{ }^{W} K$-stable finite dimensional subspace of $U_{+}(K)$. Using the Z-basis Π^{V} for Q^{V}, we obtain a Frobenius F on $Q^{V}{ }^{W} K$, and F extends uniquely to each $U_{j}(K)$ in such a way that $F\left(\sum x_{i} \mathbb{\otimes} t_{i}\right)=\sum x_{i} \mathbb{W A}_{i}^{p}([J])$, hence to all of $U_{+}(K)$. Define F on U_{-}similarly, and extend the Frobenius on $Q V_{\mathbb{X}}$ to $U_{0}(K)$ by identifying the latter with the symmetric algebra of $Q^{V} \mathbb{X}$. We finally obtain $F: U_{K}-\rightarrow U_{K}$ by using 1.1 so that $F\left(u_{-} \mathbb{X} u_{0} u_{+}\right)=F\left(u_{-}\right) \mathbb{Q}\left(u_{0}\right) \mathbb{Q}\left(u_{+}\right)$, with $u_{\sigma} \cdot \varepsilon U_{\sigma}(K)$.
Now, if $v \varepsilon M$, say $v=\sum_{i} v_{i} \Psi t_{i}$ with $v_{i} \varepsilon U_{z} \cdot v^{+}, t_{i} \varepsilon K$, then each v_{i} is of the form $\sum_{\lambda} v_{i}^{i}$, where $v_{i} \varepsilon M_{\lambda} \cap U_{Z} \cdot v^{+}$by 1.11, so that, defining F on $\left(M_{\lambda} \cap U_{Z} \cdot v^{+}\right) \mathbb{M K}$ by $F\left(\sum_{i} v_{i}{ }_{i} t_{i}\right)=\sum_{i} v_{i}{ }_{i} t_{i}^{P}$ (recall that $\left.\operatorname{dim}_{K}\left(M_{\lambda} \cap U_{Z} \cdot v^{+}\right) \mathbb{Q} \leq \operatorname{dim}_{Q}\left(M_{\lambda}\right)^{i}<\infty\right)$, one sees that $F(v)=\sum_{i} v_{i} \mathbb{Q} t_{i}^{P}$ does satisfy $F(u \cdot v)=F(u) . F(v)$.

Example 1: One always has $\dot{\mathrm{r}}_{i} \mathrm{e}_{\mathrm{i}}=-\mathrm{f}_{\mathrm{i}}$; assume that $\mathrm{N} \geq 2$, and $\mathrm{a}_{12}=-2$. Then $\dot{r}_{1} e_{2}=e_{1}^{(2)} e_{2}+e_{2} e_{1}^{(2)}-e_{1} e_{2} e_{1}$. In particular, if $N=2$, then $\dot{r}_{1}{ }^{2}$ is the identity on U_{z}.
More generally, one has $\dot{\mathrm{r}}_{\mathrm{i}} \mathrm{e}_{\mathrm{j}}=\operatorname{ade}_{i}^{\left(-\mathrm{a}_{\mathrm{ij}}\right)} . \mathrm{e}_{\mathrm{j}}$,
and $\dot{r}_{i} f_{j}=(-1)^{a_{i j} a d f}{ }_{i}^{\left(-a_{i j}\right)} \cdot f_{j}$
if $i \neq j$.

Section 2 ：Construction of the group．
$\infty \quad$ Fix a field K ．For every $\alpha \varepsilon \Delta_{+}^{r e}$ ，$t \in K$ ，let $X_{\alpha}(t)$ be the formal sum $\sum_{n=0}^{\infty} e_{\alpha}^{(n)} \otimes t^{n}$ ，and $X_{\alpha}(K)$ the set $\left\{X_{\alpha}(t), t \in K\right\}$ ．

Defining a product in X_{α} by $X_{\alpha}(t) \cdot X_{\alpha}(s)=X_{\alpha}(t+s)$ ，one can easily see that X_{α} becomes a group，isomorphic to G_{a} ，and such that if M is any integrable U_{K}－module，there exists a homomorphism $X_{\alpha} \rightarrow \operatorname{Aut}_{K}(M)$ ，with $X_{\alpha}(t) \cdot v=\sum_{n} t^{n} e_{\alpha}^{(n)} ⿴ 囗 ⿰ 丿 ㇄$

Similarly，let $Y_{\alpha}(K)=\left\{Y_{\alpha}(t)=\sum_{n=0} f_{\alpha}^{(n)} \mathbb{M} t^{n}, t \in K\right\}$ ，defined for any $\alpha \varepsilon \Delta_{+}^{r e}$ ，and consider the group $G_{K}^{*}=$ free product of all X_{α}, Y_{β} ，over all $\alpha, \beta \varepsilon \Delta_{+}^{r e}$ ，so that G_{K}^{*} acts on all integrable U_{K}－modules as above．

If $I_{0}^{*}=$ intersection，taken over all $U_{Z} \cdot v^{ \pm}$区K as in 1．11，of the kernels of the representation of G_{K}^{*} on $U_{Z} \cdot v^{ \pm} \Phi K$ ，and $I_{N_{1}^{*}}^{*}=$ kernel of the action of G_{K}^{*} on U_{K} ，set $I^{*}=I_{o}^{*} \cap I_{1}^{*}$ ，and let $G(K)=G_{K}^{*} / I^{*}: G(K)$ is the Kat－Moody group associated to the generalized Cartan matrix A（ or the crystallographic group W）．If A were a classical Cartan matrix，$G(K)$ would be the universal（simply－connected）group associated to A．Using I_{1}^{*} instead of I^{*} would yield the adjoint group．

In order to study the structure of G ，let $x_{\alpha}(t), y_{\alpha}(t), x_{\alpha}, y_{\alpha}$ be the images in $G(K)$ of $X_{\alpha}(t), Y_{\alpha}(t), X_{\alpha}, Y_{\alpha}$ in G_{K}^{*} ，let A^{i} be the subgroup of G generated by $X_{\alpha_{i}}, Y_{\alpha_{i}}, 1 \leq i \leq N$ ，and call $A d: G(K) \rightarrow \operatorname{Aut}\left(U_{K}\right)$ the representation of $G(K)$ on U_{K} ．

It is easy to see that $A d\left(A^{i}\right)$ stabilizes the Lie subalgebra of U_{K} spanned by the ordered basis（ $e_{i} \mathbb{M}, \alpha_{i}^{V} \mathbb{M}, f_{i} \mathbb{M}$ ）and that with respect to this basis，
$\operatorname{Adx}_{\alpha}(t)$ has matrix $\left(\begin{array}{ccc}1 & -2 t & -t^{2} \\ 0 & 0 & t \\ 0 & 0 & 1\end{array}\right)$ ，
and $\operatorname{Ady}_{\alpha}(t)$ has matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ -t & 1 & 0 \\ -t^{2} & 2 t & 1\end{array}\right)$ ，
so that：a）the maps $X_{\alpha_{i}} \rightarrow G(K), \quad Y_{\alpha_{i}} G(K)$

$$
X_{\alpha_{i}}(t) \mapsto x_{\alpha_{i}}(t), \quad Y_{\alpha_{i}}(t) \mapsto y_{\alpha_{i}}(t)
$$

are injective ，
and b) Ad A $\left.\right|_{K_{i}{ }_{i} 1+K \alpha_{i}^{V} 1+K f_{i} \mathbb{M}} \simeq P S L_{2}(K)$
On the other hand, one knows that given any integrable module M for the algebra $U_{K}\left(s \ell_{2}\right)$ defined as above, there exists a representation $S_{2}(K) \rightarrow \operatorname{Aut}(M)$ satisfying $\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right) \cdot v=X(t) \cdot v,\left(\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right) \cdot v=Y(t) \cdot v$, and $\left[\begin{array}{ll}t & 0 \\ 0 & t^{-1}\end{array}\right] \cdot v=t^{\left\langle\nu, \alpha^{v}\right\rangle} v$ if $u_{0}\left(s \ell_{2}\right)$ acts on v by the character $v([T 2])$.

Fixing i and applying this theorem to the $s \ell_{2}$ sub-Lie algebra of
 such that $\Phi_{i}\left(S L_{2}(K)\right)=A^{i}$; as we also have $A d A^{i} \simeq \mathrm{PSI}_{2}(K)$, we can assert that A^{i} is a group of type A_{1}.

Before obtaining commutation relations and structural facts about G, let's observe that if $\operatorname{char}(K)=p>0$, and if the map $K \rightarrow K, t \mapsto t^{p}$ is invertible, then $G(K)$ carries a Frobenius map such that $F x_{\alpha}(t)=x_{\alpha}\left(t^{p}\right)$: indeed, the map $\tilde{F}: G_{K}^{*} \rightarrow G_{K}^{*}$ given by $\tilde{F}\left(z_{\alpha}(t)\right)=z_{\alpha}\left(t^{p}\right)$ for $z \varepsilon\{x, y\}$ satisfies $\tilde{F}\left(I^{*}\right)=I^{*}$ by 1.12 , and hence factors to the desired map on G itself.

Let's denote by $H_{i}=\left\{H_{i}(t)=\Phi_{i}\left(\begin{array}{cc}t & 0 \\ 0 & 1 / t\end{array}\right)\right.$, $\left.t \varepsilon K^{x}\right\} \in A^{i}, M_{i}=$ normalizer of H_{i} in $A^{i}, H=$ subgroup of G generated by $H_{1}, \ldots, H_{N}, M=$ subgroup of G generated by $M_{i}, 1 \leq i \leq N, \quad U_{+}=$subgroup of G generated by all $x_{\alpha}, \alpha . \varepsilon \Delta_{+}^{r e}$, $U_{-}=$subgroup of G generated by all $y_{\alpha}, \alpha \varepsilon \Delta_{+}^{r e}, \dot{r}_{i}(t)=x_{\alpha_{i}}(t) y_{\alpha_{i}}(-1 / t) x_{\alpha_{i}}(t)$.
2.1 Theorem : (see [PK2])
a) If M is an integrable U_{K}-module, and if $u \in U_{K}$, then $\left(\operatorname{Adx}_{\alpha}(t)(u)\right)=x_{\alpha}(t)$ ouox $x_{-\alpha}(t)$, in End (M)
b) If $\alpha, \beta \in \Delta_{+}^{r e}, \& N \alpha+N \beta \cap A_{+}=N a+N \beta n \Delta_{+}^{r e} \in\{\alpha, \beta, \alpha+\beta\}$ then for some $n_{\alpha, \beta} \varepsilon^{3}$, and all $t, s \in K$, $\left(x_{\alpha}(t), x_{\beta}(s)\right)=x_{\alpha+\beta}\left(-n_{\alpha, \beta} t s\right)$.
c) $\dot{r}_{i}(1) x_{\alpha} \dot{r}_{i}(-1)=x_{r_{i} \alpha}$ if $\alpha \varepsilon \Delta_{+}^{r e}-\left\{\alpha_{i}\right\}$.
d) $\left(H_{i}, H_{j}\right)=1$ for all i, j.
e) $h U_{+} h^{-1}=U_{+}$if $h \varepsilon H$.
f) $W \approx M / H$
proof:
To prove a) we may assume that $u=u_{0}$ 区s, $u_{0} \varepsilon U_{Z}$, $s \varepsilon K$, $v \varepsilon M$, so that (Ad $\left.x_{\alpha}(t) \cdot(u)\right) \cdot v=\sum_{m} t^{\text {m }}\left(\operatorname{ade}_{\alpha}^{(\mathrm{m})} \cdot u_{0} \mathrm{~m}\right) \cdot v$, while

$$
\begin{aligned}
& \left.x_{\alpha}(t) \text { ouox } x_{\alpha}(-t) \cdot v=\sum_{i, j}(-t)^{i} t^{j}\left(e_{\alpha}^{(j)}\right)_{\alpha 1} \cdot\left(u \cdot\left(\left(e_{\alpha}^{(i)}\right)_{Q 1}\right) \cdot v\right)\right) \\
& =\sum_{i, j}(-1)^{i^{i+j}}\left(\left(e_{\alpha}^{(j)} u_{o} e_{\alpha}^{(i)}\right) \mathbb{Q}\right) \cdot v \\
& =\sum_{i \cdot j} t^{2 i+j}\left(e_{\alpha}^{(j)} u_{o} e_{\alpha}^{(2 i)}\right) \text { 区s.v } \\
& -t^{2 i+j+1}\left(e_{\alpha}^{(j)} u_{o} e_{\alpha}^{(2 i+1)}\right) \text { बs.v } \\
& =\sum_{m} t^{m}\left(\sum_{i} e_{\alpha}^{(m-2 i)} u_{o} e_{\alpha}^{(2 i)}\right. \text { Ms.v } \\
& -e_{\alpha}^{(m-2 i-1)} u_{o} e_{\alpha}^{(2 i+1)} \text { बs.v)}
\end{aligned}
$$

so that a) is proved if we know that
ad $e_{\alpha}^{(m)} \cdot u_{o}=\sum_{i} e_{\alpha}^{(m-2 i)} u_{o} e_{\alpha}^{(2 i)}-e_{\alpha}^{(m-2 i-1)} u_{o} e_{\alpha}^{(2 i+1)}$
But one can easily prove by induction, starting with the formula ade $i_{i} \cdot u=e_{i} u-u e_{i}$ that ad $e_{i}^{m} \cdot u=\sum_{j=0}(-1)^{j}\left(\frac{m}{j}\right) e_{i}^{m-j} u_{i}^{j}$, which implies 2.2 if we let $u=\left(\dot{w}^{\alpha}\right)^{-1} u_{0}$, and apply \dot{w}^{α} to the above equality, with i chosen so that $\dot{\mathbf{w}}^{\alpha} \cdot \alpha_{i}=\alpha$.
Now to check all equalities $A=B$ with $A, B \in G$, we use a) to verify that $A B^{-1} \varepsilon I^{*}$ where A and B^{-1} are interpreted as elements of G^{*}, i.e.
To prove b): let's first compute $n_{\alpha, \beta}$: if $\alpha+\beta \notin \Delta_{+}^{r e}$, set $n_{\alpha, \beta}=0$ for we know that in this case e_{α} and e_{β} commute. Otherwise, as in 1.9 , we know that $\left(\dot{w}^{\alpha+\beta}\right)^{-1} .\left[e_{\beta}, e_{\alpha}\right]$ is an element of $U_{Z}^{n} g_{\alpha_{i}}=Z e_{i}$, where i is such that $\dot{\mathrm{w}}^{\alpha+\beta_{\alpha}}{ }_{i}=\alpha+\beta$, hence $\left(\dot{w}^{\alpha+\beta}\right)^{-1} \cdot\left[e_{\beta}, e_{\alpha}\right]=n e_{i}$ for some $n \varepsilon Z$, and we let $n_{\alpha, \beta}=n$.
We now check that $\left(X_{\alpha}(t), X_{\beta}(s)\right) \cdot X_{\alpha+\beta}\left(n_{\alpha, \beta} t s\right) \varepsilon I_{o}^{*}$:
Fix t,s ε, and set $R=Z[T, S]$, the ring of polynomials in two variables with integer coefficients, and let U_{R} denote $U_{z} \mathbb{Q R}$. Let $v_{0} \varepsilon U_{z}$, and let $D_{T} \varepsilon$ End U_{R} be the operator $T \frac{d}{d T}$. As e_{λ} acts locally nilpotently on U_{Z} in the adjoint representation, for any $\lambda \varepsilon \Delta_{+}^{r e}$, we can define elements $E\left(c e_{\lambda}\right)=\sum_{k} \operatorname{ade}_{\lambda}^{(k)} \in \varepsilon$ End U_{R}, for any $c \varepsilon Z[T, S]$. Now write
$\mathrm{f}(\mathrm{T}, \mathrm{S})=\mathrm{E}\left(\mathrm{Te} e_{\alpha}\right) \mathrm{E}\left(\mathrm{Se}_{\beta}\right) \mathrm{E}\left(-\mathrm{Te} e_{\alpha}\right) \mathrm{E}\left(-\mathrm{Se}_{\beta}\right) \mathrm{E}\left(\mathrm{n}_{\alpha, \beta} \mathrm{TSe}_{\alpha+\beta}\right) \cdot \mathrm{v}_{0}{ }^{\mathrm{M}} 1$, and let's compute $\quad D_{T} f=T((a d(e \| l)) f)$
 $+E\left(S e_{\beta}\right) E\left(-T e_{\alpha}\right) E\left(-S e_{\beta}\right)\left(\operatorname{ade}_{\alpha+\beta}{ }^{\mathbb{K}} n_{\alpha, \beta} S\right) E\left(n_{\alpha, \beta}^{T S} e_{\alpha+\beta}\right)$. v_{o} 인]
(using the "product rule"),
$=T\left(\operatorname{ade}_{\alpha} \mathrm{MI}\right) \mathrm{f}-\operatorname{Tad}\left(E\left(\mathrm{Te}_{\alpha}\right) E\left(\mathrm{Se}_{\beta}\right) \cdot \mathrm{e}_{\alpha} \mathbb{W D}\right) \mathrm{f}$
$+n_{\alpha, \beta} \operatorname{STad}\left(E\left(T e_{\alpha}\right) E\left(S e_{\beta}\right) E\left(-T e_{\alpha}\right) E\left(-S e_{\beta}\right) \cdot e_{\alpha+\beta}{ }^{W 1}\right) f$
(using a)),

(as with our assumptions on α, β,

$$
\left.e_{\alpha} \text { and } e_{\beta} \text { commute with } e_{\alpha+\beta}\right)
$$

$=0$, so that

$$
f(T, S)=f(0, S)=v_{0} \mathbb{W}_{1} .
$$

Now we form the tensor product $U_{R} \mathbb{W}_{R} K \simeq U_{K}$, where K has the $Z[T, S]$-module structure obtained by mapping $T \not r t, S \nmid s:$ Then equations 2.3 and 2.4 give

$$
\left(\mathrm{X}_{\alpha}(\mathrm{t}), \mathrm{X}_{\beta}(\mathrm{s})\right) \mathrm{X}_{\alpha+\beta}\left(\mathrm{n}_{\alpha, \beta} s t\right) \cdot \mathrm{v}_{0}=\mathrm{v}_{0} \mathbb{M},
$$

which is verified for all $\mathrm{v}_{0} \varepsilon \|_{Z}$, from which one concludes that

$$
\left(X_{\alpha}(t), X_{\beta}(s)\right) X_{\alpha+\beta}\left(n_{\alpha, \beta} s t\right) \varepsilon I_{1}^{*}
$$

To check that $\left(X_{\alpha}(t), X_{\beta}(s)\right) X_{\alpha+\beta}\left(n_{\alpha, \beta} s t\right) \varepsilon I_{0}^{*} \quad$ one proceeds exactly as above, and b) is proved. proof of c): given $\alpha \in \Delta_{+}^{r e}-\left\{\alpha_{i}\right\}, 1 \leq i \leq N$, we already know that $\dot{r}_{i} \cdot e_{\alpha} \varepsilon u_{z} n_{g_{r_{i}}}=Z_{r_{i}}$, so that there exists an integer $k_{i, \alpha^{\prime}} \varepsilon$ with

In fact,

$$
\begin{aligned}
& \dot{r}_{i}{ }^{e}=k_{i, \alpha}{ }^{e} r_{i} \alpha \\
& \dot{r}_{i}^{-1} e_{r_{i}} \alpha^{\varepsilon} \cdot U_{z}^{n} g_{\alpha}, \text { hence } k_{i, \alpha}= \pm 1
\end{aligned}
$$

Let's show that $\dot{r}_{i}(1) X_{\alpha}(t) \dot{r}_{i}(-1) X_{r_{i} \alpha}\left(-k_{i}, \alpha t\right) \varepsilon I^{*}$: If M is an integrable U_{K}-module, and $v \varepsilon M$, then $\dot{r}_{i}(1) X_{\alpha}(t) \dot{r}_{i}(-1) \cdot v=\sum_{m} t^{m} \dot{r}_{i}(1) \cdot\left(e_{\alpha}^{(m)}\right.$ Q1) $\cdot \dot{r}_{i}(-1) \cdot v$
$=\sum_{m} t^{m}\left(\operatorname{Adr}_{i}(1) \cdot\left(e_{\alpha}^{(m)}\right.\right.$ WI) $) \cdot v, \quad$ by $\left.a\right)$,
$=\sum_{m} t^{m}\left(\dot{r}_{i} \cdot e_{\alpha}^{(m)} \mathbb{Q}\right) \cdot v \quad$, by the definition of \dot{r}_{i},
$=\sum_{m} t^{m} k_{i, \alpha^{m}} e_{r_{1}}^{(m)} \alpha^{(\mathbb{L} 1 . v}$
$=X_{r_{i}}\left(k_{i, \alpha} t\right) \cdot v$.
As $\left.X_{r_{i} \alpha}\left(k_{i, \alpha}\right)^{t}\right)=X_{r_{i} \alpha}\left(-k_{i, \alpha}\right)^{-1}$, we obtain

$$
\dot{r}_{i}(I) x_{\alpha}(t) \dot{r}_{i}(-I)=x_{r_{i}}(\pm t) \text {, as needed. }
$$

proof of d): it is a priori clear that $\left(H_{i}, H_{i}\right)=1$. Now assume that M is an integrable module as in 1.11 , so that for all $v \varepsilon M, v=\sum_{\lambda} v_{\lambda}{ }^{\mathbb{K}} t_{\lambda}$, with $v_{\lambda} \varepsilon U_{z} \cdot v^{+} n M_{\lambda}, t_{\lambda} \varepsilon K$. We know that $H_{i}(s) \cdot v=\sum_{\lambda}^{\lambda} s^{\left\langle\lambda, \alpha_{i}\right\rangle} v_{\lambda}{ }^{区} t_{\lambda}$, so that if $1 \leq i \leq N$, and s_{i}, s_{j} are elements of K, then

$$
=\sum_{-1} v_{\lambda} \mathbb{} t_{\lambda_{t}}=v
$$

and hence $H_{i}\left(s_{i}\right) H_{j}\left(s_{j}\right) H_{i}\left(s^{-1}\right) H_{j}\left(s_{j}^{-1}\right) \varepsilon I_{0}^{*}$.
The proof that $H_{i}\left(s_{i}\right) H_{j}\left(s_{j}\right) H_{i}\left(s_{i}^{-1}\right) H_{j}\left(s_{j}^{-1}\right) \varepsilon I_{I}^{*}$ is similar, and as we already know that $H_{k}\left(s^{-1}\right)=\mathrm{H}_{\mathrm{k}}(\mathrm{s})^{-1}$, we obtain $\left(H_{i}, H_{j}\right)=1$ in G, for all i, j.

To prove e), we keep the notation of d), and find that

$$
\begin{aligned}
H_{i}(t) X_{\alpha}(s) H_{i}\left(t^{-1}\right) \cdot v & =\sum_{m} H_{i}(t) \cdot e_{\alpha}^{(m)} \mathrm{m}^{m} \cdot H_{i}\left(t^{-1}\right) \cdot v \\
& =\sum_{m}\left(\operatorname{AdH}_{i}(t) \cdot\left(e_{\alpha}^{(m)} \otimes s^{m}\right)\right) \cdot v
\end{aligned}
$$

Now $U_{0}(K)$ acts by the image character of m on $e_{\alpha}^{(m)}$ Ms ${ }^{m}$ so that, using 1.11, $\operatorname{AdH}_{i}(t) \cdot\left(e^{(m)} s^{m}\right)=t^{\left\langle m \alpha, \alpha_{i}^{\nabla}\right\rangle} e^{(m)} \sin ^{m}$

$$
=e_{\alpha}^{(\mathbb{m})} \mathbb{Q}\left(t^{\left\langle\alpha, \alpha_{i}^{v}\right.}\right)^{\mathrm{V}} .
$$

Plugging this expression back into the equation above, one finds that

$$
\begin{aligned}
H_{i}(t) X(s) H_{i}\left(t^{-1}\right) \cdot v & =\sum_{m} e_{\alpha}^{(m)}\left(t^{\left\langle\alpha, \alpha_{i}^{v} s\right.}\right)^{m} \cdot v \\
& =X_{\alpha}\left(t^{\left\langle\alpha, \alpha_{i}^{V}\right\rangle} s\right) \cdot v, \text { as needed. }
\end{aligned}
$$

Proof of f): As each M_{i} is generated by $\dot{r}_{i}(1)$ and $H_{i}, M / H$
is generated by the images under the quotient maps of $\left\{\dot{r}_{i}(1), 1 \leq i \leq N\right\}$, and a classical computation shows that $\dot{r}_{i}(1)^{2} \varepsilon H_{i}$, so that each generator of M / H has order 2 . Now fix $i \neq j$, and assume that m_{ij} is finite, so that the matrix $A_{i j}=\left(\begin{array}{cc}2 & a_{i j} \\ a_{j i} & 2\end{array}\right)$ is a Carton matrix in the usual sense. We wish to check that

To this end, let $a_{i j}$ be the subalgebra of $g_{Q}(A)$ generated by $\left\{e_{i}, e_{j}, f_{i}, f_{j}\right\} ;$ letting $\Sigma_{i j}$ be the positive root system $\Delta^{+}\left(a_{i j}, Q \alpha_{i}^{V}+Q \alpha_{j}^{V}\right), a_{i j}$ 区C is the Lie algebra associated to the matrix $A_{i j}$ and has $\left\{e_{\lambda}, f_{\lambda}, \lambda \varepsilon \Sigma_{i j}\right\} U\left\{\alpha_{i}^{V}, \alpha_{j}^{V}\right\}$ for Chevalley basis. Order the set $\Sigma_{i j}$, say $\Sigma_{i j}=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. Then the Kostant z-form $U_{i j}$ of the universal envelope of $a_{i j}$ बC has z-basis $\left\{f_{\lambda}^{\left(p_{1}\right)} \ldots f_{\lambda_{n}}^{\left(p_{n}\right)}\left(\lambda_{1}^{V}\right)\left({ }_{q_{2}}^{V}\right) e_{\lambda_{1}}^{\left(r_{1}\right)} \ldots e_{\lambda_{n}^{\left(r_{n}\right)}}^{\left(q_{n}\right.}\right.$, and $u_{i j} \subset u_{z}$ by 1.9.
Now let $R_{i j}$ be the left hand side of 2.5 , and $f i x ~ 1 \leq k \leq N$, seN. As each e_{λ} and f_{λ} act locally nilpotently on U_{Z}, the $a_{1 j} \mathbb{M C}$ - module ad $U_{i j} \cdot e_{k}^{(s)}$ is finite dimensional. Let $G_{i j}$ be the associated Chevalley group (with respect to the lattice ad ${ }_{i j} \cdot e_{k}^{(s)}$) over K, and let $\tilde{G}_{i j}$ be the group gene-
 $\widetilde{G}_{i j} \epsilon_{G}{ }_{i j}$. If $\widetilde{R}_{i j}$ is the image of $R_{i j}$ in $\tilde{G}_{i j}$, we then know ([S3]) that $\tilde{R}_{i j}=1$, hence $\operatorname{AdR}_{i j} \cdot e_{k}^{(s)} \boxtimes 1=e_{k}^{(s)}$. One proves similarly that $A d R_{i, j}$ fixes the remaining generators $f_{k}^{(s)}$, and we obtain $R_{i j} \varepsilon I_{1}^{r}$. On the other hand if $v^{+} \varepsilon M$ as in 1.11 and $u \varepsilon U_{Z}, t \varepsilon K$, we have

$$
\begin{aligned}
& =u \mathbb{Q} \cdot R_{i j}^{-1}\left(v^{+} \mathbb{Q}_{1}\right) \text {. }
\end{aligned}
$$

One shows that $R_{i j} v^{+} \mathbb{W}=v^{+} \$ 1$ as above (using the Chevalley group with respect to the finite dimensional module $U_{i j} \cdot v^{+}$) hence $R_{i j} \cdot v=v$ for all $v \varepsilon U_{Z} \cdot v^{+} \mathbb{}$, so that $R_{i j} \varepsilon I_{0}^{*}$, and the
proof of 2.5 is now complete.
If $m_{i j}$ is odd, 2.5 implies that
$\underbrace{\dot{r}_{i}(1) \dot{r}_{j}(1) \ldots \dot{r}_{i}(1) \dot{r}_{j}(1) \dot{r}_{i}(1)} \cdot \underbrace{\dot{r}_{j}(1) \dot{r}_{i}(1) \ldots \dot{r}_{j}(1) \dot{r}_{i}(1) \dot{r}_{j}(1)}$
$m_{i j}$ terms $m_{i j}$ terms
$=\underbrace{\dot{r}_{j}(1) \dot{r}_{i}(1) \ldots \dot{r}_{j}(1) \dot{r}_{i}(1) \dot{r}_{j}(1)} \dot{r}_{j}(1) \dot{r}_{i}(1) \ldots \dot{r}_{j}(1) \dot{r}_{i}(1) \dot{r}_{j}(1)$,
$m_{i j}$ terms
$m_{i j}$ terms
and the right hand side is in H because $\dot{\mathrm{r}}_{i}(1)^{2} \varepsilon H$ and each $\dot{r}_{i}(1)$ normalizes H, so the equation gives

$$
\left(\dot{r}_{i}(1) \dot{r}_{j}(1)\right)^{m_{j}} \varepsilon H,
$$

and similarly if $m_{i j}$ is even then $\left(\dot{r}_{i}(1) \dot{r}_{j}(1)\right)^{m_{i j}} \varepsilon H$. Writing $R_{i}=\dot{r}_{i}$ (1)H $\varepsilon M / H$, we have proved that M / H is generated by $\left\{R_{1}, \ldots R_{N}\right\}$, and that these satisfy

$$
\left\{\begin{array}{l}
R_{i}^{2}=1, \\
\left(R_{i} R_{j}\right)^{m}{ }_{i j=1} \text { if } i \neq j, m_{i j}<\infty .
\end{array}\right.
$$

By the definition of W, one obtains a surjective homomorphism $\Psi: W \rightarrow M / H$, with $\Psi\left(r_{i}\right)=R_{i}$. We check that Ψ is $1-1$: let $w \in W-\{1\}$ have reduced expression ${ }^{w=r_{i_{1}}} \cdots r_{i_{k}}$, and choose $i_{0} \varepsilon[1, N]$ such that $w \alpha_{i_{0}} \varepsilon \Delta_{-}^{r e}$: then $\operatorname{Ad}\left(\dot{r}_{i_{1}}(1) \ldots \dot{r}_{i_{k}}(1)\right) \cdot\left(e_{i_{o}}\right.$ ($) \notin K e_{i_{0}}$, hence there exists no h in H such that $\dot{r}_{i_{1}}(1) \ldots \dot{r}_{i_{k}}$ (I)h εI_{1}^{*},
so \dot{r}_{i} (1) $\ldots \dot{r}_{i}$ (I)\&H. so $\dot{r}_{i_{1}}$ (1) $\ldots \dot{r}_{i_{k}}$ (1)\&H.
As $\dot{r}_{i_{1}}(1) \ldots \dot{r}_{i_{k}}(1) H=\Psi(w)$, this shows that $\Psi(w) \neq 1$.
And this completes the proof of f) and of 2.1 .
In the proof above, we used the fact that each $\dot{r}_{j}(1)$ normalizes H. In fact, if $s \varepsilon K^{x}$, one has

$$
\dot{r}_{j}(1) h_{i}(s) \dot{r}_{j}(-1)=h_{i}(s) h_{j}\left(s^{-a} i j\right),
$$

a formula which can be easily checked using 2.1a) as before.
Remark: Let's write z_{λ} for x_{λ} if $\bar{\lambda} \Delta_{+}^{r e}$,

$$
\mathrm{y}_{\lambda} \text { if } \lambda \varepsilon \Delta_{-}^{\mathrm{re}}
$$

Assume that $\alpha \neq \beta \in \Delta^{r e}, \alpha+\beta \neq 0$, let $S=((N \alpha+N \beta) \cap \Delta)-\{\alpha, \beta\}$, and assume that $S c \Delta^{\text {re }}$ and that S is finite.
Then one can show as in 2.1b) and [S2] that there exists integers c_{i} such that for all $s, t \varepsilon K$,

$$
\left(z_{\alpha}(s), z_{\beta}(t)\right)=\prod_{n_{i} \alpha+m_{i} \beta \varepsilon S} z_{n_{i} \alpha+m_{i} \beta}\left(c_{i} s^{n_{i_{t}} m_{i}}\right)
$$

the product taken in the ordering $n_{i} \alpha+m_{i} \beta<n_{j} \alpha+m_{j} \beta$ iff $n_{i}+m_{i}<n_{j}+m_{j}$ or $n_{i}+m_{i}=n_{j}+m_{j}$ and $n_{i}<n_{j}$.
Let us now fix i and write $U^{\alpha_{i}}$ for the subgroup of U_{+}generated by all elements of the form $x y x^{-1}$ with $\left.x \varepsilon x_{\alpha_{i}}, y \varepsilon y_{\beta}, \beta \varepsilon \Delta_{+}^{r} e^{-} \alpha_{i}\right\}$.
2.6 Proposition: ([PKI])

$$
U_{+}=x_{\alpha_{i}} \times U^{\alpha_{i}}
$$

proof:
Suppose $\beta \varepsilon \Delta_{+}^{r e}-\left\{\alpha_{i}\right\}$, and let $\varepsilon=\left\{\begin{array}{l}1 \text { if }\left\langle\alpha_{i}, \beta^{\mathrm{v}}\right\rangle \geq 0, \\ -1 \text { if }\left\langle\alpha_{i}, \beta^{\mathrm{v}}\right\rangle<0\end{array}\right.$
so that $\varepsilon<\alpha_{i}, \beta^{\mathrm{v}}>\geq 0$.
We now show that there exists a subset S of $\Delta_{+}^{r e}-\left\{\alpha_{i}\right\}$ such that

$$
\text { if } \varepsilon=1, \quad\left(x_{\alpha_{i}}, x_{\beta}\right) \prod_{\lambda \varepsilon S} x_{\lambda},
$$

and if $\varepsilon=-1,\left(y_{\alpha_{i}}, x_{\beta}\right) \prod_{\lambda \varepsilon S} x_{\lambda}$.
Indeed let $S=\left(N \varepsilon \alpha_{i}+N B\right) \Delta-\left\{\varepsilon \alpha_{i}, \beta\right\}$. Then S clearly does not contain α_{i}; now let $\lambda_{n, m}=\left(n \varepsilon \alpha_{i}+m \beta\right), n, m \varepsilon N$, and assume that $\lambda_{\mathrm{n}, \mathrm{m}} \varepsilon \Delta$: then either $\varepsilon=-1, \mathrm{n}=1$, and $\mathrm{m}=0$, in which case
$\lambda_{n, m}=-\alpha_{i}$, or $\lambda_{n, m} \varepsilon_{+}$; assume that the latter is true, and
let r_{β} be the reflexion in the real root β : we have
$\mathrm{r}_{\beta} \lambda_{\mathrm{n}, \mathrm{m}}=\mathrm{n} \varepsilon \alpha_{i}-\underbrace{\left(\mathrm{n}^{\varepsilon<\alpha_{i}}, \beta^{\mathrm{v}>+\mathrm{m}}\right)}_{>0} \beta$
, so $r_{\beta} \lambda_{n, m}>0$.
Therefore $\lambda_{\mathrm{n}, \mathrm{m}} \varepsilon\left\{\lambda \varepsilon \Delta_{+} \mid \mathrm{r}_{\beta} \lambda<0\right\}$;
Hence $S \subset\left\{\lambda \varepsilon \Delta_{+} \mid r_{\beta} \lambda<0\right\}$, a set which is finite and which consists entirely of real roots ([K3]). By the remark made
above，there exist integers $c_{n, m}$ such that if $\varepsilon=1$ ，then for all $s, t \subset K,\left(x_{\alpha_{i}}(s), x_{\beta}(t)\right)=\prod_{\lambda_{n, m}} \varepsilon S x_{\lambda_{n, m}}\left(c_{n, m} s^{n} t^{m}\right)$ ，and if．$\varepsilon=-1$ ， then for all $s, t \in K,\left(y_{\alpha_{i}}(s), x_{\beta}(t)\right)=\prod_{\lambda_{n, m}} \varepsilon S x_{\lambda_{n, m}}\left(c_{n, m} s^{n} t^{m}\right)$ ．
（Note that in case A is symmetrizable，i．e．for some cia－ gonal matrix D，D．A is symmetric，Kaど and Peterson show that $c_{n, m}=0$ if $n m \neq 1$（［PK2］），and one computes $c_{1,1}$ as in 2．1b））．

Suppose now that．${ }^{<\alpha}, \beta_{i}{ }^{\mathrm{V}}>\geq 0$ ：we then have $\dot{r}_{i}(I) x_{i}(t) x_{\beta}(s) x_{\alpha}(-t) \dot{r}_{i}(-I)=\dot{r}_{i}(I)\left(x_{\alpha_{i}}(t), x_{\beta}(s)\right) \dot{r}_{i}(-1)$.
which，by the result above lies in $U^{\alpha_{i}}$ ， while if $\left\langle\alpha_{i}, \beta^{v}\right\rangle\left\langle 0\right.$ ，and $t \varepsilon K^{x}$ ，we have

$$
\dot{r}_{i}(1) x_{\alpha}(t) x_{\beta}(s) x_{\alpha}(-t) \dot{r}_{i}(-I)=H_{i}(u) \dot{r}_{i}(-t) x_{\alpha_{i}}(t) x_{\beta}(s) x_{\alpha}(-t) .
$$

where u is chosen so that $\dot{r}_{i}(-t)=\dot{r}_{i}(1) H_{i}(u)^{-1}$ ，

$$
\dot{\mathrm{r}}_{i}(\mathrm{t})^{1} \mathrm{H}_{i}(\mathrm{u})^{-1}
$$ $=H_{i}(u) x_{\alpha_{i}}^{(-t)}\left(y_{\alpha_{i}}^{\left(t^{-1}\right)}, x_{\beta}(s)\right) x_{\beta}(s) x_{\alpha_{i}}^{(t)} H_{i}(u)^{-1}$ ，which is again in $U^{\alpha_{i}}$（using 2．1e））．This shows that $\dot{r}_{i}(1)$ normalizes $U^{\alpha_{i}}$ ． It is clear from the definition of $U^{\alpha} i$ that $x_{\alpha_{i}}$ normalizes it，and if $g \varepsilon x_{\alpha_{i}} \cap U^{\alpha_{i}}$ ，then $\dot{r}_{i}(1) g \dot{x}_{i}(-1) \cdot v^{+}{ }^{+}=v^{+}{ }^{+}$for all $\mathrm{v}^{+} \varepsilon \mathrm{M}$ as in 1.11 because $\dot{r}_{i}(1) g \dot{r}_{i}(-1)$ lies in $y_{\alpha_{i}} \cap U^{\alpha}{ }_{i}$ which is contained in U_{+}；but the only element of $y_{\alpha_{i}}$ that fixes all such $v^{+} 区 1$ is $y_{\alpha_{i}}(0)=1$ ，so $\dot{r}_{i}(1) g \dot{r}_{i}(-1)=1$ ，i．e．$g=1$ and we must have

$$
x_{\alpha_{i}} \cap U^{\alpha_{i}}=1
$$

Let＇s note that，in fact，$U^{\alpha}{ }_{i}=U_{+} \cap \dot{r}_{i}(1) U_{+} \dot{r}_{i}(-1)$ ：indeed， $\dot{r}_{i}(1) U_{+} \dot{r}_{i}(1)=\left(y_{\alpha_{i}} \times U^{\alpha_{i}}\right)$ by 2.6 ，hence

$$
U^{\alpha i_{i}}=U_{+} \cap \dot{r}_{i}(1) U_{+} \dot{r}_{i}(-1),
$$

while if $g=x_{\alpha_{i}}(t) g^{\prime} \varepsilon U_{+}$（with $g^{\prime} \varepsilon U^{\alpha_{i}}$ ，$t \varepsilon K$ ）is in $U_{+} n_{i}(1) U_{+} \dot{r}_{i}(-1)$ ，
then $\dot{r}_{i}(1) x_{\alpha_{i}}(t) g^{\prime} \dot{r}_{i}(-1) \varepsilon U_{+}$, i.e. $y_{\alpha_{i}}(-t) \dot{r}_{i}(1) g^{\prime} \dot{r}_{i}(-1) \varepsilon U_{+}$, so $t=0$, hence $g=g^{\prime}$, so $U_{+} n \dot{r}_{i}(1) U_{+} \dot{r}_{i}(-I) \in U^{\alpha_{i}}$, as needed.

We conclude this section by defining subgroups B_{ε} by $B_{\varepsilon}=H U_{\varepsilon}$, for $\varepsilon= \pm 1$, and observing that

2.7 Proposition:

a) $U_{-} \cap B_{+}=I$
b) If $G(K)$ carries a Frobenius map F as above, then $\mathrm{FB}_{\varepsilon} \in \mathrm{B}_{\varepsilon}, \mathrm{FH} \propto \mathrm{H}$, and $\dot{\mathrm{r}}_{\mathrm{i}}(1) \varepsilon G(\mathrm{~K})^{\mathrm{F}}$ for all i.
proof:
 in $U_{g_{0}} \cdot v^{+}{ }^{2} K$ for all $v^{\dagger} \varepsilon M$ as in 1.11 , then $g=1$, whereas if g

b) is clear.

Example 2: Suppose $\mu \varepsilon \Delta_{+}^{r e}$, say $\mu=w \alpha_{k}$, and let $\mu_{m}=w r_{k} \alpha_{m} \varepsilon \Delta_{+}^{r e} ; \mu$ and μ_{m} are 'zdjacent' roots. Let's show that x_{μ} and $x_{\mu_{m}}$ must then commute:

If $i, j \varepsilon \mathbb{N}$, then $r_{k} W^{-1}\left(i \mu_{m}+j \mu\right)=i \alpha_{m}-j \alpha_{k}$, and $i \mu_{m}+j \mu$ is
a root if and only if $r_{k} w^{-1}\left(i \mu_{m}+j \mu\right)$ is one; however the right hand side is neither in Δ_{+}nor in Δ_{-}unless i or j is zero. Hence $N \mu_{m}+\mathbb{N} \mu \cap \Delta_{+}=\left\{\mu_{m}, \mu\right\}$, so $x_{\mu}, x_{\mu_{m}}$ commute by 2.1b).

Section 3 : The Bruhat decomposition and Schubert cells

We have seen that if $w \in W$ has reduced expression $w=r_{i} \ldots r_{i}$, and X, Y are subgroups of G such that $H \subset X$ and H normalizes Y, then one may define subsets $w X, W^{-1}$ of G by requiring that

$$
\begin{aligned}
& w X=\left\{\dot{r}_{i_{1}}^{\left.(1) \ldots \dot{r}_{i_{k}}^{(1) x}, x \varepsilon X\right\},}\right. \\
& w Y w-1=\left\{\dot{r}_{i_{1}}^{\left.(1) \ldots \dot{r}_{i_{k}}^{(1) y \dot{r}_{i_{k}}}(-1) \ldots \dot{r}_{i_{1}}^{(-1)}, y \varepsilon Y\right\}}\right.
\end{aligned}
$$

so that if $w=w_{1} w_{2}$ with $w_{i} \varepsilon W$, then $w X=w_{1}\left(w_{2} X\right)$ and $w W^{-1}=w_{1}\left(w_{2} Y w_{2}^{-1}\right) w_{1}^{-1}$ whenever these expressions make sense : indeed, if w_{1} has reduced expression $r_{m} \ldots r_{m_{j}}$ and $w_{2}=r_{n_{j}+1} \ldots r_{k}$ then as in 2.1f) one has $\Psi(w)=\Psi\left(w_{1}\right) \Psi\left(w_{2}\right)$, hence for some $h \varepsilon H, \dot{r}_{i_{1}} \ldots \dot{r}_{i_{k}}=\dot{r}_{m_{1}} \ldots \dot{r}_{n_{k}} h$.

Using this notation, one can define for each w\&W a subset $\mathrm{B}_{+}{ }^{\mathrm{wB}}{ }_{+}$ of G, and we shall now show that
3.1 Proposition : (see [PK2])

$$
G=\bigcup_{w \varepsilon W} B_{+} w B_{+}=\bigcup_{w \varepsilon W} B_{-} w B_{+}
$$

The proof of these decompositions will be carried out in stages: the decomposition itself is proved in 3.1-3.7 and uniqueness is established by 3.11.

In what follows, we fix w\&W, $w=r j_{1} \ldots r_{j}$ a reduced expression, and write $\underline{w}=\dot{r}_{j}(1) \ldots \dot{r}_{j}(1)$.

Assume now that $g \varepsilon w B_{+} r_{i}$, for some i, so that $g=w h x_{\alpha_{i}}(t) g_{o} \dot{r}_{i}(1)$, with heH, $t \varepsilon K, g_{o} \varepsilon U^{\alpha_{i}}$;
3.2 If $w \alpha_{i} \varepsilon \Delta_{+}$, then $W_{\alpha_{i}}(t) \dot{r}_{i}(1)=x_{w \alpha_{i}}^{(s) w \dot{r}_{i}}$ (1) for some $\leq \varepsilon K$,
hence $g=\left(\underline{w h w}^{-1}\right) \underline{w x}_{\alpha_{i}}(t) \dot{r}_{i}(1)\left(\dot{r}_{i}(-1) g_{o} \dot{r}_{i}(1)\right)$

$$
=h^{\prime} x_{w \alpha_{i}}^{(s) \underline{w r}_{i}^{\prime}(1) g_{0}^{\prime} \quad \text { with } h \cdot \varepsilon H, g_{0}^{\prime} \varepsilon U_{+}, ~}
$$

i.e. $g \varepsilon B_{+}{ }^{W r_{i}}{ }^{B}+$,
whereas

$$
=x_{-w \alpha_{i}}(s) x_{\alpha_{i}}(t) h_{o} \text { with } \varepsilon \varepsilon K
$$

hence $g=\left(\underline{w h w}^{-1}\right) \underline{w x}_{\alpha_{i}}(t) \dot{r}_{i}(1)\left(\dot{r}_{i}(-1) g_{o} \dot{r}_{i}(1)\right)$

$$
=h^{\prime} x_{-w \alpha_{i}}^{(s) x_{\alpha_{i}}(t) h_{0} g_{0}^{\prime} \text {, with } h \cdot \varepsilon H, g_{0}^{\prime} \varepsilon U_{+}, ~}
$$

i.e. $g \varepsilon B_{+}{ }^{W B}+$ -

One concludes that $B_{+} w B_{+} r_{i} B_{+} \subset B_{+} \ddot{W} B_{+} U B_{+} r_{i} B_{+}$, so that, by induction on n, if $w^{\prime}=r_{i} \ldots r_{i n}$ with length $\left(w^{\prime}\right)=n$, then
3.4 $\left(B_{+} w B_{+}\right) \cdot\left(B_{+}{ }^{\prime} B_{+}\right) \in B_{+}{ }^{w B_{+}} U \bigcup_{S} B_{+} w r_{i} \ldots r_{s_{m}} B_{+}$
where the second union is taken over all m-tuples ($r_{s_{1}} \ldots r_{s_{m}}$) with $s_{1}<\ldots<s_{n}, \underline{m \leq n}$.
Hence $\bigcup_{w \varepsilon W} B_{+} w B_{+}$is a subgroup of G. Moreover, $x_{\alpha} \subset B_{+} \subset \bigcup_{W \varepsilon W} B_{+} w B_{+}$, for all $\alpha \varepsilon \Delta_{+}^{r e}$, while if $w_{\beta} \varepsilon W$ is the reflexion in the positive real root β, then $y_{\beta}=w_{\beta} x_{\beta} w_{\beta}^{-1} \subset\left(B_{+} w_{\beta} B_{+}\right) \cdot\left(B_{+} w_{\beta} B_{+}\right)$, so that $\bigcup_{w \varepsilon W} B_{+} w B_{+}$contains all y_{β} as well. Since the family $\left\{\mathrm{x}_{\alpha}, \alpha \varepsilon \Delta_{+}^{\mathrm{re}}\right\} \cup\left\{\mathrm{y}_{\alpha}, \alpha \varepsilon \Delta_{+}^{r e}\right\}$ generates G, this establishes the Bruhat decomposition $G=\bigcup_{w \in W} B^{W}{ }^{W}+$.
We now show that $G=\bigcup_{W \varepsilon W} B{ }^{w B_{+}}$(the Birkhoff decomposition as in [KP2]): With w as before, assume $g=w h x_{\alpha_{i}}(t) g_{o} \dot{r}_{i}(1) \varepsilon w B_{+} r_{i}$.
3.5 If $w \alpha_{i} \varepsilon \Delta_{-}$, then $\underline{w x}_{\alpha_{i}}(t) \dot{r}_{i}(1)=h_{0} y_{-w \alpha_{i}}(s) \underline{r_{i}} \dot{i}_{i}(1)$, with $h_{o} \varepsilon H$, s εK,
hence $g=\left(\underline{w h} \underline{w}^{-1}\right) h_{o} y_{-w \alpha_{i}}^{i}(s) \underline{\dot{r}}_{i}(1)\left(\dot{r}_{i}(-1) g_{o} \dot{r}_{i}(1)\right)$,
i.e. $g \varepsilon B_{-} w{ }_{i}{ }^{B_{+}}$,
whereas
3.6 If $w \alpha_{i} \varepsilon \Delta_{+}$, $t \neq 0$, then $w x_{\alpha_{i}}(t) \dot{r}_{i}(1)=w y_{\alpha_{i}}^{\left(t^{-1}\right) x_{\alpha_{i}}(t) h_{0}, h_{o} \varepsilon H}$

$$
=y_{w \alpha_{i}}(s) w x_{\alpha_{i}}^{(t)} h_{0}, s \in K
$$

hence $g=\left(\underline{w h w}^{-i}\right) y_{w \alpha}(s) \underline{w} x_{\alpha_{i}}(t) h_{o}\left(\dot{r}_{i}(-1) g_{o}^{i} \dot{r}_{i}(1)\right)$,
i.e. g ع $\mathrm{B}_{-} \mathrm{wB}_{+}$;

One concludes that $B_{-} w B_{+} r_{i} B_{+} \subset B_{-} w B_{+} U B_{-} w r_{i} B_{+}$, and, by induction on $n=$ length $\left(w^{\prime}\right)$, if $A=\bigcup_{w \in W} B_{-} w B_{+}$, and $g \subseteq B_{+} w^{\prime} B_{+}$, then AgeA. As $G=\bigcup_{w \in W} B_{+} w B_{+}$ we see that the subset A of G is invariant under right-translation by
G, hence $A=G$ as stated above.
Let $\Phi(w)=\left\{\alpha \varepsilon \Delta_{+}^{r e} \mid w^{-1} \alpha<0\right\}$. One can then prove by induction on k ([K3]) that $\Phi(w)=\left\{\alpha_{j_{1}}, r_{j_{1}} \alpha_{j_{2}}, \ldots, r_{j} \ldots r_{j_{k-1}} \alpha_{k}\right\}$. Let $U_{w}=U_{+} n w U_{-} w^{-1}$. 3.7 Proposition:

Given $g \varepsilon U_{w}$, then for every $\beta \varepsilon \Phi(w)$, there is a unique $t_{\beta} \varepsilon K$ such that

$$
g=\prod_{\beta \varepsilon \Phi(w)}^{I} x_{\beta}\left(t_{\beta}\right)
$$

the product being taken in the ordering of $\Phi(w)$ as above.
proof:
This is clear if $\left.w=r_{i}, 1 \leq i \leq N, b y 2.1 c\right)$. Proceeding by induction on length(w), we assume the result known for $w^{\prime}=r_{j} \ldots{ }_{2} j_{k}$
and compute, for $w=\mathrm{r}_{1} \mathrm{w}^{\prime}$,
$U_{W}=U_{+} n r_{j_{1}}{ }^{W^{\prime} U_{-} W^{\prime}}{ }^{-1} r_{j_{1}}{ }^{-1} r_{j_{1}}\left(r_{j_{1}}{ }^{-1} U_{+} r_{j} \cap w^{\prime} U_{-} w^{\prime-1}\right) r_{j_{1}}{ }^{-1}$

$$
=r_{j_{1}}\left(y_{\alpha_{j_{1}}} \times U^{\alpha_{j}} n_{1} U_{-} U_{-}{ }^{-1}\right) r_{j_{1}}
$$

Now $w^{\prime-1} \alpha_{j_{1}}=-w^{\prime-1} r_{j_{1}}{ }^{-1} \alpha_{j_{1}}=-w^{-1} \alpha_{j_{1}}>0$ because $\alpha_{j_{1}} \varepsilon \Phi(w)$, hence 1) $U^{\alpha} j_{1} n_{w^{\prime}} U_{-} w^{\prime}{ }^{-1}=U_{+} \cap w^{\prime} U_{-} w^{\prime-1}=U_{w^{\prime}}$,
and 2) $y_{\alpha_{j_{1}}} \subset w^{\prime} U_{-} w^{-1}$.
So for all $g \varepsilon U_{w}, g=\dot{r}_{j_{1}}(1)\left(y_{\alpha_{j}}(v) \prod_{\lambda \varepsilon \Phi\left(w^{\prime}\right)}^{\Pi} x_{\lambda}\left(v_{\lambda}\right)\right) \dot{r}_{j_{1}}^{(-1)}$
for some uniquely determined v 's in K,

$$
\begin{aligned}
& =x_{\alpha}^{j_{1}}(s) \cdot \prod_{\lambda \varepsilon \Phi\left(w^{\prime}\right)} x_{r_{j} \lambda}\left(s_{\lambda}\right), \text { with } s_{\star} \varepsilon K, \\
& =\prod_{\beta \varepsilon \Phi(w)} x_{\beta}\left(t_{\beta}\right) .
\end{aligned}
$$

In particular, U_{w} is 'isomorphic' to $\mathrm{K}^{1 \mathrm{eng} t h(\mathrm{w})}$, the k -fold product of K . In fact,

3.8 Proposition:

U_{w} is, in a natural way, a unipotent algebraic group
proof:
Indeed, let n_{w} be the subspace of n_{+}spanned by $\left\{e_{\alpha}, \alpha \varepsilon \Phi(w)\right\}$. If $\alpha, \beta \in \Phi(w)$, and $i, j \varepsilon N$, then $w^{-1}(i \alpha+j \beta)=i w^{-1}(\alpha)+j w^{-1}(\beta)$ is negative, hence if $i \alpha+j \beta$ is a root, it must lie in $\Phi(w)$ (a fortiori, it must then be real). This implies that n_{w} is a Lie algebra, and moreover that if $n_{\mathrm{w}}^{(\mathrm{m})}$ is the m-th component of the central series of n_{w}, then (using the principal gradation as in 1.11)

$$
n_{w}^{(m)} c \sum_{j \geq m} u_{j}
$$

So if $M=1+\max \{$ length $(\lambda), \lambda \varepsilon \Phi(w)\}$, then on one hand $n_{w}^{(M)}$ is contained in n_{w} and $n_{w} \cap \sum_{j \geq M} u_{j}=0$, while in fact $n_{w}^{(M)}$ is contained in $\sum_{j>M} U_{j}$. Hence $n_{w}^{(M)}=0$, and n_{w} is a nilpotent Lie algebra.
One also concludes from the above that $N \alpha+N \beta \cap \Delta_{+}=N \alpha+N \beta \cap \Delta_{+}^{r e}$ is finite and contained in $\Phi(w)$ for any $\alpha, \beta \varepsilon \Phi(w)$, say $N \alpha+\mathbb{N} \beta \cap \Delta_{+}=\left\{i_{1} \alpha+j_{1} \beta, \ldots, i_{n} \alpha+j_{n} \beta\right\}$. Since we also know that each $e_{\alpha}, \alpha \varepsilon \Phi(w)$, spans over Z the root space $g_{\alpha} \cap U_{z}$, one can show as in 2.1 b) that there exist integers $a_{i_{m}}, j_{m}$ such that

$$
\left(x_{\alpha}(r), x_{\beta}(s)\right)=\prod_{m=1}^{n} x_{i_{m} \alpha+j_{m} \beta}\left(a_{i_{m}}, j_{m} r^{i_{m}}{ }^{j_{m}}\right)
$$

for all $r, s \in K$.
Let $\pi: K^{k} \rightarrow U_{W}$ be the bijection

$$
\pi\left(t_{1}, \ldots t_{k}\right)=x_{\alpha}^{j_{1}}\left(t_{1}\right) \ldots x_{r_{j}} \ldots r_{j_{k-1} j_{k}}\left(t_{k}\right)
$$

as in 3.7; the above then shows that the map
$\left(\left(t_{1}, \ldots, t_{k}\right),\left(s_{1}, \ldots, s_{k}\right)\right) \mapsto \pi^{-1}\left(\pi\left(t_{1}, \ldots, t_{k}\right)^{-1} \pi\left(s_{1}, \ldots, s_{k}\right)\right)$ is a morphism of affine k-space, hence π induces a structure of algebraic group on U_{w}. The fact that U_{w} is unipotent follows from the nilpotence of n_{w} as above.
Letting U^{W} be the subgroup of U_{+}generated by $\left\{a x_{\beta} a^{-1}, a \varepsilon U_{W}\right.$, and $\left.\beta \varepsilon \Delta_{+}^{r e}-\Phi(w)\right\}$, we see that U_{w} normalizes U^{W}, and, by 3.7 , that $U_{W} U U^{W}$
contains all the generators of U_{+}, so $\mathrm{U}_{+}=\mathrm{U}_{\mathrm{w}} \cdot \mathrm{U}^{\mathrm{W}}$. One can then show by induction on length(w) as in 2.6 and 3.7 that $W^{-1} U^{W} W \in U_{+}$, from which one deduces that in fact $U^{W}=U_{+} n_{W U_{+}}{ }^{-1}$.

Before going on to more geometric considerations, let's now complete the proof of 3.1 by establishing the disjointness of the various cosets on question:
3.9 Fix $\Lambda, L(\Lambda)=L, \mathrm{v}^{+} \varepsilon L_{\Lambda}$ as in 1.10 , with Λ chosen such that if $\sigma \varepsilon W$ satisfies $\sigma \Lambda=\Lambda$, then $\sigma=1$. If $q \varepsilon N$, then 1.11 implies that

$$
\sum_{\lambda} \quad L_{\lambda}=\left(a \cdot \mathrm{v}^{+}\right) \mathbb{Q},
$$

height $(\Lambda-\lambda) \leq q$
where a is the Z-submodule of $U_{\text {_ }}$ spanned by all x with degree $(x) \leq q$ (the gradation being again the principal gradation). Given a field K , if
 ment of $\left(I_{w \lambda} \cap U_{z} \cdot v^{+}\right)$酸. We can therefore assert that for all $g \varepsilon B_{+}{ }^{w B_{+}}$, $\mathrm{g} \cdot \mathrm{v}^{+}=\mathrm{tv} \mathrm{w}_{\mathrm{w}}+\sum \mathrm{v}_{\lambda}{ }^{\boxed{ } t_{\lambda}}$, for some $\mathrm{t} \varepsilon \mathrm{K}^{\times}, \mathrm{t}_{\lambda} \varepsilon \mathrm{K}$ depending on g , the sum being over all λ with height $(\Lambda-\lambda)<$ height $(w \Lambda)$, with $v_{\lambda} \varepsilon U_{z} \cdot v^{+} \cap L_{\lambda}$.

If $w^{\prime} \varepsilon W$ has length less than w, say $w^{\prime}=r_{i} \ldots r_{i}$ with $n \leq k$, then $g^{\prime}=\dot{r}_{i_{1}}(1) \ldots \dot{r}_{i_{n}}^{(1)}$ is in $B_{+} w^{\prime} B_{+}$, and $g^{\prime} \cdot v^{+}{ }_{Q 1=}{ }_{w^{\prime}}^{1}$ which cannot be put in the form $t v_{W}+\sum v_{\lambda}{ }^{W} t_{\lambda}$ with $t \neq 0$. This shows that $B_{+}{ }^{\prime} B_{+} \not B_{+}{ }^{W B_{+}}$. As both sets are $B_{+}-$double cosets, they are either equal or disjoint; hence the latter is true.

One proves similarly that $B_{-}{ }^{w B_{+}}=B_{-} w^{\prime} B_{+}$if and only if $w=w^{\prime}$, and the decompositions 3.1 are now completely proved. In particular, 3.10

$$
G / B_{+}=\bigcup_{w \in W} C(w)=\bigcup_{w \varepsilon W} C^{\prime}(w)
$$

where $C(w), C^{\prime}(w)$ are the images in G / B_{+}of $B_{+} w B_{+}, B_{-} w B_{+}$respectively.
We also know that
3.11 Proposition : ([PK2])
the group U_{w} acts simply transitively (by left translation) on $C(w)$
proof:
Indeed, if $b w B_{+} \varepsilon C(w)$, then $b=u_{1} u_{2} h$, with $u_{\perp} \varepsilon U_{w}, u_{2} \varepsilon U^{w}$,
so that $b w B_{+}=u_{1} \underbrace{\frac{\left(\underline{w}^{-1} u_{2} \underline{w}\right)\left(\underline{w}^{-1} h w\right)}{} B_{+}}_{\varepsilon U_{+}}$

$$
=\mathrm{u}_{1} \mathrm{wB}_{+} \text {, }
$$

while if $u_{1} w B_{+}=w B_{+}$, then $\underline{w}^{-1}{u_{1}}^{w} \varepsilon B_{+} \cap U_{-}=1$, so $u_{1}=1$.
In particular, each $C(w)$ is 'isomorphic' to U_{w}.
We now proceed to refine the decompositions 3.1 by decomposing $C(w)$ itself as follows ([Dh]):

Given $u \varepsilon U_{w}$, and $0 \leq i \leq k=1$ ength (w), let σ_{i} be the unique element of W such that $u \dot{r}_{j_{1}}(1) \ldots \dot{r}_{j_{i}}(1) \varepsilon B_{-} \sigma_{i} B_{+}$, and write $\eta(u)=\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{k}\right) \varepsilon W^{k+1}$. Note that σ_{o} is always 1 , since $u=1.1 . u \varepsilon B_{-} B_{+}$. Let us now prove 3.12 Proposition : the sequence $\eta(u)$ satisfies $\sigma_{i} \varepsilon\left\{\sigma_{i-1}, \sigma_{i-1} r_{j}\right\}$,
for all i.
proof:
Fix $i \geq 1$, and write $w_{i}=r_{j} \ldots r_{j}, w_{i}=\dot{r}_{j}(1) \ldots \dot{r}_{j}(1)$. We then know that there are elements $b_{i} \varepsilon B_{-}, u_{i+1} \varepsilon U_{w_{i+1}}, v_{i+1} \varepsilon U^{w_{i}^{-1} 1}$ such that
3.13

$$
u \underline{w}=b_{i} \sigma_{i} u_{i+1} \underline{w}_{i+1} v_{i+1}
$$

This is so because $u{ }_{i}{ }_{i}^{-1}=b_{i} \sigma_{i} b_{+}$where $b_{+}=u_{i+1} u_{i+1}^{\prime}$ for some $u_{i+1} \varepsilon U_{w_{i+1}}, u_{i+1}^{\prime} \varepsilon U^{w_{i}+1}$, and we obtain 3.11 by writing $v_{i+1}=w_{i+1}^{-1} u_{i+1}^{\prime} w_{i+1} \quad \varepsilon w_{i+1}^{-1} U^{w_{i+1}} w_{i+1}=U^{w_{i+1}^{-1}}$. Applying 3.11 to the index $i-1$, we see that

$$
\begin{aligned}
b_{i} \sigma_{i} u_{i+1} \underline{w}_{i+1} v_{i+1} & =b_{i-1} \sigma_{i-1} u_{i} w_{i} v_{i} \\
& =b_{i-1} \sigma_{i-1} u_{i} \dot{r}_{j}(1) w_{i+1} v_{i}
\end{aligned}
$$

hence $\quad b_{i} \sigma_{i}{ }_{i+1}{ }^{w}{ }_{i+1}\left(v_{i+1} v_{i}^{-1}\right){ }^{-1}{ }_{i+1}=b_{i-1}{ }^{\sigma}{ }_{i-1} u_{i} \dot{r}_{j}(1)$;
The left-hand-side is in $B_{-} \sigma_{i}{ }^{B}$, while the right-hand-side is in $B_{-} \sigma_{i-1}{ }^{B}+r_{j}$. By $3.5 \& 3.6$, if $\sigma_{i-1} \alpha_{j_{i}}<0$, then
3.14 $B_{-} \sigma_{i-1}{ }^{B_{+} r}{ }_{j} C_{i}{ }^{B}-\sigma_{i-1} r_{j}{ }_{i}{ }^{B}$, while if $\sigma_{i-1} \alpha_{j_{i}}>0$, then
 so by disjointness in 3.1, $\sigma_{i} \varepsilon\left\{\sigma_{i-1}, \sigma_{i-1} r_{j_{i}}\right\}$.
Let us now define (as in [Dh2]) the subset $D \subset W^{k+1}$ by requiring
$D=\left\{\sigma=\left(\sigma_{0}, \ldots, \sigma_{k}\right) \mid \sigma_{0}=1, \sigma_{i} \varepsilon\left\{\sigma_{i-1}, \sigma_{i-1} r_{j}\right\}\right.$ and $\sigma_{i} \leq \sigma_{i-1} r j_{i}$ for all i\}. where \leq is the Bruhat order in the Coxeter group W. We will need the following facts about S (see e.g. [D]) :

1) If $y \leq w$, then $y=r_{i_{1}} \ldots r_{i_{n}}$, for some $i_{1}<\ldots<i_{n}, i_{m} \varepsilon\left\{j_{1}, \ldots, j_{k}\right\}$
2) If $w \alpha_{i}>0$, then $w \leq r_{i}$.

To see that for all $u \varepsilon_{U_{w}}, \eta(u) \in D$, we still need to check that $\sigma_{j}<\sigma_{j-1}{ }^{r} j_{i}$. If $\sigma_{j}=\sigma_{j-1}{ }^{r} j_{i}$, this is obvious, while if $\sigma_{j}=\sigma_{j-1}$, 3.14 implies that $\sigma_{j-1} \alpha_{j_{i}}>0$, hence $\sigma_{j-1} \leq \sigma_{j-1} r_{j}$ by 2) above. We thus obtain $a \operatorname{map} \eta: U_{W} \rightarrow D$.

Now define, for each $\sigma \varepsilon D$, a subset D_{σ} of $C(w)$ by setting

$$
D_{\sigma}=\left\{u w B_{+} \varepsilon C(w), \text { where } u \varepsilon U_{w} \mid \eta(u)=\sigma\right\}:
$$

By 3.11, D_{σ} is well-defined, and we have $C(w)=\bigcup_{\sigma \varepsilon D} D_{\sigma}$. Also, if $p \varepsilon C(w)$, say $p=u w B_{+}$, then $p=b_{-} \sigma_{k} u_{k+1} \underline{w}_{k+1} v_{k+1} B_{+}=b_{-} \sigma_{k} u_{k+1} v_{k+1} B_{+}$as $w_{k+1}=1$, so $p \varepsilon C^{\prime}\left(\sigma_{k}\right)$, where $\left(\sigma_{o}, \ldots, \sigma_{k}\right)=\eta(u)$, hence $D_{\sigma} \mathcal{C} C^{\prime}\left(\sigma_{k}\right)$.

One knows that $\sigma_{k}<w$, for all $\left(\sigma_{0}, \ldots, \sigma_{k}\right) \varepsilon D$ ([Dhl]), so that we also have
3.15 $C(w) \cap C^{\prime}(y)=\bigcup_{\sigma \varepsilon D}^{\sigma_{k}=y} 1 D_{\sigma}$, for all $y \varepsilon W$ (in particular, $C(w) \cap C^{\prime}(y)$
is empty if $\mathrm{y} \not \mathrm{\not} \mathrm{w})$.
To study the subsets D_{σ} in more detail, we put an algebraic structure on $C(w)$ by requiring the 'isomorphism' 3.11 to be an isomorphism of varieties. Note that if char $K=p \neq 0$, the Frobenius $F: G(K) \rightarrow G(K)$ factors to G / B_{+}, and that the isomorphism just described 'commutes' with F.

Fix $\sigma \varepsilon D$. Then for each i, one knows that either $\sigma_{i-1}>\sigma_{i}$, or $\sigma_{i-1}<\sigma_{i}$, or $\sigma_{i-1}=\sigma_{i}$. Set

$$
K_{\sigma, i}=\left\{\begin{array}{cl}
k & \text { if } \sigma_{i-1}>\sigma_{i} \\
\{0\} & \text { if } \sigma_{i-1}<\sigma_{i} \\
K^{\times} & \text {if } \sigma_{i-1}=\sigma_{i}
\end{array}\right.
$$

and define $f_{i}: K_{\sigma, i} \times U_{w_{i+1}} \longrightarrow U_{w_{i}}$ by $\quad f_{i}\left(t, u_{i+1}\right)=x_{\alpha_{j}}(t) \dot{r}_{j_{i}}(1) \tilde{u}_{i+1} \dot{r}_{j}{ }_{i}(1)$, where $\tilde{u}_{i+1}=u_{i+1}$ if $\sigma_{i-1} \neq \sigma_{i}$, while if $\sigma_{i-1}=\sigma_{i}, \tilde{u}_{i+1}$ is the element of
$U_{w_{i+1}}$ satisfying $\left.x_{\alpha}{\underset{j}{i}}^{t^{-1}}\right) u_{i+1}=\tilde{u}_{i+1} v_{i+1}$ with $v_{i+1} \varepsilon U^{w_{i+1}}$ (see[Dh2]).
One can show, as in [Dh2], that f_{i} is injective, Imf_{i} is locally closed in $U_{W_{i}}$, and f_{i} is an isomorphism onto its image. In fact,

Defining the set $\mathrm{V}_{1}(\sigma)$ inductively by letting $\mathrm{V}_{\mathrm{k}+1}(\sigma)=1 \subset \mathrm{U}_{\mathrm{w}_{\mathrm{k}}}$, and writing $V_{i}(\sigma)=f_{i}\left(K_{\sigma, i} \times V_{i+1}(\sigma)\right) \subset U_{w_{i}}$, we see that $V_{1}(\sigma) \subset U_{W_{1}}=U_{w}$, and one can show as in [Dh2] that

$$
\mathrm{V}_{1}(\sigma) \cdot \mathrm{wB}_{+}=\mathrm{D}_{\sigma}
$$

Letting $m(\sigma)=\#\left\{i \mid \sigma_{i-1}>\sigma_{i}\right\}$, and $n(\sigma)=\sharp\left\{i \mid \sigma_{i-1}=\sigma_{i}\right\}$, we can identify the Dheodar components D_{σ} explicitely, namely
3.16

$$
D_{\sigma} \simeq K^{m(\sigma)} \times\left(K^{\times}\right)^{n(\sigma)}
$$

For $1 \leq i \leq k$, define subgroups B_{i}, P_{i} of G by letting $B_{0}=B_{+}$,

$$
B_{i}=w_{k-i+1}^{-1} B_{o} w_{k-i+1}
$$

and $P_{i}=$ subgroup of G generated by B_{i} and B_{i-1}.
As $B_{o}=B_{+}$, one can easily check, using $3.2 \& 3.3$, that $P_{1}=B_{0} \cup B_{o} r_{j} b_{k}{ }_{0}$ so, in particular, $\dot{r}_{j_{k}}(1) \varepsilon P_{1}$, so we can also write

i.e. P_{1} is a standard parabolic subgroup of semisimple rank 1 in case G is finite dimensional.

To obtain similar decompositions for P_{i}, $i \geq 2$, let $\beta_{i}=w_{k-i+2}{ }^{-1} j_{k-i+1}$ so that if s_{i} denotes reflexion in the positive real root β_{i}, then $s_{i}=w_{k-i+2}^{-1} r_{j-i+1} w_{k-i+2} \varepsilon W$. Write $s_{i}=w_{k-i+2}^{-1} \dot{r}_{j_{k-i+1}} \quad(1) w_{k-i+2} \varepsilon G$. By induction on i, we have $B_{i}=s_{i} B_{i-1} s_{i}^{-1}$.

We now prove, again by induction on i, that $y_{\beta_{i}}, x_{\beta_{i+1}} \subset B_{i}$:

This is true for $i=1$ by 3.17 . Assuming $x_{\beta_{i}}{ }^{\varepsilon B_{i-1}}$, we get $s_{i} x_{\beta_{i}}{ }_{i}^{-1} \subset B_{i}$, and $s_{i} x_{\beta_{i}} s^{-1}=y_{\beta_{i}}$, while the definition of B_{i} implies that $w_{k-i+1}^{-1} x^{1} \alpha_{j_{k-i}} w_{k-i+1}$ is contained in B_{i}, and $w_{k-i+1}^{-1} x_{\alpha_{j-i}}{ }_{w_{k-i+1}}=x_{w_{k-i+1}-1} \alpha_{j_{k-i}}=x_{\beta_{i+1}}$.

Since P_{i} is generated by B_{i-1}, B_{i}, we obtain in particular that both $x_{\beta_{i}}$ and $y_{\beta_{i}}$ are contained in P_{i}; hence $\underline{s}_{i}=w_{k-i+2}^{-1} \dot{j}_{k-i+1} \quad(1) w_{k-i+2}$, which is equal to $x_{\beta_{i}}^{(a)} y_{\beta_{i}}^{(b)} x_{\beta_{i}}^{(a)}$ for some $a, b \varepsilon K$, is an element of P_{i}. We can now prove that
3.18 Proposition :

$$
B_{i+1} \subset B_{i} \bigcup^{B_{i}} s_{i+1} B_{i}
$$

proof:
Indeed, 3.18 can be rewritten
$s_{i+1} w_{k-i+1}^{-1} B_{o} w_{k-i+1} s_{i+1}^{-1} C w_{k-i+1}^{-1}\left(B_{0} \bigcup B_{o} w_{k-i+1} s_{i+1} w_{k-i+1}^{-1} B_{o}\right) w_{k-i+1}$
which is equivalent to
$w_{k-i+1} s_{i+1} w_{k-i+1}{ }^{-1} B_{0} w_{k-i+1} s_{i+1}^{-1} w_{k-i+1}^{-1} \subset B_{0} \cup^{B_{0}} w_{k-i+1} s_{i+1} w_{k-i+1}^{-1} B_{o}$, and, since $w_{k-i+1} s_{i+1} w_{k-i+1}^{-1}=w_{k-i+1} s_{i+1}^{-1} w_{k-i+1}^{-1}=r_{j_{k-i+2}}$, this. inclusion is true by $3.2,3.3$ as above.

Note that one consequence of 3.18 is that $B_{i} \cup B_{i} s_{i+1} B_{i}$ is equal to $w_{k-i+1}^{-1}\left(B_{+} U^{B_{+}}{ }^{r} j_{k-i+2^{+}}^{B^{\prime}}\right) w_{k-i+1}$, and is itself a group, hence
$3.19 \quad P_{i+1}=B_{i} \cup B_{i}{ }^{s} i+1 B_{i}$
and that $B_{+} U^{B_{+}} r^{r} j_{k-i+2}^{B_{+}}=r_{j_{k-i+2}}\left(r_{j_{k-i+2}}^{B_{+}} U^{U} y_{\alpha_{j_{k-i+2}}}^{\left.B_{+}\right)}\right.$, so that, conjugating each term by w_{k-i+1}^{-1}, we also have

$$
P_{i+1}=s_{i+1} B_{i} \cup y_{\beta_{i+1}} B_{i} .
$$

We will use the following notation : if A is a group acting on the set B on the right and on the set C on the left, let $B \times{ }^{A} C=B \times C / \sim$, where \sim is the equivalence $(b, c) \sim\left(b a, a^{-1} c\right)$. If B, C are themselves groups, and A is a subgroup of both with the action being that induced by multiplication, then B (respectively C) acts on $B X^{A} C$ on the left (resp. right) by multiplication. Finally, if B and C are in addition themselves subgroups of D, we get $a \operatorname{map} B \times{ }^{A} C \rightarrow D$ satisfying (b, c) $\mapsto b, c$.

Using this construction repeatedly, we let Z_{w} be the set (see [D1])

$$
Z_{w}=P_{k} x^{B_{k-1}} P_{P_{k-1}} x^{B_{k-2}} P_{k-2} \ldots \times^{B} P_{P_{1}} / B_{o}
$$

and $f_{w}: Z_{w} \rightarrow G / B_{+}$the map $f_{w}\left(p_{k}, \ldots, p_{1}\right)=w . p_{k} \cdots p_{1} B_{+} \cdot$
The remainder of this section will be devoted to showing that Z_{w} admits a natural geometric struture in which it is a complete variety of pure dimension $k=$ length (w), that $f_{w}\left(Z_{w}\right)=\bigcup_{y<w} C(y)$, and using this, to put a geometric structure on $\bigcup_{y \leq w} C(y)$ compatible with the one we alredy have on $C(y)$.

So we assume K is algebraically closed :
If we fix i and let P be the 'parabolic' subgroup of $G, P=B_{+} U^{B}+{ }^{r} j_{k-i+\frac{1}{2}} \quad{ }^{B}$,

$$
=r_{j_{k-i+2}} B_{+} \cup y_{\alpha_{j_{k-i+2}}} B_{+}=A^{j_{k-i+2}}{ }_{\alpha U} j_{k-i+2}
$$

and therefore that $P / B_{+}=A A_{k-i+2}^{j_{k-i+2}} H_{j_{k-i+2}} \quad x_{j_{k}} \simeq P^{1}$, in such a way that if $\pi_{1}: K \rightarrow P / B_{+}, \pi_{1}(s)=y_{\alpha_{j_{k-i+2}}}(s) B_{+}$, and $\pi_{2}: K \rightarrow P / B_{+}, \pi_{2}(t)=x_{\alpha_{j_{k-i+2}}}(t) r_{j_{k-i}} \quad{ }^{B}{ }_{2}$ then each π_{i} is an isomorphism onto its image, and $\left\{\pi_{1}(K), \pi_{2}(K)\right\}$ forms. a cover by open affine lines of the projective line P / B_{+}(note that $3.20 \quad \pi_{1}(s)=\pi_{2}(t)$ if and only if $s t=1$).

Conjugating by $\underline{w}_{k-i+2}^{-1}$, we identify P_{i+1} / B_{i} with \mathbb{P}^{1} using 3.19 , so that the maps
defined by $\quad \pi_{1}^{i}(t)=y_{\beta_{i+1}}^{(t) B_{i}}, \pi_{2}^{i}(t)=x_{\beta_{i+1}}^{(t) s_{i+1} B_{i}}$
give the identification. We can now describe the geometric structure on Z_{w} by exhibiting it as a successive fibration by projective lines:

One starts with $Z_{w}^{1}=P_{k} / B_{k-1}$, covered by the open affines $\operatorname{Im} \pi_{1}^{k-1}$,
$\operatorname{Im\pi } 2_{2}^{k-1}$. Define $g_{1}: z_{w}^{2}=P_{k} \times B_{k-1} P_{k-1} / B_{k-2} \rightarrow z_{w}^{1}$ by $g_{1}\left(\overline{p_{k}, P_{k-1} B_{k-2}}\right)=p_{k} B_{k-1}$, where $\left(\overline{p_{k}, P_{k-1} B_{k-2}}\right)$ denotes the image in $P_{k} \times B_{k-1} P_{k-1} / B_{k-2}$ of the element $\left(p_{k}, p_{k-1} B_{k-2}\right)$ of $P_{k} \times P_{k-1} / B_{k-2}$. Fixing some $z \in z_{w}^{1}$, we see that if
$z \varepsilon \operatorname{Imf}{ }_{1}^{k-1}$, then there exists a unique $t \varepsilon K$ such that $z=y_{\beta_{k}}(t) B_{k-1}$. Define $\nu_{1}: g_{1}^{-1}(z) \rightarrow P_{k-1} / B_{k-2} \simeq \mathbb{P}^{1}$ by $\nu_{1}\left(\overline{P_{k}, P_{k-1} B_{k-2}}\right)=y_{\beta_{k}^{(-t)}} p_{k} P_{k-1} B_{k-2}$, which is in P_{k-1} / B_{k-2} because $y_{\beta_{k}}(-t) p_{k} \varepsilon B_{k-1}$; similarly, if $z \varepsilon \operatorname{Im} r_{2}^{k-1}$, then there exists a unique $t \varepsilon K$ such that $z=x_{\beta_{k}}(t){\underset{s}{k}} B_{k-1}$, and we define $\nu_{2}: g_{1}^{-1}(z) \rightarrow$ P_{k-1} / B_{k-2} by $\nu_{2}\left(\overline{p_{k}, P_{k-1} B_{k-2}}\right)=s_{k}^{-1} x_{\beta_{k}}^{(-t)} p_{k} P_{k-1} B_{k-2}$. It is easy to see that both ν_{1} and ν_{2} are well-defined and surjective. We check that ν_{1} is 1-1: If $\nu_{1}\left(\overline{p_{k}, P_{k-1} B_{k-2}}\right)=\nu_{1}\left(\overline{p_{k}^{\prime}, p_{k-1}^{\prime} B_{k-2}}\right)$, then $p_{k-1} B_{k-2}=\left(p_{k}^{-1} p_{k}^{\prime}\right) p_{k-1}^{\prime} B_{k-2}$, $p_{k}=p_{k}^{\prime}\left(p_{k}^{-1} p_{k}^{\prime}\right)^{-1}$, and $\left.p_{k}^{-1} p_{k}^{\prime}\right) \varepsilon B_{k-1}$, so $\left(\overline{p_{k}, p_{k-1} B_{k-2}}\right)=\left(\overline{p_{k}^{\prime}, p_{k-1}^{\prime} B_{k-2}}\right)$. And one shows similarly that ν_{2} is $1-1$. Hence the maps

$$
\left(g_{1} \times \nu_{i}\right): g_{1}^{-1}\left(\operatorname{Im} i_{i}^{k-1}\right) \rightarrow \operatorname{Im}_{i}^{k-1} \times \mathbb{P}^{1} \text {, for } i \varepsilon\{1,2\}
$$

are bijective, and we put a geometric structure on $\mathrm{g}_{1}^{-1}\left(\mathrm{Imm}{ }_{i}^{k-1}\right.$) by requiring these maps to be isomorphisms, so that

$$
g_{1}^{-1}\left(I m \pi_{i}^{k-1}\right)=\left(I m \pi_{i}^{k-1} \times \operatorname{Im} \pi_{1}^{k-2}\right) \cup\left(I m \pi_{i}^{k-1} \times I m \pi_{2}^{k-2}\right)
$$

is a covering by open affine sets.
As $Z_{W}^{2}=\bigcup_{i, j \in\{1,2\}}\left(g_{1} \times \nu_{i}\right)^{-1}\left(\operatorname{Im} \pi_{i}^{k-1} \times \operatorname{Im} \pi_{j}^{k-2}\right)$, we will obtain a structure of prevariety on Z_{W}^{2} provided we check that the structures on the sets $V_{j, j^{\prime}}=\left(g_{1} \times \nu_{1}\right)^{-1}\left(\operatorname{Im} \pi_{1}^{k-1} \times \operatorname{Im} \pi_{j}^{k-2}\right) \cap\left(g_{1} \times \nu_{2}\right)^{-1}\left(\operatorname{Im} \pi_{2}^{k-1} \times \operatorname{Im} \pi_{j}^{k-2}\right)$, for $j, j^{\prime} \varepsilon\{1,2\}$, inherited respectively from those on $\left(g_{1} \times \nu_{1}\right)^{-1}\left(\operatorname{Im} \pi_{1}^{k-1} \times \mathbb{P}^{1}\right)$ and on $\left(\mathrm{g}_{1} \times \nu_{2}\right)^{-1}\left(\operatorname{Im} \pi_{2}^{k-1} \times \mathbb{P}^{1}\right)$ are compatible, which we do by showing that the map $\tau_{j, j}$, making the diagram

$$
\begin{aligned}
& v_{j, j} \xrightarrow{\left(g_{1} \times \nu_{1}\right)}\left(\operatorname{Im} \pi_{1}^{k-1} n \operatorname{Im} \pi_{2}^{k-1}\right) \times\left(\operatorname{Im} \pi_{j}^{k-2} n \operatorname{Im} \pi_{j^{\prime}}^{k-2}\right) \\
& \downarrow \text { Id } \\
& v_{j, j}^{\prime} \xrightarrow[\left(g_{1} \times \nu_{2}\right) .]{\left(\operatorname{Im} \pi_{1, j}^{k-1} \cap \operatorname{Im} \pi_{2}^{k-1}\right) \times\left(\operatorname{Im} \pi_{j}^{k-2} n \operatorname{Im} \pi_{j}^{k-2}\right)}
\end{aligned}
$$

commute is a morphism, and this follows from the fact that $s_{k}^{-1} x_{\beta_{k}}^{(-1 / t) y_{\beta_{k}}^{(t)}=w_{-}^{-1} h_{j_{1}}(-\varepsilon t) x_{\beta_{k}}^{(1 / t)} \text {, that left multiplication by } x_{\beta_{k}} .}$ fixes P_{k-1} / B_{k-2} pointwise, and that $W_{2}^{-1} H_{j} w_{1}$ acts by morphism on the projective line P_{k-1} / B_{k-2} (see 2.1, 2.6).
(Intuitively, this says that the 'fibration' $\mathrm{z}_{\mathrm{w}}^{2} \rightarrow \mathrm{z}_{\mathrm{w}}^{1}$ is locally trivial over the sets $\operatorname{Im} \pi_{i}^{k-1}$).

We finally note that, as $s_{k-1}^{-1} B_{k-1} s_{k-1} \varepsilon B_{k-2}$, we also have a welldefined map $h_{1}: z_{w}^{1} \rightarrow z_{w}^{2}$, given by $h_{1}\left(p_{k} B_{k-1}\right)=\left(p_{k}, s_{k-1} B_{k-1}\right)$, and satisfying $g_{1} \mathrm{Oh}_{1}=\mathrm{Id}_{\mathrm{z}_{\mathrm{w}}}$.

Repeating the construction above inductively, we obtain fibrations $g_{i-1}: z_{w}^{i}=P_{k} \times^{B_{k-1}} P_{k-1} \times \ldots \times^{B_{k-i}+1_{P_{k-i+1}} / B_{k-i}} \longrightarrow z_{w}^{i-1}$, with fibres equal to $p_{k-i+1} / B_{k-i} \simeq \mathbb{P}^{1}$, sections $h_{i-1}: z_{w}^{i-1} \leftrightarrow z_{w}^{i}$ given by $h_{i-1}(\bar{z})=\left(z, s_{k-i+1} B_{k-i}\right)$ where \bar{z} denotes the image in z_{w}^{i} of an element z of $P_{k} \times{ }^{B_{k}}-1_{P_{k-1}} \times \ldots \times{ }^{B_{k-i}-1_{P_{k-i-1}}}$, and such that
3.21

$$
z_{w}^{i}=\bigcup_{n_{j}} \bigcup_{\{1,2\}} U_{\left(n_{k}, \ldots, n_{k-i+1}\right)}^{i}
$$

is a covering by open affines, with $U_{\left(n_{k}, \ldots, n_{k-i+1}\right)}^{i}=\left\{z \varepsilon Z_{w}^{i}\right.$ such that for some $t_{k}, \ldots, t_{k-i+1} \varepsilon K, \quad z=\left(\overline{p_{k}\left(t_{k}\right), \ldots, p_{k-i+1}\left(t_{k-i+1}\right) B_{k-i}}\right)$ where $p_{j}\left(t_{j}\right)=y_{\beta_{j}}\left(t_{j}\right)$ if $n_{j}=1$, and $p_{j}\left(t_{j}\right)=x_{\beta_{j}}\left(t_{j}\right) s_{j}$ if $n_{j}=2$. \} which is isomorphic to $\operatorname{Im} \pi_{n_{k}}^{k-1} \times \operatorname{Im} \pi_{n_{k-1}}^{k-2} \times \ldots \times \operatorname{Im} \pi_{n_{k-i+1}}^{k-i}$, for $1 \leq i \leq k$.

One can now check by induction on i that the images under the restriction maps of $O\left(U_{\left(n_{k}\right.}^{i}, \ldots, n_{k-i+1}\right)$ and $O\left(U_{\left(n_{k}^{\prime}\right.}^{i}, \ldots, n_{k-i+1}^{\prime}\right)$ generate $O\left(U_{\left(n_{k}\right.}^{i}, \ldots, n_{k-i+1}\right) U^{i}\left(n_{k}^{\prime}, \ldots, n_{k-i+1}^{\prime}\right)$), so that z_{w}^{i} is a variety, that each $h_{i_{i}}$ is a morphism, and hence that z_{W}^{i} is indeed a fibration by \mathbb{P}^{1} over $\mathrm{Z}_{\mathrm{w}}^{\mathrm{i}}{ }^{-1}$; in particular, each $\mathrm{Z}_{\mathrm{w}}^{i}$ is projective.

$$
\text { If } z \varepsilon U_{(1, \ldots, 1)}^{k} \subset z_{w}^{k}=z_{w} \text {, then } f_{w}(z)=w_{\beta_{k}}\left(t_{k}\right) y_{\beta_{k-1}}\left(t_{k-1}\right) \ldots y_{\beta_{1}}^{\left(t_{1}\right) B_{+}} \text {, }
$$

for some $t_{j} \varepsilon K$,

Now $w \beta_{i}=-r_{j} \ldots r_{j_{k-i}} \alpha_{k-i+1}$, so $w y_{\beta_{i}}{ }^{w-1}=x_{r_{j}} \ldots r_{j_{k-i} j_{k-i+1}}^{\alpha}$, hence by 3.7 we have $f_{w}(z) \varepsilon U_{w} w B_{+}=C(w)$. A1so, using 2.1c), 3.7, and 3.21 , we see that $\left.f_{w}\right|_{U^{k}}$ gives an isomorphism of varieties 3.22

$$
U_{(1, \ldots, 1)}^{k} \simeq C(w)
$$

To determine the set $X_{W}=\operatorname{Im} f_{w} \subset G / B_{+}$，we first show that 3．23 Proposition ：

There exists a subset E_{W} of W such that
1）If $y \leq w$ ，then $y \in E_{w}$ ．
2）$X_{w}=\bigcup_{y \in E_{W}} C(y)$ ．
proof：
Suppose $g B_{+}=f_{w}\left(\overline{P_{k}, \ldots, P_{1} B_{o}}\right)$ for some $g \varepsilon G, P_{i} \varepsilon P_{i}$ ，and let $b \varepsilon B_{+} ;$ we then have

$$
\begin{aligned}
f_{w}\left(\underline{w}^{-1} b w p_{k}, p_{k-1}, \ldots, p_{1} B_{0}\right) & =w w^{-1} b p_{k} \cdots p_{1} B_{+} \\
& =b \cdot f_{w}\left(\overline{\left.p_{k}, \ldots, p_{1} B_{o}\right)}\right. \\
& =b g B_{+} ;
\end{aligned}
$$

This implies that X_{W} is a union of B_{+}orbits in G / B_{+}，i．e． $X_{W}=\bigcup_{y \in E_{w}} C(y)$ ，for some subset E_{w} of W ．
Given a sequence $k>i_{1}>i_{2}>\ldots>i_{m}>1$ ，an easy computation

ie．if $y \varepsilon W$ ，then $y \leq w$ if and only if $y=w s_{i} \ldots s_{i}$ as above． Fix $y=w_{i} \ldots s_{i_{m}}$ ，and define the point \bar{y} in $^{1} Z_{w}$ by $\bar{y}=\left(\overline{p_{k}, \ldots, p_{p}}\right)$ where $p_{j}=s_{i}$ if $j=i_{n}$ ，and $p_{j}=1$ otherwise．We then have $f_{w}(\bar{y})={ }_{-w s_{i}} \ldots s_{i_{m}} B_{+}=y B_{+}$，hence $C(y) c X_{w}$.
Now fix $\Lambda, L(\Lambda)$ as in 3.9 ，write $L=U_{z} . v^{\dagger} \mathbb{K R}$ ，and for $q \in \mathbb{N}$

$$
\left.\mathrm{L}_{\mathrm{q}}=\sum_{\lambda}^{\text {height }(\Lambda-\lambda) \leq \mathrm{q}} \mathrm{z}^{\left(U \cdot \mathrm{v}^{+} \cap L(\Lambda)\right.} \lambda_{\lambda}\right) \mathbb{K}
$$

so that if $d_{q}=\operatorname{dim}_{K} L_{q}$ ，then $d_{q}^{<\infty}$ ．Let $\mathbb{P}(L)=L-\{0\} / K^{x}$ ，where K^{x} acts on L by scalar multiplication，let $v \rightarrow[v]$ be the quotient map，and let $\Psi: G / B_{+} \rightarrow \mathbb{P}(L)$ be the map $g B_{+} \rightarrow\left[g \cdot\left(v^{+} ⿴ 囗 十\right)\right.$ ：We then see that given $y \varepsilon W, \Psi(C(y)) \in \mathbb{P}\left(L_{q}\right) \simeq \mathbb{P}^{d_{q}}$ for $q=$ height $(\Lambda-y \Lambda)$ ，
$\Psi(C(y)) \notin \mathbb{P}\left(L_{q}\right)$ if $q<$ height $(\Lambda-y \Lambda)$ ，
and，similarly，for q large，$\Psi\left(X_{w}\right) \subset \mathbb{P}\left(L_{q}\right)$ ．
3．24 Proposition ：
proof:
Given $y \varepsilon W$, then by 3.4 , there exists a finite set $J_{y} \subset W$ such that $y^{-1} B_{+} y C_{y} \bigcup_{y^{\prime} \mathcal{J}_{y}} B_{+} y^{\prime} B_{+}$. Then, as in 3.9 ,

So if $\Psi\left(b_{1} y B_{+}\right)=\Psi\left(b_{2} y B_{+}\right)$, with $b_{i} \varepsilon B_{+}$, then $y^{-1} b_{2}^{-1} b_{1} y$ fixes $\left[\mathrm{v}^{+} \otimes 1\right]$, which by the above implies that $\mathrm{y}^{-1} \mathrm{~b}_{2}^{-1} \mathrm{~b}_{1} \mathrm{y} \varepsilon \mathrm{B}_{+}$, i.e. $\mathrm{b}_{1} \mathrm{yB}_{+}=\mathrm{b}_{2} \mathrm{yB}_{+}$. Hence $\left.\Psi\right|_{\mathrm{C}(\mathrm{y})}$ is injective. This, combined with
3.9, shows that Ψ is itself injective.

It is clear from the definition of G that $\Psi_{o f}{ }_{w} \pi_{n_{k}}^{k-1} \ldots \times \pi_{n_{1}}^{o}$ is a morphism from $\left.\left(\pi_{n_{k}}^{k-1} \times \ldots \times \pi_{n_{1}}^{o}\right)^{-1}\left(U_{\left(n_{k}, \ldots, n_{1}\right.}\right)\right) \simeq \mathbb{A}^{k}$ into $\mathbb{P}\left(L_{q}\right)$, hence $\Psi \circ f_{w}: Z_{w} \longrightarrow \mathbb{P}\left(L_{q}\right)$ is one (for q large enough). Z_{w} being complete, its image must be a closed subvariety of $\mathbb{P}\left(L_{q}\right)$. Since $\left.\Psi\right|_{X_{w}}$ is injective, we can thus put a geometric structure on X_{W} by requiring $\left.\Psi\right|_{X_{W}}=\left.\Psi\right|_{I_{m f}}$ to be an isomorphism onto its image, so that X_{W} is in fact a projective variety, $f_{w}: Z_{W} \longrightarrow X_{W}$ a morphism, and, by $3.22, C(w)=f_{w}(U(1, \ldots, 1)$ an open subvariety. We can now identify the set E_{w} as being $\{y \varepsilon W \mid y \leq w\}$ as follows:
3.25 Theorem:

The subgroup $H \simeq G_{m}^{k}$ of G acts by morphisms (by 2.1e)) on Z_{W} and X_{w}, the actions being given by

$$
\begin{aligned}
& \text { h. }\left(\overline{p_{k}, \cdots, p_{1} B_{+}}\right)=\left(\overline{\mathrm{hp}_{k}, \cdots, p_{1} B_{+}}\right) \\
& \text {h. byB }{ }_{+}=\text {whw }^{-1} \mathrm{byB}_{+},
\end{aligned}
$$

so that we have $h . f_{w}(z)=f_{w}(h . z)$ for all $z \varepsilon Z_{w}$, h εH. With the above action, H fixes all points $y_{B_{+}} \varepsilon X_{w}$, i.e. $y \varepsilon E_{w}$ because whw ${ }^{-1} y B_{+}=y y^{-1} \underline{w h w}^{-1} \mathrm{yB}_{+}$, and $y^{-1} \mathrm{wH}\left(\mathrm{y}^{-1} \mathrm{w}\right)^{-1} \subset \mathrm{~B}_{+}$. To compute the fixed points of H on Z_{W} (see [D1]), assume that for some $p_{i} \varepsilon P_{i},\left(\overline{h p_{k}, \ldots, p_{1} B_{+}}\right)=\left(\overline{p_{k}, \ldots, p_{1} B_{+}}\right)$for all heH. Then for each $h \in H$, there exists elements $b_{i}(h) \in B_{i}, 0 \leq i \leq k-1$, such that

$$
\text { 1) } h p_{k}=p_{k} b_{k-1}(h) \text {, }
$$

$$
\begin{aligned}
& \text { 2) } p_{k-1}=b_{k-1}(h)^{-1} p_{k-1} b_{k-2}(h), \\
& \vdots \\
& \text { k) } p_{1}=b_{1}(h)^{-1} p_{1} b_{o}(h)
\end{aligned}
$$

The first equality implies that $p_{k}^{-1} H p_{k} \subset B_{k-1}$, so that, using 3.19, $p_{k}=b_{k-1}$ or $s_{k-1} b_{k-1}$ for some $b_{k-1} \varepsilon B_{k-1}$. Let $p_{k}^{p}=p_{k} b_{k-1}^{-1}$, $p_{k-1}^{\prime}=b_{k-1} p_{k-1}$. Then

$$
\left(\overline{p_{k}^{\prime}, p_{k-1}^{\prime}, p_{k-2}, \ldots, p_{1} B_{+}}\right)=\left(\overline{p_{k}, p_{k-1}, \ldots, p_{1} B_{+}}\right),
$$

and equations 1) and 2) become
$\left.1^{\prime}\right) h p_{k}^{\prime}=p_{k}^{\prime} \cdot\left(b_{k-1} b_{k-1}(h) b_{k-1}^{-1}\right)$,
$\left.2^{\prime}\right) p_{k-1}^{\prime}=\left(b_{k-1} b_{k-1}(h) b_{k-1}^{-1}\right) p_{k-1}^{j} b_{k-2}(h)$.
The former implies that $b_{k-1} b_{k-1}(h) b_{k-1}^{-1} \varepsilon H$ (because $p_{k}^{\prime} \varepsilon\left\{1, \underline{s}_{k}\right\}$) and in fact takes on all possible values in H as h varies, so that 2^{\prime}) now implies that $p_{k-1}^{-1} \mathrm{Hp}_{\mathrm{k}-1} \mathrm{C}_{\mathrm{k}-2}$.
Repeating this process, we see that one actually has

$$
\left(\overline{p_{k}, \ldots, p_{1} B_{+}}\right)=\left(\overline{p_{k}^{\prime}, \ldots, p_{1}^{\prime} B_{+}}\right)
$$

with each $p_{i}^{\prime} \varepsilon\left\{1, \underline{s}_{i}\right\}$, so that the fixed points of H on Z_{w} are exactly the ($\overline{p_{k}^{\prime}, \ldots, p_{1}^{\prime} B_{+}}$) with $p_{i}^{\prime} \varepsilon\left\{1, \underline{s}_{i}\right\}$.
Suppose now that $y B_{+} \varepsilon X_{w}$. Then $f_{w}^{-1}\left(y B_{+}\right)$is a closed, nonempty, H-stable subset of Z_{w}. By the Borel fixed point theorem, $f_{w}^{-1}\left(y B_{+}\right)$must contain a fixed point of z_{w} under H, i.e. there exists a $\left(\overline{p_{k}^{\prime}, \ldots, p_{1}^{\prime} B_{+}}\right)$as above with $W_{k}^{\prime} \ldots p_{1}^{\prime}=y$, hence $\mathrm{y} \leq \mathrm{w}$.

Example 3: Suppose $w=r_{j} \ldots r_{j}$ with $j_{m} \neq j_{n}$ if $m \neq n$. Then U_{w} is abelian:
That is so because if $\alpha=r_{j} \ldots r_{j}{ }_{m} j_{m+1}$, and $\beta=r_{j_{1}} \ldots r_{j_{m+n}}{ }_{j}{ }_{m+n+1}$, then for any $a, b \varepsilon{ }^{2}, a \alpha+b \beta=r_{j} \ldots r_{j_{m}}\left(a \alpha_{j_{m+1}}+b r_{j_{m+1}} \ldots r_{j_{m+n}} \alpha_{m+n+1}\right)$

$$
=r_{j_{1}} \ldots r_{j_{m+1}}\left(b r_{j_{m+2}} \ldots r_{m+n} j_{m+n+1}-a \alpha_{j_{m+1}}\right)
$$

Now $w^{\prime}=r_{j_{m+2}} \ldots r_{m+n+1}$ is in reduced form, so $r_{j_{m+2}} \ldots r_{m+n}{ }^{\alpha} j_{m+n+1}$ is a positive real root, and is in the 2 -span of $\left\{\alpha_{j_{m}+2}, \ldots\right.$, $\left.\alpha_{j_{m+n+1}}\right\}$, hence $r_{j_{m+1}} \ldots r_{j_{1}}^{(a \alpha+b \beta)=b} \sum_{i=m+2}^{m+n+1} c_{i} \alpha_{j_{i}}-a \alpha_{j_{m+1}}$, with $c_{i} \varepsilon N$. If $a \alpha+b \beta$ is a root, then so is $r_{j_{m}+1} \ldots r_{j_{1}}(a \alpha+b \beta)$, but the right hand side is neither in Δ_{+}or in Δ_{-}if ab$\neq 0$; hence for all $\alpha, \beta \varepsilon \Phi(w), N \alpha+N \beta \cap \Delta_{+}$reduces to $\{\alpha, \beta\}$.
Example 4: let $w=\left(r_{1} r_{2}\right)^{3} r_{1}$ (reduced iff $m_{\frac{12}{3}}=\infty$ which we assume). Let $\lambda_{1}=\alpha_{1}, \lambda_{2}=r_{1} \alpha_{2}, \ldots, \lambda_{7}=\left(r_{1} r_{2}\right)^{\frac{1}{3}} \alpha_{1}$, and let $x_{i}=x_{\lambda_{i}}$; then U_{W} is the group $\left\{x_{1}\left(t_{1}\right) \ldots \ldots x_{7}\left(t_{7}\right), t_{i} \varepsilon K\right\}$ with the ${ }^{i}$
following commutation relations:
$\left(x_{1}\left(t_{1}\right), x_{3}\left(t_{3}\right)\right)=x_{2}\left(-a \delta_{b,-1} t_{1} t_{3}\right)$
$\left(x_{1}\left(t_{1}\right), x_{7}\left(t_{7}\right)\right)=x_{4}\left(a \delta_{b,-1} \delta_{a,-4} t_{1} t_{7}\right)$
$\left(x_{2}\left(t_{2}\right), x_{4}\left(t_{4}\right)\right)=x_{3}\left(-b \delta_{a,-1} t_{2} t_{4}\right)$
$\left(x_{3}\left(t_{3}\right), x_{5}\left(t_{5}\right)\right)=x_{4}\left(-a \delta_{b,-1} t_{3} t_{5}\right)$
$\left(x_{4}\left(t_{4}\right), x_{6}\left(t_{6}\right)\right)=x_{5}\left(-b \delta_{a,-1} t_{4} t_{6}\right)$
$\left(x_{5}\left(t_{5}\right), x_{7}\left(t_{7}\right)\right)=x_{6}\left(-a \delta_{b,-1} t_{5} t_{7}\right)$
where $a=a_{12}, b=a_{21}, \delta=$ Kronecker delta.
(in paritcular, the central series of U_{W} has length <2, and if $a_{12^{\neq-1}} \& a_{21} \neq-1$, then U_{w} is abelian).
Example 5: $w=\left(r_{1} r_{2}\right)^{3}$, which is in reduced form iff $m_{12}>6$.
If $m_{12}=\infty, U_{w}$ is the obvious subgroup of the unipotent group in example 4.
If $m_{12}=6$, say $a_{12}=-1, a_{21}=-3$, then U_{W} has central series of length $4\left(\operatorname{dim}_{W}=6, \operatorname{dim} U_{W}^{\prime}=4, \operatorname{dim} U_{w}^{(2)}=3, \operatorname{dim}_{W}^{(3)}=2, \& U_{W}^{(4)}=1\right)$

Example 6: $w=r_{1} r_{2} r_{3} r_{1}$ (note that X_{W} is singular for $S I_{n}$); then U_{W} is abelian unless
a) $a_{12}=a_{21}=0, a_{31}=-1$, and chark $\mid a_{13}$ in which case
or

$$
\left(U_{w}, U_{W}\right)=x_{r_{1} r_{2} \alpha_{3}} \subset \text { center }\left(U_{w}\right)
$$

b) $a_{13}=a_{31}=0, a_{21}=-1$, and chark $\ a_{12}$ in which case $\left(U_{W}, U_{W}\right)=x_{r_{1} \alpha_{2}} C$ center $\left(U_{W}\right)$.
Example 7: w=r $r_{1} r_{2} r_{3} r_{2} r_{1}$
Again X_{w} is singular for $S 1_{n}$, and the commutation relations in U_{W} reduce to

$$
\begin{aligned}
& \left(x_{r_{1} \alpha_{2}}(s), x_{r_{1} r_{2} r_{3} \alpha_{2}}(t)\right)=x_{r_{1} r_{2} \alpha_{3}}\left(-a_{23} \delta_{a_{32},-1} s t\right) \\
& \text { and }
\end{aligned}
$$

Example 8: Assume $m_{12} \neq 2$, and let $w=r_{1} r_{2} r_{1}$. The set E_{w} of 3.23 consists of $\tau_{1}=1, \tau_{2}=r_{1}, \tau_{3}=r_{2}, \tau_{4}=r_{2} r_{1}, \tau_{5}=r_{1} r_{2}, \tau_{6}=w$, while D has elements

	$\sigma^{0}=(1,1,1,1)$	$\sigma^{1}=\left(1, r_{1}, r_{1}, 1\right)$	$\sigma^{2}=\left(1,1,1, r_{1}\right)$
$m(\sigma)=$	0	1	0
$n(\sigma)=$	3	1	2
$\sigma_{3}=$	τ_{1}	τ_{1}	τ_{2}
		$\sigma^{3}=\left(1,1, r_{2}, r_{2}\right)$	$\sigma^{4}=\left(1,1, r_{2}, r_{2} r_{1}\right)$
$m(\sigma)=$	0	$\sigma^{5}=\left(1, r_{1}, r_{1} r_{2}, r_{1} r_{2}\right)$	
$n(\sigma)=$	2	0	0
$\sigma_{3}=$	τ_{3}	1	1
		τ_{4}	τ_{5}

and $\sigma^{6}=\left(1, r_{1}, r_{1} r_{2}, w\right)$
We have $\beta_{1}=\alpha_{1}, \beta_{2}=r_{1} \alpha_{2}, \beta_{3}=r_{1} r_{2} \alpha_{1}>0$ as $m_{12} \frac{1}{f 2}$,

$$
\begin{aligned}
& \mathrm{ws}_{3} s_{2} s_{1}=\tau_{1}, \\
& \mathrm{ws}_{2} s_{1}=\tau_{2}, \mathrm{ws}_{3} s_{1}=\tau_{3}\left(, \mathrm{ws}_{3} s_{2}=\tau_{2}\right), \\
& \mathrm{ws}_{3}=\tau_{4}, \mathrm{ws}_{1}=\tau_{5}\left(, \mathrm{ws}_{2}=\tau_{1}\right), \\
& w=\tau_{6},
\end{aligned}
$$

and $U_{w}=\left\{u=x_{\beta_{1}}^{(a)} x_{\beta_{2}}^{(b)} x_{\beta_{3}}^{(c), ~} a, b, c \varepsilon K\right\}$ with the single non-
trivial commutation relation

$$
\left.\left(x_{\beta_{1}}(a), x_{\beta}(c)\right)=x_{\beta_{2}}^{(-\delta} a_{21},-1{ }^{a} 12 \cdot a c\right) .
$$

We have $\eta(u)=\sigma^{0}$ if $a \neq 0, b \neq 0, a c \frac{1}{T}-1$

$$
=\sigma^{1} \text { if } a=0, b \neq 0
$$

$$
=\sigma^{2} \text { if } a \neq 0, b \neq 0, a c=-1
$$

$$
=\sigma^{3} \text { if } a \neq 0, b=0, c \frac{1}{\bar{T}} 0
$$

$$
=\sigma^{4} \text { if } a \neq 0, b=0, c=0
$$

$$
=\sigma^{5} \text { if } a=0, b=0, c \frac{1}{7} 0
$$

$$
=\sigma^{6} \text { if } a=b=c=0 \text {, }
$$

which verifies 3.16 ;
Assume now that W is the symmetric group on three letters, and A is chosen as in $\S 1$, so that $G=\mathrm{SL}_{3}$. One then knows that G / B_{+}can be identified with the variety of flags in 3-space (in fact the map Ψ in §3 gives the isomorphism for appropriately chosen Λ). Explicitely,
fix a vector space V over K, $\operatorname{dim}_{K} V=3$, choose planes $P_{+}{ }^{\prime} P_{-}$, and lines $L_{ \pm} \subset P_{ \pm}-\left(P_{+} \cap P_{-}\right)$, so that we have $\mathrm{V}=\tilde{\mathrm{P}} \oplus \mathrm{L}_{\mathrm{o}}$, where $\tilde{\mathrm{P}}=\mathrm{L}_{+} \oplus \mathrm{L}_{-}$and $\mathrm{L}_{0}=\mathrm{P}_{+} \cap \mathrm{P}_{-}$;
Labelling the generators r_{1}, r_{2} of W in such a way that $C\left(r_{1}\right)=\left\{\left(V \supset P_{+} \supset L>0\right), L \neq L_{+}\right\}$, and $C\left(r_{2}\right)=\left\{\left(V \supset P>L_{+} \supset 0\right), P \neq P_{+}\right\}$, we obtain:
$D_{\sigma^{6}}=\left\{\left(V \supset P \supseteq L_{\sim} \supseteq 0\right)\right\}$
$D_{\sigma^{5}}=\left\{\left(\mathrm{V} \supset \mathrm{P}_{-} \supset \mathrm{L} \supset 0\right), \mathrm{L} \notin\left\{\mathrm{L}_{-}, \mathrm{L}_{\mathrm{o}}\right\}\right\}$
$D_{\sigma^{4}}=\left\{\left(V \supset P \supset L_{-} \supset 0\right), P \notin\left\{P, P_{-}\right\}\right\}$
and, with $F=(V \supset P \supset L \supset 0)$,
$D_{\sigma^{3}}=\left\{F \mid L \neq P_{ \pm}, P=L+L_{-}\right\}$
$D_{\sigma^{2}}=\left\{F \mid L_{ \pm} \notin \mathrm{P}, \mathrm{L}=\mathrm{P} \cap \mathrm{P}_{-}\right\}$
$D_{\sigma^{1}}=\left\{F \mid L \not \subset P_{ \pm}, I \approx \widetilde{P}, P \not \subset L_{ \pm}\right\}$
$D_{\sigma^{0}}=\left\{F \mid L \neq P_{ \pm}, L f\left(\tilde{P}, P \not \mathcal{P}_{ \pm}\right\}\right.$.

Section 4 : Applications

We start with the following fact:

1) X_{w} is non-singular in codimension 1 :

Suppose that $w^{\prime}<w$, and length $\left(w^{\prime}\right)=1$ ength(w) -1 . We then know that there exists a reduced expression $w=r_{t_{l}} \ldots r_{t_{k}}$ such that ([DI])

$$
w^{\prime}=r_{t_{1}} \cdots r_{t_{k-i}} . r_{t_{k-i}+2} \cdots r_{k}
$$

As in $\S 3$, set $w_{i}=r_{t} \ldots r_{i}, \beta_{i}=w_{k-i+2}^{-1} \alpha_{k-i+1}$. With our choice of reduced expressions, we then have

$$
\begin{equation*}
r_{\beta_{i_{0}}} \cdot \beta_{j}>0 \text { if } j>i_{o} \tag{*}
\end{equation*}
$$

Let $V_{W^{\prime}}=\underbrace{U}_{U^{1}} \underbrace{U_{(1, \ldots, 1)} U_{(1, \ldots, 1,2,1, \ldots, 1)} \subset Z_{W}}_{U^{2}}$,

$$
N_{w},=\operatorname{Im} \pi_{1}^{k-1} \times \ldots \times \operatorname{Im} \pi_{1}^{k-i_{0 \times}} \pi_{2}^{k-i_{0}+1}(\{0\}) \times \operatorname{Im} \pi_{1}^{k-i_{0}+2} \times \ldots \times \operatorname{Im} \pi_{1}^{o} \subset U^{2}
$$

so that we have $U^{2}-N_{W^{\prime}}, C U^{1}$. We shall show that ([BGG])
a) $f_{w}\left(N_{w^{\prime}}\right)=C\left(w^{\prime}\right)$
b) $f_{w}\left(U^{2}-N_{w^{\prime}}\right) \subset C(w)$
c) $\left.f_{w}\right|_{U} 2$ is an isomorphism onto a dense subset of X_{W}.
proof of a):
From the definition of f_{w}, we have $p \varepsilon f_{w}\left(N_{w}\right.$, if and only if

$$
p=w y_{\beta_{k}}\left(t_{k}\right) \cdots y_{\beta_{i_{0}+1}}\left(t_{i_{0}+1}\right) r_{\beta_{i_{0}}} y_{\beta_{i_{0}-1}}\left(t_{i_{0}-1}\right) \cdots y_{\beta_{1}}\left(t_{1}\right) B_{+}
$$

for some $t_{j} \varepsilon K$.
The right hand side is equal to

$$
{ }^{w} r_{\beta_{i_{0}}}\left(r_{\beta_{i_{0}}}^{-1} y_{\beta_{k}}\left(t_{k}\right) \cdots y_{\beta_{i_{0}+1}}\left(t_{i_{0}+1}\right) r_{\beta_{i_{0}}}\right) y_{\beta_{i_{0}-1}}\left(t_{i_{0}-1}\right) \cdots y_{\beta_{1}}\left(t_{1}\right) B_{+} .
$$

Let $\beta_{k-1}^{\prime}=r_{\beta_{i_{0}}} \beta_{k}, \beta_{k-2}^{\prime}=r \beta_{i_{0}} \beta_{k-1}, \cdots, \beta_{i_{0}}^{\prime}=r_{\beta_{i_{0}}} \beta_{i_{0}+1}$,

$$
\beta_{i_{0}-1}^{\prime}=\beta_{i_{0}-1}, \cdots, \beta_{1}^{\prime}=\beta_{1},
$$

and let us also renumber $r_{t_{1}} \ldots r_{t_{k-i_{0}}} . r_{t_{k-i_{0}}+2} . . r_{t_{k}}$ into

$$
\left\{\begin{array}{l}
j_{1}=t_{1}, \cdots, j_{k-i_{o}}=t_{k-i_{o}}, \\
j_{k-i_{o}+1}=t_{k-i_{o}}+2, \cdots, j_{k-1}=t_{k}
\end{array}\right.
$$

If we now let $w_{i}^{\prime}=r_{j} \ldots r_{j_{k-1}}$, an easy computation will show that
$\beta_{i}^{\prime}=w^{\prime}(k-1)-i+2^{\alpha_{j}}{ }_{(k-1)-i+1}$ for all i, and (from the proof of 3.23a)),
${ }^{w r_{\beta_{i_{0}}}}=w^{\prime}$. Hence the right hand side above is $w^{\prime} y_{\beta_{k-1}^{\prime}} \ldots y_{\beta_{1}^{\prime}}{ }^{B}+;$
Applying 3.22 to $w^{\prime}=r_{j} \ldots r_{j}$, we find

$$
f_{w}\left(N_{w^{\prime}}\right)=C\left(w^{\prime}\right)
$$

b) is obvious because $U^{2}-N_{w}, \subset U^{1}$.
proof of c):
We check that $\left.f_{w}\right|_{U}$ is injective: assume that

$$
\begin{aligned}
& y_{\beta_{k}}\left(t_{k}\right) \cdots y_{\beta_{i_{0}+1}}\left(t_{i_{0}+1}\right) x_{\beta_{i_{o}}}\left(t_{i_{0}}\right) r_{\beta_{i_{0}}} y_{i_{0}-1}\left(t_{i_{0}-1}\right) \cdots y_{\beta_{1}}^{\left(t_{1}\right) B_{+}} \\
& =y_{\beta_{k}}^{\left(t_{k}^{\prime}\right)} \cdots y_{\beta_{i_{0}+1}}\left(t_{i_{1}+1}^{\prime}\right) x_{\beta_{i_{0}}}^{\left(t_{i_{0}}^{\prime}\right) r_{\beta_{i_{0}}}}{ }_{i_{\beta_{i_{0}-1}}}\left(t_{i_{0}-1}^{\prime}\right) \cdots y_{\beta_{1}}^{\left(t_{1}^{\prime}\right) B_{+}} ;
\end{aligned}
$$

write y_{j} for $y_{\beta_{j}}\left(t_{j}\right), y_{j}^{\prime}$ for $y_{\beta_{j}}\left(t_{j}^{\prime}\right)$, if $j \neq i_{o}$,

$$
y_{i_{0}} \text { for } y_{\beta_{i_{0}}}^{\left(-t_{i_{0}}\right)}, y_{i_{o}}^{\prime} \text { for } y_{\beta_{i_{0}}}^{\left(-t_{i_{0}}^{\prime}\right)}
$$

Then we must have
$y_{1}^{-1} \ldots y_{i_{0}}^{-1}\left(r_{\beta_{i_{0}}} y_{i_{0}+1}^{-1} \ldots y_{k}^{-1} y_{k}^{\prime} \ldots y_{i_{0}+1}^{\prime} r_{i_{0}}\right) y_{i_{0}}^{\prime} \ldots y_{1}^{\prime} B_{+}=B_{+}$; the thing in
parentheses is in U_{-}by (*), hence, as $U_{-} \cap_{+}=1$, we must have

$$
y_{k} \cdots y_{i_{o}+1} \underline{r}_{i_{i_{0}}} y_{i_{0}} \cdots y_{1}=y_{k}^{\prime} \cdots y_{i_{0}+1}^{\prime} \underline{\beta}_{i_{0}} y_{i_{0}}^{\prime} \cdots y_{l}^{\prime} \quad \text { (no } B_{+}^{\prime} s \text {) }
$$

This equation implies that

$$
\begin{aligned}
& \frac{w_{j}}{} y_{k w_{j}}^{-1} \cdot \cdots \cdot w_{j} y_{i_{0}+1} \underline{w}_{j}^{-1} \cdot \underline{w}_{j} r_{\beta_{i_{o}}} y_{i_{0}} \ldots y_{1} \\
&=\underline{w}_{j} y_{k}^{\prime} w_{j}^{-1} \cdot \ldots \cdot w_{j} y_{i_{0}+1}^{\prime} \underline{w}_{j}^{-1} \cdot \underline{w}_{j} r_{\beta_{i_{o}}} y_{i_{0}}^{\prime} \ldots y_{i}^{\prime}
\end{aligned}
$$

Set $\begin{aligned} & j=k-i_{o}+1: \text { then } w_{j} \beta_{m}>0 \\ &<0 \text { if } m>i_{o}+1 \\ & m \leq i_{0}\end{aligned}$,
and we have

$$
\left(\underline{w}_{j} y_{k} \underline{w}_{j}^{-1}\right) \ldots\left(\underline{w}_{j} y_{i_{0}+1} \underline{w}_{j}^{-1}\right) w_{j} r_{B_{i}} w_{j}^{-1}\left(w_{j} y_{i_{0}} w_{j}^{-1}\right) \ldots\left(\underline{w}_{j} y_{1} \underline{w}_{j}^{-1}\right)=
$$

which implies that

i.e. $\underbrace{y_{i_{o}}^{u_{-}^{-1} u_{-}^{\prime} y_{i_{o}}^{\prime-1}}}_{\varepsilon U_{-}}=r_{t_{k-i_{0}+1}}\left(u_{+} u_{+}^{\prime-1}\right) r_{t_{k-i_{0}+1}}$,
and the right hand side is in U_{+}(because $w_{j} \beta_{m}=-r_{t_{k-i_{0}}} \ldots r_{t_{k-m}} \alpha_{t_{k-m+1}}$ if $m<i_{0}$). So we must have

$$
\left.y_{\beta_{k}}^{\left(t_{k}\right)} \cdots y_{\beta_{i_{0}+1}}\left(t_{i_{0}+1}\right) y_{\beta_{i_{0}}}^{\left(-t_{i_{0}}\right.}\right)=y_{\beta_{k}}^{\left(t_{k}^{\prime}\right)} \cdots y_{\beta_{i_{0}+1}}\left(t_{i_{0}+1}^{\prime}\right) y_{\beta_{i_{0}}}^{\left(-t_{i_{0}}^{\prime}\right)}
$$

and $y_{\beta_{i_{0}-1}}\left(t_{i_{0}-1}\right) \cdots y_{\beta_{1}}\left(t_{1}\right)=y_{\beta_{i_{0}-1}}\left(t_{i_{0}-1}^{\prime}\right) \cdots y_{\beta_{1}}^{\left(t_{1}^{\prime}\right)}$
which, by 3.7 , implies that $t_{j}=t_{j}^{\prime}$ for all j.

2）Application to the Hecke algebra：

Define the Hecke algebra H of W to be the algebra

$$
H=\underset{y \in W}{\oplus} z\left[q^{1 / 2}, q^{-1 / 2}\right] \cdot T_{y}
$$

generated by the ring of polynomials in the indeterminates $q^{1 / 2}, q^{-1 / 2}$ over Z ，and generators T_{y} ，where the product is defined by

$$
T_{r_{i}} \cdot T_{y}=\left\{\begin{array}{ll}
T_{r_{i}} y & \text { if length }\left(r_{i} y\right)=\text { length }(y)+1 \\
q \cdot T_{r_{i}} y
\end{array}+(q-1) \cdot T_{y} \quad \text { if length }\left(r_{i} y\right)=\text { length }(y)-1 ~ l i l l\right.
$$

for $1 \leq i \leq N$ ，so that with $w=r_{j} \ldots r_{j_{k}}$ and length $(w)=k$ ，we have $T_{w} \cdot T_{y}=T_{r_{j}} \ldots T_{r_{j}} \cdot T_{y}$ for any $y \varepsilon W$ ．

Note that if we formally set $q^{1 / 2}=1$ ，then H is simply the group algebra $Z[W]$ ．

Fix an algebraically closed field K of characteristic $p>0$ ．By 2．7， the Frobenius F on $G(K)$ factors to a map $F: G(K) / B_{+} \rightarrow G(K) / B_{+}$which satisfies $F(C(y))=C(y), F\left(y B_{+}\right)=y B_{+}, F\left(C^{\prime}(y)\right)=C^{\prime}(y)$ ，for all $y \varepsilon W$ ．If $X \subset G(K)$ or $G(K) / B_{+}$，and $n \in N$ ，let＇s write $X^{F n}$ for the set $\left\{x \in X \mid F^{n} X=x\right\}$ ．

Given $n \varepsilon N$ ，let L be a field of characteristic 0 containing a（ 2 n ）th root of p ，and fix such a $\sqrt[2 n]{p} L$ ；then the map $Z\left[q^{1 / 2}, q^{-1 / 2}\right] \rightarrow L$ ， $f\left(q^{1 / 2}, q^{-1 / 2}\right) \rightarrow f\left(\sqrt[2 n]{p},(\sqrt[n]{p})^{-1}\right)$ allows one to define the algebra $H_{n}=H \mathbb{Z}_{\mathrm{Z}}\left[\mathrm{q}^{1 / 2}, \mathrm{q}^{-1 / 2}\right]^{\mathrm{L}}$ ．We now show that
｜there is a natural embedding $H_{n} \rightarrow \operatorname{End}_{G(K)} F^{\mathrm{n}}\left(\left\{\mathrm{f}: \mathrm{G}(\mathrm{K}) \mathrm{F}^{\mathrm{n}} / \mathrm{B}_{+}^{\mathrm{F}} \rightarrow \mathrm{L}\right\}\right)$ Call the algebra on the right hand side A ，and define $\left\{\widetilde{T}_{y}, y \in W\right\} \subset \mathcal{F}$ by

$$
\left(T_{y} \cdot f\right)\left(x B_{+}^{F^{n}}\right)=\sum_{z \varepsilon x \cdot C(y)^{F^{n}}} f(z),
$$

the sum being finite as $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ C（y） $\mathrm{F}^{\mathrm{n}}=\mathrm{p}^{\mathrm{n}}$ ．length（ y ）．Assume that for some $\lambda_{w} \varepsilon L, \sum_{w} \lambda_{W} \widetilde{T}_{w}=0$ ，and let $f_{0} \varepsilon H$ be the map $f_{0}\left(z B_{+}^{F n}\right)=1$ if $z \varepsilon B_{+}^{F n}$ ， 0 otherwise．We must then have $\sum_{w} \lambda_{w} T_{w} f_{0}(z)=0$ for all $z \varepsilon G(K)^{F^{n}} / B_{+}^{F^{n}}$ ． Plugging in $z=w^{-1} B_{+}^{F^{n}}$ for the various w\＆A，one finds that $\lambda_{w}=0$ for all wEA，hence the \widetilde{T}_{y}＇s are linearly independent．We thus obtain an L－1inear isomorphism $H_{n} \rightarrow \tilde{H}, T_{y} \mathbb{M} \mapsto \widetilde{T}_{y}$ ；to check that this is

$$
\begin{aligned}
& \text { an algebra isomorphism, we compute }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{z \varepsilon G(K)} \mathrm{Fn}_{\mathrm{B}_{+}^{\mathrm{Fn}^{\mathrm{n}}}} \#\left(\mathrm{C}(\mathrm{y}) n \mathrm{x}^{-1} \mathrm{zC}\left(\mathrm{y}^{\prime-1}\right)\right)^{\mathrm{F}^{\mathrm{n}}} . f(\mathrm{z})
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{y^{\prime \prime} \varepsilon W} \#\left(C(y) \cap y^{\prime \prime} \cdot C\left(y^{-1}\right)\right)^{F^{n}} \cdot \tilde{T}_{y^{\prime \prime}} f(z),
\end{aligned}
$$

so that
4.1

$$
\widetilde{\mathrm{T}}_{\mathrm{y}} \cdot \widetilde{\mathrm{~T}}_{\mathrm{y}^{\prime}}=\sum_{\mathrm{y}^{\prime \prime} \varepsilon W} \sharp\left(\mathrm{C}(\mathrm{y}) \cap_{y^{\prime \prime}} \cdot \mathrm{C}\left(\mathrm{y}^{\prime-1}\right)\right)^{\mathrm{F}^{\mathrm{n}}} \cdot \tilde{\mathrm{~T}}_{y^{\prime \prime}}
$$

the sum being finite by 3.4 and 3.15 ；assume now that $y=r_{i}$ ： By $3.2,3.3,3.15$ ，we have $y^{\prime \prime}-1 . C\left(r_{i}\right) \cap C\left(y^{\prime-1}\right)=\varnothing$ unless

$$
y^{\prime \prime=} r_{i} y^{\prime} \quad \text { in case length }\left(r_{i} y^{\prime}\right)=1 \text { ength }\left(y^{\prime}\right)+1
$$

or $y^{\prime \prime} \varepsilon\left\{r_{i} y^{\prime}, y^{\prime}\right\}$ in case length $\left(r_{i} y^{\prime}\right)=1$ ength $\left(y^{\prime}\right)-1$
In the first case，the intersection is $\left\{y_{y^{\prime}-1} \cdot \alpha_{i}(t) y^{-1} B_{+}\right\} / B_{+} C\left(y^{\prime}\right)$ ， which reduces to the single point $\mathrm{y}^{-1} \mathrm{~B}_{+}$so that in this case \＃$\left(y^{\prime \prime}-1\right.$（ $\left.\left.r_{i}\right) \cap C\left(y^{\prime}\right)^{-1}\right) F^{n}=1 \quad\left(y^{-1} \varepsilon G(K)^{F^{n}}\right)$ ，
and in the second case，
if $y^{\prime \prime}=y^{\prime}$ ，the intersection is $\left\{y^{\prime-1} x_{\alpha_{i}}(t) r_{i} B_{+}\right\} / B_{+} C\left(y^{\prime-1}\right)$

$$
=\left\{y^{\prime-1} y_{\alpha_{i}}\left(t^{-1}\right) B_{+}\right\} / B_{+} C\left(y^{\prime-1}\right) \text {, so that }
$$

$\#\left(y^{\prime \prime}-1 \quad C\left(r_{i}\right) \cap C\left(y^{\prime-1}\right)\right)^{F^{n}}=\left(p^{n}-1\right)$ ，
while if $y^{\prime \prime}=r_{i} y^{\prime}$ ，the intersection is $\left\{x_{y^{-1}} . \alpha_{i}^{\left.(t) y^{-1} B_{+}\right\} / B_{+} C\left(y^{\prime}\right), ~(1)}\right.$
so that $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻\left(土{ }^{\prime \prime}{ }^{-1} C\left(r_{i}\right) \cap C\left(y^{-1}\right)\right)^{F^{n}}=p^{n}$ ．
Now 4.1 implies that

$$
\begin{aligned}
& \widetilde{T}_{r_{i}} \cdot \tilde{T}_{y^{\prime}}=\sum_{y^{\prime \prime} \varepsilon W} \#\left(C(y) n y^{\prime \prime} C\left(y^{\prime}-1\right)\right)^{F^{n}} \cdot \widetilde{T}_{y^{\prime \prime}} \\
&=\sum_{y^{\prime \prime} \varepsilon W} \#\left(y^{\prime \prime}-1\right. \\
&\left.\left.C(y) \cap C\left(y^{\prime-1}\right)\right)^{F^{n}} \cdot \widetilde{T}_{y^{\prime \prime}} \quad \text { (because } y^{\prime \prime} \varepsilon G(K)^{F^{n}}\right) \\
&= \begin{cases}T_{1} r_{i} y^{\prime} & \text { if length }\left(r_{i} y^{\prime}\right)=1 \text { ength }\left(y^{\prime}\right)+1 \\
p^{n} \cdot \widetilde{T}_{r_{i} y^{\prime}}+\left(p^{n}-1\right) \cdot \tilde{T}_{y^{\prime}}, & \text { if length }\left(r_{i} y^{\prime}\right)=1 \text { ength }\left(y^{\prime}\right)-1\end{cases}
\end{aligned}
$$

by the computations just made. Hence the map $T_{y} \otimes 1 \mapsto \widetilde{T}_{y}$ is an algebra isomorphism of H_{n} into H.
One can check by induction on the length of y that all $T_{y} \varepsilon H$ are invertible. Define polynomials $R_{z, y} \varepsilon \Omega\left[q^{1 / 2}, q^{-1 / 2}\right]$ by requiring that

$$
\text { 4.2 } \quad\left(T_{y}-1\right)^{-1}=\sum_{z \varepsilon W}(-1)^{\text {length }(y)+\text { length }(z)} R_{z, y} \cdot q^{-1 \text { ength }(y)} \cdot T_{y}
$$

The sum in 4.2 is finite; in fact, it only involves those elements z which satisfy $z \leq y$, as one can prove that $R_{z, y} \neq 0$ iff $z \leq y$. In [Dh4], the formula

$$
\mathrm{R}_{\mathrm{z}, \mathrm{w}}=\sum_{\substack{ \\\sigma_{\mathrm{k}}=\mathrm{z}}} \mathrm{q}^{\mathrm{m(} \mathrm{\sigma)}}(\mathrm{q}-1)^{\mathrm{n}(\sigma)}
$$

is shown to be valid in any Coxeter group (the notation being as in 3.15) so that $R_{z, y}$ is in fact in $Z[q]$. Applying 3.16 to the present setting, and using the fact that $\#(K)^{F^{n}}=p^{n}, \#\left(K^{x}\right)^{F n}=p^{n}-1$, one finds that
4.3

$$
\begin{aligned}
& \#\left(C(w) \cap c^{\prime}(y)\right)^{F^{n}}=\sum_{\sigma}\left(p^{n}\right)^{m(\sigma)}\left(p^{n}-1\right)^{n(\sigma)} \\
& \sigma_{k}=y \\
&=R_{y, s}\left(p^{n}\right)
\end{aligned}
$$

The Kazhdan-Lusztig polynomials can now be defined as follows: let $x \mapsto \overline{\mathrm{x}}$ be the 'anti'-automorphism of H extending the map $q^{1 / 2} r q^{-1 / 2}, T_{y} \leftrightarrow T_{y^{-1}}^{-1}$. In [$K L$], it is shown that there exists a unique basis $\left\{S_{y}, y \varepsilon W\right\}$ of satisfying

1) $\bar{S}_{y}=S_{y}$
2) $S_{y}=q^{\text {-length }}(y) / 2 \sum_{z \leq y} P_{z, y} \cdot T_{z}$
with $P_{z, y} \varepsilon Z[q]$, and degree $\left(P_{z, y}\right) \leq \frac{(\text { length }(y)-1 \text { ength }(z)-1)}{2}$ if $z<y, P_{y, y}$ being the constant 1 .
Condition 1) is equivalent to the equality

$$
q^{\text {length }(y)-\text { length }(z)} \stackrel{P}{P}_{z, y}=\sum_{z \leq x \leq y} R_{z, x} P_{x, y}
$$

and Kazhdan \& Lusztig prove that if W is a (finite) Weyl group, then $P_{y, w}(q)=\sum_{i} \operatorname{dim} H_{y B_{+}^{2 i}}^{2}\left(I C_{w}\right) \cdot q^{i}$, where H is the stalk cohomology of Deligne's middle-intersection-cohomology complex of sheaves $I C_{W}$ on the variety X_{W}. One can generalize their proof ([KL4]) to arbitrary crystallographic groups as follows:

Assume that W is a crystallographic group, and define

$$
\tilde{P}_{y, w}=\sum_{j} \operatorname{dim} H_{y B_{+}^{j}}^{j}\left(I C_{w}\right) q^{j / 2}
$$

for $y \varepsilon W, \mathrm{yB}_{+} \varepsilon \mathrm{X}_{\mathrm{w}}$ as above. With the notation of 3.23-3.25, fix $\Lambda, \mathrm{v}^{+} \varepsilon L(\Lambda)$, $\mathrm{L}=\mathrm{U}_{\mathrm{Z}} \cdot \mathrm{v}^{+} \mathbb{\otimes}, \quad \mathrm{L}^{\lambda^{\mathrm{w}}}=\mathrm{L}(\Lambda) \lambda^{\mathbb{W}}$. Let $\mathrm{V}_{\mathrm{y}}=\left\{\mathrm{v} \varepsilon \mathrm{L} \mid\right.$ the $\mathrm{L}^{\mathrm{y} \Lambda}$-coordinate of v is non-zero\}, $V_{y}^{\prime}=\left\{v \varepsilon V_{y} \mid\right.$ the L^{λ}-coordinate of v is 0 if height $(y \Lambda-\lambda) \leq 0$ and $\left.\lambda \neq y \Lambda\right\}$. Now let $V_{y, w}=V_{y} \cap L_{\text {height }}(\Lambda-w \Lambda), V_{y, w}^{\prime}=V_{y}^{\prime} \cap L_{\text {height }}(\Lambda-w \Lambda)$ for $y \leq w \in W$. Finally, define an action of G on L by $t \rightarrow \rho(t)$, where $\rho(t) \cdot v=t{ }^{\text {height }(\Lambda-\lambda)}{ }_{v}$ whenever $v \in L^{\lambda}$. We can now show that
4.4 a) $\Psi\left(X_{w} \cap y \cdot C^{\prime}(1)\right)=\Psi\left(X_{w}\right) \cap\left[V_{y, w}\right]$ and $\Psi\left(X_{w} \cap C^{\prime}(y)\right)=\Psi\left(X_{w}\right) \cap\left[V_{y, w}^{\prime}\right]$, so that both $X_{w} \cap y . C^{\prime}(1)$ and $X_{w} \cap C^{\prime}(y)$ can be regarded as subvarieties of affine space.
b) The G_{m}-action defined above induces an action of K^{x} on $\left[V_{y, w}\right]$ such that $\Psi\left(X_{w} \cap y C^{\prime}(1)\right)$ and $\Psi\left(X_{w} \cap C^{\prime}(y)\right)$ are K^{x}-stable
c) In the natural identification $\left[V_{y, w}\right] \simeq K^{M}$, the point [$\left.y v^{+}{ }^{+}{ }^{1}\right]$ maps to the origin, and the $K^{x}-\mathrm{y}, \mathrm{w}$, $\mathrm{m}^{2}\left[\mathrm{~V}_{\mathrm{y}, \mathrm{w}}\right.$] decomposes into a sum of positive characters.
proof:
a) Assume $v \varepsilon V_{y}^{\prime}$, say $v=y v^{+}{ }^{\otimes} t_{y \Lambda^{+}} \sum_{\text {height }(y \Lambda-\mu)>0} v_{\mu} \sum_{\mu}$ with $t_{\mu} \varepsilon K$, $\mathrm{v}_{\mu} \varepsilon L(\Lambda)_{\mu}$, and fix $\mathrm{t} \varepsilon \mathrm{K}, \alpha \varepsilon \Delta_{+}^{r e}$: then

which lies again in V_{y}^{\prime}. Hence V_{y}^{\prime} is B_{-}-invariant, and one concludes that for $w \in W$,

$$
\Psi\left(C^{\prime}(w)\right) \subset\left[\mathrm{V}_{\mathrm{y}}^{\prime}\right] \text { if and only if }\left[\mathrm{wv}^{+} \otimes 1\right] \varepsilon\left[\mathrm{V}_{\mathrm{y}}^{\prime}\right] .
$$

It is clear from the definition that the latter happens only when $w=y$, so we have
(*) $\Psi\left(C^{\prime}(w)\right) \subset\left[V_{y}^{\prime}\right]$ if and only if $w=y$.
Using the disjointness of the Birkhoff decomposition, and the fact that $X_{W} \subset P\left(L_{\text {height }}(\Lambda-w \Lambda)\right.$), this proves that $\Psi\left(X_{W} \cap C^{\prime}(y)\right)=\Psi\left(X_{W}\right) \cap\left[V_{y, w}^{\prime}\right]$.
As $\mathrm{V}_{\mathrm{y}}=\mathrm{y} \cdot \mathrm{V}_{1}$, one can also conclude from (*) that
$\Psi\left(y . C^{\prime}(1)\right) \cap\left[V_{y}\right]$. Now assume that $p \varepsilon \Psi\left(X_{w}\right) \cap\left[V_{y}\right]$: as $p \varepsilon \Psi\left(X_{w}\right)$, we must have $y^{-1} \cdot p \varepsilon \Psi\left(G / B_{+}\right)$, hence, using the disjointness of the Birkhoff decomposition and the injectivity of Ψ, there exists a unique $z \varepsilon W$ such that $y^{-1} p \varepsilon^{\prime} \Psi\left(C^{\prime}(z)\right)$. As the $L^{y \Lambda}$-coordinate of p is non-zero, the L^{Λ}-coordinate of $y^{-1} \cdot p$ is non-zero, i.e., by the above, z must be 1 , and $p \varepsilon \Psi\left(y . C^{\prime}(1)\right)$. This completes the proof of a).
proof of b): one need only observe that
$\rho(t) \circ x_{\alpha}(s) \circ \rho(t)^{-1}=x_{\alpha}\left(s t^{-h e i g h t(\alpha)}\right)$, $\rho(t) \circ y_{\alpha}(s) \circ \rho(t)^{-1}=y_{\alpha}\left(s t^{\text {height (} \alpha)}\right.$).
c) is clear.

One can now prove that $P_{y, w}=P_{y, w}$ exactly as in [KL4]:
Call an \mathbb{F}_{p}-variety X pure (resp. very pure) if for all $\mathrm{xE} \mathrm{X}^{\mathrm{F}^{\mathrm{n}}}$ and all i i N, the eigenvalues of F^{n} on $\mathrm{H}_{\mathrm{x}}^{\mathrm{i}}(\mathrm{IC})$ have absolute value $\mathrm{p}^{\mathrm{ni} / 2}$ (resp. $=p^{n i / 2}$). The main facts needed to complete the proof are:
4.5 a) If Y is a closed F_{p}-subvariety of K_{M}^{M} (some M), which is stable under a diagonal action of G_{m} on K^{M}, the latter action being a direct sum of positive characters of G_{m}, then
if Y-\{origin\} is very pure, then so is Y
b) With Y as above, we have $\mathbb{H}^{i}(Y, I C)=H_{o r i g i n}^{i}$ (IC) (where HI denotes hypercohomology).

Fix weW. For $z \leq w$, let $Q(z)$ be the property: "for all $x \in C(z){ }^{\mathrm{F}}$, $H_{x}^{i}\left(I C_{w}\right)=0$ if i is odd, and the eigenvalues of F^{n} on $H_{x}^{i}\left(I C_{w}\right)$ are $p^{n i / 2}$ if i is even". The main lemma (see [KL4]) is that 4.6 $Q(z)$ holds for all $z \leq w$.
proof: $Q(w)$ is clear. Assume that $Q(z)$ is true for $y \leq z \leq w$, and let's prove it for y :
We know by our induction hypothesis that ($\left.\mathrm{x}_{\mathrm{w}} \cap \mathrm{y} \cdot \mathrm{C}^{\prime}(1)\right)-C(\mathrm{y})$ is very pure. It is easy to see that $X_{w} \cap y . C^{\prime}(1)$ is isomorphic to ($\left.X_{w} \cap C^{\prime}(y)\right) \times C(y)$, and that in this isomorphism ($\left.X_{w} \cap y C^{\prime}(1)\right)-C(y)$ corresponds to $\left(\left(X X_{w} C^{\prime}(y)\right)-\left\{y B_{+}\right\}\right) \times C(y)$. As $C(y)$ is smooth, our initial remark implies that $\left(X_{w} \cap C^{\prime}(y)\right)-\left\{y B_{+}\right\}$is very pure. Using 4.4 and $4.5 a$), we conclude that $X_{w} \cap C^{\prime}(y)$ is itself very pure, and, going backwards, that $X_{w} \cap y . C^{\prime}(1)$ is very pure.

We now apply the Lefschetz fixed point formula to the Frobenius map on the variety $X=X_{W} \cap y . C^{\prime}(1)$ to obtain:
(*) $\operatorname{tr}_{\mathrm{HI}}{ }_{\mathrm{C}}^{*}\left(\mathrm{X}, \mathrm{IC} \mathrm{W}_{\mathrm{W}} \mathrm{F}^{\mathrm{n}}=\sum_{\mathrm{X} \in \mathrm{X}^{\mathrm{F}}} \operatorname{tr}_{H_{\mathrm{X}}^{*}}^{*}\left(\mathrm{IC} \mathrm{W}_{\mathrm{F}} \mathrm{F}^{\mathrm{n}}\right.\right.$
where $H_{\mathbb{C}}$ denotes hypercohomology with compact support, and $\operatorname{tr}_{C}{ }^{*}=\sum_{i}(-1)^{i} \operatorname{tr}_{C}{ }^{i}$. The right hand side of (*) equals

On the other hand, the left hand side equals $\mathrm{P}^{\mathrm{nlength}(\mathrm{w})} \operatorname{tr}_{H H}{ }^{*}\left(\mathrm{X}, I \mathrm{IC}_{\mathrm{w}}\right)^{\mathrm{F}^{-\mathrm{n}}} \quad$ (by Poincaré duality)

Hence (*) becomes

$$
\text { (**) } \begin{aligned}
\mathrm{p}^{\text {nlength(w) }} \operatorname{tr}_{H_{y B}^{*}}^{*} & \left(I C_{w}\right)^{F^{-n}} \\
& =p^{n l e n g t h(y)} \sum_{y \leq z \leq w} R_{y, z}\left(p^{n}\right) \operatorname{tr} H_{z B}^{*}\left(I C_{w}\right)^{F^{n}}
\end{aligned}
$$

After a careful comparison of degrees in ($* *$) using the induction hypothesis and the fact that X is very pure, one concludes as in [KL1] and [KL4] that $Q(y)$ is true.
To see that $\mathrm{P}_{\mathrm{y}, \mathrm{w}}=\mathrm{P}_{\mathrm{y}, \mathrm{w}}$, one rewrites ($* *$) using 4.6 to get

 denotes the length of the element x of W). Using the characteristic properties of IC, it is easy to check that the $\tilde{P}_{y, w}$'s satisfy $\operatorname{deg}\left(\widetilde{P}_{y, w}\right) \leq \frac{1}{2}(1(w)-1(y)-1)$, with $\widetilde{P}_{w, w}=1$, hence $\widetilde{P}_{y, w}=P_{y, w}$.

Added in proof: I have recently been informed that G. Lusztig has a much simpler proof, based on his paper Characters of reductive groups over a finite field, IHES,1982, of this generalization of the results of [KL4].
3) The case of elements of Coxeter type:

Assume that $w=r_{j} \ldots r_{j}$ is such that $j_{m} \neq j_{n}$ if $m \neq n$. A direct computation shows that $P_{y, w}=1$ for all $y \leq w$, hence one can conclude that if W is a (finite) Weyl group, then the variety X_{w} is rationally smooth ([KL1]).

In fact, if W is any crystallographic group, and w is as above, then X_{w} is smooth. One can show directly that
a- if we identify $C(w)$ with K^{k} using 3.22 , and $y=r_{j_{t_{1}}} r_{j_{m}} \leq w$,
and $t_{1}<\ldots<t_{m}$, then
$C(w) \cap y \cdot c^{\prime}(1)=\left\{\left(\lambda_{1}, \ldots, \lambda_{k}\right) \mid \lambda_{t_{i}} \varepsilon K^{\times}\right\} \quad$ (see [Dh3]),
and $C(w) \cap C^{\prime}(y)=\left\{\left(\lambda_{1}, \ldots, \lambda_{k}\right) \mid \lambda_{t_{i}}=0\right\}$.
$b-X_{w} \cap y \cdot C^{\prime}(1)=f_{w}\left(U\left(n_{k}, \ldots, n_{1}\right)\right.$, with $n_{j}=\left\{\begin{array}{ll}1 & \text { if } j \varepsilon\left\{t_{1}, \ldots t_{m}\right. \\ 2 & \text { otherwise. }\end{array}\right\}$
and $\left.f_{W}\right|_{\left(n_{k}, \ldots, n_{1}\right)}$ is injective.
Let us prove instead that $f_{w}: Z_{W} \longrightarrow X_{w}$ is an isomorphism:
First note that if $z \varepsilon Z_{w}-U(1, \ldots, 1)$, then there exists $\lambda_{j} \varepsilon K$ such that $z=\left(\overline{p_{k}(z), \ldots, p_{1}(z)}\right)$, with $p_{j}(z) \varepsilon\left\{y_{\beta_{j}}\left(\lambda_{j}\right), \underline{s}_{j}\right\}$, and for some $j_{0}, \lambda_{j}={ }_{o} j_{0}$. We now show that

$$
\left\lvert\, \begin{aligned}
& \text { given two sequences } s_{1}<\ldots<s_{n}, t_{1}<\ldots<t_{n} \text {, with } s_{i}, t_{i} \varepsilon\{1, \ldots, k\} \\
& \text { if } r_{j_{1}} \ldots . r_{j_{s_{n}}}=r_{j_{1}} \ldots . r_{j_{1}}=w^{\prime} \text {, then } s_{i}=t_{i} \text { for all } i \text {, }
\end{aligned}\right.
$$

by induction on n : If $n=1$, there is nothing to prove; otherwise, the exchange condition, applied to $\mathrm{w}^{\prime} \cdot \alpha_{j_{S_{n}}}<0$ gives

$$
\text { (1) } w^{\prime}=r_{j_{t_{1}}} \ldots r_{j_{a-1}} \quad r_{j_{t}} \ldots r_{j_{t}} r_{j_{n}} \text { for some } a \text {, }
$$

and applied to $w^{\prime} \cdot \alpha_{j_{t_{n}}}<0$ gives

$$
\text { (2) } w^{\prime}=r_{j_{s_{1}}} \ldots r_{j_{b-1}} . r_{j_{b+1}} \ldots r_{j_{n}} r_{j_{n}} \text { for some } b \text {. }
$$

Assuming, without loss of generality, that $a \leq b$, one sees that if $b \neq n$ and $a \neq n$ then (1) and (2) imply that $t_{n}=s_{n-1}=t_{n-2}$, which is impossible because
$t_{n-2}<t_{n}$ so that $j_{t_{n-2}}{ }^{\neq} j_{t_{n}}$. Hence we must have $b=a=n$, in which case (2) implies that $w^{\prime}=r_{j_{S_{1}}} \ldots r_{j_{S_{n-1}}} \cdot r_{j_{n}}$. Combining this equation with $w^{\prime}=r_{j_{s_{1}}} \ldots r_{j_{n}}$, we see that $r_{j_{t_{n}}}=r_{j_{s_{n}}}$, i.e. $t_{n}=s_{n}$, and the induction hypothesis gives $t_{n-1}=s_{n-1}, \cdots, t_{1}=s_{1}$.

The notation being as above, if $z \in Z_{W}-\mathbb{U}(1, \ldots, 1)$, then $f_{w}(z)=\operatorname{wp}_{k}(z) \ldots p_{1}(z) B_{+} . A s \operatorname{wr}_{\beta_{i_{1}}} r_{\beta_{i_{n}}} . \beta_{m}<0$ if $i_{1}>\ldots>i_{n}>m$ (that is so because $w r_{\beta_{i_{1}}} \ldots r_{\beta_{i}} \cdot \beta_{m}=-\left(r_{j_{1}} \ldots r_{j_{k-i_{1}+1}} \ldots r_{j_{k-i_{n}}+1} \ldots r_{j_{k-m}} . \alpha_{j_{k-m+1}}\right.$ $=-\alpha_{j_{k-m+1}}+\sum_{i \varepsilon_{A}} c_{i} \alpha_{i}$ where the subset A of $\{1, \ldots, N\}$. does not contain j_{k-m+1}), one sees that $f_{w}(z)$ is of the form $\operatorname{bwr}_{\beta_{i_{1}}} \ldots r_{\beta_{i}}{ }^{B_{+}}$with $b \varepsilon_{B_{+}}$and the indices i_{1}, \ldots, i_{p} are such that $p_{j}(z)=\underline{s}_{j}$ if and only if j is in the set $\omega(z)=\left\{i_{1}, \ldots, i_{p}\right\}$. In particular, by the disjointness of the Bruhat decomposition and the lemma proved above, if $f_{w}\left(z_{1}\right)=f_{w}\left(z_{2}\right)$, then $\omega\left(z_{1}\right)=\omega\left(z_{2}\right)$ (with $\omega(z)=\varnothing$ if $z \varepsilon U(1, \ldots, 1)$).
One now proves as in 4.1) (using again the idea in example 3)) that if $y_{\beta_{k}}\left(\lambda_{k}\right) \ldots y_{\beta_{i_{1}}+1}\left(\lambda_{1}+1\right) \underline{r}_{\beta_{i_{1}}} \cdot y_{\beta_{i_{1}-1}}\left(\lambda_{i_{1}-1}\right) \cdots y_{\beta_{i_{p}}+1}\left(\lambda_{i_{p}}+1\right) \underline{r}_{\beta_{i_{p}}} \cdot y_{\beta_{i_{p}}}\left(\lambda_{i_{p}}-i^{1}\right) \cdots y_{\beta_{1}}\left(\lambda_{1}\right) B_{+}$ equals
$\left.y_{\beta_{k}}^{\left(\lambda_{k}^{\prime}\right)} \cdots y_{\beta_{i_{1}+1}\left(\lambda_{1}^{\prime}+1\right.}^{\prime}\right) \underline{r}_{\beta_{i_{1}}} \cdot y_{\beta_{i_{1}-1}}\left(\lambda_{1}^{\prime}-1\right) \cdots y_{\beta_{i_{p}}+1}\left(\lambda_{p}^{\prime}+1\right) \underline{r}_{\beta_{i_{p}}} \cdot y_{\beta_{i_{p}}-1}\left(\lambda_{i_{p}}^{\prime}-1\right) \cdots y_{\beta_{1}}\left(\lambda_{1}^{\prime}\right) B_{+}$ then $\lambda_{j}=\lambda_{j}^{\prime}$ for all j (alternately, multiplying this last equation by w gives an equality in $C\left(\right.$ mr $\left._{\beta_{i_{1}}} \ldots r_{\beta_{i_{n}}}\right)$ on which one can use 3.7$)$. Hence f_{w}
is infective.
In particular, $X_{w} \cap y . C^{\prime}(1)$ is open, and one can check, using appropriate coordinates, that $\left.f_{w}^{*}\right|_{O\left(X_{w} \cap y C^{\prime}(1)\right)}$ is an isomorphism: indeed, with Λ as
in 3.9, and for all $\alpha \varepsilon \Delta_{+}^{r e}$, if r_{α} denotes reflexion in α, then $r_{\alpha} \varepsilon W$, so that $L(\Lambda)_{r_{\alpha} \Lambda} \neq 0$, hence $\Lambda-r_{\alpha} \Lambda \varepsilon Q_{+}$; but $\Lambda-r_{\alpha} \Lambda=\left\langle\Lambda, \alpha^{\mathrm{v}}>\alpha\right.$, so $\left\langle\Lambda, \alpha^{\mathrm{V}} \gg 0\right.$; therefore, by [K5], $L(\Lambda)_{\Lambda-\alpha} \neq 0$. Now using this and the fact that all $r_{j}{ }_{i}$'s are distinct, one can see, after a tedious but straightforward computation, that $\left.f_{w}\right|_{U_{(}}\left(n_{k}, \ldots, n_{1}\right)$ always looks, in the local coordinates like a mapping $K^{k} \rightarrow K^{M}$ with $\left(t_{1}, \ldots, t_{k}\right) \mapsto\left(t_{1}, \ldots, t_{k}, p_{1}\left(t_{1}, \ldots, t_{k}\right), \ldots\right.$ $\left.\ldots, p_{M-k}\left(t_{1}, \ldots, t_{k}\right)\right)$
$t_{i} \varepsilon K$, for some $M \varepsilon N$, where each p_{j} is a homogeneous polynomial of degree at least 2. Hence f_{w}^{*} gives an isomorphism of the rings of functions, and f_{w} is indeed an isomorphism.

Example 9: If $k=2$, set $u_{m, n}=f_{r_{j}^{\alpha} j_{1}}^{(m)} \cdot f_{j_{2}}^{(n)} \cdot v^{+} \otimes 1 \varepsilon U_{z} \cdot v^{+} \otimes K$;
Then $\left.f_{W}\right|_{U(1,1)}$ is the map

$$
\begin{aligned}
& \left(\overline{\left.y_{r_{j} \alpha_{j} j_{1}}\left(t_{1}\right), y_{j}\left(t_{2}\right) B_{+}\right)}\right) \mapsto\left[w v^{+} 1+t_{1} \cdot \underline{w u} 1,0+t_{2} \cdot \underline{w u} 0,1\right. \\
& \\
& \left.+\sum_{m, n \geq 2} t_{1}^{m} t_{2}^{n} \cdot \underline{w u}{ }_{m, n}\right]
\end{aligned}
$$

$$
\text { Similarly, }\left.f_{w}\right|_{(2,1)} \text { is the map }
$$

$$
+t_{2} \cdot r_{j}{ }_{2}^{u} 0,1
$$

$$
\left.+\sum_{m, n \geq 2}\left(-t_{1}\right)^{m}\left(t_{2}\right)^{n} \cdot r_{j} \frac{u}{m}_{u}^{u}, n\right]
$$

etc...

4) Geometric interpretation of the matrix A :

Suppose $k=$ length $(w)=2$, so that $w=r_{i} r_{j}$ with $i \neq j$, hence $Z_{w} \rightarrow X_{w}$ is an isomorphism.

We have $Z_{w}^{1}=P_{2} / B_{1} \simeq \mathbb{P}^{1}$, and $g: Z_{w} \rightarrow Z_{w}^{1}$ the projection so Z_{W} is a \mathbb{P}^{1}-bundle over \mathbb{P}. In fact, we also have a global section $h: Z_{w}^{1} \rightarrow Z_{w}$, so Z_{W} is a ruled surface.

If $L=Z_{W}-I m h$, then $\left.g\right|_{L}: L \rightarrow z_{w}^{1}$ is a line bundle on \mathbb{P}^{1}. We shall show that the degree of L is $-a_{i j}$, that $\operatorname{Im} h$ is the unique rigid section of $z_{w} \rightarrow z_{w}^{l}$, hence the self-intersection number of ($\operatorname{Im} h$) is $a_{i j}$, i.e. the invariant of the ruled surface X_{w} is $-a_{i j}$ ([T3]). In particular, the product of the invariant of $X_{r_{i} r_{j}}$ by that of $X_{r_{j} r_{i}}$ is $4\left(\cos \frac{\pi}{m_{i j}}\right)^{2}$. Since the latter is an integer only when $m_{i j} \varepsilon\{2,3,4,6, \infty\}$, one concludes that no 'nice' flag variety can be attached to a Coxeter group unless that group is crystallographic.

So we have $Z_{w}=Z_{r_{i} r_{j}}^{2}=P_{2} \times{ }^{B} 1_{P_{1}} / B_{o}, Z_{w}^{1}=P_{2} / B_{1} \simeq \mathbb{P}^{1}$, and $h: Z_{w}^{1} \rightarrow Z_{w}$ given by $h\left(P_{2} B_{1}\right)=\left(P_{2}, r_{j} B_{o}\right)$. Here, $B_{1}=r_{j}^{-1} B_{+} r_{j}, B_{2}=w^{-1} B_{+} w, P_{1}=B_{+} \cup B_{+} r_{j} B_{+}$ $=r_{j} B_{+} U y_{\alpha_{j}} B_{+}, \quad P_{2}=B_{1} \cup B_{1} r_{j} r_{i} r_{j} B_{1}=r_{j} r_{i} r_{j} B_{1} \cup y_{r_{j} \alpha_{i}} B_{1}, L=U U_{(1,1)}^{2} U U_{(2,1)}^{2}$.

Given a map $f: P_{2} \rightarrow\left(P_{1} / B_{o}-\left\{r_{j} B_{o}\right\}\right)=y_{\alpha_{j}} B_{0}$ satisfying
(*)

$$
f\left(p_{2} b_{1}\right)=b_{1}^{-1} f\left(p_{2}\right)
$$

we can define $f: Z_{W}^{1} \rightarrow L$ by $\mathscr{f}\left(p_{2} B_{1}\right)=\left(\overline{p_{2}, f\left(p_{2}\right)}\right)$, and conversely, given $\mathfrak{f}: Z_{W}^{1} \rightarrow L$ satisfying $g f(p)=p$, we can define a (set) map $f: P_{2} \rightarrow\left(y_{\alpha_{j}}^{B_{o}}\right) / B_{o}$ by requiring $f\left(p_{2}\right)$ to be that element of P_{1} / B_{o} for which $f\left(p_{2} B_{1}\right)$ can be written in the form ($p_{2}, f\left(p_{2}\right)$) (this determines f uniquely).

Now $B_{1}=\left(H \propto Y_{\alpha_{j}}\right) \propto U U_{j=L_{j} \propto U} \alpha_{j}$, and left translation by B_{1} induces the following action of L_{j} on the affine line $y_{\alpha_{j}} B^{+} / B_{+}$:

$$
\begin{aligned}
& \text { (If } b=u \varepsilon U^{\alpha_{j}} \text {, then } b^{-1} y_{\alpha_{j}}^{\left.(t) B_{+}=y_{\alpha_{j}}^{(t) B_{+}}\right)} \\
& \text {If } b=y_{\alpha_{j}}^{(s), ~ t h e n ~} b^{-1} y_{\alpha_{j}}^{(t) B_{+}=y_{\alpha_{j}}^{(t-s) B_{+}}} \\
& \text {If } b=h_{1}\left(z_{1}\right) \ldots h_{N}\left(z_{N}\right) \text {, then } b^{-1} y_{\alpha_{j}}^{(t) B_{+}=y_{\alpha_{j}}\left(z_{1}^{a} 1 j \ldots z_{N}^{a} N j_{t}\right) B_{+} .}
\end{aligned}
$$

Let $X, \Psi: K \rightarrow P_{2}$ be the maps $X(t)=x_{r_{j}} \alpha_{i}(t) \dot{r}_{j}(1) \dot{r}_{i}(1) \dot{r}_{j}(1), \Psi(t)=y_{r_{j}} \alpha_{i}(t)$
so that given $P_{2} \varepsilon P_{2}$, either there exists a unique $t \varepsilon K$ and $b_{1} \varepsilon B_{1}$ such that $p_{2}=\chi(t) b_{1}$, or there exists a unique $t \varepsilon K$ and $b_{1} \varepsilon B_{1}$ such that $\left.P_{2}=\Psi: t\right) b_{1}$. Given $f: P_{2} \rightarrow\left(y_{\alpha_{j}}^{B_{+}}\right) / B_{+}$, consider $f_{1}=f \circ \chi, f_{2}=f \circ \Psi$, so that $f_{i}: K \rightarrow y_{\alpha_{j}}{ }_{j}$. If $c \neq 0$, then $X(c)=\Psi\left(c^{-1}\right) h_{i}(-c) h_{j}\left((-c)^{-a} i j\right) u$ with $u \varepsilon U^{\alpha} j$, and if f satisfies (*), then

$$
\begin{equation*}
f_{1}(c)=\left(h_{i}(-c) h_{j}\left((-c)^{-a_{i j}}\right)^{-1} \cdot f_{2}\left(c^{-1}\right)\right. \tag{**}
\end{equation*}
$$

for all $c \neq 0$. Conversely, given $f_{1}, f_{2}: K \rightarrow y_{\alpha_{j}}{ }_{j}$ satisfying ($* *$), one can construct $f: P_{2} \rightarrow P_{1} / B_{+}-\left\{r_{j} B_{+}\right\}$, and such a map f will automatically satisfy (*).

We thus obtain a $1-1$ correspondence between maps $\underset{f}{f}: P_{2} / B_{1} \rightarrow L$ satisfying $g \tilde{f}=i d e n t i t y$, and pairs $f_{1}, f_{2}: K \rightarrow\left(y_{\alpha_{j}} B_{+}\right) / B_{+}$satisfying (**). One can check that, in this correspondence, the map $\tilde{f}: Z_{W}^{1} \rightarrow L$ is a morphism if and only if the maps f_{1}, f_{2} are morphisms when considered as functions on \mathbb{A}^{1}. Let's see when the latter is true:

If f_{2} is a morphism, then $f_{2}(t)=y_{\alpha_{j}}\left(f_{2}^{*}(t)\right) B_{+}$, when f_{2}^{*} is a polyno$\operatorname{mial} \varepsilon \mathrm{K}[t]:(* *)$ then becomes $f_{1}(c)=h_{j}\left((-c) a_{i j}\right) h_{i}\left(-c^{-1}\right) y_{\alpha}\left(f_{2}^{*}\left(c^{-1}\right)\right) B_{+}$, and the right hand side is equal to $y_{\alpha_{j}}\left((-c)^{a_{i j}(-c)^{-2 a_{i j f}^{*}}{ }_{2}\left(c^{-1}\right) B_{+}, ~}\right.$

$$
=y_{\alpha}\left((-1)^{a_{i j}} c^{-a_{i j f}}{ }_{2}^{*}\left(c^{-1}\right)\right) B_{+}
$$

so we must have $f_{1}(c)=y_{\alpha_{j}}\left((-1)^{a_{i j}} c^{-a_{i j}} f_{2}^{j}\left(c^{-1}\right)\right) B_{+}$for all $c \varepsilon K^{\times}$. If in addition f_{1} is to be a morphism, then $t^{-a_{i j}} f_{2}^{*}\left(t^{-1}\right)$ has to be a polynomial also, hence degree $\left(f_{2}^{*}\right) \leq-a_{i j}$. Conversely, any polynomial $f^{*}(t) \boldsymbol{E K}[t]$ of degree $-a_{i j}$ yields a section of $L \rightarrow Z_{w}^{1}$ simply by reversing the process described above. This correspondence is clearly linear, so one concludes that $\operatorname{dim} H^{0}\left(Z_{w}^{1}, L\right)=\operatorname{dim}\left\{p o l y n o m i a l s ~ i n ~ K[t]\right.$ of degree $\left.\leq-a_{i j}\right\}=1-a_{i j}$; thus, the degree of L is $-a_{i j}$.

We now examine the coordinate chart on z_{w}^{2} more closely:

$$
\begin{aligned}
& U_{(1,1)}=\left\{a\left(x_{1}, y_{1}\right)=\left(\dot{r}_{j}(1) y_{\alpha_{i}}\left(x_{1}\right) \dot{r}_{j}(-1), y_{\alpha_{j}}\left(y_{1}\right)\right), x_{1}, y_{1} \varepsilon K\right\} \\
& U_{(2,1)}=\left\{b\left(x_{2}, y_{2}\right)=\left(\dot{r}_{j}(1) x_{\alpha_{i}}\left(x_{2}\right) \dot{r}_{i}(1) \dot{r}_{j}(-1), y_{\alpha_{j}}\left(y_{2}\right)\right), x_{2}, y_{2} \varepsilon K\right\} \\
& U_{(1,2)}=\left\{c\left(x_{3}, y_{3}\right)=\left(\dot{r}_{j}(1) y_{\alpha_{i}}\left(x_{3}\right) \dot{r}_{j}(-1), x_{\alpha_{j}}\left(y_{3}\right) \dot{r}_{j}(1)\right), x_{3}, y_{3} \varepsilon K\right\} \\
& U_{(2,2)}=\left\{d\left(x_{4}, y_{4}\right)=\left(\dot{r}_{j}(1) x_{\alpha_{i}}\left(x_{4}\right) \dot{r}_{i}(1) \dot{r}_{j}(-1), x_{\alpha_{j}}\left(y_{4}\right) \dot{r}_{j}(1)\right), x_{4}, y_{4} \varepsilon K\right\}
\end{aligned}
$$

Using the relations

$$
\begin{aligned}
& \dot{r}_{i}(-t) h_{i}(-t)=\dot{r}_{i}(1) \\
& \dot{r}_{k}(1) h_{m}(t) \dot{r}_{k}(-1)=h_{m}(t) h_{k}\left(t^{-a_{m k}}\right) \\
& h_{k}(s) x_{\alpha}(t) h_{k}\left(s^{-1}\right)=x_{\alpha}\left(s^{\left\langle\alpha, \alpha_{k}^{V}\right.} t\right)
\end{aligned}
$$

one can determine the intersections $U_{(m, n)} \cap U_{\left(m^{\prime}, n^{\prime}\right)}$ as follows:

$$
\begin{aligned}
& a\left(x_{1}, y_{1}\right)=b\left(x_{2}, y_{2}\right) \text { if \& only if } x_{1} x_{2}=1 \& y_{1}=y_{2}\left(-x_{2}\right)^{-a}{ }^{\text {ij }} \\
& a\left(x_{1}, y_{1}\right)=c\left(x_{3}, y_{3}\right) \text { if \& only if } x_{1}=x_{3} \& y_{1} y_{3}=1 \\
& b\left(x_{2}, y_{2}\right)=d\left(x_{4}, y_{4}\right) \text { if \& only if } x_{2}=x_{4} \& y_{2} y_{4}=1 \\
& c\left(x_{3}, y_{3}\right)=d\left(x_{4}, y_{4}\right) \text { if \& only if } x_{3} x_{4}=1 \& y_{3}=y_{4}\left(-x_{4}\right)^{-a_{i j}} \\
& a\left(x_{1}, y_{1}\right)=d\left(x_{4}, y_{4}\right) \text { if \& only if } x_{1} x_{4}=1 \& y_{1} y_{4}=\left(-x_{4}\right)^{a_{i j}} \\
& c\left(x_{3}, y_{3}\right)=b\left(x_{2}, y_{2}\right) \text { if \& only if } x_{3} x_{2}=1 \& y_{3} y_{2}=\left(-x_{2}\right)^{-a_{i j}}
\end{aligned}
$$

and $\operatorname{Im} h=\left\{c\left(x_{3}, 0\right)\right\} \cup\left\{d\left(x_{4}, 0\right)\right\}$.
Using the coordinates $X\left(=x_{1}=x_{3}\right), Y\left(=y_{1}\right), Z\left(=y_{2}\right)$,

$$
I / X\left(=x_{2}=x_{4}\right), I / Y\left(=y_{3}\right), I / Z\left(=y_{4}\right),
$$

the equations on the right reduce to the single equation

$$
Y=Z(-X)^{-a_{i j}}
$$

for $X_{r_{i} r_{j}}$, and $\operatorname{Imh}=\{Z=\infty, Y=\infty\}$, from which it is easy to see that Imh is rigid (e.g.: as $\mathrm{a}_{\mathrm{ij}}<0$, deformations of the form $\mathrm{Z}(-\mathrm{X})^{-\mathrm{a}_{\mathrm{i}} \mathrm{j}=\mathrm{constant}}$ will contain, in the limit, the fiber $X=\infty$ as well as $\operatorname{Im} h$; and deformations of the form $Y(-X)^{a_{i j}}=$ constant will tend to $\left.\operatorname{Im} h U\{X=0\}\right)$.

References

[BGG] I.Bernstein, I.Gel'fand \& S.Gel'fand: Schubert cells and the cohomology of the spaces G/P, Russ. Math. Surv., vol.28, \#3,1973; §4.
[D] M. Demazure: Désingularisation des variétés de Schubert généralisées, Ann. Sc. Ec. Norm. Sup., série4, vol.7,1974;
[D1] §3.
[Dh] V.Deodhar: On some geometric aspects of Bruhat Ordering I, Ind.U., 1982;
[Dh1] §2.
[Dh2] §3.
[Dh3] §4.
[Dh4] §5.
[Dh?] V.Deodhar: On some geometric aspects of Bruhat Ordering II
[J] N.Jacobson: Lie algebras, Dover, 1979 (I'962); chap.V, §8.
V.Kak: Infinite dimensional Lie algebras, Prog.Math.44, Birkhauser, 1983
[K1] §1.
[K2] §3.
[K3] §5.
[K4] §9.
[K5] §10.
[PK] D.Peterson \& V.Kač : Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sc.,1983;
[PK1] §2.
[PR2] §4.
[KL] D.Kazhdan \& G.Lusztig: Representations of Coxeter groups and Hecke algebras, Inv. Math.,1979;
[KI1] Appendix.
D.Kazhdan \& G.Lusztig: Schubert varieties and Poincaré duality, Proc. Symp. Pure Math. 36,AMS,1980;
[KI2] §I.
[KL3] $\$ 3$.
[KL4] §4.
[KL5] §5.
[K] B.Kostant: Groups over Z, algebraic groups, and discontinuous subgroups, Proc. Symp. Pure Math. IX, AMS,1966;
[MT] R.Moody \& K.Teo: Tits's systems with crystallographic Weyl groups, J. Alg., vol. 21,1972;
R.Steinberg: Lectures on Chevalley groups, Yale U.,1967;
[S1] §2.
[S2] §3.
[S3] §6.
[S] T.Springer: Quelques applications de la cohomologie d'intersection, Sém. Bour. $\ddagger 589,1982$;
[T] J.Tits: Théorie des groupes, Rés.C. ,Coll. Fr., 1981;
[T1] §1.
[T2] §2.
[T3] §4.

