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ABSTRACT

To every Coxeter group W, one can associate its Hecke algebra H over
the polynomial ring Z[q], which can be thought of as a deformation of the
group algebra over Z of W. In the case where W is a Weyl group, fl can also

_be interpreted, using a canonical basis, as the algebra of intertwinig
operators of the space of functions on the flag variety of the correspon-
ding Chevalley grouf. In {KL], Kazhdan and Lusztig extend the ground
ring of H to be Z[q /2,q* /2], and use a different basis to study repre-
sentations of H (and W). In case W is a Weyl group, the entries of the
matrix of change of basis (the Kazhdan-Lusztig polynomials) turn out to
have have far reaching interpretations in terms of the geometry and rep-
resentation theory of the corresponding Lie algebra and groups.

The present work grew out of an attempt to generalize the geometric
interpretations of the Kazhdan-Lusztig constructions to the case where
W is a crystallographic group (i.e. the order of the product of a pair
of generators is 2,3,4,6 or ®). The link with the classical theory is
the fact that crystallographic groups are precisely the 'Weyl groups' of
Kac-Moody Lie algebras. :

Section 1 contains a construction of Tits's Z-form of the universal
enveloping algebra of a Kac-Moody algebra g (or, more appropriately, one
of Tits's Z-forms). The idea is as in [ K ], and it allows one to extend
coefficients to an arbitrary field F (of any characteristic), and asso-
ciate to g a 'Kac-Moody group' G over F, which is done in section 2. In
case F is finite, the adjoint group of G has already been constructed in
[ MT ]. The comstruction here is basically the same as the one Peterson
and Kac carry out for F of characteristic 0 ([ PK]), and has the advan-
tage over Tits's of being in the spirit of the classical theory as deve-
lopped in [ S3 ], a fact which allows a more tractable study of the struc-
ture and representations of G. In case g is finite dimensional, the group
G is a classical Chevalley-type finite dimensional group, while if g is
not, then G is infinite dimensional in the sense that it contains sub-
groups of arbitrarily large finite dimension. As most of the proofs of
the structural facts about the group constructed in [ PK ] use a comple-
tion of a subalgebra of g and the ability to exponentiate its elements.
(facts which present essential difficulties in positive characteristic),
the results in §2 are weaker than those in [PKl](although the group is
the same one if charF=0). However, they afford a different presentation
of the flag variety, the study of which is taken up in section 3.

As in [PK ], the flag variety G/B proves to be a Bruhat-type ( BwB)
disjoint union, indexed by W, of (finite-dimensional) affine cells C(w),
each of which admits a 'Schubert variety' (still finite-dimensional) as
its closure. the geometry of thesevarieties is studied by: 1) generali-
zing the results of Dheodar ([Dh ]1): after reproving the lemmas in [Dhl]
in the present setting using the Birkhoff decomposition ( B_wB), the re-
sults of [Dh2-4] carry over almost verbatim; and 2) adapting a construc-—
tion of Demazure's ([ D ]), the main tool for which is the fact that 'a



codimension-1 piece of the Borel common to two adjacent minimal parabo-
lics acts trivially', so that ome can construct a (finite-dimensional)
'resolution' Z as in [D1 ] to a closed subset of projective space which
is identified, using the Borel fixed point theorem, as being (J C(y)=X ,
for weW. y<w L
These facts are applied in section 4 to:
1) showing that X _is always non-singular in codimensiocn 1,
2) giving geometric interpretations to some of the Kazhdan-Lusztig
constructions for crystallographic W, using the positive charac-
teristic approach of [ KL }(the methods of [ § ] do not seem
amenable to direct generalisation because the G orbits in (G/B)2
are not finite dimensional),
3) a study of the case where the reduced expressions of weW consist
of distinet reflexions (e.g. X _is then smooth),
and 4) an explanation (and proof) Of a remark made in [ T3 ], which
suggest that no further generalisation (to arbitrary Coxeter groups)
can be made. d  a

Thesis Supervisor: Dr. Victor G. Kac, Professor of Mathematics.



Section 1 : Construction of the Enveloping Algebras U UK, and

zl
associated Modules.

Start with an NxN generalized Cartan matrix; that is, A is an NxN
matrix with entries aij s 1<i,j< N , satisfying:
a,.=2 for all i,
ii
a,jez' if i#j,
with a,.=0 if and only if a, . =0.
ij ji 0 1
We assume for simplicity that A is indecomposable, i.e. that A#[O Azj
after any reordering of the index set.

Fix a Q-vector space h of dimension N + corank(A); it can then be
shown ([K1]) that there exists subsets T:h chh. where II={a. i 1<i<N},
i {a » 1<i<N}, such that:

*
Il is a linearly independent subset of h ,
I is a linearly independent subset of h,
and <o, ,a >=3.
J ij
The Kal-woody algebra g=gQ(A) is the Lie algebra over Q generated
by h and elements ei,fi, 1<i<N, with "defining relations":
[h,h]=0 ,
{e ,f 1= Glj i
[h,e. ]—<a. h>e, , for all heh ,
g i i
[h,fi]=—<o'.i,h>fi » for all heh ,

]

and (ad ei)l-aij(ej) = (ad fi)l-aij(fj) = 0 whenever i#j.

It can then be shown that, identifying h,ei, fi with their respec-
tive images in g, if n.= subalgebra of g generated by e 1<i<N, and
n_= subalgebra of g generated by fi’ 1<i<N, then we have ([Kl ]):

1.0 Proposition :

g=n $h$n+ ) (the triangular decomposition),
[9,9]=ag' is generated by ei,fi , 1<i<y ,
"= o )
hog'= 8, Qd]
h is its own centralizer in g ,

the center of g is contained in hng' ,

The abelian subalgebra h acts, by the adjoint representation, com-



*
pletely reducibly on g, so that g= ega,ae:h , where gu={x€g such that
[h,x]=<a,h>x for all heh}, and we have g0=h as noted in 1.0 .
Now, since h preserves the decomposition 1.0, one sees that if

- *
g,70, then either gc:h, or gFn,, or gen_. Writing Q.= g No, eh ,

+
Q_ = - Q,, this implies that if 04 #O, either a=0, or a € Q {O}, in

-—

which case g en,; so that if A“{aeh |g #0} is the set of roots, then
A= AJJA_, where A AnQ+ i

*
For each 1<i<N, define rie.GL(h ) by ri(k)=h—<l,az>ai and let

%
S={rl, e iy rN}. The subgroup <S> of GL(h ) is called the Weyl group
of g, and is in fact a Coxeter group; more precisely, <S> is isomorphic

to the quotient W of the free group generated by r Ty by the

D o e
subgroup generated by '
(x;)?, 1<i<N,
and (rirj)mij, 1<i#j<N,
where mij are computed by the following table ([ K3 1]1):

If a,.a,, = ’011‘2‘3
- s [

then mij = ' 2 { 3 ' 4 ' 6 l ©

Conversely, given a crystallographic group W (i.e. a Coxeter group
as above with m, JE{Z 3,4,6,%}), one can find a generalized Cartan
matrix A such that the Weyl group of QQ(A) is precisely W: indeed it
suffices to take aij='4c°5%5__ if i<j, alj—-l if i>j and a #0

1]

The matrix A thus obtained will fail to be indecomposable exactly when
the Coxeter graph of W is disconnected, in which case gQ(A) is iso-
morphic to gQ(Al)QgQ(AZ), W—Wlxwz, where W is the Weyl group of gQ(A )s
In any case, one gets an embedding of W in GL(h Y

Similarly, one has an action of W on h given by rih=h—<ai,h>a§;
and the two representations thus obtained are contragredient (i.e.

<riA,r.h>=<l,h> if leh* , heh).
e,

Write e( m) for the element . of the universal enveloping algebra
i m!
of g' , 1<i<N, meN, and 51m11arly f(m) nﬁ f? e U(g'). Define Uz to be

the Z-subalgebra of U(g') generated by { eim) 5 fim) » 1<i<N, meN Fs



and set

(m)

generated by e; s 1<i<N, meN

(m)

U,= the subalgebra of U

+ Z

U_= the subalgebra of u generated by f s 1<i<N, meN

Also, if R is any Q-algebra w1th 1, and xtR, nEN define ( ) €ER to be

x(x-1),. ~ afxuil) Finally, set

the element
v
u0= the Z-subalgebra of U(g') generated by (zi) » 1<i<N, neN.

( see [T1]).
one then has
1.1 Proposition :
’ s 1
Ujel,, UBQ=UCNg) ,
UtﬁQ = U(ni) i

U,BQ = U(g'), and U, = U_BU BU_~ ( see [T 1).

proof:

(m)g(n) _ Z f(k)(u Zk> (k)

1

([sz])

Given neN , e

k...
Y () 0¥ -2k (k)
=( 1) +k21f (d e
Now we can find integers aék) such that
v n-=
477 - . O ([s2 1)
m=0

so that we actually have
n
(n) (n) . 1) 4 Z a(k) f(k)(z Ve ik)
~ - k=1 m=0 " ~ o

€ uz £ Uz

a¥
and each ( i) is seen to lie in u by induction on n, hence

U(‘:Uz, that U Q= Uihng') is cle.ar as hﬂg g so
that U(hng') is the symmetric algebra in a aN over Q
and the first statement is proved.
The second statement is clear by the Birkhoff-Witt theorem
applied to n_, so let's verify the last statement:

we have‘an injection

Il: UzﬁQ-—+U(g'), Il(uﬂc)=c-u .



By the Birkhoff-Witt theorem applied to 1.0, the map

IZ: U(n_)ﬁU(hﬂg‘)HU(n_,_) — U(g")
given by Iz(u_ﬂuoﬁu+) =uuu, is an isomorphism, so we
get an isomorphism

I,b: U(g') — U(n_)BU(hNG )RU(R,)

Using the first two statements just proved, we also obtain
a map

I,: U(n_)EU(hﬂg')EU(n+) -+‘U_EUOHU+EQ
and a map

I,: U_EUOEU+EQ = UZEQ » I, (u_Bu Bu Bc) = cu_u u, .

Ilshows that UzﬁQ c U(g'), and 14013012 proves the
reverse inclusion.

Finally, it is clear that IZ(U_EUOEU+) c Uz, so that
12: U_HUOEU+ — Uz is an injective map, and we need to
check that 151 (Uy) = U_BU BU, , which follows directly

from the formulas

mimnan) . W L
ein)fim) = X f(m—J)(ai mjn&QJ)ein j)
j=0 ’
el
_ as befdre
ej(m)fi(n) = fin)ej(m) if i#j ,
v v v
o} (m) _ -(m) o.-m<a.,q >
ey = EFV YT )

! i
el
v v Oy
(o) .. _ o dmden. o, > (n)
and e, (nJ) E i i : i, )ei

1
euo

all of which can be checked by induction as in [S52].

The decomposition 1.1 can be made more explicit in the case of
a classical Cartan matrix (i.e. when g is a finite dimensional simple
Lie algebra once one extends coefficients to C), and one can then
exhibit a Z-basis for UZ ([K ],[81]). One problem with generalizing
this result is that the root spaces do not in general have any cano-
nical bases, indeed they are not necessarily one-dimensional. The ones

that are do however play a central role in the theory, and they can be



easily obtained as follows:

the elements e;s fi » 1<i<N act, by the adjoint representation, local-
ly nilpotently on UZ (indeed, on U(g)), i.e. for every uell, there
exists M(u)eN such that eim).u = 0 for all m>M(u), and similarly for
fi : that is so because of the equality

- ’
1.2 ady .( XpeeoX ) = ) (j - j ) (ad le.xl)...(ad yj“.xn)
jite..j =m T2t o ady

which holds in the envelope of gny Lie algebra a, when YsXpseeesX £ a,

and(.m.)= m!

—— , and can be easily checked by induction on
2 L Y I PO I
m and n€ N; using 1.2 with y=e;, one gets

1.3 ad e (x...x ) = I @ elPux). i (a eldn) 4 )
31+...+3n=m

from which one concludes that local nilpotence of ey (or fi) on U
follows from local nilpotence on the generators of U, and that is an
immediate consequence of the defining relations for g.
So for x € {ei’fi » 1<i<N}, one can define elements exp x, exp -x
in End(U,) by
Z
(m)

T.4 exp X . v=2 adx .V ,EUZ 15 vsUz
m

and exp-x . V’Z (-l)madx(m).v i '€ uz if vsuz 5
m
each sun being of course finite as each term beyond M(v) chosen as

above is 0.

The decomposition 1.1 and formula 1.4 show that exp#x are actually
endomorphisms of U(g') and that if veg'el(g'), then exp x.ve g'again.
Now, using 1.3, one easily checks that exp-x = (exp x)—l, and that if
yl,yzsg’ then (exp(Ex).[yl,yz])=[exp(8x).yl,exp(Ex).yzl, €=*1, so that
exptx defined as above are Lie algebra automorphisms. )

Let's defiﬁe, for 1<i<N, :E'ie Aut(uz) by £'i=expeioexp-fioexpei.

A classical computation shows that i'i] =r; (see, e.g., [K2]), and i’i
h

is a Lie algebra automorphism extending r;. We proceed to define for
every weW «sGL(h) such an extension w by choosing a reduced expression
w=r, ...r; for w, and setting ﬁr=:':i ...fi ; to check that this does
inde@d define w uniquely, one needs to verify that

1.5 Proposition :

If w=r, ...r, =r, ...r, , and w has length k,
1% 9



then t....E, = T.,...E
1 % J1 Ik
proof:
Proceed by induction as follows:
If k=1, there is nothing to prove. Otherwise, the exchange
condition ([ K2 ]) implies that for some (<a<k-1, we have
T oeeof, = T o00T, T, ...T, T, o
L S R VR S B e
If a#0, the induction hypothesis applied to
Y, +.eT, ®T. «u.T, T,
Jo+1 Ik Ja+2 Ik "k
gives
1.6 TT ensl, = T, 2uat, . 4
Jor1 Tk otz ke Tk
and, applied to YieeoT, STl TL Ty ..lT gives
1 k-1 J1 dw a2 Jk
1.6' B cmal S By By e oy g
141 31 g o
hence *....r, = t....2, ¥, ...E, £, by 1.6,

1 e 31 Jg datr Ik
= f....t, t. by 1.6" ;

1 k-1 Yk
If a=0, i.e. w=r.,...r, r, , then we know by induction that
J J, L
2 k "k
1.7 Eoiiml. 8 B, susk, fi ‘
1% J2 Jk
We shall also assume that Lot FERRE (otherwise, by sym-

2 1k Jx

metry, we are back in the case 0#0, with i and j exchanged).

We then have similarly
1.7 ij...ij = ii...ii fj .

1 k 2 k "k

and it suffices to show that the right hand sides of 1.7,
1.7' are equal, i.e. that
. . = (@& K ; )T

(F....1 ook, T
9k J2 0 Jk-1 Jx Mk

ty Tk
Proceeding by induction, this reduces to proving that
T, T, ti...= T, fi Ty wwa
R Ik *k Ik
whenever ri T, ri
k Ik

.

ese= T r. r, ..
ik I e Ik
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Now one can compute directly that

if m,,=2, then t,.X.=X.,
i

1]

if m..=3, then T.T..X =X.,
13 1 J YN J

if m..=4, then tT.T.Tr.,.X."X,,
1] 1] 1 ] 1

if m,.=6, then T.f . £.f.T.X.=x,
i : A I T T s T
with x £{e,f} (using classical formulas, as in the
proof of 1.1), from which it follows easily that
. — . ) _l___
if mij 2, then rioexp(exj)ori exp(sxj),

if m,.=3, then r.T
1]

i]

and similarly for mij=4,6, and one concludes that

c_lo-l_ o
oexp(sxi)orj I, =exp (EXj), (e=%1)

Tt=p

1 ]

if m, =3, then t.E.f B ti tei,,
i]j i1J1] 1 J

if m,.=2, then t .t
1] 1]

etc... as needed.

The proof of 1.5 is now complete,

so that w is indeed well-defined.

We thus get a map W —>End(U(g')), wi—+w, satisfying
1) w is an automorphism of U(g'), leaving Uz and g' stable,
2) ez|h= weW & CL(h),
3) If x,yeg', then w.[x,y]l=[¥x,wy].
Suppose then that Ag A, x¢ g}isg', heh:
we have f[h,w.x] = &.[&-1.h,x]
= w.[w L.h,x]
= ¥, (<A,w L.hox)
= w. (<w.\,h>x%)
= <w.AhPW.x ,
i.e. W restricts to a bijection g;=* g 4 * in particular, A is W-inva-
riant (W acts on h* as sbove ), ana if Ac A, dimgl=dimgw.l. We know from
1.0 that if AeIll (i,e. A=ai for some i), then dimgx=1 (in fact, gk=Qei),
and similarly for Ae-Il. So one is naturally led to define subsets
AT, AT, AT of A as follows (see [ K3]) :
£ .o , AT%= w.aiea, , AT°= AT%nA_ .
If Ae Are’ then, as in the finite dimensional case,
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AnZi={£A}, and dimg,=l.
If moreover A—ai, we know that gA—Qei, and that gAnU Ze (the 1nter-
section taken in U(g')). We conmstruct such a basis for gk, any AeA"E
as follows:
Let X(A) = { itiar.ei , WEW and 1<i<N such that w.ai=)\ A

1.8 Proposition :

X(A\) has exactly two elements, for any A.
proof:

If weW, 1<i<N, then w.e el ﬂgq in fact w.e, 1 € 8uq. =9

which is one dimensional. So if Wl.a =Wo 0y =)\, then
j wl eJ—c w2 s for Ezme cE:Q;lhence
Wy .wz.ek=‘gej.
. ~1.
But w,.e, €Ufg , so w, w,.e el fg -1 =U, g
2"k Z wz.uk 1 27k 72 wl quk Z aj

hence c=%1.
In other words, if wlaJ-wzak A, then wleJ _W e E.gk Uz,
and X(A) does indeed consist of two elements, each the
negative of the other.
So we fix an arbitrary 1<i<N and WAEW satisfying wk“ﬁ =A (we take
wy =1 and i=k if k=ak) ;eand define ey = Wy.ey fk= wk'fi'
The elements of A — are called real roots ([K3 1); so for every
real root A, say RE:Aie, we now have root vectors ey fk such that

9A=Qek’ 9—K=ka' Also, if XEGy > S2Y ¥=C.&y with ccQ, and if xsuz, then

S NP z l o :
1 L et e s L
As qu' .xegun Uz = Zei, one concludes that ce 2. Therefore, we also
have: '
1.9 g U = Zek 5 gAﬂU X , for any lE:A

Finally, w1th A as above, define A = Wk'a gh. Then ka+Ql +Qey

is isomorphic to 42.(Q) and one easily proves as in 1.1 that (A ) EU

for all neN, KE;A+ , and that eim), im)EU { where xim)—wk x (m) for
xe{e,f} ).

Suppose now that K is a field, so that we may form UK = UZEZK. It
follows from 1.1 that if UG(K) e UOEZK with o€ {+,-,0}, then

s U_ (K) EZUO (K)Ezu‘l‘ (K) ]

and 1.9 shows that for all lE:Aie, elﬁl#o, fkﬂl#o in UK.
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Being the tensor product of two Z-algebras, UK carries a structure
of associative algebra, with (x®t).(y8s)= xy®ts. The product is K-linear
so that UK is also a K-Lie algebra. The same holds for UU(K) as above,
so that we have the Birkhoff-Witt decomposition UKéU_(K)EUo(K)EU+(K).

Finally, one has a map W - Aut(UK), satisfying w. (uBt)=(w.u)Bt;
this map is again injective, for of w#w' e W, one can find aiE:H such
that wai%w'ai, in which case ﬁei=eewai while ﬁ'ei=e'ew,ai (with g,g'=%1)
so that w.(eiﬂl)%w‘.(eiﬂl), as needed.

A few basic facts about the representation theory of U will be
needed. To distinguish the 'good" characters of UO(K), let's make the
following definition: for a€ Z, ne N, write

’

|
H‘(:-—:n)—' if a>n, as usual ,
(i) = 0 if 0<a<n
-1)" (n-a-1)! if a<0 ,
nl! (-a=1)!

.

so that (i) is a well-defined integer.
It is now easy to check that one obtains a homomorphism
v o®
Q) - Hom(U_(X),K),
v, % 3 % v_ g v i ;
where (Q') denotes the Z-dual, in h", of Q =% 20 satisfying

<A, \V>
n

}\V
AC (IRt ) = t.( §

for all Ace (Qv)*, AvéQv, neN, teK. Call the image of this map the cha-
racters of UO(K) (see [T1 ]).

A Uz-module M is called integrable if all ei,fi act locally nilpo-
tently on M, i.e. for each veM, there exists a positive integer m(v)
such that if m(v)<me N, then e£m).v=f§m).v=0. A Uijodule is integrable
if all eiﬂl,fiﬂl act locally nilpotently and UO(K) acts by characters
as above. Finally, a g=gQ(A)—module M is integrable if all ei,fi act
locally nilpotently, and M is completely reducible as an h-module, all
weight spaces being finite dimensional. '

A large class of integrable g-modules has been constructed by
V. Ka® ([K& ]): it consists of certain highest- and lowest-weight
modules. To construct these modules, start with a 'weight' AE:h* such

that <A,u§>€N for all i. Let J(A) be the ideal of U(g) generated by n,
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together with all (h-A(h)), heh. The g-module U(g)/J(A), on which g acts
by left-multiplication, can be shown to have a unique proper maximal
submodule, such that the quotient L(A) is an integrable g-module in the
above sense (see [K5 ]; L(A) is irreducible by construction).

L(A) has highest weight A, i.e. if v+EL(A) is the image under the
quotient maps of 1el(g), then
1.10 Uny).v *=0

h.vT=<A,b>v -0 for all heh,
and L(A)=U(n_ ).v .
"One then knows ([K5 ]) that each r acts on L(A) as before, that
dlmQL(A) A dimQL(A)A—l , ( where if M is a g-module and Aeh® , then
A—{meM such that h.m=<)\,h>m, for all heh}) and that, in fact,

fi.v"'a (L(A)riﬂnuz.v"’)—{()}.

Since we also know, by construction, that (U . +nL(A)A)=Zv+, one can

show as in 1.5-1.7 that if r, S ...r =wec W with length(w)=k,
i ;|
1 x d1 Iy
By oo Gen By .v"')..)—rJ .(...(i. .v1)..), so that for each we W we have
a %ell defined elementlw.v e L AﬂUZ.v+. Finally, one knows that if
L(A)A%O, then dimQL(A)A<W, )
A-A e N.II,

and L(M)=JL(N),.
A

Given a highest weight g-module M as above, one obtains canonically
a lowest weight module M* as follows:

If w is the imvolution of g given by we,=f,, w|h=-Idh ,define a new
g-module structure on M by requiring

x.m = w(x).m , for all x€g, mEM.
(0old) (new)

Writing M* for M with this new g-module structure, and v for vt, one
obtains a g-module satisfying 1.10 with all * signs reversed.

Let M be an integrable g-module with highest weight A, and let's
prove:

1.11 Proposition :

a) (U,.vNMy)#0 ii M,#0 (in fact, (Uz.v+nM3\)fQ=M)\);
b) If v= Vi auz.v , with VJ\SMA, then vlsuz.v

for every A.



proof:
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e) M_nU, AT T,

d) (Uz.v )EZK is an integrable UK—module.
the same statements being true of lowest weight

modules.

To prove a), one needs to observe that U(g).v+=U(g').v+ as
both are equal to U(n_).v T ~Now Un_ ) = U_®Q by 1.1, so if
VEM,, then v—c:u.v+ with c€Q, uel_ hence %&: Uz.v+, and the
reverse inclusion is clear.

Choose a lattice in " of rank d=M+corankA =dimh containing
A and T, and let S, be its Z-dual in h, say 5,=82h,. If
h€S, and nEN, the element ad( ) of End (U(g)) stabilizes

U_: in fact,

Q

z
a@.ef® =P
£
z
while ad(D).£{W=m("%") £

Define a map height: Q — N, by height(Zniui)=Zni. For
every l,UE:Q+, we then have height (A+Hl)=height (A)+height (1).
and one defines a gradation on the algebra U(n+) so that

if uEU(n+) is in the V-weight space of the adjoint action
of h on U(n+) then degree(u)=height (V). (this is the prin-
cipal gradation as in [x1 1). Let Uj={ueU(n+) | deg(u)=3},
and let's first show that U+ is homogeneous with respect

ta this gradation:

Choose hoESA such that <o ,h >=1 for all i. If u€U+, say

u=u. +...+u with u EU

ad(}}o).u = Z (Ji)u + u.
Jx 3=1 3¢ 3 Ik

1 and jl o jk, then

Proceeding b¥ induction, we find that uy EUZ for all i;

henceu-z (UnU) 1
jEN ]

One defines a gradation 'ENLLﬁ of U(n_) similarly, and we
J

= N ]
have U_ jEH(U_ LLj)
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Again, if hes,, and neN, then (E)E:U(g), so (2) acts on M.

+
We can now show that (2) stabilizes Uz.v $

+ .
Indeed, suppose v=u_.v , and assume u =Zuj with quU Y

An easy calculation shows that ( )uJ.v+ is of the form

<
z ( A~ Ty Gy = e mNuN’h jv+ ,the sum being over some
m

N-tuples (ml,...,mN) satisfying m +...+mN-3. In any case,

this shows that ( ). vEUZ.v+.

Assume now that v= I Vys where A is a (finite) subset of
AcA
weights, and let U € A. One knows that the subring of

Q[X ,...,X ] (polynomials in d variables with coefficients
in Q) generated by all monomlals of the form ( i), 1<i<N,
nieH, separates points in .29 ([s11). So for each AeA-{u},
find such a polynomial gi(xl,...,xd) satisfying

Ei(<x,hl>,...,<x,hd>)=o,
P (<p,hy>,...0,<H,0>)=1,

and let F(X,,...,X;,) = @0 P,.

If u = F(h ,h,), then ueli(g), u stabilizes Uz.v+ by

1200
our choice of polynomials PA’ and

u.v = z U, v, = Z F(<A,h.>,.445<A,h.>)v
AcA A Aea-{u} , 474

+F (<M,h1>, ce. ,<L',hd>)vu

Y
=v .
H
As VEUZ-V+ , we must have V'euz, which proves b).
The proof of c¢) is identical to that of 1.9 (note that
dim MWA 1).

proof of d): If v = Z (ul.v )&, T then for every i, there.
exists a p051t1ve integer my such that f§ ) (u vH)=0

and e( ).(u v )-O if m>m,. So if m>m(v)-max(m.), then
1 i — i -_— i 1
eim).v = Zeim}.(ui.v+)ﬂt=0, and similarly for ey,... -

So we need only check the action of UO(K) on M :
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By b), it is sufficient to check that if m is of the form
- + + ) =

m=(u.v )8s with u.Vv (-:Mu and ueuz, then u,-m xm(u Jm for all

u, f-;U (K), where Xm is some character of U (K) as above.

W:Lthout loss of generality, we may take u —(W), 5 £ qQY,
and compute:

(¢} ar).m

)\V
( ).u.v+ﬂst

= <U h Yu.viBs

< A >
- t( U:n )m

%
so that Xm is the image character of utz(Qv) 5

Finally, we show that

1.12 Proposition @

proof:

If K has characteristic p>0, then UK carries a
Frobenius map F:UK*ﬂ-UK satisfying F(xﬂt)=xﬁtp
wheniver xa{ag,ei,fi, 1<i<N}, and every UKfmodule
Uz.v'ﬂK carries a Frobenius such that

F(u.v)=F(u).F(v) whenever vEUz.viEK, uEUK.

If Uj(K) = { Exiﬂti’ xiE:U+ with degree(x;)=] }, then
Uj(K) is a QVEK—stable finite dimensional subspace of u+(KL

Using the Z-basis ' for Qv, we obtain a Frobenius F on
QVQK, and F extends uniquely to each UJ(K) in such a way
that F(Zx,®t )=IxBt] ([ J 1), hence to all of U (K).
Define F on U_ 51milarly, and extend the Frobenius on Q 8K
to UO(K) by identifying the latter with the symmetric
algebra of QVEK. We finally obtain F:UKT+ UK by using 1.1
so that F(u_ﬂuoﬁu+)=F(u_)ﬁF(uo)EF(u+), with u0£:UU(K).

= { +
Now, if veM, say v iviﬁti with v4E Uz.v . tieK, then each

vy is of the form EVA, where v, eMiﬁU R by 1.11, so that,

defining F on (MITU ~TER by F(2v Bt )=EVKEtP (recall
that dimK(MkﬂU .V )EK < dlmQ(Ml) ¢ e ), one sees 'that

F(v)=§viﬂti does satisfy F(u.v)=F(u).F(v).
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Example 1: One always has iiei=—fi; assume that N>2, and a12=—2. Then

P (2)_ , . .2
Iie, el' e2+e2el elezel. In particular, if N=2, then T,
is the identity on Uz.
. . (Fays)
More generally, one has riej adei 1] .ej,
and l':,f,=(—l)aijadf ,(-aij).f.
i'j i a
if i#j.
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Section 2 : Construction of the group.

Fix a field K. For every Q€ A:_e, teXK, let Xu(t) be the formal sum
) eén)ﬂtn, and X (K) the set {x, (v, t € K}.
n=0

Defining a product in Xa by Xa(t).Xa(s)=Xa(t+s), one can easily see
that XOL becomes a group, isomorphic to Ga, and such that if M is any
integrable Ul{module, there exists a homomorphism Xa—> AutK(M), with
Xa(t).vr-]thnean)&l.v, the sum being finite by integrability.

Similarly, let ¥ (X)={Y (t)=1 f(n)ﬂtn, t € K}, defined for any
o a n=0 0o .

*-—

.

aeAie, and consider the group G
%
a,BsAf_e, so that GK acts on all integrable UK-modules as above.

free product of all Xa’YB’ over all

*
If IO== intersection, taken over all Uz.vtm{ as in 1.11, of the

* %
kernels of the representation of G, on uz.viEK, and Il-—- kernel of the
% * % *> &
action of GK on UK , set I = Ionll , and let G(K)=GK/I : G(K) is the

Kad-Moody group associated to the gemeralized Cartan matrix A ( or the
crystallographic group W). If A were a classical Cartan matrix, G(XK)
would be the universal (simply-connected) group associated to A. Using

% *
Il instead of I would yield the adjoint group .

In order to study the structure of G, let xa(t), ya(t), xu,ya- be
* ;
the images in G(X) of Xa(t)’Ya(t)’Xa"Yu in G, let AT be the subgroup

of G generated by X, .Y, 1<i<N, and call Ad:G(X)— Aut(uK) the
i i
representation of G(K) on UK.
It is easy to see that Ad (Al) stabilizes the Lie subalgebra of UK
spanned by the ordered basis (-eiﬁl, aviﬁl, fiﬂl ) and that with respect

to this basis, i _z't i ®)

Adx (t) has matrix [0 0 ¢t .
& 0 0 1]

[ 3

1 00
and Adya (t) has matrix |-t 10 | ,
-t2 2t 1 |

so that: a) the maps Xa-——rG(K) . Ya—a- G(K)
i A

Xai(t) -

are injective ,

x, (£), Y, (e)v y, (t)
i i g



19

i N
and b} Ad A ]Keiﬂlﬂ{céi’m—t—lcfim = Flglk)

On the other hand, one knows that given any integrable module M for
the algebra U (Aﬂ ) defined as above, there exists a representatlon

SL (K)-—-—*Aut(M) satisfying [O l) v = X(t).v, ( ] v = Y(t).v, and

0 < V> )
{E t-]}.v = ¢ V%7 if Uo(bf,z) acts on v by the character v ([T2 ]).

Fixing i and applying this theorem to the éﬂ sub-Lie algebra of
UK spanned by e ®l, of El f ;BL, one gets a homomorph:.sm 9, :SL, (X)—G (K)
such that o, (sL, (K))-Al, as we also have Ad A" ~PSL,(K), we can assert

that A is a group of type A

Before obtaining commutation relations and structural facts about
G, let's observe that if char (K)=p>0, and if the map Kk—XK, tw tP is
invertible, then G(X) carries a Frobenius map such that an(t)=xa(tp):
indeed, the map F:G;-—r G; given by ?(za(t))=zu(tp) for ze{x,y} satisfies
1?”‘(1""°)=I"‘= by 1.12, and hence factors to the desired map on G itself.

Let s denote by H {H (£)=0, [0 l/t]’ taIg}CA Mi= normalizer of

Hi in A , H= subgroup of G generated by Hl’“"HN’ M= subgroup of G

generated by M:f_’ 1<i<N, U+=

U_= subgroup of G generated by all ya,usﬁ+ y T (t) X, (t)ya ( l/t)xa(t).
i i

subgroup of G generated by all Xy O e AT®

2.1 Theorem : (see [PR])
a) If M is an integrable UK—module, and if uEUK,
then (Adxy(t)(u)) = za(t)ouox_a(t), in End Qf)
b) If o, €AL®, & NesrNSOA =No+NBnA, ‘fe,B,c+B} then for
some ny BE.., and all t,s EK (xq (t) xB(s)) XOH_B( Ty 5ts)
c) rl(l)xarl(~1)=x o if CtsA -{cx 1.

d) (Hi,Hj)=l for all i,j.

-1_ i
e) hU+h U+ if heH.
£) W=M/H

proof:
To prove a) we may assume that u=u Es, u EUZ, sekK, veM, so
that (Ad z, (t).{(uw)).v = Z tm(ade( ).uoﬁs).v , while
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zj -0)itd (e(Dmt. (u. ((¢{Pa1).v))
s

I (@ Pu e ims) v

i g

p 25 (eéj)uoeéﬁ))ﬁsw

xa(t)ouoxa(—t).v

0 | i :
24541, () (2i+1)
t (eDt uey” Y8s.v
- Z (T e(m-Zi)u e(21)ﬂs.v
- i ¢ oo )
_(@m-2i-1)  _(2i+1
ey ue Bs.v )

so that a) is proved if we know that
ém) -5 e(m.--2i)u e(21) _ e(m—Zi--l)u e(2:L+l)

o id o O o o Q

But one can easily prove by induction, starting with

ad e .

the formula adei.u = eju-ue, that
ad et u = z (-l):j E)emﬂjueq , which implies 2.2 if we
i 420 o i
SO =1 . Ol ; . S
let u=(w ) u,s and apply w to the above equality, with
i chosen so that ﬁa.ui=u.

Now to check all equalities A=B with A,BE G, we use a)

% -
1 €l where A and B . are interpreted

to verify that AB~
as elements of G*, i.e.

To prove b): let's first compute nu,B: if o+B ¢.Aie; set
nu,8=0 for we know that in this case e, and eg commute.
Otherwise, as in 1.9, we know that (ﬁa+8)'l.[e8,ea] is

an element of U£1ga = Zeg, where 1 is such that

i
.a+B)-1

a+8ai=u+8, hence (w

% Je,. = ne, m £
w [ 3 ea] ne, for some nt Z,

and we let na,8=n.
*
We now check that (X&(t)’XB(S))'XG+B(HG,BtS)E:Io

Fix t,s €K, and set R=Z[T,S], the ring of polynomials in
two variables with integer coefficients, and let UR denote
d
UzﬁR. let VOE:UZ, and let DT aEndUR be the operator TdT .
As ey acts locally nilpotently on Uz in the adjoint repre-
sentation, for any Ai:Aie, we can define elements

E(cel) = Z adeik)ﬁc aEhdUR, for any ¢ £ Z[T,8]. Now write
k
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f(T’S)=E(Tea)E(SEB)E(-Tea)E(-SeB)E(na,BTsea+B)'voﬂl ’

and let's compute DTf = T( (ad(e 1)) )

+T.E(Tea){E(SeB)(-ad(eaﬂl))E(—Tea)E(-Se )E(narBTSea+8).voﬁl
+E(SeB)E( Te )E( SeB)(ade_Ot+B 5, BS)E(na,BTsea+B)'
v ik

(using the "product rule'),
T(adeaﬂl)f ~ Tad(E(Te )E(SeB) .e El)f
+ n, STad (E(Te )E(SeB)E( Te )E( -Se ) +Bﬂl)f

s B
(using a)),
T.ad(eaﬂl-eaﬂl-s[eB,ea]ﬂl+na,BSe

a+8m)f
(as with our assumptions-on &,8,

ey and eB commute with eu+8)

i

0, so that
f(T,S)=f(0,S)=voﬁl.

Now we form the temsor product UREszuK, where K has the

© Z[T,S]-module structure obtained by mapping T+t, Sk s:

Then equations 2.3 and 2.4 give
(Xa(t)’XB(S))XQ+B(na,BSt)’VoHl = voﬂl,
which is verified for all VOEUZ, from which one concludes
that
*
(X (t),X (s))Xa+B(na 8st)E Il = .
To check that (X (t), XB(S))X +B(na 6st)E:I0 one proceeds
exactly as above, and b) is proved.
proof of ¢): given qs:Aie-{ui}, 1<i<N, we already know
that ri.eaezuzﬁgr a=zeria’ so that there exists an integer
ki,ae Z with
riea=ki,ueria'
In fact,

>

-1 0 = §
T3 eriaéuz 9y hence ki i =4

1 J ¥ - - *
Let's show that ri(l)Xa(t)ri( l)Xria( ki,at) el

If M is an integrable UK-module, and ve€M, then

B (DX (O 1)y = I tml':i(l).(eém)ﬁl).i‘i(-l).v
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= I tT(AdL, (1). (e(m)ﬁl))-v , by a),
o i o
= E tm(f .eém)ﬂl).v , by the definition of ii,

_ m(m)
= z tmk 1, 5% aﬂl.v

= Xria(ki,oct)'v .

=]
As Xr ia- (ki,at)_xtia (-ki,at) ,» wWe obtain

ri(l)xu(t)ri(-1)=xria(it) , as needed.

proof of d): it is a priori clear that (Hi,Hi)=l. Now
assume that M is an integrable module as in 1.11, so that
for all veM, V—EV}L
that Hi(s) v o= % s

Sj are elements of K, then

tlv’ with vlau .V nM}\, tl £ K. We know

<A, OLi vkﬂtk , so that if 1<i<N, and s, T

?\(1><7\DL> -<A,Q
8. ] s.

-1 -1
~I-lj_(si)l-lj (Sj)Hi(si )Hj (Sj ).v ;\s ..<)\ aV; i
= X 'V;\Et;}t =v

and hence H (s )H (s )H (s~ )H (s ) sI* .

-1

. .
The proof that Hi(si)H (s )H, (si )H (s )E:I is similar,

 and as we already know that H ) Hk(s) , we obtain
(Hi,Hj)=l in G, for all i,j.

To prove e), we keep the notation of d), and find that

H, (60X, (8)E, (£ .v = 3 B, (6).e™as™ 1, (¢ v

£ (adE, (). (™ Rs™) v
Now UO(K) acts by the image character of m on e(m)ﬂsm

V
so that, using 1.11, AdHi(t)' (e(m)g sty = t<m90ti>e(m)ﬁsm

(m) < V> .m
= e gt 3% 5",
Plugging this expression back into the equation above, omne

finds that
H (£)X (), (£ D).v = z eém)ﬂ(t 050> )% v

= Xa(t i s).v , as needed.

Proof of £): As each M, is generated by ii(l) and H,, M/H
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is generated by the images under the quotient maps of
{fi(l), ljifﬂ}, and a classical computation shows that
ii(l)ZEHi, so that each generator of M/H has order 2.

Now fix i#j, and assume that mij is finite, so that the

matrix Aij = [32 ﬁ J] is a Cartan matrix in the usual
ji

sense. We wish to check that

. “ & i -1

(ri(l)r.(1)...)(r.(1)r.(l)...) = 1.

3 5| i
L ) L J
m,. terms m. .terms
ij ij

To this end, let a be the :subalgebra of gQ(A) generated
by {ei,e fi’f ¥ lettlng L i be the positive root system
A (a ,Qal+Qa§), alJEC-ls the Lie algebra associated to the
matrix A, i3 and has {el’fk’k EE..}U{&E,&?} for Chevalley
l,...,Kn}. Then the

Kostant Z-form U.j of the universal envelope of a.jﬂc has

basis. Order the set I, J,say'E ={A

Z-basis {f(pl)...f n)(xl)( 2) (rl)...e n)} , and
A k A
1 4 l n

o
uij UZ by 1.9.
Now let R be the left hand side of 2.5, and fix 1<k<N,
seN. As each ey and fl act locally nilpotently on UZ,
the aleC- module adUi. (S)EC is finite dimensional. Let
G.. be the associated Chevalley group (with respect to the

ij
lattice adUij.eés)) over K, and let aij be the group gene-

rated by AdAl,AdAJ in Aut(Uij.eés)EK) . By construction,

Ci§=G If R,. is the image of R.J in @ g2 ve then know

ij’ ij
([ s31) that R, ;=1 hence AdR, .. éS)El e(s)

similarly that AdR j fixes the remalning generators £

®1. One proves

(S)
k

and we obtain Rijell. On the other hand if v teM as in 1.11
and uEUZ, teK, we have

Rij.uat.v+m= (AdR, (uﬂt)) R L )
=uEt.R..(v El).

One shows that R, Jv'!'ﬂl =v'H1 as above ( using the Chevalley
group with respect to the finite dimensional module Uij.v )

%*
hence Rij.v=v for all veUz.v+EK, so that R .eIo, and the

ij
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proof of 2.5 is now complete.
If mij is odd, 2.5 implies that

J L J
mij terms mij terms
= i-j (1):?:1(1) % .fj (l)ii(.'L):‘:j (1) .ij (1)i-i(1) - .fj (l)fi(l)fj (1

L J U J

m,. terms m,. terms
ij 1]

i:i(l)i'j (1).. .i:i(l)r':j (l):':i(l') : i'j (1)%1(1) s .i'j (l)i‘i(l):':j (1

and the right hand side is in H because fi(l)ZEH and each
fi(l) normalizes H, so the equation gives

(F, (DE, 1))"4] €8,
and similarly if m, is even them (£, (1), (1))®ij € H.
Writing Ri=fi(l)Hsz/H, we have proved that M/H is gene-
rated by {Rl,...RN}, and that these satisfy

2_
Ri 1,

(RiRj)mij==l 1f dAj, m, <.
By the definition of W, one obtains a surjective homomor-
phism V¥ :W—M/H, with ‘%’(ri)=Ri.
We check that ¥ is 1-1: let weW-{1} have reduced expres—

sion w=r; ...r; , and choose iOE:[l,N] such that wOLiEAf_e 3
1 o]

then Ad(r., (1)...r, (1)).(e., ®1) # Ke, , hence there exists
i ik 10 i

o
no h in H such that i'i (.'f.)...a."i (IDh e I

. 5 1 k
so £. (1)...r., (L)EH.
Y Ty

As . (1)...t, (1)H = ¥Y(w), this shows that Y(w)#1.
*q “k \
And this completes the proof of f) anmd of 2.1 .

*
1?

In the proof above, we used the fact that each f:j (1) normalizes H.
In fact, if se:K)(, one has
i w _ -
rj(l)hi(s)rj (-1) = hi(s)‘nj(s i3y ,
a formula which can be easily checked using 2.la) as before.

_.re
Remark: Let's write z)\'for Xy if leA_i_ s

y | if AeATC.
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Assume that d%BEZAre, a+B#0, let S=((No+NB)NA)-{c,B}, and assume
that SeA™® and that S is finite.
Then one can show as in 2.1b) and [ S2 ] that there exists inte-
gers c, such that for all s,tekK,
n; my
(z.,(8),2,(t))= I z (c.s L 1)
& 8 n otm Bes DiotmyB T E
i i
the product taken in the ordering n_ O+m B<n.c+4m_ B iff n_ +m <n +tm,
im i i ] Nl M

= < %
or ni+mi nj-l-mj and ni uj

Let us now fix i and write Uai for the subgroup of U+ generated by all
elements of the form xyx—l with xe€x, , YEYg> Bii&ig{ai}.

i
2.6 Proposition : ([PK1])

Ol
= X 1
U+ xui U i,

proof:

Suppose BEA:_E{OL:L}, and let e=)1 if <0Li,8v>_>_0,
-1 if <o¢i,5v> <0
so that e<cxi,8v> > 0.

We now show that there exists a subset S of Af_e-{ai} such
that
if Ezl, (X 5 % ) 1I X4
Gy B Aeg
and if e=-1, (v. ,%x,) I x .
@y’ es A
Indeed let S=(Neo +NB) A—{EOti,B}. Then S clearly does not

contain G, ; now let An m=(n6ui+m8), n,mEN, and assume that

3

ln mEA: then either€ =-1, n=1, and m=0, in which case
tl

A =-0,, or A_ €A ; assume that the latter is true, and
n,m i n,m +

let g be the reflexion in the real root B: we have
=nEt - (pnE<a,  BY>
rBAn,m e, (n i’B +m) B
e J
>0 , SO rBK >0.
n,

m
Therefore An & E{KEQ+I 3BA<0};

Hence S C:{A€A+ | rBA<O} , a set which is finite and which

consists entirely of real roots ([K3 ]). By the remark made
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above, there exist integers €. such that if e€=1, then for
]

all s,tekK, (xa(s),xe(t))= I Xy (c sntm), and if e=-1,

i A es n,n Byt
n,m
then for all s,tek, (v (s),x,(t))= I x. (c_ _st).
a; "R A es Mn,m oW
n,m i

(Note that in case A is symmetrizable, i.e. for some dia-

gonal matrix D, D.A is symmetric, Ka¥ and Peterson show

that 'c¢_ _=0 if nm#1 ([PK2]), and one computes c as in
n,m 1,1

2.1b)).

Suppose now that <C Bv>>0' we then have

r T3y, (t)&B(S)X ( t)r (-1)= ¢, (l)(x (t), KB(S))r (=1).
k! b (Dxg(8)E, (-1)

Cle
which, by the result above lies in U 1,

while if <ai,BV><o, and tek , we have
T, (l)x (t)xe(s)x (~t)r (-1)= H (u)r (-t)x (t)xB(s)x ( t).

T (t)H (u)
where u is chosen so that f, (—t)=i (l)H (u)-l
=H, (w)x, (- t)(y“(t“ ), xB(S))xB(s)x (t)H (u)“l, which is again

% i
in yi (using 2. le)) This shows that ri(l) normalizes UL,

.,
It is clear from the definition of U 1 that Xy normalizes
1

it, and if gE:xaﬂU i, then f. (l)gri(—l) v gl=v'El for all
vFeM as in 1.11 because T, (l) gr ( 1) lies in xxn U i which
is contained in U_i'_; but the only element of y, that fixes
i
all such v Bl is Yoy (0} =1, @0 :':i(l)gi"i(—l)=l, i.e. g=1
and we must have
xanu“i = 1.
i
Let's note that, in fact, i = U_{f'l fi(l)U+1':i(-l): indeed,
. s _ O'.i
ri(l)U+ri(l)—(yaxU Yby 2.6, hence

i i
™y ﬂri(l)U+ri(—l),

% O s " . .
while if g=xa.(t)g' EU+ (with g'eU 1, teK) is in U+nri(l)U+ri(—l),
N
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- LI < - v L~ - =
then ri(l)xai(t)g ri( 1) EU+, i.e. yai( t)ri(l)g ri( 1) EU+, so t=0,
— 1 - - - O-’,i
hence g=g', so U+ﬂri(l)U+ri( 1)eU "L, as needed.

We conclude this section by defining subgroups BE by B€=HU€, for
€=t] , and observing that
2.7 Proposition :

a)ILpB+ =1

b) If G(K) carries a Frobenius map F as above, then
FEeB_, FHeH, and i'i(l)E:G(K)F for all i.
proof:
indeed, if ge U_, and {g.(v+El) , v+ﬁ1} is linearly dependent
in uz.v"'m( for all v'eM as in 1.11, then g=1, whereas if g
is in B,, then g.v RIERVTRI, and a) is proved.

b) is clear.

Te re
Example 2: Suppose u!2A+ » say U=wol,, and let um=wrkamE:A+ ; U and W

are 'adjacent' roots. Let's show that X, and X, must then

m
commute:
o . T T . ..
If i,jEH, then T (1umfju) io =joy, and 1umf3p is
a root if and omnly if rk?-l(iumfju) is cne; however the

right hand side is neither in A+ nor in A_ unless i or j is

zero. Hence mum+nu¢1a+; {um,p}, so xu,xumcommute by 2.1b).
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Section 3 : The Bruhat decomposition and Schubert cells

We have seen that if we W has reduced expression w = Yj...T; »
1 k

and X,Y are subgroups of G such that HeX and H normalizes Y, then one
may define subsets wX, wa—l of G by requiring that

wX = {i'i(l)...fib(:l)x, x€X} ,

1
wiw = {#,(1)... %, (U)yE, (-1)...E, (-1) , yeY}
i i i i
1 k 1
_ -1_ -1, -1
so that if w*wiwz with LA €W, then erw (w X) and w¥w Wl(WZYWZ )wl

whenever these expre551ons make sense : 1ndeed, if vy has reduced ex-
pression T_...r and W,=L_ ...T then as in 2.1f) one has
m n, 2
1 3 j+1
¥ (W)=Y (w )¥(w,),

hence for some heEH, rii..rik rmi..rnkh.

Using this notation, one can define for each weW a subset B+WB+
of G, and we shall now show that
3.1 Proposition : (see [PK2])

¢ =) BwB, =(} BwB
wew T w7

The proof of these decompositions will be carried out in stages:
the decomposition itself is proved in 3.1-3.7 and uniqueness is
established by 3.11.

In what follows, we fix weW, w=rj...rj a reduced expression,

(l) & k

and write w = £.(1)...t

i j

Assume now that gsrw3+ri, for some i, so that gﬁghxagt)goii(l),
with hel, tek, g eU%; .
3.2 TIF wui€A+, then_Exait)ii(l)=xwu(s)gii(l) for some = £K,
hence g=(whw )WX (t)r ) (g (—1)8 ;)
=h' X o (s)wr (l)g with h*€H, gOEU+,

i.e. g€B Wri 4
whereas

3.3 If wa

. ""1 .
iEA_, and t#0, then Exait)ri(l)=yya(t )xa(t)ho , with hOEH,

i i
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=x—w0tj(_s)xai(t)ho with eeK,
hence g=(whw D, (£)t, (1) (F; (-Dg i (1)
1

=t ' . . '
h x_wj(-s)xuj(.t)hogo , with h'eH, gOEU+,

i.e. gE:B+wB+.
One concludes that B wB r,B_cB ¥B +U B,r;B,, so that, by induction on
iy Af w'=ri...r. with length(w')=n, then

1 *n
1

3.4 (B,wB,).(Bw'B,)e B+WB+Uu B+wrsi..rs B,

where the second union is taken over all m~tuples (rs...rs ) with

1 m
sl<.. .<sn, m<n.
Hence ;EWB'*'WB , 1s a subgroup of G. Moreover, xacB_i_c‘%é]WB_i_WB 42 for all

T . ; . o
OLEA+e, while if WBEW is the reflexion in the positive real root B,

—l * .
then Yg=WgXgWg € (B ‘*‘WBB +).(B +wBB +), so that tiv-eij ,wB_ contains all Vg

as well. Since the family {xu, aeAie}U{yu, asAie} generates G, this

establishes the Bruhat decomposition G=[]J B, WB, .
weW :
We now show that G= U B_WB+ (the Birkhoff decomposition as in [KP2]):
weW

With w as before, assume g=_v_whxa.(t)g01'-i(l) EwB,r,.
3.5 1If wais:A_, then Exai(t)i:i(l)=hoy_mj(-s)gi'i(l), with hoeH, sek,
hence g=(uhw Db y_ . (s)wt; (1) (F; (L, (1)),
i.e. gEB_wriB+, :
whereas
3.6 If waeh,, t70, then _W_xait)f i(l)‘-“g‘_\faj(-t_l)xaj(-t)ho, h_eH
--'ym(s)gxa.(t)ho, sek,

: i i
— -l . .
hence g=(whw )ywismxai(t)ho(ri( Dg (1)),
i.e. g EB_WB+;
One concludes that B_wB 4T iB+: B_wB +U B_WriB 4 and, by induction omn
n=length(w'), if A=$IFE:JWB_WB+’ and g€B+w‘B+, then AgeA . As G= QWB +wB+
we see that the subset A of G is invariant under right-translation by
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G, hence A=G as stated above.

Let @(W)={GEZAie l w—la<0}. One can then prove by induction omn k

([ K3]) that ®(w)={aj " rJa s eee s r....r a }. Let U, —U nwu_w 1.

1 132 I Ik-17x

3.7 Proposition :

Given g€U_, then for every Bed (w), there is a unique
tB€K such that

g= I X (t ) ’
Bed(w) o ©

the product being taken in the ordering of ®(w) as

above.

proof:
This is clear if V=T, 1<i<N,by 2.1c). Proceeding by induc-

tion on length(w), we assume the result known for W=, e

2 Ik
and compute, for w=rjw',
.l :
U _=U Nz, WU w' = 1U r.pw'tw' He, "t
| 3y jl P 31
=r. (y, Uajan'U_W'_l)r.—l
]l jl Jl
Now w' Yo, =—w'Ir “la, =-v"lo, >0 because @, £d(w),
4y J1 1 dy 11
Qs 1 1 - ! ' 1-1_
hence 1) U 31fWw'U_w =U41w U_w' "=U_, s
and 2) Yo €W 'U_w'
3
So for all gsU , g=r. (1) (y, (v). I x, (Vo ). (-1)
v I . “jl Aeoq') & A3,

for some uniquely determined v's in K,

=z&.(s) I X3 (Sk) with s €K,

i re@(w') jl
= I =x,(t,).
BE® (w) B B
length(w)

In particular, U  is isomorphic' to K
of K. In fact,

, the k-fold product

3.8 Proposition :

Uw is, in a natural way, a unipotent algebraic group
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proof:
Indeed, let nw be the subspace of n+ spanned by {ea, GE@(W)}.

If 0,B€®(w), and 1, €N, then w L(10-+HB)=iv T(@)+Hw L1(B) is
negative, hence if i0+jB is a root, it must lie in ®(w) (a
fortiori, it must then be real). This implies that n is a

(m)

Lie algebra, and moreover that if n is the m-th component
of the central series of nw, then (u51ng the principal gra-
dation as in 1.11)

WeTu, .
n
So if M = 1 + max {length(}), Ae®(w)}, then on one hand néM)
is contained in N and 1 N} U, =0, while in fact n(M) is
izM
contained in ) U, . Hence n( )-0, and n_ is a nilpotent
i>
Lie algebra. 1M
One also concludes from the above that N3+N8ﬂé;= HH+NBHA£E
is finite and contained in ®(w) for any @,B€ ®(w), say
N1+Nﬁﬂﬁ\—{i a+le,...,i o+ B}. since we also know that

each eys ced (w), spans over Z the root space g ne can

Ugs o
show as in 2.1b) that there exist integers a; . such that
m’-m

n .
(y(x)oxg(s)) = T x; 4,0 glay r mglm)
m=1 m ~m m’~m

for all r,s€ K.

Let W:Kk-* UW be the bijection

T(Eysneatpd=mg (£ NS a, ()
11 41 Jkrle
as in 3.7; the above then shows that the map
E LY, 1 W, YT (e s ) T (8500 008))
is a morphism of affine k-space, hence T induces a structure
of algebraic group on Uw' The fact that UW is unipotent fol-
lows from the nilpotence of ﬂ as above.
Letting U be the subgroup of U generated by {ax 1, aaU , and
BE:A ®_d(w)}, we see that U, normalizes U, and, by 3. 7, that U UU
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contains all the generators of U 4o 80T +=UW.UW . Onel can then show by
induction on length(w) as in 2.6 and 3.7 that wﬂlUWWe:U 4 from which
one deduces that in fact UW=U+ﬂwU +w—1.

Before going on to more geometric comsiderations, let's now com-
plete the proof of 3.1 by establishing the disjointness of the various
cosets on question:

3.9 Fix A, L(\)=L, v'el, as in 1.10, with A chosen such that if OcW
satisfies oA=A, then o=1. If qeN, then 1.11 implies that

I - @vhHrq ,

height (A-A)<q
where @ is the Z-submodule of U_ spanned by all x with degree(x)<q (the

gradation being again the principal gradation).'Given a field K, if
., = (ﬁv+)El, then L ijil)...fjél).(f+ﬂl) .and is a non-zero ele-
ment of (L )\ﬂu .vT)BK. We can therefore assert that for all 8EB WB
g.v ety +£V1Etl’ for some tEK ’ tAeK depending on g, the sum belng
over all A with height (A-A)<height (wA), with VJ\EU N L -

If w'eW has length less than w, say w' SrieecTy with n<k, then

‘=t (1) . (1) is in B w'B ) and g'. 1=y ‘} whieh cannot be put in
n
the form tv +Zv)\ﬂtk with t#0. This shows that B,w'B_ ¢ B, wB . As both

sets are B+-double cosets, they are either equal or disjoint; hence the
latter is true.

One proves similarly that B_wB +=B_.w'B " if and only if w=w', and
the decompositions 3.1 are now completely proved. In particular,

3.10 6/B, = \J cw =) cw
weW

weW
where C(w), C'(w) are the images in G/B+ of B+wB+, B_wB_ respectively.
We also know that
3.11 Proposition : ([PK2])

the group Uw acts simply transitively (by left trans-
lation) on C(w)
proof:

Indeed, if bwB €C(w), then b=u , with u €U_, u.cU",

o 1‘121:1 Lo T2
so that bwB =u,w(W “u,w)(¥w hw)B,

sU+

=ule+ "
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while if ule+-wB » then w lulweB iU_=1, so u1=l.
In particular, each C(w) is 'isomorphic'to Uw'
We now proceed to refine the decompositions 3.1 by decomposing
C(w) itself as follows ([ Dh]):
Given uEU » and 0<i<k=length(w), let U be the unique element of

W such that urj(l)...rj(l) EB O, B , and wr:Lte ntu)= (cr0 Oys+e+50 k)awk"'l
i B

Note that 0015 always 1, since u=l.l.u£B_B+. Let us now prove

3.12 Proposition :

the sequence N(u) satisfies O, E{Gl l,cl_lrJ },
for all i.
proof:

Fix i>1, and write WiSToeweT. 5 W =+_(1)...r.(1). We then
= ;7 1
i k i k -1

know that there are elements b.€B , u, . €U , v, . ey"itl
i - i+l w, i+l
i+l
such that

3.13 " iCI i :|.+l-—:L+1 i+l

. -1
This is so because uww, bicib+ where b =u. +1 i+1 for some

u, €U0 i+l€UWi+l, and we obtain 3.11 by writing
i+l
-1

- Wi+l = Vitl
Viour Wi By ¥y © +1U Wikt .

EU g

Applying 3.11 to the index i-1, we see that

byO st a3 Vi "P321% 1%V

ur (l)

=bl-l i-171 —1+l i

-1
hence  byOuy Wy (VyggYy )W +17°3-1° 1-1 i gu)’

The left-hand-side is in B_Giﬂ+, while the right-hand-side
is in B O B,r., . By 3.5 & 3.6, if 0, .o, <0, then

=143, 1-1%3,
1 i >
3.14 B__ci 1B T, c:B ci—l ji +, while 4if Ui-laji 0, then
B_ci_lB+rjic B o, B, UBO,; ;T 3y B,
so by disjointness in 3.1, Gie{oi_l, ci—lrji}'

Let us now define (as in [Dh2]) the subset Dc:Wk+l by requiring
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= = = O
={o0 CHPRRRIN-A) | o1, cis{o 10 T51%5 }and 0,<0, for all i.

1=1% j

where < is the Bruhat order in the Coxeter group W. We will need the
following facts about < (see e.g. [ D ]):

= | <...< i e{j :
1) If y<w, then y rii.,rin, for some i <...<i, lme{Jl""Jk}
2) 1If Wf%>0, then wfwri.

To see that for all uEUW, N{u)ED, we still need to check that

r, . If Uj=0. r, , this is obvious, while if 0j=0j 3.14

0.<0, " 1
7 =i ig J=1 iy 1

implies that Uj_laji>o, hence Uj—lfgj*lrji by 2) above. We thus obtain
a map n:uw~+ D.

Now define, for each OED, a subset Dy of C(w) by setting
D_ = {uwB € C{w), where uEU I N{u)=0}:

g
By 3.11, D is well*deflned, and we have C{w)= LJ Dy . Also, if peC(w),
oD
say p=uwB,, then P=b Oyt 1 Wb Viek1 P P O1lien Vick Br 28 Vi 71y SO

peC'(Gk), where (00,...,Gk)=n(u), hence Dé=C‘(Uk).

One knows that 0, <w, for all (UO,...,Uk)ED ([bh1]), so that we

k—.
also have
3.15 CwNC'(y) = égD DO, for a2ll yeW (in particular, C(w)iC'(y)
g,y

is empty if yfw).

To study the subsets DO in more detail, we put an algebraic struc-—
ture on C(w) by requiring the 'isomorphism' 3.11 to be an isomorphism
of varieties. Note that if charK=p#0, the Frobenius F:G(XK) — G(K)
factors to G/B+, and that the isomorphism just described 'commutes'
with F,

Fix o0cD. Then for each i, one knows that either Ui_l>ci, or

Gi—l<Ui’ or Ui—lsoi' Set
X if O l
= <Jg
KU,i {23 if O -1
K if 0 i
=x

Oy
and define fi:KU,iXUW'-—é Uw. by fi(t’ui+l) (t)rjgl)ui+lrj§l),
i+l i Jl i

where . if Oiﬂlﬁoi, while if o, is the element of

RS M 1-17%1 By
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=1 o . W

i i = gy i+l ]

UWi+l satisfying xugt Yug UGV, With v, (€T (see[Dh2])
i

One can show, as in [Dh2], that fi is injective, Imfi is locally closed

in Uw , and f, is an isomorphism onto its image. In fact,

i i U
Wi . if Ul_l ¥
= <
Imfi j Wi+1r if Gi—l ci
1
U~-r, U T, if o =0
wi Ji 5 J i-1 i

Defining the set V. (0) inductively by letting V (0)=1eU_ , and
1l kt+l L

writing Vi(0)=fi(KG,iXVi+l(0)):Uwi, we see that Vl(c)c:le=Uw, and
one can show as in [Dh2] that

Vl(U).wB+ =
-17° o;}, and n(o)=#{1 | o
the Dheodar components DU explicitely, namely

n(0), %y (0)

Letting m(0)=#{i | oy =Ui}, we can identify

-1

3.16 D, =

For 1<i<k, define subgroups B Pi of G by letting Bo=3+,

il

¥,
By = W 34180%k-141

and Pi = subgroup of G generated by Bi and B

i-1 °
As Bo= ,» one can easily check, using 3.2 & 3.3; that P -B gJBDrJB
k°
so, in particular, f.(l)E:Pl, so we can also write
Ik
3.17 Py =r B UB.B =T B Ly, B~ HAJRRU ik
—_— 1 1o
Jk° Jg° Jk
i.e. Pl is a standard parabolic subgroup of semisimple rank 1 in case
G is finite dimensional.
To obtain similar decompositions for P,, i>2, let B -1
i e~ 1+2 jk i1

so that if Sy denotes reflexion in the positive real root Bi, then

-1 -1 . .
s.=w, .. T, w, ..,EW. Write s, (l)w € G. By induction
i k-it+2 Jk~i+1 k-i+2 *k i+2 jk +l -i+2
on i, we have B, 1785 B ’1.
1—1 i

We now prove, again by 1nductlon on i , that yB » xB c B.

il
i+1
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This is true for i=1 by 3.17 . Assuming X, €3, ., we get s.x s.lc:B,,
Bi i-1 i“BL 1 i

-1
and sisti

. : . ; =1
: —yBi, while the definition of B, implies that Vie—i+1 %0, Yk-143

k-1

is contained in B., and w -1 =x .
i +1a Yie—i4+1" wk 1+1% Spog Bi+l

Jk-1
Since P is generated by B l’ is e obtain in particular that both
xBiand yeiare contained in Pi hence S. -W 1+2 Jk (iiwk i+2 which is

equal to xs(a)ys(b)xB(a) for some a,bEK , is an element of Pi.We can
p { ,

now prove that

3.18 Proposition @
By CB;UB S, By

proof:

Indeed, 3.18 can be rewritten
1 <1 =4 -1
S 41 i 141 B - 1415141 © Vim 141 ¢ BoMBo¥imi41 5541 Vi 14180 Y141

which is equivalent to

-1 B w -1 -1 B LJB -1
k—1+l i+l k-1+l o k—1+1 i+l k—1+l 0" k-i+1° i+l k—1+1 o’
d . -1 —l —l thi
and, SInee M 141 %54 V-1 -t S ket gy o0 T

inclusion is true by 3.2,3.3 as above.

Note that one consequence of 3.18 is that B, LJB S, ; 1s equal to

1+l

B )w ..5 and is itself a group, hence
gyt kit

-1
Vg1 B U By

3.19 Pi+1_B LlBlsl+lBi
and that B Y3 r B = (r. B uy B,), so that, conjugating
+ 3 h P TF
k=i+2 “k-did 2 Jk_i+2

jk ~i+2
-1
Wy 41> We also have
P

each term by

1+1 441 1“3’53 B :

We will use the following notation : if A is a group acting on the
set B on the right and on the set C on the left, let BXAC = BxC/~, where
-~ 1is the equivalence (b,c)~(ba,a-lc). If B,C are themselves groups, and
A is a subgroup of both with the action being that induced by multipli-
cation, then B (respectively C) acts on BKAC on the left (resp. right)
by multiplication. Finally, if B and C are in addition themselves sub-

groups of D, we get a map BXAC-*+D satisfying (b,c)t—b.c .
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Using this construction repeatedly, we let ZW be the set (see [ D11])

B B B
= x k~-1 x- k=2 1
z =P ¥ 1 e oo S VRSB

and fw: Z— G/B+ the map fw{pk,...,pl)?g.pk...plB+ .

The remainder of this section will be devoted to showing that ZW admits
a natural geometric struture in which it is a complete variety of pure
dimension k=length(w), that fw(zw) = y%L C(y), and using this, to put

a geometric structure on ;%Lc(y) compéfible with the one we alredy have

on C(y).

So we assume K is algebraically closed :

1f we fix i and let P be the 'parabolic' subgroup of G, P=B, UB,r.

+ 3 Ik~ x¥§
we know, as in 3.17, that P—r B 1) (x. B T, )B+
R Jk-1+2 -
L Ig-i+2
Jk-i+2 1 .
and therefore that P/B+?A JH. X =P', in such a way that

Rt

if 7 :X—P/B, , nl(s)=ya- (s)B+ , and T

1 :K—ﬁ-P/B+, ﬁz(t)=x (t)r B

2 o
Jg-i+2 Jg-i42 he-a2

then each 7, is an isomorphism onto its image, and {ﬂl(K),ﬂz(K)} forms
a cover by open affine lines of the projective line P/B+ (note that
3.20 ™ (s)=ﬂ (t) if and only if st=1 ).

-1 . . 1
Conjugating by Wk 1422 we identify Pi+l/B with IP* using 3.19, so

that the maps

i i

ﬁl,wz.K—e-Pi ljBi’

defined by ni(t)=y6(t)Bi, TZ(E)“L (t)s.
i+1 i+l

give the identification. We can now describe the geometric structure on

+1 T

Z by exhibiting it as a successive fibration by projective lines:
One starts with Zl =P /Bk 1’ covered by the open affines Imﬂ? l,

k-1 e 2. Bk—l
ImT.r2 . Define gl.zweka P

1 _
ke1/Brmo ™ Zy BY 81 (PysPy 1 By 5)=P By s

B
; - k-1
where (pk’Pk—lBk-2) denotes the image in ka Pk_llBk__2 of the element

o 1
(Pk’pk-lBk—Z) of PkﬁPk 1/Bk-2' Fixing some z€Z_, we see that if
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v

zs-IMHt-

g —

. k l
in Pk__l/'Bk'_2 because y, (- t)Pk k=13 simllarly, lf z€ Inf, ~, then there

Pr
: . - i -1
exists a unique teK such that z XBét)EkBk-l’ and we define Uz.gl (z)—
-1
Py-1/Byp BY VyPrsPy_ By 978y xBé_t)pkpk-lBk-Z

both V. and v2 are well-defined and surjective. We check that vl is 1-1:

1, then there exists a unique t€EK such that z=y6(t)Bk_1. Define

. It is easy to see that

e )
I v (Pk’Pk—IBk-Z) V, (PpsPy_By o) then py 1B, o (Pk Pk)Pk 1Bp-2°

1 _1 ] = ]
And one shows similarly that vz is 1-1. Hence the maps
(8, 187 (Im 1:' )—+1nmk Lep! | for 1e{1,2},

are bijective, and we put a geometric structure on gl (Imn ) by re-

quiring these maps to be 1somorphlsms, so that

~1 k-1

g7t oYy = (tams et sy (zars e

XImTr2 )
is a covering by open affine sets.
2 U k-1,
As Z0 = ;5 511,23 811 (I“m I“mj
ture of prevarlety on 22 prov1ded we check that the structures on the -
k -1 k-1
sets Vj,..=(glxvl) (Imn XImn n1(glxv2) (Imﬂ XImﬁj, ) , for
J:5 el 1.2, 1nher1ted respectively from those on (glxvl) (Imwk_lX]Pl)

1
i 1XZE ) are compatible, which we do by showing

) , we will obtain a struc-

and on @1Xv2) (Imﬁ

that the map T. .1 making the diagram
P
(8,%v4)

k- k-1 k=2 . k=2

U, g — e (Tamy lnmm2 (L~ oTam %)
14 Tj,j

U SE— k-1 k-2

1,3 (glxvz)- (ImIr1 ﬂImﬁ )X(Imn ﬂIan )

commute is a morphism, and this follows from the fact that

—k B(—l/t)yB(t)-w h ( Et)xs(llt), that left multiplication by xsk
l

fixes Pk_ll k=2 p01ntwise, and that w jwz acts by morphism on the

projective line Pk_llBk_2 (see 2.1, 2.6).

(Intuitively, this says that the 'fibration' Zi-ﬂ-zi is locally trivial

over the sets ImTrk 1).
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-1
. € -
We finally n;te tgat, as sk~lBk—lSk-l Bk-z’ we also have a well
defined map hl: Zw‘-*'zW s given by hl(pkBk_l)=(pk,sk_lBk_l), and satis-

fying c10h =T1d 71
w

Repeating the construction above inductively, we obtain fibrations

T . xBle=1 3 «Bl—-i+1 i-1 , .
B5_1% Zy, P Pk-l - Pk-i+l/Bk {—~ﬂ-ZW , with fibres equal
& mil , 1-1..
to pk—i+l/3k-i ", sectioms h,_ 1 22 Z given by

1 l(z) (z, ) k 1) where z denotes the image in Z of an element z

xPk-1-1p

By -
xPk=-1 b3
of P] P]—l - k=i=1" and such that

i .
5,21 zt = Y U
W njE{l,Z} (s eeesny_g4q)

is a covering by open affines, with U ={ z€Z™ such that
(nk"- e ,nk_i-!_l)

for some tk""’tk-i+lEK’ z=(Pk(tk)""’Pk~i+l(tk—i+l)Bk-i> where

p.(t.)=y.(t.) if n, =1, and t,)=x,(t.)s. if n,=2 } which is iso-
p.( J) Yﬁg J) 41 Pj( J) BF 3} j 1
morphic to Imit IXTmms 2 X...XImnﬁ'l , for 1<i<k.
Ay Bg-1 k—di+1
One can now check by induction om i that the images under the

) and O(U "
) AL < 5y

)), so that ZW is a variety,

restriction maps of O(Ut )) gene-

nk""’nk-i+1

( ”Uc
n, ...,nk_1+l n1,...,nk 141

that each h. is a morphism , and hence that Z is indeed a fibratiomn

rate O(U

byﬁEl over ZW l; in particular, each Z is prOJective.

k k
= =wv (
If z¢ U(l,...,l)c:ZW‘ Z_» then fw(z) —’Bétk)yBQEE'l)'"y8§t1)3+’

for some tjeK,
yCACRES )(ys(tk_l)w b (_wgitlm“l)wa.

Now WBi=-rji..rjk-ijk_i+l, 50 WYB w =Xr....r_ B , hence by 3.7
* 31 Ig-idk-it1

we have f (z)e'waB+ = C(w) . Also, using 2.1c), 3.7, and 3.21, we see
that £

3.22

gives an isomorphism of varieties
1,...,1) k
U = C(w).
(ls"':l) ()

wluk
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To determine the set ls’..W = mewc:G/B+, we first show that

3.23 Proposition @

proof:

There exists a subset E_ of W such that
1) 1If y<w, then yEEW.
NI~ YléIEWC(y) .

Suppose gB+=fw(Pk""’PlBo) for some g€G, piePi, and let bEB;

we then have

-1 -1
fWCE hgpk,pkrl,...,plBo)%gg_ hgpk...plB+

=b.fw(pk,...,plB°)
=bgB, 3
This implies that XW is a uniomn of B+ orbits in G/B+, i.e.

= VU
Xw yE C(y), for some subset Ew of W.

Given a gequence k3i1>12>...>imil , an easy computation

ShOWS that wSsS S. eeeS, =T . .0ee LRI [N N ] /-/-.ri,
'

i.e. if yeW, then y<w if and only if Y=WS . .e8y as above.

" . - g m—_-
Fix Y=WS .. .8, > and define the point y in ZW by y—(pk,..,pf

1 m

where pj=si if j=in, and pj=l otherwise. We then have
n

fw(y)?ﬂﬁii"si;a—g ¥B,, hence C(y)ch.

Now fix A,L(A) as in 3.9, write L = Uz.v+EK, and for qEN

so that if

- +
Ly ; (Uz.v nL(,) 8K

height (A-A)<q
x
dq=dimKLq, then d&im. Let P(L)=L-{0}/K , where K acts on L

by scalar multiplication, let v— [v] be the quotient map, and let
Yo G/B+;—HP(L) be the map gB — [g.(v+ﬂl)] . We then see that given
yeW, Y(CHNER )= P9 for q=height (A-yh),

Y(C(Y))EP (Lq) if q<height (A-yl),
and, similarly, for q large, ‘P(XW)CIP(Lq).

3.24 Proposition :

VY is injective. ' »
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proof:
Given yeW, then by 3.4, there exists a finite set J;:W such
-1 kJ .
that y B_!_yc:y EJ B ¥ B . Then, as in 3.9,
+ \J B
g. (vIEl) ¢ Kv' Bl if ge gJ +y B ~ B..
So if ¥(b yB y=¥(b yB ), with b. EB , then y bzlbly fixes
[v+ﬁl], which by the above 1mp11es that y 1b 1bly'8 sy 1.e,
bly zyB . Hence W[c( ) is injective. Thls, combined with
3.9, shows that ¥ is itself injective.
It is clear from the definitiom of G that ?ofwoﬂk-lx...xﬂz is a
k-1 o -1 L
morphism from (7. “X...Xm_ ) (U ) = /A¥4into P(L_) , hence
nl (nk:"'snl) q

?ofw: Z ——ﬂP(L ) is one (for q large enough). Z being complete, its

image must be a closed subvariety of'E(Lq) Slnce TI is injective,
we can thus put a geometric structure on XW by requiring T]X =W]I
w

to be an isomorphism onto its image, so that XW is in fact a projective
variety, fw:Zﬁ——¢XW a morphism, and, by 3.22, C(W)=fw(U(l,...,l)) an
open subvariety. We can now identify the set E_ as being {yew | y<wl}
as follows:
3.25 Theorem :

x = M c

W y<w

Proof:
The subgroup H=G§ of G acts by morphisms (by 2.le)) omn ZW

and Kw, the actions being given by

h.(pk,...,plB+)=(hpk,...,p13+)

h.byB, =whw lbyB_,
so that we have h.f (z)=f (h.z) for all zEZ - heH.
With the above actlon, H flxes all polnts yB+e X s il.2. yEEw
because Eﬁﬂ. yB+—yy ;Ehg,lyB , and y wH(y w) lc:B . To

. compute the fixed points of H on Zw (see [D1 ]), assume that

for some p,eP., (hpk,...,plB+)=(pk,...,plB+) for all heH.
Then for each heH, there exists elements b (h)EB s 0<i<k-1,
such that

1) bpy=p, b, ,(h),
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_ -1

k) p,=b, (B) p.b_(h).
1 X 1o 4
The first equality implies that Py Hpkc:Bk_l, so that, using

3.19, o

or s, .b for some b Pkpk-l’

B by OF BBy PP
Py_1"Py_1Pyq+ Then

Let p£=

1 ¥
(PysPyoq>Pgr s+ 2P BI=(PysPy_5--5P B
and equations 1) and 2) become

1 . -1
1) By =Py by 1By (0B 405

L] L - =~ '
2") Py 1=(by by B T5IPy aby o (h).

The former implies that b 1 €H (because péa{l,gk})

LR L

and in fact takes on all possible values in H as h varies,
] . i -'1

so that 2') now implies that Pk-lﬁpk-f:Bk~2'

Repeating this process we see that ome actually has

(Pk:---spl +) (Pk’-o-:Pl )
with each piE{l,gi}, so that the fixed points of H on Z_ are

exactly the (py,...,p;B,) with P£S{l’§i}'

Suppose now that yB E:X . Then f;l(yB+) is a closed, non-
empty, H—stable subset of Z . By the Borel fixed point theo-
rem, (yB ) must contain a fixed point of Z under H, i.e.
there exlsts a (pk,...,plB+) as above with Epk.. pl—y,

hence y<w.



Example 3:

Example 4:

Example 5: w=(r1r2)3 , which is in reduced form iff my
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Suppose w=r,...r, with jm#jn if m#n. Then U, is abelian:

I Xk
That is so because if da=r_ ...r.0, , and B=r,...r. Q. .
- J1 ndmn 31 Iprtmintl
then for any a,beN, ac+bf=r....r (ac, +brj eseX. O, )
31 Jn ph . Imndmen
2 esely (DEoesly; O -ao., ).
31 e k2 wdmintl Jmh
Now w'=r, ...r. is in reduced form, so T, ...rj &j
m+2  Jmintl Int2  dmnlmintl
is a positive real root, and is in the Z-span of 10,  gemass
mnt+l mrk2
o, }, hence rj «..r, (Q0+bB)=b Z c 0, = ao., , with
Jorn+1 w1 f=m+2 * I I
c.eN. If ao+bR is a root, then so is r, ...r, (ac+bB), but the
* Ime1 J1

right hand side is neither in 4 or in A_ if ab#0; hence for
all a,Bd(w), NOH'!IBnA_’_ reduces to {a,B}.

3 .
let w=(r1r2) T, (reduced iff m%2=Do which we assume). Let
K1=al, K2=rl&2, —_— ,l7=(rlr2) @), and let x,=x ; then U
is the group {xl(tl)""'XT(t7)’ tiEK} with the
following commutation relations:
(x) (£1),x5(E3))=x,(-ad, _jt,t5)
(xp (£1)5%, (£,))=x, @8y 15, _,t155)
(x,(ty) %, (£,))=55 (=S, _,t,t,)

(g (rg) x5 (£5))=x, (a0, £qEs)

(x4 (t[#) 91‘:6 (t6))=x5 (‘baa,—lt4t6)
(xs (ts) ,X7 (t7) )=x6 (-aab ,-lt5t7)
where a=a,,» b=a21, 8=Kronecker delta .

(in paritcular, the central series of Uw has length<2, and
1 alz#—l & 321#*1’ then U is abelian).

236'

1f m,; )= UW is the obvious subgroup of the unipotent group

in example 4.

=6 = =— 1
T e T e T
eng W ’ im W ’ w - ul w T W = )



44

Example 6: WL T, T ATy (note that Xw is singular for Sln); then UW is

abelian unless

a) a =0, a31=—1, and charK I a in which case

Z center(U )
rlrzot3 W

12 291
(UW s UW) =X

13

or
b) a13=331=0, aZl=-1, and charkK I 219 in which case
(UW,UW) ﬁrlazc: center (Uw) .

Example 7: w=rlr2r3r2rl

Again Xw is singular for Sln’ and the commutation relations

in UW reduce to

(x_ ,(8),x (t£))=x (-a,,8_  _,st)
rlaz rlr2r30r.2 rlrza3 23 332, 1
and x (-a, .8 § _,5t)
r1r2a3 13 a21,0 a31, 1
(Xa(s)’xr ror.T a(t))= or
& a9l by (-a_,,a, .0 ) 8 st)
rlrzoe3 12723 a31,0 a32,-1 321,—1

Example 8: Assume mlz#z, and let w=r; T The set E_ of 3.23 consists

Ir..
21

elements
g%=(1,1,1,1) Gl=(l,rl,r1,l) Gz=(l,l,l,rl)
m(o)= o - 1 0
n(o)= 3 ) 2
94~ B Ty T
a_ 4 5_
fo} —(1,1,r2,r2) s} —(l,l,rz,rzrl) o] (1,rl,rlr2,rlr2)
m(o)= 0 0 0
n(o)= 2 1 _ 1
Oy™ s Ty Ts

and 05=(1,r1,r1r2,w)
We have Bl=ul, 62=rlaz, B.=r.r. o >0 as m12¢2,

317271
WS,8,8:%T s
wszsl=72, ws3sl=T3 (,ws352=T2),
ws3=14, wsl=T5 (,w52=11),
W"-=‘L'6,

and Uw?{u=x8

(a)xB(b)xB(c), a,b,ceX} with the single non-
1 2 3
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trivial commutation relation

.ac).

(xsia),xe(c))=xsé—ﬁa 1212

3 212

We have n(u)=c’ if a#0,b#0,ac#-1

: =0" if a=0,b#0
if a#0,b#0,ac=-1
if a#0,b=0,c#0
if a#0,b=0,c=0
if a=0,b=0,c#0
if a=b=e=0,
which verifies 3.16 ;

Q
[

Q
w

Q
m v £

U |
Q

Assume now that W is the symmetric group on three letters,
and A is chosen as in 81, so that G=SL,. One then knows that
G/B+ can be identified with the variety of flags in 3-space
(in fact the map ¥ in &3 gives the isomorphism for appropria-
tely chosen A). Explicitely,

fix a vector space V over K, dimKV=3, choose planes
P+#P_ , and lines LiC:Pi-(PJWP_), so that we have

v=PeL_, where P=L 6L_and L =P NP _;

Labelling the generators r of W in such a way that

, T
C(rl)={ (V2P 2120), L#L+}, indzc(rz)&'{ (V>P=L20), P-rLP+}, we
obtain:

Dy6={(VoP2 1> 0)}

Dgs={(V=P 2L20), L#{L_,L} ]
Dyu=1(V>P>L =0), pe{P, P 1}
and, with F=(V2PsL>0),
Dya={F | L¢P, , P=L+L_]

D 2={F | L,#P, L=PnP_}
D=l F | 1¢P,, 1B, P2L, }
Dcn={F[ I#P,, L¢P, PAL.}
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Section 4 : Applications

We start with the following fact:

1) X is non-singular in codimension 1l:

Suppose that w'<w, and length(w')=length(w)-1. We then know that

there exists a reduced expression w=t el such that ([D1 ])
1 k

W =L .«..T « T essl

1 k-1 k-1 42 Tk
o o
-1 "
As in §3, set W ST eeeTs Bl st With our choice of reduced
i k k=-i+1
expressions, we then have
= fe e
(*) rB_-Bj1>O if §>1
i
)
Let Voo=Uy . yWUa, . 1,2,1,...,1 €%
n¢
i
{ ] L o j
Ul U2
NW,=Im1TE_l><...XImﬂ]’{_lcxﬁg-lo L {0} xIm Trk 1oty x1n? & e,

so that we have UZ*NW,C Ul.'We shall show that ([BGG])

a) £ (N ,)=C(w")

b) £_(W7-N )€ C(w)

c) waUZ is an isomorphism onto a dense subset of X,

proof of a):
From the definition of f » we have ;léfw(Nw,) if and only if

P"EYB(t deos yB .f.ltio'*l)rﬁ Yﬁi Eiio-l)”'yﬁitl)B-*
o]

for some t, eK.

3
The right hand side is equal to
B (rB yB(t - P 38 (c; ;)15 )Y, (ty _1)--- ys(t )B_.

o 8 o+l © io i.-1"o

o (o]

T - CR-
Lot B 1™ P B2 P o By T8 Pe 41
o 1o ey @

T = Yo
io'"l Bi _19 LA Bl Bl’
la)

and let us also renumber rt...rt .rt ; ...rt into
1 iy keiat2 k
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j =t - e 8 j 'y =t -
.l 1’ - ¥ Tl k—lq
Ipmi #4171 427 700 2 k1"
o
If we now let w!=rj...rj , an easy computation will show that
5 k-1

Nar for all i, and (from the proof of 3.23a)),

B =y
(k=-1)- -i+2% J(k 1)-i+1

wrg = w'. Hence the right hand side above is w yB,...yB,B+;

1o

Applying 3.22 to w'=r,...r, ,» we find
1 ka1

fw(Nw,)=C(w').

b) is obvious because UZ—NW,C: Ul.

proof of c):
We check that £ ]Ug is injective: assume that

Yt JonaTn (8, .20 (E, )E, ¥o (Lt Yeouy (ty )B_
By k Bi eSS B 10 ~—Bi Bi e | 5

yB(t )'"YB 1 +1)x8(t )r[_3 Vg (t 1)"'Y8£ti)3+; :

is i, -1o

write y, for yg(ty), y: for ysgt'.), if j#ig

3 J
v, for ya{=t. )y ¥i for v (-t )
= I Bio i, i, B L
Then we must have
-]. _1 1 1] 2 = s :
Yq eeeVy Q_B yi L Sy yk...yl +1 B )y! O...le+ =B, the thing in

1o
parentheses is in U_ by (%), hence, as U_ﬂB+?1, we must have

= ' L ' ! * aw ' '
YgrooTy O-1~1-’58103"10' «e¥y = vy Y10+1-r—sioylo 71 (oo B 6
This equation implies that
W. W-.. ses o+ W . WT W.T . see
A Laary 58, oylo ¥g

TR, e ves ow WYL W WL p
LA E¥108 Hy78, Tig
(o]

Set j=k-i_+l : then stm:>o if m>i +1
<0 if m<i, .

(=u)

and we have -

r -1 -1 -1 -1, _
(7, Do (. 0 +1~—3 )erBiy_j (zjyioﬂj )---(Ejyly,j ) -
o

L
eee¥y
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-1 -1
= (W. ¥ W. Deue W T
(7385 7) (ij10+l—3 IH B j (Wdylo“ﬂ Yoro (YW j )
(=u') +
{=x )
Fk-ig+l
which implies that
_y;lr (.5, _lyfl e SHLYW )-u i, 1 (w, yl AR -
0 Fk-igt1 3 To7T k- 410 3T
fou ) (=u;)
l 1 |—'l |-l
i.e. y, u_'uly. =r (u,u )r 5
o Yo, kg4l TV k-1 _+1
€ U_
and the right hand side is in U, (because w_Bmf-rt - o

k=i +1 “k-m k-m+l
if m<io). So we must have

(t ). B i; o+l)y5( t; ) yB(t JeurYg i; O+l)y3( t

and y (t Y v vy CE ) § ) (t )
B.o 110 =L B Bio—li B

which, by 3.7 , implies that tj=té for all j.

O
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2) Application to the Hecke algebra:

Define the Hecke algebra H of W to be the algebra
H=g9 z[ql/Z,q-IIZ]_T
yeEW y
‘generated by the ring 5f polynomials in the indeterminates q1/2,q_l/2
over Z, and generators Ty, where the product is defined by
T if 1ength(riy)=length(y)+l
Iy ¥ q.T_ _+(g-1).T. if length(r,hy)=length(y)-1l
47 y + _
for 1<i<N, so that with w=rji..rjkand length(w)=k, we have
TW.Ty=T 3;'Trj;?y for any yeW.

Note that if we formally set ql/2=1, then H is simply the group
algebra Z[W].

Fix an algebraically closed field K of characteristic p>0. By 2.7,
the Frobenius F on G(X) factors to a map F'G(K)/B "*'G(K)/B which
satisfies F(C(y))=C(y), F(yB_ )=yB,, F(C' (y))—C (y), for all yeW. If
X €G(K) or G(K)/B,, and neN, let's write X for the set {xeX|F x=x}.

Given nEN, let L be a field of characteristic O containing a (2Zn)th
root of p, and fix such a 2%4; L; then the map Z[qllz,q'llz]-*-L,
f(qllz,q-llz)-ﬁ'f(zar;, (Zﬂng'l) allows one to define the algébra

Hn=Hﬁz[ql/2,q_l/2]L' We now show that

. Fn Fn
I there is a natural embedding H£~+ EndG(K)Fﬂ({f:G(K) /B+ 1.1}

Call the algebra on the right hand side H, and define {Ty’ yeWrcH

by

@ .£)(xBF )= ] £(z),
¥ i zex.C(y)Fn

the sum being finite as #C(Y)Fn‘ n.length(y). Assume that for some
ML T AT =0, and let £ cfl be the map £ o (@BE)=1 if zeBF , 0
otherw1se. We must then have ZA T f (z)=0 for all zr—:G(K)Fn/BFn

n
Plugging in z=w lBE for the various weA, one finds that RW?O for
all weA, hence the Ty's are linearly independent. We thus obtain

an L-linear isomorphism Hn~—*ﬁ, Tyﬁlr—+Ty; to check that this is
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an algebra isomorphism, we compute

& Fo, _ FO, g0 | X
T .f (BT = ¥ oHluee(®) /B | 871

n
& zeG(K)F

/BF
= #(C(¥INK zC(¥' ™))
sz(K)Fn/B_'F_n

= ) ) #(C(y)ny"C
2eG (R) ™ /BFD {"EW
~lec(y™
-1, F
= ] #C@0y".Cly" D)) T .E(2)
Y"EW Y

T ] Hemny el 1y

¥ y'eW Y s

I -1 -1, F®

uEC(y) F&
26C (3" )} .£(2)

E(z)

I

™ E e

]

the sum being finite by 3.4 and 3.15; assume mow that y=ri:
By 3.2,3.3,3.15, we have y"_l.C(ri)n C(y'-1)=¢ unless

y'=r, y' in case length(r, v")
" or y"E{riy ,v'} in case length(r. ;¥ )=

=length(y')+1

length(y )-1

In the first case, the intersection is {vi-l (t)y B }/B ey,

whlch reduces to the szngle p01nt v 1B so that in
#y" e BLLICA 1yFa EG(K)Fn),
and in the second case,

if y"=y', the intersection is {Y'_lxa(t)riB+}
i

this case

'—1.

/B, C(y" ™)

={Y'_1ya(t_1)B+}IB+ C(y'-l), so that
i

. -1..F
#" e e )T =D,
while if y“=riy', the intersection is {Xy-l

= - n
so that #(y" 1C(ri)nC(y' 1))F =p".
Now 4,1 implies that

- 19l
1.7 = I #cHmny"ey! > Gl

17 y"eW y
n—l t-l PR "
= I #" “cyncly' 7)) T, (because y
Y" EW y
(o £ length(riy')=1ength

=] T3¥
n n
+(p =1). )=
Ip .Triy, (p-1) Ty' if 1ength(riy )=length

-ait)y—lB+}/B+ cly")

n
ec®?’ )

(y")+1

(7')-1
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by the computations just made. Hence the map Tyﬁl*ﬁ'Ty is an

algebra isomorphism of Hn into H.

One can check by induction on the length of y that all Tyefiare

invertible. Define polynomials Rz yEz[qllz,q-lfz] by requiring that

4.2 . (r -7 1= § (-1ylemsth(y)+length(z)y g~ length(y),
y 2EW Z,¥

The sum in 4.2 is finite; in fact, it only involves those elements z

which satisfy z<y, as one can prove that R y%O iff z<y. In [Dh4], the

3
formula

R =1 ™91
2>¥ geD

Ok=z

is shown to be valid in any Coxeter group (the notation being as in 3.15)
so that Rz ¥ is in fact in Z[q]. Applying 3.16 to the present setting,

> X
and using the fact that #(K)Fn=pn, #f (X )Fn=pn-l, one finds that

m(0) n(o)

n
#canne' NT =1 eH™ ¢"1)
g

Uk=y .
4. =R .
3 st(p )

The Kazhdan-Lusztig polynomials can now be defined as follows: let xﬁg;
be the 'anti'-automorphism of H extending the map qllzr*q'l/z, T H‘T'll.
In [KL], it is shown that there exists a unique basis {Sy, YEW} of
satisfying 1) S =Sy
2) S = q—length(Y)/Z X P .T
y 2 <y 2,7 %

with Pz yEZ[q], and degree(Pz y)ﬁ(length(y)—length(z)~1)
s -y 2

if z<y, P being the constant 1.
¥,¥

Condition 1) is equivalent to the equality
qlength(y)-length(z)ir

B
Z,Y ZyX X’y

;ﬁgﬁy
and Kazhdan & Lusztig prove that if W is a (finite) Weyl group, then
i i
Py W(q)= L dim H;;(Icw)'q , where H is the stalk cohomology of Deligne's
, ;

i +
middle-intersection-cohomology complex of sheaves ICW on the variety XW.

One can generalize their proof ([KL4]) to arbitrary crystallographic

groups as follows:
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Assume that W is a crystallographic group, and define
P =7 dim H_(IC )qJ/2
VW § yB+ w

for yew, yB EX as above. With the notation of 3.23-3.25, fix A, v EL(A),

L-U vieK, A

yA
L°=L(A),BK. Let Vy {veL | the L7 ~coordinate of v is non-zero},

V;={v€V | the LA-coordinate of v is 0 if height (yA-A)<0 and A#yA}. Now

let V

define an action of Gm on L by t —p(t), where p(t).v=t
whenever VELA We can now show that

4.4 a) Y(X ﬂy ¢! (l))-W(X )ﬂ[V ] and ?(X ne! (y))—T(X >n[v'
subvarieties of affine space.

such that T(Xlﬁyc (1)) and W(XJ?C (y)) are K ~stable

)

’

into a sum of positive characters.

proof:

b) The Gm—actlon defined above induces an actlon of K on [V

y,w y Lhelght(A—wA)’ y,w ynLh31ght(A ~wi) for y<weW. Finally,
helght(ﬂﬁk)v

[
o W
so that both X!’y & (1) and xnc' (Y) can be regarded as

]

3

¢) In the natural identification [V ] KM the point [yv'®1]

maps to the origin, and the K -action on [VY W] decomposes

' - + + =
a) Assume vsVy, say v=yv Etyﬂ 5 vuﬁtu with tuEK,

height%yA—u}>O

VUEL(A)U’ and fix tek, a eﬁie: then

. (m) 4. ..m .
yu(t).v vV ﬂtyﬂfiifa Lyv 8L tyA + z, v'&t

i
height (yA-u')>0

& Lyﬁ-a

B

which lies again in V;. Hence V; is B _-invariant, and one

concludes that for weW,

W(C'(w))c:[v'} if and only if [wv A1) e [V 1.
It is clear from the definltion that the latter happens

only when w=y, so we have

(*) ?(C'(w))cz[v;] if and only if w=y.

Using the disjointness of the Birkhoff decomposition, and

the fact that X5:9<Lheight(A—wA))’ this proves that

YE NS (=YX ALY T

As Vy=y.Vl, one can also conclude from (*) that



53

¥Y(y. c'(1))r\[v ]. Now assume that pET(X )n[V ]: as pe?(x )
we must have y'l.p EW(G/B ), hence, using the dlS]OlntneSS
of the Birkhoff decomposition and the injectivity of ¥,
there exists a unique ze€W such that y'1p£W(C'(z)). As the
LYA—coordinate of p is non-zero, the LA—coordinace of y-%p
is non-zero, i.e., by the above, z must be 1, ard pe¥(y.C'(1)).
This completes the proof of a).
proof of b): one need only observe that
p(t)ox_(s)op(e)” =x (sg~helghe @)y
(t)0y, (s)0p (£) "Lay. (s£2E1EHE (@)

c) 1s clear.

One can now prove that P =Py - exactly as in [KL4]:

> s
Call an]Fp-variety X pure (resp. very pure) if for all xEXFn and
all ieN, the eigenvalues of F2 on Hi(IC) have absolute value pni/Z

(resp. ===1:’ni/2) The main facts needed to complete the proof are:

4.5 a) If Y is a closed Fp-subvariety of K# (some M), which is stable
under a diagonal action of Gm on KM, the latter action being a
direct sum of positive characters of Gm’ then

if Y-{origin} is very pure, then so is ¥
b) With Y as above, we have H.i('Y,IC)=-Hi

srigin (IC) (where HL denotes
hypercohomology).

n
Fix weW. For z<w, let Q(z) be the property: "for all xeC(z)F "

HL(IC_)=0 if 1 is odd, and the eigemvalues of F” on H-(IC,) are p™ '’

if i is even". The main lemma (see [KL4]) is that

4.6 Q(z) holds for all z<w.

proof: Q(w) 1is clear. Assume that Q(z) is true for y<z¢w, and let's

prove it for y:
We know by our induction hypothesis that (XJ\V.C‘(I))-C(y) is
very pure. It is easy to see that Xwﬂy.c'(l) is isomorphic to
(Xwnc'(y))xc(y), and that in this isomorphism (XJ\yC'(l))-C(y)
corresponds to ((XJ\C'(y))-{yﬁ+})xC(y). As C(y) is smooth, our
initial remark implies that (XJQC'(Y))*{yB+} is very pure.
Using 4.4 and 4.5a), we conclude that XJ\C'(y) is itself very
pure, and, going backwards, that Xé\y.c'(l) is very pure.
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We now apply the Lefschetz fixed point formula to the

Frobenius map on the variety X=Xély.c‘(l) to obtain:
Tl n

T(*) tr * Fro= ] g try® F
mc(x,zcw) oy HX(ICW)

where H%ldenotes hypercohomology with compact support, and

trc*= X (-1)itrci . The right hand side of (*) equals
i
E X n Cr % P (as X=X11y.C"(1)
. F BE”(IC ) W
zeW  xe(C(z)0y.C'(1)) x W -\ C(@)yc' @)

<z<w
ysz=v y<z<w

- 3 pnlength(y)R e g0
V2 H® (IC )
zB+ W

(using 4.3)
y<z<w

On the other hand, the left hand side equals
nlength(w) 5 o
P 1%, 1C_)

- pnlength(w) trH1

tr (by Poincaré duality)

-n
F
(1Cc )
yB+ W
Hence (*) becomes
(5%) pnlength(w)tr " B
H _(IC)
yB w
* nlength(y) n
=p ) R (T (g0 )F
zB+ W

by 4.4 and 4.5b).

n

y<z<w

After a careful comparison of degrees in (*%) using the
induction hypothesis and the fact that X is very pure,
one concludes as in [XL1] and [KL4] that Q(y) is true.

To see that P =P , one rewrites (**) using 4.6 to get
VW Y,W

pn(l(w)-l<Y))Z(—l)ip—ni/zdimHiB(IC Y= £ R (pE(-1)
i TP W yegew V02 1

l o - ~
q W-1(Mp . 5 Ry,sz,W (here, 1(x)

i ni/2., i
p dlmHyBiICw>

which is equivalent to

denotes the length of the element x of W). Using the characteristic

properties of IC, it is easy to check that the P 's satisfy
< i i i = =
deg(?y,w)_%ﬁl(w) 1(y)-1), with Pw,w 1, hence Py,w Py,w'

Added in proof: I have recently been informed that G. Lusztig has a
much simpler proof, based on his paper Characters of reductive groups
over a finite field,IHES,1982, of this generalization of the results
of [KL4]. .




55

3) The case of elements of Coxeter type:

Assume that w=r,...r, is such that j #j_ if m#n. A direct computa-
ip iy mn
tion shows that Py w=l for all y<w, hence one can conclude that if W is
»

a (finite) Weyl group, then the variety X, is rationally smooth ([KL1]).
In fact, if W is any crystallographic group, and w is as above,
then Xw is smooth. One can show directly that

a- if we identify C(w) with Kk using 3.22, and y=rj...rj <w,
t1 tn
and tl<...<t , then
ceNy.c' @) = {QAy,..000) | A leK} (see [Dh3]),

and Cw)OC'(y) = {(Kl,...,hk) | hti=0 k.
i 1 if je{t seeety }
b~ an y.C'(1) = £ (U(nk’ - )), with n o { 1

2 otherwise.

and f_| is injective.
w'U
(nk’ L ’nl)

Let us prove instead that fw: Zﬁ——+XW is an isomorphism:

First note that if zEZ =U 1)° then there exists AjeK such that

(1,...

Z=(Pk(z),---,pl(z)), with Pj (z)e{ysff}‘j)sﬁj}: and for some jO’ A.j:_s‘?_:lo

We now show that
given two sequences Sl<'°‘<sn’ <. <t , with si,tie{l,...,k}
if #oemeast, = T

.r. =w', then s.=t. for all i,
s 3 i i
1 o n 1 n

by induction on n: If n=1, there is nothing to prove; otherwise, the

exchange condition, applied to w'.uj <0 gives

S
n

(1) w'=r,...r, W T, «es. . r,  for some a,
Je. Jt Je 3t 3
1 a-1 a+l n on
and applied to w‘.aj <0 gives

n

(2) w'= rj...rj . rj e rj rj for some b.
t

51 "Sp-1 Sp+1 °n n
Assuming,without loss of generality, that a<b, one sees that if b#n and

a¥n then (1) and (2) imply that t =S _i=t , which is impossible because

n-1 "n-2
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t < t_ so that j # j. . Hence we must have b=a=n, in which case
n-2 n t -2 t

(2) implies that w'=r.....rj .r, . Combining this equation with
Is s .t
1 n-1 n
w=r.....r. , we see thatr, =7r, , i.e. t =s_, and the induction
Jg jt 3g n n
1 n n n

hypothesis gives L -175,-1° *°° » 578y

The notation being as above, if zEZw-U(l y? then
’. e 9 3
- < - - > > - -
fw(z)fgpk(z)...pl(z)B+. As WIg...Tg 'Bm 0 if i 1n>m (that is so

i1 in
b3cause WTB...I'B -B =_(r R o as e I‘ sesssl . a
g, By = 31 Igei +1 Fe-i 1 e, ot
1 n 1
= -0 + Z c @, where the subset A of {1,..,N}
Jp-m1 iea *

does not contain h P— ), one sees that fw(z) is of the form
E i i LI
ber:..rB.3+ with b B+ and the indices il, ,ip are such that
i i
1 P
pj(z)=_§__JI if and only if j is in the set w(z)={il,...,ip}. In particular,

by the disjointness of the Bruhat decomposition and the lemma proved

above, if fw(zl)=fw(22)’ then w(zl)an(zz) (with w(z)=@ if ZEU(l, .. ’1)5 .

One now proves as in 4.1) (using again the idea in example 3) ) that if

yogA)eeovg Oy drg eyg Q4 ) eee v Oy g ey (?\ 1) yg(A;)B
B B l+1:i.1+1 -8 1 B, -1 1,-1 By 411t 8 By ot B 17+
*p T At

equals

i +1 1 i 171" i+l"p i i-1"p 1
l l P P P
then ljélé for all j (alternately, multiplying this last equation by w
gives an equality in C(WrB...rB ) on which one can use 3.7). Hence fw
i1 ln
is injective.
In particular, waly.C'(l) is open, and one can check, using appropriate

al i i -ohism: izdeed, with A as
coordinates, that fw'O(XJIyC'(l)) is an isomorphism: izdeed, w
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re . ;
in 3.9, and for all el ~, if T, denotes reflexion in ¢, then raew,

so that L(A)r A%O, hence A—raA.EQ ; but A—raﬂ=<A,av>a, so <A,av>?>0;
o

therefore, by [K5 ], L(A)A_a%o. Now using this and the fact that all
rj's are distinct, one can see, after a tedious but straightforward
i
computation, that fwlU always looks, in the local coordinates
(nk, ..,nl)

like a mapping K —ﬁ-KM with (tl,...,t N—ﬁ-(t (t

..,tk,pl 1""tk)""
R 4 ’pM_k(tl" - ’tk))

tieK, for some MeN, where each Pj is a homogeneous polynomial of degree

*
at least 2. Hence fw gives an isomorphism of the rings of functioms,

and fW is indeed an isomorphism.

Example 9: If k=2, set u = f(m) ;n)v+ﬁl £ U .V EK
L] 2J 2
Then £ | is the map
w U(l 1)
+
G, o Eps 73 (EB ) [wv'BL + £y o+ £).wag g
j231 72 m n
+ I tltz.ﬂpm 1
m,n>2 1
Similarly, fw| is the map
(2,1)
+
(xr o, (tl)rjzji 35" yj§t2)3+)f'—* [rjv ¥l + ot (—rjul’o)
241 * E ’
.r.u
2 320,1
+ I (-t )m(t )n.r.u ]
m,n>2 1 2 sz,n

etC.. . a
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4) Geometric interpretation of the matrix A:

Suppose k=length(w)=2, so that w=rirj with i#j, hence ZW‘—*' XW is
an isomorphism.

We have Z:;= P2/3123P1, ‘and g:Z — Z;t the projection so Z_is a
Pl-bundle over P! In fact, we also have a global section h:Zg;“-* Z,, SO
ZW is a ruled surface.

“IE L‘=ZW-Imh » then ,g|L $L—+F z:; is a line bundle on PP'. We shall
show that the degree of L is —aij’- that Imh is the unique rigid section
of Zw~—>- Z‘::'r, hence the self-intersection number of (Imh ) is aij, i.e.
the invariant of the ruled surface X, is —ay 4 ([T3 1). In particular,
the product of the invariant of xrirj by that of. erri is 4(cos—i;)
Since the latter is an integer only when mije{2,3,4,6,°°}, one concludes
that no 'nice' flag variety can be attached to a Coxeter group unless
that group is crystallographic.

2

So we have Z =Z_ . —PZXBlP /IB » Z=P /B =IPI, and h:Zl'—'* Z , given

e 1 3 l -1
by h(PZBl) (pz,r B, ). Here, Bl . By x s Bz-w

1

B,w, ;=B UB T B,

LJU

—rBUyB,P BlLJBrrrB (2,1)"
%3

1 rjrl j 1uyr3ai 1’ (1 1)

Given a map f:P,— (PllBo—{ero})=yu?o satisfying
=1

we can define E:Zg';ﬂ- L by f(p231)=(p2,f(p2)), and conversely, given
f:Zg;-—-a» L satisfying gf(p)=p, we can define a (set) map f:Pz—+ (YaBo)/Bo

by requiring f(pz) to be that element of P /B for which ’f(szl) can
be written in the form (pz,f(pz)) (this determ.nes f uniquely).
Now B =(Hb<y )KUaj=LJ°<U i, and left translation by Bl induces the
.'i
following action of Lj on the affine line ya?+/3+:

o -1 -
(If b=uc U J, then b ya(t)3+=ya.(t)B+ )

]
-1
If b=}ra§,s) , then b ya§t)B+=yaj(t-—s)B+

- -1 =y (z213...23N
If b hl(zl)...hN(zN), then b "y, (t)B ya(zl N jt)B

Let x,¥:K-— P2 be the maps x(t)=x (t)rj (l}r (l)r ), ‘P(t)-y (t)
J *4 J @5
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so that given pZEPz, either there exists a unique t€K and blEBl such
that p2=x(t)bl , or there exists a unique t€K and blEBl such that
p2=?1t)bl. Given f:Pz—* (ya?+)/3+ , consider fl=f<:x, f2=fc3W, so that

fi:K'*'qu+. If c#0, then X(c)=?(c-l)hi(—c)hj((—c)—aij)u with uEUaj,
and if f satisfies (%), then

(%) £, ()= (b, (-oh, ((-0) D) g, ™)

for all c#0. Conversely, given fl,fZ:K"—?'yaB+ satisfying (**), one can

-1

construct f:Pz——*P1/B+—{er+}, and such a map f will automatically satis-
ty (*)s
We thus obtain a 1-1 correspondence between maps E:P2/31f+ L

satisfying gf=identity, and pairs fl,fZ:K**'(xa3+)/B+ satisfying (*%).

One can check that, in this correspondence, the map £ :Zé**L is a mor-

phism if and only if the maps fl,f2 are morphisms when considered as

functions on A}. Let's see when the latter is true:

5 F3 *
If f2 is a morphism, then fz(t)=ya§f2(t))3+, when fz
P = F -
mial €K[t]: (*%) then becomes fl(c)=hj((-c)a11)hi(—c l)ya(fz(c e,
3

i ~2a.,. %9 -
and the right hand side is equal to ya((-c)all(-c) zalsz(c l)B+

is a polyno-

J
a;: =a.._*_ -1
=y, ((=1)"1e "13f,(c T))B,.
As: =3 % -1 X
so we must have fl(c)=ya((~l) ile 1Jfé(c ))B+ for all c€K . If in ad-
]

-3 K =
dition fl is to be a morphism, themn t a1Jf2(t l) has to be a polynomial

* *

also, hence degree(fz)ffaij. Conversely , any polynomial £ (t)€EK[t] of
<

degree<. aij

described above. This correspondence is clearly linear, so one con-

yields a section of L— Zi simply by reversing the process

cludes that dhnHo(zi,L)=~dim{polynomials in K[t] of degreggfaij}=l—aij;
thus, the degree of L is ~ay

We now examine the coordinate chart om Zi more closely:
Uer,1y=1 a(xpyp=C i (l)yuixl)rj -1, Yaj(yl) )s x;,y,6K }

U(2’1)={ b(X23y2)=( ij(l)xaﬁxz)fi(l)fj(—l) § ya§y2) ¥, XZ’YZEK }

4

U(1,2)={ c(xq,74)=( ij(l)ya§x3)fj(-l) ; xa§y3)fj(1) )y %g:¥4€K {

U(2’2)={ d(xa,y4)=( fj(l)xaixé)ii(l)fj(-l)’ xa§y4)ij(l) ), xa,y4EK }
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Using the relations
fi(wt)hi(—t)=ii(1)
t, (h_(0)E, (~1)=h (£)h, (£ k)
b (), () (s D)=, (7K )
one can determine the intersections U(m,n)r\U(m',n') as follows:
a(xl,y1)=b(x2,y2) if & only if xlx2=l & yl=y2(—xzsaij
a(xl,yl)=c(x3,y3) if & only if X =Xq & y1y3=1
b(xz,y2)=d(x4,y4) if & only if x,=%, & y2y4=1

=v (= Y2ij
Yy YA( x4) J

=¢]

C(X3sY3)=d(x4,y4) if & only if x3x4=1

He

sz
a(xlsyl)=d(x43y4) f & only if X1X4=]_ & yly4=(-x4) ij

"¢l

1 = = _ai'
only if ¥3%, 16& Y3Y5 ( xz) J

C(xB,y3)=b(x2,Y2) if
and Imla={c(x3,0)}U{d(x4,O)}.
Using the coordinates X (=xl=x3) 5. X (=yl) s Z (=y2),

1/X(=x,7x,), 1/¥(=y,), 1/Z(=y,),

the equations on the right reduce to the single equation

Y = z(-x) °1j
for X, _ , and Imh ={Z=®, Y=<}, from which it is easy to see that Imh
1]
is rigid (e.g.: as aijfp, deformations of the form Z(—X)-aij=constant
will contain, in the limit, the fiber X=* as well as Imh ; and deforma-

tions of the form Y(-X)®ij=constant will tend to Imh U{X=0})-
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