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Abstract

Graphs are a natural way to model real-world entities and relationships between them,
ranging from social networks and biological datasets to cloud computing infrastructure
data lineage graphs. Queries over these large graphs often involve expensive sub-
graph traversals and complex analytical computations. Furthermore, real-world
graphs often encode relationships that evolve through time, which are modeled as
a temporal graph, i.e., one in which edges are associated to time attributes (such
as start time and duration). These real-world graphs are often substantially more
structured than a generic vertex-and-edge model would suggest, but this insight has
remained mostly unexplored by existing graph engines for graph query optimization
purposes. In addition, most temporal graph processing systems remain inefficient as
they rely on distributed processing even for graphs that fit well within a commodity
server’s available storage. To this end, we present two distinct systems tailored for
optimizing large-scale real-world graph processing. The first system, Kaskade, targets
the challenges of efficient query evaluation by leveraging structural properties of
graphs and queries to infer materialized graph views, speeding up query evaluation
by rewriting queries in terms of views it deems beneficial based on input graph and
query characteristics. The second system, Kairos, introduces selective indexing, a
technique that chooses a subset of target vertices to index based on characteristics
of the underlying temporal graphs and input queries. This system further employs a
highly-specialized parallel data structure aimed at in-memory storage and fast retrieval
of temporal edges. Finally, Kairos is built upon Ligra, the de facto benchmark system
in shared-memory parallel graph processing, offering similar advantages and a familiar
API to application programmers. Both systems offer speedups of up to 50-60x when
compared with alternative baselines, and introduce novel classes of query optimization
techniques aimed at efficient real-world graph analytics.

Thesis Supervisor: Samuel R. Madden
Title: MIT College of Computing Distinguished Professor of Computing
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Chapter 1

Introduction

Graphs offer a natural way to model real-world entities and relationships between them.

From social networks to biological systems, and from transportation networks to data

lineage graphs in cloud computing infrastructure, the ability to analyze and extract

meaningful insights from graph data is crucial to a host of human endeavors. For

example, cloud computing companies extract large graphs from terabytes of production

systems logs every day to inform near real-time operational decisions [67]. As a result,

systems aimed at answering queries (i.e., declarative questions) over graph-structured

data need to do so efficiently.

Furthermore, real-world graphs often encode relationships that evolve through time.

These relationships are commonly modeled as a temporal graph, i.e., one in which

edges are associated to time attributes (such as start time and duration), denoting

their validity during a certain interval in time. Because of their ability to capture not

only relationships, but also their evolution over time, temporal graphs are crucial for

uncovering meaningful insights and patterns [23, 75, 91]. For instance, being able to

track the chronology of friendship formations on a social network or communication

events can enhance our understanding of behavioral patterns. Similarly, the ability to

observe the evolution of transportation routes or the progression of a biological system

over time can provide critical data for predictive modeling and decision-making.
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Job1’s impact

Job1
File1

File2

Job2

Figure 1-1: Example query over a machine generated data lineage graph extracted
from cloud computing infrastructure logs [26, 67]. Blue circles correspond to “jobs”
(i.e., logical collection of tasks) running in the cluster. Gray squares correspond to
“files”. Directed paths in a data lineage graph follow the flow of data being produced
or consumed. Cluster administrators often execute the “blast radius” impact query
(i.e., a 𝑘-hop transitive closure over the data lineage graph) for post-mortem analysis
and capacity planning tasks.

1.1 Challenges in Graph Query Processing

The inherent characteristics of graph query workloads as well as data properties from

these real-world graphs pose significant challenges for their efficient processing. In

this section, we outline the two types of problems that constitute the primary focus of

the research we present in this thesis.

1.1.1 Expensive Subgraph Traversals

Queries over large real-world graphs often involve expensive sub-graph traversals

and complex analytical computations. A particular characteristic of graph query

workloads is that they contain queries that can refer to long chains of dependencies,

such as 𝑘−hop queries. In Figure 1-1 we depict one such example: a “job blast radius

query”, which is often used for in cloud computing infrastructure to power operational

decisions, and which we later detail in §4.1. If executed over distributed relational

engines, such path traversal queries can lead to inefficient query plans, especially in

the presence of skewed degree distributions (often the case for real-world graphs).

Some of the reasons for this inefficiency include the materialization of intermediate

computations, as well as the i.i.d. assumption that traditional query optimizers often

make.
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1.1.2 Temporal Dynamics of Real-World Graphs

The dynamic nature of temporal graphs also brings about new challenges. This

additional expressiveness comes at a cost, as the temporal dimension often introduces

new sources of skew, such as exponentially distributed inter-arrival times and event

durations. In addition, existing graph frameworks and query systems frequently

encounter difficulties when handling graph processing tasks required in temporal graph

analytics applications.

The underlying reasons for these challenges are twofold. First, many of these

systems were primarily designed for traditional graph processing, and as a result,

they are not well-equipped to handle the unique characteristics and requirements

of temporal graphs, in some cases leading to incorrect results [95]. Second, some

systems [46, 80, 19, 59] that specifically target temporal graph processing rely on

Pregel-like distributed computation models. These models can be highly inefficient due

to the message passing overhead across servers in a cluster, especially when the input

graph fits comfortably within the memory resources of a single commodity machine.

This limitation leads to suboptimal performance and an inability to fully exploit the

temporal information available in the data.

1.2 Contributions

To address the challenges outline above, in this thesis we present two distinct systems

tailored for optimizing large-scale real-world graph processing.

The first system, Kaskade [26], targets the challenges of efficient query evaluation

over very large graphs by leveraging structural properties of graphs and queries to

infer materialized graph views. Kaskade formulates the problem of finding valid

graph views as a Boolean satisfiability problem. Using this formulation, Kaskade

employs a novel constraint-based view enumeration technique that mines constraints

from query workloads and graph schemas, and injects them during view enumeration

to significantly reduce the search space of views to be considered. Materialized view

inference is especially useful in this setting because it significantly speeds up query
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evaluation by rewriting input queries in terms of these views, guided by a cost model

that estimates the benefit of such views based on input graph and query characteristics.

The second system, Kairos [27], introduces selective indexing, a technique that

chooses a subset of target vertices to index based on characteristics of the underlying

temporal graphs and input queries. This system further employs a highly-specialized

parallel data structure aimed at in-memory storage and fast retrieval of temporal

edges. Kairos introduces programming primitives and APIs that organize graph

edges by time while preserving data locality for vertex neighbors retrieval. In addition,

its novel temporal graph index allows for efficiently looking up vertex neighbors in

specific time ranges, while taking into account temporal dynamics of vertex degree

distributions and information on the input query workload. Finally, Kairos is built

upon Ligra [84, 85], the de facto benchmark system in shared-memory parallel graph

processing.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the computa-

tional model and key concepts we build upon in this work. In Chapter 3 we present

a survey of related work. Chapter 4 details the contributions of Kaskade to graph

query optimization, including the idea of constrained-based view inference to identify

and materialize beneficial graph views. Next, in Chapter 5 we describe Kairos, the

system we built to leverage temporal dynamics present in real-world graph data for

efficient graph analytics. Finally, we discuss ideas for future work in Chapter 6, and

present our concluding remarks in Chapter 7.
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Chapter 2

Background

In this section, we provide key concepts we build upon in this thesis. We define the

data models and programming paradigms introduced in prior work, as well as work

from which we draw inspiration in concepts that we introduce in later sections. We

also categorize different analytics tasks that are commonly performed in some of the

contexts that these systems consider. Finally, we conclude with a brief discussion

highlighting which concepts are used by which system, as well as in which other

contexts these concepts might be applicable.

2.1 Property Graph Data Model

Graph data systems often assume property graphs as their data model [8], in which

both vertices and edges are typed and may have properties in the form of key-value

pairs. This schema captures constraints such as domain and range of edge types. In

our data lineage graph example (Figure 1-1), an edge of type “read” only connects

vertices of type “job” to vertices of type “file” (and thus never connects two vertices of

type “file”). We show a visual example of the schema for such a data lineage graph

in Figure 2-1. Most mainstream graph engines provide support for this data model,

including the use of schema constraints.
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attrs.: {“id”, “start time”, “status”, …}

attrs.: {“location”, “size”, “last updated”, …}

is_read_by

writes_to

Vertex Types: Edge Types:

attrs.: {“start time”, “end time”, “bytes read”, …}

attrs.: {“start time”, “end time”, “bytes written”, …}

File

Job

Figure 2-1: Example schema for a data lineage graph used in cloud computing data
infrastructure to record where data came from in a datacenter.

2.2 Query Language

Kaskade combines regular path queries with relational constructs in its query

language. In particular, it leverages the graph pattern specification from Neo4j’s

Cypher query language [39] and combines it with relational constructs for filters and

aggregates. This hybrid query language resembles that of recent industry offerings

for graph-structured data analytics, such as those from AgensGraph DB [1], SQL

Server [4], and Oracle’s PGQL [89].

As an example, consider the job blast radius use case introduced in Chapter 1

(Figure 1-1). Listing 1 illustrates a query that combines OLAP and anchored path

constructs to rank jobs in its blast radius based on average CPU consumption.

SELECT A.pipelineName, AVG(T_CPU) FROM (
SELECT A, SUM(B.CPU) AS T_CPU FROM (

MATCH (q_j1:Job)-[:WRITES_TO]->(q_f1:File)
(q_f1:File)-[r*0..8]->(q_f2:File)
(q_f2:File)-[:IS_READ_BY]->(q_j2:Job)
RETURN q_j1 as A, q_j2 as B

) GROUP BY A, B
) GROUP BY A.pipelineName

Listing 1: Job blast radius query over raw graph.

Specifically, the query in Listing 1 ranks jobs up to 10 hops away in the downstream

of a job (q_j1). In the example query, this is accomplished in Cypher syntax by
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using a variable length path construct of up to 8 hops (-[r*0..8]->) between two file

vertices (q_f1 and q_f2), where the two files are endpoints of the first and last edge

on the complete path, respectively.

2.3 Temporal Graph Data Model

A temporal graph is represented by the tuple 𝐺 = (𝑉,𝐸, 𝑇, 𝜏):

• 𝑉 denotes a set of vertices.

• 𝐸 denotes a set of edges.

• 𝑇 = [0, 1, ..., 𝑡𝑚𝑎𝑥] ∈ N represents a discrete time domain.

• 𝜏 : 𝑉 × 𝑉 × 𝑇 × 𝑇 → {𝐹𝑎𝑙𝑠𝑒, 𝑇𝑟𝑢𝑒} is a function that determines for each pair of

vertices 𝑢, 𝑣 ∈ 𝑉 , and each pair of timestamps 𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ∈ 𝑇 where 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡𝑒𝑛𝑑,

whether (𝑢, 𝑣) ∈ 𝐸, i.e., whether the edge (𝑢, 𝑣) exists during the discrete time

period from 𝑡𝑠𝑡𝑎𝑟𝑡 to 𝑡𝑒𝑛𝑑.

In other words, each edge in a temporal graph is associated with a discrete time

interval indicating its validity. For instance, in interaction networks, this time interval

indicates the period during which two vertices have interacted.

A weighted temporal graph is represented by the tuple 𝐺 = (𝑉,𝐸, 𝑇, 𝜏, 𝑤), where

𝑤 is a function that maps a temporal edge (as defined above) to a real value (its

weight). The number of vertices in a temporal graph is 𝑛𝑣 = |𝑉 |, and the number of

edges is 𝑛𝑒 = |𝐸|. Vertices are assumed to be labeled from 0 to 𝑛𝑣 − 1. For undirected

temporal graphs, we use 𝑑𝑒𝑔(𝑣) to denote the number of edges incident to a vertex

𝑣 ∈ 𝑉 . In directed temporal graphs, vertices contain both incoming and outgoing

edges. We use deg+(𝑣) to denote the number of outgoing edges, and deg−(𝑣) to denote

the number of incoming edges that a vertex 𝑣 has.
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2.4 Allen’s Interval Algebra

We draw inspiration from Allen’s Interval Algebra [13] to specify the relationships

that subsequent edges in the same time-respecting path must have. The following

subset of this algebra defines the validity of temporal paths:

• Succeeds: For two time intervals 𝐴 and 𝐵, 𝐵 succeeds 𝐴 if and only if the end

time of 𝐴 is smaller than or equal to the start time of 𝐵, i.e., end(𝐴) ≤ start(𝐵).

• Strictly succeeds: 𝐵 strictly succeeds 𝐴 if and only if the end time of 𝐴 is strictly

smaller than the start time of B, i.e., end(𝐴) < start(𝐵).

• Overlaps: 𝐵 overlaps 𝐴 if and only if the start time of 𝐴 is less than the start time

of 𝐵, and the end time of 𝐴 is less than the end time of 𝐵, i.e., start(𝐴) ≤ end(𝐵)

and end(𝐴) ≤ start(𝐵).

We refer to this subset as ordering predicates in Kairos, and describe its application

in §5.4.1.

2.5 Temporal Graph Analytics Tasks

Here we provide a survey of applications of temporal graph analytics algorithms and

queries from the literature, listed in Table 2.1. For each algorithm and query, we

present an example application that relies on it as a core primitive for analysis. We

focus on a core set of algorithms that address the most common use cases in temporal

graph analytics and can serve as primitives for building more advanced analysis tasks.

The primary categories for these algorithms are temporal paths, temporal connectivity,

and temporal centrality.

Temporal Paths: A temporal path in graph 𝐺 is a path where every subsequent

edge in the path must satisfy certain temporal constraints. Examples of minimal

temporal paths include earliest arrival, latest departure, fastest path, and shortest

path [95, 94].
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Category Specific instantiation
Temporal Graph Algorithms

Temporal Minimal
Paths

[Provenance] Tracking the origin and flow of information in different systems
[29, 91]
[Indoor Routing] Temporal shortest paths that consider different obstacles for
correct navigation [14, 62]
[Transportation] Route planning that considers real-time traffic conditions in
transportation networks [57]
[Epidemiology] Identifying infection transmission paths in contact tracing [96]

Temporal Connectivity [Social Networks] Analyzing community evolution and detecting temporal clusters
[73, 100, 101, 58]

Temporal Centrality [Epidemiology] Identifying critical nodes in the spread of infections [23]
Temporal Graph Queries

Time-constrained
reachability

[Social Networks] Analyzing influence propagation and information cascades [76,
70, 102]

Temporal subgraph
matching

[Bioinformatics] Detecting conserved patterns in dynamic biological networks
[72, 53]

Table 2.1: A Categorization of tasks commonly performed in temporal graph analytics.

Temporal Connectivity: Temporal connectivity deals with the temporal version of

connected components. This involves identifying sets of vertices that are connected

through time.

Temporal Centrality: Temporal centrality measures the importance of a vertex in

a temporal graph. An example of interest is temporal betweenness centrality, which

quantifies how frequently a vertex appears on temporal shortest paths between that

vertex and other vertices in the graph.

2.6 The Compressed Sparse Row (CSR) Format

In the context of parallel graph processing, a common data structure used to store

graph data is the Compressed Sparse Row (CSR) format. This format is largely

preferred over other competing data structures as it allows for efficient storage and

manipulation of sparse graphs, in which the majority of potential edges are absent [93].

The CSR representation of a graph is characterized by the use of three arrays: an

adjacency array, an offset array, and a vertex array. The adjacency array serves as

a storage mechanism for destination vertices of all edges in a graph. The edges are

placed in a contiguous block of memory, where they are sorted by the source vertex

for outgoing edges, and sorted by the destination vertex for incoming edges. This
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efficient organization supports the fast retrieval of adjacent vertices in graph traversal

operations, as all vertices in the same 1-hop neighborhood are located contiguously in

memory. The offset array then stores the indices of outgoing / incoming edges into

the adjacency array. These indices mark the starting point of the adjacency list for

each vertex, enabling quick access to the set of edges associated with any given vertex.

Lastly, the vertex array consists of the vertex identifiers, or vertex ids. These ids can

be used as a reference to retrieve additional attributes or properties associated with

a vertex, or they can represent the vertices themselves in some implementations. In

practice, if there is no metadata associated to vertices, then the vertex id is implicit

(i.e., offset[𝑖] contains the offset for vertex 𝑖), and no separate vertex ids array is

needed.

2.7 Shared-memory Graph Processing: Ligra

Ligra is a lightweight graph processing framework designed for shared-memory parallel

systems [84]. It enables efficient parallel graph processing by employing a simple and

flexible programming model, making it easy for developers to write high-performance

algorithms for large-scale graphs.

The programming model of Ligra is centered around two primary operations:

EdgeMap and VertexMap. These operations enable parallel traversal of the graph and

are responsible for most of the computation in a Ligra-based algorithm.

EdgeMap is a higher-order function that takes as input a graph 𝐺, a subset

of vertices 𝑉 ′, and an edge function 𝑓 . It applies the edge function 𝑓 to all edges

(𝑢, 𝑣) in the graph, where 𝑢 ∈ 𝑉 ′ and 𝑣 ∈ 𝑉 . The edge function 𝑓 is responsible

for implementing the logic of the specific graph algorithm and can perform various

operations, such as updating vertex properties or computing edge weights. EdgeMap

efficiently handles parallelism by processing edges in parallel, allowing for scalable

performance on shared-memory systems.

VertexMap is another higher-order function that takes as input a graph 𝐺, a

subset of vertices 𝑉 ′, and a vertex function 𝑔. It applies the vertex function 𝑔 to all
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vertices in 𝑉 ′. Similar to the edge function, the vertex function is responsible for

implementing the algorithm-specific logic and can perform operations such as updating

vertex properties or aggregating information from neighboring vertices. VertexMap

also processes vertices in parallel, ensuring scalable performance.

By using these two core operations, Ligra enables developers to write graph

algorithms that can efficiently exploit the parallelism offered by shared-memory

systems.

2.8 Discussion

We described above the key concepts that we build upon with our work in Kaskade

and Kairos. Here we briefly discuss what role these ideas from prior work play in

each system.

The property data graph model we describe in §2.1 defines what types of vertices

can relate to what other types, and how. As we later show in Chapter 4, these schema

constraints play an essential role in view enumeration (§4.6).

Kairos, on the other hand, does not rely on graph schemas, which is a direct result

of our decision to build upon Ligra (§2.7), in which vertices and edges have no types.

A natural extension here would be to add support for graph schemas, which could be

done either directly on Ligra, or by adding a separate key-value store component to

store vertex and edge attributes.

Furthermore, although we use the Cypher query language (§2.2) syntax for graph

queries in Kaskade, the techniques we introduce in Kaskade can be coupled with

any query language, as long as it can express graph pattern matching and schema

constructs. Kairos, on the other hand, does not offer support for declarative queries,

and instead offers a an API which we describe in §5.4.

In addition, as we later describe in Chapter 5, Kairos introduces an extension to

the CSR format for the temporal setting. This compact and cache-friendly format

allows for efficient computations in a number of graph analytics tasks. In Kairos, this

temporal version of CSR is used in conjunction with a specialized data structure that
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further improves performance of algorithms over large temporal graphs. Kaskade’s

contributions, on the other hand, are engine agnostic in the sense that they only rely

on fundamental graph transformations, and leverage the target storage engine’s API

for computing graph views. In other words, the internal data representation that the

graph engine uses is transparent to Kaskade: hence, if an engine uses CSR (temporal

or not) to store data graphs, Kaskade will automatically use it as well.

We also introduced in §2.7 the Ligra programming model for shared-memory

parallel graph processing applications. In Chapter 5 we further detail how we extend

it to the temporal setting in our work with Kairos. In our experimental evaluation

of Kaskade we store materialized graph views on Neo4j, a graph database that at

the time already supported graph schemas. Nevertheless, if one implements support

for the property graph data model in Ligra, adding support to schemas, then we could

also use Ligra to materialize as well as precompute some of those views. This would

probably lead to faster execution runtimes, as Ligra makes better use of computational

resources with its support for cache-efficient graph data representations, such as CSR.

30



Chapter 3

Related Work

The work we present in this thesis is connected to prior literature in two key areas.

We start with work that relates to materialization of graph views (§3.1), and conclude

with related works in systems for efficient processing of temporal graph data (§3.2).

3.1 Materialized Graph Views for Query Rewriting

3.1.1 Graph Views and Query Language

Materialized views have been widely used in the relational setting to improve query

runtime by amortizing and hiding computation costs [41]. This inspires our work in

Kaskade, but the topological nature of graph views makes them new and different.

The notion of graph views and algorithms for their maintenance was first introduced

in[104] by Zhuge and Garcia-Molina in 1998. When we first proposed Kaskade, there

had been little attention in this area. With Kaskade, we aim at providing a practical

approach that can be used to deal with large real-world graphs. It addresses various

problems related to graph views, including view enumeration, selection, as well as

view-based query rewriting.

In Kairos, we focus on extracting views for the graph traversal portion of our

queries, since these are the most crucial for performance. An interesting avenue

for future work is to address a combined analysis of the relational and graph query
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fragments, related to what [60] proposes for a more restricted set of query types or

[21] does for OLAP on graphs scenarios. The challenge is to identify and overcome the

limits of relational query containment and view rewriting techniques for our hybrid

query language. A related challenge is to support maintenance of our graph views in

the case of updates, which we leave as future work.

Fan et al. [32] provide algorithms to generate views for speeding up fixed-sized

subgraph queries, whereas Kaskade targets traversal-type queries that can contain

an arbitrary number of vertices/edges. They do not provide a system for selecting the

best views to generate based on a budget constraint. Le et al. [54] present algorithms

for rewriting queries on SPARQL views, but lack view selection. Katsifodimos et

al. [50] present techniques for view selection to improve performance of XML queries,

which are limited to trees due to XML’s structure.

3.1.2 Property Graph Databases

Kaskade is a graph query optimization framework that proposes a novel constraint-

based view inference technique for materialized view selection and query rewriting.

Although it is not a graph engine itself, in its current design it ultimately acts as one.

However, we believe existing graph query execution engines can leverage Kaskade

for query optimization. There are many such systems (see [98] for a survey). Our

approach is mostly independent of the underlying graph engine, and while we run

our experiments on Neo4J, Kaskade is directly applicable to any engine supporting

Cypher [39] (or SQL+Cypher).

3.1.3 RDF and XML

The Semantic Web literature has explored the storage and inference retrieval of RDF

and OWL data extensively [15]. While most efforts focused on indexing and storage

of RDF triples, there has also been work on maintenance algorithms for aggregate

queries over RDF data [48]. While relevant, this approach ignores the view selection

and rewriting problems we consider here, and it has limited applicability outside
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RDF. RDFViewS [40] addresses the problem of view selection in RDF databases.

However, the considered query and view language support pattern matching (which

are translatable to relational queries) and not arbitrary path traversals, which are

crucial in the graph applications we consider. Similar caveats are present in prior work

on XML rewriting [71, 30], including lack of a cost model for view selection.

3.1.4 Graph Functional Dependencies

Graph Functional Dependencies (GFDs) work aims at discovering parts of a graph

that violate topological constraints [38, 34, 31, 33, 37]. Our focus with graph query

optimization is different: materialize smaller graphs to speed up query execution.

We see their work as complementary to ours, in that dependencies discovered by

their approach may be provided in the form of schema constraints inference rules in

Kaskade. A future work direction is to translate instantiations constraint mining

rules (§4.6.1) into GFDs.

3.1.5 Graph Summarization and Compression

Summarization finds smaller graphs that are representative of the original graph to

speed up graph algorithms or queries, for graph visualization, or to remove noise [63].

Most related is summarization to speed up graph computations for certain queries

(lossless or lossy) [36, 69, 97, 86, 20]. As far as we know, prior work in this area has

not explored the use of connectors and summarizers as part of a general system to

speed up graph queries. Rudolf et al. [79] describe summarization templates in SAP

HANA, which can be used to produce what we call graph views. However, their paper

lacks a system that determines what views to materialize, nor uses the views to speed

up graph queries. There has been significant work on lossless graph compression to

reduce space usage or improve performance of graph algorithms (see, e.g., [18, 85, 65]).

This is complementary to our work on graph views, and compression could be applied

to reduce their memory footprint.
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3.2 Efficient Processing of Temporal Graph Data

3.2.1 Temporal Graph Engines

While the authors of [95, 94] have been the first to propose one-pass parallel versions

of temporal graph algorithms, as far as we know [46] is the only other shared-memory

temporal graph analytics system. Previous systems for temporal graph analytics have

primarily relied on distributed message passing, often building upon programming

paradigms like Pregel or stateful data stream processing frameworks such as Apache

Flink [80, 74, 59, 77]. The large number of messages exchanged when relying on these

programming paradigms imposes considerable overhead on graph processing. This

becomes particularly noticeable in the case of graphs that fit within available memory

of current commodity servers, as shown by the speedups Kairos gets when compared

against these systems (Chapter 5).

3.2.2 Time-evolving Graph Engines

There has been significant work on developing frameworks for processing of graphs that

evolve over time [44, 68, 22, 52, 49]. While these systems allow processing of snapshots,

streaming graphs, or dynamic graphs dynamic graphs, for their most part they do not

support temporal graphs nor temporal graph algorithms. Rather, timestamps associated

to edges or vertices are treated as graph updates in these systems. For this reason, we

consider these orthogonal.

3.2.3 Range Query Data Structures

There has been extensive work on data structures to handle range queries. Traditional

range query data structures often used in relational systems include quad-trees, R-trees,

kd-trees. Specifically aimed at interval data – such as that present in temporal edges

– are interval trees, segment trees, and priority search trees [16]. All three of these

data structures have runtime complexity of 𝑂(𝑙𝑜𝑔𝑛 + 𝑘), where 𝑘 is the number of

results for the range query. Where they differ is on space complexity, which is highest
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Data Structure Runtime Queries Supported
Interval Tree 𝑂(log 𝑛+ 𝑘) stabbing
Priority Search Tree 𝑂(log 𝑛+ 𝑘) 3-sided region
kd-Tree 𝑂(

√
𝑛+ 𝑘) 4-sided region

Table 3.1: Example data structures for range search over time intervals. Asymptotic
query runtime complexity is given for 𝑛 intervals stored, with 𝑘 matching results for
the input query.

for segment trees at 𝑂(𝑛𝑙𝑜𝑔𝑛), as well as on properties relating to how they can be

queried (e.g., stabbing vs 3-sided queries). In Table 3.1 we offer a brief comparison

of the three data structures we considered when initially designing Kairos. As we

describe later in Chapter 5, we opted for building a highly-optimized, specialized, and

re-configurable version of priority search tree as index for storing temporal edges.

3.2.4 Graph Neural Networks

Graph Neural Networks (GNNs) have emerged as a powerful framework for learning

representations of graph-structured data, tackling problems in various domains such as

social networks, molecular biology, and recommendation systems [90, 103, 64]. GNNs

rely on the underlying graph structure and the attributes of nodes and edges to learn

complex patterns and make predictions, with recent increased focus on temporal

graphs [103, 47]. By employing efficient graph analytics algorithms, these systems can

compute a wide range of graph properties, such as centrality measures, graph motifs,

or community structures, which can then be used as additional input features for

GNNs. In the context of GNNs, most related to our work is the version of Temporal

CSR used for sampling temporal edges in [103]. While it does not account for end

time edges, as far as we know this is the only other work that extends CSR to the

temporal setting.

3.3 Discussion

To further contextualize our work, here we briefly discuss how the techniques and

systems we propose in this thesis fit into the overall picture of graph data processing
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systems. First, Kaskade can be seen as a graph query optimization framework and

sits atop other graph data systems. As Kaskade is not itself, a graph data processing

system, we do not discuss related work in this area. For a comprehensive survey of

current challenges in large-graph data processing systems, which also covers overall

directions and workload trends, we direct the reader to [81].

Additionally, while Kairos is a temporal graph processing system, it assumes

its input temporal graphs are static. In other words, it does not currently handle

data dynamism such as graph edge removals or updates. For systems that do not

necessarily target temporal graphs, but that can handle dynamic graphs as well as

streaming graphs, we direct the reader to a comprehensive survey by Maciej Besta et

al [17].
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Chapter 4

Kaskade

As we outlined in Chapter 1, an increasingly relevant type of workload over real-

world graphs involves analytics computations that mix traversals and computation,

e.g., finding subgraphs with specific connectivity properties or computing various

metrics over sub-graphs. This has resulted in several systems being designed to handle

complex queries over such graphs [98]. In such scenarios, graph analytics queries

require response times on the order of a few seconds to minutes, because they are either

exploratory queries run by users (e.g., recommendation or similarity search queries)

or they power systems making online operational decisions (e.g., provenance use cases,

capacity planning and incident response, as well as detecting privacy violations in the

context of GDPR). However, many of these queries involve the enumeration of large

subgraphs of the input graph, which can easily take minutes to hours to compute over

large graphs on modern graph systems. To achieve our target response times over

large graphs, new techniques are needed.

We observe that the graphs in many of these applications have an inherent struc-

ture: their vertices and edges have specific types, following well-defined schemas and

connectivity properties. For instance, social network data might include users, pages,

and events, which can be connected only in specific ways (e.g., a page cannot “like”

a user), or workload management systems might involve files and jobs, with all files

being created or consumed by some job. As we discuss in §4.1, the data lineage

graphs that cloud data infrastructure companies maintain often have similar structural
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Job1’s impact

Job1
File1

File2

Job2

Figure 4-1: Running example of query over a heterogeneous network: the “blast radius”
impact for a given job in a data lineage graph (blue circles correspond to jobs; gray
squares to files).

constraints. However, most existing graph query engines do not take advantage of

this structure to improve query evaluation time.

At the same time, we notice that similar queries are often run repeatedly over the

same graph. Such queries can be identified and materialized as views to avoid significant

computation cost during their evaluation. The aforementioned structural regularity of

these graphs can be exploited to efficiently and automatically derive these materialized

views. Like their relational counterparts, such graph views allow us to answer queries

by operating on much smaller amounts of data, hiding/amortizing computational

costs and ultimately delivering substantial query performance improvements of up to

50X in our experiments on real-world graphs. As we show, the benefits of using graph

views are more pronounced in heterogeneous graphs1 that include a large number of

vertex and edge types with connectivity constraints between them.

4.1 Motivating example

Cloud computing infrastructure often operate large data lakes, at times storing several

exabytes of data and processing them with hundreds of thousands of jobs, spawning

billions of tasks daily [24]. Operating such a massive infrastructure requires cloud

providers handle data governance and legal compliance (e.g., GDPR), optimize systems

based on our query workloads, supporting metadata management and enterprise search,

as detailed in [42, 66]. A natural way to represent this data and track datasets and

1By heterogeneous, we refer to graphs that have more than one vertex types, as opposed to
homogeneous with a single vertex type.
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computations at various levels of granularity is to build a provenance graph that

captures data dependencies among jobs, tasks, files, file blocks, and users in the lake.

As discussed above, only specific relationships among vertices are allowed, e.g., a user

can submit a job, and a job can read or write files.

To enable these applications over the provenance graph, we need support for a

wide range of structural queries. Finding files that contain data from a particular

user or created by a particular job is an anchored graph traversal that computes the

reachability graph from a set of source vertices, whereas detecting overlapping query

sub-plans across jobs to avoid unnecessary computations can be achieved by searching

for jobs with the same set of input data. Other queries include label propagation (i.e.,

marking privileged derivative data products), data valuation (i.e., quantifying the

value of a dataset in terms of its “centrality” to jobs or users accessing them), copy

detection (i.e., finding files that are stored multiple times by following copy jobs that

have the same input dataset), and data recommendation (i.e., finding files accessed by

other users who have accessed the same set of files that a user has).

We highlight the optimization opportunities in these types of queries through a

running example: the job blast radius. Consider the following query operating on

the provenance graph: “For every job 𝑗, quantify the cost of failing it, in terms of

the sum of CPU-hours of (affected) downstream consumers, i.e., jobs that directly or

indirectly depend on 𝑗’s execution.” This query, visualized in Figure 4-1, traverses the

graph by following read/write relationships among jobs and files, and computes an

aggregate along the traversals. Answering this query is necessary for cluster operators

and analysts to quantify the impact of job failures—this may affect scheduling and

operational decisions.

By analyzing the query patterns and the graph structure, we can optimize the job

blast radius query in the following ways. First, observe that the graph has structural

connectivity constraints: jobs produce and consume files, but there are no file-file

or job-job edges. Second, not all vertices and edges in the graph are relevant to the

query, e.g., it does not use vertices representing tasks. Hence, we can prune large

amounts of data by storing as a view only vertices and edges of types that are required
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by the query. Third, while the query traverses job-file-job dependencies, it only uses

metadata from jobs. Thus, a view storing only jobs and their (2-hop) relationships to

other jobs further reduces the data we need to operate on and the number of path

traversals to perform. A key contribution of our work is that these views of the graph

can be used to answer queries, and if materialized, query answers can be computed

much more quickly than if computed over the entire graph.

4.2 Contributions

Motivated by the above scenarios, we have built Kaskade, a graph query optimization

framework that employs graph views and materialization techniques to efficiently

evaluate queries over graphs. Our contributions are as follows:

Query optimization using graph views. We identify a class of graph views that

can capture the graph use cases we discussed above. We then provide algorithms to

perform view selection (i.e., choose which views to materialize given a query set) and

view-based query rewriting (i.e., evaluate a query given a set of already materialized

views). As far as we know, this is the first work that employs graph views in graph

query optimization.

Constraint-based view enumeration. Efficiently enumerating candidate views

is crucial for the performance of view-based query optimization algorithms. To this

end, we introduce a novel technique that mines constraints from the graph schema

and queries. It then leverages view templates expressed as inference rules to generate

candidate views, injecting the mined constraints at runtime to reduce the search space

of views to consider. The number of views our technique enumerates is further lowered

when using the query constraints.

Cost model for graph views. Given the importance of path traversals, we introduce

techniques to estimate the size of views involving such operations and to compute

their creation cost. Our cost model is crucial for determining which views are the

most beneficial to materialize. Our experiments show that by leveraging graph schema

constraints and associated degree distributions, we can estimate the size of various
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Figure 4-2: Architecture of Kaskade.

path views in a number of real-world graphs reasonably well.

Results over real-world graphs. We have incorporated all of the above techniques

in our system, Kaskade, and have evaluated its efficiency using a variety of graph

queries over both heterogeneous and homogeneous graphs. Kaskade is capable of

choosing views that, when materialized, speed up query evaluation by up to 50X on

heterogeneous graphs.

4.3 Overview

Kaskade is a graph query optimization framework that materializes graph views to

enable efficient query evaluation. As noted in Chapter 1, it is designed to support

complex enumeration queries over large subgraphs, often involving reporting-oriented

applications that repeatedly compute filters and aggregates, and apply various analytics

over graphs.

Kaskade’s architecture is depicted in Figure 4-2. Users submit queries in a

language that includes graph pattern constructs expressed in Cypher [39] and relational
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constructs expressed in SQL. They use the former to express path traversals, and the

latter for filtering and aggregation operations. This query language, described in §4.4,

is capable of capturing many of the applications described above.

Kaskade supports two main view-based operations: (i) view selection, i.e., given

a set of queries, identify the most useful views to materialize for speeding up query

evaluation, accounting for a space budget and various cost components; and (ii) view-

based query rewriting, i.e., given a submitted query, determine how it can be rewritten

given the currently materialized views in the system to improve the query’s execution

time by leveraging the views. These operations are detailed in §4.7. The workload

analyzer drives view selection, whereas the query rewriter is responsible for the

view-based query rewriting.

An essential component in both of these operations is the view enumerator, which

takes as input a query and a graph schema, and produces candidate views for that

query. A subset of these candidates will be selected for materialization during view

selection and for rewriting a query during view-based query rewriting. As we show

in §4.6, Kaskade follows a novel constraint-based view enumeration approach. In

particular, Kaskade’s constraint miner extracts (explicit) constraints directly present

in the schema and queries, and uses constraint mining rules to derive further (implicit)

constraints. Kaskade employs an inference engine (we use Prolog in our imple-

mentation) to perform the actual view enumeration, using a set of view templates it

expresses as inference rules. Further, it injects the mined constraints during enumera-

tion, leading to a significant reduction in the space of candidate views. Moreover, this

approach allows us to easily include new view templates, extending the capabilities

of the system, and alleviates the need for writing complicated code to perform the

enumeration.

Kaskade uses an execution engine component to create the views that are output

by the workload analyzer, and to evaluate the rewritten query output by the query

rewriter. In this work, we use Neo4j’s execution engine [6] for the storage of materialized

views, and to execute graph pattern matching queries. However, our query rewriting

techniques can be applied to other graph query execution engines, so long as their
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query language supports graph pattern matching clauses.

4.4 Preliminaries

4.4.1 Graph Views

We define a graph view over a graph 𝐺 as the graph query 𝑄 to be executed against 𝐺.

This definition is similar to the one first introduced by Zhuge and Garcia-Molina [104],

but extended to allow the results of 𝑄 to also contain new vertices and edges in

addition to those in 𝐺. A materialized graph view is a physical data object containing

the results of executing 𝑄 over 𝐺.

Kaskade can support a wide range of graph views through the use of view

templates, which are essentially inference rules, as we show in §4.6. Among all possible

views, we identify two classes, namely connectors and summarizers, which are sufficient

to capture most of the use cases that we have discussed so far. Intuitively, connectors

result from operations over paths (i.e., path contractions), whereas summarizers are

obtained via summarization operations (filters or aggregates) that reduce the size of

the original graph.

As an example, Figure 4-3 shows the construction of 2-hop same-vertex-type

connector views over a data lineage graph (similar to the graph of Figure 4-1). In

Figure 4-3(a), the input graph contains two types of vertices, namely jobs (vertex

labels with a 𝑗 prefix) and files (vertex labels with an 𝑓 prefix), as well as two types

of edges, namely 𝑤 (a job writes to a file) and 𝑟 (a file is read by a job). Figure 4-3(b)

shows two different types of connector edges: the first contracts 2-hop paths between

pairs of job vertices (depicted as blue dashed edges); the second contracts 2-hop paths

between pairs of file vertices (depicted as red dashed edges). Finally, Figure 4-3(c)

shows the two resulting connector graph views: one containing only the job-to-job

connector edges (left), and one with only the file-to-file connector edges (right).

Next, we introduce a formal definition and examples of connectors and summarizers.

We consider their definition as a means to an end rather than a fundamental contribu-
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Figure 4-3: Construction of different 2-hop connector graph views over a heterogeneous
network (namely, a data lineage graph) with two vertex types (𝑁 = 2) and two edge
types (𝑀 = 2).

tion of this work. Thus, here we only provide sufficient information over graph views

for the reader to follow our techniques in Sections 4.6 and 4.7. As path operations

tend to be the most expensive operations in graphs, our description will pivot mostly

around connectors. Materializing such expensive operations can lead to significant

performance improvements at query evaluation time. Moreover, the semantics of

connectors is less straightforward than that of summarizers, which resemble their

relational counterparts (filters and aggregates). Note, however, that the techniques

described here are generic and apply to any graph views expressible as view templates.

4.5 View Definitions and Examples

Next we provide formal definitions of the two main classes of views supported in

Kaskade, namely connectors and summarizers, which were briefly described in §4.4.1.

Moreover, we give various examples of the views from each category that are currently
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Table 4.1: Connectors in Kaskade

Type Description

Same-vertex-type con-
nector

Target vertices are all pairs of vertices with a specific vertex
type.

𝑘-hop connector Target vertices are all vertex pairs that are connected through
𝑘-length paths.

Same-edge-type con-
nector

Target vertices are all pairs of vertices that are connected
with a path consisting of edges with a specific edge type

Source-to-sink connec-
tor

Target vertices are (source, sink) pairs, where sources are
the vertices with no incoming edges and sinks are vertices
with no outgoing edges.

present in Kaskade’s view template library.

While the examples below are general enough to capture many different types of

graph structures, they are by no means an exhaustive list of graph view templates

that are possible in Kaskade; as we mention in §4.6, Kaskade’s library of view

templates and constraint mining rules is readily extensible.

4.5.1 Connectors

A connector of a graph 𝐺 = (𝑉,𝐸) is a graph 𝐺′ such that every edge 𝑒′ = (𝑢, 𝑣) ∈
𝐸(𝐺′) is obtained via contraction of a single directed path between two target vertices

𝑢, 𝑣 ∈ 𝑉 (𝐺). The vertex set 𝑉 (𝐺′) of the connector view is the union of all target

vertices with 𝑉 (𝐺′) ⊆ 𝑉 (𝐺). Based on this definition, a number of specialized

connector views can be defined, each of which differs in the target vertices that it

considers. Table 4.1 lists examples currently supported in Kaskade.

Additionally, it is easy to compose the definition of 𝑘-hop connectors with the

other connector definitions, leading to more connector types. As an example, the

𝑘-hop same-vertex-type connector is a same-vertex-type connector with the additional

requirement that the target vertices should be connected through 𝑘-hop paths. Finally,

connectors are useful in contexts where a query’s graph pattern contains relatively long

paths that can be contracted without loss of generality, or when only the endpoints of

the graph pattern are projected in subsequent clauses in the query.
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4.5.2 Summarizers

A summarizer of a graph 𝐺 = (𝑉,𝐸) is a graph 𝐺′ such that 𝑉 (𝐺′) ⊆ 𝑉 (𝐺), 𝐸(𝐺′) ⊆
𝐸(𝐺), and at least one of the following conditions are true: (i) |𝑉 (𝐺′)| < |𝑉 (𝐺)|,
or (ii) |𝐸(𝐺′)| < |𝐸(𝐺)|. The summarizer view operations that Kaskade currently

provides are filters that specify the type of vertices or edges that we want to preserve

(inclusion filters) or remove (exclusion filters) from the original graph.2 Also, it

provides aggregator summarizers that either group a set of vertices into a supervertex,

a group of edges into a superedge, or a subgraph into a supervertex. Finally, aggregator

summarizers require an aggregate function for each type of property present in the

domain of the aggregator operation. We provide examples of summarizer graph views

currently supported in Listing 2. Kaskade’s library of template views currently does

not support aggregation of vertices of different types. The library is readily extensible,

however, and aggregations for vertices or edges with different types are expressible

using a higher-order aggregate function to resolve conflicts between properties with

the same name, or to specify the resulting aggregate type.

Lastly, summarizers can be useful when subsets of data (e.g., entire classes of

vertices and edges) can be removed from the graph without incurring any side-effects

(in the case of filters), or when queries refer to logical entities that correspond to

groupings of one or more entity at a finer granularity (in the case of aggregators).

4.6 Constraint-Based View Enumeration

Having introduced a preliminary set of graph view types in §4.4.1 (see also §4.5

for more examples), we now describe Kaskade’s view enumeration process, which

generates candidate views for the graph expressions of a query. As discussed in §4.3,

view enumeration is central to Kaskade (see Figure 4-2), as it is used in both view

selection and query rewriting, which are described in §4.7. Given that the space of

view candidates can be large, and that view enumeration is on the critical path of
2Summarizer views can also include predicates on vertex/edge properties in their definitions.

Using such predicates would further reduce the size of these views, but given they are straightforward,
here we focus more on predicates for vertex/edge types.
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% summarizers: filter vertices and edges by type
summarizerRemoveEdges(X, Y, ETYPE_REMOVE, ETYPE_KEPT) :-

queryEdge(X, Y), not(queryEdgeType(X, Y, ETYPE_REMOVE)),
queryEdgeType(X, Y, ETYPE_KEPT).

summarizerRemoveVertices(X, VTYPE_REMOVE, VTYPE_KEPT) :-
queryVertex(X), not(queryVertexType(X, VTYPE_REMOVE)),
queryVertexType(X, VTYPE_KEPT).

% Example aggr function for higher-order functions such
% as aggregator graph view templates.
sum(X, Y, R) :- R is X + Y.

% Ego-centric k-hop neighborhood (undirected).
queryVertexKHopNbors(K, X, LIST) :- queryVertex(X),

findall(SRC, queryKHopPath(SRC, X, K), INLIST),
findall(DST, queryKHopPath(X, DST, K), OUTLIST),
append(INLIST, OUTLIST, TMPLIST), sort(TMPLIST, LIST).

% Example aggregator using k-hop neighborhood, e.g.,
% aggregate all 1-hop neighbors as sum of their
% bytes: "kHopNborsAggregator(1, j2, 'bytes', sum, R)."
kHopNborsAggregator(K, X, P, AGGR, RESULT) :-

queryVertexKHopNbors(K, X, NBORS),
convlist(property(P), NBORS, OUTLIST),
foldl(AGGR, OUTLIST, 0, RESULT).

Listing 2: Example view template definitions for summarizers.

Query & 
Schema Fact 

Extraction

Inference-
Based View 
Enumeration

Constraint 
Mining Rules

Explicit  
Constraints

View 
Templates

View 
CandidatesQuery

Graph 
schema

Inference-based view enumeration (in Prolog) 

Constraint mining

Figure 4-4: Constraint-based view enumeration in Kaskade.

view selection and query rewriting, its efficiency is crucial.

In Kaskade we use a novel approach, which we call constraint-based view enu-
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meration. This approach mines constraints from the query and the graph schema

and injects them at view enumeration time to drastically reduce the search space of

graph view candidates. Figure 4-4 depicts an overview of our approach. Our view

enumeration takes as input a query, a graph schema and a set of declarative view

templates, and searches for instantiations of the view templates that apply to the query.

Kaskade expresses view templates as inference rules, and employs an inference engine

(namely, Prolog)3 to perform view enumeration through rule evaluation. Importantly,

Kaskade generates both explicit constraints, extracted directly from the query and

schema, and implicit ones, generated via constraint mining rules. This constraint

mining process identifies structural properties from the schema and query that allow

it to significantly prune the search space for view enumeration, discarding infeasible

candidates (e.g., job-to-job edges or 3-hop connectors in our provenance example).

Apart from effectively pruning the search space of candidate views, Kaskade’s view

enumeration provides the added benefit of not requiring the implementation of complex

transformations and search algorithms—the search is performed by the inference engine

automatically via our view templates and efficiently via the constraints that we mine.

Moreover, view templates are readily extensible to modify the supported set of views.

In our current implementation, we employ SWI-PL’s inference engine [11], which gives

us the flexibility to seamlessly add new view templates and constraint mining rules

via Prolog rules. On the contrary, existing techniques for view enumeration in the

relational setting typically decompose a query through a set of application-specific

transformation rules [83] or by using the query optimizer [78], and then implement

search strategies to navigate through the candidate views. Compared to our constraint-

based view enumeration, these approaches require higher implementation effort and

are inflexible when it comes to adding or modifying complex transformation rules.

We detail the two main parts of our constraint-based view enumeration, namely

the constraint mining and the inference-based view enumeration, in Sections 4.6.1

3While a subset of Kaskade’s constraint mining rules are expressible in Datalog, Prolog provides
native support (i.e., without extensions) for aggregation and negation, and we use both in summarizer
view templates. Kaskade also relies on higher-order predicates (e.g., setof, findall) in constraint
mining rules, which Datalog does not support.
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and 4.6.2, respectively.

4.6.1 Mining Structural Graph Constraints

Kaskade exploits information from the graph’s schema and the given query in the

form of constraints to prune the set of candidate views to be considered during view

enumeration. It mines two types of constraints:

• Explicit constraints (§4.6.1) are first-order logic statements (facts) extracted from

the schema and query (e.g., that files do not write files, only jobs);

• Implicit constraints (§4.6.1) are not present in the schema or query, but are

derived by combining the explicit constraint facts with constraint mining rules.

These constraints are essential in Kaskade, as they capture structural properties

that otherwise cannot be inferred by simply looking at the input query or schema

properties.

Extracting explicit constraints

The first step in our constraint-based view enumeration is to extract explicit constraints

(facts) from the query and schema.

Transforming the query to facts. Our view enumeration algorithm goes over the

query’s MATCH clause, i.e., its graph pattern matching clause, and for each vertex and

edge in the graph pattern, Kaskade’s constraint miner emits a set of Prolog facts.

In our example of the job “blast radius” query (Listing 1), Kaskade extracts the

following facts from the query:

queryVertex(q_f1). queryVertex(q_f2).

queryVertex(q_j1). queryVertex(q_j2).

queryVertexType(q_f1, 'File').

queryVertexType(q_f2, 'File').

queryVertexType(q_j1, 'Job').

queryVertexType(q_j2, 'Job').
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queryEdge(q_j1, q_f1). queryEdge(q_f2, q_j2).

queryEdgeType(q_j1, q_f1, 'WRITES_TO').

queryEdgeType(q_f2, q_j2, 'IS_READ_BY').

queryVariableLengthPath(q_f1, q_f2, 0, 8).

The above set of facts contains all named vertices and edges in the query’s graph

pattern, along with their types, and any variable-length regular path expression

(queryVariableLengthPath( X,Y,L,U) corresponds to a path between nodes X and

Y of length between L and U). In Listing 1, a variable-length regular path of up to 8

hops is specified between query vertices q_f1 and q_f2.

Transforming the schema to facts. Similar to the extraction of query facts, our

view enumeration algorithm goes over the provided graph schema and emits the

corresponding Prolog rules. For our running example of the data lineage graph, there

are two types of vertices (files and jobs) and two types of edges representing the

producer-consumer data lineage relationship between them. Hence, the set of facts

extracted about this schema is:

schemaVertex('Job'). schemaVertex('File').

schemaEdge('Job', 'File', 'WRITES_TO').

schemaEdge('File', 'Job', 'IS_READ_BY').

Mining implicit constraints

Although the explicit query and schema constraints that we introduced so far restrict

the view enumeration to consider only views with meaningful vertices and edges (i.e.,

that appear in the query and schema), they still allow many infeasible views to be

considered. For example, if we were to enumerate 𝑘-hop connectors between two files

to match the variable-length path in the query of Listing 1, all values of 𝑘 ≥ 2 would

have to be considered. However, given the example schema, we know that only even

values of 𝑘 are feasible views. Similarly, since the query specifies an upper limit 𝑢 = 8

in the number hops in the variable-length path, we should not be enumerating 𝑘-hop

connectors with 𝑘 ≥ 8.
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To derive such implicit schema and query constraints that will allow us to sig-

nificantly prune the search space of views to consider, Kaskade uses a library of

constraint mining rules4 for the schema and query. Listing 3 shows an example of such

a constraint mining rule for the schema. Rule schemaKHopPath, expressed in Prolog

in the listing, infers all valid 𝑘-hop paths given the input schema. Note that the rule

takes advantage of the explicit schema constraint schemaEdge to derive this more com-

plex constraint from the schema, and it considers two instances of schemaKHopPath

different if and only if all values in the resulting unification tuple are different. For

example, a schemaKHopPath(X=‘Job’,Y=‘Job’,K=2) unification, i.e., a job-to-job

2-hop connector is different from a schemaKHopPath(X=‘File’,Y=‘File’,K=2), i.e.,

a file-to-file 2-hop connector. For completeness, we also provide a procedural version of

this constraint mining rule in 1. When contrasted with the Prolog rule, the procedural

version is not only more complex, but it also explores a larger search space. This is

because the procedural function cannot be injected at view enumeration time as an

additional rule together with other inference rules that further bound the search space

(see §4.6.2).

Similar constraint mining rules can be defined for the query. The extended preprint

version at [25] shows examples of such rules, e.g., to bound the length of considered

𝑘-hop connectors (in case such limits are present in the query’s graph pattern), or to

ensure that a node is the source or sink in a connector.

These constraints play a crucial role in limiting the search space for valid views.

As we show in §4.6.2, by injecting such rules at view enumeration time, Kaskade can

automatically derive implicit knowledge from the schema and query to significantly

reduce the search space of considered views. Interestingly, Kaskade can derive this

knowledge only on demand, in that the constraint mining rules get fired only when

required and do not blindly derive all possible facts from the query and schema.

Importantly, the combination of both schema and query constraints is what makes

it possible for our view enumeration approach to reducing the search space of possible

4The collection of constraint mining rules Kaskade provides is readily extensible, and users can
supply additional constraint mining rules if desired.
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Algorithm 1 Procedural version of schemaKHopPaths constraint mining Prolog rule
1: // Procedural version of one the declarative constraint mining
2: // programs that bound the search space for valid candidate
3: // views (Listing 3 and §4.6.1)
4: function k_hop_schema_paths(schema_edges, paths, k, curr_k)
5: if curr_k == 0 then return [p for p ∈ paths if len(p) == k]
6: if k == curr_k then
7: new_paths ← [[e] for e ∈ schema_edges]
8: return k_hop_schema_paths(schema_edges, new_paths, k, k-1)
9: new_paths ← []

10: for {i, path} ∈ paths do
11: src, dst ← path[0][0], path[-1][1]
12: for {j, edge} ∈ schema_edges do
13: // Add edge to the end of the path.
14: if dst == edge[0] then new_paths.append(path + [edge])
15: // Add edge to the front of the path.
16: if src == edge[1] then new_paths.append([edge] + path)
17: // Step omitted: duplicate paths removal.
18: // Fix-point: only include paths that grew this round.
19: paths ← [p for p ∈ new_paths if len(p) == (k-curr_k+1)]
20: return k_hop_schema_paths(schema_edges, paths, k, curr_k-1)

% Determine whether acyclic directed k-length paths
% between two nodes X and Y are feasible over the input
% graph schema. schemaEdge are explicit constraints
% extracted from the schema.
schemaKHopPath(X,Y,K) :- schemaKHopPath(X,Y,K,[]).
schemaKHopPath(X,Y,1,_) :- schemaEdge(X,Y,_).
schemaKHopPath(X,Y,K,Trail) :-

schemaEdge(X,Z,_), not(member(Z,Trail)),
schemaKHopPath(Z,Y,K1,[X|Trail]), K is K1 + 1.

Listing 3: Example of constraint mining rule for the graph schema.

rewritings. As an example, consider the process of enumerating valid 𝑘-hop connector

views. Without any query constraints, the number of such views equals the number

of 𝑘-length paths over the schema graph, which has 𝑀 schema edges. While there

exists no closed formula for this combination, when the schema graph has one or more

cycles (e.g., a schema edge that connects a schema vertex to itself), at least 𝑀𝑘 𝑘-hop

schema paths can be enumerated. This space is what the schemaKHopPath schema

constraint mining rule would search over, were it not used in conjunction with query
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% k-hop connector between nodes X and Y.
kHopConnector(X, Y, XTYPE, YTYPE, K) :-

% query constraints
queryVertexType(X, XTYPE), queryVertexType(Y, YTYPE),
queryKHopPath(X, Y, K),
% schema constraints
schemaKHopPath(XTYPE, TYPE, K).

% k-hop connector where all vertices are of the same type.
kHopConnectorSameVertexType(X, Y, VTYPE, K) :-

kHopConnector(X, Y, VTYPE, VTYPE, K).

% Variable-length connector where all vertices are of
% the same type.
connectorSameVertexType(X, Y, VTYPE) :-

% query constraints
queryVertexType(X, VTYPE), queryVertexType(Y, VTYPE),
queryPath(X, Y),
% schema constraints
schemaPath(X, Y).

% Source-to-sink variable-length connector.
sourceToSinkConnector(X, Y) :-

% query constraints
queryVertexSource(X), queryVertexSink(Y), queryPath(X, Y),
% schema constraints
schemaPath(X, Y).

Listing 4: Example view template definitions for connectors.

constraint mining rules on view template definitions. Kaskade’s constraint-based

view inference algorithm enumerates a significantly smaller number of views for input

queries, as the additional constraints enable its inference engine to efficiently search

by early-stopping on branches that do not yield feasible rewritings.

4.6.2 Inference-based View Enumeration

As shown in Figure 4-4, Kaskade’s view enumeration takes as input (i) a query,

(ii) a graph schema, and (iii) a set of view templates. As described in §4.6.1, the query

and schema are used to mine explicit and implicit constraints. Both the view templates
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and the mined constraints are rules that are passed to an inference engine to generate

candidate views via rule evaluation. Hence, we call this process inference-based view

enumeration. The view templates drive the search for candidate views, whereas the

constraints restrict the search space of considered views. This process outputs a

collection of instantiated candidate view templates, which are later used either by

the workload analyzer module (see Figure 4-2) when determining which views to

materialize during view selection (§4.7.2), or by the query rewriter to rewrite the query

using the materialized view (§4.7.3) that will lead to its most efficient evaluation.

Listing 4 shows examples of template definitions for connector views. Each

view template is defined as a Prolog rule and corresponds to a type of connector

view. For instance, kHopConnector(X,Y,XTYPE,YTYPE,K) corresponds to a connector

of length K between nodes X and Y, with types XTYPE and YTYPE, respectively. An

example instantiation of this template is kHopConnector(X,Y,‘Job’,‘Job’,2), which

corresponds to a concrete job-to-job 2-hop connector view. This view can be translated

to an equivalent Cypher query, which will be used either to materialize the view or to

rewrite the query using this view, as we explain in §4.7. Other templates in the listing

are used to produce connectors between nodes of the same type or source-to-sink

connectors. Additional view templates can be defined in a similar fashion, such as the

ones for summarizer views that we provide in Listing 2.

Note that the body of the view template is defined using the query and schema

constraints, either the explicit ones (e.g., queryVertexType) coming directly from the

query or schema, or via the constraint mining rules (e.g., queryKHopPath, schema-

KHopPath), as discussed in §4.6.1. For example, kHopConnector’s body includes two

explicit constraints to check the type of the two nodes participating in the connector,

a query constraint mining rule that will check whether there is a valid 𝑘-hop path

between the two nodes in the query, and a schema constraint mining rule that will do

the same check on the schema.

Having gathered all query and schema facts, Kaskade’s view enumeration al-

gorithm performs the actual view candidate generation. In particular, it calls the

inference engine for every view template. As an example, assuming an upper bound
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of 𝑘 = 10 — in Listing 1 we have a variable-length path of at most 8 hops between 2

File vertices, and each of these two vertices is an endpoint for another edge — the

following are valid instantiations of the kHopConnector(X,Y,XTYPE,YTYPE,K) view

template for query vertices q_j1 and q_j2 (the only vertices projected out of the

MATCH clause):

(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=2)

(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=4)

(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=6)

(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=8)

(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=10)

Or, in other words, the unification (X=‘q_j1’, Y=‘q_j2’, XTYPE=‘Job’, XTYPE=‘Job’,

K=2) for the view template kHopConnector(X,Y,XTYPE,YTYPE,K) implies that a view

where each edge contracts a path of length 𝑘 = 2 between two nodes of type Job is

feasible for the query in Listing 1.

Similarly, Kaskade generates candidates for the remaining templates of Listings 4

and the additional example templates at [25]. For each candidate it generates,

Kaskade’s inference engine also outputs a rewriting of the given query that uses this

candidate view, which is crucial for the view-based query rewriting, as we show in

§4.7.3. Finally, each candidate view incurs different costs (see §4.7.1), and not every

view is necessarily materialized or chosen for a rewrite.

4.7 View Operations

In this section, we present the main two operations that Kaskade supports: selecting

views for materialization given a set of queries (§4.7.2) and view-based rewriting of a

query given a set of pre-materialized views (§4.7.3). To do this, Kaskade uses a cost

model to estimate the size and cost of views, which we describe next (§4.7.1).
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4.7.1 View Size Estimation and Cost Model

While some techniques for relational cost-based query optimization may at times

target filters and aggregates, most efforts in this area have primarily focused on join

cardinality estimation [28]. This is in part because joins tend to dominate query costs,

but also because estimating join cardinalities is a harder problem than, e.g., estimating

the cardinality of filters. Furthermore, Kaskade can leverage existing techniques for

cardinality estimation of filters and aggregates in relational query optimization for

summarizers.

Therefore, here we detail our cost model contribution as it relates to connector

views, which can be seen as the graph counterpart of relational joins. We first describe

how we estimate the size of connector views, which we then use to define our cost

model.

Graph data properties During initial data loading and subsequent data updates,

Kaskade maintains the following graph properties: (i) vertex cardinality for each

vertex type of the raw graph; and (ii) coarse-grained out-degree distribution summary

statistics, i.e., the 50th, 90th, and 95th out-degree for each vertex type of the raw

graph. Kaskade uses these properties to estimate the size of a view.

View size estimation. Estimating the size of a view is essential for the Kaskade’s

view operations. First, it allows us to determine if a view will fit in a space budget

during view selection. Moreover, our cost components (see below) use view size

estimates to assess the benefit of a view both in view selection and view-based query

rewriting.

We estimate the size of a view as the number of edges that it has when materialized

since the number of edges usually dominates the number of vertices in real-world

graphs. Next, we observe that the number of edges in a 𝑘-hop connector over a graph

𝐺 equals the number of 𝑘-length simple paths in 𝐺. Therefore, for a directed graph

𝐺 that is homogeneous (i.e., has only one type of vertex, and one type of edge), we

define the following estimator for its number of 𝑘-length paths:

�̂�(𝐺, 𝑘, 𝛼) = 𝑛 · 𝑑𝑒𝑔𝑘𝛼 (4.1)
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where 𝑛 = |𝑉 | is the number of vertices in 𝐺, and 𝑑𝑒𝑔𝛼 is the 𝛼-th percentile out-degree

of vertices in 𝐺 (0 < 𝛼 ≤ 100). For a directed graph 𝐺 that is heterogeneous (i.e., has

more than one type of vertex and/or more than one type of edge), an estimator for its

number of 𝑘-length paths is as follows:

�̂�(𝐺, 𝑘, 𝛼) =
∑︁
𝑡∈𝑇𝐺

𝑛𝑡 · (𝑑𝑒𝑔𝛼(𝑛𝑖))
𝑘 (4.2)

where 𝑇𝐺 is the set of types of vertices in 𝐺 that are edge sources (i.e., are the domain

of at least one type of edge), 𝑛𝑡 is the number of vertices of type 𝑡 ∈ 𝑇𝐺, and 𝑑𝑒𝑔𝛼(𝑛𝑡)

is the maximum out-degree of vertices of type 𝑡 ∈ 𝑇𝐺.

Observe that if 𝛼 = 100, then 𝑑𝑒𝑔𝛼 is the maximum out-degree and the estimators

above are upper bounds on the number of 𝑘-length paths in the graph. This is because

there are 𝑛 possible starting vertices, each vertex in the path has at most 𝑑𝑒𝑔100 (or

𝑑𝑒𝑔100(𝑛𝑖)) neighbors to choose from for its successor vertex in the path, and such a

choice has to be made 𝑘 times in a 𝑘-length path. In practice, we found that 𝛼 = 100

gives a very loose upper bound, whereas 50 ≤ 𝛼 ≤ 95 gives a much more accurate

estimate depending on the degree distribution of the graph. We present experiments

on the accuracy of our estimator in §5.6.

View creation cost. The creation cost of a graph view refers to any computational

and I/O costs incurred when computing and materializing the views’ results. Since

the primitives required for computing and materializing the results of the graph views

that we are interested in are relatively simple, the I/O cost dominates computational

costs, and thus the latter is omitted from our cost model. Hence, the view creation

cost is directly proportional to �̂�(𝐺, 𝑘, 𝛼).

Query evaluation cost. The cost of evaluating a query 𝑞, denoted 𝐸𝑣𝑎𝑙𝐶𝑜𝑠𝑡(𝑞),

is required both in the view selection and the query rewriting process. Kaskade

relies on an existing cost model for graph database queries as a proxy for the cost to

compute a given query using the raw graph. In particular, it leverages Neo4j’s [6]

cost-based optimizer, which establishes a reasonable ordering between all vertex scans

without indexes, scans from indexes, and range scans. For future work, we plan to
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incorporate our findings from graph view size estimation to further improve the query

evaluation cost model.

4.7.2 View Selection

Given a query workload, Kaskade’s view selection process determines the most

effective views to materialize for answering the workload under the space budget

that Kaskade allocates for materializing views. This operation is performed by the

workload analyzer component, in conjunction with the view enumerator (see §4.6).

The goal of Kaskade’s view selection algorithm is to select the views that lead to the

most significant performance gains relative to their cost, while respecting the space

budget.

To this end, we formulate the view selection algorithm as a 0-1 knapsack problem,

where the size of the knapsack is the space budget dedicated to view materialization.5

The items that we want to fit in the knapsack are the candidate views generated by

the view enumerator (§4.6). The weight of each item is the view’s estimated size (see

§4.7.1), while the value of each item is the performance improvement achieved by using

that view divided by the view’s creation cost (to penalize views that are expensive

to materialize). We define the performance improvement of a view 𝑣 for a query 𝑞

in the query workload 𝑄 as 𝑞’s evaluation cost divided by the cost of evaluating the

rewritten version of 𝑞 that uses 𝑣. The performance improvement of 𝑣 for 𝑄 is the

sum of 𝑣’s improvement for each query in 𝑄 (which is zero for the queries for which 𝑣

is not applicable). Note that we can extend the above formulation by adding weights

to the value of each query to reflect its relative importance (e.g., based on the query’s

frequency to prioritize frequent queries, or on the query’s estimated execution time to

prioritize expensive queries).

The views that the above process selects for materialization are instantiations

of Prolog view templates output by the view enumeration (see §4.6). Kaskade’s

5The space budget is typically a percentage of the machine’s main memory size, given that we are
using a main memory execution engine. Our formulation can be easily extended to support multiple
levels of memory hierarchy.
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workload analyzer translates those views to Cypher and executes them against the

graph to perform the actual materialization. As a byproduct of this process, each

combination of query 𝑞 and materialized view 𝑣 is accompanied by a rewriting of 𝑞

using 𝑣. In other words, a pair of candidate view and query rewriting are both inferred

and costed together during inference-based view enumeration. This does not imply,

however, that all possible candidate views and rewriting pairs are enumerated; rather,

only the rewritings that are feasible given the explicit and implicit mined constraints.

Further, we also note that iteratively rewriting the query as part of view enumeration

is a commonly accepted approach, with significant advantages over query rewriting

done only after enumeration [40, 87]. This is crucial in the view-based query rewriting,

described next. The rewriter component converts the rewriting in Prolog to Cypher,

so that Kaskade can run it on its graph execution engine.

4.7.3 View-Based Query Rewriting

Given a query and a set of materialized views, view-based rewriting is the process of

finding the rewriting of the query that leads to the highest reduction of its evaluation

cost by using (a subset of) the views. In Kaskade, the query rewriter module (see

Figure 4-2) performs this operation.

When a query 𝑞 arrives in the system, the query rewriter invokes the view enumer-

ator, which generates the possible view candidates for 𝑞, pruning those that it has not

materialized. Among the views that are output by the enumerator, the query rewriter

selects the one that, when used to rewrite 𝑞, leads to the smallest evaluation cost

for 𝑞. As discussed in §4.6, the view enumerator outputs the rewriting of each query

based on the candidate views for that query. If this information is saved from the

view selection step (which is true in our implementation), we can leverage it to choose

the most efficient view-based rewriting of the query without having to invoke the

view enumeration again for that query. As we mentioned in §4.6, Kaskade currently

supports rewritings that rely on a single view. Combining multiple views in a single

rewriting is left as future work.

Listing 5 shows the rewritten version of our example query of Listing 1 that uses a
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2-hop connector (“job-to-job”) graph view.

SELECT A.pipelineName, AVG(T_CPU) FROM (
SELECT A, SUM(B.CPU) AS T_CPU FROM (

MATCH (q_j1:Job)-[:2_HOP-JOB_TO_JOB*1..4]->(q_j2:Job)
RETURN q_j1 as A, q_j2 as B

) GROUP BY A, B
) GROUP BY A.pipelineName

Listing 5: Job blast radius query rewritten over a 2-hop connector (job-to-job) graph
view.

4.8 Experimental Evaluation

In this section, we experimentally confirm that by leveraging graph views (e.g.,

summarizers and connectors) we can: (i) accurately estimate graph view sizes—§4.8.4;

(ii) effectively reduce the graph size our queries operate on—§4.8.5; and (iii) improve

query performance—§4.8.6. We start by providing details on Kaskade’s current

implementation, and follow by introducing our datasets and query workload.

4.8.1 Implementation

We have implemented Kaskade’s components (see Figure 4-2) as follows. The

view enumerator component (§4.6) uses SWI-Prolog [11] as its inference engine. We

wrote all constraint mining rules, query constraint mining rules, and view templates

using SWI-Prolog syntax [12]. We wrote the knapsack problem formulation (§4.7.2)

in Python 2.7, using the branch-and-bound knapsack solver from Google OR tools

combinatory optimization library [3]. As shown in Figure 4-2, Kaskade uses Neo4J

(version 3.2.2) for storage of raw graphs, materialized graph views, and query execution

of graph pattern matching queries. All other components were written in Java.

For the experimental results below, Kaskade extracted schema constraints only

once for each workload, as these do not change throughout the workload. Furthermore,

Kaskade extracted query constraints as part of view inference only the first time we
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Table 4.2: Networks used for evaluation: prov and dblp are heterogeneous, while
roadnet-usa and soc-livejournal are homogeneous and have one edge type.

Short Name Type |𝑉 | |𝐸|
prov (raw) Data lineage 3.2B 16.4B
prov (summarized) Data lineage 7M 34M
dblp-net Publications [5] 5.1M 24.7M
soc-livejournal Social network [9] 4.8M 68.9M
roadnet-usa Road network [7] 23.9M 28.8M

entered the query into the system. This process introduces a few milliseconds to the

total query runtime and is amortized for multiple runs of the same query.

4.8.2 Datasets

In our evaluation of different aspects of Kaskade, we use a combination of publicly-

available heterogeneous and homogeneous networks and a large provenance graph

from Microsoft (heterogeneous network). Table 4.2 lists the datasets and their raw

sizes.

For our size reduction evaluation in Section 4.8.5, we focus on gains provided by

different graph views over the two heterogeneous networks: dblp-net and a data

lineage graph from Microsoft. The dblp-net graph, which is publicly available at [5],

contains 5.1M vertices (authors, articles, and venues) with 24.7M with 2.2G on-disk

footprint. For the second heterogeneous network, we captured a provenance graph

modeling one of Microsoft’s large production clusters for a week. This raw graph

contains 3.2B vertices modeling jobs, files, machines, and tasks, and 16.4B edges

representing relationships among these entities, such as job-read-file, or task-to-task

data transfers. The on-disk footprint of this data is in the order of 10+ TBs.

After showing size reduction achieved by summarizers and connectors in Sec-

tion 4.8.5, for our query runtime experiments (§4.8.6), we consider already summarized

versions of our heterogeneous networks, i.e., of dblp-net and provenance graph. The

summarized graph over dblp-net contains only authors and publications (“article”,

“publication”, and “in-proc” vertex types), totaling 3.2M vertices and 19.3M edges,
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which requires 1.3G on disk. The summarized graph over the raw provenance graph

contains only jobs and files and their relationships, which make up its 7M vertices and

34M edges. The on-disk footprint of this data is 4.8 GBs. This allows us to compare

runtimes of our queries on the Neo4j 3.2.2 graph engine, running on a 128 GB of

RAM and 28 Intel Xeon 2.40GHz cores, 4 x 1TB SSD Ubuntu box. We chose to use

Neo4j for storage of materialized views and query execution because it is the most

widely used graph database engine as of writing, but our techniques are graph query

engine-agnostic.

4.8.3 Queries

We use the following 8 queries in our evaluation of query runtimes. Queries Q1

through Q3 are motivated by telemetry use cases at cloud computing infrastructure,

and are defined as follows. The first query retrieves the job blast radius, up to 8 hops

away, of all job vertices in the graph, together with their average CPU consumption

property. Query Q2 retrieves the ancestors of a job (i.e., all vertices in its backward

data lineage) up to 4 hops away, for all job vertices in the graph. Conversely, Q3 does

the equivalent operation for forward data lineage for all vertices in the graph, also

capped at 4 hops from the source vertex. Both Q2 and Q3 are also adapted for the

other 3 graph datasets: on dblp, the source vertex type is “author” instead of “job”,

and on homogeneous networks roadnet-usa and soc-livejournal all vertices are

included.

Next, queries Q4 through Q7 capture graph operation primitives which are com-

monly required for tasks in dependency driven analytics [66]. The first, query Q4

(“path lengths”), computes a weighted distance from a source vertex to all other vertices

in its forward 𝑘-hop neighborhood, limited to 4 hops. For each vertex in the 4-hop

neighborhood, it performs an aggregation operation (max) over a data property (edge

timestamp) of all edges in the 4-hop path. Queries Q5 and Q6 both measure the

overall size of the graph (edge count and vertex count, respectively).

Finally, Q7 (“community detection”) and Q8 (“largest community”) are representa-

tive of common graph analytics tasks. The former runs a 25 passes iterative version
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Figure 4-5: Estimated, actual, and original graph sizes for 2-hop connector views over
different datasets. Here we show estimates for two upper bound variations derived
from summary statistics over the graph’s degree distribution detailed in §4.7.1. We
also plot the original graph size (𝑥-axis, and dashed |𝐸| series). Plots are in log-log
scale.

of community detection algorithm via label-propagation, updating a “community”

property on all vertices and edges in the graph, while Q8 uses the community label

produced by Q7 to retrieve the largest community in terms of graph size as measured

by number of “job” vertices in each community. The label propagation algorithm used

by Q7 is part of the APOC collection of graph algorithm UDFs for Neo4j [2].

For query runtimes experiments in §4.8.6, we use the equivalent rewriting of each

of these queries over a 2-hop connector. Specifically, queries Q1 through Q4 go over

half of the original number of hops, and queries Q7 and Q8 run around half as many

iterations of label propagation. These rewritings are equivalent and produce the same

results as queries Q1 through Q4 over the original graph, and similar groupings of “job”

nodes in the resulting communities. Queries Q5 and Q6 need not be modified, as they

only count the number of elements in the dataset (edges and vertices, respectively).

4.8.4 View Size Estimation

In this section, we evaluate the accuracy of Kaskade’s view size estimators (§4.7.1).

Figure 4-5 shows our results for different heuristics estimators on the size of a 2-hop

connector view materialized over the first 𝑛 edges of each public graph dataset. We

focus on size estimates for 2-hop connectors since, similar to cardinality estimation for

joins, the larger the 𝑘, the less accurate our estimator. We do not report results for

view size estimates for summarizers, as for these Kaskade can leverage traditional

cardinality estimation based on predicate selectivity for filters, as well as multi-
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dimensional histograms for predicate selectivity of group-by operators [28].

We found that 𝑘-hop connectors in homogeneous networks are usually larger than

the original graph in real-world networks. Further, we find that there is no direct

relationship between the size of a graph schema, and the expected size of a 𝑘-hop view.

This is because 𝑘-length paths can exist between any two vertices in a homogeneous

graph (smaller schema), as opposed to only between specific types of vertices in

heterogeneous networks (larger schema), such as Microsoft’s data lineage graph. Note

that the 𝛼 = 50 line does a good job of approximating the size of the graph as the

number of edges grows. Also, for networks with a degree distribution close to a

power-law, such as soc-livejournal, the estimator that relies on 95th percentile

out-degree (𝛼 = 95) provides an upper bound, while the one that uses the median

out-degree (𝛼 = 50) of the network provides a lower bound. On other networks that

lack a power-law degree distribution, such as road-net-usa, the median out-degree

estimator better approximates an upper bound on the size of the 𝑘-hop connector.

In practice, Kaskade relies on the estimator with 𝛼 = 95 as it provides an upper

bound for most real-world graphs that we have observed. Note that the estimator

with 𝛼 = 95 for prov decreases when the original graph increases in size from 100𝐾 to

1𝑀 edges, increasing again at 10𝑀 edges. This is due to a decrease in the percentage

of “job” vertices with a large out-degree, shifting the 95th percentile to a lower value.

This percentile remains the same at 10𝑀 edges, while the 95th out-degree for “file”

vertices increases at both 1𝑀 and 10𝑀 edges.

4.8.5 Size Reduction

This experiment shows how by applying summarizers and connectors over heteroge-

neous graphs we can reduce the effective graph size for one or more queries. Figure 4-6

shows that for co-authorship queries over the dblp, and query Q1 over the provenance

graph, the schema-level summarizer yields up to three orders of magnitude reduction.

The connector yields another two orders of magnitude data reduction by summariz-

ing the job-file-job paths in the provenance graph, and one order of magnitude by

summarizing the author-publication-author paths in the dblp graph.
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Besides the expected performance advantage since queries operate on less data,

such a drastic data reduction allows us to benefit from single-machine in-memory

technologies (such as Neo4j) instead of slower distributed on-disk alternatives for

query evaluation, in the case of the provenance graph. While this is practically

very important, we do not claim this as part of our performance advantage, and

all experiments are shown as relative speed-ups against a baseline on this reduced

provenance graph on the same underlying graph engine.
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Figure 4-6: Effective graph size reduction when using summarizer and 2-hop connector
views over prov and dblp heterogeneous networks (𝑦-axis is in log scale).

4.8.6 Query Runtimes

This experiment measures the difference in total query runtime for queries when

executed from scratch over the filtered graph versus over an equivalent connector view

on the filtered graph. Figure 4-7 shows our results, with runtimes averaged over 10

runs, plotted in log scale on the 𝑦-axis. Because the amount of data required to answer

the rewritten query is up to orders of magnitude smaller (§4.8.5) in the heterogeneous

networks, virtually every query over the prov and dblp graphs benefit from executing

over the connector view. Specifically, Q2 and Q3 have the least performance gains

(less than 2 times faster), while Q4 and Q8 obtain the largest runtime speedups

(13 and 50 times faster, respectively). This is expected: Q2 (“ancestors”) and Q3

(“descendants”) explore a 𝑘-hop ego-centric neighborhood in both the filtered graph

and in the connector view that is of the same order of magnitude. Q4 (“path lengths”)
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Figure 4-7: Total query execution runtimes over the graph after applying a summarizer
view (“filter”), and rewritten over a 2-hop connector view. Connectors are job-to-
job (prov), author-to-author (dblp), and vertex-to-vertex for homogeneous networks
roadnet-usa and soc-livejournal (𝑦-axis is in log scale).

and Q8 (“community detection”), on the other hand, are queries that directly benefit

from the significant size reduction of the input graph. In particular, the maximum

number of paths in a graph can be exponential on the number of vertices and edges,

which affects both the count of path lengths that Q4 performs, as well as the label-

propagation updates that Q8 requires. Lastly, Kaskade creates views through graph

transformations that are engine-agnostic, hence these gains should be available in

other systems as well.

For the homogeneous networks, we look at the total query runtimes over the raw

graph and over a vertex-to-vertex materialized 2-hop connector, which may be up to

orders of magnitude larger than the raw graph (§4.8.4), as these networks have only

one type of edge. Despite these differences in total sizes, a non-intuitive result is that

the total query runtime is still linearly correlated with the order of magnitude increase

in size for the network with a power-law degree distribution (soc-livejournal), while

it decreases for path-related queries in the case of roadnet-usa. This is due to a

combination of factors, including the larger fraction of long paths in roadnet-usa.

Lastly, while the decision on which views to materialize heavily depends on the

estimated view size (e.g., size budget constraints, and proxy for view creation cost),

these 2-hop connector views are unlikely to be materialized for the two homogeneous

networks, due to the large view sizes predicted by our cost model (Figure 4-5).
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Figure 4-8: View selection runtime vs. number of views (𝑥-axis). Here we show
runtimes for eight different space budgets using the knapsack formulation detailed
in 4.7.2. Plots are in log-log scale.

4.8.7 View Selection Runtimes

This experiment measures the runtime of our view selection algorithm, which identifies

the most useful views to materialize subject to a space budget. As described in 4.7.2,

our algorithm is formulated as a 0− 1 knapsack problem. Figure 4-8 shows our results

for different sets of uniformly distributed view weights and values, with runtimes

averaged over 10 runs, plotted in log-log scale. Aside from the 1 GB budget case

(where the solver finishes more quickly due to more views having weight larger than the

budget) all runtimes scale superlinearly on number of views. We believe this is largely

due to a core component in our selection algorithm being currently single-threaded [3].

Nonetheless, our results with the single-threaded implementation show that even for a

large set of candidate views (e.g., 105), Kaskade can select the most useful views for

materialization in less than a few seconds. It is possible to further reduce the runtime

by splitting the knapsack problem into multiple parallel subproblems, or to parallelize

the solver implementation, which we leave as future work.
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Chapter 5

Kairos

5.1 Introduction

The growing demand for temporal graph applications has given rise to new challenges

in temporal graph analytics. As an increasing number of real-world systems and

processes can be modeled as temporal graphs, the need for effective analysis tools and

techniques has become more pressing. These applications range from social networks

and communication systems to transportation networks and biological systems, where

understanding the temporal dynamics is crucial for uncovering meaningful insights

and patterns [45, 96, 53, 47].

Temporal graphs offer a unique perspective as they can capture the dynamics

of interactions and relationships over time, which non-temporal graphs are unable

to provide. Furthermore, temporal graphs lend themselves to the exploration of

time-ordered events and the impact of such sequences in the network, creating an

opportunity for more nuanced insights. For instance, being able to track the chronology

of friendship formations on a social network or communication events can enhance our

understanding of behavioral patterns. Similarly, the ability to observe the evolution of

transportation routes or the progression of a biological system over time can provide

critical data for predictive modeling and decision-making.

However, the temporal dynamics inherent in these graphs also brings about new

challenges. Existing graph frameworks and query systems frequently encounter diffi-
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Figure 5-1: An example temporal graph representing vertices {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔}. Each
edge is associated with a time interval (start, end) denoting its validity.

culties when handling graph processing tasks required in temporal graph analytics

applications. The underlying reasons for these challenges are twofold. First, many of

these systems were primarily designed for traditional graph processing, and as a result,

they are not well-equipped to handle the unique characteristics and requirements of

temporal graphs. This shortcoming leads to suboptimal performance and a limited

ability to fully leverage the available temporal information in the data. Second, some

systems [80, 59, 77] that specifically target temporal graph processing rely on Pregel-

like distributed computation models. These models can be highly inefficient due to

the message passing overhead across servers in a cluster, especially when the input

graph fits comfortably within the memory resources of a single commodity machine.

This limitation leads to suboptimal performance and an inability to fully exploit the

temporal information available in the data. Finally, existing shared-memory temporal

graph processing systems [46] do not have these limitations, but still rely on expensive

pre-processing of the graph that increases the original size of the dataset – a step

which is not necessary for correctness of the target algorithms.

Temporal graph applications typically require querying small time slices of data.

While existing systems can represent time as an attribute of nodes and edges, filtering

by time necessitates either an expensive scan or the use of a range index, resulting

in poor performance. Furthermore, traditional graph processing frameworks lack

support for temporal algorithms, leading to complex and costly implementations as

they require additional programming effort.

Temporal graphs also exhibit unique properties that are not necessarily considered

in existing systems. For example, they tend to be large due to the increased number of

attributes and edges, resulting from the preservation of interactions between vertices
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over time. Additionally, temporal graphs exhibit skewed data distributions, both in

terms of degree distributions and their evolution over time [56, 45]. To address these

challenges, temporal graph analytics systems must provide interactive response times

for various use cases, such as operational decisions, contact tracing, and routing.

Our Approach and Contributions. In response to the challenges described above,

we have developed Kairos, an in-memory temporal graph analytics system that

leverages a highly-optimized parallel data structure for to efficiently execute temporal

algorithms over temporal graphs on multi-core machines. Kairos is designed to

address the unique properties and requirements of temporal graphs, providing an

efficient solution for processing large-scale temporal graphs. Specifically, it introduces

programming primitives and APIs that organize temporal graphs by time, as well as a

novel Temporal Graph Index designed for efficiently looking up data in specific time

ranges. This approach enables efficient temporal graph algorithm implementations,

treating temporal edge information as first-class citizens in the model. The system

also incorporates selective indexing, a query optimization technique that relies on a

novel cost model to speed up query execution by choosing the best access method for

neighbors of a given vertex at runtime.

We have implemented a number of parallel temporal graph algorithms for vari-

ous application classes, including single-source shortest paths (earliest arrival, latest

departure, fastest, and shortest duration), connectivity (temporal connected com-

ponents), and centrality (temporal betweenness centrality). Our system provides

significant performance improvements compared to existing state-of-the-art temporal

graph processing systems. We make the following contributions:

I. We present TGER, a novel “time-first” data structure that acts as an index to

enable efficient processing of temporal graph queries and algorithms.

II. We introduce selective indexing, a technique that speeds up query execution by

choosing the best access method for retrieving neighbors of a given vertex at

runtime.

III. We present efficient shared-memory parallel algorithm implementations for
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various temporal graph application classes, offering significant performance

improvements compared to existing state-of-the-art temporal graph processing

systems.

IV. Our results show substantial speedup compared to existing systems and provide

insights into the performance characteristics and guarantees of our system.

5.2 Problem Formulation

The primary challenge in designing a temporal graph analytics system is to efficiently

process and analyze temporal graphs while taking into account the unique character-

istics of such graphs, such as time-varying edges and vertices. The problem can be

stated as follows: given a temporal graph 𝐺 = (𝑉,𝐸, 𝑇, 𝜏), our goal is to efficiently

support the execution of temporal graph analytics tasks, including temporal paths,

temporal connectivity, and temporal centrality.

The example queries and algorithms discussed above require different strategies for

selecting, at runtime, the appropriate set of vertices and temporal edges to be explored

in the frontier being traversed by the graph processing engine. The efficiency of these

strategies is crucial for the performance of temporal graph analytics algorithms. In

this paper, we aim to address this challenge by introducing selective indexing and

other design decisions that help significantly improve the performance of executing

different tasks over an input temporal graph. To address this problem, we must fulfill

the following desiderata:

1. Efficient storage and indexing of temporal graph data, especially as it pertains to

temporal edges.

2. Design and implementation of efficient parallel algorithms for temporal graph

analytics tasks, such as temporal paths, temporal connectivity, and temporal

centrality.

3. Effective runtime selection of the edges to be explored in the frontier to minimize

the time and space complexity of the operations involved in the analytics tasks.
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4. Provide a flexible and easy-to-use programming model to support the implementa-

tion of various temporal graph analytics tasks and queries.

By addressing these aspects, our goal with Kairos is to provide an efficient

temporal graph analytics system that can handle large-scale temporal graphs and

deliver appropriate programming primitives for writing temporal graph applications.

5.3 Architectural Overview and Key Ideas

Kairos provides an API that is compatible with that of a state-of-the-art high-

performance graph processing system ([84]), and extends it to the temporal setting.

The API provides methods to load graphs, perform operations such as traversal,

filtering, and allows computations to be expressed in terms of an input temporal query.

In the subsequent sections, we will delve deeper into the key ideas behind our

approach, as outlined in Kairos’s architecture diagram (Figure 5-2). We introduce

Kairos’s core data structures, the need to choose between different access methods,

as well as the types of information needed to make this decision. First, we describe a

high-specialized parallel data structure for indexing temporal edges (§5.3.1). Second,

we introduce novel approach to selectively decide which subset of vertices are benefitial

to index, as well as how to access each vertex at runtime (§5.3.2) and associated cost

model.

5.3.1 Temporal Graph Edge Registry (Key Idea A)

Temporal graphs introduce an additional layer of complexity in graph computation due

to the addition of time as a variable. To process queries and algorithms over temporal

graphs, one could consider a naive approach based on CSR (§2.6). With this approach,

the entire list of edges associated to a given vertex is stored in the corresponding offset

of the CSR, and then a parallel filter is applied to retrieve neighbors satisfying an

input temporal predicate. This can become expensive, however, particularly in graphs

with high-degree vertices, or when the output of this filtering is much smaller than the
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Figure 5-2: Architectural overview and key ideas.
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Figure 5-3: Data layout for example temporal graph in Figure 5-1. Temporal CSR
is available for all vertices in the graph (incoming edges omitted for sake of clarity).
In this example, TGER is used to index only the vertices with out or in-degree of at
least two edges. In practice, Kairos only indexes vertices with much larger degrees.

degree of the vertex. This can decrease performance, as a large number of edges that

are not relevant to the specific input temporal predicate might need to be processed.

Therefore, the efficient processing of queries and temporal algorithms over temporal

graphs demands specialized data structures for storing and retrieving vertex neighbors.

To this end, we have designed and implemented TGER (Temporal Graph Edges
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Registry), a parallel data structure based on priority search trees [16] for effectively

processing queries and temporal algorithms over temporal graphs. TGER lets Kairos

treat temporal edge information as first-class citizens in the data model, enabling

efficient temporal graph algorithm implementations. Moreover, TGER is storage-

efficient (i.e., 𝑂(𝑚) space, where 𝑚 is the number of temporal edges stored in it)

and can answer interval containment queries efficiently (𝑂(log𝑚+ 𝑘) work, where 𝑘

is the number of results [16]). Finally, TGER makes efficient use of computational

resources, employing fork-join parallelism in its implementation of both construction

and query operations. As we show in our experiments, TGER can provide a substantial

advantage over the naive CSR-based approach.

5.3.2 Selective Indexing (Key Ideas B and C)

The efficient retrieval of vertices and edges of interest is crucial for the performance

of algorithms and queries in large graphs. This is particularly true for large-scale

real-world graphs, where data is often skewed, and a small number of vertices can

account for most edges. The skewness is intensified in real-world temporal graphs,

where data can also be unevenly distributed over time (e.g., seasonal data patterns, or

growth in popularity in the case of social networks). Furthermore, the skew present in

real-world temporal graphs is a well studied phenomena, and which can be attributed

to inter-contact time distributions, burstiness, and even circadian or otherwise weekly

rhythms that are inherent in human activity [45]. For this reason, different approaches

have been proposed to generate temporal graphs that are closer to real-world skewed

distributions [35, 92], and more recently data imputation [43] that can handle skew.

To address this challenge, we introduce a new class of problems in query optimiza-

tion for graph queries, as well as a unique technique for selectively indexing different

parts of a graph relevant to query answering. As part of our approach, we present

a novel cost model and related algorithms for determining the most suitable access

method (e.g., index-based vs. scan-based) for graph traversal. Our algorithms take

into account the characteristics of the underlying data (e.g., data skew) and workload

(e.g., selectivity of temporal predicates present in the queries) to choose the most
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efficient access method (index vs. scan) for each vertex at runtime. §5.5 (Selective

Indexing) provides a description of our technique.

Vertex Indexer. This component is responsible for deciding which vertices warrant a

TGER index. First, a vertex size is defined in terms of the size of their out-degree or

in-degree neighborhood (i.e., how many outgoing or incoming edges it has). Based on

a predefined vertex size threshold (heuristically obtained via experimental analysis),

the indexer builds a TGER only for those vertices whose size exceeds this threshold.

To quickly identify which vertices have a TGER, the Vertex Indexer maintains an

in-memory sparse associative array where each entry maps a vertex id to the in-memory

location of its corresponding TGER. At runtime, Kairos employs a cost model ( §5.5)

to evaluate whether it should access the corresponding TGER for that vertex, or opt

for a linear scan using Temporal CSR (T-CSR, §5.4.2).

Cardinality Estimator. We introduce a cost model for deciding at runtime which

access method to use for retrieving a vertex’s neighborhood. As part of this cost model,

a cardinality estimator plays a key role in determining whether a query is selective

enough to warrant index-based retrieval of outgoing/incoming edges via TGER. We

further describe it and its associated algorithms in §5.5.1 and §5.5.2.

5.4 Kairos Framework

This section describes the interface and implementation of Kairos framework, with

focus on how it extends Ligra [84] to the temporal setting. Table 5.1 summarizes its

interface.

5.4.1 Interface

Kairos contains two key data structures: VertexSet and TemporalEdgeSet, which

are used respectively to represent subset of vertices and subset of temporal edges. Or-

deringPredicate takes as input a pair of temporal edges, an OrderingPredicateType,

and evaluates whether the given temporal edges conform to that predicate (§5.4.3).

Using these as input, TemporalGraph constructs the temporal graph. VertexMap
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Interface Description

VertexSet Represents a subset of vertices 𝑉 ′ ⊆ 𝑉 .
TemporalEdgeSet Represents a subset of temporaledges 𝐸 ′ ⊆ 𝐸.

OrderingPredicate(𝐴: temporaledge, 𝐵: temporaledge, 𝑇 :
OrderingPredicateType): bool

Evaluates the order between two temporal edges based on one of
the three ordering predicate types: Suceeds, StrictlySucceeds, or
Overlaps (§5.4.1).

TemporalGraph(𝑉 : VertexSet, 𝐸: TemporalEdgeSet, 𝑃 :
OrderingPredicate)

Constructs a temporal graph using given input vertices, tempo-
raledges, and ordering predicate.

VertexMap(𝑈 : VertexSet, 𝐺: TemporalGraph, 𝐹 : vertex
→ bool): VertexSet

Applies 𝐹 (𝑢) for each 𝑢 ∈ 𝑈 ; returns a VertexSet {𝑢 ∈ 𝑈 | 𝐹 (𝑢) =
true}.

TemporalEdgeMap(𝑈 : TemporalEdgeSet, 𝐺: Temporal-
Graph, 𝐹 : temporaledge → bool): TemporalEdgeSet

Applies 𝐹 (𝑢) for each 𝑢 ∈ 𝑈 ; returns a TemporalEdgeSet {𝑢 ∈ 𝑈 |
𝐹 (𝑢) = true}.

Table 5.1: Core primitives from Kairos framework programming model interface.

is equivalent to Ligra’s (§2.7), with the only difference that it takes a TemporalGraph

as input. Conversely, TemporalEdgeMap extends Ligra’s EdgeMap to the temporal

setting, and is described in more details in §5.4.4).
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strictly succeeds
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invalid

Figure 5-4: Ordering predicates for each of the four possible two-hop directed paths
on an example graph.

5.4.2 T-CSR: Temporal CSR

The Temporal CSR (T-CSR) data structure is an extension of the traditional CSR

representation (§2.6) designed to accommodate temporal graph data. It retains the

core concepts of CSR, while incorporating additional arrays to store the start and

end times associated with each temporal edge, as shown in Figure 5-3. Specifically, it

extends the standard CSR representation by adding two more arrays, the start time

array, and the end time array. As their name suggests, these arrays store the start
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and end times of each temporal edge in the graph, respectively. They are organized

in the same order as the adjacency array, such that the start and end times of the

temporal edge at position 𝑖 in the adjacency array can be found at position 𝑖 in the

start / end time arrays.

With this extended representation, the T-CSR can store temporal graphs and

support various temporal graph processing tasks. The additional start time and

end time arrays enable the system to take into account the temporal information

of the graph when executing queries and algorithms when used in conjunction with

TemporalEdgeMap (§5.4.4). The T-CSR representation retains the advantages

of the traditional CSR, such as cache efficiency and fast access to adjacency lists.

Furthermore, it can be easily incorporated into existing CSR-based graph processing

systems with minimal modifications, such as is the case for our extension of Ligra

to the temporal setting. Overall, the Temporal CSR offers an effective and efficient

solution for storing and processing temporal graph data. Because of that, it is the

default representation used to store the neighbors of most vertices in Kairos. A

similar representation is also used in the Temporal GNN literature [103] for sampling

temporal edges.

5.4.3 TGER: Temporal Graph Edges Registry

While T-CSR offers valuable improvements over traditional CSR for temporal graph

data handling, its design is still geared towards adjacency-oriented queries and op-

erations. For example, T-CSR does an excellent job when dealing with questions of

“who is connected to whom”. However, it is less efficient when it comes to handling

range-based temporal queries such as “who was connected to whom within a specific

time window”. This is because in T-CSR, the temporal information is appended to the

existing structure, which is space-optimized for traditional graphs (i.e., where edges

do not have additional temporal information). As a result, each temporal query needs

to scan over the entire adjacency list of a vertex and filter out the relevant edges based

on their timestamps. While this operation can be performed in parallel, it can still be

inefficient for large graphs, or for queries with small time windows (i.e., queries that
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are highly selective) relative to the total neighbors a vertex has.

To address this challenge, we propose TGER, an index data structure which

accommodates temporal information (in the form of time intervals associated with

edges) as a first-class citizen. TGER is a dual index, meaning it indexes both the

start and end time attributes. Specifically, it combines a priority queue (by defaullt

over the start time attribute) and a Binary Search tree (BST) (by default over the

end time attribute). This allows queries with predicates on either start or end time to

be answered efficiently. It is heavily inspired by Priority Search Trees (PST) [16], a

data structure traditionally used for storing intervals or 2D points in the context of

computational geometry. In TGER, all queries are 3-sided (Figure 5-5), meaning that

only one bound is specified for one of the dimensions. This allows temporal edges to

be queried in 𝑂(log𝑚+ 𝑘), where 𝑚 is the number of temporal edges stored in it and

𝑘 is the number of results from the query. Figure 5-3 shows a visual representation of

TGER’s data layout, contrasting it with T-CSR, and 2 shows the pseudocode for

TGER’s parallel build operation.

Ordering Predicates and 3-sided queries. A key aspect of TGER is that the

application can specify which of the two dimensions of the intervals should be mapped

to the priority queue (or “heap”) axis, and which dimension should be mapped to

the “BST” axis. In addition, TGER can also be configured as either a min-heap,

or a max-heap. Given this flexibility, both Succeeds and StrictlySucceeds ordering

predicates can be translated to an equivalent 3-sided query by flipping the axis and/or

using a max-heap. The Overlaps ordering predicate, however, requires both ends of

the interval of two subsequent edges to be checked against each other, as can be seen

in Figure 5-4. In that case, TemporalEdgeMap (§5.4.4) performs one additional

query to match in-neighbors with corresponding out-neighbors.

5.4.4 Temporal Edge Map

We introduce TemporalEdgeMap, a programming primitive inspired by Ligra’s

EdgeMap (§2.7), and designed to efficiently handle temporal information during

79



Algorithm 2 Pseudocode for TGER index parallel build.
Input: A temporal graph 𝐺 = (𝑉,𝐸).
Output: If applicable, the TGER for each vertex in 𝐺.
1: procedure IndexVertices(𝐺)
2: parallel for each 𝑣 ∈ 𝑉 do
3: 𝑑 = out-degree of 𝑣 // Omitted: in-neighbors processing.
4: if 𝑑 ≥ min cutoff then // (Section 5)
5: out-index[𝑣] = BuildIndex(𝑒 ∈ out-edges of 𝑣)
6: procedure BuildIndex(𝐸)
7: sorted = parallel-sort(E, ByStartTime())
8: return BuildIndexRecurse(sorted, 0, sorted.size())
9: procedure BuildIndexRecurse(sorted, start, end)

10: size = end - start
11: if size == 0 then return nullptr
12: if size == 1 then return new TGERNode(sorted[start])
13: TGERNode* root = new TGERNode(sorted[start])
14: start = start + 1
15: mid-idx = index of point with median "end time" in sorted
16: root->BST-mid = sorted[mid-idx].end-time
17: root->left = spawn BuildIndexRecurse(sorted, start, mid-idx)
18: root->right = BuildIndexRecurse(sorted, mid-idx, end)
19: sync

Q1: start ≤ 6, 6 ≤ end ≤ 9

Q2: start ≤ 5, 5 ≤ end ≤ 8 Q3: start ≤ 9, 10 ≤ end ≤ 13

[2, 4]: v1
mid: 6

[3, 6]: v2
mid: 5

[4, 5]: v3
mid: 5

[5, 7]: v4
mid: 7

[6, 9]: v5
mid: 9

[8, 10]: v6
mid: 10

[9, 13]: v7
mid: 13

Figure 5-5: Queries in TGER are 3-sided. By default, an upper bound (min-heap
mode) is specified for start time, and a lower plus upper bound is specified for end
time.

parallel processing of temporal graphs. The TemporalEdgeMap extends Ligra’s
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Algorithm 3 Pseudocode for TGER index parallel query.
Input: An input 3-sided query with (−∞,max-heap]× [min-BST,max-BST). By default,

TGER’s heap dimension stores start time, and BST dimension stores end time. Alter-
natively representations are also supported, such as min-heap, or mapping end time to
heap dimension and start time to BST dimension.

Output: Matching results from TGER index.
1: procedure Query(max-heap, min-BST, max-BST)
2: n-parts = get_nworkers() // Number of cores available.
3: results = malloc and initialize vector with "n-parts" vectors
4: // Workers in parallel store partial results onto results.
5: QueryRecurse(root, results, max-heap, min-BST, max-BST)
6: offsets = malloc and initialize vector with n-parts integers
7: parallel for each 𝑖 ∈ [0, ..., max-worker-id] do
8: offsets[i] = results[i].size()
9: // Omitted: Cilk-specific grain size and related optimizations for

10: // parallel execution.
11: n-results = parallel plus-reduce(offsets, n-parts)
12: offsets = parallel prefix-sum(offsets, n-parts)
13: merged = merge individual worker results using prefix-sum
14: return merged
15: procedure QueryRecurse(root, results, max-heap, min-BST, max-BST)
16: if root == nullptr then return
17:
18: interval = root->value
19: if heap-dimension(interval) > max-heap then return
20: if BST-dimension(interval) >= min-BST and interval.BST <= max-BST then
21: results[get_worker_number()]->push_back(interval)
22: // Omitted: optimizations for querying multiple leaves per node
23: // and Cilk-specific grain size for parallel execution.
24: if root->BST-mid >= min-BST then
25: spawn QueryRecurse(root->left, results, max-heap, min-BST, max-BST)
26: if root->BST-mid < max-BST then
27: QueryRecurse(root->right, results, max-heap, min-BST, max-BST)
28: sync // Parallel synchronization barrier

EdgeMap to the temporal setting by incorporating selective indexing (see§5.5.1) to

dynamically switch between different scanning strategies (Temporal CSR scan vs.

TGER) depending on the query. Moreover, the primary distinction between Tempo-

ralEdgeMap’s programming interface and that of Ligra’s EdgeMap is that it allows

for mapping over temporal edges while specifying an ordering predicate (§5.4.1)

as input. Combined with TGER, the TemporalEdgeMap acts as a parallel map-

ping function that enables temporal graph algorithms to efficiently retrieve only the
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Algorithm 4 Pseudocode for Earliest Arrival in Kairos.
Input: A temporal graph 𝐺 = (𝑉,𝐸), a target vertex 𝑥 ∈ 𝑉 , and a time interval [𝑡𝑎, 𝑡𝑏].
Output: 𝑡[𝑉 ]: The earliest-arrival time from 𝑥 to every vertex 𝑣 ∈ 𝑉 within query time

interval [𝑡𝑎, 𝑡𝑏].
1: procedure Update(𝑠, 𝑑, [𝑡𝑠, 𝑡𝑒])
2: if 𝑡𝑠 >= 𝑡𝑎 or 𝑡𝑒 > 𝑡𝑏 then return 0
3: if 𝑡𝑠 < 𝑡[𝑠] or 𝑡𝑒 >= 𝑡[𝑑] then return 0
4: return writeMin(𝑡[𝑑], 𝑡𝑒) and CAS(Visited[𝑑], 0, 1)
5: procedure Cond(𝑖)
6: return (Visited[𝑖] == 0)

7: procedure EarliestArrival(𝐺, 𝑥, [𝑡𝑎, 𝑡𝑏])
8: 𝑡[𝑥] = 𝑡𝑏, 𝑡[𝑣] =∞ for all 𝑣 ∈ 𝑉 ∖ {𝑥}
9: Visited[𝑣] = 0 for all 𝑣 ∈ 𝑉

10: Frontier = {𝑥}
11: while Size(Frontier) ̸= 0 do
12: Frontier = TemporalEdgeMap(𝐺, [𝑡𝑎, 𝑡𝑏],Frontier, Update, Cond, Ord-

Pred.StrictlySucceeds)

edges that satisfy temporal predicates of interest, while still respecting user-defined

constraints regarding the validity of temporal paths in their applications. In 4, we

demonstrate the use of TemporalEdgeMap to update vertex frontiers for a parallel

implementation of the earliest-arrival temporal path algorithm [95]. This example illus-

trates how the TemporalEdgeMap can be used to define complex suitable temporal

graph processing logic in the context of parallel graph processing applications.

5.5 Selective Indexing Optimization

In this section, we introduce the concept of selective indexing. As we described

§5.3.2, the Vertex Indexer builds a TGER only for those vertices whose size (as

out/in-degree) meets an experimentally obtained predefined vertex size threshold (as

of writing, currently set to 2k edges). With selective indexing, we propose a novel cost

model and related algorithms to determine the most appropriate access method for each

vertex in a temporal graph during traversal. The unique aspect of the cost estimation

problem we address is that it selectively assigns different access methods (e.g., index

vs full scan) for the same query at runtime. As an example, while a conventional

relational query optimizer may select an in-memory hash index for all primary keys
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Figure 5-6: Selective indexing: decision tree for accessing a vertex’s neighboring edges
given an input query.

satisfying a PrimaryKey-ForeignKey join, our selective indexing approach considers

the estimated selectivity for the query based on the value of each primary key, as well

as the anticipated number of matches it has in the corresponding foreign key table.

Figure 5-6 presents the decision tree used by Kairos’s Vertex Indexer (Figure 5-2)

to determine the optimal candidate data structure for accessing a vertex’s neighboring

edges, given an input temporal query. The following sections provide a description of

our selective indexing approach’s cost model and associated algorithms.

5.5.1 Cost Model

To define a cost model for deciding when it is beneficial to use TGER compared to a

parallel scan over the T-CSR, we need to consider the following factors:

Vertex degree distribution. The distribution of the number of outgoing edges for

each vertex is important because TGER is only built (and potentially accessed) for

vertices with more than a certain number of outgoing (or incoming) edges. If a large

portion of the vertices have a high degree, the custom index will be more frequently

accessed and contribute more to the overall query performance. Furthermore, more

memory will also be used to store index data.
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Temporal edges distribution. This refers to the distribution of start times and

end times present in these edges for a given vertex. These distributions indicate the

expected number of matches for a given temporal predicate query interval. . Even

though TGER is balanced, skew in the distribution of start times can lead to more

levels being traversed to retrieve all edges that satisfy a given input predicate.

Query workload. For a given input temporal predicate, Kairos needs to estimate

the expected number of results for a specific vertex corresponding to that query.

In summary, the distribution of the start and end times of the temporal edges

affects the selectivity of the queries. If the distribution is such that the queries have a

high degree of selectivity (i.e., they filter out a significant portion of the data), using

the TGER will be more efficient. Conversely, if the distribution is such that the

queries have low selectivity (i.e., they return a large portion of the data), TGER’s

performance advantage over the T-CSR access method is reduced.

Taking these factors into account, we define a cost model that estimates the time

required for each method (index-based using TGER and T-CSR-based) to execute

a given query. The model acts as a proxy for the estimated query processing time

given what we know about the graph (e.g., cardinality of a vertex’s neighborhood), the

query workload (e.g., estimated selectivity of input query), and characteristics of the

data structures used for access (e.g., parallelism potential and asymptotic complexity).

For the TGER-based access method, the cost model relies on the time complexity

for PSTs, which is 𝑂(log𝑚 + 𝑘), where 𝑚 is the number of elements stored in the

data structure, and 𝑘 is the number of results matching the input query. A TGER is

created for each vertex (Figure 5-6), so 𝑚 = 𝑑𝑒𝑔(𝑣), where 𝑣 ∈ 𝑉 , which yields

𝑇𝑣 = 𝑐 · [log(𝑑𝑒𝑔(𝑣)) + 𝑘] (5.1)

where 𝑐 acts as a constant factor representing the average cost of performing a single

operation using TGER. The value for 𝑐 captures the parallelism potential when using

TGER, and is derived experimentally.
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For the T-CSR access method, Kairos needs to perform a parallel scan to filter

out edges that satisfy the input temporal predicate. Despite this operation being

highly parallelizable and cache-friendly, the asymptotic time complexity for this scan

is still 𝑑𝑒𝑔(𝑣), as all edges for 𝑣 need to be scanned, with

𝑆𝑣 = 𝑐′ · 𝑑𝑒𝑔(𝑣) (5.2)

where 𝑐′ is a constant factor representing the average cost of performing a single

operation using the T-CSR. It performs a role similar to that of 𝑐 for TGER, and like

𝑐, it too is derived experimentally. To decide which method is more beneficial for a

given query, we compare the estimated time costs for both methods using the cost

model. If the estimated time cost for TGER method (𝑇𝑣) is lower than the estimated

time cost for the T-CSR array method (𝑆𝑣), then it is more beneficial to use TGER.

Our cost model parameterizes the cardinality estimator based on the factors described

above, with

𝐶𝑣 =

⎧⎪⎨⎪⎩𝑇𝑣 if 𝛽 ≤ 𝜃sel

𝑆𝑣 otherwise
(5.3)

𝐶𝑣 = the estimated cost of accessing a vertex’s neighbors

𝑇𝑣 = the cost of querying for vertex 𝑣’s neighbors in TGER

𝑆𝑣 = the cost of scanning vertex 𝑣’s neighbors in T-CSR that satisfy the input

temporal predicate

𝛽 = the selectivity of the input temporal predicate, defined as 𝑘/𝑚

𝜃sel = the selectivity threshold

For example, assuming a selectivity threshold 𝜃sel = 0.3 (i.e., queries retrieving

30% of the neighboring edges of a vertex 𝑣), if the estimated selectivity 𝛽 is less than

0.3 (e.g., 0.2), then Kairos chooses TGER as the access method for vertex 𝑣 given

input query 𝑞.

In theory, the choice of threshold primarily depends on the relationship between 𝑘

and 𝑑𝑒𝑔(𝑣). As 𝑘 approaches 𝑑𝑒𝑣(𝑣), the cost of using TGER converges to 𝑂(𝑑𝑒𝑔(𝑣)),
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rather than 𝑂(log(𝑑𝑒𝑔(𝑣))). In this case, it becomes more beneficial to use T-CSR

due to its higher parallelism potential. Parallelism is higher for queries over T-CSR

because they are implemented as highly parallelizable scans over a parallel array. On

the other hand, TGER queries rely on divide-and-conquer recursive parallel operations

over a data structure that resembles a BST in one dimension and a heap in another,

leading to reduced parallelism behavior as 𝑘 nears 𝑑𝑒𝑔(𝑣). In practice, however, we

determine which threshold to use from experimental results, and find that 2k edges

strikes a good performance vs estimator accuracy balance. By selecting an appropriate

threshold, Kairos can decide at runtime whether to use the TGER index or T-CSR

for accessing a vertex’s neighbors, thereby improving query performance compared to

a baseline that only uses T-CSR.

5.5.2 Cardinality Estimation Algorithm

Our cardinality estimation algorithm aims to help determine the best access method

for each vertex while taking into account the temporal predicates present in the query

workload and the characteristics of the temporal graph being queried.

During the index construction phase (i.e., when building the TGER indices),

Kairos creates a 2D density histogram for each vertex that meets the threshold

for TGER index construction. The dimensions of the histogram are the start time

and duration (end time − start time) of the edges equally divided into 100 buckets

per dimension, for a total of 10000 buckets, capturing the temporal distribution of

a vertex’s edges. At runtime, Kairos uses the histogram to estimate the density of

a vertex’s edges that would satisfy the query’s temporal predicates. Depending on

the estimated density and a selectivity threshold, Kairos selects the most efficient

access method. If the estimated density is above the threshold, the query execution

for that vertex employs the associated TGER index; otherwise, a parallel scan on the

T-CSR is performed. This enables Kairos to adapt the access method according to

the unique features of the temporal graph and the specific temporal predicates in the

query, leading to improved query performance, as demonstrated in §5.6.
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5.6 Experimental Results

In this section, we present the results of an experimental evaluation of Kairos’s query

performance and scalability.

Setup. We use a 2nd Generation Intel Xeon Scalable Processor (Cascade Lake)

system with 24 physical (48 virtual) cores on each of its two NUMA nodes. The socket

has a total of 192GiB of DDR4 2666 MhZ RAM. Our programs use Cilk Plus [55] and

are compiled with OpenCilk’s [82] clang version 14 and -O3 flag. All of the parallel

speedup numbers that we report are based on the running time on 24-cores (single

socket) without hyper-threading compared to the running time on a single thread.

Datasets. Table 5.2 shows the number of vertices (|𝑉 |), number of edges (|𝐸|),
maximum out-degree (max𝑣∈𝑉 deg+(𝑣)), maximum in-degree (max𝑣∈𝑉 deg−(𝑣)), and

average degree (avg𝑣∈𝑉 deg(𝑣)) for each of the datasets under use. The synthetic

data set comprises a temporal graph in which vertices are log-normally distributed, the

inter-arrival times of start times follow a Poisson distribution, and the edge durations

follow an uniform distribution. If the temporal edges in a dataset only have start

times, then end time is sampled from a uniform distribution, similar to what is done

in [95, 94].

Name |𝑉 | |𝐸| max𝑣∈𝑉 deg+(𝑣) max𝑣∈𝑉 deg−(𝑣) avg𝑣∈𝑉 deg(𝑣)

bitcoin [61] 4.80× 107 1.13× 108 2.66× 106 2.53× 106 4
netflow [88] 3.72× 108 1.20× 109 5.78× 105 1.82× 108 12
reddit-reply [61] 1.17× 107 6.46× 108 3.92× 105 9.94× 105 110
stackoverflow [10] 6.02× 106 6.34× 107 1.01× 105 93143 20
transportation [51] 41794 7.93× 107 50881 50625 3798
twitter-cache [99] 94226 8.55× 108 5.21× 106 2.31× 105 36328
synthetic 107 109 5.65× 107 3.08× 107 99

Table 5.2: Temporal graphs used for evaluation

5.6.1 Scalability

Table 5.3 shows the sequential and parallel running times of our algorithms, as well

as their parallel speedup. Runtimes are reported as an average of ten runs. Except
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Figure 5-7: Running time vs number of threads on a smaller synthetic dataset (500M
edges).

for T. BC, T. CC, k-core, and PageRank, all algorithm runtimes use a single source

vertex. For algorithms requiring a single source, we selected the top 100 vertices

based on their out-degree, leading to 100 runs in a single execution. For PageRank,

the reported runtimes cover 100 iterations. T. BC uses the number of temporal S.

Duration paths when calculating centrality for each vertex. The algorithms E. Arrival,

L. Departure, Fastest, and S. Duration inherently expect a start and end time in their

original definitions. For BC, BFS, CC, 𝑘-core, and PageRank, we have adapted the

original algorithms to accept a start and end time as input. For every algorithm, we

set the start time to align with the 95th percentile of the latest start times in the

dataset. The end time is set to the maximum value, representing the 100th percentile.

The algorithms overall get good parallel speedup, with a maximum of 22.6x and

mean speedup 8.7x. The lower speedups are in general observed in the smaller datasets,

as they are too small to benefit from parallel processing. However, the larger speedups

are not necessarily always observed in the largest dataset. Rather, they seem to be

influenced by a number of factors, including how skewed the vertex degree distribution

is, as well as fraction of edges matching the input temporal predicate. In other words,

while we use the same query interval size for all experiments, the edges matching

that input query predicate (i.e., its selectivity) may not be evenly distributed over

all vertices, and thus do not offer the same parallelism potential. Furthermore, some
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co-routines in Kairos are only parallelized if the minimum number of interations

meets an heuristic threshold (e.g., at least 1000 iterations in parallel cilk_for

loops), which again may be influenced by skew in the underlying vertex-degree and

inter-arrival times distribution for a given dataset.

Figure 5-7 shows the running time vs. number of threads for all of the minimal

temporal paths over a smaller synthetically generated dataset (500M edges). We see

good parallel scalability for all of these algorithms, with speedups ranging from 5x to

8x, though see little benefit from 16 to 24 cores.
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Figure 5-8: Runtimes vs. query window size (fraction of most recent edges) for different
TGER sizes.

5.6.2 Impact of Selective Indexing

Figure 5-9 shows a comparison against a Temporal Ligra baseline, i.e., T-CSR is used

for all vertices and no selective indexing is present, as described in §5.4.2. As far as we

know, this is the fastest available shared-memory implementation of graph processing

algorithms (temporal and traditional) over temporal graphs. The algorithms are

configured in the same manner as in §5.6.1, and here we show the running times for

a subset comprised mostly of temporal minimal paths, and over one small (reddit-

reply), and two large datasets (twitter-cache and synthetic). Our results show that

the selective indexing approach does reasonably well, with up to 8x improvement

in some cases. As expected, the highly selective queries are the ones with the most
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Figure 5-9: Normalized average runtime vs input query window size. Boundaries
of the input query are varied so as to match exactly against a fixed percentage of
most recent edges present in the corresponding temporal graph dataset. Runtimes are
normalized against T-CSR as baseline.

improvement. Furthermore, between 10% and 20% selectivity, the T-CSR approach

starts being more advantageous.

5.6.3 Microbenchmark: TGER query runtimes

Figure 5-8 shows the time it takes to run a query over a single TGER of various sizes

(synthetically generated 1M, 10M and 100M edges). We note that each TGER in

Kairos is associated to a single vertex. In other words, the running times reported

in this experiment should be interpreted as the amount it takes to retrieve edges of

interest from a single vertex that has been indexed with TGER. Similar to the results

reported in experiments above, input queries are sized to match a portion of the most

recent edges (by start time) in the input data (in this case, a vertex’s neighboring

edges). Results here show that it takes less than 125 milliseconds to retrieve roughly

10% of a TGER with 100M edges.
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5.6.4 Comparison to Alternatives

Distributed memory. Although a direct comparison with Tink, ICM is challenging

due to their distributed memory design, we offer a comparison based on the runtimes

presented in their papers [59, 80]. Using 8 cores, Tink processes the E. Arrival

algorithm for just one source vertex in 37s on a synthetic graph of 25 million edges.

In contrast, Kairos, with the same number of cores, processes the same algorithm

for the 100 source vertices (equivalent to 100 runs) on a synthetic dataset of 500M

edges, as shown in Figure 5-7 in less than 10s. Put simply, for E. Arrival – the sole

algorithm with reported runtimes by Tink – Kairos handles data that’s 20 times

larger, addresses 100 times more source vertices, and completes the task in a third of

the time. We could not locate total runtimes for ICM in its publication. However,

in its “weak scaling” analysis, it reports nearly 500 seconds to run E. Arrival on a

single source vertex for a graph segment with 100M edges, using 8 cores. Kairos,

in contrast, requires under 10 seconds for 100 vertices on 500 million edge dataset

(Figure 5-7). In essence, when compared with ICM, Kairos operates 50 times faster,

handles 100 times more algorithm executions, processing a dataset that is 50 times

larger.

Shared memory. At the time of writing, the only other temporal graph analytics

system in this category is TeGraph [46]. We have contacted the authors, who shared

an implementation of shortest paths with us, as well Delicious, one of the datasets

they used for evaluation. This dataset has around 300M edges, and 34M vertices.

Unfortunately, we were not able to reproduce the results in [46], which report around

one second as the total runtime for executing shortest path on the aforementioned

dataset using 100 source vertices. Instead, we find that their implementation of

shortest path takes around three seconds to process a single vertex, regardless of which

vertex is provided as input. Extrapolating from this result, we get around 300 seconds

to process 100 source vertices – as opposed to the one second reported in their paper.

Furthermore, the results for their “OnePass” baseline (which is closer to our approach)

are significantly slower than Kairos. Specifically, for the same Delicious dataset,
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bitcoin netflow reddit-reply stackoverflow transportation twitter-cache synthetic

Application 𝑇1 𝑇24 SU 𝑇1 𝑇24 SU 𝑇1 𝑇24 SU 𝑇1 𝑇24 SU 𝑇1 𝑇24 SU 𝑇1 𝑇24 SU 𝑇1 𝑇24 SU

E. Arrival 74.2 7.87 9.4 124.8 21.6 5.8 3.89 .76 5.1 17.1 1.99 8.6 58.8 6.49 9.1 246.9 16.11 15.3 440 31.7 13.9
L. Departure 56.4 6.63 8.5 125.2 22 5.7 5.1 .76 3.9 11.2 1.53 7.3 45.4 5.22 8.7 214.2 15.15 14.1 391 30.6 12.8
Fastest 56.3 7.73 7.3 185.6 31.6 5.9 5.81 1.11 5.2 9.16 1.32 6.9 38.7 4.73 8.2 222.6 12.84 17.4 311 23.1 13.5
S. Duration 56.6 7.76 7.3 187 32.2 5.8 5.84 1.07 5.5 9.22 1.33 6.9 2.7 19.7 7.3 12.84 223.5 17.4 285 21.6 13.2

T. BFS 8.5 1.5 5.7 97.2 16.5 5.9 1.9 .4 4.8 .8 .2 4 .009 .002 4.5 9.8 1.4 7 19.6 3.2 6.2
T. CC 5.65 .59 9.6 24.4 2.2 11.1 3.99 .2 19.9 1.85 .11 16.8 6.83 .49 13.9 10.2 .71 14.4 5.41 4.57 1.2
T. k-core 13.7 1.22 11.4 38.9 3.6 10.8 32.4 4.2 7.7 2.2 .4 5.5 .02 .01 2 2.7 .9 3 2 .5 4

T. BC 10.8 .57 18.95 8.04 1.26 6.38 .032 .168 5.25 .085 .014 6.07 .005 .003 1.67 2.84 .692 4.1 4.57 3.76 1.22
T. PageRank65.3 5.23 12.5 35.8 2.6 13.8 11.3 .50 22.6 8.51 .42 20.3 2.6 .21 12.4 17.22 1.2 14.4 11 4.62 2.4

Table 5.3: Running times (in seconds) of single-threaded (𝑇1), 24-core no hyper-
threading (𝑇24), and parallel speedup as single-thread time divided by 24-core time
(SU).

their “OnePass” baseline takes close to 90 seconds for 100 vertices using 16 threads

on a 8-core machine. Kairos, on the other hand, takes around five seconds using 8

cores, which is a 18x speedup compared to their “OnePass” baseline, and 60x compared

to our local results from their implementation.

5.6.5 Selective Indexing: Estimator Accuracy

In §5.5.1, we proposed a novel approach for selectively indexing a subset of vertices in a

temporal graph, as well as cost model for deciding which access method to use for each

vertex at runtime. In this section, we present an experiment assessing the accuracy

of the cardinality estimator, a key component of our proposed cost model. For this

evaluation, we vary the size of an input temporal predicate, and use a selectivity

threshold of 20% (the “q is selective?” decision in Figure 5-6). As in the experiments

we describe above, here we also vary the size of an input query interval to purposefully

match against a percentage of the most recent edges (by start time) in the dataset. To

measure accuracy, we define true positives as “should use TGER, and did” and true

negatives as “should not use TGER, and did not”. Specifically, “should” here takes

into account the estimated selectivity compared to an oracle with the actual selectivity

of the query. Furthermore, we only evaluate this decision for vertices that have been

large enough to be indexed with a TGER (otherwise, no decision needs to be made,
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as T-CSR is used a 100% of the time), and vary the minimum cutoff for indexing

from 1k to 8k edges (multiples of 2). We find that for all datasets, the accuracy of

this decision stays consistently above 90% for input query intervals sized under 1%,

and above 95% for all other input query interval sizes we assessed (2 through 5%,

10%, and 20%). Furthermore, the accuracy also increases as a function the cutoff

size. As expected, this increase is largely due to the cardinality estimator’s 2D density

histogram (§5.5.2) having more samples in this case.
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Chapter 6

Discussion and Future Work

We have presented Kaskade and Kairos, two systems tailored for query optimization

for efficient graph analytics on real-world graphs. Kaskade exploits structural

patterns and otherwise regularity present in graphs to infer materialized views that

are beneficial for query processing. Kairos targets temporal graph processing and

introduces selective indexing, a novel technique for choosing subset of vertices to index.

Furthermore, it leverages state-of-the-art parallel processing techniques, bringing

them to the temporal setting, and employs a highly-optimized parallel index for large

vertices.

This chapter delves into potential improvements and extensions for Kaskade and

Kairos, aiming to address their current limitations and suggest paths for further

research in real-world graph analytics. Finally, we conclude by suggesting ways in

which both systems could be integrated.

6.1 Kaskade

1. Approximate View Inference. Kaskade’s formulates query rewriting in terms

of materialized views as a satisfiability problem, leveraging an logical program-

ming engine (Prolog) to infer candidate views. This problem formulation has

the advantageous side-effect that views inferred in this manner are “correct by

construction”. Nevertheless, if the correctness requirement can be relaxed, then
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it should be possible to instead leverage approximate processing techniques, such

as those present in machine learning. In particular, investigating graph learning

techniques (e.g., GNNs) to “predict” the most beneficial views for given graphs and

queries could lead to more dynamic optimization in Kaskade.

2. Expand View Types. Kaskade is engine-agnostic, as it only relies on funda-

mental transformations (e.g., path contractions and filtering operations) of the

underlying graph and input queries. This presents a limitation, however, as the

only immediate class of views that we considered were natural combinations of

these primitives, such as 𝑘 − ℎ𝑜𝑝 connector views. A more detailed exploration of

other graph transformation primitives (e.g., aggregating ego-centric neighborhoods

into a super-vertex) might yield additional classes of graph views of interest – if

not more powerful than those we proposed in Kaskade.

3. Incremental View Maintenance. The worst-case complexity of incrementally

maintaining graph views is a direct function of the complexity of each graph

transformation used to assemble that view. For example, a loose upper bound

for incrementally maintaining a 2−hop connector view is 𝑚𝑎𝑥(deg(𝑣))2. In our

experiments, we find that summary statistics such as lower percentiles of the vertex

degree distribution provide more useful approximations than the maximum vertex

degree. This is an encouraging result, as it hints at the possibility of efficient

incremental maintenance for a subset of 𝑘−hop graph views. Furthermore, if new

types of graph views are introduced in which the building blocks have amenable

asymptotic complexity, it should be possible to devise incremental maintenance

algorithms which are potentially efficient. If used in conjunction with dynamic

data structures, this is potentially a fruitful avenue for future work. In other words,

developing methods for Kaskade to adapt materialized views in real-time as the

underlying graph data changes could greatly enhance its suitability for processing

of dynamic graphs.

4. Automated View Management. While some of the contributions in Kaskade

were deployed in production at Microsoft data infrastructure, this work did not
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directly target the full life cycle of graph data analytics, which often requires

automated management. Implementing automated view management that can

handle view creation, maintenance, and retirement based on usage patterns and

storage constraints would be especially important in this context. Some topics

for future research include intelligent policies for retiring views, or predicting

when a view would be needed in the future. Just like in Approximate View

Inference, this too is a research topic which can greatly benefit from machine

learning techniques.

5. Integration with Streaming Data Sources. Finally, in Kaskade we assumed

a scenario that was reflective of batch pipelines which daily added new edges to

the data lineage graph at Microsoft. Therefore, we did not consider real-time

graph analytics, despite the fact that some of the optimizations our work enables

directly facilitate that. Hence, extending Kaskade to handle streaming graph data,

enabling real-time analytics on continuously evolving graphs, would be especially

beneficial. While such tasks are often considered purely engineering efforts (e.g.,

integrating open source software projects such Kafka queues to consume events in

real-time that get added to the graph), depending on the sizes and frequency of

data ingestion requirements, they can yield interesting research challenges.

6.2 Kairos

1. Dynamic Index Updating. One of Kairos’s key contributions is TGER,

a highly-optimized parallel data structure to index temporal edges. Since in

this work we only considered static temporal graphs, our data structure did not

address updates to the underlying graph. Therefore, application programmers

need to rebuild the graph from scratch – including any TGER indexes – if they

require new edges to be considered for processing. Implementing support for

dynamism in TGER would better support such needs. This could be conbined with

PackedCSR [93] to support updates in the underlying graph, and would improve

Kairos’s efficiency in environments with frequently changing data.
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2. Distributed Processing Integration. Kairos intentionally targets shared-

memory environments in which a single machine is used for temporal graph pro-

cessing. Nevertheless, nothing prevents application programmers from deploying

Kairos in a distributed setting. This would, however, require careful partitioning

of temporal edges so that they can be dispatched to the appropriate server for pro-

cessing. A number of works have been proposed in the distributed graph processing

literature which propose partitioning schemes, including more recently the use of

machine learning for this task. This hybrid integration would yield a system that

has both scale-out and scale-up properties, which would be an attractive “best of

both worlds” proposition.

3. Enhanced Query Parallelization. A current bottleneck of Kairos is on

TGER’s parallel processing capabilities. Specifically, due to it being a tree-based

data structure, it naturally suffers from underutilization of parallel tasks, as divide-

and-conquer is not as efficient as a parallel array scan. Thus, developing more

sophisticated techniques for parallel query processing in Kairos as it relates to

TGER to fully exploit multicore architectures would beneficial.

4. Index Size Optimization. Unlike Ligra+ [85], TGER currently makes no use of

compression. Researching methods to reduce the memory footprint of the TGER

index without compromising its query performance would be of interest here.

5. Adaptive Indexing Strategies. The cost model used in Kairos uses a pretty

straightforward 2D histogram to capture correlations in the join-distribution of

start and end times in the underlying temporal graph. A more sophisticated cost

model could be considered, instead. Furthermore, Kairos uses a binary decision

diagram to either fully index all temporal edges of a vertex, or not index it at all.

Instead, one could consider adaptive indexing strategies that can adjust the level

of indexing based on query patterns and data distribution. Eviction policies could

also be considered in tandem here.
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6.3 Integrating Both Systems

In Kaskade and Kairos we have proposed query optimization systems and techniques

that specifically target real-world graph analytics. Their continuous evolution, through

the improvements we propose above, can lead to more dynamic, efficient, and powerful

tools that are necessary for handling the complexities of real-world graph data. In

addition, the problems each of these two systems address are complementary. As such,

we consider below potential ways in which both systems could work together in a

single unified solution.

1. Temporal Views. In §5.4.3 we introduce the notion of Ordering Predicates as

a programming primitive to specify the semantics of valid time-respecting paths.

Specifically, we show at least three different orderings of interest: overlaps, succeeds,

and strictly succeeds. As such, it follows that temporal graph views would need to

provide similar flexibility for application programmers to be able to correctly define

views of interest. This could be done via template definitions that can take as

input an ordering predicate. Alternatively, view template definitions could either

default to one of the three ordering predicate options (e.g., succeeds, as is the

case for Kairos), or enumerate all three options. The latter could be detrimental,

however, as it could lead to an increase in the number of possible views to be

inferred, depending on the underlying graph structure.

2. Selective Indexing. The selective indexing approach we introduced in Chapter 5

naturally extends to non-temporal settings. In this case, vertices with large-degrees

would be chosen for indexing. However, selective indexing alone does not prescribe

what type of index data structure should be used for each vertex. In the case

of Kairos, we want to be able to filter temporal edges of interest based on the

temporal filter predicate contained in the input query, so the selective indexing cost

model takes into account properties that are specific to temporal data correlations.

Depending on the target query workload, however, there might be other index data

structures of interest which might be better suited for non-temporal settings.
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Chapter 7

Conclusion

We presented two systems aimed at efficiently executing graph analytics tasks (queries

and algorithms) over large scale real-world graph data.

The first system we introducted, Kaskade, is a graph query optimization frame-

work that employs materialization to efficiently evaluate queries over graphs. Many

application repeatedly run similar queries over the same graph, and many production

graphs have structural properties that restrict the types of vertices and edges in

them. These facts motivate Kaskade to automatically derive graph views using

a new constraint-based view enumeration technique, and a novel cost model that

accurately estimates the size of graph views. We show that queries rewritten over

some of these views can provide up to 50 times faster response times. Finally, the

rewriting techniques we have proposed are engine-agnostic (i.e., only use fundamental

graph transformations that typically yield smaller graphs), thus applicable to other

graph systems.

In addition, we introduced Kairos, a temporal graph analytics system that pro-

vides application developers a framework for efficiently executing temporal algorithms

over temporal graphs. Specifically, it employs TGER, a highly-optimized parallel

data structure, as efficient index for temporal graph processing. Kairos is built atop

Ligra [84], a state-of-the-art parallel graph processing system. With TGER, Ligra’s

vertex-centric computational model takes advantage of locality that is naturally occur-

ring on temporal graphs and queries over such graphs. We show in our experiments
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that using Kairos, a number of minimal temporal path algorithms are up to 8x times

faster than an already competitive baseline, which we also provide. When compared

with alternative shared-memory system, it achieves up to 60x speedups.

Through the query optimization systems and techniques we introduced in this thesis,

we aim to advance the field of query optimization for graph analytics, enhancing

both its efficiency and its accessibility to practitioners. Our work highlights the

benefits of adapting to underlying characteristics that are inherent to real-world data,

such as high levels of structure and skew in multiple dimensions. Furthermore, the

research directions we identify in our work with Kaskade and Kairos can serve as

foundation upon which to improve our collective understanding of efficient techniques

for processing real-world graphs.
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