
High-order Discontinuous Galerkin Methods
and Deep Reinforcement Learning

with Application to Multiscale Ocean Modeling
by

Corbin Foucart
B.S. Stanford University (2015)

S.M., Massachusetts Institute of Technology (2019)

Submitted to the Department of Mechanical Engineering
& Center for Computational Science and Engineering

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© Corbin Foucart 2023. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to exercise
any and all rights under copyright, including to reproduce, preserve, distribute and publicly display copies

of the thesis, or release the thesis under an open-access license.

Authored by: Corbin Foucart
Department of Mechanical Engineering
& Center for Computational Science and Engineering
August 2, 2023

Certified by: Pierre F. J. Lermusiaux
Professor, Department of Mechanical Engineering
Thesis Supervisor

Accepted by: Nicolas Hadjiconstantinou
Chairman, Department Committee on Graduate Theses

Accepted by: Youssef Marzouk
Professor, Department of Aeronautics and Astronautics
Co-Director, Center for Computational Science and Engineering

2

High-order Discontinuous Galerkin Methods
and Deep Reinforcement Learning

with Application to Multiscale Ocean Modeling
by

Corbin Foucart

Submitted to the Department of Mechanical Engineering
& Center for Computational Science and Engineering

on August 2, 2023, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Abstract
With the expanding availability of computational power, numerical modeling plays an increasingly
pivotal role in the field of oceanography, enabling scientists to explore and understand ocean pro-
cesses which are otherwise inaccessible or challenging to observe directly. It provides a crucial tool for
investigating a range of phenomena from large-scale circulation patterns to small-scale turbulence,
shaping our understanding of marine ecosystems, global climate, and weather patterns. However,
this same wide range of spatiotemporal scales presents a distinct computational challenge in captur-
ing physical interactions extending from the diffusive scale (millimeters, seconds) to planetary length
scales spanning thousands of kilometers and time scales spanning millennia. Therefore, numerical
and parameterization improvements have and will continue to define the state of the art in ocean
modeling, in tandem with the integration of observational data and adaptive methods. As scientists
strive to better understand multiscale ocean processes, the thirst for comprehensive simulations has
proceeded apace with concomitant increases in computing power, and submesoscale resolutions where
nonhydrostatic effects are important are progressively becoming approachable in ocean modeling.
However, few realistic ocean circulation models presently have nonhydrostatic capability, and those
that do overwhelmingly use low-order finite-difference and finite-volume methods, which are plagued
by dispersive errors, and are arduous to utilize in general, especially on unstructured domains and
in conjunction with adaptive numerical capabilities. High-order discontinuous Galerkin (DG) finite
element methods (FEMs) allow for arbitrarily high-order solutions on unstructured meshes and often
out-compete low-order models with respect to accuracy per computational cost, providing significant
reduction of dispersion and dissipation errors over long-time integration horizons. These properties
make DG-FEMs ideal for the next generation of ocean models, and, in this thesis, we develop a
novel DG-FEM ocean model with the above longer-term vision and adaptive multiscale capabilities
in mind.

Using a novel hybridizable discontinuous Galerkin (HDG) spatial discretization for both the
hydrostatic and nonhydrostatic ocean equations with a free surface, we develop an accurate and ef-
ficient high-order finite element ocean model. We emphasize the stability and robustness properties
of our schemes within a projection method discretization. We provide detailed benchmarking and
performance comparisons for the parallelized implementation, tailored to the specifics of HDG finite
element methods. We demonstrate that the model achieves optimal convergence, and is capable of
accurately simulating nonhydrostatic behavior. We evaluate our simulations in diverse dynamical
regimes including linear gravity waves, internal solitary waves, and the formation of Rayleigh-Taylor
instabilities in the mixed layer. Motivated by investigating local nonhydrostatic submesoscale dy-
namics using realistic ocean simulation data, we develop schemes to initialize and nest the new
DG-FEM model within a comprehensive hydrostatic ocean modeling system. Nested within such
data-assimilative hydrostatic simulations in the Alboran Sea, we provide a demonstration of our new
model’s ability to capture both hydrostatic and nonhydrostatic dynamics that arise in the presence
of wind-forced instabilities in the upper ocean layers. We show that such a model can both validate
and work in tandem with larger hydrostatic modeling systems, enabling multi-dynamics simulations
and enhancing the predictive fidelity of ocean forecasts.

3

Next, as DG-FEM methods are well-suited to adaptive refinement, we develop a method to
learn new adaptive mesh refinement strategies directly from numerical simulation by formulating
the adaptive mesh refinement (AMR) process as a reinforcement learning problem. Finite element
discretizations of problems in computational physics can usefully rely on adaptive mesh refinement
to preferentially resolve regions containing important features during simulation. However, most
spatial refinement strategies are heuristic and rely on domain-specific knowledge or trial-and-error.
We treat the process of adaptive mesh refinement as a local, sequential decision-making problem
under incomplete information, formulating AMR as a partially observable Markov decision process.
Using a deep reinforcement learning (DRL) approach, we train policy networks for AMR strategy
directly from numerical simulation. The training process does not require an exact solution or a
high-fidelity ground truth to the partial differential equation (PDE) at hand, nor does it require a
pre-computed training dataset. The local nature of our deep reinforcement learning approach allows
the policy network to be trained inexpensively on much smaller problems than those on which
they are deployed, and the DRL-AMR learning process we devise is not specific to any particular
PDE, problem dimension, or numerical discretization. The RL policy networks, trained on simple
examples, can generalize to more complex problems and can flexibly incorporate diverse problem
physics. To that end, we apply the method to a range of PDEs relevant to fluid and ocean processes,
using a variety of high-order discontinuous Galerkin and hybridizable discontinuous Galerkin finite
element discretizations. We show that the resultant learned policies are competitive with common
AMR heuristics and strike a favorable balance between accuracy and cost such that they often lead
to a higher accuracy per problem degree of freedom, and are effective across a wide class of PDEs
and problems.

Thesis Supervisor: Pierre F. J. Lermusiaux
Title: Professor, Department of Mechanical Engineering

4

Acknowledgments

The truth will set you free. But not until it is finished with you.
— David Foster Wallace, Infinite Jest

There are a number of people who have been instrumental in my completion of this thesis, and to whom
I am grateful.

I feel an enormous sense of gratitude to Pierre for his guidance throughout my time at MIT as well as
his tireless work ethic. There’s an apocryphal story I like about a wise and battle-hardened engineer called
out of retirement as a consultant to fix a very expensive but malfunctioning machine. The engineer looks at
the machine design and, after a minute or two of thought, draws with his pencil a small “x” on the part that
needs to be replaced. After the replacement, the machine works perfectly. However, upon receiving a bill for
half the original cost of the machine, the indignant vice president of the company demands an itemization.
The engineer sends back a two-line invoice: fifty cents for the cost of the pencil and the rest for “knowing
where to draw the x.” Thank you, Pierre, for giving me the independence and space to work on my own
ideas and mature as a researcher, but at the same time for always knowing exactly where the “x” should go.

I’d like to thank my committee for their comments and feedback. In particular, I’d like to thank Professor
Peraire, Professor Patera, and Dr. Cuong Nguyen for meeting with me repeatedly over the course of my PhD
to discuss research ideas and finite element methods more broadly. I’d like to thank Dr. Chris Mirabito for
his near-infinite patience when I began my work on this project, not to mention his substantial contributions
in proofreading the details of my work the past few years. Similarly, I owe a debt of gratitude to the legendary
Dr. Pat Haley for more than living up to the title of “resident wise, old guy;” many of the ideas in these
pages have directly benefited from your vast experience and bottomless well of debugging ideas. We are
very grateful to the Office of Naval Research for support throughout this research and Ph.D. under grants
N00014-15-1-2626 (DRI-FLEAT), N00014-18-1-2781 (DRI-CALYPSO), and N00014-20-1-2023 (MURI ML-
SCOPE), the Defense Advanced Research Projects Agency (DARPA) for support under grant N66001-16-C-
4003 (POSYDON), and the National Science Foundation for support under grants OCE-1061160 (ShelfIT)
and EAR-1520825 (NSF-ALPHA), as well as to the Massachusetts Institute of Technology for making this
research experience possible. Graduate school has taken me around the world and given me the opportunity
to pursue anything and everything that I found worthwhile. I will always look back fondly on this period of
my life.

Academically, I’m especially grateful to professors Boyd, Broderick, Marzouk, and Patera for their
teaching—your ability to unpretentiously break down and distill complicated technical material to the point
where it seems intuitive and easy has always impressed me. I’d also like to thank Dr. Alexander Linke
of the Weierstrass Institute for his incredible mentorship during my time in Berlin—your zeal for applied
math is infectious, and my choice to pursue research in computational physics was largely due to my time
spent working with you. To Hui-Min, thank you for the years of advice, brutal honesty, friendship, and for
pushing me, not only musically, but in nearly every aspect of life. You’re the best mentor I’ve ever had and
you’ve profoundly influenced me for the better.

To the friends I’ve made over the years at MSEAS, thank you for all the SGTs. Abhinav, thank you for
being a continual grounding presence in my life and being the best friend I could possibly ask for. Aaron,
I owe you a big “oh, danke” for the all the great vocalizations, animal noises, and memories traveling.
To Arko, thank you for never failing to call me out when I believe something with too much certainty, for
always knowing the shortest walking path between two points on campus, and for appreciating the nutritional
importance of fried chicken. Manan, thank you for all the coding and statistical discussion over the years—on
top of being an exceptional project partner, you may be the only other person I’ll ever meet who appreciates
Casella, Berger, and numerical software design as much as I do. To Manny, thank you for all the money
you’ve given to me over the years in bets won; although you will always make me so mad, what you lack in
wagering prowess you more than make up for in personality, music taste, and frisbee ability. Aditya, thank
you for all your diligent work on the HDG project—it’s rare to find someone who’s as competent yet as
easygoing as you are, and I’ll miss working with you. Tony, our spontaneous coffee trips have always been
a welcome break from life’s other obligations; may you continue to be loved by all people and feared by all
geese. To Jing, your accipitrine attention to detail will always be an inspiration to me. Thank you for all
the numerical intuition you gave me as a new PhD student and for the many enjoyable swim workouts in the
“p-pool.” And lastly, to JVo, I’ll always look back fondly on our years working together; thanks for all the
late nights spent debugging, drinking seltzer, and listening to Yuja Wang and Joshua Bell rip through the
Kreutzer sonata, not to mention the great times in Miami, New England, Montreal, and not Albuquerque,
where things are basically post-apocalyptic and where I would never visit you. Lisa, despite the fact that

5

everyone loves you, you’re still under-rated; thank you for all the admin work, laughs, and snacks. To my
fellow night-owl John, thanks for keeping our building spotless and for the engaging 4AM conversations—I
hope you enjoy a restful and well-deserved retirement! To the rest of you: thank you for the countless
memories and for always making MSEAS feel like home.

I feel doubly fortunate to have made many friends during my time at MIT outside of academics. To
Cindy, David, Emily, Florian, Zach, Haekyung, and Diana, thank you for the rewarding musical moments
with Beethoven, Franck, Schubert, and Bach. To Tim, Misha, Peter and the other kick-boxers, thank you
for pushing me physically, many times to the ground (ha), and perhaps for pushing me spiritually too.
To Ben and Ved, I can’t tell you how much fun it’s been hitting the pavement with you two—thank you
for nudging me out of my comfort zone. To Emma, Julian, Vivian, Nick, Harry, and Icey, thanks for the
many coffee trips, regulatory compliance pain smiles, and laughs over the strange pastries and questionably-
devised drinks of Kowloon Tong, TST, and LKF. I’d like to thank Emma in particular for being such a
detail-oriented and patient language exchange partner; although I still don’t think you’ll ever look at the
pictures you insisted on taking of every dog, flower, and piece of food we encountered, I’ll always cherish our
friendship. To Nayun, a profound thank you for helping me overcome my crippling fear of “being nice.”

To Kevin, Evan, Michael William Locke, Nicky T., Richie, and Nate: words can’t describe how great
it’s been growing up with all of you over the past 15 years. Through all of the many “camping” trips, poker
and nighttime glow-in-the-dark ultimate frisbee games, themed parties, terrible movie nights, Blue Moon
calzones, Castle Island runs, beach days, games of deception, weddings... although a lot has changed over
the years, one thing stays the same—you guys are the best.

And, of course, I’d like to thank my amazing biological family, to whom I owe the gift of life itself. Thank
you, Mom and Dad; everything I’ve accomplished has been in no small part due to the love, support, and
guidance you’ve given me over the years. Thanks to my sister Abbey for keeping me centered and for all
the excellent times at the Friendly Toast diner, and thanks to Esme for selflessly defending me from all the
menacing air-conditioning units, autumn leaves, and stationary shadows of Boston, MA.

6

Contents

1 Introduction 11
1.1 Nonhydrostatic dynamics . 11
1.2 Discontinuous Galerkin finite element methods . 13
1.3 Model nesting and use of realistic ocean data . 15
1.4 Reinforcement learning for adaptive mesh refinement 15
1.5 Thesis organization . 16

2 Hybridizable Discontinuous Galerkin Methods: Theory, Schemes, and Efficiency 17
2.1 Introduction . 17
2.2 Discontinuous Galerkin finite element methods . 18

2.2.1 Linear ODEs . 18
2.2.2 Notation and approximation spaces . 22
2.2.3 Nonlinear conservation laws . 23
2.2.4 RKDG methods . 23
2.2.5 The linear advection equation . 24
2.2.6 Forming the discrete operators . 25
2.2.7 Temporal discretization . 27
2.2.8 Numerical experiments . 28
2.2.9 Implicit treatment of first-order DG systems 30

2.3 HDG methods for second-order, elliptic problems . 32
2.3.1 The model problem . 32
2.3.2 Weak formulation . 33
2.3.3 Boundary condition treatment . 36
2.3.4 The HDG Algorithm . 37
2.3.5 Assembly of the global linear system . 37
2.3.6 Extension to time-dependent problems . 38
2.3.7 Parallelization . 39

2.4 Matrix-free schemes for HDG-FEM . 41
2.4.1 Quadrature-free integration . 42
2.4.2 Methodology . 45
2.4.3 Extensions . 47
2.4.4 Numerical experiments and discussion . 48
2.4.5 Discussion . 51

2.5 On the solution of the pure Neumann problem . 51
2.5.1 Proposed solutions . 52
2.5.2 Computational benchmarks . 53

2.6 Conclusion . 55

3 A Novel Nonhydrostatic HDG Ocean Model with a Free Surface 57
3.1 Introduction . 58
3.2 Mathematical model . 59
3.3 Temporal discretization . 61

7

3.4 Spatial discretization . 63
3.4.1 Notation . 63
3.4.2 Discretization of vertical integral terms . 64
3.4.3 Velocity predictor . 65
3.4.4 Free-surface corrector . 67
3.4.5 Intermediate velocity projection, free-surface update 67
3.4.6 Pressure corrector . 67
3.4.7 Velocity projection, pressure update . 68
3.4.8 Density perturbation update . 68
3.4.9 Recovery of the hydrostatic vertical velocity 68

3.5 Numerical experiments . 69
3.5.1 Implementation . 69
3.5.2 Spatial convergence: verification . 70
3.5.3 Validation: linear gravity waves . 70
3.5.4 Idealized formation of Rayleigh-Taylor instabilities 76

3.6 Model nesting and initialization from primitive equation data 79
3.6.1 Notation . 79
3.6.2 CALYPSO Alboran Sea Experiment 2019 . 81
3.6.3 Two-dimensional nested model comparisons 82
3.6.4 Three-dimensional model comparisons . 83

3.7 Conclusion . 91

4 Applications to Uncertainty Quantification and Data Assimilation 93
4.1 Introduction . 94
4.2 Ensemble Kalman filtering for high-order discontinuous Galerkin fields 95

4.2.1 Problem setup . 95
4.2.2 Application of the ensemble Kalman filter . 97
4.2.3 Matrix-free implementation . 98
4.2.4 Data assimilation setup . 100
4.2.5 Numerical experiments . 101
4.2.6 Sensitivity to measurement noise . 104
4.2.7 Summary . 105

4.3 Bayesian inversion of coefficients in partial differential equations with HDG fields . . 107
4.3.1 Methodology . 108
4.3.2 Implementation . 109
4.3.3 Numerical experiments . 110
4.3.4 Summary . 118

4.4 Conclusion . 119

5 Deep Reinforcement Learning for Adaptive Mesh Refinement 121
5.1 Introduction . 121

5.1.1 Related work and novel contributions . 123
5.2 Deep reinforcement learning framework . 124

5.2.1 Notation . 124
5.2.2 Elemental refinement as a local Markov decision process 125
5.2.3 Designing the reward function . 128
5.2.4 Training and model deployment . 130
5.2.5 Policy and deep learning architectures . 130
5.2.6 Summary: reinforcement learning framework 131

5.3 Finite element spatial discretization and problem physics 132
5.3.1 Notation and approximation spaces . 132
5.3.2 Linear advection equation . 132
5.3.3 Advection-diffusion equation . 133
5.3.4 Error indicators and AMR heuristics . 133

8

5.3.5 Numerical implementation . 134
5.4 Numerical experiments . 135

5.4.1 Steady 1D linear advection . 136
5.4.2 Generalization to different boundary conditions and forcing functions 140
5.4.3 Unsteady 1D linear advection . 141
5.4.4 Generalization to different PDEs . 144
5.4.5 Steady 2D linear advection . 145
5.4.6 Steady 2D advection-diffusion equation . 146
5.4.7 Unsteady 2D linear advection . 149
5.4.8 Discussion of numerical experiments . 153

5.5 Conclusions and future work . 153

6 Conclusion 155
6.1 Summary . 155
6.2 Future work and outlook . 155

7 Appendices 159
7.1 Useful identities . 160
7.2 Consistency and stability of DG-FEM for second-order problems 162
7.3 Proof: well-posedness under different HDG fluxes . 164
7.4 A unifying abstraction for HDG assembly . 165
7.5 Time integration methods . 166
7.6 Convergence history for the pure Neumann problem 176
7.7 Derivation of free-surface corrector boundary conditions 177
7.8 2D Projection method reduction . 178
7.9 Deep reinforcement learning: tunable policies . 180
7.10 Exact solution, §5.4.6 . 181
7.11 Deep reinforcement learning: additional training parameters 182

9

10

Chapter 1

Introduction

Partial differential equations provide an excellent governing mathematical model of many physical
phenomena and are foundational in the modern scientific understanding of our physical environment.
However, despite knowing the underlying governing equations of the phenomena we seek to under-
stand, it is typically not possible to solve them analytically. Therefore, the numerical approximation
of the solutions to these partial differential equations by using computers is essential to model and
understand the physical phenomena they describe. There is, consequently, a vast amount of modern
mathematical and scientific research on methods in computational physics. Computational fluid
dynamics (CFD) is a subset of this field which holds a central role in both scientific research and
engineering due to its ability to quantitatively predict complex fluid flow phenomena. CFD provides
a valuable tool for understanding the intricacies of fluid mechanics, enables weather, ocean, and
climate forecasting, provides cost-effective and safe methods for testing and optimizing engineering
designs, and allows the simulation and study of atmospheric and ocean processes, among countless
other applications.

With the expanding availability of computational power, numerical modeling plays an increas-
ingly pivotal role in the field of oceanography, enabling scientists to explore and understand ocean
processes which are otherwise inaccessible or challenging to observe directly. It provides a crucial
tool for investigating a range of phenomena from large-scale circulation patterns to small-scale tur-
bulence, shaping our understanding of marine ecosystems, global climate, and weather patterns.
However, this same wide range of spatiotemporal scales presents a distinct computational challenge
in capturing physical interactions extending from the diffusive scale (millimeters, seconds) to plane-
tary length scales spanning hundreds of thousands of kilometers and time scales spanning millennia
(Figure 1-1). The direct numerical discretization of the governing equations to capture the physics at
these scales for the entire ocean without further approximations and parameterizations would require
computers about 10 billion times faster and bigger in storage than present supercomputers—these
remain (very optimistically) about two centuries in the future [82]. Therefore, numerical and pa-
rameterization improvements have and will continue to define the state of the art in ocean modeling,
in tandem with the integration and co-analysis of observational data [83, 155]. The advances in this
thesis are a direct contribution towards these efforts.

1.1 Nonhydrostatic dynamics
Ocean modelers are primarily motivated by the problem of predicting the dynamic evolution from an
initial state to the state at a future time. At the synoptic weather scale (on the order of 1,000 km in
the horizontal, Figure 1-1, top right), oceanographic flows are largely two-dimensional. The depth-
to-length aspect ratio of the ocean modeling domains over these these circulation length scales is
very small, differing by (typically 3-4) orders of magnitude. To draw a visual comparison for clearer
understanding, this is roughly equivalent to the aspect ratio corresponding to the thickness of a sheet
of paper. Moreover, at these scales, the effects of Earth’s rotation and density stratification impart
additional vertical rigidity to the flow [56]. As a result, the vertical component of the fluid velocity

11

1 mm
1 cm

10 cm
1 m 10 m

100 m
1 km

10 km
100 km

1000 km

10 4 km
10 5 km

spatial scale

0.1 s

1 s

1 m

1 hr

1 d

1 wk

1 mon

1 yr

10 yr

100 yr

1000 yr

10,000 yr

tim
e

sc
al

e

diffusion

vertical
turbulent
mixing

surface
gravity waves

internal waves
and inertial motion

internal tides
surface tides

coastal
upwelling

eddies
fronts barotropic

variability

seasonal
cycles

basin-scale
variabilityRossby

waves

climate
change

Figure 1-1: Scales of motion for ocean processes (reproduced from D. Chelton).

is typically much smaller than the horizontal components, vertical accelerations are small compared
to those in the horizontal, and the fluid physics at these modeling scales is largely hydrostatic,
i.e., the vertical pressure profile at any point in the ocean is well-approximated as that of a static
fluid. Similarly, in the horizontal, ocean dynamics at these scales are well-described by geostrophic
balance, where the Coriolis forces arising due to the rotation of the Earth are balanced by the
horizontal pressure gradient of the flow. Even at the smaller mesoscale (on the order of 10-100 km
in the horizontal), oceanic flows are represented by quasi-equilibrium states, in near-hydrostatic and
near-geostrophic balance [172, 56]. Therefore, traditional ocean modeling aimed at understanding
the dynamics at these scales has relied on the hydrostatic approximation, which makes accurate
estimation of the horizontal pressure field, and thus geostrophic flows, computationally tractable
[83]; this is discussed in depth in §3. Hydrostatic models have demonstrated a remarkable ability to
accurately simulate and predict the complex fluid dynamics at these scales, allowing accurate weather
forecasting, climate modeling, and understanding oceanic currents. In that regard, these models
represent a remarkable success story in the field of scientific modeling and prediction [209, 208].

However, as scientists strive to better understand the processes in the ocean, the unquenchable
thirst for larger simulations has proceeded apace with concomitant increases in computing power,
and scales where nonhydrostatic effects become important are beginning to be resolved in regional
and process models. At the submesoscale (on the order of less than 10km in the horizontal) the
hydrostatic approximation begins to lose validity, along with the hydrostatic ocean equations (§3.2,
(3.9)). Nonhydrostatic effects become increasingly strong and presently are detectable at the small-
scale end of the submesoscale [108, 172, 237, 240] and in deep convection [178]. At these scales, much
smaller-scale nonhydrostatic and fully three-dimensional oceanic phenomena (typically on order of
100 m to 1 km), such as the breaking of internal waves, convection, subduction, and shear-induced
overturning, become important [172, 180, 240]. As a result, oceanic features with relatively strong
vertical velocities have been observed at these scales, particularly in the presence of wind forcing

12

or topographic variations [119, 171]. In turn, these dynamics play a crucial role in dissipative
diapycnal mixing. This is when transient, interior regions of small-scale turbulence mix fluids of
different densities. The effects of these submesoscale motions are largely unknown [83, 173], but
must be investigated. This is because these nonhydrostatic dynamics may not only affect oceanic
diapycnal transport, the dissipation of energy input at the surface, the spontaneous breakdown of
mesoscale structures, and vertical transport in the ocean, but may also constitute a link between
non-dissipative mesoscale flows and dissipative three-dimensional motions [84, 172, 174].

Few ocean circulation models presently have nonhydrostatic capability; we provide a literature
review in §3. While the lack of nonhydrostatic-capable methods is partially due to the fact that
advances in computing have only relatively recently enabled the resolution of scales in which non-
hydrostatic submesoscale dynamics play a role, it is also attributable to the fact that the numerical
solution of the nonhydrostatic ocean equations (§3.2, (3.1 - 3.4)) is significantly more challenging to
compute than its hydrostatic counterpart. The need to solve for the nonhydrostatic component of
the pressure globally couples the 3D problem, often necessitating the solution of an incompressible
Navier–Stokes equation with a free surface, under the Boussinesq approximation [178, 252]. The
dominant technologies for solving problems of this nature are overwhelmingly low-order finite differ-
ence and finite volume methods. However, while commonly-used, modern advances in CFD suggest
that high-order methods may be better suited to the problem of nonhydrostatic ocean modeling.

On one hand, high-order finite element methods allow for arbitrarily high-order solutions on un-
structured meshes and often provide higher accuracy for the same computational cost [110]. General
unstructured meshes can more accurately capture complex geometrical features such as coastlines
and steep bathymetry. Unstructured meshes also allow open boundaries to be moved further away
from the model domain of interest for a small computational cost by using much larger elements near
open boundaries, reducing the impact of the open boundary condition on the simulation. However,
for dispersive wave behaviors such as those that occur at the submesoscale, evidence suggests that
high-order methods may have additional advantages. In [251], the authors show that for low-order
finite volume methods specifically, the dominant mode of truncation error is dispersive, leading to
pollution of the physically correct dispersion for internal solitary waves, imposing a strict resolution
requirement on the method. The authors propose both high-order methods and adaptive mesh re-
finement as potential solutions. In [244], the authors indeed showed that higher-order schemes were
capable of modeling physical-biogeochemical dynamics with the correct biological patches, cycles,
and nonlinear behaviors while lower-order schemes could not.

1.2 Discontinuous Galerkin finite element methods
In light of the requirements of a nonhydrostatic model discussed above, high-order spectral and finite
element methods are natural candidates for the next generation of multiscale ocean models [63, 62,
161]. Spectral schemes, while providing high-order accuracy, are difficult to make conservative and
may spontaneously generate local extrema [83]. A more significant drawback is the difficulty applying
spectral element methods to general unstructured domain geometries. Continuous Galerkin finite
element methods (CG-FEM), on the other hand, have been successfully to problems with arbitrary
unstructured geometries in many areas of computational physics, perhaps most notably in solid
mechanics. However, classical CG-FEM schemes are not without their drawbacks. The choice of a
continuous finite element polynomial space require the application of hanging node constraints in
the case of adaptive refinement. Moreover, despite the natural formulation of second-order PDEs in
the CG-FEM context, special treatment is required to ensure conservativity, and the methods need
to rely on additional stabilization mechanisms such as streamline-upwind diffusion in the case of
transport-dominated regimes and in under-resolved settings [133]. These issues, while surmountable
with special care, have largely limited the applicability of CG-FEM methods to problems in CFD.

However, in recent decades, discontinuous Galerkin (DG) finite element methods have emerged as
one of the most important discretization schemes for problems in computational physics. Originally
developed for first-order hyperbolic conservation laws, DG-FEM methods have enjoyed a wide range
of successes modeling physical systems arising in acoustics [15, 241], electrodynamics [46, 51], and

13

the shallow water equations [257, 62, 71, 92, 258], among many others. Recent advances have
applied DG-FEM to second order PDEs as well, making DG methods a competitive and attractive
choice for computational fluid dynamics as well. An overview of the history and the most important
application areas can be found in §2, [45, 110], and in the references therein.

Figure 1-2: Globally coupled degrees of freedom for CG-FEM (left), DG-FEM (center), and HDG-
FEM (right).

Discontinuous Galerkin methods derive their high-order accuracy from the variational principles
used in finite and spectral elements, and search for optimal solutions within a particular function
space. Instead of strongly enforcing continuity over the element boundaries as in conventional finite
element methods, DG methods seek an approximation on each element which is not obligated to
coincide with that of the neighboring elements on shared edges, leading to a discontinuity in the
solution representation (Figure 1-2). This counter-intuitive formulation allows for the addition of
physics-informed numerical fluxes that enjoy many of the advantages of finite volume methods,
ensure consistency and conservativity, and enable high-order accuracy on complex domains with
general unstructured meshes without the need to maintain hanging nodes constraints as with CG-
FEM in an adaptive refinement setting. The discontinuous representation of the numerical solution
also provides a natural stabilization mechanism and allows for the graceful capture of steep gradients
in advection-dominated flows, discussed at length in §2 and §5. As compared to both low-order
methods as well as higher order CG-FEM methods, DG-FEM discretizations significantly reduce
dispersion and dissipation errors in the pre-asymptotic regime over long time integration horizons,
the main source of inaccuracy in long-time simulations of flows at higher Reynolds numbers or wave
propagation problems [133].

As discontinuous Galerkin elements are also well-suited to parallelism and modern computer
architectures [134], it would seem that this class of methods is virtually without drawback. However,
inspection of the degrees of freedom for CG-FEM as compared to DG-FEM in the schematic shown
in Figure 1-2 shows that the discontinuous Galerkin methods involve a duplication of globally-
coupled degrees of freedom along element edges. For discretization of the diffusion operators using
a local discontinuous Galerkin (LDG) or symmetric interior penalty Galerkin (SIPG) method these
additional degrees of freedom can become expensive [12]. As a result, hybridizable discontinuous
Galerkin (HDG) finite element methods were first introduced for second-order elliptic problems
in Cockburn [42] and later for advection-diffusion problems [191] in order to mitigate the cost of
the discontinuous representation of the solution. HDG schemes involve a parameterization of the
PDE onto a finite element space defined only on the mesh skeleton, such that the globally coupled
unknowns have support on the element interfaces only. These methods possess the advantages of a
DG discretization, as well as favorable convergence properties with local post-processing, but at the
cost of solving a linear system similar to classical CG-FEM. These advantageous features make HDG
finite element methods the discretization of choice for the novel nonhydrostatic model developed in
§3 of this thesis. However, as hybridization alone is insufficient to overcome the expensive nature of
nonhydrostatic problems, we also provide theory and schemes adapting HDG-FEM to a matrix-free
and parallel context as additional contributions.

14

1.3 Model nesting and use of realistic ocean data
While a high-order nonhydrostatic ocean model based on DG-FEM discretizations is a substantial
advance in its own right in terms of investigating submesoscale dynamics, its scientific utility extends
beyond functioning as a standalone solver. Unlike experimental physics, a numerical model rarely
indicates if processes are left out. Another contribution of this thesis is the development a procedure
to nest the nonhydrostatic model developed in §3 within a larger, hydrostatic one. This, along
with the HDG hydrostatic model also developed as part of this thesis, will allow future comparison
investigations to be done as to when the resolution of nonhydrostatic submesoscale processes is crucial
to regional dynamics, and when it is not. These contributions will pave the way for multi-model
solvers [228], as well as allow for the discovery of parameterizations to incorporate nonhydrostatic
physics into less expensive hydrostatic ocean models natively.

It is through experimentation and observation that the biases in models and processes that have
been overlooked are brought to light. Additionally, systems for forecasting and state estimation are
becoming increasingly valuable as they provide context and inference from observational data [83].
Data assimilation allows the control of errors in numerical modeling systems and their initial and
boundary conditions, as well as inference and discoveries by the rigorous combination of information
from data and models [222, 221, 223, 159] Therefore, while a crucial component of realistic ocean
modeling and real-time ocean forecasting [104, 162, 184, 160, 187, 181], assimilation of observations
into high-order discontinuous finite element models is in its infancy [205]. Therefore we also present
a preliminary investigation into the incorporation of data assimilation techniques into DG-FEM
solvers in a CFD context in §4.

1.4 Reinforcement learning for adaptive mesh refinement
Finite element discretizations of problems in computational physics often rely on adaptive mesh
refinement (AMR) to preferentially resolve regions containing important features during simulation.
As we’ve alluded to earlier in this chapter, AMR provides a potential solution to capturing local-
ized nonhydrostatic phenomena in state of the art ocean models. However, these spatial refinement
strategies are often heuristic and rely on domain-specific knowledge or trial-and-error. Furthermore,
the inherent complexity of ocean models presents a significant obstacle to the straightforward imple-
mentation of conventional adaptive mesh refinement techniques. These models’ distinctive dynamics
necessitate solutions that are specifically designed to cater to their unique behavior.

In this context, the prospect of using machine learning approaches appears promising. Rather
than deploying a one-size-fits-all technique, unsupervised methods have the potential to learn effi-
cient error estimators, and hence, AMR strategies directly from simulation data. Approaches that
enable strategies to be learned experientially from simulation directly are even more beneficial, as
they eliminate the need for a high-fidelity ground truth dataset. Such a self-learning approach could
furnish a more refined and accurate depiction of the physical behavior specific to the partial differ-
ential equation (PDE) under study. With these requirements in mind, deep reinforcement learning
presents as a compelling solution to this challenge.

Therefore, as the final contribution of this thesis, we develop a novel method that applies deep
reinforcement learning to learn adaptive mesh refinement strategies directly from simulation [81]. We
treat the process of adaptive mesh refinement as a local, sequential decision-making problem under
incomplete information, formulating AMR as a partially observable Markov decision process. While
the ultimate aim is to provide custom-trained AMR strategies for ocean dynamics, this approach
can be more generally deployed to any problem involving the numerical solution of PDEs solved
using DG finite element methods. The training process does not require an exact solution or a
high-fidelity ground truth to the PDE at hand, nor does it require a pre-computed training dataset.
The local nature of our deep RL (DRL) allows the policy network to be trained inexpensively on
much smaller problems than those on which they are deployed, and the resultant policy networks,
trained on simple examples, can generalize to more complex problems, and can flexibly incorporate
diverse problem physics.

15

1.5 Thesis organization
This thesis is structured as follows. We begin by providing the derivations for the DG-FEM and
HDG-FEM methods that we will make use of for our new high-order nonhydrostatic model in §2. We
provide implementation details, benchmarking, and results related to specific issues that arise in our
applications: a novel matrix-free method extending the work in [80], a benchmarking and discussion
addressing the solution of singular systems arising from the discretization of the Poisson equation
with pure Neumann boundary conditions, and a computational examination of the effect of poly-
nomial order and multi-threaded parallelism applied to the HDG algorithms specifically. In §3, we
formulate and derive a novel HDG/DG spatial discretization of the hydrostatic and nonhydrostatic
ocean equations with a surface, extending the work started in [243, 246, 247] and emphasizing sta-
bility and robustness properties of our schemes within a projection method discretization. We verify
the model with analytical convergence studies. We then validate it with results from linear gravity
wave theory for both surface and internal gravity waves, and from nonlinear solitary waves [79].
We provide additional verification of the model via comparison to a two-dimensional finite-volume
model [245, 156] on an idealized test case examining the development of idealized Rayleigh-Taylor
instabilities in the mixed layer. Lastly, we describe the procedure for nesting our new model within
the larger, MSEAS primitive equation (PE) modeling system. We show results from nested model
runs in both 2D and 3D from realistic ocean data in the Alboran Sea as part of the MSEAS CA-
LYPSO sea experiment [174, 173, 181]. In §4, we study the application of uncertainty quantification
techniques to HDG-FEM numerical solvers in an idealized CFD setting with implementations of
the ensemble Kalman Filter for data assimilation, and Markov chain Monte Carlo methods applied
to the Bayesian inversion problem of an unknown diffusivity field, extending a dimension reduction
method [179] to our HDG solvers. In §5, we formulate our novel DRL-AMR method and test it over
a wide variety of numerical test cases [81], showing the method to be competitive with or better
than many common AMR heuristics. Lastly, in §6, we offer conclusions, discussion, and outlook on
future research directions.

16

Chapter 2

Hybridizable Discontinuous
Galerkin Methods: Theory,
Schemes, and Efficiency

2.1 Introduction

This chapter provides expository information of finite element methods inspired by the material in
[39, 110, 196], and is intended to give a brief exposition of the theory and ideas behind DG-FEM
schemes more broadly. These ideas and concepts are readily applicable to HDG schemes and provide
motivation for the all of the numerical choices made in later chapters. The schemes used for linear
ODEs have direct application to the depth-integration schemes used in the ocean equations in §3.
The RKDG methods have application to the discretization of the advection term in the momentum
equation in §3, and lay the groundwork for the schemes and methods introduced in §5. Lastly, the
HDG methods introduced in this chapter are used to discretize all the implicit terms present in the
nonhydrostatic ocean model in §3.

A secondary goal of this chapter is to provide conceptual unification for all the different schemes,
as well as substantive discussion of implementation and computational considerations, including
novel work. First, it is often stated in the literature that the embarrassingly parallel nature of the
assembly and reconstruction steps of the HDG methods are an advantage of the method. However, it
is the case that this statement is dependent computationally on problem size and polynomial order,
which we explore in §2.3.7. In §2.4, we provide theory and schemes for a novel matrix-free HDG
method, extending and expanding the work started in [80]. Furthermore, we discuss the solution
of the pure Neumann problem in §2.5, as it arises in fluid applications; while different approaches
to treating the resultant singular system have been discussed in the literature, we provide a novel
discussion of their computational trade-offs and provide benchmarking comparisons. To the author’s
knowledge, the investigations in each of these sections constitute the first of their kind.

It is the opinion of the author that one of the most rewarding aspects of applied mathematics is
layering trivial steps together, until, a few innocuous steps down the line, you’ve suddenly created
something completely non-trivial. Overall, this chapter builds up the pieces of an efficient HDG
“kernel,” which in-turn forms the foundation for numerical schemes used to solve fluid and ocean
problems [193, 246, 247]. In doing so, this chapter serves to provide a unified look at the theory,
schemes, and computational considerations that will justify the mathematical and numerical choices
made in later chapters.

17

2.2 Discontinuous Galerkin finite element methods
The discontinuous Galerkin finite element method (DG-FEM) was first proposed as a method to solve
the steady-state neutron transport equation [218], but has since developed into an entire numerical
ecosystem capable of solving a wide variety of problems in computational physics. The success of
discontinuous Galerkin finite element methods is largely attributable to combining the best features
of finite volume and finite element schemes: DG methods provide high-order accuracy, can represent
complex geometries, and admit both implicit and explicit semi-discrete forms. Additionally, the
discontinuous polynomial spaces in which DG-FEM solutions are sought allow for the capture of
steep gradients and wave behavior, often resulting in more stable and flexible methods than the
classical continuous Galerkin finite element (CG-FEM) approaches to advection-dominated problems
[110].

We begin with some notes on the classification of the different portions of the DG-FEM ecosys-
tem to provide context to the work in this thesis. Discontinuous Galerkin methods were originally
developed for hyperbolic conservation laws, and have enjoyed popularity for a multitude of applica-
tions based on hyperbolic systems: acoustics [15, 241] , Maxwell’s equations [46, 51], and the shallow
water equations [62, 71, 161], to name a few. DG-FEM approaches to solving elliptic problems using
primal methods began with the introduction of interior penalty methods [11, 220], and was extended
to the class of mixed methods by writing the second-order spatial derivatives as a system of first-order
equations [21, 34]. The extension to elliptic problems has allowed for the more recent application of
DG-FEM to advection-diffusion problems, and both compressible and incompressible viscous flow
problems, such as the mathematical models considered in §3.1. An examination and unified analysis
of the properties and differences between these methods can be found in the well-known manuscript
by Arnold and Brezzi [12]. Because the theory and practice of DG-FEM has become so expansive,
in what follows, we exposit the key findings and implementation details that are specific to the work
in the subsequent chapters.

2.2.1 Linear ODEs
Suppose we would like to use DG-FEM to approximate the numerical solution of an ordinary differ-
ential equation (ODE). Consider the initial-value problem on the domain Ω = (0, 𝐿):

𝑑𝑢(𝑥)
𝑑𝑥

= 𝑓(𝑥)𝑢(𝑥), 𝑥 ∈ Ω, 𝑢(0) = 𝑢0, (2.1)

for which we would like to find a numerical approximation 𝑢ℎ. Partition the domain into 𝑁 intervals
𝐼𝑛 = (𝑥𝑛, 𝑥𝑛+1) for 𝑛 = 0, . . . , 𝑁 − 1; the intervals are the one-dimensional “elements”. On each 𝐼𝑛

we seek a polynomial of at most degree 𝑝. Let 𝒫𝑝(𝐷) be the set of polynomials of at least 𝑝 on a
domain 𝐷. Then 𝑢ℎ is an element of the set

𝑊 𝑝
ℎ =

{︁
𝑤 ∈ 𝐿2(Ω): 𝑤

⃒⃒
𝐼𝑛

∈ 𝒫𝑝(𝐼𝑛), 𝑛 = 0, . . . , 𝑁 − 1
}︁
. (2.2)

We would like to formulate the problem in a weak sense. Namely, we multiply the entire equation
by an arbitrary function v ∈ 𝑊 𝑝

ℎ and integrate by parts over each interval 𝐼𝑛. The integration by
parts results in ∫︁

𝐼𝑛

𝑑

𝑑𝑥
(𝑢ℎ(𝑥)) v 𝑑𝑥 = −

∫︁

𝐼𝑛

𝑢ℎ
𝑑v
𝑑𝑥

𝑑𝑥+ [𝑢ℎv]𝑥𝑛+1
𝑥𝑛

, (2.3)

and we seek the function 𝑢ℎ ∈ 𝑊 𝑝
ℎ which satisfies

−
∫︁

𝐼𝑛

𝑢ℎ
𝑑v
𝑑𝑥

𝑑𝑥+ [𝑢ℎv]𝑥𝑛+1
𝑥𝑛

=
∫︁

𝐼𝑛

𝑓(𝑥)𝑢ℎ(𝑥)v(𝑥) 𝑑𝑥 (2.4)

for all v ∈ 𝑊 𝑝
ℎ . However, there is a problem. Since 𝑢ℎ consists of discontinuous polynomials on each

𝐼𝑛, there is not a unique value for 𝑢ℎ at either interface, implying that the quantity [𝑢ℎ]𝑥𝑛+1
𝑥𝑛 is not

well-defined. We don’t have the same problem with v, because we aren’t solving for v; we only want

18

𝑢ℎ to satisfy equation (2.4) for all v ∈ 𝑊 𝑝
ℎ . This point is not pedantic; if we chose the interior values

of 𝑢ℎ at the boundaries of 𝐼𝑛, that is,

𝑢ℎ(·) =
{︃

lim𝜖→0 𝑢ℎ(𝑥𝑛 + 𝜖), at 𝑥𝑛

lim𝜖→0 𝑢ℎ(𝑥𝑛+1 − 𝜖) at 𝑥𝑛+1
, (2.5)

there would be no coupling of information between each of the intervals 𝐼𝑛; we would have 𝑁
completely independent equations—one for each interval—and we would be unable to solve the
resultant system of equations.

Something special must be done about the value of 𝑢ℎ at each interface; we create a new quantity
̂︀𝑢ℎ, the “numerical flux” or “numerical trace”, a representative value of the solution on the edge
between the two elements. We re-write equation (2.6) as

−
∫︁

𝐼𝑛

𝑢ℎ
𝑑v
𝑑𝑥

𝑑𝑥+ [̂︀𝑢ℎv]𝑥𝑛+1
𝑥𝑛

=
∫︁

𝐼𝑛

𝑓(𝑥)𝑢ℎ(𝑥)v(𝑥) 𝑑𝑥, (2.6)

Which we are able to sum over all elements in order to form a globally-coupled problem, once we
have defined the numerical flux 𝑢̂ℎ in terms of the interior unknowns. The question of how to define
̂︀𝑢ℎ is central to DG-FEM methodology. Different choices yield different schemes and different results.
To start, we make the simple choice

̂︀𝑢ℎ(𝑥𝑛) =
{︃
𝑢0 if 𝑥𝑛 = 0
lim𝜖→0 𝑢ℎ(𝑥𝑛 − 𝜖) otherwise

, (2.7)

that is, we take the left-hand side neighbor’s value of 𝑢ℎ. This choice was arbitrary, in the sense
that we chose to propagate information from left to right. If the ODE were in time, this choice
would be good, since information propagates as time increases. However, by making either choice,
but we have solved the issues with the definition in equation (2.5); information is coupled between
the intervals and the problem is now solvable. However, we would like to do better than simply be
able formulate a problem that’s solvable. Namely, we would like to choose ̂︀𝑢ℎ in a way such that
the scheme is consistent, in the sense that the exact solution 𝑢 should satisfy equation (2.6), and
stable, in the sense that the total variation of the numerical solution 𝑢ℎ remains bounded as the
discretization size ℎ = 𝐿/𝑁 goes to zero. We define the notation

𝑢±
ℎ (𝑥) = 𝑢ℎ(𝑥±) = lim

𝜖→0
𝑢ℎ(𝑥± 𝜖) (2.8)

J𝑢ℎK = 𝑢−
ℎ − 𝑢+

ℎ {{𝑢ℎ}} = 1
2
(︀
𝑢−

ℎ + 𝑢+
ℎ

)︀
(2.9)

for the left and right traces 𝑢−
ℎ and 𝑢+

ℎ , respectively, as well as the interface jump J𝑢ℎK and average
{{𝑢ℎ}} terms.

Addressing consistency, we replace 𝑢ℎ with the exact solution 𝑢 in equation (2.6) and we see
that the scheme is consistent if ̂︀𝑢ℎ = 𝑢; otherwise, we could choose a v such that equation (2.6)
is not satisfied. Loosely speaking, since we started from the ODE and applied legal operations,
most reasonable choices of ̂︀𝑢ℎ will preserve consistency, but a consistent numerical flux doesn’t
guarantee a good scheme, or even stability; even though equation (2.5) is a consistent choice of
numerical flux, it doesn’t lead to a solvable scheme. The general approach to handle this is to add
terms to the formulation (by choice of numerical flux) such that we have a provably stable scheme
without violating consistency. Common ways to do this are by adding combinations of jump terms
and average terms at the boundaries, because if the solution 𝑢 is sufficiently smooth, J𝑢K = 0 and
{{𝑢}} = 𝑢. Sometimes, it also is possible to incorporate problem physics into the choice of numerical
flux, to give the scheme additional favorable properties. A detailed discussion of these sorts of
numerical fluxes is given in [110].

It turns out that the choice of numerical flux in equation (2.7) is both consistent and stable,
but proving stability can be non-trivial. The central idea used in proofs of stability is to come up

19

with stability criterion for the ODE generally and choose ̂︀𝑢ℎ such that the stability properties are
guaranteed for the DG method in equation (2.6). If we multiply the ODE by 𝑢 and integrate over
the domain, we obtain the global inequality

1
2𝑢

2(𝑇) − 1
2𝑢

2
0 =

∫︁ 𝑇

0
𝑓(𝑥)𝑢2(𝑥) 𝑑𝑥 (2.10)

from which the 𝐿∞ stability of the solution follows from boundedness of the final-time solution
𝑢2(𝑇). We choose v = 𝑢ℎ in the DG formulation equation (2.6), and sum over all intervals 𝐼𝑛;

∫︁ 𝐿

0
𝑓(𝑥)𝑢2

ℎ(𝑥) 𝑑𝑥 =
𝑁−1∑︁

𝑛=0

(︂
−
∫︁

𝐼𝑛

𝑢ℎ
𝑑𝑢ℎ

𝑑𝑥
𝑑𝑥+ [̂︀𝑢ℎ𝑢ℎ]𝑥𝑛+1

𝑥𝑛

)︂

=
𝑁−1∑︁

𝑛=0

(︂
−1

2𝑢
2
ℎ + ̂︀𝑢ℎ𝑢ℎ

)︂ ⃒⃒
⃒⃒
𝑥𝑛+1

𝑥𝑛

,

(2.11)

where we have used
𝑢
𝑑𝑢

𝑑𝑥
= 1

2
𝑑

𝑑𝑥

(︀
𝑢2)︀ .

We have that
1
2𝑢

2
ℎ(𝐿−) − 1

2𝑢
2
0 = 1

2
𝑑

𝑑𝑥

∫︁ 𝐿

0
𝑢2

ℎ 𝑑𝑥 = 1
2
𝑑

𝑑𝑥
‖𝑢ℎ‖2

2 (2.12)

Then,

Θℎ(𝐿) = −1
2𝑢

2
ℎ(𝐿−) + 1

2𝑢
2
0 +

𝑁−1∑︁

𝑛=0

(︂
−1

2𝑢
2
ℎ + ̂︀𝑢ℎ𝑢ℎ

)︂ ⃒⃒
⃒⃒
𝑥𝑛+1

𝑥𝑛

(2.13)

and if we can choose the numerical flux ̂︀𝑢ℎ such that Θℎ(𝐿) ≥ 0, it would imply existence and
uniqueness of the numerical solution 𝑢ℎ. That’s because the problem is linear, and if Θℎ(𝐿) ≥ 0,
then for the choice of 𝑓 = 0, the only possible solution is 𝑢ℎ = 0; those two pieces guarantee existence
and uniqueness, as well as discrete stability. We make the definition

𝑢ℎ(𝑥) = 𝑢0, 𝑥 < 0, (2.14)

and rewrite Θℎ(𝐿) as

Θℎ(𝐿) = −
1
2

𝑢2
ℎ(𝐿−) +

(︁
−

1
2

𝑢2
ℎ(𝐿−) + ̂︀𝑢ℎ(𝐿)𝑢ℎ(𝐿−)

)︁
+

𝑁−1∑︁

𝑛=1

(︂
1
2
(︀

𝑢2
ℎ

)︀−
⃒⃒
⃒
𝑥𝑛

− ̂︀𝑢ℎ(𝑥𝑛)𝑢−
ℎ

(𝑥𝑛)
)︂

+
𝑁−1∑︁

𝑛=1

(︂
−

1
2
(︀

𝑢2
ℎ

)︀+
⃒⃒
⃒
𝑥𝑛

+ ̂︀𝑢ℎ(𝑥𝑛)𝑢+
ℎ

(𝑥𝑛)
)︂

−
(︁

−
1
2

𝑢2
ℎ(0+) + ̂︀𝑢ℎ(0)𝑢ℎ(0+)

)︁
+

1
2

𝑢2
0

= −
1
2

𝑢2
ℎ(𝐿−) +

(︁
−

1
2

𝑢2
ℎ(𝐿−) + ̂︀𝑢ℎ(𝐿)𝑢ℎ(𝐿−)

)︁
+

𝑁−1∑︁

𝑛=1

(︁
−

1
2

J𝑢2
ℎK + ̂︀𝑢ℎJ𝑢ℎK

)︁ ⃒⃒
⃒
𝑥𝑛

−
(︁

−
1
2

𝑢2
ℎ(0+) + ̂︀𝑢ℎ(0)𝑢ℎ(0+)

)︁
+

1
2

𝑢2
0.

(2.15)

We use the relation in equation (7.1), J𝑢2
ℎK = 2 {{𝑢ℎ}} J𝑢ℎK, as well as the expansion

1
2

𝑢2
ℎ(0+) − ̂︀𝑢ℎ(0)𝑢ℎ(0+) +

1
2

𝑢2
0 =

1
2

𝑢2
ℎ(0+) +

1
2

𝑢2
ℎ(0+) −

1
2

𝑢2
ℎ(0+) − ̂︀𝑢ℎ(0)𝑢ℎ(0+) +

1
2

𝑢2
ℎ(0−)

= −
(︀̂︀𝑢ℎ(0) − 𝑢ℎ(0+)

)︀
+

1
2

J𝑢2
ℎK,

(2.16)

yielding the massaged expression for Θℎ(𝐿):
Θℎ(𝐿) =

(︀̂︀𝑢ℎ(𝐿) − 𝑢ℎ(𝐿−)
)︀

𝑢ℎ(𝐿−)

+
𝑁−1∑︁

𝑛=1

(︀
(̂︀𝑢ℎ − {{𝑢ℎ}})J𝑢ℎK

)︀ ⃒⃒
⃒
𝑥𝑛

−
(︀̂︀𝑢ℎ(0) − 𝑢0

)︀
𝑢ℎ(0+) +

1
2

J𝑢ℎK2(0)
(2.17)

20

Now, if we define the numerical trace as

̂︀𝑢ℎ =

⎧
⎪⎨
⎪⎩

𝑢0, 𝑥𝑛 = 0
{{𝑢ℎ}} + 𝐶𝑛J𝑢ℎK, 𝑥𝑛 ∈ (0, 𝐿)
𝑢ℎ(𝐿−), 𝑥𝑛 = 𝐿,

(2.18)

where 𝐶𝑛 ≥ 0, then if we chose 𝐶0 = 1/2,

Θℎ(𝐿) =
𝑁−1∑︁

𝑛=0
𝐶𝑛J𝑢ℎK2

⃒⃒
⃒⃒
𝑥𝑛

≥ 0 (2.19)

we have Θℎ(𝐿) as desired, and hence stability. We see that a sufficient choice of numerical flux can
enforce the stability of the DG method. The numerical flux ̂︀𝑢ℎ is indeed a combination of average
and jump values and depends only on 𝑢±

ℎ (𝑥𝑛) at each interface; these properties enforce consistency,
and any choice of 𝐶𝑛 ≥ 0 will result in both a stable and consistent scheme. If we take all 𝐶𝑛 = 1/2,
we recover the flux in equation (2.7), ̂︀𝑢ℎ = 𝑢−

ℎ (𝑥𝑛), see (7.2). The choice of 𝐶𝑛 affects the properties
of the method. If we use 𝐶𝑛 = 1/2 and ̂︀𝑢ℎ = 𝑢−

ℎ , we can solve the ODE explicitly, element by
element from left to right. If 𝐶𝑛 ̸= 1/2, the problem must be implicitly solved on the whole domain
(0, 𝑇) at once by inverting a linear system. The numerical flux also affects the overall accuracy of
the method; 𝐶𝑛 = 0 leads to a scheme of order 2𝑝 + 2 [64], but the choice of 𝐶𝑛 = 1/2 results in
an order 2𝑝 + 1 accurate scheme [163]—the price of the extra order of accuracy is having to solve
an implicit problem. There are two important properties of the DG methods here that are also true
in the multi-dimensional case and for all problems. DG-FEM solutions are piecewise discontinuous:
there are no continuity constraints between elements. However, there is a relation between between
the residuals of 𝑢ℎ on each element and the jumps in the numerical solution on element boundaries.
Let

𝑅ℎ(𝑥) = 𝑑

𝑑𝑡
𝑢ℎ − 𝑓𝑢ℎ (2.20)

denote the residual of the ODE. If we take v = 1, and integrate by parts once more, using 𝐶𝑛 = 1/2
and equation (7.2), we can write equation (2.6) as

∫︁

𝐼𝑛

𝑅ℎ 𝑑𝑥 = − (𝑢ℎ − ̂︀𝑢ℎ)
⃒⃒
⃒⃒
𝑥𝑛+1

𝑥𝑛

= −𝑢−
ℎ (𝑥𝑛+1) + 𝑢−

ℎ (𝑥𝑛+1) +
[︀
𝑢−

ℎ (𝑥𝑛) − 𝑢+
ℎ (𝑥𝑛)

]︀

= J𝑢ℎK(𝑥𝑛).

(2.21)

That is, the jump of the numerical solution 𝑢ℎ at 𝑥𝑛 is equal to the integral of the numerical residual
𝑅ℎ over the element. The implication is that if the ODE is well-approximated on 𝐼𝑛, the jump at 𝑥𝑛

is small; conversely, if the ODE is not well-approximated locally, the jumps will be large. The jump
terms J𝑢ℎK can loosely be thought of as dampers which can stabilize the DG method whenever the
ODE cannot be well-approximated [39]. In more complicated problems solved in higher dimensions,
the residual is a more complicated linear function of the jumps but the underlying idea is the same.
DG-FEM solutions are also locally conservative. For this simple ODE, taking v = 1 in equation (2.6)
yields

̂︀𝑢ℎ

⃒⃒
⃒⃒
𝑥𝑛+1

𝑥𝑛

=
∫︁ 𝐿

0
𝑓𝑢 𝑑𝑥, (2.22)

which shows that the flux in minus the flux out is equal to the forcing term. We will see that in
hyperbolic settings, the flux in minus the flux out will reduce to zero. Numerical schemes with this
conservative property are particularly important for computational fluid dynamics.

21

2.2.2 Notation and approximation spaces

The ideas in §2.2.1 are foundational to DG-FEM, and it was sufficient to write out all intervals
and integrals explicitly. However, as we develop more complicated schemes in two and three spatial
dimensions, it will be beneficial to have unified notation and terminology. We now provide the
notation for the computational mesh and finite-element operators in what follows. We let 𝒯ℎ = ∪𝑖𝐾𝑖

be a finite collection of non-overlapping elements 𝐾𝑖 that discretizes the entire problem domain
Ω ⊂ R𝑑. We refer to the boundary of the problem domain as Γ. The set 𝜕𝒯ℎ = {𝜕𝐾 : 𝐾 ∈ 𝒯ℎ}
refers to all boundary edges and interfaces of the elements, where 𝜕𝐾 is the boundary of element
𝐾. For two elements 𝐾+ and 𝐾− sharing an edge, we define 𝑒 = 𝜕𝐾+ ∩ 𝜕𝐾− as the edge between
elements 𝐾+ and 𝐾−. Each edge can be classified as belonging to either 𝜀∘ or 𝜀𝜕 , the set of interior
and boundary edges, respectively, with 𝜀 = 𝜀∘ ∪ 𝜀𝜕 . These geometric relationships are summarized
in Figure 2-1a.

The elements 𝐾+ and 𝐾− have outward pointing unit normals 𝑛+ and 𝑛−, respectively. The
quantities 𝑎± denote the traces of 𝑎 on the edge 𝑒 from the interior of 𝐾±. When relevant for
element-wise operations, we take as convention that the element 𝐾− refers to the local element,
and 𝐾+ to the neighboring element. The jump J·K operator for scalar quantities are then defined as
J𝑎K = 𝑎− − 𝑎+ on the interior faces 𝑒 ∈ 𝜀∘. On the edges described by 𝜕𝒯ℎ, we can uniquely define
the normal vector 𝑛 as outward for a given cell and inward for its neighbor.

We define the inner products over a set 𝐷 ⊂ R𝑑 and its boundary 𝜕𝐷 ⊂ R𝑑−1 using typical
discontinuous Galerkin finite element notation as

(𝑐, 𝑑)𝐷 =
∫︁

𝐷

𝑐𝑑d𝐷, ⟨𝑐, 𝑑⟩𝜕𝐷 =
∫︁

𝜕𝐷

𝑐𝑑d𝜕𝐷.

Let 𝒫𝑝(𝐷) denote the set of polynomials of degree 𝑝 on a domain 𝐷. For any element 𝐾 ∈ 𝒯ℎ,

(a) Domain geometry (b) Finite element spaces

Figure 2-1: Summary schematics of spatial discretization notation in exploded view.

we denote 𝑊 𝑝(𝐾) ≡ 𝒫𝑝(𝐾) and 𝑉 𝑝(𝐾) ≡ [𝒫𝑝(𝐾)]𝑑. We consider the discontinuous finite element
spaces

𝑊 𝑝order
ℎ =

{︀
𝑤 ∈ 𝐿2(Ω): 𝑤

⃒⃒
𝐾

∈ 𝒫𝑝order(𝐾) ∀𝐾 ∈ 𝒯ℎ

}︀
,

𝑉 𝑝order
ℎ =

{︁
𝑣 ∈

[︀
𝐿2(Ω)

]︀𝑑 : 𝑣
⃒⃒
𝐾

∈ [𝒫𝑝order(𝐾)]𝑑 ∀𝐾 ∈ 𝒯ℎ

}︁
,

𝑀𝑝order
ℎ =

{︀
𝜇 ∈ 𝐿2 (𝜀ℎ) : 𝜇

⃒⃒
𝑒

∈ 𝒫𝑝order(𝑒) ∀𝑒 ∈ 𝜀ℎ

}︀
,

We introduce the traced finite element space in anticipation of its use in the HDG sections to come.
However, we remark that it typically does not play a role in classical DG finite element schemes,
such as the methods we introduce in the next section.

22

2.2.3 Nonlinear conservation laws

The advection equation is an example of a general hyperbolic conservation law, typically written in
the form

𝜕𝑢

𝜕𝑡
+ ∇ · 𝑓(𝑢) = 0, (2.23)

where 𝑓(𝑢) is a nonlinear function. Specific choices of the (possibly tensor-valued) function 𝑓(𝑢) can
represent the Euler equations of gas dynamics, the maxwell equations, and the advection equation,
to name a few examples [110]. The numerical approximation to the exact solution of these systems
is made difficult by the potential presence of discontinuities in the exact solution. The physically
relevant solution to the advection equation, for example, is called the entropy solution and can be
obtained with so-called monotone schemes; however, these schemes are only first-order accurate and
poorly capture moving discontinuities. High-order methods are often plagued by spurious oscillations
around the discontinuities which can lead to convergence to a different solution than the entropy
solution due to the nonlinearity of the underlying problem.

The high-resolution schemes are methods developed to provide both high-order accuracy and
convergence to the entropy solution; examples include the monotone upstream-centered schemes
for conservation laws (MUSCL), weighted essentially non-oscillatory (WENO) schemes, and limiter
methods. These methods work by ensuring that a numerical flux, sometimes called an approximatie
Riemann solver in this context, is chosen such that the conservation laws are enforced locally and
the resulting method is a monotone scheme. If the unknown is a scalar and a piecewise-constant
approximation is used, these two properties, together, ensure that the high-order accurate solution
is stable and converges to the entropy solution. However, if the numerical solution is not piecewise
constant, the stability of the method no longer follows from the form of the numerical fluxes and
instead has to be enforced with a flux or slope limiter method [139], which is applied as post-
processing after a time step to render the method stable.

Although successful, the high resolution methods are not easily able to handle complex geometries
and boundary conditions while achieving high-order accuracy, as is typical of finite volume methods.
Classical CG-FEM schemes for nonlinear conservation laws do not enforce conservation locally, nor
do they satisfy stability properties like total variation boundedness (TVB). Furthermore, they give
rise to systems of nonlinear equations that have to be solved implicitly and are very computationally
expensive [30].

Runge–Kutta discontinuous Galerkin (RKDG) schemes [44, 47, 48, 49, 50] make a compromise
between the high resolution schemes and CG-FEM approaches by incorporating the local conserva-
tion and slope limiting into a finite element framework.

2.2.4 RKDG methods

An overview of RKDG schemes can be found in the review paper [50], from where we summarize
the main ideas applicable to the problems and numerical schemes considered in this thesis. For the
spatial discretization of any conservation law in the form of (2.23), we seek 𝑢ℎ ∈ 𝑊 𝑝

ℎ such that
(︂
𝜕𝑢ℎ

𝜕𝑡
, v
)︂

𝒯ℎ

− (𝑓(𝑢ℎ), ∇v)𝒯ℎ
+
⟨
̂︀𝑓 (𝑢ℎ) · 𝑛, v

⟩
𝜕𝒯ℎ

= 0 (2.24)

for all 𝑣 ∈ 𝑊 𝑝
ℎ on every 𝐾 ∈ 𝒯ℎ. The numerical flux ̂︀𝑓 (𝑢ℎ) (approximate Riemann solver) is

incorporated into the method locally. As this is first time we have written a weak form in common
DG-FEM notation, we remark that the position of the test function (·, v) as compared to (v, ·) is
completely immaterial, as this is simply shorthand for an integral inner product. We will make use of
both notations in this thesis. The semi-discretization of the resulting system of ordinary differential
equations can be written as

ℳ𝑑𝑢ℎ

𝑑𝑡
= ℱ(𝑢ℎ), (2.25)

23

where ℳ is the mass matrix (·, 𝑣)𝒯ℎ
and ℱ(𝑢ℎ) is the (nonlinear) operator containing the remainder

of the discretization. Due to the discontinuous nature of the approximation space 𝑊 𝑝
ℎ , the mass

matrix 𝑀 is block diagonal and hence easily invertible; for convenience, we multiply equation (2.25)
by the inverse mass matrix ℳ−1 to obtain a more convenient expression of equation (2.25),

𝑑

𝑑𝑡
𝑢ℎ = ℒ(𝑢ℎ), (2.26)

where the nonlinear operator ℒ = ℳ−1ℱ(𝑢ℎ), corresponds to the residual in §7.5. We discretize
the resulting ODE system in equation (2.26) using an explicit RK method with stages 𝑠 = 1, . . . , 𝑆
(for details, see §7.5) to integrate 𝑢ℎ at time 𝑘 to 𝑘 + 1:

𝑢
(𝑠)
ℎ =

𝑠−1∑︁

𝑖=1
𝑏𝑖𝑘𝑖, 𝑘𝑖 = 𝑢

(𝑖)
ℎ + 𝑐𝑖Δ𝑡ℒℎ

(︁
𝑢

(𝑖)
ℎ

)︁
(2.27)

concluding by setting 𝑢𝑘+1
ℎ = 𝑢𝑆

ℎ . To ensure stability, each intermediate value 𝑘𝑖 should be such that
|𝑢(𝑖)

ℎ | ≥ |𝑘𝑖| in some semi-norm | · |, because as a consequence, |𝑢𝑘
ℎ| ≥ |𝑢𝑘+1

ℎ |. After each stage of time
integration, RKDG methods often apply a generalized slope limiter ΛΠℎ, a nonlinear projection
operator devised so that |𝑢(𝑖)

ℎ ≥ |ΛΠℎ𝑘𝑖|, ensuring stability. The explicit RK method modified to
include the slope limiter is

𝑢
(𝑠)
ℎ = ΛΠℎ

(︃
𝑠−1∑︁

𝑖=1
𝑏𝑖𝑘𝑖

)︃
, 𝑘𝑖 = 𝑢

(𝑖)
ℎ + 𝑐𝑖Δ𝑡ℒℎ

(︁
𝑢

(𝑖)
ℎ

)︁
(2.28)

When high-order polynomials are used to represent the solution, a high-order RK method that
matches the accuracy of the spatial discretization should also be employed. In these cases, use of
slope limiters is crucial to ensure the stability of the method in the presence of shocks or steep
gradients, however the use of a slope limiter can be avoided in cases where the solution is known to
be sufficiently smooth [50].

One of the advantages of the RKDG methods is that they are highly local—the only informa-
tion required to evolve the PDE in time is information from adjacent elements, due to the spatial
discretization and the explicit time marching.

2.2.5 The linear advection equation

The choice 𝑓(𝑢) = 𝑐𝑢 leads to the linear advection equation where the known advective velocity
field 𝑐(𝑥), with 𝑥 ∈ Ω, is presumed to be divergence-free. This equation is sometimes confusingly
called the “transport equation” and is different than the original steady-state problem introduced
in [218], as well as the equation considered in §2.2.9. We write the first-order linear PDE as

𝜕𝑢

𝜕𝑡
+ ∇ · (𝑐𝑢) = 0, (2.29)

along with suitable initial and boundary conditions. Direct substitution for 𝑓(𝑢) in equation (2.24)
results in the weak form of the advection equation on each element, where we seek 𝑢ℎ such that

(︂
𝜕𝑢ℎ

𝜕𝑡
, v
)︂

𝐾

− (𝑐𝑢ℎ, ∇v)𝐾 + ⟨̂︂𝑐𝑢ℎ · 𝑛, v⟩𝜕𝐾 = 0 (2.30)

for all 𝑣 ∈ 𝑊 𝑝
ℎ on every 𝐾 ∈ 𝒯ℎ. To complete definition of the method, we must define the numerical

trace ̂︂𝑐𝑢ℎ on 𝜕𝐾. It can be proven that the method is consistent and stable if we choose a numerical
flux of the form

̂︂𝑐𝑢ℎ = 𝑐 {{𝑢ℎ}} + 𝐶J𝑢ℎ𝑛K. (2.31)

24

If we take 𝐶 to be a constant, we can write the numerical flux equivalently as

̂︂𝑐𝑢ℎ =

⎧
⎪⎨
⎪⎩

𝑐𝑢𝐷, 𝑒 ∈ Γ𝑖𝑛

𝑐 {{𝑢ℎ}} + 𝐶J𝑢ℎ𝑛K, 𝑒 ∈ 𝜀∘

𝑐𝑢ℎ, 𝑒 ∈ Γ𝑜𝑢𝑡

(2.32)

taking account of the boundaries. If we take

𝐶 = 1
2 |𝑐 · 𝑛|, (2.33)

we have the classical upwind flux. If instead we choose 𝐶 = 1
2 |𝑐|, we obtain the Lax-Friedrichs

numerical flux,
̂︂𝑐𝑢ℎ = 𝑐 {{𝑢ℎ}} + 1

2 |𝑐|J𝑢ℎ𝑛K. (2.34)

The DG-FEM schemes are locally conservative, since equation (2.30) must hold for all v ∈ 𝑊 𝑝
ℎ and

in particular for constant v = 1, implying
(︂
𝜕𝑢ℎ

𝜕𝑡
, 1
)︂

𝐾

+ ⟨̂︂𝑐𝑢ℎ · 𝑛, 1⟩𝜕𝐾 = 0 (2.35)

and, hence, local conservativity. We can employ a suitable numerical flux and an appropriate explicit
time marching scheme to obtain an RKDG scheme for linear advection.

2.2.6 Forming the discrete operators

We turn our attention to the discretization of the weak form in equation (2.30).
We can write the inner product 𝑏(𝑢, v) as the action of a discrete operator 𝐵 on a vector of nodal

coefficients 𝑢ℎ

𝑏(𝑢, v) = (𝑐𝑢ℎ, ∇v)𝐾 = 𝐵𝑢ℎ = 𝐵𝑖𝑗𝑢𝑗 ,

where we have expanded the numerical solution 𝑢ℎ in terms of the nodal the basis functions. Namely
𝑢ℎ = 𝑢𝑗𝜃𝑗 where the index 𝑗 = 1, . . . , 𝑛𝑏 denotes the basis function over the mesh element 𝐾, and
the integral operator can be written

(𝑐𝑢𝑗𝜃𝑗 , ∇v)𝐾 =
∫︁

𝐾

𝑢𝑗𝜃𝑗𝑐 · ∇v 𝑑𝐾

=
∫︁

𝐾

(︂
𝑐𝑥
𝜕𝜃𝑖

𝜕𝑥
+ 𝑐𝑦

𝜕𝜃𝑖

𝜕𝑦

)︂
𝜃𝑗𝑢𝑗 𝑑𝐾

=
∫︁

̂︀𝐾

[︃
𝑐𝑥

(︃
𝜕̂︀𝜃𝑖

𝜕𝜉
𝐽 inv

11 + 𝜕̂︀𝜃𝑖

𝜕𝜂
𝐽 inv

12

)︃
+ 𝑐𝑦

(︃
𝜕̂︀𝜃𝑖

𝜕𝜉
𝐽 inv

21 + 𝜕̂︀𝜃𝑖

𝜕𝜂
𝐽 inv

22

)︃]︃
̂︀𝜃𝑗 |𝐽(𝑥)| 𝑑 ̂︀𝐾

⏟ ⏞
𝐵𝑖𝑗

𝑢𝑗

(2.36)

for two dimensions specifically, where 𝐽 inv denotes the inverse Jacobian of the transformation from
the master element to the physical element 𝐾. We discretize the equations with a quadrature rule
consisting of weights 𝑤𝑞, and the quadrature points 𝜉𝑞, 𝑞 = 1, . . . , 𝑛𝑞, over the master element ̂︀𝐾
and their corresponding locations 𝑥(𝜉𝑞) on the physical element 𝐾 as

𝐵𝑖𝑗 ≈
∑︁

𝑞

𝑤𝑞

[︃
𝑐𝑥

(︃
𝐽 inv

11 (𝜉𝑞)𝜕
̂︀𝜃𝑖

𝜕𝜉
(𝜉𝑞) + 𝐽 inv

12 (𝜉𝑞)𝜕
̂︀𝜃𝑖

𝜕𝜂
(𝜉𝑞)

)︃

+ 𝑐𝑦

(︃
𝐽 inv

21 (𝜉𝑞)𝜕
̂︀𝜃𝑖

𝜕𝜉
(𝜉𝑞) + 𝐽 inv

22 (𝜉𝑞)𝜕
̂︀𝜃𝑖

𝜕𝜂
(𝜉𝑞)

)︃]︃
̂︀𝜃𝑗(𝜉𝑞)|𝐽(𝑥(𝜉𝑞))|.

25

Expressing this operator as a series of matrix and vector operations is possible, but becomes awkward
and unwieldy due to the many sets of indices and the need to distinguish Hadamard products from
matrix products. Instead, we turn to the language of tensor contraction, which can express the
products concisely.

Let the indices 𝑘, 𝑙 denote the coordinate directions on the master element 𝜉𝑘 and on the physical
element 𝑥𝑙, respectively. Let the index 𝑞 index the quadrature point and weight, and the indices 𝑖, 𝑗
index the basis function defined on the element 𝐾. Then we may introduce the tensors Θ, 𝑆, 𝐽−1, 𝐽
and 𝐶, along with the first-order tensor 𝑤 such that

Θ𝑞𝑗 ≡ ̂︀𝜃𝑗(𝜉𝑞), 𝑆𝑘𝑞𝑖 ≡ 𝜕̂︀𝜃𝑖

𝜕𝜉𝑘
(𝜉𝑞), 𝐽−1

𝑞𝑙𝑘 ≡ 𝐽 inv
𝑙𝑘 (𝜉𝑞),

𝐽𝑞 ≡ |𝐽(𝑥(𝜉𝑞))|, 𝐶𝑞𝑙 ≡ 𝑐𝑙(𝑥(𝜉𝑞)), 𝑤𝑞 ≡ 𝑤(𝜉𝑞),
(2.37)

in which case, we can succinctly write

𝐵𝑖𝑗 =
∑︁

𝑞

𝑤𝑞 𝐶𝑞𝑙 𝐽
−1
𝑞𝑙𝑘 𝑆𝑘𝑞𝑖 𝐽𝑞 Θ𝑞𝑗 , (2.38)

and the tensor contraction notation handles all the complexity of the sum operations and immediately
generalizes to any spatial dimension, whereas equation (2.36) is specific to two dimensional problems.

Similarly, we can write the inner product 𝑒(̂︀𝑢, v) = ⟨̂︂𝑐𝑢ℎ · 𝑛, v⟩𝜕𝐾 as the action of a discrete
operator 𝐸 on the vector ̂︂𝑐𝑢ℎ.

𝑒(̂︀𝑢, v) = ⟨̂︂𝑐𝑢ℎ · 𝑛, v⟩𝜕𝐾 = 𝐸̂︂𝑐𝑢ℎ = 𝐸𝑙𝑖𝑗 [̂︂𝑐𝑢ℎ]𝑙𝑗 ,

We could have written the operator as acting on the numerical solution directly, as with the ex-
pression 𝐸′𝑢ℎ. However, the operator 𝐸′ would in general need to operate on the entire numerical
solution 𝑢ℎ, because ̂︂𝑐𝑢ℎ is constructed using information from neighboring elements. In this case,
the operator 𝐸′ would need to specify the operation for constructing the numerical flux as well as
integrating it over the element boundary and could become very complicated, since there are many
choices for the numerical flux ̂︂𝑐𝑢ℎ.

Instead, we presume that the chosen form of the numerical flux ̂︂𝑐𝑢ℎ has been computed over the
element boundary 𝜕𝐾.

⟨̂︂𝑐𝑢ℎ · 𝑛, v⟩𝜕𝐾 =
∫︁

𝜕𝐾

̂︂𝑐𝑢ℎ𝑗 · 𝑛 v 𝑑𝜕𝐾

=
∑︁

𝑒∈𝜕𝐾

∫︁

𝑒

(̂︁𝑐𝑢𝑥𝑛𝑥 +̂︁𝑐𝑢𝑦𝑛𝑦) 𝜃𝑖 𝑑𝑒

=
∑︁

𝑒∈𝜕𝐾

∫︁

̂︀𝑒
(̂︁𝑐𝑢𝑥 𝑛𝑥 +̂︁𝑐𝑢𝑦 𝑛𝑦) ̂︀𝜃𝑖|𝐽𝑒(𝑥(𝜉))| 𝑑̂︀𝑒

(2.39)

where, since we have written the integral specifically in the two-dimensional case, the boundary has
spatial coordinates 𝑥(𝜉) parametrized by the single coordinate 𝜉 over the master edge ̂︀𝑒. Expanding
̂︂𝑐𝑢ℎ = ̂︀𝑓𝑙𝑗𝜃𝑗 , where the index 𝑗 = 1, . . . , 𝑛𝑒 denotes the basis functions enumerated over a face 𝑒 on
the element boundary 𝜕𝐾 and the index 𝑙 once again denotes the coordinate direction 𝑥𝑙 on the
physical element boundary. This integral is discretized with quadrature as

⟨̂︂𝑐𝑢ℎ · 𝑛, v⟩𝑒∈𝜕𝐾 =
∑︁

𝑞

𝑤𝑞

(︃
𝑛𝑥̂︂𝑐𝑢ℎ

⃒⃒
⃒⃒
𝑥(𝜉𝑞)

+ 𝑛𝑦̂︂𝑐𝑢ℎ

⃒⃒
⃒⃒
𝑥(𝜉𝑞)

)︃
̂︀𝜃𝑖(𝜉𝑞)|𝐽(𝑥(𝜉𝑞))|

There are some important implementation details here. The coefficients 𝑢𝑗 are typically stored at
each nodal point 𝑗 on the element faces, but the numerical flux must be evaluated at the quadrature
points. Let the indices 𝑘, 𝑙 denote the coordinate directions on the master element 𝜉𝑘 and on the
physical element 𝑥𝑙, respectively. Let the index 𝑞 index the quadrature point and weight, and the

26

indices 𝑖, 𝑗 index the basis function defined on the element boundary 𝜕𝐾. If the tensors Θ𝑒, 𝑁 , and
vectors 𝐽𝑒 and 𝑤 are defined as

Θ𝑒
𝑞𝑖 ≡ ̂︀𝜃𝑖(𝜉𝑞), 𝑁𝑞𝑙 ≡ 𝑛𝑙(𝑥(𝜉𝑞)), 𝐽𝑒

𝑞 ≡ |𝐽(𝑥(𝜉𝑞))|, 𝑤𝑞 ≡ 𝑤(𝜉𝑞),

Then in order to compute the flux, we need both the velocity field 𝑐 evaluated at the quadrature
points, as well as the interpolation of the nodal solution to the quadrature points.

̂︂𝑐𝑢ℎ

⃒⃒
⃒⃒
𝑥(𝜉𝑞)

= ̂︀𝑓 (𝑐(𝑥𝑞)Θ𝑞𝑖𝑢𝑖) ≡ ̂︀𝐹𝑙𝑞

where, as in equation (2.30), ̂︀𝑓(·) denotes the flux evaluation function. The complete edge integral
is

⟨̂︂𝑐𝑢ℎ · 𝑛, v⟩𝑒∈𝜕𝐾 =
∑︁

𝑞

𝑤𝑞 𝐽
𝑒
𝑞 𝑁𝑞𝑙 Θ𝑒

𝑞𝑖
̂︀𝐹𝑙𝑞 (2.40)

Finally, to include the entire integral over each edge 𝑒 ∈ 𝜕𝐾 and making use of the lifting operator
L𝑒 defined on each edge to re-index the edge integral contributions to the interior of the element 𝐾,
the discrete operator 𝐸𝑙𝑖𝑗 is

𝐸𝑞𝑙𝑖 =
∑︁

𝑒∈𝜕𝐾

L𝑒
(︀
𝑤𝑞 𝐽

𝑒
𝑞 𝑁𝑞𝑙 Θ𝑒

𝑞𝑖

)︀
(2.41)

such that
[⟨̂︂𝑐𝑢ℎ · 𝑛, v⟩𝜕𝐾]

𝑖
= 𝐸𝑞𝑙𝑖

̂︀𝐹𝑙𝑞. (2.42)

2.2.7 Temporal discretization

For the temporal discretization, we begin with a simple forward Euler scheme
(︂
𝜕𝑢ℎ

𝜕𝑡
, v
)︂

𝐾

≈

(︃
𝑢𝑘+1

ℎ − 𝑢𝑘
ℎ

Δ𝑡 , v
)︃

𝐾

(2.43)

yielding the explicit scheme
(︃
𝑢𝑘+1

ℎ

Δ𝑡 , v
)︃

𝐾

=
(︀
𝑐𝑢𝑘

ℎ, v
)︀

𝐾
−
⟨
̂︂𝑐𝑢ℎ

𝑘 · 𝑛, v
⟩

𝜕𝐾
+
(︂
𝑢𝑘

ℎ

Δ𝑡 , v
)︂

𝐾

(2.44)

where, again making use of the expansion 𝑢ℎ = 𝑢𝑗𝜃𝑗 ,
(︁ 𝑢ℎ

Δ𝑡 , v
)︁

𝐾
=
∫︁

𝐾

1
Δ𝑡𝑢𝑗𝜃𝑗𝜃𝑖 𝑑𝐾

=
∫︁

̂︀𝐾
̂︀𝜃𝑖|𝐽(𝑥(𝜉))|̂︀𝜃𝑗 𝑑 ̂︀𝐾

⏟ ⏞
𝑀𝑖𝑗

𝑢𝑗

Δ𝑡
(2.45)

𝑀𝑖𝑗 ≈
∑︁

𝑞

𝑤𝑞
̂︀𝜃𝑖(𝜉𝑞)|𝐽(𝑥(𝜉𝑞))|̂︀𝜃𝑗(𝜉𝑞) (2.46)

Let the tensors and indices be defined as in equation (2.37), then

𝑀𝑖𝑗 =
∑︁

𝑞

𝑤𝑞𝐽𝑞Θ𝑞𝑖Θ𝑞𝑗 . (2.47)

𝑀
𝑢𝑘+1

ℎ

Δ𝑡 = 𝐵𝑢𝑘
ℎ − 𝐸

[︁
̂︂𝑐𝑢ℎ

𝑘
]︁

+𝑀
𝑢𝑘

ℎ

Δ𝑡 (2.48)

27

which can be painlessly implemented in the form

𝑢𝑘+1
ℎ = 𝑢𝑘

ℎ + Δ𝑡𝑀−1
(︁
𝐵𝑢𝑘

ℎ − 𝐸
[︁
̂︂𝑐𝑢ℎ

𝑘
]︁)︁
. (2.49)

Remark. The 𝑀−1 operator is specific to each element 𝐾 due to the Jacobian determinant |𝐽(𝑥)|.
However, if the physical elements are affine transformations of the master element ̂︀𝐾, the matrix
𝑀−1 need not be computed nor stored, since 𝐽 and hence |𝐽 | is constant over the physical element
𝐾, allowing

𝑀𝑖𝑗 = |𝐽 |
∫︁

̂︀𝐾
̂︀𝜃𝑗
̂︀𝜃𝑗 𝑑 ̂︀𝐾,= |𝐽 |̂︁𝑀𝑖𝑗 (2.50)

and we can write the matrix 𝑀 as a function of the template mass matrix ̂︁𝑀 , computed once over
the master element and stored along with its inverse ̂︁𝑀 inv. This form admits the inverse

𝑀−1 = 1
|𝐽 |
̂︁𝑀 inv, (2.51)

which can be inexpensively applied, since ̂︁𝑀 inv is the same for all elements. The only storage
requirement is |𝐽 |. This idea is the basis of all the quadrature-free integration schemes we will
encounter in §2.4.

Extensions to higher order temporal schemes completes the description of the RKDG method for
linear advection. Instead of the specific temporal discretization in equation (2.43), we can instead
write the semi-discretization

𝑑𝑢ℎ

𝑑𝑡
= ℒℎ(𝑢ℎ)

where ℒℎ(𝑢ℎ) = 𝑀−1 (𝐵𝑢ℎ − 𝐸 [̂︂𝑐𝑢ℎ]). Just as in equation (2.26), this system of ODEs can be
discretized using an explicit RK scheme of choice (see §7.5).

2.2.8 Numerical experiments

2.2.8.1 Discretization of divergence term

Equation (2.30) demonstrates that we represent the integral of the divergence over each element as

(∇ · 𝐶, v)𝐾 = − (𝐶, ∇v)𝐾 +
⟨
̂︀𝐶 · 𝑛, v

⟩
𝜕𝐾

. (2.52)

Therefore, as a numerical experiment, we can monitor how quickly the right-hand side of equation
(2.52) converges to zero, for a choice of divergence-free velocity field 𝐶 for which the scalar field ∇ ·
𝐶 /∈ 𝑊 𝑝

ℎ , that is, a scalar field which can not be exactly represented in the polynomial approximation
space.

We can use the approach in Appendix section 7.1.0.3 to construct the non-trivial, divergence-free
vector field

𝐶 =
[︀
−𝑒−𝑦 sin(𝜋𝑥), −𝜋

(︀
𝑥 sin(𝜋𝑥) + 𝑒−𝑦 cos(𝜋𝑥)

)︀]︀
(2.53)

shown in Figure 2-2. This velocity field is a good test case because of its nontrivial inflow boundary
Γin on the top and bottom domain boundaries. The left and right sides of the domain have 𝐶 ·𝑛 = 0
and are therefore part of the outflow boundary Γout. Numerically, the top and bottom inflow
boundaries are (approximately)

Γtop
in = [−0.873, 0.873],

Γbottom
in = [−1, 1] ∖ (−0.565, 0.565),

respectively. Measuring convergence numerically corresponds to forming the discrete operators as

28

−1 0 1

x

−1

0

1

y

C = [−e−y sin(πx),−π (x sin(πx) + e−y cos(πx))]

Γin

Figure 2-2: The divergence-free vector field in equation (2.53).

described in section 2.2.6 and evaluating

(∇ · 𝐶, v)𝐾 ≈ −𝐵𝐶𝐾 + 𝐸 ̂︀𝐶𝐾

on each element 𝐾 ∈ 𝒯ℎ and computing the error over the domain at different resolutions. Doing so
recovers optimal order 𝑝+ 1 convergence rates (not shown), and verifies the implementation of the
discrete operators.

2.2.8.2 Rotating Gaussian pulse

We consider a velocity field 𝑐 = [2𝜋𝑦, −2𝜋𝑥], which corresponds to a rigid body rotation about
the origin in the clockwise direction. We solve the linear advection equation (2.29) on the domain
Ω = [−1, 1]2. The initial condition is a Gaussian pulse given by

𝑢0 = exp
(︀
−120

(︀
𝑥2 + (𝑦 − 0.5)2)︀)︀ ,

shown in Figure 2-3. The exact solution is such that at time 𝑡 = 1, the initial distribution will have
returned to its initial position, and any error in the numerical solution can be measured against the
initial condition 𝑢0. As boundary conditions, we specify that 𝑢ℎ = 0 on Γin.

Figure 2-3: RKDG advection of Gaussian pulse on a coarse grid with 𝑝 = 5 quad elements.

29

x

−0.4
−0.2

0.0
0.2

0.4
0.6

0.8
1.0

y

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.02

0.04

0.06

0.08

0.10

x

−0.2
0.0

0.2
0.4

0.6
0.8

1.0

y

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Figure 2-4: RKDG advection of Gaussian pulse on a coarse grid with 𝑝 = 5 quad elements.

We consider quadrilateral meshes obtained by splitting a regular 𝑛×𝑛 Cartesian grid into a total
of 𝑛2 quadrilateral elements, giving uniform element sizes of ℎ = 2/𝑁 . We present the convergence
behavior in the 𝐿2-norm in Figure 2-5. An explicit fourth-order Runge-Kutta scheme is used for
time integration, with the time-step chosen small enough such that temporal error is small compared
to the spatial error (Δ𝑡 = 1𝑒 − 3 for 𝑝 = 4). We see that the approximate solution 𝑢ℎ converges
optimally at rate 𝑝+ 1 or better for 𝑝 = 1, 2, 3, 4.

10−16× 10−2

h

10−5

10−4

10−3

10−2

10−1

||u
h
−
u
|| L

2

RKDG Convergence

p = 1

p = 2

p = 3

p = 4

slope p+ 1

Figure 2-5: Convergence behavior of the RKDG scheme for the rotating pulse test case.

2.2.9 Implicit treatment of first-order DG systems
The transport equation is

𝜎𝑢+ ∇ · (𝑐𝑢) = 𝑓, in Ω
𝑢 = 𝑢𝐷 on Γin

(2.54)

where the inflow boundary Γin is defined as Γin = {𝑥 ∈ 𝜕Ω: 𝑐 · 𝑛 < 0}, and the outflow boundary
is defined as Γout ≡ 𝜕Ω ∖ Γin. The parameter 𝜎 > 0 is a reaction rate [196]. Multiplying the PDE
by a test function 𝑣 and integrating by parts, we have the weak formulation

∫︁

Ω
(𝜎𝑢𝑣 − 𝑐𝑢 · ∇𝑣) +

∫︁

𝜕Ω
𝑐𝑢 · 𝑛𝑣 =

∫︁

Ω
𝑓𝑣 (2.55)

30

The DG discretization seeks 𝑢ℎ ∈ 𝑊 𝑝
ℎ such that

(𝜎𝑢ℎ, w)𝐾 − (𝑐𝑢ℎ, ∇w)𝐾 + ⟨̂︂𝑐𝑢ℎ · 𝑛, w⟩𝜕𝐾 = (𝑓, w)𝐾 (2.56)

for all 𝐾 ∈ 𝒯ℎ. To complete the definition of the method, we need to define the numerical flux ̂︂𝑐𝑢ℎ

and sum the local problems over all the elements of the computational domain. It turns out that the
numerical flux in equation (2.32) with 𝐶 > 0 is sufficient for stability of the method. However, unlike
the RKDG schemes for linear advection, this DG scheme is implicit. Substituting the numerical flux,
the element-local equations become

(𝜎𝑢ℎ, w)𝐾 −(𝑐𝑢ℎ, ∇w)𝐾 +⟨̂︂𝑐𝑢ℎ · 𝑛, w⟩𝜕𝐾∩𝜀∘ +⟨𝑐𝑢ℎ · 𝑛, w⟩𝜕𝐾∩Γout
= (𝑓, w)𝐾 −⟨𝑐𝑢𝐷 · 𝑛, w⟩𝜕𝐾∩Γin

,

which has a discrete solution that, summed over all elements 𝐾 ∈ 𝒯ℎ, yields the following weak
problem: find 𝑢ℎ ∈ 𝑊 𝑝

ℎ such that

(𝜎𝑢ℎ, w)𝒯ℎ
− (𝑐𝑢ℎ, ∇w)𝒯ℎ

+ ⟨̂︂𝑐𝑢ℎ · 𝑛, w⟩𝜕𝒯ℎ∖Γin
= (𝑓, w)𝒯ℎ

− ⟨𝑐𝑢𝐷 · 𝑛, w⟩Γin

for all w ∈ 𝑊 𝑝
ℎ . This weak formulation can be expressed with the discrete bilinear form 𝑎ℎ(𝑢ℎ, w) =

ℓ(w). In principle, this completes the description of the DG method.

It is illustrative to consider the formation of the discrete operators on the element faces, since
this is the first implicit DG method we’ve considered. Formation of the numerical flux terms involves
assembling the jumps and averages in terms of the knowns of the linear system.

It is convenient to perform the integrals over each face rather than over each element boundary.
In the case of the interior edges,

⟨̂︂𝑐𝑢ℎ · 𝑛, w⟩𝜕𝒯ℎ∖Γ =
∑︁

𝑒∈𝜀∘

⟨̂︂𝑐𝑢ℎ, Jw𝑛K⟩𝑒 .

Using the definition of the numerical flux, as well as expanding the mean and jump operators for a
single interior edge 𝑒 ∈ 𝜀∘,

⟨̂︂𝑐𝑢ℎ, Jw𝑛K⟩𝑒 = ⟨𝑐 {{𝑢ℎ}} + 𝜏J𝑢ℎ𝑛K, Jw𝑛K⟩𝑒

=
⟨𝑐

2
(︀
𝑢+

ℎ + 𝑢−
ℎ

)︀
+ 𝜏

(︀
𝑢+

ℎ 𝑛
+ + 𝑢−

ℎ 𝑛−)︀ , w+𝑛+ + w−𝑛−
⟩

𝑒

=
⟨(︁𝑐

2𝑢
+
ℎ + 𝜏𝑢+

ℎ 𝑛
+
)︁

+
(︁𝑐

2𝑢
−
ℎ + 𝜏𝑢−

ℎ 𝑛−
)︁
, w+𝑛+ + w−𝑛−

⟩
𝑒
,

resulting in four contributions:

𝐸++ =
⟨𝑐

2𝑢
+
ℎ + 𝜏𝑢+

ℎ 𝑛
+, w+𝑛+

⟩
𝑒
, 𝐸+− =

⟨𝑐
2𝑢

+
ℎ + 𝜏𝑢+

ℎ 𝑛
+, w−𝑛−

⟩
𝑒
,

𝐸−+ =
⟨𝑐

2𝑢
−
ℎ + 𝜏𝑢−

ℎ 𝑛−, w+𝑛+
⟩

𝑒
, 𝐸−− =

⟨𝑐
2𝑢

−
ℎ + 𝜏𝑢−

ℎ 𝑛−, w−𝑛−
⟩

𝑒
,

where, for example, 𝐸+−
𝑖𝑗 is formed with the usual numerical integration over the master edge using

the finite element expansion of the solution 𝑢+
ℎ = 𝑢+

𝑗 𝜑
+
𝑗 (𝑥)

𝐸+−
𝑖𝑗 ≈

∑︁

𝑞

𝑤𝑞

(︂
1
2𝑐𝑙(𝑥(𝜉𝑞)) + 𝜏𝑛+

𝑙 (𝑥(𝜉𝑞))
)︂
̂︀𝜑+

𝑗 (𝜉𝑞)
(︁
̂︀𝜑−

𝑖 (𝜉𝑞)𝑛−
𝑙 (𝑥(𝜉𝑞))

)︁
|𝐽𝑒|
⃒⃒
⃒⃒
𝑥(𝜉𝑞)

where there is a sum over the physical coordinate 𝑙 by Einstein convention to handle the inner
product. The remaining operators are computed similarly. Now we have laid the groundwork for
implicit (H)DG-FEM schemes arising in the solution of second-order problems.

31

2.3 HDG methods for second-order, elliptic problems
The benefits of DG-FEM come at a price; namely, the increase in total degrees of freedom as a result
of the discontinuous approximation spaces and element-wise decoupling of the solution. In particular,
for implicit elliptic and parabolic problems, the increase in the size of the linear system can outweigh
the benefits of a DG-FEM approach. Hybridizable discontinuous Galerkin (HDG) methods were
first introduced for second-order elliptic problems in Cockburn [42] in order to mitigate the cost of
the discontinuous representation of the solution. In HDG schemes, the globally coupled unknowns
have support on the element interfaces only, resulting in a DG approximation and convergence
properties at a cost similar to classical FEM [43, 124, 191]. The differences in degree of freedom
distribution for CG-FEM, DG-FEM, and HDG are schematically illustrated in Figure 2-6. In light
of these benefits, recent research has extended HDG methods to a wide variety of implicit problems
[193, 194, 195, 197, 207, 243, 244, 246]. However, for large-scale computations, hybridization alone is
often insufficient to overcome memory and time-to-solution limitations, resulting in ongoing research
[73, 79, 134, 225, 224] and partially motivating the work completed in this thesis.

Figure 2-6: Globally coupled degrees of freedom for CG-FEM (left), DG-FEM (center), and HDG-
FEM (right). Reproduced from previous chapter.

The purpose of this section is to provide an overview of the HDG methodology applied to a
simple model problem in the interest of exposition. The techniques and ideas employed in the model
problem will generalize well to the more complicated problems considered in the remainder of the
text.

The HDG methods we will consider in this context are mixed methods. Mixed methods refer
to finite element methods where more than one approximation space is used to approximate the
quantities of interest in the problem [34]. For example, in the case of the numerical solution of the
Stokes equations with classical CG-FEM techniques, different approximation spaces can be used to
treat the velocity and pressure [196]. In other mixed methods, an auxiliary variable is introduced
to the differential form of the governing equations and is solved as an additional problem unknown.
This approach is common in DG-like schemes with higher than first-order spatial derivatives (e.g.,
diffusion problems) in order to preserve problem consistency and stability [110, 264]. Such is the
case in the following model problem [243, 246].

2.3.1 The model problem
Consider the boundary value problem (BVP) consisting of the Poisson equation, subject to the
Dirichlet and Neumann boundary conditions:

−∇ · (𝜅∇𝑢) = 𝑓 in Ω,
𝑢 = 𝑔𝐷 on Γ𝐷,

𝜅∇𝑢 · 𝑛 = 𝑔𝑁 on Γ𝑁 .

(2.57)

We consider the mixed formulation of the boundary value problem by introducing an auxiliary
variable 𝑞 = 𝜅∇𝑢:

𝑞 − 𝜅∇𝑢 = 0 in Ω,
−∇ · 𝑞 = 𝑓 in Ω,

𝑢 = 𝑔𝐷 on Γ𝐷,

𝑞 · 𝑛 = 𝑔𝑁 on Γ𝑁 .

(2.58)

32

In addition to the approximation spaces introduced in §2.2.2, we also consider the space 𝑀𝑝
ℎ(𝑔𝐷) ≡

{𝜇 ∈ 𝑀𝑝
ℎ : 𝜇 = P𝑔𝐷 on Γ𝐷} where P denotes the 𝐿2-projection into the space

{︀
𝜇
⃒⃒
𝜕Ω ∀𝜇 ∈ 𝑀𝑝

ℎ

}︀
. Fig-

ure 2-1b visually illustrates the spaces defined in equation (3.4.1) using an exploded view of the
curvilinear mixed mesh depicted earlier in Figure 2-1a. Boundary edges are colored differently to
emphasize that the degrees of freedom on boundary edges may or may not be a problem unknown,
if the boundary edge lies on Γ𝑁 or Γ𝐷, respectively.

2.3.2 Weak formulation

To formulate the HDG methodology, we solve a local DG problem on each element 𝐾 ∈ 𝒯ℎ, and solve
a global problem on an “element edge space”, which enforces transmission conditions and domain
boundary conditions. The global solution is then supplied as boundary data to each element locally
as boundary conditions (problem data), from which the interior solution can be reconstructed by
solving each of the element-local systems.

We consider the model problem (2.58). On each 𝐾 ∈ 𝒯ℎ, for the given data 𝑓
⃒⃒
𝐾

and ̂︀𝑢ℎ

⃒⃒
𝜕𝐾

, we
seek (𝑞ℎ, 𝑢ℎ) ∈ 𝑉 𝑝(𝐾) ×𝑊 𝑝(𝐾) as the solution of the element-local problem

(︀
𝜅−1𝑞ℎ, 𝑣

)︀
𝐾

+ (𝑢ℎ, ∇ · 𝑣)𝐾 − ⟨̂︀𝑢ℎ, 𝑣 · 𝑛⟩𝜕𝐾 = 0 ∀𝑣 ∈ 𝑉 𝑝(𝐾),
(𝑞ℎ, ∇𝑤)𝐾 − ⟨̂︀𝑞ℎ · 𝑛, 𝑤⟩𝜕𝐾 = (𝑓, 𝑤)𝐾 ∀𝑤 ∈ 𝑊 𝑝(𝐾),

(2.59)

which represents a weak variational form of the original problem in equation (2.58) multiplied by
test functions 𝑣 and 𝑤 and integrated by parts over the element 𝐾. The choice of weak variational
form is not unique, and different options are discussed in [110], but we proceed using equation (2.59)
without loss of generality. We define

̂︀𝑞ℎ · 𝑛 ≡ 𝑞ℎ · 𝑛 + 𝜏 (̂︀𝑢ℎ − 𝑢ℎ) on 𝜕𝐾 (2.60)

where 𝜏 is assumed to be known. Since ̂︀𝑞ℎ is a function of ̂︀𝑢ℎ, if ̂︀𝑢ℎ is known on 𝜕𝐾, the element-
local problem is solvable. Further, if ̂︀𝑢ℎ is known on the element interfaces 𝜀, then ̂︀𝑢ℎ is also known
on every element boundary 𝜕𝐾 and every element-local problem can be solved independently. To
determine ̂︀𝑢ℎ globally, we take ̂︀𝑢ℎ ∈ 𝑀𝑝

ℎ and impose the transmission condition that the normal
component of the numerical flux ̂︀𝑞ℎ be single-valued on the element edge space:

⟨Ĵ︀𝑞ℎ · 𝑛K, 𝜇⟩𝜕𝒯ℎ
= ⟨P𝑔𝑁 , 𝜇⟩Γ𝑁

, ∀𝜇 ∈ 𝑀𝑝
ℎ (𝑔𝐷) . (2.61)

For PDEs with diffusion, 𝑞 ∝ ∇𝑢 can be interpreted as a diffusive flux. We expect that, physically,
the normal component of the diffusive flux can not jump across interfaces [66]; this is a physical
interpretation of the transmission condition in equation (2.61). By summing over all mesh elements
and imposing the continuity of the normal component of the numerical flux [191], the complete weak
problem can be written as follows: find (𝑞ℎ, 𝑢ℎ, ̂︀𝑢ℎ) ∈ (𝑉 𝑝

ℎ , 𝑊
𝑝
ℎ , 𝑀

𝑝
ℎ) such that

(︀
𝜅−1𝑞ℎ, 𝑣

)︀
𝒯ℎ

+ (𝑢ℎ, ∇ · 𝑣)𝒯ℎ
− ⟨̂︀𝑢ℎ, 𝑣 · 𝑛⟩𝜕𝒯ℎ

= 0 ∀𝑣 ∈ 𝑉 𝑝
ℎ

(𝑞ℎ, ∇𝑤)𝒯ℎ
− ⟨̂︀𝑞ℎ · 𝑛, 𝑤⟩𝜕𝒯ℎ

= (𝑓, 𝑤)𝒯ℎ
∀𝑤 ∈ 𝑊 𝑝

ℎ

⟨̂︀𝑞ℎ · 𝑛, 𝜇⟩𝜕𝒯ℎ∖Γ𝐷
+ ⟨̂︀𝑢ℎ − P𝑔𝐷, 𝜇⟩Γ𝐷

= ⟨P𝑔𝑁 , 𝜇⟩Γ𝑁
∀𝜇 ∈ 𝑀𝑝

ℎ

(2.62)

In principle, this completes the formulation of the HDG methodology for linear diffusion problems.
However, we have not made precise the procedure for expressing ̂︀𝑞ℎ and ̂︀𝑢ℎ in terms of the element-
local data. Moreover, by more closely examining the formulation, we can gain insight into the
properties and features of the method.

33

2.3.2.1 The global problem for ̂︀𝑢ℎ: weak form

We now discuss the discrete equivalent of the continuous approach above whereby we eliminate the
variables 𝑞ℎ and 𝑢ℎ in equation (2.62) and form a single equation for ̂︀𝑢ℎ, a procedure we will refer
to as “static condensation”. For the purposes of handling the Dirichlet boundary conditions, we
introduce a new unknown 𝜆ℎ ∈ 𝑀𝑝

ℎ(0) that vanishes on Γ𝐷 such that

̂︀𝑢ℎ =
{︃
𝜆ℎ, on 𝜕𝒯ℎ ∖ Γ𝐷,

P𝑔𝐷, on Γ𝐷.
(2.63)

Substituting the flux definitions (2.60) and (2.63) into (2.62), we can rewrite the problem as: find
(𝑞ℎ, 𝑢ℎ, 𝜆ℎ) ∈ (𝑉 𝑝

ℎ , 𝑊
𝑝
ℎ , 𝑀

𝑝
ℎ(0)) such that

(︀
𝜅−1𝑞ℎ, 𝑣

)︀
𝒯ℎ

+ (𝑢ℎ, ∇ · 𝑣)𝒯ℎ
− ⟨𝜆ℎ, 𝑣 · 𝑛⟩𝜕𝒯ℎ

= ⟨P𝑔𝐷, 𝑣 · 𝑛⟩Γ𝐷

− (∇ · 𝑞ℎ, 𝑤)𝒯ℎ
+ ⟨𝜏𝑢ℎ, 𝑤⟩𝜕𝒯ℎ

− ⟨𝜏𝜆ℎ, 𝑤⟩𝜕𝒯ℎ
= (𝑓, 𝑤)𝒯ℎ

+ ⟨𝜏P𝑔𝐷, 𝑤⟩Γ𝐷

⟨𝑞ℎ · 𝑛, 𝜇⟩𝜕𝒯ℎ∖Γ𝐷
− ⟨𝜏𝑢ℎ, 𝜇⟩𝜕𝒯ℎ∖Γ𝐷

+ ⟨𝜏𝜆ℎ, 𝜇⟩𝜕𝒯ℎ∖Γ𝐷
= ⟨P𝑔𝑁 , 𝜇⟩Γ𝑁

(2.64)

for all (𝑣, 𝑤, 𝜇) ∈ (𝑉 𝑝
ℎ , 𝑊

𝑝
ℎ , 𝑀

𝑝
ℎ(0)). Note that 𝜇 ∈ 𝑀𝑝

ℎ(0) removes all global basis functions on Γ𝐷

from the unknowns of the system. The Dirichlet boundary conditions are enforced directly by the
definition of ̂︀𝑢ℎ in (2.63).

Following the approach in [191], we define the following linear operators and bilinear forms:

𝑎(𝑞, v) =
(︀
𝜅−1𝑞, v

)︀
𝒯ℎ

𝑏(𝑢, v) = (𝑢, ∇ · v)𝒯ℎ

𝑐(𝜆,𝑣) = ⟨𝜆, v · 𝑛⟩𝜕𝒯ℎ
𝑟(v) = ⟨P𝑔𝐷, v · 𝑛⟩𝒯ℎ

𝑑(𝑢,w) = ⟨𝜏𝑢, w⟩𝜕𝒯ℎ
𝑓(w) = (𝑓, w)𝒯ℎ

+ ⟨𝜏P𝑔𝐷, w⟩Γ𝐷

𝑒(𝜆,w) = ⟨𝜏𝜆, w⟩𝜕𝒯ℎ
ℓ(𝜇) = ⟨P𝑔𝑁 , 𝜇⟩Γ𝑁

𝑔(𝑢, 𝜇) = ⟨𝜏𝑢, 𝜇⟩𝜕𝒯ℎ

ℎ(𝜆, 𝜇) = ⟨𝜏𝜆, 𝜇⟩𝜕𝒯ℎ

(2.65)

and we can write equation (2.64) compactly as

𝑎(𝑞ℎ, v) + 𝑏(𝑢ℎ, v) − 𝑐(𝜆ℎ, v) = 𝑟(v),
𝑏(w, 𝑞ℎ) − 𝑑(𝑢ℎ, w) + 𝑒(𝜆ℎ, w) = − 𝑓(w),
𝑐(𝑞ℎ, 𝜇) − 𝑔(𝑢ℎ, 𝜇) + ℎ(𝜆ℎ, 𝜇) = ℓ(𝜇),

(2.66)

which represents the weak form of the problem. We could perform the discretization of (2.64)
directly, which would lead to the linear system

⎡
⎣
𝐴 𝐵 −𝐶
𝐵𝑇 −𝐷 𝐸
𝐶𝑇 −𝐺 𝐻

⎤
⎦
⎡
⎣
𝑄
𝑈
Λ

⎤
⎦ =

⎡
⎣
𝑅

−𝐹
𝐿

⎤
⎦ . (2.67)

If we were to assemble the discretized linear system (2.67) with the unknowns arranged in the order
[(𝑞ℎ, 𝑢ℎ)𝐾 ∀𝐾 ∈ 𝒯ℎ, 𝜆ℎ], the linear system would have features as shown in Figure 2-8, where
𝑄, 𝑈, Λ are the vectors of degrees of freedom for 𝑞ℎ, 𝑢ℎ, 𝜆ℎ, respectively. The important feature is
that elemental unknowns 𝑞ℎ and 𝑢ℎ correspond to a block-diagonal structure due to the discontinuous
nature of the approximation spaces. To see this, take the inner product

(︀
𝜅−1𝑞ℎ, 𝑣

)︀
𝒯ℎ

, without loss
of generality. Choose a nodal basis of 𝑣 such that 𝑞ℎ =

∑︀
𝑖 𝑞𝑖𝜃𝑖 for global basis functions 𝜃𝑖. Then

the quantity
(︀
𝜅−1𝑞𝑖𝜃𝑖, 𝜃𝑗

)︀
𝒯ℎ

can only be nonzero if 𝜃𝑖 and 𝜃𝑗 are on the same element 𝐾, due to the
definition of 𝑉 𝑝

ℎ . In particular,

34

Figure 2-7: Mesh corresponding to the discretization in Figure 2-8

Figure 2-8: Direct discretization of (2.67) (bottom) with zero Dirichlet boundary conditions (𝑔𝐷 = 0)
for a four-element mesh (top). The unknown vector of the system is ordered (𝑞ℎ, 𝑢ℎ)𝐾 ∀𝐾 (green,
blue), followed by 𝜆ℎ (black).

[︂
𝐴 𝐵
𝐵𝑇 −𝐷

]︂
(2.68)

is block diagonal, which implies that 𝑄 and 𝑈 can be eliminated on each element, resulting in a
linear system in terms of Λ alone. To perform this elimination, we write the system (2.67) as:

[︂
𝐴 𝐵
𝐵𝑇 −𝐷

]︂ [︂
𝑄
𝑈

]︂
−
[︂
𝐶

−𝐸

]︂
Λ =

[︂
𝑅

−𝐹

]︂
,

[︀
𝐶𝑇 −𝐺

]︀ [︂𝑄
𝑈

]︂
+𝐻Λ = 𝐿.

Since, by eliminating the block system for 𝑄 and 𝑈 ,
[︂
𝑄
𝑈

]︂
=
[︂
𝐴 𝐵
𝐵𝑇 −𝐷

]︂−1(︂[︂
𝑅

−𝐹

]︂
+
[︂
𝐶

−𝐸

]︂
Λ
)︂
, (2.69)

substitution yields a single equation in terms of Λ:

[︀
𝐶𝑇 −𝐺

]︀ [︂ 𝐴 𝐵
𝐵𝑇 −𝐷

]︂−1(︂[︂
𝑅

−𝐹

]︂
+
[︂
𝐶

−𝐸

]︂
Λ
)︂

+𝐻Λ = 𝐿,

35

forming the linear system KΛ = F, where

K = 𝐻 +
[︀
𝐶𝑇 −𝐺

]︀ [︂ 𝐴 𝐵
𝐵𝑇 −𝐷

]︂−1 [︂
𝐶

−𝐸

]︂
,

F = 𝐿−
[︀
𝐶𝑇 −𝐺

]︀ [︂ 𝐴 𝐵
𝐵𝑇 −𝐷

]︂−1 [︂
𝑅

−𝐹

]︂
.

(2.70)

As is typical in finite element implementations, these contributions are computed for each element
(independently of the other elements) and are assembled to form the global linear system KΛ = F.

Once the linear system has been solved, 𝑄 and 𝑈 can be computed directly from Λ by a modifi-
cation of equation (2.69). We refer to this step as the “reconstruction” of the unknowns 𝑞ℎ and 𝑢ℎ.
The traced solution variable ̂︀𝑢ℎ contains both the computed unknown fluxes 𝜆ℎ and the boundary
conditions P𝑔𝐷. Alternatively, if 𝑔𝐷 is used in 𝑢̂ rather than the 𝐿2 projection P𝑔𝐷, the recon-
structed solution will obey the boundary conditions exactly, but this can pollute the convergence
order if 𝑔𝐷 lies outside the polynomial space. Hence, we can write

[︂
𝑄
𝑈

]︂
=
[︂
𝐴 𝐵
𝐵𝑇 −𝐷

]︂−1(︂[︂ 0
−𝐹

]︂
+
[︂
𝐶

−𝐸

]︂
̂︀𝑢ℎ

)︂
, (2.71)

where the operator 𝐹 is defined as 𝐹 = (𝑓, w)𝒯ℎ
in equation (2.71) rather than as defined in equation

(2.65)—a slight abuse of notation. 1 We take a moment to remark upon the form of the elemental
contributions K and right-hand side contributions F, since their construction and application will
have important implications for iterative solution techniques. The matrix inverse present in both
K and F represents the parametrization of the element-local degrees of freedom to the global edge
space, and is fundamental to the HDG methodology—such an inverse is not required for continuous
Galerkin schemes. Assuming a static mesh in time, this inverse ought to be computed once and
stored (ideally, in a memory-friendly way), and applied when forming either K or F.

2.3.3 Boundary condition treatment
We take a moment to address treatment of Dirichlet boundary conditions in the formation of the
linear system. Due to definition (2.63), all boundary data appears only on the right hand side of
equation (2.64). This choice is important to the structure of the discretized linear system for 𝜆ℎ.
Deferring the details of how to discretize the continuous operators for the moment, if definition

Figure 2-9: Sparsity patterns of K with implicit (left) and explicit (right) treatment of Dirichlet
boundary conditions.

(2.63) is not made, and 𝜆ℎ is instead sought in the space 𝑀𝑝
ℎ , the Dirichlet boundary conditions will

1This is because the Dirichlet information 𝑔𝐷 is encapsulated in ̂︀𝑢ℎ.

36

be treated implicitly, resulting in a nonsymmetric linear system KΛ = F, as shown in Figure 2-9.
Therefore, this definition is not merely a frivolous detail, but has computational implications and
results in a more smaller, symmetric linear system.

2.3.4 The HDG Algorithm

The steps to compute the solution 𝑞ℎ and 𝑢ℎ using the HDG methodology are summarized in Figure
2-10. We will consider various modifications to this algorithm in the interest of computational
efficiency in this work. It bears repeating that computation of the element-local contributions
K𝐾 , F𝐾 as well as the elemental reconstruction of 𝑞𝐾

ℎ and 𝑢𝐾
ℎ can be done independently of every

other element. Both steps are embarrassingly parallelizable. The solution of the global linear system
KΛ = F represents the portion of the algorithm where elemental information is coupled through the
edge space unknowns in the approximation space 𝑀𝑝

ℎ .

HDG Algorithm(ℰ):
for 𝐾 ∈ 𝒯ℎ

compute elemental contributions K𝐾 , F𝐾 (2.70)
scatter(K, F, ℰ , K𝐾 , F𝐾)

𝜆ℎ ← solve KΛ = F
𝑢̂ℎ ← 𝜆ℎ ∪ 𝑔𝐷

for 𝐾 ∈ 𝒯ℎ

reconstruct 𝑞𝐾
ℎ , 𝑢𝐾

ℎ ←
[︁

𝐴 𝐵
−𝐵𝑇 𝐷

]︁−1 (︁[︁0
𝐹

]︁
+
[︁

𝐶
𝐸

]︁
̂︀𝑢𝐾

ℎ

)︁

𝑞ℎ, 𝑢ℎ ← 𝑞𝐾
ℎ , 𝑢𝐾

ℎ

return 𝑞ℎ, 𝑢ℎ

scatter(K, F, ℰ , K𝐾 , F𝐾):
for 𝐾 ∈ 𝒯ℎ

𝛼← ℰ(𝐾) ∖ Γ𝐷

𝐽, 𝐼 ← meshgrid(𝛼, 𝛼)
K[𝐼[:], 𝐽 [:]]← K[𝐼[:], 𝐽 [:]] + K𝐾

F[𝐼[:]]← F[𝐼[:]] + F𝐾

return

Figure 2-10: HDG algorithm

Indeed, both algorithmic features are desirable and demonstrate the advantages of the HDG
approach. While a standard discontinuous Galerkin scheme involves the spatially duplicated interior
degrees of freedom in the spaces 𝑊 𝑝

ℎ and 𝑉 𝑝
ℎ , the only globally-coupled unknowns in the HDG

approach are the edge space degrees of freedom, drastically reducing the linear system size.

2.3.5 Assembly of the global linear system

Assembly of the global linear system from the elemental contributions K𝐾 and F𝐾 requires a mapping
between the volume nodes and global unknowns in 𝑀𝑝

ℎ(𝑔𝐷).
We define the “lifting” operator L, a permutation matrix that maps the nodes on the element

boundary 𝜕𝐾 to the ordering of volume nodes. Similarly, L𝑇 maps the volume nodes to nodes on
the element boundary 𝜕𝐾. The lifting operator L operator is computed once on the master element
̂︀𝐾. For details, see the implementation in Hesthaven and Warburton [110]. This operator allows
for transfer of information from the elemental volume nodes to boundary nodes and vice-versa. We
also define the local-to-global index map ℰ(𝐾) that maps the nodes on 𝜕𝐾 to the edge space nodes
in 𝑀𝑝

ℎ for each element 𝐾. The procedure for assembly of K is written in Figure 2-10, where the
meshgrid function returns the matrices resulting from the first and second elements of the Cartesian
product 𝛼× 𝛼 and 𝐼[:] refers to the vector formed by iterating over an array in a row-wise manner.
To make the index map procedure explicit, we refer to the example in Figure 2-11, which depicts the
node numbering around the triangular element 𝐾𝑡𝑟𝑖 for a two element mixed mesh. The boundary
nodes on 𝜕𝐾𝑡𝑟𝑖 are labeled from 1 to 12 counterclockwise, starting from edge node 1. The edge
space nodes have a global numbering, but only the nodes on the blue interior edge are unknowns
𝜆ℎ ∈ 𝑀𝑝

ℎ(𝑔𝐷).

37

1 2 3 4 5 6 7 8 9 10

sparsity pattern, LT

1

2

3

4

5

6

7

8

9

10

11

12

ℰ(𝐾𝑡𝑟𝑖) =
[︀
1 2 3 4 5 6 7 8 16 15 14 13

]︀

Figure 2-11: Illustration of the node numbering (left), lifting operator L𝑇 (right), and index map ℰ
(bottom) for the triangular element 𝐾𝑡𝑟𝑖 in the two element mesh. Nodes on the interior edge 𝜀∘

are blue, nodes on Dirichlet boundary edges 𝜀𝜕 ∈ Γ𝐷 are black, and volume nodes are grey.

2.3.6 Extension to time-dependent problems

Consider the time-dependent extension [196, 191] of the model problem in equation (2.58)

𝜕𝑢

𝜕𝑡
− ∇ · (𝜅∇𝑢) = 𝑓 in Ω × (0, 𝑇],

𝑢 = 𝑔𝐷 on Γ𝐷 × (0, 𝑇],
𝜅∇𝑢 · 𝑛 = 𝑔𝑁 on Γ𝑁 × (0, 𝑇],

𝑢 = 𝑢0 in Ω at 𝑡 = 0,

(2.72)

written as a system of first-order equations:

𝑞 − 𝜅∇𝑢 = 0 in Ω × (0, 𝑇],
𝜕𝑢

𝜕𝑡
− ∇ · 𝑞 = 𝑓 in Ω × (0, 𝑇],

𝑢 = 𝑔𝐷 on Γ𝐷 × (0, 𝑇],
𝑞 · 𝑛 = 𝑔𝑁 on Γ𝑁 × (0, 𝑇],

𝑢 = 𝑢0 in Ω at 𝑡 = 0.

(2.73)

We modify the element-local problem with a “method of lines” approach; on each 𝐾 ∈ 𝒯ℎ, for the
given data 𝑓

⃒⃒
𝐾

and ̂︀𝑢ℎ

⃒⃒
𝜕𝐾

, we seek (𝑞ℎ, 𝑢ℎ) ∈ 𝑉 𝑝(𝐾) ×𝑊 𝑝(𝐾) as the solution of the problem
(︀
𝜅−1𝑞ℎ, 𝑣

)︀
𝐾

+ (𝑢ℎ, ∇ · 𝑣)𝐾 − ⟨̂︀𝑢ℎ, 𝑣 · 𝑛⟩𝜕𝐾 = 0 ∀𝑣 ∈ 𝑉 𝑝(𝐾),
(︂
𝜕𝑢ℎ

𝜕𝑡
, 𝑤

)︂

𝐾

+ (𝑞ℎ, ∇𝑤)𝐾 − ⟨̂︀𝑞ℎ · 𝑛, 𝑤⟩𝜕𝐾 = (𝑓, 𝑤)𝐾 ∀𝑤 ∈ 𝑊 𝑝(𝐾).
(2.74)

The above equation can be discretized using a suitable time-marching scheme (for details, see §7.5);
we use 𝑎 to denote a generic time-stepping coefficient, from an IMEX [242, 246], DIRK, or backward
Euler scheme (𝑎 = 1, shown here). Making the same substitutions as above and using the operators
and bilinear forms introduced in (2.65), we have the following weak problem at time-level 𝑘, without

38

loss of generality: find (𝑞ℎ, 𝑢ℎ, 𝜆ℎ) ∈ (𝑉 𝑝
ℎ , 𝑊

𝑝
ℎ , 𝑀

𝑝
ℎ(0)) such that

𝑎(𝑞𝑘
ℎ, v) + 𝑏(𝑢𝑘

ℎ, v) − 𝑐(𝜆𝑘
ℎ, v) = 𝑟(v),

1
𝑎Δ𝑡𝑘𝑚(𝑢𝑘

ℎ, w) − 𝑏(w, 𝑞𝑘
ℎ) + 𝑑(𝑢𝑘

ℎ, w) − 𝑒(𝜆𝑘
ℎ, w) = 𝑓(w) + 1

𝑎Δ𝑡𝑘𝑚(𝑢𝑘−1
ℎ , w),

𝑐(𝑞𝑘
ℎ, 𝜇) − 𝑔(𝑢𝑘

ℎ, 𝜇) + ℎ(𝜆𝑘
ℎ, 𝜇) = ℓ(𝜇),

(2.75)

for all (v, w, 𝜇) ∈ (𝑉 𝑝
ℎ , 𝑊

𝑝
ℎ , 𝑀

𝑝
ℎ(0)), where 𝑚(𝑢, w) = (𝑢, w)𝒯ℎ

, and where boundary conditions
and forcing are evaluated at time 𝑡𝑘 or 𝑡𝑘+1.

2.3.7 Parallelization
HDG methods offer several well-known advantages over standard DG-FEM methods. In addition
to favorable convergence properties, hybridization of the system by introducing the space 𝑀𝑝

ℎ can
lead to a substantial reduction in globally-coupled degrees of freedom as compared to classical DG
methods. However, the complexities associated with the static condensation procedure introduce
a set of non-typical computational performance considerations as compared to other high-order
methods. In this section, we provide a brief discussion of practical computational considerations
specific to HDG schemes in the context of parallelization and matrix-free solvers. These topics are
often overlooked or unaddressed in the literature, with some discussion given in [124].

A commonly cited performance advantage of HDG is the embarrassingly parallel nature of the
assembly as well as the local reconstruction of the local numerical solution (𝑞ℎ, 𝑢ℎ) from 𝑢̂ℎ on the
element edges. Means that people brush this step off computationally, as a parallel implementation
should make a perfect speedup trivial. However, in practice, there are additional computational
considerations.

Though it may seem counter-intuitive, multi-threaded programs can sometimes run slower than
their single-threaded or serial counterparts. This is attributable to several factors. Overhead:
Threads require resources for creation, termination, and synchronization. The overhead of man-
aging multiple threads can slow down the program, especially if the computation performed by each
thread is not significant compared to this overhead. Contention: When multiple threads try to
access a shared resource simultaneously, contention can occur. This can lead to a situation called a
lock, where one thread has to wait for another to release a resource. In extreme cases, this can lead
to a slowdown known as lock contention, where the threads spend more time waiting to access the
resource than doing useful work. In this context, contention occurs in the assembly of the element-
local data into the global linear system. While the computation of the element local contributions
can be done independently, a lock must be placed on the degrees of freedom being scattered to in
the global linear system to ensure that no race condition occurs. Furthermore, the order in which
elemental data is scattered to the global linear system matters and must be ensured to be consistent.
Otherwise, as floating point arithmetic is not commutative, and the different threads are not guar-
anteed to receive work in the same order, each execution of the same code could produce numerically
different results. A large amount of computer science work has been done in devising algorithms
that ensure that these two conditions are met, while maintaining efficient implementations [10].

False sharing: Even if different threads are working on different data, if that data is close enough
in memory (i.e., in the same cache line), then the hardware can treat it as if it were shared. When
one thread updates its data, the hardware will think the entire cache line has been modified and
will have to update it across all the cores, leading to a significant slowdown. This is known as false
sharing. Load imbalance: If the work is not evenly distributed across threads, some threads may
finish their work early and sit idle, while others are still working. This is known as load imbalance.
It can result in the execution time of the program being dominated by the slowest thread. Non-
parallelizable tasks: Some tasks simply can’t be parallelized effectively due to their nature, they are
inherently serial (or “sequential”). This principle is encapsulated by Amdahl’s Law, which states
that the maximum improvement to a system’s performance is limited by the portion of the system
that can’t be parallelized. Memory limits: Every thread created uses some memory for its stack.
If the number of threads is too high, it can cause significant memory usage, potentially leading to

39

swapping if the system runs out of physical memory, which can drastically decrease performance.
Developing an efficient multi-threaded program requires careful design to minimize these issues.

This can involve techniques such as fine-tuning the number of threads, avoiding contention and false
sharing, balancing the load properly, and choosing appropriate data structures and synchronization
primitives. But even with all these considerations, there’s no guarantee that a multi-threaded
solution will always outperform a well-optimized single-threaded one. It highly depends on the
nature of the problem and the specific hardware the software is running on.

In our case, the synchronization work necessary to ensure no race condition while copying el-
emental contributions into the global linear system is highly sensitive to problem dimension and
polynomial order. This is due to a trade-off between the time required to compute the elemental
work, the overhead of starting and joining threads, and the synchronization requirements to ensure
the correct scattering of local data into the global linear system.

In the following, we discretize the model HDG problem at different polynomial orders such that
the global number of primal degrees of freedom are held constant. We evaluate the assembly times
using both serial and parallelized assembly. It turns out that for one-dimensional problems using

2 4 6 8
Polynomial order

10 3

10 2

10 1

100

101

102

W
al

l c
lo

ck
 ti

m
e

[s
]

10 DoF
Serial
Parallel

2 4 6 8 10
Polynomial order

10 DoF

2 4 6 8 10
Polynomial order

10 DoF

2D

Figure 2-12: Wall clock times for 2D HDG assembly at constant problem size, serial vs. parallel

2 4 6
Polynomial order

10 3

10 2

10 1

100

101

102

103

W
al

l c
lo

ck
 ti

m
e

[s
]

10 DoF
Serial
Parallel

2 4 6
Polynomial order

10 DoF

2 4 6
Polynomial order

10 DoF

3D

Figure 2-13: Wall clock times for 3D HDG assembly at constant problem sizes, serial vs. parallel

any polynomial order less than or equal to 𝑝 = 10, it is far more efficient to perform assembly in
serial as opposed to in parallel using multi-threading. This is because the problem dimension leads
to element-local systems small enough that the synchronization work between the threads to prevent
a race condition copying into the global linear system is much larger than the actual work on the
cell. From the 2D and 3D results shown in Figure 2-12 and Figure 2-13, there is a clear dependence
on polynomial order and problem size dictating whether a serial or parallel implementation should
be used.

40

Therefore, when it comes to software implementing HDG methods, parallelization must be ac-
companied by thorough profiling to ensure that the parallelization is actually beneficial, as that is not
always the case. For specific examples related to the applications considered in this thesis: the large
3D model-nested cases considered in §3 hugely benefit from a multi-threaded parallel implemen-
tation, but the Markov chain Monte Carlo samplers, which solve very many small HDG problems
during sampling, can be slowed down by more than an order of magnitude if multi-threading is
enabled.

2.4 Matrix-free schemes for HDG-FEM
In this section, we present quadrature-free and matrix-free implementations of the hybridizable
discontinuous Galerkin (HDG) method for second-order elliptic problems and their time-dependent
generalizations in two and three spatial dimensions.

Finite element codes typically employ Gaussian quadrature to evaluate discrete integral oper-
ators, as they provide an accurate and efficient means of computing spatial integrals. However,
discontinuous Galerkin (DG) schemes require the evaluation of both volume and face integrals and
no single quadrature rule can be used to compute both types of integrals to the same accuracy
[15, 16]. Furthermore, nodal discontinuous Galerkin schemes typically formulate the problem un-
knowns as the coefficients of a nodal polynomial basis on each element [110]. As a consequence, the
solution is expressed naturally through data at the nodal points on each element, and evaluation of
spatial integrals involves the interpolation of data to quadrature points.

The original quadrature-free schemes for discontinuous Galerkin finite elements were introduced
in [16], in the context of explicit schemes for hyperbolic systems. Quadrature-free discontinuous
Galerkin schemes are particularly efficient in an explicit setting because they eliminate the need to
interpolate nodal data to the quadrature points, significantly reducing the storage requirements and
operations necessary to form the boundary and interior integral operators for evolving the numerical
solution on each element. Subsequent developments have remained largely focused on the explicit
hyperbolic setting, including the shallow water equations [74, 189] and the level-set equations [177].

DG methods are often paired with explicit time discretization because the discontinuous nature of
the polynomial approximation spaces results in a mass matrix is block-diagonal by element and hence
cheaply inverted. However, a major drawback of DG schemes is the increase in degrees of freedom
associated with discontinuous approximation spaces. For implicit temporal discretizations, HDG
methods parametrize the relevant problem into one for the trace of the numerical solution on the mesh
skeleton, yielding a substantial reduction in globally-coupled degrees of freedom. Furthermore, HDG
solutions allow for element-wise post-processing which provides more accurate numerical solutions
than classical DG methods [43].

In [132], the authors make inroads into quadrature-based, matrix-free evaluation of implicit
HDG operators—however, the schemes therein rely on fast sum factorization techniques special-
ized to tensor-product quadrilateral and hexahedral elements, whereas the current work focuses on
techniques for more general finite elements. In particular, choosing a nodal basis collocated with a
quadrature scheme may require a higher-order nodal basis for tetrahedral and wedge finite elements.
Secondly, the schemes in [132] involve an HDG formulation in terms of both the primal variable and
its trace, whereas the present work focuses on the classical HDG formulation in terms of the trace
alone.

Matrix-free HDG schemes pose a numerical challenge because forming the operators for the
globally-coupled linear system requires a matrix inversion, rendering straightforward implementa-
tions inefficient in both memory and time. The primary contribution of this work is the construction
of a numerically efficient matrix-free evaluation for implicit HDG schemes, leveraging the templated
form of quadrature-free integral operators. However, the advantages of quadrature-free integration
come at the cost of accuracy. An important question considered in this work is the trade-off between
the computational advantages and the loss of accuracy due to the abandonment of quadrature. To
the best of our knowledge, there is no existing work comparing the accuracy and cost trade-offs for
quadrature-free and quadrature-based discretizations for implicit systems such as those considered

41

in [191, 192, 193, 194, 197].
This section represents the continuation of work done in [244], which compared quadrature-based

and quadrature-free discretizations of source terms in an HDG setting.
We focus primarily on schemes for the diffusion equation, because the HDG solvers for such

problems are readily generalized to a host of more complicated problems, including the linear and
nonlinear convection-diffusion equations [191, 197], the equations of biogeochemical ocean models
[244], the acoustic wave equation [193], and finite element projection methods for the incompressible
Navier–Stokes equations [246]. The matrix-free schemes contained herein are immediately applicable
to all of the aforementioned problems.

In section 2.4.1, we extend the quadrature-free approaches described in [15, 16, 110] to implicit
HDG methods. In section 2.4.2, we use the quadrature-free methodology to derive a novel set of
matrix-free schemes for implicit and explicit HDG discretizations. In section 2.4.4, we perform an
investigation of the trade-offs between accuracy and efficiency for quadrature-based and quadrature-
free HDG schemes.

2.4.1 Quadrature-free integration
We use 𝜉 to denote the coordinates on the reference finite element ̂︀𝐾. The physical coordinates 𝑥
on every element 𝐾 ∈ 𝒯ℎ can be expressed as a vector-valued transformation 𝑋 : ̂︀𝐾 → 𝐾 from the
reference element. Isoparametric finite element formulations approximate the transformation 𝑋 as
a linear combination of the nodal basis functions on the reference element, 𝑥 = 𝑋(𝜉) ≈

∑︀
𝑖 𝑥𝑖𝜓𝑖(𝜉).

We denote the Jacobian of the isoparametric transformation and its inverse as

ξ

x

x = X(ξ)

K̂

K

Figure 2-14: Transformation from the reference coordinate system to the physical coordinate system.

[𝐽(𝑥)]𝑖𝑗 = 𝜕𝑥𝑗

𝜕𝜉𝑖
,

[︀
𝐽−1(𝑥)

]︀
𝑖𝑗

= 𝜕𝜉𝑗

𝜕𝑥𝑖
,

along with its determinant |𝐽 | = det(𝐽(𝑥)). DG schemes involve both volume and surface integrals,
each of which requires isoparametric transformation data from the reference element and the ref-
erence edge [110]. We use 𝜁 to denote the coordinates on the reference edge ̂︀𝜀; the corresponding
transformation and its Jacobian are 𝑥 = 𝑋𝜀(𝜁) and 𝐽𝑒, respectively.

We define the following template operators on the reference element and edges, which can be
computed using only the nodal basis functions 𝜓(𝜉) and 𝜓𝜀(𝜁) defined on the reference element ̂︀𝐾
and edge ̂︀𝜀, respectively:

M𝑖𝑗 = (𝜓𝑖, 𝜓𝑗)̂︀𝐾 , S𝑘,𝑖𝑗 =
(︂
𝜓𝑖,

𝜕𝜓𝑗

𝜕𝜉𝑘

)︂

̂︀𝐾
, [M𝜀]𝑖𝑗 =

(︀
𝜓𝜀

𝑖 , 𝜓
𝜀
𝑗

)︀
̂︀𝜀 , M

𝜕 ̂︀𝐾 = 𝐼 ⊗ M𝜀 ∀𝜀 ∈ 𝜕 ̂︀𝐾,
(2.76)

where M
𝜕 ̂︀𝐾 is the mass matrix on the element boundary, defined as the block-diagonal Kronecker

product of the identity matrix with the reference edge mass matrix for each element face 𝐹 ∈ 𝜕𝐾.
Additionally, the lifting matrix L is the permutation matrix which re-indexes degrees of freedom on

42

the element boundary 𝜕𝐾 to the element interior 𝐾.

2.4.1.1 Formation of the discrete operators

The matrices in (2.64) are readily written as

𝐴𝑗𝑖 =
(︀
𝜅−1𝜃𝑖, 𝜃𝑗

)︀
𝒯ℎ
, 𝐵𝑗𝑖 = (𝜃𝑖, ∇ · 𝜃𝑗)𝒯ℎ

, 𝐶𝑗𝑖 = ⟨𝜃𝜀,𝑖, 𝜃𝑗 · 𝑛⟩𝜕𝒯ℎ

𝐷𝑗𝑖 = ⟨𝜏𝜃𝑖, 𝜃𝑗⟩𝒯ℎ
, 𝐸𝑗𝑖 = ⟨𝜏𝜃𝜀,𝑖, 𝜃𝑗⟩𝜕𝒯ℎ

, 𝐺𝑗𝑖 = ⟨𝜏𝜃𝑖, 𝜃𝜀,𝑗⟩𝜕𝒯ℎ
,

(2.77)

where 𝜃𝑖(𝑥) denote the physical space basis functions spanning the space 𝑉 𝑝
ℎ , 𝜃𝑖(𝑥) are the basis

functions spanning the space 𝑊 𝑝
ℎ , and 𝜃𝜀(𝑥) are the basis functions which span the space 𝑀𝑝

ℎ(0).
The operator 𝐻 is formed similarly. The right-hand side vectors are analogously

𝑅𝑗 = ⟨P𝑔𝐷, 𝜃𝑗 · 𝑛⟩Γ𝐷
, 𝐹𝑗 = (𝑓, 𝜃𝑗)𝒯ℎ

+ ⟨𝜏P𝑔𝐷, 𝜃𝑗⟩Γ𝐷
, 𝐿𝑗 = ⟨P𝑔𝑁 , 𝜃𝜀,𝑗⟩Γ𝑁

.

All integrals are mapped to the reference element through the isoparametric transformation (2.4.1).
For example, the volume integral 𝐵𝑗𝑖 could be computed over the element 𝐾 as

𝐵𝑗𝑖 =
(︂
𝜃𝑖,

𝜕𝜃𝑗

𝜕𝑥𝑗

)︂

𝐾

=
∫︁

̂︀𝐾
𝜓𝑖

[︃
𝑑∑︁

ℓ=1

𝜕𝜓𝑗

𝜕𝜉𝑘
𝐽−1

𝑘ℓ (𝑥)
]︃

|𝐽(𝑥)| 𝑑 ̂︀𝐾, (2.78)

where 𝜓𝑖 refers to the nodal basis functions over the reference element as in §2.4.1 and we have
made use of Einstein summation notation. Most finite element schemes approximate the integrals
in equation (2.78) with quadrature; that is,

𝐵𝑗𝑖 ≈
𝑛𝑞∑︁

𝑞=1
𝑤𝑞𝜓𝑖(𝜉𝑞)

[︃
𝑑∑︁

ℓ=1

𝜕𝜓𝑗(𝜉𝑞)
𝜕𝜉𝑘

𝐽−1
𝑘ℓ (𝑋(𝜉𝑞))

]︃
|𝐽(𝑋(𝜉𝑞))|,

where the indices 𝑞 = 1, . . . , 𝑛𝑞 and the points 𝜉𝑞 denote a set of elemental quadrature points with
weights 𝑤𝑞.

Surface integrals on the mesh interfaces are computed element-wise on the boundary 𝜕𝐾 with a
different quadrature set for which we denote the index 𝑞𝜀. For example, the surface integral 𝐶𝑗𝑖 can
be mapped to the reference edge and approximated with quadrature as

𝐶𝑗𝑖 = ⟨𝜃𝜀,𝑖, 𝜃𝑗 · 𝑛⟩𝜀 =
∫︁

̂︀𝜀
𝜓𝜀

𝑖

[︃
𝑑∑︁

ℓ=1
𝜓𝑗𝑛ℓ(𝑥)

]︃
|𝐽𝑒(𝑥)| 𝑑̂︀𝜀

≈
𝑛𝑞𝜀∑︁

𝑞𝜀=1
𝑤𝑞𝜀

𝜓𝜀
𝑖 (𝜁𝑞𝜀

)
[︃

𝑑∑︁

ℓ=1
𝜓𝑗(𝜁𝑞𝜀

) 𝑛ℓ(𝑋(𝜁𝑞𝜀
))
]︃

|𝐽𝑒(𝑋(𝜁𝑞𝜀
))|

While numerical quadrature enjoys favorable accuracy when integrating polynomial functions,
DG schemes require the evaluation of both volume and face integrals and no single quadrature rule
can be used to compute both types of integrals to the same accuracy [16]. Furthermore, while the
isoparametric transformation data 𝐽−1, |𝐽 |, and |𝐽𝑒| and normal vectors 𝑛 can be precomputed at
the elemental quadrature points and stored, any nodal data to be integrated must be interpolated
to the interior or edge quadrature points. In extensions of the elliptic problems considered in this
work to convection-diffusion and Navier–Stokes problems, this interpolation can become expensive
[246]. Finally, and most importantly in the context of matrix-free methods, assembly of the left-hand
side operators (2.77) require tensor contraction operations cast as matrix-vector products over the
reference element data and the transformation data.

Quadrature-free schemes, by contrast, compute spatial integrals using only nodal data. For a

43

finite element expansion 𝑎𝑖𝜃𝑖,

(𝑎𝑖𝜃𝑖, 𝜃𝑗)𝐾 =
∫︁

̂︀𝐾
𝑎𝑖𝜓𝑖(𝜉)𝜓𝑗(𝜉)|𝐽(𝑋(𝜉))| 𝑑 ̂︀𝐾

≈ 𝑎𝑖|𝐽(𝑋(𝜉𝑖))| (𝜓𝑖, 𝜓𝑗)̂︀𝐾 = 𝑎𝑖|𝐽 |𝑖M𝑖𝑗 .

(2.79)

It is evident that if the Jacobian is constant over the element 𝐾 that this approximation is exact. If
the transformation 𝑋(𝜉) is non-affine, 𝐽 will vary over space, introducing a transformation error to
the approximation of the integral [110]. However, despite the error induced with the approximation,
the form of integral operator expressed in equation (2.79) confers many computational advantages.
This manner of integration obviates the need to interpolate to a differing set of quadrature points.
The matrix-vector operations required with quadrature are reduced to much faster broadcasting
operations. Perhaps more importantly, quadrature-free approaches allow for transformational data
from the reference to physical element to be used directly with templated operators (2.76) defined
on the reference element and edges. The importance this decoupling plays in the construction of
matrix-free schemes specific to HDG methods is described in detail in §2.4.2.

We now present the quadrature-free forms of the operators in equation (2.64). It will be con-
venient to define the basis 𝜃𝜕𝐾

𝑖 (𝑥) ∈ 𝒫𝑝 ({𝑒 : 𝑒 ∈ 𝜕𝐾}), 𝑖 = 1, . . . , 𝑛𝑟, where the integer 𝑛𝑟 =∑︀
𝑒∈𝜕𝐾 dim𝒫𝑝(𝑒) is the number of nodal basis functions on the element boundary 𝜕𝐾; we denote

the corresponding basis functions on the boundary of the master element as 𝜓𝜕𝐾(𝜁). Since the basis
functions 𝜓𝜕𝐾 have support only on their respective faces and not on the entire boundary of the
reference element, it is apparent that

⟨︀
𝜓𝜕𝐾

𝑖 , 𝜓𝜕𝐾
𝑗

⟩︀
𝜕 ̂︀𝐾 = [M𝜕𝐾]𝑖𝑗 as specified in (2.76).

Quadrature-free HDG operators will make use of the nodal transformation data computed on
each physical element 𝐾 and its boundary 𝜕𝐾:

|𝐽 |𝑖 = |𝐽(𝑥𝑖)|, 𝑖 = 1, . . . , 𝑛𝑏,

|𝐽𝑒|𝑖 = |𝐽(𝑥𝑖)|, 𝑛ℓ𝑖 = ̂︀𝑛ℓ(𝑥𝑖), 𝑖 = 1, . . . , 𝑛𝑟,
(2.80)

where the index 𝑖 specifies basis function, ℓ indexes the physical space coordinate, and where the
integer 𝑛𝑏 denotes the number of nodal basis functions 𝜃𝑖(𝑥) on the interior of each physical element
𝐾.

To evaluate the quadrature-free analogue of (2.78), we make use of the fact that the vector-
valued test function 𝜃𝑖 is spanned by 𝜃𝑖 in each component. To that end, for each spatial dimension
𝑘 = 1, . . . , 𝑑, we form the discrete blocks

𝐵𝑘 =
𝑑∑︁

𝜉=1
diag

(︁
|𝐽 | ∘ 𝐽−1

𝑘𝜉

)︁
[S𝜉]𝑇 , (2.81)

where the ∘ operator denotes the point-wise or Hadamard product. By substituting in the finite
element expansions and testing against each basis function on element 𝐾, we form the following
elemental quadrature-free operators for the linear system in equation (2.64):

𝐴 =
(︀
𝜅−1(·), v

)︀
𝐾

= 𝐼 ⊗ diag (|𝐽 | ∘ 1/𝜅𝑘) M,

𝐵 = (· , ∇ · v𝑘)𝐾 =
∑︀𝑑

𝜉=1 diag(|𝐽 | ∘ 𝐽−1
𝑘𝜉)S𝑇

𝜉 ,

𝐶 = ⟨ · , v · 𝑛𝑘⟩𝜕𝐾 = L diag (|𝐽𝑒| ∘ 𝑛𝑘) M
𝜕 ̂︀𝐾 ,

𝐷 = ⟨𝜏 (·) , w⟩𝜕𝐾 = L diag (|𝐽𝑒| ∘ 𝜏) M
𝜕 ̂︀𝐾L𝑇 ,

𝐸 = ⟨𝜏 (·) , w⟩𝜕𝐾 = L diag (|𝐽𝑒| ∘ 𝜏) M
𝜕 ̂︀𝐾 ,

𝐺 = ⟨𝜏 (·) , 𝜇⟩𝜕𝐾 = diag (|𝐽𝑒| ∘ 𝜏) M
𝜕 ̂︀𝐾L𝑇 ,

𝐻 = ⟨𝜏 (·) , 𝜇⟩𝜕𝐾 = diag (|𝐽𝑒| ∘ 𝜏) M
𝜕 ̂︀𝐾 ,

(2.82)

where 𝐼 is the identity operator, and where the free index 𝑘 specifies the block component of the
operators 𝐵 and 𝐶.

44

Similarly, we form the right-hand side vectors:

𝑅𝑘 = ⟨P𝑔𝐷, v · 𝑛𝑘⟩𝜕𝐾 = LM
𝜕 ̂︀𝐾 (|𝐽𝑒| ∘ 𝑛𝑘 ∘ 𝑔𝐷) ,

𝐹 = (𝑓, w)𝐾 + ⟨𝜏P𝑔𝐷, w⟩𝜕𝐾∩Γ𝐷
= M (|𝐽 | ∘ 𝑓) + LM

𝜕 ̂︀𝐾 (|𝐽𝑒| ∘ 𝜏 ∘ 𝑔𝐷) ,
𝐿 = ⟨P𝑔𝑁 , 𝜇⟩𝜕𝐾∩Γ𝑁

= M
𝜕 ̂︀𝐾 (|𝐽𝑒| ∘ 𝑔𝑁) ,

(2.83)

where the integer 𝑘 = 1, . . . , 𝑑 represents coordinate direction. Let us stress once again that the
transformation and parameter data has been separated from the templated data on the reference
element, since the diag operator is applied through a broadcast rather than a matrix-vector product.
Furthermore, the right-hand side data can be integrated directly from the nodal values without
interpolation.

2.4.2 Methodology
In this section we derive a new set of matrix-free HDG schemes which make use of the quadrature-free
implementation described in §2.4.1.

2.4.2.1 Memory costs

Iterative methods scale well as compared to direct methods, but it is important to identify and
address the computational limiting factors both in memory and in time. In continuous Galerkin or
standard implicit discontinuous Galerkin finite element schemes, these limitations are immediately
apparent: storage and solution of the linear system are the memory and time-to-solution bottlenecks.
However, for HDG schemes, the static condensation procedure in which 𝑞ℎ and 𝑢ℎ are eliminated
to form a linear system for 𝜆ℎ complicates scalability.

Equation (2.70) implies that that even if the linear system is assembled and stored in memory,
computing the right–hand side F involves the forming the matrix inverse

𝒜𝑙𝑜𝑐 =
[︂
𝐴 𝐵

−𝐵𝑇 𝐷

]︂
(2.84)

or its factorization for every element. The inverse 𝐴−1
𝑙𝑜𝑐 represents the HDG parametrization of the

element-local PDE onto the edge space, and is distinct from the element-local contributions to a
standard CG or DG finite element scheme. Somewhat surprisingly, the application of this inverse is
an important computational consideration for large HDG problems.

Since the support of 𝜇 ∈ 𝑀𝑝
ℎ(0) is on the inter-element edges 𝜀 = 𝜕𝐾+ ∩ 𝜕𝐾−, the contributions

to each basis function on the edge 𝜀 are from basis functions on the boundaries 𝜕𝐾+ ∪ 𝜕𝐾−.
Therefore the linear system K consists of a block structure with blocks of square matrices of size
dim𝒫𝑝 [191]. Further, due to the contributions from 𝜕𝐾+ ∪𝜕𝐾−, in two-dimensional problems, each
block-row contains at most five non-zero blocks for triangular elements and seven non-zero blocks
for quadrilateral elements. In three-dimensional problems, there are at most seven non-zero blocks
for tetrahedral elements, nine blocks for wedge elements, and eleven blocks for hexahedral elements.

For a standard nodal basis on tensor-product elements in spatial dimension 𝑑 and at polynomial
order 𝑝, the number of degrees of freedom on each element interior 𝑛𝑏 is (𝑝+1)𝑑. The number of basis
functions on each edge 𝑛𝜀 is (𝑝 + 1)𝑑−1. The dimension of each 𝒜𝑙𝑜𝑐 matrix is

(︀
(𝑑+ 1)(𝑝+ 1)𝑑

)︀2,
and the dimension of each edge contribution matrix K𝜀 is (𝑝+ 1)𝑑−1. Therefore for a mesh with 𝑁𝐾

elements and 𝑁𝑒𝑑 interior edges, the number of non-zero entries required to store the 𝒜−1
𝑙𝑜𝑐 matrices

scales as 𝑁𝐾𝑝
2𝑑𝑑2, whereas the number of non-zero entries in the global linear system K scales as

𝑁𝑒𝑑𝑏𝑅 𝑝
2𝑑−2, with 𝑏𝑅 being the number of non-zero blocks per block-row of K.

For a three-dimensional domain of 𝑁 hexahedral elements per side, the number of elements
𝑁𝐾 as well as the number of edges 𝑁𝑒𝑑 scales as 𝑁3. The number of non-zero entries for 𝒜−1

𝑙𝑜𝑐

scales as 𝑁3𝑝6, whereas the number of non-zero entries for K scales as 𝑁3𝑝4. At even modest
polynomial orders, the memory required to store the matrix 𝒜−1

𝑙𝑜𝑐 on each element dominates the
memory requirements.

45

In summary, the primary concern with regards to memory limitations is the storage or computa-
tion of the 𝐴−1

𝑙𝑜𝑐 arrays. If these are not stored, then storage of the sparse linear system K becomes
the bottleneck.

Matrix-free methods are aimed at removing the memory bottleneck of K, but applying K im-
plicitly requires applying 𝐴−1

𝑙𝑜𝑐 — if the inverse is not available, applying K would require inversion
of each 𝐴𝑙𝑜𝑐 matrix at every iteration of every iterative solve at every time step. If we were able to
efficiently apply 𝐴−1

𝑙𝑜𝑐 without needing to store the array, we would have only the master-to-physical
element mapping data 𝐽−1, |𝐽 |, |𝐽𝑒| and the normal vectors as the comparatively modest memory
requirements, and we could devise an efficient matrix-free implementation for the HDG schemes
addressed earlier in this work.

We introduce the operator Ξ, defined as the Kronecker product 𝐼 ⊗ Ξ𝑘, where

Ξ𝑘 = M−1 diag
(︂
𝜅𝑘

|𝐽 |

)︂
.

Application of Ξ to the first equation in (2.70), assembled with the quadrature-free operators specified
in (2.82), results in the modified linear system

⎡
⎣
𝐼 𝐵̃ −𝐶
𝐵𝑇 −𝐷 𝐸
𝐶𝑇 −𝐺 𝐻

⎤
⎦
⎡
⎣
𝑄
𝑈
Λ

⎤
⎦ =

⎡
⎣
𝑅̃

−𝐹
𝐿

⎤
⎦ ,

where 𝐵̃, 𝐶, and 𝑅̃ represent the matrix-product of Ξ with the original operators 𝐵, 𝐶, and 𝑅,
respectively. Crucially, the quadrature-free representation of the operator 𝐴 in (2.82) allows manip-
ulation into the identity operator using only the templated mass matrix M on the reference element
and local transformation data |𝐽 |. Performing the same element-by-element static condensation
procedure as in §2.3, resulting in the equivalent global linear system K̃Λ = F̃, with

K̃ = 𝐻 +
[︀
𝐶𝑇 −𝐺

]︀ [︂ 𝐼 𝐵̃
𝐵𝑇 −𝐷

]︂−1 [︂
𝐶

−𝐸

]︂
,

F̃ = 𝐿−
[︀
𝐶𝑇 −𝐺

]︀ [︂ 𝐼 𝐵̃
𝐵𝑇 −𝐷

]︂−1 [︂
𝑅̃

−𝐹

]︂
.

(2.85)

The elemental contributions to the linear system 𝐾̃ and right-hand side 𝐹 make use of the modified
element-local system

𝒜𝑙𝑜𝑐 =
[︂
𝐼 𝐵̃
𝐵𝑇 −𝐷

]︂
.

Since the HDG scheme is a mixed formulation, the identity operator 𝐼 has size dim𝒫𝑝𝑑 where 𝑑
is the spatial problem dimension. On the other hand, the block operator 𝐷 has only size dim𝒫𝑝.
Therefore, the resultant matrix 𝒜𝑙𝑜𝑐 has a favorable sparsity pattern due to the identity operator,
and admits the efficiently-applied inverse

𝒜−1
𝑙𝑜𝑐 =

[︂
𝐼 + 𝐵̃𝑆−1𝐵𝑇 −𝐵̃𝑆−1

−𝑆−1𝐵𝑇 𝑆−1

]︂
,

where 𝑆 = −𝐷 −𝐵𝑇 𝐵̃ is the Schur complement with respect to the upper-left block of 𝐴𝑙𝑜𝑐.

Since only the lower-left block must be stored, use of this formulation implies an immediate
factor of 9 reduction of required memory for 2D problems and a factor of 16 reduction of required
memory for 3D problems. Similarly, if the memory reduction is such that 𝑆−1 can be computed and
stored, this approach removes the need for explicit matrix inversion, and the contribution operators
can be applied successively to the solution vector in an efficient manner.

46

2.4.3 Extensions
The methodology of employing quadrature-free operators (§2.4.1) to derive efficient matrix-free
schemes (§2.4.2) for the model problem (§2.3) can be readily extended to a rich set of additional
problems.

2.4.3.1 Time-dependent problems

The weak problem (2.64) can be readily extended to the time-dependent problem with the Galerkin
method of lines [191], where the weak form of the problem is modified as

(︀
𝜅−1𝑞ℎ, v

)︀
𝒯ℎ

+ (𝑢ℎ, ∇ · v)𝒯ℎ
− ⟨𝜆ℎ, v · 𝑛⟩𝜕𝒯ℎ

= ⟨P𝑔𝐷, v · 𝑛⟩Γ𝐷(︂
𝜕𝑢ℎ

𝜕𝑡
, w
)︂

𝒯ℎ

− (∇ · 𝑞ℎ, w)𝒯ℎ
+ ⟨𝜏𝑢ℎ, w⟩𝜕𝒯ℎ

− ⟨𝜏𝜆ℎ, w⟩𝜕𝒯ℎ
= (𝑓, w)𝒯ℎ

+ ⟨𝜏P𝑔𝐷, w⟩Γ𝐷

⟨𝑞ℎ · 𝑛, 𝜇⟩𝜕𝒯ℎ∖Γ𝐷
− ⟨𝜏𝑢ℎ, 𝜇⟩𝜕𝒯ℎ∖Γ𝐷

+ ⟨𝜏𝜆ℎ, 𝜇⟩𝜕𝒯ℎ∖Γ𝐷
= ⟨P𝑔𝑁 , 𝜇⟩Γ𝑁

(2.86)

where the time derivative term can be discretized using a time marching scheme of choice. For
example, using an 𝑠-stage diagonally-implicit Runge Kutta (DIRK) scheme leads to the relation

𝑢𝑛+1
ℎ = 𝑢𝑛

ℎ + Δ𝑡
𝑠∑︁

𝑖=𝑖

𝑏𝑖𝑢
(𝑖)
ℎ (2.87)

where the second equation in (2.86) is temporally discretized as
(︃

𝑢
(𝑖)
ℎ

𝑎𝑖𝑖Δ𝑡
, w
)︃

𝒯ℎ

− (∇ · 𝑞ℎ, w)𝒯ℎ
+ ⟨𝜏𝑢ℎ, w⟩𝜕𝒯ℎ

− ⟨𝜏𝜆ℎ, w⟩𝜕𝒯ℎ

= (𝑓, w)𝒯ℎ
+ ⟨𝜏P𝑔𝐷, w⟩Γ𝐷

+ 1
𝑎𝑖𝑖Δ𝑡

𝑚(𝑥(𝑖)
ℎ , w)𝒯ℎ

(2.88)

where 𝑥(𝑖)
ℎ = 𝑢𝑛 +

∑︀𝑖−1
𝑗=1 𝑎𝑖𝑗𝑢

(𝑗)
ℎ , using the RK coefficients 𝑎𝑖𝑗 , 𝑏𝑖, and 𝑐𝑖, to advance from 𝑢𝑛 to 𝑢𝑛+1.

Comparing the above to the operators introduced thus far, the only required modifications are

𝑑(𝑢,w) =
(︃

𝑢
(𝑖)
ℎ

𝑎𝑖𝑖Δ𝑡
, w
)︃

𝒯ℎ

+ ⟨𝜏𝑢ℎ, w⟩𝜕𝒯ℎ
,

𝑓(w) = (𝑓, w)𝒯ℎ
+ ⟨𝜏P𝑔𝐷, w⟩Γ𝐷

+ 1
𝑎𝑖𝑖Δ𝑡

𝑚(𝑥(𝑖)
ℎ , w)𝒯ℎ

,

(2.89)

which can be appropriately discretized into the corresponding discrete 𝐷 and 𝐹 operators and used
directly in the methodology specified in §2.4.2 without further modification.

2.4.3.2 Convection-diffusion equation

Extension to the time-dependent convection-diffusion equation

𝑞 − 𝑘∇𝑢 = 0,
𝜕𝑢

𝜕𝑡
+ ∇ · (𝑐𝑢) − ∇ · 𝑞 = 𝑓, in Ω,

𝑢 = 𝑔𝐷 on Γ𝐷,

𝜅∇𝑢 · 𝑛 = 𝑔𝑁 on Γ𝑁 .

(2.90)

written here as a first order system, is likewise straightforward. Similar to the time-dependent
schemes in §2.4.3.1, the addition of the convective term ∇ · (𝑐𝑢) does not affect the equation for the
gradient 𝑞; therefore the manipulations in §2.4.2 carry through as well, with appropriate modifica-

47

tions to the 𝑑(𝑢, w), 𝑒(𝜆, 𝑤), 𝑓(w) and ℎ(𝜇, 𝜆) operators. Using the modified HDG flux definition
̂︂𝑐𝑢ℎ + ̂︀𝑞ℎ = 𝑐̂︀𝑢ℎ + 𝑞ℎ + 𝜏(𝑢ℎ − ̂︀𝑢ℎ)𝑛 and the same time stepping scheme as the previous section, we
have

𝑑(𝑢,w) =
(︃

𝑢
(𝑖)
ℎ

𝑎𝑖𝑖Δ𝑡
, w
)︃

𝒯ℎ

+ ⟨𝜏𝑢ℎ, w⟩𝜕𝒯ℎ
− (𝑐𝑢ℎ, ∇w)𝒯ℎ

,

𝑒(𝜆,w) = ⟨(𝜏 − 𝑐 · 𝑛)𝜆ℎ, w⟩𝜕𝒯ℎ
,

𝑓(w) = (𝑓, w)𝒯ℎ
+ ⟨(𝜏 − 𝑐 · 𝑛)P𝑔𝐷, w⟩Γ𝐷

+ 1
𝑎𝑖𝑖Δ𝑡

𝑚(𝑥(𝑖)
ℎ , w)𝒯ℎ

,

ℎ(𝜆, 𝜇) = ⟨(𝜏 − 𝑐 · 𝑛)𝜆ℎ, w⟩𝜕𝒯ℎ∖Γ𝐷
,

(2.91)

(see [191] for details), representing the implicit treatment of the convective and diffusive fluxes. The
analogous discrete quadrature-free operators can be formed in a straightforward manner from the
definitions given in §2.4.1.1.

Alternatively, the convective term can be treated explicitly and the problem (2.90) can be in-
tegrated in time with an HDG-IMEX scheme. HDG projection methods for the incompressible
Navier–Stokes equations [246] can also be formulated as a series of implicit diffusion problems with
explicit advection and can be advanced in time with IMEX schemes as well. We remark that the
matrix-free discretizations and methods presented in this thesis §2.4.2 are agnostic to both these
alterations, and can be applied to any of the aforementioned problems.

2.4.4 Numerical experiments and discussion
2.4.4.1 Accuracy of quadrature-free and quadrature-based integration

In the first example, we study the performance of quadrature-based and quadrature-free numerics
for the diffusion-dominated case. We consider a steady diffusion problem (2.58) in which Ω =
(−1, 1) × (−1, 1), and 𝜅 = 1. We take the boundary Γ𝑁 to be the left-side of the domain and
Γ𝐷 = Γ ∖ Γ𝑁 . The source term and inhomogeneous boundary conditions 𝑔𝐷 and 𝑔𝑁 are chosen such
that the exact solution is

𝑢 = exp(𝑥+ 𝑦) sin(𝜋𝑥) sin(𝜋𝑦).

We consider a nodal basis [110] of polynomial order 𝑝 defined on both triangular and quadrilateral

1 0 1
1

0

1

(a) Cartesian triangular
mesh with ℎ/10 clockwise
vertex perturbation.

1 0 1
1

0

1

(b) Cartesian quadrilateral
mesh.

1 0 1
1

0

1

(c) Cartesian quadrilateral
mesh with ℎ/10 random
vertex perturbation.

Figure 2-15: Mesh configurations for numerical experiment 2.4.4.1.

meshes obtained by splitting the domain into a regular 𝑛 × 𝑛 Cartesian grid for a total of 2𝑛2 or
𝑛2 elements, respectively. Additionally, we consider meshes where the vertices have been perturbed
as shown in Figure 2-15. We present the convergence data in 𝐿2-norm for both quadrature-free
(QF) and quadrature-based (QB) schemes in Figure 2-16. All quadrature rules can be found in
[53, 54]. The HDG method results approximations which converge at optimal order 𝑝 + 1 for the
scalar variable 𝑢ℎ. For the perturbed triangular mesh and the Cartesian quadrilateral mesh, we
observe optimal convergence for both the QF and QB schemes. All triangular elements and affinely

48

10
2

10
1

10
010

10

10
8

10
6

10
4

10
2

10
0

L2 -
no

rm
 e

rr
or

Perturbed triangular

10
2

10
1

10
0

h

10
10

10
8

10
6

10
4

10
2

10
0

Cartesian quadrilateral

10
2

10
1

10
010

10

10
8

10
6

10
4

10
2

10
0

Perturbed quadrilateral

p = 1
p = 2
p = 3
p = 4

QB
QF
QB
QF

Figure 2-16: History of convergence in the 𝐿2-norm for the numerical solution 𝑢ℎ on the classes of
mesh in Figure 2-15. Dashed triangles indicate optimal convergence rates of order 𝑝+ 1.

transformed quadrilateral elements can be represented exactly by a linear transformation from the
master element, and therefore have no transformation error due to the isoparametric transformation.

On the other hand, the perturbed quadrilateral elements are non-affinely transformed from the
master element, inducing integration errors. We observe a pollution in convergence order and a
non-trivial loss in the accuracy of the QF approximation. Therefore, we heretofore assume straight-
sided elements with spatially constant Jacobians over each elements. We remark that for unique
elements where the transformation 𝑋(𝜉) is non-linear—for example, with curvilinear finite elements
representing a domain boundary—quadrature-based operators can be evaluated or stored for these
elements in particular to avoid transformation or aliasing errors, while the rest of the mesh elements
can be treated in a quadrature-free manner [110].

2.4.4.2 A 3D steady anisotropic diffusion problem

We consider a steady convection-diffusion problem a three-dimensional domain consisting of a six
layer extrusion of the horizontal domain Ω𝐻 = (−1, 1) × (−1, 1), represented with a mesh consisting
of wedge and hexahedral elements Figure 2-17a. We consider an anisotropic, spatially variable
diffusion coefficient 𝜅 = (1, 1, 𝑧2). The source term 𝑓 and boundary conditions are chosen such that
we have the exact solution

𝑢(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧
(1 − 𝑒(𝑥−1))(1 − 𝑒(𝑦−1))

(1 − 𝑒−𝑥)(1 − 𝑒−𝑦) . (2.92)

The convergence results are presented in Figure 2-17. We see that there is a negligible loss in accu-
racy for the quadrature-free scheme, and that both the QB and QF approaches converge optimally.

2.4.4.3 Matrix-free performance comparison

We consider the performance of our quadrature-free, matrix-free (QFMF) implementation in §2.4.2
compared to a classical quadrature-based, matrix-free implementation. The quadrature-based,
matrix-free (QBMF) implementation applies the action of the left hand side operator K in (2.70),
requiring the elemental assembly of the 𝒜loc matrix and application of its inverse via a dense linear
solve. We investigate the performance both for the 2D problem in §2.4.4.1 and the 3D problem in
§2.4.4.2. All experiments are run using a 24-core dual-socket Intel Xeon E5-2680 v3 system running
at 2.50 GHz. Figure 2-18 displays the wall clock time required to evaluate a matrix-free application
of the operators K (QBMF) and K̃ (QFMF) for a problem with around 5 million primal unknowns
𝑢ℎ. Even in 2D, the modified operator application K̃ is over an order of magnitude faster than
a standard quadrature-based matrix-free application of K. In 3D, the performance gap is more

49

1 0 1
1

0

1

(a) Top-down view of a representative 3D
wedge/hexahedral mixed mesh used in the
anisotropic diffusion convergence study.

10
2

10
1

10
0

h

10
10

10
8

10
6

10
4

10
2

10
0

L2 -
no

rm
 e

rr
or

3D mixed mesh

p = 1
p = 2
p = 3
p = 4

QB
QF
QB
QF

(b) History of convergence in the 𝐿2-norm of
the numerical solution 𝑢ℎ to the exact solution
(2.92). Dashed lines indicate optimal conver-
gence rates of order 𝑝 + 1.

Figure 2-17: Representative computational mesh and convergence history for the anisotropic diffu-
sion test case, §2.4.4.2

103 104 105 106

Trace DoFs

10 3

10 1

101

103

105

W
al

lcl
oc

k
tim

e
[s

]

2D mesh

104 105 106

Trace DoFs

3D mesh
QFMF
QBMF

Figure 2-18: Comparison of wall-clock times for a single matrix-vector product as a function of
problem size, measured in trace ̂︀𝑢ℎ degrees of freedom, for 2D (left) and 3D (right) mixed meshes,
at polynomial order 𝑝 = 3 and 𝑝 = 5, respectively.

dramatic, as the memory and computational requirements to form and apply the quadrature-based
𝒜loc matrix become more expensive relative to 𝑆−1, due to the problem dimension.

Figure 2-19 compares the computational throughput of the matrix-free application approaches as
a function of polynomial order 𝑝. We observe a concomitant performance difference in throughput
between the two algorithms, as measured in primal degrees of freedom 𝑢ℎ per second. The QFMF
approach achieves more than an order of magnitude higher throughput at all polynomial orders, in
both 2D and 3D. While the differences in performance by polynomial order is best explained by the
particular computer architecture and cache sizes used for this experiment, the difference between
the two algorithms can be explained by the higher arithmetic intensity resulting from repeatedly
applying the templated operators associated with quadrature-free schemes, rather than the memory-
bound formation of the quadrature-based operators. Namely, the broadcasting operations required
to apply the transformational data |𝐽 |, |𝐽𝑒|, and 𝑛 to the templated operators M, M

𝜕 ̂︀𝐾 , and S
are cheaper than computing the products and sums over the quadrature points necessary to form
the quadrature-based operators. For 3D elements in particular, the QFMF approach scales much
better than the QBMF approach at high polynomial order, due to the increase in size of the element

50

0 2 4 6 8 10
Polynomial degree

103

104

105

106

Pr
im

al
 D

oF
s/

s

2D mesh

0 2 4 6 8 10
Polynomial degree

102

103

104

105

106
3D mesh

QFMF
QBMF

Figure 2-19: Comparison of throughput measured by DoF/s as a function of polynomial order for
2D and 3D matrix-free matrix-vector products.

local linear system 𝒜loc for 2D and 3D problems as a function of polynomial order: 9(𝑝 + 1)2 and
16(𝑝+ 1)3, respectively.

2.4.5 Discussion
Classical matrix-free approaches for finite element schemes are straightforward because they require
only an evaluation of the global basis functions and their gradients over the computational domain
[131]. Matrix-free HDG schemes are more complicated because they involve a matrix inversion oper-
ation as well, due to the parametrization of the PDE to the trace unknown space. These inversions
can become intractable when the problem size is sufficiently large that the matrix factorizations
representing the inverses can no longer be stored. This is because a matrix inverse operation is
required for each element at every application of the left hand side operator.

We have presented an efficient matrix-free scheme which takes advantage of quadrature-free op-
erator formation to avoid these matrix inversions, requiring inversion of a much smaller operator.
This reduction in memory is substantial and may indeed allow the storage of the smaller inverses,
while storage of the original inverses would be infeasible. On the other hand, if neither can be
stored, we demonstrated that this method results in significantly better performance over a wide
range of problem sizes and polynomial orders with several numerical examples. Furthermore, we
demonstrated that loss of accuracy due to the quadrature-free integration was negligible, provided
that any irregular elements are handled separately, with quadrature. The performance gains asso-
ciated with the QFMF method could also be augmented with standard parallelization approaches,
further increasing throughput and decreasing time-to-solution.

2.5 On the solution of the pure Neumann problem
Projection methods are often used to solve the incompressible Navier–Stokes equations, and will form
the backbone of the ocean equation model in §3. For these types of pressure-correction projection
schemes [95], the second step involves computing a correction 𝛿𝑝 to the pressure by solving

−∇2𝛿𝑝 = 𝑓(𝑢̄) (2.93)

subject to the boundary conditions

∇𝛿𝑝 · 𝑛 = 0 on Γ𝐷, (2.94)

where the right hand side data 𝑓(𝑢̄) is dependent on a predictor velocity 𝑢̄ and Γ𝐷 refers to the
boundary condition on the velocity [77, 110, 246]. A common occurrence is the case of all Dirichlet

51

boundaries on the velocity predictor, resulting in pure Neumann boundary conditions on the pressure
correction 𝛿𝑝. This so-called “pure Neumann problem” results in a pressure level defined only up to
a constant. To see this, note that if the scalar field 𝛿𝑝ℎ is a solution of (2.93), with Γ𝑁 = 𝜕Ω, then
𝛿𝑝ℎ + 𝑐 for any 𝑐 ∈ R is also a solution. Discretely, the null space of the linear system arising due
to the discretization of (2.93) is spanned by the set of constant vectors, implying a singular linear
system. Although crucial to the performance of pressure correction schemes, the issue of finding
a solution to the rank-one deficient singular system in such cases receives little attention in the
literature, outside of specialized literature for iterative solvers [18, 114, 7, 168, 167].

In [26], the authors rigorously describe strategies for addressing the singular system in a contin-
uous finite element context. Here, we extend that discussion to the DG-FEM setting and illustrate
computational trade-offs associated with different candidate approaches.

2.5.1 Proposed solutions
Subspace projection. As a first approach, we apply a subspace projection using a Krylov-solver
[253], making use of the fact that iterative solvers solve singular systems provided that the right-
hand side is in the orthogonal complement of the null-space. In summary, to perform this singularity
treatment, we project out the null-space of the linear system by subtracting the mean from the
right-hand side vector at each iteration of the iterative linear solve algorithm, in this case, conjugate
gradient. We implemented this method by overloading the function for matrix-multiplication within
the iterative solver in order to perform the mean removal at each iteration.

Penalty method. As a second approach, we apply a penalty-based method which can be
interpreted as a regularization. This method, while simple and independent of linear solver type,
involves the specification of a hyperparameter 𝛾. Suppose that𝐴 is the discretized Laplacian operator
in the Poisson system (2.93), such that we are solving 𝐴𝑥 = 𝑏. This problem is equivalent to the
problem of minimizing the functional

𝐽1(𝑢) = 1
2𝑢

𝑇𝐴𝑢 − 𝑏𝑇𝑢 (2.95)

with optimal solution 𝑢 = 𝛿𝑝. Suppose that additionally, we would like to enforce that 𝑒𝑇𝑥 = 0,
where 𝑒 denotes some basis vector of R𝑛. This is equivalent to fixing some pressure correction in
the domain to 0. Therefore instead we seek to minimize the modified functional

𝐽(𝑢) = 1
2𝑢

𝑇𝐴𝑢 + 𝛾

2
(︀
𝑒𝑇𝑢

)︀2 − 𝑏𝑇𝑢 (2.96)

where 𝛾 is some penalization parameter which penalizes the deviation of the pressure-correction at
that degree of freedom departing from zero. In that sense, this penalty approach can be thought
of as a regularization, since 𝛾 must be chosen (as well as the degree of freedom on which to apply
the penalty). Lastly, we assumed that 𝑏 ∈ Im𝐴, which is not true in general for a numerical dis-
cretization. Therefore, there is an additional condition to impose. Given that ∇2(𝛼𝑣) = 0, where
𝑣 = [1, 1, . . . , 1]𝑇 , we have that 𝑣 ∈ ker𝐴. Since the finite element discretization is symmetric,
we have that 𝐴 = 𝐴𝑇 and hence Im𝐴 ⊥ ker𝐴. Further, since 𝐴 is rank-1 deficient, we have that
ker𝐴 is spanned by 𝑣. If 𝑤𝑇𝑣 = 0 then 𝑤 ∈ Im𝐴. Therefore the space of zero-average vectors
is orthogonal to ker𝐴, and a sufficient condition is that 𝑣𝑇 𝑏 = 0 for the penalty method to work.
Therefore subtracting the average of 𝑏 projects the vector out of ker𝐴. Overall, the implementation
is quite simple; to the row corresponding to the degree of freedom chosen add 𝛾/2 to the diagonal,
and subtract the mean of 𝑏 from the right-hand side before beginning the linear solve. Roundoff
error can produce low-quality solutions if 𝛾 is too large, so we choose 𝛾 to be on the same order of
magnitude as the entries of 𝐴.

We remark that a popular alternative approach is to discretely impose the mean-value constraint
∫︁

Ω
𝛿𝑝 𝑑Ω = 0 (2.97)

52

in the linear system directly, avoiding the saddle point system that arises as a result of applying
the constraint as a Lagrange multiplier [26]. In light of the discussion above, this would amount to
replacing the unit basis vector 𝑒𝑇 with 1𝑇 , the vector of ones. However, this additional penalization
constraint is not sparse on the row that it is applied to, and makes the underlying linear system
non-symmetric. Therefore we do not consider this approach as a candidate.

Point constraint. An approach favored by many practitioners is to manually specify the
value of the candidate solution at a single point by removing an equation from the discrete system
and applying a Dirichlet constraint fixing the value of the solution at that point to an arbitrary
constant, eliminating the null space and allowing solution of the linear system using a conventional
direct solver. However, in a finite-element context, the function 𝛿𝑝 is often represented in the Sobolev
space 𝐻1(Ω) or 𝐿2(Ω), spaces in which point evaluations do not make sense. In these cases, imposing
such a constraint can render the variational problem ill-posed. A typical manner of fixing this is
to specify the value of the solution along a measurable subset of the domain; typically an element
face; while this constraint is well-posed, it’s also undesirable, because specifying that the value of
the numerical solution along the face will change the character of the numerical solution and thus
the physics.

2.5.2 Computational benchmarks
In order to investigate the performance of each proposed method to solve the pure Neumann problem,
we asses the convergence, accuracy, and efficiency of each method over a wide range of problem sizes
and polynomial degrees 𝑝. We consider the analytical solution

𝛿*
𝑝 = 1

3 sin
(︁

−𝜋

2 𝑥
)︁

cos (2𝜋𝑦) , (2.98)

(Figure 2-20, left) with boundary conditions and forcing function deduced from the exact solution
over the computational domain Ω = [−1, 1]2. By symmetry, we have that the exact solution 𝛿*

𝑝

is analytically zero-mean in the sense of equation (2.97). Additionally, the value of the boundary
condition 𝑔𝑁 = ∇𝛿*

𝑝 · 𝑛 vanishes algebraically over the boundary 𝜕Ω, imitating the boundary con-
ditions imposed in the pressure corrector step. We consider a uniform Cartesian grid consisting

x
1.0

0.5

0.0

0.5
1.0

y

1.0
0.5

0.0

0.5

1.0

z

1.0

0.5

0.0

0.5

1.0

0.3

0.2

0.1

0.0

0.1

0.2

0.3

1 0 1
1

0

1

-2.0e-04

0.0e+00

2.0e-04

Figure 2-20: (Left) Analytical solution of the pure Neumann problem. (Right) Distribution of
numerical errors in the gradient ∇𝛿*

𝑝 −𝑞𝛿𝑝,ℎ𝛿𝑝,ℎ over the computational domain for a mesh of 32×32
elements at polynomial order 𝑝 = 3.

of quadrilateral elements of length 𝐿/2ℓ in each spatial dimension, where the integer ℓ = 0, 1, . . .
denotes the level of refinement. To assess the convergence of the primal unknown 𝛿𝑝, the integral
mean level of the numerical solution is subtracted as post-processing to agree with the analytical
solution. All iterative solves are performed using conjugate gradient (CG) iterations to solve for the
trace unknowns 𝛿𝑝,ℎ, from which the primal solution 𝛿𝑝,ℎ and its gradient 𝑞𝛿𝑝,ℎ are reconstructed.

53

All three methods achieve optimal 𝑝 + 1 order convergence to the exact solution in both the
primal 𝛿𝑝,ℎ and gradient 𝑞𝛿𝑝,ℎ unknowns, respectively, before the iterative solver tolerance and
finite-precision effects begin to pollute the convergence order. Figure 2-21 illustrates the convergence
history of the primal unknown 𝛿𝑝,ℎ for the projection approach, both from the perspective of mesh
resolution and in globally-coupled trace unknowns. The errors and orders of convergence in the 𝐿2-
norm are presented in tabular form in 7.6. In what follows, we demonstrate the subspace projection
approach to be the computationally superior method; therefore, we present the convergence results
for the projection method and omit the others for brevity.

An examination of the spatial distribution of the errors in the numerical gradient2 over the
computational domain (Figure 2-20, right) illustrates that they are neither disproportionately large
on the domain boundary, nor are they localized around a single point, problems that have been
known to plague the penalization and point constraint methods, which depend on a specific choice
of degree of freedom for their implementation [26, 95]. Given the comparable order of convergence to

10 2 10 1 100

Mesh size

10 12

10 10

10 8

10 6

10 4

10 2

100

-e
rro

r

=
=
=
=
=
=

projection

101 102 103 104 105 106

Problem unknowns ()

10 12

10 10

10 8

10 6

10 4

10 2

100

-e
rro

r

=
=
=
=
=
=

projection

Figure 2-21: Errors in the primal unknown
⃦⃦
𝛿*

𝑝 − 𝛿𝑝,ℎ

⃦⃦
𝐿2(Ω) for the singular Neumann problem

(2D) treated with subspace projection. Convergence is shown with respect to mesh size as well as
number of globally-coupled unknowns. Optimal convergence is achieved for all polynomial orders.
Convergence history data is tabulated in §7.6.

the analytical solution for all three approaches, we compare their relative computational advantages.
Reporting a condition number for the resultant linear system solved with each method is not feasible.
On one hand, the problem sizes reported in this work are large enough to make direct computation of
the eigenvalue spectrum intractable. Moreover, as the subspace projection transformation is applied
at each conjugate gradient iteration, there is not a single resultant linear system for which to compute
a condition number. Therefore, as a practical indication of the conditioning of each algorithm, we
examine the efficiency of the iterative solver. Figure 2-22a shows the number of conjugate gradient
iterations required to achieve convergence to the specified solver tolerance (without preconditioning)
over a wide range of problem sizes. We observe that the point constraint and penalization methods
require many more iterations to converge than the subspace projection approach across polynomial
orders, typically between a factor of two and a factor of ten. Since the subspace projection requires
removal of the mean at every conjugate gradient iteration and the other two methods do not, we also
benchmark the performance of each algorithm in terms of the overall 𝐿2-error in the primal solution
variable as a function of the wall clock time to solution of the linear system for the trace unknown
𝛿𝑝ℎ in Figure 2-22b. We observe that the subspace projection approach equals or outperforms the

2We compute the directional error ∇𝛿*
𝑝 − 𝑞𝛿𝑝,ℎ over each element and plot the 𝑥1-component. The results are

similar for the gradient in the 𝑥2 direction. We consider the gradient rather than the primal variable, because the
gradient is the quantity that is used in the projection method detailed in §3.

54

other two methods over a wide range of problem sizes, with the advantage increasing as a function
of polynomial order.

102 103 104 105 106

Problem unknowns (uh)

101

102

103

so
lv

er
 it

er
at

io
ns

p = 2
p = 3
p = 4

projection
penalty
point constraint

(a)

10 4 10 3 10 2 10 1 100

Wallclock time [s]

10 11

10 9

10 7

10 5

10 3

10 1

L2 -e
rro

r

p = 1
p = 3
p = 5

projection
penalty
point constraint

(b)

Figure 2-22: Performance comparisons of the different singularity treatments. (Left) Number of
conjugate gradient iterations required for convergence for each method at different problem sizes
and polynomial orders. (Right) 𝐿2-error achieved in the primal unknown 𝛿𝑝,ℎ as a function of wall
clock time-to-solution of the global linear system for the trace unknown, shown at different problem
sizes spanning from 101 to 106 trace degrees of freedom, and different polynomial orders.

In conclusion, we have found the subspace projection approach to be a stable, robust, and
accurate method for numerically solving the singular system arising from the discretization of the
pure Neumann problem occurring in the case of pure Dirichlet boundary conditions on the velocity.
Furthermore, we have demonstrated it to be a superior method computationally, delivering better
accuracy with a shorter time-to-solution than both the point-constraint and penalization approaches,
and without the need to calibrate any additional hyperparameters or to single out a particular
problem degree of freedom for the imposition of a constraint.

2.6 Conclusion
In this chapter, we formulated and derived the various DG-FEM and HDG-FEM weak forms that
we will make use of in our nonhydrostatic finite element model, along with the finite element solvers
used in other parts of this thesis, as referenced in sections §4 and §5. We provided a framework
for treating inhomogeneous HDG boundary conditions at the level of the weak form that allows
us to maintain the symmetry of linear systems that arise from our discretizations, a critical factor
in ensuring the accuracy and efficiency of our computational models. Turning our attention to
the computational aspects of HDG-FEM implementation, we completed benchmarking to analyze
the multi-threaded parallel implementation of the HDG assembly and reconstruction algorithms.
Our investigations spanned multiple problem sizes and polynomial orders for 2D and 3D problems,
allowing us to thoroughly examine the effect of polynomial order on the parallel performance of our
models. In addition to these investigations, we derived and implemented a novel matrix-free method
tailored for HDG discretizations. This extended the research presented in [80], expanding upon the
concepts and methodologies explored in that body of work. We then conducted a benchmarking
exercise and comparison of different approaches to singularity removal. This was specifically focused
on the rank-one-deficient linear systems that emerged from the discretization of the Poisson problem
under pure Neumann boundary conditions, a common problem encountered in CFD but very seldom
addressed in the literature. Our numerical experiments convincingly demonstrated that subspace

55

projection was the superior method in terms of both accuracy and computational cost. Next, we
will apply the theory, schemes, and results of the computational investigations in this chapter to the
formulation of a high-order DG-FEM ocean model, allowing to see how our methods and approaches
perform when applied to complex, real-world modeling scenarios.

56

Chapter 3

A Novel Nonhydrostatic HDG
Ocean Model with a Free Surface

57

3.1 Introduction
Nonhydrostatic models are necessary to address the limitations of hydrostatic models when simu-
lating certain types of fluid flows, especially those involving complex and highly dynamic processes
occurring at the submesoscale (see §1.1). At these scales, on the order of less than 10 km in the
horizontal, the hydrostatic approximation begins to lose validity, along with the hydrostatic ocean
equations as a governing dynamical model. Nonhydrostatic effects become increasingly strong and
presently are detectable at the small-scale end of the submesoscale [108, 172, 237, 180, 59, 240]
and in deep convection [178]. At these scales, nonhydrostatic and fully three-dimensional oceanic
phenomena (typically on the order of 100 m to 1 km), such as the breaking of internal waves, convec-
tion, subduction, and shear-induced overturning, become important [172, 240]. As a result, oceanic
features with relatively strong vertical velocities have been observed at these scales, particularly in
the presence of wind forcing or topographic variations [119, 171]. In turn, these dynamics play a
crucial role in dissipative diapycnal mixing. This is when transient, interior regions of small-scale
turbulence mix fluids of different densities. The effects of these submesoscale motions are largely
unknown [83, 240], but must be investigated. This is because these nonhydrostatic dynamics may
not only affect oceanic diapycnal transport, the dissipation of energy input at the surface, the
spontaneous breakdown of mesoscale structures, and vertical transport in the ocean, but may also
constitute a link between non-dissipative mesoscale flows and dissipative three-dimensional motions
[84, 172, 174, 173]. Nonhydrostatic interactions between the submesoscale and the finescale are
explored in [249].

The non-hydrostatic ocean model can make marine scientists capable of investigating almost the
entire range of internal waves, convection processes, symmetric instability, etc. in realistic ocean
motions and bridge the gap with LES (see [239] and references therein). It has also become a
necessary tool for the simulation of surface dispersive waves internal waves [17, 252].

Relatively few ocean circulation models presently have nonhydrostatic capability, although they
are increasingly becoming adopted and used within several models: MITgcm (M.I.T. General Circu-
lation Model) [1, 178], POM (Princeton Ocean Model) [260], BOM (Bergen Ocean Model) [88], SUN-
TANS (Stanford Unstructured Non-hydrostatic Terrain-following Adaptive Navier–Stokes Simula-
tor) [85, 115], ROMS (Regional Ocean Modeling System) [121], FVCOM (Finite-Volume Community
Ocean Model) [140, 141], Symphonie [17], GETM (General Estuarine Transport Model) [126], and
MERF3.0 (the Marine Environment Research and Forecasting model) [239] and Oceananigans.jl
[214], to name a few.

However, the dominant technologies for solving problems of this nature are almost entirely low-
order finite difference and finite volume methods; despite this, modern advances in CFD suggest
that high-order methods may be better suited to the problem of nonhydrostatic ocean modeling.
In addition to the numerical and computational advantages enjoyed by DG finite element methods
(see §2.1-§2.2), they possess features that make them well-suited to multiscale ocean modeling
applications.

On one hand, high-order finite element methods allow for arbitrarily high-order solutions on un-
structured meshes and often provide higher accuracy for the same computational cost [110]. General
unstructured meshes can more accurately capture complex geometrical features such as coastlines
and steep bathymetry. Unstructured meshes also allow open boundaries to be moved further away
from the model domain of interest for a small computational cost by using much larger elements near
open boundaries, reducing the impact of the open boundary condition on the simulation. However,
for dispersive wave behaviors such as those that occur at the submesoscale, evidence suggests that
high-order methods may have additional advantages. These properties have already rendered DG-
FEM a popular technique for solving the shallow water equations [62, 71, 92, 258, 257]. Evidence
continues to emerge corroborating the effectiveness in a nonhydrostatic context as well. Additionally,
the discontinuous polynomial spaces in which DG-FEM solutions are sought allow for the capture of
steep gradients and wave behavior, resulting in more stable and flexible methods than the classical
continuous Galerkin finite element (CG-FEM) approaches to advection-dominated problems [110],
such as internal wave motion. For low-order finite volume methods specifically, the dominant mode
of truncation error is dispersive, leading to a pollution of the physically correct dispersion behavior,

58

imposing a strict resolution requirement on the method for applications such as resolving internal
solitary wave behavior and coupled non-hydrostatic physical-biogeochemical dynamics; high-order
methods and adaptive mesh refinement are potential solutions [251, 244].

Despite the advantages of DG-FEM, its use in nonhydrostatic ocean modeling is still in its
infancy, with limited, but growing adoption thus far [202, 203, 204]. Part of the reason for its
lack of adoption is due to the large number of degrees of freedom necessary to represent a high-
order discontinuous polynomial solution on each element, which involves duplication of unknowns
on solution faces. To address this issue, hybridizable discontinuous Galerkin (HDG) finite elements
were devised by parametrizing the DG problem onto a finite element space on the mesh skeleton, as
is discussed at great length in §2. This advance allows for substantial reduction of globally-coupled
unknowns while retaining all the advantages of DG-FEM methods. The inclusion of HDG methods
into multi-scale ocean modeling could significantly improve forecast accuracy and computational
efficiency, motivating the developments of this chapter.

The contributions of this chapter are as follows. We present a novel HDG spatial discretization of
the nonhydrostatic ocean equations with a free surface using a temporal projection scheme inspired
by the scheme first derived in [243, 246, 247], applying recent findings on stability and robustness
for DG-FEM for incompressible flow problems [77, 78] to HDG discretizations. We show that the
DG-FEM model formulation allows for seamless nesting in larger hydrostatic models, and provide
numerical evidence of the effectiveness of such an approach for multi-scale ocean modeling.

This chapter is structured in the following way. In §3.2, we introduce the mathematical model
of the nonhydrostatic ocean equations with a free surface. Section §3.3 is devoted to the description
of the temporal discretization of the governing equations using a projection method, and the spatial
discretization of the projection method using a hybridizable discontinuous Galerkin method is de-
tailed in §3.4. Modification of the HDG spatial discretization to the hydrostatic ocean equations is
given in §3.4.9. Implementation details are discussed in §3.5.1. Verification of model convergence is
given in §3.5.2. We provide numerical experiments to validate the model with several idealized non-
hydrostatic test cases in §3.5, and provide comparison to a finite volume nonhydrostatic Boussinesq
incompressible Navier–Stokes solver. We describe a method to nest the nonhydrostatic HDG model
in a larger hydrostatic model in §3.6 and demonstrate the robustness of the DG-FEM model to the
hydrostatic boundary conditions. In subsections §3.6.2 and §3.6.4, we show 2D and 3D numerical
results of the HDG model nested within a larger hydrostatic model to perform hindcasts in the
Alboran sea during a weather event in March of 2019, and highlight the nonhydrostatic dynamics
the high-order model is able to capture. We summarize our results and provide conclusions in §3.7.

3.2 Mathematical model
We consider the non-hydrostatic ocean equations with a free surface on a two or three-dimensional
domain Ω ⊂ R𝑑, derived from the incompressible Navier–Stokes equations with the Boussinesq
approximation in a rotating reference frame:

𝜕𝑢

𝜕𝑡
− ∇ · 𝐹𝑣(𝑢) + ∇ · 𝐹𝑎(𝑢) + ∇𝑝′ + 𝑔∇𝑥𝑦𝜂 + 1

𝜌0

∫︁ 𝜂

𝑧

𝑔∇𝑥𝑦𝜌
′ 𝑑𝑧′ = −𝑓cor + 1

𝜌0
𝑓 (3.1)

∇ · 𝑢 = 0 (3.2)
𝜕𝜂

𝜕𝑡
+ ∇ ·

(︂∫︁ 𝜂

−𝐻

u 𝑑𝑧

)︂
= 0 (3.3)

𝜕𝜌′

𝜕𝑡
− ∇ · (𝜅∇𝜌′) − ∇ · (𝑢𝜌′) = 𝑓𝜌′ (3.4)

where the unknowns are the velocity 𝑢 = (𝑢1, . . . , 𝑢𝑑)𝑇 , the nonhydrostatic pressure 𝑝′, the den-
sity perturbation 𝜌′, and the free-surface elevation 𝜂 defined over the top surface of the domain
boundary 𝜕Ω𝜂 ⊂ R𝑑−1, which coincides with the surface 𝑧 = 0 in this work. We denote the depth
of the bathymetry as the positive quantity 𝐻(𝑥, 𝑦). Figure 3-1 depicts these definitions for three-
dimensional problems, and the equivalent for two-dimensional problems is shown in Figure 3-4. The

59

density perturbation is defined in relation to the background density such that the total density
𝜌 = 𝜌0 + 𝜌′. The nonhydrostatic pressure is defined in relation to the total pressure and density

𝑝 = 𝑝hyd + 𝜌0𝑝
′, 𝑝hyd =

∫︁ 𝜂

𝑧

𝜌𝑔 𝑑𝑧′. (3.5)

We will refer to the velocity in the 𝑧 as 𝑤, and the velocity fields 𝑢 = (𝑢, 𝑤) and 𝑢 = (𝑢, 𝑣, 𝑤)
in two and three spatial dimensions, respectively. We define the horizontal velocity u = 𝑢 and
u = (𝑢, 𝑣) in two and three dimensions, respectively.

Figure 3-1: Schematic of domain. The interior domain Ω is shown in light grey and the domain
𝜕Ω𝜂 over which the free surface 𝜂(𝑥, 𝑦, 𝑡) is defined is indicated using darker grey. The domain
bathymetry 𝐻(𝑥, 𝑦) is taken to be positive.

Similarly, we define the horizontal and vertical gradient operators as

∇𝑥𝑦 ≡
[︂
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
, 0
]︂
, ∇𝑧 ≡

[︂
0, 0, 𝜕

𝜕𝑧

]︂
(3.6)

in three spatial dimensions, with analogous definitions for two; complete reductions of the projection
schemes in 2D are given in Appendix 7.8. The generic body force vector is denoted by 𝑓 and the
Coriolis force by 𝑓cor = 𝑓𝑐𝑧 × u with Coriolis parameter 𝑓𝑐. The advection term is written in
conservative (divergence) formulation, where the advective flux is 𝐹𝑎(𝑢) = 𝑢 ⊗ 𝑢. The diffusion
term is written in the Laplace form, with the diffusive flux given as 𝐹𝑣(𝑢) = 𝜈∇𝑢, where the quantity
𝜈 ∈ R𝑑×𝑑 is a diagonal second-order tensor describing the direction-dependent kinematic viscosity.
Similarly, 𝜅 ∈ R𝑑×𝑑 describes the direction-dependent tracer diffusivity. For a detailed discussion
and justification of the modeling approximations leading to this model, see [243].

The ocean equations (3.1)-(3.4) are subject to the initial conditions

𝑢(𝑥, 𝑡 = 0) = 𝑢0(𝑥), 𝜌′(𝑥, 𝑡 = 0) = 𝜌′
0(𝑥) in Ω, 𝜂(𝑥, 𝑡 = 0) = 𝜂0(𝑥) in 𝜕Ω𝜂, (3.7)

and on the boundary 𝜕Ω = Γ, Dirichlet and Neumann boundary conditions are prescribed for the
velocity, free surface, and density perturbation:

𝑢 = 𝑔𝑢 on Γ𝐷 × [0, 𝑇], 𝐹𝑣(𝑢) · 𝑛 = 𝑔𝑁 on Γ𝑁 × [0, 𝑇]
𝜂 = 𝑔𝜂 on Γ𝐷 × [0, 𝑇], ∇𝜂 · 𝑛 = 𝑔𝑁 𝜂 on Γ𝑁 × [0, 𝑇]
𝜌′ = 𝑔𝜌′ on Γ𝐷 × [0, 𝑇], 𝜅∇𝜌′ · 𝑛 = 𝑔𝑁 𝜌′ on Γ𝑁 × [0, 𝑇]

(3.8)

where 𝑛 denotes the outward unit normal vector.

The hydrostatic equations are the result of neglecting the non-hydrostatic pressure variation by

60

taking 𝑝′ ≈ 0 in equations (3.1) - (3.4):

𝜕𝑢

𝜕𝑡
− ∇ · 𝐹𝑣(𝑢) + ∇ · 𝐹𝑎(𝑢) + 𝑔∇𝑥𝑦𝜂 + 1

𝜌0

∫︁ 𝜂

𝑧

𝑔∇𝑥𝑦𝜌
′ 𝑑𝑧′ = −𝑓cor + 1

𝜌0
𝑓

∇ · 𝑢 = 0
𝜕𝜂

𝜕𝑡
+ ∇ ·

(︂∫︁ 𝜂

−𝐻

u 𝑑𝑧

)︂
= 0

𝜕𝜌′

𝜕𝑡
− ∇ · (𝜅∇𝜌′) − ∇ · (𝑢𝜌′) = 𝑓𝜌′

(3.9)

with the same boundary and initial conditions.

3.3 Temporal discretization
The following subsections detail the temporal discretization for the nonhydrostatic ocean equation
projection schemes, following [243]. The scheme is a pressure correction method similar to the
schemes in [95] that splits the pressure into a nonhydrostatic component and a free-surface com-
ponent, applying a pressure correction for each. For more detailed treatment as well as theoretical
properties of these schemes, we refer the reader to [95] and the references therein. The algorithm is
shown for 3D problems, but its explicit reduction for 2D problems is given in Appendix §7.8.

To discretize the ocean equations (3.1)-(3.4) in time, the time interval [0, 𝑇] is divided into
𝑁𝑇 uniformly-sized time steps Δ𝑡 = 𝑇/𝑁𝑇 , admitting the set of discrete solution times {𝑡𝑖}𝑁𝑇

𝑖=0 =
{𝑖Δ𝑡}𝑁𝑇

𝑖=0, where we denote the time-step number 𝑘 = 0, . . . , 𝑁 − 1. The equations are advanced
from time 𝑡𝑘 = 𝑘Δ𝑡 to 𝑡𝑘+1 = (𝑘 + 1)Δ𝑡 during time step 𝑘. Since the nonlinear terms in the
Navier–Stokes equations does not affect the convergence rate of the error incurred due to operator
splitting [95], we apply a semi-explicit treatment to the governing equations, treating the diffusion
terms implicitly and the advection, pressure gradient, and density perturbation terms explicitly over
each time step.

3.3.0.1 Velocity predictor

The momentum equation is solved in the first sub-step. We construct an intermediate velocity field
𝑢̄𝑘+1 which is not divergence free

𝑢̄𝑘+1

𝑎Δ𝑡 −
(︀
∇ ·
(︀
𝜈𝑥𝑦∇𝑥𝑦ū

𝑘+1)︀+ ∇ ·
(︀
𝜈𝑧∇𝑧w̄𝑘+1)︀)︀+ ∇𝑝′,𝑘 + 𝑔∇𝑥𝑦𝜂

𝑘 = 𝑓𝑘,𝑘+1
𝑢̄ , (3.10)

where the term 𝑓𝑘,𝑘+1
𝑢̄ contains the advective, density perturbation, and Coriolis forcing terms in

(3.1). The boundary conditions on the intermediate velocity field 𝑢̄ are

𝑢̄𝑘+1 = 𝑔𝐷 on Γ𝐷, (3.11)
∇𝑢̄𝑘+1 · 𝑛 = 𝑔𝑁 on Γ𝑁 . (3.12)

we write (3.10) in a direction-split manner to emphasize that several choices exist to treat the
diffusive terms; in the original scheme laid out in [243], the horizontal diffusion terms are treated
explicitly while the vertical terms are treated implicitly. In this work, we treat the entire diffusion
operator implicitly, for the following reasons. First, it is well-known that for both the incompressible
Navier–Stokes equations [110] as well as the nonhydrostatic ocean equations [252], the pressure-
correction equation §3.3.0.4 is the dominant computational cost for projection-based schemes, due
to the poor conditioning of the pressure Poisson system, an assertion our experience has corroborated.
The velocity predictor equations, by contrast, tend to be well-conditioned due to the presence of
the time derivative term. Therefore, any computational gain offered by the explicit treatment of
the horizontal diffusivity does not ultimately address the limiting computational bottleneck of the

61

projection scheme, and introduces significant complexity in the derivation and implementation of a
consistent and stable finite element spatial discretization.

3.3.0.2 Free-surface correction

In the second sub-step, we solve a 𝑑 − 1 dimensional problem for the change in the free-surface,
𝛿𝜂 ∈ 𝜕Ω𝜂:

𝛿𝜂𝑘+1

𝑎Δ𝑡 − ∇ ·
(︀
𝑎Δ𝑡𝑔

(︀
𝜂𝑘 +𝐻

)︀
∇𝛿𝜂𝑘+1)︀ = −∇ ·

∫︁ 𝜂𝑘

−𝐻

ū𝑘+1 𝑑𝑧 (3.13)

subject to boundary conditions

𝛿𝜂𝑘+1 = 𝑔𝑘+1
𝜂 − 𝑔𝑘

𝜂 on Γ𝐷,

∇𝛿𝜂𝑘+1 · 𝑛 = 1
𝑎Δ𝑡𝑔 (𝐻 + 𝜂𝑘)

∫︁ 𝜂𝑘

−𝐻

(︀
ū𝑘+1 − 𝑔𝑢

)︀
· 𝑛 𝑑𝑧 on Γ𝑁 ,

(3.14)

the derivation of which is provided in Appendix §7.7. Application of the Neumann condition imposes
the stress at the boundary of the free surface, and a common choice is either a free stress condition
imposed as 𝑔𝑁 = 0 on closed boundaries (since u and 𝑔𝑢 vanish), or a known stress imposed on the
free-surface correction directly. Modeling open boundaries, in which both free surface and interior
stresses are unknown, remains a challenging open research problem, and many approaches exist
[227], any of which can be used to choose the values of 𝑔𝜂 or a stress.

3.3.0.3 Intermediate velocity projection, free-surface update

The third sub-step of the projection method involves performing a correction to the predictor velocity
due to the free surface pressure to compute the intermediate velocity ¯̄𝑢 in addition to the corrected
free surface value 𝜂𝑘+1.

¯̄u𝑘+1 = ū𝑘+1 − (𝑎Δ𝑡)𝑔∇𝑥𝑦𝛿𝜂
𝑘+1 (3.15)

𝜂𝑘+1 = 𝜂𝑘 + 𝛿𝜂𝑘+1, (3.16)

We note that the correction to the predictor velocity 𝑢̄ occurs only in the horizontal, and we refer
the reader to [243] for a detailed derivation and discussion of this intermediate projection.

3.3.0.4 Pressure correction

In the fourth sub-step, we solve a classical pressure-Poisson equation to project the stage-final
velocities into the space of divergence-free vector fields [95, 77]

∇2𝛿𝑝′,𝑘+1 = ∇ · ¯̄𝑢𝑘+1

𝑎Δ𝑡 . (3.17)

subject to the boundary conditions

∇𝛿𝑝′,𝑘+1 · 𝑛 = 0 on Γ𝐷

𝛿𝑝′,𝑘+1 = 0 on Γ𝑁

(3.18)

where the boundaries Γ𝐷 and Γ𝑁 in (3.18) refer to those on the velocity 𝑢 in (3.8).

3.3.0.5 Velocity projection, pressure update

In the fifth sub-step, we project the stage-final velocities 𝑢𝑘+1 onto the space of divergence-free
vector fields and update the nonhydrostatic pressure

62

𝑢𝑘+1 = ¯̄𝑢𝑘+1 − 𝑎Δ𝑡∇𝛿𝑝′,𝑘+1, (3.19)
𝑝′,𝑘+1 = 𝑝′,𝑘 + 𝛿𝑝′,𝑘+1. (3.20)

3.3.0.6 Tracer evolution equation

Once the stage-final velocities 𝑢𝑘+1 have been computed, we solve an advection-diffusion equation
to update the density perturbation field 𝜌′

𝜌′𝑘+1

𝑎Δ𝑡 − ∇ ·
(︁
𝜅∇𝜌′𝑘+1

)︁
− ∇ ·

(︁
𝑢𝑘+1𝜌′𝑘+1

)︁
= 𝜌′𝑘

𝑎Δ𝑡 + 𝑓𝜌′ . (3.21)

with boundary conditions exactly as in (3.8).

3.4 Spatial discretization

3.4.1 Notation
We now provide the notation for the computational mesh and finite-element operations (§3.4). We
let 𝒯ℎ = ∪𝑖𝐾𝑖 be a finite collection of non-overlapping elements 𝐾𝑖 that discretizes the entire problem
domain Ω ⊂ R𝑑. We refer to the boundary of the problem domain as Γ. The set 𝜕𝒯ℎ = {𝜕𝐾 : 𝐾 ∈
𝒯ℎ} refers to all boundary edges and interfaces of the elements, where 𝜕𝐾 is the boundary of element
𝐾. For two elements 𝐾+ and 𝐾− sharing an edge, we define 𝑒 = 𝜕𝐾+ ∩ 𝜕𝐾− as the edge between
elements 𝐾+ and 𝐾−. Each edge can be classified as belonging to either 𝜀∘ or 𝜀𝜕 , the set of interior
and boundary edges, respectively, with 𝜀 = 𝜀∘ ∪ 𝜀𝜕 . These geometric relationships are summarized
in Figure 3-2a.

The elements 𝐾+ and 𝐾− have outward pointing unit normals 𝑛+ and 𝑛−, respectively. The
quantities 𝑎± denote the traces of 𝑎 on the edge 𝑒 from the interior of 𝐾±. When relevant for
element-wise operations, we take as convention that the element 𝐾− refers to the local element,
and 𝐾+ to the neighboring element. The jump J·K operator for scalar quantities are then defined as
J𝑎K = 𝑎− − 𝑎+ on the interior faces 𝑒 ∈ 𝜀∘. On the edges described by 𝜕𝒯ℎ, we can uniquely define
the normal vector 𝑛 as outward for a given cell and inward for its neighbor.

We define the inner products over a set 𝐷 ⊂ R𝑑 and its boundary 𝜕𝐷 ⊂ R𝑑−1 using typical
discontinuous Galerkin finite element notation as

(𝑐, 𝑑)𝐷 =
∫︁

𝐷

𝑐𝑑d𝐷, ⟨𝑐, 𝑑⟩𝜕𝐷 =
∫︁

𝜕𝐷

𝑐𝑑d𝜕𝐷.

Let 𝒫𝑝order(𝐷) denote the set of polynomials of degree 𝑝order on a domain 𝐷. We consider the
discontinuous finite element spaces

𝐺𝑝order
ℎ =

{︁
𝐺 ∈

[︀
𝐿2(Ω)

]︀𝑑×𝑑 : 𝐺
⃒⃒
𝐾

∈ [𝒫𝑝order(𝐾)]𝑑×𝑑 ∀𝐾 ∈ 𝒯ℎ

}︁
,

𝑉 𝑝order
ℎ =

{︁
𝑣 ∈

[︀
𝐿2(Ω)

]︀𝑑 : 𝑣
⃒⃒
𝐾

∈ [𝒫𝑝order(𝐾)]𝑑 ∀𝐾 ∈ 𝒯ℎ

}︁
,

𝑊 𝑝order
ℎ =

{︀
𝑤 ∈ 𝐿2(Ω): 𝑤

⃒⃒
𝐾

∈ 𝒫𝑝order(𝐾) ∀𝐾 ∈ 𝒯ℎ

}︀
,

𝑀𝑝order
ℎ =

{︀
𝜇 ∈ 𝐿2 (𝜀ℎ) : 𝜇

⃒⃒
𝑒

∈ 𝒫𝑝order(𝑒) ∀𝑒 ∈ 𝜀ℎ

}︀
,

where 𝐿2(Ω) is the space of square-integrable functions on the domain Ω. Informally, 𝑊 𝑝order
ℎ

represents the space of piecewise discontinuous polynomials of degree at most 𝑝order on every element
in the mesh (see Figure 3-2b). We will also refer to the analogous vector-valued trace space 𝑀𝑝

ℎ for
vector-valued quantities on the edge space. We refer the reader to [193] for extended discussion of
these finite element spaces.

63

(a) Domain geometry (b) Finite element spaces

Figure 3-2: Summary schematics of spatial discretization notation in exploded view.

3.4.2 Discretization of vertical integral terms
Forcing due to the free-surface pressure in the momentum equation can be expressed component-wise
as

𝐹𝜂(𝑧) = −
∫︁ 𝜂

𝑧

𝑔∇𝑥𝑦𝜌
′(𝑥, 𝑦, 𝑧′, 𝑡) 𝑑𝑧′ = −

⎡
⎢⎣

∫︀ 𝜂

𝑧
𝑔 𝜕𝜌′(𝑥,𝑦,𝑧′,𝑡)

𝜕𝑥 𝑑𝑧′
∫︀ 𝜂

𝑧
𝑔 𝜕𝜌′(𝑥,𝑦,𝑧′,𝑡)

𝜕𝑦 𝑑𝑧′

0

⎤
⎥⎦ (3.22)

Therefore, it suffices to compute explicit terms of the form

Φ(𝑥, 𝑦, 𝑧) =
∫︁ 𝜂

𝑧

𝜑(𝑥, 𝑦, 𝑧′) 𝑑𝑧′, (3.23)

which allows the computation of the vertical integral terms on the right-hand side of equations (3.10)
and (3.13). In what follows, we develop a simple and efficient DG scheme to compute these terms.

3.4.2.1 Depth-marching approach

For every horizontal location (𝑥0, 𝑦0) and time 𝑡, we want to evaluate the integral Φ(𝑧) =
∫︀

𝑧
𝜑(𝑧′) 𝑑𝑧′.

Applying the fundamental theorem of calculus, 𝜕
𝜕𝑧 Φ(𝑧) = 𝜑(𝑧). Since 𝜑(𝑥) can be evaluated at

every point in space, this relation yields an ODE 𝑑Φ
𝑑𝑧 = 𝜑(𝑧) in depth. Choosing an extruded mesh

guarantees that the elemental degrees of freedom are vertically aligned, and therefore the ODE could
be solved as a set of 1D problems on each element. However, since the finite element solution is
three-dimensional, doing so could violate the conservative nature of each DG field, and could not
be applied to curvilinear elements. However, we can formulate a 3D finite element problem which
overcomes both difficulties.

By considering the vector field Φ𝑧, we can discretize the ODE using a standard discontinuous
Galerkin scheme with the following weak form: we seek Φ ∈ 𝑊 𝑝

ℎ such that

− (∇𝑤, Φ𝑧)𝐾 +
⟨
𝑤, ̂︀Φ(𝑧 · 𝑛)

⟩
𝜕𝐾

= (𝑤, 𝜑)𝐾 (3.24)

for all 𝑤 ∈ 𝑊 𝑝
ℎ .1The presence of the dot product 𝑧 ·𝑛 cancels all edge terms except those on the top

and bottom of the element, but it remains to specify the numerical flux Φ̂. For a DG formulation,
choosing Φ̂(𝑧𝑛) = lim𝜖→0 Φ(𝑧𝑛 −𝜖)—that is, taking the interface value of Φ from the element above—
leads to an explicit DG scheme that is consistent, stable, and can be evaluated element-by-element

1The formulation in [243] is the strong DG form of the problem. Here the standard weak form given to agree with
standard DG literature.

64

from top to bottom [39].2Given that the topmost element coincides with the free surface 𝜂, we can
simply solve the problem (3.24) on every cell element-by-element in the vertical column, iterating
from top to bottom.3

On each cell, we solve the following DG problem: seek 𝑢 ∈ 𝑊 𝑝
ℎ such that

− (∇𝑤, 𝑢𝑧)𝐾 + ⟨𝑤, ̂︀𝑢(𝑧 · 𝑛)⟩𝜕𝐾 = (𝑤, 𝑓)𝐾 (3.25)

for forcing data 𝑓 . Since the cells are extruded in the 𝑧-direction, the dot product (𝑧 ·𝑛) cancels for
all faces except the top and bottom faces. We take the flux 𝑢̂ to be defined as the value of 𝑢 on the
neighboring cell above on the top face, and take the interior value of 𝑢 on 𝐾 for the bottom face,
leading to

− (∇𝑤, 𝑢𝑧)𝐾 + ⟨𝑤, 𝑢(𝑧 · 𝑛)⟩𝜕𝐾bottom
= (𝑤, 𝑓)𝐾 − ⟨𝑤, ̂︀𝑢(𝑧 · 𝑛)⟩𝜕𝐾top

(3.26)

3.4.3 Velocity predictor
3.4.3.1 Coupled-velocity approach

Since HDG methods are mixed methods, we first express each of the equations in §3.3 as first-order
systems. We will refer to the velocity gradient 𝐿 = ∇𝑢 with the tensor conventions

(∇𝑢)𝑖𝑗 = 𝜕𝑢𝑖

𝜕𝑥𝑗
, (∇ · 𝐿)𝑖 = 𝜕𝐿𝑖𝑗

𝜕𝑥𝑗

For equation (3.10) we define the auxiliary variable 𝐿̄ = 𝜈∇𝑢̄. Then the weak problem is as follows:
find

(︀
𝑢̄𝑘+1

ℎ , 𝐿̄ℎ, 𝑢̂ℎ

)︀
∈ (𝐺ℎ × 𝑉ℎ × 𝑀ℎ) such that

(𝐺, 𝜈−1𝐿̄ℎ)𝒯ℎ
+ (∇ · 𝐺, 𝑢̄𝑘+1

ℎ)𝒯ℎ
− ⟨𝐺 · 𝑛, 𝑢̂ℎ⟩𝜕𝒯ℎ

= 0
(︂
𝑣,

𝑢̄𝑘+1

𝑎Δ𝑡

)︂

𝒯ℎ

−
(︀
𝑣, ∇ · 𝐿̄ℎ

)︀
𝒯ℎ

+ ⟨𝑣, 𝜏
(︀
𝑢̄𝑘+1

ℎ − 𝑢̂ℎ

)︀
⟩𝜕𝒯ℎ

= −𝑎ℎ(𝑢𝑘, 𝑔𝐷) − pgℎ

(︀
𝑣, 𝑝𝑘

ℎ

)︀
− (𝑣, 𝐹𝜌′ + 𝐹𝜂 + 𝐹cor)𝒯ℎ

+ (𝑣, 𝐹𝑡)𝒯ℎ

⟨︀
𝜇, (−𝜈𝐿̄ℎ)𝑛 + 𝜏(𝑢̄𝑘+1

ℎ − 𝑢̂ℎ)
⟩︀

𝜕𝒯ℎ∖Γ𝐷
+
⟨
𝜇, ̂︀𝑏ℎ

⟩
Γ𝑁

= 0
(3.27)

for all (𝐺,𝑣,𝜇) ∈ (𝐺ℎ × 𝑉ℎ × 𝑀ℎ). Here, 𝜈 is a second order tensor contracted with 𝐿ℎ as 𝜈𝑖𝑗𝐿𝑖𝑗 to
apply the appropriate diffusivity in the horizontal or vertical direction. We define the body forcing
terms

𝐹𝜌′ = 1/𝜌0

∫︁ 𝜂𝑘

𝑧

𝑔∇𝑥𝑦𝜌
′,𝑘 𝑑𝑧′, 𝐹𝜂 = 𝑔∇𝑥𝑦𝜂

𝑘, 𝐹cor = 𝑓𝑐𝑧 × 𝑢𝑘, 𝐹𝑡 = 1
𝑎Δ𝑡𝑢

𝑘, (3.28)

which are all elements of the space 𝑉ℎ and evaluated at time 𝑘.
Advection operator. To derive the discontinuous Galerkin formulation of the advection term,

we integrate the advection term (𝑣, ∇ · 𝐹𝑎(𝑢𝑘
ℎ))𝐾 by parts to yield

𝑎ℎ(𝑣,𝑢𝑘
ℎ, 𝑔𝐷) = −

(︀
∇𝑣, 𝐹𝑎(𝑢𝑘

ℎ)
)︀

𝐾
+
⟨︀
𝑣, 𝐹 *

𝑎 (𝑢𝑘
ℎ, 𝑔𝐷)

⟩︀
𝜕𝐾

, (3.29)

where 𝐹 *
𝑎 (𝑢ℎ) is the numerical flux. Several choices exist, including an upwind, central, or local

Lax-Friedrichs flux.
2The choice of numerical flux Φ̂ is not a strictly trivial one. Simply choosing Φ̂ to be the trace value on every

element leads to a completely decoupled system which is not solvable. Other choices of numerical flux can lead to
schemes that must be solved implicitly on the entire 1D domain, or schemes that are not consistent, so the choice of
numerical flux is not pedantic.

3It is also possible to derive a Poisson problem for Φ on each vertical column and solve it using an HDG scheme.
However, each of these problems must be solved implicitly over the entire column, and requires two boundary condi-
tions.

65

Pressure gradient operator. We apply the same procedure as above to obtain the DG for-
mulation of the pressure gradient term (𝑣, ∇𝑝′)𝐾 :

pgℎ(𝑣, 𝑝𝑘
ℎ) = −

(︁
∇ · 𝑣, 𝑝′,𝑘

ℎ

)︁
𝐾

+ ⟨𝑣, (𝑝′
ℎ)*𝑛⟩𝜕𝐾 , (3.30)

where the numerical flux is taken to be a central flux: (𝑝′
ℎ)* = {{𝑝′

ℎ}}. We remark that DG
formulations in which the pressure gradient term is not integrated by parts, i.e., (𝑣, ∇𝑝′

ℎ)𝐾 as in
[110] have been shown to lead to instabilities in the context of high-order discontinuous Galerkin
discretizations of projection methods [77].

3.4.3.2 Component-wise velocity approach

In the case where the velocity components are not coupled on the boundary of the mesh due to
the boundary conditions, for example, when a zero Dirichlet no-slip condition is applied to the
velocity along a non-trivial bathymetry, and the vertical sides of the domain are axis-aligned, the
linear system arising from equation (3.27) is decoupled, and the predictor velocity can be solved
component-by-component. This situation also commonly arises in modeling of the mixed layer,
where the domain is flat-bottomed and axis aligned. Computationally, this approach is attractive,
and allows the solution of smaller element-local systems and a smaller globally-coupled linear system
than the weak form given in §3.4.3.1.

Let 𝜑 represent any component of the velocity 𝑢̄. If we were to write the usual form of the HDG
problem where 𝑞 = ∇𝜑 represents the complete gradient of the component 𝜑, then we want to find
(𝜑, 𝑞) ∈ 𝑊ℎ × 𝑉ℎ such that

(︀
𝑣, 𝜈−1𝑞

)︀
𝒯ℎ

+
(︀
∇ · 𝑣, 𝜑

)︀
𝒯ℎ

−
⟨
𝑣 · 𝑛, 𝜑

⟩
𝜕𝒯ℎ

= 0
(︂
𝑤,

𝜑

𝑎Δ𝑡

)︂

𝒯ℎ

+ (𝑤, ∇ · 𝑞)𝒯ℎ
−
⟨
𝑤, 𝜏

(︁
𝜑− 𝜑

)︁⟩
𝜕𝒯ℎ

= rhℎ(𝑤,𝑢𝑘, 𝑝𝑘
ℎ,𝐹)𝐾

⟨𝜇, ̂︀𝑞 · 𝑛⟩𝜕𝒯ℎ
= ⟨𝜇, 𝑔𝑁 ⟩Γ𝑁

(3.31)

where the operator rhℎ(·) contains all the componentwise right-hand side terms of the momentum
equation. This formulation is consistent with the full 3D velocity predictor if 𝜈𝑥𝑦 = 𝜈𝑧. This also
couples the domain together on the interfaces. The velocity predictor 𝑢̄𝑘+1

ℎ is the vector (𝜑𝑢, 𝜑𝑣, 𝜑𝑤)
resulting from each of the HDG solves.

In the decoupled case, the formulation of the DG right-hand side operators can be obtained by
considering only the relevant component 𝑤 of the test function 𝑣 ∈ 𝑉 𝑝

ℎ as appears in equation (3.27).
For the advective term, we have

𝑎ℎ(𝑤, 𝜑,𝑢𝑘
ℎ, 𝑔𝐷) = −

(︀
𝑤, ∇ ·

(︀
𝜑𝑢𝑘

ℎ

)︀)︀
𝐾

= −
(︀
∇𝑤, 𝜑𝑢𝑘

ℎ

)︀
𝐾

+
⟨
𝑤,
(︀
𝜑𝑢𝑘

ℎ

)︀* · 𝑛
⟩

𝜕𝐾
, (3.32)

The numerical flux in this work
(︀
𝜑𝑢𝑘

ℎ

)︀* is taken to be an upwind flux. Since 𝑢𝑘
ℎ is multiply-valued,

either the average value {{𝑢ℎ}} or the HDG flux 𝑢̂ℎ can be used.

Similarly, the pressure gradient term for the component 𝑖 of 𝑢̄𝑘+1
ℎ , 𝜑𝑖, is

pgℎ

(︀
𝑤, 𝑝𝑘

ℎ

)︀
= −

(︂
𝜕𝑤

𝜕𝑥𝑖
, 𝑝′,𝑘

ℎ

)︂
+
⟨
𝑤,
(︁
𝑝′,𝑘

ℎ

)︁*
𝑛𝑖

⟩
(3.33)

where 𝑛𝑖 denotes the 𝑖th component of the outward unit normal 𝑛, and where the numerical flux is
again chosen to be the central flux,

(︁
𝑝′,𝑘

ℎ

)︁*
=
{︁{︁
𝑝′,𝑘

ℎ

}︁}︁
.

66

3.4.4 Free-surface corrector

Define the gradient 𝑞𝛿𝜂 ≡ ∇𝛿𝜂. We seek (𝛿𝜂𝑘+1
ℎ , 𝑞ℎ,𝛿𝜂, 𝛿𝜂ℎ) ∈ [(𝑉 𝑝order

ℎ ×𝑊 𝑝order
ℎ ×𝑀𝑝order

ℎ)]𝑑−1

such that
(︂
𝑣,

𝑞ℎ,𝛿𝜂

𝑎Δ𝑡𝑔 [𝜂𝑘 +𝐻]

)︂

𝒯ℎ

+
(︀
∇ · 𝑣, 𝛿𝜂𝑘+1

ℎ

)︀
𝒯ℎ

−
⟨
𝑣 · 𝑛, 𝛿𝜂ℎ

⟩
𝜕𝒯ℎ

= 0,
(︃
𝑤,

𝛿𝜂𝑘+1
ℎ

𝑎Δ𝑡

)︃

𝒯ℎ

− (𝑤, ∇ · 𝑞ℎ,𝛿𝜂)𝒯ℎ
+
⟨
𝑤, 𝜏

(︁
𝛿𝜂𝑘+1

ℎ − 𝛿𝜂ℎ

)︁⟩
𝜕𝒯ℎ

= −𝑑ℎ(𝑤, 𝑈̄ℎ),

⟨
𝜇, 𝑞ℎ,𝛿𝜂 · 𝑛 + 𝜏

(︁
𝛿𝜂𝑘+1

ℎ − 𝛿𝜂ℎ

)︁⟩
𝜕𝒯ℎ

= ⟨𝜇, 𝑔𝑁 ⟩𝜕𝒯ℎ

(3.34)

for all (𝑣, 𝑤, 𝜇) ∈ [(𝑉 𝑝order
ℎ ×𝑊 𝑝order

ℎ ×𝑀𝑝order
ℎ)]𝑑−1. The notation [·]𝑑−1 refers to the fact that

these finite element spaces are defined on the surface mesh 𝜕Ω𝜂 and are of different dimension than
the other finite element problems specified in this section. The quantity 𝑈̄ℎ ≡

∫︀ 𝜂𝑘

−𝐻
𝑢̄𝑘+1

𝑥𝑦,ℎ 𝑑𝑧 is the
depth-integrated horizontal velocity, and the operator 𝑑ℎ(𝑤, , 𝑈̄) is

𝑑ℎ(𝑤, 𝑈̄) =
(︀
𝑤, ∇ · 𝑈̄

)︀
𝐾

= −
(︀
∇𝑤, 𝑈̄

)︀
𝐾

+
⟨
𝑤,
(︀
𝑈̄
)︀* · 𝑛

⟩
𝜕𝐾

(3.35)

For the numerical flux to on the edges, we use a central flux for the divergence operators:
(︀
𝑈̄
)︀* ={︀{︀

𝑈̄
}︀}︀

to maintain discrete consistency with both the discrete divergence on the right-hand side of
the weak pressure corrector equation in §3.4.6 and the discrete pressure gradient in equation (3.30)
as investigated in [77, 78], where it was found that this consistency, as well as an integration by
parts formulation, is necessary for the stability of the scheme.

3.4.5 Intermediate velocity projection, free-surface update

From the mixed formulation of the free-surface corrector equation, we have that 𝑞𝛿𝜂 = 𝜅𝛿𝜂∇𝛿𝜂 =
𝑎Δ𝑡𝑔(𝐻 + 𝜂)∇𝛿𝜂, which, combined with the intermediate update, yields the horizontal velocity
correction and free-surface correction

¯̄u𝑘+1 = ū𝑘+1 − 1
(𝜂𝑘 +𝐻)𝑞𝛿𝜂,ℎ (3.36)

𝜂𝑘+1 = 𝜂𝑘 + 𝛿𝜂𝑘+1 (3.37)

3.4.6 Pressure corrector

Define the gradient of the pressure corrector 𝑞𝛿𝑝′ . The weak form of equation (3.17) for the correction
to the pressure 𝛿𝑝′ is as follows: seek (𝑞𝛿𝑝′ , 𝛿𝑝′, ^𝛿𝑝′) ∈ (𝑉 𝑝order

ℎ ×𝑊 𝑝order
ℎ ×𝑀𝑝order

ℎ) such that

(︀
𝑣, 𝑞𝑘+1

𝛿𝑝′

)︀
𝒯ℎ

+
(︀

∇ · 𝑣, 𝛿𝑝′,𝑘+1
)︀

𝒯ℎ
−
⟨
𝑣 · 𝑛, ̂︁𝛿𝑝′

⟩
𝜕𝒯ℎ

= 0,

−
(︀

𝑤, ∇ · 𝑞𝑘+1
𝛿𝑝′

)︀
𝒯ℎ

+
⟨︀

𝑤, 𝜏𝑝 𝛿𝑝′,𝑘+1
⟩︀

𝜕𝒯ℎ
−
⟨

𝑤, 𝜏𝑝̂︁𝛿𝑝′
⟩

𝜕𝒯ℎ

=
1

𝑎Δ𝑡

[︁
−
(︀

∇𝑤, ¯̄𝑢𝑘+1
)︀

𝒯ℎ
+
⟨︀

𝑤,
(︀

¯̄𝑢𝑘+1
)︀*

· 𝑛
⟩︀

𝜕𝒯ℎ

]︁
,

⟨︀
𝜇, 𝑞𝑘+1

𝛿𝑝′ · 𝑛 + 𝜏𝑝

(︀
𝛿𝑝′,𝑘+1 − ^𝛿𝑝′

)︀⟩︀
𝛿𝒯ℎ∖Γ𝑑

= 0
(3.38)

for all (𝑣, 𝑤, 𝜇) ∈ (𝑉 𝑝order
ℎ ×𝑊 𝑝order

ℎ ×𝑀𝑝order
ℎ), where

(︀ ¯̄𝑢𝑘+1)︀* is a numerical flux which we choose to
be a central flux

(︀ ¯̄𝑢𝑘+1)︀* =
{︀{︀ ¯̄𝑢𝑘+1}︀}︀ in order to maintain consistency with the discrete divergences

in the free-surface corrector (3.34) equation and the discrete pressure gradient in the momentum
equation (3.33) [77].

67

3.4.7 Velocity projection, pressure update

𝑢𝑘+1 = ¯̄𝑢𝑘+1 − 𝑎Δ𝑡𝑞𝛿𝑝′ (3.39)
𝑝′,𝑘+1 = 𝑝′,𝑘 + 𝛿𝑝′,𝑘+1. (3.40)

A feature of using a so-called “mixed method” such as HDG or the local discontinuous Galerkin
(LDG) method for the spatial discretization of a second-order PDE is that the gradients of all
unknowns are solved for simultaneously along with their primal counterparts. As in §3.4.5, we can
perform the update by making use of the gradient unknowns directly to perform the projection in
(3.20), which we will refer to as a “strong” projection update as in (3.39). However, we can also
perform the projection updates weakly using, in this case, the discrete pressure gradient pgℎ(𝑣, 𝑝𝑘

ℎ)
(3.30), leading to the following variational problem. We seek 𝑢𝑘+1 ∈ 𝑉 𝑝order

ℎ such that

(︀
𝑣, 𝑢𝑘+1

ℎ

)︀
𝒯ℎ

=
(︀
𝑣, ¯̄𝑢𝑘+1

ℎ

)︀
𝒯ℎ

− 𝑎Δ𝑡
[︂(︁

∇ · 𝑣, 𝑝′,𝑘+1
ℎ

)︁
𝒯ℎ

+
⟨
𝑣,
{︁{︁
𝑝′,𝑘+1

ℎ

}︁}︁
𝑛
⟩

𝜕𝒯ℎ

]︂
(3.41)

for all 𝑣 ∈ 𝑉 𝑝order
ℎ . The variational problem does not require the solution of a linear system, as 𝑝′,𝑘+1

is available and the space 𝑉 𝑝order
ℎ has no shared degrees of freedom between elements. Therefore,

this weak update can be performed as a reconstruction on each element independently. This not
only provides increased stability, as the hydrostatic pressure gradient is coupled between elements by
virtue of the numerical flux, but also allows for the addition of penalty terms to provide stabilization
in the case of modeling under-resolved turbulent flows: for details, see [78]. Addition of penalization
terms in this manner can prevent growth of the discrete divergence and numerical energy over
time, dampening spurious oscillations due to under-resolution and providing an alternative to slope
limiting.

3.4.8 Density perturbation update
For the HDG spatial discretization of (3.21), it is possible to treat the tracer advection implicitly
in a spatial sense as in [191], which allows the stabilization parameter 𝜏 to be chosen according
to the physical relationship between diffusion and advection in the problem of interest. However,
doing so comes at the cost of the symmetry of the variational form and hence that of the linear
system representing its discretization, requiring the use of iterative solvers for non-symmetric linear
systems. Therefore, in this work we treat the advection term in (3.21) explicitly in an HDG sense,
preserving problem symmetry. Serendipitously, this choice also results in the same weak form as
(3.31) in §3.4.3.2, if we take 𝜑 = 𝜌′𝑘+1 and modify the right-hand side to include only the weak
advection term 𝑎ℎ(𝑤, 𝜌′𝑘+1

ℎ ,𝑢𝑘+1
ℎ , 𝑔𝜌′), which, for clarity, we write here

𝑎ℎ(𝑤, 𝜌′𝑘+1
ℎ ,𝑢𝑘+1

ℎ , 𝑔𝜌′) = −
(︁
𝑤, ∇ ·

(︁
𝜌′𝑘+1

ℎ 𝑢𝑘+1
ℎ

)︁)︁
𝐾

= −
(︁

∇𝑤, 𝜌′𝑘+1
ℎ 𝑢𝑘+1

ℎ

)︁
𝐾

+
⟨
𝑤,
(︁
𝜌′𝑘+1

ℎ 𝑢𝑘+1
ℎ

)︁*
· 𝑛
⟩

𝜕𝐾
.

We use an upwind flux according to the average value of 𝑢𝑘+1
ℎ on each edge.

3.4.9 Recovery of the hydrostatic vertical velocity
For the recovery of the vertical velocity in the 2D case, we can rewrite the continuity equation as

∇ · (𝑤𝑧) = −∇ · (𝑢𝑥̂),

the weak DG form is then (for a test function 𝑞) is

−(∇𝑞, 𝑤𝑘+1𝑧)𝐾 +
⟨
𝑞,
(︀
𝑤𝑘+1)︀*

𝑧 · 𝑛
⟩

𝜕𝐾
= −(𝑞, ∇ · (𝑢𝑘+1𝑥̂))𝐾 ,

68

where the right-hand side is data, since 𝑢𝑘+1 is known. Leaving the right-hand side as is, without
integrating by parts is in some sense not a principled approach, as the horizontal velocities are
completely decoupled column-by-column. However, comparing the discretization in equation (3.4.9)
to the form of the generic vertical integration in equation (3.24), we have that the recovery of the
vertical velocity is equivalent to a discrete depth integration operation. Namely,

𝑤𝑘+1 =
∫︁ 𝜂𝑘+1

𝑧

𝜕𝑤𝑘+1

𝜕𝑧′ 𝑑𝑧′ =
∫︁ 𝜂𝑘+1

𝑧

−𝜕𝑢𝑘+1

𝜕𝑥
𝑑𝑧′,

where the first equality follows from the fundamental theorem of calculus, and the second from the
continuity equation. Therefore, applying the discrete derivative ∇ · (𝑢𝑘+1𝑥̂) and discretely depth
integrating the resulting field is a convenient way to perform the recovery.

A more consistent approach would be to perform the integration by parts for the right-hand side,
resulting in

−(∇𝑞, 𝑤𝑘+1𝑧)𝐾 +
⟨
𝑞,
(︀
𝑤𝑘+1)︀*

𝑧 · 𝑛
⟩

𝜕𝐾
= (∇𝑞, 𝑢𝑘+1𝑥̂)𝐾 −

⟨
𝑞,
(︀
𝑢𝑘+1)︀*

𝑥̂ · 𝑛
⟩

𝜕𝐾

where we emphasize that the right-hand side is still data, however, the numerical flux (𝑢𝑘+1)*

adds horizontal coupling between elements. A reasonable choice that preserves consistency is an
average flux (𝑢𝑘+1)* =

{︀{︀
𝑢𝑘+1}︀}︀. If, similar to the depth-integration weak form, we take the

directional numerical flux in the negative 𝑧 direction, (𝑤𝑘+1)* = lim𝜖→0 𝑤(𝑥, 𝑧+𝜖) at every interface,
which amounts to taking the value of 𝑤𝑘+1 approaching the interface from the top. Using these
numerical flux choices, we can write the weak form as

−(∇𝑞, 𝑤𝑘+1𝑧)𝒯ℎ
+
⟨
J𝑞K,

(︀
𝑤𝑘+1)︀*

𝑧 · 𝑛
⟩

𝐹 𝑖,nv
ℎ

= (∇𝑞, 𝑢𝑘+1𝑥̂)𝒯ℎ
−
⟨
J𝑞K,

(︀
𝑢𝑘+1)︀*

𝑥̂ · 𝑛
⟩

𝐹 𝑖
ℎ

−
⟨︀
𝑞, 𝑢𝑘+1𝑥̂ · 𝑛

⟩︀
𝐹 Γ

ℎ

where 𝐹 𝑖
ℎ refers to the set of inter-element interfaces, and 𝐹 𝑖,nv

ℎ refer to the non-vertical interfaces
between elements. For simplicity, we show the derivation for a flat-bottomed case, but incorporation
of a non-trivial bottom follows directly from the application of the Leibniz integral rule to (3.4.9)
the integrated continuity equation at the topography.

3.5 Numerical experiments
In this section, we present numerical results from a set of test cases that demonstrate the convergence
and accuracy of the proposed model. The test cases employed here are: (1) a free-surface seiche and
(2) a continuously-stratified internal seiche, (3) the formation of internal solitary waves [252].

3.5.1 Implementation
Unless otherwise stated, we take the background density 𝜌0 = 1024kg/m3. Volume and surface
integrals that appear in the weak forms above are calculated using Gaussian quadrature. Namely,
we use 𝑛𝑞 = 𝑝𝑢 + 1 quadrature points to integrate the velocity mass-matrix inertial terms, the
advection and diffusion terms, the velocity divergence terms, as well as the body forcing term. We
use 𝑛𝑞 = 𝑝𝑝 + 1 quadrature points to integrate the Laplace operator occurring in the pressure
correction equation. Aliasing effects arising due to the nonlinearity of the advection term are often
treated by over-integration using 𝑛𝑞 = ⌊3𝑝𝑢/2⌋ quadrature points for both the volume and surface
integrals related to the advection term. In the subsequent test cases, we have found this over-
integration to be unnecessary. We use 𝑛𝑞 = 𝑝𝑢 + 1 quadrature points to integrate all dimension
𝑑− 1 integrals arising as a result of the discretization of the free-surface, and all depth-integrations
as detailed in §3.4.2 of the non-hydrostatic density perturbation are computed with 𝑛𝑞 = 𝑝𝑢 + 4
quadrature to limit depth integration error.

69

The linear systems of equations that arise as a result of the spatial discretization are solved using
Krylov subspace iterative methods—in particular, the conjugate gradient (CG) method and the
biconjugate gradient stabilized method (BiCGSTAB). Unless otherwise stated, the linear systems
are solved without preconditioning and to a relative tolerance of 10−11.

Our code is implemented in C++ and makes use of the finite-element library deal.II [10, 9] as
well as the scientific computing libraries NumPy and SciPy. We use the template meta-programming
paradigm to write performant, dimension-independent code.

3.5.1.1 CFL condition

Due to the explicit time integration of the advection operator, the time step size Δ𝑡 is restricted
according to the Courant–Friedrichs–Lewy (CFL) condition

Δ𝑡 < ℎmin Cr
𝑝1.5

order,𝑢 ‖𝑢max‖
,

where ℎmin is the minimum representative element length scale, Cr is the empirically determined
Courant number, and 𝑝order,𝑢 is the polynomial order of the discrete velocity space. This is a
global bound on the local condition that the resolution must be such that the physical domain of
dependence is captured by the discretization.

The effective spatial discretization length scale ℎmin/𝑝
1.5
order,𝑢 suggests the dependence of the time

step restriction on the polynomial degree of the finite element space. The exponent value of 1.5
was experimentally found to allow a constant Courant number over a wide range of polynomial
degrees for simulations of under-resolved turbulent flows in [78]. Additional discussion can be found
in [110, 93].

3.5.2 Spatial convergence: verification
The discrete derivative operators in DG-FEM schemes require care to ensure high-order convergence;
incorrect implementation of any term can prevent convergence to the true solution at the optimal
order [110]. Inspired by the method of manufactured solutions, to provide verification of the spatial
derivative operators and numerical fluxes in the momentum equation (3.1) and its discrete equivalent
(3.31), we choose the quantity ϒ = (𝑢, 𝑝′, 𝜂, 𝜌′) and analytically deduce the resultant forcing term
𝑓 which balances equation (3.42)

𝜃ℎ

𝑎Δ𝑡 − ∇ · (𝜈∇𝜃ℎ) = −∇𝑝′ − ∇ · (𝑢 ⊗ 𝑢) + 𝑔∇𝑥𝑦𝜂 − 1
𝜌0

∫︁ 0

𝑧

𝑔∇𝑥𝑦𝜌
′ 𝑑𝑧′ + 𝑢

𝑎Δ𝑡 + 1
𝜌0

𝑓 , (3.42)

and solve the discretized PDE for 𝜃ℎ, allowing measurement of the rate of convergence to the
analytical solution 𝑢. We take as manufactured solution

ϒ =
(︁

(sin(𝜋𝑥2) sin(𝜋𝑥1), cos(2𝜋𝑥2)), cos(2𝜋𝑥2) sinh(𝑥1), 1 − 𝑒−𝑥2
1 , sin2(𝜋𝑦)

)︁
(3.43)

on the domain Ω = [−1, 1]2 with mixed boundary conditions Γ𝐷 = 𝜕Ω ∩ {𝑥 : 𝑥1 < 𝑥2} and Γ𝑁 =
𝜕Ω ∖ Γ𝐷 with values deduced from the analytical solution and domain geometry.

Results of the spatial convergence test are shown in Figure 3-3 for the primal unknown 𝑢ℎ at
polynomial orders in the range 𝑝order = 1, . . . , 6. For both the primal unknown 𝑢ℎ and gradient 𝑞ℎ

(not shown), optimal 𝑝order +1 convergence rates in the 𝐿2-error norm are observed at all polynomial
degrees, verifying the spatial discretization and its implementation. We use the same procedure to
similarly verify the spatial discretizations in equations (3.34), (3.38), and (3.24).

3.5.3 Validation: linear gravity waves
We verify the nonhydrostatic model using results from gravity-wave theory. We model both liquid-
surface gravity waves occurring in a free-surface seiche §3.5.3.1 and internal wave behavior occurring

70

10 2 10 1 100

Mesh size

10 12

10 10

10 8

10 6

10 4

10 2

100

-e
rro

r

=
=
=
=
=
=

optimal convergence rate

Figure 3-3: Convergence study: spatial errors in the primal unknown ‖𝑢− 𝑢ℎ‖𝐿2(Ω) for the test
case in equation (3.43) at different polynomial orders 𝑝, compared against optimal 𝑝 + 1 rates of
convergence.

top bottom sides
𝑢̄ Γ𝑁 Γ𝑁 Γ𝐷

𝑤̄ Γ𝑁 Γ𝐷 Γ𝑁

𝛿𝜂 - - Γ𝑁

𝛿𝑝′ Γ𝐷 Γ𝑁 Γ𝑁

𝜌′ Γ𝑁 Γ𝑁 Γ𝑁

Table 3.1: Boundary condition specifications for the gravity wave test cases. All boundary conditions
are homogeneous.

in a continuously-stratified internal seiche §3.5.3.2.
For each test case, we consider the enclosed, flat-bottomed domain Ω = [0, 𝐿] × [−𝐻, 0] of length

𝐿 and depth 𝐻 shown in Fig. 3-4. Both the free-surface and continuously-stratified seiche exhibit
the formation of a standing wave at the free-surface and the density interface, respectively. Each
standing wave is characterized by a fundamental wavelength 𝜆𝑤 = 2𝐿 with corresponding wave
number 𝑘 = 2𝜋/𝜆𝑤, as well as an initial amplitude 𝑎 and frequency 𝜔. The degree of nonhydrostasy
is described by the domain aspect ratio 𝐿/𝐻; the hydrostatic shallow-water limit is obtained as
𝐿/𝐻 → ∞ and the nonhydrostatic deep-water limit is obtained as 𝐿/𝐻 → 0.

For both the free-surface waves and internal waves (as measured by the center of the pycnocline),
we compare the numerical dispersion behavior to the dispersion relations predicted by linear gravity
wave theory [138, 252]. We refer to the theoretical nonhydrostatic and hydrostatic wave speeds as
𝑐𝑁𝐻 and 𝑐𝐻 , respectively. The wave speeds predicted by the model are determined by measuring
the numerical period of oscillation 𝑇ℎ, defined as the elapsed time between the initial condition and
the subsequent peak wave amplitude at the 𝑥 = 0 domain boundary. The corresponding numerical
wave speed is then computed using the general periodic relation 𝑐 = 𝜔/𝑘 = 2𝜋/(𝑘𝑇).

We take care to choose model parameters and initial conditions such that the linear wave theory

71

to which we compare our model is valid; namely, that the initial wave amplitudes are small in relation
to the domain depth (𝑎 ≪ 𝐻) and that the numerical viscosity is small in order to model inviscid
flow. The numerical experiments are run without Coriolis forcing, 𝐹cor = 0.

Figure 3-4: Computational domain for the nonhydrostatic gravity wave test cases.

The boundary condition types for each partial differential equation for the projection scheme de-
tailed in §3.3 are given in Table 3.1, and are the same for the free-surface seiche and internal seiche
test cases. All boundary condition values are homogeneous, and, taken together, physically repre-
sent a free-slip condition for the tangential velocity on the sides and bottom of the computational
domain. The zero-gradient boundary condition on the top of the computational domain allows for
communication between the one-dimensional free-surface grid and the domain-interior velocity field.

All gravity wave simulations are discretized on a numerical grid consisting of polynomial order
𝑝 = 3 quadrilateral elements, 𝑁𝑥 = 15 and 𝑁𝑧 = 15 elements in the horizontal and vertical,
respectively. We remark that this is an exceptionally coarse mesh and is meant to illustrate the
capability of high-order models.

3.5.3.1 Free-surface seiche

In this test case, the fluid density is constant and the free-surface is initially perturbed from equi-
librium according to the initial wave 𝜂(𝑥, 𝑡 = 0) = 𝑎 cos(𝑘𝑥) with amplitude 𝑎. The resulting flow is
driven by the action of gravity on the initial surface wave.

The analytical behavior of the free-surface is given by 𝜂 = 𝑎 cos(𝑘𝑥) cos(𝜔𝑡), with the correspond-
ing analytical solutions for the horizontal and vertical velocities

𝑢 = 𝑎𝑔
𝑘

𝜔

cosh 𝑘(𝑧 +𝐻)
cosh(𝑘𝐻) sin(𝑘𝑥) sin(𝜔𝑡), 𝑣 = −𝑎𝑔 𝑘

𝜔

sinh 𝑘(𝑧 +𝐻)
cosh(𝑘𝐻) cos(𝑘𝑥) sin(𝜔𝑡),

approach the hydrostatic solution

𝑢 = 𝑎𝑔
𝑘

𝜔
sin(𝑘𝑥) sin(𝜔𝑡), 𝑣 = −𝑎𝑔 𝑘

𝜔
cos(𝑘𝑥) sin(𝜔𝑡),

in the shallow-water limit. With constant density, the analytical wave speed of a free-surface wave
is given by

𝑐 =
√︂
𝑔

𝑘
tanh(𝑘𝐻), (3.44)

resulting in wave speeds of 𝑐hs =
√
𝑔𝐻 in the hydrostatic limit and 𝑐nhs =

√︀
𝑔/𝑘 in the nonhydro-

static limit.
We initialize the numerical model with the free-surface perturbation 𝜂(𝑡 = 0) = 𝑎 cos(𝑘𝑥), with

seiche amplitude 𝑎 = 0.01 m, on a domain with depth 𝐻 = 1. To mimic the inviscid assumption in
linear gravity wave theory, we run our model with a kinematic diffusivity of 𝜈𝑥 = 𝜈𝑧 = 10−8 Pa·s.

72

(a) Initial conditions for the free-surface se-
iche (density 𝜌′ constant). To illustrate the
shape of the free surface, only the top of the
domain is shown.

(b) Initial conditions for density perturba-
tion 𝜌′ for the continuously stratified inter-
nal seiche test case in §3.5.3.2 (free-surface
𝜂(𝑥, 𝑡0) = 0.

Figure 3-5: Initial conditions for the gravity wave test cases.

The background density is taken to be 𝜌0 = 1000 kg m−3 without density perturbation (𝜌′(𝑥, 𝑡) = 0).
For the temporal discretization, we use a simple first-order backward Euler scheme with a constant
time step Δ𝑡 = 0.005. We run the model for two seiche periods, 𝑡max = 2𝑇 , where the period 𝑇 is
computed from the analytical solution.

In Fig. 3-6, we compare the normalized velocity profiles of the numerical model along the vertical
slice 𝑥 = 𝐿/10 to that of the theoretical solution at time 𝑡 = 𝑇/4 on a domain with equal aspect
ratio, 𝐻/𝐿 = 1 so that the analytical behavior is strongly nonhydrostatic. Both the horizontal and
vertical velocity profiles show excellent agreement with the theoretical solutions over the domain.
As expected, the most significant physical difference between the hydrostatic and nonhydrostatic
velocity profiles is the depth-variation of the horizontal velocity; the hydrostatic horizontal velocity
profile does not vary with depth, in contrast to the nonhydrostatic profile, which decays rapidly
from its maximum value at the free-surface.*

Fig. 3-6 depicts the same comparison of normalized velocity profiles, but on a domain with
depth 𝐻 = 1 and length 𝐿 = 9.8 m. Once again, the numerical solution shows agreement with the
nonhydrostatic solution, but the differences between the hydrostatic and nonhydrostatic velocity
profiles are less apparent, as, physically, the numerical experiment begins to approach the shallow-
water limit.

To further verify the model, we vary the degree of nonhydrostasy by fixing the domain height
at 𝐻 = 1 m and changing the length 𝐿 of the domain. Figure 3-7 compares the numerical wave
speed to that of the analytical wave speed predicted by hydrostatic and nonhydrostatic theory as a
function of the domain aspect ratio. The numerical predictions agree with the relationships given
in equation (3.44), which indicates that the model achieves the correct dispersive behavior. As
the domain aspect ratio 𝐿/𝐻 shrinks, nonhydrostatic effects become important and the wave speed
deviates from the hydrostatic solution, which drastically over-predicts the true wave speed. However,
as the domain length 𝐿 increases relative to the depth 𝐻, the hydrostatic approximation becomes
valid and the nonhydrostatic and hydrostatic solutions are similar, which is also captured by the
model. On the whole, these diverse test cases provide extensive verification for the numerical solver.
They encompass a broad spectrum of both hydrostatic and nonhydrostatic physics, which provides
a comprehensive overview of the solver’s capabilities and performance.

All numerical simulations show excellent agreement with the nonhydrostatic theory, as well as
convergence to the expected hydrostatic behavior in the shallow-water limit.

73

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.8

0.6

0.4

0.2

0.0

z [
m

]

uh

0.0 0.2 0.4 0.6 0.8 1.0
x [m]

1.0

0.8

0.6

0.4

0.2

0.0

z [
m

]

wh

-4.6e-07

2.7e-02

5.4e-02

-5.4e-02

3.1e-06

5.4e-02

0.0 0.2 0.4 0.6 0.8 1.0
u

1.0

0.8

0.6

0.4

0.2

0.0

z/
H

Vertical Slice: x = L/10
NH Theory
H Theory
uh

1.0 0.8 0.6 0.4 0.2 0.0
w

1.0

0.8

0.6

0.4

0.2

0.0

z/
H

0 2 4 6 8
1.0

0.8

0.6

0.4

0.2

0.0

z [
m

]

uh

0 2 4 6 8
x [m]

1.0

0.8

0.6

0.4

0.2

0.0

z [
m

]

wh

-1.9e-07

1.6e-02

3.2e-02

-9.8e-03

3.5e-05

9.9e-03

0.0 0.2 0.4 0.6 0.8 1.0
u

1.0

0.8

0.6

0.4

0.2

0.0

z/
H

Vertical Slice: x = L/10
NH Theory
H Theory
uh

1.0 0.8 0.6 0.4 0.2 0.0
w

1.0

0.8

0.6

0.4

0.2

0.0

z/
H

Figure 3-6: Numerical velocities 𝑢ℎ and their comparison to nonhydrostatic and hydrostatic theory
along a vertical slice located at 𝑥 = 𝐿/10 at time 𝑡 = 𝑇/4 for different simulations with domains
Ω = (0, 𝐿) × (−1, 0) with domain lengths of 𝐿 = 1m (left) and 𝐿 = 9.8m (right).

74

3.5.3.2 Continuously-stratified internal seiche

In this case, we compute the oscillations of a nonhydrostatic internal seiche to highlight fundamental
aspects of nonhydrostatic physics that must be captured in simulations of internal waves. This
test case illustrates the coupling of the density perturbation 𝜌′ as well as the free-surface to the
nonhydrostatic pressure.

The initial density perturbation is given by

𝜌′ = Δ𝜌
2

[︂
1 − tanh

(︂
2 tanh−1 𝛼𝑠

𝛿𝜌
(𝑧 +𝐻/2 − 𝜉)

)︂]︂

where 𝛿𝜌 represents the pyclocline thickness, 𝛼𝑠 = 0.99 [252], and Δ𝜌 represents the top-bottom
density difference. The interface is characterized by an initial wave 𝜉 = 𝑎𝑖 cos(𝑘𝑥) with amplitude
𝑎𝑖.

The internal wave for a continuously-stratified internal seiche with interface thickness 𝛿𝜌 obeys
a modified dispersion relation [252, 138]

𝑐 =

√︃
𝑔′

2𝑘 tanh
(︂
𝑘𝐻

2

)︂
𝑓𝑖(𝑘𝛿𝜌)

where 𝑓𝑖(𝑘𝛿𝜌) accounts for effects due to the interface thickness; from (Thorpe, 1968), this function
is given to first order as 𝑓𝑖(𝑘𝛿𝜌) = (1 + 𝑘𝛿𝜌/2)−1. The initial configuration is shown in Fig. 3-5b,
and the free surface is initialized as 𝜂(𝑥, 𝑡 = 0) = 0.

0.0 2.5 5.0 7.5 10.0 12.5
domain aspect ratio /

0.2

0.4

0.6

0.8

1.0

wa
ve

 sp
ee

d
/

 [m
/s

]

NH Theory
H Theory
NH simulation

2 4 6 8 10 12
domain aspect ratio /

0.6

0.7

0.8

0.9

1.0

wa
ve

 sp
ee

d
/

 [m
/s

]

NH Theory
H Theory
NH simulation

Figure 3-7: The normalized numerical free-surface wave speed (left) and internal wave speed (right)
for different nonhydrostatic free-surface seiche simulations run on domains with varying aspect ratio
𝐿/𝐻, as compared to the analytical predictions of free-surface wave speed given by nonhydrostatic
and hydrostatic theory.

As above, we vary the degree of nonhydrostasy by fixing the domain height at 𝐻 = 1 m and
changing the length 𝐿 of the domain. Figure 3-7 compares the numerical wave speed to that of
the analytical wave speed predicted by hydrostatic and nonhydrostatic theory as a function of the
domain aspect ratio. The numerical predictions agree with the relationships given in equation
(3.44), which indicates that the model achieves the correct dispersive behavior. As the domain
aspect ratio 𝐿/𝐻 shrinks, nonhydrostatic effects become important and the wave speed deviates
from the hydrostatic solution, which drastically over-predicts the true wave speed. However, as the
domain length 𝐿 increases relative to the depth 𝐻, the hydrostatic approximation becomes valid
and the nonhydrostatic and hydrostatic solutions are similar, which is also captured by the model.

75

3.5.4 Idealized formation of Rayleigh-Taylor instabilities
As we are interested in nonhydrostatic mixed-layer instabilities, we consider an idealized two-
dimensional test where heavier water is advected over lighter water by wind forcing, leading to
instabilities. One specific type of gravity-driven instability seen at interfaces between fluids of dif-
ferent densities are referred to as Rayleigh-Taylor (RT) instabilities. These instabilities are observed
in processes that span a wide range of length scales ranging from supernova explosions [219] to
turbulent mixing [27, 263]. RT instabilities have garnered a lot of attention over the years and there
have been many investigations into the linear stability analysis [137, 265], nonlinear [65] stability
analysis and RT instabilities in the context of ocean dynamics [57, 60, 198, 248]. The instabilities
can be explained in terms of a out-of-the-plane vorticity Specifically, in an ocean context, this is
commonly referred to as the creation of a baroclinic torque.

These gravity driven instabilities represent an idealized analogue to the results seen in §3.6.3
and §3.6.4, where at various points in the model nested runs in the Alboran sea, heavier water
is advected over lighter water, resulting in the formation of mixed-layer instabilities. While the
instabilities occurring in the mixed layer are much more complicated than these idealized test cases
[172, 174], these simulations can both be used in parameter studies, as well as a benchmark for
hydrostatic-nonhydrostatic multi-model implementations [228]. In this case we consider a domain

Figure 3-8: Domain setup for idealized RTI simulations conducted in §3.5.4.The schematic is not
to-scale; a to-scale representation of the domain is shown directly underneath.

of Ω = [0, 30km] × [−50m, 0], simulating a 2D cross-sectional slice of the mixed layer. Figure 3-8
illustrates the setup of the domain, including a to-scale comparison. The boundary conditions for
the nonhydrostatic HDG model are given in Table 3.2.

top bottom inflow ouflow
𝑢̄ Γ𝑁 Γ𝑁 Γ𝐷 Γ𝑁

𝑤̄ Γ𝑁 Γ𝐷 Γ𝐷 Γ𝑁

𝛿𝜂 - - Γ𝑁 Γ𝑁

𝛿𝑝′ Γ𝐷 Γ𝑁 Γ𝑁 Γ𝑁

𝜌′ Γ𝑁 Γ𝑁 Γ𝑁 Γ𝑁

Table 3.2: HDG NHS model boundary condition specifications used for the idealized mixed-layer
RTI instability simulations.

3.5.4.1 Verification with a finite-volume model

To perform additional validation of the model described in this paper, we compare the results to
that of a legacy finite volume incompressible Navier—Stokes code. Specifically, we use a MATLAB
code (the 2.29 finite volume MATLAB framework) for solving the incompressible Navier–Stokes

76

equations with Boussinesq approximation for buoyancy [245]. The solver is based on several projec-
tion methods; for a review, we refer the reader to [94, 95, 96]. The run parameters and boundary
conditions are chosen to be as close as possible, with only the run resolutions substantially differing.
Both models use a time step size of Δ𝑡 = 100 seconds and run for a simulation time of 4 days. We
use the momentum and tracer diffusivity tensors

𝜈mom =
(︂

100 0
0 0.008

)︂
, 𝜈tracer

(︂
100 0
0 0.004

)︂
,

where all units are expressed in m2/s. Additional run parameters, including resolution and poly-
nomial order are summarized in Table 3.3. We remark that due to the underlying nature of the
governing equations, both models are considered nonhydrostatic.

HDG FV units
𝑁𝑥, 𝑁𝑧 (25, 10) (540, 25)
𝜈𝑥 1 · 102 1 · 102 m2/s
𝜈𝑧 8 · 10−3 8 · 10−3 m2/s
Δ𝑡 100 100 s
order 4 2

Table 3.3: HDG NHS and 2.29 FV model parameters used for the idealized mixed-layer RTI insta-
bility simulations.

Figure 3-9: Comparison between the high-order nonhydrostatic model (left) and the MSEAS FV229
incompressible Navier—Stokes with Boussinesq approximation.

In our experiment, we operated the high-order nonhydrostatic solver at a significantly coarser res-
olution compared to that of the finite volume code. Interestingly, despite this considerable difference
in resolution, the results produced by the two methods were almost indistinguishable. The results of

77

Figure 3-10: Comparison between the high-order nonhydrostatic model (left) and the MSEAS FV229
incompressible Navier—Stokes with Boussinesq approximation.

the two simulations can be seen at time 𝑡 = 6 hours in Figure 3-9 and at time 𝑡 = 12 hours in 3-10,
and show excellent agreement between the finite volume model and our nonhydrostatic HDG model.
This outcome is promising, given the disparity in resolution levels, and showcases the high-order
nonhydrostatic solver’s capacity to deliver accurate results even under less refined conditions. This
observation lends credence to the assertion that high-order methods often yield better accuracy for
the same computational cost as was argued in §1.

In summary, we conducted an investigation of the formation of RTI instabilities, comparing the
results of our model against that of a second-order-in-time finite volume model with a different
numerical scheme and boundary condition representation. We nonetheless see excellent agreement
between the two models, lending credence to the high-order model’s spatial and temporal discretiza-
tions, and its nonhydrostatic predictive capabilities in the case of mixed layer instabilities.

78

3.6 Model nesting and initialization from primitive equation
data

Hydrostatic models, while incapable of resolving instabilities which are reliant on the vertical mo-
mentum equation, such as the Kelvin-Helmholtz billows in the lock exchange problem [101, 243], can
capture large-scale features of the flow such as bore speeds and interface thicknesses. In what follows,
we corroborate this assertion with numerical experiments conducted by nesting the high-order non-
hydrostatic ocean model described in this chapter within the MSEAS-PE hydrostatic model [107].
We extend this approach to real ocean data simulated from the CALYPSO experiment described in
§3.6.2.

Some of the algorithmic implementation details of our model nesting approach is specific to
MSEAS, but the approach and schemes are general and applicable to other modeling systems.

3.6.1 Notation
To refer to the different field variables present in the different models, we will use the following
notation. As elsewhere in the paper, for a generic field variable 𝜑 we will use bolding to distinguish
between scalar-valued and vector-valued quantities as 𝜑 and 𝜑, respectively. Simulation fields 𝜑 from
the hydrostatic MSEAS PE model will be referred to as 𝜑PE. Simulation fields generated from the
high-order HDG model will be denoted using 𝜑HS and 𝜑NHS to refer to output from the hydrostatic
and non-hydrostatic models, respectively.

3.6.1.1 Boundary conditions and model initialization

Nesting ocean models governed by different physics and mathematical models, and which use differ-
ent numerical schemes presents a range of challenges.

Physical inconsistencies and boundary conditions. When one model (the smaller, or
“child” model) is nested within another (the larger, or “parent” model), there needs to be a mecha-
nism for passing information between the two at the shared boundary. This exchange can be difficult
to manage when the models are based on different sets of equations, as they may have different vari-
ables or use the same variables in different ways. This is the case with communication between
hydrostatic and nonhydrostatic models; the domain boundaries of the non-hydrostatic model are
initialized with no notion of nonhydrostatic pressure 𝑝′; however, this is dynamically incorrect.
These inconsistencies can cause problems when the models are nested, as it may not be clear how to
translate the results of one model into terms the other model can understand. Inaccurate or poorly
managed boundary conditions can lead to artifacts or instabilities in the model outputs.

Resolution mismatch. If the models have very different resolutions, it can be challenging to
accurately communicate information between them. The finer-scale model might capture small-scale
processes that the coarser model misses, but these can be difficult to incorporate into the coarser
model in a meaningful way. Conversely, the coarser model may smooth over or average out features
that are important at the finer scale.

Discontinuous Galerkin methods are an excellent candidate method to address these difficulties.
Their flexibility stems from the fact that they allow for discontinuities at element boundaries. On
one hand, the discontinuous representation of the solution is well-suited complex geometries and
different types of boundary conditions, making them ideal for multi-model communications. On the
other hand, the discontinuous nature of the polynomial spaces provides an inherent stabilizing effect,
where discontinuities between elements allow for steep gradients in the numerical solution. Informally
speaking, the jumps in the numerical solution act as dampening that stabilizes the DG method
when the problem physics can not be well approximated [39], a feature which affords DG-FEM
methods increased stability without degrading the accuracy of the solution [39, 45]. DG methods
are known for their stability properties, even in the case of complex or irregular domains. This
stability makes them a reliable choice for model coupling where instability could lead to significant
errors or numerical artifacts. Together, these advantages have made DG-FEM methods exceptionally
popular for modeling shocks and crack propagation, and render DG methods an attractive option for

79

model nesting. The discontinuous approximation spaces allow for seamless transfer of data between
different resolutions, and the stabilization properties allow for robust and accurate modeling of
physics at the boundaries between two different models, addressing both difficulties above.

0 5000 10000 15000 20000 25000 30000
0

1

2

3

4

1e 1 z = 0 m
u, PE
u, HDG
u, HDG

0 5000 10000 15000 20000 25000 30000

1.5

1.0

0.5

0.0

0.5

1.0
1e 1 z = -100 m

0.2 0.0 0.2

100

80

60

40

20

0

x = 0 km
u, HDG
u, HDG
u, PE

0.0 0.1

100

80

60

40

20

0

x = 30 km
u velocity, time step 1

0 5000 10000 15000 20000 25000 30000
0

1

2

3

4

1e 1 z = 0 m
u, PE
u, HDG
u, HDG

0 5000 10000 15000 20000 25000 30000

1.0

0.5

0.0

0.5

1.0
1e 1 z = -100 m

0.2 0.0 0.2

100

80

60

40

20

0

x = 0 km
u, HDG
u, HDG
u, PE

0.0 0.1

100

80

60

40

20

0

x = 30 km
u velocity, time step 10

Figure 3-11: Horizontal velocities at the boundaries of the nested models at time step 𝑘 = 1 (left)
and 𝑘 = 10 (right).

To validate these assertions, we plot the velocity field 𝑢NHS along the boundary of the domain
for the 2D simulation described at length in §3.6.3, as well as the PE data 𝑢PE that the model takes
as boundary conditions. The two panels in Figure 3-11 show quantities relating to the 𝑢-component
of the total velocity: the predictor velocity 𝑢̄NHS and the stage-final velocity 𝑢NHS, as well as the
boundary data 𝑢PE at both the first time step and time step number 𝑘 = 10. It is clear that
there are differences between the nonhydrostatic model velocities and the boundary condition 𝑢PE,
despite 𝑢PE representing the Dirichlet boundary value 𝑢PE = 𝑔𝐷 in (3.12). The stage-final velocity
𝑢NHS need not agree with the boundary condition on the velocity predictor 𝑢̄NHS as a consequence
of the projection method. However, the fact that the velocity predictor 𝑢̄NHS does not agree with
the boundary condition value is a consequence specific to the HDG methodology. Unlike other
DG schemes, boundary conditions are not applied on the solution degrees of freedom directly, but

80

0 5000 10000 15000 20000 25000 30000
6

4

2

0

2

4

6
1e 3 z = 0 m

w, PE
w, HDG
w, HDG

0 5000 10000 15000 20000 25000 30000

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1e 3 z = -100 m

0.000 0.005 0.010

100

80

60

40

20

0

x = 0 km
w, HDG
w, HDG
w, PE

0.000 0.001

100

80

60

40

20

0

x = 30 km
w velocity, time step 1

0 5000 10000 15000 20000 25000 30000

4

2

0

2

1e 3 z = 0 m
w, PE
w, HDG
w, HDG

0 5000 10000 15000 20000 25000 30000

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1e 3 z = -100 m

0.000 0.005 0.010

100

80

60

40

20

0

x = 0 km
w, HDG
w, HDG
w, PE

0.002 0.000 0.002

100

80

60

40

20

0

x = 30 km
w velocity, time step 10

Figure 3-12: Vertical velocities at the boundaries of the nested models at time step 𝑘 = 1 (left) and
𝑘 = 10 (right).

rather, on the trace quantity ^̄𝑢. Like all HDG primal unknowns, the actual predictor velocity 𝑢̄
is reconstructed by solving a local-problem independently on each element using the HDG flux ^̄𝑢
as boundary conditions; for details see [191, 193] and references therein. Therefore, the predictor
velocity on the boundary is not obligated to agree exactly with the boundary condition 𝑢̂PE, but
is a compromise between the underlying PDE, as represented by the element-local system, and the
boundary condition. This is a attractive feature in the context of model nesting, as it allows the
two different sets of physics to equalize through weak imposition of the boundary conditions. By
time 𝑡 = 10, the differences are substantially smaller as the two different models have balanced
dynamically, and the boundary conditions are well-represented by the high-order nonhydrostatic
model.

A similar result can be seen in the vertical velocity; by the tenth time step, the oscillations and
disagreements with the PE-supplied boundary data are very small on the top and bottom boundary.
On the sides of the domain, the HDG solution is not in close agreement with the PE boundary
condition. This is a consequence of the extreme difference in scales between the horizontal and the
vertical, making the numerical solution very sensitive to the vertical velocity at the boundary–the
difference between the two is a direct numerical representation of the dynamic balance between the
models.

In summary, the relaxation of the numerical solution from the boundary conditions specified by
a different model is beneficial from both a stability and a modeling perspective, rendering both the
discontinuous representation of the solution and the HDG-specific imposition of boundary conditions
advantageous numerical features in the context of compatibility between nested models governed by
different PDEs.

3.6.2 CALYPSO Alboran Sea Experiment 2019
The Coherent Lagrangian Pathways from the Surface Ocean to Interior (CALYPSO) initiative ad-
dresses the challenge of identifying and quantifying three-dimensional, time-dependent transport
pathways of water parcels and particles from the surface ocean to the interior, a process known
as subduction. The project focuses on the southwest Mediterranean Sea region, depicted in the
black shaded region in Figure 3-13. The approach taken by this project to tackle this challenge
is to combine in situ observations (using state-of-the-art observation technologies) with the lat-
est modeling and analysis tools. These observations were collected during several real-time sea
experiments, including one taking place in the Alboran Sea (in the southwestern Mediterranean
Sea) during the late winter of 2019 (March 28 to April 11); see modeling regions, Figure 3-13.
While this experiment occurred, real-time, high-resolution, deterministic Eulerian simulations were
completed using the MIT Multidisciplinary Simulation, Estimation, and Assimilation System prim-
itive equation (MSEAS-PE) modeling system [107, 105]. At its core, MSEAS-PE is a solver of
governing fluid and ocean dynamics equations. It is part of an extensive modeling system for hydro-
static primitive-equation dynamics with a nonlinear free surface, based on second-order structured
finite volumes [107]. It is used to study and quantify tidal-to-mesoscale processes over regional

81

domains with complex geometries and varied interactions. Among its many subsystems are: ini-
tialization schemes [105], nested data-assimilative tidal prediction and inversion [169]; subgrid-scale
models [145, 146]; and advanced data assimilation [143, 144, 149, 147]. MSEAS has been vali-
dated for fundamental research and for realistic simulations in varied regions of the world’s ocean
[164, 199, 104, 89, 215, 154, 52, 151, 155, 235, 135, 97, 157, 116]. It has many applications include
monitoring [152], real-time acoustic prediction and data assimilation [259, 142, 68, 3, 4], ecosystem
prediction and environmental management [22, 55], and interactive visualization schemes [6, 5, 90].

Figure 3-13: Modeling domain for model nested runs in the Alboran Sea§3.6.3, showing the MSEAS-
PE domain (shaded, black), and the HDG NHS nested modeling domain (blue) in 2D (center slice)
and 3D (box).

During the 2019 experiment period in the Alboran Sea, two gales and several minor events
occurred. A gale, with wind stress in excess of 0.5 N · m−2, began on March 26, with the prevailing
winds directed toward the west-southwest. Between March 27 and March 31, the winds slackened,
but remained directed west-southwest. From March 31 to April 5, winds were light and variable,
but reversed direction. A second gale occurred from April 5 to April 7. Following this gale, the
winds gradually weakened, especially after April 11, but remained directed east. The presence
or absence of significant wind stress was seen to be strongly correlated with both the subduction
processes observed and with the development of submesoscale ripples in the 2 m vorticity forecasted
by the MSEAS-PE model. Such ripples, located near the coast at right angles to the prevailing
wind direction (consistent with Ekman transport), are hypothesized to arise from the interaction
of seawater masses of differing densities forced by wind and/or currents. However, the underlying
(hydrostatic and non-hydrostatic) dynamical mechanisms are not yet well understood. Thus, we aim
in this section to use our high-resolution, non-hydrostatic HDG solver to simulate these submesoscale
non-hydrostatic dynamic effects (such as Rayleigh–Taylor instabilities) not resolved by the MSEAS-
PE model during and just after these strong wind events.

The 27-day MSEAS-PE model output used for ICs and BCs to the non-hydrostatic HDG model
was based on the following setup. The Alboran Sea modeling domain (Figure 3-13), a 480×773 grid
spanning approximately 267 km by 430 km, had a horizontal resolution of 1/200∘ (557 m) and 70
vertical levels with optimized level depths. The momentum and tracer diffusivity parameters were
𝜈𝑥 = 100 m2 · s−1, 𝜈𝑧 = 0.008 m2 · s−1, 𝜅𝑥 = 100 m2 · s−1, and 𝜅𝑧 = 0.004 m2 · s−1, the vertical
values applicable to the mixed layer only. The time step size was 100 𝑠, with hourly output.

3.6.3 Two-dimensional nested model comparisons
For our first set of nested model numerical experiments, we consider a 2D nonhydrostatic domain
30 km wide and 100m deep, stretching along a slice in the Alboran sea shown in Figure 3-13. The

82

nonhydrostatic HDG model uses as initial conditions and boundary conditions the MSEAS-PE model
output over the slice.

The simulation begins on March 31, 2019 at 15:00:00Z, corresponding to the “simulation time”
𝑡 = 0, and are run for a five-day period, ending on April 5, 2019 at 15:00:00Z. We discretize the
domain with 300 elements in the horizontal and 30 elements in the vertical, using polynomial degree
𝑝order = 3 for all finite element fields and we use a constant time step of Δ𝑡 = 25 seconds to respect
the CFL condition as computed in §3.5.1.1. We use a horizontal diffusivity 𝜈𝑥 = 30 m/s2 and a
vertical diffusivity of 𝜈𝑧 = 0.008 m/s2 for both the momentum and the tracer equations.

Figure 3-14 shows a comparison between the two model outputs over the same two-dimensional
slice, with the same effective resolution during the weather event beginning on April 5. Both the
density perturbation 𝜌′ and the velocity field 𝑢 show substantial departures from the hydrostatic
prediction. While the hydrostatic velocity 𝑢PE includes excitation due to the weather event, the
degree and scales of overturning are substantially understated as compared to that predicted by the
nonhydrostatic model. Another prominent difference can be seen in the vertical component 𝑤 of the
hydrostatic and nonhydrostatic vertical velocities. The hydrostatic velocity 𝑤PE is more columnar in
nature as a consequence of the lack of the nonhydrostatic component of the pressure 𝑝′. By contrast
𝑤𝑁𝐻𝑆 is characterized by less columnar striations over the domain, which contribute strongly to the
RTI-like instabilities that develop in the density perturbation field 𝜌′

PE.
We can see the effects of the nonhydrostatic instabilities more clearly in derived quantities. The

squared Brunt-Väisälä (or buoyancy) frequency 𝑁2 is a well-known measure of the stability of a
fluid, defined as

𝑁2 = − 𝑔

𝜌0

𝜕𝜌

𝜕𝑧
, (3.45)

which describes the oscillation frequency of a parcel of water with density 𝜌0 displaced from equi-
librium in a stratified background density 𝜌. With 𝑧 defined as positive upward, a negative value of
𝑁2 corresponds to locally statically unstable seawater, where higher density water resides on top of
lower density seawater. In Figure 3-15b, we plot the scaled buoyancy frequency 𝜕𝜌′/𝜕𝑧 = −𝜌0𝑁

2/𝑔
to indicate regions of local dynamic instability for both models. The nonhydrostatic density gradient
indicates the presence of larger and more spatially variable instabilities over the entire domain. The
planar vorticity

∇ × 𝑢 =
(︂
𝜕𝑤

𝜕𝑥
− 𝜕𝑢

𝜕𝑧

)︂
𝑦

for both models is shown in Figure 3-15a and indicates the presence of strong overturning in both
the top and bottom of the domain for the nonhydrostatic model.

In analyzing the outputs of the two models, it is evident that nonhydrostatic dynamics play a
critical role in the simulation results. Yet, despite these differences, there is remarkable alignment
between the timescales and length scales produced by each model. This suggests that both models
successfully capture the essential dynamics and spatial-temporal structures, thereby demonstrating
their robustness and reliability. Moreover, the exceptional level of agreement that exists between
the two models both before and after the weather event further lends credence to this assertion. The
MSEAS PE model and non-hydrostatic HDG model demonstrate strong synchronicity and consis-
tency outside the event window, establishing their credibility as useful tools in ocean forecasting.
Consequently, these similarities corroborate the fact that both models, though divergent in their
approach to nonhydrostatic dynamics, nonetheless provide accurate and reliable predictions for the
given weather event.

3.6.4 Three-dimensional model comparisons
The same procedure used for initializing and nesting the HDG model within the larger PE model
can be readily applied to 3D simulations. We do so here, instantiating both models with a domain
enclosing the slice shown in §3.6.2. The 3D nonhydrostatic model is initialized using the MSEAS
PE model for initial and boundary conditions over the run duration, beginning on March 26th, 2019,
15:00:00Z. The nested HDG model was run for a simulation duration of three days as part of a

83

Figure 3-14: Comparison between the high-order nonhydrostatic model (left) initialized from prim-
itive equation (PE) data and the hydrostatic primitive equation model (right) during the Alboran
Sea weather event on April 5.

84

(a) Vorticity

(b) Instability metric 𝜕𝜌′/𝜕𝑧

Figure 3-15: Comparisons between the high-order nonhydrostatic model initialized from PE data
and the hydrostatic PE model during the Alboran Sea weather event on April 5 at simulation time
𝑡 = 89.2 hours, shown for planar vorticity (left) and vertical density gradient 𝜕𝜌′/𝜕𝑧 (right).

85

project reanalysis.
The simulation begins on March 26, 2019 at 15:00:00Z, corresponding to the “simulation time”

𝑡 = 0, and is run for a four-day period, ending on March 30, 2019 at 15:00:00Z, capturing the first
weather event. We focus on the simulating the instabilities that develop during the first gale and
immediately afterward. We discretize the domain with 50 elements in each horizontal direction and
15 elements in the vertical, using polynomial degree 𝑝order = 3 for all finite element fields. We use
a constant time step of Δ𝑡 = 50 seconds to respect the CFL condition as computed in §3.5.1.1. We
use a horizontal diffusivity 𝜈𝑥 = 100 m/s2 and a vertical diffusivity of 𝜈𝑧 = 0.008 m/s2 for both the
momentum and the tracer equations, to match the MSEAS-PE model.

Simulation results for the density perturbation field 𝜌′ are shown for two separate times in Figure
3-16. The first visualization corresponds to a time close to the start of the simulation, where the
wind-cooled, heavier water from the Mediterranean Sea is advected over lighter water from the
Atlantic, forming an overhang clearly visible in the density perturbation. The second visualization
corresponds to a time close to the end of the simulation, showing internal waves advected into the
nonhydrostatic domain.

(a) Simulation time 0.55 days. (b) Simulation time 2.9 days.

Figure 3-16: Density perturbation fields for the MSEAS-PE-nested nonhydrostatic HDG model
visualized in terms of iso-surfaces of 𝜌′ with volumetric coloring at different simulation times. The
right panel shows heavier water in the process of being advected over lighter water, leading to
unstable stratification. The left panel shows waves that form due the mixed-layer instabilities.

Focusing on simulation times around the first visualization depicting the wind-driven unstable
stratification (Figure 3-16a), we attempt to analyze the nonhydrostatic dynamics that arise under
these conditions. We remark that the wind-forcing is not implemented in the HDG model directly,
but rather, is indirectly communicated through the velocity forcing at the top of the domain due to
the MSEAS-PE model.

Figure 3-17 through Figure 3-19 are a set, corresponding to the same time steps of the HDG
nonhydrostatic simulation (left to right, top to bottom). These times are tabulated by sub-figure
number in Table 3.4. Each sub-figure in Figure 3-18 depicts a clipped plot of the interior density
perturbation 𝜌′ between the 2.4 kg/m3 and 2.5 kg/m3 isopycnals. Figure 3-18 depicts slices of
vertical velocity at 25 meter and 50 meter depths in the mixed layer, whereas Figure 3-19 solely
depicts the vertical velocity at a depth of 50 meters to complement the plots in Figure 3-18. This

86

Sub-figure Time step Time [s] Time [days] Date/Time
- - 0 0.0 2019-03-26 15:00:00Z
1 420 21000 0.243 2019-03-26 20:50:00Z
2 576 28800 0.333 2019-03-26 23:00:00Z
3 792 39600 0.458 2019-03-27 02:00:00Z
4 1044 52200 0.604 2019-03-27 05:30:00Z
5 1576 78800 0.912 2019-03-27 12:53:20Z
6 1840 92000 1.065 2019-03-27 16:33:20Z

Table 3.4: Simulation times corresponding to the sub-figures in Figure 3-17 through Figure 3-19.

Figure 3-17: Density perturbation field 𝜌′ taking values in the range [0.24, 0.25] at time the steps
tabulated in Table 3.4 (left-to-right, top-to-bottom), depicting the wind advection of heavier water
over lighter water, the formation of instabilities accompanied by stronger vertical velocities, and
re-establishment of stable stratification.

87

standalone portrayal allows for an unobstructed comparison with the other figures, providing an
opportunity to examine the attributes present at this specific depth. To provide additional context,
the sub plots of Figure 3-20 show slices of the entire range of the density perturbation, covering the
range between the 1.6 kg/m3 and 2.7 kg/m3 isopycnals at the start of, and immediately after the
development of the unstable stratification. Similarly, Figure 3-21 and Figure 3-22 depict the vertical
velocities along the domain center-lines, and at depths of 33 and 67 meters, along with the 𝜌′ = 2.45
kg/m3 isopycnal, to provide a unified picture of the density perturbation and vertical motion.

Frontal instabilities in the MSEAS-PE code lead to the development of “feathering”, which can be
seen entering the nonhydrostatic model domain in sub-figures 2-3. These frontal instabilities result
in the development of the overhang, and the corresponding visualizations of the vertical velocity 𝑤
shown in Figure 3-18 illustrate the strong vertical velocities that emerge around the instabilities,
contributing to mixing and re-stratification. Figure 3-21, depicting the same time as sub-figure 3,
shows these vertical velocities along with the 𝜌′ = 2.45 kg/m3 isopycnal, which also displays the
development of overhang features. By 2019-03-27 05:30:00Z, shown in sub-figure 4, vertical stability
has been re-attained, and the feathering has been consolidated into an outcropping. In sub-figure
5, at 2019-03-27 12:53:20Z, a parcel of denser water is advected into the domain and is quickly
subducted into the interior of the domain, which is visible in the strong downward vertical velocities
which arise close to the instability, visible in Figure 3-18. Sub-figure 6 shows that by 2019-03-27

Figure 3-18: Vertical velocity 𝑤 slice, shown at 25 meter and 50 meter depths, corresponding to the
sub-figures in Figure 3-17, at the times in Table 3.4

16:33:20Z, the entire clipped region is stably stratified once again. However, Figure 3-22 which
depicts the same time, shows the presence of vertical striations that develop immediately after the
subduction event. These instabilities are reminiscent of the 2D slice simulation. The cause of, and
implications of these striations are not yet fully understood, and constitute the subject of ongoing
research.

In summary, as we observe the unstably stratified region being advected into the domain, there is
a noticeable emergence of strong motions in the vertical direction. However, these vertical motions
do not cease once the stratification regains stability. While less pronounced, these movements persist
even in a more stable environment, demonstrating the lasting impact of the initial advection and the
resulting instabilities on the domain. The striations in the vertical velocities, such as those visible
in Figure 3-22, show additional instability as compared to the hydrostatic PE model, but exhibit
similar length and time scales overall. Overall, the high-order nonhydrostatic model was able to
capture a wide-range of nonhydrostatic behaviors in the modeling domain, providing comparisons to
the corresponding hydrostatic simulation and allowing investigation of nonhydrostatic submesoscale

88

Figure 3-19: Vertical velocity 𝑤 slice, shown as slices at 50m depth.

Figure 3-20: Density perturbation at 2019-03-27 02:00:00Z (left) and 2019-03-27 07:56:40Z (right),
depicting the advection of denser water pulled over lighter water by wind-forcing in the right-hand
side of domain.

89

Figure 3-21: Vertical velocity slice schematic with 2.45 kg/m3 isopycnal overlaid, 2019-03-27
02:00:00Z.

Figure 3-22: Vertical velocity slice schematic with 2.45 kg/m3 isopycnal overlaid, 2019-03-27
16:33:20Z.

90

phenomena.

3.7 Conclusion
In this chapter we derived and implemented a novel high-order HDG-FEM nonhydrostatic and hy-
drostatic model based on the projection scheme originally proposed in [243]. To verify the spatial
and temporal convergence of the model, we verified that the model achieves optimal spatial and
temporal convergence using manufactured solutions. We additionally validated the results against
results from linear gravity wave theory, by running simulations of free surface seiches and internal
seiche test cases. We recovered the physically correct behavior for the interior fields and the free sur-
face over wide variety of domains, capturing both hydrostatic and nonhydrostatic behavior correctly
in all cases. To provide additional verification of the model, we compare it to a legacy finite volume
code which implements the incompressible Navier–Stokes equations with Boussinesq approximation
and find that our model shows excellent agreement with its predictions but at substantially reduced
cost, lending additional credence to the ability of the model to accurately capture nonhydrostatic
behavior using high-order methods.

Then we developed and implemented a model nesting approach, running our nonhydrostatic code
within the larger MSEAS-PE hydrostatic ocean model. We ran nested nonhydrostatic simulations
from realistic ocean data from the Alboran Sea in both 2D and 3D, and provided comparisons
between the hydrostatic and nonhydrostatic models in the mixed layer.

Future work will constitute additional hydrostatic/nonhydrostatic comparisons between the two
models in order to scientifically investigate the effect of nonhydrostatic dynamics on regional mesoscale
and submesoscale ocean processes.

91

92

Chapter 4

Applications to Uncertainty
Quantification and Data
Assimilation

93

4.1 Introduction
The importance of data assimilation (DA) and uncertainty quantification (UQ) in ocean modeling
cannot be overstated. Both these facets play a critical role in improving the accuracy, reliability, and
predictive capabilities of ocean models, which, in turn, have profound implications for understanding
our planet’s climate systems, predicting weather patterns, and managing marine resources.

Data assimilation, at its core, is a method of integrating observations and model simulations in
order to improve the initial conditions and parameters of a model. In the context of ocean modeling,
this implies combining real-time observational data from sources like buoys, satellites, and ship-based
instruments with computational models. By doing so, data assimilation enhances the accuracy of the
ocean models by correcting biases and errors, providing a more detailed and precise representation
of oceanic conditions. This, in turn, significantly improves our ability to predict future oceanic
behaviors, which is essential for a range of applications from weather forecasting to naval operations.
Uncertainty quantification, on the other hand, is a process that acknowledges and evaluates the
inherent uncertainties present in any modeling endeavor. No model is a perfect representation of
reality; all models are simplifications that introduce some degree of uncertainty. In ocean modeling,
uncertainties can arise from multiple sources including the observational data, model parameters,
or the model structure itself. Uncertainty quantification provides a systematic approach to assess
these uncertainties, which can then be used to evaluate the confidence in the model predictions. By
providing an estimate of the reliability of model outputs, uncertainty quantification helps to guide
decision-making processes in areas as diverse as climate change mitigation, oceanographic research,
and marine resource management.

In this chapter, while we don’t introduce any new methodologies, we take a deep dive into ad-
dressing the intricacies involved in adapting data assimilation and statistical inference approaches for
use with high-order discontinuous Galerkin finite element methods. The task of handling discontin-
uous data, particularly within the context of uncertainty quantification, presents distinct challenges
related to solution representation that require careful navigation.

We focus our attention on two canonical problems often encountered in the field of uncertainty
quantification: ensemble Kalman filtering, and the Bayesian inversion of a field representing un-
known, spatially-variable PDE coefficients. To implement solutions to these problems, we employ
the HDG finite element solvers developed in §2, demonstrating proof-of-concept viability of these
uncertainty quantification methods for use in nested models making use of real ocean simulation
data, as in §3.6. Furthermore, to the best of the author’s knowledge, this work represents the only
published approach that applies both UQ methods to HDG finite element solvers.

We address the problem of ensemble Kalman filtering in §4.2 by introducing a non-intrusive
method that aligns seamlessly with the matrix-free operations and elemental parallelism described
earlier in §2. This approach serves to effectively streamline the processing of ensemble Kalman
filtering without necessitating any disruptive alterations to the established finite element operations.
We show that such a procedure can be done robustly in the discontinuous space directly with good
results, performing an investigation similar to those in [205] but in 2D instead of 1D. For applications
of similar approaches to state estimation of tidal hydrodynamics in a DG-FEM context, see [238].

We address the problem of Bayesian inversion in §4.3, where we solve the inverse problem for
an unknown diffusivity field using a Bayesian approach to sample from the posterior distribution
directly by employing Markov Chain Monte Carlo (MCMC) methods [25]. While MCMC techniques
are generally regarded as the gold-standard of Bayesian inference [190], they are often very expensive
to carry out. In the context of solving the inverse problem associated with a stochastic partial dif-
ferential equation, the sampling process requires the numerical solution the PDE at every iteration.
In this regard, the rapid convergence of high-order HDG methods to smooth solutions as shown
in previous chapters is advantageous, as it allows for the solution of the PDE on relatively coarse
meshes, as we will demonstrate in §4.3.3. An additional computational challenge in any inference
problem, not only those involving PDEs, is a high-dimensional parameter space in which inference
must be performed. In the case of inferring a continuous diffusivity field, the problem is infinite-
dimensional; naive parameterizations of the parameter space, such as nodal representations quickly
become computationally intractable even at modest problem sizes and are subject to a number of

94

failure modes [254]. To address this issue, we employ a parameterization based on polynomial chaos,
which we apply to the discontinuous fields to infer relevant quantities in a reduced-order model
of the underlying problem, extending the work in [179] to a two-dimensional setting. The afore-
mentioned dimensionality reduction technique has recently been used to solve inverse problems for
the log-permeability field in the context of fluid flow through porous media [217]. We compare the
performance of standard Metropolis-Hastings samplers with more advanced gradient-based samplers
and provide performance assessments over a range of numerical experiments. In doing so, we show
that this combination of state-of-the-art HDG solvers coupled with this reduced-dimension param-
eterization results in the effective solution of the inverse problem, with computational performance
that is competitive with or better than modern MCMC benchmarks for coefficient problems [8].

4.2 Ensemble Kalman filtering for high-order discontinuous
Galerkin fields

The ensemble Kalman filter (EnKF) is commonly used for uncertainty quantification and data
assimilation in high-dimensional problems. Problems in computational fluid dynamics (CFD) and
geophysical fluid dynamics (GFD) often have such features, given the large number of problem
degrees of freedom involved in the representation of the physical system. One such area of application
is that of contaminant transport in a fluid as modeled by a convection-diffusion PDE. We examine
the use of the EnKF to assimilate observed downstream contaminant data in channel flow in this
section.

Accurately modeling fluid physics often requires discretization of the underlying equations, as is
common in computational fluid dynamics or geophysical fluid applications. Finite element methods
for CFD problems are advantageous in the sense that they allow an arbitrarily high-order solution in
space; however, it is often the case that discretization error due to time marching or splitting schemes
lead to numerical solutions which do not accurately predict the behavior of the dynamical system in
question for long timescales compared to the numerical time step. Data assimilation techniques may
provide an answer to this problem: by accounting for observed data from the real physical system
and updating the numerical solution accordingly, it is possible to improve the predictive capabilities
of the simulation. It is also always the case that the observations of the physical system are not
certain—any measurement made without knowledge of its uncertainty is meaningless. Since CFD
discretizations tend to involve a large number of degrees of freedom in the numerical solution at
each time step, the ensemble Kalman Filter is a popular scheme for data assimilation.

In this investigation, we are interested in accurately predicting the spread of a contaminant in a
fluid over a long time horizon compared to the numerical time step. We assimilate observed data
of the scalar contaminant field corrupted by known measurement noise using the ensemble Kalman
filter to improve the numerical solution. This section is organized as follows. We discuss the setup
of the contaminant transport problem in 4.2.1 and provide brief discussion of the ensemble Kalman
filter and the details of its implementation in 4.2.2. We describe the data assimilation setup for this
investigation in 4.2.4, and we present present results of numerical experiments in 4.2.5. Finally, we
offer conclusions in 4.2.7.

4.2.1 Problem setup

We consider the same contaminant transport problem used as a test case in [191]. A contaminant
concentration is deposited in a fluid with kinematic viscosity 𝜅 = 0.01, flowing in a two-dimensional
channel domain Ω = (−1.25, 1.25) × (0, 10), driven by a convective velocity field

𝑐 =
(︁

1 − 𝑒𝛾𝑥 cos (2𝜋𝑦) , 𝛾2𝜋 𝑒
𝛾𝑥 sin (2𝜋𝑦)

)︁
, (4.1)

95

where the Reynolds number is taken to be Re = 100 and 𝛾 = Re
2 −

√︁
Re2

4 + 4𝜋2, as is seen in Figure
4-1. We note that the reference Peclet number is

Pe = 𝑢max𝐷

𝜅
≈ 200,

where 𝑢max is the maximum horizontal velocity and 𝐷 = 1 is a representative length scale of the
flow. At time 𝑡 = 0, the contaminant concentration is a superposition of Gaussian distributions

𝑤0 = 𝑒− (𝑥−1)2+𝑦2

0.52 + 𝑒− (𝑥−1)2+(𝑦−0.5)2

0.52 + 𝑒− (𝑥−1)2+(𝑦+0.5)2

0.52 (4.2)

Figure 4-1: Initial condition of contaminant 𝑤0 (top); streamlines of 𝑐, colored by 𝑢 (bottom).

Every two seconds 𝑇 = 2, the same contaminant concentration 𝑤0 is injected into the flow field
again, until a final time of 𝑇𝑓 = 10 s. Within each period, the contaminant transport is modeled by
the time-dependent convection-diffusion equation

𝜕𝑢

𝜕𝑡
+ ∇ · (𝑐𝑢) − 𝜅∇2𝑢 = 0, in Ω × [(𝑗 − 1)𝑇, 𝑗𝑇]

𝑢 = 𝑢0, in Ω for 𝑡 = (𝑗 − 1)𝑇,
(4.3)

where the initial conditions at the start of each period are

𝑢0 =
{︃
𝑤0, 𝑗 = 1
𝑤0 + 𝑢 (𝑥, (𝑗 − 1)𝑇) , 𝑗 > 1

(4.4)

The inflow boundary Γ𝐷 is defined by 𝑥 = 0, at which the contaminant concentration 𝑢 satisfies
a homogeneous Dirichlet boundary condition. On the remaining boundary Γ𝑁 = 𝜕Ω ∖ Γ𝐷, the
concentration satisfies a homogeneous Neumann condition.

𝑢 = 0 on Γ𝐷

∇𝑢 · 𝑛 = 0 on Γ𝑁

(4.5)

We discretize the PDE using the hybridizable discontinuous Galerkin (HDG) finite element
scheme described in [191, 246]. We treat advection explicitly and note that there is a CFL re-
striction. We perform a numerical simulation of the contaminant’s transport over time. We present
in Figure 4-2 the computed contaminant concentration 𝑢ℎ at selected times 𝑇 , 3𝑇 , and 𝑇𝑓 = 5𝑇 .
We use a grid of 𝑁𝑦 = 16, 𝑁𝑥 = 64 quadrilateral elements and polynomial order 𝑝 = 3. For the
temporal discretization, we use an IMEX(2,2,2) scheme with a constant time step Δ𝑡 = 0.01. All
statistical computations use the NumPy and SciPy numerical libraries [117].

96

Figure 4-2: Numerical solution of contaminant concentration 𝑢 at times 𝑇 (top), 3𝑇 (middle), 5𝑇
(bottom)

4.2.2 Application of the ensemble Kalman filter
The ensemble Kalman filter (EnKF) is a monte carlo implementation of the Kalman filter, which
is the closed form solution to the Bayesian update filtering problem under linear and Gaussian
assumptions [229]. However, since explicitly computing the covariance matrix for sufficiently high-
dimensional problems (in a stochastic sense).

4.2.2.1 The Kalman filter

First, we briefly review the Kalman filter. Let 𝑥 denote an 𝑛-dimensional state vector of a model,
which is proportional to a multivariate Gaussian prior distribution with mean 𝜇 and covariance
matrix 𝑄.

𝑝(𝑥) ∝ exp
(︂

−1
2(𝑥 − 𝜇)𝑇𝑄−1(𝑥 − 𝜇)

)︂
(4.6)

The prior distribution can be evolved in time—in our case by time stepping the numerical
solution. At some future time, we receive observation data at certain locations and we must update
𝑥 to account for the noisy sensor data 𝑦, which is assumed to also have a pdf of a multivariate
Gaussian with mean 𝐻𝑥 and covariance 𝑅. Here 𝐻 is an “observation matrix” which transforms the
state space to the observation space. For example, this matrix might select the members of 𝑥 which
correspond to measurement locations, but could also represent a more complicated transformation.
The covariance matrix 𝑅 describes the relationship of the errors of the sensor data. In the simplest
case, the sensor errors are independent of one another, in which case 𝑅 is a diagonal matrix with
entries 𝑅𝑖𝑖 = 𝜎2

𝑖 , the variance of the distribution of the error for sensor 𝑖. The probability density
𝑝(𝑦|𝑥) of making the observation 𝑦 given the current state 𝑥 is called the “data likelihood” and is

𝑝(𝑦|𝑥) ∝ exp
(︂

−1
2 (𝑦 −𝐻𝑥)𝑇

𝑅−1 (𝑦 −𝐻𝑥)
)︂

(4.7)

We use the prior and data likelihood to perform a Bayesian update. We compute the posterior pdf

97

𝑝(𝑥|𝑦); note that since both the prior and data likelihood are multivariate Gaussian, the posterior
is as well, and standard manipulations [229] provide the unnormalized posterior

𝑝(𝑥|𝑦) ∝ 𝑝(𝑑|𝑥)𝑝(𝑥) ∝ exp
(︂

−1
2(𝑥 − ̂︀𝜇)𝑇𝑄−1(𝑥 − ̂︀𝜇)

)︂
(4.8)

with posterior mean ̂︀𝜇 and covariance given by

̂︀𝜇 = 𝜇 +𝐾 (𝑦 −𝐻𝜇)
̂︀𝑄 = (𝐼 −𝐾𝐻)𝑄

(4.9)

where 𝐾 = 𝑄𝐻𝑇
(︀
𝐻𝑄𝐻𝑇 +𝑅

)︀−1 is the Kalman gain matrix.

4.2.2.2 The ensemble Kalman filter

The Kalman Filter describes how to perform the Bayesian update for a single state vector 𝑥 in
the presence of observational data 𝑦. However, it assumes knowledge of the covariance matrix 𝑄,
which may not be available or feasible to compute. The EnKF is a Monte Carlo approximation of
the Kalman filter. Instead of evolving the mean and covariance of a state vector 𝑥, we trace an
ensemble of realizations

𝑋 = [𝑥0, . . . , 𝑥𝑀−1] (4.10)

where 𝑋 ∈ R𝑛×𝑀 . The data is observed in a Monte Carlo sense as well. We consider the data
matrix 𝑌 = [𝑦0, . . . , 𝑦𝑀−1] where 𝑦𝑖 = 𝑦 + 𝜀𝑖 where 𝜀𝑖 is drawn from the multivariate normal
𝜀𝑖 ∼ 𝒩 (0, 𝑅). Since we no longer have access to the exact covariance matrix 𝑄, we replace it in the
Kalman gain matrix with the sample covariance 𝐶 computed from the realizations in the ensemble.

𝐾 = 𝐶𝐻𝑇
(︀
𝐻𝐶𝐻𝑇 +𝑅

)︀−1 (4.11)

The empirical posterior distribution is computed as

𝑋𝑝 = 𝑋 +𝐾 (𝐷 −𝐻𝑋) (4.12)

where each column corresponds to a single sample “drawn” from the posterior.

4.2.3 Matrix-free implementation
We denote the ensemble mean as 𝜇̄ and sample covariance as 𝐶. The posterior ensemble can be
expressed as a set of linear operations

𝑋𝑝 = 𝑋 + 𝐶𝐻𝑇
(︀
𝐻𝐶𝐻𝑇 +𝑅

)︀−1 (𝐷 −𝐻𝑋) (4.13)

however, due to the large number of state variables—the finite element degrees of freedom—as well as
the discontinuous and multiply-defined nature of the solution field, it is neither efficient to explicitly
form the observation matrix 𝐻, nor to rearrange the solution data into a state vector 𝑥. Instead, we
implement the EnKF in a matrix-free manner, computing the posterior without explicitly forming
𝐻 or the state vector 𝑥; we follow the approach in [176]. If we did have 𝑀 vectors 𝑥𝑘 representing
the state vectors of the ensemble members arranged into a matrix 𝑋. We would like to compute the
following quantities:

𝐸(𝑋) = 1
𝑀

𝑀∑︁

𝑘=1
𝑥𝑘, 𝐴 = 𝑋 − 𝐸(𝑋), 𝐶 = 𝐴𝐴𝑇

𝑀 − 1 . (4.14)

Suppose instead we have a representative array of the solution 𝑋𝑘 for each of the 𝑀 ensemble
members, together comprising the array 𝑋, along with an 𝑛-dimensional observation vector. The key
idea is to be able to compute the 𝑛×𝑀 matrix 𝐻𝑥𝑘, which represents the action of the observation

98

operator on each realization. Practically, this is a function which can select the appropriate solution
data corresponding to the observation vector; ℎ(𝑥) = 𝐻𝑥. We note that by linearity of expectation,
we can compute the matrix 𝐻𝐴 column-wise as

[𝐻𝐴]𝑖 = 𝐻𝑥𝑖 −𝐻
1
𝑀

𝑀∑︁

𝑗=1
𝑥𝑗

= ℎ(𝑋𝑖) − 1
𝑀

𝑀∑︁

𝑗=1
ℎ(𝑋𝑗)

(4.15)

In this manner we need only evaluate the observation function on the ensemble members, and
the posterior can be formed using Algorithm 1.

Algorithm 1 matrix-free formation of posterior ensemble
Define prior ensemble array 𝑋
compute ensemble mean 𝐸(𝑋) = 1

𝑀

∑︀𝑀
𝑗=1 𝑋𝑘

form 𝐴 = 𝑋 − 𝐸(𝑋)
for 𝑘 in 𝑀 do

[𝐻𝑋]𝑘 = ℎ(𝑋𝑘)
end for
copy 𝐻𝑋 to form 𝐻𝐴
compute 𝜇𝐻𝑋 = 1

𝑀

∑︀𝑀
𝑗=1[𝐻𝑋]𝑗

subtract mean 𝐻𝐴 = 𝐻𝐴− 𝜇𝐻𝑋

compute 𝑃 = 1
𝑀−1𝐻𝐴(𝐻𝐴)𝑇 +𝑅

assemble data matrix 𝐷 with column 𝐷𝑖 = 𝑌 + 𝑤𝑖, with 𝑤𝑖 ∼ 𝒩 (0, 𝑅)
define 𝑇 = (𝐻𝐴)𝑇𝑃−1(𝐷 −𝐻𝑋)
for finite element 𝐾 in mesh 𝒯ℎ do

compute posterior 𝑋𝑝
𝐾 = 𝑋𝐾 + 1

𝑀−1𝐴𝐾𝑇
end for
return 𝑋𝑝

Within the context of DG-FEM methods generally, replacing the linear operator 𝐻 with a func-
tion amounts to construction of a single index map for fast lookup and easily extends to the case of
adaptive mesh refinement [10]. Furthermore, the computation of the posterior 𝑋𝑝

𝐾 can be computed
in an element-by-element fashion independently, and can use similar software abstractions as that
used in the element-local assembly and reconstruction steps for the HDG algorithms discussed at
length in §2. Lastly, in the cases where the linear operator 𝑃 is large, efficient explicit methods
exist to compute the action of 𝑃−1 using the Sherman-Morrison-Woodbury formula at substantially
reduced cost compared to the linear system representing the PDE [175].

In the case of large ensembles, how the solution data is stored in memory becomes especially
relevant to performance. A cache miss is a state in which data requested for processing by a CPU
is not found in the cache memory, prompting the system to fetch the data from other memory
levels, such as the main RAM or even the disk drive. This can significantly slow down processing
times because fetching data from these other memory sources takes longer than retrieving it from
the cache. Modern CPUs are significantly faster than the memory, and thus they spend a lot of
time waiting for data to be fetched when a cache miss occurs. This waiting period, known as “stall
cycles,” can significantly reduce performance. Therefore, efficient cache utilization—which implies
minimizing cache misses—is a critical aspect of optimizing the performance of modern computing
systems. As DG-FEM implementations on modern hardware are predominantly memory bound
[133], these concerns become even more performance critical. Therefore, data should be structured
such that primary memory locality is organized by elemental degrees of freedom within the solution
vector representation, followed by position in the state 𝑥, and lastly by ensemble member. Reversing
this order and organizing data by spatial locality can result in orders of magnitude slowdown due
to cache misses.

99

4.2.4 Data assimilation setup
We consider the high polynomial order, high resolution simulation shown in Figure 4-2 (𝑁𝑦 =
16, 𝑝 = 3), which serves as the “truth” for the purposes of observation data. We consider the
coarse discretization (𝑁𝑦 = 8, 𝑝 = 2) and a very coarse discretization (𝑁𝑦 = 4, 𝑝 = 2) for ensemble
runs—see the computational meshes in Figure 4-3. We launch 103 ensemble members with uncertain
initial condition in 𝑥 where 𝑥(𝜔) ∼ 𝒩 (1, 𝜎𝜀). For the purposes of this investigation, we consider
𝜎2

𝜀 = 10−4.3
We introduce the same uncertainty with every repeated injection of the contaminant—if the

problem premise is that the first injection is uncertain, it stands to reason that following injections
would be uncertain as well.

0 2 4 6 8 10

1.0

0.5

0.0

0.5

1.0

0 2 4 6 8 10

1.0

0.5

0.0

0.5

1.0

0 2 4 6 8 10

1.0

0.5

0.0

0.5

1.0

Figure 4-3: The computational meshes considered in this investigation. (Left) high resolution truth
𝑁𝑦 = 16, (Center) coarse resolution 𝑁𝑦 = 8, (Right) very coarse resolution 𝑁𝑦 = 4. The polynomial
order of numerical solution for the truth is 𝑝 = 3 and the ensembles, 𝑝 = 2.

We can write the stochastic representation of the initial condition as

𝑤0(𝑥;𝜔) = 𝑒− (𝑥(𝜔)−1)2+𝑦2

0.52 + 𝑒− (𝑥(𝜔)−1)2+(𝑦−0.5)2

0.52 + 𝑒− (𝑥(𝜔)−1)2+(𝑦+0.5)2

0.52 (4.16)

Our study incorporates the sensor configuration as illustrated in the reference figure (Figure
4-4). It’s worth noting that the numerical solution, within our chosen framework, exhibits piecewise
discontinuity across each element. This is a fundamental characteristic of the numerical scheme,
resulting from the HDG discretization technique used, and forms the basis for how the sensor ob-
servations are interpreted. Each sensor observation corresponds to four separate nodal degrees of
freedom in the state vector, which we denote 𝑥. This means that every reading we get from a sensor
provides us with four separate pieces of information about the state of the system. This multi-
faceted data capture enriches the volume of information we obtain from each observation, which in
turn enhances the fidelity of our model.

0 2 4 6 8 10

1.0

0.5

0.0

0.5

1.0

Figure 4-4: The sensor configurations considered in this investigation, overlayed on the coarse mesh.

We note that the coarse runs differ significantly from one another as they are evolved in time; see
Figure 4-5, which demonstrates the qualitative difference in solution as well as the difference between
the “true” contaminant at the central sensor and the coarse simulations’ value of the contaminant
over time. The solutions are all plotted on the same view mesh to ensure that the linear interpolation
of the plotting agent does not artificially worsen the coarse solutions. It’s also worth noting the
particular behavior of the contaminant solution. The numerical solution exhibits a dynamic phase,
characterized by changes over time, before it eventually reaches a steady state. This process is
primarily driven by the repeated injections of the contaminant into the system and spatially-variable
but temporally-constant background flow.

3In practice, tuning sensor noise is very important. See §4.2.6 for discussion.

100

0 200 400 600 800 1000
timestep

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

am
in

an
t c

on
ce

nt
ra

tio
n

u

contaminant concentration at x = 3.75, y = 0

coarse
very coarse
truth

Figure 4-5: [Left] Comparison of numerical solutions 𝑢ℎ at 𝑡 = 3𝑇 . (Top) “truth” (Middle) coarse
(Bottom) very coarse. [Right] The contaminant as measured at the central sensor.

4.2.5 Numerical experiments
4.2.5.1 Single assimilation

In the first scenario, we aim to provide a clear understanding of the effect of a single Ensemble
Kalman Filter (EnKF) update. In order to do this, we execute the coarse simulation for a duration
equivalent to 400 time steps. During this run, we assimilate observation data pertinent to the sparse
sensor case. Note that from Figure 4-5, 𝑡 = 400 is sufficient time for the truth and coarse simulation
to appreciably diverge. The results of this process, for a single ensemble member, are visually
represented Figure 4-6. By focusing our attention on the domain center-line, denoted as 𝑦 = 0,
it becomes evident that features of the truth have been successfully recaptured, with the posterior
distribution accurately centered around the true concentration value. This recovery highlights the
effectiveness of our single EnKF update in steering the simulation towards the ground truth.

0.000 0.001 0.002 0.003 0.004 0.005
0

500

1000

1500

2000

2500

3000

3500
contaminant distribution: t = 400, at x = 6.875, y = 0

prior
posterior
true value

Figure 4-6: [Left] (top) coarse realization before assimilation update; (second) coarse realization
after assimilation update; (third) difference in coarse field realization due to assimilation; (bottom)
“truth” at 𝑡 = 400. [Right] Prior and posterior contaminant distribution at a central sensor.

By examining the difference plot, we observe a key shift in the less-concentrated portion of the
flow beyond the 𝑥 = 4 mark along the center-line. Specifically, it has moved closer to the more-
concentrated truth, a clear sign of the simulation’s successful adaptation towards the ground truth
following the EnKF update. A closer look at the histogram plot of contaminant distributions offers a
more quantitative perspective on how the posterior ensemble members have been realigned towards

101

the true value; this lends quantitative credence to the effectiveness of the single EnKF update but
also provides a more precise understanding of its impact on the model. The extent to which the
EnKF update has improved the accuracy of the simulation is clear, bringing the entire ensemble
significantly closer to the true values.

It is illustrative to carry out the same procedure but at an earlier time, at 𝑡 = 210, 10 time steps
after the second injection of contaminant. As the flow is only starting to evolve, the uncertainty is
highly localized and many sensors are in complete agreement between the ground truth and ensemble
value. Figure 4-7 shows the ensemble mean fields with and without data assimilation as compared
to the ground truth. The most dramatic alteration to the mean field occurs between the third and
fourth center-line sensors, which taper and extend the concentration band, respectively. However,
it’s also the case that in between sensors, where data isn’t available, the effects of the assimilation
are much less pronounced on the concentration features, as expected.

Figure 4-7: Single assimilation step at 𝑡 = 210 using sparse sensors. (Top) truth; (Center) coarse
deterministic solution, no data assimilation; (Bottom) assimilated coarse solution.

4.2.5.2 Repeated assimilation in time

To extend the approach from a single assimilation to regular assimilative updates, we consider the
two different numerical ensemble resolutions (coarse and very coarse), with assimilation updates
every 10 time steps. Comparisons between the non-assimilative coarse run and an EnKF run are
given in Figure 4-8 at one of the domain sensors in the contaminant injection region. From the figure,
it is clear that the data-assimilative run is able to track the ground truth well, both in terms of the
mean field and the ensemble realization. We can see that the EnKF mean field tracks the truth
well, and that the realizations are adjusted the most around the re-injection of the contaminant.
The non-data assimilative deterministic run, on the other hand, diverges from the truth, with errors
compounding with each additional contaminant injection.

Figure 4-8: Comparison of sensor data at 𝑥 = 1.25, 𝑦 = 0 for coarse runs with data assimilation
every 10 time steps and the deterministic run. (Left) mean fields; (Right) fields for a particular
ensemble member.

However, as an important caveat, consider the very coarse resolution run, which diverges quickly
from the truth and exhibits qualitatively different flow features (see Figure 4-5) due to severe under-

102

resolution. Extensive numerical testing from this run demonstrates that the EnKF is not nearly as
effective at tracking the solution as compared to the coarse run, even with frequent assimilations
in time. This is unsurprising: a crucial assumption behind the EnKF is that the ensemble is
large and varied enough that it contains the statistical features we wish to track. However, the
very coarse ensemble members are translated and perturbed, but are all chronically under-resolved.
As a result, there are no ensemble members which exhibit the true features of the flow, and so
the EnKF algorithm corrects the locations such that the contaminant coincides with the correct
initial conditions, but can not dramatically update qualitative properties of the ensemble, as the
uncertainties are quite large. This is, of course, correct behavior; as the uncertainty in the grows too
large, the EnKF algorithm correctly affects the flow features less. This idea is discussed at length
in [72].

Instead, consider the alternate approach of ensembles of order 𝑝 = 5 launched on the very coarse
mesh with a much more uncertain initial condition, where we perturb the injection center according
to Δ𝑥 ∼ 𝒩 ([−0.1, 0], 0.1𝐼). In this case the ensembles are able to represent the features of the flow,
but are subject to greater uncertainty. In this case, again using assimilation every 10 time steps, we
are able to recover the true behavior of the contaminant with regular assimilative updates. In this
case, although the mesh is still very coarse, we have effectively increased the resolution by increasing
the polynomial order of the solution, allowing the ensemble to represent the features of the flow.

Figure 4-9: Mean field solution at 𝑡 = 180. (Top) truth; (Middle) No data assimilation; (Bottom)
Data assimilation.

For the very coarse mesh but polynomial order 𝑝 = 5, Figure 4-9 shows the mean fields of
ensembles with and without assimilation. Note that the un-assimilated mean field has had the
flow features affected by the initial condition uncertainty. However, the assimilated field is able to
recover the symmetric features of the truth. Figure 4-10 shows the contaminant concentration of the
assimilated and non-assimilated first ensemble member at two central sensors. Note that although
the tracking oscillates at the first uncertain injection, the assimilated ensembles find and are able
to track the true contaminant concentration well. Lastly, if we examine the assimilated data for all
times at all center-line sensors, we can see that the ensemble mean field with EnKF updates does
a very good job at tracking the solution. This can be seen in Figure 4-12 Similar performance can
be seen at the non-center-line sensors (not shown). Altogether, this speaks to the effectiveness of
high-order methods. As long as the flow features are able to be resolved, performing assimilation
over few elements at high order can track the true solution, even with a discontinuous solution
representation.

103

0 200 400 600 800 1000
0.00

0.25

0.50

0.75

1.00

1.25

1.50

co
nt

am
in

an
t c

on
ce

nt
ra

tio
n

u ensemble realization
no DA
DA
truth

contaminant concentration at x = 2.5, y = 0

0 200 400 600 800 1000

0.5

1.0

1.5

2.0

co
nt

am
in

an
t c

on
ce

nt
ra

tio
n

u ensemble realization
no DA
DA
truth

contaminant concentration at x = 1.25, y = 0

Figure 4-10: Randomly chosen ensemble realizations with and without data assimilation (very coarse,
𝑝 = 5). Shown at two center-line locations (𝑥 = 1.25 and 𝑥 = 3.75).

4.2.6 Sensitivity to measurement noise
In practice, the choice of 𝜎2

𝜀 is important in maintaining the tracking properties of the EnKF. If the
variance is too small, the posterior ensemble will be very tightly clustered around the observation,
as in the first plot of Figure 4-11. In that case, the first assimilation will be effective, but subsequent
observations will lie outside the support of the posterior, and the filter will not successfully track
new observations, shown in the second plot of Figure 4-11 for a single realization. Any agreement
with the truth after the first assimilation is coincidental; we see that the solution does not jump at
the assimilation steps after the first two assimilations. If 𝜎2

𝜀 is increased, the ensemble richness is
preserved and we recover good tracking, as in the last plot of Figure 4-11. Note the discontinuous
jumps as the assimilations continue to be effective through the first period of the problem.

0.0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

600

700
contaminant distribution sensor 7: t = 20, at x = 1.875, y = 0

prior
posterior
data
actual observation

0 25 50 75 100 125 150 175 200
timestep

0.4

0.6

0.8

1.0

1.2

1.4

1.6

co
nt

am
in

an
t c

on
ce

nt
ra

tio
n

u

contaminant concentration at x = 5.0, y = 1
coarse
very coarse
truth

0 25 50 75 100 125 150 175 200
timestep

0.4

0.6

0.8

1.0

1.2

1.4

1.6

co
nt

am
in

an
t c

on
ce

nt
ra

tio
n

u

contaminant concentration at x = 1.25, y = 0
no DA
DA
truth

Figure 4-11: [Top] (Left) collapsed posterior distribution after single assimilation, 𝜎2
𝜀 = 10−5; (Right)

contaminant concentration at downstream sensor 𝜎2
𝜀 = 10−5, assimilation every 10 timesteps; [Bot-

tom] contaminant concentration at downstream sensor, 𝜎2
𝜀 = 10−1, assimilation every 10 timesteps.

104

4.2.7 Summary
We have shown that the EnKF can be an effective method to track the physical behavior of a
system from an ensemble of realizations representing the uncertainty. We have shown that if the
true behavior features exist within the support of the ensemble, the EnKF will work well, whether the
mesh is refined with respect to element size or polynomial order. On the other hand, if all ensemble
members are not well-resolved or do not contain accurate statistics of the true physical behavior, the
EnKF will track the ensemble members which are the best representatives of the observed system
(those members with initial conditions and perturbations closest to the true initial state of the
system), but will not be able to dramatically alter the features of the ensemble members. We found
that the sensor noise can not be too small, because it collapses the ensemble posterior and prevents
future observations from being regarded. Lastly, we found that EnKF updates can be performed
natively over discontinuous spaces, even with duplicated sensor data, agreeing with the results in
[205]. Overall, these findings suggest that the same properties that make DG-FEM methods stable
and robust solvers capable of preserving feature fidelity in advection-dominated regimes contribute
to their attractiveness in data-assimilative models.

Future topics to investigate include the addition of variance inflation to deal with very accurate
sensors, and tracking system behavior with an ensemble of solutions with varying resolution. Sec-
ondly, it’s possible to perform the data assimilation over the HDG edge space directly, however,
this is the subject of ongoing research in the field, similar to that of that of multigrid methods that
consider the traced edge space solution specifically.

105

0 200 400 600 800 1000
0.0

0.5

1.0

sample realization
ensemble mean
truth

0 200 400 600 800 1000

0.5

1.0

1.5

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

0 200 400 600 800 1000
0.0

0.5

1.0

0 200 400 600 800 1000
0.0

0.5

1.0

0 200 400 600 800 1000
0.0

0.5

1.0

0 200 400 600 800 1000
0.0

0.5

1.0

0 200 400 600 800 1000
0.0

0.5

1.0

0 200 400 600 800 1000
0.0

0.5

1.0

0 200 400 600 800 1000

0.0

0.5

1.0

0 200 400 600 800 1000

0.0

0.5

1.0

0 200 400 600 800 1000

0.0

0.5

1.0

Figure 4-12: Contaminant concentration at centerline sensors (data assimilation every 10 time steps)
over the complete simulation.

106

4.3 Bayesian inversion of coefficients in partial differential
equations with HDG fields

An inverse problem involves calculating causal factors from a set of observations. In this work, the
problem of interest is to infer a spatially-variable thermal diffusivity field from observations of the
temperature field. Such a situation might arise in practice while performing diagnostic testing on
an experimental material. As an illustrative example, take the case of designing a space shuttle:
atmospheric re-entry might affect the thermal conductivity of a performance-critical shuttle part
in a non-uniform way due to the part’s geometry, requiring thermal stress testing. After the test,
degradation of thermal conductivity can not be measured directly, as it’s a non-uniform molecular
property of the material. However, we could instead apply different temperatures or heat fluxes
to the boundary of the stress-tested prototype and measure the resulting temperature over the
prototype interior with an infrared thermometer. From the temperature measurements, we would
like to infer the degraded thermal diffusivity field, allowing us to recover the thermal conductivity
by direct proportionality.

Summary statistics of the inferred thermal conductivity would allow for better engineering design,
namely, judicious reinforcement of the part for robustness. Since the part is performance-critical,
“judicious” regions could refer to those of severe degradation or high uncertainty: both are important
from a risk-mitigation perspective.

Temperature and thermal diffusivity share an intrinsic relationship expressed through the heat
equation, a type of elliptic partial differential equation. The PDE encodes the physics of conservation
of energy, and the relationship between diffusivity and observed temperature is not visually obvious.
To provide a clearer illustration, Figure 4-13 showcases temperature fields derived from two distinct
scenarios: one featuring a spatially constant diffusivity field and the other a spatially variable one.
Interestingly, even though the thermal diffusivities differ widely between the two cases, these varia-
tions do not leave any easily identifiable patterns or signatures on the resulting temperature field,
motivating the problem of their inference.

Figure 4-13: Temperature fields generated from different thermal diffusivity fields (left:constant,
right:spatially variable) and identical boundary conditions.

107

4.3.1 Methodology

4.3.1.1 Governing equations and numerical solution

We model the physics of the problem with the heat equation on the spatial domain Ω ⊂ R𝑛, subject
to conditions on the domain boundary Γ = Γ𝐷 ∪ Γ𝑁 . The stochastic PDE is

−∇ · (𝜅(𝑥, 𝜔) ∇𝑢(𝑥, 𝜔)) = 𝑓 in Ω,
𝑢 = 𝑔𝐷 on Γ𝐷,

𝜅∇𝑢 · 𝑛 = 𝑔𝑁 on Γ𝑁 ,

(4.17)

where 𝑢(𝑥) denotes the temperature at the point 𝑥 and 𝜅(𝑥) is the spatially-variable thermal diffu-
sivity coefficient of the medium. The function 𝑓(𝑥) is a heat source or sink term, which in this case,
we take to be zero. The Dirichlet boundary values 𝑔𝐷 correspond to a deterministic temperature
imposed on the boundary Γ𝐷, and Neumann boundary conditions correspond to a deterministic
imposed heat flux on the boundary Γ𝑁 .

To simulate the generation of temperature observations, we discretize the domain and numerically
solve the PDE in equation (4.17) subject to the boundary conditions of our choosing. Therefore our
forward model can be written as

𝑢 = ℳ(𝜅, 𝑔), (4.18)

where the operator ℳ represents the numerical solution of the heat equation, returning the tem-
perature field 𝑢(𝑥) for a given realization of the diffusivity field 𝜅(𝜔), and the boundary data
𝑔 = (𝑔𝐷, 𝑔𝑁).

4.3.1.2 Reduced-order representation of random fields

The inverse problem targets the continuous thermal diffusivity field 𝜅, which varies over the entire
computational domain. We model the log-diffusivity log(𝜅) as a Gaussian process in our spatial
domain. This makes physical sense since we assume the conductivity to be strongly spatially cor-
related; physically, we expect 𝜅(𝑥) to be close to 𝜅(𝑥 + Δ𝑥). The choice of re-parametrization to
log-diffusivity enforces the positivity of thermal diffusivity.

Gaussian processes have an infinite number of ‘parameters.’ Since it is not numerically possible
to infer the conductivity at every single point in the domain, we need to find a way to make it
possible to reduce the dimensionality of the problem. One approach would be to infer the values
of conductivity on a grid - the same grid which will them be used to numerically solve for the
temperature field. The dimensionality of the problem is still very high and the problem is ill-posed
in additional to computationally intractable. The fact the values of parameters that are spatially
correlated to each other can be used to decompose the field and reduce the dimensionality of the
problem. We reduce the problem of estimating a large number of highly correlated parameters to
estimating a smaller number uncorrelated parameters using a Karhunen-Loève (KL) expansion [87]
of the log-diffusivity field. We use a truncated KL expansion to furnish a finite representation of the
infinite-dimensional field.

𝜅(𝑥, 𝜔) = exp(𝑌), 𝑌 =
𝑁KL∑︁

𝑖=1
𝑧𝑖(𝜔)

√︀
𝜆𝑖𝜓𝑖(𝑥), (4.19)

where 𝜆𝑖 and 𝜓𝑖 are the eigenvalues and eigenfunctions, respectively, of the covariance kernel 𝐶(𝑥,𝑥′)
∫︁

Ω
𝐶 (𝑥,𝑥′)𝜓𝑖 (𝑥′) 𝑑𝑥′ = 𝜆𝑖𝜓𝑖(𝑥). (4.20)

Instead of inferring the diffusivity in the domain directly, we will infer the KL coefficients 𝑧𝑖 in the
field, which we will use to reconstruct the diffusivity field over the entire domain.

108

4.3.1.3 Bayesian inference

We wish to infer the vector of KL coefficients 𝑧 ∈ R𝑁KL defined such that 𝑧𝑖 = 𝑧𝑖(𝜔), given
temperature measurement data d polluted by sensor noise.

We represent the log-diffusivity as a random field with a stationary Gaussian process prior

𝑌 ∼ 𝒢𝒫(𝜇𝑌 , 𝐶),

Where we take 𝜇𝑌 = 0. The components are independent under the Gaussian process, with 𝑧𝑖 ∼
𝒩 (0, 1), yielding the prior likelihood

𝜋(𝑧) =
𝑁KL∏︁

𝑖=1
exp

(︂
−1

2𝑧
2
𝑖

)︂

Since we have complete trust in the PDE (4.17) to represent the underlying physics, we pre-
sume independent additive errors account for the difference between predicted and observed data d.
Therefore our model for the data is

d = ℳ(𝑧) + 𝜂,

where each component 𝜂𝑖 are i.i.d. Gaussian random variables representing sensor noise, with density
𝑝𝜂 ∼ 𝒩 (0, 𝜎2

𝜖). yielding the likelihood

𝜋 (d|𝑧) =
𝑁obs∏︁

𝑗=1
𝑝𝜂 (d𝑗 − 𝑢𝑗(𝑧))

where 𝑢𝑗(𝑧) are the temperature outputs of the forward model ℳ(𝑧) at the location of sensor 𝑗.
We use Bayes’ rule to form the posterior probability density

𝜋 (𝑧|d) ∝ 𝜋 (d|𝑧)𝜋(𝑧) (4.21)

While we could have instead chosen a completely uninformative prior or encoded uncertainty within
the forward model, our choices reflect our beliefs. Namely, we encode the physical notion of smooth-
ness in our prior and our trust in the underlying physical model with the likelihood.

4.3.2 Implementation
4.3.2.1 Forward model

We evaluate the forward model by solving the PDE (4.17) numerically, using a hybridizable discon-
tinuous Galerkin finite element scheme [191] implemented as in 2. An advantage of using high-order
finite elements is that we can solve the problem accurately on a coarse computational mesh.

To verify the forward model ℳ, we constructed an example where the source term 𝑓 and inho-
mogeneous boundary conditions 𝑔𝐷 were chosen such that the exact solution with a manufactured
anisotropic, spatially variable thermal diffusivity field 𝜅(𝑥) = [𝑦 + 1, 𝑥+ 2] is

𝑢(𝑥) = 𝑥2 − (𝑦 − 1)2 on Ω (4.22)

We solved the problem numerically using the forward model at polynomial order 𝑝 = 4. Since the
forward model is a finite-element implementation, the numerical solution should be exact, because
𝑢 is chosen to be polynomial. We recovered the exact solution to machine precision, verifying the
correctness of the forward model.

4.3.2.2 Computation of KL modes

The Nyström method was used to solve the eigenvalue problem (4.20), furnishing the truncated KL
expansion in (4.19). The integral operators were approximated with high-order quadrature schemes
[230].

109

While the Nyström method is agnostic to choice of kernel, we verified the implementation with
a squared-exponential kernel and reconstructed a manufactured log-diffusivity field by sampling the
KL-coefficients. The point-wise distribution of log-diffusivity is Gaussian and the covariance of the
fields at randomly chosen locations matches that of the covariance kernel—see Figure 4-14.

2 1 0 1 2
Y(x1)

2

1

0

1

2

Y(
x 2

)

Figure 4-14: Verification of KL expansion: the blue regions correspond to the draws from the
truncated KL expansion and the red contours show the expected distribution of a manufactured
log-diffusivity field 𝑌 given the covariance kernel.

4.3.2.3 MCMC sampling from the posterior

We use MCMC to sample from the posterior distribution in (4.21). While the truncated KL rep-
resentation of the diffusivity field dramatically reduces the dimension of the parameter space, each
MCMC step requires an expensive evaluation of the forward model ℳ(𝑧) for Metropolis sampling,
as well as its gradient with respect to the parameters ∇𝑧ℳ(𝑧) for a NUTS sampler.

We chose to implement our inference problem in the probabilistic programming library PyMC3
[226] library. We implemented a custom likelihood using the output of the forward model in Theano,
which allowed us to leverage the PyMC3 library for MCMC.

We also implemented the gradient of the forward model ∇𝑧ℳ(𝑧) numerically with a finite
difference scheme. Doing so allowed us to obtain an accurate approximation of the gradient non-
intrusively, but at the cost of 𝑁KL function evaluations at every MCMC step, one for each parameter
dimension. Ideally, we would have evaluated the gradient with automatic differentiation, but no open
source library was capable of doing so non-intrusively with respect to the complicated forward model.

4.3.3 Numerical experiments
4.3.3.1 Setup

We benchmark the performance of the samplers by setting a ground truth for each diffusivity field by
selecting ‘true’ values of the KL coefficients 𝑧𝑡𝑟𝑢𝑒 to be inferred. We then pass it through the forward

110

model to get the true temperature field for the ground truth. The values of the ‘true’ temperature
field at certain sensor locations are the observed data used for inference.

In the following experiments we compare MCMC samplers: adaptive Metropolis-Hastings (MH)
and the No-U-Turn sampler (NUTS). While we tested other options, including slice sampling and
Hamiltonian Monte Carlo, we found that the MH and NUTS samplers were the primary competitors
in terms of their ability to solve the problem, as well as the two most interesting to compare, since
MH does not require a gradient of the likelihood with respect to the model parameters, unlike NUTS.

For our experiments, we considered test cases consisting of inferring three separate diffusivity
fields generated with 5, 10, and 20 KL modes. In each test case, we compared the posterior distribu-
tions returned by the MH and NUTS samplers. As discussed above, the temperature observations
were generated from the forward model evaluated on the ground truth diffusivity field 𝜅, generated
using 𝑧true. Doing so allowed us to compare the mean inferred diffusivity field to an analytical
solution.

1 0 1

1

0

1

Mesh h of

sensor locations

Figure 4-15: Computational mesh 𝒯ℎ used in the numerical experiments, and the sensor locations.

For all experiments, we used a coarse numerical solution of the forward model, with a compu-
tational mesh consisting of nine quadrilateral finite elements of polynomial order 𝑝 = 3, shown in
Figure 4-15. Temperature measurements 𝑢obs were generated at 𝑁obs = 144 sensor locations over
the domain. We remark that while the quality of the inferred diffusivity field will depend on the
number of observations, the number of sensors does not appreciably change computation time, as
the vast majority of time is spent evaluating the forward model. Therefore, we simply chose enough
sensors to adequately cover the length scales of the diffusivity field for all test cases. In practice,
more measurements could be taken to improve the mean-field estimates; conversely, sparser temper-
ature measurements would, correctly, result in worse mean-field estimates and greater uncertainty
over the parameters.

Each MCMC result shown is a combination of four chains run in parallel on separate cores. The
number of MCMC steps always refers to the number of steps per single chain. For the purposes of
analysis and diagnostics, we sometimes combine the results of all four chains into an aggregate set
of samples, in such cases, we will refer to total samples rather than iterations or steps.

111

4.3.3.2 5 KL modes

We found that both samplers were adequately able to solve the problem after 104 MCMC steps.
A visual comparison of the true diffusivity field and the inferred diffusivity field is shown in

Figure 4-16 for the MH sampler. The results are nearly identical for the NUTS posterior. The
mean inferred diffusivity qualitatively matches the actual diffusivity field quite well. Furthermore,
examining the difference between the inferred field and the true diffusivity reveals that the posterior
correctly assigns uncertainty to the regions where the diffusivity field most differs from the truth.

Figure 4-16: Mean-field inferred diffusivity from MH posterior.

The posterior distributions over the coefficients 𝑧𝑖 are shown in Figure 4-17. We see that the

2 1 0 1 2

z0

z1

z2

z3

z4

95.0% Credible Interval

MH
NUTS
ztrue

Figure 4-17: Posterior credible intervals over coefficients 𝑧𝑖, for MH and NUTS MCMC, along with
generative coefficients 𝑧true for the true diffusivity field.

posteriors returned by each sampler are very similar to each other, both in terms of mean and

112

variance. The actual coefficients used to generate the true diffusivity field are all within the 95%
credible interval of all posteriors, and importantly, the uncertainties reflect the accuracy of the
means.

The traces for the MCMC chains plotted in Figure 4-18 show good mixing for MH, with very
similar results for NUTS. Neither sampler was plagued by a high rejection rate or an inability to
explore the posterior space.

4 3 2 1 0 1 2 3

posterior zi

z0
z1
z2
z3
z4

0 2000 4000 6000 8000

trace

4

2

0

2

Figure 4-18: Posterior distributions and traces for MH MCMC.

MH NUTS

𝑧𝑖 ESS ̂︀𝑟 ESS ̂︀𝑟
0 467.0 1.01 285.0 1.02
1 3887.0 1.00 650.0 1.01
2 3434.0 1.00 727.0 1.00
3 935.0 1.00 406.0 1.01
4 479.0 1.01 299.0 1.02

Table 4.1: Effective sample sizes (ESS) and ̂︀𝑟 parameters for each of the MCMC samplers, 𝑁𝐾𝐿 = 5.

More closely comparing the two samplers by examining the MCMC diagnostics in Table 4.1, we
see that both have values of 𝑟 ≈ 1, indicating that each of the combined four chains have converged
to a common distribution. We remark that this heuristic is a tool to detect non-convergence rather
than convergence and good ̂︀𝑟 values do not necessarily guarantee that the posterior space has been
completely explored. The effective sample sizes are larger for the MH sampler, indicating a better
estimation error and autocorrelation properties as compared to NUTS.

The primary difference between MH and NUTS was represented in the computational time
required to solve the problem. The error in the mean posterior field as measured in the L2-norm
over the domain is depicted as a function of total samples and wall clock time in Figure 4-19. In
our examination, we found that both the Metropolis-Hastings and the NUTS sampler deliver similar
levels of accuracy in their results. However, despite their comparable accuracy, a stark contrast
was noted in the runtime of these two methods. The MH algorithm was markedly faster, taking
approximately 15 minutes to complete its run. This relatively swift operation time stands as a
testament to the efficiency inherent in the MH sampler, which is designed to expedite the sampling
process without compromising the accuracy of its results. On the other hand, the NUTS algorithm
proved to be significantly slower. It recorded a runtime of approximately 27 hours, which, when
compared to the 15-minute runtime of the MH, represents a significant delay. To put it in perspective,
the runtimes of the MH and NUTS algorithms differ by a factor of approximately 122. In other

113

0 2 4
of samples ×104

10 1

3 × 10 2
4 × 10 2

6 × 10 2

2 × 10 1
L2

 E
rro

r

100 103

Elapsed time

N_KL = 5
MH NUTS

Figure 4-19: Error in mean posterior field as measured in the 𝐿2-norm over the domain as a function
of total number of MCMC samples completed (left) and elapsed wall clock time in seconds (right).

words, the NUTS algorithm took over two orders of magnitude longer to run than the MH algorithm.
This disparity underscores the trade-offs that often arise when choosing between different sampling
methods. While the NUTS sampler is praised for its detailed exploration of the target distribution
and has certain benefits in complex statistical situations, it is important to consider the increased
computational time when applying it to large scale problems. This juxtaposition between MH and
NUTS serves as a tangible reminder of the need to balance accuracy with efficiency when choosing
an appropriate sampling method.

4.3.3.3 10 KL modes

For the case where ten KL modes are employed, the time requirements imposed by the NUTS
sampler restricted our comparison to 104 MCMC steps. Within these constraints, it became clear
that only the MH sampler could solve the problem satisfactorily within the provided constraints.
This finding suggests that in more complex settings, the exploratory efficiency of MH can surpass
that of NUTS. A visual representation of this statement can be found in Figure 4-20, which displays
the true diffusivity field 𝜅 and the inferred mean diffusivity field. Despite the complexities involved
in exploring the higher-dimensional parameter space of ten KL modes, the diagram displays good
qualitative agreement between the actual and the inferred mean diffusivity fields. Furthermore,
it provides valuable insights into the uncertainty estimates associated with the process, which are
corroborated by the mean fields results and reaffirms the robustness of the MH sampler.

Comparing the posterior credible intervals for MH and NUTS shown in Figure 4-21, we see that
unlike the 𝑁KL = 5 case, the posterior distributions returned by the two samplers show considerable
disagreement. The true coefficients 𝑧true are contained in all of the credible intervals returned by
the MH sampler, and the mean estimates for most coefficients are quite good. The same can not
be said about the estimates from the NUTS sampler, with estimates that often deviate significantly
from the true coefficient value; more importantly, in some cases, the true value falls well outside the
95% credible interval.

The MCMC diagnostic statistics provide a clearer picture of what’s going wrong with the NUTS
sampler. Figure 4-26 shows the distribution of ̂︀𝑟 values for the samplers. The MH sampler has
components with ̂︀𝑟 ≤ 1.1, indicating chains which are potentially approaching convergence. The
NUTS sampler, on the other hand, is characterized by ̂︀𝑟 > 1.1, indicating the the sampler is nowhere
near convergence and that individual samples are still highly dependent, a finding substantiated by
examination of both the trace and autocorrelation plots (omitted here).

Again, we consider the solution accuracy of the mean-field estimates as a function of total samples
and wall clock time in Figure 4-23. We see that the accuracy of the MH posterior is far better than

114

Figure 4-20: Mean-field inferred diffusivity from MH posterior.

4 2 0 2 4

95.0% Credible Interval

MH
NUTS
ztrue

Figure 4-21: Posterior credible intervals over coefficients 𝑧𝑖, for MH and NUTS MCMC after 104

steps, along with generative coefficients 𝑧true for the true diffusivity field.

115

1.025 1.050 1.075 1.100
0

1

2

3

4 MH

2.0 2.5 3.0 3.5
0

1

2

3

4
NUTS

r distribution

Figure 4-22: Distribution of the 𝑁KL = 20 values of ̂︀𝑟𝑖 for both MCMC samplers after 104 steps.

the that returned by the NUTS sampler. Comparison of required wall clock time reveals a similar
discrepancy as the five KL mode case; roughly 30 minutes and 45 hours for the MH and NUTS
samplers, respectively—roughly a factor of 85 difference between the two.

0 2 4
of samples ×104

10 1

2 × 10 1

3 × 10 1
4 × 10 1

6 × 10 1

L2
 E

rro
r

100 102 104

Elapsed time

N_KL = 10
MH NUTS

Figure 4-23: Error in mean posterior field as measured in the 𝐿2-norm over the domain as a function
of total number of MCMC samples completed (left) and elapsed wall clock time in seconds (right).

The discrepancy between the computational times is responsible for our decision to compare
MH and NUTS using only 104 MCMC steps. While it’s possible that NUTS could have achieved
convergence with a small amount of additional steps, running the simulations for longer than a few
days was simply not practically feasible.

4.3.3.4 20 KL modes

For the case of 20 KL modes, we once again found that only MH was able to solve the problem, and
did so in a fraction of the run time of NUTS.

Figure 4-24 demonstrates the physical agreement between the mean field and the truth. We also
see that once again, the MH sampler includes the true mean in the 95% credible interval for all
inferred coefficients (Figure 4-25). NUTS, on the other hand, performs much more poorly, giving
inaccurate estimates and uncertainties as compared to MH.

The MCMC diagnostics clearly show non-convergence for the NUTS sampler and dependence
between samples. For MH, despite the good physical agreement and the capturing of the true values

116

Figure 4-24: Mean-field inferred diffusivity from MH posterior, 104 MCMC steps.

4 2 0 2 4

95.0% Credible Interval

MH
NUTS
ztrue

Figure 4-25: Posterior credible intervals over coefficients 𝑧𝑖, for MH and NUTS MCMC after 104

steps, along with generative coefficients 𝑧true for the true diffusivity field.

117

within the 95% credible intervals, the values of ̂︀𝑟 shown in Figure 4-26 indicate non-convergence for
some of the coefficients of 𝑧, namely, the two with ̂︀𝑟 > 1.1.

1.1 1.2 1.3
0

1

2

3

4

5 MH

2 3 4
0

1

2

3 NUTS

r distribution

Figure 4-26: Distribution of the 𝑁KL = 20 values of ̂︀𝑟𝑖 for both MCMC samplers after 104 steps.

A potential lack of convergence is also corroborated by the error plots (Figure 4-27), where the
dropping error in mean estimate seems to imply that the the mean estimate is still improving as we
draw more samples. In the 20 KL mode experiment, NUTS performed miserably, showing complete
lack of convergence and taking roughly 4 days to run as compared with the approximately 30 minutes
required for MH, roughly a factor of 300 difference between the two samplers.

0 2 4
of samples ×104

100

3 × 10 1

4 × 10 1

6 × 10 1

L2
 E

rro
r

100 102 104

Elapsed time

N_KL = 20
MH NUTS

Figure 4-27: Error in mean posterior field as measured in the 𝐿2-norm over the domain as a function
of total number of MCMC samples completed (left) and elapsed wall clock time in seconds (right).

Since the MCMC diagnostics suggested that the MH sampler was not quite converged, we ran
another longer test with the MH sampler, for 105 MCMC steps. The additional MCMC steps
resulted in very similar posterior results as compared to the 104 MCMC step run, although with
improved diagnostic ̂︀𝑟 values and effective sample size, as shown in Figure 4-28, demonstrating that
the sampler had nearly converged at the end of the 104 steps.

4.3.4 Summary
We were able to successfully solve the proposed inverse problem. For the MCMC sampler, adaptive
Metropolis-Hastings summarily outperformed the NUTS sampler, contrary to what one might ex-
pect. In all test cases, the adaptive MH sampler was orders of magnitude faster than NUTS and

118

1.000 1.005 1.010 1.015 1.020
0

2

4

6

8

10

12

14

r distribution

25000 50000 75000 100000
Total number of draws

0

200

400

600

800

1000

E
S

S

ESS evolution
Method

bulk
tail

MH MCMC diagnostics, 105 steps

Figure 4-28: Distribution of ̂︀𝑟 values and evolution of effective sample size (ESS) for MH after 105

MCMC steps.

provided better or equal results in terms of posterior predictive distribution. This is likely the result
of the finite difference computations of the likelihood gradient with respect to the inference param-
eters, since the expensive numerical solution supplied by the forward model must be evaluated once
for each dimension of the parameter space at every MCMC step.

It’s possible that for much higher-dimensional parameter spaces, that a NUTS sampler would
explore the reduced-order posterior space better than the Metropolis sampler, however, the wall-
clock time-to-solution was simply too prohibitively expensive to explore a larger number of KL
modes with the NUTS sampler. It may also be the case that if the gradient of the likelihood
were evaluated with automatic differentiation rather than finite differences that NUTS would be
competitive with or outperform the Metropolis sampler, due to the cheaper and more accurate
gradient evaluations. However, we found that there were no automatic differentiation libraries
that were capable of propagating the gradient through the complicated forward model code non-
intrusively.

Our primary conclusion is that in the context of PDE-based inference where the evaluation of the
likelihood and its gradient can be very expensive, the state-of-the-art MCMC technologies do not
necessarily outperform simpler samplers when exact gradients of the likelihood model are not avail-
able. However, our experiments also shed light on the power of reduced-order modeling—inference
over a naively discretized diffusivity field would have rendered the inverse problem completely in-
tractable with MCMC. However, by leveraging the KL-expansion and the physical smoothness of the
diffusivity field, we can obtain good estimates of the infinite-dimensional parameter fields responsible
for physical observations, along with uncertainties—inferences which could prove invaluable during
engineering analysis or design.

4.4 Conclusion
We completed a set of computational studies evaluating HDG-based implementations of standard
methods in uncertainty quantification: ensemble Kalman filter (EnKF) for data assimilation and
Markov Chain Monte Carlo sampling for Bayesian inversion of unknown PDE coefficients. The
results of the computational experiments demonstrate that with the DG-FEM-targeted modifica-
tions to the standard methods investigated in this chapter, we are able to convincingly solve the

119

uncertainty quantification problems, the high-order, discontinuous representation of the solution
fields notwithstanding. These idealized investigations provide insight into managing the complexi-
ties introduced by the DG-FEM methods, thereby suggesting the applicability of these methods to
real-ocean problems such as the nonhydrostatic model nesting approach developed in §3.

In this chapter, we’ve established the Ensemble Kalman Filter as a robust approach for data
assimilation given an ensemble of realizations that capture the inherent uncertainty. This holds true
regardless of whether the mesh is refined by element size or polynomial order. We also confirmed
that EnKF updates can be effectively performed over discontinuous spaces, even when dealing with
duplicated sensor data, and that the assimilation can be performed efficiently within the HDG
framework. Overall, these insights suggest that the qualities that make Discontinuous Galerkin
methods (DG-FEM) a stable and robust solver, capable of maintaining feature fidelity in advection-
dominated regimes, also make it a desirable choice for data-assimilative models. Looking ahead,
potential areas of exploration include introducing variance inflation to handle highly accurate sensors
and tracking system behavior using an ensemble of solutions with varying resolution.

With regards to solving inverse problems, we were able to apply a dimensionality reduction
technique based on polynomial chaos along with Markov Chain Monte Carlo (MCMC) methods to
efficiently sample from the posterior distribution over an unknown coefficient field. Through a set of
numerical test cases and benchmarks, the adaptive Metropolis-Hastings sampler markedly outper-
formed the No-U-Turn Sampler (NUTS). Contrary to initial expectations, the adaptive Metropolis-
Hastings sampler proved to be significantly faster than NUTS in all test cases, delivering equal or
superior results in terms of the posterior predictive distribution. This unexpected outcome is likely
a result of sensitivity of the NUTS sampler to the finite difference computations of the likelihood
gradient with respect to the inference parameters. As the expensive numerical solution offered by
the forward model must be evaluated once for each MCMC sample, gradient-based updates with
an insufficiently accurate gradient can struggle to adequately explore regions of high-probability in
parameter space. Overall, we conclude that in the context of PDE-based inference, where evaluating
the likelihood and its gradient can be quite costly, state-of-the-art MCMC technologies don’t nec-
essarily outperform simpler samplers when exact gradients of the likelihood model aren’t available.
But our experiments did highlight the power of reduced-order modeling. Inferring over a naively dis-
cretized diffusivity field would have made the inverse problem completely intractable with MCMC.
However, by utilizing the KL-expansion and acknowledging the physical smoothness of the diffusiv-
ity field, we could obtain robust estimates of the infinite-dimensional parameter fields responsible
for physical observations, along with their uncertainties. These insights could prove invaluable dur-
ing engineering analysis or design, and future work could involve implementing HDG solvers in the
framework of automatic differentiation libraries to improve the performance of the state-of-the-art
samplers.

120

Chapter 5

Deep Reinforcement Learning for
Adaptive Mesh Refinement

5.1 Introduction
In Chapter §3, we developed a high-order discontinuous Galerkin ocean model capable of capturing
a wide variety of oceanic phenomena. We found that the scales of internal waves and Rayleigh-
Taylor instabilities can be substantially smaller than their hydrostatic counterparts, creating an
intricate and complex landscape to navigate and model. This reality presents a distinct opportunity
when it comes to accurately modeling nonhydrostatic phenomena, in which the local nature of the
nonhydrostatic phenomena could allow for reduction of computational cost. Their scale, coupled
with their nonlinear behavior, necessitates novel and more sophisticated methodologies in order to
accurately represent them in a model.

These observations motivate the exploration of adaptive mesh refinement techniques, with the
aim of their application in realistic high-order nonhydrostatic ocean models. However, the inherent
complexity of ocean models poses a barrier to the direct application of standard adaptive mesh
refinement techniques. The unique dynamics of these models require solutions that are tailored to
their specific dynamics.

Against this backdrop, machine learning approaches may prove fruitful—rather than applying a
blanket technique, unsupervised methods could potentially learn effective cost-reduction strategies
directly from simulation data. Techniques that allow strategies to be learned experientially from
simulation would be even more advantageous, and bypass the necessity of a high-fidelity ground truth
dataset. This self-learning approach could provide a far more nuanced and accurate representation
of the physical behavior specific to the partial differential equation (PDE) in question. Taking
into account these requirements, deep reinforcement learning constitutes an appealing solution to
this challenge. This approach not only meets the criteria outlined but also offers the potential for
significant advancement in the field. To that end, in this thesis, we have formulated a novel method
to employ deep reinforcement learning to learn adaptive mesh refinement strategies directly from
simulation. While the ultimate goal is to offer a new avenue for understanding and predicting the
ocean’s intricate and complex behaviors, the approach can be more generally applied to any problem
involving the numerical solution of PDEs.

In recent decades, the finite element community has developed principled, efficient techniques
for solving partial differential equations. Not only are these techniques extremely general methods
that may be applied to almost any PDE, they also provide guarantees such as stability, consistency,
and convergence [32, 110]. On the other hand, the machine learning community has developed
a broad set of methods to learn latent patterns from large datasets in the absence of a model
[24, 120]. However, for problems in computational physics, it is often the case that the PDE is an
excellent model of the underlying physical phenomena, often down to the molecular level, where the
continuum assumption begins to lose validity. Attempts to use machine learning to learn solutions

121

to PDEs directly have shown promise for relatively trivial problems, but are as of yet subject to
several failure modes in terms of generalization to even moderately more complicated problems [128].
Rather than ignoring the extensive body of work in either field, we propose combining techniques
from numerical mathematics and machine learning in order to preserve mathematically hard-earned
guarantees while improving accuracy and efficiency by applying machine learning to the peripheral
aspects of numerical methods which lack a model and rely purely on heuristics. Adaptive mesh
refinement is one such aspect.

Uniform meshes are often computationally inefficient for finite element simulations in that the
mesh density required to resolve complex physical features such as steep gradients or small-scale
processes is used everywhere over the computational domain, even in regions where the numerical
solution is smooth and much coarser resolution could be used. In many problems, such features
are dynamic: eddies, meandering jets, or nonlinearly evolving cracks constitute some examples.
To optimize efficiency, adaptive mesh refinement (AMR) techniques are a class of methods that
dynamically modify the computational mesh during simulation in an attempt to increase resolution
specifically where it is needed [210].

Most AMR techniques follow an iterative procedure of numerically solving the PDE, estimating
the error on each element, marking a subset of the mesh elements for refinement or de-refinement
(coarsening), and executing the alterations to the mesh [31, 58]; this well-established paradigm is
commonly referred to as the SOLVE→ESTIMATE→MARK→REFINE loop, terminology we will use
in the present chapter. Following each numerical solve, the ESTIMATE process involves estimating
the discretization error on each cell in the mesh. In this chapter, we draw the distinction between an
error estimator, which provides objective measures of error in a specific norm, and an error indicator,
which offers an empirical indication as to the local magnitude of numerical error but provides no
theoretical guarantees. The MARK process selects cells for coarsening and refinement based on the
estimates of the error. Two common approaches are bulk refinement and fixed-number refinement
[20, 23, 31, 61, 111, 112, 185]. The former marks all the cells responsible for a specified percentage
of the (estimated) total error for refinement and similarly for coarsening. The latter refines and
coarsens a fixed percentage of the total number of cells.

While AMR methodologies have allowed computational scientists to solve problems which are
completely intractable on a uniform mesh [125], the application of AMR strategies remains largely
heuristic, and best practices are not universally agreed upon [210]. The process of estimating the
error on each cell is often complex, dependent on both the PDE and the numerical method used to
solve it, and constitutes an active subject of research [2, 19, 70]. In general, for nonlinear partial
differential equations, it is often difficult, and in some cases, impossible to provide an upper bound on
the error. Even in the situations where rigorous error estimation is possible, the bounds on the error
may not be tight, or may apply to a limited subset of problems, rendering the estimator ineffectual.
As a consequence, in practice, these estimators tend to be optimistically applied as ad hoc error
indicators. A relevant example is the well-known Kelly error “estimator” [122], which is derived
from analysis specifically for the Poisson equation, but is widely employed in AMR strategies for
the spatial discretizations of many other PDEs [10, 29, 118, 250, 262] despite its lack of theoretical
applicability. Equally important, but often overlooked in the literature, the MARK process is also
fraught with challenges. In attempting to refine only the cells which constitute a certain percentage
of the error, bulk refinement strategies can be expensive in cases with very few cells at singularities,
miss important features of the solution, and present difficulties controlling the number of cells in
the mesh [61, 185]. With fixed-number refinement, the number of cells in the mesh can be readily
controlled, but the approach can wastefully refine too many cells [61]. Furthermore, the parameters
in either of these methods (i.e., the algorithmic realization of a refinement strategy with regard to
the percentages of the estimated error to refine and coarsen in the case of bulk refinement or exactly
how many cells to refine and coarsen in the case of fixed number refinement) are choices typically
made a priori before a numerical simulation begins. In doing so, the balance between coarsening
and refinement is implicitly assumed to be static in time, rather than dynamically driven by the
behavior of the underlying solution and available computational resources.

As a result, even after decades of research, in practice, AMR strategies remain largely unprinci-
pled and often require domain-specific knowledge, trial and error, or manual intervention. Selecting

122

and combining an efficient set of AMR heuristics for a new problem is a challenging endeavor and
an open research problem in general [61]—there exists a clear need for an automated, flexible, and
principled approach to AMR, motivating the present research.

We propose the treatment of AMR as a partially observable Markov decision process (POMDP)
that can be interpreted as a local Markov decision process (MDP) on each element and apply a deep
reinforcement learning (RL) approach [13] in which we train an agent to increase or decrease mesh
resolution, balancing improved accuracy against the computational cost associated with each mesh
modification decision. Deep reinforcement learning replaces the expected reward function from the
well-known classical Q-learning algorithm with a neural network as a function approximator [236],
allowing for the discovery of arbitrarily sophisticated decision-making policies based on unstructured
input data [113, 233] and obviating the need to manually engineer aspects of the strategy. In doing
so, we replace the ESTIMATE and MARK processes in AMR with a trained RL policy learned from
numerical simulation.

Most of the results presented in this chapter have been published in [81]. Our focus primarily on
high-order discontinuous Galerkin finite element methods (DG-FEM), in part due to their incred-
ible success in modeling a wide range of phenomena in computational physics (see [110, 133] and
references therein) and due to their discontinuous representation of the numerical solution. It is this
discontinuous representation that reliably links the smoothness of the local solution as measured by
the interface jumps to local error [39] in a way that can be well-leveraged by a decision-making agent,
as we develop in §5.2.2.2. The same property gives rise to the simple and effective non-conformity
error estimator and its variants examined in the DG-FEM literature [91, 70, 129, 130, 188]. As
demonstrated in what follows, the DG-FEM discretization plays an important role in the construc-
tion of the observation spaces for the reinforcement learning problem. However, in principle, our
methodology could be applied with minor modifications to classical continuous Galerkin finite ele-
ment methods or even other numerical methods such as finite difference or finite volume methods.

5.1.1 Related work and novel contributions
Optimal mesh refinement strategies have been shown to be theoretically learnable in a recurrent
neural network setting [28]. The application of deep RL specifically to problems in computational
physics is in its infancy, and recent work at the intersection between the disciplines can be found
in [75, 255, 256]. A deep RL approach for the related problem of mesh generation is explored in
[201]. The work in [261] constitutes the first attempt to formulate AMR as an RL problem and
demonstrates the feasibility of the approach. The present work was developed concurrently and
independently, and we formulate the deep RL problem differently. To avoid growing and shrinking
action and observation spaces, our decision-making problem is inherently local rather than defined
over the entire mesh; to that end, our observation space includes measures of local non-conformity
of the solution. We elect not to impose a max refinement depth or provide a hard limit on the
refinement budget in the action space; rather, we impose these restrictions implicitly through our
reward function. Accordingly, we do not aim to maximize total error reduction; our reward function
seeks to strike a tunable balance between the accuracy of the numerical solution and available
computational resources.

In this work, we present novel theory and schemes that use a POMDP representation to formulate
AMR as a deep RL problem under incomplete information and obtain a trained RL policy that can
be thought of as a custom error indicator discovered through trial and error. To the best of our
knowledge, this is the first work that includes both refinement and de-refinement actions as part
of the resultant policy. We provide a very general framework for choosing an observation space
that can incorporate physically relevant features of the PDE to be solved. The methodology is
non-reliant on an exact solution or ground truth during model training or deployment. The agent
learns a cost-effective refinement and coarsening strategy that balances improved solution accuracy
with computational cost, as opposed to a hard threshold.

DG-FEM methods have been shown to be competitive in the under-resolved regimes of fluid flow
simulation, both in the sense of stability and robustness of the schemes [77], and in their ability to
transport high-frequency features over long time-integration horizons without altering the shape of

123

the features or losing amplitude (dispersion and dissipation) [244, 78]. Therefore, practically, the
ability of DG-FEM schemes to capture and preserve physical features is a more important criterion
of merit than the norm-measured errors often presented in academic convergence studies, (see [133],
pp.35-48). This is crucial, as it suggests that any performant AMR technique should be measured
against its ability to resolve dynamical features while making efficient use of problem degrees of
freedom. This motivates the specific form of our reward function, as well as informs our primary
objective of this work; to obtain an AMR policy that accurately resolves features of the numerical
solution and efficiently uses computational resources.

This chapter is organized as follows. In §5.2, we introduce our RL formulation of the adaptive
mesh refinement problem. The partially observable Markov decision process is described in §5.2.2,
with the action and observation spaces detailed in §5.2.2.1-§5.2.2.2. The design and implementation
of a new reward function that allows for model training without the need for exact or ground-
truth solutions to the underlying problem are provided in §5.2.3. Procedures for training and
deployment are given in §5.2.4, and a brief discussion of the deep learning policy architectures
employed therein is specified in §5.2.5. The discontinuous Galerkin spatial discretizations for the
numerical forward models are provided in §5.3 for different PDEs. In §5.4, we demonstrate the
efficacy of the methodology on a set of numerical test cases spanning a variety of PDEs and numerical
methods. We show that the resultant RL policies can outperform widely-used AMR heuristics in
terms of accuracy per degree of freedom and that the policy corresponding to a single trained model
generalizes well to different boundary conditions, forcing functions, and problem sizes. We offer
concluding remarks in §5.5.

5.2 Deep reinforcement learning framework
Deep reinforcement learning combines reinforcement learning with deep learning using a neural
network to represent the value function, policy, or model considered in a classical RL setting [165].
Similar to other deep learning approaches, the network is typically trained by optimization of a
loss function over many episodes in which a strategy that maximizes the expected reward (5.1) is
determined through trial and error. This approach is attractive, as it does not require domain-specific
knowledge, nor does it require a large training data set; training data is generated experientially by
“self-play” as the agent interacts with its environment.

Formulating an RL approach (§5.2.1) to a problem involves describing the underlying decision
process and representation of the agent and the state (§5.2.2). We must specify a reward function
(§5.2.3) which encodes desirable behaviors of the resultant learned policy. Lastly, we must specify the
neural network architectures which are to represent the different parts of the RL problem (§5.2.5).
The subsections that follow present our novel formulation of adaptive mesh refinement as a deep RL
problem.

5.2.1 Notation
Reinforcement learning is characterized by a decision-making agent that interacts with an environ-
ment described by a state 𝑆. We consider the discrete-time case: at time step 𝑡 ∈ {0, 1, 2, . . .}, the
observable state of the environment is 𝑆𝑡 and the action selected by the agent is 𝐴𝑡, the latter of
which gives rise to the reward 𝑅𝑡+1 and modified state 𝑆𝑡+1.

A partially observable Markov decision process (POMDP) is a formalism for describing a se-
quential decision-making process under incomplete information [216]. A POMDP is characterized
by (𝒮, 𝒜, ℛ, 𝑇, 𝒪, 𝑂, 𝛾), where the sets 𝒮, 𝒜, and ℛ are the sets of possible states, actions, and
rewards, respectively. The state transition function 𝑇 : 𝒮 × 𝒜 × 𝒮 → [0, 1] encodes the distribution
of transition probabilities from a state 𝑆𝑡 = 𝑠 to 𝑆𝑡+1 = 𝑠′ given the action 𝑎; that is, 𝑇 (𝑠, 𝑎, 𝑠′)
returns the probability of transitioning to state 𝑆𝑡+1 = 𝑠′ under the action 𝐴𝑡 = 𝑎 executed in state
𝑆𝑡 = 𝑠. The set 𝒪 is the set of possible observations, and the probability distribution 𝑂(𝑜|𝑠, 𝑎)
describes the probabilities over the set of possible new observations 𝑂𝑡+1 = 𝑜 ∈ 𝒪 upon taking
action 𝐴𝑡 = 𝑎 in state 𝑆𝑡 = 𝑠. The scalar 𝛾 ∈ [0, 1] is a time discount factor—a lower discount
factor motivates the agent to favor taking actions early. A POMDP differs from a standard Markov

124

decision process (MDP) in that the agent does not have access to the complete state 𝑆𝑡, but rather,
indirect observations of it.

The goal of RL is to find a stochastic policy function 𝜋 : 𝒪 → 𝒜 that maps the observation space,
which we take as a subset of the entire space 𝒮, to the set of actions that maximizes the expected
reward

𝑄𝑡(𝑠, 𝑎) = E𝜋

[︃ ∞∑︁

𝑘=0
𝛾𝑘𝑅𝑡+𝑘+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]︃
(5.1)

over an infinite time horizon [232].

5.2.1.1 Mesh description

We now provide the notation for the computational mesh and finite-element operations (§5.3). We
let 𝒯ℎ = ∪𝑖𝐾𝑖 be a finite collection of non-overlapping elements 𝐾𝑖 that discretizes the entire problem
domain Ω ⊂ R𝑑. We refer to the boundary of the problem domain as Γ. The set 𝜕𝒯ℎ = {𝜕𝐾 : 𝐾 ∈
𝒯ℎ} refers to all boundary edges and interfaces of the elements, where 𝜕𝐾 is the boundary of element
𝐾. For two elements 𝐾+ and 𝐾− sharing an edge, we define 𝑒 = 𝜕𝐾+ ∩ 𝜕𝐾− as the edge between
elements 𝐾+ and 𝐾−. Each edge can be classified as belonging to either 𝜀∘ or 𝜀𝜕 , the set of interior
and boundary edges, respectively, with 𝜀 = 𝜀∘ ∪ 𝜀𝜕 .

The elements 𝐾+ and 𝐾− have outward pointing unit normals 𝑛+ and 𝑛−, respectively. The
quantities 𝑎± denote the traces of 𝑎 on the edge 𝑒 from the interior of 𝐾±. When relevant for
element-wise operations, we take as convention that the element 𝐾− refers to the local element,
and 𝐾+ to the neighboring element. The jump J·K operator for scalar quantities are then defined as
J𝑎K = 𝑎− − 𝑎+ on the interior faces 𝑒 ∈ 𝜀∘. On the edges described by 𝜕𝒯ℎ, we can uniquely define
the normal vector 𝑛 as outward for a given cell and inward for its neighbor.

5.2.2 Elemental refinement as a local Markov decision process
As per the approach described in [10, 20] and references therein, the computational mesh is composed
of linear, quadrilateral, or hexahedral elements, and represented by a tree data structure. Upon
refinement of an element, 2𝑑 child elements are generated by bisection and marked as active, while
the parent element is marked as inactive. The active cells of the computational mesh at any given
time are the leaves of the tree. This process is schematically illustrated in Figure 5-1. For the
methods described in this chapter, we refer to elements (active or inactive) which share the same
parent element as “sibling” elements.

(a) (b)

Figure 5-1: (a) Adaptively refined elements in a computational mesh 𝒯ℎ generated from a single
element. (b) Underlying data structure representation as a tree, with inactive parent elements and
active elements as the leaves of the tree.

The state 𝑆𝑡 is characterized by the current computational mesh 𝒯ℎ, its numerical solution, 𝑢ℎ,
and any data known to the PDE (boundary conditions, forcing functions, etc.), which we refer to as

125

𝒟. Although the POMDP would be well-defined if the observation space 𝒪 is the set of all possible
mesh configurations and numerical solutions, and even some nonlinear functions of these variables,
such choices of the global state and observation space would be computationally intractable, as the
agent could encounter a combinatorially growing action space to explore.

In light of this fact, we consider a local description of the state as the POMDP observation
space used to train the agent. During training, the agent observes a single cell locally, takes action
on the current cell alone, and receives a reward which is the effect of its local action on the entire
computational domain. Defining the POMDP observation space in this way, such that 𝒪 ⊆ 𝒮, allows
for a fixed action space size as the size of the observation space is known and fixed. We can then
formally define the current state 𝑆𝑡 as the union of the observation space on every element of the
mesh; 𝑆𝑡 = ∪𝐾∈𝒯ℎ

𝑂𝐾(𝑡).
Following every action, the agent is subsequently moved to another cell in the mesh randomly,

according to a distribution 𝐵𝑡(𝑂𝑡, 𝑆𝑡+1) which encodes the POMDP belief in the state of the envi-
ronment and which cell should be visited next. In this work, for simplicity, we take the distribution
to be uniform over all cells in the mesh. However, a Bayesian treatment of the belief state is also
possible within our RL formulation.

Although it may seem counter-intuitive to train the agent on small subsets of the entire state
space, formulating the learning problem locally in this way has several advantages. Considering
the entire state of the mesh as an MDP leads to a growing and shrinking action space as the mesh
changes, with a combinatorially growing number of action possibilities; this can be addressed [261]—
however, the complicated action space may present training and generalization difficulties. Second,
many problems in computational physics are governed by PDEs with strong spatial locality, which
is why the linear systems arising from the discretization of PDEs are typically sparse. Therefore,
viewing the RL problem on a single element rather than on the entire mesh makes sense, as the
numerical solution is typically more sensitive to local phenomena. This is not always the case; e.g., in
elliptic PDEs, errors affect the numerical solution globally [234, 211]. To address this, we specifically
include elliptic PDE test cases in our numerical experiments in §5.4.

Lastly, the resultant trained neural network constituting the RL policy has the intuitive inter-
pretation of a custom cell-wise error indicator learned during training. With this interpretation, it
can be seen that the same trained model can be deployed repeatedly over the entire mesh, in parallel
if desired.

5.2.2.1 Action space

The action space of the agent is the discrete set 𝒜 = {coarsen, do nothing, refine}, with respect
to the current cell. The goal of the RL problem can be stated succinctly as: train the agent such that
it refines in areas that are locally under-resolved, coarsens in areas that are locally over-resolved, and
takes no action otherwise. Furthermore, the agent should take these actions flexibly and efficiently
with respect to the available computational resources.

While it is always possible to refine, the mesh may be in a state such that it is not topologically
possible to coarsen the current cell. This is because the current cell could be at the coarsest possible
level of the mesh, e.g., a computational mesh comprised of a single cell, or because the siblings of
the current element could have arbitrarily many children, and coarsening is only possible when all
the sibling cells are at the highest possible refinement level (i.e., leaves on the tree). For example,
in the mesh depicted in Figure 5-1, all of the elements marked as blue can be coarsened, whereas
those marked as gray can not. Our implementation is such that if coarsening is not possible, the
agent defaults to doing nothing.

5.2.2.2 Observation space

The observation space 𝒪 is the observable portion of the total state 𝒮. The observation space on
an element 𝐾 ∈ 𝒯ℎ of the computational mesh consists of:

126

A. The averaged absolute jump in the numerical solution over the boundary of the cell, denoted

Ξ𝐾 = 1
|𝜕𝐾|

∫︁

𝜕𝐾

|J𝑢ℎK| 𝑑𝜕𝐾

as well as Ξ𝐾′ for the cell neighbors 𝐾 ′

B. The average integrated jump across all mesh elements
∑︀

𝐾 Ξ𝐾/𝑁𝐾

C. The current usage of available computational resources 𝑝

D. Any physically relevant features of the numerical solution or data 𝜑(𝑢ℎ,𝒟) local to the cell,
where 𝜑(·) refers to a feature and 𝒟 refers to available data

The rationale for the inclusion of item (A.) is that discontinuities present at the element interfaces
measure the non-conformity of the numerical solution. This is due to the assumption that, in the
absence of a physical discontinuity, the exact solution is continuous across element interfaces. This
observation is borne out by straightforward analysis, which shows a strong relationship between
the residuals of the numerical solution 𝑢ℎ over the element interior and the jumps across the inter-
element boundaries [40], leading to the development of so-called “non-conformity” error estimators
[188] specific to discontinuous Galerkin finite element methods.

Although formulating the observation space of the POMDP as a completely local problem is
computationally attractive, it is clear that in the absence of global information, the agent should
always perform the refine action. Items (B.) and (C.) both serve the purpose of communicating
global information regarding the relative utility of local refinement to the local decision process.

The inclusion of the average integrated jump over all mesh elements provides information about
the relative estimate of the error on the current cell as compared to other cells in the mesh. During
training, this element of the observation space allows the agent to decide when to forgo the oppor-
tunity to refine the current cell in order to spend computational resources elsewhere in the mesh,
where the numerical errors may be greater than those observed locally.

The scalar 𝑝 ∈ [0, 1] indicates the current usage of available computational resources. In this
work, we take 𝑝 to be the fraction of active mesh elements out of a user-specified maximum number of
elements. However, 𝑝 need not have this representation: in the case of an HPC application, the value
of 𝑝 could be measured directly by monitoring CPU or memory usage in real time. Alternatively,
𝑝 could be defined with respect to a maximum allowable wall-clock time per solution time step or
could be computed from some other a priori allocation of computational resources such as RAM
or arithmetic throughput. Regardless of how the computational usage 𝑝 is defined, its inclusion in
the observation space serves to indicate to the agent the availability of computational resources; the
reward function §5.2.3 specifies the cost-benefit relationship of making use of them.

Due to item (D.), this observation space is very flexible and general. This is by design, as it
allows the user to include physically or computationally relevant information which may help the
agent learn a more effective strategy. As an example, the advection problem as described in §5.3.2
may include the local convective velocity in the observation space, as it determines the flow of
information.

Remark. For the RL formulations provided in this chapter, we emphasize discontinuous Galerkin
methods due to the simplicity and effectiveness of the non-conformity of the local solution as a proxy
for the local error. In the case of classical continuous Galerkin finite element schemes, the jump
of the solution along the element boundary is identically zero, due to the continuous nature of the
approximation spaces in which the numerical solution is sought [33]. However, item (A.) can be
readily replaced with other indicators of non-conformity in order to generalize the methodology to
other finite element discretizations. For example, the jump of the solution gradient along the element
boundary can be applied as a simple surrogate in the continuous Galerkin case—the core principle is
to select a numerical quantity that vanishes as the numerical solution approaches the exact solution
of the PDE. However, more sophisticated indicators of non-conformity exist [19].

127

5.2.3 Designing the reward function

The reward function is an environment-provided reinforcement signal that determines the immediate
reward or penalty due to each decision on the part of the agent [236]. In that sense, the reward
function is central to the ultimate behavior of the agent after training and should encode all the
information pertaining to what we wish our agent to accomplish. For AMR, the reward function
used to train the agent should strike a balance between improvements in accuracy and incurring
additional computational costs. With these conditions, our proposed reward function takes the
general form of

[accuracy] − 𝛾𝑐[cost]𝐵(𝑝). (5.2)

The coefficient 𝛾𝑐 is a scaling factor expressing the relative importance of the accuracy of the solution
versus increasing computational cost in the RL agent’s policy; it can either be tuned as a hyperparam-
eter or empirically computed for different computational regimes. The function 𝐵(𝑝) : [0, 1) → [0,∞)
acts as an asymptotic barrier discouraging the agent from exceeding the limit of its computational
resources. Two choices are shown in in Figure 5-2. The barrier function can be modified to encourage
the agent to use a certain percentage of resources; for example, to incentivize aggressive refinement
in the under-resolved case, which we refer to as a barrier function “with hortation”. In what follows,
unless otherwise specified, we use the non-hortative barrier function 𝐵(𝑝) = √

𝑝/(1 − 𝑝).
It remains to define a metric for improvement in solution and change in computational cost for

each of the terms in equation (5.2).

0.0 0.5 1.0
p

10

0

10

B(
p)

Polynomial barrier functions
Non-hortative barrier function
Hortative barrier function

Figure 5-2: Example of the non-hortative polynomial barrier functions 𝐵(𝑝) = √
𝑝/(1 − 𝑝) and

hortative barrier function 𝐵(𝑝) = 𝑝/(1 − 𝑝) − [1/√𝑝− 1].

Accuracy. The optimality properties of the numerical solution arising from continuous and
discontinuous Galerkin finite element discretizations ensure that the error of the solution (measured
in an appropriate norm) decreases or remains the same upon any refinement of the computational
mesh [33, 39, 110]. These properties are crucial, as they guarantee that any change in the error
of the numerical solution, 𝑒(𝑢ℎ) = ‖𝑢ℎ − 𝑢exact‖𝐿2(Ω), that arise as a result of refinement will
be monotonically non-increasing. Therefore the fundamental idea is to reward any change in the
numerical solution upon refinement, and to penalize any change to the numerical solution upon
coarsening. We define the quantity

Δ𝑢ℎ =
∑︁

𝐾∈𝒯ℎ

∫︁

𝐾

|𝑢𝑡RL+1
ℎ − 𝑢𝑡RL

ℎ | 𝑑𝐾 (5.3)

128

to represent the change in the solution, upon the action 𝐴𝑡, as is schematically illustrated in Figure
5-3. From here onward, we will use the integers 𝑡RL and 𝑡RL + 1 to refer to a RL time step
corresponding to the POMDP notation in §5.2.1 and use 𝑡 to refer to time in the case of a time-
dependent PDE. The quantity Δ𝑢ℎ represents the global difference in the numerical solution as a
result of different successive levels of local refinement. The computation of Δ𝑢ℎ is always performed
by first interpolating the coarser of the two solutions onto the finer of the two grids, then performing
the integration. This way, the change in solution Δ𝑢ℎ upon refining and coarsening the same element
are identical in magnitude, but with opposite signs, making every decision by the agent to coarsen
or refine reversible.

Naively applying the reward +Δ𝑢ℎ upon refinement and −Δ𝑢ℎ upon coarsening is logical; how-
ever, this choice often results in an inconsistent reward signal due to scaling. One of the attractive
features of high-order finite element methods is that the error in the numerical solution decreases
quickly with respect to the mesh element size for problems with smooth solutions, typically as
1/ℎ𝑝order where ℎ is a representative size of a mesh element, and 𝑝order is the polynomial order of the
scheme [33, 110]. As a result, the error in numerical solutions often spans many orders of magnitude
over a small number of mesh refinement cycles. To account for these large differences in the scale of
the error, and to prevent the initial refinements from dominating the total achievable reward during
training, we scale the rewards logarithmically, awarding the agent

𝑅Δ𝑢 = ± [log(Δ𝑢ℎ + 𝜖machine) − log 𝜖machine] ,

where the positive and negative signs apply to the cases of refinement and coarsening, respectively.
Here, 𝜖machine is a representation of machine precision, which we take to be 10−16, and is included for
the edge cases in which refinement or coarsening does not change the numerical solution. Of course,
it can also be a desired accuracy for the numerical solution. Lastly, the additive factor is chosen to
center the positive and negative rewards around zero, rather than log(𝜖machine) for interpretability,
and follows from our specific choice of machine precision.

RL agent

St, At = refine

RL agentrefined element

St + 1

numerical solution
exact solution
mesh

uh

Figure 5-3: Schematic of Δ𝑢ℎ upon refinement. The RL agent’s new location is sampled from the
belief distribution 𝐵𝑡RL(𝑂𝑡RL , 𝑆𝑡RL+1).

Cost. We can specify the reward due to the change in computational cost upon action 𝑎𝑡RL as
the quantity

𝑅Δ𝐶 = 𝐵
(︀
𝑝𝑡RL+1)︀−𝐵

(︀
𝑝𝑡RL

)︀
. (5.4)

The sign of 𝑅Δ𝐶 is not explicitly dependent on the action 𝑎𝑡RL , as it purely relates to the increase
or decrease in computational cost as measured by 𝑝 before and after the action occurs.

The reward function. Combining the constituent components, the final explicit form of the

129

new reward function that we employ is

𝑅(𝑠𝑡RL , 𝑎𝑡RL) =

⎧
⎪⎨
⎪⎩

+ [log(Δ𝑢ℎ + 𝜖machine) − log(𝜖machine)] − 𝛾𝑐𝑅Δ𝐶 , if 𝑎𝑡RL = refine
− [log(Δ𝑢ℎ + 𝜖machine) − log(𝜖machine)] − 𝛾𝑐𝑅Δ𝐶 , if 𝑎𝑡RL = coarsen
0, if 𝑎𝑡RL = do nothing.

(5.5)

As a convention, we take 𝑅𝑡RL+1 = 𝑅(𝑎𝑡RL , 𝑠𝑡RL) to be the reward returned by the environment,
given the input of action and state at time 𝑡RL.

We remark that equation (5.3) can be naively applied to vector-valued problems as well, with 𝑢ℎ

comprising a vector-valued state rather than a scalar-valued one. However, care should be taken in
selecting this state and performing differencing between refinement levels. For example, in the case
of the incompressible Navier–Stokes equations, the difference can be computed with the velocity field
alone or involve the pressure. In this case, relative scaling between the fields becomes important in
preserving the reward signal.

5.2.4 Training and model deployment
To train the model on a static problem, we begin each episode with a very coarse mesh. The agent
is placed randomly on a cell in the mesh; after collecting the reward for each action, the agent is
moved to a different element randomly as described in §5.2.2. After a large given number of actions
have occurred, the episode ends, with early termination possible in the case of repeated do nothing
actions. If at any point the agent exceeds the allotted computational budget, it receives a large
negative reward and the episode terminates (see Appendix C). For time-dependent problems, the
training is similar. The typical RL action/reward cycles depicted in Figure 5-3 are performed within
a single time step, using the previous time solution state 𝑢𝑡−1

ℎ as the starting condition. After a
random number of iterations, the current RL-iterated solution is advanced to the next time step and
the process is repeated. We sample from a uniform distribution Uniform(1,max episode iterations)
to determine the number of iterations before the solution is advanced in time. In order for experience
signals to be propagated to the policy network during training, all that matters is that there are
areas of under- and over-resolution in the numerical solution; as long as the time advancement allows
this to occur, other valid heuristics for advancing the solution are possible.

For model deployment, the trained model considers every cell in the mesh sequentially, in the
order specified by the non-conformity estimator, and makes a decision based on the local observation
on that particular element. The percentage 𝑝 of resources in use is updated in between elements so
that the model may update its recommendation. This constitutes the marking process—once every
element has been visited, the recommendations of the RL policy can be executed, concluding a single
AMR “cycle” for the RL model. The number of cells allowed as a budget during model deployment
can be significantly larger than that used in training. The trained policy network is agnostic to the
actual maximum number of cells allocated; rather, it sees only the percentage of the available cells
currently in use through the parameter 𝑝.

5.2.5 Policy and deep learning architectures
We now describe the particular architectures we used for our AMR agent. Our deep Q-network [183]
is the simplest policy. It consists of an input layer, the size of which corresponds to the size of the
observation space, two hidden-layers, each with 64 neurons, and an output layer with one neuron for
each possible action. Rectified linear units (ReLUs) are chosen as our activation functions. Taking
the argmax of the output yields the action we take (assuming we are using the optimal policy
deterministically).

The Advantage Actor-Critic (A2C) policy [182] uses the same network architecture as the deep
Q-network, but it trains two networks, one to estimate the value function (the critic) and one to
determine the optimal policy (the actor). At each step, the actor chooses an action that the critic
evaluates to estimate the state-value and improve the policy of the actor. Finally, the Proximal Policy
Optimization (PPO) policy [231] uses the same network architecture as A2C; the main difference is

130

that PPO uses clipping in the objective function so that policy updates remain relatively small. We
compare the performance of these algorithms in §5.4.1.1.

5.2.6 Summary: reinforcement learning framework
The design of the reward function is pivotal in RL. The idea behind the reward signal (5.5) is
illustrated in Figure 5-3. When the agent uses resources to refine the solution, it accumulates a
reward corresponding to how much the numerical solution changes as a result of the refinement
(𝑅Δ𝑢) and is penalized according to the increased usage of its resource budget (𝑅Δ𝐶). In the
limiting case, in which the solution is perfectly resolved, the agent accrues only penalization for
additional refinement. Conversely, when the agent elects to coarsen the resolution, it is rewarded
according to the resources it saves but pays for any change in the numerical solution. In the limiting
case where the solution is perfectly resolved with more elements than necessary, the agent receives
a reward only for decreasing the number of elements, as the numerical solution does not change
upon coarsening. In essence, the reward function provides a signal which communicates the trade-
off between accuracy and computational cost. To preserve the reward signal, the reward function
logarithmically scales and machine-precision-normalizes the quantities 𝑅Δ𝑢 and 𝑅Δ𝐶 , which can
span many orders of magnitude. The hyperparameter 𝛾𝑐 is a tunable setting that reflects the degree
of displeasure incurred upon using additional resources, effectively weighting the user priority of
accuracy versus cost.

By formulating the sequential decision process locally as a POMDP, the observation space pro-
vides the link between the local solution data and its conformity to the cost-benefit trade-off of
refinement in that region. Informally speaking, the observation 𝑂𝑡RL provides a signal relating local
solution conformity to that of the global solution as well as the remaining computational resources
and other potentially relevant data.

training_step(𝐴𝑡RL , 𝑂𝑡RL):
𝐾𝑡RL ← cell corresponding to 𝑂𝑡RL

if 𝐴𝑡RL = refine
𝑆𝑡RL+1 ← refine 𝐾𝑡RL

if 𝐴𝑡RL = coarsen
𝑆𝑡RL+1 ← coarsen 𝐾𝑡RL

update 𝑢𝑡RL+1
ℎ =ℳ(𝑆𝑡RL+1), 𝑝𝑡RL+1

compute Δ𝑢ℎ (on finer mesh) via (5.3), 𝑅Δ𝐶 via (5.4)
compute 𝑅𝑡RL+1 via (5.5)
sample cell 𝐾𝑡RL+1 ← 𝐵𝑡RL (𝑂𝑡RL , 𝑆𝑡RL+1)
𝑂𝑡RL+1 ← compute observation space for 𝐾𝑡RL+1
if 𝑝𝑡RL+1 > 1

𝑅𝑡RL+1 ← large, negative reward
done ← true

if iteration ≥ episode iterations
done ← true

return 𝑅𝑡RL+1, done, 𝑂𝑡RL+1

model_deployment(𝑆0, 𝜋ℎ):
𝑆′ ← 𝑆0
{𝑇} ←sort 𝐾 ∈ 𝒯ℎ by Ξ𝐾 =

∫︀
𝜕𝐾

J𝑢ℎK𝑑 𝜕𝐾

For 𝐾′ ∈ {𝑇}
𝑂𝐾′ ← compute observation space for 𝐾′

𝐴𝐾′ ← 𝜋ℎ(𝑂𝐾′) query policy network
execute action 𝐴𝐾′ , update 𝑆′, 𝑝

compute new solution 𝑢′
ℎ ←ℳ(𝑆′)

return 𝑢′
ℎ, 𝑆′

Figure 5-4: Deep RL-AMR. Algorithms for a single RL training time step (left) and for the de-
ployment of the trained policy over a single refinement cycle (right). The training step takes as
input an action 𝐴𝑡RL and an observation 𝑂𝑡RL , and returns the reward 𝑅𝑡RL+1, the Boolean episode
termination condition done (default false), and the new observation 𝑂𝑡RL+1. The model deployment
procedure takes as input a trained policy network 𝜋ℎ and starting state 𝑆0; it returns the proposed
next mesh state 𝑆′ and the updated numerical solution 𝑢′

ℎ.

We summarize the algorithm for a training time step and model deployment in Figure 5-4. The
notation 𝑢𝑡RL

ℎ = ℳ(𝑆𝑡RL) describes running the forward model on the mesh state 𝑆𝑡RL to compute the
corresponding solution 𝑢𝑡RL

ℎ by numerically solving the PDE. The trained policy network is denoted

131

𝜋ℎ (§5.2.2), episode iterations denotes a chosen number of maximum iterations during training,
and we use the Boolean done as a sentinel for episode termination. Lastly, we refer to the belief
distribution over the mesh cells 𝐾 ∈ 𝒯ℎ at state 𝑆𝑡RL as 𝐵𝑡RL(𝑂𝑡RL , 𝑆𝑡RL). For the architectures we
employ (§5.2.5), we refer to [212] for the complete specification as to how the weights of the policy
network are updated as a result of the training steps taken.

5.3 Finite element spatial discretization and problem physics

5.3.1 Notation and approximation spaces

We define the inner products over a set 𝐷 ⊂ R𝑑 and its boundary 𝜕𝐷 ⊂ R𝑑−1 using typical
discontinuous Galerkin finite element notation as

(𝑐, 𝑑)𝐷 =
∫︁

𝐷

𝑐𝑑d𝐷, ⟨𝑐, 𝑑⟩𝜕𝐷 =
∫︁

𝜕𝐷

𝑐𝑑d𝜕𝐷.

Let 𝒫𝑝order(𝐷) denote the set of polynomials of degree 𝑝order on a domain 𝐷. We consider the
discontinuous finite element spaces

𝑊 𝑝order
ℎ =

{︀
𝑤 ∈ 𝐿2(Ω): 𝑤

⃒⃒
𝐾

∈ 𝒫𝑝order(𝐾) ∀𝐾 ∈ 𝒯ℎ

}︀
,

𝑉 𝑝order
ℎ =

{︁
𝑣 ∈

[︀
𝐿2(Ω)

]︀𝑑 : 𝑣
⃒⃒
𝐾

∈ [𝒫𝑝order(𝐾)]𝑑 ∀𝐾 ∈ 𝒯ℎ

}︁
,

𝑀𝑝order
ℎ =

{︀
𝜇 ∈ 𝐿2 (𝜀ℎ) : 𝜇

⃒⃒
𝑒

∈ 𝒫𝑝order(𝑒) ∀𝑒 ∈ 𝜀ℎ

}︀
,

where 𝐿2(Ω) is the space of square-integrable functions on the domain Ω. Informally, 𝑊 𝑝order
ℎ

represents the space of piecewise discontinuous polynomials of degree at most 𝑝order on every element
in the mesh.

5.3.2 Linear advection equation

We will consider the linear advection equation of a tracer 𝑢

𝜕𝑢

𝜕𝑡
+ ∇ · (𝑐𝑢) = 𝑓 in Ω,

𝑢 = 𝑔𝐷 on Γin,
(5.6)

on the domain Ω with boundary Γ separated into inflow and outflow regions Γ = Γin ∪Γout, that are
defined according to the continuous, divergence-free advection velocity field 𝑐 and outward normal
𝑛,

Γin = {𝑥 ∈ Γ: 𝑐 · 𝑛 ≤ 0} ,
Γout = {𝑥 ∈ Γ: 𝑐 · 𝑛 > 0} .

(5.7)

The linear advection problem defined in equation (5.6) admits the following semi-discrete discontin-
uous Galerkin discretization [39, 133]: we seek 𝑢ℎ ∈ 𝑊 𝑝order

ℎ such that
(︂
𝑤,

𝜕𝑢ℎ

𝜕𝑡

)︂

𝒯ℎ

− (∇𝑤, 𝑐𝑢ℎ)𝒯ℎ
+ ⟨J𝑤K, 𝑢* (𝑐 · 𝑛)⟩𝜀∘ + ⟨𝑤, 𝑢ℎ(𝑐 · 𝑛)⟩Γout

= (𝑤, 𝑓)𝒯ℎ
− ⟨𝑤, 𝑔𝐷(𝑐 · 𝑛)⟩Γin

,

for all 𝑤 ∈ 𝑊 𝑝order
ℎ . There are many choices for the single-valued, inter-element numerical flux 𝑢*.

To mimic the physics of the problem, we use the common upwinded flux

𝑢* =
{︃
𝑢+

ℎ , 𝑐 · 𝑛 < 0
𝑢−

ℎ , 𝑐 · 𝑛 ≥ 0.

132

In the steady case, the time derivative term is set to zero. In the unsteady case, a standard explicit
time-integration scheme can be used for temporal discretization using a method of lines approach
[110]; we use LSERK-45 [37].

5.3.3 Advection-diffusion equation
We will show that the methodology generalizes well across both different problem physics and dif-
ferent finite element discretizations. To do so, we will consider advection-diffusion PDEs, which
include, as a subset, second-order Poisson-type problems. Namely, we consider the set of problems
described by the PDEs

𝜕𝑢

𝜕𝑡
+ ∇ · (𝑐𝑢) − ∇ · (𝜅∇𝑢) = 𝑓, in Ω

(−𝜅∇𝑢+ 𝑐𝑢) · 𝑛 = 𝑔𝑁 , on Γ𝑁 ,

𝑢 = 𝑔𝐷, on Γ𝐷,

(5.8)

where Γ𝐷 and Γ𝑁 denote the Dirichlet and Neumann segments of the boundary, respectively. The
problem in equation (5.8) admits a hybridizable discontinuous Galerkin (HDG) formulation, devel-
oped in [191]: we seek (𝑞ℎ, 𝑢ℎ, 𝑢̂ℎ) ∈ 𝑉 𝑝order

ℎ ×𝑊 𝑝order
ℎ ×𝑀𝑝order

ℎ such that
(︀
𝑣, 𝜅−1𝑞ℎ

)︀
𝒯ℎ

− (∇ · 𝑣, 𝑢ℎ)𝒯ℎ
+ ⟨𝑣 · 𝑛, 𝑢̂ℎ⟩𝜕𝒯ℎ

= 0
(︂
𝑤,

𝜕𝑢ℎ

𝜕𝑡

)︂

𝒯ℎ

− (∇𝑤, 𝑐𝑢ℎ)𝒯ℎ
+ (𝑤, ∇ · 𝑞ℎ)𝒯ℎ

+ (𝑤, (𝑐 · 𝑛)𝑢̂ℎ)𝜕𝒯ℎ
+ ⟨𝑤, 𝜏(𝑢ℎ − 𝑢̂ℎ)⟩𝜕𝒯ℎ

= (𝑤, 𝑓)𝒯ℎ

⟨𝜇, 𝑞ℎ · 𝑛 + (𝑐 · 𝑛)𝑢̂ℎ + 𝜏(𝑢ℎ − 𝑢̂ℎ)⟩𝜕𝒯ℎ
= ⟨𝜇, 𝑔𝑁 ⟩𝜕𝒯ℎ

(5.9)
for all (𝑣, 𝑤, 𝜇) ∈ 𝑉 𝑝order

ℎ × 𝑊 𝑝order
ℎ × 𝑀𝑝order

ℎ . We take the diffusion coefficient 𝜅 = 1 and choose
the stabilization parameter 𝜏 = 𝜅/ℓ + |𝑐 · 𝑛|, where we use as a diffusion length scale ℓ = 1/5. In
order to solve Poisson-like problems, we set the convective velocity field 𝑐 to zero. In the unsteady
case, an implicit time-integration scheme can be applied for the temporal discretization; we use
the third-order backward difference formulae (BDF3). We refer the reader to [191] for a thorough
discussion of these choices.

5.3.4 Error indicators and AMR heuristics
For the test cases in §5.4, we benchmark the RL policy against two common AMR heuristics, the
Kelly Error indicator and a gradient indicator. The indicators are shown in Table 5.1.

Error indicator faces 𝐹 = 𝐾 ∩𝐾 ′ boundary face Γ𝑁

Kelly
∑︁

𝐹 ∈𝜕𝐾

𝑐𝐹

∫︁

𝐹

s
𝜕𝑢ℎ

𝜕𝑛

{2
𝑑𝐹 𝑛𝐹

∫︀
𝐹

⃒⃒
𝑔𝑁 − 𝜕𝑢ℎ

𝜕𝑛

⃒⃒2
𝑑𝐹

Gradient-based 𝑌 −1
∑︁

𝐾′

𝑦𝐾′

‖𝑦𝐾′‖
𝑢ℎ(𝑥𝐾′) − 𝑢ℎ(𝑥𝐾)

‖𝑦𝐾′‖
-

Table 5.1: Cell-wise error indicators, contributions by face.

The Kelly indicator uses parameters 𝑐𝐹 = 𝑛𝐹 = ℎ𝐾/24 for element width ℎ𝐾 . The approximate
gradient is formed using the distance vectors 𝑦′

𝐾 = 𝑥′
𝐾 − 𝑥𝐾 between the cell centers of element 𝐾

and its neighbors 𝐾 ′, as well as the matrix

𝑌 =
∑︁

𝐾′

(︂
𝑦𝐾′

‖𝑦𝐾′‖
𝑦𝑇

𝐾′

‖𝑦𝐾′‖

)︂
.

133

We scale the approximate gradient in Table 5.1 by a power of the mesh width, using ℎ1+𝑑/2
𝐾 ||∇̃𝑢ℎ||,

where the integer 𝑑 represents the spatial dimension of the problem. Apart from being widely used,
the Kelly indicator is a natural choice of estimator to compare with the RL-agent’s policy network,
as it also gauges error by measuring local nonconformity—specifically, in the jump of the gradient
of the solution across element faces. We avoid using the non-conformity error indicator itself, as it
is known to exhibit undue dependence on previous refinement history and is recommended to be
used in conjunction with other estimators [188]. To execute an AMR strategy based on either of
these estimators, we use either a bulk or fixed-fraction rule. As described in §5.1, a bulk strategy
refines and coarsens the cells in which the top and bottom percentages of the estimated error occurs;
therefore the actual number of cells coarsened or refined is entirely dependent on the estimate. On
the other hand, a fixed-fraction refinement strategy sorts the cells according to their error estimates
and refines and coarsens a top and bottom percentage of the total number of cells. We denote these
strategies as bulk(refine percentage, coarsen percentage) and, similarly, fixed(·, ·); e.g., fixed(0.4,
0.6) refers to an AMR strategy where the top 40 percent of cells in terms of their estimated error
are refined and the bottom 60 percent are coarsened. For additional details on both these indicators
and refinement strategies, see [10]. Budget constraints can be applied to AMR heuristics as well.
Imposition of a maximum depth on the tree data structure representing the mesh effectively limits
the number of cells as well as the minimum cell width. Alternatively, regardless of the depth of the
tree, a maximum number of cells can be imposed directly, after which no refinement is allowed to
occur. A disadvantage to both these constraints is that they are simple and arithmetic in nature
and make no use of the current state of the solution or percentage of resources used.

5.3.5 Numerical implementation
The finite element forward models were implemented in C++ and make use of the finite element library
deal.II [10]. The POMDP characterizing the RL environment was implemented using the OpenAI
Gym framework [35], and the custom deep RL architectures were implemented in the open-source
RL framework Stable-Baselines 3 (SB3) [212].

Unless otherwise specified, the policy architecture used is A2C, and we take the hyperparameter
𝛾𝑐 = 25 (see §5.2.3, §5.4.1), which we empirically found to give good performance over a wide range
of test cases. The main DRL-AMR parameters for each numerical experiment are listed in Table
5.2. Additional details on RL training are given in Appendix C. As is typical in deep RL, the
particular number of training time steps used is not particularly meaningful as compared to the
order of magnitude of the total number of steps (see discussion in §5.4.1.1), as long as the policy
network is given sufficient time to increase its mean episodic reward significantly from its starting
performance. For all experiments, we used on the order of 105 RL training time steps, consisting
of 100-200 time step episodes, and training took on the order of 1-3 hours on a desktop computer
without GPU acceleration. More detailed benchmarking would be extraneous, as performance in
terms of training time is dominated by the cost of running the numerical solver rather than updating
the policy network, for all but trivial problems. Similarly, we benchmark the resultant heuristics and
policy networks using 𝐿2-error per degree of freedom as a figure of merit. Model deployment requires
only a forward pass through the policy network, whereas AMR heuristics require computation of
the relevant estimators; however, these two operations happen in different programming languages,
making CPU-time or wall-clock time performance comparisons between the two unclear. However,
as problem size grows, the cost of running the numerical solver dominates the time-to-solution. Since
the underlying PDE solvers are the same for both the DRL-AMR and heuristic approaches, we avoid
comparisons using CPU time or wall-clock times and show 𝐿2-error per degree of freedom directly,
as this metric succinctly illustrates the cost of obtaining a given accuracy using each approach.

All linear systems arising from the finite element discretizations are solved using direct solvers
(UMFPACK) to avoid the complicating factors of iterative solver tolerances and stopping criteria.
All surface and volume integral operators are discretized with Gaussian quadrature using 𝑝order + 1
one-dimensional (1D) quadrature points in each spatial direction, where 𝑝order is the polynomial
order of the finite element space 𝑊 𝑝order

ℎ .
𝐿2-errors, when shown, are computed as a post-processing step using a known exact solution

134

and numerically integrated using 𝑝order + 3 Gaussian quadrature points in each spatial direction to
ensure that the calculation of errors is not adversely affected by integration error. We re-emphasize
that no exact solutions are used at any point during training or deployment of the RL model itself.

5.4 Numerical experiments

The numerical experiments are designed to demonstrate the features and performance of the deep
RL AMR (DRL-AMR) approach. We start with a 1D, steady linear advection problem in §5.4.1
as an illustrative example to exhibit the feasibility of the approach and to demonstratively explore
the characteristics of the RL policy. We discuss details related to training and model evaluation,
compare the performance of different RL algorithms, and easily interpret results due to the simplicity
of the test case.

Subsequent experiments focus on the performance and generalizability of the DRL-AMR method.
In §5.4.2, we use the same trained RL model as in §5.4.1, but apply it to a different linear advection
problem to demonstrate generalization of the policy to different boundary conditions and forcing
functions. In §5.4.3, to show the generalization of the method to unsteady dynamics, we train a
model on a 1D time-dependent advection problem. Lastly, to support the claim that the approach
is not specific to a particular PDE or finite element scheme, we apply the DRL-AMR framework to
the Poisson equation discretized with an HDG scheme (§5.3.3). As the Poisson equation is a second-
order, elliptic PDE, its solutions are characterized by different physics than the hyperbolic, first-order
advection problems solved in §(5.4.1-5.4.3). Similarly, as HDG schemes are mixed methods, their
formulation (5.9) involves vector-valued finite element spaces and use of a traced finite element space
[191] on the mesh skeleton; that is, the underlying numerical method is significantly different than
those used for the solution of the advection equation (cf. (5.3.2)).

To show that the methods are not relegated to small or one-dimensional problems and that the
DRL-AMR method generalizes to higher spatial dimensions and larger, more complex problems, we
examine the performance of deep RL policies trained on 2D problems in §(5.4.5-5.4.6). The steady
advection problem in §5.4.5 allows evaluation of DRL-AMR in the context of the two-dimensional
generalization of the problem in §5.4.1. The steady advection-diffusion problem in §5.4.6 examines
the effectiveness of the deep RL policy when both advection and diffusion processes occur, and
highlights its ability to detect and resolve non-trivial features in an automated way by using solution
smoothness. The unsteady advection problem in §5.4.7 shows the ability of DRL-AMR to preserve
salient physical features of a numerical solution over long-time integration horizons. Throughout
the entire set of numerical experiments, we focus on the goal stated in the introduction of providing
a numerical solution that captures all physically relevant features efficiently in terms of problem
degrees of freedom, avoiding spurious diffusion and dispersion effects due to under-resolution.

The parameters used in training the RL models for all numerical experiments are shown in Table
5.2, along with the AMR heuristics to which we compared the models.

§ 𝑝order 𝛾𝑐 training episodes training budget AMR heuristic indicator
5.4.1 3 25 2 · 104 25 cells bulk(0.5, 0.5) gradient-based
5.4.2 3 25 2 · 104 25 cells fixed(0.5, 0.1) Kelly
5.4.3 3 100 5 · 104 25 cells bulk(0.5, 0.1) gradient-based
5.4.4 3 25 2 · 105 20 cells fixed(0.5, 0.5) Kelly
5.4.5 2 25 2 · 105 110 cells bulk(0.5, 0.5) gradient-based
5.4.6 4 25 3 · 105 200 cells bulk(0.5, 0.5) Kelly
5.4.7 3 25 3 · 105 200 cells bulk(0.6, 0.4) Kelly

Table 5.2: Numerical experiments of §5.4: Training parameters of the DRL-AMR models, AMR
heuristics, and indicators.

135

5.4.1 Steady 1D linear advection
For proof-of-concept, we consider the linear advection equation described in §5.3.2 on the 1D spatial
domain Ω = [0, 1]. We choose the boundary conditions 𝑔𝐷 at the inlet and forcing function 𝑓 such
that the exact solution takes the form

𝑢(𝑥) = 1 − tanh [𝛼(1 − 4(𝑥− 1/4))] ,

where we take as the steepness parameter 𝛼 = 10. As the exact solution has the form of a smooth step
function, the resultant meshes and numerical solutions are easily interpretable—resolution should
be concentrated in the steep gradient region around the “step”. In light of this, we will use this
illustrative example to demonstrate the features of the trained deep RL policy, as well as the details
of training and model deployment. Subsequent sections will focus on generalizability.

Using a numerical solution of polynomial order 𝑝order = 3, we train the RL-agent for 2·104

episodes on a computational “budget” of 25 cells (§5.2.3). However, at the time of model deployment,
we are free to give the trained RL policy whatever budget we wish; we emphasize that this is because
in general, we would like to train our model on much cheaper problems than those we intend to
solve.

During deployment, starting with a very coarse mesh consisting of 4 elements, we perform 6 AMR
cycles comparing the DRL-AMR model to an AMR heuristic that attempts to refine the elements
responsible for the top 50 percent of the total error and attempts to coarsen the elements responsible
for the bottom 50 percent of total error as measured by the approximate gradient error indicator
(Table 5.1). That is, a bulk(0.5, 0.5) strategy (see §5.3.4). We expect this heuristic indicator to
perform well, as this test case has only one feature, the steep gradient in the center of the domain.

26 cells used

(a) AMR heuristic

14/25 cells used

(b) RL Agent

Figure 5-5: Steady 1D linear advection (§5.4.1). Numerical solution with the mesh resulting from
6 cycles of refinement, using the approximate gradient error indicator as an AMR heuristic and the
deep RL policy resulting from training. The exact solution is overlaid (dashed) in both cases for
comparison.

Figure 5-5 shows the numerical solution and meshes proposed by the two approaches. We see that
the deep RL agent deployed with a 25-cell budget is able to find a high-quality solution with fewer
elements than that of the AMR heuristic recommendation. This is corroborated by the more precise
comparison in Figure 5-6, which shows that at model deployments with budgets of 25 and 500 cells,
the RL agent outperforms the AMR heuristic over six refinement cycles in terms of 𝐿2-accuracy
per degree of freedom. That is, the RL policy provides a numerical solution of approximately the
same accuracy as that of the AMR heuristic, but does so with fewer degrees of freedom after the
refinement cycles, both on the problem size it was trained on, as well as at a much larger problem
size.

Although for 1D problems, differences in problem degrees of freedom are small, this example
illustrates the central difference between the learned policy and the classical AMR approaches.
AMR algorithms mark cells for refinement either in terms of the estimated volume fraction of total

136

20 40 60 80 100

Degrees of freedom

10 4

10 3

10 2

10 1

100
L2 -E

rro
r

RL agent
AMR heuristic

(a) 25 cell budget

0 50 100 150 200 250 300

Degrees of freedom

10 5

10 4

10 3

10 2

10 1

100

L2 -E
rro

r

RL agent
AMR heuristic

(b) 500 cell budget

Figure 5-6: Steady 1D linear advection (§5.4.1). 𝐿2-error plotted against problem degrees of freedom
over 6 cycles of refinement, using the gradient-based error indicator as an AMR heuristic and the deep
RL policy: (5-6a) deployed with a computational budget of 25 elements; (5-6b) with a computational
budget of 500 elements.

error in the case of bulk refinement or by a certain number of cells in the case of fixed-number
refinement. In either case, the AMR algorithms rely on estimators purely to decide which cells
to refine, but the actual refinement behavior is in some sense, specified a priori. Similarly, the
commonly-used way to prevent AMR heuristics from continuing to refine beyond a computational
limit is to manually specify a max refinement depth, again an a priori choice uninformed by the
particulars of the solver or PDE, and specified everywhere. The DRL-AMR approach, in contrast,
not only estimates which cells are likely responsible for a disproportionately large or small share of
the total error but also estimates a stopping point, beyond which the solution smoothness indicates
that additional decreases in error are likely to be marginal from the perspective of adding new
unresolved features to the solution. This is because, during training, the RL agent is given global
information related to available computational resources, which it balances against the expectation
of change in the solution upon local refinement with respect to computational cost.

Where the stopping point occurs, in terms of the solution error, is controllable through the
hyperparameter 𝛾𝑐. A larger value of 𝛾𝑐 means a cheaper numerical solution with a greater aversion
to incurring a cost. On the other hand, a small value of 𝛾𝑐 will result in a numerical solution with a
lower error and less tolerance for interface jumps. Informally, 𝛾𝑐 is a user-specified setting indicating
the trade-off between cost and accuracy, and is a way to inform the agent “how accurate” versus
“how cheap” to make the solution. In Appendix A, we provide an approach to remove 𝛾𝑐 as a training
hyperparameter entirely, and instead make it a user-chosen value during deployment by modifying
the policy architecture; however, this discussion is beyond the scope of the main contributions of this
thesis, and we train using a single value of 𝛾𝑐 for all of the numerical experiments in this section.
Next, we explore the training and deployment behavior of the RL policy for this simple case to
better understand the model.

5.4.1.1 Training and deployment considerations

Initialization. At the start of each training episode, we can either allow the RL agent to begin
on the coarsest possible mesh (coarse initialization) or initialize the mesh to a random state by
performing a random number of refinements.

Random initialization and coarse initialization perform similarly for the small problem sizes on
which they are trained; however, per unit training time, we find that random initialization often

137

5000 10000 15000 20000 25000
Training timestep

300

200

100

0

100

200

300

M
ea

n
ep

iso
de

 re
wa

rd

DQN
A2C
PPO

(a) DRL-AMR algorithm performance over training

0 100 200 300 400

Degrees of freedom

10 5

10 4

10 3

10 2

10 1

100

L2 -E
rro

r

random initialization
coarse initialization

(b) Mesh initialization

Figure 5-7: For the steady linear advection test in §5.4.1: (a) Performance achieved during training
for different deep RL training algorithms, as measured by average episode reward (solid lines).
Shaded bands indicate the rolling sample standard deviation of the episodic reward over a 10 episode
window. (b) Performance of DRL-AMR models trained using random state initialization and coarse
initialization, as measured by 𝐿2-error per degree of freedom over 6 refinement cycles (on a 25-cell
budget example and deployed with a 500-cell budget).

yields better policies when deployed on substantially larger problems. Figure 5-7b compares the
performance of two DRL-AMR models trained for 105 training time steps, one with the mesh in a
coarse state at the beginning of each episode, and the other with a mesh in a random state at the
beginning of each episode. Both models were trained on the linear advection problem in §5.4.1 with
a maximum budget of 25 cells but were deployed with a budget of 500 cells over six refinement cycles.
Comparing the accuracy with the problem degrees of freedom, it is clear that the model trained with
random initialization significantly outperforms the model with coarse initialization. Both models
begin the refinement cycle on the same coarse mesh during deployment. The model trained with
random initialization finds a solution of the same accuracy but uses only half the elements as the
model trained with coarse initialization. We obtained similar results for other test cases we ran.

We hypothesize that random initialization during training leads to a more aggressive exploration
of the action space and produces better results because initializing the mesh to a random state
produces regions that are over-refined and under-refined. On the other hand, initialization on a
coarse mesh tends to produce an under-resolved solution everywhere, leading the agent to become
biased towards refinement during deployment. As might be expected, in the limit of long training
times, performance becomes comparable between the two initialization strategies.

In light of these performance advantages, all results shown correspond to models trained using
random initialization.

Learning algorithms. The performance—as measured by mean episodic reward—for the three
RL policy architectures (DQN, A2C, and PPO, see §5.2.5) are shown in Figure 5-7a. The sample
variance bands are found to tighten non-monotonically over the training duration, indicating more
consistent performance. All three algorithms achieve similar mean reward and variance after roughly
25,000 training time steps, successfully solving the problem. However, as is common in RL problems,
the model performance during training is non-monotonic, and it is advantageous to periodically save
the most performant model state for deployment, rather than deploying the policy occurring at the
end of the training window. The most performant model at any time during training is defined as the
model with the highest mean episodic reward over a given lookback window–we use the SB3 library
default of 500 training time steps. In general, we have not found any particular architecture to be
consistently better in terms of performance over the set of test cases considered in this chapter. We
note however that we have not yet attempted to accelerate the training process through optimization
of training parameters such as batch size and episode length.

138

Model deployment. Unlike the AMR heuristic, the deployed DRL-AMR model finds solu-
tions by apportioning computational resources over the mesh in a way that handles the smooth-
ness/efficiency trade-off, then changes the mesh topology over the subsequent refinement cycles in
order to increase accuracy. The DRL-AMR algorithm thus considers a richer set of strategies than
a purely greedy strategy.

0.0 0.5 1.0

0

1

2
Cycle 1: 6/25 cells used

numerical solution mesh exact solution

0.0 0.5 1.0

0

1

2
Cycle 2: 10/25 cells used

0.0 0.5 1.0

0

1

2
Cycle 3: 11/25 cells used

0.0 0.5 1.0

0

1

2
Cycle 4: 11/25 cells used

0.0 0.5 1.0

0

1

2
Cycle 5: 13/25 cells used

0.0 0.5 1.0

0

1

2
Cycle 6: 11/25 cells used

Figure 5-8: Steady 1D linear advection (§5.4.1). State of the numerical solution and mesh during
the deployment of the deep RL agent AMR policy, over six refinement cycles.

To illustrate this, Figure 5-8 shows the mesh and resultant numerical solution over a set of six
refinement cycles for an RL-agent trained in the same manner as in §5.4.1, but with a hyperparameter
value of 𝛾𝑐 = 100, chosen to provide coarser solutions for the ease of visualization. Although cycles
2-6 all contain the order of 10 elements, the topology of their allocation over the domain changes to
concentrate around the steep gradient region. This showcases a particular strength of the method:
namely, that the decision of the number of elements to use during the exploratory cycles while
preserving solution smoothness is delegated to the machine learning model, rather than manually
needing to be specified. This allows the number of elements to increase and decrease exploratively,
as opposed to AMR heuristics, which must increase or decrease the number of elements according
to the error estimator or by a fixed number.

In practice, the cost of each cycle depends on the problem size but we find that the trained RL
policies reach a converged mesh state in a few cycles, typically around 5-10, independent of problem
size. This is in part because the number of cells can potentially double or halve every cycle, so
locally under-resolved regions either become resolved very quickly, or the computational budget is
approached and refinement recommendations become more conservative.

Introspection of the neural network model. As a deep RL policy is ultimately a neural
network, we can query the trained neural network in order to visualize the policy suggestions for
different inputs. Here, we are interested in visualizing the DRL recommendations (refine, no-change,
or coarsen) as a function of generic solution properties. The input space to a policy network is the
observation space and, in our case, it includes the numerical solution over the element. To sample
this network, we could for example use the solutions on all elements and marginalize over these
element solutions to create a map (decision versus solution properties). However, this sampling may
not be sufficiently complete (limited by the element solutions used) and solution properties would
need to be defined. To avoid to these issues, as discussed in §5.2.2.2, we could instead change the
observation space and retrain a new DRL model for which we can easily sample the entire observation
space and easily interpret results. Therefore, we train a new model using a reduced input observation
space consisting only of the cell boundary jump, the mean boundary jump over all cells, and the
current use of computational resources 𝑝. The purpose of this visualization is not to evaluate the

139

performance of this simpler model but to show that such DRL-AMR networks are able to learn a
sensible mapping between the observation space and the refinement recommendation.

16 12 8 4
local log boundary jump

16

12

8

4

m
ea

n
lo

g
bo

un
da

ry
 ju

m
p

(o
ve

r e
nt

ire
 m

es
h)

p = 0.3 budget used

16 12 8 4
local log boundary jump

16

12

8

4

p = 0.5 budget used

16 12 8 4
local log boundary jump

16

12

8

4

p = 0.7 budget used

Figure 5-9: Samples of the policy recommendation of a newly trained DRL-AMR network for steady
1D linear advection (§5.4.1), as a function of a simplified observation space consisting of the cell
boundary jump, mean jump, and current use of computational resources. Decision boundaries are
shown between network recommendations to coarsen (blue), do nothing (grey), and refine (salmon).
The dashed line indicates where the local boundary jump is the same as the mean cell-wise boundary
jump over the entire mesh.

Figure 5-9 shows the recommendations of the simplified model trained on the problem in §5.4.1
using a value 𝛾𝑐 = 25. We consider a range of [-16, -1] in log space, as these are the range of jump
values encountered by the network for this test case; recommendations outside of this region are
uninformed by data encountered during training. Each sub-figure shows the decision boundary
regions corresponding to the action recommended by the policy. At low use of computational
resources (𝑝 = 0.3), the model suggests mostly refinement, even in regions where the observed
boundary jump is significantly lower than the average over the entire mesh. We hypothesize that this
corresponds to exploratory refinement in some sense. At moderate use of computational resources
(𝑝 = 0.5), the model provides more conservative recommendations, suggesting refinement where the
local boundary jump exceeds the mesh mean and is not less than 10−8 in terms of magnitude. When
computational resources become scarce (𝑝 = 0.7), the model suggests coarsening except in regions
where the local log boundary jump is much greater than the mean. The decision boundaries are
highly nonlinear, even for this simplified observation space. This demonstrates the potential power
and flexibility of the DRL-AMR approach, as it learns complex relationships between any physical
relevant information included in the observation space and the utility of coarsening or refining.

5.4.2 Generalization to different boundary conditions and forcing func-
tions

We deploy the same trained DRL-AMR model in §5.4.1 to the same PDE, but on a different domain
Ω = (−4, 4), with a different set of boundary conditions and forcing. We choose the boundary
conditions 𝑔𝐷 at the inlet and forcing function 𝑓 such that the exact solution takes the form

𝑢(𝑥) = sin(𝑛𝑥) exp
(︂

−1
2𝑥

2
)︂
.

At the time of model deployment, we give the trained RL policy a budget of 100 elements. We
evaluate the model over 6 AMR cycles this time using an AMR heuristic which makes use of the
Kelly error indicator (Table 5.1, [122]) and implements a fixed(0.5, 0.1) strategy, as described in
§5.3.4.

The final mesh and numerical solution for both is shown in Figure 5-10. Our findings are similar

140

(a) AMR heuristic

4 3 2 1 0 1 2 3 4

1.5

1.0

0.5

0.0

0.5

1.0

1.5
11/100 cells used

exact solution
numerical solution
mesh

(b) RL Agent

Figure 5-10: DRL-AMR model trained on the test case in §5.4.1 but deployed on the problem in
equation (5.4.2). Numerical solution with the mesh resulting from 6 cycles of refinement, using the
Kelly error indicator as an AMR heuristic and the RL policy resulting from training. The exact
solution is overlaid in both cases for comparison.

to the test case in the previous section. Both methods find a mesh and corresponding numerical
solution that very closely matches the exact solution, however, the RL policy finds a coarse mesh on
which the solution is well represented and stops refinement past the fourth refinement cycle. Similar
to Figure 5-6, after the six refinement cycles, the RL policy returns a mesh that provides strictly
better accuracy per problem degree of freedom (not shown).

This highlights the generality of the method; the RL policy did not suggest refining close to the
center of the domain as it did for the example in §5.4.1. This is to be expected, as the RL agent is
never given global location information during training, only local cell information along with the
surrounding interface jumps; therefore it’s impossible to over-fit the RL agent to a specific training
example during training. However, we remark that if the agent were trained against a pathological
example such as the Weierstrass function, where the correct action could always be to refine, this will
be reflected in the trained model, although this can hardly be considered overfitting. Because the
agent learns to relate features of the PDE and local jumps to the local smoothness of the solution,
we find that the agent generalizes well across different test cases from the same PDE. This is an
important characteristic of the approach, as we wish to deploy the trained model on problems of
interest other than the subset on which the model was trained.

5.4.3 Unsteady 1D linear advection
As an extension to the steady experiments, we consider the time-dependent Sommerfeld wave equa-
tion

𝜕𝑢

𝜕𝑡
+ 𝑐

𝜕𝑢

𝜕𝑥
= 0 in Ω × [0, 𝑇],

𝑢(𝑥, 𝑡) = 𝑔𝐷(𝑡) on Γin,

𝑢(𝑥, 0) = 𝑢0 ,

on the computational domain Ω = (−4, 4). The Dirichlet boundary condition 𝑔𝐷(𝑡) at the inlet is
chosen according to the exact solution to the time-dependent wave equation 𝑢exact(𝑥, 𝑡) = 𝑢0(𝑥− 𝑡).
We consider numerical solutions at a polynomial order 𝑝order = 3.

Gaussian pulse: training and deployment. In the first example, we use a Gaussian initial condition
𝑢0 = exp

(︀
− 1

2𝜎2 (𝑥− 𝜇)2)︀. The scalar constants are 𝜇 = −4 and 𝜎2 = 0.25, and the background
velocity field is taken to be 𝑐 = 1. The outlet boundary of the domain is taken to be an outflow
condition.

We train the DRL-AMR model for 5 · 104 RL time steps using the time-dependent solver and
training procedure as detailed in §5.2.4 with a computational budget of 25 elements and using a scal-
ing factor value 𝛾𝑐 = 100 to render a relatively coarse numerical solution (5.2), as the computational
cost is more heavily penalized. All other training parameters assume the default values (§5.3.5).
For the AMR heuristic, we employ a gradient indicator (Table 5.1), that approximates the gradient
of the numerical solution to estimate the error. Given the fast-decaying tails of the Gaussian pulse

141

(a) AMR heuristic (b) RL policy

Figure 5-11: Unsteady 1D linear advection: Gaussian pulse. Numerical solution with time-dependent
AMR policies using a gradient-based heuristic (left column) and the trained RL policy (right column),
at times 𝑇 = 1.6 (top), 𝑇 = 4.2 (middle), and 𝑇 = 6.9 (bottom).

being advected, the gradient-based refinement indicator can be expected to accurately recommend
coarsening outside of the pulse.

During deployment, we allow the AMR heuristic and the RL policy to perform one cycle of
refinement/coarsening at every time step before advancing the numerical solution in time. We
consider an increased budget of 100 elements for the RL-agent, and for the AMR heuristic we
perform a bulk-refinement approach where we refine the cells responsible for the top 50 percent of
the numerical error as measured by the gradient indicator, and coarsen the bottom 50 percent of
the numerical error as measured by the same, i.e., a bulk(0.5, 0.5) strategy. Using a time step
Δ𝑡 = 0.01, we simulate to a final time of 𝑇 = 7. The results are shown in Figure 5-11. Similar
to the other experiments, we find that both algorithms are able to capture the advection of the
initial condition; the RL policy does so using a computational mesh with far fewer elements than
the AMR heuristic. Namely, the DRL-AMR model is able to preserve the features of the solution
while using fewer than 25 percent of the computational cost incurred by the AMR heuristic. Due
to the increased value of 𝛾𝑐 as compared to the other numerical experiments considered thus far,
the RL agent is more tolerant of a lack of smoothness in the solution. This is reflected in the small
discontinuities of the numerical solution at the location 𝑥 = 0 at 𝑡 = 1.6 and at 𝑥 = 2 at 𝑡 = 6.9.

Deployment on multi-feature wave advection. We showed in §5.4.2 that the trained policy was
able to generalize beyond its training setup in terms of boundary conditions and forcing functions
for the steady advection problem. To highlight the same in this time-dependent case, we use the
policy network trained on the time-dependent wave equation example (Figure 5-11), but deploy it
on a more feature-rich initial condition

𝑢0 =
(︁
𝛼1𝑒

− 1
2𝜎2 (𝑥− 𝜇) + 𝛼2 sin (𝛼2𝑥)

)︁
(𝑥− 2𝜋) (5.10)

with parameters 𝛼1 = 3, 𝛼2 = 2, 𝜇 = 0, and 𝜎 = 2/25, a different background velocity 𝑐 = 𝜋, and a

142

larger budget of 350 cells.

6 4 2 0 2 4 6

30

20

10

0

10

20 Initial condition
Initial mesh

(a)

6 4 2 0 2 4 6

30

20

10

0

10

20 RL agent

(b)

Figure 5-12: Unsteady 1D linear advection: multi-feature wave. (Left) Initial condition (5.10) and
initial mesh of 64 elements. (Right) Numerical solution at time 𝑡 = 1, integrated using RL-agent
(94 active cells) trained on the Gaussian pulse. The mesh is shown with transparency for ease of
visualization.

The domain and background velocity field are chosen as Ω = [−2𝜋, 2𝜋] and 𝑐 = 𝜋, respectively,
such that the exact solution is advected to its initial profile at the final time 𝑇 = 4. To ensure the
numerical error is primarily due to spatial discretization rather than temporal error, we use for time-
marching a fourth-order explicit Runge Kutta (LSRK4) scheme and a small time step Δ𝑡 = 1 · 10−3.
For spatial discretization, we use the discontinuous Galerkin scheme of §5.3.2 with a polynomial
order 𝑝order = 3. We compare the performance of the RL-agent to an AMR heuristic using the Kelly
error estimator and a bulk(0.5, 0.3) strategy.

Numerical results are shown in Figure 5-12 and Figure 5-13. Figure 5-12a shows the initial
condition and the mesh of 64 elements on which the AMR heuristic and RL agent are initialized.
Figure 5-12b shows the numerical solution and mesh given by the RL policy network at 𝑡 = 1.
Qualitatively, the features of the initial condition have been well-preserved, despite the use of only
27% of the active cell budget; the 𝐿2-errors at the final time were 3.13 · 10−2 and 3.21 · 10−2 for the
AMR heuristic and the RL-agent solution, respectively. To provide a more thorough comparison,
Figure 5-13 compares the numerical solutions provided by the AMR heuristic and the RL agent at
the final time 𝑇 = 4; both demonstrate agreement with the exact solution–however, the RL-agent
does so using far fewer elements. The RL-agent uses only 92, fewer than half of the 210 cells used
by the AMR heuristic.

Although both approaches appear to prioritize refinement in roughly the same regions, by ex-

143

6 4 2 0 2 4 6

30

20

10

0

10

20 Exact solution
AMR heuristic
RL agent

(a)

0.4 0.2 0.0 0.2 0.4

30

20

10

0

10

20 Exact solution
AMR heuristic
RL agent

(b)

Figure 5-13: Unsteady 1D linear advection: multi-feature wave. (Left) Numerical solutions and
corresponding meshes at the final time 𝑇 = 4 for the RL-agent trained on the Gaussian pulse and
for the AMR heuristic, along with the exact solution. (Right) Zoomed-in center region corresponding
to the box in (a).

amining the fast-varying feature in the center region, depicted in Figure 5-13b, we see that the
RL agent is more selective about refinement, even in local regions with sharp features. To explain
this, we remark that the reward function is formulated such that the agent learns a map between
a local observation and the expected utility of refinement; therefore, even if the agent is in an area
of “interesting” activity, the numerical solution on a particular element may suggest that there’s
diminishing local utility to performing refinement. Moreover, the use of neighbor cell information,
as well as the convective velocity in the observation space can result in anticipatory behavior in the
recommendations, whereas the AMR heuristic will not.

We emphasize that due to the local nature of the observation space, over-fitting to a particular
feature encountered during the training example(s) is not something to be concerned with, as the
agent never has access to the solution as a whole, and the same feature will be covered with different
numbers of cells over coarsening and refinement. Ultimately, the RL agent is primarily concerned
with learning the relationship between a local signature of the numerical solution and the conformity
of the solution; this is why the agent performs well at preserving solution features. In that sense,
the DRL-AMR approach is advantageous in that applying it should not be particular to a specific
PDE or numerical scheme, a claim we investigate in the next section.

5.4.4 Generalization to different PDEs

To demonstrate that the DRL-AMR approach is not specific to the advection equation considered
above, we apply it to the second-order Poisson equation, a subset of advection-diffusion PDEs
(§5.3.3).

−𝜕2𝑢

𝜕𝑥2 = 𝑓 in Ω = (−1, 1), (5.11)

with mixed boundary conditions consisting of a Dirichlet condition 𝑢 = 𝑔𝐷 on boundary Γ𝐷 = {−1}
and Neumann condition ∇𝑢 ·𝑛 = 𝑔𝑁 on boundary Γ𝑁 = {1}. The boundary conditions and forcing
function are deduced from the exact solution, chosen to be a superposition of Gaussian functions

𝑢 =
3∑︁

𝑖=1

1
𝜎

√
2𝜋

exp
(︂

− (𝑥− 𝑟𝑖)2

𝜎2

)︂
(5.12)

144

with parameters 𝑟1 = −1/3, 𝑟2 = 0, 𝑟3 = 1/3 and 𝜎 = 1/10. We discretize the problem using
HDG finite elements as described in §5.3.3, with polynomial order 𝑝order = 3. We set the diffusivity
coefficient 𝜅 = 1 and the convective velocity 𝑐 = 0.

1 0 1

0

2

4
28/36 cells used

50 100 150 200 250 300

Degrees of freedom

10 4

10 3

10 2

10 1

L2 -E
rro

r

RL agent
AMR heuristic

Figure 5-14: Steady 1D Poisson problem (5.11). (Left) Mesh distribution and corresponding nu-
merical solution resulting from 6 cycles of refinement using the trained RL policy with a budget of
36 cells; the exact solution (5.12) (black, dashed line) is overlaid for comparison. (Right) 𝐿2-Error
of the numerical solution vs problem degrees of freedom over 6 mesh refinement cycles for the RL
agent and the Kelly error estimator as AMR heuristic.

We train an RL model for 2 · 105 training time steps, and all non-specified training parameters
assume the default values (§5.3.5). Results of the trained RL policy are shown in Figure 5-14. We
see that the features of the solution are well resolved, and match the exact solution.

Furthermore, the trained policy identifies regions on the outer edges of the Gaussian mixture as
in need of refinement; we hypothesize that this region is specifically sensitive to Gibbs phenomena
caused by the change from a near-zero solution to a non-trivial one. The more precise comparison
between 𝐿2-error and problem degrees of freedom in Figure 5-14 shows that the DRL-AMR model
outperforms the AMR heuristic. As the Kelly error indicator was specifically designed for this type
of Poisson problem and can be referred to as an error estimator in this context, the fact that the
RL policy is competitive is an encouraging result.

Lastly, the PDE in (5.11) is elliptic. The Green’s function for the Laplacian operator decays
as 1/𝑟, where 𝑟 is the euclidean distance from the point in question, in contrast to the advection
equation, where errors are advected along with the solution along characteristic paths. Therefore
the numerical solutions as well as effective adaptive refinement strategies can be expected to be
of a different character than those for purely hyperbolic problems [234]. The fact that the RL
methodology was nonetheless able to satisfactorily solve the problem lends credence to the POMDP
formulation and use of a local observation space during training.

5.4.5 Steady 2D linear advection
To examine the generalizability and performance in the context of larger, higher-dimensional prob-
lems, we solve the steady version of the linear advection equation (§5.3.2) on the two-dimensional
(2D) spatial domain Ω = (0, 1)2 with a circular, counter-clockwise convective velocity field 𝑐(𝑥) =
1/ ‖𝑥‖2 (−𝑥2, 𝑥1). On the inflow boundary Γin, we specify the boundary condition 𝑔𝐷 according to
the chosen solution,

𝑢(𝑟) = 1 − tanh (𝛼(1 − 4(𝑟 − 𝑥0))) , (5.13)

where 𝑟 denotes the radius in cylindrical coordinates. We use the parameters 𝛼 = 10, 𝑥0 = 1/4 and
forcing function 𝑓 = 0. The exact solution is a two-dimensional, cylindrical coordinate generalization
of the test case considered in §5.4.1; that is, the solution contains a smooth, steep gradient. However,

145

unlike the test case in §5.4.1, due to the higher problem dimensionality, the steep gradient is present
both in the domain interior as well as at the domain boundary.

To train the network, we solve the linear advection problem

∇ · (𝑐𝑢) = 0, in Ω,
𝑢 = 𝑢(𝑟), in Γin

using the DG discretization given in §5.3.2 with elements of polynomial order 𝑝order = 2, and deploy
the model on the same problem. However, we train the RL policy network with a resource budget
of only 110 cells, limiting the learning process to a relatively small number of elements compared to
the deployment budgets; all other training parameters are the default values (§5.3.5). After 2 · 105

training, time steps, we deploy the trained RL policy over a series of 6 refinement cycles, starting
with a coarse mesh of 25 elements with 5 elements in each direction.

We compare the performance of the RL agent to the gradient-based error indicator (Table 5.1)
that uses a bulk(0.5, 0.5) refinement strategy. The AMR heuristic is given an effective budget of
3200 cells by limiting the maximum refinement depth; we compare this approach to RL policies with
both larger and smaller budgets. Similar to the test case considered in §5.4.1, this AMR heuristic
can be expected to perform well, given the steep gradient as the dominant feature of the exact
solution.

In Figure 5-15, we show the two numerical solutions overlaid with the final meshes and find that
the RL policy is able to outperform the heuristic. The RL policy was deployed with a budget of 1000
cells; it makes use of roughly 2/3 of its budget allocation by the final refinement cycle. Qualitatively,
both approaches are able to resolve the steep gradient; however, compared to the AMR heuristic,
the RL agent has much more conservatively refined the mesh around the slope. Instead, the RL
agent refines preferentially in the region where the steep gradient encounters the outflow boundary
(cf. Figure 5-15c and Figure 5-15d). In training, the RL agent learned that the numerical solution
is sensitive to the discontinuities arising where the gradient meets the outflow boundary. Although
the agent has no information on where cells are located, the cells in this problem region exhibited
behaviors in their observation space that indicated the numerical solution would improve by refining
them. That is to say, the RL policy learned a non-trivial, spatially-heterogeneous strategy for
regional refinement. In contrast, the gradient-based indicator detected the steep discontinuity but
was not able to exploit the sensitivity of the error to the resolution close to the outflow boundary.

In Figure 5-16, we show the 𝐿2-norm of the solution errors as a function of the number of degrees
of freedom in the numerical discretization at each level of the refinement cycle, showing results for
the RL policy deployed at different cell budgets, specifically 200, 1500, and 5000 elements. By the
final refinement cycle, the RL policy finds a solution of comparable or better accuracy than that of
the AMR heuristic for the same number of degrees of freedom. With a budget of 5000 cells, the RL
agent remains well under budget but substantially outperforms the AMR heuristic. This is due to
the aggressive refinement of the heuristic around the gradient region; after five refinement cycles,
nearly all the mesh cells are located in this region, and an additional refinement cycle results in
performance similar to a uniform refinement i.e., nearly quadrupling the degrees of freedom. This
poor performance of the AMR heuristic can be somewhat attributed to the nature of the problem,
as discontinuous Galerkin methods for transport equations can be plagued by reduced convergence
rates on arbitrary meshes, especially meshes which are not flow-aligned [41], as is the case in this
example.

5.4.6 Steady 2D advection-diffusion equation
Section §5.4.5 involves a relatively simple steady numerical solution, with a single steep gradient
region. It is natural to ask whether the methodology can capture solutions with more complicated
features. In this section, we thus consider the steady advection-diffusion problem (5.8) with mixed
boundary conditions, and the less straightforward hybridizable finite element discretization (5.9) of
the same.

We choose a circular velocity field 𝑐 = (𝑥2,−𝑥1) in the domain Ω = (−1, 1)2. The top and

146

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0.1

0.5

1.1

(a) AMR gradient heuristic

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0.1

0.5

1.1

(b) RL Agent

0.0 0.2
0.4

0.6

-0.1

0.5

1.1

(c) AMR gradient heuristic (zoom, outflow bound-
ary)

0.0 0.2
0.4

0.6

-0.1

0.5

1.1

(d) RL Agent (zoom, outflow boundary)

Figure 5-15: Steady 2D linear advection. Numerical solution overlaid with the mesh refined using
a gradient-based error indicator and the RL policy (1000 cell budget). (Top row) Entire problem
domain. (Bottom row) Zoomed-in portion of the domain where the steep gradient meets the left
outflow boundary.

bottom boundary conditions are Dirichlet Γ𝐷, whereas the left and right conditions are Neumann
Γ𝑁 . The boundary values and forcing function are deduced from the exact solution, a superposition
of Gaussian functions chosen to create non-trivial features. The details of the exact solution are
given in Appendix B. The problem is discretized at polynomial order 𝑝order = 4 and makes use of
element-local post processing, resulting in an observed optimal convergence order of 𝑝order + 2 upon
uniform mesh refinement (see [191]).

We train the RL policy for 3·105 training time steps, using a budget of 200 cells; all other training
parameters are the default values (§5.3.5). As in the other numerical experiments, the training
budget was chosen to be significantly cheaper than the deployment budget. For comparison, we
consider an AMR heuristic that makes use of the Kelly error indicator with a bulk(50, 50) refinement
strategy, refining and coarsening cells responsible for the top 50 percent and bottom 50 percent of
the total estimated error, respectively. The AMR heuristic is given an effective budget of 3200 cells

147

0 10000 20000 30000 40000

Degrees of freedom

10 5

10 4

10 3

10 2

10 1

L2 -E
rro

r

RL agent, 200 cells
RL agent, 1500 cells
RL agent, 5000 cells
AMR heuristic

Figure 5-16: Steady 2D linear advection. 𝐿2-error as a function of the number of degrees of freedom
for the refinement cycles resulting from a gradient-based error indicator and the RL policy.

by limiting the maximum refinement depth, applying a cell limit as discussed in §5.3.4. We compare
this approach to RL policies with both larger and smaller budgets; we choose larger and smaller
budget as a comparison because, as is shown in the following, the RL-policy network recommends
substantially fewer cells than the AMR heuristic in either case. Both strategies are employed over 5
refinement cycles, beginning from the coarse mesh shown in Figure 5-17a.

The results of the comparison between the two algorithms are given in Figure 5-17. Examination
of the 𝐿2-error per degree of freedom (not shown) again demonstrates that the RL agent is com-
petitive with any of the AMR heuristics considered in this chapter. However, in this experiment,
we focus on the relative ability of the heuristic and RL AMR strategies to resolve relevant features
of the solution, pursuant to the discussion in §5.1.1. We see from Figure 5-17a that on the coarse
starting mesh, the numerical solution is acutely under-resolved. Both the AMR heuristic (Figure
5-17b) and the trained RL agent (Figures 5-17c, 5-17d) are able to satisfactorily resolve the features
of the numerical solution, but the RL agent does so with a more parsimonious allocation of elements
over the mesh. Even when the computational budget is increased from 1500 cells to 5000 cells, the
RL agent makes only minor adjustments to the mesh.

The explanation for this is that the trained DRL-AMR model makes decisions based on the
learned relationship between the features of the observation space local to each element, and the
change in the numerical solution upon refinement. The HDG finite element schemes (5.9) enjoy a
faster convergence rate and, typically, better overall accuracy than the advection DG scheme (5.3.2)
due to its dual formulation and element-wise post-processing, as discussed above. Additionally, we
use a relatively high-order (sixth-order effective convergence rate) finite element scheme as compared
to the smooth step example in §5.4.5, which exhibited second-order convergence. The RL policy is
able to detect the fast convergence to the exact solution (according to the local numerical solution
as well as the jump discontinuities over the boundary of each element) and elects to use only a small
portion of its computational budget in order to resolve the solution, approximately 8 percent and 2
percent for budgets of 1500 cells and 5000 cells, respectively. We hypothesize that the inclusion of

148

1 0 1
1

0

1

-0.2

11.4

23.0

(a) Numerical solution, coarse mesh

1 0 1
1

0

1

-0.2

11.4

23.0

(b) AMR gradient heuristic

1 0 1
1

0

1

-0.2

11.4

23.0

(c) RL Agent (1500 cell budget)

1 0 1
1

0

1

-0.2

11.4

23.0

(d) RL Agent (5000 cell budget)

Figure 5-17: Steady 2D advection-diffusion. Numerical solutions overlaid with the corresponding
final mesh.

additional HDG-specific features into the observation space, such as the numerical gradient 𝑞ℎ or the
approximate numerical flux on the mesh skeleton 𝑢̂ℎ (5.9) could additionally improve performance.

In summary, the RL policy is able to judiciously allocate resources in order to capture non-trivial
features of a numerical solution. Furthermore, the generality of the RL methodology extends to more
complicated finite element schemes and is able to take advantage of their properties—in this case,
high-order convergence due to a post-processed solution.

5.4.7 Unsteady 2D linear advection
In section §5.4.3, we showed that the RL policy, trained on a simple unsteady example, was able to
perform well when deployed on a much more complex flow, with a different setup than that seen in
training. We also showed that the complex features of the solution were preserved over many time
integration steps. In this section, we extend these results to two dimensions: specifically, unsteady
2D linear advection problems (§5.3.2).

Unsteady 2D Gaussian pulse advection: training. For DRL training, we employ the advection of

149

a simple Gaussian as illustrated in Figure 5-18, extending the Gaussian pulse of §5.4.3 to 2D. The
initial tracer condition (Figure 5-18a) is

𝑢0 = exp
(︂

− 1
2𝜎2 ((𝑥− 𝜇𝑥)2 + (𝑦 − 𝜇𝑦)2)

)︂

where 𝜇𝑥 = 0, 𝜇𝑦 = 0.75, and 𝜎 = 1/25. The convective velocity is 𝑐 = (2𝜋𝑦,−2𝜋𝑥) over the
region Ω = (−1, 1)2, with numerical fluxes and upwind boundary conditions as specified in §5.3.2,
specifically inflow boundary conditions 𝑢ℎ = 0 on Γin shown in (Figure 5-18b) and no boundary
conditions imposed on the outflow boundaries Γout (§5.3.2). We train the DRL agent for 3 · 105

training time steps on a budget of 200 cells; all other training parameters assume the default values
(§5.3.5 and Appendix C).

1 0 1
x

1

0

1

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Initial condition 𝑢0 (b) Convective velocity 𝑐

Figure 5-18: Unsteady 2D Gaussian Pulse advection: Training test case setup. The locations of
inflow boundary conditions are highlighted in grey.

Unsteady reversible 2D ring advection: deployment. Once trained, we deploy and benchmark
the DRL agent’s performance against a more complex unsteady linear advection (§5.3.2). Inspired
by the novel advection-diffusion test case in [136], we consider the advection of a thin ring by a
reversible swirl flow (Figure 5-19). The initial tracer condition is given by

𝑢0 = exp
(︂

− 1
2𝜎2

(︁√︀
(𝑥− 𝑥0)2 + (𝑦 − 𝑦0)2 − 𝑟0

)︁2
)︂
, (5.14)

specifying a ring with inner radius 𝑟0 and approximate thickness 3𝜎 centered at the point (𝑥0, 𝑦0).
For this test case, we choose the parameters 𝑟0 = 0.2, (𝑥0, 𝑦0) = (0.25, 0.25), and 3𝜎 = 0.05,
describing a thin ring centered in the bottom right-hand corner of the domain, depicted in Figure
5-19a. The velocity field is given by the reversible swirl flow

𝑐(𝑥, 𝑦, 𝑡) =
(︂

3
2𝑎(𝑡) sin2(𝜋𝑥) sin(2𝜋𝑦), −3

2𝑎(𝑡) sin2(𝜋𝑦) sin(2𝜋𝑥)
)︂

(5.15)

over the square domain Ω = (0, 1)2. Here 0 ≤ 𝑡 ≤ 1, 𝑎(𝑡) = 1 if 𝑡 < 0.5, and 𝑎(𝑡) = −1 if 𝑡 ≥ 0.5,
which reverses the direction of the flow field at 𝑡 = 0.5. At the time 𝑇 = 1, the analytical initial
tracer distribution returns to its initial location due to the flow symmetry and can be compared to
the initial condition to measure the error in the numerical solution. The inflow boundary conditions

150

and forcing function are taken to be zero over the duration of the simulation; however, the locations
of the inflow and outflow boundaries switch over the course of the time integration. The presence of
steep gradients in the solution along the inner and outer circumferences of the ring during both the
forward and backward swirl advection process makes this problem challenging, as well as a suitable
test case to assess the ability of a numerical scheme to avoid spurious diffusion and dispersion, and
to preserve features of the analytical solution [136].

All numerical simulations are run at polynomial order 𝑝order = 3 and use a small time step
Δ𝑡 = 10−3 over the LSERK45 time-marching so that the total error is dominated by the spatial
discretization error.

During deployment, we compare the trained DRL-AMR model to an AMR heuristic which uses
the Kelly error indicator with a conservative bulk(60, 40) refinement strategy. Both strategies start
on a fine, uniform mesh of 64×64 elements and are allowed 6 refinement cycles during initialization,
after which, they are allowed one refinement cycle per time step for the duration of the simulation.

In order to prevent the number of degrees of freedom from growing unbounded over time integra-
tion for the AMR heuristic, we apply an effective resolution requirement by specifying a maximum
refinement depth of 4 as discussed in §5.3.4, corresponding to the finest possible grid of 64 × 64
cells. To provide a fair comparison, the RL policy is deployed with an equal maximum cell budget
of 642 = 4096 elements.

For baseline comparison for the AMR heuristic and the RL policy, we show first in Figure 5-19
the numerical solution for a uniform grid of 64 × 64 elements, corresponding to the resolution limit
for the AMR heuristic. Qualitatively, the uniform grid simulation is able to preserve the features of
the ring over the forward and reverse advection, up to final integration time 𝑡 = 1 (Figure 5-19c).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0.1

0.5

1.1

(a) 𝑡 = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0.1

0.5

1.1

(b) 𝑡 = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0.1

0.5

1.1

(c) 𝑡 = 1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0.1

0.0

0.1

(d) 𝑢ℎ − 𝑢exact, 𝑡 = 1

Figure 5-19: Unsteady reversible 2D ring advection. Numerical solution on a 64 × 64 uniform grid.

151

The proposed meshes and resultant numerical solutions for the AMR heuristic and RL policy
are shown in Figure 5-20. As can be seen in panels 5-20a, 5-20b, 5-20d, and 5-20e, the qualitative
features of the numerical solution resulting from both schemes are very similar to that of the uniform
grid simulation (Figure 5-19); that is, both approaches are able to successfully resolve the features of
the solution. Similar to the other experiments, the RL agent is able to achieve comparable accuracy
to the AMR heuristic, but with a comparatively coarser mesh, as is corroborated in Figures 5-20c
and 5-20f. The numerical errors for each approach are comparable and within 10 percent of the
numerical error resulting from the uniform mesh. However, in this particular test case, at each time
step, the RL-agent used far fewer elements.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0.1

0.5

1.1

(a) 𝑡 = 0.01

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0.1

0.5

1.1

(b) 𝑡 = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0.1

0.0

0.1

(c) 𝑢ℎ − 𝑢exact, 𝑡 = 1

(d) 𝑡 = 0.01 (e) 𝑡 = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0.1

0.0

0.1

(f) 𝑢ℎ − 𝑢exact, 𝑡 = 1

Figure 5-20: Unsteady reversible 2D ring advection. AMR heuristic (top row) vs DRL agent (bottom
row).

The 𝐿2-norm of the errors for the three numerical solutions at final time 𝑇 = 1 are provided in
Table 5.3 and the time series of active cells for both the AMR heuristic and the RL agent are shown
in Figure 5-21. They confirm that the DRL-AMR agent can achieve the same accuracy for a much
smaller cell budget.

Refinement method 𝐿2-error Percent change
Uniformally refined mesh (4096 cells), ground truth 1.8316 · 10−2 -
AMR Heuristic (Kelly) 1.9553 · 10−2 6.8%
DRL Agent 1.9630 · 10−2 7.2%

Table 5.3: Unsteady reversible 2D ring advection. Comparison of numerical errors at final time
𝑇 = 1. The evolution in time of the number of active cells is provided in Figure 5-21.

152

0 200 400 600 800 1000
Timestep

103

6 × 102

2 × 103

3 × 103

Active cells

AMR heuristic
RL agent

0 200 400 600 800 1000
Timestep

2.0

2.5

3.0

3.5

4.0

4.5
AMR cells / RL cells

Figure 5-21: Unsteady reversible 2D ring advection. Number of active cells versus time during
deployment (post-initialization).

5.4.8 Discussion of numerical experiments
The numerical experiments in §5.4.1-§5.4.2 demonstrated a proof of concept for the DRL-AMR ap-
proach; we were able to train a model on a small budget and apply it effectively to larger, different
problems governed by the same PDE. Our experiments indicated that random initialization led to
a better exploration of the decision space and that all learning algorithms considered were able to
solve the problem. We saw that for a simplified observation space, the neural network representing
the trained RL policy was interpretable in terms of local solution conformity. The numerical ex-
periments in §5.4.3-§5.4.4 showed that the method generalizes to time-dependent problems, as well
as to different PDEs with mixed boundary conditions and significantly more complicated numerical
schemes.

The test case in §5.4.5 demonstrated that the RL agent was able to learn a spatially heteroge-
neous, non-trivial strategy to increase accuracy per cost by preferentially refining around a problem
region on the boundary, a strategy on which the AMR heuristic was not able to capitalize. The
advection-diffusion problem in §5.4.6 extended the findings in §5.4.4 to higher dimensions and ex-
hibited the ability of the RL policy to take advantage of the fast convergence of a post-processed
solution as well as to resolve non-trivial features of a numerical solution cheaply. Lastly, the unsteady
2D advection problem in §5.4.7 displayed the ability of the trained RL policy to preserve similar
non-trivial features over the course of time integration in problems with dynamic, sharp gradients.

Overall, our DRL-AMR methodology is flexible and effective at delivering efficient, high-quality
solutions for both static and time-dependent problems over a wide range of different PDEs, boundary
conditions, dimensions, and problem sizes.

5.5 Conclusions and future work
In this chapter, we introduced a novel deep reinforcement learning formulation for adaptive mesh
refinement based on a partially observable Markov decision process designed to balance numerical
accuracy with computational cost, with the goal of providing a learned, high-quality strategy for
resolving solution features efficiently. The underlying idea is that rather than hand-designing a
heuristic error indicator a priori, the reinforcement learning agent will instead learn one through
trial and error during training by solving many inexpensive problems. This is advantageous because
the learned policy network can be arbitrarily complex and make use of any feature included in the
observation space, including information about computational cost. Furthermore, training the RL
policy requires no domain-specific knowledge, as the relevant information is encoded in the numeri-
cal solver, and, more abstractly, in the underlying PDE. Conversely, specific features of a numerical
scheme such as polynomial degree, convergence order, and problem dimension are implicitly con-

153

sidered in training through use of the numerical solver, as opposed to having to be analyzed and
explicitly specified in the case of a manually-defined error indicator.

Our implementation shows that the resultant trained policies are able to execute adaptive refine-
ment strategies which are competitive with, and in many cases, better than common AMR heuristics
in terms of accuracy of the final solution per problem degree of freedom. Our methodology is not
specific to any particular PDE, spatial dimension, or numerical scheme, and can flexibly incorporate
physical or temporal history data into the observation space. The local nature of the RL problems
allows for training the RL agent on small problems and deploying the policy on much larger prob-
lems, ensuring scalability. Lastly, at no point during training nor model deployment do we ever
make use of an exact solution or a “ground truth.”

Future work could incorporate 𝑝-refinement into the learning process to allow the RL agent
access to a richer set of finite element representations of the numerical solution, incorporate a
more sophisticated belief distribution as to the regions of under- or over-resolution in the numerical
solution, or integrate transfer learning using existing error estimators to accelerate training. Finally,
the application of the new DRL-AMR schemes to vector-valued problems such as the Navier–Stokes
equations, ocean equations, and atmospheric [127] applications, as well as studies of related numerical
topics such as slope-limiting, preconditioning, and adaptive time integration, are the subject of
ongoing research.

154

Chapter 6

Conclusion

6.1 Summary
In this thesis, we derived and developed new numerical schemes to solve the hydrostatic and non-
hydrostatic ocean equations, using high-order hybridizable discontinuous Galerkin (DG) spatial dis-
cretizations and advances in stability and robustness properties for projection-method temporal
integration. We implemented the ocean models in a high-performance C++ framework, and the
model nesting within the MSEAS-PE hydrostatic ocean modeling and forecasting system. We ver-
ified the correctness and efficiency of the finite element models and conducted preliminary 2D and
3D model-nested simulations using realistic ocean data in the Alboran sea.

Using the new schemes, models, and software, we conducted exploratory investigations into use
of data assimilation and Bayesian inverse problems using ensemble Kalman filtering and Markov
chain Monte Carlo methods, respectively. We demonstrated that these approaches are viable for use
with high-order discontinuous finite element solvers.

With the long-term goal of adaptive mesh refinement for ocean processes in mind, we developed
a general and flexible methodology to learn new adaptive mesh refinement strategies using deep re-
inforcement learning. This approach couples state-of-the-art machine learning schemes and libraries
with our custom numerical solvers, enabling the discovery of tailor-made AMR strategies for the
numerical solution of PDEs using high-order DG methods. Altogether, these advances are aimed at
the creation of next-generation nonhydrostatic ocean models.

6.2 Future work and outlook
The chapters of this thesis constitute advances in the field of high-order finite element methods,
ocean modeling, and machine learning. However, the primary logical extension of this work is the
combination of all the constituent advances into a single, integrated ocean modeling framework.

Incorporation of the data assimilation techniques and uncertainty quantification techniques ex-
plored in §4 into the nonhydrostatic ocean model developed in §3 is entirely straightforward, once
a particular stochastic quantity of interest has been identified. The inclusion of ensemble Kalman
filtering into ocean models is well-understood and requires little explanation. In the case of the
Markov chain Monte Carlo methods developed in §4.3, we sought to invert an unknown spatially-
variable diffusivity field using synthetic sparse observation data at certain sensor locations. The
application to ocean modeling applications is immediate, as one of the most important parameters
is the choice of the diffusivity in the ocean equations. Since all ocean models are limited in their spa-
tial resolution, they are incapable of capturing physical dynamics occurring on length scales smaller
than the element size. The choice of a numerical diffusivity in the ocean equations amounts to the
replacement of the actual molecular viscosity with a much larger eddy viscosity, an approach referred
to as subgrid-scale parameterization [56]. Even for nonhydrostatic ocean processes, the horizontal
scales of the modeling domains tend to be much larger than those of the vertical, and we have

155

treated the subgrid-scale parameterizations anisotropically, choosing both a vertical and horizontal
diffusivity coefficient. Therefore, any simulation using the nonhydrostatic model in §3 involves the
modeling choice of four diffusivity parameters: a horizontal and vertical eddy viscosity for both
the momentum and tracer equations. Furthermore, as the eddy viscosities ought to depend on the
grid dimensions, the inclusion of adaptive mesh refinement also induces a natural spatio-temporal
dependence for these parameters. Areas of fine resolution should apply a different eddy viscosity
than those with coarse resolution, especially when the capture of highly-localized phenomena such
as internal solitary waves is of modeling interest. In general, more complex ocean turbulence and
mixing models could be devised and implemented in the present HDG framework. Returning to
the application of MCMC methods for Bayesian inversion of the diffusivity field, the most simple
and natural application of these methods is a principled inference of these four parameters from
observational data. Introduction of adaptive mesh refinement and unstructured meshes allows for
the inference of spatially-variable or even dynamic diffusivity fields, extending §4.3.

Application of the deep reinforcement learning methods in §5 into an ocean modeling framework
is less straightforward and constitutes the subject of ongoing research. The key question of interest
is how to appropriately treat vector-valued finite element spaces. The jumps in the different solution
variables could all be included in the observation space, but there is a question as to how to treat
the relative scales and dynamic vector gradients of the solution. Additionally, this question affects
the reporting of the global average of the jumps in the vector-valued solution. Neural networks
are known to be sensitive to inputs that have a large difference in scales, as would be the case for
most ocean applications. Many different heuristics to normalize or rescale the solution variables are
possible, but it is the author’s opinion that careful consideration is required to arrive at a principled,
general method which allows all solution variables to be treated in a way that allows for the actual
desired goal: to find locally under- and over-resolved regions. The free-surface seiche test case in §3,
for example, has a constant density, allowing for a simultaneously over-resolved density perturbation
field but an under-resolved velocity or free-surface. Therefore, a future research direction is to devise
a method which allows for the detection of high-priority areas of refinement based on the underlying
dynamics, while simultaneously handling large differences in the scales of the state variables.

The constituent advances in ocean modeling and machine learning made in this thesis also have
their own possible independent extensions.

6.2.0.1 Ocean modeling

In the future, the present work will complement the suite of multidisciplinary simulation, estimation,
and assimilation systems (MSEAS) methods and software [186], used for fundamental research and
for realistic simulations and predictions in varied regions of the world’s ocean [105, 104, 107, 150,
155, 164, 200, 215] Applications include monitoring [152], real-time acoustic predictions and data
assimilation [68, 142, 148, 259, 3, 4], probabilistic forecasting [160, 158, 69], adaptive sampling and
path planning [147, 153, 155, 151, 67], and ecosystem predictions and environmental management
[55, 106]. Namely, the present results can be applied and developed pursuant to research in high-
order multi-dynamics regional ocean modeling [243, 244, 246, 228]. These models can be employed
for targeted non-hydrostatic and biogeochemical process studies.

Preliminary work has been done to extend HDG methods to a distributed computing environment
[73, 79, 134, 224, 225] and a logical step for future work involves adapting the matrix-free approaches
and implementations of the present results to a GPU environment. The fast application of the
sparse HDG matrix-vector product in particular may be amenable to GPU acceleration, perhaps
in conjunction with an HDG-specific graph-coloring approach similar to that discussed in [225] to
provide further vectorization. Numerical experiments conducted in tandem with the work in this
thesis conclusively demonstrate that the dominant computational cost of HDG-FEM methods for the
incompressible Navier–Stokes equations and ocean equations discretized with projection methods is
the solution of the elliptic pressure correction equation, a result corroborated by similar experiments
in the ocean modeling literature [178, 251]. Geometric multigrid (GMG) methods are known to be
solvers with optimal complexity properties in the number of total unknowns [38, 100]. However, the
same element-to-skeleton parameterization that makes HDG-FEM advantageous presents a distinct

156

weakness in terms of devising efficient GMG methods. As of the time of this writing, optimal-
complexity GMG methods for HDG schemes remain under development [134]. Should this line of
research prove fruitful, the application of high-performance GMG methods to the linear systems
arising from the discretization of these typically ill-conditioned pressure correction systems would
confer significant computational advantages. In turn, both numerical and computing improvements
to HDG-FEM scalability could be employed for multi-scale multi-dynamics ocean and fluid modeling
[62, 161].

While not used in this thesis, a common technique applied to advection-dominated problems
in fluid physics is the use of slope limiting to provide additional numerical stability for DG finite
element methods [110]. However, this approach is largely heuristic, as it involves filtering out high-
frequency modes from the nodal solution. As these high-frequency modes may be either spurious or
physical, slope limiting can lead to substantial losses in accuracy. Competing techniques inspired by
the stabilization approaches used for advection-dominated flows modeling using classical continuous
Galerkin finite element methods have recently been applied with success to DG schemes for the
incompressible Navier–Stokes equations [77, 78]. These methods involve the use of mixed polynomial
spaces for the discrete velocity and pressure, as well as the inclusion of penalization terms derived
from the particular choices of numerical flux to discourage the growth of numerical energy over long
time integration. A sensible future direction would involve a comparison between slope limiting
methods and these more modern techniques in the interest of achieving the best balance of accuracy
and stability in under-resolved regimes, and the conclusions could be of interest to the DG-FEM
modeling community more broadly.

Aside from the underlying numerical methods, the work completed in §3 has additional ap-
plication to the validation of hydrostatic models and identification of dynamical regimes in which
nonhydrostasy plays a crucial role. Conversely, the model will enable investigations into accurate
nonhydrostatic parameterizations natively employable in hydrostatic models such as the MSEAS-PE
forecasting system. The software developed over the course of this thesis has already been extended
and applied to idealized hydrostatic-nonhydrostatic multi-domain modeling [228]. These develop-
ments offer the future possibility of a two-way nested hydrostatic-nonhydrostatic model, where the
nonhydrostatic HDG finite element model is nested inside of a larger DG-FEM hydrostatic model,
with boundary conditions to the DG-FEM hydrostatic model provided by the MSEAS-PE model.
The advantage of such a set up over that considered in this thesis is a fully two-way nesting, whereby
the nonhydrostatic and hydrostatic models communicate with each other dynamically. Such real-
istic multi-dynamics simulation capabilities with Bayesian data assimilation and learning [98, 170]
constitute the subject of ongoing research.

6.2.0.2 Machine learning

In the author’s opinion, machine learning methods are better-suited to improving heuristic aspects
of numerical PDE solvers than to the task of replacing them directly. As alluded to in §5.1, this is
because the convergence, consistency, and stability guarantees provided by numerical methods are
essential to research confidence in the output of any numerical model. In contrast, attempting to
directly learn the nonlinear mapping between boundary conditions and forcing functions and the
solution to a partial differential equation using the machinery of deep learning requires solving a
highly non-convex optimization problem in which convergence is not guaranteed. Preliminary work
has started in this area [213] but much remains to be done. On the other hand, modern machine
learning techniques have shown themselves to be effective at learning effective heuristics and patterns
from data alone, in the absence of a model. In §5, this idea was explored at length for adaptive mesh
refinement; however, there are many such heuristics auxiliary to the direct application of numerical
schemes which could conceivably provide substantial benefits to the accuracy and efficiency of the
numerical solution of PDEs. Even relatively mature technologies such as matrix multiplication
have proven to be amenable to acceleration by using deep reinforcement learning to find faster,
more efficient computational strategies [76]. To that end, fruitful areas of future research involve
the application of deep reinforcement learning to the problems of preconditioning, adaptive time
stepping, slope limiting, and avoidance of CFL limitations. The replacement of human tinkering

157

and adjustment with machine-learning-discovered policies for any one of these applications would
constitute a substantial advance in the field of numerical modeling.

158

Chapter 7

Appendices

159

7.1 Useful identities

The traces 𝑢± are defined on 𝐾± as

𝑢± ≡ lim
𝜖→0

(︀
𝑥 − 𝜖𝑛±)︀ .

Since 𝑛± points outward, the limit of 𝑥−𝜖𝑛± has the interpretation of the value of 𝑢(𝑥), approaching
the boundary of 𝐾 from its interior.

7.1.0.1 Jump relations

1
2J𝑢2

ℎK = 1
2
(︀
(𝑢−

ℎ)2 − (𝑢+
ℎ)2)︀ = 1

2(𝑢−
ℎ + 𝑢+

ℎ)(𝑢−
ℎ − 𝑢+

ℎ) = {{𝑢ℎ}} J𝑢ℎK (7.1)

{{𝑢ℎ}} + 1
2J𝑢ℎK = 1

2(𝑢+
ℎ + 𝑢−

ℎ) + 1
2(𝑢−

ℎ − 𝑢+
ℎ) = 𝑢−

ℎ (7.2)

J𝑢𝑣K = {{𝑢}} J𝑣K + J𝑢K {{𝑣}} (7.3)

The following relation is useful computationally since it avoids negation on each edge to distin-
guish between the normal vectors 𝑛+ and 𝑛−, using instead that 𝑛+ = −𝑛−:

J𝑢ℎ𝑛K = 𝑢+
ℎ 𝑛

+ + 𝑢−
ℎ 𝑛− =

(︀
𝑢+

ℎ − 𝑢−
ℎ

)︀
𝑛+. (7.4)

7.1.0.2 Flux relations

Upwind fluxes are defined as

̂︂𝑐𝑢ℎ · 𝑛+ =
{︃

(𝑐 · 𝑛+)𝑢+
ℎ , 𝑐 · 𝑛+ ≥ 0

(𝑐 · 𝑛+)𝑢−
ℎ , 𝑐 · 𝑛+ < 0

(7.5)

loosely “take the value from where 𝑐 is blowing". This would require logic to compute; but is
equivalent to the computationally more efficient (for vectorization)

1
2
(︀
𝑐 · 𝑛+ + |𝑐 · 𝑛+|

)︀
𝑢+

ℎ + 1
2
(︀
𝑐 · 𝑛+ − |𝑐 · 𝑛+|

)︀
𝑢−

ℎ (7.6)

which can be easily verified as equivalent by considering the positive and negative cases of 𝑐 · 𝑛+.
Another common way of writing the upwind flux is

̂︁𝑐𝑢 = 𝑐 {{𝑢}} + 1
2 |𝑐 · 𝑛|J𝑢𝑛K (7.7)

which is actually correct regardless of whether 𝑛+ or 𝑛− is chosen for 𝑛. To see this, we make use
of the vector triple product identity 𝑎 × 𝑏 × 𝑐 = 𝑏(𝑎 · 𝑐) − 𝑐(𝑎 · 𝑏), which implies

(𝑐 · 𝑛)𝑛± = 𝑛 × 𝑛± × 𝑐 + 𝑐
(︀
𝑛 · 𝑛±)︀

= 𝑐
(︀
𝑛 · 𝑛±)︀ .

Expanding equation (7.7),

̂︁𝑐𝑢 = 1
2𝑐𝑢

+ + 1
2𝑐𝑢

− + 1
2 |𝑐 · 𝑛|𝑢+𝑛+ + 1

2 |𝑐 · 𝑛|𝑢−𝑛−,

160

yielding the two cases

𝑐 · 𝑛 ≥ 0 : ̂︁𝑐𝑢 = 1
2𝑐𝑢

+ + 1
2𝑐𝑢

− + 1
2(𝑐 · 𝑛)𝑛+𝑢+ + 1

2(𝑐 · 𝑛)𝑛−𝑢−,

𝑐 · 𝑛 < 0 : ̂︁𝑐𝑢 = 1
2𝑐𝑢

+ + 1
2𝑐𝑢

− − 1
2(𝑐 · 𝑛)𝑛+𝑢+ − 1

2(𝑐 · 𝑛)𝑛−𝑢−,

If 𝑛 = 𝑛+, then

𝑐 · 𝑛+ ≥ 0 : ̂︁𝑐𝑢 = 1
2𝑐𝑢

+ + 1
2𝑐𝑢

− + 1
2𝑐𝑢

+ − 1
2𝑐𝑢

− = 𝑐𝑢+

𝑐 · 𝑛+ < 0 : ̂︁𝑐𝑢 = 1
2𝑐𝑢

+ + 1
2𝑐𝑢

− − 1
2𝑐𝑢

+ + 1
2𝑐𝑢

− = 𝑐𝑢−

on the other hand, if 𝑛 = 𝑛−, then

𝑐 · 𝑛− ≥ 0 : ̂︁𝑐𝑢 = 1
2𝑐𝑢

+ + 1
2𝑐𝑢

− − 1
2𝑐𝑢

+ + 1
2𝑐𝑢

− = 𝑐𝑢−

𝑐 · 𝑛− < 0 : ̂︁𝑐𝑢 = 1
2𝑐𝑢

+ + 1
2𝑐𝑢

− + 1
2𝑐𝑢

+ − 1
2𝑐𝑢

− = 𝑐𝑢+

and we have that the flux is indeed upwinded.

7.1.0.3 Vector calculus

Construction of divergence-free velocity fields. It can be of numerical interest to test the
discretization of a divergence-free velocity field. The vector calculus identity

∇ · (𝐹 ×𝐺) = 𝐺 · (∇ × 𝐹) − 𝐹 · (∇ ×𝐺) (7.8)

implies that if we choose two continuous, twice-differentiable vector fields 𝑓 and 𝑔, and choose
𝐶 = ∇𝑓 × ∇𝑔, we have that the divergence ∇ · 𝐶 = 0, since ∇ × (∇𝜑) = 0. This approach is
useful for generating three-dimensional divergence-free vector fields, but to generate two-dimensional
divergence-free vector fields, we must be careful to avoid a 𝑧-dependence in 𝐶𝑧; if we have that the
dependence 𝐶𝑧(𝑥, 𝑦), then the partial derivative 𝜕/𝜕𝑧(𝐶𝑧) vanishes and

∇ · 𝐶 = 𝜕𝐶𝑥

𝜕𝑥
+ 𝜕𝐶𝑦

𝜕𝑦
= 0.

To avoid a trivial vector field in the 𝑥𝑦 plane, it suffices to choose the functions 𝑓 and 𝑔 of the
form 𝑧 + 𝑓(𝑥, 𝑦).

General Relations.
∫︁

Ω
𝑐𝑣 · ∇𝑣 𝑑Ω = 1

2

∫︁

Ω
𝑐 · ∇𝑣2 𝑑Ω = −1

2

∫︁

Ω
𝑣2∇ · 𝑐 𝑑Ω + 1

2

∫︁

𝜕Ω
𝑣2𝑐 · 𝑛 𝑑𝜕Ω (7.9)

161

7.2 Consistency and stability of DG-FEM for second-order
problems

We use the so-called energy method to derive a set of numerical fluxes such that the numerical
solution is stable [39]. Our point of departure is the element-local problem

(𝑞ℎ, v)𝐾 + (𝑢ℎ, ∇ · v)𝐾 − ⟨̂︀𝑢ℎ, v · 𝑛⟩𝜕𝐾 = 0
(𝑞ℎ, ∇w)𝐾 − ⟨̂︀𝑞ℎ · 𝑛, w⟩𝜕𝐾 = (𝑓, w)𝐾 .

Taking v = 𝑞ℎ and w = 𝑢ℎ and summing over all mesh elements for each equation, we find
∫︁

Ω
|𝑞ℎ|2 𝑑Ω −

∑︁

𝐾∈𝒯ℎ

(︂
−
∫︁

𝐾

𝑢ℎ(∇ · 𝑞ℎ) 𝑑𝐾 +
∫︁

𝜕𝐾

̂︀𝑢ℎ(𝑞ℎ · 𝑛) 𝑑𝜕𝐾
)︂

= 0

∑︁

𝐾∈𝒯ℎ

(︂∫︁

𝐾

𝑞ℎ · ∇𝑢ℎ 𝑑𝐾 −
∫︁

𝜕𝐾

𝑢ℎ(̂︀𝑞ℎ · 𝑛) 𝑑𝜕𝐾
)︂

=
∫︁

Ω
𝑓𝑢ℎ 𝑑Ω,

and summing the two yields ∫︁

Ω
|𝑞ℎ|2 𝑑Ω + Θℎ =

∫︁

Ω
𝑓𝑢ℎ 𝑑Ω,

with

Θℎ = −
∑︁

𝐾∈𝒯ℎ

(︂
−
∫︁

𝐾

𝑢ℎ(∇ · 𝑞ℎ) 𝑑𝐾 −
∫︁

𝐾

𝑞ℎ · ∇𝑢ℎ 𝑑𝐾 +
∫︁

𝜕𝐾

̂︀𝑢ℎ(𝑞ℎ · 𝑛) 𝑑𝜕𝐾 +
∫︁

𝜕𝐾

𝑢ℎ(̂︀𝑞ℎ · 𝑛) 𝑑𝜕𝐾
)︂
.

In order for the numerical solutions (𝑢ℎ, 𝑞ℎ) to be bounded and hence stable, we must choose the
numerical fluxes such that Θℎ ≥ 0. Doing so ensures that with right-hand side data 𝑓 = 0, the
only possible solution is (𝑢ℎ, 𝑞ℎ) = (0, 0); in which case, we have that there exists a unique solution
for every nontrivial 𝑓 and the DG method is well-posed. Using first the product rule ∇ · (𝑢ℎ𝑞ℎ) =
𝑢ℎ(∇ · 𝑞ℎ) + 𝑞ℎ · ∇𝑢ℎ, followed by the divergence theorem

∫︀
𝐾

∇ · (𝑢ℎ𝑞ℎ) 𝑑𝐾 =
∫︀

𝜕𝐾
𝑢ℎ𝑞ℎ · 𝑛 𝑑𝜕𝐾,k

we can simplify our expression:

Θℎ =
∑︁

𝐾∈𝒯ℎ

∫︁

𝜕𝐾

(𝑢ℎ(𝑞ℎ · 𝑛) − ̂︀𝑢ℎ(𝑞ℎ · 𝑛) − 𝑢ℎ(̂︀𝑞ℎ · 𝑛)) 𝑑𝜕𝐾

=
∑︁

𝑒∈𝜀

∫︁

𝑒

J(𝑢ℎ𝑞ℎ − ̂︀𝑢ℎ𝑞ℎ − 𝑢ℎ̂︀𝑞ℎ)𝑛K 𝑑𝑒

Where we have reorganized the sum over each mesh edge 𝑒 ∈ 𝜀 rather than over the element
boundaries 𝜕𝐾. Applying the respective definitions of the jump operators on the interior edges 𝜀∘

and boundary edges 𝜀𝜕 , and using the fact that the numerical traces ̂︀𝑢ℎ and ̂︀𝑞ℎ are single-valued,
we have

Θℎ =
∑︁

𝑒∈𝜀∘

∫︁

𝑒

(J𝑢ℎ(𝑞ℎ · 𝑛)K − ̂︀𝑢ℎJ𝑞ℎ · 𝑛K − J𝑢ℎ𝑛K(̂︀𝑞ℎ · 𝑛)) 𝑑𝑒

+
∑︁

𝑒∈𝜀𝜕

∫︁

𝑒

(𝑢ℎ(𝑞ℎ · 𝑛) − ̂︀𝑢ℎ(𝑞ℎ · 𝑛) − 𝑢ℎ(̂︀𝑞ℎ · 𝑛)) 𝑑𝑒

=
∑︁

𝑒∈𝜀∘

∫︁

𝑒

({{𝑢ℎ}} J𝑞ℎ · 𝑛K + J𝑢ℎ𝑛K {{𝑞ℎ · 𝑛}} − ̂︀𝑢ℎJ𝑞ℎ · 𝑛K − J𝑢ℎ𝑛K(̂︀𝑞ℎ · 𝑛)) 𝑑𝑒

+
∑︁

𝑒∈𝜀𝜕

∫︁

𝑒

(𝑢ℎ(𝑞ℎ · 𝑛) − ̂︀𝑢ℎ(𝑞ℎ · 𝑛) − 𝑢ℎ(̂︀𝑞ℎ · 𝑛)) 𝑑𝑒

162

where we have applied the identity in equation (7.3) in the second step. Regrouping yields our final
expression for Θℎ,

Θℎ =
∑︁

𝑒∈𝜀∘

∫︁

𝑒

[︂
({{𝑢ℎ}} − ̂︀𝑢ℎ) J𝑞ℎ · 𝑛K + J𝑢ℎ𝑛K ({{𝑞ℎ · 𝑛}} − ̂︀𝑞ℎ · 𝑛)

]︂
𝑑𝑒

+
∑︁

𝑒∈𝜀𝜕

∫︁

𝑒

[︂
𝑢ℎ (𝑞ℎ − ̂︀𝑞ℎ) · 𝑛 − ̂︀𝑢ℎ (𝑞ℎ · 𝑛)

]︂
𝑑𝑒.

(7.10)

Now it is easily verified that the choices

̂︀𝑞ℎ = {{𝑞ℎ}} − 𝑐11J𝑢ℎ𝑛K + 𝑐12J𝑞ℎ · 𝑛K,
̂︀𝑢ℎ = {{𝑢ℎ}} − 𝑐12 · J𝑢ℎ𝑛K − 𝑐22J𝑞ℎ · 𝑛K,

on the domain interior edges 𝜀∘, and

̂︀𝑞ℎ = 𝑞ℎ − 𝑐11𝑢ℎ𝑛,

̂︀𝑢ℎ = 0,

on the boundary edges 𝜀𝜕 , with 𝑐11, 𝑐22 ≥ 0 on all edges 𝜀, when substituted into equation (7.10),
yields

Θℎ =
∑︁

𝑒∈𝜀∘

∫︁

𝑒

(︂
𝑐22J𝑞ℎ · 𝑛K2 + 𝑐11J𝑢ℎ𝑛K2

)︂
𝑑𝑒+

∑︁

𝑒∈𝜀𝜕

∫︁

𝑒

𝑐11𝑢
2
ℎ 𝑑𝑒 ≥ 0,

and we have that the DG methods are well-posed.

163

7.3 Proof: well-posedness under different HDG fluxes
A well-posed choice of HDG flux depends on how we define 𝑞 when re-writing the elliptic PDE
as a first order system. If we choose to define 𝑞 ≡ −𝜅∇𝑢, we must choose 𝑞 = 𝑞 + 𝜏(𝑢 − 𝑢̂)𝑛
for well-posedness [191], if 𝜏 > 0. On the other hand, if we define 𝑞 ≡ 𝜅∇𝑢, we must choose
𝑞 = 𝑞 − 𝜏(𝑢− 𝑢̂)𝑛. We’ll prove the latter, because the same steps can be used to prove the former.

The first-order system
𝑞 − 𝜅∇𝑢 = 0,

−∇ · 𝑞 = 𝑓,

𝑢 = 𝑔𝐷,

𝑞 · 𝑛 = 𝑔𝑁 ,

(7.11)

Taking the usual approach of multiplying by a suitable test function, integrating by parts, and adding
the global condition ⟨𝑞 · 𝑛, 𝜇⟩𝜕𝒯ℎ

= 0 admits the following HDG weak form: we seek (𝑞ℎ, 𝑢ℎ, 𝑢̂ℎ) ∈
𝑉 𝑘

ℎ ×𝑊 𝑘
ℎ ×𝑀𝑘

ℎ such that

(𝑣, 𝜅−1𝑞ℎ)𝒯ℎ
+ (∇ · 𝑣, 𝑢ℎ) − ⟨𝑣 · 𝑛, 𝑢̂ℎ⟩𝜕𝒯ℎ

= 0,
(∇𝑤, 𝑞ℎ)𝒯ℎ

− ⟨𝑤, 𝑞ℎ · 𝑛⟩𝜕𝒯ℎ
= (𝑤, 𝑓)𝒯ℎ

,

⟨𝜇, 𝑞ℎ · 𝑛⟩𝜕𝒯ℎ∖Γ𝐷
+ ⟨𝜇, 𝑢̂ℎ − 𝑔𝐷⟩Γ𝐷

= ⟨𝜇, 𝑔𝑁 ⟩ ,
(7.12)

for all (𝑣, 𝑤, 𝜇) ∈ 𝑉 𝑘
ℎ ×𝑊 𝑘

ℎ ×𝑀𝑘
ℎ . For well-posedness, we need to show that (𝑞ℎ, 𝑢ℎ, 𝑢̂ℎ) = (0, 0, 0)

if 𝑓 = 𝑔𝐷 = 𝑔𝑁 = 0. Choosing (𝑣, 𝑤, 𝜇) = (𝑞ℎ, 𝑢ℎ, 𝑢̂ℎ) and 𝑞 = 𝑞ℎ − 𝜏(𝑢ℎ − 𝑢̂ℎ), we write the weak
form in a single equation as

(𝑞ℎ, 𝜅
−1𝑞ℎ)𝒯ℎ

+ (∇ · 𝑞ℎ, 𝑢ℎ)𝒯ℎ
− ⟨𝑞ℎ · 𝑛, 𝑢̂ℎ⟩𝜕𝒯ℎ

+ (∇𝑢ℎ, 𝑞ℎ)𝒯ℎ
− ⟨𝑢ℎ, 𝑞ℎ · 𝑛 − 𝜏(𝑢ℎ − 𝑢̂ℎ)⟩𝜕𝒯ℎ

⟨𝑞ℎ · 𝑛 − 𝜏(𝑢ℎ − 𝑢̂ℎ), 𝑢̂ℎ⟩𝜕𝒯ℎ
= 0

By integrating (∇𝑢ℎ, 𝑞ℎ)𝒯ℎ = −(∇ · 𝑞ℎ, 𝑢ℎ)𝒯ℎ
+ ⟨𝑢ℎ, 𝑞ℎ · 𝑛⟩𝜕𝒯ℎ

by parts and cancelling terms, we
have

(𝑞ℎ, 𝜅
−1𝑞ℎ)𝒯ℎ

+ ⟨𝜏(𝑢ℎ − 𝑢̂ℎ), (𝑢ℎ − 𝑢̂ℎ)⟩𝜕𝒯ℎ
= 0

from where we see that as long as 𝜏 > 0, the only solution is that (𝑞ℎ, 𝑢ℎ, 𝑢̂ℎ) = (0, 0, 0), and we have
shown well-posedness. From this reasoning, it should be clear that we need to modify the definition
of 𝑞 in order to arrive that the same result for the weak problem resulting from the alternative choice
𝑞 ≡ 𝜅∇𝑢.

164

7.4 A unifying abstraction for HDG assembly
(︂

𝒜loc 𝐵
𝐶 𝐷

)︂(︂
𝑈

𝑈̂

)︂
=
(︂
𝑅
𝐺

)︂
(7.13)

where 𝒜loc represents the element local system with respect to 𝑈 , which contains the solution 𝑢ℎ

and its gradient 𝑞ℎ. The first equation corresponds to the test functions 𝑣, 𝑤, and the second
corresponds to the test functions 𝜇. The operators 𝐵 and 𝐷 represent the local-to-face and face-to-
local couplings, respectively.

The process of static condensation, then, refers to eliminating the system in terms of one for 𝑈̂
alone, by means of the Schur complement. Namely,

𝑈 = 𝒜−1
loc

(︁
𝑅−𝐵𝑈̂

)︁
, (7.14)

(︀
𝐷 − 𝐶𝒜−1

loc𝐵
)︀

⏟ ⏞
K

𝑈̂ = 𝐺− 𝐶𝒜−1
loc𝑅⏟ ⏞

F

, (7.15)

where equation (7.15) describes the statically-condensed, globally-coupled linear system K𝑈̂ = F,
and equation (7.14) describes the elemental reconstruction of the solution 𝑈 from the skeleton
unknowns 𝑈̂ .

From a software perspective, we only need methods that assemble these operators on each ele-
ment. The rest of the HDG process can be shared between solvers.

Considering the model problem in Nguyen 2009, we can write the weak form suggestively as
⎛
⎝

(︀
𝑣, 𝜅−1𝑞ℎ

)︀
𝒯ℎ

− (∇ · 𝑣, 𝑢ℎ)𝒯ℎ
+ ⟨𝑣 · 𝑛, 𝑢̂ℎ⟩𝜕𝒯ℎ

− (𝑤, 𝑐𝑢ℎ)𝒯ℎ
+ (𝑤, ∇ · 𝑞ℎ)𝒯ℎ

+ ⟨𝑤, 𝜏𝑢ℎ⟩𝜕𝒯ℎ
⟨𝑤, (𝑐 · 𝑛 − 𝜏)𝑢̂ℎ⟩𝜕𝒯ℎ

⟨𝜇, 𝑞ℎ · 𝑛⟩𝜕𝒯ℎ
− ⟨𝜇, 𝜏𝑢ℎ⟩𝜕𝒯ℎ

⟨𝜇, (𝑐 · 𝑛𝑢̂ℎ)⟩𝜕𝒯ℎ
+ ⟨𝜇, −𝜏𝑢̂ℎ⟩𝜕𝒯ℎ

⎞
⎠
(︃

𝑄
𝑈

𝑈̂

)︃
=

(︃
0

(𝑤, 𝑓)𝒯ℎ

⟨𝜇, 𝑔𝑁 ⟩𝜕𝒯ℎ

)︃

(7.16)
To delineate the operators 𝐴, 𝐵, 𝐶, and 𝐷. However, in light of the fact that the weak form is
ultimately a scalar equation, it is apparent that the division into three separate equations, one for
𝑤, 𝑣, and 𝜇, is artificial, and we can write all three together as a single equation. Expanding the
solutions 𝑢ℎ =

∑︀
𝑗 𝑢𝑗𝜑𝑢,𝑗 , 𝑞ℎ =

∑︀
𝑗 𝑞𝑗𝜑𝑞,𝑗 and 𝑢̂ℎ =

∑︀
𝑗 𝜆𝑖𝜑𝜇,𝑗 , where the index 𝑗 indexes all system

degrees of freedom, we have the monolithic linear system A (before hybridization):

A𝑖𝑗 =
(︀
𝜑𝑞,𝑖, 𝜅

−1𝜑𝑞,𝑗

)︀
− (∇ · 𝜑𝑞,𝑖, 𝜑𝑢,𝑗) + ⟨𝜑𝑞,𝑖 · 𝑛, 𝜑𝜇,𝑗⟩

− (∇𝜑𝑢,𝑖 · 𝑐, 𝜑𝑢,𝑗) + (𝜑𝑢,𝑖, ∇ · 𝜑𝑞,𝑗) + (𝜑𝑢,𝑖, 𝜏𝜑𝑢,𝑗) + ⟨𝜑𝑢,𝑖, (𝑐 · 𝑛 − 𝜏)𝜑𝜇,𝑗⟩
+ ⟨𝜑𝜇,𝑖, 𝜑𝑞,𝑗 · 𝑛⟩ − ⟨𝜑𝜇,𝑖, 𝜏𝜑𝑢,𝑗⟩ + ⟨𝜑𝜇,𝑖, (𝑐 · 𝑛 − 𝜏), 𝜑𝜇,𝑗⟩

= (𝜑𝑢,𝑗 , 𝑓) + ⟨𝜑𝜇,𝑗 , 𝑔𝑁 ⟩ ,

(7.17)

where the vast majority of these terms will be zero in the matrix; the linear system exhibits the
usual block-diagonal pattern over each element in the upper right 𝒜loc block.

However, in [191] the flux unknown 𝑞ℎ is defined by 𝑞 ≡ −𝜅∇𝑢, which mimics a pure diffusive
flux in the sense of Fick’s Law, but inconvenient for when we just care about the gradient ∇𝑢.
Making the alternate definition 𝑞 ≡ ∇𝑢, we arrive instead at the first-order system

𝑞 − ∇𝑢 = 0,
𝜕𝑢

𝜕𝑡
+ ∇ · (𝜅𝑞) = 𝑓.

(7.18)

Unfortunately, from both a software and a formulation perspective, this choice of 𝑞 is not desirable.
First, in a resultant weak form, evaluating a term of the form (𝑣, ∇ · (𝜅𝑞))𝐾 can be inconvenient,
because computing the divergence of the basis function 𝜑𝑞,𝑗 is readily available, but not the product
𝜅𝜑𝑞,𝑗 ; further, in the case of a spatially variable 𝜅(𝑥), the product rule would have to be applied
to the divergence term, or an additional integration by parts would be required, resulting in a term
like (∇𝑣, 𝜅𝑞)𝐾 plus additional edge terms.

165

7.5 Time integration methods

In the body of the thesis, we did not give any details as to the time-marching schemes used. In this
section, we will describe the numerical methods used for evolving the systems of ordinary differential
equations (ODEs) that arise in the finite element discretizations considered in this thesis. A solvable
ODE with a particular solution is often referred to as an initial value problem, which consist of an
ordinary differential equation (ODE) and an initial condition (IC) written in the form

𝑦′(𝑡) = 𝑓(𝑦(𝑡)),
𝑦(𝑡0) = 𝑦0,

(7.19)

where 𝑓 : R → R.
The generalization of the initial value problem in equation (7.19) to a system of ODEs can be

written as
𝑑𝑦

𝑑𝑡
= 𝑓(𝑦(𝑡), 𝑡), 𝑦(0) = 𝑦0 (7.20)

where 𝑦(𝑡) ∈ R𝑁 is the state vector and 𝑟(𝑦) ∈ R𝑁 is a vector-valued function of 𝑦. In principle, the
general problem in equation (7.20) is the only case necessary to consider. However, because there
are practical concerns with associated with systems of ODEs that are irrelevant to scalar ODEs, we
use bolded vector notation to be explicit about the case to which we are referring.

An example of a concern specific to systems of ODEs occurs in the semi-discretization of PDEs
using finite element methods. In this case, semi-discretization often results in an ODE system of
the following form:

𝑀
𝑑𝑦

𝑑𝑡
= 𝑟(𝑦), 𝑦(0) = 𝑦0 (7.21)

where the matrix 𝑀 ∈ R𝑁×𝑁 is invertible, and the right-hand side 𝑟(𝑦) has the interpretation of
a residual. In classical CG-FEM schemes, this matrix may be non-trivial to invert and much more
computationally efficient to apply. In DG-FEM schemes, the matrix 𝑀 is often trivially invertible
on each element, and can efficiently be both written and implemented in the form of equation (7.20)
where we take

𝑓(𝑦(𝑡), 𝑡) = 𝑀−1𝑟(𝑦). (7.22)

It will usually be simpler, algebraically and implementation-wise, to write and solve problems of the
form in equation (7.20) rather than in equation (7.21).

7.5.0.1 Runge-Kutta Methods

The material in this section comes primarily from [36, 102, 103]. We will consider the Runge-Kutta
(RK) approach for advancing a state variable 𝑦𝑛 at 𝑡 to 𝑦𝑛+1 at 𝑡 + Δ𝑡. In the course of each
time-step, we consider 𝑠 stages, and the relations

𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡
𝑠∑︁

𝑖=1
𝑏𝑖𝑘𝑖

𝑘𝑖 = 𝑓

⎛
⎝𝑦𝑛 + Δ𝑡

𝑠∑︁

𝑗=1
𝑎𝑖𝑗𝑘𝑗 , 𝑡𝑛 + 𝑐𝑖Δ𝑡

⎞
⎠

(7.23)

determine the RK scheme. We will write 𝑦𝑛 as 𝑦0 and 𝑦𝑛+1 as 𝑦1 without loss of generality for
convenience. RK methods are specified by the coefficients 𝑎𝑖𝑗 , 𝑏𝑖, and 𝑐𝑖. A common and convenient

166

way of representing these coefficients is with the so-called “Butcher table”,

𝑐 𝐴
𝑏𝑇 =

𝑐1 𝑎11 𝑎12 · · · 𝑎1𝑠

𝑐2 𝑎21 𝑎22 · · · 𝑎2𝑠

...
...

. . .
...

𝑐𝑠 𝑎𝑠1 𝑎𝑠2 · · · 𝑎𝑠𝑠

𝑏1 𝑏2 · · · 𝑏𝑠

, (7.24)

in which the row vector contains the quadrature weights that specify how the state at the next
time-step 𝑦1 depends on the derivatives computed at the various stages. The matrix 𝐴 indicates
dependence of the stage values on the derivatives found at other stages. The vector 𝑐 contains the
positions within the time-step of the stage values.

Example 1. Forward Euler
0 0

1 (7.25)

𝑦1 = 𝑦0 + Δ𝑡 (1)⏟ ⏞
𝑏1

𝑘1

𝑘1 = 𝑓(𝑡0 + (0)⏟ ⏞
𝑐1

Δ𝑡, 𝑦0 + Δ𝑡 (0)⏟ ⏞
𝑎11

𝑘1)

yielding the familiar
𝑦1 = 𝑦0 + Δ𝑡𝑓(𝑦0).

Example 2. Midpoint rule method, RK22

0 0 0
1
2

1
2 0
0 1

(7.26)

Gives
𝑦1 = 𝑦0 + Δ𝑡((0)⏟ ⏞

𝑏1

𝑘1 + (1)⏟ ⏞
𝑏2

𝑘2)

𝑘1 = 𝑓(𝑡0 + (0)⏟ ⏞
𝑐1

Δ𝑡, 𝑦0 + Δ𝑡((0)⏟ ⏞
𝑎11

𝑘1 + (0)⏟ ⏞
𝑎12

𝑘2) = 𝑓(𝑡0, 𝑦0)

𝑘2 = 𝑓

(︂
𝑡0 + 1

2Δ𝑡, 𝑦0 + Δ𝑡
(︂

1
2𝑘1 + 0𝑘2

)︂)︂
= 𝑓

(︂
𝑡0 + 1

2Δ𝑡, 𝑦0 + Δ𝑡12𝑓(𝑡0, 𝑦0)
)︂

yielding

𝑦1 = 𝑦0 + Δ𝑡𝑓
(︂
𝑡0 + 1

2Δ𝑡, 𝑦0 + Δ𝑡12𝑓(𝑡0, 𝑦0)
)︂
.

Example 3. Backward Euler
1 1

1 (7.27)

Gives
𝑦1 = 𝑦0 + Δ𝑡𝑘1

𝑘1 = 𝑓(𝑡0 + Δ𝑡, 𝑦0 + Δ𝑡𝑘1),

yielding a coupled system. However, we can simplify the relations algebraically, since the first
equation implies

𝑘1 = 𝑦1 − 𝑦0

Δ𝑡 ,

167

which can be substituted into the second equation to yield

𝑦1 = 𝑦0 + Δ𝑡𝑓(𝑡1, 𝑦1)

which must be solved implicitly for 𝑦1.

In Example 1 and Example 2, the starting state could be used to generate 𝑘1 because the first
row 𝑎1𝑗 = 0. Then 𝑘2 could be computed directly from 𝑘1, since the diagonal of 𝐴 in each case was
zero. These properties made the schemes explicit.

The 𝐴 matrix of the Butcher table determines the implicit or explicit nature of the RK method.
Whenever the matrix 𝐴 is lower triangular (zeros on and above the diagonal) the current stage value
only depends on past stage values, and the scheme will be explicit. However, in the general case of a
completely non-zero matrix 𝐴, the relations in equation (7.23) are coupled and the entire algebraic
system must be solved simultaneously. If 𝐴 contains entries on or above the diagonal, the scheme
will be implicit. Common classifications based on the matrix 𝐴 of the Butcher table are:

• Implicit Runge-Kutta (IRK) methods (in the general case) have a full 𝐴 matrix.

• Diagonally implicit Runge-Kutta (DIRK) methods have 𝑎𝑖𝑗 = 0 for 𝑖 < 𝑗. If all diagonal
elements are equal (𝑎𝑖𝑖 = 𝛾, 𝑖 = 1, . . . , 𝑠), the scheme is called a singly diagonal implicit
Runge-Kutta (SDIRK) method.

• Explicit Runge-Kutta (ERK) methods have 𝑎𝑖𝑗 = 0 for 𝑖 ≤ 𝑗.

• Low-storage explicit Runge-Kutta (LSERK) methods are explicit methods where all stage
values 𝑘𝑖 depend only on 𝑘𝑖−1; when this is the case, all stage values 𝑘𝑖 not need to be stored
and can instead be implemented as a running sum.

depicted in Figure 7-1.

c

bT

IRK

aii

c

bT

DIRK

aii

c

bT

ERK

aii

c

bT

LSERK

aii

Figure 7-1: Nonzero entries in the matrix 𝐴 of the Butcher table for different RK methods.

Example 4. Classical fourth-order ERK (RK4)

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

(7.28)

Example 5. Second-order DIRK(2,2) [196].

𝛼 𝛼 0
1 1 − 𝛼 𝛼

1 − 𝛼 𝛼

(7.29)

168

where 𝛼 = 1 +
√

2/2. The scheme is evaluated as

𝑘1 = 𝑓 (𝑡𝑛 + 𝛼Δ𝑡, 𝑦𝑛 + Δ𝑡𝛼𝑘1) , (7.30)
𝑘2 = 𝑓 (𝑡𝑛 + Δ𝑡, 𝑦𝑛 + Δ𝑡 ((1 − 𝛼)𝑘1 + 𝛼𝑘2)) , (7.31)

𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡
(︂

1
2𝑘1 + 1

2𝑘2

)︂
, (7.32)

where we solve equation (7.30) for 𝑘1, use its value to solve equation (7.31) for 𝑘2, then evaluate 𝑦1
with equation (7.32). The lower-triangular nature of 𝐴 for DIRK schemes means we can solve for
each 𝑘𝑖 at each stage, rather than all of them at once.

Example 6. Third-order SDIRK(3,3) method [102].

𝛾 𝛾 0
1 − 𝛾 1 − 2𝛾 𝛾

1
2

1
2

𝛾 = 3 ±
√

3
6 (7.33)

Example 7. Third-order IRK (Radau IA)

0 1
4 − 1

4
2
3

1
4

5
12

1
4

3
4

(7.34)

The scheme is evaluated as

𝑘1 = 𝑓

(︂
𝑡𝑛, 𝑦𝑛 + Δ𝑡

(︂
1
4𝑘1 − 1

4𝑘2

)︂)︂

𝑘2 = 𝑓

(︂
𝑡𝑛 + 2

3Δ𝑡, 𝑦𝑛 + Δ𝑡
(︂

1
4𝑘1 + 5

12𝑘2

)︂)︂

𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡
(︂

1
4𝑘1 + 3

4𝑘2

)︂
(7.35)

Here, the first two equations must be solved simultaneously for 𝑘1 and 𝑘2, a potentially expensive
operation. Only once the coupled system has been solved can 𝑦𝑛+1 be computed.

7.5.0.2 RK Methods for systems of ODEs

Then the RK method for the system ODEs in equation (7.20) with state vector 𝑦 can be written as

𝑀𝑘𝑖 = 𝑟

⎛
⎝𝑡𝑛 + 𝑐𝑖Δ𝑡, 𝑦𝑛 + Δ𝑡

𝑠∑︁

𝑗=1
𝑎𝑖𝑗𝑘𝑗

⎞
⎠ (7.36)

𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡
𝑠∑︁

𝑖=1
𝑏𝑖𝑘𝑖 (7.37)

Definition from [206].
Discretization of a linear PDE by method of lines will often result in a matrix equation which

contains both a time derivative term and a matrix operator representing the differential operators.
For example,

𝑀
𝜕𝑢

𝜕𝑡
+𝐴𝑢 = 𝑓 , (7.38)

where equation (7.37) can be applied by noting that 𝑟(𝑦) = 𝑓 −𝐴𝑢.
For DG-FEM methods in particular, it is often the case that 𝑀 represents an elemental mass

169

matrix, which can be inverted on each element and applied to the whole equation algebraically,
leading to a semidiscrete problem of the form

𝑑𝑢ℎ

𝑑𝑡
= ℒℎ(𝑡,𝑢ℎ), (7.39)

which is the standard way to handle time-marching for DG-FEM. Further details can be found in
[44, 110].

Example 8. Fourth-order ERK method for the semidiscrete problem equation (7.39).
We use the Butcher table in Example 4 to yield the four-stage explicit method

𝑘1 = ℒℎ(𝑡𝑛, 𝑢𝑛
ℎ),

𝑘2 = ℒℎ

(︂
𝑡𝑛 + 1

2Δ𝑡, 𝑢𝑛
ℎ + 1

2Δ𝑡𝑘1

)︂
,

𝑘3 = ℒℎ

(︂
𝑡𝑛 + 1

2Δ𝑡, 𝑢𝑛
ℎ + 1

2Δ𝑡𝑘2

)︂
,

𝑘4 = ℒℎ (𝑡𝑛 + Δ𝑡, 𝑢𝑛
ℎ + Δ𝑡𝑘3) ,

𝑢𝑛+1
ℎ = 𝑢𝑛

ℎ + 1
6Δ𝑡 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) .

(7.40)

By using different quadrature points in time and keeping a running sum, we can improve the
ERK method in Example 8.

Example 9. Fourth-order five-stage low-storage ERK method (LSRK4).

𝑝0 = 𝑢𝑛
ℎ,

𝑖 = 1, . . . , 5 :
{︃
𝑘𝑖 = 𝑎𝑖𝑘𝑖−1 + Δ𝑡ℒℎ (𝑡𝑛 + 𝑐𝑖Δ𝑡, 𝑝𝑖−1) ,
𝑝𝑖 = 𝑝𝑖−1 + 𝑏𝑖𝑘𝑖,

𝑢𝑛+1
ℎ = 𝑝5,

(7.41)

where the coefficients 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are given in [110], p.64.

Example 10. DIRK(2,2) for the semidiscrete problem

𝑑𝑢ℎ

𝑑𝑡
= 𝐴𝑢ℎ (7.42)

𝑢(1) = 𝐴
(︁
𝑢𝑛

ℎ + Δ𝑡𝛼𝑢(1)
)︁

𝑢(1) = 𝐴𝑢𝑛
ℎ + Δ𝑡𝛼𝐴𝑢(1)

𝑢(1) − Δ𝑡𝛼𝐴𝑢(1) = 𝐴𝑢𝑛
ℎ

𝑢(1)

𝛼Δ𝑡 −𝐴𝑢(1) = 𝐴𝑢𝑛
ℎ

𝛼Δ𝑡
𝑘1 = ℒℎ (𝑡𝑛 + 𝛼Δ𝑡, 𝑢𝑛

ℎ + Δ𝑡𝛼𝑘1)

(7.43)

7.5.0.3 IMEX-RK Methods

7.5.0.4 General IMEX methods

This exposition is cursory; for a more in-depth discussion, we refer the reader to [14]. While section
7.5.0.1 considered the ordinary differential equation in equation (7.19), the material in this section

170

is motivated by the challenges of time-marching for PDEs; therefore we consider the nonlinear
convection diffusion equation

𝜕𝑢

𝜕𝑡
= 𝑢

𝜕𝑢

𝜕𝑥
+ 𝜈

𝜕

𝜕𝑥

(︂
𝜕𝑢

𝜕𝑥

)︂
(7.44)

with 𝜈 > 0 and appropriate initial and boundary conditions. The computational issue with this PDE
is that the convective (hyperbolic) term is nonlinear but generally not stiff, whereas the diffusion
term is linear but stiff. An explicit time-marching scheme would have severe time-step restrictions
on Δ𝑡 due to CFL requirements imposed by the linear diffusion term, and an implicit discretization
would require a nonlinear solver due to the nonlinearity of the convective term. More generally, for
PDEs of the form

𝑢𝑡 = 𝑓(𝑢) + 𝑔(𝑢) (7.45)

where 𝑓 corresponds to a non-stiff term and 𝑔 corresponds to a stiff term, IMEX schemes apply an
implicit discretization for 𝑔 and an explicit one for 𝑓 . An IMEX formulation for equation (7.45) is
as follows

̂︀𝑘1 = 𝑓(𝑢𝑛
ℎ)

𝑖 = 1, . . . , 𝑠 :
⎧
⎪⎨
⎪⎩

solve 𝑘𝑖 = 𝑔(𝑢𝑖
ℎ)

where 𝑢𝑖
ℎ = 𝑢𝑛

ℎ + Δ𝑡
∑︀𝑖

𝑗=1 𝑎𝑖𝑗𝑘𝑗 + Δ𝑡
∑︀𝑖

𝑗=1 ̂︀𝑎𝑖+1,𝑗
̂︀𝑘𝑗

evaluate ̂︀𝑘𝑖+1 = 𝑓(𝑢𝑖
ℎ)

𝑢𝑛+1
ℎ = 𝑢𝑛

ℎ + Δ𝑡
𝑠∑︁

𝑗=1
𝑏𝑗𝑘𝑗 + Δ𝑡

𝑠+1∑︁

𝑗=1

̂︀𝑏𝑗
̂︀𝑘𝑗 .

(7.46)

The last equation in equation (7.46) is sometimes referred to as the “recombination” step. IMEX
schemes in [14] are described by a triplet: (implicit stages, explicit stages, time order).

7.5.0.5 IMEX methods in [246]

We consider a subset of IMEX schemes with a specific set of properties. Consider the semidiscrete
problem

𝑑𝑢ℎ

𝑑𝑡
= 𝑓 𝑖𝑚(𝑢ℎ) + 𝑓𝑒𝑥(𝑢ℎ) (7.47)

and the IMEX scheme for stages 𝑖 = 0, . . . , 𝑠− 1, where the stage values of 𝑢𝑖
ℎ are (starting from 𝑢𝑘

ℎ

𝑢𝑖
ℎ = 𝑢𝑘

ℎ + Δ𝑡
𝑖∑︁

𝑗=0
𝑎𝑖𝑚

𝑖𝑗 𝑓
𝑖𝑚(𝑢𝑗

ℎ) + Δ𝑡
𝑖−1∑︁

𝑗=0
𝑎𝑒𝑥

𝑖𝑗 𝑓
𝑒𝑥(𝑢𝑗

ℎ) (7.48)

which can be suggestively written as

𝑢𝑖
ℎ − Δ𝑡𝑎𝑖𝑚

𝑖𝑖 𝑓
𝑖𝑚(𝑢𝑖

ℎ) = 𝑢𝑘
ℎ + Δ𝑡

𝑖−1∑︁

𝑗=0

(︁
𝑎𝑖𝑚

𝑖𝑗 𝑓
𝑖𝑚(𝑢𝑗

ℎ) + 𝑎𝑒𝑥
𝑖𝑗 𝑓

𝑒𝑥(𝑢𝑗
ℎ)
)︁

(7.49)

to show that the left hand side is discretized implicitly and must be solved, whereas the right-hand
side can be evaluated. The value of 𝑢𝑘+1

ℎ is then computed as

𝑢𝑘+1
ℎ = 𝑢𝑘

ℎ + Δ𝑡
𝑠−1∑︁

𝑖=0
𝑏𝑖

(︀
𝑓 𝑖𝑚(𝑢𝑖

ℎ) + 𝑓𝑒𝑥(𝑢𝑖
ℎ)
)︀

(7.50)

171

where the coefficients 𝑐, 𝐴𝑒𝑥, 𝐴𝑖𝑚, and 𝑏 are given in the following explicit and implicit Butcher
tables:

0 0 · · · · · · 0
𝑐1 𝑎𝑒𝑥

1,0 0 · · · 0
...

...
. 0

𝑐𝑠−1 𝑎𝑒𝑥
𝑠−1,0 · · · 𝑎𝑒𝑥

𝑠−1,𝑠−2 0
𝑏0 · · · 𝑏𝑠−2 𝑎

0 0 · · · · · · 0
𝑐1 𝑎𝑖𝑚

1,0 𝑎 · · · 0
...

...
. 0

𝑐𝑠−1 𝑎𝑖𝑚
𝑠−1,0 · · · 𝑎𝑖𝑚

𝑠−1,𝑠−2 𝑎

𝑏0 · · · 𝑏𝑠−2 𝑎

(7.51)

These schemes often have 𝑏𝑖 = 𝑏𝑒𝑥
𝑖 = 𝑏𝑖𝑚

𝑖 , with the exception of IMEX (1,1,1).
Some IMEX schemes (like IMEX(1,2,2) in the code) have 𝑐𝑖 such that the last entry is not 1.

This means that the IMEX scheme does not evolve the PDE from timestep 𝑘 to the next time step
𝑘 + 1. This complicates things like boundary condition implementation and such schemes should
practically be avoided. We assume that schemes have 𝑐𝑖 with a final entry of 1.

Example 11. IMEX(1,1,1).
Here the implicit and explicit Butcher tables are, respectively:

0 0 0
1 0 1

0 1

0 0 0
1 1 0

1 0
(7.52)

where 𝑏𝑖𝑚
𝑖 ̸= 𝑏𝑒𝑥

𝑖 , but yields the scheme

𝑢𝑘+1
ℎ = 𝑢𝑘

ℎ + Δ𝑡
(︀
𝑓𝑒𝑥(𝑢𝑘

ℎ) + 𝑓 𝑖𝑚(𝑢𝑘+1
ℎ)

)︀
(7.53)

Example 12. IMEX(1,2,1).
which can be written out as the scheme

𝑢1
ℎ = 𝑢𝑘

ℎ + Δ𝑡
(︀
𝑓𝑒𝑥

(︀
𝑢𝑘

ℎ

)︀
+ 𝑓 𝑖𝑚

(︀
𝑢1

ℎ

)︀)︀
,

𝑢𝑘+1
ℎ = 𝑢𝑘

ℎ + Δ𝑡
(︀
𝑓𝑒𝑥

(︀
𝑢1

ℎ

)︀
+ 𝑓 𝑖𝑚

(︀
𝑢1

ℎ

)︀)︀
.

(7.54)

7.5.0.6 Linear multi-step methods

The material in this section is largely derived from and inspired by the lecture material in [196]. For
the system of ODEs in equation (7.20), a linear 𝑘-step method is defined as

𝑘∑︁

𝑗=0
𝛼𝑗𝑦𝑛+𝑗 = Δ𝑡

𝑘∑︁

𝑗=0
𝛽𝑗𝑟(𝑦𝑛+𝑗), 𝑛 = 0, 1, . . . , 𝑁 − 𝑘, (7.55)

where 𝑦𝑛−𝑘 is the unknown of the system and 𝑦𝑛+𝑗 are approximations to 𝑦(𝑡𝑛+𝑗). The coefficient
𝛼𝑘 = 1, and the other coefficients have to be determined. The method is implicit if 𝛽𝑘 ̸= 0, and is
explicit if 𝛽𝑘 = 0. These methods are not self-starting, and need the approximations 𝑦0,𝑦1, . . . ,𝑦𝑘−1
to start. Different choices of coefficient sets (𝛼𝑗 , 𝛽𝑗), 0 ≤ 𝑗 ≤ 𝑘 lead to different multi-step methods.

7.5.0.7 Backward difference formula (BDF) methods

BDF methods are characterized by 𝛽𝑗 = 0 for 𝑗 < 𝑘. BDF methods of order 𝐽 are implicit, and
require the solution of a linear or non-linear system for the unknown 𝑦𝑛+1. They can be written in
a more specific way than in equation (7.55):

𝛾0𝑦
𝑛+1 −

∑︀𝐽−1
𝑖=0

(︀
𝛼𝑖𝑦

𝑛−𝑖
)︀

Δ𝑡 = 𝑟
(︀
𝑦𝑛+1, 𝑡𝑛+1

)︀
(7.56)

where the leading coefficient 𝛾0 = 1. BDF methods are 𝐴-stable up to order 2.

Example 13. BDF schemes for scalar ODE equation (7.19).

172

BDF1 (backward Euler):
𝑦𝑛+1 − 𝑦𝑛

Δ𝑡 = 𝑓(𝑦𝑛+1, 𝑡𝑛+1) (7.57)

where we see that 𝛾0 = 𝛼0 = 1
BDF2:

𝑦𝑛+2 − 4
3𝑦𝑛+1 + 1

3𝑦𝑛

Δ𝑡 = 2
3𝑓(𝑦𝑛+2, 𝑡𝑛+2) (7.58)

7.5.0.8 Implementations

A clean interface for systems of ODEs from a software engineering perspective is to have a time
integrator take in a callable function which can evaluate the RHS.

7.5.0.9 DIRK methods

In this section, we provide additional information pertaining specifically to DIRK schemes; a more
detailed summary is given in the review paper [123].

We start from the vector form of equation (7.23), making a suggestive change of notation to 𝑢,
since our primary application of interest will be stiff systems of ODEs that arise as a result of a
discretization of a PDE.

𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡
𝑠∑︁

𝑖=1
𝑏𝑖𝑘𝑖

𝑘𝑖 = ℒℎ

⎛
⎝𝑢𝑛 + Δ𝑡

𝑠∑︁

𝑗=1
𝑎𝑖𝑗𝑘𝑗 , 𝑡𝑛 + 𝑐𝑖Δ𝑡

⎞
⎠

(7.59)

Using the structure of the matrix 𝐴 in Butcher tables for DIRK schemes, we can separate the implicit
portion of the computation

𝑘𝑖 = ℒℎ

⎛
⎝𝑢𝑛 + Δ𝑡

𝑖−1∑︁

𝑗=1
𝑎𝑖𝑗𝑘𝑗 + Δ𝑡𝑎𝑖𝑖𝑘𝑖, 𝑡𝑛 + 𝑐𝑖Δ𝑡

⎞
⎠

= ℒℎ (𝑥𝑖 + 𝑎𝑖𝑖Δ𝑡𝑘𝑖, 𝑡𝑛 + 𝑐𝑖Δ𝑡) ,

(7.60)

where 𝑥𝑖 = 𝑢𝑛 + Δ𝑡
∑︀𝑖−1

𝑗=1 𝑎𝑖𝑗𝑘𝑗 , and can be computed from data. If the operator ℒℎ is nonlinear,
no further simplification can be written. However, if the operator ℒℎ is linear, we can isolate the
implicit problem further from the data

𝑘𝑖 = 𝑎𝑖𝑖Δ𝑡ℒℎ (𝑘𝑖, 𝑡𝑛 + 𝑐𝑖Δ𝑡) + ℒℎ (𝑥𝑖, 𝑡𝑛 + 𝑐𝑖Δ𝑡)

yielding the problem

1
𝑎𝑖𝑖Δ𝑡

𝑘𝑖 − ℒℎ (𝑘𝑖, 𝑡𝑛 + 𝑐𝑖Δ𝑡) = 1
𝑎𝑖𝑖Δ𝑡

ℒℎ (𝑥𝑖, 𝑡𝑛 + 𝑐𝑖Δ𝑡) . (7.61)

Although the form of equation (7.61) matches the residual form of general RK methods, an imple-
mentation should take as initialization a function which takes as input the constants 𝑎𝑖𝑖 and Δ𝑡, as
well as the data 𝑢𝑛 and 𝑥𝑖 and returns the solution to the implicit problem in equation (7.61). We
have to store the stage values 𝑘𝑖 in order to compute 𝑥𝑖.

173

7.5.0.10 Numerical experiments

We take as a numerical test case the differential equation

𝑑𝑦

𝑑𝑡
= 𝑡

√
𝑦 (7.62)

with initial condition 𝑡0 = 0 and 𝑦(0) = 𝑦0 = 1; it is straightforward to verify that the analytical
solution to this ODE is

𝑦(𝑡) = 1
16
(︀
𝑡2 + 4

)︀2
,

to which we compare the numerical solution at the final time 𝑇 = 10. The residual function
ℒℎ(𝑦, 𝑡) = 𝑡

√
𝑦 is sufficient to construct an explicit RK scheme of choice.

Deriving an implicit scheme requires some more work. Since the operator ℒℎ is nonlinear, we
have to solve the nonlinear equation (7.60) at each time stage, namely,

𝑘𝑖 = ℒℎ

⎛
⎝𝑦𝑛 + Δ𝑡

𝑖−1∑︁

𝑗=1
𝑎𝑖𝑗𝑘𝑗 + 𝑎𝑖𝑖Δ𝑡𝑘𝑖, 𝑡𝑛 + 𝑐𝑖Δ𝑡

⎞
⎠ ,

corresponding to the nonlinear equation

𝑓(𝑘𝑖) = 𝑘𝑖 − 𝑡*
√︀
𝑥𝑖 + 𝑎𝑖𝑖Δ𝑡𝑘𝑖 = 0, (7.63)

where the data 𝑥𝑖 = 𝑦𝑛 +
∑︀𝑖−1

𝑗=1 𝑎𝑖𝑗𝑘𝑗 and the time 𝑡* = 𝑡𝑛 + 𝑐𝑖Δ𝑡 are both known. The nonlinear
equation (7.63) can be solved by using a Newton iteration, advancing

𝑘
(𝑚+1)
𝑖 = 𝑘

(𝑚)
𝑖 −

𝑓
(︁
𝑘

(𝑚)
𝑖

)︁

𝑓 ′
(︁
𝑘

(𝑚)
𝑖

)︁ , with 𝑓 ′(𝑘𝑖) = 1 − 1
2 𝑡

* (𝑥𝑖 + 𝑎𝑖𝑖Δ𝑡𝑘𝑖)−1/2 · 𝑎𝑖𝑖Δ𝑡 (7.64)

and where the integer 𝑚 corresponds to Newton iteration.

The results for different ERK and DIRK methods are shown in figure 7-2. All expected conver-
gence rates are obtained.

10−1 100

∆t

10−10

10−8

10−6

10−4

10−2

100

102

|y h
−
y
(T

)|

Convergence of ERK methods

RK22

SSPRK3

LSRK4

DOPRI45

Fehl78

slope p

10−3 10−2 10−1 100

∆t

10−8

10−6

10−4

10−2

100

102

|y h
−
y
(T

)|

Convergence of SDIRK methods

SDIRK22

SDIRK33

SDIRK45

slope p

Figure 7-2: Convergence of ERK (left) and DIRK (right) solvers for the scalar ODE test problem
in equation 7.62. Comparison slopes are 5 and 7 for the DOPRI45 and Fehlenberg78 schemes,
respectively.

174

7.5.0.11 A prototypical “stiff” ODE

We take as a numerical test case the differential equation

𝑑𝑦

𝑑𝑡
= −25𝑦 (7.65)

with initial condition 𝑡0 = 0 and 𝑦(0) = 1. Equation 7.65 has the exact solution

𝑦(𝑡) = 𝑒−25𝑡,

and has the behavior that 𝑦(𝑡) → 0 as 𝑡 → ∞. In this case, the ODE is linear, and the implicit time
integration scheme can be written in closed form without need for a Newton iteration. Equation
(7.60) can be simplified using the linearity of the residual ℒℎ(𝑦, 𝑡) = −25𝑦 to yield

𝑘𝑖 = 1
1 + 25𝑎𝑖𝑖Δ𝑡

ℒℎ(𝑥𝑖, 𝑡
*)

at each time integration stage, where the data 𝑥𝑖 = 𝑦𝑛 +
∑︀𝑖−1

𝑗=1 𝑎𝑖𝑗𝑘𝑗 and the time 𝑡* = 𝑡𝑛 + 𝑐𝑖Δ𝑡
are both known. The numerical solution 𝑦ℎ(𝑡) is given in figure 7-3. At coarse timestep sizes, the

0.0 0.2 0.4 0.6 0.8 1.0

t

0.0

0.2

0.4

0.6

0.8

1.0

y h
(t

)

∆t = 1/13

SDIRK22

RK22

exact solution

0.0 0.2 0.4 0.6 0.8 1.0

t

0.0

0.2

0.4

0.6

0.8

1.0

y h
(t

)

∆t = 1/25

SDIRK22

RK22

exact solution

Figure 7-3: Numerical solution of stiff ODE in equation (7.65) using RK22 and SDIRK22.

implicit time integration scheme vastly outperforms the explicit scheme. However, as the timestep
is refined, the performance of the explicit and implicit scheme becomes comparable.

175

7.6 Convergence history for the pure Neumann problem
We present the error and convergence history in 𝐿2-norm corresponding to the plots in Figure 2-21
in Table 7.1 for the numerical solution of the pure Neumann problem using the method of subspace
projection for polynomial orders 𝑝 = 1, . . . , 6. All results are reported in the asymptotic regime, be-
fore errors associated with floating point precision begin to pollute the convergence order. Optimal
convergence of 𝑝+ 1 for both 𝑢ℎ and 𝑞ℎ were achieved in all test cases for all dimensions.

Degree Mesh ||𝑢 − 𝑢ℎ||𝐿2(Ω) ||𝑞 − 𝑞ℎ||𝐿2(Ω)
𝑝 𝑁𝐾 error order error order

1 1 1.323e+01 - 1.180e+01 -
4 2.077e+00 2.67 3.348e+00 1.82
16 9.620e-01 1.11 1.785e+00 0.91
64 2.134e-01 2.17 3.911e-01 2.19
256 5.828e-02 1.87 1.044e-01 1.91
1024 1.514e-02 1.94 2.685e-02 1.96
4096 3.851e-03 1.97 6.801e-03 1.98
16384 9.709e-04 1.99 1.711e-03 1.99
65536 2.437e-04 1.99 4.291e-04 2.00

2 1 4.377e+00 1.77 7.488e+00 1.76
4 1.268e+00 1.79 2.488e+00 1.59
16 4.212e-02 4.91 1.270e-01 4.29
64 2.740e-02 0.62 5.035e-02 1.33
256 3.642e-03 2.91 6.592e-03 2.93
1024 4.668e-04 2.96 8.395e-04 2.97
4096 5.901e-05 2.98 1.058e-04 2.99
16384 7.415e-06 2.99 1.327e-05 2.99
65536 9.292e-07 3.00 1.662e-06 3.00

3 1 1.370e+00 2.56 2.964e+00 2.60
4 1.056e-01 3.70 3.524e-01 3.07
16 5.215e-02 1.02 9.719e-02 1.86
64 2.667e-03 4.29 4.912e-03 4.31
256 1.748e-04 3.93 3.185e-04 3.95
1024 1.114e-05 3.97 2.019e-05 3.98
4096 7.019e-07 3.99 1.269e-06 3.99
16384 4.404e-08 3.99 7.955e-08 4.00

4 1 1.584e+00 3.64 3.446e+00 3.67
4 1.858e-01 3.09 3.587e-01 3.26
16 1.330e-03 7.13 3.375e-03 6.73
64 2.086e-04 2.67 3.848e-04 3.13
256 6.778e-06 4.94 1.240e-05 4.96
1024 2.151e-07 4.98 3.919e-07 4.98
4096 6.767e-09 4.99 1.230e-08 4.99
16384 2.121e-10 5.00 3.853e-10 5.00

5 1 2.630e-01 4.40 8.666e-01 4.51
4 9.138e-03 4.85 2.661e-02 5.03
16 1.106e-03 3.05 2.060e-03 3.69
64 1.362e-05 6.34 2.516e-05 6.36
256 2.200e-07 5.95 4.034e-07 5.96
1024 3.482e-09 5.98 6.364e-09 5.99
4096 5.470e-11 5.99 9.984e-11 5.99

6 1 5.639e-01 4.98 1.158e+00 4.84
4 1.217e-02 5.53 2.323e-02 5.64
16 1.995e-05 9.25 4.649e-05 8.96
64 7.628e-07 4.71 1.411e-06 5.04
256 6.134e-09 6.96 1.127e-08 6.97
1024 4.846e-11 6.98 8.880e-11 6.99

Table 7.1: Convergence history for the singular pure Neumann problem using subspace projection
(2D).

176

7.7 Derivation of free-surface corrector boundary conditions
The conceptual basis of the projection scheme is the idea that we can define a “total effective
nonhydrostatic pressure” which has component due to the free-surface 𝜂 and a component due to
the nonhydrostatic pressure 𝑝′.

P′
eff = 𝑝′ + 𝑔𝜂, (7.66)

which explains the terms ∇P′ = ∇𝑝′ + 𝑔∇𝜂 in the momentum equation (3.1). The free-surface
corrector and intermediate projection step enforces the free-surface continuity equation and projects
out the velocity divergence due to the free-surface pressure 𝑔𝜂. The pressure-corrector step projects
out the velocity divergence due to the nonhydrostatic pressure 𝑝′.

To enforce the free-surface evolution equation (3.3), we approximate 𝑢𝑘+1 by ¯̄𝑢𝑘+1 = 𝑢̄𝑘+1 −
𝑎Δ𝑡∇𝑥𝑦

(︀
𝑔𝛿𝜂𝑘+1)︀:

𝜂𝑘+1

𝑎Δ𝑡 + ∇ ·
∫︁ 𝜂

−𝐻

(︀
𝑢̄𝑘+1 − 𝑎Δ𝑡∇𝑥𝑦

(︀
𝑔𝛿𝜂𝑘+1)︀)︀ 𝑑𝑧 = 𝜂𝑘

𝑎Δ𝑡

⇒ 𝛿𝜂𝑘+1

𝑎Δ𝑡 − ∇ ·
(︀
𝑎Δ𝑡𝑔

[︀
𝜂𝑘 +𝐻

]︀
∇𝛿𝜂𝑘+1)︀ = −∇ ·

∫︁ 𝜂

−𝐻

𝑢̄𝑘+1 𝑑𝑧.

(7.67)

For a Dirichlet boundary condition on the velocity 𝑢𝑘+1, making use of the definition of ¯̄𝑢𝑘+1, we
have

∇𝛿𝜂𝑘+1 = 𝑢̄𝑘+1 − ¯̄𝑢𝑘+1

𝑎Δ𝑡𝑔

⇒ 𝑔𝑁,𝛿𝜂 = ∇𝛿𝜂𝑘+1 · 𝑛 = 1
𝑎Δ𝑡𝑔

(︀
𝑢̄𝑘+1 − 𝑔𝐷,𝑢

)︀
· 𝑛

(7.68)

which enforces that the horizontal component of the second intermediate velocity ¯̄𝑢𝑘+1 has the
value 𝑔𝐷,𝑢 on the boundary Γ𝐷 after the intermediate updates1. In the case where we were able to
enforce that 𝑢̄𝑘+1 = 𝑔𝐷,𝑢 exactly, this reduces to a zero-Neumann condition; however, since HDG
methods may only impose boundary conditions weakly through the edge-space 𝑀𝑝

ℎ , the value 𝑔𝑁,𝛿𝜂

may not be exactly zero numerically. However, since this condition is enforced only at the surface,
the difference can only be enforced in a depth-averaged sense, and it may be better to take an exact
zero-Neumann condition and rather enforce the condition on 𝑢̄𝑘+1 exactly instead.

The first velocity predictor is like a classical projection method—use 𝑝′,𝑘 instead of 𝑝′,𝑘+1.

1The vertical component of the second intermediate velocity ¯̄𝑢𝑘+1 is not corrected by the free-surface updates.

177

7.8 2D Projection method reduction
Nonhydrostatic equations.
Velocity predictor:

𝜕𝑢̄𝑘+1

𝜕𝑡
− 𝜕

𝜕𝑥

(︂
𝜈𝑥
𝜕𝑢̄𝑘+1

𝜕𝑥

)︂
− 𝜕

𝜕𝑧

(︂
𝜈𝑧
𝜕𝑢̄𝑘+1

𝜕𝑧

)︂
= −𝜕𝑝′,𝑘

𝜕𝑥
− 𝑔

𝜕𝜂𝑘

𝜕𝑥
− 𝑔

𝜌0

∫︁ 𝜂𝑘

𝑧

𝜕𝜌′,𝑘

𝜕𝑥
𝑑𝑧′ − ∇ ·

(︀
𝑢𝑘 ⊗ 𝑢𝑘

)︀
− 1
𝜌0
𝑓𝑥

𝜕𝑤̄𝑘+1

𝜕𝑡
− 𝜕

𝜕𝑥

(︂
𝜈𝑥
𝜕𝑤̄𝑘+1

𝜕𝑥

)︂
− 𝜕

𝜕𝑧

(︂
𝜈𝑧
𝜕𝑤̄𝑘+1

𝜕𝑧

)︂
= −𝜕𝑝′,𝑘

𝜕𝑧
− ∇ ·

(︀
𝑣𝑘 ⊗ 𝑢𝑘

)︀
− 1
𝜌0
𝑓𝑧

(7.69)
Free-surface correction:

𝛿𝜂𝑘+1

𝑎Δ𝑡 − ∇ ·
(︀
𝑎Δ𝑡𝑔

(︀
𝜂𝑘 +𝐻

)︀
∇𝛿𝜂𝑘+1)︀ = −∇ ·

∫︁ 𝜂𝑘

−𝐻

𝑢̄𝑘+1 𝑑𝑧 (7.70)

Intermediate updates:

¯̄𝑢𝑘+1 = 𝑢̄𝑘+1 − 𝑎Δ𝑡𝑔 𝜕
𝜕𝑥
𝛿𝜂𝑘+1 = 𝑢̄𝑘+1 −

𝑞𝑘+1
𝛿𝜂, 𝑥

𝐻 + 𝜂𝑘

¯̄𝑤𝑘+1 = 𝑤̄𝑘+1

𝜂𝑘+1 = 𝜂𝑘 + 𝛿𝜂𝑘

(7.71)

Pressure correction:
−∇ ·

(︀
∇𝛿𝑝′,𝑘+1)︀ = −∇ · ¯̄𝑢𝑘+1

𝑎Δ𝑡 (7.72)

Final velocity and pressure corrections:

𝑢𝑘+1 = ¯̄𝑢𝑘+1 − 𝑎Δ𝑡∇𝛿𝑝′,𝑘+1

𝑝′,𝑘+1 = 𝑝′,𝑘 + 𝛿𝑝′,𝑘+1 (7.73)

Density perturbation update:

𝜕𝜌′

𝜕𝑡
− ∇ · (𝜅∇𝜌′) = −∇ · (𝑢𝜌′) + 𝑓𝜌′ (7.74)

Hydrostatic equations.
Velocity predictor:

𝜕𝑢̄𝑘+1

𝜕𝑡
− 𝜕

𝜕𝑥

(︂
𝜈𝑥
𝜕𝑢̄𝑘+1

𝜕𝑥

)︂
− 𝜕

𝜕𝑧

(︂
𝜈𝑧
𝜕𝑢̄𝑘+1

𝜕𝑧

)︂
= −𝑔 𝜕𝜂

𝑘

𝜕𝑥
− 𝑔

𝜌0

∫︁ 𝜂𝑘

𝑧

𝜕𝜌′,𝑘

𝜕𝑥
𝑑𝑧′ − ∇ ·

(︀
𝑢𝑘 ⊗ 𝑢𝑘

)︀
− 1
𝜌0
𝑓𝑥

𝜕𝑤̄𝑘+1

𝜕𝑡
− 𝜕

𝜕𝑥

(︂
𝜈𝑥
𝜕𝑤̄𝑘+1

𝜕𝑥

)︂
− 𝜕

𝜕𝑧

(︂
𝜈𝑧
𝜕𝑤̄𝑘+1

𝜕𝑧

)︂
= −∇ ·

(︀
𝑣𝑘 ⊗ 𝑢𝑘

)︀
− 1
𝜌0
𝑓𝑧

(7.75)
Free-surface correction:

𝛿𝜂𝑘+1

𝑎Δ𝑡 − ∇ ·
(︀
𝑎Δ𝑡𝑔

(︀
𝜂𝑘 +𝐻

)︀
∇𝛿𝜂𝑘+1)︀ = −∇ ·

∫︁ 𝜂𝑘

−𝐻

𝑢̄𝑘+1 𝑑𝑧 (7.76)

178

Updates:

𝑢𝑘+1 = 𝑢̄𝑘+1 − 𝑎Δ𝑡𝑔 𝜕
𝜕𝑥
𝛿𝜂𝑘+1 = 𝑢̄𝑘+1 −

𝑞𝑘+1
𝛿𝜂, 𝑥

𝐻 + 𝜂𝑘

𝜂𝑘+1 = 𝜂𝑘 + 𝛿𝜂𝑘

(7.77)

Vertical-velocity recovery:
𝜕𝑤𝑘+1

𝜕𝑧
= −𝜕𝑢𝑘+1

𝜕𝑥
(7.78)

Density perturbation update:

𝜕𝜌′

𝜕𝑡
− ∇ · (𝜅∇𝜌′) = −∇ · (𝑢𝜌′) + 𝑓𝜌′ (7.79)

179

7.9 Deep reinforcement learning: tunable policies

Computational resources are user- and time-dependent. For different applications, or even in the
middle of a simulation, we may seek to adjust how aggressive our reinforcement learning agent is
in refining or coarsening our mesh. We directly encode the trade-off between accuracy and com-
putational cost in hyperparameter 𝛾𝑐, which the user may tune freely. However, naively changing
𝛾𝑐 would require re-training our reinforcement learning agent. Next, we show how we can avoid
re-training while simultaneously allowing for policy tuning.

The more general setting to this problem is multi-objective reinforcement learning (MORL).
We seek an agent that is optimized over a continuum of objective functions depending upon 𝛾𝑐.
The value function 𝑉 𝜋

𝑡 (𝑠𝑡) is the expected reward following policy 𝜋 given state 𝑠𝑡. Traditionally,
𝑉 𝜋

𝑡 : 𝑆 → R maps an observation to a scalar, but in MORL, the value function 𝑉 𝜋
𝑡 : 𝑆 → R𝑑 maps

an observation to a 𝑑-dimensional vector indexed by the different objective functions. In our case,
the value function 𝑉 𝜋

𝑡 (𝑠𝑡; 𝛾𝑐) : 𝑆 → 𝒞𝑏(R) maps an observation to a bounded continuous function.
Most approaches in the MORL literature attempt to find either a single policy by scalarizing the
vector-valued 𝑉 𝜋

𝑡 or multiple policies by repeatedly training over different objective functions (see
[109] for a literature review). However, due to a particular feature of our expected reward function
𝑄𝑡, we are able to simply learn over a continuum of objective functions.

Consider an expected reward function 𝑄𝑡 : 𝒪 × 𝒜 → R that can be split into two parts: a
function that can be explicitly computed given the observation, i.e. the “known” function 𝑄(𝑘), and
a function that needs to be learned, 𝑄(𝑙).

𝑄𝑡(𝑠, 𝑎; 𝛾𝑐) = 𝑄
(𝑘)
𝑡 (𝑠, 𝑎; 𝛾𝑐) +𝑄

(𝑙)
𝑡 (𝑠, 𝑎) (7.80)

There is no reason to learn 𝑄(𝑘) if it can be explicitly computed; instead, we should just represent
𝑄(𝑙) with a deep neural network as in deep Q-learning. Then, the outputs of the two 𝑄 functions
can be combined at the end, and the argmax of the resulting sum will be the action that we take.
Importantly, the hyperparameter 𝛾𝑐 is only an argument of the known function that we can explicitly
compute. This allows us to learn one function 𝑄𝑙 but then change our policy adaptively as a function
𝛾𝑐. Computationally, we really learn the function 𝑄̂𝑡 : 𝑆 → R|𝒜| that maps an observation to the
expected reward for every action in the action space, and we denote this modified and approximate
expected reward function with a hat. In Figure 7-4, we delineate a traditional deep Q-learning policy
𝜋 from a tunable policy 𝜋̃.

ar
gm

ax

ar
gm

ax

Figure 7-4: We depict a vanilla policy based on Deep Q-Learning and a tunable policy. The tunable policy
splits the 𝑄̂ function into known and learned functions. The learned function is represented by a neural
network, while the known policy can be evaluated explicitly given the observations. In the tunable policy,
the hyperparameter 𝛾𝑐 is an input to the known 𝑄̂(𝑘) function which does not have to be re-learned.

In our particular case, the reward function (5.2) is naturally decomposed into a part that needs
to be learned and one that can be explicitly computed: the accuracy needs to be learned but the
computational cost and barrier function are explicitly known. Call these partial rewards 𝑅(𝑙) and

180

𝑅(𝑘), respectively. We can write our 𝑄 function as follows.

𝑄𝑡(𝑠, 𝑎) = E

[︃ ∞∑︁

𝑖=0
𝛾𝑖

𝑘𝑅
(𝑘)
𝑡+𝑖+1 +

∞∑︁

𝑖=0
𝛾𝑖𝑅

(𝑙)
𝑡+𝑖+1

⃒⃒
⃒⃒
⃒𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎

]︃
(7.81)

Above, we have used different discount factors 𝛾𝑘 and 𝛾 for 𝑅(𝑘) and 𝑅(𝑙), respectively. We
consider the case where 𝛾𝑘 = 0. In our example, setting the discount factor on the computational
cost to zero is justified in that we are usually only concerned with the computational cost at a
given instant. Furthermore, the computational load on a machine is often highly unpredictable; for
example, other users may submit jobs in the middle of our simulation. As such, a greedy approach
to discounting the computational penalty is desirable, and we may rewrite our expected reward as
follows.

𝑄𝑡(𝑠, 𝑎) = E
[︁
𝑅

(𝑘)
𝑡+1

⃒⃒
⃒𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎

]︁

⏟ ⏞
𝑄

(𝑘)
𝑡

+E
[︃ ∞∑︁

𝑖=0
𝛾𝑖𝑅

(𝑙)
𝑡+𝑖+1

⃒⃒
⃒⃒
⃒𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎

]︃

⏟ ⏞
𝑄

(𝑙)
𝑡

(7.82)

With that, we have defined our known and learned 𝑄 functions, and to train we simply omit
𝑅(𝑘) from our reward entirely by setting 𝛾𝑐 = 0. Once trained, we append 𝑄(𝑘) to the end of our
𝑄(𝑘) network in order to make predictions, and 𝛾𝑐 may be set arbitrarily without retraining. We
note that separable rewards are not limited to this case where we balance computational cost and
simulation accuracy, and we posit that there are many other areas where this framework may be
beneficial.

While we have described how to perform MORL in instances where 𝑄 is separable and the action
space is discrete, this framework should be extendable to the continuous case. In actor-critic policies
where the critic learns the 𝑄 function (e.g. deep deterministic policy gradient (DDPG) [166], twin
delayed DDPG (TD3) [86], and soft actor critic (SAC) [99] methods), one should be able to apply
a similar methodology: after learning 𝑄(𝑙), one should be able to append 𝑄(𝑘). In the continuous
case, however, the actor must be re-trained since we cannot just take the argmax of a continuous
action space. Fortunately, re-training the actor should be computationally inexpensive since the
policy networks tend to be small, and we can just randomly sample from the action space. That is,
we do not need to re-sample from our environment; instead, as we already know our 𝑄 function, we
simply need to re-train the actor to maximize the estimated reward given an action from our action
space. This procedure is the subject of ongoing research.

7.10 Exact solution, §5.4.6
The exact solution is given by

𝑢(𝑥) =
25∑︁

𝑖=1

1
2𝜋𝜎2 exp

(︂
− 1
𝜎2 ‖𝑥 − 𝑥𝑖‖2

)︂

with parameter 𝜎 = 1/10 and source centers 𝑥𝑖 described in Table 7.2.

i 𝑥𝑖 = (𝑥1, 𝑥2/𝛼)
1 (-0.75, -0.25) 6 (-0.25, -0.25) 11 (0.125, -0.75) 16 (-0.75, -0.625) 21 (-0.25, -0.375)
2 (-0.75, -0.75) 7 (-0.25, -0.50) 12 (0.5, -0.75) 17 (-0.50, -0.625) 22 (0.125, -0.625)
3 (-0.75, -0.50) 8 (-0.25, -0.75) 13 (0.5, -0.5) 18 (-0.25, -0.625) 23 (0.5 , -0.625)
4 (-0.50, -0.25) 9 (0.125, -0.25) 14 (0.5 , -0.25) 19 (-0.75, -0.375) 24 (0.625 ,-0.25)
5 (-0.50, -0.50) 10 (0.125, -0.50) 15 (0.75 , -0.25) 20 (-0.50, -0.375) 25 (0.125, -0.375)

Table 7.2: Description of source centers, where 𝛼 = 1.1.

181

7.11 Deep reinforcement learning: additional training pa-
rameters

For all numerical experiments, we used a time discount factor 𝛾 = 0.99, which is the default for
the Stable-Baselines-3 library. The large negative reward accrued by the agent upon running out
of computational resources was taken to be 𝑅exceed = −1 · 103; this was important as a learning
signal in the cases where the RL agent was trained on a small computational budget, as the barrier
function 𝐵(𝑝) in (5.2) is undefined outside 𝑝 = 1. Training episodes were terminated after a finite
number of iterations, we used 200; this choice is arbitrary, as long as the number of iterations is
large enough that it is possible for the agent to approach its computational budget and receive the
large negative reward for doing so. The parameters used for RL training were given in Table 5.2.

182

Bibliography

[1] Alistair Adcroft, Chris Hill, Jean-Michel Campin, John Marshall, and Patrick Heimbach.
Overview of the formulation and numerics of the MIT GCM. Proceedings of the ECMWF
Seminar Series on Numerical Methods, Recent Developments in Numerical Methods for Atmo-
sphere and Ocean Modeling, January 2004.

[2] Mark Ainsworth and J Tinsley Oden. A posteriori error estimation in finite element analysis.
Computer methods in applied mechanics and engineering, 142(1-2):1–88, 1997. Publisher:
Elsevier.

[3] Wael Hajj Ali, Manmeet S. Bhabra, Pierre F. J. Lermusiaux, Andrew March, Joseph R.
Edwards, Katherine Rimpau, and Paul Ryu. Stochastic oceanographic-acoustic prediction
and Bayesian inversion for wide area ocean floor mapping. In OCEANS 2019 MTS/IEEE
SEATTLE, pages 1–10, Seattle, October 2019. IEEE.

[4] Wael Hajj Ali, Aaron Charous, Chris Mirabito, Patrick J. Haley, Jr., and Pierre F. J. Ler-
musiaux. MSEAS-ParEq for ocean-acoustic modeling around the globe. In OCEANS 2023
IEEE/MTS Gulf Coast, Biloxi, MS, September 2023. IEEE. In press.

[5] Wael Hajj Ali, Yorand Gao, Corbin Foucart, Manan Doshi, Chris Mirabito, Patrick J. Haley,
Jr., and Pierre F. J. Lermusiaux. High-performance visualization for ocean modeling. In
OCEANS 2022 IEEE/MTS, pages 1–10, Hampton Roads, VA, October 2022. IEEE.

[6] Wael Hajj Ali, Mohamad H. Mirhi, Abhinav Gupta, Chinmay S. Kulkarni, Corbin Foucart,
Manan M. Doshi, Deepak N. Subramani, Chris Mirabito, Patrick J. Haley, Jr., and Pierre
F. J. Lermusiaux. Seavizkit: Interactive maps for ocean visualization. In OCEANS 2019
MTS/IEEE SEATTLE, pages 1–10, Seattle, October 2019. IEEE.

[7] Jean Aoussou, Jing Lin, and Pierre F. J. Lermusiaux. Iterated pressure-correction projection
methods for the unsteady incompressible Navier–Stokes equations. Journal of Computational
Physics, 373:940–974, November 2018.

[8] David Aristoff and Wolfgang Bangerth. A benchmark for the Bayesian inversion of coefficients
in partial differential equations, February 2022. arXiv:2102.07263 [cs, math].

[9] Daniel Arndt, Wolfgang Bangerth, Denis Davydov, Timo Heister, Luca Heltai, Martin Kro-
nbichler, Matthias Maier, Jean-Paul Pelteret, Bruno Turcksin, and David Wells. The deal.II
finite element library: Design, features, and insights. Computers & Mathematics with Appli-
cations, 81:407–422, January 2021.

[10] Daniel Arndt, Wolfgang Bangerth, Marco Feder, Marc Fehling, Rene Gassmöller, Timo Heis-
ter, Luca Heltai, Martin Kronbichler, Matthias Maier, Peter Munch, Jean-Paul Pelteret, Simon
Sticko, Bruno Turcksin, and David Wells. The deal.II library, Version 9.4. Journal of Numerical
Mathematics, 30(3):231–246, September 2022. Publisher: De Gruyter.

[11] Douglas N Arnold. An interior penalty finite element method with discontinuous elements.
SIAM journal on numerical analysis, 19(4):742–760, 1982. Publisher: SIAM.

183

[12] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini. Unified Anal-
ysis of Discontinuous Galerkin Methods for Elliptic Problems. SIAM Journal on Numerical
Analysis, 39(5):1749–1779, January 2002.

[13] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.
Publisher: IEEE.

[14] Uri M Ascher, Steven J Ruuth, and Raymond J Spiteri. Implicit-explicit Runge–Kutta methods
for time-dependent partial differential equations. Applied Numerical Mathematics, 25(2):151–
167, 1997.

[15] H Atkins and H Atkins. Continued development of the discontinuous Galerkin method for
computational aeroacoustic applications. In 3rd AIAA/CEAS Aeroacoustics Conference, page
1581, 1997.

[16] Harold L Atkins and Chi-Wang Shu. Quadrature-free implementation of discontinuous
Galerkin method for hyperbolic equations. AIAA Journal, 36(5):775–782, 1998.

[17] Francis Auclair, Claude Estournel, Jochem W. Floor, Marine Herrmann, Cyril Nguyen, and
Patrick Marsaleix. A non-hydrostatic algorithm for free-surface ocean modelling. Ocean Mod-
elling, 36(1):49–70, January 2011.

[18] Owe Axelsson. Iterative Solution Methods. Cambridge University Press, March 1996. Google-
Books-ID: hNpJg_pUsOwC.

[19] Ivo Babuska, John Whiteman, and Theofanis Strouboulis. Finite elements: an introduction
to the method and error estimation. Oxford University Press, 2010.

[20] Wolfgang Bangerth, Carsten Burstedde, Timo Heister, and Martin Kronbichler. Algorithms
and data structures for massively parallel generic adaptive finite element codes. ACM Trans-
actions on Mathematical Software (TOMS), 38(2):1–28, 2012. Publisher: ACM New York,
NY, USA.

[21] Francesco Bassi and Stefano Rebay. A high-order accurate discontinuous finite element method
for the numerical solution of the compressible Navier–Stokes equations. Journal of computa-
tional physics, 131(2):267–279, 1997. Publisher: Elsevier.

[22] Ş. T. Beşiktepe, P. F. J. Lermusiaux, and A. R. Robinson. Coupled physical and biogeochemical
data-driven simulations of Massachusetts Bay in late summer: Real-time and post-cruise data
assimilation. Journal of Marine Systems, 40–41:171–212, 2003.

[23] Peter Binev, Wolfgang Dahmen, and Ron DeVore. Adaptive finite element methods with
convergence rates. Numerische Mathematik, 97(2):219–268, 2004. Publisher: Springer.

[24] Christopher M Bishop. Pattern Recognition and Machine Learning.

[25] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

[26] Pavel Bochev and R. B. Lehoucq. On the Finite Element Solution of the Pure Neumann
Problem. SIAM Review, 47(1):50–66, January 2005. Publisher: Society for Industrial and
Applied Mathematics.

[27] Guido Boffetta and Andrea Mazzino. Incompressible Rayleigh–Taylor Turbulence. Annual
Review of Fluid Mechanics, 49(1):119–143, January 2017.

[28] Jan Bohn and Michael Feischl. Recurrent neural networks as optimal mesh refinement strate-
gies. Computers & Mathematics with Applications, 97:61–76, 2021. Publisher: Elsevier.

184

[29] Jesus Bonilla and Santiago Badia. Monotonicity-preserving finite element schemes with adap-
tive mesh refinement for hyperbolic problems. Journal of Computational Physics, 416:109522,
2020. Publisher: Elsevier.

[30] A Bourgeat and B Cockburn. The TVD-projection method for solving implicit numeric schemes
for scalar conservation laws: A numerical study of a simple case. 1987.

[31] Dietrich Braess, Carsten Carstensen, and Ronald HW Hoppe. Convergence analysis of a
conforming adaptive finite element method for an obstacle problem. Numerische Mathematik,
107(3):455–471, 2007. Publisher: Springer.

[32] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite Element
Methods, volume 15 of Texts in Applied Mathematics. Springer, New York, NY, 1994.

[33] Susanne C Brenner, L Ridgway Scott, and L Ridgway Scott. The mathematical theory of finite
element methods, volume 3. Springer, 2008.

[34] F Brezzi, D Boffi, L Demkowicz, RG Duran, RS Falk, and M Fortin. Mixed finite elements,
compatibility conditions, and applications. Springer, 2008.

[35] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

[36] John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley &
Sons, 2016.

[37] Mark H Carpenter and Christopher A Kennedy. Fourth-order 2N-storage Runge–Kutta
schemes. Technical report, NASA, 1994.

[38] Thomas C Clevenger, Timo Heister, Guido Kanschat, and Martin Kronbichler. A flexible,
parallel, adaptive geometric multigrid method for fem. ACM Transactions on Mathematical
Software (TOMS), 47(1):1–27, 2020.

[39] B. Cockburn. Discontinuous Galerkin methods. ZAMM, 83(11):731–754, November 2003.

[40] B Cockburn. Discontinuous Galerkin methods for Computational Fluid Dynamics, vol. 3 of
Encyclopedia of Computational Mechanics, ch. 4. Wiley, 2004.

[41] Bernardo Cockburn, Bo Dong, and Johnny Guzman. A superconvergent LDG-hybridizable
Galerkin method for second-order elliptic problems. Mathematics of Computation,
77(264):1887–1916, 2008.

[42] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov. Unified hybridization
of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic
problems. SIAM Journal on Numerical Analysis, 47(2):1319–1365, 2009. Publisher: SIAM.

[43] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Francisco-Javier Sayas. A projection-
based error analysis of HDG methods. Mathematics of Computation, 79(271):1351–1367, 2010.

[44] Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu. The Runge–Kutta local projection
discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional
case. Mathematics of Computation, 54(190):545–581, 1990.

[45] Bernardo Cockburn, George E. Karniadakis, Chi-Wang Shu, M. Griebel, D. E. Keyes, R. M.
Nieminen, D. Roose, and T. Schlick, editors. Discontinuous Galerkin Methods: Theory, Com-
putation and Applications, volume 11 of Lecture Notes in Computational Science and Engi-
neering. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[46] Bernardo Cockburn, Fengyan Li, and Chi-Wang Shu. Locally divergence-free discontinuous
Galerkin methods for the Maxwell equations. Journal of Computational Physics, 194(2):588–
610, 2004. Publisher: Elsevier.

185

[47] Bernardo Cockburn and Chi-Wang Shu. TVB Runge–Kutta local projection discontinuous
Galerkin finite element method for conservation laws. II. General framework. Mathematics of
computation, 52(186):411–435, 1989.

[48] Bernardo Cockburn and Chi-Wang Shu. The Runge–Kutta local projection-discontinuous-
Galerkin finite element method for scalar conservation laws. ESAIM: Mathematical Modelling
and Numerical Analysis, 25(3):337–361, 1991. Publisher: EDP Sciences.

[49] Bernardo Cockburn and Chi-Wang Shu. The Runge–Kutta discontinuous Galerkin method for
conservation laws V: multidimensional systems. Journal of Computational Physics, 141(2):199–
224, 1998. Publisher: Elsevier.

[50] Bernardo Cockburn and Chi-Wang Shu. Runge–Kutta discontinuous Galerkin methods for
convection-dominated problems. Journal of scientific computing, 16(3):173–261, 2001. Pub-
lisher: Springer.

[51] Gary Cohen, Xavier Ferrieres, and Sébastien Pernet. A spatial high-order hexahedral discontin-
uous Galerkin method to solve Maxwell’s equations in time domain. Journal of Computational
Physics, 217(2):340–363, 2006. Publisher: Elsevier.

[52] M. E. G. D. Colin, T. F. Duda, L. A. te Raa, T. van Zon, P. J. Haley, Jr., P. F. J. Lermusiaux,
W. G. Leslie, C. Mirabito, F. P. A. Lam, A. E. Newhall, Y.-T. Lin, and J. F. Lynch. Time-
evolving acoustic propagation modeling in a complex ocean environment. In OCEANS -
Bergen, 2013 MTS/IEEE, pages 1–9, 2013.

[53] Ronald Cools. Monomial cubature rules since Stroud: a compilation–part 2. Journal of
Computational and Applied Mathematics, 112(1-2):21–27, 1999. Publisher: North-Holland.

[54] Ronald Cools. An encyclopaedia of cubature formulas. Journal of complexity, 19(3):445–453,
2003. Publisher: Elsevier.

[55] G. Cossarini, P. F. J. Lermusiaux, and C. Solidoro. Lagoon of Venice ecosystem: Seasonal
dynamics and environmental guidance with uncertainty analyses and error subspace data as-
similation. Journal of Geophysical Research: Oceans, 114(C6), June 2009.

[56] Benoit Cushman-Roisin and Jean-Marie Beckers. Introduction to geophysical fluid dynamics:
physical and numerical aspects, volume 101. Academic press, 2011.

[57] Stuart B. Dalziel. Rayleigh–Taylor instability: experiments with image analysis. Dynamics of
Atmospheres and Oceans, 20(1-2):127–153, November 1993.

[58] Patrik Daniel, Alexandre Ern, Iain Smears, and Martin Vohralik. An adaptive hp-refinement
strategy with computable guaranteed bound on the error reduction factor. Computers &
Mathematics with Applications, 76(5):967–983, 2018. Publisher: Elsevier.

[59] Eric A D’Asaro. Generation of submesoscale vortices: A new mechanism. Journal of Geo-
physical Research: Oceans, 93(C6):6685–6693, 1988.

[60] M. K. Davey and J. A. Whitehead. Rotating Rayleigh–Taylor instability as a model of sinking
events in the ocean. Geophysical & Astrophysical Fluid Dynamics, 17(1):237–253, January
1981.

[61] Hans De Sterck, T Manteuffel, S McCormick, Joshua Nolting, John Ruge, and Lei Tang.
Efficiency-based h-and hp-refinement strategies for finite element methods. Numerical Linear
Algebra with Applications, 15(2-3):89–114, 2008. Publisher: Wiley Online Library.

[62] Eric Deleersnijder, Vincent Legat, and Pierre F. J. Lermusiaux. Multi-scale modelling of
coastal, shelf and global ocean dynamics. Ocean Dynamics, 60(6):1357–1359, December 2010.

186

[63] Eric Deleersnijder and Pierre F. J. Lermusiaux. Multi-scale modeling: nested-grid and
unstructured-mesh approaches. Ocean Dynamics, 58(5–6):335–336, December 2008.

[64] M Delfour, W Hager, and F Trochu. Discontinuous Galerkin methods for ordinary differential
equations. Mathematics of Computation, 36(154):455–473, 1981.

[65] B. Desjardins and E. Grenier. On Nonlinear Rayleigh-Taylor Instabilities. Acta Mathematica
Sinica, 22(4):1007–1016, 2006.

[66] Daniele Antonio Di Pietro and Alexandre Ern. Mathematical aspects of discontinuous Galerkin
methods, volume 69. Springer Science & Business Media, 2011.

[67] Manan M. Doshi, Manmeet S. Bhabra, and Pierre F. J. Lermusiaux. Energy-time optimal path
planning in dynamic flows: Theory and schemes. Computer Methods in Applied Mechanics
and Engineering, 405:115865, February 2023.

[68] Timothy F. Duda, Ying-Tsong Lin, W. Zhang, Bruce D. Cornuelle, and Pierre F. J. Lermusi-
aux. Computational studies of three-dimensional ocean sound fields in areas of complex seafloor
topography and active ocean dynamics. In Proceedings of the 10th International Conference
on Theoretical and Computational Acoustics, Taipei, 2011.

[69] Arkopal Dutt, Deepak N. Subramani, Chinmay S. Kulkarni, and Pierre F. J. Lermusiaux.
Clustering of massive ensemble of vehicle trajectories in strong, dynamic and uncertain ocean
flows. In OCEANS Conference 2018, Charleston, SC, October 2018. IEEE.

[70] Alexandre Ern, Annette F Stephansen, and Martin Vohralik. Guaranteed and robust dis-
continuous Galerkin a posteriori error estimates for convection–diffusion–reaction problems.
Journal of computational and applied mathematics, 234(1):114–130, 2010. Publisher: Elsevier.

[71] Claes Eskilsson and Spencer J Sherwin. A triangular spectral/hp discontinuous Galerkin
method for modelling 2D shallow water equations. International Journal for Numerical Meth-
ods in Fluids, 45(6):605–623, 2004. Publisher: Wiley Online Library.

[72] Geir Evensen. Data assimilation: the ensemble Kalman filter. Springer Science & Business
Media, 2009.

[73] Maurice S Fabien, Matthew G Knepley, Richard T Mills, and Beatrice M Riviere. Many-
core Parallel Computing for a Hybridizable Discontinuous Galerkin Nested Multigrid Method.
SIAM Journal on Scientific Computing, 41(2):C73–C96, 2019. Publisher: SIAM.

[74] Sara Faghih-Naini, Sebastian Kuckuk, Vadym Aizinger, Daniel Zint, Roberto Grosso, and
Harald Köstler. Quadrature-free discontinuous Galerkin method with code generation features
for shallow water equations on automatically generated block-structured meshes. Advances in
Water Resources, page 103552, 2020. Publisher: Elsevier.

[75] Amir-massoud Farahmand, Saleh Nabi, and Daniel N Nikovski. Deep reinforcement learning
for partial differential equation control. In 2017 American Control Conference (ACC), pages
3120–3127. IEEE, 2017.

[76] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mo-
hammadamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grze-
gorz Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement
learning. Nature, 610(7930):47–53, 2022.

[77] Niklas Fehn, Wolfgang A. Wall, and Martin Kronbichler. On the stability of projection methods
for the incompressible Navier–Stokes equations based on high-order discontinuous Galerkin
discretizations. Journal of Computational Physics, 351:392–421, December 2017.

187

[78] Niklas Fehn, Wolfgang A. Wall, and Martin Kronbichler. Robust and efficient discontinuous
Galerkin methods for under-resolved turbulent incompressible flows. Journal of Computational
Physics, 372:667–693, November 2018.

[79] C. Foucart, C. Mirabito, P. J. Haley, Jr., and P. F. J. Lermusiaux. Distributed implementa-
tion and verification of hybridizable discontinuous Galerkin methods for nonhydrostatic ocean
processes. In OCEANS Conference 2018, Charleston, SC, October 2018. IEEE.

[80] Corbin Foucart. Efficient matrix-free implementation and automated verification of hybridiz-
able discontinuous Galerkin finite element methods. Master’s thesis, Massachusetts Institute
of Technology, Department of Mechanical Engineering, Cambridge, Massachusetts, June 2019.

[81] Corbin Foucart, Aaron Charous, and Pierre F. J. Lermusiaux. Deep reinforcement learning
for adaptive mesh refinement. Journal of Computational Physics, 491:112381, October 2023.

[82] Baylor Fox-Kemper. Notions for the Motions of the Oceans. In Eric P. Chassignet, Ananda
Pascual, Joaquin Tintoré, and Jacques Verron, editors, New Frontiers in Operational Oceanog-
raphy. GODAE OceanView, August 2018.

[83] Baylor Fox-Kemper, Alistair Adcroft, Claus W. Böning, Eric P. Chassignet, Enrique Cur-
chitser, Gokhan Danabasoglu, Carsten Eden, Matthew H. England, Rüdiger Gerdes, Richard J.
Greatbatch, Stephen M. Griffies, Robert W. Hallberg, Emmanuel Hanert, Patrick Heim-
bach, Helene T. Hewitt, Christopher N. Hill, Yoshiki Komuro, Sonya Legg, Julien Le Som-
mer, Simona Masina, Simon J. Marsland, Stephen G. Penny, Fangli Qiao, Todd D. Ringler,
Anne Marie Treguier, Hiroyuki Tsujino, Petteri Uotila, and Stephen G. Yeager. Challenges
and Prospects in Ocean Circulation Models. Frontiers in Marine Science, 6:65, February 2019.

[84] Mara A Freilich and Amala Mahadevan. Decomposition of vertical velocity for nutrient trans-
port in the upper ocean. Journal of Physical Oceanography, 49(6):1561–1575, 2019.

[85] Oliver B Fringer, James C Mcwilliams, and Robert L Street. ADVANCES IN COMPUTA-
TIONAL OCEANOGR APHY.

[86] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error
in Actor-Critic Methods. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1587–1596. PMLR, July 2018.

[87] K Fukunaga. Introduction to Statistical Pattern Recognition. Elsevier Academic Press. San
Diego, San Francisco, New York. 1990.

[88] T. Furevik, M. Bentsen, H. Drange, I. K. T. Kindem, N. G. Kvamsto, and A. Sorteberg.
Description and evaluation of the bergen climate model: ARPEGE coupled with MICOM.
Climate Dynamics, 21(1):27–51, July 2003.

[89] Avijit Gangopadhyay, Pierre F.J. Lermusiaux, Leslie Rosenfeld, Allan R. Robinson, Leandro
Calado, Hyun Sook Kim, Wayne G. Leslie, and Patrick J. Haley, Jr. The California Current
system: A multiscale overview and the development of a feature-oriented regional modeling
system (FORMS). Dynamics of Atmospheres and Oceans, 52(1–2):131–169, September 2011.
Special issue of Dynamics of Atmospheres and Oceans in honor of Prof. A. R. Robinson.

[90] Youran Gao, Wael Hajj Ali, Corbin Foucart, Chris Mirabito, Patrick J. Haley, Jr., and Pierre
F. J. Lermusiaux. 3DSeaVizKit: An interactive spatiotemporal visualization toolkit for ocean
data. Journal of Atmospheric and Oceanic Technology, 2023. In preparation.

[91] G Gassner, C Altmann, F Hindenlang, M Staudenmeier, and CD Munz. Explicit discontinuous
Galerkin schemes with adaptation in space and time. 36th CFD/ADIGMA course on hp-
adaptive and hp-multigrid methods, VKI LS, 2009.

188

[92] F.X. Giraldo, J.S. Hesthaven, and T. Warburton. Nodal High-Order Discontinuous Galerkin
Methods for the Spherical Shallow Water Equations. Journal of Computational Physics,
181(2):499–525, September 2002.

[93] Nickolay Y. Gnedin, Vadim A. Semenov, and Andrey V. Kravtsov. Enforcing the Courant–
Friedrichs–Lewy condition in explicitly conservative local time stepping schemes. Journal of
Computational Physics, 359:93–105, April 2018.

[94] J. L. Guermond, P. Minev, and J. Shen. Error Analysis of Pressure-Correction Schemes
for the Time-Dependent Stokes Equations with Open Boundary Conditions. SIAM Journal
on Numerical Analysis, 43(1):239–258, January 2005. Publisher: Society for Industrial and
Applied Mathematics.

[95] J. L. Guermond, P. Minev, and Jie Shen. An overview of projection methods for incom-
pressible flows. Computer Methods in Applied Mechanics and Engineering, 195(44):6011–6045,
September 2006.

[96] J.-L. Guermond and L. Quartapelle. On the approximation of the unsteady Navier-Stokes
equations by finite element projection methods. Numerische Mathematik, 80(2):207–238, Au-
gust 1998.

[97] Abhinav Gupta, Patrick J. Haley, Deepak N. Subramani, and Pierre F. J. Lermusiaux. Fish
modeling and Bayesian learning for the Lakshadweep Islands. In OCEANS 2019 MTS/IEEE
SEATTLE, pages 1–10, Seattle, October 2019. IEEE.

[98] Abhinav Gupta and Pierre F. J. Lermusiaux. Bayesian learning of coupled biogeochemical-
physical models. Progress in Oceanography, 216:103050, May 2023.

[99] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. CoRR,
abs/1801.01290, 2018. arXiv: 1801.01290.

[100] Wolfgang Hackbusch. Multi-grid methods and applications, volume 4. Springer Science &
Business Media, 2013.

[101] Carlos Haertel, Eckart Meiburg, and Frieder Necker. Analysis and direct numerical simulation
of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip
boundaries. Journal of Fluid Mechanics, 418:189–212, 2000. Publisher: Cambridge University
Press.

[102] Ernst Hairer, Syvert P Nørsett, and Gerhard Wanner. Solving ordinary differential equations
I. Springer-Vlg, 1991.

[103] Ernst Hairer and Gerhard Wanner. Solving ordinary differential equations II. Springer Berlin
Heidelberg, 1996.

[104] P. J. Haley, Jr., P. F. J. Lermusiaux, A. R. Robinson, W. G. Leslie, O. Logoutov, G. Cos-
sarini, X. S. Liang, P. Moreno, S. R. Ramp, J. D. Doyle, J. Bellingham, F. Chavez, and
S. Johnston. Forecasting and reanalysis in the Monterey Bay/California Current region for
the Autonomous Ocean Sampling Network-II experiment. Deep Sea Research Part II: Topical
Studies in Oceanography, 56(3–5):127–148, February 2009.

[105] Patrick J. Haley, Jr., Arpit Agarwal, and Pierre F. J. Lermusiaux. Optimizing velocities and
transports for complex coastal regions and archipelagos. Ocean Modelling, 89:1–28, May 2015.

[106] Patrick J. Haley, Jr., Abhinav Gupta, Chris Mirabito, and Pierre F. J. Lermusiaux. Towards
Bayesian ocean physical-biogeochemical-acidification prediction and learning systems for Mas-
sachusetts Bay. In OCEANS 2020 IEEE/MTS, pages 1–9. IEEE, October 2020.

189

[107] Patrick J. Haley, Jr. and Pierre F. J. Lermusiaux. Multiscale two-way embedding schemes for
free-surface primitive equations in the “Multidisciplinary Simulation, Estimation and Assimi-
lation System”. Ocean Dynamics, 60(6):1497–1537, December 2010.

[108] Peter E. Hamlington, Luke P. Van Roekel, Baylor Fox-Kemper, Keith Julien, and Gregory P.
Chini. Langmuir–Submesoscale Interactions: Descriptive Analysis of Multiscale Frontal Spin-
down Simulations. Journal of Physical Oceanography, 44(9):2249–2272, September 2014. Pub-
lisher: American Meteorological Society Section: Journal of Physical Oceanography.

[109] Conor F Hayes, Roxana Radulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfar-
lane, Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik
Heintz, and others. A practical guide to multi-objective reinforcement learning and planning.
Autonomous Agents and Multi-Agent Systems, 36(1):1–59, 2022. Publisher: Springer.

[110] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Methods, volume 54 of
Texts in Applied Mathematics. Springer New York, New York, NY, 2008.

[111] Ronald HW Hoppe, Yuri Iliash, Chakradhar Iyyunni, and Nasser Hassan Sweilam. A posteriori
error estimates for adaptive finite element discretizations of boundary control problems. -,
2006. Publisher: Walter de Gruyter Genthiner Strasse 13 10875 Berlin Germany.

[112] Ronald HW Hoppe, Guido Kanschat, and Tim Warburton. Convergence analysis of an adap-
tive interior penalty discontinuous Galerkin method. SIAM journal on numerical analysis,
47(1):534–550, 2009. Publisher: SIAM.

[113] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989. Publisher: Elsevier.

[114] Roumen Iankov, Maria Datcheva, Sabina Cherneva, and D. Stoychev. Finite Element Simu-
lation of Nanoindentation Process. January 2013.

[115] S. M. Jachec, O. B. Fringer, M. G. Gerritsen, and R. L. Street. Numerical simulation of
internal tides and the resulting energetics within Monterey Bay and the surrounding area.
Geophysical Research Letters, 33(12):L12605, 2006.

[116] T. M. S. Johnston, J. A. MacKinnon, P. L. Colin, P. J. Haley, Jr., P. F. J. Lermusiaux, A. J.
Lucas, M. A. Merrifield, S. T. Merrifield, C. Mirabito, J. D. Nash, C. Y. Ou, M. Siegelman,
E. J. Terrill, and A. F. Waterhouse. Energy and momentum lost to wake eddies and lee waves
generated by the North Equatorial Current and tidal flows at Peleliu, Palau. Oceanography,
32(4):110–125, December 2019.

[117] Eric Jones, Travis Oliphant, Pearu Peterson, and others. SciPy: Open source scientific tools
for Python, 2001.

[118] Amit Joshi, Alan B Thompson, Eva M Sevick-Muraca, and Wolfgang Bangerth. Adaptive
finite element methods for forward modeling in fluorescence enhanced frequency domain optical
tomography. In Biomedical Topical Meeting, page WB7. Optical Society of America, 2004.

[119] Jochen Kaempf. Wind-Driven Overturning, Mixing and Upwelling in Shallow Water: A Non-
hydrostatic Modeling Study. Journal of Marine Science and Engineering, 5(4):47, October
2017.

[120] Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Sparse identification of nonlinear
dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society
A, 474(2219):20180335, 2018. Publisher: The Royal Society Publishing.

[121] Y. Kanarska, A. Shchepetkin, and J. C. McWilliams. Algorithm for non-hydrostatic dynamics
in the Regional Oceanic Modeling System. Ocean Modelling, 18(3):143–174, January 2007.

190

[122] Donald W Kelly, JP De SR Gago, Olgierd C Zienkiewicz, and I Babuska. A posteriori error
analysis and adaptive processes in the finite element method: Part I–error analysis. Interna-
tional journal for numerical methods in engineering, 19(11):1593–1619, 1983. Publisher: Wiley
Online Library.

[123] Christopher A Kennedy and Mark H Carpenter. Diagonally implicit Runge–Kutta methods
for ordinary differential equations. A review. 2016.

[124] Robert M Kirby, Spencer J Sherwin, and Bernardo Cockburn. To CG or to HDG: a compar-
ative study. Journal of Scientific Computing, 51(1):183–212, 2012. Publisher: Springer.

[125] Richard I Klein. Star formation with 3-D adaptive mesh refinement: the collapse and frag-
mentation of molecular clouds. Journal of Computational and Applied Mathematics, 109(1-
2):123–152, 1999. Publisher: Elsevier.

[126] Knut Klingbeil and Hans Burchard. Implementation of a direct nonhydrostatic pressure gra-
dient discretisation into a layered ocean model. Ocean Modelling, 65:64–77, May 2013.

[127] Michal A Kopera and Francis X Giraldo. Analysis of adaptive mesh refinement for IMEX
discontinuous Galerkin solutions of the compressible Euler equations with application to atmo-
spheric simulations. Journal of Computational Physics, 275:92–117, 2014. Publisher: Elsevier.

[128] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney.
Characterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34, 2021.

[129] Lilia Krivodonova and Joseph E Flaherty. Error estimation for discontinuous Galerkin solutions
of two-dimensional hyperbolic problems. Advances in Computational Mathematics, 19(1):57–
71, 2003. Publisher: Springer.

[130] Lilia Krivodonova, Jianguo Xin, J-F Remacle, Nicolas Chevaugeon, and Joseph E Flaherty.
Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation
laws. Applied Numerical Mathematics, 48(3-4):323–338, 2004. Publisher: Elsevier.

[131] Martin Kronbichler and Katharina Kormann. A generic interface for parallel cell-based finite
element operator application. Computers & Fluids, 63:135–147, 2012. Publisher: Elsevier.

[132] Martin Kronbichler, Katharina Kormann, and Wolfgang A Wall. Fast matrix-free evalua-
tion of hybridizable discontinuous Galerkin operators. In European Conference on Numerical
Mathematics and Advanced Applications, pages 581–589. Springer, 2017.

[133] Martin Kronbichler and Per-Olof Persson, editors. Efficient High-Order Discretizations for
Computational Fluid Dynamics, volume 602 of CISM International Centre for Mechanical
Sciences. Springer International Publishing, Cham, 2021.

[134] Martin Kronbichler and Wolfgang A Wall. A performance comparison of continuous and
discontinuous Galerkin methods with fast multigrid solvers. SIAM Journal on Scientific Com-
puting, 40(5):A3423–A3448, 2018. Publisher: SIAM.

[135] C. S. Kulkarni, P. J. Haley, Jr., P. F. J. Lermusiaux, A. Dutt, A. Gupta, C. Mirabito, D. N.
Subramani, S. Jana, W. H. Ali, T. Peacock, C. M. Royo, A. Rzeznik, and R. Supekar. Real-
time sediment plume modeling in the Southern California Bight. In OCEANS Conference
2018, Charleston, SC, October 2018. IEEE.

[136] Chinmay S. Kulkarni and Pierre F. J. Lermusiaux. Advection without compounding errors
through flow map composition. Journal of Computational Physics, 398:108859, December
2019.

[137] H. J. Kull. Theory of the Rayleigh-Taylor instability. Physics Reports, 206(5):197–325, 1991.

191

[138] Pijush K. Kundu, Ira M. Cohen, and David R. Dowling. Fluid Mechanics. Academic Press,
June 2015. Google-Books-ID: EehDBAAAQBAJ.

[139] Dmitri Kuzmin. A new perspective on flux and slope limiting in discontinuous Galerkin
methods for hyperbolic conservation laws. Computer Methods in Applied Mechanics and En-
gineering, 373:113569, January 2021. arXiv:2008.11981 [cs, math].

[140] Zhigang Lai, Changsheng Chen, Geoffrey W. Cowles, and Robert C. Beardsley. A nonhydro-
static version of FVCOM: 1. Validation experiments. Journal of Geophysical Research: Oceans,
115(C11), 2010. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009JC005525.

[141] Zhigang Lai, Changsheng Chen, Geoffrey W. Cowles, and Robert C. Beardsley. A nonhydro-
static version of FVCOM: 2. Mechanistic study of tidally generated nonlinear internal waves
in Massachusetts Bay. Journal of Geophysical Research: Oceans, 115(C12), 2010. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2010JC006331.

[142] Frans-Peter A. Lam, Patrick J. Haley, Jr., Jeroen Janmaat, Pierre F. J. Lermusiaux, Wayne G.
Leslie, Mathijs W. Schouten, Lianke A. te Raa, and Michel Rixen. At-sea real-time coupled
four-dimensional oceanographic and acoustic forecasts during Battlespace Preparation 2007.
Journal of Marine Systems, 78(Supplement):S306–S320, November 2009.

[143] P. F. J. Lermusiaux. Data assimilation via Error Subspace Statistical Estimation, part II: Mid-
Atlantic Bight shelfbreak front simulations, and ESSE validation. Monthly Weather Review,
127(7):1408–1432, July 1999.

[144] P. F. J. Lermusiaux. Estimation and study of mesoscale variability in the Strait of Sicily.
Dynamics of Atmospheres and Oceans, 29(2):255–303, 1999.

[145] P. F. J. Lermusiaux. Evolving the subspace of the three-dimensional multiscale ocean vari-
ability: Massachusetts Bay. Journal of Marine Systems, 29(1):385–422, 2001.

[146] P. F. J. Lermusiaux. Uncertainty estimation and prediction for interdisciplinary ocean dynam-
ics. Journal of Computational Physics, 217(1):176–199, 2006.

[147] P. F. J Lermusiaux. Adaptive modeling, adaptive data assimilation and adaptive sampling.
Physica D: Nonlinear Phenomena, 230(1):172–196, 2007.

[148] P. F. J. Lermusiaux, C.-S. Chiu, G. G. Gawarkiewicz, P. Abbot, A. R. Robinson, R. N.
Miller, P. J. Haley, Jr, W. G. Leslie, S. J. Majumdar, A. Pang, and F. Lekien. Quantifying
uncertainties in ocean predictions. Oceanography, 19(1):92–105, 2006.

[149] P. F. J. Lermusiaux, C.-S. Chiu, and A. R. Robinson. Modeling uncertainties in the prediction
of the acoustic wavefield in a shelfbreak environment. In E.-C. Shang, Q. Li, and T. F. Gao,
editors, Proceedings of the 5th International Conference on Theoretical and Computational
Acoustics, pages 191–200. World Scientific Publishing Co., May 21-25 2002. Refereed invited
manuscript.

[150] P. F. J. Lermusiaux, P. J. Haley, W. G. Leslie, A. Agarwal, O. Logutov, and L. J. Burton.
Multiscale physical and biological dynamics in the Philippine Archipelago: Predictions and
processes. Oceanography, 24(1):70–89, 2011. Special Issue on the Philippine Straits Dynamics
Experiment.

[151] P. F. J. Lermusiaux, P. J. Haley, Jr., S. Jana, A. Gupta, C. S. Kulkarni, C. Mirabito, W. H.
Ali, D. N. Subramani, A. Dutt, J. Lin, A. Shcherbina, C. Lee, and A. Gangopadhyay. Optimal
planning and sampling predictions for autonomous and Lagrangian platforms and sensors in the
northern Arabian Sea. Oceanography, 30(2):172–185, June 2017. Special issue on Autonomous
and Lagrangian Platforms and Sensors (ALPS).

192

[152] P. F. J Lermusiaux, P. J. Haley, Jr, and N. K. Yilmaz. Environmental prediction, path planning
and adaptive sampling: sensing and modeling for efficient ocean monitoring, management and
pollution control. Sea Technology, 48(9):35–38, 2007.

[153] P. F. J. Lermusiaux, T. Lolla, P. J. Haley, Jr., K. Yigit, M. P. Ueckermann, T. Sondergaard,
and W. G. Leslie. Science of autonomy: Time-optimal path planning and adaptive sampling
for swarms of ocean vehicles. In Tom Curtin, editor, Springer Handbook of Ocean Engineering:
Autonomous Ocean Vehicles, Subsystems and Control, chapter 21, pages 481–498. Springer,
2016.

[154] P. F. J Lermusiaux, A. J. Miller, and N. Pinardi. Special issue of Dynamics of Atmospheres and
Oceans in honor of Prof. A. R. Robinson. Dynamics of Atmospheres and Oceans, 52(1–2):1–3,
September 2011. Editorial.

[155] P. F. J. Lermusiaux, D. N. Subramani, J. Lin, C. S. Kulkarni, A. Gupta, A. Dutt, T. Lolla,
P. J. Haley, Jr., W. H. Ali, C. Mirabito, and S. Jana. A future for intelligent autonomous
ocean observing systems. Journal of Marine Research, 75(6):765–813, November 2017. The
Sea. Volume 17, The Science of Ocean Prediction, Part 2.

[156] Pierre F. J. Lermusiaux. Numerical fluid mechanics. MIT OpenCourseWare, May 2015.

[157] Pierre F. J. Lermusiaux, Manan Doshi, Chinmay S. Kulkarni, Abhinav Gupta, Patrick J.
Haley, Jr., Chris Mirabito, Francesco Trotta, S. J. Levang, G. R. Flierl, J. Marshall, Thomas
Peacock, and C. Noble. Plastic pollution in the coastal oceans: Characterization and modeling.
In OCEANS 2019 MTS/IEEE SEATTLE, pages 1–10, Seattle, October 2019. IEEE.

[158] Pierre F. J. Lermusiaux, Patrick J. Haley, Jr., Chris Mirabito, Wael H. Ali, Manmeet Bhabra,
Phil Abbot, Ching-Sang Chiu, and Chris Emerson. Multi-resolution probabilistic ocean
physics-acoustic modeling: Validation in the New Jersey continental shelf. In OCEANS 2020
IEEE/MTS, pages 1–9. IEEE, October 2020.

[159] Pierre F. J. Lermusiaux, P. Malanotte-Rizzoli, D. Stammer, J. Carton, J. Cummings, and
A. M. Moore. Progress and prospects of U.S. data assimilation in ocean research. Oceanogra-
phy, 19(1):172–183, 2006.

[160] Pierre F. J. Lermusiaux, Chris Mirabito, Patrick J. Haley, Jr., Wael Hajj Ali, Abhinav Gupta,
Sudip Jana, Eugene Dorfman, Alison Laferriere, Aaron Kofford, G. Shepard, M. Goldsmith,
Kevin Heaney, Emanuel Coelho, J. Boyle, J. Murray, L. Freitag, and A. Morozov. Real-time
probabilistic coupled ocean physics-acoustics forecasting and data assimilation for underwater
GPS. In OCEANS 2020 IEEE/MTS, pages 1–9. IEEE, October 2020.

[161] Pierre F. J. Lermusiaux, Jens Schröter, Sergey Danilov, Mohamed Iskandarani, Nadia Pinardi,
and Joannes J. Westerink. Multiscale modeling of coastal, shelf and global ocean dynamics.
Ocean Dynamics, 63(11-12):1341–1344, 2013.

[162] Pierre F. J. Lermusiaux, Jinshan Xu, Chi-Fang Chen, Sen Jan, L.Y. Chiu, and Yiing-Jang
Yang. Coupled ocean–acoustic prediction of transmission loss in a continental shelfbreak
region: Predictive skill, uncertainty quantification, and dynamical sensitivities. IEEE Journal
of Oceanic Engineering, 35(4):895–916, October 2010.

[163] Pierre Lesaint and Pierre-Arnaud Raviart. On a finite element method for solving the neutron
transport equation. Publications mathèmatiques et informatique de Rennes, (S4):1–40, 1974.

[164] W. G. Leslie, A. R. Robinson, P. J. Haley, Jr, O. Logutov, P. A. Moreno, P. F. J. Lermusiaux,
and E. Coelho. Verification and training of real-time forecasting of multi-scale ocean dynamics
for maritime rapid environmental assessment. Journal of Marine Systems, 69(1):3–16, 2008.

[165] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

193

[166] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning,
2015.

[167] Jing Lin. Bayesian Learning for High-Dimensional Nonlinear Systems: Methodologies, Nu-
merics and Applications to Fluid Flows. PhD thesis, Massachusetts Institute of Technology,
Department of Mechanical Engineering, Cambridge, Massachusetts, September 2020.

[168] Jing Lin. Minimum-correction second-moment matching: Theory, algorithms and applications.
Master’s thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering,
Cambridge, Massachusetts, February 2020.

[169] O. G. Logutov and P. F. J. Lermusiaux. Inverse barotropic tidal estimation for regional ocean
applications. Ocean Modelling, 25(1–2):17–34, 2008.

[170] Peter Lu and Pierre F. J. Lermusiaux. Bayesian learning of stochastic dynamical models.
Physica D: Nonlinear Phenomena, 427:133003, December 2021.

[171] A Mahadevan, A Tandon, and R Ferrari. Rapid changes in mixed layer stratification driven
by submesoscale instabilities and winds. Journal of Geophysical Research: Oceans, 115(C3),
2010. Publisher: Wiley Online Library.

[172] Amala Mahadevan. Modeling vertical motion at ocean fronts: Are nonhydrostatic effects
relevant at submesoscales? Ocean Modelling, 14(3-4):222–240, January 2006.

[173] Amala Mahadevan, Eric A D’Asaro, John T Allen, Pablo Almaraz García, Eva Alou-Font,
Harilal Meenambika Aravind, Pau Balaguer, Isabel Caballero, Noemi Calafat, Andrea Car-
bornero, et al. Calypso 2019 cruise report: field campaign in the mediterranean. 2020.

[174] Amala Mahadevan, Ananda Pascual, Daniel L Rudnick, Simón Ruiz, Joaquín Tintoré, and
Eric D’Asaro. Coherent pathways for vertical transport from the surface ocean to interior.
Bulletin of the American Meteorological Society, 101(11):E1996–E2004, 2020.

[175] Jan Mandel. Efficient implementation of the ensemble Kalman filter.

[176] Jan Mandel. A brief tutorial on the ensemble Kalman filter. arXiv preprint arXiv:0901.3725,
2009.

[177] Emilie Marchandise, Jean-Francois Remacle, and Nicolas Chevaugeon. A quadrature-free
discontinuous Galerkin method for the level set equation. Journal of Computational Physics,
212(1):338–357, February 2006.

[178] John Marshall, Chris Hill, Lev Perelman, and Alistair Adcroft. Hydrostatic, quasi-hydrostatic,
and nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans, 102(C3):5733–
5752, March 1997.

[179] Youssef M Marzouk and Habib N Najm. Dimensionality reduction and polynomial chaos
acceleration of Bayesian inference in inverse problems. Journal of Computational Physics,
228(6):1862–1902, 2009. Publisher: Elsevier.

[180] James C McWilliams. Submesoscale currents in the ocean. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 472(2189):20160117, 2016.

[181] Chris Mirabito, Patrick J. Haley, Jr., Manan Doshi, Kyprianos Gkirgkis, Wael Hajj Ali, Chin-
may Kulkarni, Abhinav Gupta, Pierre F. J. Lermusiaux, Amala Mahadevan, Mara Freilich,
Mathieu Dever, Shaun Johnston, Tamay Özgökmen, Larry Pratt, Irina Rypina, Dan Rud-
nick, Andrey Shcherbina, Craig McNeil, Ruth Musgrave, Sutanu Sarkar, Luca Centurioni,
Eric D’Asaro, James McWilliams, Peter Sullivan, Helga Huntley, Denny Kirwan, Tom Far-
rar, Annalisa Griffa, Uwe Send, Matthias Lankhorst, Michael Allshouse, Thomas Peacock,

194

Pierre-Marie Poulain, Simón Ruiz, Ananda Pascual, Joaquín Tintoré, John Allen, Baptiste
Mourre, Eva Alou-Font, Nikolaos Zarakanellos, Cristian Muñoz, Inma Ruiz, and Alexandra Z.
Worden. Real-time high-resolution probabilistic Eulerian and Lagrangian forecasting in the
Alboran Sea: Skill, subduction, and multi-downscaling ensemble predictions. Ocean Modelling,
2023. In preparation.

[182] Volodymyr Mnih, Adriá Puigdoménech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lill-
icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep
Reinforcement Learning. arXiv, 2016.

[183] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning, 2013.

[184] A. M. Moore, M. Martin, S. Akella, H. Arango, M. Balmaseda, L. Bertino, S. Ciavatta, B. Cor-
nuelle, J. Cummings, S. Frolov, P. Lermusiaux, P. Oddo, P. R. Oke, A. Storto, A. Teruzzi,
A. Vidard, and A. T. Weaver. Synthesis of ocean observations using data assimilation for
operational, real-time and reanalysis systems: A more complete picture of the state of the
ocean. Frontiers in Marine Science, 6(90):1–6, March 2019.

[185] Pedro Morin, Ricardo H Nochetto, and Kunibert G Siebert. Data oscillation and convergence
of adaptive FEM. SIAM Journal on Numerical Analysis, 38(2):466–488, 2000. Publisher:
SIAM.

[186] MSEAS Group. MSEAS Software, 2013.

[187] Carlos Muñoz Royo, Thomas Peacock, Matthew H. Alford, Jerome A. Smith, Arnaud Le Boyer,
Chinmay S. Kulkarni, Pierre F. J. Lermusiaux, Patrick J. Haley, Jr., Chris Mirabito, Dayang
Wang, E. Eric Adams, Raphael Ouillon, Alexander Breugem, Boudewijn Decrop, Thijs Lanck-
riet, Rohit B. Supekar, Andrew J. Rzeznik, Amy Gartman, and Se-Jong Ju. Extent of impact
of deep-sea nodule mining midwater plumes is influenced by sediment loading, turbulence and
thresholds. Nature Communications Earth & Environment, 2(148):1–16, July 2021.

[188] Fabio Naddei, Marta de la Llave Plata, Vincent Couaillier, and Frédéric Coquel. A comparison
of refinement indicators for p-adaptive simulations of steady and unsteady flows using discon-
tinuous Galerkin methods. Journal of Computational Physics, 376:508–533, 2019. Publisher:
Elsevier.

[189] Ramachandran D Nair. Quadrature-Free Implementation of a Discontinuous Galerkin Global
Shallow–Water Model via Flux Correction Procedure. Monthly Weather Review, 143(4):1335–
1346, 2015.

[190] Christopher Nemeth and Paul Fearnhead. Stochastic gradient Markov chain Monte Carlo,
July 2019. arXiv:1907.06986 [stat].

[191] N. C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridizable discontinuous
Galerkin method for linear convection–diffusion equations. Journal of Computational Physics,
228(9):3232–3254, May 2009.

[192] N. C. Nguyen, J. Peraire, and B. Cockburn. A hybridizable discontinuous Galerkin method
for Stokes flow. Computer Methods in Applied Mechanics and Engineering, 199(9):582–597,
January 2010.

[193] N. C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridizable discontinuous
Galerkin method for the incompressible Navier–Stokes equations. Journal of Computational
Physics, 230(4):1147–1170, February 2011.

[194] N.C. Nguyen and J. Peraire. Hybridizable discontinuous Galerkin methods for partial differen-
tial equations in continuum mechanics. Journal of Computational Physics, 231(18):5955–5988,
July 2012.

195

[195] N.C. Nguyen, J. Peraire, and B. Cockburn. High-order implicit hybridizable discontinu-
ous Galerkin methods for acoustics and elastodynamics. Journal of Computational Physics,
230(10):3695–3718, May 2011.

[196] Ngoc Cuong Nguyen and Jaume Peraire. Lecture Notes for MIT course 16.930, 2017.

[197] Ngoc Cuong Nguyen, Jaume Peraire, and Bernardo Cockburn. An implicit high-order hybridiz-
able discontinuous Galerkin method for nonlinear convection–diffusion equations. Journal of
Computational Physics, 228(23):8841–8855, 2009. Publisher: Elsevier.

[198] Tien-Tai Nguyen. Nonlinear Rayleigh-Taylor instability of the viscous surface wave in an
infinitely deep ocean, May 2023. arXiv:2211.14888 [math].

[199] Reiner Onken, Alberto Álvarez, Vicente Fernández, Guillermo Vizoso, Gotzon Basterretxea,
Joaquín Tintoré, Patrick Haley Jr, and Elvio Nacini. A forecast experiment in the Balearic
Sea. Journal of Marine Systems, 71(1-2):79–98, 2008.

[200] Reiner Onken, Allan R. Robinson, Pierre F. J. Lermusiaux, Patrick J. Haley, and Larry A.
Anderson. Data-driven simulations of synoptic circulation and transports in the Tunisia-
Sardinia-Sicily region. Journal of Geophysical Research: Oceans, 108(C9), 2003.

[201] Jie Pan, Jingwei Huang, Gengdong Cheng, and Yong Zeng. Reinforcement learning for
automatic quadrilateral mesh generation: a soft actor-critic approach. arXiv preprint
arXiv:2203.11203, 2022.

[202] Wei Pan, Stephan C. Kramer, Tuomas Kärnä, and Matthew D. Piggott. Comparing non-
hydrostatic extensions to a discontinuous finite element coastal ocean model. Ocean Modelling,
151:101634, July 2020.

[203] Wei Pan, Stephan C. Kramer, and Matthew D. Piggott. Multi-layer non-hydrostatic free
surface modelling using the discontinuous Galerkin method. Ocean Modelling, 134:68–83,
February 2019.

[204] Wei Pan, Stephan C. Kramer, and Matthew D. Piggott. A sigma-coordinate non-hydrostatic
discontinuous finite element coastal ocean model. Ocean Modelling, 157:101732, January 2021.

[205] Ivo Pasmans, Yumeng Chen, Alberto Carrassi, and Chris K. R. T. Jones. Tailoring data
assimilation to discontinuous Galerkin models, May 2023. arXiv:2305.02950 [physics].

[206] Will Pazner and Per-Olof Persson. Stage-parallel fully implicit Runge–Kutta solvers for dis-
continuous Galerkin fluid simulations. Journal of Computational Physics, 335:700–717, 2017.
Publisher: Elsevier.

[207] Jaime Peraire, Ngoc Nguyen, and Bernardo Cockburn. A hybridizable discontinuous Galerkin
method for the compressible Euler and Navier-Stokes equations. In 48th AIAA Aerospace
Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, page 363,
2010.

[208] Nadia Pinardi, L. Cavaleri, G. Coppini, P. De Mey, C. Fratianni, J. Huthnance, P. F. J.
Lermusiaux, A. Navarra, R. Preller, and S. Tibaldi. From weather to ocean predictions: an
historical viewpoint. Journal of Marine Research, 75(3):103–159, May 2017. Special issue:
The Science of Ocean Prediction, vol. 17 of The Sea.

[209] Nadia Pinardi, P. F. J. Lermusiaux, K. H. Brink, and R. Preller. The sea: The science of
ocean prediction. Journal of Marine Research, 75(3):101–102, May 2017. Special issue: The
Science of Ocean Prediction, vol. 17 of The Sea.

[210] Tomasz Plewa, Timur Linde, V Gregory Weirs, and others. Adaptive mesh refinement-theory
and applications. Springer, 2005.

196

[211] Andrei D Polyanin and Vladimir E Nazaikinskii. Handbook of linear partial differential equa-
tions for engineers and scientists. CRC press, 2015.

[212] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah
Dormann. Stable Baselines3, 2019.

[213] Ellery Rajagopal, Anantha N. S. Babu, Tony Ryu, Patrick J. Haley, Jr., Chris Mirabito, and
Pierre F. J. Lermusiaux. Evaluation of deep neural operator models toward ocean forecasting.
In OCEANS 2023 IEEE/MTS Gulf Coast, Biloxi, MS, September 2023. IEEE. In press.

[214] Ali Ramadhan, Gregory Wagner, Chris Hill, Jean-Michel Campin, Valentin Churavy, Tim
Besard, Andre Souza, Alan Edelman, Raffaele Ferrari, and John Marshall. Oceananigans.
jl: Fast and friendly geophysical fluid dynamics on GPUs. Journal of Open Source Software,
5(53), 2020.

[215] Steven R. Ramp, Pierre F. J. Lermusiaux, Igor Shulman, Yi Chao, Rebecca E. Wolf, and
Frederick L. Bahr. Oceanographic and atmospheric conditions on the continental shelf north
of the Monterey Bay during August 2006. Dynamics of Atmospheres and Oceans, 52(1–2):192–
223, September 2011. Special issue of Dynamics of Atmospheres and Oceans in honor of Prof.
A. R. Robinson.

[216] Karl Johan Åström. Optimal control of Markov processes with incomplete state information.
Journal of mathematical analysis and applications, 10(1):174–205, 1965. Publisher: Academic
Press.

[217] J. Ray, S. A. McKenna, B. van Bloemen Waanders, and Y. M. Marzouk. Bayesian recon-
struction of binary media with unresolved fine-scale spatial structures. Advances in Water
Resources, 44:1–19, August 2012.

[218] William H Reed and TR Hill. Triangular mesh methods for the neutron transport equation.
Technical report, Los Alamos Scientific Lab., N. Mex.(USA), 1973.

[219] Bruce A. Remington, R. Paul Drake, Hideaki Takabe, and David Arnett. A review of astro-
physics experiments on intense lasers. Physics of Plasmas, 7:1641–1652, 2000.

[220] Beatrice Riviere. Discontinuous Galerkin methods for solving elliptic and parabolic equations:
theory and implementation. SIAM, 2008.

[221] A. R. Robinson and P. F. J. Lermusiaux. Data assimilation (physical/interdisciplinary). In
J. H. Steele, S. Thorpe, and K. Turekian, editors, Encyclopedia of Ocean Sciences, pages
302–308. Academic Press, London, 2001.

[222] A. R. Robinson, P. F. J. Lermusiaux, and N. Q. Sloan III. Data assimilation. In Kenneth H.
Brink and Allan R. Robinson, editors, The Global Coastal Ocean-Processes and Methods, vol-
ume 10 of The Sea, chapter 20, pages 541–594. John Wiley and Sons, New York, 1998.

[223] Allan R. Robinson and Pierre F. J. Lermusiaux. Data assimilation for modeling and predicting
coupled physical–biological interactions in the sea. In Allan R. Robinson, James J. McCarthy,
and Brian J. Rothschild, editors, Biological-Physical Interactions in the Sea, volume 12 of The
Sea, chapter 12, pages 475–536. John Wiley and Sons, New York, 2002.

[224] Xevi Roca, Cuong Nguyen, and Jaime Peraire. Scalable parallelization of the hybridized
discontinuous Galerkin method for compressible flow. In 21st AIAA Computational Fluid
Dynamics Conference, page 2939, 2013.

[225] Xevi Roca, Ngoc Cuong Nguyen, and Jaime Peraire. GPU-accelerated sparse matrix-vector
product for a hybridizable discontinuous Galerkin method. In 49th AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Exposition, page 687, 2011.

197

[226] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. Probabilistic programming
in Python using PyMC3. PeerJ Computer Science, 2:e55, April 2016. Publisher: PeerJ.

[227] R. L. Sani and P. M. Gresho. Résumé and remarks on the open boundary condition minisym-
posium. International Journal for Numerical Methods in Fluids, 18(10):983–1008, 1994.

[228] Aditya Karthik Saravanakumar. Towards coupled nonhydrostatic-hydrostatic hybridizable
discontinuous Galerkin method. Master’s thesis, Massachusetts Institute of Technology, Com-
putational Science and Engineering, Cambridge, Massachusetts, June 2023.

[229] Simo Särkkä. Bayesian filtering and smoothing, volume 3. Cambridge University Press, 2013.

[230] Nico Schlömer. quadpy: Numerical integration (quadrature, cubature) in Python (2018).

[231] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms, 2017.

[232] David Silver. Lectures on Reinforcement Learning, 2015. Published: url:
https://www.davidsilver.uk/teaching/.

[233] Sho Sonoda and Noboru Murata. Neural network with unbounded activation functions is
universal approximator. Applied and Computational Harmonic Analysis, 43(2):233–268, 2017.
Publisher: Elsevier.

[234] Walter A Strauss. Partial differential equations: An introduction. John Wiley & Sons, 2007.

[235] D. N. Subramani, P. F. J. Lermusiaux, P. J. Haley, Jr., C. Mirabito, S. Jana, C. S. Kulkarni,
A. Girard, D. Wickman, J. Edwards, and J. Smith. Time-optimal path planning: Real-time
sea exercises. In Oceans ’17 MTS/IEEE Conference, Aberdeen, June 2017.

[236] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[237] Nobuhiro Suzuki, Baylor Fox-Kemper, Peter E. Hamlington, and Luke P. Van Roekel. Surface
waves affect frontogenesis. Journal of Geophysical Research: Oceans, 121(5):3597–3624, 2016.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2015JC011563.

[238] Hitoshi Tamura, Peter Bacopoulos, Dingbao Wang, Scott C. Hagen, and Ethan J. Kubatko.
State estimation of tidal hydrodynamics using ensemble Kalman filter. Advances in Water
Resources, 63:45–56, January 2014.

[239] Qiang Tang, Xiaomeng Huang, Lei Lin, Wei Xiong, Dong Wang, Mingqing Wang, and Xing
Huang. MERF v3.0, a highly computationally efficient non-hydrostatic ocean model with
implicit parallelism: Algorithms and validation experiments. Ocean Modelling, 167:101877,
November 2021.

[240] John R Taylor and Andrew F Thompson. Submesoscale dynamics in the upper ocean. Annual
Review of Fluid Mechanics, 55:103–127, 2023.

[241] Ioannis Toulopoulos and John A Ekaterinaris. High-order discontinuous Galerkin discretiza-
tions for computational aeroacoustics in complex domains. AIAA journal, 44(3):502–511,
2006.

[242] M. P. Ueckermann. Towards next generation ocean models: Novel discontinuous Galerkin
schemes for 2D unsteady biogeochemical models. Master’s thesis, Massachusetts Institute of
Technology, Department of Mechanical Engineering, Cambridge, MA, September 2009.

[243] M. P. Ueckermann. High Order Hybrid Discontinuous Galerkin Regional Ocean Modeling.
PhD thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering,
Cambridge, MA, February 2014.

198

[244] M. P. Ueckermann and P. F. J. Lermusiaux. High order schemes for 2D unsteady biogeochem-
ical ocean models. Ocean Dynamics, 60(6):1415–1445, December 2010.

[245] M. P. Ueckermann and P. F. J. Lermusiaux. 2.29 Finite Volume MATLAB Framework Docu-
mentation. MSEAS Report 14, Department of Mechanical Engineering, Massachusetts Insti-
tute of Technology, Cambridge, MA, 2012.

[246] M. P. Ueckermann and P. F. J. Lermusiaux. Hybridizable discontinuous Galerkin projection
methods for Navier–Stokes and Boussinesq equations. Journal of Computational Physics,
306:390–421, 2016.

[247] Mattheus P. Ueckermann, Chris Mirabito, Patrick J. Haley, Jr., and Pierre F. J. Lermusi-
aux. High order hybridizable discontinuous Galerkin projection schemes for non-hydrostatic
physical-biogeochemical ocean modeling. Ocean Dynamics, 2023. In preparation.

[248] Hans van Haren. Instability observations associated with wave breaking in the stable-stratified
deep-ocean. Physica D: Nonlinear Phenomena, 292-293:62–69, 2015.

[249] Vicky Verma, Hieu T. Pham, and Sutanu Sarkar. The submesoscale, the finescale and their
interaction at a mixed layer front. Ocean Modelling, 140:101400, August 2019.

[250] Antoni Vidal-Ferràndiz, Amanda Carreno, Damián Ginestar Peiro, and Gumersindo Jesús
Verdú Martín. hp-Finite element method for the simplified Pn equations. In Congreso de
Métodos Numéricos en Ingeniería (CMN 2017). Actas, pages 208–220. International Center
for Numerical Methods in Engineering (CIMNE), 2017.

[251] Sean Vitousek and Oliver B. Fringer. Physical vs. numerical dispersion in nonhydrostatic
ocean modeling. Ocean Modelling, 40(1):72–86, January 2011.

[252] Sean Vitousek and Oliver B. Fringer. A nonhydrostatic, isopycnal-coordinate ocean model for
internal waves. Ocean Modelling, 83:118–144, November 2014.

[253] H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge University
Press, April 2003. Google-Books-ID: wE0NrHkrqRAC.

[254] Jingbo Wang and Nicholas Zabaras. A Bayesian inference approach to the inverse heat con-
duction problem. International Journal of Heat and Mass Transfer, 47(17):3927–3941, August
2004.

[255] Yufei Wang, Ziju Shen, Zichao Long, and Bin Dong. Learning to discretize: solving 1D scalar
conservation laws via deep reinforcement learning. arXiv preprint arXiv:1905.11079, 2019.

[256] Shiyin Wei, Xiaowei Jin, and Hui Li. General solutions for nonlinear differential equations: a
rule-based self-learning approach using deep reinforcement learning. Computational Mechanics,
64(5):1361–1374, 2019. Publisher: Springer.

[257] Joannes J Westerink, Richard A Luettich, Jesse C Feyen, John H Atkinson, Clint Dawson,
Hugh J Roberts, Mark D Powell, Jason P Dunion, Ethan J Kubatko, and Hasan Pourtaheri.
A basin-to channel-scale unstructured grid hurricane storm surge model applied to southern
Louisiana. Monthly weather review, 136(3):833–864, 2008.

[258] Yulong Xing, Xiangxiong Zhang, and Chi-Wang Shu. Positivity-preserving high order well-
balanced discontinuous Galerkin methods for the shallow water equations. Advances in Water
Resources, 33(12):1476–1493, 2010. Publisher: Elsevier.

[259] J. Xu, P. F. J. Lermusiaux, P. J. Haley Jr., W. G. Leslie, and O. G. Logutov. Spatial and
Temporal Variations in Acoustic propagation during the PLUSNet-07 Exercise in Dabob Bay.
In Proceedings of Meetings on Acoustics (POMA), volume 4, page 11. Acoustical Society of
America 155th Meeting, 2008.

199

[260] S. Xu, X. Huang, L.-Y. Oey, F. Xu, H. Fu, Y. Zhang, and G. Yang. POM.gpu-v1.0: a GPU-
based Princeton Ocean Model. Geoscientific Model Development, 8(9):2815–2827, September
2015. Publisher: Copernicus GmbH.

[261] Jiachen Yang, Tarik Dzanic, Brenden Petersen, Jun Kudo, Ketan Mittal, Vladimir Tomov,
Jean-Sylvain Camier, Tuo Zhao, Hongyuan Zha, Tzanio Kolev, Robert Anderson, and Daniel
Faissol. Reinforcement Learning for Adaptive Mesh Refinement. arXiv:2103.01342 [cs, math],
March 2021. arXiv: 2103.01342.

[262] Tony D Young and Rickard Armiento. Strategies for h-adaptive refinement for a finite element
treatment of harmonic oscillator Schrödinger eigenproblem. Communications in Theoretical
Physics, 53(6):1017, 2010. Publisher: IOP Publishing.

[263] David L. Youngs. Numerical simulation of turbulent mixing by Rayleigh-Taylor instability.
Physica D: Nonlinear Phenomena, 12(1):32–44, 1984.

[264] Mengping Zhang and Chi-Wang Shu. An analysis of three different formulations of the discon-
tinuous Galerkin method for diffusion equations. Mathematical Models and Methods in Applied
Sciences, 13(03):395–413, 2003. Publisher: World Scientific.

[265] Ye Zhou. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and
mixing. I. Physics Reports, 720-722:1–136, 2017.

200

	Introduction
	Nonhydrostatic dynamics
	Discontinuous Galerkin finite element methods
	Model nesting and use of realistic ocean data
	Reinforcement learning for adaptive mesh refinement
	Thesis organization

	Hybridizable Discontinuous Galerkin Methods: Theory, Schemes, and Efficiency
	Introduction
	Discontinuous Galerkin finite element methods
	Linear ODEs
	Notation and approximation spaces
	Nonlinear conservation laws
	RKDG methods
	The linear advection equation
	Forming the discrete operators
	Temporal discretization
	Numerical experiments
	Implicit treatment of first-order DG systems

	HDG methods for second-order, elliptic problems
	The model problem
	Weak formulation
	Boundary condition treatment
	The HDG Algorithm
	Assembly of the global linear system
	Extension to time-dependent problems
	Parallelization

	Matrix-free schemes for HDG-FEM
	Quadrature-free integration
	Methodology
	Extensions
	Numerical experiments and discussion
	Discussion

	On the solution of the pure Neumann problem
	Proposed solutions
	Computational benchmarks

	Conclusion

	A Novel Nonhydrostatic HDG Ocean Model with a Free Surface
	Introduction
	Mathematical model
	Temporal discretization
	Spatial discretization
	Notation
	Discretization of vertical integral terms
	Velocity predictor
	Free-surface corrector
	Intermediate velocity projection, free-surface update
	Pressure corrector
	Velocity projection, pressure update
	Density perturbation update
	Recovery of the hydrostatic vertical velocity

	Numerical experiments
	Implementation
	Spatial convergence: verification
	Validation: linear gravity waves
	Idealized formation of Rayleigh-Taylor instabilities

	Model nesting and initialization from primitive equation data
	Notation
	CALYPSO Alboran Sea Experiment 2019
	Two-dimensional nested model comparisons
	Three-dimensional model comparisons

	Conclusion

	Applications to Uncertainty Quantification and Data Assimilation
	Introduction
	Ensemble Kalman filtering for high-order discontinuous Galerkin fields
	Problem setup
	Application of the ensemble Kalman filter
	Matrix-free implementation
	Data assimilation setup
	Numerical experiments
	Sensitivity to measurement noise
	Summary

	Bayesian inversion of coefficients in partial differential equations with HDG fields
	Methodology
	Implementation
	Numerical experiments
	Summary

	Conclusion

	Deep Reinforcement Learning for Adaptive Mesh Refinement
	Introduction
	Related work and novel contributions

	Deep reinforcement learning framework
	Notation
	Elemental refinement as a local Markov decision process
	Designing the reward function
	Training and model deployment
	Policy and deep learning architectures
	Summary: reinforcement learning framework

	Finite element spatial discretization and problem physics
	Notation and approximation spaces
	Linear advection equation
	Advection-diffusion equation
	Error indicators and AMR heuristics
	Numerical implementation

	Numerical experiments
	Steady 1D linear advection
	Generalization to different boundary conditions and forcing functions
	Unsteady 1D linear advection
	Generalization to different PDEs
	Steady 2D linear advection
	Steady 2D advection-diffusion equation
	Unsteady 2D linear advection
	Discussion of numerical experiments

	Conclusions and future work

	Conclusion
	Summary
	Future work and outlook

	Appendices
	Useful identities
	Consistency and stability of DG-FEM for second-order problems
	Proof: well-posedness under different HDG fluxes
	A unifying abstraction for HDG assembly
	Time integration methods
	Convergence history for the pure Neumann problem
	Derivation of free-surface corrector boundary conditions
	2D Projection method reduction
	Deep reinforcement learning: tunable policies
	Exact solution, §5.4.6
	Deep reinforcement learning: additional training parameters

