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Abstract

The direct-drive arm exhibits several advantageous properties including no backlash, low
friction, and high mechanical stiffness. These advantages are a consequence of eliminating the
actuator transmission. The manipulator, bowever, becomes extremely massive and highly sensitive
to the linear and nonlinear inertial interactive forces when the actuators are mounted between
adjacent links.

This thesis presents effective design methods for articulated direct-drive arms, specifically for
application to high-speed and high-accuracy trajectory control tasks. The inherent difficulties of
the direct-drive concept are overcome and the potential advantages are fully exploited.

First, an analytical tool is developed to evaluate the static force characteristics of
mechanisms. The effectiveness of different kinematic structures is evzluated in terms of the power
dissipation in the actuators.

Second, a new approach is developed for arm linkage design. The goal is to simplify the
controller design by reducing the effectn of complicated manipulator dynamics and to further
improve performance by increasing the load capacity. A method for designing an arm linkage with
small inertial load changes and small interactive forces is developed by analyzing the kinematic
structure, actuator locations and the mass properties. This design methodology achieves a
decoupled and invariant manipulator inertia tensor in joint space. As a result, each actuator
experiences completely decoupled dynamics as well as a constant lcad which is independent of the
arm configuration.

These design tools are applied in the development of the 3 d.of M.L.T direct-drive arm. The
manipulator, with a decoupled and nearly invariant arm inertia tensor, shows a substantial
improvement in contro! performance. The arm performance is evaluated in terms of speed,
acceleration and to.que control capability.
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Chapter 1
INTRODUCTION

1.1 Background

The dynamic characteristics of a manipulator often determine its ability to
perform complex tasks. High speed and precision are essential in many advanced
applications of robot manipulators [Dubowsky 83]. An example is the high speed
laser cutting application for which the required robot speeds and accelerations are
on the order of 3 m/sec and 3 to 5 G, respectively, which are an order of magnitude
higher than obtainable with conventional robots. In order to meet such severe

requirements, hardware limitations in today’s robots must be overcome.

Electromechanical drives for robots typically employ gearing to match the
impedances of the motors with their corresponding loads. These mechanisms often
introduce serious problems that degrade the control performance of the robot.
Harmonic drives, for example, which are widely used in existing robots, have
insufficient mechanical stiffness and cause a sigrificant fluctuation in the torque
transmitted. Other robots have conventional gear trains for which backlash is the
main problem [Unimation 80]. A common technique for eliminating backlash is the
preloading of gears. A large preload, however, leads to large friction which causes
gears to wear quickly. Also, these gears must be adjusted regularly to keep the

backlash to a minimum.

Furthermore, conventional electromechanical robots are essentially

positioning devices and are not suitable for torque control. Sophisticated control
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schemes recently developed, such as bilateral control [Inoue 71], generalized springs
and dampers [Nevins and Whitney 74], grasping compliance control [Hanafusa and
Asada 77|, hybrid position/force control [Raibert and Craig 80}, impedance control
[Hogan 81], and compliant motion control [Mason 81] are all dependent on the
actuators ability to control torque, directly or indirectly. Primarily, these control
schemes have been implemented on conventional electromechanical robots, which
were not designed as torque-controlled devices. Consequently, performance has

been limited by friction and deflection in the gearing.

1.2 Direct-drive Concept

Direct-Drive is an innovative design approach which shows great promise in
control performance. A direct-drive arm is a mechanical manipulator in whick
high-torque, low-speed motors are directly coupled to their respective loads [Asada
and Kanade 83, Asada, Kanade and Takeyama 83]. A basic construction for a
direct-drive joint is shown in Figure 1-1. Since no gearing is employed in the
mechanism, the joint has low friction, high mechanical stiffness and no backlash.
Therefore, the direct-drive arm has the potential for fast and accurate positioning

as well as precise torque control.

Consequently, direct-drive arms meet the critical requirements of many
advanced robot applications. High speed is a crucial requirement in high
production-rate manufacturing. Traditional robots are not suitable for such
production lines because of severe task time requirements. Fast but simple
positioning devices such as pneumatic cylinders have been used for high production-
rate lines, but limited flexibility is a major problem for these simple devices. Thus

direct-drive arms with higher speeds and greater flexibility are appropriate for high
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Figure 1-1: Basic construction of a direct-drive joint
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production-rate flexible manufacturing systems.

There is also an increasing need for high accuracy robots, particularly in the
microelectronics industry. Assembly of optical fibers, for example, requires accuracy
on the order of 3 to 10 gm. Such high accuracy operations are out of the range of
today’s industrial robots which use reducers. As the size of the electronic devices
decreases and the density of chips increases, still higher accuracy is required for
positioning devices. The direct-drive method meets such increasing accuracy

requirements.

Both high speed and high accuracy are required for some advanced robot
applicatinns. Sheet metal cutting using a laser or plasma cutter requires a speed of
over 1 m/s with 3 to 5 G acceleration with trajectory tracking errors of less than
0.05 mm. Even a small amount of backlash or deflection at the gearing is not

acceptable when such severe specifications must be met.

1.2 Issues and Objectives

Although the direct-drive method provides some desirable characteristics, it
also has several drawbacks. First, since the drive system has no means of
amplifying the motor output torque, hence the robot can not exert a large force for
a long time without overheating the motors. Second, if the motors are mounted at
the joints of a serial linkage arm, the weight of each moto: is a load to the other
motors. Therefore, the required motor sizes increase rapidly from the distal joint
to the proximal joint. This rapid increase results in a heavy arm with a relatively

small load capacity [Asada and Kanade 83]. The third drawback is the high

sensitivity of direct-drive motors to arm inertia changes or disturbances. The

inertial load of each axis varies with the arm configuration and, interactive and
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nonlinear forces also act on each axis of the manipulator arm. These varying loads
and disturbance forces are all reflected directly to the motor axes and consequently
affect the dynamic behavior of the direct-drive motors significantly [Asada, Kanade
and Takeyama 83]. Finally, the major difficulty in designing the control system is
to maintain stability in the face of a wide range load conditions. Because of the
direct coupling, the inertial load reflected to the motor axis is significantly large in
comparison with its damping factor. This results in a slow response ( large
mechanical time constant). In addition, the direct-drive motors use large windings

in order to exert a large torque, thus the electrical time constant is also large.

The goal of this thesis is then to explore effective design methods for
articulated direct-drive arms applied in high-speed high-accuracy trajectory control
tasks. The inherent difficulties, mentioned above, must be overcome so that the
potential advantages can be fully exploited. These design methods include a power
efficiency analysis for the kinematic structure design and a dynamic analysis of

articulated direct-drive arms.

A new approach is developed for the arm linkage design in order to increase
‘he load capacity and reduce the effect of the complicated manipulator dynamics,
thereby simplifying the controller design. The kinematic structure and mass
properties are analyzed. Then a method for designing an arm linkage with small
inertial load changes and small interactive and nonlinear forces is developed. One
desirable feature is a decoupled and invariant inertia tensor in joint space. The
joint axes dynamics are completely decoupled from each other and experience a

constant load independently of the arm configuration, under this condition.
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1.4 Overview of the Thesis

Chapter 2 deals with two major issues of direct-drive arm design, namely
overheating and small load capacity. A power efficiency analysis is presented to
address these issues. First, an analytical tool based on the motor constants is
formulated in order to evaluate the end point static force characteristics of arm
mechanisms. Second, the traditional serial configuration of the direct-drive arm is
compared with a parallel drive configuration that avoids the large arm weight. The
parallel drive configuration improves the load capacity to arm weight ratio and
minimizes the power dissipation in the actuators. The effectiveness of these

kinematic structures is evaluated in terms of power dissipation.

The direct-drive motors are highly sensitive to the complicated arm dynamics.
A mass distribution technique is developed in Chapter 3 to minimize these effects
on the drive system. The inertia of the different links are redistributed to achieve a
decoupled and invariant inertia tensor for the articulated direct-drive arm. Each
joint actuator of such an arm experiences a constant inertiai load with no inertial
coupling or nonlinear velocity torques from other joints throughout the whole
workspace. In this Chapter, necessary conditions and, necessary and sufficient
conditioas for achieving this ideal dynamic behavior are derived for open loop

kinematic chains with revolute joints.

In the previous Chapter, each actuator was located at the corresponding joint
where it exerted a torque between the adjacent links. This type of drive system
limits the number of degrees of l‘r.eedom that can be decoupled. The actuator,
however can be located on other links if an appropriate transmission can be used.
Chapter 4 discusses the decoupling problem for a mechanism where the actuators

are relocated to other links with the use of a transmission. It will be shown that the
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decoupling condition as previously obtained can be significantly relaxed by the
relocation of actuators. When actuators are mounted remotely and joints are driven
through a transmission, the torque exerted by ome actuator is not necessarily
applied to one joint but can affect several joints. Thus, the effects of relocating the
actuators on the manipulator kinematics and dynamics, is also studied. First, the
relationship between the actuator displacements and their corresponding joint
displacements are set up. Then the linear and angular velocity vectors of each link
are determined in order to examine the new manipulator dynamics. Second, the
manipulator mass properties are considered. The analysis of Chapter 3 shows that
the effects due to rotation about the centroid of a lick are of primary concern. It is
necessary to determine which link mass properties affect the coupling between any
given two actuators. Specifically, tﬁe moments of inertia are of special interest. A
useful notation is introduced to facilitate this task and help in the understanding of

coupling.

Chapter 5 presents the design guidelines using the theorems and the
corollaries of Chapter 3 and, the set notation of Chapter 4. The decoupling
conditions derived are then expressed as a design rule for decoupling serial spatial
mechanisms. Also, the sufficient conditions for a decoupled and invariant n degree-
of-freedom planar mechanism are derived. Finally, a discussion on mechanisms
using parallel drives is given. It will be shown that merely locating the actuators at

the base does not guarantee decoupling.

The guidelines, described in Chapter 5, are applied in the design of the 3 d.o.f
M.LT direct-drive arm. The mass distributions for decoupling the arm inertia

tensor are derived. Discussions on the design trade-offs are given.

The overall control performance of the M.LT direct-drive arm is then

evaluated in Chapter 7. On the basis of the simplified arm load condition, the



-15-
design of the drive control system is discussed. This includes (i) the modeling of the
actuator and position control system, and (ii) the modeling of joint torque sensor,
where thie torque developed at the joint is estimated using phase currents, and the
torque control performance at the joint level. The overall dynamic performance of
the M.LT direct-drive arm is then evaluated experimentally, including the
decoupled arm inertia tensor. Finally, Chapter 8 gives a summary of conclusions

and recommendations.
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Chapter 2
POWER EFFICIENCY ANALYSIS

2.1 Introduction

This Chapter presents an analytical tool for evaluating mechanisms in terms
of the power dissipation in the actuators and the end point force generated. This is
particularly important in evaluating the overheating of direct-drive actuators. Two
different mechanisms are selected snd compared for use in the direct-drive

approach.

2.2 Power Efficiency Analysis

One of the problems with the direct drive approach is that the robot can not
exert a large force. Because of the direct coupling of motors to their loads, the
output torques of motors are not amplified through reducers. In consequence, the
motors have to bear the loads directly, and can overheat, particularly in a stall
condition. In this section, we analyze the power dissipated in the motors when a

force is exerted at the tip of the arm.

An important parameter for torque motors is the motor constant, that is, the
ratio of output torque 7 to the square root of power dissipated in the motor P

[Electro-Craft 80],

T
k = — (2.1)
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The motor constant represents how efficiently the motor converts its input power
into output torque. If k_ is small, the motor dissipates a large amount of power to

exert torque.

When a robot bears a load at the arm tip, the load is distributed among all
the motors of the arm mechanism. In addition to the individual motor
characteristics, the efficiency of exerting a force at the arm tip also depends on the
kinematic structure of the arm mechanism. Let F be the end point force exerted at
the arm tip represented in cartesian coordinates, and let 7 be the vector of

equivalent torques of n motors, then one obtains [Paul 81]

r=J'F (2.2

where J is the jacobian matrix associated with the coordinate transformation from

the joint coordinates to the cartesian coordinates of the arm tip.

Let P be the total power dissipated in the n motors driving the arm
mechanism and k_. be the motor constant of the i-th motor, then the total power

dissipation P is given by the following quadratic form of end point force F,
n T-2
— NV _ —_Ft
P=) — =F'LF (2.3)

j=1 mi

where L is given by

o 1
L=szag(k——§, ,k 2

ml mn

) ¢ (2.4)

Thus the power dissipation depends not only on the kinematic structure but also on

the motor constants of the actuators.

The relation given by (2.4) is a congruence transformation, and thus the
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matrix L is positive definite as long as the Jacobian matrix is nonsingular [Strang
80]. Therefore the matrix L has all real, positive eigenvalues, X\, > 0, and the

quadratic form can be rewritten as

P=Y A F; (2.5)
i=1

where F, is the component of end point force along the eigenvector corresponding
to .. The geometrical interpretation of equ.(2.3) is obtained by fixing the total
power P. In this case , the quadratic form of equ.(2.3) is that of an ellipsoid as
shown in Figure 2-1. The principal axes of such an ellipsoid are aligned with the
eigenvectors of the matrix L, and the length of each principal axis is equal to the
reciprocal of the square root of the corresponding eigenvalue. Since the smallest
(largest) eigenvalue of L corresponds to the major (minor) axis of the ellipsoid, the
maximum (minimum) force F acts along the major (minor) axis. Therefore, along
the major axis, the input power is most effectively converted into a force at the
arm tip. Since the matrix L involves the Jacobian matrix J, which varies with the
arm configuration, the static characteristics vary as well. By examining the ellipsoid
for different arm configurations, one can analyze the global characteristics of the

power to force conversion.

To evaluate the overall efficiency of the arm-motor combination, we define
the mean power dissipation ratio, A, which is the mean of the eigenvalues and is

given by

A, = —l— trace(L) (2.6)
n

The units of X\ are Watts per square Newton.
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major axis, maximum force

Figure 2-1: Force ellipsoid.
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2.3 Kinematic Structure Design

2.3.1 Parallel Drive Mechanism

In order to select a suitable kinematic structure for a direct-drive arm, we
consider the following basic structures : a simple serial drive mechanism, as shown
in Figure 2-2; and a general five-bar-link parallel drive mechanism, shown in Figure

2-3.

In this section we define these two drive system methods: serial drive and
parallel drive. Figure 2-2 shows the typical construction of a serial drive arm
mechanism, in which the lower link is driven by a motor fixed on the base and the
upper link is driven by a motor attached at the tip of the lower link. In this serial
configuration, the weight of the second motor is a load to the first motor.
Moreover, the reaction torque of the second motor acts on the first motor. When
the second motor accelerates in the clockwise direction, a counter-clockwise torque
acts on the first motor, and vise versa. Thus the two motors have significant
interactions. In this thesis, an arm mechanism in which each motor is located at a
joint of a serial linkage between the adjacent links is referred to as a serial drive

mechanism.

Figure 2-3 shows an alternative arm construction consisting of a five-bar-link.
Two motors fixed on the base drive the two input links and cause a two-
dimensional motion at the tip of the arm. The weight of one motor is not a load on
the other. Also the reaction torque of one motor does not act directly upon the
other, because the motors are fixed on the base . An arm mechanism in which
motors are mounted on a fixture and the weight and reaction torque of one motor

do not affect the other motors directly is referred to as a parallel drive mechanism.
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Figure 2-2: 2 d.o.f serial drive arm mechanism.
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joint 2

motor 2

Figure 2-3: A general five-bar-link mechanism
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The parallel drive mechanism has been used in several models of commercial robots
that have conventional electromechanical drives with gearings. The five-bar-link
mechanism, however, is particularly useful for overcoming the inherent difficulties

of the direct drive method.

2.3.2 Motor Constant Identification

In order to use the analysis of the previous section, the motor constants, k_.,
have to be determined. The following experiment was conducted to identify the
motor constant of a single active joint. First, a position control system is set up to
permit the arbitrary positioning of the motor rotor using a computer terminal ( see
Chapter 7). This position control system is needed since the relationships derived in
the previous section are valid at stall condition. Second, known torque loads were
applied to the motor shaft while under position control and the power input to the
system was calculated using the corrected phase currents in the motor ( Appendix
A). Figure 2-4 provides a plot of the experimental data. The square root of power
measured is plotted against the torque applied. A least square fit yields a motor

constant of 2.366 Nm/V Watts.

2.3.3 Kinematic Structure Evaluation

The end point force for the serial drive mechanism in comparison with the
parallel drive mechanism of Figure 2-5 is evaluated. These characteristics were

analyzed in [Asada and Youcef-Toumi 83, Asada and Youcef-Toumi 84].

For the five-bar-link parallel drive mechanism, matrix L is given by
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Ly Ly
L =
Ll2 L22 ‘
where
|2 1,2
L, = k—ésin2(0l)+—k—2$in2(02)
ml m2
112 142
L, = - —Zsin(ﬂl)cos(ﬂl) - ——ésin(02)cos(02)
ml m2
2 1, |
L,, = 2cosQ((Jl) + -l;——2c032(02)
ml m2

where the end point force F is represented in the coordinate system fixed at the

base as shown in Figure 2-5.

Figure 2-8 illustrates the static force characteristics, equ.(2.3), for the parallel
configuration. The maximum (minimum) force produced is along the major (minor)
axis of the ellipsoid at the tip of the arm. Note that in this parallel configuration
the force appears to be nearly isotropic in a wide region . The maximum force
based on a total power of 1 KW is estimated to be 190 N. This value is obtained by

taking the square root of the ratio of the power to the minimum eigenvalue.

The mean power dissipation ratio is then given by

\ 1 12 1,2 ) 1)
— + 2.7
m 2 2
2 kml l(m2

Although the matrix L varies with the arm configuration, the mean power
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dissipation X is uniform for all the configurations. For shorter link lengths, [, and

{

» and larger motor constants, k,,; and k_,, the arm-motor combination has a

better efficiency having a small mean power dissipation ratio.

Let us compare the parallel drive mechanism with the serial drive in terms of

the value of A . The mean power dissipation ratio of the serial drive mechanism of

Figure 2-2 is
1 12 12 12 Ll
1 4 4 14
A == 2 + 2 + K ) - 2cos(02) (2.8)
ml m2 ml ml

In this case, A varies depending on the arm configuration. As 0, increases, X\
becomes larger, namely, the efficiency becomes lowe. * Comparing equ.(2.7) with
equ.(2.8), one finds the parallel drive has a smaller mean power dissipation ratio
than the serial drive except when

{
16, | < cos{( ——)
2l

The mean power curves are shown in Figure 2-7.

In the case of the prototype I robot described in Figure 2-5 [Asada and
Youcef-Toumi 83, Asada and Youcef-Toumi 84|, link lengths, /, and [, are 0.40 m
and 0.65 m respectively, and the angle of joint 2 is limited by 35 Deg < 0, <
170 Deg. Then the parallel drive mechanism has a better efficiency for all arm
configurations within the limit. This is another important advantage of the parallel
drive mechanism over the serial drive. Having the same motor constants and the
same link lengths covering the same workspace, the parallel drive mechanism can

more efficiently exert force at the arm tip.
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2.4 Conclusion

By analyzing the internal power dissipation at the motors when exerting a
force at the tip of the arm, it was shown that the parallel drive mechanism has a
lower power dissipation than a serial drive that has the same motors and covers the

same workspace.
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Chapter 3

DECOUPLING OF MANIPULATOR
INERTIA TENSORS

3.1 Introduction

This Chapter introduces the concept of simplification of manipulator
dynamics through decoupling the inertia tensor, as well as by making it invariant
for different arm configurations. First, a serial arm linkage with all revolute joints
is analyzed and the conditions, for the arm structure and mass distributions, to
have decoupled inertia tensors are derived. The necessary and sufficient conditions
for decoupled and invariant inertia tensors are then derived for a group of arm

mechanisms.

3.2 Simplification of Manipulator Dynamics

Robot manipulators are highly nonlinear and coupled dynamic systems. The
motion of one actuator is disturbed by other actuator motions, and the dynamic
behavior varies with the arm configuration. The coupling effects become even more
prominent when the speed increases, and the required accuracy becomes more
severe. The interactions and nonlinear forces have been shown to cause errors in
position response even at low speeds [Brady, Hoilerbach et al 83]. Therefore,
compensation for such complicated dynamics is necessary in order that the

manipulator follows the planned trajectory accurately.
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High speed direct-drive robots surely experience very significant dynamic
interactions and nonlinearities. An example is the M.LT direct-drive arm [Asada
and Youcef-Toumi 84] where the maximum speed and maximum acceleration are on
the order of 10 m/sec and 5 G respectively. This inertial coupling was expericaced
in the early version of the CMU direct-drive arm [Asada, Kanade and Takeyarna
83]. Recently, [Kanade, Khosla and Tanaka 84] reported that in the CMU direct-
drive arm model II, errors of the order of 0.25 and 1.1 degrees were induced in the
proximal joints that were servoing at a sampling rate of 1 ms. These errors will
undoubtedly cause errors of the order of millimeters at the end effector if not

compensated for.

Several schemes have been adopted in the control of manipulators. A model-
referenced adaptive control law has been used to maintain a uniform dynamic
performance over a wide range of system conﬁgprations and payloads [Dubowsky
and Des Forges 79). Feedforward compensation of nonlinear and interactive
torques has been combined with optimal regulators for linearized systems to
improve the control performance [Vukobratovic and Stokic 80]. Feedforward
control can effectively compensate for the predictable motions of a direct-drive arm
whose characteristics can be identified accurately [Asada, Kanade and Takeyama
83]. Recent progress in fast real-time computing algorithms have greatly reduced
the computational burden. They have made it possible to compute the inverse
dynamics of serial manipulators in real time by using recursive équations based on
the Newton-Euler formulation [Luh, Walker and Paul 80], and also on the
Lagrangian formulation [Hollerbach 80]. Other Methods for achieving dynamically
decoupled manipulator motions have also been proposed. Using a nonlinear control
law [Freund 82], and a model-referenced adaptive control [Takegaki and Arimoto

81] to obtain decoupled arm dynamics in cartesian coordirates. Among all of these
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schemes, [Luh, Walker and Paul 80] reports a sampling rate of 16-20 ms for
computation which is not adequate for high speed direct-drive manipulators.
[Kanade, Khosla and Tanaka 84], however, achieved a sampling rate of 1 ms for a
direct-drive manipulator with a computation hardware customized for the

manipulator dynamics.

An alternative approach, which is proposed in this thesis, is to simplify the
manipulator dynamics by modifying the arm design; structure and mass
distribution. Using an adequate mass distribution for the arm links, a form of the
inertia tensor for which coupling is significantly reduced can be obtained.
Consequently, the manipulator dynamics is simplified and the computation burden
is relaxed. This design technique is an extension of dynamic mass balancing and
force balancing. Force balance deals with the redistribution of mass to reduce the
shaking forces transmitted from the mechanism to the frame (ground). Most of this
research has been directed to planar mechanisms [Tepper and Lowen 72, Tepper
and Lowen 73, Tepper and Lowen 75, Walker and Oldham 78]. In our context, arm
structure design and mass redistribution are used to modify the dynamics of multi-
degree-of-freedom linkage system with multiple actuators. The inertia tensor of the
linkage system is to be decoupled. This decoupled dynamic behavior is particularly
desirable in manipulators performing high-speed and high-accuracy path control
tasks. Furthermore a decoupled dynamics aids in the control of direct-drive
manipulators where coupling and wide range load conditions for each actuator are
significant [Asada, Kanade and Takeyama 83]. The control problem is then
reduced to the one of independent joint control with possibly constant gains [Asada

and Youcef-Toumi 83, Asada and Youcef-Toumi 84].
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3.3 The Decoupled and Configuration-Invariant Arm Dynamics

The dynamic equation of a direct-drive arm with respect to actuator torque

and joint motion 4, is given by

T—h0+2h0+22(

i

- 6.0, + 7. 3.1
230)" B 3.1

The first term on the right hand side represents the inertia torque; the second term
is the interactive inertia torque, which is linearly proportional with acceleration. It
is ususally referred to as the linear acceleration torques. The third term is the
nonlinear velocity torque due to Coriolis and centrifugal effects; and the last term is
the gravity torque. In general, all of these torques are dependent on the arm

configuration.

In the case where the inertia tensor H of the manipulator is diagonal, the
second term vanishes and consequently no interactive inertial torques appear. In
this case, the manipulator inertia tensor is referred to as a decoupled inertia tensor.
The third term, representing the velocity torques, arises when the elements of the
inertia tensor change with configuration. The significance of this term depends not
only on the magnitude of velocities but also on the spatial rate of change of the
elements of the inertia tensor. If the inertia tensor is decoupled, then nonlinear
velocity torques present will result from only those diagonal elements that are
space dependent. Therefore, by decoupling the inertia tensor, we not only eliminate
the interactive acceleration torques bui also reduce the effects of the nonlinear
velocity torques effects. Under this condition, equ.(3.1) reduces to

16h,, .

-_l._. L] _ ——_ 2 ,
L+ Z( o, 6, 2o 62) + 7, (3.2)
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Now, for a manipulator with a configuration-invariant inertia tensor, namely each
element hij of the inertia tensor is constant, the spatial derivatives of the elements
of H vanish and so do the nonlinear velocity torques. In this case, equ.(3.1)

becomes

ji

Thus, when the inertia tensor is both decoupled and configuration-invariant, the
dynamic equation simplifies greatly;

(3.4)

o0

7.= h.. 6. + Ti

i i i g

3.4 Necessary Conditions for Decoupling Serial Spatial Mechanisms

The goal of this secticn is to determine a fundamental kinematic condition
that is necessary to decouple the inertia tenmsor. We analyze spatial serial
mechanisms with all revolute joints! . In deriving the necessary condition, we
examine tle torques and forces resulting from acceleration only. The torques to be
examined are the acceleration torques generated by the motion of one link and their
effects on the remaining joints. Specifically, we start with the analysis of the last
link, n, acd find the effects of its acceleration upon the motion of link n-1. In
deriving the necessary condition for decoupling, it suffices then to examine the
torques due to acceleration only since the linear acceleration torques are dependent

on the off-diagonal elements of the inertia tensor.

Lp rismatic joints are a special case of revolute joints. The decoupling can be achieved easily for
the prismatic case in general.
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Consider the serial manipulator shown in Figure 3-1, where link n is
accelerating with an acceleration 0n In what follows, we derive the necessary
conditions for decoupling a serial manipulator. The notations used in this

derivation are listed below and illustrated in Figure 3-1,

- M,; = mass center location of all links j , 1 < j < n, when all joints are
immobilized except for joint i-1 .

- m, = mass of link i

- I, == moment of inertia of link i about joint axis i-1

- bj= unit vector along the j-th joint axis of rotation for link j+1
- A, | = projection of mass center M, onto joint axis i-1

- Bji= projection of A, onto joint axis j

- r ;= vector directed from A, to M,

- r'ci= a reference position of r ; taken at 6,=0,

- rij= vector directed from Bji to Ai

- . = joint angle j defined according to the Denavit and Hartenberg
notation, [Denavit and Hartenberg 55).

The main assumptions used in the derivation are :

- All revolute actuators are mounted at joints between adjacent links of a
serial linkage.

- Each link i possesses a principal direction along joint axis b, , for an
arbitrary arm configuration.

Theorem 1: For a serial manipulator with all revolute joints where
the actuators are mounted at the joints between adjacent links and one of
the principal directions of link i is parallel to joint axis b, ,, a necessary
condition for the manipulator inertia tensor to be decoupled is given by



-37-

Link n
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\Bn'l
n-2
n-I
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Figure 3-1: A serial manipulator



Fori=2,..n

(a) b ,'b, =0 forj=0,1,2,..,i2
and
(b) bi—!t ri'lj =0 o r;,=0 forj=0,1,2,..,i2

Proof

In order that the manipulator inertia tensor is decoupled for all the arm
configurations, the linear interactive torques must vanish for arbitrary accelerations
as well as for an arbitrary configuration. Therefore the interactive torques must be
zero for the following special cases: (I) When only the last link is accelerating and,
all velocities and other accelerations are zero; (II) When only the second to last link

is accelerating and, all velocities and other accelerations are zero.

Case I: Link n accelerating only

We begin with the last link, link n, and derive the necessary conditions that
must be satisfied in order to eliminate the interactive acceleration torques
generated by the motion of link n that are transmitted to the other joints. Let link
n accelerate with an acceleration b'n as shown in Figure 3-1. From the definitions

given, both vectors r and r o 2T€ perpendicular to b, so that

(3.5)

t I /
r cn bn-l =r ch l)n-l

(.)* represents the transpose vector operation. Let 7, be the inertial torque
resulting from the angular acceleration of link n about joint axis n-1, and F be the
inertial force due to the linear acceleration of the mass center of link n. In the

special case described in (I), 7., 2nd F_ are the only relevant dynamic forces
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present. The strategy is to determine the condition for which the total reaction
torque experienced by joint axis b__, vanishes. This analysis provides the necessary
condition because if the two joint axes were decoupled, they would be decoupled for
this special motion also. Since b, is in the direction of the principal moment of
inertia for link n, the inertial torque 7. due to angular acceleration is aligned with

b In this case, the inertial torque 7, and the inertial force Fdue to the

n-1°

rotational and translational motions of link n are given by

. (3.6)
Trn = ln 0n n-1
and
F,=m(b_,Xr,0,) (3.7)

where the vector operation (.)X(.) represents the cross-product, m_is the mass of

link n, and I is the scalar moment of inertia of link n about b, which is constant.

From Figure 3-1, the reaction torque that joint axis n-2 experiences when link

n accelerates about joint axis n-1 is of magnitude r"'ln_2,

P'ln_2 = T+ (rg + r"'lm_2 )XF, It b , (3.8)

where the subscript, in r“'ln_2, denotes the joint axis experiencing the reaction
torque due to an angular acceleration about a joint axis denoted by the superscript.
1""111_2 is then the projection of link n inertial torques onto joint axis n-2. Similarly,

any other joint j will be subject to a torque of magnitude f“'lj

Pli= {1, +(r, +1")XF, D, (3.9)
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In order for the motion of link n, when under acceleration, not to disturb the

motion of any joint j, 1"'1j must vanish for all j that satisfy

1<j<n-2

For j = n-2, substituting equs. (3.6) and equ.(3.7) into equ.(3.9) leads

Tn-ln-2 = [ In bn-l + mn( Fen + l'n.ll.'n-2 ) X( b|:-l X Fen ) lt bn-2 én (3'10)

The first term between brackets is the torque due to the rotational motion of link n
about its center of mass. We will refer to this motion as the centroidal rotation.
The second term represents the torque due to the motion of the center of mass.
This motion will be referred to as the motion of the centroid. Since the torque due
to the centroidal rotation in equ.(3.10) does not depend on 6§, the necessary

condition for r“'ln_2 to be zero for all accelerations 6, is

arﬂ-ln-2 a n-1 t
=- | (l‘cn +r n-2) X ( bn-l Xr,, )] b ,=0 (3.11)

where r_ ~varies depending upon ,. Since we defined r, to be a vector

perpendicular to b__,, thus r_ sweeps a circle in a plane perpendicular to b_,
or

when 4, changes. Furthermore,-—cn lies in the same plane traced by r_, and

cn’
consequently it is perpendicular tonbu_l for all 6. This is illustrated in Figure 3-2.
The vectorsb , Xr_ and —2 are collinear in a plane that is perpendicular to

r.,- Thus Equ.(3.11) reduces to

n-1 al.t:ll t
[(reg + o) X (b X2 ) 'y p =0 (3.12)
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Figure 3-2: Plane of motion of r
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We derive conditions for equ.(3.12) to be zero for all § in each of the following

or
=0, and L 0.
00 7

dr
Case A: — =0 for all
a0

rcn

cases;

r
If P B — 0 forall 6, thenr is independent of § . However, this is possible

0
only if rcnnis zero, that is the mass center of link n lies on joint axis b ;. In this

case, equ.(3.12) is zero and the torque due to the motion of the centroid is also zero.
The only term that remains is the torque due to the centroidal rotation and

£qu.(3.10) reduces to
Al =10b 'b ,=0 (3.13)
Since the moment of inertia I is always positive then equ.(3.13) holds for an
arbitrary 5n only if the dot product is zero. The necessary condition in this case is
b ‘b ,=0andr, =0 (3.14)

The above relations state that the joint axes b, and b, , must be perpendicular

and that the mass center of link n lies on joint axis b__,.

or
Case B: —= 7é 0 for all 6
a0,
. . . . . l.(:ll .
From the discussion given above on Figure 3-2, it follows that b_, X Py is
n

collinear with r_ and equ.(3.12) reduces to

[( Fen + I'n-ln-2)x( krcn )]t bn-2=0
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r
where k is a constant and b, X —2 s replaced by k.r - The above relation

can be simplified to .

(™! ,Xr, 1'b, ,=0 (3.15)

Equ.(3.15) is satisfied if r“'lu_2 is zero or the whole scalar triple product is zero.

. '1 —
CaseB.1: r"" ,=0

If r"'ln_2 = 0, then equ.(3.15) is satisfied and equ.{3.8) reduces to

Al ,=[Ib, , +mr X(b, Xr )'b

n cn
_ ’ t .
—“n +mk nll -2n

= (I, +m k) on b' b, (3.16)

Since the vector r.,X(b, ,Xr.) is always in the same direction as b ,, the
constant k’ is always positive. Thus the torque transmitted, as given by equ.(3.16),

is zero if and only if the dot product is zero , that is

b b ,=0 andr™! ,=0 (3.17)

These conditions mean that the joint axes b, and b, _, must be orthogonal and
must intersect at the projection of the mass center of link n onto joint axis n-1,

namely point A__,, as shown in Figure 3-1.

. pi-1
Case B.2: 1™ , %0

n-1

In the case where the vector r"™" , is wot zero, then the necessary and

sufficient condition for the scalar triple product to vanish is that all three vectors
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n-1

r r, and b_, in equ.(3.15) must be coplanar, [Wilson 60]. Since r_ is

n-2' “cn

pependicular to b__, by definition, thep o1

2.2 and b, must be perpendicular to
b, to satisfy the coplanarity condition. Using this result, equs.(3.15) and (3.12)
are zero. We can focus now on the term resulting from to the motion of the

centroid in equ.(3.10) and the relevant part is

[ ( Ten + l.“-111-2 ) X ( bn-l X Fen ) ]t bn‘-2
or

[ Ten X ( bn-l X l.cn ) lt bn-2 + [ I.n”ln-2 X ( bn-l X I.cn ) ]t bn-2

The vector b, X r_ is perpendicular to r_ and is in the plane traced by r_ as 6
changes. Therefore the cross product r, X (b, Xr_ )is collinear with b, and
the first dot product in the above equation vanishes. As for the second term, the
coplanarity condition requires that r“’ln_2 is perpendicular to b, which is always
perpendicular to the plane traced by r_ , therefore the vector r"'ln_2 X(b,_,Xr,
) is collinear with b_, and consequently the second term vanishes. Thus, the effects
due to the motion of the mass center in equ.(3.10) are also zero, and the only
remaining torque is due to the centroidal rotation as given by equ.(3.13). The

necessary condition in this case is

b b ,=0, and ! b =0 | (3.18)

These conditions require that the joint axes b, and b_, must be orthogonal and
their common normal must pass through the projection of the mass center of link n

onto joint axis n-1, namely point A_ ;.

We now examine the effects of the motion of link n on joint n-3. If we assume
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that joints n-1 and n-2, with their corresponding links, have been designed
according to the necessary conditions of (3.14), (3.17) or (3.18), then the torque 7,

and force F would create a torque of magnitude 71 n.3 Biven by

1-!"1“-3 = [ Trn + ( rcn + rn-ln-3 ) X Fn ]t bn-3 (319)

This relation is similar to equ. (3.8) and therefore the results should be similar
to those of equs. (3.14), (3.17) or (3.18) after substituting n-3 for n-2. Thus

recursively, in order to decouple link n form all other joints, we must have

(a) b,_, being a pinciple direction for link n

b, ,* b, =0 for j=1,2, ..., n-2
and (3.20)

(b) bn_lt r“'lj =0 or r, =0

Case II: Link n-1 accelerating only

Let us now assume that the conditions of equs. (3.14), (3.17) or (3.18) are
satisfied, and proceed to determine the conditions that must be satisfied for
decoupling the motion of link n-1 from the rest of the manipulator. The approach is
similar to that in the previous case, case I, where we focus on the torques resulting
from acceleration only. In order to examine this, we calculate the total inertia

It("'l) of both links n and n-1 in body coordinates of link n-1,

1,0-) =11 4+ R0 R (3.21)

where l("'l)n_l is the inertia tensor of link n-1 in body coordinates of link n-1, I(“)n
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is the inertia tensor of link n in body coordinates of link n and R is the rotation
matrix that aligns joint axis b__, with a principal direction of link n-1. To derive
the necessary condition for which the motion of link n-1 does not affect the motion
of the other joints, we first assume that the necessary conditions derived in the
previous case, equ.(3.20). Also, we immobilize link n, after rotating it an angle 6
equal to ﬂ‘n, for which the total inertia tensor It(“'l) has a principal direction along
b ;- Thus if we accelerate link n-1 while link n is at this position, the necessary

conditions would be similar to those derived for decoupling link n, that is

b tb,=0 for j=12 ..,n3

n-2 7j

and

b, "2 =0 or r

It is possible to repeat this process recursively for the rest of the links and

obtain the result stated in the theorem. Q.E.D

3.5 The Necessary and Sufficient Conditions for Decoupling

The previous section revealed that all unit vectors in the directions of the
joint axes must be orthogonal in order to achieve a decoupled inertia tensor. Since
in practice more than two vectors can be maintained orthogonal only for a limited

number of configurations, thus we can state the following corollary,

Corollary 1: For a serial manipulator with all revolute joints where
the actuators are mounted at the joints between adjacent links and one of
the principal directions of link i is parallel to joint axis b, ,, decoupling
can be achieved for no more than two degrees-of-freedom.
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For two d.o.f serial linkage manipulators, it is possible to provide the
necessary and sufficient conditions for decoupling.
Theorem 2: The necessary and sufficient conditions for decoupling
a two degree-of-freedom serial linkage manipulator whose second link
possesses a principal direction along joint axis 1, are
(a) by!b, =0 (3.22)
and

(b)r,=0 or bYrlj=0

Proof

Necessity:

The conditions listed above are simply an application of the general result to
a two d.o.f serial linkage. Thus, these are also the necessary conditions for the two

degree-of-freedom case. It remains to show that these conditions are also sufficient.
Sufficiency:

The two possible cases that satisfy the necessary conditions are illustrated in
Figures 3-3 and 3-4. These were obtained by arranging the two links of cach case
according to the requirements of the necessary conditions. In each case, we have
orthogonal joint axes, as stated by part (a) of the necessary conditions, and then we
implement part (b) of the necessary condition separately, namely r, = O for

Figure 3-3 , or b"'l rlo = 0 for Figure 3-4.

In order to prove the sufficiency, we use two facts :(i) the inertia tensor of the
manipulator is symmetric, (ii) the inertia torque due to the angular acceleration of

the second link is aligned with b, since it is a principal axis.
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In Figure 3-3, the mass center of the second link is on joint axis b, and
therefore will remain stationary when link 2 accelerates. Consequently, the inertial
torque is entirely due to the rotation of link 2 about joint axis b,. Since b, is

orthogonal to b, the base joint experiences no disturbing torque.

In Figures 3-4, the linear motion of the mass center of the second link causes
no torque about the base joint axis since this motion is in a plane that contains the

base joint. Note in case 2 the mass center of link 2 does not have to be on joint axis

b,.
In both cases, when the base joint accelerates, no torque is induced about

joint axis b, due to the symmetry of the manipulator inertia tensor.

The sufficiency can be proven simply by substituting the conditions given in

theorem 2 in the general expression of the elements of the inertia tensor,

hyy = my( beXr ) boXre; ) + my (bX( rlg + reg) ) (bX(rly + rp) )
¢ t
+b [ by + b I, b,
hyy = my (b Xre, ){( bXry, ) + bty I b,

hyy = my [ (beXr'y ) byXre, + (bgXry, ) byXry, |+ by I by

The term b"0 I, b, is zero since b is a principal direction for the link inertia tensor
I,, and the unit vectors b, and b, are orthogonal. The coefficient of m, in h,, is
zero when r, is zero. In the case where r , is different from zero, the coefficient of
m, is still zero since the following vectors are orthogonal: b, and b,, b, and rlo,
b

; 20d r ,. This concludes the proof of the necessary and sufficient conditions that

decouple the inertia tensor of two degree-of-freedom arms.
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3.6 Discussiont on the Decoupling Conditions

In this section, we discuss the necessary conditions derived previously in order
to find the design guidelines for decoupling serial spatial mechanisms. The first
requirement in the necessary conditions of equ.(3.20) is the orthogonality of the
joint axes. In all cases studied during the derivation of the necessary conditions, the
orthogonality of joint axes was required to eliminate the torque due to the
centroidal rotation. We can conclude that the coupling between the joints of a
serial spatial mechanism is dictated by the centroidal rotations of the links. The
reason for this is the following. The reaction torques due to the motion of the
centroid can be cancelled using both mass distribution or modifying the arm
structure as part (b) of the necessary conditions suggest. However, the rotational
effects are cancelled only by having orthogonal joint axes, as dictated explicitly by
equs.(3.13) and (3.16). Therefore, the motions due to the centroidal rotation limit
the decoupling of serial spatial mechanisms by mass distribution only, and we must

resort to an additional tool in order to decouple more than two d.o.f.

Since the centroidal rotation of links is the limiting factor, it can be stated,
from the mass properties point of view, that the moments of inertia characterize
the decoupling by mass distribution. Thus in serial drive mechanisms, in order to
achieve decoupling, the rotational effects must be eliminated. The orthogonality of
joint axes as given by the necessary condition (a), does eliminate the effects of pure
rotation of the links. Therefore, any other means that can eliminate the effects of
centroidal rotation will be equivalent to the orthogonality condition. The following

proposition can be stated

Proposition 1: Decoupling of the manipulator inertia tensor for
more than two degrees of freedom cannot be accomplished merely by
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redistributing mass, but the structure of the arm mechanism itself needs
to be modified.

In addition, the orthogonality condition as required by the necessary
condition cannot be satisfied for serial planar mechanisms where all joint axes are

parallel, thus a corollary to theorem 1 is

Corollary 2: It is impossible to decouple the inertia tensor of
planar open loop kinematic chains that use revolute joints with actuators
mounted at joints between adjacent links.

3.7 Conclusion

This Chapter first introduced the concept of decoupled and invariant
manipulator inertia tensors and showed how this reduces the dynamics complexity.
Derivations were then presented of the necessary, and the necessary and sufficient
conditions that must be satisfied in order to decouple a serial manipulator with all
revolute joints. Using the necessary conditions, the effects due to centroidal
rotation of the links were shown to be the limiting factor in the decoupling of
manipulator inertia tensors by mass distribution. It was also pointed out that
decoupling of more than two degrees of freedom can be achieved by a method that
eliminates the effects of centroidal rotation bu. does not use joint axes

orthogonality. This will be discussed in detail in the next Chapter.
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Chapter 4
ACTUATOR RELOCATION

4.1 Introduction

in the previous Chapter, we assumed that each actuator was located at the
corresponding joint and that it exerts a torque between the adjacent links. The
actuator, however can be located on other links if an appropriate trapsmission can
be used. In this Chapter, we discuss the decoupling problem for a mechanism where
the actuators are relocated to other links with the use of a transmission. It will be
shown that the decoupling condition as previously obtained can be significantly
relaxed by the relocation of actuators. When actuators are mounted remotely and
joints are driven through a trénsmission, the torque exerted by one actuator is not
necessarily applied to one joint but can affect several joints. Similarly, the
displacement of one actuator may cause a displacement in more than one joint axis.
Thus, we need to study the effects of relocating the actuators on the manipulator
kinematics and dynamics. First we set up the relationship between the actuator
displacements and their corresponding joint displacements . Then we determine the
linear and angular velocity vectors of every link in order to examine the new
manipulator dynamics. Second we focus on the manipulator mass properties. We
recall that the effects of the centroidal rotation of links were the limiting factor in
decoupling serial drive manipulators. Therefore, it is important to determine which
link mass properties effect the coupling between any two given actuators.
Specifically, the moments of inertia are of special interest since they in effect limit

the decoupling. A useful set notation is introduced to facilitate the analysis and
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help in the understanding of coupling.

4.2 Modeling of Transmission

The class of manipulators examined consists of serial linkages with all
revolute joints. We assume that the actuator displacements ( &}, @, ... , & ) are a
complete and independent set of generalized coordinates that are able to locate the
manipulator uniquely and completely. This section presents a model of the

transmission for this ciass of manipulators and introduces the following notations,

- ;@ the I-th actuator displacement

- 0, : the m-th joint displacement defined according to the Denavit and
Hartenberg notation.

- b, : unit vector in the direction of the m-th joint axis

Thus, the l-th actuator produces an actuator displacement &, which induces link m
to rotate, through a transmission, by a displacement §_ about joint axis b_ . In the
analysis, we assume that the inertia of the transmission is negligible and we deal
only with static forces transmitted. The actuator displacement vector, a, and the

joint displacement vector, ©, are assumed to be related by the vector function f2

O0=f{ a} (4.1)

and the actuator velocities & and joint velocities 6 are related by

6=K(a) & (4.2)

2 may be more appropriate to write == f{ 8 ) when the dim( 8 ) > dim( a ).
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where K( a ) is the Jacobian matrix associated with f, and depends on the arm
configuration in general. We will refer to the matrix K as the tranmission matrix.
For a serial arm with actuators mounted at the joints between adjacent links, the |
transmission matrix K is a diagonal constant matrix with diagonal elements equal
to the inverse of the gear ratios. Figures 4-1 and 4-2 show two two-degree-of-
freedom manipulators where the actuators are mounted at the joints and at the
base, respectively. As shown in the Figures, the transmission matrices K depend on
the location of the actuators. In what follows, we derive the expression for the

angular and the linear velocity vectors.

4.2.1 Link Angular Velocity Vector

In general, the angular velocity of link i, w; is given by

w, = Z — al (4.3)

where a':l is the velocity of actuator 1, and 3wi/8&| is Kane's partial rate of change
of orientation with respect to a; [Kane 68]. This partial rate is denoted by a;. In
the case where 8wi/66:| is zero, actuator 1 induces no angular velocity to link i.

Thus, we can define a set S; of all actuators j that induce rotation to link i

s;={i/ b;aéO} (4.4)

and

W. —Z—al

lcS

For a serial manipulator, the velocity vector w; is given by
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motor # |
k; » ko = gear ratios.

Figure 4-1: A 2 d.of serial manipulator with motors at the joints

motor # |
motor # 2

Figure 4-2: A 2 d.o.f serial manipulatof with motors at the base
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w,=3 b(6)0,

j=1

Using the relationship between the joint velocities and actuator velocities equ.(4.2),

n
=1
therefore,
1 n n 1
w=3 bYKié = Y (D} bKyd = Y a4 (4.6)

Now, we can write explicitly the expression for the partial rate of orientation a,
with respect to al,
ow,
5— =a, = Z b, K;, (4.7)
o)
Thus in this case, if it is desired that an actuator 1 is to have no contribution to the
rotation of link i, a; must be zero. This means that the linear combination of the
unit vectors bj weighted by the the elements of the transmission matrix, K, must
be zero. If the vectors bj are linearly dependent, we need to choose scme nonzero

Kjl's so that equ.(4.7) vanishes.

The definition of S, for a serial manipulator becomes

serial

s,  ={l1/ D bK; #0} (4.8)

=1
4.2.2 Link Linear Velocity Vector

The linear velocity vector v, of the mass center (ic) of link i, is
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n avl .
V = - 0 (49)
1 da,
where 8vi/3él is Kane’s partial rate of change of position with respect to «;. This

partial rate is denoted by a‘“. We define a new set S‘i’ similar to S;, which is the

set of all actuators that induce linear motion to the mass center of link i,

. avi
Si={j/ e 70} (4.10)
ba;
and
vi=D)
leS |

For a serial manipulator, the velocity vector v, is

1
vi=D, b, X o éj (4.11)
i=1

where 'jic is a vector from joint axis j to the mass center of link i. Now using

equ.(4.5), we have

Vi _'Zb xrjlc(ZKJIal)

j=1

or

v, = Z ( Z K; b; X I, )&y (4.12)
=1 j=1

By inspection, we recognize that the partial rate of change of position with respect
to a is
L ]

a 1

a.|=__i= K, b, X rl

i » il ic
801. j=
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The set S.i for a serial manipulator becomes

lserial

i

s, ={1/) KybXrd, #0} (4.13)
=1

for all arm configurations.

4.3 Kinetic Energy

4.3.1 Arm Inertia Tensor

In this section we examine the total kinetic energy KE of an n degree-of-
freedom mechanism with n links, in terms of the actuator displacements, in order
to evaluate the effect of the transmission on the elements of the manipulator

inertia tensor. The kinetic energy in terms of the actuator displacements a is

‘ n l n
KE = Z KE, = E Z( mi\ritvi + wti L w) (4.14)
i= i=1
1 [ ] ]
KE = 5 at G a

where v, and w; are the linear and angular velocities of link i expressed in terms of
the actuator velocities and; m, and I the ith link mass and inertia tensor
respectively. The kinetic energy can be rewritten in terms of the actuator velocities
explicitely, matrix G is the inertia tensor for this expression. Let us derive G.
Substituting the general expressions of the angular and linear velocities given by
equ.(4.3) and equ.(4.9), in terms of the partial rates a, and a'“, the kinetic energy

is
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l . : , * .
KE:EZ (mi(ZanalJ‘(Z,a im %m) (4.15)
i=1 1S i meS i
(0 myd) L (Y Bim Gpy) |
IeSi mcSi
and the I-m element, hlm of the inertia tensor G can be identified as
b =D () (a,,) + > m(a%) (a%,) (4.16)
ie Slm ieS Im
wkere the sets S‘lm and SIm are defined as
S ={i/1¢S" andm e S (4.17)

Slm={i/lcSiandmeSi}

The set Sim 13 the set of all links i that are rotated by both actuators | and m, On
the other hand, the set S‘,m is the set of all links i whose centroids motions are
induced by both actuators | and m . These sets explicitly show how the inertia of
the different links are distributed in the manipulator inertia tensor. The mass
properties of these links will thus appear in the I-m element of the manipulator
inertia tensor (without regard to cancelation of terms). If on the other hand, link i
does not belong to either set Sim ©F S.lm’ then its mass properties are not involved

in the I-m element of the manipulator inertia tensor,

Equation (4.16) is a general expression for the I-m element of the arm ineitia
tensor G. First we note that the elements of the transmission matrix K, namely
K, are involved in this expression. They are additiona] design parameters that
could be used to make the off-diagonal elements b, {5 m, zero. The first term in

Equ. (4.18), is related to the reaction torque resulting from the centroidaj rotation.
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Similarly, the second term is related to the motion of the link’s centroid. Using the
proposition given in Chapter 3, we can state that the first term in h;  must be

eliminated by some means other than the orthogonality condition.

In general, the links whose mass properties would definetely have no
contributions® to the value of b, are those links i for which the partial rates,
corresponding to actuators 1 and m, are zero. Specifically, the mass ( moments of
inertia ) of link i would not appear in h; when the partial rate a'.il or a‘im (aor
a, ) is zero for all arm configurations. In other words, actuator 1 or m does not

induce motion ( rotation ) to ( about ) the mass center of link i;

¢ S‘iormE S‘i thatisa.‘“=0 or a., =0

g S,orm¢ §; thatisa, =0 or a, =0

4.3.2 Examples

Example 1:

Consider the manipulator shown in Figure 4-2 and assume that the drive
systems have unity gear ratios. The influence of the velocity of actuator 1, 5’1' on

the angular velocity vector w, of link 2 is

ow,
a, =— =b,K,;; +b, Ky, =b, (1) + b,y (-1) =0

60:1

30ther possibilities for which a link’s mass properties do not contribute to the value of hlm are

] | ]
-(a il )t' a, =0 that is orthogonal vectors.

- (8 )t L, =0, thatisa, and a; arel; orthogonal.
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Therefore, o, has no influence on w, since the partial rate of change of orientation

of link 2, with respect to e, is zero. In fact, the angular velocity vector w, is

w, = b2 a,y

making the set S, contain motor 2 only,

Sg={2}

Example 2:

The manipulators of Figures 4-1 and 4-2 have an S.2 given by

s, =1{1,2}

This means that the motion of the mass center of link 2 in both manipulators is

induced by both motors 1 and 2.

Example 3:

If we apply the above to the manipulator of Figure 4-2, we obtain

S; = {1} and S, = {2}, since motor 1 rotates link 1 only and motor 2
rotates link 2 only.

S‘l = {1} and S"2 = {1, 2} , since the motion of the mass center

of link 1 is caused by motor 1 only, and that of link 2 is caused by both
actuators 1 and 2.

thus the sets Slm and S‘|m are:

Su = {1} :Slg=¢1822= {2}
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S =112}, ,=(2),5 =12

Therefore, the elements of the inertia tensor, as given by equ.(4.16) should involve

the following mass properties

hy, =hy,(my, my, 1)
hjg=hp(m,)

hgy = hyp( my, )

Example 4:

Let us analyse the link mass properties of the parallel drive five-bar-link

mechanism of Figure 2-5

Link rotations
S, = {1}, 8, = {2}, S, = {1}, §, = {2}
Link mass center motions :

* * * [ ]
S 1={1}rS2={2}’S3={112}1S4={1,2}
The sets S;  and S.Im are identified by
S, ={1,3} and S =(1,28}
Sy, =1{2,4} and Sy ={23 4

.

Sp=¢ and S ,= {3, 4}
and consequently, the inertia tensor elements h,  are
by, =hyy(my, mg, m, I, 15)

hgy = hyy( my, my, my, Iy, 1)



-63-

hjp =hjy( my m,)

The off-diagonal element h,, results only from the linear motion of links 3 and 4.

The general expressions of the inertia tensor are

—_ 2 2 2
h“—ll+13+mlgl+m3g3+m4ll

h22 = 12 + I.1 + m2g22 + m3122 + m“gQ4

hyp = ( mglygs - mlyg, ) cos( b, 6, )

4.3.3 Transmission Matrices for Serial Manipulators

In this section we derive the general form of the transmission matrices for
open loop revolute chains. The actuators can be mounted anywhere at the joints
between the adjacent links. A typical transmission is shown in Figure 4-3, where
motor i is mounted on link k, and drives link i. The joint displacements that are
involved between the ith motor and the joint about which link i rotates range from
k+1 to i-1. Following the Denavit and Hartenberg notation, that is link i rotates
about joint axis i-1, we assign a value of zero to k to represent ground. In other
words, link 1 rotates about joint axis indexed k=0. Now, the differential
displacement & 6, of link i is equal to the sum of the joint displacements ranging

from k+1 to i-1, subtracted from the ith motor displacement § o,

i-1

66, =6a;-) 60, (4.18)
j=k+1

which can be written as

bay =y 69, (4.19)

j=k+1



<«—Link i

d8i -
}/’,~\

motor |

k+1 (LMkk

Figure 4-3: Transmission mechanism in a serial manipulator
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4.4 Generalized Forces

In section 4.2 of this Chapter, we introduced a relationship between the
generalized joint displacements © and the generalized actuator displacements a,

thus

6=K(a)a

From the energy equation, the generalized joint forces 7 and actuator forces Q

should be related by the transpose of the transmission matrix K,

Q=K'r

4.5 Conclusion

This Chapter has focused on the kinematics and dynamics of mechanisms
with transmissions. In particular, it emphasised the effects of actuator locations on
the dynamics. Furthermore, a notation using sets was introduced to help
understanding the dynamics. In this notation, link motions are represented by the
sets S; and S'i, and the link contributions to element h;  of the inertia tensor by
the sets S; ~and S.Im' These sets will be used later to set up conditions for

decoupling.
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Chapter 5

ARM STRUCTURE DESIGN
FOR DECOUPLED AND
CONFIGURATION-INVARIANT
INERTIA

5.1 Introduction

This Chapter provides some decoupling design conditions which are based on
the results of the theorem and corollaries of Chapter 3 and the set notation
introduced in Chapter 4. Specifically, the centroidal rotation torque condition is
expressed as a design rule for decoupling spatial serial mechanisms. This is then
used in deriving the sufficient condition for a decoupled and invariant manipulator

inertia tensor.

5.2 Decoupling of Serial Spatial Mechanisms with Actuator Relocation

The class of manipulators of interest are still the open kinematic chain type
where the actuators can be located anywhere along the linkage. The goal is to
utilize the fundamental result on decoupling, presented in section 3.5 of Chapter 3,
namely that the reaction torques due to centroidal rotation must be eliminated.
Thus to meet this binding necessary condition, it suffices to eliminate all of the
rotational effects in each off-diagonal element, h; , of the manipulator inertia
tensor. The links i that contribute moments of inertia to the element h;  belong to

the set S, ~as derived previously. The centroidal rotation effects, as given in
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equ.(4.16), are reproduced below
(5.1)

b= ayLag

icSlm

To eliminate this term completely, we relocate the actuators and choose the mass
properties of certain links so that : (i) the set S is the empty set or; (ii) the entire

sum is zero.

Design Guideline:

(1) Slm =¢

or

2)at. La =0 Vi€ S, , and for all arm configurations.
il “i ©im Im

Proof

The first design guideline states that the set of links that are rotated by both
actuators | and m must be the null set. Since we are interested in the off-diagonal
element by, [ 7 m, one way to achieve this is by having the rotation of each link
be induced by one and only one actuator, S; = { i }. Using the definition given by
Equ.(4.17), it follows that Sim = ¢, and no centroidal rotations are involved in b, .,

since h"°‘lm is zero.

One way to satisly the second design rule, is for each link i that is rotated by
both actuators | and m, we choose either partial rate of orientation a, ora,  to be
a principal direction for the inertia tensor L of link i for all arm configurations; and
(ii) the partial rates of orientation a, and a, , of actuators | and m that both

induce rotation to link i, to be orthogonal for all arm configurations, namely
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(5.2)
(i) For allie§ ,a,ora m be 8 principal direction for link i it
and
(ii) ailt 3, =0 for leS; and meS; Jorall arm configurations

In other words, using the definition of the set S, this is equivaient to saving
that all partial rate vectors, a,, that make up the angular velocity vector w; of any
link i must be mutually orthogonal. This design rule permits the elimiation of all
moments of ineriia from the off-diagonal element h, in order tc satisfy the

necessary condition for decoupling serial spatial mechanisms.

Without loss of generatlity, we can assume that a,_ is in a priccipal direction
of L. Let us assume a coordinate transformation so that the direction of a,
coincides with the z-axis of the new coordinate frame, then the inertia tensor can

be expressed as

Now we consider the quadratic form p = a, t L a, , where a, is a principal axis
il im P P

for I, and the partial rates are given by,

=(a b c)

=(a f7)=(00 1)

then

41n general, there is no rotational effect if 8, and s, are li orthogonal for | # m.
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¢ —_
a Ii dqm = C¢7 lzz

t

since a,“ a, = 0, tlien p = 0 and no moments of inertia should appear.

5.3 Decoupled and Invariant Inertia Tensor for Planar Mechanisms

5.3.1 Sufficient Conditions for 2 Decoupled and Invariant Inertia Tensor

Consider an open loop kinematic chain consisting of links 1 through n, driven
by n independent actuators located at the base frame. The sufficient condition that

the manipulator inertia tensor is decoupled and invariant for all arm configurations

is given by:
i) [1 00 0..0
-1 10 0 ... 0
0-110 ... 0
K=|0 0 -11 .... 0
{ )
l n
(ii) r"llc =-— Z m, el fori=2,..,n
| j=i+1

where "Hic is the position vector from the origin of coordinate frame i-1 (on
joint i) to the mass center of link i, ri'li is the position vector from the origin of

frame i-1 to the origin of frame i, and m, is the mass of link i.
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Proof

The transmission matrix K, as given by (i), is a matrix that corresponds to S,
= { i} for all ¥=1,2,...,n and thus S; = ¢. The angular velocity vector w; is

given by

w,=b,, ¢

Note that the partial rate a; and the joint axis b, are all parallel in this case.

The linear velocity vector v,, as given by equ. (4.12), becomes

[ '_l . 'l
vi=zajbj_er’ j+aribi_er"ic

Using (ii), the linear velocity v; becomes

1 n
_ . '.l Y ‘l
"i—z:‘”’jbj-lx"J i~ ;“iz“‘jbi-lx""i

i j=itl
the kinetic energy is KE,
n
2KE=z:m-v.tv.+I.w.'w.
l—l

i1 il

—2 i3 Db, X AL ) (b, X ) &6,

i=1 ji=1lk=1

-22: Za bjlx"” —a Emlb Xr"l

i=1 j=1 0 =it

+Zm — (Z“‘l)z(b:-lx"‘-l ) (b, Xrh)
i=1 i 1=i+1
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n
¢ .o
+3 b, 'Lb, &

i=1
The inner product of two vector products can be expanded as

(b, XL )t (b, Xr* ) =

( btj-l bk-l ) ( I.j-ljt l.k-lk ) — ( btj-l l.k-lk ) ( l.j-ljl: bk-l )

Since the mechanism is planar, bj-l is perpendicular to rk'lk, and

( bj-l X I.j-lj )t (bk-l X rk-lk ) — ( rj-lj )t l.l(-lk
= rj'lj . fk'lk cos( By )
= Lj . L eos( 'Bjk )
= Cjk
where Lj is the length of the vector rj'lj and 'Bjk is the angle between link j

and link k. The kinetic energy now becomes
il i1

n
2KE=) m3 ) C,da

i=1 j=lk=1

i1
-2ZZ(Emn)C,-ié,-&i

i=1j=1 I=i+l

n l n

2 .2

+Z[;(Eml) Ci+b, Lb, ]a5
i=1 i =i+l

and by switching the order of summations, we obtain
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2KE =) > m;) Cj &; 6y + D () m;) C; 6%

j=1k=1,j = k i=max[j k] + 1 =1 i=j+1

-2nE "}: (nX:ml)Cii&j&i

=1 i=j+1 1=i+l

11 1 n .
+ Z [—( Z m )2 C;+ b L b, ] %
i=1 1 =i+l

n n 1 n‘ 0
=[> Qm){—=(Q m+1} Cy+b,‘Lb, | &

i=1 l=i+1 i l=i+l

+2) ) (Zml)Cjk&’.&k

i=1k=j+1 1=k+1

n n n
-2y ) (D m)Cy a; &
j=1k=j+1  l=k+1
or

n n l n
= [ (Y m)— () m).a%+L] &%
i=1 I=i+1 T 1=i+1

thus the elements of the inertia tensor are given by

hyy =0 for iFk
n n 1 n
hii=Z:(z:ml)—(Zml).a.zi+li fori=23,..,n
i=1 1=i+1 M =i

Thus the inertia tensor is completely decoupled and invariant for all arm

configurations.
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5.4 Parallelogram Mechanisms

This section explores the differences in dynamic behavior that exist between
two 2 d.o.f parallel drive mechanisms that use either a five-bar link mechanism or a
chain. The two mechanisms examined first use parallel drive as shown in Figures
5-1 and 5-2 The set notation was applied to these two mechanisms in examples 3
and 4 of Chapter 4. It was found that the elements of the inertia tensor of the
mechanism driven through a chain, Figure 5-1, depend on the following mass

properties

by, =h;(my, m, 1, )
hyy = hyy( my, 1)

hj, =hj(my)

and they are explicitly given by

_ 2 2
hu—ll+mlgl+m4ll
_ 2
hyy =1, + m, g%,

h,,=m, 12l g, cos( ay-a;)

On the other hand, The set notation was also applied to the mechanism which uses
a five-bar-link mechanism in Chapter 4, to determine the mass properties that are
involved in the elements of the inertia tensor. These implicit dependences are

reproduced below

*
h'y, = by, (my, my, my, I, L)

-

h'gp = hyy( my, my, my, I, 1)



link 4

Figure 5-1: Parallel drive mechanism using a chain

link 3

93

link 2 \‘T?-'\

Figure 5-2: Parailel drive mechanism using a five-bar mechanism

7
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h o =h),( my, m, )

or explicitely,

*

_ 2 2 2
hll—ll+mlg1+13+m353+m41l

*

— 2 2 2
h22—14+m4g4+12+m2g2+m312

h'yy=(mgl, g5-m, 1, g )eos( ey~ ay)

Let us define a vector pt = ( m, m,; ) whose components are the masses of links

2 and 3, and let [, = m, Rzi for i = 2, 3 where R, is the radius of gyration of link

i, then®
. .
pl'_“.‘o h ), = hy
. -
plf‘o h g, = by
. .
pl‘f‘o h')p= hy,

The two inertia tensors are similar . Thus, the extra links merely transmit the

motion from the actuator to the forearm, link 4, as expected.

As a counter example, consider the planar mechanism of Figure 2-3, where
the actuators are at the base. There is no mass distribution that can decouple the
inertia tensor of this mechanism since the angular velocity vector of link 3 is
affected by the motions of both actuators. This example shows that simply placing
the actuators at the base is not sufficient to achieve decoupling of the manipulator

inertia tensor.

5Proper angles are used before taking the limit.
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5.5 Conclusion

This Chapter provided some design conditions on decoupling using the results
of the theorem and corollaries of Chapter 3 and the set notation introduced in
Chapter 4. The reaction torque condition was expressed as a design rule for
decoupling spatial serial mechanisms in terms of the partial rates of angular
velocity and the sets S; and 5, . This was utilized in deriving the necessary and
sufficient conditions for a decoupled and invariant inertia tensor of an n degree of

freedom planar mechanism.



Chapter 6
DESIGN APPLICATION

8.1 Introduction

In this Chapter, we present the design of a 3-d.o.f revolute direct-drive
manipulator and derive the mass redistribution conditions for which the 3 by 3

inertia tensor is diagonal. The planar dynamics, however, will be analyzed first. -

6.2 Design Application - M.L.T Direct-Drive Arm

6.2.1 Arm Mechanism

The three-degree-of-freedom direct-drive arm to be analyzed is shown in
Figures 6-1, 6-2 and 6-3. The arm uses a parallel drive mechanism consisting of a
six-bar-link mechanism that forms a parallelogram. Reference [Asada and Youcef-
Toumi 84] describes the first direct-drive arm prototype that uses a parallel drive
mechanism. As seen in Figure 6-1, when joint 2 rotates link 2, the arm tip
performs a reach motion. A lift motion is achieved by having joint 3 rotate link 3.
A vertical planar motion of the arm tip can be accomplished by actuating joints 2
and 3 together. Finally, the base joint, joint 1, rotates the whole mechanism about
the vertical axis allowing a three dimensional motion of the arm tip. This arm
[Asada, Youcef-Toumi and Ramirez 84, Ramirez 84] uses the key feature of the
parallel drive, as presented in [Asada and Youcef-Toumi 83, Asada and Youcef-

Toumi 84], which allows the decoupling of the inertia tensor by mass distribution.
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link 6 (forearm)

link 5

_joint 5

joint 4

link 3

Y r joints 2 & 3
) Oy . 03
01
l

Figure 6-1: 3 d.o.f direct-drive manipulator side view




motor for joint 2 ' motorlfor joint 3
P i

[
E:; 2
L—
|

) C—

-+

Base motor

.

Figure 6-2: 3 d.o.f direct-drive manipulator front view
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Figure 6-3: M.LT 3 d.o.f direct-drive manipulator
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6.2.2 Decoupling of Planar Dynamics

Let us immobilize the base joint so that joints 2 and 3 are the only active
joints. This mechanism is equivalent to the five-bar-link mechanism described in
Chapter 5, where we showed that the five-bar-link mechanism is equivalent to the
parallel drive which uses a chain mechanism. Therefore, the necessary condition for
decoupling should apply. Using the notation of Figure 6-4, the sets representing

rotations are

S,=8;={2} and S; = S5 = {3}

‘The set S,;3 = ¢, thus no link moment of inertia are involved in the off diagonal
element h,,. The necessary condition for decoupling a planar mechanism,is then
satisfied. The elements of the inertia tensor for the two-degree-of-freedom arm are

given by

where its elements are given by
by, =1, + m, g22 +1,+m, g42 + 1, + my g52 + mg 122 (6.1)
—_ 2 2 2 2
by, =13 + m; g, + m, " + mg L + 1 + mg gg

hyg = (mg l; g5 + mg I, gg - m, l,g,)cos(az-a,)

The parameters m,, L. represent the mass and mass moment of inertia about

an axis going through the mass center of link i and parallel to the horizontal axis



link 6

- horizontal
—(“~" axis
2

Figure 6-4: Skeleton of the 3 d.o.f manipulator
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shown in Figure 6-4; k and g; are its link length and the distance to the center of

mass as defined in Figure 6-4.

It is apparent from equ.(6.1) that the diagonal elements of the inertia tensor,
h,, and hy,, do not involve actuator displacements a, and agj, hence they are
invariant for all arm configurations. The coupling term h,, is caused mainly by the
motion of the mass centers of links 4, 5 and 6. This term can be made equal to zero

for all arm configurations when the following is satisfied,

mg l; g5+ mgl,g5-my ; g, =0 (6.2)

The above equation suggests the redistribution of the mass of links 4, 5 and 6 in
order to decouple the arm inertia tensor. This can be achieved by changing the
mass center locations, g,, g5 and gg, or by changing the mass proportions of the
three links; m,:m,:mg . One possible solution to equ.(6.2) occurs when links 4 and
5 are identical so that my l; g5 and m, l; g, cancel each other. The decoupling

condition then reduces to
g =0 (6.3)
Under this condition the mass center of the forearm coincides with joint 6. This is

equivalent to static mass balancing of the forearm. For the six-bar-link mechanism,

this is a condition for decoupling the inertia tensor.

6.2.3 Decoupling of Spatial Dynamics

The arm inertia tensor depends not only on the mass properties of each arm

link but also on the kinematic structure of the arin linkage. As it was pointed out
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earlier, the kinematic structure is critical for achieving a decoupled inertia tensor.
For the manipulator shown in Figures 6-1 and 6-2, the parallelogram mechanism
was used for decoupling the upper two joints, 2 and 3. It is also possible to
decouple the arm inertia tensor in the 3 d.o.f case for all arm configurations. In this
case, we use the design guideline of chapter 5 for spatial mechanisms, that is to

eliminate the quadratic forms a; I, a, . The angular velocities of the links are

Bim
w, =e, a,
w2=w4=w5=elal+e202
W, =Wg—e a; +e,a,
where Kane’s partial rates e, and e, are

e, =(0 0 l)a,nde"2=(cosa:l sina;  0)

Note that the vectors e; and e, are orthogonal. Also, the principal direction of each
link of the upper arm is in the direction of e,. Therefore, the necessary condition is
satisfied since we eliminated all the moments of inertia from the off-diagonal

elements of the manipulator inertia tensor.

In Figure 6-4, note that the axis of joint 1 is perpendicular to the axes of
joints 2 and 3. Therefore, torques exerted by joints 2 and 3 would not act upon
joint 1 for a balanced arm design. The elements of the inertia tensor of the 3 d.o.f

manipulator are given by

U )| 2 2 2 2 cin2 2 2 2
hy, =1, + my( a% + g%cos®a, ) + I, sin“a, + Iy cos“a, + mja®,

3 in2 3 nnal 2 2 .2 2 2
+ IY, sin ay + I°, cos’ay + my( a°; + Pjcos“ay + g°4cosay )

4 2 4 02 2 2 2 2 2
+Iyycos a, + I', sina, + mg( a%; + 1%3cos®ay + g5cos a, )
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+1 yycos“ag + P, sin“a, + mg( 2% + 1%c0s%a, + ggcos“ay )

+ I8 sin2a, + I8 cosa, + 218 sina.cosa, - 2 m,l,g,cosa, cosa
yy 3 2z 3 yz 3 3 4'354 2 3

+ 2 ml g cosa,cosag + 2 mglygscosaycosay,

o
hy, = 12 + mg?, + I + mg?, + I + mg’ + mgl%

— 13 2 2 2
h33—lxx+m4l3+m513+m6g6+lﬁxx
hyo=( m, g5+ mgg;a5-mglya,-m,g,a, ) sin( a5 )
h13=(-m41333+m51333-m6g6a2)sin(03)

h23=(-m413g4+m513g5+mﬁlzgﬁ)cos(aa-az)

where Iixy is the x-y moment of inertia of link i. As expected, no moments of inertia
should be involved in the off-diagonal elements. The base joint inertia, h,,, is a
function of the actuators displacements a, and a; as expected. The base motor
would experience a high inertia when the upper arm is extended and a low inertia
when it is retracted. The terms h,, and h;, are constants since their corresponding
inertias are not affected by any of the joint motions. This results from the use of
the parallel drive, as discussed previously. The off-diagonal elements are functions
of configuration, however , they can be eliminated. The corresponding mass
redistribution conditions that make the inertia tensor decoupled for all arm

configurations are
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The acceleration of any link produces both translational inertial forces and
rotational inertial forces at its mass center. The former depends only on the mass
of the link and the latter on the moment of inertia. These conditions (6.4) are
designed only to eliminate interactive torques resulting from the linear motion of
the mass center of each link. The effects due to rotation are not present because we
used design guideline (ii). The motion of each link, in the upper arm, is restricted to
a vertical plane; as a result any acceleration torque resulting from rotation is
orthogonal to the base joint axis and does not cause interactions Another result is
that static balancing of all the links by making all g; equal to zero does not alter

the spacé dependency of the eiements h , and h,,.

If we assume that links 4 and 5 are the same, then the decoupling conditions

become

2m g a;-(mgly +mygy)a,=0

ge=0

If we balance link 2 such that, g, is zero, then the conditions reduce to

m; | a

8 2 2 (8.5)
m, B4 33

g2=0’g6=0

For the planar dynamics of the upper arm, the governing equation of each actuator
does not include interactive acceleration torques, or nonlinear velocity torques since
the inertia tensor G, is decoupled and invariant . In the 3-d.o.f case, the inertia
tensor is completely decoupled. However, the inertia of the base motor is a function

of a, and a,, hence some velocity torques are present. The resultant simplified
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dynamic equations are

. 11 » e -
hy(ap az)a; + — ooy + — g+ 7, =7,
3a2 6a3
1 oh
11 «9
h,, a - ——a’ T ,=T
22 72 2302 1 g2 2
. lahu_
h,, a ——a’, 4 T =T
3373 2303 1 g3 3

6.3 Conclusion

This chapter has addressed the design of the M.L.T direct-drive manipulator
with a decoupled inertia tensor by mass redistribution. The design guidelines of

chapter 5 were used to make the decoupling possible.



Chapter 7

CONTROL SYSTEM DESIGN
AND
PERFORMANCE EVALUATION

7.1 Introduction

This chapter explores the overall control performance of the prototype direct-
drive manipulator. Analytical and experimental evaluations are conducted for
speed, acceleration, servc stiffnesses, actuator interactions and the torque control

capability of the direct-drive robot.

7.2 Drive System Hardware

7.2.1 Actuators

The performance of the direct-drive arm is highly dependent on the
performance of the motors at the active joints. An investigation has been
conducted on actuators for the direct-drive arm [Asada,1981] . The motors used in
this particular design are brushless DC motors which utilize a new type of rare-
earth-cobalt permanent magnet. These magnets have an extremely large maximum
magnetic energy product, BH(max)=26 MGOe. Since the magnets are not
demagnetized in a normal operating range, a large current can be applied to the
armature of the motor resulting in a large torque which can accelerate (decelerate)

the arm joints very rapidly.
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Figure 7-1 shows the brushless motor housed in a case. The rotor, which
contains the magnets, is directly coupled to the joint axis. A magnetic brake and a
tachometer generator with hallow shafts are also mounted in the case which is
aligned with the joint axis. The windings are part of the stator ( not the rotor)
consequently the motor has a better heat dissipation than a DC torque motor
[Asada,1981] because the heat generated is efficiently dissipated through the motor
housing. Also, brushless motors can use high currents without causing sparks or

mechanical wear .

Table 7-1 lists the characteristics of the motors used in the M.I.T direct-drive
arm. These characteristics are an order of magnitude better than the DC torquers

in reference [Asada,1981] .

7.2.2 Sensors

A set of position and velocity sensors are mounted on each motor. A resolver
generates two AC signals that are processed by a resolver to digital ( R-to-D )
converter to output a 16-bit signal representing position. This signal is used for
commutating current in the three phases of the motor and also for position
feedback. The three phase currents are measured by resistors in series with each of
the phase windings. The torque exerted by the motor can be estimated from these

currents. The tachometer shown in Figure 7-1 provides a measure of velocity.

7.2.3 Power Amplifier

The driving amplifiers used are Pulse Width Modulated (PWM), "H” bridge
type with switching at a rate of 2 KHz . The motor voltage is switched at a high
voltage, 340 volts, to provide high currents. The basic block diagram of the drive
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Specifications of rare-earth brushless d-c motors

moto? peak rotor maximum current (amp.) motor

dia torque inertia i mass conslsm

(cm) (Nm) (kg - m2) # poles instantaneous continuous (kg) (Nm/vw)
35 660 0.181 30 S0 15 20.39 1.5
25 230 0.0256 18 30 10 16.5 2.5

Table 7-I: RareEarth Brushless DC Motor
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amplifier is shown in Figure 7-2. The R/D converter feeds a 10-bit signal
representing the actual rotor position to the ROM’s which output the sine scaling
functions for each phase. These functions are in turn multiplied by the current
request through the multiplying Digital/Analog converters to output the request
current in each phase. Finally, the pulse width modulator and the output power
stage work to bring the error between the request currents and the actual phase

currents to zero.

7.3 Position Control Evaluation

7.3.1 Actuator Modeling and Identification

The direct coupling of the motor rotors to the load requires motors with high
torque output. To achieve such high torque, one must increase the number of turns
in the motor windings. However, the inductance is proportional to the square of the
number of turns, hence the delay in motor response increases aud the control task
becomes difficult. The power amplifiers were designed with current feedback to
minimize the inductance effects, improve control of the torque output, and avoid

the effects of line voltage fluctuations.

The first goal is to evaluate the motor-amplifier combination in the direct-
drive application. Figure 7-3 shows a block diagram of the PWM amplifier and its
motor [Electro-Craft, Persson 1975 and 1976). The differential command input AV
is converted to a desired current by the gain k, . The PWM, modelled as a gain
k,, outputs a mean voltage V , the back EMF must be subtracted from this to
yield an effective voltage V g across the motor windings. The phase resistance r
and inductance { form the winding impedance, r+Is , where s stands for the Laplace

operator. The motor torque 7. which is the product of the torque constant and the
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motor current i accelerates the motor inertia J_. K, is a current feedback constant.
In this model, lower order effects due to mutual inductance windings, overlapping
conduction angles and unequal rise and fall time of currents are neglected. The

transfer function relating the input to the amplifier AV(s) and the angular velocity

w(s) is
klkakt
w(s) J 1
AV(s) r+kk, kk,

2 4+ —5% 4+ —

1 J 1
where k, is the back EMF constant. The two poles are functions of the current
gain k;.

An experimental verification of the fundamental mathematical model
presented is necessary to validate the analysis and amplifier design. A frequency
response test was conducted on the amplifier-motor combination using a Spectrum
Analyzer ( H-P 5423A ). The input/output variables considered were the
differential input voltage to the amplifier and the motor velocity respectively. It
was clear that the system has two real poles, thus it is second order. The slowest
pole was identified as a load dependent parameter by repeating the frequency
response test with different load conditions . The fastest pole was only affected
slightly. A typical open loop frequency response is shown in Figure 7-4. Under zero
load conditions, the amplifier-motor system had a DC gain of 35 db and two poles

at 3.65 Hz and 68 Hz . This verifies the mathematical model for the amplifier-

motor combination.
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7.3.2 Position Control System Design

Since the prototype arm’s inertia is decoupled and nearly invariant, control
problems reduce to single-axis control problems with fixed inertial loads. In this
section, we present the design for the single-axis controller (refer to Appendix

C)and evaluate its control performance.

Since we used large windings to exert a large torque, the motor has a
significantly large inductance, which results in a lower frequency at the second pole.
Unlike the conventional servomotor where inductance is negligibly small, the high
torque brushless motor has a higher delay due to this large inductance, which leads

to poor stability when the position loop is closed.

Figure 7-5 shows the step response when motor 1 drives the six-bar-link
mechanism and position and velocity are fed back. The response ,with a delay time
of 82 ms ,is fairly slow and poor in damping. When acceleration feedback was
included, the response was significantly improved as shown in the same Figure. In
this case the delay time is only 27 ms. Thus, the feedback of acceleration or
equivalent higher order derivatives is necessary for proper control. Instead of using
an accelerometer, motor currents monitored at the windings and the quasi-
derivative of a tachometer signal were used to get the acceleration signal. The
tachometer used was a pancake-type D.C. tachometer which has low ripple, less
than 1 % of average reading, and a high sensitivity of 2.2 Volt/rad/s. The servo
stiffnesses [Asada, Kanade and Takeyama 83] of the base motor and motors for the
five-bar-link mechanism were measured by applying known loads and measuring the
resultant displacements at the arm tip. The stiffnesses achieved were 300 N/mm
for the base joint and 416 N/mm for the other two joints. These servo stiffnesses,

which depend on the loop gains and link lengths, are 10 to 14 times larger than
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those of the direct-drive arm in reference [Asada, Kanade and Takeyama 83]. The
bandwidths (at 3 decibels cutoff when the position loop is closed) were measured to
be 3.17 Hz for the base and and 3.1 Hz the other motors respectively. These
bandwidths, while measured for large amplitudes of about 90 degrees span, are

comparable to the bandwidths of hydraulically driven robots.

Figure 7-6 shows a velocity profile when the base joint traveled a long
distance from -90 deg to +90 deg. The arm was extended 0.75 m from the base
center with no payload. The speed indicated is that of the end point. The end
point was accelerated very rapidly and it reached the top speed. The maximum
acceleration determined by the slope is 52 m/sQ, which is more than 5 G. Since
most industrial robots currently used have at most 0.1 to 0.5 G, the developed
direct-drive arm is an order-of-magnitude faster in acceleration. The top speed

measured was 9.36 m/sec, which is also much faster than that of existing robots.

7.4 Dynamic Decoupling Evaluation

The following experiment was conducted to evaluate the coupling between the
motors. One motor, tracking a sinusoidal position command, drives the link
mechanism while the other motors are not servoing. The peak-to-peak ratios
between the actual position signals of the driving motor and the other motors is a
measure of the coupling for the arm dynamics. These ratios ( in Db's ) are listed in
Table 7-II. The test was performed for two frequencies of the driving joint, 0.5 and
5 Hz, and [or four different arm configurations. The experimental data shows a
coupling of less than -30 Db for all arm configurations. Thus the arm is well

decoupled.
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Arm Oscillation Amplitude
configuration Ratio (Db) of Passive
a, - o, Deg. Axis to Active Axis
0.5 Hz 5 Hz
Effect of motor 95 -48 -31
2 on motor 1 110 -57 -40
130 -563 -39
140 -52 -32
Effect of motor 95 =57 -34
2 on base motor 110 -59 -38
Effect of motor 95 -59 -49

1 on base motor

Table 7-II: Experimental data on actuator dynamic interactions
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7.5 Torque Control

7.5.1 Modeling and Estimation

The current in the motor windings generates a magnetic field in the air gap of
the motor. This field interacts with the magnetic field from the magnets of the
rotor and produces the output torque. The torque constant is the ratio of the
output torque to the current. The magnetic field changes with the rotor position
and causes variations in the torque constant. This results in torque ripple. Although
the motors used for direct-drive arms are designed so that the torque constant is as
uniform as possible for all the rotor positions, there still exists a significant torque

ripple.

The torque generated is then transmitted to the joint axis through the motor
shaft and the joint housing. In the case of a traditional joint mechanism, the
torque is transmitted and amplified through a reducer, which causes the large
torque disturbances produced by friction, backlash and dynamic deflections. The
elimination of the gearing in the direct-drive arm greatly reduces these

disturbances.

The motors, described previcusly, are three-phase variable frequency
synchronous motors developed for the MIT direct-drive arm [Asada and Youcef-
Toumi 83, Davis and Chen 84]. The motors are capable of exerting large torque so
that the gearing can be complietely eliminated. The motor is also designed to
minimize the torque ripple. In the sinusoidal torque control generation scheme [Tal
g1], the relationship between the output torque and the currents flowing into the

three-pkase windings is given by

=K, |1, sin(6) + I  sin(6 + 120) + I sin(6 + 240) | (7.1)
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where I, I, ~and I are three phase currents, © is the angular position of the

m
motor rotor and K, is the torque constant.

From the above relationship, it follows that the output torque can be
estimated by measuring the three phase currents and the angular position of the
motor rotor. The three phase currents can be measured by inserting sensing
resistors in series with the phases of the motor, and the rotor position can be
measured by a position transducer attached to the rotor shait. In the synchronous
motor used, both the current and position information is already available, so that

no additional sensors are necessary for implementing the torque measurement.

The joint torque estimator discussed in the previous sections was
implemented and tested in terms of static and dynamic performances, [Asada,
Youcef-Toumi and Lim 84] . The three phase currents were monitored with 0.01
Ohm sensing resistors through circuits which isolate the measured signals from the
high voltage power lines of the drive amplifier. The computation of the output
torque was accomplished with a computer by recording the measured currents and

the rotor position information provided by a synchro resolver, refer to appendix B.

Figure 7-7 shows the results of an experiment using the current torque sensor
in which applied and estimated torques were compared for the same rotor position.
The estimated torques show no hysteresis and a linear relationship with the applied
torques except around the origin. This discrepency is mainly due to the
nonlinearity of the isolation circuitry. The sensitivities were 0.223 V/Nm and 0.260
V/Nm for applied torques in the clockwise and counterclockwise directions
respectively. The difference in slopes is caused by a slight misadjustment of the
resolver. The currents in each phase were also tested for repeatability and
consistency. Various conditions were used for this test including (i) loading and

unloading of the applied torques, (ii) moving away and back to the test position,
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(iii) and turning the system on and off. The repeatability in the current readings is
due to the closed loop current controller in the amplifier that regulates current in

each phase.

The accuracy of this method depends not only on the accuracy of the current
and position tranducers but also on the variation of motor constant k,. Since the
magnetic field in the air gap varies slightly with the rotor position, the torque
estimation based on equation (7.1) will also vary with the rotor position. Distortions

of the sinusoidal motor phase currents I, I, ~and I _ cause additional errors in

am’
the torque estimated. The experimental results in Figure 7-8 show the effects of
these errors on the estimated torque. A constant torque was applied externally to
the motor shaft for various rotor positions. The error in the computed torque was
+ 10 % of the mean value. However, the estimated torque has a clear pattern
where two main frequencies are dominant. The two lowest frequencies correspond
with the number of rotor poles and the number of stator slots respectively. This
error can be reduced by modifying equation (7.1) so that the errors due to the rotor

and stator slot locations are compensated for. With this modification, the torque

measurement error was reduced to + 6 % of the mean value.

7.5.2 Torque Control

[Asada and Lim 85] evaluated the dynamic response of the torque control
system. The step response showed a delay time and a settling time of 6 and 60
msec respectively. It was also found that the bandwidth of the torque control
system was about 30 Hz. Thus a fast and accurate torque control system has been

achieved.



COMPUTED TORQUE (Volts)

-106-

3.0
1.5 —
0.0 | J |
0.0 60.0 120.0

ROTOR POSITION (Degrees)

Figure 7-8: Variation in computed torque without correction



-107-

7.6 Conclusion

The control performances of the developed prototype direct-drive robot were
considered. The manipulator, equipped with high torque brushless motors and a six-
bar-link mechanism with a decoupled and nearly invariant arm inertia tensor,
exhibits excellent performance. The delay time in the response is 27 ms, and the
top speed and acceleration are on the order of 10 m/s and 5 G respectively. In
addition, high servo stiffnesses were achieved. These characteristics are each an
order of magnitude better than those of conventional robots. Also, the interactions
between joints were also reduced to less than -30 Db’s for all arm configurations. In
addition, the torque developed by the direct-drive motor was estimated through the
measurement of phase currents. Using a simple correction function, that depends on
the pole and slot ripples, the estimated torque was found to be within + 6 % of the

mean.
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Chapter 8

CONCLUSIONS
AND
RECOMMENDATIONS

The inherent problems of the direct-drive approach have been identified as: (i)
heavy arm weight and small load capacity, (ii) motor overheating (iii) sensitivity to
changes in load conditions and disturbances and, (iv) actuator stability. The
potential advantages of the direct-drive concept are fully exploited by overcoming
these inherent difficulties. This thesis presents effective design methods for
articulated direct-drive arms, specifically for application to high-speed, high-
accuracy trajectory control tasks. These design methods include a power efficiency

analysis and a dynamic analysis of articulated direct-drive arms.

The power efficiency analysis, of chapter 2, was utilized to examine issues of
(1) and (ii). Although, this analytical tool applies to static analysis only, it is
helpful in evaluating the effectiveness of different kinematic structures in terms of
the power dissipation in the actuators. For example, a parallel drive mechanism is
shown to have lower power dissipation than a serial drive for the same motors and

work space.

In dealing with problems (iii) and (iv), stated above, a new approach is
developed for the arm linkage design. The goal is to simplify the controller design
by reducing the effects of complicated manipulator dynamics and to further
improve performance by increasing the load capacity. This is particularly useful for

direct-drive manipulators used in high-speed, high-accuracy trajectory control
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tasks, such as laser cutting. For such applications, two issues are of importance.
Along a given trajectory, a high bandwidth drive system requires a high density of
data points which can be independent of the end-effector speed. In addition; on-line
updating of the joint angles corresponding to the end-effector command position
and orientation can be required. These two requirements may limit the real time

dynamic compensation that can be provided to the manipulator.

In chapter 3, a method for designing an arm linkage with small inertial load
changes and small interactive and nonlinear forces is developed by analyzing the
kinematic structure and mass properties. Using this design methodology, a
decoupled and invariant manipulator inertia tensor in joint space can be achieved.
With the resulting design each actuator experiences completely decoupled dynamics
as well as a constant load which is independent of the arm configuration. First,
decoupling conditions were derived for open loop kinematic chain structures under
the following conditions : (i) revolute joints, (ii) actuators exert torques between
adjacent links and, (iii) each link possesses a principal direction collinear with its
corresponding joint axis. The last assumption is necessary to assure that the
torque, resulting from angular acceleration, is directed along the joint axis of
rotation. It was deduced from these conditions that structures of this type cannot
be decoupled for more than 2 degrees-of-freedom. The group of 2 d.o.f structures
that can be decoupled were identified. This does not apply to cartesian robots
which use prismatic joints and can have 3 decoupled degrees of freedom. The
limiting factor in decoupling was determined to result from the rotation of links
about their centroids. These rotational effects can only be eliminated by
introducing orthogonal joint axes. Consequently, the arm structure must be

modified in order to decouple more than two degrees of freedom.

Relocation of actuators is introduced in chapter 4 as a method for relaxing
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the decoupling conditions for serial drive manipulators. For example, there is no
mass distribution that will decouple the inertia tensor of a planar open loop
kinematic chain when actuators exert torques between adjacent links. Thus it is
necessary to modify the arm structure. When actuators are mounted remotely, the
torque exerted by one actuator can affect more than one joint. To analyze the
effects of relocating actuators on the manipulator kinematics and dynamics, Kane's
partial rates of positions and orientations are used. Furthermore, set notation is
introduced to represent the manipulator dynamics. This notation concisely
represents the causal relation between actuators and link motions. In addition, the
contribution of a specific link’s mass properties, in particular the moments of
inertia, to a given element in the inertia tensor is directly apparent from this

notation.

The results of the analyses of the decoupling of serial drive manipulators and
the set notation are then used to provide design conditions for the decoupling of
manipulators. Chapter 5 first presents some design guidelines to meet the necessary
conditions for decoupling the manipulator inertia tensor. These guidelines, while
atrict, merely make the given structure characteristics meet the necessary
conditions by eliminating all of the moments of inertia from the off-diagonal
elements of the manipulator inertia tensor. Finally, the sufficient conditions for
making the inertia tensor of an open loop kinematic chain completely decoupled
and invariant were found to be : (i) the rotation of each link mﬁst result from one
actuator only and, (ii) each link must be mass balanced. The mass balancing
conditions are required for all links except the first link. While the mass added to
meet the balancing conditions, in this case, is on the order of the number of links
squared, the use of parallel drive mechanisms results in more practically achievable

conditions. Using parallel drives, on the other hand requires the addition of extra
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passive joints. For this case, clearance at the joints can be a problem [Dubowsky
and Perreire 82]. In addition, decoupling of the mechanism'’s inertia tensor does not
require the total mass center of the mechanism to be stationary as required in the

case of force balance.

These design tools are applied in chapter 6 to the development of the 3 d.o.f
M.IT direct-drive arm. Complete decoupling of the manipulator dynamics is
achieved. The total mass of the decoupled arm mechanism is about 15 Kg, which is
excellent for the robot size considered. Also, the design can facilitate the
identification of payload inertia characteristics since the manipulator is both

decoupled and sensitive to load changes.

Chapter 7 presents an evaluation of the overall control performance of this
prototype direct-drive manipulator. Analytical and experimental evaluations are
conducted for speed, acceleration, servo stiffnesses, actuator interactions, and the
torque control capability of the direct-drive robot. The manipulator, which is
equipped with high torque brushless motors and a six-bar-link mechanism with a
decoupled and nearly invariant armn inertia tensor, exhibits excellent performance
characterized with an order of magnitude improvement in speed, 27 ms in delay
time, about 10 m/s top speed, and 5 G acceclerations as well as high servo

stiffnesses.

Direct-drive applicatious still require improvements in direct-drive motors.
The main issues are the dynamic performance, noulinear effects in the drive system,

heat dissipation and weight per torque output.

High speed high accuracy continuous path control applications require precise
compensation for the dynamics. Investigations are needed to evaluate to what

extent the simplification of the arm dynamics aids in the control performance. The
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extension of the decoupling results of this thesis to general mechanisms and the use
of the set notation to analyze the dynamic properties of mechanisms may be
investigated. Other relevant areas are path planning and optimization, automatic

calibration and parameter estimation.
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Appendix A
FLOW CORRECTION IN CURRENT
READING

The measurement of current in each phase of the windings, shown in I'igure
A-1, is in error because of the sensory limitations. The current readings need to be
corrected before their use. The correction is based on satisfying the continuity of

flow, or Kirchoff’s current law. The measured currents I, I, ~and I, are

m

corrected as follows [Paynter 82],

F
Iacorr = Iam - F Abs( [am )
F
Ibcorr = Ibm — =5 Abs( lbm )
F (A.1)
F
ccorr Icm — =5 Abs( Icm )
F
where

F=L_ +L_ +1,

am

F* = Abs(I__ )+ Abs(L,_ )+ Abs(I )

The above relations guarantee that continuity for the corrected currents is

satisfied,

I +1

acorr bcorr

+ I =0

ccorr ~
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Appendix B
TORQUE CONTROL CALIBRATION
AND SOFTWARE

B.1 Setup and Calibration

As presented in Chapter 7, the motor torque output is estimated from the
phase currents. The relationship between the phase currents and torque output was

given by Equ. (7.1),

r=K, [I, sin(0)+1T  sin(0+120)+ 1 sin( 0+ 240)] (B.1)

where the currents I, I; ~and I are the measured currents in phases a, b and ¢
respectively; K, is the torque constant. The amplifiers for the direct-drive motors
use the sinusoidal torque generation approach [Electro-Craft 80]. Thus the phase
currents are sinusoidal functions of rotor position §. In practice, these are slightly
distorted sinusoids. The weighting factors sin( 8 ), sin( 8 + 120 ) and sin( 6 + 240),
Equ. (B.1), are generated by software or by hardware using ROM’s and multiplying
D/A’s ( M/DA ) as shown in Figure 7-2. The key issue in using Equ. (B.1) is to
make sure that the sinusoidal measured current Iam, Ibm and I are in phase with
the generated sinusoids sin( 0 ), sin( & + 120 ) and sin( 0 + 240) respectively. The
torque constant K, is determined experimentally from Equ. (B.1). The experimental

setup is shown in Figure B-1.
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Figure B-1: Experimental setup for the torque estimator
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B.2 Estimation and Control Software

Ly
s

TORQUE ESTIMATION AND CONTROL

o XoXoXeoXoXoXoRoRo e

IV(1) = volts for PHASE A ,
IV(2) = volts for PHASE B |,
IV(3) = volts for PHASE C |

DIMENSION 10SB(2),CURR(3)
BYTE CHAR(6),TOP(2)

DATA CHAR/27,81,50,74,27,56/
DATA TOP/27,56/

INTEGER 1V(3)

oNoNoNoNoNoNO)

ATD CONVERSION CONSTANTS

DECIMAL READ IN = 204.8%(VOLTAGE INPUT TO A/D) + 2048.
AVG = SLOPE * VOLTS + YINT

SLOPE = 204.8
YINT = 2048.0
IFLAG =1

TOREST = 100.0

----- INITIALIZE CONSTANTS

Pl = 3.141592654

CONV = 3.141592654/180.0

DT = 9.*360./1024. ! INCREMENT IN DEGREE, 10-BIT RES.
DT = 9.*360./4096. ! INCREMENT IN DEGREE, 12-BIT RES,,

! FOR COMMUTATION
DTD = 360.0/4096.
OFF7 =-0.135 ! offset in phase A
OFF9 = -0.179 ! offset in phase B
OFF11 = -0.193 ! offset in phase C

ICHO7 =0 ! read phase A currert thru chan. 0
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ICH09 = 2 ! read phase B current thru chan. 2
ICH11 =10 ! read phase C current thru chan. 10

J[UNITO =0 ! OUPUT PORT control
TUNITI = 2 ' INPUT PORT position
MASK =-1 ! MASK VALUE

C---- INQUIRE

C

WRITE(5,5) CHAR ! clear screen and reset cursor
FORMAT(1X,4A1)

data aquisition

QQQ Qe

300

Qaa

101

continue
CALL ADINP(IFLAG,ICH07,IVAL07)
CALL ADINP(IFLAG,ICH09,IVALG9)
CALL ADINP(IFLAG,ICH11,IVALI11)
IV(1) = IVALO7 'phase A current = CURR(1)
IV(2) = IVAL09 !phase B current = CURR(2)
IV(3) = IVAL11 Iphase C current = CURR(3)

CONVERT TO VOLTS AND CORRECT FOR OFFSETS

DO101J =13

IVAL = IV(J)

CURR(J)= ( FLOAT( IVAL ) - YINT ) / SLOPE
CONTINUE

CURR(1) = CURR(1) - OFF7
CURR(2) = CURR(2) - OFF9
CURR(3) = CURR(3) - OFF11

CALCULATE COMMUTATION CONSTANTS---

QaaQa

Qa

CALL DINP(IUNITI,MASK,IOSB,INP) ! CURRENT POS.
IPOS = INP.XOR.-1

POSD =IPOS*DT

X =IPOS*DTD ! for 9 pairs of poles

CA = -SIN((9.*X + 60. )*CONV ) ! phase shifts to match
CB = -SIN((9.*X - 60. )*CONV ) ! generated sine waves
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CC = -SIN((9.*X - 180.)*CONV ) !to current sine waves

C

L CALCULATE TORQUE

C
TOREST = CURR(1)*CA + CURR(2)*CB + CURR(3)*CC
TOREST = -1.0*TOREST
CALL TCONST(CKt,X) ! Fetch Torque constant
TOREST = CKt*TOREST ! estimate torque

C

C

C OUTPUT CONTROL SIGNAL
CALL CONTROL(TOREST,IERR)

C
IF ( IERR.GT. 2047 ) IERR = 2047
IF ( [ERR.LE.-2047 ) iERR = -2047
ICONT = IERR.XOR.-32768 ! Change MSB (8000H)
CALL DOUT(IUNITO,MASK,IOSB,ICONT)

C

oNoN®!

CALL STOP(ISTOP)
IF ( ISTOP.EQ.1) GO TO 300
CALL EXIT

END
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Appendix C
SINGLE JOINT DRIVE CONTROLLER

C.1 Coniroiler

Considering the high noise environment, the controller for a single joints axis
consists of an analog velocity loop and a digital position loop. the velocity loop was
first optimized based on the actual response of the joint axis. The compensation for

the velocity signal of motor 2 of figure 6-3 is shown in Figure C-1.

The position feedback loop was closed digitally. The 16 bits of actual rotor
position are input to the PDP11/60 computer through the DR1IK interface. The
error between the reference position and the actual position in computed in real
time. This setup facilitates the adjustment of the position gain depending on the
arm configuration. Furthermore, a saturation algorithm allowed a high gain for the
position loop. The controller uses the maximum (minimum) gain when the position
error is greater (smaller) than some given limits, and a linear action otherwise. This
algorithm was used in controlling the first M.LT direct-drive arm [Asada and
Youcef-Toumi 83]. With this arrangement, the 16 bit command signal is sent out
through the DR11K, however, only a 12 bit Digital to Analog converter is needed.

Figure C-2 shows the implementation block.
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Velocity O—p—"VV\—

B

Compensated
Velocity

Figure C-1: Compensation circuit for velocity loop
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(F:’DPH/GO Feedforward
omputer |12 Bit Compensator
e 12,LSB Direct-drive 9 |
——715 D/A + | Gc ™ Actuator |1's
G¢ Velocity
IGIBits Feedback Compensator Position
DRIIK
Interface

Figure C-2: Controller implementation
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C.2 Software

C
C
C DIRECT-DRIVE ARM CONTROL ROUTINE
C DIGITAL POSITION LOOP
C
C
DIMENSION I0SB(2),[IREF(1000)
BYTE CHAR(6),TOP(2)
DATA CHAR/27,91,50,74,27,56/
DATA TOP/27,56/
CHARACTER*14 FIN
C
C
WRITE(5,5) CHAR ! clear screen and reset cursor
C
C
C initialize
C
C
TYPE*’ENTER NUMBER OF LOOPS’
ACCEPT* LOOPS
TYPE*,'ENTER SAMPLING IN SECONDS’
ACCEPT*,TS
C
TYPE*, ENTER 1 FOR DISPLAY '’
ACCEPT*,IDIS
C
C 990 continue
MASK = -1 ! MASK VALUE
TIUNITI = 2
IUNITO =1

READ REFERENCE POSITIONS

QaaQ

TYPE*'ENTER FILENAME’
READ(5,55) FIN
55 FORMAT(A14)
OPEN(UNIT=4,STATUS="0OLD’,NAME=FIN)
=1
50 READ(4,* END=501) LI, IREF(J)
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C  WRITE(5,35) J,JIREF(J)

35 FORMAT(1X,3112)
I=J+1
GO TO 50

501 NDATA = J-1
CLOSE(UNIT=4)

C
C
C set up screen
C
C
WRITE(5,5) CHAR ! clear screen and reset cursor
5 FORMAT(1X,4A1)
WRITE(5,60)

60 FORMATY(/,10X,

1 ' <---REQUEST POSITION: integer ’,/,10X,
1’ <---POSITION ERROR : integer ’,/,10X,
1 ' <-—-ACTUAL POSITION: integer ’,/,10X,
1 ' <---counter ",/,10X,

1’ <--time ",/,10X,

1

PRESS ANY KEY FOR NEXT POSITION’)
¢  WRITE(5,62) IREF IERR IPOS
C

62 FORMAT(/,1X,110,/,1X,110,/,1X,110,/,1X,110,/,1X,F10.3,/,1x)
63 FORMAT(IX,2Al1)

C
C
C READ AND WRITE POSITIONS
C POSITION LOOP
C
C
type*, PRESS RETURN TO START CONTROLLER'’
READ(5,51)
51 FORMAT(I1)
C
JJ=o0
C
777 W=1+1
C
C
i=1
666 IREF = IIREF(J) ! SET HOME POSITION = 3737

C



TI = SECNDS(0.0)

400 CONTINUE
CALL DINP([UNITI,MASK IOSB,IPOS)
IERR = IPOS - IREF
CALL GAIN(IPOS KP)
ICONT = IERR*KP
IF ( IERR.GT. 2047 ) [ERR = 2047
IF ( [IERR.LE.-2047 ) IERR = -2047
ICONT = IERR.XOR.-32768 ! change MSB (8000H)
CALL DOUT(IUNITO,MASK,IOSB,ICONT)
IF (IDIS.EQ.1 ) THEN
WRITE(5,63) TOP ! reset cursor to home
WRITE(5,62) IREF IERR,IPOS,J, TF
END IF

TF = SECNDS(0.0) - TI
IF ( TF.LE.TS ) GO TO 400
IF ( JEQ.NDATA.2nd.JJ.EQ.LOOPS ) GO TO 400
IF ( J.EQ.NDATA.2nd.JJ.NE.LOOPS ) GO TO 777
J=J+1

GO TO 666

exit

991 TYPE* 'YOU HAVE PROBLEMS’
TYPE*'STATUS CODE: ’JOSB(1),10SB(2)

ocQOQQOQOOQQAO

99 CALL EXIT
END

aQQ
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