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Abstract

A unified subgrid-scale (SGS) and wall model — the building-block flow model (BFM)
— for wall modeled large-eddy simulation (WMLES) is proposed by devising the flow
as a collection of building blocks that enables the prediction of the eddy viscosity.
The core assumption of the model is that simple canonical flows contain the essential
physics to provide accurate predictions of the SGS tensor in more complex flows. The
model is constructed to predict zero-pressure-gradient wall-bounded turbulence, ad-
verse/favorable pressure gradient effects, separation and laminar flow. The approach
is implemented using a Bayesian classifier, which identifies the contribution of each
building block in the flow, and a neural-network-based predictor, which estimates the
eddy viscosity based on the building-block units. The training data are directly ob-
tained from wall-modeled LES with an exact SGS/wall model for the mean quantities
to guarantee consistency with the numerical discretization. The model is validated in
canonical flows, the NASA High-Lift Common Research Model and a Gaussian bump
and shown to improve the predictions with respect to current modeling approaches.
The modular extensibility of the BFM paradigm will allow for future improvements
by incorporating additional physics.
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Chapter 1

Introduction

Turbulence is a complex phenomenon that has been the subject of incessant at-

tempts to fully understand and model its properties over the last century. Recent

advancements in computing power have played a pivotal role in enabling the adop-

tion of computational fluid dynamics (CFD) as a crucial tool for both fundamental

research and engineering design involving turbulence. Concurrently, the progress in

machine learning algorithms has facilitated wide-ranging applications of these tech-

niques across various fields. Leveraging the wealth of data obtained from CFD, ma-

chine learning has emerged as a promising approach for turbulence modeling. The

present thesis proposes and evaluates a novel turbulence model based on machine

learning to address key issues for CFD’s applicability in engineering applications.

1.1 CFD and Wall-bounded Turbulence

The ability to accurately simulate complex flows using CFD is crucial in many ap-

plications, ranging from aircraft design to drag reduction in pipelines [1, 2]. Most

flows in these cases involve wall-bounded turbulence, where one or more solid walls

are present. A significant challenge arises when simulating such flows: the compu-

tational requirements increase as finer details of flow eddies near the wall need to

be captured. This can be quantitatively understood by considering the near-wall

small-scale motions (i.e., quasi-streamwise vortices), whose size scales with the vis-
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cous length scale 𝛿𝜈 = 𝜈/𝑢𝜏 , where 𝜈 is the kinematic viscosity and 𝑢𝜏 =
√︀
𝜏𝑤/𝜌

is the frictional velocity based on wall shear stress. The length scale 𝛿𝜈 is directly

associated with the friction Reynolds number, given by 𝑅𝑒𝜏 = 𝑢𝜏𝛿/𝜈, where 𝛿 repre-

sents the relevant length scale. As the Reynolds number becomes increasingly large,

𝛿𝜈 diminishes, leading to prohibitively expensive grid resolutions. Therefore, direct

numerical simulation (DNS), which resolves all the scales of motion, is not feasible

for these applications.

As directly resolving all the scales represented by these eddies is impractical, re-

searchers and engineers resort to other methods to capture the physics of flow. One

widely adopted approach is based on Reynolds-averaged Navier-Stokes (RANS) equa-

tions. These equations are obtained by averaging the Navier-Stokes (NS) equations

over ensembles (different realizations of flows), thereby only capturing the average

quantities of the flow. Formally, the velocity field u(x, 𝑡) is decomposed into the

mean and fluctuation components as follows:

u(x, 𝑡) = ⟨u(x, 𝑡)⟩+ u′(x, 𝑡), (1.1)

where ⟨·⟩ is the operator for ensemble average. For incompressible flow, RANS equa-

tions are derived by applying the Reynolds decomposition described by Equations 1.1

to NS equations and can be expressed as:

𝜕⟨𝑢𝑖⟩
𝜕𝑥𝑖

= 0, (1.2)

𝜕⟨𝑢𝑗⟩
𝜕𝑡

+ ⟨𝑢𝑖⟩
𝜕⟨𝑢𝑗⟩
𝜕𝑥𝑖

= 𝜈
𝜕2⟨𝑢𝑗⟩
𝜕𝑥𝑖𝜕𝑥𝑖

− 𝜕
⟨︀
𝑢′
𝑖𝑢

′
𝑗

⟩︀
𝜕𝑥𝑖

− 1

𝜌

𝜕⟨𝑝⟩
𝜕𝑥𝑗

, (1.3)

where the additional term compared to the original the NS equations contains a new

unclosed tensor called the Reynolds stress −⟨𝑢′
𝑖𝑢

′
𝑗⟩.

Modeling the unclosed Reynolds stress tensor is the central topic of turbulence

modeling. One limitation of Reynolds-averaged Navier-Stokes (RANS) modeling is

its steady nature, which makes it inadequate for flows where statistical unsteadiness

plays a significant role. In such cases, RANS models provide inaccurate estimations,

18
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Figure 1-1: RANS results for lift coefficients 𝐶𝐿 as a function of angles of attack 𝛼
submitted for the Third High Lift Prediction Workshops. See more details in [6].

even for mean quantities [3]. While efforts have been put into modeling unsteadiness

by using Reynolds transport equations, its accuracy and convergence characteristics

in these situations is still in doubt. This issue is particularly relevant for aircraft op-

erating in take-off and landing configurations, characterized by large angles of attack

(AoAs) and substantial lift generation. The occurrence of massive separation in these

cases further emphasizes the importance of unsteadiness [4].

In the recently held Third High Lift Prediction Workshops, RANS-based solvers

yield a range of results that deviate from experimental data, as illustrated in Figure

1-1. In another study, even state-of-the-art RANS solvers with closure models tailored

for the corner flow produce 𝒪(1) errors for wing-body juncture flows, which are crucial

for the accurate prediction of the whole airplane [5]. Such misalignment showcases

the desperate need for an alternative method capable of accounting for unsteady flow.

A natural alternative is large-eddy simulation (LES), where only large-scale energy-

containing eddies are resolved. In LES formulation, a filtering operation is applied

to the flow field to filter out small-scale features. The contribution of small eddies,

so-called subgrid-scale stress (SGS), is modeled [7]. LES has shown its capability

in accurately modeling turbulence for canonical flows such as homogeneous isotropic

19



turbulence. However, similar to DNS, LES still requires the resolution of near-wall

eddies to capture the correct dynamics of wall-bounded turbulence. Therefore, while

LES reduces the grid requirements for regions away from the wall, it does not fully

address the fundamental challenge of expensive simulations due to the need to resolve

near-wall dynamics.

To capture the unsteady nature of flow while also maintaining a manageable degree

of freedom for real applications, hybrid methods have been proposed. These methods

combine elements of both LES and RANS or other simplifications to address different

regions of the flow. Two prominent blending approaches are detached-eddy simulation

(DES) and wall-modeled large-eddy simulation (WMLES) [8]. While both aiming to

replace boundary layer with some forms of simplified models, DES and WMLES

differ in their treatment on the outer layer. Namely, DES models both outer and

inner layers of the boundary layer, whereas WMLES only models the inner layer. In

more complex flow scenarios, WMLES resolves energetically important regions to a

greater extent than DES [9]. This thesis will primarily focus on WMLES. For readers

interested in DES or other unsteady extensions of RANS, comprehensive reviews can

be found in [10, 11].

1.2 Wall-modeled Large-eddy Simulation

WMLES approaches can be generally divided into two categories: hybrid LES/RANS

formulations and wall-stress model approaches. The hybrid LES/RANS formulation

follows the principle of DES to use RANS in the inner layer of the boundary layer and

LES in other regions. The treatment of blending these two computational domains

at certain height 𝑦 = ℎ𝑤𝑚 could be nontrivial and often leads to problems such as

log-layer mismatch [12]. In practice, it is also often challenging to implement both

solvers and run them simultaneously. This thesis, therefore, will focus on the wall-

stress model approach, which is more straightforward to implement and has been

shown to be effective in many applications [13].

The gist of wall-stress models is to impose wall shear stress 𝜏𝑤 as a boundary

20



condition based on the information of the flow at certain height from the wall [9].

For incompressible flow, Figure 1-2 shows a sketch of how a wall model works. Con-

crete approaches to infer the correct boundary condition include math-based (filter-

based, control-theory, . . . ) and physics-based (algebraic, ordinary differential equa-

tions (ODE), partial differential equations (PDE), . . . ) methods [9].

𝜏𝑤

𝑦/𝛿

𝑢‖ℎ𝑤𝑚

Wall Model

Figure 1-2: The principle of wall-stress models for incompressible flow. The instanta-
neous wall-parallel velocity 𝑢‖ is fed into the wall model to infer the wall shear stress
𝜏𝑤 serving as the boundary condition.

We can examine the grid-point and time-step requirements as estimated by Yang

and Griffin [14], who based their work on classical estimations by Chapman and fol-

lowing corrections by Choi and Moin [15, 16]. According to their findings, the scaling

laws for DNS, LES, and WMLES are 𝑅𝑒2.91𝐿𝑥
, 𝑅𝑒2.72𝐿𝑥

, and 𝑅𝑒1.14𝐿𝑥
, respectively, where

𝑅𝑒𝐿𝑥 represents the Reynolds number based on the length of the flat plate. Therefore,

while DNS and LES are computationally infeasible, WMLES is computationally com-

petitive to other CFD approaches with lower fidelity. Indeed, recent studies by Goc

et al. have shown that WMLES is close to achieve the accuracy and turnaround times

demanded by the aerospace industry [17]. While state-of-the-art WMLES performs

satisfactorily in turbulent boundary layers with sufficient grid resolution, its perfor-

mance deteriorates in the presence of less than 20 grid points per boundary layer

thickness. Unfortunately, the latter grid resolution is typical for external aerodynam-

ics applications [18]. To this end, we aim to improve the performance of WMLES in
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the presence of coarse grids by improving the modelling of SGS and wall shear stress.

1.3 Machine Learning for Turbulence Modeling

While traditional turbulence modeling focuses on physics-based arguments and em-

pirical calibration of model parameters, recent explosion in high-fidelity data and

machine-learning tools enables the application of new data-intensive techniques. There

are already extensive applications of machine learning in fluid mechanics and the

reader is referred to the review by Brunton et al. [19]. While promising, modeling

using machine learning still faces important challenges. As summarized in [20], most

salient problems include how to correctly use the data set, how to account for the

difference between learning environment (usually DNS data) and injection environ-

ment (RANS or LES), how to apply physical and mathematical constraints, and how

to provide the confidence of the model. While it is challenging to solve these prob-

lems all at once, it is worth designing a framework that can address at least some of

them to enhance the current paradigm. These challenges must be kept in mind when

designing new machine learning-based turbulence models.

For LES specifically, machine learning has been applied for both SGS modeling

and wall models. For instance, SGS models have been trained using data from fil-

tered DNS [21, 22]. Examples of supervised learning for wall modeling include [23],

[24], [25] and [26], to name a few. Interestingly, most studies to date have trained

the model with data from higher-fidelity simulations, such as DNS or wall-resolved

LES. As a consequence, previous models ignored the nonnegligible errors arising from

the numerical discretization in actual WMLES. This corresponds to the challenge of

accounting for the inconsistency between the learning and injection environments.

Unfortunately, not many attempts have been aimed at solving this issue. An excep-

tion is the work by Bae et al. using reinforcement learning [27].

Another major issue from previous studies is the lack of generalizability of the

model. Many machine learning-based models are often tailored and trained specifi-

cally for a particular flow configuration, such as channel flow, pipe flow, or flow in a
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periodic hill. While this specialization can yield higher accuracy within the trained

configuration, it becomes impractical and inefficient to create a new model for each

distinct flow scenario encountered in practical applications. Furthermore, it has been

shown that applying the current model to different flow conditions, e.g., flows with

different Reynolds numbers, can lead to significant errors [23].

1.4 Scope and Objective of the Thesis

In this thesis, we aim to devise a unified SGS/wall model called building-block flow

model (BFM) that is consistent with the numerical discretization, suitable for vari-

ous flow physics and applicable to complex geometries. Throughout this thesis, the

focus remains on the development and evaluation of the BFM to ensure its practical

utility and relevance for engineering tasks. The design of BFM is rooted in the idea

that truly revolutionary improvements in WMLES will encompass advancements in

numerics, grid generation and wall/SGS modeling. The proposed model architecture

is summarized in Figure 1-3. The details of the model are provided in the following

chapters. Part of the content of this thesis has been published in [28], [29] and [30].

The thesis is organized as follows: Chapter 2 describes the numerical method and

machine learning tools used. Chapter 3 introduces the requirements, assumptions and

formulation of the BFM model and also provides the details of the implementation.

Chapter 4 presents the results on both canonical flows and complex cases. Chapter

5 offers a discussion on the status quo of the model. Finally, Chapter 6 summarizes

the work and provides suggestions for future model improvements.
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Figure 1-3: Schematic of the building-block flow model. The panel shows the
classifier-predictor structure and the architecture of artificial neural network (ANN).
The flow state refers to (𝐼1, ..., 𝐼6, 𝜈,∆, 𝑢||) and different ANNs are used for the inner
and outer layer. The bottom of the figure depicts the building-block flows considered
(from left to right): turbulent channel flow with zero pressure gradient, Poiseuille-
Couette flow with mild adverse pressure gradient, Poiseuille-Couette flow with sepa-
ration and laminar Poiseuille flow. The details are provided in following chapters.
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Chapter 2

Methods

In this chapter, we present details on numerical methods used in this thesis including

the formulation of LES, conventional SGS/Wall models, machine learning tools and

numerical solvers.

2.1 Large-eddy simulation

The resulting governing equations after filtering the Navier-Stokes equations are

𝜕𝑢𝑖

𝜕𝑥𝑖

= 0, (2.1)

𝜕𝑢𝑗

𝜕𝑡
+ 𝑢𝑖

𝜕𝑢𝑗

𝜕𝑥𝑖

= 𝜈
𝜕2𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑖

− 𝜕𝜏𝑆𝐺𝑆
𝑖𝑗

𝜕𝑥𝑖

− 1

𝜌

𝜕𝑝

𝜕𝑥𝑗

, (2.2)

where (·) represent filtered quantities and 𝜏𝑆𝐺𝑆
𝑖𝑗 is the anisotropic residual-stress ten-

sor, also known as the SGS tensor. It is derived from the residual-stress tensor 𝜏𝑅𝑖𝑗

defined as

𝜏𝑅𝑖𝑗 = 𝑢𝑖𝑢𝑗 − 𝑢𝑖 𝑢𝑗, (2.3)

subtracted by its trace

𝜏𝑆𝐺𝑆
𝑖𝑗 = 𝜏𝑅𝑖𝑗 −

1

3
𝜏𝑅𝑖𝑖 𝛿𝑖𝑗. (2.4)
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The goal of turbulence modeling in the context of LES is to express the tensor 𝜏𝑆𝐺𝑆
𝑖𝑗

as a function of known quantities.

2.2 Subgrid-scale stress models

In this section, we list some state-of-the-art SGS models deriving from physics grounded

theories. These models are used for comparison with the machine learning models in

Chapter 4.

2.2.1 Dynamic Smargorinsky Model (DSM)

As one of the mostly adopted SGS models, the Smagorinsky model [31] is an one-

equation model that relates the SGS stress to the resolved strain rate following the

Boussinesq assumption

𝜏SGS
𝑖𝑗 − 1

3
𝛿𝑖𝑗𝑆𝑘𝑘 = −2𝜈𝑡𝑆𝑖𝑗, (2.5)

where 𝜈𝑡 is the eddy viscosity and 𝑆𝑖𝑗 is the resolved strain rate tensor. In the

original static version, the eddy viscosity is given by an analogy to the mixing-length

hypothesis

𝜈𝑡 = (𝐶𝑆∆)2(𝑆𝑖𝑗𝑆𝑖𝑗)
1/2, (2.6)

where 𝐶𝑆 is the Smagorinsky constant and ∆ is the grid size. To deal with different

flows and regions near the wall, practitioners often need to set different Smagorinsky

constants or do ad hoc adjustments. With this limitation in mind, Germano et

al. proposed a dynamic procedure to dynamically set the coefficient 𝐶𝑆 based on

local flow characteristics [32]. The rough idea is to apply a second filter on resolved

quantities and assume the Smagorinsky model can be applied for the filtered stress.

The coefficient then can be found by minimizing procedures. A detailed description

of the dynamic procedure can be found in the original paper [32]. Lilly [33] used a

least-square technique to improve the robustness and stability of the procedure. The
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dynamic Smagorinsky model with Lilly’s modification is widely used in LES of wall-

bounded flows [34] and is considered one of the most reliable SGS models. Readers

are referred to classical textbooks such as [7] for mathematical details of the model.

2.2.2 Vreman Model

While the dynamical Smagorinsky model is well founded in theory, its practical im-

plementations are often nontrivial due to the necessity of explicit filtering operations,

ensemble average along homogeneous directions and ad hoc clipping of negative eddy

viscosity [35]. To remedy this issue, Vreman [36] proposed a new SGS model for

shear flow, which is easy to implement and enjoys low dissipation in transitional and

near-wall regions. The eddy viscosity given by the Vreman model is

𝜈𝑡 = 𝑐

√︃
𝐵𝛽

𝛼𝑖𝑗𝛼𝑖𝑗

, (2.7)

with
𝛼𝑖𝑗 =

𝜕𝑢̄𝑗

𝜕𝑥𝑖

,

𝛽𝑖𝑗 = ∆2
𝑚𝛼𝑚𝑖𝛼𝑚𝑗,

𝐵𝛽 = 𝛽11𝛽22 − 𝛽2
12 + 𝛽11𝛽33 − 𝛽2

13 + 𝛽22𝛽33 − 𝛽2
23.

It is reported to be as accurate as the dynamic Smagorinsky model in a lot of appli-

cations but with a much lower computational cost [36]. Also, due to its simplicity,

the Vreman model can be easily implemented for complex geometries, making it an

ideal benchmark for other SGS models.

2.2.3 Anisotropic Minimum Dissipation Model

Verstappen derived a so-called QR model based on the idea that eddy dissipation

should be minimized to ensure subgrid scales should be dynamically insignificant

[37]. By examining the time evolution equation of the SGS, one can find that the

rate of dissipation of resolved kinetic energy due to SGS model, also known as eddy
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dissipation, is given by

𝜀𝜏 = −𝜏𝑖𝑗
𝜕𝑢̄𝑗

𝜕𝑥𝑖

. (2.8)

The corresponding eddy viscosity is given by

𝑣𝑡 = 𝐶Δ
max{𝑟(𝑢), 0}

𝑞(𝑢)
, (2.9)

where 𝑞(𝑢) and 𝑟(𝑢) are the second and third invariants of resolved rate-of-strain

tensor and 𝐶Δ is a model constant. The Anisotropic Minimum Dissipation (AMD)

model by Rozema et al. was developed based on QR model to account for anisotropic

grids [38]. Again, readers are referred to [38] for details of the model.

2.3 Equilibrium Wall Model

While there are a wide range of wall models available, the most popular choice is

an ODE-based equilibrium wall model (EQWM), which will be used throughout the

thesis when compared with machine learning-based models. The unresolved inner

layer is modeled by solving

𝑑

𝑑𝑦

[︂
(𝜈 + 𝜈𝑡,wm)

𝑑𝑈wm

𝑑𝑦

]︂
= 0, (2.10)

where 𝑈𝑤𝑚 is the wall-parallel velocity at certain given height and 𝜈𝑡,𝑤𝑚 is the local

eddy viscosity modeled by the mixing length hypothesis

𝜈𝑡,wm = 𝜅𝑦

√︂
𝜏𝑤
𝜌
𝒟, 𝒟 =

[︀
1− exp

(︀
−𝑦+/𝐴+

)︀]︀2
, (2.11)

where 𝜅 = 0.41, 𝐴+ = 17, and 𝒟 is the Van Driest damping function [9].

2.4 Machine Learning Tools

In this section, we provide a overview of the architecture and methodology of the

machine learning tools utilized in this thesis. Additional details including data gen-
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eration, choice of training and testing data, and training process are discussed in

Chapter 3. As illustrated in Figure 1-3, the machine learning framework used in this

thesis consists of two components: a classifier and a predictor. The classifier is used

to divide the flow field into different categories. The predictor subsequently estimates

the necessary quantities for simulations.

2.4.1 Classifier

A Naive Bayes (NB) classifier is employed to classify the flow field into different

categories. The NB classifier is a probabilistic classifier that applies Bayes’ theorem

with strong (naive) independence assumptions [39].

Let us consider the classification of observed vectors (𝑥1, 𝑥2, · · · , 𝑥𝑛)
𝑇 into 𝐾

classes denoted as 𝐶1, · · · , 𝐶𝐾 . The independence assumptions made by the NB

classifier assert that the presence of a feature 𝑥𝑖 is independent of any other feature

𝑥𝑗 for 𝑗 ̸= 𝑖 within each class. Mathematically, this can be expressed as follows:

𝑝(𝑥1, 𝑥2, · · · , 𝑥𝑛|𝐶𝑘) =
𝑛∏︁

𝑖=1

𝑝(𝑥𝑖|𝐶𝑘) for 𝑘 = 1, · · · , 𝐾. (2.12)

The NB classifier then predicts the category 𝐶𝑘 with the highest posterior prob-

ability given the observed vector. The NB classifier is chosen for its simplicity and

efficiency, making it a suitable choice for the classification task in this study.

2.4.2 Predictor

Fully connected feedforward artificial neural networks (ANN), also known as multi-

layer perceptrons (MLP), are employed to predict the necessary quantities for simu-

lations. The MLP, known as a universal approximator [40], possesses the theoretical

capability to approximate any continuous function with arbitrary precision. In prac-

tice, however, the MLP is limited by the choice of activation functions, the number

of hidden layers and the number of neurons in each hidden layer. The training of

the MLP involves minimizing a loss function, which quantifies the difference between

the predicted value and the true value. In this thesis, MLP is only used to carry out
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regression tasks. As demonstrated in Figure 2-1, it aims to find a mapping between

input and output variables.

...Inputs Outputs

Figure 2-1: A fully connected neural network used for regression tasks.

2.5 Numerical solvers

Two numerical solvers are used in this thesis: an in-house finite-difference solver and

a finite-volume solver charLES.

The in-house solver uses a spatial discretizaion of the incompressible Navier–Stokes

equations with a staggered second-order-accurate finite difference method [41]. For

time advancement, an explicit third-order-accurate Runge–Kutta method is employed

[42]. Periodic boundary conditions are imposed in homogeneous directions, while the

no-slip condition is enforced at the walls. The code has been validated in various

studies for turbulent channel flows [18, 43]. The in-house solver will be denoted as

FD.

CharLES is a finite-volume, second-order-accurate, compressible flow solver de-

veloped by Cascade Technologies, Inc. It utilizes a low dissipation scheme to spatial

discretization to cater it for coarsely resolved large eddy simulations [17]. Also, a

Voronoi diagram-based mesh generation method is adopted to generate high-quality

meshes. A sample grid generated for flow with complex geometry (CRM-HL to be

introduced) is shown in Figure 4-7 in Chapter 4. Readers are referred to [44] for more
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details about charLES.
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Chapter 3

Building-block Flow Model

This chapter discusses the formulation of the building-block flow model (BFM). The

concept of BFM follows directly from the earlier work by Lozano-Duran et al. [45,

46], but it extends the original wall model to a unified SGS/wall model. It is worth

noting that two versions of BFMs, namely BFM v0.1.0 and BFM v0.2.0, will be

presented herein. The primary distinction between these two models lies in the fact

that BFM v0.2.0 is specifically tailored for implementation with the charLES solver

and does not currently incorporate a classifier. Unless specified, details specified in

the following sections apply to both versions.

3.1 Requirements

In the introduction, we briefly discussed the overarching goals of the current unified

SGS/wall model. In this section, we elaborate on the requirements that the model

should satisfy to achieve these goals. We also present the corresponding solutions

that we have developed to meet these requirements.

(I) The unified SGS/wall model must be able to deal with complex geometries

(e.g., realistic aircraft). Consequently, the model’s inputs must be restricted to

local information, namely variables that are spatially localized. This limitation

ensures that the model operates effectively in diverse and complex geometries,
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where the availability of global information may be limited or impractical to

obtain.

(II) The model must account for numerical errors stemming from the inconsistency

between learning and injection environments. To address this concern, the data

generation method should guarantee that the data source remains consistent

with the intended application. The model then can effectively account for and

mitigate any numerical errors that may arise due to inconsistencies between

these settings.

(III) The model must be generalizable to different flow regimes (e.g. different Reynolds

number). To achieve this, the normalization of data is of key importance.

(IV) The model must be readily applicable to different flow physics. In order to

achieve this, it is necessary to employ different building-block flows during the

model training process.

(V) The inputs and outputs must be dimensionally consistent. To accomplish this,

all data utilized in the model are nondimensionalized by employing appropri-

ate scaling variables. Nondimensionalization allows for a consistent represen-

tation of the input and output variables, ensuring compatibility and coherence

throughout the model.

(VI) The model must be invariant under translation, rotation and Galilean trans-

formation. The current model addresses this requirement by utilizing the in-

variants of the velocity gradient tensor directly. The upcoming section will

provide a comprehensive explanation of the process employed to incorporate

the invariants into the model.

3.2 Assumptions

To develop the model, several key assumptions are made, outlined as follows:
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(I) The local state of a flow field can be classified into a finite set of canonical flows,

and its behavior closely resembles one of these canonical flows.

(II) Non-dimensionalized inputs from local states are enough for predicting the re-

quired subgrid-scale stress and wall shear stress.

(III) Appropriate scalings exist that enable the non-dimensionalization of both inputs

and outputs, thereby enhancing the model’s generalizability.

(IV) The wall shear stress required by the wall model can be estimated using a local

eddy viscosity at the wall.

(V) The SGS tensor is a function of resolved rate-of-strain tensor and rotation ten-

sor.

The model introduced in this study relies on these assumptions to establish its the-

oretical foundation. The validity of each assumption will be examined and discussed

in the subsequent chapter to ensure a comprehensive evaluation of the model’s ro-

bustness and limitations.

3.3 Building-block Flows

We consider four types of building-block flows, viz., laminar channel flow, fully devel-

oped turbulent channel flow with zero pressure gradient (ZPG), turbulent Poiseuille-

Couette flow with mild adverse pressure gradient (PC2) and turbulent Poiseuille-

Couette flow close to separation (PC0) as summarized in Figure 3-1. For BFM v.0.2.0,

the laminar channel flow is not included. In all building blocks considered, 𝑥, 𝑦 and 𝑧

correspond to the streamwise, wall-normal and spanwise directions, respectively. The

distance between the top and bottom wall in the channel is 2ℎ. In the case of turbulent

and laminar channel flows, both walls are stationary. For Poiseuille-Couette flows,

the bottom wall remains fixed, while the upper wall moves at a constant streamwise

velocity 𝑢𝑡. Irrespective of the flow type, the friction Reynolds numbers are defined
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𝑢𝑡 𝑢𝑡

𝑑𝑃
𝑑𝑥

𝑑𝑃
𝑑𝑥

(a) (b) (c) (d)

ZPG PC2 PC0 Laminar

Figure 3-1: The building-block flows considered (from left to right): turbulent channel
flow with zero pressure gradient (ZPG), Poiseuille-Couette flow with mild adverse
pressure gradient (PC2), Poiseuille-Couette flow with separation (PC0) and laminar
Poiseuille flow.

as follows:

𝑅𝑒𝜏 =
𝑢𝜏ℎ

𝜈
, (3.1)

where 𝑢𝜏 is determined by the wall shear stress at the bottom wall.

The rationale of including these four building-block flows is as follows.

1. Turbulent channel flows with zero pressure gradient are widely regarded as a

fundamental and extensively studied canonical flow for wall-bounded turbu-

lence. Due to their well-defined and controlled nature, turbulent channel flows

have served as a standard benchmark for studying turbulent wall-bounded flows.

It is expected that a model trained on turbulent channel flows can demonstrate

a high level of applicability and transferability to other attached turbulent wall-

bounded flows.

2. Turbulent channel flows with varying pressure gradients are utilized to replicate

the adverse pressure gradient commonly encountered in real-world applications.

By gradually increasing the magnitude of the adverse pressure gradient, the

model can capture the critical transition from attached to separated flow, al-

lowing for a comprehensive understanding of the dynamics and characteristics

associated with flow separation. This broad range of flow conditions close to

separation enables the model to better predict and account for separation phe-

nomena. The ability to control and manipulate the magnitude of the adverse

pressure gradient ensures that the model encompasses a wide spectrum of flow
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conditions, enhancing its predictive capabilities.

To quantify the intensity of the adverse pressure gradient, a pressure gradient-

based Reynolds number (𝑅𝑒𝑝) is introduced. The 𝑅𝑒𝑝 is defined as:

𝑅𝑒𝑝 =

√︁
ℎ3/𝜌𝑑𝑃

𝑑𝑥

𝜈
, (3.2)

where 𝑑𝑃
𝑑𝑥

denotes the streamwise pressure gradient. The 𝑅𝑒𝑝 provides a measure

of the strength of the adverse pressure gradient, with larger values indicating

a more pronounced adverse pressure gradient. By incorporating cases with

different 𝑅𝑒𝑝 into the training set, the model can effectively gauge and categorize

different levels of adverse pressure gradients.

3. The inclusion of laminar channel flows is crucial for the model’s ability to ac-

curately predict wall shear stress in the laminar regime. This is important

to ensure that the model performs accurately in the free-stream region where

laminar flow conditions prevail. By incorporating laminar channel flows, the

model can effectively account for the unique features and shear stress patterns

observed in the laminar regime.

Note that for BFM v0.2.0, we do not include laminar channel flow because a

classifier has not been implemented yet. The inclusion of the laminar case without a

classifier may have negative impacts on the model’s performance. The classifier will

be incorporated in the future.

3.4 Formulation

One of the key assumptions we have made is the assumption (V). Mathematically, it

assumes a functional form

𝜏𝑆𝐺𝑆
𝑖𝑗 = 𝑓(𝑆𝑖𝑗, 𝑅̄𝑖𝑗), (3.3)
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where the resolved rate-of-strain and rotation tensors are defined as

𝑆𝑖𝑗 =
1

2

(︂
𝜕𝑢̄𝑖

𝜕𝑥𝑗

+
𝜕𝑢̄𝑗

𝜕𝑥𝑖

)︂
, 𝑅̄𝑖𝑗 =

1

2

(︂
𝜕𝑢̄𝑖

𝜕𝑥𝑗

− 𝜕𝑢̄𝑗

𝜕𝑥𝑖

)︂
. (3.4)

By applying Caley-Hamilton theorem, it can be shown that the deviatoric part of

the resolved stress can be represented as a linear combinations of only five tensors

𝜏 𝑆𝐺𝑆 =𝐶1∆
2|S|S+ 𝐶2∆

2
(︀
S2
)︀𝑑

+ 𝐶3∆
2
(︀
R2
)︀𝑑

+

𝐶4∆
2(SR−RS) + 𝐶5∆

2 1

|S|
(︀
S2R−RS2

)︀
,

where 𝐶𝑖 are undetermined coefficients and (·)𝑑 indicates the trace-free part of the

tensor [47]. The coefficients 𝐶𝑖 are functions of the six invariants

𝐼1 = tr
(︀
S̄2
)︀
, 𝐼2 = tr

(︀
R̄2
)︀
,

𝐼3 = tr
(︀
S̄3
)︀
, 𝐼𝑖𝑠 = tr

(︀
S̄R̄2

)︀
,

𝐼5 = tr
(︀
S̄2R̄2

)︀
, 𝐼6 = tr

(︀
S̄2R̄2S̄R̄

)︀
.

(3.5)

These invariants, originally proposed by Pope, are invariant under rotation, and are

therefore suitable for the model to be applied to flows with arbitrary orientations [48].

The current form used in this thesis can be found in [47].

While it is theoretically possible to explore all five functional forms,

𝐶𝑖 = 𝑓𝑖(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6), (3.6)

the current approach simplifies the model by retaining only the first term. This

simplification reverts back to the classical Boussinesq eddy-viscosity model while pre-

serving the functional form derived from Equation 3.6. The main motivation for this

simplification is to reduce the model’s complexity, enabling efficient training and eval-

uation. However, it is important to note that future advancements may involve the

inclusion of additional terms to extend beyond the eddy-viscosity model.
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In essence, the investigated model is an eddy-viscosity model given by

𝜈𝑡 = 𝑓(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6; 𝜃), (3.7)

where the eddy viscosity 𝜈𝑡 is a function of the inputs 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6 through the

functional form 𝑓(·). The specific form of 𝑓(·) is given by the predictor and also

depends on the flow type determined by the classifier, and additional parameters 𝜃

may also vary across different flow regions, which will be specified later. The adoption

of this formulation inherently satisfies the requirement of invariance (Requirement

(VI)). As the architecture of the model has been introduced in the previous chapter,

we will focus on the inputs and outputs being used and the normalization of data in

the forthcoming sections.

3.4.1 Classifier

The classification of a point in the flow domain is a two-step process. Initially, the

flow is classified as either laminar or turbulent. Subsequently, in the case of turbulent

flow, it undergoes further classification into three distinct categories: zero pressure

gradient, mild adverse pressure gradient (APG), or separated flow. A visual repre-

sentation of this workflow can be found in Figure 3-2.

The classifier’s generated labels play a crucial role in determining the appropriate

functional form of the eddy viscosity model to be applied. Specifically, the local label

guides the selection of the neural network to which the inputs are directed. The

formulation of these neural networks will be introduced soon in the next section.

Finally, it needs to be emphasized that the classifier is only used for the first grid

points close to the wall. Points far from the wall share the same model regardless

of the flow type. Such implementation comes first from the fact that for coarsely

resolved WMLES, flow of different types share similar characteristics far from the

wall. Also, if each flow type has its own model also far from the wall, the number of

neural networks to be trained will be nearly doubled compared to the current version.

In light of these factors, and considering that there is minimal loss in performance,
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Figure 3-2: Workflow for two sequential classifiers. The first classifier determines
whether the flow is laminar or turbulent. The second classifier determines the type of
the turbulent flow. Light blue boxes indicate possible output labels from classifiers.
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a decision has been made to employ a single model for all points far from the wall.

However, for grid points near the wall, where the flow type significantly influences the

prediction of both the eddy viscosity and the wall shear stress, a customized ANN is

employed for each flow type.

3.4.2 Predictor

Two distinct types of ANNs are used for the predictors. The first type is used for the

outer region. As mentioned in the Section 3.4.1, this ANN is universal among all the

flow types. The second one is known as the near-wall predictor. It is employed for

both the first grid points and the estimation of the eddy viscosity at the wall. The

eddy viscosity at the wall, in turn, is utilized for predicting the wall shear stress. We

follow the formulation from Bae et al. [49] and use a non-slip boundary condition

augmented by an eddy viscosity at the wall

𝜈𝑡|𝑤 =

(︂
𝜕𝑢̄

𝜕𝑦

)︂⃒⃒⃒⃒−1

𝑤

𝜏𝑤
𝜌

− 𝜈. (3.8)

Figure 3-3 presents a summarized depiction of the two types of ANNs. These

ANNs also differ in terms of their inputs and normalization procedures, which will be

further discussed in the subsequent paragraphs.

3.4.2.1 Outer region

Aside from baseline inputs described in Equation 3.7, ANN for the outer regions takes

as extra inputs ∆ and 𝜈. The grid size ∆ is defined differently depending on the type

of grid employed. In Cartesian grids, it is calculated as
√︀
∆𝑥2 +∆𝑦2 +∆𝑧2, while in

control volumes of the charLES solver, it is defined as 𝑉 1/3, where 𝑉 represents the

volume of the grid.

Effects of two normalization strategies — a viscous scaling with 𝜈 and ∆ and an

inviscid scaling with |𝑆| and ∆ — are tested and shown in Figure 3-4. It shows that

data from different Reynolds numbers and grid sizes collapse better using the inviscid

scaling.
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(a) The schematic of predictors used for the outer region.

(b) The schematic of predictors used for near-wall region.

Figure 3-3: Schematics of two types of predictors. The predictor for the outer region
is an ANN. The predictor for the near-wall region consists of an ANN and a classifier.
The near-wall region predictor can be used to predict the eddy viscosity needed for
the grid points close to the wall as well as the eddy viscosity at the wall required for
the wall shear stress prediction.
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(a) Viscous Scaling
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Figure 3-4: Mean eddy viscosity at different channel height normalized by (a) a viscous
scaling 𝜈 and ∆ and (b) an inviscid scaling |𝑆| and ∆. Different curves correspond to
cases with different Reynolds numbers and grid sizes (the format of names in legends
is Re-Grid size).
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In practice, a semi-viscous scaling approach, involving the quantities (
√︀

2𝑆𝑖𝑗𝑆𝑖𝑗𝜈)
1/2

and ∆, has been found to yield the best generalization performance and is therefore

employed.

3.4.2.2 Near wall

Compared to their outer-region counterpart, near-wall predictors take one extra input,

i.e. the relative wall-parallel velocity 𝑢‖. It can be computed as

𝑢‖ = (𝑢⃗− 𝑢⃗ · 𝑛⃗)− 𝑢⃗𝑤. (3.9)

where 𝑢⃗ is the local velocity vector, 𝑛⃗ is the normal vector of the boundary and

𝑢⃗𝑤 is the velocity of the wall of interest. Both the inputs and outputs of the near-

wall predictors are normalized using the viscous scaling approach, which involves the

quantities 𝜈 and ∆.

3.5 Data Generation

The previous chapter briefly mentioned the distinction between the learning environ-

ment and the injection environment, as well as the potential errors arising from this

discrepancy. However, the existing literature has not extensively addressed this issue.

In this section, we propose a data generation method that tackles the problem of

numerical errors. These errors are of particular concern in our case, where the grid

size is coarse, and the numerical error can be comparable to other sources of error.

In contrast to traditional data generation methods that rely on filtered high-fidelity

data obtained from DNS or wall-resolved LES, we adopt a different approach. Our

data generation process involves carrying out WMLES simulations with an exact-

for-the-mean eddy-viscosity and wall model, referred to as ESGSW. By using this

method, we aim to mitigate numerical errors by utilizing training data consistent

with the numerical schemes of the solver.

ESGSW consists of a conventional WMLES solver coupled with a controller. At
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the end of each iteration, the controller adjusts the eddy-viscosity value to align

with the mean velocity profile extracted from DNS simulations. This adjustment is

accomplished by adding a correction term to the base eddy-viscosity model. In other

words, the ESGSW model incorporates a corrective factor to refine the eddy-viscosity

prediction

𝜈𝐸𝑆𝐺𝑆𝑊
𝑡 = 𝜈𝑆𝐺𝑆

𝑡 +∆𝜈𝑆𝐺𝑆
𝑡 . (3.10)

In practice, 𝜈𝑆𝐺𝑆
𝑡 can be the eddy viscosity predicted by any existing SGS models.

In the current version of model, AMD model is selected to be the base model for BFM

v0.1.0 and Vreman model for BFM v0.2.0. The specific choice of the base model is not

expected to significantly impact the final results. However, it is worth noting that the

controller may be more effective in correcting certain base models compared to others.

This aspect can be explored further in future research as the model matures. In the

following section, we discuss the process of obtaining the correction term ∆𝜈𝑆𝐺𝑆
𝑡 .

3.5.1 Controlling strategy

The control methods employed in two versions of BFM differ due to a combination of

factors. Firstly, the variations in the control methods arise from the distinct numerical

solvers used in each version. Secondly, the intention behind introducing new control

methods is to enhance the effectiveness of the control process.

3.5.1.1 BFM v0.1.0

In the first version of BFM, a linear controller is employed to perform on-the-fly cor-

rection of the eddy viscosity. The correction term is determined by ensuring that

the additional shear stress 𝜕(2∆𝜈𝑆𝐺𝑆𝑆𝑖𝑗)/𝜕𝑥𝑗 assists in aligning the mean instan-

taneous streamwise velocity profile ⟨𝑢⟩𝑥𝑧(𝑦) with the corresponding profile obtained

from DNS, denoted as ⟨𝑢DNS⟩𝑥𝑧𝑡(𝑦). An example showing the effect of the controller

is Figure 3-5. While this controller yields reasonable results for channel flows with

negligible to mild pressure gradients, its performance is not as satisfactory for flows

characterized by strong pressure gradients. One possible reason for this disparity is
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that the controller lacks the capability to effectively correct the original base SGS

models, particularly in scenarios involving strong pressure gradients. Nonetheless,

even in such cases, improvements are observed compared to the baseline model. The

corrected models obtained through this process are subsequently utilized as inputs

for the neural networks. The feasibility of this approach in this version of BFM is at-

tributed to the structured Cartesian grid’s utilization, which enables straightforward

evaluation at each height along the wall-normal direction.

0.2 0.4 0.6 0.8 1

0.75

0.8

0.85

0.9

0.95

1

Uncontrolled

Controlled

DNS

Figure 3-5: The effect of the linear controller on the mean streamwise velocity profile
for turbulent channel flow with zero pressre gradient at 𝑅𝑒𝜏 = 950. 𝑈𝑐 is the centerline
velocity.

3.5.1.2 BFM v0.2.0

For BFM v0.2.0, a more advanced controlling strategy is adopted to systematically

find the correction term. The correction is reformulated as

𝜈𝑡(𝑥, 𝑦, 𝑧, 𝑡) = 𝜈𝑆𝐺𝑆
𝑡 (𝑥, 𝑦, 𝑧, 𝑡)𝑘(𝑦), (3.11)
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where the correction factors 𝑘(𝑦) are solely dependent on the wall-normal coordinate

𝑦. The task is then framed as an optimization problem:

argmin
𝑘(𝑦)

∫︁ ⃒⃒
⟨𝑢DNS⟩𝑥𝑧𝑡(𝑦)− ⟨𝑢⟩𝑥𝑧(𝑦)

⃒⃒2
𝑑𝑦. (3.12)

To solve this problem, a Bayesian Global Optimization algorithm is employed [50].

The steps followed to solve the problem are as follows:

1. Initialize the control factor 𝑘(𝑦) with an initial guess.

2. A WMLES is run for a fixed wall shear stress 𝜏𝑤 = 𝜏𝐷𝑁𝑆
𝑤 , where 𝜏𝐷𝑁𝑆

𝑤 comes

from the DNS data.

3. Evaluate the cost function, which quantifies the discrepancy between the DNS-

based mean streamwise velocity profile ⟨𝑢DNS⟩𝑥𝑧𝑡(𝑦) and the computed mean

streamwise velocity profile ⟨𝑢⟩𝑥𝑧(𝑦).

4. Run simulation until the steady state is reached.

5. Evaluate the cost function required for the optimization problem in Equation

3.12.

6. Update the control factor 𝑘(𝑦) using the Bayesian Global Optimization algo-

rithm to minimize the cost function.

7. Steps 2-6 are repeated until convergence is achieved or a predetermined stopping

criterion is satisfied.

The convergence criteria for turbulent channel flows is⃒⃒
⟨𝑢DNS⟩𝑥𝑧𝑡(𝑦)− ⟨𝑢⟩𝑥𝑧(𝑦)

⃒⃒
⟨𝑢DNS⟩𝑥𝑧𝑡(𝑦)

< 0.03. (3.13)

The criteria above is too stringent a criteria for PC cases close to separation as

⟨𝑢DNS⟩𝑥𝑧𝑡(𝑦) approaches zero. Therefore, an alternative criteria is enforced for PC

cases: ⃒⃒
⟨𝑢DNS⟩𝑥𝑧𝑡(𝑦)− ⟨𝑢⟩𝑥𝑧(𝑦)

⃒⃒
𝑢𝜏

< 0.02. (3.14)
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It is easier to achieve as the denominator is a constant and will not approach zero as

the control factor 𝑘(𝑦) is updated.

3.5.2 Data selection

After the data generation process, a subset of the generated data needs to be selected

for training the neural networks. In ZPG case, the entire flow field from 10 randomly

chosen instantaneous snapshots from each case, obtained after reaching a statistically-

steady state, is utilized for training the neural networks. However, for PC cases, only

the lower half of the flow field is used for training purposes as they are more relevant

to the flow physics for separation. For laminar flow, synthetic data for 𝑅𝑒𝜏 = 5− 150

are generated from analytical solutions for training.

Table 3.1 presents an overview of the cases utilized for training neural networks.

The ZPG cases cover a range of friction Reynolds numbers (𝑅𝑒𝜏 ) up to 10,000, which

represents the highest achieved Reynolds number in DNS. Additionally, there are two

or three cases with different adverse pressure gradients included for BFM v0.1.0 and

BFM v0.2.0, respectively. The selection of training data is tailored to the specific ver-

sions of BFM targeted for different solvers, using the aforementioned data generation

process.

Although in theory, it is possible to obtain additional data from different se-

tups, the practical application of the data generation process presents challenges.

For instance, BFM v0.1.0 excludes data from PC cases with strong adverse pressure

gradients after separation due to the failure of the naive controller to converge. In

contrast, BFM v0.2.0 benefits from the improved controller, enabling the inclusion of

such cases. However, the convergence time required for training is still considerable,

limiting the inclusion of even more cases. Consequently, devising a more efficient and

effective data generation strategy remains an open problem for future exploration.

It is also noteworthy that the data generation process only relies on obtaining the

"true" mean profile, which allows for the possibility of utilizing experimental data

rather than being restricted to existing DNS databases. For instance, experimen-

tal data obtained from atmospheric boundary layers or Superpipes, with frictional
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Case 𝑅𝑒𝜏 ∆𝑦/ℎ Version Solver DNS 𝑅𝑒𝑃
550-EC 547 0.2 v0.1.0 FD Del Alamo et al.[51] N/A
950-EC 943 0.2 v0.1.0 FD Del Alamo et al.[51] N/A
2000-EC 2003 0.2 v0.1.0 FD Hoyas et al.[52] N/A
4200-EC 4179 0.2 v0.1.0 FD Lozano-Duran et al.[53] N/A
550-C-c 0.547 0.1 v0.2.0 charLES Del Alamo et al.[51] N/A
950-C-c 943 0.1 v0.2.0 charLES Del Alamo et al.[51] N/A
2000-C-c 2003 0.1 v0.2.0 charLES Hoyas et al.[52] N/A
4200-C-c 4179 0.1 v0.2.0 charLES Lozano-Duran et al.[53] N/A
10000-C-c 10000 0.1 v0.2.0 charLES Hoyas et al.[54] N/A
550-EC-c 547 0.2 v0.2.0 charLES Del Alamo et al.[51] N/A
950-EC-c 943 0.2 v0.2.0 charLES Del Alamo et al.[51] N/A
2000-EC-c 2003 0.2 v0.2.0 charLES Hoyas et al.[52] N/A
4200-EC-c 4179 0.2 v0.2.0 charLES Lozano-Duran et al.[53] N/A
10000-EC-c 10000 0.2 v0.2.0 charLES Hoyas et al.[54] N/A
PC0 7 0.1 v0.1.0 FD In-house 680
PC2 264 0.1 v0.1.0 FD In-house 340
PCr 264 0.1 v0.2.0 charLES In-house 962
PCs 7 0.1 v0.2.0 charLES In-house 680
PCm 264 0.1 v0.2.0 charLES In-house 340
Laminar 5-150 0.1 v0.1.0 N/A N/A N/A

Table 3.1: Cases selected to generate training data for BFM v0.1.0 and v0.2.0. The
name of turbulent channel flow with zero pressure gradient cases consists of friction
Reynolds number, the grid size (C for coarse; EC for extra coarse) and the solver (c
for charLES; none for the in-house code) connected by hyphens. For PC cases, PCr,
PCs and PCm stand for flow reversal, separation and mild adverse pressure gradient,
respectively. They are run by charLES. PC with numbers are PC cases run by the
in-house code with different degrees of adverse pressure gradients. Laminar cases
are synthetic data generated from analytical solutions. “Version” column shows the
version of BFMS where the case is used for training. “Solver” column refers to the
solver used to generate the training data. “DNS” column shows the source of DNS
mean profile, either from turbulence database or in-house DNS simulations. 𝑅𝑒𝑃 is
the pressure gradient-based Reynolds number defined in Equation 3.2.
.
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Reynolds numbers as high as 628,000, can be incorporated into our model [55]. This

flexibility will be leveraged in the future for the extensibility and application of our

model to even higher Reynolds number.

3.6 Neural Network Parameters

The mean squared error (MSE) is employed as the loss function, and the Rectified

Linear Unit (ReLU) serves as the activation function. In BFM v0.1.0, all neural

networks are fixed to have six layers, with each layer containing 40 neurons. However,

for BFM v0.2.0, extensive experimentation was conducted to determine the optimal

architecture. The final architecture adopted consists of six layers with 40 neurons for

the outer-region predictor, ten layers with 16 neurons for the near-wall SGS predictor,

and eight layers with the following number of neurons in each layer: [7, 8, 8, 8, 7, 6,

5, 3] for the wall shear stress predictor.

3.7 Training

The ANNs were trained using a scaled conjugate gradient backpropagation method

by randomly partitioning training data into three groups, the training set (70% of the

data), validation set (15% of the data) and test set (15% of the data). The training was

stopped when the MSE of either the validation set or training set ceased to decrease,

in order to achieve a balance between optimal performance and generalizability.
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Chapter 4

Results

In this section, we present results obtained using the BFMs. First, we will examine

the performance of the classifier. The accuracy and reliability of the classifier will

be evaluated to ensure its effectiveness in distinguishing between different flow types.

Following the evaluation of the classifier, we will proceed with conducting a posteriori

tests using the BFMs. These tests will encompass canonical cases, including laminar

channel flow, turbulent channel flow, turbulent Poiseuille-Couette flow, as well as more

complex cases including CRM-HL and a Gaussian bump. The results are compared

with reference data from the literature.

4.1 Classifier

The performance of the classifier is of utmost importance, as misclassification can

lead to significant errors in the results. The accurate classification of flow types is

crucial for guiding the predictions of the BFMs and ensuring reliable and physically

meaningful results. For instance, misclassifying a wall-adjacent grid from a separated

flow as ZPG channel flow could result in a severe overestimation of the wall shear

stress. Such errors can propagate throughout the simulation and lead to inaccurate

and unreliable predictions for various flow parameters and quantities of interest. Fig-

ure 3-2 illustrates the sequential flow of the two classifiers used to classify the flow into

four categories. The first classifier is a binary classifier responsible for distinguishing
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between laminar and turbulent flow. This initial classification task benefits from the

relatively clear distinction between laminar and turbulent flow, allowing for accurate

classification based on local flow information. The performance of the first classifier

is excellent, achieving a one hundred percent accuracy for all the test cases. This

indicates that the classifier effectively identifies and distinguishes between laminar

and turbulent flow, solely utilizing the local flow characteristics.

The classification task performed by the second classifier, distinguishing between

ZPG, APG, and separated flow, is more challenging compared to the laminar-turbulent

classification. The performance of the second classifier is summarized in the confusion

matrix shown in Figure 4-1. In the matrix, the labels "C", "A" and "S" represent ZPG

flow, APG flow and separated flow, respectively. The confusion matrix provides an

overview of the classifier’s performance, indicating the percentage of samples from the

true class that are correctly classified into the predicted class. Despite the increased

complexity of the classification task, the second classifier demonstrates reasonable

performance, with accuracy rates higher than 75% for all classes.

Figure 4-1: Performace of the classifier. “C” stands for ZPG flow, “A” for APG flow
and “S” for separated flow.

To assess the potential loss of model performance due to misclassification, the sub-
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sequent sections will include results obtained with a so-called "perfect" classifier. The

"perfect" classifier is achieved by effectively disabling the classifier, always predicting

the correct class. By comparing the results obtained with the "perfect" classifier to

those with the actual classifier, we can gain insights into the extent to which mis-

classification may affect the model’s predictions. This comparison allows for a clearer

evaluation of the impact of the classifier’s performance on the overall performance

of the BFMs. Overall, while the classifier shows satisfactory performance for the

test cases, its true effectiveness and contribution to the model’s performance will be

further evaluated in the subsequent a posteriori tests.

4.2 Validation in Canonical Cases

4.2.1 Laminar Channel Flow

The first a posterior test case is a laminar channel flow with a fixed centerline velocity.

The simulation is started from a random flow field and the data are collected after

transients. Figure 4-2 demonstrates that the BFM accurately predicts the laminar

channel flow by correctly classifying all the points as laminar flow and subsequently

providing accurate predictions. The BFM results align closely with the analytical

solution for this test case. In terms of the wall shear stress, the analytical solution

corresponds to a friction Reynolds number of Re𝜏 = 19.64, while the BFM prediction

yields a friction Reynolds number of Re𝜏 = 19.62. This close agreement between

the BFM prediction and the analytical solution validates the accuracy of both the

classifier and the predictor components of the BFM.

4.2.2 Turbulent Channel Flow

Next, we analyze turbulent channel flow with zero pressure gradient. In addition

to evaluating the trained cases on an extra coarse grid (∆ = 0.2ℎ), we also assess

cases with a coarse grid (∆ = 0.1ℎ) that were not included in the training data.

The focus is on two quantities: mean streamwise velocity and wall shear stress. The
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Figure 4-2: Mean streamwise velocity profile for laminar channel flow (𝑈𝑐 is the
centerline velocity).

objective is to test the model’s performance and also its generalizability to different

grid configurations.

4.2.2.1 Wall shear stress

Case 𝑅𝑒𝜏 DSM-EQWM Vreman-EQWM BFM Trained
550-EC 547 587(7.3%) 578(5.7%) 540(1.3%) ✓
950-EC 943 1034(9.7%) 1002(6.3%) 929(1.5%) ✓
2000-EC 2003 2228(11.2%) 2157(7.7%) 1976(1.3%) ✓
4200-EC 4179 4641(11.1%) 4474(7.1%) 4179(0.0%) ✓
550-C 547 552(0.9%) 545(0.4%) 537(1.8%)
950-C 943 973(3.2%) 944(0.1%) 906(3.9%)
2000-c 2003 2137(6.7%) 2050(2.3%) 1988(0.7%)
4200-C 4179 4502(7.7%) 4286(2.6%) 4006(4.1%)

Table 4.1: Friction Reynolds numbers predicted by different SGS and wall models.
Re𝜏 are the benchmark values from DNS. The “Trained” column shows whether the
case has been used for training. Definitions of trained cases can be found in Table
3.1. Numbers in parentheses are the relative errors defined by |(Re𝜏,pred − Re𝜏 )/Re𝜏 |.

Table 4.1 provides a summary of the wall shear stress results for turbulent channel
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flow with zero pressure gradient. The performance of the BFM is evaluated for

different grid resolutions, including the trained grid resolution and finer grids. For the

trained grid resolution, the BFM exhibits the highest level of performance, surpassing

other models by a significant margin. It demonstrates good accuracy in predicting

the wall shear stress with coarse grids. For the untrained finer grids, the performance

of the BFM slightly deteriorates, while the accuracy of the Vreman-EQWM model

improves significantly. Despite the small deterioration, the relative error of the BFM

remains acceptable, outperforming the prediction from the DSM-EQWM model.

4.2.2.2 Mean Velocity Profile

Extra Coarse Grid (∆ = 0.2ℎ) Figure 4-3 presents a comparison of the results

obtained from WMLES using all three models with the reference DNS data. The

comparison is conducted for four different Reynolds numbers.The results demonstrate

that the BFM outperforms the other models for all four Reynolds numbers examined.

This outcome was expected since the BFM was trained on the same grid resolution,

whereas the other models are known to perform poorly on very coarse grids.

Coarse Grid (∆ = 0.1ℎ) Figure 4-4 displays the results obtained from WMLES

for a coarse grid (∆ = 0.1ℎ). In comparison to the results obtained on the trained

extra coarse grid (Figure 4-3), it is observed that both the DSM-EQWM and Vreman-

EQWM models show improvements in their performance. On the other hand, the

BFM’s performance slightly worsens. This outcome is anticipated, as the BFM was

not trained on this specific grid resolution. Furthermore, it is important to note that

WMLES exhibits a well-known non-monotonic convergence behavior when the grid

is refined. Therefore, the observed behavior may also be attributed, in part, to this

effect.
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Figure 4-3: Mean streamwise velocity predictions for turbulent channel flow using an
extra coarse grid (∆ = 0.2ℎ). (a) Re𝜏 ≈ 550, (b) Re𝜏 ≈ 950, (c) Re𝜏 ≈ 2000 and (d)
Re𝜏 ≈ 4200.
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Figure 4-4: Mean streamwise velocity for turbulent channel flow using a coarse grid
(∆ = 0.1ℎ). (a) Re𝜏 ≈ 550, (b) Re𝜏 ≈ 950, (c) Re𝜏 ≈ 2000 and (d) Re𝜏 ≈ 4200.
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4.2.3 Turbulent Poiseuille-Couette Flow

The final canonical case under examination is turbulent Poiseuille-Couette flow with

varying adverse pressure gradients. In addition to assessing the trained cases, we

also investigate the model’s generalizability by examining cases with adverse pressure

gradients that were not included in the training data. This analysis enables us to

evaluate the model’s ability to extend its predictions to unseen flow configurations.

4.2.3.1 Wall shear stress

Table 4.2 provides a summary of the results for turbulent Poiseuille-Couette flow with

different adverse pressure gradients.

Case 𝑅𝑒𝜏 DSM-EQWM Vreman-EQWM BFM Trained 𝑅𝑒𝑃
PC0 7 76(1014%) 68(871%) 33(371%) ✓ 680
PC1 194 164(15.5%) 169(12.9%) 172(11.3%) 480
PC2 264 225(14.8%) 221(16.3%) 227(14.0%) ✓ 340

Table 4.2: Friction Reynolds numbers predicted by different SGS and wall models.
Re𝜏 are the benchmark values from DNS. The “Trained” column shows whether the
case has been used for training. Definitions of trained cases can be found in Table
3.1. Numbers in parentheses are the relative errors defined by |(Re𝜏,pred − Re𝜏 )/Re𝜏 |.
ReP is the pressured gradient-based Reynolds numbers defined in Eq 3.2.

The results demonstrate that, for both untrained and trained cases, BFM achieves

the best performance. It is important to note that for the PC0 case, which is close

to separation, the relative error appears large due to the near-zero denominator in

the calculation. However, this does not indicate significant errors in the model’s

predictions.

4.2.3.2 Mean streamwise velocity profile

Figure 4-5 shows the mean streamwise profile obtained for turbulent Poiseuille-Couette

flow with different adverse pressure gradients. Among the trained cases, namely PC0

(near separation) and PC2 (mild adverse pressure gradient), the BFM demonstrates

superior predictive capabilities, outperforming the other models. However, for the
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Figure 4-5: Mean streamwise velocity for Poiseuille-Couette flow. Three cases, PC0
(separation), PC1 (intermidiate APG) and PC2 (mild APG), are overlaid on the same
plots.

untrained case PC1 (intermediate adverse pressure gradient), the BFM does not out-

perform the other two models. To investigate the source of the error, a "perfect"

classifier, which always predicts the correct class, is utilized for the PC1 case. The a

posteriori results obtained using the BFM with the "perfect" classifier are represented

by the light blue line in Figure 4-5. It is observed that the "perfect" classifier sig-

nificantly improves the prediction. Additionally, the corresponding friction Reynolds

number is calculated to be 185 with a relative error of 4.6%, indicating a substantial

improvement.

These findings confirm the importance of the classifier in determining the overall

performance of the BFM. The error observed in the BFM’s prediction for the PC1 case

can be attributed to the classification error. This empirical evidence further supports

the argument that the accuracy of the classifier is crucial for achieving accurate and

reliable predictions with the BFM.
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4.2.4 Conclusions

Throughout the examination of various canonical cases, the BFM consistently demon-

strates improvements over other state-of-the-art models. This superiority is partic-

ularly pronounced when considering the coarsest grid resolutions. In the context of

turbulent Poiseuille-Couette cases, it becomes evident that the accuracy of the BFM

is strongly influenced by the performance of the classifier. Therefore, further enhance-

ments and improvements to the classifier are crucial for achieving even better results

in future applications.

4.3 Validation in Complex Cases

The two realistic test cases chosen for examination are the NASA Common Research

Model High-lift (CRM-HL) and a Gaussian bump. These simulations are conducted

using the flow solver charLES.

4.3.1 CRM-HL

The CRM-HL is tested in this section as a representative of realistic aircraft in high-lift

configuration [56]. It is a geometrically complex aircraft that includes the bracketry

associated with deployed flaps and slats as well as a flow-through nacelle mounted on

the underside of the wing. It has been the new benchmark for high-lift computational

aerodynamics in place of the the old one, JAXA Standard Model configuration by the

Japanese Aerospace Exploration Agency (JAXA) [57]. Results shown in this section

can also be found in [30].

4.3.1.1 Case Description and Computational Set-up

We focus on free air simulations. Experimental data used for comparison have been

corrected to account for wind tunnel and side wall effects following the standard

practice [58]. The experimental setup carried out by Evans et al. is shown in Figure 4-

6 [59].
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Figure 4-6: 10% NASA semi-span CRM-HL installed at the QinetiQ 5-Metre Low-
Speed Wind Tunnel [59].

The Reynolds number based on the mean chord and freestream velocity is 𝑅𝑒𝑐 =

5.49× 106. The freestream Mach number is 0.20. We follow the computational setup

from Goc et al. [58]. A semi-span aircraft geometry following the experimental setup

is simulated and the symmetry plane is treated with free-slip and no penetration

boundary conditions. A uniform plug flow is used as the inlet. A non-reflecting

boundary condition with specified freestream pressure is imposed at the outlet [60].

For additional information regarding the gridding strategy and other technical details,

readers are referred to the work by Goc et al. [58].

We perform simulations for two AoAs, 𝛼 = 7.05∘ and 19.57∘, corresponding to a

moderate AoA and a high AoA with maximum lift before stalling. The total number

of grid points is 40 million and the number of grid points per boundary layer thickness

ranges from zero to twenty. A slice of the grid is depicted in Figure 4-7.

One caveat for the current results is that it is run by BFM v0.1.0, which is trained

in our in-house finite-difference solver. It also assumes a zero pressure gradient (ZPG)
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condition and therefore turns off the classifier. In theory, it is not capable of com-

pensating for the numerical error in charLES. In the future, we will apply the BFM

v0.2.0, which is trained in charLES, to CRM-HL to achieve a better performance.

Nonetheless, current results are still useful for us to understand the performance of

BFMs in realistic cases.

Figure 4-7: The cross-sectional view of high-quality hexagonal grids generated by
Voronoi diagram-based approach for CRM-HL in charLES.

4.3.1.2 Results

We compare the lift (𝐶𝐿), drag (𝐶𝐷) and pitching moment (𝐶𝑀) coefficients with

experimental data and simulations from [58] using DSM with EQWM (labeled as

DSM-EQWM) for two AoAs, 7.05∘ and 19.57∘. Results are shown in Figure 4-8.

Moderate AoA (𝛼 = 7.05∘) Both BFM and DSM-EQWM demonstrate high accu-

racy in predicting the quantities of interest, namely lift and drag coefficients. DSM-

EQWM yields highly accurate results for these coefficients, which may suggest its

superiority over BFM at first glance. However, a closer examination of the pressure

distribution (see the following sections) reveals that the good prediction is a direct

result of error cancellation. When analyzing the pitching moment coefficient, BFM

outperforms DSM-EQWM in terms of accuracy.
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(a) Lift coefficients (b) Drag coefficients

(c) Pitching moment coefficients

Figure 4-8: Lift (𝐶𝐿), drag (𝐶𝐷) and pitching moment (𝐶𝑀) coefficients. The black
lines denote experimental results, orange squares are for DSM-EQWM and blue circles
are for BFM. Note that for (c), AoAs are plotted in the vertial axis different from the
conventions used for (a) and (b).
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High AoA (𝛼 = 19.57∘) DSM-EQWM underpredicts the lift coefficients, while

BFM provides accurate predictions. As for the drag coefficients, both models tend

to overpredict, but the result by DSM-EQWM is slightly closer to the experimental

values. It is important to note that these observations are again subject to further

investigation into the pressure distribution. Regarding the pitching moment coeffi-

cients, both models also tend to overpredict the quantity, but the results by BFM are

closer to the experimental values compared to DSM-EQWM.

Pressure Distribution The accuracy of integrated quantities examined above does

not give a complete picture of the performance of the model since it could well be

a result of error cancellation. Further analysis of the local predictions, therefore, is

crucial to gain a comprehensive understanding of the models’ performance. In this

study, the 82% spanwise section of the wing for 𝛼 = 19.57∘ is examined, and the

pressure coefficient distribution is analyzed (Figure 4-9).

The pressure coefficient distribution reveals that DSM-EQWM poorly predicts

the spatial distribution of the pressure coefficient. Therefore, the accurate prediction

of integrated quantities such as lift and drag coefficients is coincidental, most likely

results of error cancellation when integrating the total forces. On the other hand,

BFM accurately predicts the pressure distribution, indicating that its high accuracy

in predicting lift and drag coefficients is physically more consistent. Consequently,

BFM is expected to provide more reliable results for different AoAs. Finally, from

the pressure coefficient distribution shown in Figure 4-9, it can be observed that

BFM maintains the flow attached over a longer section of the wing compared to

DSM-EQWM. This physical behavior explains the enhanced performance of BFM in

accurately predicting the lift and drag coefficients.

4.3.1.3 Conclusions

In conclusion, our study demonstrates that BFM is a more robust and accurate model

compared to DSM-EQWM for both AoAs considered. BFM represents an improve-

ment over state-of-the-art WMLES models for realistic computational aerodynamics
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Figure 4-9: The pressure coefficient at the 82% spanwise section of the wing for
𝛼 = 19.57∘. Black × represents experimental results, orange squares are for DSM-
EQWM and blue circles are for BFM.

applications, even without compensating for numerical errors in the current imple-

mentation. The accurate prediction of lift and drag coefficients, as well as the pressure

distribution on the wing, highlights the improved performance and flow physics repre-

sentation achieved by BFM. Further development and refinement of BFM, including

addressing numerical errors, have the potential to push it to the forefront of WMLES

models for aerodynamic applications.

4.3.2 Gaussian Bump

The second case used to examine the model performance is a three-dimensional ta-

pered bump, also known as the Gaussian bump. This case serves as an exemplary

test for CFD models and methods, particularly for assessing their capability to handle

boundary layers with separation and reattachment. Compared to the more complex

CRM-HL case, which involves additional flow physics beyond separation and reat-

tachment, the Gaussian bump provides a benchmark for isolating these features.

Additionally, due to its simplicity, it has been extensively studied in the literature,

with comparisons across various CFD methods with different fidelity. Recent CFD

of the Gaussian bump include DNS by Uzun et al. [61], WMLES by Iyer et al. [62],

Iyer et al. [63] and Agrawal et al. [64] with various grid sizes and models and RANS

by Williams et al. [65]. The consensus from these studies is that new models are
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needed to improve the accuracy of coarsely resolved simulations Therefore, a good

performance on this test case would indicate that the BFM model is a step in the

right direction.

For this test case, BFM v0.2.0 is employed. Since BFM v0.2.0 has been trained

using data from charLES solver, it is expected to account for the numerical errors.

To date, the classifier has not been implemented for this version. The addition of a

classifier in the future will further improve the accuracy of the model. Results shown

this section can also be found in [29, 66].

4.3.2.1 Case Description and Computational Setup

Three-dimensional simulations are carried out for flow over a Gaussian bump. The

geometry of the bump is given by the analytical formula

𝑧(𝑥, 𝑦) =
ℎ0

2
exp

(︃
−
(︂

𝑥

𝑥0

)︂2
)︃[︃

1 + erf

(︃
𝐿
2
− 2𝑦0 − |𝑦|

𝑦0

)︃]︃
, (4.1)

where 𝑥, 𝑦 and 𝑧 are the streamwise, spanwise and vertical directions, respectively,

𝐿 is the length of the bump, and the parameters ℎ0 = 0.085𝐿, 𝑥0 = 0.195𝐿 and,

𝑧0 = 0.06𝐿 define the shape of the bump [65].

The three-dimensional field is shown in Figure 4-10, where the main flow direction

is along the x axis (streamwise direction). Cross-sectional views are shown in Figure 4-

11 and Figure 4-12.

The non-dimensional parameters that define the flow are the Reynolds number

based on the bump length and the free-stream velocity (𝑈∞), 𝑅𝑒𝐿 = 𝑈∞𝐿/𝜈, where

𝜈 is the free-stream kinematic viscosity; and the Mach number, 𝑀 = 𝑈∞/𝑎∞, where

𝑎∞ is the free-stream speed of sound.

Present simulations are performed at 𝑅𝑒𝐿 = 3.4× 106 and 𝑀 = 0.176. These val-

ues are consistent with those reported in [65], where the pressure coefficient along the

centerline was investigated. Additionally, the values are comparable to those studied

in [67], where the friction coefficient and flow field were experimentally computed for

𝑅𝑒𝐿 = 2×106 and 𝑀 = 0.2. This allows for meaningful comparisons and assessments
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Figure 4-10: 3D view of the Gaussian bump computational field.
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Figure 4-11: Cross-sectional view of the Gaussian bump at 𝑦/𝐿 = 0.
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Figure 4-12: Cross-sectional view of the Gaussian bump at 𝑥/𝐿 = 0.
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of the model’s performance in a similar flow regime.

The computational domain is a rectangular prism that extends ±1.5𝐿 in the

streamwise direction, ±0.5𝐿 in the spanwise direction and from 0𝐿 to 0.5𝐿 in the

vertical direction. The lateral and top boundaries are free-slip, a constant uniform

inflow is imposed at the inlet, and the non-reflecting characteristic boundary condi-

tion with constant pressure is applied at the outlet. These boundary conditions are

consistent with those employed in previous studies such as [62] and [64].

Two grids with different sizes are considered: an extra coarse grid and a coarse

one as shown in Figure 4-13a and Figure 4-13b, respectively. Each refinement level

(a)

(b)

Figure 4-13: Grid structure in the 𝑦/𝐿 = 0 plane. (a) Extra coarse grid; (b) Coarse
grid. Note that the pictures does not include the whole domain in the streamwise
direction.

has roughly 10 control volumes along the wall-normal direction and the average size

of each level is twice the size of the previous level. The grid size of the layer closer to

the wall is the smallest and is referred to as ∆min. For the extra coarse grid, ∆min/𝐿

(where 𝐿 is the characteristic length of the domain) is approximately 2.2× 10−3. For

the coarse grid, ∆min/𝐿 is approximately 1.4× 10−3. The latter grid size is similar to

the coarse grid used in [64], hence the name “coarse grid”. The grid size and number

of elements for both grids are summarized in Table 4.3.
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Mesh ∆min/𝐿 𝑁cv

Extra coarse 2.2× 10−3 8.7× 106

Coarse 1.4× 10−3 20.3× 106

Table 4.3: Minimum grid size and number of control volumes, 𝑁cv.

4.3.2.2 Results

We assess the performance of the BFM to predict average quantities of interest in

the Gaussian bump. These quantities include the average wall pressure and friction

coefficients, the location of the separation bubble, and the mean velocity profiles.

The results are compared to those from Dynamic Smagorinksy model (DSM) with

the equilibrium wall model (EQWM). In the following, we refer to this model as DSM-

EQWM-X, where X is the grid: ExtraC(oarse) or C(oarse). All the quantities have

been averaged for at least 30𝑈∞/𝐿 convective time units after the initial transient

has been discarded.

Wall pressure The average pressure coefficients are defined as

𝐶𝑝 =
𝑝− 𝑝∞
1
2
𝜌∞𝑈2

∞
, (4.2)

where 𝑝 is the pressure averaged over time and 𝑝∞ and 𝜌∞ are the reference pressure

and density. The results for all cases Figure 4-14a. The experimental results show

that along the streamwise direction, there is first a favorable pressure gradient region

for 𝑥/𝐿 < 0 followed by adverse pressure gradient region for 𝑥/𝐿 > 0. The mean sep-

aration point is at 𝑥𝑠/𝐿 = 0.1, represented by an inflection point. The reattachment

happens on average at 𝑥𝑟/𝐿 = 0.36.

For the FPG region, all models predict the evolution of the pressure coefficients

correctly regardless of the grid resolution. The APG region is more challenging to

predict due to the separation. DSM-EQWM-ExtraC fails to predict the inflection

point, leading to overprediction of 𝐶𝑝 in the recirculation region. DSM-EQWM-

C succeeds to capture the inflection point but the pressure inside the separation

bubble is still overpredicted. For the BFM, the inflection point is captured for both
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grid resolutions. While 𝐶𝑝 in the second half of the separation bubble is accurately

predicted, 𝐶𝑝 in the first half remains constant and is overpredicted. BFM is also less

sensitive to the change of grid size compared to DSM-EQWM.

Friction coefficients The prediction of the friction coefficient is shown in Fig. 4-

14b. The experimental values show an abrupt increase of 𝐶𝑓 in the FPG region

towards the apex of the bump, where the friction coefficient reaches its maximum

value. This is followed by a sudden drop in the APG, where 𝐶𝑓 < 0 in the recirculation

region. The trend of 𝐶𝑓 in the FPG is consistent for all the models regardless of the

grid resolution. Although none of the models is able to match the experimental

results in the FPG region, it is interesting to note that BFM underpredicts the wall

shear stress. This is expected as the building-blocks used for training BFM do not

include cases with favorable pressure gradients. Also, note that the friction coefficient

predicted by the DSM-EQWM-ExtraC for 𝑥/𝐿 < −1 is lower than the experimental

value and the BFM predictions. This discrepancy is attributed to the fact that

the flow is laminar for DSM-EQWM-ExtraC in that region, while BFM predicts a

turbulent flow along 𝑥 for the same grid resolution.

Case 𝑥𝑠/𝐿 𝑥𝑟/𝐿
Gray et al. [67] 0.10 0.36
DSM-EQWM-ExtraC 0.13 0.25
DSM-EQWM-C 0.09 0.31
BFM-ExtraC 0.13 0.36
BFM-C 0.10 0.36

Table 4.4: Location of mean separation point (𝑥𝑠) and mean reattachment point (𝑥𝑟)
along the centerline for the different cases

Separation and Reattachment Points The mean separation point (𝑥𝑠) and reat-

tachment point (𝑥𝑟) are defined as the streamwise locations where 𝐶𝑓 = 0 in this

study. Table 4.4 presents the mean separation and reattachment points along the

centerline for the different cases. DSM-EQWM-ExtraC predicts larger friction co-

efficients than the experimental results for 𝑥/𝐿 > 0. As a result, the recirculation
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Figure 4-14: (a) Average pressure coefficients and (b) average friction coefficients
over the bump surface at 𝑦/𝐿 = 0. Line colors correspond to (light blue) DSM-
EQWM-ExtraC; (dark blue) DSM-EQWM-C; (light red) BFM-ExtraC; and (dark
red) BFM-C cases. White circles in (a) correspond to experimental results from
[65] at 𝑅𝑒𝐿 = 3.41 × 106, 𝑀 = 0.17, and (b) experimental results from [67] at
𝑅𝑒𝐿 = 2× 106, 𝑀 = 0.2.
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region is smaller and the onset of separation is delayed. DSM-EQWM-C, on the

other hand, shows improved predictions of the separation point and a slightly larger

separation bubble size (0.22𝐿). However, the size of the bubble is still smaller than

the experimental value (0.26𝐿).

The performance of BFM-ExtraC in the APG region is superior to DSM-EQWM-

ExtraC. Although the prediction of 𝑥𝑠 is identical, BFM-ExtraC captures the exact

location of reattachment, improving upon DSM-EQWM-C. Additionally, the values

of 𝐶𝑓 for 𝑥/𝐿 > 0.1 in BFM-ExtraC are closer to the experimental values. Although

BFM-ExtraC slightly underpredicts the friction coefficient in the first half of the

recirculation region, it matches the experimental values well for 𝑥/𝐿 ≳ 0.23. By

increasing the grid resolution to BFM-C, the model is able to match the exact location

of 𝑥𝑠, indicating that the extra coarse grid may not have sufficient control volumes

per boundary layer thickness to predict the separation at the exact location. Finally,

we also note that the prediction of 𝐶𝑓 improves with increased grid resolution, as

observed for the pressure coefficient.
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Figure 4-15: Average streamwise velocity (𝑈/𝑈∞) in the 𝑦/𝐿 = 0 plane for differ-
ent cases: (a) DSM-EQWM-ExtraC; (b) DSM-EQWM-C; (c) BFM-ExtraC; and (d)
BFM-C.
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4.3.2.3 Mean Profile

Figure 4-15 displays the average streamwise velocity in the 𝑦/𝐿 = 0 plane for all

the cases. The recirculation region corresponds to zones colored in red and yellow.

As inferred from 𝐶𝑝 and 𝐶𝑓 measurements, Fig. 4-15a shows that the DSM-EQWM-

ExtraC predicts a small separation bubble. A quantitative improvement is observed

for BFM-ExtraC (Fig. 4-15b), although the separation bubble is thinner than the one

measured experimentally (see Fig. 9 in [67]). Refining the grid improves the predic-

tion of the separation bubble for both models (compare Fig. 4-15b,d to Fig. 4-15a,c,

respectively). In particular, BFM-C provides the separation bubble that resembles

the most to the experimental results in terms of size and shape.

By comparing the recirculation regions in Fig. 4-15b and 4-15d, we see that the

magnitude of the velocity close to the wall is higher for the DSM-EQWM than for the

BFM. Since higher velocities can be linked to a lower pressure and higher (negative)

friction coefficients, a likely reason for the smaller values of 𝐶𝑝 and 𝐶𝑓 predicted by

the BFM may be the underprediction of the velocity magnitude in the region with

strong APG. To further support this hypothesis, Fig. 4-16 depicts the average velocity

profile at selected streamwise locations where experimental data is available [67]. At

upstream 𝑥𝑠 (probe 1 ), the flow is attached, and all models provides a velocity

profile similar to the experimental mean velocity profile. At the beginning of the

separation bubble (probe 2 ), DSM-EQWM-C predicts a reversal flow stronger than

the experiments close to the wall, whereas BFM-C predicts a lower velocity, in line

with our hypothesis. As the separation bubble further develops downstream (probe

3 ), all models fail to capture the strong reversal velocity. This is consistent with

the higher pressure and lower friction predicted by the models at 𝑥/𝐿 ≈ 0.23. At

the second half of the separation bubble (probe 4 ), the magnitude of the negative

velocity close to the wall is milder and is accurately captured by the BFM as opposed

to DSM-EQWM, which predicts re-attatched flow.
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Figure 4-16: Average velocity profile at 𝑦/𝐿 = 0 at different streamwise stations. Line
colors correspond to (light blue) DSM-EQWM-ExtraC; (dark blue) DSM-EQWM-C;
(light red) BFM-ExtraC; and (dark red) BFM-C cases. Dashed lines correspond to
the experimental mean velocity profiles from [67]. Note that 𝑈/𝑈∞ = 0 is imposed
at the surface to show streamwise location of the probe.

4.3.2.4 Conclusions

Our results show that BFM consistently improves on the prediction of the location and

size of the separation bubble when compared to DSM-EQWM simulations. This im-

provement is particularly noticeable for the coarsest grid tested, where DSM-EQMW

predicts almost no separation. Compared to experimental measurements, BFM accu-

rately predicts the pressure and friction in the second half of the separation bubble.

However, it yields a higher pressure and lower friction in the first half of the separation

bubble. The mismatch was explained by the lower velocities predicted by the SGS

model in the regions with a strong flow reversal. To improve model performance, we

will continue the training of the model with additional cases accounting for adverse

pressure gradient effects. A classifier will also be added to label the type of flow for

the control volumes close to the wall, enabling the use of tailored ANNs.

In fact, a new version of the model trained with additional cases representative

of flow with favorable pressure gradients named BFM v0.2.7 has shown improved

agreement with the experimental data as shown in Figure 4-18 and Figure 4-17.

We do not include the details here because the model is still under active develop-

ment but it indeed shows that the methodology itself is not at fault. With appropriate

implementation, the performance of the model can be vastly improved. Details can
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be found in [29].
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Figure 4-17: (a) Average pressure coefficients and (b) average friction coefficients over
the bump surface at 𝑦/𝐿 = 0 for (Green line) the BFM-v027-ExtraC case. White
circles in (a) correspond to experimental results from [65] at 𝑅𝑒𝐿 = 3.41 × 106,
𝑀 = 0.17, and (b) experimental results from [67] at 𝑅𝑒𝐿 = 2× 106, 𝑀 = 0.2.
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to show streamwise location of the probe.
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Chapter 5

Discussion

5.1 Model Reexamination

In this section, we revisit the model proposed in this thesis and evaluate how well it

meets the original requirements outlined at the beginning of Chapter 3. To reexamine

the model, we will follow the order of the requirements presented in Section 3.1.

(I) Only local in space and time information is required for the current models.

The model has performed better for flows with massive separation compared to

traditional physics-based models.

(II) The model has been trained and applied in the same numerical solvers so that

numerical errors have been dealt with. One exception is the application of BFM

v0.1.0 for CRM-HL. Nonetheless, it still shows better performance. Therefore,

BFM v0.2.0 with training consistent with the numerical schemes is expected to

further improve the performance.

(III) The generalizability of BFMs to different Reynolds numbers has been demon-

strated in cases where Reynolds numbers are different from the training data.

(IV) The model has shown reasonable generalizability to different flow regimes in

validation cases with complex geometries.
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(V) The input and output are nondimensionalized consistently with dimensional

analysis.

(VI) By using invariants and scalars as model inputs and outputs, the model satisfies

this requirement. One exception is the use of the wall-parallel velocity, which is

not an invariant. This should be eliminated in the future version of the model.

5.2 Model Limitations

5.2.1 Bousinessq Hypothesis

Eddy viscosity-based models, including the ones discussed in this work, face a lim-

itation associated with the validity of the Boussinesq hypothesis. According to this

hypothesis, the SGS stress tensor is assumed to be proportional to the resolved rate of

strain tensor. However, this hypothesis has been proven to be incorrect through scal-

ing arguments [68]. Despite this, the Boussinesq hypothesis is widely used in practice

due to its simplicity and the fact that it tends to work well in practical applications.

One possible explanation for its effectiveness is that the primary objective of mod-

eling the SGS term is to accurately represent the energy dissipation by the subgrid

scales, rather than precisely capturing the SGS stress tensor itself [69]. As long as

the correct amount of energy is dissipated, the model is expected to perform well.

This discrepancy between performance in a priori tests (where the model is evaluated

against known flow data) and a posteriori tests (where the model is evaluated based

on its predictive capability) is a crucial aspect to consider. In practical applications,

a posteriori tests are of paramount importance, and therefore, all results presented

in this work are derived from a posteriori tests, contrary to some standard testing

protocols.

While we refrain from a priori tests, finding a non-Boussinesq model that per-

forms well in both a priori and a posteriori tests would be a significant advancement

compared to current eddy viscosity models. Such a model would not only provide

improved predictive capabilities but also offer a more accurate physical interpreta-
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tion of the underlying flow physics. The ability to reconcile both the theoretical

understanding of turbulence and its practical application would contribute to fur-

ther advancements in the field of turbulence modeling. Therefore, the pursuit of a

non-Boussinesq model that excels in both types of tests holds great significance.

Recent research has shown promising results with a new non-Boussinesq model

in LES simulations [64]. This model demonstrates the ability to achieve high cor-

relations between exact SGS tensors and resolved rate of strain tensors, while also

exhibiting high accuracy in a posteriori tests. Moving beyond the Boussinesq hypoth-

esis is indeed a promising direction for future research. However, there are practical

constraints in current framework that need to be considered.

Firstly, the controlling strategy would need to adapt to six degrees of freedom

(corresponding to a symmetric stress tensor) instead of one as in the case of eddy

viscosity. The existing controllers would need significant improvement to handle these

additional degrees of freedom effectively and produce satisfactory results. Secondly,

the computational cost of the model would likely increase. It remains to be seen how

much improvement in computational efficiency is needed to accommodate this increase

in cost. Lastly, the inclusion of more training data would be necessary to capture

the non-Boussinesq effects. The current training data set is already extensive, and it

is unclear how much additional data would be required to adequately represent and

capture the non-Boussinesq effects. These practical considerations present challenges

that need to be addressed when exploring non-Boussinesq models, but the potential

improvements they offer make them a promising avenue for future research.

5.2.2 Training Data

5.2.2.1 Quantity

While training cases as summarized in Table 3.1 are extensive, there is still room

for improvement. Indeed, as mentioned in Section 4.3.2.4, a new version of BFM

with some additional test cases outperforms the BFM v0.2.0 by a fair margin for the

Gaussian bump. Therefore, it seems reasonable to expect that the performance of
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the classifier can be further improved by adding more training cases. However, the

computational cost of generating training cases, mostly coming from the controller, is

a significant limiting factor. The current training data set already requires a substan-

tial amount of computational resources, and it is unclear how much additional data

would be needed to achieve a significant improvement in performance. One possible

remedy is to quantify the relative importance of each training case so that we can use

and select the most meaningful ones instead of naively including all of them. Strategy

to carry out such search remains to be explored.

5.2.2.2 Quality

The non-convergence behavior observed in the results also raises concerns regard-

ing the adequacy of the current training dataset in capturing all the necessary flow

physics. One potential argument is that phenomena such as separation and reattach-

ment observed in cases with Gaussian bumps may arise from the curvature of the

geometry, rather than solely being attributed to the adverse-pressure-gradient effect

that is captured in cases with periodic boundary conditions. Although this remains a

topic of debate, it does highlight the question of whether a finite set of training cases

can effectively represent the diverse range of flow physics encountered in practical

applications.

Answering this question requires empirical evaluation through the systematic ad-

dition and subtraction of training cases, in order to assess the impact on the model’s

performance and capability to capture a broader range of flow behaviors. This task

represents an important avenue for future research, as it aims to identify the optimal

training dataset that sufficiently encompasses the flow physics encountered in various

scenarios. By refining the training dataset, we can enhance the model’s predictive

capabilities and ensure its robustness across a wider range of flow conditions.
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5.2.3 Training of ANN

In this thesis, all ANNs are trained using a scaled conjugate gradient backpropoga-

tion method, which is considered relatively outdated compared to more advanced

optimization techniques such as Adam [70]. The choice of scaled conjugate gradient

backpropagation was primarily influenced by the software used for training, which

is MATLAB in our case. This choice was made because the trained networks can

be exported to plain C files, facilitating seamless integration into either the in-house

FORTRAN solver or charLES written in C++. In contrast, other software libraries

like TensorFlow and PyTorch do not offer the same level of convenience in this re-

gard. Due to this limitation, we are constrained to using older optimization methods

in the shallow neural network implementation provided by MATLAB. As a result, the

extent of performance improvements that can be achieved by employing more mod-

ern optimization techniques, remains unclear. However, further investigation into the

potential benefits of utilizing Adam or other advanced optimization methods would

be worthwhile in order to explore possibilities for enhancing the performance of the

trained networks.

5.2.4 Grid Convergence

In the field of CFD, the convergence of results as the grid is refined is typically

considered an important indicator of code accuracy and reliability. However, in the

case of WMLES using the BFM, we observe a decrease in accuracy from extra coarse

to coarse grids, indicating a lack of convergence. It is crucial to note that this non-

monotonic convergence issue is not specific to our model alone, but is a recognized

challenge in the context of WMLES. Nonetheless, it remains necessary to investigate

the underlying source of this non-monotonic behavior, particularly as other models

do not exhibit the same non-monotonicity with the same coarse grid sizes.

This presents a intricate problem since our primary focus is on achieving better

performance for coarse grids, typically with fewer than 20 grid points per boundary

layer. Therefore, traditional convergence may not be crucial since finer grids are not of
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immediate interest. However, the presence of non-monotonic behavior raises concerns

about the model’s robustness and reliability. As a result, a careful investigation into

this issue is warranted to ensure the model’s performance and stability, even for coarse

grid resolutions.

5.2.5 Classifier

The performance of the classifier plays a crucial role in determining the overall perfor-

mance of the model. In the case of BFM v0.1.0, the performance of the classifier is not

as satisfactory as initially anticipated. This is evident from the fact that BFM with

a "perfect" classifier outperforms the version with the actual classifier. To enhance

the performance of the classifier, several potential improvements can be explored,

although none of them have been tested yet and should be considered as future work.

One potential avenue for improvement is to investigate the use of alternative in-

puts that may provide more informative features for the classifier. This could involve

incorporating additional flow parameters or utilizing different data preprocessing tech-

niques. Another option is to explore the use of ANNs as an alternative to the current

classifier. ANNs have shown promise in various classification tasks and may offer

improved performance in the context of BFM. These potential improvements war-

rant further investigation as part of future work to enhance the performance of the

classifier and, subsequently, the overall performance of the BFM model. Finally, in-

corporating a classifier into newer versions of BFM holds the potential to improve its

performance, provided that the classifier itself demonstrates good performance.

5.2.6 Higher-order Statistics

No results of higher-order or multi-point statistics, such as Reynolds stress and spatial

correlations, have been presented in this work. This intentional omission is due to the

fact that coarsely resolved LES is not expected to accurately capture such statistics.

Higher-order statistics play a significant role in various applications, including aeroa-

coustics, where accurate representation of turbulent structures and their interactions
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is crucial.

Therefore, it is important to emphasize that the current model should not be

utilized for applications that heavily rely on higher-order or multi-point statistics

without further validation and assessment. These statistics require a higher level of

fidelity and resolution, typically achieved through higher-resolution simulations or

alternative modeling approaches specifically designed for capturing such quantities

accurately.

5.2.7 Variables in the past

It has been reported in previous studies that including variables from the past can

improve the performance of turbulence forecasting via ANNs [71, 72]. Current model

has no such inputs. No attempt has been made to include such inputs in the near

future as it might contradict our objective of developing a model that can be easily

implemented in existing solvers.

5.2.8 Confidence Score

Previous versions of BFM for SGS can provide confidence scores for each region [46].

This is not implemented in the current version but should be included in the future.
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Chapter 6

Conclusions and Outlook

Simulation of fluid flows is pivotal for the design of many practical engineering de-

vices. For aerodynamics applications, the prediction of integral quantities of interest

is one of the most important tasks and a major challenge according to the NASA CFD

Vision 2030 [73]. For a reasonable turnaround in the design cycle, hybrid methods,

especially WMLES, have shown great promise. However, the widespread use of WM-

LES has been hindered by the lack of accurate SGS and wall models, among other

factors. Current SGS and wall models have faced challenges in accurately capturing

the complex flow physics in practical engineering simulations as they often make as-

sumptions that may not fully capture the intricacies of turbulent flows, leading to

limitations in their predictive capabilities.

To overcome this issue, we have developed a unified SGS/wall model for WMLES

by devising the flow as a collection of building-block flows. The model is referred to

as building-block flow model (BFM). It relies on the assumption that the flow physics

in arbitrary settings can be traced back to canonical cases.

The BFM employs two types of neural networks: a classifier and a predictor. The

classifier is trained to identify the flow physics and categorize the flow into different

canonical cases. The predictor, on the other hand, is trained to predict the SGS

and wall shear stress based on the classified flow physics. The training data used

for BFM are generated through exact-for-the-mean simulations of canonical flows. In

this approach, we correct the eddy viscosity of the base model to obtain accurate
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mean profiles, effectively accounting for numerical errors.

Four types of flows are used for the BFM training: laminar channel flow, turbulent

channel flow with zero pressure gradient, Poiseuille-Couette flow with mild adverse

pressure gradient, and Poiseuille-Couette flow close to separation. By training the

BFM on these canonical cases, we aimed to capture the essential physics that can be

generalized to more complex flow scenarios.

The model has been validated in canonical flows including laminar channel flow,

turbulent channel flow, turbulent Poiseuille-Couette flows with different adverse pres-

sure gradients, and more realistic settings including a Gaussian bump and the NASA

High-Lift Common Research Model. The BFM has shown excellent accuracy and gen-

eralizability, particularly in scenarios involving very coarse grids, which are essential

for achieving reasonable turnaround times in practical engineering applications.

Nonetheless, current versions of BFM can still be improved in several ways. First,

the extensibility of the BFM provides a promising avenue for further improvement

and refinement. Adding more blocking flows representative of canonical flow physics

to the reservoir will be helpful for improving the accuracy and generazability of the

model. One simple example is the enhancement of BFM v0.2.7 mentioned at the very

end of the Gaussian bump section.

Second, to ensure the model’s reliability and applicability in practical engineering

cases, additional validation and verification in more complex geometries and flow

configurations are essential. Some prominent examples include periodic hills [74, 75]

and flow over cylinders with different geometries [76, 77].

Regarding the two versions of the model for different solvers, future work should

focus on unifying the datasets and model structures to ensure consistency and compa-

rability between the implementations. Moreover, adding capabilities such as providing

confidence scores for classification, which has been demonstrated in the wall-model-

only version of the model, can further enhance the model’s usability in practice [46].

Finally, in terms of fundamental research of the model, it is crucial to identify and

separate the sources of errors in the model. Understanding the contribution of each

component, i.e., classifiers and predictors, to the overall error will provide valuable
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insights for further model development and optimization.

In summary, current status of BFM is promising. It has shown great potential

in improving the accuracy and generazability of WMLES for practical engineering

applications. With further development and refinement, the BFM can become a

powerful tool for engineering design in the future.
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