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Abstract

In this thesis, titled "Data Science in Investment Management," we aim to explore
the applications of data science and artificial intelligence across various dimensions
of investment management, offering innovative solutions and insights to the indus-
try. This thesis is composed of several parts, each addressing a different aspect of
investment management and leveraging data science techniques to deliver valuable
insights.

In first part, for industries and crypto-currencies, we develop a dynamic classifica-
tion system that groups stocks according to quantified similarities from a wide variety
of structured and unstructured data features. With the availability of big data, we
were able to use artificial intelligence (AI) methods to extract relevant information
about companies from various data sources and learn about their similarity in the
future, according to market perception. In second part, we study ways of creating
capital and portfolio management for fusion energy and biopharmaceutical invest-
ments. By leveraging computational techniques like portfolio approach, we provide
novel insights into the optimal financing strategies for high-risk, high-reward ventures
like fusion research and biopharmaceutical investing. We also quantify the impact of
clinical trial results on the stock prices of the companies, that can aid biopharma in-
vestors in risk management. Given the increasing interest in ESG investing, we study
the excess-returns of the ESG investing. We also develop the measure of the impact on
patient lives due to the products of the biopharmaceutical companies that can attract
ESG funds for biopharmaceutical companies. Next part of the thesis investigates the
real-time psychophysiological analysis of financial risk processing, offering a deeper
understanding of human behavior in the context of investment decision-making using
a data driven approach. In the next part, we focus on the use of explainable Machine
Learning for an important problem of consumer credit risk. In the final part, we con-
clude with the discussion about the future of Artificial Intelligence and Data Science
in Finance.

Thesis Supervisor: Andrew W. Lo
Title: Charles E. and Susan T. Harris Professor, a Professor of Finance
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Chapter 1

Introduction

Artificial Intelligence (AI) models have evolved over time with theoretical innovation

and the availability of data and computational resources. Figure 1-1 shows the com-

putation and datapoints used by the artificial intelligence (AI)–including language

systems– systems developed over time where we can observe an exponential increase

in the computation and datasets used by AI systems. This was possible due to the

increase in the computational resources and decreasing cost of computational and

data storage facilities.

The rapid advancements in data science and artificial intelligence have significantly

transformed the landscape of investment management in recent years. The availability

of data and AI systems has revolutionized the world of investment management and

finance in several significant ways. These technologies have enabled investors, fund

managers, and financial institutions to make more informed decisions, automate pro-

cesses, and uncover hidden patterns in the market. This thesis, titled "Data Science

in Investment Management," aims to explore the potential applications of data sci-

ence and artificial intelligence across various dimensions of investment management,

offering innovative solutions and insights to the industry.

The thesis is composed of several chapters, each addressing a different aspect of

investment management and leveraging data science techniques to deliver valuable

insights. The first two chapters (Part I) focus on artificial intelligence-based peer

grouping systems for both traditional industries and cryptocurrencies. It has broad
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(a) Computation used to train notable artificial intelligence sys-

tems.

(b) Number of datapoints used to train notable artificial intelli-

gence systems.

Figure 1-1: Evolution of computation and number of datapoints for AI systems train-
ing. Dataset is obtained from [253]
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application because investors and financial analysts use it for investment management

and competitive industrial diligence. Currently, multiple industry peer grouping sys-

tem exists including North American Industry Classification System, the Global In-

dustrial Classification System, and the Industry Classification Benchmark. However,

they are static (doesn’t evolve over time) and doesn’t incorporate market perception

(defined as return correlation).

For industries, we develop a dynamic industry classification system that groups

stocks according to quantified similarities from a wide variety of structured and un-

structured data features. With the availability of big data, we were able to use

artificial intelligence (AI) methods to extract relevant information about companies

from various data sources and learn about their similarity in the future, according to

market perception. Our AI-driven Peer Grouping System (AIPGS) adapts itself and

evolves over time in tandem with the changing perceptions of companies.

Contrary to the companies in the equity market, the crypto-currency market is

new and currently the existing crypto currency groupings (taxonomy) are not tailored

to the application of investment management. Hence, we create peer grouping system

for crypto-currencies using various data sources including: historical returns, white

papers, fundamental factors and fundamental properties.

The part II of thesis delve into the energy, pharmaceutical sectors and ESG in-

vesting. Investment in energy, healthcare and pharmaceutical sectors is crucial due

to several reasons that impact society, the economy, and individual well-being. These

sectors play a vital role in improving and maintaining public health, driving inno-

vation, and contributing to economic growth. However, there is dearth of funding

in fusion energy and pharmaceutical sector. Hence, in different chapters we study

ways of creating capital and portfolio management for fusion energy and biopharma

investments.

For biopharmaceutical companies, apart from general factors like earnings an-

nouncements, dividends, corporate actions; clinical trial outcomes are critical since

they play a major role in determining the future revenue, growth, and valuation of the

company sponsoring the trial. For investors in this sector, clinical trial results are the
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predominant factor determining their return on investment. Therefore, quantifying

the impact of clinical trial results on the stock prices of the companies is of great

financial significance. In one of the chapter, we investigate for the factors responsible

for varying abnormal returns by performing an event study analysis for 13,807 clinical

trial outcomes using data from 2000 to 2020 for 379 publicly traded U.S. companies.

We benefit from the availability of the big data (in context of bio-pharmaceutical

domain) to accurately investigate for the factors and develop model that can quantify

the relationship between the clinical trial factors and abnormal returns of companies.

The model can be used by investment managers to obtain average abnormal returns

for the stock of a sponsor company at the declaration dates of a clinical trial result.

The following chapters address various aspects of investment project financing,

diversified drug development projects along with the fusion energy. By leveraging

computational techniques like portfolio approach, these chapters provide novel in-

sights into the optimal financing strategies for these high-risk, high-reward ventures.

Final chapters of part II focuses on sustainable investing. Over recent years,

impact investing have gained a lot of attention from investors. There have been

an estimate of $9 trillion impact investing market in the US alone. According to

united nations principles of responsible investing, number of organisations that are

signatories of UNPRI have increased from 450 in 2016 to 4935 in 2022 representing

1.3$ trillion asset under management in 2016 to over 100$ trillion in 2022.

Given the increasing interest in ESG investing, investors are interested in knowing

excess-returns of the ESG investing (if any). Hence, we develop the portfolios using

ESG scores from different rating agencies to quantify the excess returns due to ESG.

Next, due to varying methodologies of vendors for the computation of the ESG scores,

the divergence of the ratings are observed across vendors. This divergence implies,

the ESG scores can be considered to be composed of ESG signal and noise. Due to

low signal-to-noise ratio, it is hard to estimate the true ESG excess-returns.

To solve for problem of noise, we propose different ways of aggregation of the ESG

scores across vendors. We construct a single measure of ESG by combining ESG scores

from six different vendors using various statistical and voting aggregation techniques.
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Since the aggregate scores are less noisy, the estimates of various properties are more

representative of the true properties of ESG portfolios. It can give an historical

perspective of ESG performance for the investors. Hence, we use data science (data

from rating agencies) to solve for the problem of noise.

In the final chapter of part II, we develop the measure of the impact on patient

lives due to the products of the biopharmaceutical companies. The current ESG score

methodologies doesn’t include the contribution of the drugs/treatments developed

by the biopharma companies in the computation of the ESG scores. Biopharma

companies are creating “social impact" by developing treatments and saving the lives

of the patients. The social impact measure can be used by investors for the impact

investing in biopharmaceutical sector. Which in-turn can generate capital for drug

development.

Part III investigates the real-time psychophysiological analysis of financial risk

processing, offering a deeper understanding of human behavior in the context of

investment decision-making.

Traders are highly trained and motivated to be “rational". Given that trades

may not be successful all the times, the fluctuating profit and loss (PnL) may lead

to incidences of stress. Hence, in financial markets, sudden fluctuations in prices,

changes in investor holdings, or other factors unknown to the traders may impact

decisions. There have been incidences of rogue traders, for example, Nick Leeson 1

Billion$ loss led to fall of Barings bank in 1995, Jerome Kerviel’s illegal trades caused

4.9 Billion Euros loss to Societe Generale.

The primary focus of our analysis is to measure the relation (if any) between a

trader’s PP state and their financial decisions or market events, both contemporane-

ously and temporally. By analyzing the changes in the trader’s PP activation levels,

we identify the circumstances in which such changes coincided with, or were caused

by, financial transactions or market events. This information can be used to give

feedback to the traders and prevent them from making irrational decisions. This is

one of the largest study, where we collected the physiological signals of 55 professional

financial traders at a global financial institution during the entire trading day over a
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five-day period for each trader. The data-driven approach allowed us to study and

obtain significant relationships.

In Part IV, we focus on the use of Machine Learning for an important problem of

consumer credit risk. The total U.S. household debt at the end of the fourth quarter of

2020 is estimated to be $14.56 trillion, with 189.6 million new credit accounts opened

within the prior 12 months. Given this massive amount of household debt, even a

low delinquency rate can significantly affect the operation of the financial system.

This potential impact makes the study of credit default risk an important real-world

classification task.

In this study, we identify the different stakeholders involved in credit risk management—

loan companies, regulators, loan applicants, and data scientists—and provide expla-

nations of the models according to their needs. We modified the xAI models for

their use in credit risk management. Our study demonstrates that the functionality

of black-box ML models can be explained to a range of different stakeholders, if the

right tools are applied to the task. These progresses unlock the future potential of

applying AI to improve credit modeling.

Finally in part V, we study the evolution of NLP over decades: from ELIZA (the

first chatbot) to GPT 3.5/4 (the state-of-art). The use of NLP in finance has evolved

significantly over the past few decades. Initially, NLP was used in finance for compar-

atively simple tasks, such as sentiment analysis of financial news articles and stock

predictions. However, with advances in NLP techniques and increased computational

power, the application of NLP to finance has become more sophisticated and diverse.

Today, NLP models are used in finance for a wide range of tasks, including asset

management, risk management, and impact investing.

However, it is important to consider the limitations of NLP, such as the problem

of data scarcity, its ethical and legal implications, and the inherent limitations of

NLP models themselves. Another important limitation to consider is the apparent

“hallucinations” of AI bots which can lead to the strange and sometimes unsettling

experiences for users.1 Overall, the future of NLP in finance is bright, but it will likely

1https://www.nytimes.com/2023/02/16/technology/bing-chatbot-microsoft-chatgpt.html
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be accompanied by a combination of technological pitfalls and practical challengesas

the financial industry adapts to these newfound powerful capabilities.

In summary, the availability of data and AI systems has transformed the world

of investment management and finance by enabling better decision-making, increased

efficiency, and the discovery of new opportunities. It has allowed to generate capital

for the fusion energy and pharmaceutical sectors and have solved problems related

to ESG and sustainable investing. As these technologies continue to advance, their

impact on the industry will only grow, driving further innovation and change.
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Peer Grouping
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Chapter 2

Peer Grouping : An Artificial

Intelligence-Based Industry Peer

Grouping System

In this Chapter, we develop a data-driven peer grouping system using artificial intel-

ligence (AI) tools to capture market perception and, in turn, group companies into

clusters at various levels of granularity. In addition, we develop a continuous mea-

sure of similarity between companies, and use this measure to group companies into

clusters and construct hedged portfolios. In our peer groupings, companies grouped

in the same clusters had strong homogeneous risk and return profiles, while different

clusters of companies had diverse, varying risk exposures. We extensively evaluated

the clusters robustly and found that companies grouped together by our method had

higher out-of-sample return correlation but lower stability and interpretability than

companies grouped by a standard industry classification system. We also develop an

interactive visualization system for identifying AI-based clusters and similar compa-

nies.
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2.1 Introduction

Industry classification refers to the organization of companies into groups. It has

broad application because national agencies need it to summarize economic statistics

accurately, and investors and financial analysts use it for investment management and

competitive industrial diligence.

Industry classification started in 1937, via the Standard Industrial Classification

system (SIC). This system classified companies based on their activities at the es-

tablishment level. Since then, multiple industry classification systems have been

established, grouping companies by different criteria. For example, the North Amer-

ican Industry Classification System (NAICS) groups companies based on production

at the establishment level, the Global Industrial Classification System (GICS®1) and

the Industry Classification Benchmark (ICB) classify companies according to rev-

enue, earnings and market perception [209], and the Text-Based Network Industry

Classifications (TNIC) groups companies according to business descriptions in 10-K

reports.

Currently, none of the existing classification systems are solely based on market

perception. However, due to the widespread adoption of industry groupings by mul-

tiple stakeholders in investment management, including traders, hedge funds, asset

management firms, and stock brokers, the public market’s perception has become

vital in classification systems because it allows stakeholders to efficiently compare a

company’s financial performance with its peers, and it allows the hedging and con-

struction of diversified portfolios.

In this chapter, we create a dynamic industry classification system that groups

stocks according to quantified similarities from a wide variety of structured and un-

structured data features. We trained machine learning (ML) models of these features

to predict future return correlations between stocks, which we view as a proxy for

market perception. We define market perception as investors’ views about a company

that drive the stock returns’ movement and their co-movement with similar stocks.

1Global Industry Classification System is jointly owned by MSCI Inc. and S&P Global.

32



However, future return co-movement is dynamic and difficult to measure. Neverthe-

less, with the availability of big data, we were able to use artificial intelligence (AI)

methods to extract relevant information about companies from various data sources

and learn about their similarity in the future, according to market perception. Our

AI-driven Peer Grouping System (AIPGS) adapts itself and evolves over time in tan-

dem with the changing perceptions of companies.

Return correlation between companies has been widely used to determine the ho-

mogeneity of industry groups as perceived by investors [51, 82]. We observed that

clusters using a distance metric calculated via return correlation will group companies

with similar return characteristics. We calculated the industry effects, and demon-

strated that our ML models group firms together with similar fundamental factor

exposures. The clusters obtained by this method enhance the potential benefits that

can be gained by diversification based on clusters in the portfolio creation process.

In our dynamic peer grouping system, we applied AI methods at different steps

to enhance the system’s ability to group together similar firms. Specifically, we first

obtained several datasets on returns, factor exposure, news co-mentions, and 10-K

filings. From these datasets, we extracted features via various methodologies, includ-

ing (but not limited to) term frequency-inverse document frequency (TF-IDF) and

Doc2Vec for 10-K filings and Node2Vec for news mentions, to capture the potential

similarity between firms2. We then used ML models such as ridge regression, neural

networks, and XGBoost to learn and predict the relationship between features and

future return correlation between companies. Finally, we used hierarchical clustering

to group similar firms together in sector, industry, and sub-industry groups.

In AIPGS, we learned relationships and found groups that are not captured in

existing classification systems. For example, in 2018, one sub-industry group from

AIPGS included only Alphabet, Netflix, Apple, Amazon, and Facebook. All of these

companies are prominent U.S. technology companies and popularly referred to as

FAANG. However, GICS would have traditionally classified these companies in dif-

2We describe TF-IDF, Doc2Vec, and Node2vec in more details in Section Data and Feature
Extraction. These are the AI based feature extraction methods from the text and graph datasets.
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ferent sub-industries: respectively, as interactive media and services; movies and en-

tertainment; technology, hardware, storage, and peripherals; internet and direct mar-

keting retail; and interactive media and services. Likewise, GICS generally grouped

PepsiCo with the Coca-Cola Company and classified PepsiCo as a soft drinks or bev-

erage company at subindustry and industry levels, but AIPGS generally separated

PepsiCo from Coca-Cola and grouped PepsiCo in the same subindustry and industry

as packaged food or food companies such as General Mills, Mondelez International,

and The Hershey Company. This is insightful because PepsiCo earns more revenue

from its food/snacks business than from beverages3.

Similarly, GICS groups Disney in the group movies and entertainment, whereas

AIPGS grouped the Walt Disney Company with cable and broadcasting companies

such as Comcast Corporation. Disney launched their streaming service Disney+ in

2019, which might potentially explain the grouping. Likewise, Cognizant is an infor-

mation technology (IT) company that performs data analytics and processing. Al-

though GICS placed Cognizant with IT consulting firms, AIPGS grouped Cognizant

with multiple data processing and IT consultancies.

AIPGS also captured groupings that may seem unintuitive or surprising at first

glance but can be explained via further fundamental analysis. For example, although

eBay may be seen as one of the largest e-commerce sites, AIPGS indicates other-

wise. For 2014, the ML model predicted that eBay should have been grouped in the

same sub-industry as finance companies such as The Green Dot Corporation, Visa,

and Mastercard. Upon further analysis, this classification makes sense because in

2013 eBay owned PayPal, which did not split off until 2015. PayPal’s high growth

prospects and leadership in the money-transfer space could have caused the market

to view eBay as a fintech firm. Interestingly, for 2018, well after eBay had split from

PayPal, AIPGS classified eBay in the same sub-industry as e-commerce sites such as

Priceline.com, Expedia Group, Etsy, and Shutterstock. This indicates the market’s

stabilizing perception of eBay as an e-commerce site after its split from PayPal in

2015. Thus, according to our model, for 2014, an investor looking for exposure to

3We verified this information via 10-K filings of PepsiCo.
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companies with similar stock movements as eBay would not have invested in other

popular e-commerce sites, but in fintech and payment processing firms such as Visa

and Mastercard.

The popular classification systems, such as NAICS, GICS, and ICB, discretely

group companies without providing a continuous degree of similarity within and across

groupings. In this work, apart from merely grouping companies, our model produces

a continuous measure of similarity, which allows us to find the top k peers of a

particular company. We demonstrate that single-stock portfolios can be hedged using

peers determined via similarity scores.

This chapter contributes to the literature in data-driven classification systems.

[143] proposed a text-based classification system based on business descriptions from

10-K filings and showed that their method outperformed SIC and NAICS in grouping

together firms with similar profitability, sales growth, and market risk. Lee (2015)

[166] used internet co-searches from the U.S. Securities and Exchange Commission

(SEC) website to find groups of similar firms, assuming that users of the SEC data-

retrieval website search for similar firms together to aid their investment process.

Although this method incorporated investor perception, it is limited by availability

of search data. [76] proposed designing an industry classification system from inter-

firm transaction data, but failed to produce any industry groupings due to lack of

data. [119] and [264] proposed identifying peers from patent citation and stock tweets

on Twitter, respectively. Both methods were also limited by availability of data: If a

company does not write patents in common with patents of other companies or if a

company is not mentioned in stock tweets, then the classification system will fail to

assign a grouping. Similarly, [295] proposed a system to quantify company similarity

using different data sources (10-K filings, news co-mentions, returns, fundamentals

and analyst coverage overlap).

Our analysis builds on the aforementioned methods, and we propose an industry

classification model that is explicitly trained to predict the market perception (return

correlation) of companies one year into the future. We also incorporated AI methods

that led to performance improvements over the baseline. Some of the existing methods
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suffer from a lack of data availability, and fail to place all public companies into

industry groups. Our system is robust because all the datasets used are available

(except for news co-occurrence)4 for almost all publicly traded U.S. companies.5

One of our goals is to incorporate a baseline classification system that is robust

and popular. GICS is a classification system that is “market-oriented" and used by

practitioners. ICB is another market-oriented classification system similar to GICS,

as documented in the literature[280]. Other classification systems are not as rele-

vant to investors; e.g., SIC and NAICS are product-oriented classification systems

used by federal statistical agencies to analyze data about the U.S. economy. [104]

developed an industry classification system that is based on SIC. [32] and [51] com-

pared GICS to NAICS and Fama–French classifications, respectively, and found that

GICS more effectively captures stock co-movement, cross-sectional variations in val-

uation multiples, and other key financial ratios. Hence, we used GICS at various

levels of granularity, particularly at the sector, industry, and sub-industry levels, as

a benchmark against our classification system. We show that our classification sys-

tem outperformed GICS: Our system more effectively grouped companies with strong

return co-movement and factor exposures.

Next, we show how we calculated a similarity score to group together the most

similar companies. These steps are presented in Figure 2-1. First, we calculated the

features for all companies from various data sources, as we will describe in Section

Data and Feature Extraction. We then calculated the similarity score between

each pair of companies. The similarity score between the companies was obtained

using ML models, as we will describe in Section Distance Metrics. With these

similarity scores, we determined the distance between every pair of companies and

applied hierarchical clustering, as explained in Section Clustering, to group all the

companies into clusters. Finally, the clusters obtained were evaluated in an out-

of-sample period and used for different applications, as we will describe in Section

4Our industry classification system is still able to assign an industry grouping if the company is
missing in the news dataset.

5The companies used in our analysis covered approximately 99% of the free-float-adjusted market
capitalization in the U.S.
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Evaluating Performance.

Figure 2-1: Flow Chart of Methodology

2.2 Data and Feature Extraction

We aim to create a classification system that may be useful for investors by incor-

porating the market’s perception of companies. Consequently, we use multiple data

sources to capture the similarity between companies. Inspired by MSCI Peer Sim-

ilarity Scores [295, 217], we use stock returns, factor exposures, 10-K filings, news

co-mentions, and the GICS grouping data in our analysis. We next summarize these

datasets and feature extraction methods.

Returns

We obtained the daily and monthly returns of all companies. The number of com-

panies and the number of features are described in Table A.1 and in Table 2.1. Our

model incorporated returns because companies belonging to the same industry groups

experience similar shocks, which are reflected in stock returns. For example, a regu-

lation change in favor of electric vehicles (EV) is favorable to EV companies, which

may cause their stock prices to increase, while potentially hurting automobile firms

reliant on gasoline or diesel. Also, we used return correlation to quantify the similarity

between companies.

Factor Exposures

Multiple factors have been discovered to explain the source of abnormal returns of

companies [136]. According to the fundamental factor model [105], companies with

a similar factor exposure tend to have similar return characteristics. The factor
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exposures used in our models are the descriptor exposures from the MSCI Barra

US Total Market Model [22] and are listed in the Appendix in Table A.1. It is

important to note that, in our model, factor exposures that change slowly over time,

such as variability in sales, are driven by inputs that change at an annual or quarterly

frequency (slow factors), while others, such as short-term reversal, were designed to

have higher turnover (fast factors).

10-K Filings

10-K filings are annual regulatory reports required by the SEC. We use the business

description section of 10-K filings, which includes detailed information about compa-

nies’ businesses and operations. Thus, the filings can be used to generate important

features to measure the similarity between companies.

These reports are available in text form. To obtain the features used for the

similarity model, we use the following methods:

• TF-IDF: TF-IDF is used to determine the most important word in documents.

Each document is represented by the vector product of term frequency (the

proportion of text the term composes in a document) and the inverse document

frequency (the number of documents in which the word occurs) for every word

in the document. This method of feature extraction has been used by [189].

Once we calculate the TF-IDF features, we obtain a high-dimensional sparse

representation of each document. We reduced the number of dimensions to 100

using truncated singular value decomposition (SVD).

• Doc2Vec: This approach involves obtaining a document embedding, as ex-

plained in [75]. Doc2Vec is an unsupervised learning method, and using the

Distributed Bag of Words and Distributed Memory models, we obtained two

representations of every 10-K document, Doc2Vec0 and Doc2Vec1. For the

Doc2Vec method, we used a publicly available implementation 6 and made ap-

propriate modifications.
6https://markroxor.github.io/gensim/static/notebooks/doc2vec-wikipedia.html
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News Co-Mentions

From Ravenpack, we obtained information about companies mentioned together in

news articles. Companies appearing together in news articles can indicate similarity.

For example, Facebook and Twitter can be considered similar because they are often

mentioned together in articles about social media.

Using the news dataset, we extracted two types of features for companies:

• Co-occurrence: For every pair of companies, the Jaccard similarity is calcu-

lated, as follows: Let A be the news articles with mention of company i and B

be the set of news articles with mention of company j. We use A\B/A[B as

their measure of similarity.

• Node2Vec: The co-occurrence method fails to capture higher-level connections

between companies. For example, if companies i and j are frequently mentioned

together in news articles, and if j and k are mentioned together in others, then

companies i and k should be similar to some extent even if i and k are never

or infrequently mentioned together. Hence, we extract a set of features based

on Node2Vec[133]. Node2Vec is a graph-embedding model used to determine

the transitive relationships between objects. Therefore, we constructed a graph

in which companies are nodes and the co-mentioned companies are connected

with the edges. The edges were also weighted by the number of times a pair of

companies were mentioned together in an article. Using Node2Vec, we obtained

a 128-dimensional embedding of the companies.

GICS

As mentioned earlier, GICS is an industry-standard hierarchical classification system

used by financial firms and investors globally. Within each hierarchy, every public

company is classified into a sector, industry group, industry and sub-industry. It is a

market-oriented classification system that uses revenue as a key factor in determining

a firm’s principal business activity, along with earnings and market perception. Apart
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from using GICS as a baseline classification system, we also used it as one of the inputs

for the similarity prediction model.

Dataset-Features Number of Features
Returns-Daily 252

Returns-Monthly 12
Factors 264

10K-TF-IDF 82606
10K-TF-IDF(SVD) 100

10K-Doc2Vec0 200
10K-Doc2Vec1 200
News-Node2Vec 128

GICS 4

Table 2.1: Datasets and Various Features Extracted

2.3 Distance Metrics

Given these features of companies, we used cosine and ML metrics to calculate the

similarity scores between companies. These models processed the data available at

the end of year t (the in-sample period) to predict and estimate the distance (based

on return correlation) between the companies in year t + 1 (the out-of-sample per-

oid). This helps as we seek to avoid any look-ahead bias in the similarity score and

distance calculation. Details about the cosine distance model of similarity prediction

are available in the Appendix in the Cosine Distance section.

We used ML models to predict the out-of-sample distance and similarity between

the companies. The ML model took the similarity feature vector between a pair of

companies as an input. The similarity feature vector was constructed by appending

the L1 distance between different feature vectors with the cosine similarity. It is

constructed as follows: Given fk

i
and fk

j
, we constructed Fi,j =

S
k

{|fk

i
� fk

j
| ,

cos(fk

i
, fk

j
)}. Here, f is a feature vector, and i and j are companies. However, for our

ML models, k may represent different datasets: monthly returns, daily returns, 10-

K-TF-IDF(SVD), 10K-Doc2Vec, or news Node2Vec features. We also appended the

news co-occurrence to Fi,j. Finally, the ML model took Fi,j as an input and predicted
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the future similarity between the companies. We calculated future similarity between

the companies using future daily returns correlations.

The different ML models we used for this analysis were ridge regression, neural

networks, and XGBoost. Details of the ML models are included in Appendix in the

Machine Learning Models section. The training data consisted of Fi,j between all

pairs of companies in the sample. For testing year t+1 (out of sample), training was

performed on year t�1, and validation was performed on year t. Once the ML model

was trained and hyperparameters were tuned, we used it to obtain the similarity

scores between all the pairs of companies for the out-of-sample year t+1. After that

we performed an evaluation using the predicted similarity score for out-of-sample

period t + 1. We provide further details about the dataset split in the Appendix in

Table A.3.

2.4 Clustering

Once we have the similarity scores between the companies for each year, we can

cluster them into groupings of similar companies. These groupings should have 1)

homogeneity, in which similar companies should be assigned to the same clusters,

and 2) fair balance, in which a majority of the companies should not be assigned to

a minority of clusters.

Existing industry classification systems, such as NAICS, GICS and ICB, are hier-

archical. The hierarchical structure of the financial markets is also validated by [204]

and [76]. Hence, we apply hierarchical clustering via an agglomerative (bottom-up)

approach. This approach considers all companies as individual clusters. At every sub-

sequent step, the clusters are merged to move up the hierarchy. Hierarchical clustering

requires 1) the distance between the pair of observations, and 2) the linkage, which

is the method used to merge the clusters upwards in the hierarchy. The similarity

score between the pairs of observations is available as described in Section Distance

Metrics. We calculated the distance as (1� SimilarityScore).7 For the linkage, we

7sqrt(2 ⇤ (1 � SimilarityScore)) is used in literature to convert correlation to distance. We
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applied Ward’s method, which minimizes the intra-cluster variance (i.e., the sum of

squares from the center) when two clusters are merged. If a large number of compa-

nies are assigned to the same cluster, then the intra-cluster variance increases. Hence,

using Ward’s method helped the models develop similar-sized clusters.

Using hierarchical clustering, we created groupings that corresponded to sectors,

industries, and sub-industries. For a fair comparison with GICS, we approximately

matched the number of clusters at each level to GICS groupings, such that if GICS had

11 sectors, then the number of clusters at the sector level for hierarchical clustering

was set to 11. However, hierarchical clustering can be used to obtain an arbitrary

number of clusters.

2.5 Evaluating Performance

We aim to group stocks based on the perception of the market and investors. In

the industry classification system, companies belonging to the same group should be

similar, and dissimilar otherwise.

Because the market is driven, in part, by investor perception, the similarity be-

tween companies can be determined by calculating the co-movement of stocks. If

market participants consider a set of companies to be closely related, those compa-

nies may experience similar movements in their stock returns, given similar exposure

to risk factors and shocks that influence their returns. The use of return correlation

to measure the similarity between companies has been explored earlier by [82] and

[51]. We define the return correlation between the companies as a measurement of

similarity.

For two stocks, i and j, at the end of year t, the similarity is given by ⇢i,j where

⇢ is the correlation between the daily returns of stocks in year t+ 1. To evaluate the

goodness of the prediction of k peers of company i, we calculated the average future

observed empirically that our transformation method led to similarly sized clusters, with higher
values of the average return correlation between companies belonging to the same cluster.
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returns correlation(⇢̄i) given by: 8

⇢̄i =

P
i 6=j

⇢i,j

k � 1

After obtaining the average future returns correlation for each company, we obtain

the goodness of the prediction as follows:

⇢̄ =

P
i=1,K ⇢̄i

K

where K represents the total number of stocks being evaluated, and ⇢̄ represents the

overall average return correlation between similar stocks.

A higher value of ⇢̄ reflects better performance by the classification system in

grouping similar stocks. In our evaluation, we used the ⇢̄ to assess the industry

grouping models. While evaluating ⇢̄, we set values of k = 2, 5, 10, and also to

‘dynamic’. Setting k as dynamic implies that the number of peers is decided by the

number of companies in the sector, industry or sub-industry cluster to which company

i belongs.

We evaluated the ability of the ML models to predict the peers of every company

in our dataset. To do this, we evaluated the forward return correlation with the top

k peers as predicted by the model. To compare against GICS, we decided the value

of k = dynamic for a company by the number of peers in the GICS grouping to

which it belongs. For example, at the industry level, if company i belongs to a GICS

group that contains m peers, then k = dynamic at the industry level will include m

peers in the calculation of ⇢̄i. We evaluated peers at three levels: sector, industry

and sub-industry. We evaluated the models for the years 2014-2020, and report the

average values over all years in the study period.

Table 2.2 shows the effectiveness of the ML models in predicting the top k peers

of each company. The ridge regression model was evaluated after being trained with

features from individual datasets. We observed that the ridge regression model with

8The first peer of a firm i is firm i itself, hence we don’t include that in the numerator and
denominator.

43



all features (Ridge:ALL) outperformed the ridge regression model trained on only a

subset of features. Adding GICS features to the model (Ridge:ALL+GICS) led to

small improvements, which implies GICS features have information not captured by

other data sources. We see will see later that adding GICS features also increased

cluster stability. We also used nonlinear ML models, such as neural networks and

XGBoost. In comparison to the ridge regression model, the nonlinear models showed

greater peer-prediction power. We also include the performance of different ML mod-

els over each year individually in the Appendix in Table A.6, and we observed that

ML models consistently outperformed GICS at the sector, industry, and sub-industry

levels. In Table A.7 in the Appendix, we also include the standard errors for the for-

ward returns correlation, using bootstrapping training data for the ridge regression

model. We observed that standard errors were smaller than forward return correlation

improvements by orders of magnitude. Hence, these improvements were statistically

significant.

Model:Features Sector Industry Sub-industry Top 10 Top 5 Top 2
GICS 33.17 41.97 44.57 - - -

Ridge:Factors 33.69 39.99 42.13 40.80 42.16 44.15
Ridge:10k-ALL 33.62 40.66 43.50 41.54 43.38 46.02
Ridge:Returns 35.57 42.40 44.56 44.65 46.47 49.12

Ridge:ALL 36.20 43.75 46.22 46.16 48.35 51.55
Ridge:ALL+GICS 36.21 43.96 46.48 46.56 48.79 51.96

NN:ALL 36.13 43.64 46.09 46.30 48.48 51.65
NN:ALL+GICS 36.30 43.87 46.31 46.63 48.80 51.96
XGBoost:ALL 36.48 44.01 46.48 46.60 48.66 51.59

XGBoost:ALL+GICS 36.58 44.26 46.69 46.84 48.95 51.96

Table 2.2: Evaluation of ML models.
This table presents the values of average return correlation of peers in the out-of-
sample periods. The peers are obtained via the ML models for different datasets.
For a fair comparison with GICS, the number of peers for sector, industry, and sub-
industry groupings was decided according to the number of companies in the GICS
group to which the company belonged. ML models trained on all features outper-
formed GICS. However, the marginal performance improvements gained by adding
GICS features (Ridge:ALL+GICS) and by the use of nonlinear ML models (NN:ALL,
XGBoost:ALL) were small compared to ridge regression (Ridge:ALL). NN = neural
network.

We have included the performance of peers obtained from the cosine distance
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metric in Table A.4 in the Appendix. On comparing cosine and ML models, we

observed a minor improvement over GICS classification when using the cosine distance

of features to find the top k peers. However, using the ML model’s prediction as

a similarity metric improved the return correlation between predicted peers by 2-3

percentage points over the GICS baseline and the best cosine model. This signifies

that the ML models more effectively prioritized features that captured the market

perception of companies than the cosine distance, which weights all features with

equal importance. Thus, having unequal feature importance learned in a data-driven

way led to improvements in performance.

After evaluating the peer-prediction power of the model, we next evaluated the

clusters obtained after hierarchical clustering. From the predicted correlations, we

computed the pairwise distance between companies and used that for hierarchical

clustering, as described in the Clustering section. Table 2.3 presents the average

return correlations for clusters at all three levels: sector, industry, and sub-industry.

We determined the number of peers in the process of calculating average return cor-

relation (the top k) based on the number of companies in the cluster.9 We observed

that ML clusters outperformed GICS by a large margin (up to 6 percentage points

at the sub-industry level and 4 percentage points at the industry level). Adding

GICS features as an input to the ML model also increased performance. The best-

performing ML clusters were obtained from the ridge and XGBoost models trained

with all features, including GICS. We include the performance distribution over all

years after clustering for different models in Table A-1 in the Appendix. The im-

provements using ML models were consistent over the years. The clusters obtained

from the different ML models were the different versions of AIPGS. In subsequent

analysis, we observed that different versions had different desirable properties.

The clusters obtained from the ML methods grouped companies with similar mar-

ket perception and higher return correlations. Apart from obtaining these groups, the

ML models also provided a similarity score that can be used to obtain the top k peers

9Note that in Table 2.2, k was decided based on number of companies belonging to the same GICS
group irrespective of model, while in Table 2.3, k was decided based on the number of companies
belonging to the cluster from the corresponding model
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Model:Features Sector Industry Sub-industry
GICS 33.17 41.97 44.57

Ridge:ALL 32.04 44.10 48.75
Ridge:ALL+GICS 33.54 44.73 50.07

NN:ALL 30.70 41.09 48.20
NN:ALL+GICS 30.74 42.56 48.53
XGBoost:ALL 32.24 43.07 49.45

XGBoost:ALL+GICS 32.90 44.69 50.64

Table 2.3: Results after hierarchical clustering.
This table presents the average return correlation for clusters obtained by hierarchical
clustering on the distance obtained from the ML models. Ridge:ALL refers to the
ridge regression model with all the features from various datasets. +GICS refers to
the addition of GICS features as one of the inputs to the model. The clusters at
the industry and sub-industry levels had higher average return correlations between
companies by up to 2.8 and 6 percentage points, respectively, compared to GICS
clusters.

for any company. Next, we evaluated the different properties of clusters that are

relevant to an industry classification system and measured their potential for diver-

sification and hedging applications.

Similarity to GICS

Apart from the source of revenue, GICS also recognizes market perception as rel-

evant for its classification purposes. Our aim is to create company groupings that

incorporate market perception more effectively than GICS. Hence, we compared the

similarity of our ML clusters to GICS groupings. We calculated this similarity using

the adjusted Rand index (ARI), counting pairs of companies assigned to the same

and different clusters in GICS groupings and ML clusters, normalized by the total

pairs of companies.10 Thus, the ARI represents the probability that a pair of com-

panies will be grouped together by both GICS and our ML clusters. Higher ARI

values imply greater similarity between the GICS groupings and ML clusters. Table

2.4 presents the ARI for different ML groupings at various levels. We observed that

without using GICS input features, ML clusters were approximately 30%-50% similar

10https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html
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to GICS, and saw the greatest similarity at the industry level. Because GICS is a

market-oriented classification system, some degree of similarity between the ML clus-

ters and GICS is expected. Adding GICS features as an input increased the similarity

to the GICS groupings; specifically, the similarity reached up to 71% for the ridge

regression clusters.

Model:Features Sector-ARI Industry-ARI Sub-industry-ARI
Ridge:ALL 32.81 48.45 44.91

Ridge:ALL+GICS 58.59 71.10 63.12
NN:ALL 26.15 39.18 39.09

NN:ALL+GICS 28.17 42.85 41.40
XGBoost:ALL 33.02 44.73 43.62

XGBoost:ALL+GICS 51.43 59.19 50.55

Table 2.4: Adjusted Rand Index for ML Clusters.
This table presents the ARI values for ML and GICS clusters. Ridge:ALL refers
to the ridge regression model with all the features. +GICS refers to addition of
GICS features as one of the inputs. We observed that ML clusters had similarities to
GICS clusters—an expected result, given that GICS is a market-oriented classification
model.

Granularity GICS Ridge Ridge+GICS NN NN+GICS XGB XGB+GICS
Sector: 90% 97 35 24 41 31 30 26

Industry: 90% 97 54 40 24 29 20 32
Sub-industry: 90% 96 49 31 24 27 21 23

Sector: 50% 100 95 89 81 91 80 90
Industry: 50% 100 69 88 63 69 63 76

Sub-industry: 50% 99 62 75 56 60 54 65

Table 2.5: Cluster Stability.
In this table, we present the percentage of clusters retaining 90% and 50% of the
companies over the years at different granularities of grouping. Ridge refers to the
model trained on the all the features. Ridge+GICS refers to the ridge regression
model trained on all features, including GICS features. We observed that up to
50% of clusters retained 90% of companies for ridge regression clusters, whereas up
to 90% clusters retained 50% of companies for the majority of the models. Adding
GICS features in different models generally increased the stability of the clusters. We
concluded that, despite the dynamic nature of the clusters, the clusters were fairly
stable, because the majority of them mapped from year t to year t + 1. GICS had
the maximum stability. XGB = XGBoost.
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Cluster Stability

We aim to create a dynamic classification system where the clusters update every

year in tandem with the evolution of a company’s businesses and market perception.

However, cluster composition should not be drastically different from year t to year

t + 1; major changes in all the companies in our universe are unlikely, and stability

is an important and desirable characteristic of a classification system. Hence, we

analyzed the stability of clusters across different years. To compare their stability, we

calculated the percentage of clusters that retain more than 90% and 50% of companies

from year t to year t + 1. We present the results in Table 2.5, in which we observed

that up to 50% of clusters retained 90% of companies for ridge regression clusters,

while up to 90% of clusters retained 50% of companies for a majority of the models.

This showed that the ML clusters were not only dynamic, but fairly stable, and the

majority of them were mapped from year t to year t + 1. Adding GICS as one of

the input features increased the stability of the clusters. The clusters from the ridge

regression model were more stable than those from XGBoost or neural networks.We

also observed that GICS grouping had the maximum stability which is a desirable

property of a classification system.

Cluster Factor and Industry Effects

We expect that companies belonging to the same clusters will react similarly to dif-

ferent systematic factors. Hence, each cluster of companies can be considered as a

factor that can explain the systematic shocks common to the group. We analyzed

the clusters obtained from the ML model as factors and evaluated their homogeneity

and out-of-sample diversification benefits . We followed the methodology of [142] to

calculate the industry effects, which involves calculating the cluster factor returns

using the following cross-sectional regression for every trading day t:

Rj,t = A(t) +
NX

i=1

Li,tDj,i,t + ✏j,t
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where Rj,t is the return of stock j at time t, Dj,i,t is an indicator variable which is

equal to 1 if stock j belongs to cluster i in time t, and ✏j,t is the return specific to stock

j at time t. Li,t is the return of cluster i at time t, which is learned by the model.

A(t) is the intercept for the aforementioned cross-sectional regression. We performed

a weighted regression using the square root of market capitalization to give more,

but not excessive, weight to companies with high market capitalization, following the

methodology of the MSCI Barra US Total Market Model.

Granularity GICS Ridge Ridge+GICS NN NN+GICS XGB XGB+GICS
Sector 0.73 0.85 0.80 0.85 0.85 0.87 0.84

Industry 0.93 1.15 1.13 1.12 1.14 1.13 1.09
Sub-industry 1.21 1.54 1.56 1.39 1.43 1.36 1.38

Table 2.6: Diversification Table for Cluster Factor Returns.
This table presents the standard deviation of cluster factor returns (Equation 2.1)
averaged over time for clusters at different levels of granularity. The cross-sectional
dispersion of ML clusters was up to 30% higher than GICS clusters. A higher standard
deviation for ML cluster returns implies greater diversification potential using cluster
factors and greater power in explaining the cross section of stock returns.

Homogeneity of clusters in terms of return characteristics is verified using for-

ward return correlation. Here, we seek to evaluate the diversification benefits of ML

cluster factors. We calculated the cross-sectional dispersion (the standard deviation)

for cluster factor returns, as suggested by [262]. A higher cross-sectional dispersion

implies greater power in explaining the cross section of security returns, which may

help investors as they seek to build better and more efficient portfolios when used in

the context of a factor model and optimizer.

Dt = stdi(Li,t) (2.1)

We averaged Dt and present the results in Table 2.6. The cross-sectional dispersion

of ML clusters was up to 30% higher than that of GICS clusters. Hence, the ML

clusters showed a potential benefit in portfolio construction over GICS.11

11Although portfolios built using ML clusters may incur higher turnover costs owing to their lower
stability compared to GICS.
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To analyze the ability of ML models to group companies with similar fundamen-

tals, we also evaluated the fundamental characteristics of companies grouped together

as measured by their size, leverage, profitability and so on. We calculated the fun-

damental factor exposures for different clusters by averaging the factor exposures of

companies belonging to the cluster and calculated the diversification benefits for each

fundamental factor using the cross-sectional standard deviation of a cluster’s factor

exposure, similar to Equation 2.1. Along with the inter-cluster dispersion of funda-

mental factor exposures, we calculated the intra-cluster dispersion of exposures by

calculating the standard deviation of factor exposures of companies in a cluster and

averaging the standard deviations of all clusters. Smaller values of intra-cluster dis-

persion signify that companies belonging to the same cluster have similar fundamental

values.

Tables 2.7 and 2.8 present the intra- and inter-cluster dispersion for market beta,

dividend yield, earnings yield, growth, size, and residual volatility for clusters at

different levels. For factors such as residual volatility, dividend yield, and size, the

intra-cluster dispersion was smaller than it was for GICS clusters. Similarly, the inter-

cluster variances of factor exposures for residual volatility, size, and earnings yield

were 40% higher than they were for the GICS clusters. Lower values of intra-cluster

dispersion for ML clusters imply that the ML models grouped together companies

with similar fundamentals, and higher values of inter-cluster dispersion imply that

ML clusters have greater diversification potential for portfolios. Because fundamental

factors are one of the inputs to the ML models, the models learned to group together

companies with similar fundamentals. Hence, along with grouping companies with

similar return characteristics, the ML clusters also grouped companies with similar

fundamental factor exposures.

Hedging Risk Exposure

Prior to clustering, we obtain a list of similar stocks, also known as peers, for each

company, using both the cosine and the ML models. These peers have similar risk

exposures and return characteristics because they have higher values of future returns
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Granularity GICS Ridge Ridge+GICS NN NN+GICS XGB XGB+GICS
Market Beta

Sector 0.82 0.79 0.79 0.76 0.76 0.76 0.78
Industry 0.70 0.72 0.72 0.69 0.70 0.70 0.70

Sub-industry 0.65 0.67 0.66 0.66 0.66 0.66 0.66
Dividend Yield

Sector 0.84 0.75 0.76 0.75 0.74 0.72 0.75
Industry 0.71 0.68 0.68 0.66 0.66 0.67 0.68

Sub-industry 0.70 0.62 0.62 0.60 0.60 0.60 0.59
Earnings Yield

Sector 0.81 0.79 0.79 0.78 0.76 0.76 0.77
Industry 0.68 0.74 0.72 0.68 0.69 0.69 0.70

Sub-industry 0.63 0.68 0.68 0.66 0.67 0.67 0.67
Growth

Sector 0.91 0.93 0.93 0.91 0.90 0.92 0.93
Industry 0.79 0.88 0.86 0.85 0.86 0.86 0.87

Sub-industry 0.75 0.81 0.82 0.82 0.82 0.83 0.83
Residual Volatility

Sector 0.79 0.76 0.77 0.71 0.72 0.71 0.74
Industry 0.71 0.73 0.72 0.66 0.67 0.67 0.68

Sub-industry 0.66 0.68 0.67 0.64 0.65 0.64 0.65
Size

Sector 0.98 0.94 0.96 0.90 0.91 0.90 0.92
Industry 0.93 0.81 0.87 0.78 0.79 0.78 0.81

Sub-industry 0.88 0.71 0.75 0.68 0.71 0.66 0.68

Table 2.7: Intra-Cluster Dispersion for Various Fundamental Factors.
The above table presents the intra-cluster dispersion of factor exposures for vari-
ous clusters. Different columns refer to different ML methods. For example, Ridge
refers to the clusters obtained using ridge regression on all features, excluding GICS.
Ridge+GICS refers to the ridge regression model trained on all features, including
GICS features. For factors such as size, residual volatility and dividend yield, the
intra-cluster dispersion for ML clusters was smaller than GICS clusters at all levels.
Lower values of intra-cluster dispersion imply that companies in clusters have similar
fundamental characteristics.
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Granularity GICS Ridge Ridge+GICS NN NN+GICS XGB XGB+GICS
Market Beta

Sector 0.69 0.77 0.74 0.81 0.77 0.80 0.76
Industry 0.68 0.69 0.70 0.73 0.74 0.73 0.72

Sub-industry 0.72 0.74 0.75 0.75 0.76 0.75 0.75
Dividend Yield

Sector 0.60 0.73 0.68 0.76 0.75 0.76 0.73
Industry 0.66 0.66 0.65 0.73 0.72 0.73 0.70

Sub-industry 0.73 0.69 0.68 0.71 0.71 0.72 0.71
Earnings Yield

Sector 0.44 0.66 0.62 0.69 0.66 0.71 0.67
Industry 0.50 0.67 0.67 0.68 0.70 0.69 0.67

Sub-industry 0.57 0.78 0.78 0.78 0.78 0.79 0.78
Growth

Sector 0.34 0.41 0.38 0.40 0.38 0.40 0.39
Industry 0.45 0.48 0.46 0.50 0.48 0.47 0.46

Sub-industry 0.53 0.63 0.63 0.61 0.60 0.57 0.57
Residual Volatility

Sector 0.49 0.66 0.63 0.72 0.72 0.73 0.69
Industry 0.53 0.68 0.68 0.70 0.71 0.70 0.69

Sub-industry 0.61 0.78 0.79 0.78 0.79 0.78 0.79
Size

Sector 0.22 0.32 0.23 0.37 0.34 0.36 0.30
Industry 0.44 0.58 0.49 0.62 0.58 0.63 0.57

Sub-industry 0.62 0.70 0.68 0.73 0.69 0.73 0.72

Table 2.8: Diversification Table.
This table presents the standard deviation of a cluster’s fundamental value averaged
over time for clusters at different granularity. Different columns refer to different
ML methods. For example, Ridge refers to the ridge regression model trained on all
features, excluding GICS. Ridge+GICS refers to ridge regression trained on all fea-
tures, including GICS. For factors such as residual volatility, size, and earnings yield,
the cross-sectional standard deviation was around 40% higher than GICS clusters.
Higher standard deviation of fundamental factor exposures for ML clusters implies
higher cross-sectional dispersion in cluster factors.
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correlations. Hence, the peers can be used for hedging a portfolio’s risk exposure. We

demonstrate this by constructing single-stock portfolios. For every company i in our

universe, we constructed a U.S.-dollar-neutral portfolio by taking a long position on

company i and an equally weighted short position on its top k peers. We determined

the top k peers using different peer-prediction models, which were either the cosine

or ML model. For this analysis, we used ML models that were trained on features

calculated from all datasets combined. We performed a comparison of different models

with their GICS peers. From the GICS grouping, we obtained a set of companies

belonging to the same GICS industry. From the same industry cluster, we selected the

top k peers on the basis of size, as done in the literature [9]. The above methodology

is inspired by [296]

After constructing these U.S.-dollar-neutral portfolios, we calculated their daily

returns and the value of their annualized volatility. We then averaged the realized

volatility for all single-stock portfolios, as shown in Table 2.9. If the peers have

similar risk exposures and return co-movements, we expect the realized volatility of

the hedged portfolios to be smaller. Based on Table 2.9, using one and five peers for

hedging single-stock portfolios decreased the realized volatility by 643 and 259 basis

points, respectively, when compared to size-based peers obtained from GICS groups.

Model GICS Ridge Ridge+GICS NN NN+GICS XGB XGB+GICS Change
k = 1 43.88 38.88 38.23 37.81 37.67 37.49 37.45 643
k = 5 34.21 32.02 31.91 31.90 31.81 31.70 31.62 259

Table 2.9: Hedging Risk Exposures.
We present the average annual realized volatility (as percentages) of hedged single-
stock portfolios when peers were decided based on different models. The rows corre-
spond to the number of companies selected for hedging. The Change column refers to
the difference in the realized volatility of GICS and the best model (XGB+GICS).The
volatility was reduced by up to 643 and 259 basis points for k = 1 and k = 5, repec-
tively, when peers were obtained from the XGBoost model.
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Model Interpretation

We have evaluated the abilities of different ML models against GICS groupings to

predict the similarity of companies and cluster them effectively. Here, we interpret the

predictions of these ML models and find the top-contributing features and datasets

that captured the similarity between companies.

We observed that XGBoost was the best-performing model for various metrics.

It outperformed ridge regression by a small margin in the average return correlation.

For ridge regression, calculating the contribution of features was trivial, given the

linearity of the model. For XGBoost, we used the post-hoc method of interpretability,

TreeSHAP [194], which calculates the Shapley values of the features that contributes

to the prediction of the output.

We present some examples of predicted peers and the contribution of their features.

Figure 2-2 presents the top-10 peers for eBay predicted for the year 2014 by the

XGBoost model. We include the predicted correlation and the actual correlation

between eBay and its peers. The first six columns show the contributions of the

different dataset features. We have highlighted two peers, The American Express

Company (AmEx) and IBM. Even though the GICS contribution for AmEx was

negative, the XGBoost model determined AmEx to be a peer due to its high similarity

in factor exposures and 10-K filings. We observed that the actual correlation between

AmEx and eBay was high in 2014. In the case of IBM, the actual correlation was

not high. However, there appears to have been significant contribution by news co-

occurrence features. This implies that IBM was mentioned with eBay multiple times

in news articles, which led to it being predicted to be one of eBay’s peers. On further

analysis, we found that the news articles mentioning eBay and IBM together were

earnings announcements on the same dates and did not convey much information

about the similarity between the companies. Similarly, we can analyze the feature

contributions for individual predictions of all companies by using TreeSHAP for both

XGBoost and the model coefficients for ridge regression.

Next, we calculate the global-feature importance over the years for the ridge re-
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Figure 2-2: Predictions of eBay Peers for 2014.
The table presents the contribution of features from different datasets for the predic-
tion of the top-10 peers of eBay for the year 2014. Features with a high contribution
are colored with a stronger degree of red, while features with a weaker contribution
are colored by blue. The high similarity between AmEx and eBay can be attributed to
the factor exposure and 10-K-TFIDF datasets, even though they belonged to different
GICS groups. For the predicted correlation (PRED CORR) and observed correlation
(CORR), we colored AmEx green, because it is shown to be the most similar to eBay,
and colored IBM red, because it had the least actual similarity, despite being seen as
one of eBay’s top-10 peers. D2V=Doc2Vec.

gression model. We aggregated the feature importance (i.e., the absolute value of a

coefficient) over different years, and present the top 10 contributing features in Figure

2-3. We observed that the past returns correlation was the most significant feature,

followed by the GICS sub-industry and industry features. The ridge regression model

gave maximum importance to the return correlation from historical data, suggest-

ing that the market perception (return correlation) of companies did not drastically

change over the years. GICS features were also some of the top contributing features,

which was expected, because GICS is a market-oriented classification system, and

we are aiming to use market perception to group companies. Feature importance,

as presented in Figure 2-3, shows the variables that had the largest impact on the

predicted forward return correlation.

We also grouped individual features by their datasets, and present the overall

feature importance in Figure 2-4. We observe that the returns dataset had the highest

contribution, followed by factor exposure and 10-K information.
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Figure 2-3: Feature Importance.
The plot shows the 10 most significant features for the ridge regression model aggre-
gated over testing years. The return correlation as calculated from historical data
was most important, followed by certain GICS features. Some fundamental factors
such as size, momentum, and the debt-to-asset ratio were also found in the 10 most
important features.

Figure 2-4: Feature Importance Aggregated by Dataset.
The plot shows the importance of features obtained by the absolute value of co-
efficients from different datasets and aggregated over years for the ridge regression
model. The returns dataset was most important, followed by factor exposure and
10-K information.
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Cluster Visualization

In our sample, we grouped approximately 2,000 companies into a different number

of clusters every year, depending on their sector, industry, or sub-industry level.

This makes analyzing and visualizing peers of these companies and classification a

non-trivial task. Hence, we developed a cluster visualization system with multiple

functionalities; this allowed us to visualize the companies and their peers in the

cluster groups and their nearest neighbors.

Given the distance matrix D, Di,j is the distance between companies i and j as

predicted by the ML models. We aim to learn a 2D or 3D vector Xi and Xj for

companies i and j, which approximates distance(Xi, Xj) as Di,j. To do this, we

used t-distributed stochastic neighbor embedding (t-SNE) [278]. This constructs a

probability distribution over pairs of companies in high- and low-dimensional space. It

learns the lower dimensional coordinates by minimizing the KL divergence between

the probability distributions in low- and high-dimensional space. To visualize the

clusters, the lower-dimensional vector X, obtained from t-SNE, can be plotted for

the companies.

The visualization system contains three modes. In the first mode, “Overall," we

plotted all the companies on a 2D plane. The color for each point is assigned based

on the cluster to which it belongs. For example, in Figure 2-5a, we present all of the

companies for the year 2020 and assign colors based on the ML model’s industry-level

clusters. We can observe that General Motors Company and Ford Motor Company,

both being automobile firms, belonged to the same industry group. Similarly, Dell

Technologies (technology, hardware, storage), Visa (IT services), and Microsoft Cor-

poration (software) were plotted close to each other, as they were learned to be similar

by our model.

In the second mode, “Kernel(s)," we can select at least one company and plot the

other companies belonging to the same cluster group on the 2D/3D plane. Figure

2-5b shows one such example for S&P Global’s ML sub-industry clustering for the

year 2020. We can see that the NASDAQ Stock Market and Moody’s Investor Service

57



were assigned to the same sub-industry group; they belong to the same GICS sub-

industry group (financial exchange and data) group as S&P Global, whereas Cohen

& Steers Inc., which belongs to “asset management and custody bank" in GICS, is

also assigned to the same ML sub-industry. In the third mode, “Nearest-Neighbor,"

we can plot up to the 20 most-similar companies for a selected company X; these

companies do not necessarily need to be classified in the same group as company

X. Figure 2-5c shows the 10 nearest neighbors for FedEx Corporation (air freight

and logistics). As expected, other transport companies like United Parcel Services

(air freight and logistics) and CSX (railroads) were found to be similar; interestingly,

H.B. Fuller Company (chemical), was also determined to be one of its 10 nearest

neighbors (a chemical company according to GICS). These visualization frameworks

can be accessed via https://dash-app-vis.herokuapp.com/.
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(a) Overall mode. This figure shows all the companies for 2020 with a color

assignment based on the industry group determined by the ML model. We

observed that similar companies like Ford and General Motors belonged

to the same industry clusters. Similar companies such as Microsoft, Visa,

and Dell Technologies were placed close to each other as well.

(b) Kernel(s) mode. This figure shows

the ML sub-industry cluster distribution

for S&P Global for 2020.

(c) Nearest-neighbor mode. This fig-

ure shows the 10 nearest neighbors for

FedEx in 2020.

Figure 2-5: Examples from the Cluster Visualization Framework.
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2.6 Conclusion

In this chapter, we developed an AI-driven peer grouping system, AIPGS, to group

stocks according to market perception. These industry groupings are dynamic and

updated as the characteristics of companies in the market evolve over time. As

evidenced by its higher return correlations, AIPGS outperformed the closest bench-

mark, GICS, in grouping stocks. AIPGS uses information from multiple different data

sources, including returns, factor exposure, 10-K filings, and news, to learn the simi-

larity between companies, and uses that similarity to create groups of homogeneous

companies.

AIPGS clusters had high intra-cluster similarity and high inter-cluster disper-

sion for financial ratios and fundamentals. We verified this for different fundamental

characteristics including market beta, dividend yield, earnings yield, growth, resid-

ual volatility and size. These data-driven clusters grouped companies with similar

fundamental characteristics, and we saw a higher level of diversification potential for

portfolios constructed using ML clusters.

Apart from grouping stocks, our models predict a score for every pair of firms in

our universe to reflect their future returns correlation (similarity). This can be used

to obtain the nearest neighbors of a company, and to help investors understand which

companies appear to be the most similar according to the market. In this work, we

showed one use case of similarity scores: hedging single-stock portfolios.

This work showed that a classification system could be obtained using AI tools

that performed better than traditional classification systems in some metrics, but the

use of AI tools creates an interpretability problem. Although we can quantify the

contributions of the datasets and various features for the similarity score of a pair of

peer companies, we cannot assign a summary to the ML clusters that explains why

the companies were grouped together. Thus, for some use cases where a premium

is placed on interpretability and stability, traditional classification systems may be

preferred. In other situations, where estimating future returns correlation is most

important, our framework may dominate.
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Regardless, we believe the framework presented here could be a valuable tool for

investors, with potential applications for portfolio construction, hedging, and other

areas. As an extension of this work, the ML clusters can be combined with the insights

of experts and analysts to assign a summary to the clusters that can be interpreted

by humans, as exists for GICS clusters. We also believe that an emphasis on greater

interpretability may increase the accessibility of the ML clusters.

As we developed different versions (clusters from different ML methods) of AIPGS

and compared them with GICS, we expect that different systems could be used,

depending on the requirements of the user. We were able to obtain the best peers

and clusters (in terms of forward returns correlation and similar risk–return profile)

using the XGBoost model and sacrificing interpretability and stability of clusters.

GICS had the most stable and interpretable clusters. Clusters and peers from the

ridge regression model had a fair balance of stability and performance.

For investors, our peer grouping system, in conjunction with other existing classi-

fication systems, has the potential to be very insightful in investment diligence. For

example, an investor looking for exposure to insurance brokers might include com-

panies present in the GICS “insurance brokers" sub-industry. However, our model

suggested including Berkshire Hathaway Inc. in this group. More specifically, for

the year 2019, the ML model predicted that Berkshire Hathaway, a major conglom-

erate with investments across multiple industries, should be grouped in the same

sub-industry as other firms that GICS would consider insurance brokers. On further

analysis, this classification is meaningful because the market may perceive Berkshire

Hathaway as an insurance broker, due to the fact that one of its most prominent com-

panies, The Government Employees Insurance Company (GEICO), is an insurance

underwriter. Because AIPGS provides additional insights beyond GICS, it can used

as an extension of GICS. Furthermore, the similarity scores and clusters produced by

our model may be used by some for portfolio management, such as investors seeking

to improve hedging techniques.

Apart from the transparency and stability of ML-based clusters, another limitation

of our approach is that our ML models can only group public companies owing to
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unavailability of data on private companies. Extending the classification system to

non-public companies is one important extension that we hope to pursue in the future.

Lastly, we can try to include other data sources, including analyst-coverage overlap,

supply chain overlap, and broker research, that might contain extra information not

captured in the datasets used in this work.
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Chapter 3

Peer Grouping: Crypto-Connections:-

Exploring the Peers

In this chapter, we presents a novel data-driven approach for developing a crypto-

currency peer grouping system and similarity score measure for application in in-

vestment management. We collected data from multiple sources, including returns,

fundamental factors, and whitepapers, to construct our similarity scores. Our anal-

ysis demonstrates that similarity scores is a significant predictor of future return

correlation between pairs of coins, and can also be utilized to reduce the volatility

of single currency portfolios. Furthermore, we highlight the appealing risk-return

characteristics of the Bitcoin cluster obtained from our peer grouping system.

3.1 Introduction

Cryptocurrency, a digital asset built on the foundation of cryptography and decentral-

ized technologies, has garnered significant attention in recent years for its potential to

revolutionize traditional financial systems. The development of the first cryptocur-

rency can be traced back to the creation of Bitcoin, which was introduced in 2008 by

an individual or group of individuals using the pseudonym Satoshi Nakamoto. The

release of the Bitcoin whitepaper, titled "Bitcoin: A Peer-to-Peer Electronic Cash

System," laid the foundation for the cryptocurrency revolution. Since then many
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more cryptocurrencies have emerged and right now there are as many as 10000+ 1.

Cryptocurrency has emerged as a novel and disruptive asset class, capturing the

attention of investors seeking to diversify their portfolios and tap into the potential

of decentralized digital assets. The global market capitalization of cryptocurrency

market is 1.3 trillion USD1. The investment in crypto-currrency allows investors to

diversify their portfolio, as they tend to have low correlations with traditional asset

classes like stocks, bond etc. Along with the diversification, there are potential of

high returns over years. For example, $1 invested on January 1, 2016 in Bitcoin

would yield a return of 7,478% to date2. It also allows investors to participate in

new technologies such as decentralized finance (DeFi) which could lead to further

value creation in the long run. Hence, the study of cryptocurrencies for investment

is essential.

One of the tools necessary for portfolio management is the peer grouping system.

For example, there exists a global industrial classification system (GICS) for industries

and data-driven classification systems proposed in [35]. These systems can be used

for obtaining peers which can be used for portfolio hedging, risk management, etc.

Similar to the industries, the peer grouping tools are necessary for cryptocurrencies

investment management. There exist cryptocurrency taxonomies and they are not

developed with the investment management application. They are based on market

capitalization [289], architectural features [118], technical/financial/business [159],

consensus system [126] and few more [165, 270].

The existing peer grouping system for industries (like GICS, data-driven systems,

[35]) that captures market perception. Market perception is defined as the similarity

in the returns between the companies. It is important because it allows stakeholders to

compare peers based on their financial performance, which is important for investment

management.

In this work, we propose a data-driven peer grouping method for the crypto-

currencies from 2016-2021. We use different datasets:- returns, price-volume and

1Information obtained from CoinGecko on April 13, 2023
2April 13, 2023
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whitepapers and use these datasets to develop similarity scores and clusters of similar

crypto-currencies that are focused with application in investment management. We

conduct multiple tests to prove that similarity scores are predictive of the the future

similarity (future return correlation) of coins. We hedge the single-stock portfolios

and show that peers obtained from multiple similarity score versions reduces the

volatility of the single stock portfolios. We also construct portfolios from the cluster

of the crypto-currencies and present the return characteristics of the cluster portfolios.

The similarity score and the return co-movement for the pair of crypto-currencies

is not extensively studied in the existing literature. One of the closest study is in-

vestigation of the code similarity and correlation of crypto-currency returns [192].

Our work can incorporate the code/developer similarity in the computation of simi-

larity score with the availability of relevant data. [245] studied the co-movement of

the four coins and [248] studied the pairwise correlation of many crypto-currencies

and presented the interactions between currencies as the networks. [202] studied the

properties of crypto-currencies and [201] showed that prices of bitcoin are correlated

to the trading activities of the bitcoin owners with large ownership. Our study is

different from existing literature in multiple aspect. First, we create the similarity

score measure using multiple datasets and show that similarity score measures are

indicative of future return correlation. Second, we cluster the similar coins (which can

be considered as risk factors) and compute the return characteristics of the clusters.

Next, in Section 3.2, we present the details of the datasets and data processing

steps. Section 3.3 presents the different tests we perform to show the utility of the

similarity score and conclude in the Section 3.4.

3.2 Methodology

For this study, we collected multiple datasets: whitepapers and price-volume. In

this section, we describe how we created these datasets and outline the various pre-

processing steps.
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3.2.1 Data

Whitepapers

Whitepapers for crypto-currencies are the documents that describe the design, pur-

pose and underlying technology for the particular cryptocurrency. They are written

by the founder or designer and the purpose of whitepaper is to provide detailed ex-

planation of the working of project.

Whitepapers typically include the following: objectives, technical architecture and

design, consensus mechanism, token distribution and economic model, governance

and decision-making process, security features and potential risks, use cases and ap-

plications, roadmap and development plan, amongst other information. Since the

whitepapers include significant important information about crypto currencies, we

use it as one of the source for developing a similarity score and classification system.

One of the drawbacks of using whitepapers as a data source for classification is

that not all cryptocurrencies have whitepapers. Therefore, in our study, we utilize the

available whitepapers for the cryptocurrencies. In Figure 3-1, we display the number

of coins with accessible whitepaper data. In total, we have whitepapers for 99 coins.

The dataset was obtained from https://www.allcryptowhitepapers.com/ and was

converted into text format using optical character recognition from the PDFs.

Returns and Market Capitalization

We collect monthly returns of cryptocurrencies for this study. The data was scraped

from the CoinGecko API. CoinGecko computes the prices of cryptocurrencies using

the pair trading data from different exchanges. It aggregates prices from multiple

crypto exchanges using an aggregation algorithm. Figure 3-2 displays the number of

coins with price-volume data in our dataset. We observe that the number of coins

has increased significantly over time. Along with returns, we also scraped market

capitalization data from the CoinGecko API. In the next section, we discuss how we

utilize the price-volume and market capitalization data for computing fundamental

factors for cryptocurrencies. We utilized the CCI30 as a crypto market index. It
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Figure 3-1: Number of Coins with Whitepapers in our Dataset.

tracks the overall crypto market using the top 30 coins by market capitalization. The

data for the CCI30 market index is available at cci30.com.

Figure 3-2: Number of Coins with Returns in our dataset.
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Figure 3-3: Number of Coins in top x%age of market capitalization.

3.2.2 Featurization

White-papers

Whitepapers consist of textual data; therefore, we employed natural language pro-

cessing to extract relevant features. The first step in pre-processing includes removing

stop words, punctuation, numbers, etc. The next step is lemmatization, which in-

volves reducing words to their base form. Finally, we extract features using a method

known as TF-IDF, which stands for Term Frequency-Inverse Document Frequency.

Fundamental Factors

There is an extensive asset pricing literature on equities that includes a variety of

factors and factor models developed to explain the cross-section of equity returns

[106, 122].

Although the literature on fundamental factors for crypto-currencies is still emerg-

ing, some existing research has explored the factors that explain the cross-section of

returns [178, 175, 176]. As exposure to these factors is a key driver of returns in

crypto-currencies, we develop similarity scores using fundamental factors.

Following the existing literature, the fundamental factors presented in Table 3.1
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were computed for each coin using data from 2015 to 2021. For each factor, we used

the lookback window = 30, 180, 365 days, with the exception of factor RET, where

we used window = 1, 2, 3, 4, 8, 16, 50, 100 weeks. Each coin i at time t was represented

by the vector ~Fi,t of factor values fi,t.

Factor Name Factor Calculation
MCAP MCAPt = log(market cap

t
)

PRC PRCt = log(price
t
)

MAXDPRC MAXDPRCt = max(prices
t�window+1:t)

RET RETt =
Q

t

i=t�window+1(1 + returni)� 1

VOL VOLt = log(volumet)

PRCVOL PRCVOLt = log(price
t
) · log(volumet)

VOLSCALED VOLSCALEDt = log(market cap
t
) · log(price

t
) · log(volumet)

BETA BETAt = � such that
returnst�window+1:t,coin = � · returnst�window+1:t,market + ↵, where
returnst�window+1:t,coin are the daily returns for a coin and
returnst�window+1:t,market are the daily returns for the CCI30 Market
Index

BETA2 BETA2t = (BETAt)2

IDIOVOL IDIOVOLt = standard deviation of the residual ✏ after estimating
returnst,coin = � · returnst,market + ↵ + ✏

RETVOL RETVOLt = standard deviation (returnst�window+1:t)

MAXRET MAXRETt = max(returnst�window+1:t)

STDPRCVOL STDPRCVOLt = standard deviation (PRCVOLt�window+1:t)

DAMIHUD DAMIHUDt = ( 1
window

P
t

i=t�window+1 returnsi)/PRCVOLt

Table 3.1: The list of fundamental factors computed for each crypto-currency coin.

3.2.3 Hierarchical Clustering

Given the similarity score, next, we construct the clusters (groups) of similar crypto-

currencies. Taking inspiration from [35, 204, 76], we construct the clusters using

hierarchical clustering algorithms. The clustering should have 1) homogeneity:- simi-

lar currencies belong to the same cluster and 2) fair balance:- the clusters size should
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be fairly uniform. Hence, we use agglomerative (bottom-up) clustering with ward

linkage. Ward linkage minimizes the intra-cluster variance when merging clusters

which ensures that cluster size is fairly uniform. The number of clusters in the hier-

archical clustering can be selected on the basis of the application (low: if big clusters

are desired and high: if small clusters are desired). Once we have similarity scores

and clusters of similar currencies, we analyze them in next Section.

3.3 Results

In the previous section, we defined three distinct approaches for calculating similarity

scores: whitepaper similarity, fundamental factors similarity, and returns similarity.

In this section, we will evaluate the effectiveness of each method in computing simi-

larity.

Since similarity scores are based on either correlation or cosine distance, they range

from -1 to 1. Figure 3-4 presents a histogram of the similarity scores between Bitcoin

and other cryptocurrencies. The five most similar coins to Bitcoin, based on return

correlation in 2021, are Wrapped-Bitcoin (0.99), Huobi-Bitcoin (0.86), Litecoin (0.78),

Ethereum (0.76), and Compound-Ether (0.74). As Wrapped Bitcoin replicates Bitcoin

and Huobi-Bitcoin is backed by Bitcoin, their high return similarity is expected.

Additionally, large market cap coins, such as Litecoin and Ethereum, also exhibit a

strong return correlation with Bitcoin in 2021.

Likewise, the five cryptocurrencies most similar to Bitcoin based on whitepaper

similarity are Nano (0.42), Ethereum (0.40), Zilliqa (0.37), NEM (0.37), and Tezos

(0.36). We found that features such as "proof of work," "broadcast," "chain," and

"block" contributed to the similarity scores with Bitcoin. Thus, whitepaper analysis

captures the technological similarities between the cryptocurrencies.

Employing the fundamental similarity score, we identified the most similar coins

to Bitcoin in 2021 as Wrapped-Bitcoin (0.99), Ethereum (0.99), Maker (0.96), Huobi-

BTC (0.88), and Staked-Ether (0.87). Given that fundamental features are derived

from returns and market capitalization, the scores closely resemble the return corre-
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lations.

(a) Return Correlation Score

2021 (b) Whitepaper Similarity

(c) Fundamental Similarity

Nov 2021

Figure 3-4: Distribution of Bitcoin Similarity with other Currencies

Next, we conduct a quantitative test to assess the similarity scores. Let the feature

vectors of coins i and j be represented by fi and fj, respectively. We perform the

following regression:

corr(ri,t+1:t+x, rj,t+1:t+x) = ↵ + � ⇤ similarity(fi,t�y:t, fj,t�y:t) (3.1)

where ri,t+1:t+x is the returns time series of the coin i from time t + 1 to t + x.

fi,t�y:t represents the feature of coin i using the data from time t� y to t. The above

regression measures if the similarity measure can capture the future return correlation

between the coins. A high, positive and significant � indicates that similarity measure

is predictive of future similarity. The regression’s universe comprises the top 100 coins

by market capitalization.

Whitepaper Similarity

Since whitepapers do not change over time, we can eliminate the subscript t from

Equation 3.1 and run a linear regression independent of time. Our findings reveal

that � = 0.09(±0.02), which implies that an increase in the similarity of coins by one

unit will result in a 9% average increase in the correlation between a pair of coins.

We also compute the time series � to examine the time-varying dynamics of �. In

Equation 3.1, the forward return correlation can be calculated for different windows.

In this analysis, we consider three windows: 1, 6, and 12 months. As a result, we
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assess the ability of whitepaper similarity to predict short-term return correlation

(1 month) as well as long-term return correlation (12 months). Figure 3-5 displays

the time-varying beta, with significant � values marked with an asterisk (*). We

observe that whitepaper similarity is more predictive of return correlation in recent

years (with a higher number of significant � values). This pattern holds true for

different return correlation time horizons (1, 6, and 12 months), indicating that the

whitepaper similarity’s predictive power is consistent across these horizons. The time

series average of � remains at 0.17 consistently across the return correlation prediction

horizon.

(a)

(b)

(c)

Figure 3-5: Time Varying � for the Whitepaper Similarity Score.
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Return Similarity

Another approach to computing similarity involves using the historical returns avail-

able for cryptocurrencies. By incorporating historical returns correlation as the sim-

ilarity measure in Equation 3.1, we assess the predictive power of historical returns

correlations in forecasting future return correlations. Historical returns similarity can

be calculated using different time windows, such as 1 month (short-term similarity),

3 months (medium-term similarity), and 12 months (long-term similarity). These

measures can then be employed to predict future returns across three horizons: 1

month (short-term similarity), 6 months (medium-term similarity), and 12 months

(long-term similarity).

Figure 3-6 displays the time series � for the regression represented by Equation

3.1, with significant values marked by an asterisk (*). Our findings reveal that return

similarity scores consistently predict the future resemblance of cryptocurrencies. The

predictive power is lower in earlier years and higher in later years. The � values reach

as high as 0.8, indicating that a one-unit increase in historical return similarity can

lead to up to an 80% increase in future return correlation. The time series average of

� ranges from 0.43 (for 1-month similarity) to 0.58 (for 3- and 12-month similarity).

Fundamental Similarity

The third approach to measuring similarity between crypto-currencies involves using

fundamental factors. The method for computing fundamental factors is described

in Section 3.2.2. By employing the factor measures, we calculate similarity as the

cosine similarity between the vectors of factor values for two coins and estimate the

regression � outlined in Equation 3.1.

Figure 3-7 presents the time-varying � for regression (3.1). Similar to whitepaper

and return similarity, the � is smaller in earlier years and larger in more recent

years. The fundamental � remains significant throughout the historical period, but

it is smaller than the return similarity � and larger than the whitepaper �. In

summary, the fundamental similarity also captures the future correlation between
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(a)

(b)

(c)

Figure 3-6: Time Varying � for the Return Similarity Score.
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cryptocurrencies.

(a)

(b)

(c)

Figure 3-7: Time Varying � for the Fundamental Similarity Score.

Long Short Portfolios

Another test we conduct to assess the utility of the similarity score involves construct-

ing long-short hedged portfolios. Given a cryptocurrency i and its peers j, k, l,m, n,

we create a portfolio that takes a long position in coin i and equal-weighted short
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position in peers j, k, l,m, n. The returns of the hedged portfolio are given by:

riL�S ,t = ri �
rj + rk + rl + rm + rn

5
(3.2)

where, riL�S ,t represents the returns of the long-short hedged portfolio at time t. We

calculate the volatility of the L�S portfolio for every cryptocurrency and the volatility

of individual coins, then measure the reduction in volatility. If the similarity scores

effectively capture the co-movement of the coins, we should observe a statistically

significant decrease in the volatility of single coins and the L�S portfolio. The returns

and fundamental similarity vary over time; therefore, we rebalance the portfolios at

different time windows: 1 month, 6 months, and 12 months.

In Table 3.2, we present the average daily volatility of single-coin portfolios and

Long-Short portfolios constructed using peers. The peers are obtained from the simi-

larity score measure. We observe that Long-Short portfolios exhibit lower volatility3.

This finding implies that similarity scores have utility in reducing the volatility of

single-coin portfolios.

1 month 6 month 12 month
Coins Vol. (Whitepaper) 6.75 7.02 7.09
L-S Vol. (Whitepaper) 5.79 5.98 6.11
Coins Vol. (Returns) 8.75 9.03 9.22
L-S Vol. (Returns) 8.22 8.37 8.52
Coins Vol. (Fundamental) 7.28 7.89 8.15
L-S Vol. (Fundamental) 6.31 6.81 7.01

Table 3.2: Volatility (monthly in percentage) of Coins and Long-Short Portfolio Con-
structed Using Peers

Clustering

Given the similarity scores for cryptocurrencies, we construct clusters of similar cryp-

tocurrencies using hierarchical clustering algorithms. These clusters, which can be

considered as currency groups or risk factors, group together similar cryptocurrencies.
3The decrease in volatility is statistically significant with p-val 0
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To illustrate the clusters, we use daily return correlations for the year 2021 to con-

struct clusters and present them in Figure 3-8. From the clusters, we can observe that

Ethereum-based swap tokens like Uniswap and Sushi are grouped together. Similarly,

exchange tokens like Binance Coin and KuCoin, as well as meme coins like Dogecoin

and Shiba Inu, are grouped together. Therefore, the clusters of such coins may rep-

resent risk factors like exchange coins, meme coins, etc.

Considering each cluster as a risk factor, we compute the returns of each cluster

factor. For the clustering, we have fixed the number of clusters to six. To illustrate

the cluster factor properties, we compute the returns of the Bitcoin cluster (the cluster

that contains Bitcoin) and calculate the statistical properties of the Bitcoin cluster.

We have different versions of similarity scores: historical 1/6/12 month returns corre-

lation, whitepaper similarity, and fundamental factor. For comparison purposes, we

include the market index returns and Bitcoin returns.

Figure 3-9 presents the log cumulative returns of the Bitcoin cluster factor using

factors obtained from different similarity score measures. The annualized mean re-

turns and Sharpe ratio are presented in Table 3.3. We find that the Bitcoin cluster

factors (except for the factor obtained from the fundamental similarity score) have

higher annualized returns and Sharpe ratio compared to the market or Bitcoin.

Similarity Measure Mean Returns Sharpe Ratio
1 month return correlation 252 1.63
6 month return correlation 333 1.19
12 month return correlation 166 1.75

Whitepapers 188 1.64
Fundamental 120 1.33
Market Index 121 1.46

Bitcoin 110 1.45

Table 3.3: Mean Returns and Sharpe Ratio of Equal Weighted Cluster Factor Port-
folios and Market Index.
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Figure 3-8: Clustering of Cryptocurrencies based on the Return Similarity for Year
2021.
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Figure 3-9: Log Cumulative Returns of the Bitcoin Cluster Factor

3.4 Conclusion

In this study, we develop a similarity scoring system for cryptocurrencies and establish

a peer grouping method that clusters similar currencies based on historical returns,

whitepapers, and fundamental factors. Our results demonstrate that the similarity

scores effectively capture the future return correlation of the coins. Furthermore, we

show that these scores can be utilized to reduce the volatility of individual stock port-

folios. The clusters generated using the similarity scores may serve as risk factors and

find applications in risk management. However, one limitation of the peer grouping

system is the difficulty in assigning human-interpretable summaries to the clusters.

79



Part II

Finance For Impact
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Chapter 4

Finance For Impact: The Reaction of

Sponsor Stock Prices to Clinical Trial

Outcomes

In this chapter, we perform an event study analysis that quantifies the market reaction

to clinical trial result announcements for 13,807 trials from 2000 to 2020, one of the

largest event studies of clinical trials to date. We first determine the specific dates

in the clinical trial process on which the greatest impact on the stock prices of their

sponsor companies occur. We then analyze the relationship between the abnormal

returns observed on these dates due to the clinical trial outcome and the properties of

the trial, such as its phase, target accrual, design category, and disease and sponsor

company type (biotechnology or pharmaceutical). We find that the classification of

a company as “early biotechnology” or “big pharmaceutical” had the most impact on

abnormal returns, followed by properties such as disease, outcome, the phase of the

clinical trial, and target accrual. We also find that these properties and classifications

by themselves were insufficient to explain the variation in excess returns observed due

to clinical trial outcomes.
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4.1 Introduction

Many factors are known to influence the stock prices of companies. They include

earnings announcements[110], dividends[131], corporate actions[221], the release of

new products [53], etc. For biopharmaceutical companies, apart from these general

factors, clinical trial outcomes are critical since they play a major role in determining

the future revenue, growth, and valuation of the company sponsoring the trial. For

investors in this sector, clinical trial results are the predominant factor determining

their return on investment. Therefore, quantifying the impact of clinical trial results

on the stock prices of the companies is of great financial significance.

Apart from the goals of investors, however, the study of the movement of stock

prices before the release of public information is also relevant for regulators, as an

unexpected rise or fall of stock prices just before the release of news may be indirect

evidence of insider trading[107, 224]. In addition, the study of excess returns after an

event can be used to gauge the efficiency of markets. The Efficient Markets Hypothesis

states that share prices fully reflect all available information about a company[102];

hence, upon the public release of new information, the price change should reflect this

information. Therefore, the excess returns after an event can be used to gauge the

degree of market efficiency and the speed with which the market incorporates new

information.

On May 18, 2020, Moderna, Inc., announced its positive interim phase 1 trial

data for its mRNA vaccine SARS-CoV-2, which led to its stock rising by 35% in a

single day. Similarly, when Pfizer announced the interim results of its phase 3 SARS-

CoV-2 vaccine, its stock rose by 9.2% on the announcement day. But the impact on

stock prices from the phase 3 trial results by Pfizer was considerably smaller than

the impact of the release of phase 1 trial data by Moderna. This observation raises

multiple questions, including: what impact do clinical trial outcomes have on the

stocks of their sponsoring companies? What properties of clinical trials influence

these stock prices? And what kind of companies are more affected by the success or

failure of a clinical trial? The answers to these questions will assist investors in their
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management of risk, and allow them to anticipate the impact of clinical trial results

on their portfolio.

In this chapter, we answer these questions by performing an event study analysis

for 13,807 clinical trial outcomes using data from 2000 to 2020 for 379 publicly traded

U.S. companies. To the best of our knowledge, this is the largest event study analysis

of clinical trial outcomes. We analyze the abnormal returns (defined as excess returns

relative to a linear factor model described in Section Methodology.) for the multiple

days around event (the day before the event, the day of event, the day after the event).

We restrict our analysis to a short time window around the event to reduce the impact

of confounding events from affecting our analysis.

To perform the study, we first identify the dates most relevant to clinical trial

announcements on which the largest impact on the stock prices of their sponsor com-

panies occur. Next, we observe the variation in abnormal returns across trials with

different outcomes and different trials with same outcome, and investigate the factors

responsible for this variation. We then develop a model relating the observed abnor-

mal returns to the factors of a clinical trial, including trial phase, outcome type, target

accrual, disease therapeutic ID, trial design, and sponsor company classification. We

call this analysis a return attribution model, since it attributes the abnormal returns

to various clinical trial factors. We perform this attribution for abnormal returns over

the days immediately prior to and after the event. Our model can be used to measure

the impact of the results of clinical trials on the returns of their sponsor company by

using the multiple factors associated with a clinical trial.

Through this analysis, we obtain several insights. For individual clinical trials,

we find that the sponsor company classification had the greatest impact on abnormal

returns, with early biotechnology companies having greater movement in stock prices

than large pharmaceutical companies when trial results were declared. We also find

that factors like phase 2/3 and 3 trials, the disease categories of genitourinary and

ophthalmology, and placebo-controlled trials had the largest abnormal returns in

their respective categories, while phase 1 and 1/2 trials, the disease categories of

autoimmune/inflammation and endocrinology, and multiple ascending dose studies
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have the minimum abnormal returns in their respective categories. Furthermore,

we observe a positive correlation between the total target accrual of the trial and

the stock’s abnormal returns. Finally, our abnormal return attribution model finds

that clinical trial properties and sponsor company classification were not sufficient to

explain differences in the excess returns across different trial outcomes.

Our main contributions can be summarized as follows:

• With 13,807 clinical trial outcomes from 2000 to 2020, the scope of our event

study analysis is orders of magnitude larger than earlier studies, yielding more

accurate inferences regarding the impact of clinical trial outcomes on sponsor

company stock prices.

• We measure the relationship between the properties of clinical trials (phase type,

outcome, disease category, target accrual, trial design) and the classification

of their sponsor companies as biotech or pharma on the abnormal returns of

sponsor company stock, which has not been extensively explored in prior event

studies of clinical trials.

• A robust statistical model was developed that estimates the average abnormal

returns due to a clinical trial’s outcome given the properties of the clinical trial

and its sponsor company.

In the Data and Methodology sections, we describe the details of the dataset

and the methodology of our event study, summarized more concisely in Figure 4-1. In

the Results and Discussion section, we present the results and our findings from

the study, while the Robustness Checks section provides a summary of the tests

we perform to validate our findings. We conclude with a discussion about potential

extensions.

4.2 Literature Review

The event study is a widely used method of analysis to quantify the financial effects

of an event on the price movements of a stock. One of the earliest published event
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Figure 4-1: Steps involved in this event study, from the initial data collection to the
analysis of our results.

studies was a 1933 student performed for measuring the impact of a stock split [89].

A study by Fama et. al.[103] proposed a methodology that is in essence the same as

that used today, although over the years, it has been modified and refined for different

use cases. For example, [42] deals with the issues in performing an event study for

daily financial data. A number of survey papers [160, 198, 69] have summarized the

econometrics of the event study and explored the evolution of its methodologies.

A variety of types of events have been analyzed in the literature, including mergers

and acquisitions [208, 36, 55], earnings announcements ([141, 149], news headlines

[52], financial reporting [92, 271], and stock messages on the Internet [12]. A detailed

review of all the existing event studies in the literature is beyond the scope of this

work. Instead, we focus on the event study literature that involves clinical trial

results, FDA approval, drug failure, product development, and patent application.

An event study analysis of 24 clinical trial outcomes [146] found that there were

asymmetric market reactions to positive and negative outcomes, i.e., underperfor-

mance due to negative events was greater in magnitude than the reaction to positive

events. Unlike our findings, they conclude that the magnitude of abnormal returns

did not differ by phase or firm classification. Another event study [224] consisting

of 98 phase 3 trials and 49 products undergoing FDA advisory panel review sought

evidence of insider trading, and found indirect evidence that it was common within

the biotechnology sector. A study on the long-term returns around clinical trial re-

sults (that is, within 120 days of the event) focused on oncology drugs [243], while
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another [145] analyzed the market overreaction to clinical trial outcome. Focusing on

biotechnology product development for 43 phase-3 trial outcomes, [267] analyzed the

relationship between abnormal returns and company size, R&D expenditure, and type

of result, while [90] analyzed the impact of drug features (e.g., disease and application

type) and company features (e.g., size) on the value of abnormal returns.

Event study analyses have also been conducted on FDA approvals [266], pharma-

ceutical product development [254], drug failures [88], earnings surprises and product

news [111], patent infringement [225], and patent application and publication dates

in the pharmaceutical industry [263]. More recently, the influence of news of COVID-

19 research and development on the biopharmaceutical industries has been analyzed

[298], as has the impact of COVID-19 on the stock market[19] and the Indian phar-

maceutical industry [23]. Figure C-2 in the Appendix summarizes these literatures.

Our work focuses specifically on clinical trial outcomes. While some earlier work

focuses on clinical trial results, their scope is limited to due to their very small sam-

ple sizes (typically fewer than 150 events), while the events span a much shorter

time period. Neither does this earlier work analyze the relationship of clinical trial

features like phase, trial design, or accrual on abnormal returns. With over 13,000

clinical trial outcomes spanning a 21-year period, the scope of our event study analy-

sis is orders of magnitude larger than those of previous studies, which translates into

more accurate inferences about the impact of clinical trial outcomes on stock’s price

movements. Moreover, we also analyze how the impact of clinical trial outcomes on

sponsor company stock price movements differs over time.

4.3 Data

We use Citeline data provided by Informa Pharma Intelligence for details of the clini-

cal trials, their outcomes, and their properties. The dataset combines individual clin-

ical trial information from Trialtrove and drug approval data from Pharmaprojects.

It is one of the world’s most comprehensive dataset of global clinical trials and

drug development pipelines. The dataset consists of trials sponsored by govern-
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ment, academia, cooperative groups, and industry. We remove trials that are not

sponsored by industry. Next, we filter out clinical trials based on multiple criteria:

missing event dates, missing reasons for termination, non-availability of returns data

for sponsor companies, and ambiguity about the sponsors. Ambiguity in sponsorship

refers to unclear information about the sponsor company in the dataset. Further-

more, we filter trials based on valid outcomes or early termination reasons, including

only those trials that belong to one of the following categories: safety/adverse effect,

lack of efficacy, early positive outcome, positive outcome/primary endpoints met, and

negative outcome/primary endpoints not met. To analyze the different outcome types

more intuitively, we group trials from different categories as follows: a negative finding

includes primary endpoints not met and lack of efficacy; a positive finding includes

an early positive outcome and primary endpoints met; closed early includes a lack of

efficacy and safety/adverse effect; and full maturity includes primary endpoints met,

early positive outcomes and primary endpoints not met.

After all our filters, the final sample sizes of trials are presented in Table C.1 of the

Appendix. We also include the trial distribution across different phases (1, 2, 3, 4, 1/2,

2/3, 3/4), sponsor company types (biotechnology vs pharmaceutical classification),

therapeutic categories (9 categories), and trial design (28 in total). The filtering

process resulted in a sample of 13,807 trials, and this process is described in more

detail in Appendix C.1 and Figure C-1.

We obtain the sponsor company classification from [273], who classify companies

using a k-nearest-neighbors clustering algorithm into the following categories on the

basis of research and size of the company. Big Pharmaceutical (BP) company research

traditionally includes (but is not limited to) small molecules, and BP companies have

numerous products that reach patients. Small Pharmaceutical (SP) companies have

fewer assets than big pharmaceutical companies, and tend to produce drugs for niche

diseases. These companies also have products on the market. Early Biotechnology

(EB) companies differ from pharma companies in that their production process typi-

cally uses living material, but they may also produce small molecules. EB companies

may or may not have drugs in the market. Late Biotechnology (LB) companies are
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larger in size than EB companies, with a product in market. In the following work,

we use the categories EB, LB, SP and BP to classify the companies.

In addition to Citeline dataset, we obtained daily stock returns of the trial sponsor

companies from the Center for Research in Security Prices (CRSP). We merged the

Citeline and CRSP dataset using fuzzy string matching and manual verification of

the correct match on sponsor and company names.

4.4 Methodology

An event study formally consists of multiple components: event definition, stock

selection, model definition, model estimation, empirical results, and interpretation.

In our analysis, we first define the day of the ‘event’ (the trial outcome declaration

date) from the relevant clinical trial dates. Following this step, the stocks of the

sponsor companies are selected for the study. For this analysis, we use the Fama–

French five-factor model to estimate abnormal returns (The analysis using other factor

models is available in the Appendix) Finally, after calculating the abnormal returns,

we attribute them to different properties of the clinical trials and sponsor companies.

Event Dates

For a given clinical trial, there are multiple important dates related to trial outcomes.

They include:

• Primary Completion Date: The date when the final subject was examined

or received intervention for data collection for evaluating the primary endpoints

of a clinical trial.

• Primary Endpoint Reported Date: The earliest date of public report of

results that address the primary endpoints of the trial. Reports of interim or

preliminary results do not constitute a primary endpoint reported date.

• Publish Date: The earliest date of result publication, which includes interim

and preliminary results.
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• Enrollment Close Date: The date on which the study completed patient

enrollment.

The most movement in the company returns should happen on the day when infor-

mation about trial outcomes is released to the public for the first time. Later in our

results, we will show how different dates are relevant for different trial outcomes.

Sample Selection

The companies sponsoring the trials are most directly affected by the outcomes of

the clinical trials; hence, we select these sponsor companies for our analysis. In some

cases, there is an ambiguity in sponsorship, which happens when sponsor companies

merge with, or are acquired by, other companies during the course of trial. In such

cases, we identify the correct sponsor company to use for the event study by looking

at the merger or acquisition date.

Abnormal Returns Model

In most event studies, it is conventionally assumed that asset returns are jointly

multivariate normal in distribution, and independently and identically distributed

over time. These assumptions allow us to develop various simple models for the

estimation of abnormal returns prior to, on, or after the day of the event. We use

eventstudy python package for the estimation procedures, which are described in more

detail in [47].

The Fama–French five-factor model [105] determines the relationship between dif-

ferent factor returns and security returns:

Ri,t = ↵i + �i,1 ⇤Rm,t + �i,2 ⇤RSMB,t + �i,3 ⇤RHML,t + �i,4 ⇤RRMW,t + �i,5 ⇤RCMA,t + ✏i,t,

E[✏i,t] = 0, V ar[✏i,t] = �2
✏i

where Ri,t represents the returns of asset i at time t; Rm,t, RSMB,t, RHML,t ,RRMW,t,

and RCMA,t are the factor returns at time t; and ↵i, �i,1, �i,2, �i,3, �i,4, �i,5, and �2
✏i
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are the factor loadings or parameters.

Figure 4-2: Timeline of the event.
T0 to T1 is the window used for model estimation. A buffer window is kept between
the estimation and the event window to prevent any information leakage. The event
window is T2 to T3, so that the day of the event t = 0 lies within the event window.

The timeline of an event is shown in Figure 4-2. The model parameters can be

estimated using the observed returns of the security and factors during the estima-

tion period. The estimation window in our study was 252 trading days (i.e., one

year). Once the model’s parameters are estimated, they are used to obtain the re-

turns in the event window, dRi,t, and abnormal returns (AR) are calculated as the

difference between the observed and estimated returns, (Ri,t �dRi,t). When multi-

ple (N) events are analyzed together, the average abnormal returns (AAR) (we use

the terms ‘abnormal returns’ and ‘average abnormal returns’ interchangeably in the

remaining analysis.) are given by:

AAR =
⌃AR

N
.

Return Attribution

To measure the impact of clinical trial and sponsor company properties on the stock

prices of the sponsor companies, we perform a regression of abnormal returns on these

properties:

Yi = ↵+�⇤phase+�⇤companytype+�⇤outcome+⌘⇤disease+✓⇤targetAcc.+⇣⇤design,

(4.1)

where the regressors are coded using one-hot encoding, except for targetAcc., which

is a continuous variable. The sign of abnormal returns of unsuccessful outcomes (e.g.,
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a primary endpoint not met, an adverse effect, or a lack of efficacy) are inverted to

make them comparable with positive outcomes. The regressors are:

phase: clinical trial phase

companytype: sponsor company type

outcome: clinical trial outcome

disease: therapeutic care classification associated with a trial

targetAcc.: target accrual for a trial

design: clinical trial design

Yi represents the abnormal returns, and i indicates the various time windows

around the event date for which the abnormal returns were calculated: i = �1 for

the day prior to the event window; i = 0 for the day of the event; i = 0 to 1 for the

day of and day after the event; and i = 2 for two days after the event.

Since Yi are abnormal returns, which are estimated with some error, we use boot-

strapping to compute the confidence intervals associated with the coefficients of the

regressions.

4.5 Results and Discussion

In this section, we first present the identification of the most significant date for

various clinical outcomes, then analyze the abnormal returns for a two-week period

before and after the events, and discuss the relationship between abnormal returns

and clinical trial properties. Finally, we include examples of the average abnormal

returns due to clinical trial outcomes conditional on multiple factors.

Clinical Trial Outcome Dates

Depending on the outcome of the trial, different dates may be significant for clinical

trials. We first determine the dates associated with clinical trials that have the largest

impact on the stock price of the companies. To do so, we segregate trials on the basis
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of reason for termination and analyze them separately. We run a multi-event study

for the trials with the following event dates: the primary completion date, the date

when the primary endpoints were reported, the earliest date of result publication,

and the enrollment close date. We present the abnormal returns on the day of the

event, day 0 and the cumulative abnormal returns on day 0 and 1, along with the

standard errors in Table 4.1.

Outcome Day Primary Completion Endpoint Publish Close

Safety/Adverse Effect 0 �0.75 (0.09) 0.08 (0.11) �0.39 (0.09) �0.40 (0.10)

0,1 �0.82 (0.12) 0.25 (0.15) �0.72 (0.13) �0.26 (0.14)

Lack of Efficacy 0 �1.70 (0.09) �0.28 (0.09) �0.45 (0.07) �1.58 (0.10)

0,1 �2.43 (0.13) �0.32 (0.13) �0.47 (0.11) �2.37 (0.15)

Early Positive Outcome 0 5.31 (0.20) 0.03 (0.24) 0.38 (0.25) 0.05 (0.21)

0,1 6.35 (0.28) 0.48 (0.33) 1.07 (0.35) 0.41 (0.30)

Primary Endpoints Met 0 �0.02 (0.02) 0.15 (0.02) 0.46 (0.02) 0.04 (0.02)

0,1 �0.01 (0.03) 0.12 (0.03) 0.54 (0.03) 0.08 (0.03)

Primary Endpoints Not Met 0 �0.20 (0.04) �0.33 (0.05) �1.97 (0.04) 0.06 (0.04)

0,1 �0.19 (0.06) �0.49 (0.07) �2.71 (0.06) 0.17 (0.06)

Table 4.1: Average abnormal returns for different outcome types on various significant
dates

Average abnormal returns on day of the event (day 0) and cumulative average abnormal

returns (day 0,1) for trials with different outcomes on significant dates with their standard

error (bracket). Day 0 abnormal returns are in the first row and day 0,1 abnormal returns

are in the second row for each outcome. We find that for trial outcomes of safety/adverse

effect, lack of efficacy, and early positive outcome, the highest abnormal returns are

obtained on the primary completion date. For completed trials with outcomes of primary

endpoint met or not met, the highest magnitude of abnormal returns are obtained on the

earliest date of result publication. The maximum absolute abnormal returns are in bold.

We observe that the magnitude of average abnormal returns for an early positive

outcome are greater on the primary completion date than for any other date. This

implies that, as soon as the data from the final subject has been collected and the

results appear promising, companies will release the results, so that the largest ab-

normal returns are observed on the primary completion date. However, when the

outcome is that the primary endpoint is met or not met, we find that the value of

average abnormal returns is greatest on the earliest date of result publication (the

publish date). On this date, companies release their interim results after a thorough
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study of the data collected thus far.

Trials that show a safety/adverse effect or lack of efficacy have the largest magni-

tude of abnormal returns on their primary completion date, but these are comparable

to the abnormal returns obtained on the enrollment close date and the publish date.

Trials that show a safety/adverse effect or lack of efficacy outcome are terminated

early, and development is stopped. In the case of a safety/adverse effect, for a ma-

jority of trials, the primary completion date is earlier than the publish date. Since

details about the termination of the trial are available on the primary completion

date, we therefore observe the largest abnormal returns on the primary completion

date. For trials that show a lack of efficacy, we observe the same primary completion

and enrollment close date for many trials. This explains the higher abnormal returns

on the enrollment close date.

For the remainder of this study, we use the primary completion date as the event

date for the following outcomes: a safety/adverse effect, a lack of efficacy, and an early

positive outcome. These outcomes constitute 9% of the dataset. For the remaining

results, when primary endpoints are met or not met, we use the publish date as the

event date. These outcomes constitute 91% of the dataset.

Abnormal Returns

In Figures 4-3, 4-4, and 4-5, we include the average abnormal returns and the cumu-

lative average abnormal returns for trial outcomes for the two-week trading period

before and after the event date. As expected, we observe high average abnormal

returns on the day of the event (day 0 and day 1). For trials that declare their

results after trading hours, the movement in stock prices is expected to happen on

the day after the result declaration date. For unsuccessful trial outcomes such as a

safety/adverse effect, a lack of efficacy, or primary endpoints not met, we observe

cumulative abnormal returns decreasing during the two-week period after the event

date.

In Figures 4-3, 4-4, and 4-5, we observe variation in average abnormal returns.

Even within each outcome type, we find a huge spread in the abnormal returns of
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Figure 4-3: Left: Safety and Adverse Effect , Right: Lack of Efficacy

Figure 4-4: Left: Early Positive Outcome, Right: Primary Endpoints Met

Figure 4-5: Primary Endpoints not met

Average abnormal returns and cumulative average abnormal returns with a 95% confidence interval
for a multi-event study of trials with different outcomes. The x-axis represents the day (0 is the
day of the event) and the y-axis represents the abnormal return values (scale: fraction).
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individual events. For a safety/adverse effect, lack of efficacy and primary endpoints

not met outcomes, the minimum value of abnormal returns for individual events is

�80%, �90%, and �100% respectively. However, for the early positive outcome

and primary endpoints met, the maximum value of abnormal return is 137% and

485%, respectively, which is quite different from the average abnormal returns. Such

variation in abnormal returns for individual events within each outcome category

may potentially be due to the properties of the clinical trials and sponsor companies

involved in the trials, including the trial phase, company classification, type of result,

therapeutic area of the disease, and trial design.

Abnormal Returns and Trial Properties

We conjecture that the impact of a trial outcome on the sponsor’s stock prices is

dependent on specific properties of a clinical trial and its sponsor company. From

Table C.1, we can observe that the distributions of trials across different phases and

sponsor company types are different. Hence, to measure the impact of these trial

and company properties on the stock prices of the sponsor companies, we perform a

regression of abnormal returns on these different properties, as given by Eq. (4.1).

For trials with negative outcomes, we reverse the sign of the abnormal returns prior

to regression.

In Tables 4.2–4.8, we present the abnormal returns for various properties (given

by the regression coefficients) with their standard errors on days around the event,

and analyze them in the following section. In Figure 4-6, we present the contribution

of clinical trial properties on the average abnormal return of a company on the day

of the event (day 0-1) in a bar plot. We then discuss each trial or company property

and its abnormal return individually.

Clinical Trial Phase

Clinical trials are conducted in phases, with each phase designed to answer specific

questions. Phase 1 is designed to evaluate the safety of the treatment, phase 2 is
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designed to evaluate the effectiveness of treatment in a small and carefully curated

population, and phase 3 trials are generally designed to compare the effectiveness and

safety in a larger and more heterogenous population against the existing standard

treatment. Typically, therapeutics obtain FDA approval after a successful phase 3

trial, although they may go to a phase 4 trial following approval, in which the long-

term side effects of the new therapeutic are studied. In many cases, different trial

phases are combined to speed up the development and testing process.

Statistics for the abnormal returns for each phase category (keeping other factors

constant) are given in Table 4.5. We observe that phase 2/3 trials have the greatest

impact on the stock returns of sponsor companies, followed by phase 3 trials, while

phase 1 and 1/2 trials have the least impact on abnormal returns. On the day of the

event, day 0 and day 0–1, phase 2/3 trials have higher abnormal returns than phase

1/2 trials by 2.27% and 3.06%, respectively.

Phase 3 trials are generally costly and require significant capital[237], and the

results of phase 3 trials determine whether a therapeutic can be commercialized and

used by patients. This explains the higher abnormal returns for phase 3 and 2/3

trials. Even though phase 4 trials happen after FDA approval, negative findings from

such trials raise questions about the long-term effectiveness of the therapeutic; hence,

phase 4 trials had higher abnormal returns as well.

Company Type

A large number of biotechnology and pharmaceutical companies are involved in the

development of new therapeutics as clinical trial sponsors. The success or failure of

these clinical trials has an impact on the business of the sponsor company, leading to

changes in its stock prices.

We present the statistics of abnormal returns by sponsor type in Table C.12. As

observed, the abnormal returns for early biotechnology companies are the largest,

followed by small pharmaceutical companies, with large pharmaceutical companies

having the smallest abnormal returns. Early biotech companies had 8.32% and 10.95%

higher abnormal returns than large pharmaceutical companies on the day of the
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event—day 0 and day 0–1—respectively.

Early-stage biotechnology companies tend to be smaller in size, and are involved in

earlier stage discovery and development efforts for specific potential therapeutics. In

general, they do not have FDA-approved products. The trial results for a sponsored

therapeutic candidate thus have a large impact on the growth of the company. Hence,

we observe higher values of abnormal returns for these companies. At the same time,

large pharmaceutical companies have a higher market capitalization and tend to have

multiple products on the market; hence, the results of clinical trial outcomes have

the least impact on this category of companies. Similarly, late-stage biotechnology

companies are established companies with FDA-approved products already on the

market, and thus clinical trial results have less of an impact on their stock market

returns.

Moreover, we observe that the sponsor company classification has the biggest

impact on abnormal returns compared to other properties of clinical trials.

Outcome Type

As mentioned in earlier sections, the trials analyzed in our sample have very different

outcomes. Table 4.1 shows the average abnormal returns for these different outcomes

on various dates. As observed, the abnormal returns for unsuccessful outcomes are

negative, while those for successful trials are positive. In the regression in Eq. (4.1),

we invert the sign of unsuccessful outcomes to compare them directly to successful

outcomes. Here, we analyze the magnitude of abnormal returns controlling for trial

properties.

In Table 4.2, we present the abnormal returns by outcome type. We find that

trial results with early positive outcomes have the largest abnormal returns, followed

by unsuccessful outcomes like unmet primary endpoints and a lack of efficacy. The

outcome of primary endpoints met have the lowest value of abnormal returns. The

difference between abnormal returns for trials with an early positive outcome and

trials with successful endpoints are 2.95% and 3.39%, respectively, on day 0 and

day 0–1. The high abnormal returns for early positive outcomes may be due to
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the surprise factor associated with an earlier than anticipated declaration of results.

Higher abnormal returns for trials with unsuccessful outcomes than for trials with

successful outcomes (asymmetric market reaction) is consistent with earlier findings

in the literature [146].

To analyze the different outcome types more intuitively, we create new groups

from the dataset’s original categories as follows: a negative finding includes primary

endpoints not met and a lack of efficacy; a positive finding includes an early positive

outcome and primary endpoints met; a finding of closed early combines a lack of

efficacy and safety/adverse effect; and full maturity combines primary endpoints met,

early positive outcomes and primary endpoints not met. We find that the magnitude

of abnormal returns of clinical trials due to a negative finding is higher than a positive

finding, consistent with earlier results in the literature [146]). Similarly, trials that

are closed early have a higher magnitude of abnormal returns than trials reaching full

maturity.

Target Accrual

Target accrual is the number of subjects that are planned to participate in the study.

A larger target accrual signifies a larger investment by the company for the clinical

trial, and a treatment tested on a larger number of subjects has more reliable results.

We include the coefficient for target accrual in Table 4.3. We observe that trials with

larger targeted accruals have a higher value of abnormal returns. More specifically,

an increase in the targeted accrual of a trial by 1,000 subjects, keeping the other

properties constant, produces a higher value of abnormal returns by 0.158% on the

day of the event.

Disease

Clinical trials test potential treatments for diseases belonging to many different ther-

apeutic areas. In our data, these include: genitourinary, ophthalmology, vaccines

(for infectious disease), CNS, oncology, cardiovascular, infectious disease, autoim-

mune/inflammation, and metabolic/endocrinology. By including the disease type as
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one of the regressors, we are able to analyze the impact of disease category on a

company’s abnormal stock returns.

In Table 4.7, we include the average abnormal returns by disease category. We

find that genitourinary diseases have the largest abnormal returns, (the higher abnor-

mal returns are due to multiple trial outcomes following the investigation of BioSante

Pharmaceuticals), followed by ophthalmology and vaccine trials. The abnormal re-

turns are smallest for endocrinology and autoimmune disease trials. It is widely

observed that oncology drugs are best-sellers; however, contrary to this stylized fact,

we do not observe a high level of abnormal returns for oncology trial outcomes, de-

spite oncology trials being the largest disease category in our dataset. Nevertheless,

the abnormal returns for oncology trials are higher than those for infectious disease,

autoimmune, and endocrinology trials.

Design

There are multiple ways of designing clinical trials, controlling for cost, to establish

the effect of a potential new therapeutic [100]. This trial design depends on the

characteristics of treatment, clinical endpoints, trial phase, the availability of a control

group, funding, and other properties.

In Table 4.7, we present the abnormal returns for different trial designs (in our

regression, we exclude design categories that have fewer than 100 trials). We find

that placebo-controlled trials have the largest abnormal returns, followed by pharma-

cokinetic, fixed dose, adaptive, and safety trials. Meanwhile, designs like single and

multiple ascending dose, pharmacodynamic, and non-inferiority trial designs have

the smallest abnormal returns. A placebo-controlled, double-blind trial design is

considered the gold standard in determining the effect of a treatment and used for

designing phase 3 trials. This potentially explains the higher abnormal returns of

placebo-controlled trials.

We also observe that competing trial designs have varying abnormal returns. For

example, for an open-label trial design, where the subject and researchers know that

the subject is receiving a treatment, compared to a double-blinded trial design, where
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neither the subject nor the researchers know who is receiving a treatment or a placebo,

the abnormal returns are not statistically different. Meanwhile, the single ascending

dose trial design has higher abnormal returns than the multiple ascending dose design.

Similarly, the superiority trial design (showing that a new method is better than

an active control or placebo) has higher abnormal returns than non-inferiority trial

designs (showing that a new method is not inferior to an active control or placebo).

Stock Movement Given Trial Properties

As discussed earlier, the linear factor model for abnormal stock returns in Eq: 4.1

can be used by investment managers to obtain average abnormal returns for the

stock of a sponsor company at the declaration dates of a clinical trial result. This is

demonstrated by the following examples.

The regression coefficients from Tables 4.2–4.8 can be used to compare the abnor-

mal returns of clinical trials with different properties. For example, phase 2/3 trials

sponsored by early-stage biotech (EB) companies with an early positive outcome have

13.54% higher absolute abnormal returns than phase 1/2 trials with a big pharma-

ceutical (BP) company sponsor and an outcome of primary endpoints met on the day

of the event. Similarly, the cumulative abnormal returns for two days (day 0–1) for

a clinical trial with an early positive outcome (2.56%) and a target accrual of one

thousand subjects (0.134%), sponsored by an early biotechnology company (6.33%),

at phase 3 of the trial (1.60%) for a treatment for genitourinary disease (2.85%) using

a double-blinded, placebo-controlled trial design (1.23%–0.33%) are 18.49%. This

information has several potentially useful applications for investment managers and

other stakeholders.

The unexplained average abnormal returns after the regression are presented in

Table 4.8. As expected, the average of the unexplained abnormal returns are not

statistically significant prior to the day of the event (day �1) or after the event (day

2). The value of ↵ increases from 2.83% on the event date (day 0) to 4.10% for the day

after the event (including the event date). The higher value of unexplained abnormal

returns (↵) implies there are factors apart from the ones included in this study that
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might explain the abnormal returns of these companies.

We find that abnormal returns on the day before the event (��1, ✓�1, ��1, ��1, ⌘�1, ⇣�1,↵�1)

are not significant. Similarly, the abnormal returns are not significant on the day after

the event (�2, ✓2, �2, �2, ⌘2, ⇣2,↵2), implying that markets incorporate the information

related to clinical trials, and the sponsor stock prices stabilize.

We also analyze the pattern of abnormal returns of the clinical trial outcomes

over time. The discussion and results are included in the Appendix (in the section

Abnormal Returns Over Time and Table C.2).
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Table 4.2: Outcome types

Outcome ��1 (SE) �0 (SE) �0�1 (SE) �2 (SE)

Early Positive Outcome 0.18 (0.17) 2.21 (0.17) 2.40 (0.24) 0.08 (0.17)

Lack of Efficacy 0.09 (0.09) 0.57 (0.09) 1.31 (0.12) -0.23 (0.09)

Primary Endpoints Not Met -0.01 (0.06) 0.79 (0.06) 1.30 (0.09) 0.1 (0.06)

Safety/Adverse Effect -0.22 (0.09) -0.01 (0.09) 0.07 (0.13) 0.11 (0.09)

Primary Endpoints Met 0.0 (0.05) -0.74 (0.05) -0.99 (0.08) 0.0 (0.05)

Lack of Efficacy 0.09 (0.08) 1.17 (0.08) 1.99 (0.11) -0.17 (0.08)

Negative Finding -0.05 (0.05) 1.27 (0.05) 1.81 (0.07) 0.15 (0.05)

Positive Finding 0.00 (0.05) -0.08 (0.05) -0.24 (0.06) 0.05 (0.05)

Closed Early 0.00 (0.06) 1.33 (0.07) 2.11 (0.09) -0.05 (0.06)

Full Maturity 0.02 (0.05) 0.64 (0.05) 0.85 (0.08) 0.08 (0.05)

Table 4.3: Target Accrual

✓�1 (SE) ✓0 (SE) ✓0�1 (SE) ✓2 (SE)

Target Accrual 0.016 (0.015) 0.158 (0.015) 0.144 (0.022) 0.021 (0.015)

Table 4.4: Company sponsor category

Company Type ��1 (SE) �0 (SE) �0�1 (SE) �2
Early-stage Biotech �0.33 (0.20) 4.65 (0.2) 6.31 (0.28) 0.36 (0.20)

Small Pharma 0.12 (0.15) 1.63 (0.15) 1.69 (0.22) 0.12 (0.15)

Late-stage Biotech 0.32 (0.15) 0.31 (0.15) 0.73 (0.21) �0.21 (0.15)

Big Pharma �0.02 (0.09) �3.67 (0.09) �4.64 (0.12) �0.08 (0.09)

Table 4.5: Phase categories.

Phase ��1 (SE) �0 (SE) �0�1 (SE) �2 (SE)

2/3 �0.15 (0.11) 1.63 (0.11) 1.95 (0.16) 0.09 (0.11)

3 0.03 (0.06) 0.99 (0.05) 1.59 (0.08) �0.04 (0.06)

4 �0.01 (0.06) 0.39 (0.06) 0.73 (0.08) 0.04 (0.06)

3/4 �0.13 (0.15) 0.32 (0.16) 0.68 (0.22) �0.10 (0.16)

2 0.05 (0.06) 0.30 (0.06) 0.47 (0.08) 0.14 (0.06)

1 0.15 (0.08) �0.33 (0.08) �0.28 (0.12) 0.06 (0.08)

1/2 �0.07 (0.10) �0.64 (0.10) �1.11 (0.14) 0.07 (0.10)

Table 4.6: Disease therapeutic category

Disease ⌘�1 (SE) ⌘0 (SE) ⌘0�1 (SE) ⌘2 (SE)

Genitourinary 0.09 (0.22) 1.51 (0.22) 3.13 (0.32) 0.25 (0.22)

Ophthalmology 0.10 (0.16) 0.33 (0.16) 0.81 (0.23) 0.11 (0.16)

Vaccines (Infectious Disease) 0.04 (0.12) �0.09 (0.12) 0.35 (0.16) 0.09 (0.12)

CNS 0.07 (0.11) 0.25 (0.11) �0.18 (0.16) 0.04 (0.11)

Oncology �0.02 (0.11) �0.14 (0.11) �0.43 (0.15) �0.10 (0.11)

Cardiovascular 0.09 (0.10) �0.01 (0.10) �0.65 (0.15) 0.04 (0.10)

Infectious Disease �0.02 (0.09) �0.49 (0.09) �0.76 (0.13) �0.13 (0.09)

Autoimmune/Inflammation 0.07 (0.11) �0.39 (0.11) �0.81 (0.15) �0.04 (0.11)

Metabolic/Endocrinology 0.02 (0.10) �0.51 (0.10) �1.00 (0.14) 0.03 (0.10)
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Table 4.7: Clinical Trial Design

Design ⇣�1 (SE) ⇣0 (SE) ⇣0�1 (SE) ⇣2 (SE)

Placebo Control -0.09 (0.07) 1.10 (0.07) 1.30 (0.10) 0.14 (0.07)

Pharmacokinetics -0.03 (0.06) 0.46 (0.06) 0.99 (0.08) -0.07 (0.06)

Fixed Dose 0.01 (0.14) 0.68 (0.13) 0.82 (0.19) 0.10 (0.13)

Adaptive 0.45 (0.24) 0.35 (0.23) 0.69 (0.33) -0.32 (0.23)

Safety -0.03 (0.06) 0.57 (0.06) 0.63 (0.08) 0.20 (0.05)

Non Interventional 0.02 (0.11) 0.44 (0.11) 0.40 (0.15) -0.32 (0.11)

Active Comparator 0.06 (0.05) 0.05 (0.05) 0.30 (0.08) 0.08 (0.05)

Multiple Arm 0.05 (0.08) 0.25 (0.08) 0.26 (0.11) -0.03 (0.08)

Observational 0.01 (0.09) 0.22 (0.09) 0.17 (0.13) 0.02 (0.09)

Single Arm -0.03 (0.09) 0.14 (0.09) 0.00 (0.12) -0.03 (0.09)

Randomized -0.1 (0.08) 0.14 (0.08) -0.04 (0.12) -0.08 (0.08)

Efficacy -0.04 (0.06) -0.18 (0.06) -0.06 (0.09) -0.09 (0.06)

Immunogenicity 0.01 (0.08) 0.21 (0.08) -0.26 (0.11) 0.02 (0.08)

Dose Response -0.01 (0.09) -0.07 (0.09) -0.26 (0.12) -0.03 (0.08)

Superiority 0.02 (0.10) -0.11 (0.10) -0.27 (0.14) 0.08 (0.1)

Cross Over -0.01 (0.09) -0.15 (0.09) -0.30 (0.13) -0.04 (0.09)

Double blind/blinded 0.06 (0.09) -0.04 (0.09) -0.33 (0.13) -0.17 (0.09)

Open Label 0.03 (0.08) -0.02 (0.08) -0.34 (0.11) -0.03 (0.08)

Pharmacodynamics -0.01 (0.06) -0.63 (0.06) -0.85 (0.09) 0.03 (0.06)

Non Inferiority -0.39 (0.08) -0.64 (0.08) -0.86 (0.12) -0.01 (0.08)

Single Ascending Dose 0.16 (0.25) -0.43 (0.25) -1.05 (0.36) 0.41 (0.25)

Multiple Ascending Dose -0.09 (0.23) -1.94 (0.22) -2.14 (0.31) -0.17 (0.22)

Table 4.8: Regression Constant

↵�1 (SE) ↵0 (SE) ↵0�1 (SE) ↵2 (SE)

Constant 0.04 (0.11) 2.83 (0.11) 4.10 (0.16) 0.06 (0.11)

In Tables 4.2 to 4.8, we present the regression coefficients obtained using Eq. (4.1)
for the abnormal returns (computed using the French-Fama 5-factor model) for the
day prior to the event date (�1), on the day of the event (0 and 0–1), and the day
after the event date (2). Rows in each table are the different trial properties, and
the columns are the regressed coefficients for different days around the event (�1, 0,
0� 1 , 2). These coefficients can be interpreted as the average abnormal returns
observed for the sponsor company for a trial outcome with that specific property,
controlling for other properties of the trial. The abnormal returns are statistically
insignificant prior to and after the event date (day �1 and day 2), while they are
significant for properties on the days of the event (day 0 and day 0-1).
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Figure 4-6: Relative abnormal returns due to different clinical trial and sponsor com-
pany factors on the day of event (day 0-1).
These abnormal returns are obtained from the regression coefficients using Eq. (4.1)
on the day of event (day 0 and day 1). The x-axis is in percentage points and the
95% confidence intervals are plotted on the bar plots.

104



4.6 Robustness Checks

We perform several robustness checks to determine the sensitivity of our results. In

addition to the Fama-French 5-factor model for computing the abnormal returns in

the event study, we also apply a constant-mean and market model, which is a single

factor model, and the results are in Tables C.3–C.16 in the Appendix. We find

that the results obtained using the market and constant-mean model are statistically

similar to those using the Fama-French 5-factor model presented in Tables 4.2–4.8.

We also estimate a return attribution model using a subset of our dataset that

includes only two outcome categories: when primary endpoints were met (a positive

outcome), and when primary endpoints were not met (a negative outcome). These

categories use the earliest date of result publication as their event date, and the results

are presented in Appendix Tables C.17–C.23. Our findings are consistent with the

return attribution model trained on the full dataset.

Standard errors for the abnormal returns due to different factors are computed

using 100,000 iterations of the bootstrap process. Each iteration includes sampling

the dataset and computing the regression coefficient given by Eq. 4.1. The number of

bootstrap iterations is decided by increasing the bootstrap iterations until the average

value and standard errors of the regression coefficients converge.

The observations discussed in Results and Discussion are based on the sta-

tistically significant results of our analysis. As we vary the parameters of the event

study such as the length of the estimation and buffer windows (as in Figure 4-2), the

results remain statistically similar.

4.7 Conclusion

In this Chapter, we analyzed the impact of clinical trial outcomes on the stock prices

of their sponsor companies using one of the largest clinical trials datasets so far con-

structed, with 13,807 clinical trial outcomes (after filtering) from 2000 to 2020. Given

the large size of the dataset and its two-decade span, the findings should represent
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reasonably accurate measures of the stock-price impact of clinical trial outcomes for

sponsor companies.

We identify dates specific to the individual clinical trial’s timeline on which the

largest movements in the stock’s abnormal returns are observed. By fixing the date

of that event, we are able to attribute the abnormal returns to clinical trial properties

such as outcome type, target accrual, phase, disease therapeutic category, trial design,

and sponsor company classification. The attribution of returns to trial properties is

performed for abnormal returns on the day of the event and the days after/prior to

the event (i.e., days �1, 0, 1, and 2). In the attribution process, we uncover multiple

findings about the abnormal returns for various trial properties.

As observed from the significant ↵ in our regression, we find that the clinical trial

properties we use cannot completely explain the average abnormal returns observed

due to clinical trial outcomes. This implies there are additional factors influencing

the company’s stock price movements apart from the documented trial properties.

One such property may be the “importance" or “buzz" surrounding a clinical trial.

For example, the importance of Moderna’s mRNA vaccine trial for protection against

SARS-CoV-2 was much higher than a clinical trial for any other disease at the same

time. Such importance could be captured by analyzing the news and sentiment in-

dexes associated with the trial. In future research, we plan to extend this analysis

to quantify the hype or sentiment associated with clinical trials and correlate it with

their abnormal returns.
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Chapter 5

Finance For Impact: Megafund

Megafund is a structure in which a large number of projects are securitized into a

single holding company funded through various debt and equity tranches. In this

chapter, we propose an extension of “megafund" to incorporate drug assets from

different stages in drug development process:- preclinical, phase 1,2,3 and royalty

assets from eight therapeutic areas. Along with the drug development, we utilize

the megafund structure to support the fusion energy research. We show that our well

diversified megafund can potentially lead to the successful funding for the development

of drugs and fusion companies.

5.1 Drug Development

Traditional financing models have struggled to support drug development. Drug

development is an expensive and a long process. It requires years of research with

extensive amount of funds for development and approval of the new treatment and

bears a high risk of failure. Hence, it fails to attract investors and there is a decline

in R&D productivity in the biopharma sector in recent years.

Existing work [109] proposed a portfolio approach for raising investments for drug-

development process. It proposes investment in multiple drug development projects at

a time that diversifies the risk and increases the likelihood of the success. The portfolio

is financed using capital raised from issuing debt and equity. It [109] showed the
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feasibility of the portfolio based approach and found the average investment returns

of 8.9-11.4% for the equity holders and 5-8% for the research backed obligation holder

for the megafund of $5-15 billion .

Recently, [184] modified the portfolio based megafund framework to make it more

realistic by relaxing some of the assumptions (independence of clinical trial projects)

and using more accurate parameters (cost, duration and probability of success of

clinical trials). It is also used to show the feasability of drug development in multiple

areas : orphan drugs [101], alzeihmer’s disease [180], pediatric oncology [79], ovarian

cancer [57], brain cancer [258], and opiods use disorder [257]. However, most of

the studies focussed on one therapeutic area and majority of them acquired drug

development assets in portfolios in pre-clinical trial phase.

“Not putting your eggs in one basket" is a widely known phrase in the portfolio

management that balances risk and reward in the portfolio. In this chapter, we follow

the same and extend the existing megafund framework of [184] to include assets

from various stages in the drug development process. We include the assets from

preclinical, phase 1,2,3 and royalty assets. The most risky:-preclinical phase is least

likely to succeed (around 10-15% probability of success) but is the source of significant

returns on successful approval and the least risky:-royalty investment is the source

of less risky cash flows. We also diversify the drug assets over eight therapeutic

areas:- oncology, metabolic/endocrinology, cardiovascular, central nervous system,

autoimmune/inflammation, genitourinary, infectious disease and opthalmology. We

also optimise the investment across asset categories to maximise the sharpe ratio.

Apart from the diversification aspect for the investors, the proposed megafund

framework generates capital for conducting clinical trials across all disease categories

and trial phases. This can lead to development of the successful treatments leading

to the decrease in the burden of diseases across all therapeutic categories.

From our simulation of the megafund portfolio, we find that annualized sharpe

ratio of 0.41-0.43 and expected annualized returns on equity of 11.3-11.6% for equity

investors. We also find that the megafund investment leads to the approval of 19-20

drugs across therapeutic areas. This shows the feasibility of the diversified megafund
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based approach for the drug development and a viable investment for investors.

5.1.1 Method

Megafund is a portfolio consisting of arbitrary number of drug assets with varying

risk, reward characteristics. It acts as a security for investors that is backed by

drug assets. For our study, we adopt a framework similar to prior studies that used

megafund approach to analyze the performance of alzeihmer’s disease [180], pediatric

oncology [79], ovarian cancer [57], brain cancer [258] and opiods use disorder[257].

The framework is summarized in the Figure 5-1.

Figure 5-1: Flowchart depicting the megafund simulation framework.
The boxes in blue are various parameters estimated/inputs. The boxes in green depict
steps of simulation.

The simulation framework is based on the licensing framework commonly used in

the bio-pharmaceutical industry [109]. The boxes in the green (Figure 5-1) are the

different steps involved in the simulation. First step of portfolio acquisition involves

acquiring a majority stake in the drug development process for an upfront payment.

We extend the existing framework in the following way, the existing megafund acquires

the projects in pre-clinical phase and each project progresses to subsequent clinical

trial phases until its approved. In our study we acquire projects that may belong to
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different stages in the pipeline. The projects includes royalties and drugs at different

stages in the approval pipeline (pre-clinical, phase 1, 2 and 3). The drug development

projects proceeds to their next steps if it is successful or it is discontinued. Once the

project reaches the target stage, it is sold for revenue1. Different stages of the projects

requires funding for clinical trial expenses and they are financed by megafund. The

selling of the successful drugs and royalty investments provides the cash flows for

paying debt obligations. Once the fund reaches the horizon, it is liquidated and cash

generated is used for fulfilling its debt obligation and equity payment and performance

of fund is computed. If the fund is unable to pay the bond payments at any point,

it is liquidated. We also optimize investment in different projects maximising the

sharpe ratio.

We used multi-period monte carlo simulation to evaluate the performance of the

megafund. The simulation to megafund requires different parameters. These param-

eters are mentioned in blue boxes in Figure 5-1 and they are probability of success,

duration of clinical trials, values of approved drugs and correlation between different

projects. The probability of success are estimated from [228], [138], [274], [288] and

presented in the Appendix Table D.1. The cost of the clinical trials are obtained

from [251], [215] and estimates used in the simulation are presented in Table D.2 in

Appendix. Similarly the duration of the clinical trials are obtained from [288] and

[287] with values presented in Table D.3. The correlation between the outcomes of

the drugs belonging to same therapeutic class was assumed to have moderate values

of 20% (the drugs treating disease in same therapeutic areas should be more similar)

and 5% (low correlation) between the drugs belonging to different therapeutic areas.

The royalty assets were not part of the existing megafund studies. Hence, we mod-

elled the cash flows for the royalty assets using the discounted cash flow methodology

described in the article2. The details of the cashflow from royalty are available in the

Appendix Figure D-2. Each royalty asset is acquired for the cost of 200 million$ and

1We assume a sale period of 1 year after approval of drug
2https://www.investopedia.com/articles/stocks/06/biotechvaluation.asp. Accessed on

9 September 2022
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generates the cash flows for 10 years 3. Also, the value of drug development projects

in different phase needs to be estimated. The estimates of the approved drug in each

therapeutic area is obtained from the market research reports. From the approved

drug, we estimate the value of drug projects in the earlier stages of development using

the following equation:

vx = max(
pxvx+1

(1 + rx)tx
� cx, 0) (5.1)

where v is the risk adjusted net present value, p is the probability of success, r is

discount rate, t is the duration of clinical trial, c is the cost of clinical trial in stage

of development x. The estimates of the market value of drugs are presented in the

Table D.4 in the Appendix.

5.1.2 Results

We construct two megafund portfolios. First is the benchmark portfolio: an equal

investment portfolio across across different phases and approximate equal expected

investment in each therapeutic area in each phase (Figure 5-2). It involves investing

⇡ $2.4 billion in each phase (preclinical, phase 1, 2, 3) and $2.4B in twelve royalty

assets. The total investment is ⇡ $13 billion. We construct another portfolio where

the $ amount invested is determined by a greedy algorithm to maximise sharpe ratio of

the portfolio. It optimizes for the the number of projects across therapeutic area one

phase at a time keeping other parameters constant4. Once the number and $ amount

invested across phase and therapeutic area is determined, the megafund is simulated

with debt financing. The portfolio composition are summarized in the figure 5-2.

We can find that expected investment across the stages of development are around

$2.4B with almost equal investment across therapeutic categories for benchmark. In

the optimized portfolio, the investment across different therapeutic categories varies

significantly, but the total investment in each phase is ⇡ $ 2.4 billion. The portfolio

contains a large number of pre-clinical projects due to their low cost while less number

of phase 3 projects.
3Drug patents usually last for 10 years
4assuming all equity financing and equal investment across phases
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Figure 5-2: Number of projects and investment across phase and therapeutic area for
benchmark and optimized portfolio.
The total investment across each phase is $2.4 billion. In benchmark portfolio, the
invested amount in each therapeutic area is similar while it varies significantly for
optimized portfolio. It is logical that the portfolio contains a large number of pre-
clinical projects due to their low cost while less number of phase 3 projects.
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In Table 5.1, we include the performance statistics for the megafund. We compute

performance statistics like probability of default and expected loss for debt obligations

(packaged as junior tranche and senior tranche). In our simulation we assumed a

leverage ratio of 80:20 between debt and equity. We find that probability of default

for senior tranche is very low (0.4 bps for benchmark portfolio and 2.6 bps for the

optimized portfolio). For junior tranche, the probability of default is 15.4 bps and

20bps for benchmark and optimized portfolio respectively. The default rate for senior

tranche based on benchmark portfolio are comparable to AAA and AA rated bond.

For the equity investors, we computed multiple performance measures: expected

cumulative returns on equity (ROE), standard deviation of cumulative ROE, annual-

ized sharpe ratio, geometric, arithmetic mean and standard deviation of annualized

returns on equity, probability of loss, probability of wipeout and probability of an-

nualized returns on equity >10%. All these measures allows us to evaluate the per-

formance of portfolio robustly. From Table 5.1, we observe that sharpe ratio is 0.41

and 0.43 for benchmark and optimized portfolio. The geometric expected annualized

ROE is between 11-12%. We find that probability of wipeout, when investors don’t

receive anything is small (0.2%), while around 70% of time the annualized ROE are

greater than 10%.

Although, the ROE are comparable to S&P500 historical annualized returns, the

megafund investment led to the multiple successful drug development projects. In

Table 5.1, we include the average number of drugs approved in different therapeutic

areas. We find that on average 19-20 projects being approved combined from differ-

ent therapeutic areas with more number of drugs approved in therapeutic areas of

genitourinary, infectious disease and metabolic/endocrinology.

As mentioned earlier, we constructed two kind of megafund portfolios- bench-

mark: equal investment portfolio and optimized: investment based on greedy search

to optimize for sharpe ratio. In our simulations, the performance statistics like sharpe

ratio (0.43, optimized vs 0.41, benchmark) and number of approved projects (19.9,

optimized vs 18.6, benchmark) are slightly better for the optimized portfolio. It is

expected as the parameters (number of projects to acquire) are tuned using a greedy
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(a) Performance measures of the megafund portfolio for equity and debt investors obtained

from monte-carlo simulations.

(b) The number of approved projects across different therapeutic areas for benchmark and

optimized portfolios

Table 5.1
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search for the optimized portfolio. However, these parameters may not be optimal and

can potentially be improved using a better optimisation methods 5. Equal weighted

portfolio is also a well diversified portfolio across therapeutic areas and clinical trial

phases. This maybe a likely reason for its good risk-adjusted performance.

The portfolio construction and performance evaluation involved multiple param-

eters, we performed sensitivity analysis and investigated the varying performance of

megafund on varying the capital structure: from 80:20 debt-equity financing to all

equity financing, varying probability of success of the phase transition and changing

market value of the drugs.

Leverage

One of the design choice of the megafund construction is the leverage ratio in the

raising funds. The portfolio can be financed with debt-equity financing with different

leverage. In the Table 5.1, we simulated the portfolio with a debt-equity financing (ra-

tio leverage 80:20). We vary this leverage ratio to evaluate the expected performance

of portfolio. We find that high leverage ratio increases the probability of default on

the debt. It is logical given that more cash is required for making continuous coupon

payment. The probability of default can be reduced by decreasing the leverage, but

it comes at the cost of lower return on equity. The sharpe ratio is maximum for

the all equity financed megafund for both benchmark (0.45) and optimized (0.48)

portfolios. The expected number of drugs approved are maximum for the all equity

financed megafund (benchmark: 23.5 and optimized: 25.3). The detailed performance

measures are included in the Table D.5 in Appendix.

Probability of Successful Phase Transition

The probability of success is another important parameter in determining the suc-

cessful phase transition of a drug from pre-clinical stage development to phase 1,2,3

and finally to approval. We vary the probability of the success to observe the effect on

the performance. The PoS values used in the study are baseline PoS values obtained
5Brute force optimisation will give best possible parameters but it is intractable
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on the basis of historical data and literature. We hypothesize that experts involved in

portfolio creation can select the drug development projects that can perform better

than baseline values. We simulated all equity financed megafund varying the PoS

from given in Table D.1 to 1.05, 1.10,1.15, 1.20 and 1.25 times the values in Table

D.1. The detailed results are included in Appendix Table D.6. As expected, increas-

ing the PoS leads to more number of approved drugs, from 23.5 to 52.9 (benchmark

portfolio) and 25.3 to 56.9 (optimized portfolio)6. Higher PoS also leads to higher

return of equity and sharpe ratio (increased from 0.42 to 0.45, benchmark portfolio

and increased from 0.44 to 0.48, optimized portfolio).

Market Value of Drugs

Market value of drugs is another important factor in our megafund framework. Market

value of drugs decide the cost of the assets and revenue if assets are sold. We change

the value of approved market drugs to two different set of values: moderate (minor

modification in the market value) and aggressive (large modifications in the market

value) given in the Table D.7. We also modify the discount factor in the Equation 5.1

that changes the value of the pre-clinical and phase 1, 2, 3 approved drugs. We don’t

observe a significant change in the megafund performance on varying these factors

(refer Table D.8). There is a increase in the default probability for senior tranche

bonds for benchmark portfolio (increased to 1.2 bps from 0.4 bps) while the returns

on the equity increased to 12.5-6% from 11.3-6%. Also, we find slightly more number

of drugs approved (increased to 19-22 from 18-20). Hence, the megafund performance

is robust to change in the market value of drugs.

5.2 Fusion Energy Research

The case for investing in fusion energy has never been greater, given increasing global

energy demand, high annual carbon dioxide output, and technological limitations

for wind and solar power. Nevertheless, financing for fusion companies through tra-
6The PoS is varied for all equity financed megafund
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ditional means has proven challenging. While fusion startups have an unparalleled

upside, their high upfront costs, lengthy delay in payoff, and high risk of commercial

failure have historically restricted funding interest to a niche set of investors. Drawing

on insights from investor interviews and case studies of public–private partnerships,

we propose the utilization of a megafund structure in which a large number of projects

are securitized into a single holding company funded through various debt and equity

tranches, with first loss capital guarantees from governments and philanthropic part-

ners. The megafund exploits many of the core properties of the fusion industry: the

diversity of approaches to engender fusion reactions, the ability to create revenue-

generating divestitures in related fields, and the breadth of auxiliary technologies

needed to support a functioning power plant. The model expands the pool of avail-

able capital by creating tranches with different risk–return tradeoffs, and providing a

diversified “fusion index” that can be viewed as a long hedge against fossil fuels.

5.2.1 Method

The summary of steps of megafund are included in the Figure 5-3. We used multi-

period monte carlo simulation to evaluate the performance of the megafund. The

boxes in the blue are the parameters that are input for the simulation. The param-

eters are probability of success of successful phase transition, length, cost of each

phase, spinoff probabilities, correlation between projects and value of projects (cash

that can be generated by selling a project). These parameters are estimated via the

consultation with the industry experts. First step of portfolio acquisition involves

acquiring a fixed percentage stake in the projects. Different stages of the projects

require funding and they are financed by the megafund proportional to the owner-

ship. The selling of the successful projects generates the cash flows for paying debt

obligations. Once the fund reaches the horizon, it is liquidated and cash generated

is used for fulfilling its debt obligation, equity payment and performance of fund is

computed. If the fund is unable to pay the bond coupon payments at any point, it is

liquidated.
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Figure 5-3: Flowchart depicting the megafund simulation framework.
The boxes in blue are various parameters estimated/inputs. The boxes in green depict
steps of simulation

Results

We construct megafund portfolio by acquiring 10% stake in each company (total 18).

The tenor of the fund is 20 years. Whenever the capital is raised via debt, we have

three tranches: junior (interest 6%), mezzanine (interest 4%) and senior (interest

2%) along with equity. In Table 5.2, we include the performance statistics of the

megafund. The total capital raised is $3 Billion using equity and debt in the ratio

of 100:0, 60:40 and 40:60. We find annualized ROE is in range of -0.78-2% and

annualized sharpe ratio in ranges from -0.02 to 0.11. When higher percentage of

capital is raised via debt, we find scenarios when megafund defaults more often. For

debt-to-equity ratio of 40:60, we find low probability of default for the junior tranche

(0.01%) and no default scenarios for mezzanine and senior tranche. For larger capital

raised using debt, we observe higher default probabilities because less cash available

for coupon payments. We find that the number of successful projects is few due to

the longer duration of the projects. At the end of megafund tenor, we find 4 projects

in breakeven and 3 projects in commercialization stage.

In our modelling, when the project successfully finishes R&D stage, there is a

potential of spinoff companies using the new technology developed during research.

We include the number of successful spinoff projects from our portfolio in Table 5.3.
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Measures 100:0 (Equity:Debt) 60:40 (Equity:Debt) 40:60 (Equity: Debt)

ROE (Total) 39.12 11.85 -14.50

ROE (Arithmetic Avg) 1.96 0.59 -0.73

ROE (Geomeric Avg) 1.66 0.56 -0.78

Pr(ROE<-10%) 3.36 81.16 87.79

Sharpe (Annual) 0.11 0.02 -0.02

# Prototyping 0 0 0.1

# Breakeven 4.2 4.3 4.3

# Commercialization 3.4 3.1 2.7

# Finished 0.1 0.1 0.1

Junior Default(%) 0.0 0.01 38.12

Mezzanine Default(%) 0.0 0.0 2.79

Senior Default(%) 0.0 0.0 0.01

Table 5.2: Performance statistics of the megafund.
The ratio of equity-to-debt is varied from 100:0, 60:40 and 40:60.

We find 4 laser technology, 5 medical scanning and 6 magnet technology company

spinoffs from our portfolio. Later, we will find that cashflows from the licensing deal

contributes significantly to the portfolio performance.

Sensitivity Analysis

As discussed earlier, the simulation requires multiple input parameters. These pa-

rameters are cost/funding required for each stage, duration of stages, probability of

successful phase transition, revenue obtained from selling of the project at different

stages and revenue from the licensing deal for the spinoff companies. In Table 5.4, we

present the performance of equity funded megafund varying the value of successful

project from $66 Billion to $44 and $22 Billion. As expected, we find decreasing ROE

119



Spin off Companies Average Number Standard Deviation

Laser 4.0 1.8

Magnets 6.0 1.0

HTS 0.9 0.3

Cyclotron 3.0 1.0

EM Aircraft Launch 2.3 1.6

Thermal Measurement 2.3 1.6

Robotics 1.7 1.8

Medical Scanning 5.5 1.9

Life Science 1.7 0.8

Material Science 1.7 0.8

Table 5.3: Average number of spin-off companies from the successful megafund.

by decreasing the value of successful project. We also observe that lowering the value

of licensing deal from $300mil to $30mil (keeping value of successful project fixed

to $22 Billion) decreased the average annual ROE from negative 1.13% to negative

2.96%. Hence, along with the revenue generated from the successful projects, the

revenue from spinoff licensing deals an important component in generating cash flow

and returns for investors.

In Table 5.5, we include the performance of equity funded megafund varying the

parameters like probability of successful phase transition, funding of projects in differ-

ent phases. As expected, increasing the probability of success leads to higher returns

on equity because of fewer number of projects failing. Similarly, lower costs in each

phase have higher returns on equity. We observe higher ROE on both decreasing

and increasing the duration of each stage. For lower duration, a greater number of

projects reaches the final stages in the fixed tenor.
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Revenue:$66bil Revenue:$44bil Revenue: $22bil Revenue:$22bil

Measures Spinoff: $300mil Spinoff: $300mil Spinoff: $300mil Spinoff: $30mil

ROE(Total) 39.12 9.39 -20.34 -45.2

ROE(Arithmetic Avg) 1.96 0.47 -1.02 -2.26

ROE(Geometric Avg) 1.66 0.45 -1.13 -2.96

P(ROE<-10%) 3.36 42.14 78.05 88.62

Sharpe (Annual) 0.11 0.04 -0.15 -0.4

# Prototyping 0 0 0 0

# Breakeven 4.2 4.2 4.2 4.4

# Commercialization 3.4 3.4 3.4 3.2

# Finished 0.1 0.1 0.1 0.1

Table 5.4: Megafund Performance.
We vary the value of the successful project (revenue generated after selling a successful project) from
$66bil to $44 and $22bil. We also vary the cash flow generated from licensing deal of the spin off
companies from $300mil to $30mil. Megafund is equity funded.

5.3 Conclusion

For drug development, we extended the existing megafund framework to incorporate

drug projects in various stages of development (pre-clinical, phase 1,2,3 and royalties)

and from eight different therapeutic areas and showed the feasibility of the megafund.

Along with generating 11.3% annualized returns on equity, it also leads to the devel-

opment of 19-20 drugs that can potentially be used to decrease the burden of diseases.

We robustly evaluate the megafund by computing multiple performance measures and

conducted sensitivity analysis on the capital structure (leverage ratio), probability of

successful phase transition and market value of drugs.

For drug development, the diversified megafund approach can be a source of funds

for drug projects that gets abandoned in the drug development process due to lack

of funding and it can potentially lead to the development of successful treatment.

From the investment perspective, megafund can a investment opportunity where the

investors are trying to diversify away from the traditional assets. We found that
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Baseline PoS PoS Cost Cost Length Length

1x 0.8x 1.2x 0.8x 1.2x 0.8x 1.2x

ROE(Total) 39.12 21.52 56.41 54.97 23.5 61.86 44.54

ROE(Arithmetic Avg) 1.96 1.08 2.82 2.75 1.17 3.09 2.23

ROE(Geometric Avg) 1.66 0.98 2.26 2.21 1.06 2.44 1.86

P(ROE<-10%) 3.36 3.62 2.69 0.07 30.55 59.59 0.81

Sharpe (Annual) 0.11 0.09 0.12 0.15 0.29 0.09 0.1

# Prototyping 0 0 0 0 0 0 2

# Breakeven 4.2 2.7 4.9 4.2 4.3 1.1 5.8

# Commercialization 3.4 1.7 4.9 3.4 3.2 1.4 1.7

# Finished 0.1 0.1 0.2 0.1 0.1 0.5 0.1

Table 5.5: Megafund Sensitivity Analysis.
Megafund portfolio performance varying the parameters like probability of successful
phase transition, cost of each stage and length of each stage of the project. The
baseline equity funded megafund performance are included in column 2. For other
parameters, we vary the estimates to 0.8xbaseline and 1.2xbaseline keeping other
parameters constant. The value of successful project was fixed to $66bil and spinoff
values were fixed to $300mil..

along with high returns on equity, the senior tranche issued on the megafund had the

probability of default of 0.4 basis points which is comparable to the AAA and AA

rated bonds.

The megafund included modelling multiple parameters:- probability of success,

cost & duration of clinical trials, value of approved drugs, correlation between com-

pounds and cash flows from royalty assets. We modelled and adapted them from best

possible sources in literature but the assumptions and parameters can be modified

and performance can be evaluated using the open source software.

For fusion research, we find positive returns on equity (ROE) and low default rates

for the capital raised using debt. However, the ROE and default rates depends on the
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value of the successful/in-pipeline projects and cashflows from the licensing deals of

the spinoff companies. We performed a sensitivity analysis to show the varying ROE

for the estimates of the value of pipeline projects, spinoff companies licensing deals

and other parameters.
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Chapter 6

Finance for Impact: Quantifying the

Returns of ESG Investing

In this Chapter, we quantify the financial performance of environmental, social, and

governance (ESG) portfolios in the U.S., Europe, and Japan, based on data from

six major ESG rating agencies. We document statistically significant excess returns

in ESG portfolios from 2014 to 2020 in the U.S. and Japan. We propose several

statistical and voting-based methods to aggregate individual ESG ratings. We find

that aggregate ESG ratings improves portfolio performance. In addition, we find that

a portfolio based on Treynor-Black weights further improves the performance of ESG

portfolios. Overall, these results suggest there is a significant signal in ESG rating

scores that can be used for portfolio construction despite their noisy nature.

6.1 Introduction

In recent years, environmental, social and governance (ESG) concerns have gained

considerable attention from investors. The market for ESG investing is currently

estimated at $9 trillion in the U.S.,1 while the number of organizations that are

signatories of the United Nations Principles for Responsible Investment (UN-PRI)

has increased from 450 in 2016 to 4935 in 2022, representing over $100 trillion of
1https://www.rockpa.org/guide/impact-investing-introduction/
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assets under management.

Investors who want to implement ESG factors in their portfolios typically rely

on ESG scores provided by third-party rating agencies that specialize in measuring

ESG performance. There is a rapidly growing number of such rating agencies, and

in our sample, we rely on ratings from some of the largest agencies, such as MSCI

Inc, S&P Global, ISS, Moody’s ESG Solutions, Reprisk, and TruValue Labs.Each

rating agency has a proprietary methodology for the calculation of their ratings. This

process typically involves gathering data from a variety of sources, including yearly

regulatory filings, media reports, and self-disclosed data from firms and international

organizations. The choice of different data methodologies and sources can lead to a

substantial divergence between rating providers [27].2 ESG ratings, and sustainable

investing in general, have received a number of high-profile critiques. For example,

the Economist dedicated a recent cover story to ESG investing, concluding that ESG

ratings are too complex and contain too much measurement error to be useful. This

raises the question whether ESG ratings are in fact useful for portfolio construction,

and if so, how to optimally exploit the signal in ESG ratings, despite their noisy

nature.

One of the most important critiques of ESG ratings raised by regulators concerns

the fiduciary responsibility of financial institutions. Portfolios constructed using the

ESG scores are constrained, and therefore, if such a constraint reduces portfolio re-

turns, it could be considered an illegal act — especially if the financial institution fails

to clearly inform the investor of such a possibility. In general, most of the regulatory

commentary is based on the intuition that restricted portfolios are by necessity less

profitable than unrestricted ones. However, this intuition is correct only if a con-

straint is orthogonal to returns. That is not the case if the selection mechanism is

associated with the fundamental characteristics of the stocks. Consequently, under-

standing if ESG scores are associated with excess returns is of crucial importance to

investors, regulators, financial institutions, and ultimately, to those that care about

ESG impact to society in general.

2Furthermore, [26] show that these ratings contain a considerable amount of measurement error.
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In our empirical analysis, we construct ESG portfolios for the U.S., European,

and Japanese stock markets, using ESG scores from six major rating agencies. We

quantify the excess returns of these portfolios with respect to standard asset pricing

models, including the capital asset pricing model (CAPM) and several Fama-French

factor models. Our sample ranges from 2014 to 2020. We find a wide range of

excess returns in portfolios constructed using different ESG scores. For example, the

MSCI-based portfolio that goes long the top quartile of stocks with the highest ESG

ratings and short the bottom quartile achieves a statistically significant annual alpha

of 3.8% in excess of the Fama-French five-factor model in the U.S., while the same

portfolio using other ESG ratings shows much lower (and usually neutral) excess

returns. In addition, the same rating agency may have very different excess returns

across regions. This instability in coefficients should have been expected, considering

the sizeable noise in ESG scores.

To address the problem of noise, we propose several different ways to aggregate

ESG scores across vendors. We construct a single measure of ESG by combining

individual ESG scores from six different vendors using various statistical and voting

aggregation techniques, including simple averages, the Mahalanobis distance, princi-

pal component analysis, average voting, and singular transferable voting. Our goal is

to retain the ESG signal in the aggregated rating while attenuating the noise. Differ-

ent aggregation methods will necessarily weight the ESG scores from rating agencies

differently. For example, the simple average attributes equal weights to scores from all

vendors, while the Mahalanobis distance aggregates ratings based on their variance-

covariance, and principal component analysis weights the rating agencies in such a

way to retain the direction of their maximum observed variance.

We find that aggregating individual ESG ratings improves portfolio performance

significantly. We construct sorted ESG portfolios (from high to low scores) and ana-

lyze their risk-adjusted returns, excess returns, and exposures to fundamental factors.

In particular, we find that portfolios in the U.S. based on the Mahalanobis distance

achieve the highest annualized alpha, over 6%, while portfolios based on singular

transferable voting achieve the highest annualized alpha, over 6% in Europe and 9%
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in Japan.

The empirical evidence on excess returns of ESG investing has been mixed in

the existing literature. Some document a positive relationship between ESG scores

and excess returns (see, for example, [96], [154], [174], and [10]), while others find a

negative relationship (see, for example, [58], [98], and [34]). [26] describe a theoretical

model explaining both relationships. They explain the positive realized returns by

unexpected inflows into stocks with high ESG performance. As these inflows level out,

the expected returns become lower. Put differently, high ESG firms benefit from a

lower cost of capital due to higher market capitalization. Another possible explanation

is found in omitted variable bias, in particular the omission of management quality.

If good ESG performance is correlated to high management quality, the link between

ESG performance and returns would no longer be causal. In our sample from 2014

to 2020, we found a positive relationship in the U.S. and Japan most likely due to

inflows of funds from new ESG investors into high ESG stocks. For example, [25] find

that MSCI rating changes drive changes in ESG mutual fund holdings in the U.S.

market, albeit with a very slow integration of up to 18 months. They also show that

this correlates temporally with returns.

We find that the portfolio construction methodology proposed by [186] further

improves the performance of ESG portfolios. [186] methodology begins by quantifying

the excess returns for individual assets using a small number of parameters,3 then

applies Treynor-Black weights to optimize the Sharpe ratio of an ESG portfolio, in

which the weights are proportional to the rank of the ESG score of each firm.4 Using

this framework, we achieve improved excess returns in ESG portfolios, especially for

portfolios with a large number of assets. This is valid in particular for portfolios

constructed to go long the top 4 deciles of stocks with the highest ESG ratings and

short the bottom 4 deciles of stocks with the lowest ratings, so that weights based on

the rank of each firm’s ESG score have a meaningful impact.

3Specifically, it uses the cross-sectional correlation between ESG scores and excess returns of each
stock.

4We compare the excess returns of ESG portfolios using the model of [186] to their forward-looking
realized excess returns and find a high degree of consistency between the two, thereby validating the
model.
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Some investors may prefer to rely on E, S, or G scores individually in the creation

of their portfolios. Consequently, we also investigate the aggregation of individual E,

S, and G scores across vendors, and analyze the excess returns of top-bottom sorted

portfolios. We find the highest excess returns for portfolios based on E scores in the

U.S. and Japan. In portfolios based on S and G scores, we find positive excess returns

only for some portfolios and aggregation methods.

This chapter is related to several strands in the literature. The first strand is about

disagreement between ESG providers. Our work is based on the growing literature

that highlights the divergence between ESG ratings (see, for example, [91], [250], [27],

and [121]).

Second, our work is also closely related to literature that explores the relationship

between ESG and stock returns. Some research shows higher returns [96, 154, 174],

while other work shows a negative relationship both empirically [34] and theoretically

[300]. [227] show that the high returns for green assets in recent years reflect unex-

pectedly strong increases in environmental concerns, not high expected returns. Our

work differs in our acknowledgement of the noisiness of ESG ratings and our proposal

of different aggregation methods.

Third, our research is related to the nascent literature in dealing with measure-

ment noise in ESG ratings and its impact on returns. [26] use instrumented variable

regressions to remove the noise in one version of the ESG score using others. In

our work, we improve the signal using aggregation methods that combine multiple

sources of data, and we leverage the optimal portfolios of [186] to further improve the

performance of these ESG portfolios.

In the remainder of this Chapter, Section 6.2 discusses the methodology used to

quantify excess returns, construct portfolios, and aggregate individual ESG scores.

We then discuss the data and present summary statistics in Section 6.3. Section

6.4 presents our extensive empirical analysis using different ESG scores and portfolio

construction methodologies. Finally, we conclude in Section 6.6.
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6.2 Methodology

In this section, we describe the methodology used to construct portfolios based on

ESG scores. We discuss our strategy to quantify excess returns for individual stocks,

the portfolio construction methodologies, and several methods to aggregate multiple

ESG scores.

6.2.1 Quantifying Excess Returns

We start with describing a methodology first proposed by [186], which we adapt to

ESG portfolios. We quantify the excess returns (alphas) of individual stocks ranked

by their ESG scores. This allows us to optimize the weights used in ESG portfolios

and to quantify their portfolio returns.

We consider a universe of N stocks with returns Rit that satisfy the following

linear multi-factor model (e.g., the Fama-French factor model):

Rit �Rft = ↵i + �i1 (⇤1t �Rft) + · · · + �iK (⇤Kt �Rft) + ✏it (6.1)

such that E[✏it|⇤kt] = 0 , k = 1, . . . , K (6.2)

where ⇤kt is the k-th factor return, k = 1, . . . , K, Rft is the risk-free rate, ↵i and �ik

are the excess return and factor betas, respectively, and ✏it is the idiosyncratic return

component.

ESG investors typically rank stocks according to their ESG scores, which we de-

note by ESGi, and we use ↵[i:N ] to represent the alpha of the i-th ranked stock.5 [186]

show that the expected values, variances, and covariances of these ranked alphas are

5In the statistics literature, these indirectly ranked variables are termed induced order statistics
[31], because they are ranked not by their own values (↵i in our case) but by the values of another
variable (ESGi in our case). As such, ↵i’s are modeled as random variables to reflect the fact
that they may be correlated with the ESG scores. This specification was used in [181] to represent
the cross-sectional estimation errors of intercepts derived from CAPM regressions. In the current
context, we interpret the randomness in ↵i as a measure of uncertainty regarding the degree of
mispricings of stocks, which is similar to the treatment in [226].
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given by

E(↵[i:N ]) = �↵ · ⇢ · E(Yi:N), (6.3)

Var(↵[i:N ]) = �2
↵
· (1� ⇢2 + ⇢2 · Var(Yi:N)), (6.4)

Cov(↵[i:N ],↵[j:N ]) = �2
↵
· ⇢2 · Cov(Yi:N , Yj:N), (6.5)

for i, j = 1, 2, . . . , N , and i 6= j. Here, ⇢ is the cross-sectional correlation between ↵i

and ESGi,6 �↵ is the standard deviation of ↵i, and Y1:N < Y2:N < · · · < YN :N are

the order statistics of N independent and identically distributed standard Gaussian

random variables.

To estimate Equations (6.3)–(6.5) in practice, for each year, we first perform a time

series regression7 using daily returns to obtain an estimate of ↵i for each stock. We

then compute ⇢ and �↵ based on ESGi and the estimated ↵i. Finally, we calculate

the moments related to Yi:N based on a simulation of N standard normal random

variables.

The results in Equations (6.3)–(6.5) are useful for two reasons. First, they allow

us to construct optimal Treynor-Black portfolios that maximize the Sharpe ratio of

the ESG portfolios. In particular, the expected excess returns in Equation (6.3) are

crucial in determining the weights of those portfolios. The advantage of using this

specific framework lies in its robustness, because only two parameters, ⇢ and �↵, need

to be estimated, compared to traditional Markowitz portfolios, which are known to

produce unstable weights [41, 276].

Second, the results in Equation (6.3) allow us to quantify the excess return of any

ESG portfolio, ↵p, with weights !i, i = 1, . . . , N :

E (↵p) =
NX

i=1

!iE(↵[i:N ]) = ⇢�↵

NX

i=1

!iE [Yi:N ] . (6.6)

6[186] assume that they are jointly normally distributed, and [185] generalize the framework to
arbitrary marginal distributions.

7The factors in the time series regression are decided on the basis of the Capital Asset Pricing
Model or selected Fama-French factor models.
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This provides an estimate of the alpha for ESG portfolios, which we refer to as the

model-implied alpha henceforth. We validate the model-implied alpha empirically

against a forward-looking estimate of alpha in Section 6.4. In particular, the real-

ized alpha for any portfolio can be computed by performing a time-series regression

based on a multi-factor model, such as the CAPM, the Fama-French three-factor

model (FF3), or the Fama-French five-factor model (FF5). At time t, the forward-

looking realized one-year alpha is computed using returns rt+1, rt+2, rt+3, . . . , rt+252

for a portfolio p. The realized alpha is represented by ↵f

p
, where f may be CAPM,

FF3 or FF5.

6.2.2 Portfolio Creation

Given a set of ESG scores for all firms, we construct ESG portfolios and estimate their

performances. At time t, we sort the stocks based on ESG scores and construct three

long/short portfolios. The first, pf(±10), represents a portfolio that goes long the top

decile of stocks with equal weights (denoted by pf(+10)) and short the bottom decile

of stocks with equal weights (denoted by pf(�10)). The second, pf(±25), represents

a portfolio that goes long the top quartile of stocks with equal weights (denoted

by pf(+25)) and short the bottom quartile of stocks with equal weights (denoted by

pf(�25)). The third, pf(±40), represents a portfolio that goes long the top 4 deciles

of stocks with equal weights (denoted by pf(+40)) and short the bottom 4 deciles of

stocks with equal weights (denoted by pf(�40)). The total weights of individual stocks

on the long and short sides are both set to one to give all portfolios the same amount

of leverage. We refer to these three portfolios as the ±40, ±25 and ±10 portfolios

henceforth. These portfolios are rebalanced once a year because ESG scores are

updated by vendors once a year (with the exception of Reprisk). We observed very

high cross-sectional autocorrelations between scores, as shown in Table E.1 in the

supplementary material.

In addition to these equal-weighted portfolios, we build optimized Treynor-Black

portfolios using the model-implied alphas for individual stocks in Equations (6.3)–

(6.5), which use the rank of stocks in the ESG sorted portfolio. For example, in
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pf(+10) for equal-weighted portfolios, all stocks in the 10th decile (percentiles 90 to

100) are given equal weights. However, in Treynor-Black weighting, higher-ranked

stocks are given larger weights than lower-ranked stocks, if the correlation ⇢ between

the ESG score and stock alpha is positive. Specifically, [186] show that the weight of

the ith ranked stock in a universe of N stocks can be approximated by the following

equation:8

!i / ��1(⇣i) (6.7)

where ⇣i = i/N and ��1 is the inverse of the cumulative standard normal distribution.

Once these ESG portfolios are constructed, we can combine them further with

any other portfolio. The most natural application is to combine the active (ESG)

portfolio with a passive index, such as the market portfolio. The returns of the

combined portfolio are given by:

ractive+passive = !A ⇤ ractive + (1� !A) ⇤ rpassive (6.8)

where ractive can be any return of a top-bottom equal-weighted or Treynor-Black

weighted portfolio, rpassive is the return of the passive portfolio (e.g., the market

index), and ! is the weight of the active portfolio. In our analysis, we have fixed !A

at 0.5 as an illustrative example.

In Section 6.4, we evaluate the performance of all equal-weighted, Treynor-Black,

and active-plus-passive portfolios.

6.2.3 ESG Rating Aggregation

Berg et.al.citeberg2021esg show that ESG ratings are certainly noisy but nevertheless

contain a signal. The measurement error inherent to ESG ratings makes it difficult to

find significant risk premia. To solve this problem, we propose several different ways

of aggregating ESG scores. Let ESGi,t,j be the ESG score of company i rated by
8The approximation holds when the number of stocks is large and stocks have identical idiosyn-

cratic volatilities.
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vendor j at time t. We then compute ESGi,t,m, where m is the aggregation method.

We describe each aggregation method in the following paragraphs, and analyze the

performance of portfolios based on these aggregated ESG scores in Section 6.4.

Equal Weighted Average

The first and simplest aggregation method under consideration is the equal-weighted

cross-sectional average of all ESG ratings. The average is a widely used method for

noise attenuation, and we intuitively expect the ESG signal to be stronger here than

in the case of a single rating. We use AV G to indicate the equal-weighted average

rating.

ESGi,t,avg =
X

j2{MSCI,S&PGlobal,...,TVL}

ESGi,t,j (6.9)

PCA

Principal Component Analysis (PCA) is a widely used dimensionality reduction method.

In some cases, it can also be used as a tool for noise reduction. The PCA performs

a change of basis transformation and projects the data in the direction of the max-

imum variance. If errors are similarly distributed between ratings, it will minimize

the information loss. We treat the ESG scores from the six vendors in our sample as

high-dimensional data and obtain its lower dimensional (1-d) representation as the

aggregate score.

ESGi,t,PCA = PCA(ESGi,t,MSCI , ESGi,t,S&PGlobal...ESGi,t,TV L)

We use PCA to indicate the aggregate score obtained by principal component anal-

ysis.

Mahalanobis Distance

The Mahalanobis distance is the distance between two points after accounting for

variances and covariances across dimensions. In brief, highly correlated ESG scores

will not be given excess weight in the calculation of the aggregate score. Let the ESG
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scores of firm i be the vector x and y be the vector with minimum ESG scores. We

then calculate the Mahalanobis distance as follows:

xi,t = (ESGi,t,MSCI , ESGi,t,S&PGlobal...ESGi,t,TV L)

yt = (mini(ESGi,t,MSCI),mini(ESGi,t,S&PGlobal)...mini(ESGi,t,TV L))

ESGi,t,Maha =
q

(xi,t � yt)TS
�1
t (xi,t � yt)

(6.10)

where St is the variance-covariance matrix for the ESG ratings at time t. We refer

to the aggregate score obtained by the computation of the Mahalanobis distance as

MAHA.

Voting Average

The voting average is based on the theory of social choice, that is, the aggregation

or combination of individual preferences in collective decisions. In voting aggregation

methods, the ESG scores from a rating agency are considered as a ranked list of

choices and the different agencies are considered as voters. In the voting average

process, each rank is averaged to compute an aggregate rank of each firm. It is

represented by AV Gvote in our subsequent analysis.

Voting STV

The Singular Transferable Vote (STV) method is another way of aggregating the ESG

ratings. In this aggregation method, the least preferred candidate is eliminated and

the vote is transferred to the next preferred candidate. The process is repeated until

all the candidates are eliminated, one by one. The eliminated candidates are ranked

in the order of elimination to form a ranked list of the candidates. The aggregated

ESG score using this method is represented by STVvote in our subsequent analysis.
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Optimized ESG Score

The optimized ESG score is a linear combination of ESG scores from all rating agen-

cies. The weights are derived from an optimization that maximizes the cross-sectional

correlation between ESG scores and the one-year future excess returns of the stocks.

ESGi,t,opt =
X

r2MSCI,S&PGlobal...

wr ⇤ ESGi,t,r

wr : max(avgt(corri(ESGi,t,opt,↵i,t)))

(6.11)

Since the optimization involves the use of out-of-sample excess returns, the excess

returns obtained using ESGi,t,opt cannot be realized. However, the ESG scores op-

timized in this way have the maximum correlation with excess returns that can be

achieved by a linear aggregation of ESG scores from different rating agencies. The

aggregate scores obtained using optimization are referred to as OPT in our analysis.

6.3 Data and Summary Statistics

6.3.1 Data

We obtained data from six leading ESG rating providers, including MSCI, S&P

Global, ISS, Moody’s ESG Solutions, Reprisk and TruValueLabs.9 We observe non-

overlapping coverage in our dataset across rating agencies. Hence, for a fair compar-

ison across different providers, we only include those firms with observations from all

six rating agencies. We also have E, S and G ratings in our dataset for all agencies,

except for TruValueLabs, which does not offer such scores.

For our analysis, we classify firms into three different regions: the U.S., Europe,

and Japan. The total number of firms in each region are 633 in the U.S, 547 in

Europe, and 274 in Japan. Our sample spans from March 2014 to 2020. The relatively

short time series is explained by the fact that sustainable investing is a fairly recent
9We also have data from Sustainlytics and Refinitiv. However, Refinitiv and Sustainalytics

have changed their methodologies over time, and their ESG scores were backfilled using these new
methodologies [24]. Adding these two providers to our analysis would introduce a forward-looking
bias to our analysis.
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phenomenon. Since ESG ratings from different providers have different scales, we

renormalize them to have zero mean and unit variance in the cross-section.

The daily returns were queried from the Refinitiv workspace10. For the calculation

of excess returns, we obtained our data from the Fama-French data library11. We

retrieved the daily MSCI index returns for U.S., Europe and Japan from MSCI Index

Solutions12.

6.3.2 Summary Statistics: Excess Returns and ESG

We averaged the cross-sectional rank13 correlations between different individual and

aggregated ESG scores over time, and present them in Table 6.1. We show that the

correlation between different ESG ratings vary over time. Some scores are highly

correlated with each other, like ISS, MSCI, SPGlobal and Moody’s. Rather surpris-

ingly, Reprisk has a negative correlation with the other ratings. Among the aggregate

scores, AVG, PCA and AVGvote exhibit relatively high correlations (>80%). How-

ever, the aggregate scores based on STV voting are significantly different from other

aggregate scores, given their smaller correlation coefficients (60-70%). We find rel-

atively similar correlations (in the range of 40-50%) between individual ESG scores

and scores computed using the Mahalanobis distance (MAHA). This is due to the

variance-covariance normalization property of the Mahalanobis distance.

In Table 6.2, we present the cross-sectional mean and standard deviation of excess

returns (alphas ↵i,t: the one-year future alpha of the stock i at time t) computed

as follows: mean↵ = avgt(avgi(↵i,t)), std↵ = avgt(stdi(↵i,t)), where i is the company

and t is the time. We find that the cross-sectional standard deviation of excess returns

varies between 18 and 25%, while the cross-sectional mean of excess returns varies

widely between regions. These parameters are necessary to quantify the excess returns

of portfolios constructed as described in Section 6.2.1.

10https://www.refinitiv.com/en/products/refinitiv-workspace
11https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
12https://www.msci.com/our-solutions/indexes
13In the construction of a long-short ESG portfolio, the rank of a company matters more than its

score value.
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ISS:
ESG

MSCI:
ESG

Reprisk:
ESG

SPGlobal:
ESG

TVL:
ESG

Moody’s:
ESG

AVG:
ESG

PCA:
ESG

MAHA:
ESG

AVGvote:
ESG

STVvote:
ESG

ISS:
ESG

1.00 0.40 -0.24 0.59 0.12 0.62 0.73 0.80 0.48 0.75 0.59

MSCI:
ESG

0.40 1.00 -0.02 0.34 0.18 0.38 0.67 0.57 0.45 0.68 0.33

Reprisk:
ESG

-0.24 -0.02 1.00 -0.41 0.14 -0.33 0.03 -0.43 0.43 0.00 -0.14

SPGlobal:
ESG

0.59 0.34 -0.41 1.00 0.06 0.69 0.67 0.84 0.46 0.69 0.60

TVL:
ESG

0.12 0.18 0.14 0.06 1.00 0.10 0.46 0.18 0.45 0.45 0.56

Moody’s:
ESG

0.62 0.38 -0.33 0.69 0.10 1.00 0.73 0.85 0.46 0.74 0.50

AVG:
ESG

0.73 0.67 0.03 0.67 0.46 0.73 1.00 0.84 0.84 0.99 0.73

PCA:
ESG

0.80 0.57 -0.43 0.84 0.18 0.85 0.84 1.00 0.50 0.86 0.66

MAHA:
ESG

0.48 0.45 0.43 0.46 0.45 0.46 0.84 0.50 1.00 0.80 0.62

AVGvote:
ESG

0.75 0.68 0.00 0.69 0.45 0.74 0.99 0.86 0.80 1.00 0.72

STVvote:
ESG

0.59 0.33 -0.14 0.60 0.56 0.50 0.73 0.66 0.62 0.72 1.00

Table 6.1: The cross-sectional rank correlation between ESG scores (individual and
aggregate) averaged over time.

Region FF5 FF3 CAPM
Mean Std Mean Std Mean Std

USA 1.02 19.76 1.13 19.98 -0.55 22.93
Europe 6.55 21.46 6.14 21.60 3.86 23.35
Japan 4.27 18.64 3.29 19.13 0.14 20.72

Table 6.2: Alpha Statistics.
The cross-sectional mean and standard deviation of excess returns (alpha) of the
sampled companies, computed using different factor models (FF5, FF3 and CAPM)
averaged over time.
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6.4 Performance of ESG Portfolios

In this section, we begin our study of the performance of ESG portfolios by first

measuring the cross-sectional correlation between ESG scores and excess returns of

individual stocks. We then summarize the empirical properties of both the raw re-

turns and the returns in excess of Fama-French factor models for portfolios based

on their individual and aggregated ESG scores. We then look at ESG portfolios

constructed using Treynor-Black weights, and ESG portfolios combined with passive

index portfolios.

6.4.1 Correlations between ESG ratings and Excess Returns

USA Europe Japan
ESG FF5 FF3 CAPM FF5 FF3 CAPM FF5 FF3 CAPM

ISS: ESG 2.88 3.40 7.75 5.66 7.03 4.23 6.07 6.86 8.43
MSCI: ESG 4.46 4.77 6.70 3.74 5.13 5.38 5.41 5.09 6.23

Reprisk: ESG 2.75 2.36 2.71 -3.22 -1.37 6.11 2.40 1.88 4.45
SPGlobal: ESG 1.72 1.90 2.58 3.63 2.83 -3.66 6.41 5.51 6.01

TVL: ESG 2.17 2.92 3.43 2.42 4.43 5.62 3.63 3.47 2.24
Moody: ESG 2.81 2.82 4.38 3.22 3.12 -2.60 5.66 5.33 5.02
AVG: ESG 4.91 5.32 8.09 4.70 6.41 4.61 8.74 8.32 9.57
PCA: ESG 2.79 3.20 5.55 5.33 5.51 -0.36 6.73 6.57 6.93

MAHA: ESG 5.42 5.52 7.88 1.78 3.62 4.96 9.02 8.26 9.91
AVGvote: ESG 4.90 5.40 7.67 5.11 6.69 4.62 8.85 8.66 9.89
STVvote: ESG 3.59 4.18 5.45 4.31 4.86 0.86 8.25 7.85 7.74

OPT: ESG 6.06 6.14 9.32 6.56 7.99 5.32 9.13 8.47 10.37

Table 6.3: Average cross-sectional correlation between ESG scores and alpha (excess
returns).

Given the ESG scores of individual stocks and their excess returns, we compute

the cross-sectional correlations, corrt = corri(ESGi,t,↵i,t), on date t for different ESG

scoring methods, where ↵i,t is the one-year forward-looking alpha of stock i at date

139



t. The average values of corrt are presented in Table 6.3 for both individual and

aggregated ESG scores. The last row shows that the maximum possible correlation

(OPT: ESG) from linear combinations of individual ESG scores is in the range of

6 to 10% for all alphas and regions. Although the correlations for other aggregate

ESG scores are inevitably lower, they are not much lower compared to the optimized

ESG score. Different regions have different scores with the highest correlations. For

example, in the U.S., MAHA: ESG and AVG: ESG achieve the highest correlations,

while ISS: ESG has the highest correlations in Europe.

In Figure 6-1, we show the time series correlation values for AVG: ESG scores.

We observe that correlations are typically in the range from 30 to 40% in the U.S.

and Japan. However, there are some instances of negative correlation as well. A

negative correlation implies that a high-low portfolio has negative excess returns. We

find positive correlations in our sample on average because from 2014 to 2020, the

ESG portfolio potentially had positive excess returns.

The different statistics described in Tables 6.2–6.3 can be used to obtain the

average excess returns as described in Section 6.2.1. For example, the average alpha

for the top decile/bottom decile ESG portfolio with a cross-sectional ↵ deviation 20%

and correlation value of 5% will be 2 ⇤ 0.20 ⇤ 5 ⇤ 1.64 = 3.28%. We discuss the excess

returns of different ESG portfolios in Section 6.4.3 in more detail.

(a) (b) (c)

Figure 6-1: The correlation between average ESG score & stock performance (alpha)
(y-axis) versus time (x-axis).
We find that the correlation between ↵ and the average ESG score can be as high as

20% to 30% (in the U.S. and Japan, respectively); however, it clearly varies over
time.
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6.4.2 Returns and Factor Exposure

Following Section 6.2.2, we construct multiple ESG top-bottom portfolios (±40, ±25,

and ±10) and compute their properties, such as their returns, risk-adjusted returns

(Sharpe ratios), excess returns (alphas) and exposure to different factors. In addition

to portfolios based on the ESG scores from individual vendors, we also construct

portfolios using the aggregate scores computed with the methods described in Section

6.2.3. We also include a portfolio which is simply the average portfolio constructed

using individual ESG scores (represented by INDI-AVG: ESG).14.

Table 6.4 presents the mean returns and annualized Sharpe ratios for ESG port-

folios computed using individual vendor and aggregated ESG scores. The ESG port-

folios achieve annualized returns as high as 6% in the U.S. and Japan, and 3% in

Europe. Similarly, the highest Sharpe ratios are around 1 in the U.S. and Japan,

and 0.7 in Europe. We find that portfolios based on ESG scores from individual ven-

dors have nonuniform returns and Sharpe ratios. ESG scores from ISS, MSCI, and

Reprisk have consistently positive returns across different regions, while portfolios

based on scores from SPGlobal, TVL, and Moody’s have negative returns in some

regions. However, the portfolios using aggregated scores have positive returns, and

are generally higher than returns of those based on constituent vendors.

Given the time series of portfolio returns, we follow Equation 6.1 and perform a

time-series regression to compute the excess returns and fundamental factor exposure

of these ESG portfolios. The response variable of the regression is the portfolio return,

and the factors are chosen to be the Fama-French five factors.

We find that the ESG portfolios have varying exposures to multiple fundamental

factors. We present the exposures in Table 6.5. We have a total of 33 portfolios

(11 different ESG scores multiplied by 3 top-bottom portfolios). Table 6.5 presents

the number of positive and negative significant betas (defined by a p-value < 5%)

out of 33 ESG portfolios. In the U.S. and Europe, ESG portfolios tend to have a

14This portfolio differs from the AVG: ESG portfolio because in AVG: ESG, we first compute the
average ESG scores and then construct portfolios based on the average. However, in INDI-AVG:
ESG, the first step is to construct portfolios based on individual ESG scores, and the second step is
to average the returns of individual ESG portfolios.

141



USA Europe Japan
Portfolio ±40% ±25% ±10% ±40% ±25% ±10% ±40% ±25% ±10%

Mean Returns
ISS: ESG 4.89 4.57 5.51 2.37 1.66 1.10 4.68 5.76 6.98

MSCI: ESG 3.25 4.72 5.48 3.89 4.13 3.76 3.48 5.24 1.53
Reprisk: ESG 2.07 2.05 4.17 1.21 3.29 6.30 1.14 2.31 4.29

SPGlobal: ESG -0.08 -0.48 1.46 -1.14 -0.70 2.02 2.62 3.63 7.78
TVL: ESG 2.39 2.49 -0.46 2.00 3.05 1.14 -0.52 -0.24 1.11

Moody: ESG 1.58 2.19 3.91 -0.93 -0.29 -1.89 2.35 1.86 6.39
INDI-AVG: ESG 2.35 2.59 3.34 1.23 1.85 2.18 2.29 3.09 4.68

AVG: ESG 3.32 6.48 6.39 2.60 3.21 4.30 5.26 5.38 4.83
PCA: ESG 2.26 3.69 2.94 0.28 0.68 1.54 3.04 3.81 4.20

MAHA: ESG 4.18 6.03 7.50 2.15 3.46 3.47 4.43 5.46 5.52
AVGvote: ESG 3.18 5.56 6.85 2.29 3.49 4.46 4.99 6.13 5.29
STVvote: ESG 2.59 2.07 1.30 -0.25 1.34 5.75 2.97 4.32 8.00

OPT: ESG 4.77 6.54 8.36 1.64 2.09 5.76 4.97 5.99 5.24
Sharpe Ratio

ISS: ESG 1.04 0.83 0.81 0.57 0.33 0.15 1.07 1.05 0.84
MSCI: ESG 1.07 1.23 0.94 1.00 0.86 0.53 0.93 1.05 0.19

Reprisk: ESG 0.53 0.45 0.67 0.27 0.57 0.73 0.25 0.39 0.51
SPGlobal: ESG -0.03 -0.12 0.26 -0.28 -0.13 0.28 0.53 0.53 0.82

TVL: ESG 0.60 0.50 -0.07 0.58 0.75 0.21 -0.13 -0.05 0.17
Moody: ESG 0.45 0.45 0.55 -0.24 -0.06 -0.28 0.42 0.26 0.68

INDI-AVG: ESG 1.03 0.92 0.92 0.63 0.75 0.58 0.82 0.87 1.06
AVG: ESG 0.81 1.18 0.85 0.70 0.71 0.62 1.12 0.93 0.58
PCA: ESG 0.59 0.73 0.42 0.07 0.13 0.21 0.59 0.57 0.49

MAHA: ESG 0.99 1.09 1.04 0.61 0.79 0.51 1.17 1.08 0.73
AVGvote: ESG 0.83 1.03 0.97 0.61 0.75 0.66 0.99 1.00 0.61
STVvote: ESG 0.62 0.41 0.20 -0.07 0.31 0.96 0.67 0.70 1.03

OPT: ESG 1.14 1.25 1.22 0.43 0.43 0.79 1.15 1.07 0.67

Table 6.4: ESG Portfolio Performance
Mean returns and Sharpe ratios for the top y% minus bottom y% ESG portfolios (in-
dividual and aggregate scores) for the U.S., Europe and Japan, where y = 40, 25, 10.
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negative exposure to the market and size factors, while having a positive exposure

to the profitability factor. However, in Japan, ESG portfolios tend to have negative

exposure to the profitability and the investment factors.

A varying exposure to different risk factors implies that the returns of the portfo-

lios are not purely due to ESG risk premia. They may be due to exposure to different

fundamental factors, as shown by the statistically significant coefficients in Table 6.5.

Therefore, we next analyze the excess returns of the ESG portfolios.

Market Size BM Profitability Investment
+ve -ve +ve -ve +ve -ve +ve -ve +ve -ve

11*3 Portfolios
USA 0 8 3 22 4 13 4 0 1 2

Europe 0 22 3 25 14 3 25 0 0 3
Japan 5 0 0 2 4 9 0 17 0 18

Table 6.5: Factor Exposure
Number of significant positive (+ve) and negative (-ve) betas (defined by a p-value
< 5%) for all 33 top-bottom ESG portfolios (11 ESG scores by 3 portfolios).

6.4.3 Estimating Excess Returns

In this section, we evaluate the returns of ESG portfolios in excess of their Fama-

French factors using two methods. The first method estimates the portfolio alphas

based on Equation 6.6 in Section 6.2.1. Here, we use the theory first proposed by

[186] to quantify the excess returns based on the correlation ⇢ between ESG scores

and alphas of individual stocks. The second method estimates a forward-looking

time-series regression of raw returns on Fama-French factors. We refer to the former

as the model-implied alpha and the latter as the realized alpha. We compute the

alphas of yearly top-bottom quantile portfolios using both methods, and show that

the model-implied alphas match realized alphas very well.

We construct top-bottom quantile ESG portfolios in which stocks are sorted by

individual ESG score. The stocks in each quantile portfolio are given equal weights.

Therefore, for each score, we will have four portfolios at time t, denoted by Q1, Q2,
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Q3, and Q4. Figure 6-2 presents the scatter plot of model-implied and realized alphas.

At time t, both the model-implied and realized alphas are computed for a one-year

forward-looking window. The number of data points in the scatter plot is 6 (the

number of ESG vendor scores) ⇥ 4 (the number of quantile portfolios) ⇥ 108 months

in our sample = 2592. To robustly validate the proposed model, we compute the

FF5, FF3 and CAPM alphas.

Figure 6-2 demonstrates that the realized and model-implied alphas of [186] match

each other reasonably well, all data points falling around the line y = x. The slope of

a simple linear regression of realized alphas against model-implied alphas is very close

to 1 (p-value < 1%) for all combinations of regions and factor models. Consequently,

we only report the realized alphas using forward-looking time-series regressions hence-

forth.15

Next, we evaluate the annualized excess returns of the top-bottom ESG portfolios

(±40, ±25 and ±25), as described in Section 6.2.2. In Table 6.6, we present the excess

returns (alphas) from the time series regression (Equation 6.1) using the Fama-French

five-factor model and the Capital Asset Pricing Model. From Table 6.6, we find that

the excess returns are positive and significant in the U.S. and Japan, but not in

Europe. The CAPM alphas are generally higher than the FF5 alphas, implying that

the Fama-French factors partially explain the positive returns beyond the market

factor of the CAPM.

The excess returns of the OPT portfolios are comparable to the highest returns

from those constructed using other aggregation methods or by individual scores. The

excess returns from the ESG portfolios using OPT cannot be realized, however, but

the other aggregate and individual ESG score alphas can. Hence, the highest realiz-

able alpha is close to the maximum possible alpha that can be obtained using a linear

combination of different ESG scores.

Among the individual scores, MSCI score portfolios consistently have the highest

FF5 alphas across all regions, while ISS score portfolios have significant alphas in the

U.S. and Japan. The aggregate ESG scores generally have higher alphas than most

15The results using model-implied alphas are of course similar.
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(a) USA, Alpha: FF5 (b) USA, Alpha: FF3 (c) USA, Alpha: CAPM

(d) Europe, Alpha: FF5 (e) Europe, FF3 (f) Europe, CAPM

(g) Japan, FF5 (h) Japan, FF3 (i) Japan, CAPM

Figure 6-2: Realized alphas for portfolios created using ESG scores (y-axis) versus
implied alphas (x-axis) for the same portfolios using the methods described in Section
6.2.1.
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USA Europe Japan
Portfolio ±40% ±25% ±10% ±40% ±25% ±10% ±40% ±25% ±10%

FF5 Alpha
ISS: ESG 3.30*** 2.34* 3.01* 1.95 1.82 0.27 4.27** 5.96*** 7.71***

MSCI: ESG 2.47** 3.80*** 4.81** 2.90** 2.89** 1.49** 3.93** 5.84*** 3.59***

Reprisk: ESG 0.95 0.86 2.75 -1.46 -0.40 0.80 0.09 1.27 2.88**

SPGlobal: ESG 0.72 0.31 1.92 0.43 1.22 3.26* 3.99*** 5.11*** 9.09***

TVL: ESG 2.37 1.79 -1.04 0.11 0.83 -1.28 -0.41 0.12 0.77
Moody: ESG 1.59* 2.73* 4.40** 0.58 1.29 -0.48 2.71* 1.94* 7.04**

INDI-AVG: ESG 1.90** 1.98** 2.64** 0.76 1.28 0.78 2.43** 3.37** 5.19***

AVG: ESG 2.69** 5.40*** 4.50** 1.82* 2.32* 2.12* 5.58*** 5.52** 5.92**

PCA: ESG 1.91* 3.23** 3.36* 1.70 1.93 2.51 3.92*** 4.81** 5.17**

MAHA: ESG 3.44*** 4.34** 6.09*** 0.34 0.95 -0.49 4.14** 5.79*** 7.25*

AVGvote: ESG 2.58** 4.36*** 5.44** 1.60 2.82* 2.85* 5.31*** 6.33*** 7.00**

STVvote: ESG 2.96** 2.44** 0.88** -0.49 1.39 6.06*** 3.69** 5.36** 9.56***

OPT: ESG 3.87*** 4.70*** 5.73** 1.24 1.52 5.20** 5.32*** 6.12*** 6.47**

CAPM Alpha
ISS: ESG 5.94*** 5.39*** 6.27*** 2.46** 1.72** 1.31** 4.18** 5.22*** 6.49**

MSCI: ESG 3.51*** 5.00*** 6.58*** 4.11*** 4.42** 4.21* 3.14** 4.79** 1.22**

Reprisk: ESG 1.86** 1.48** 2.89** 1.28 3.44* 6.57** 1.27 2.32 4.35***

SPGlobal: ESG 0.16 -0.26 2.26 -1.15 -0.75 1.96 2.09 2.87 6.56*

TVL: ESG 3.30** 3.02** -0.30** 1.97 3.07* 1.14* -1.20 -1.15 0.66
Moody’s: ESG 2.14* 3.11** 5.10*** -0.92 -0.29 -1.96 1.32 0.41 4.82

INDI-AVG: ESG 2.82*** 2.96** 3.80*** 1.30** 1.94** 2.32* 1.79 2.40* 4.01**

AVG: ESG 4.23** 7.72*** 7.41*** 2.72** 3.34** 4.60** 4.58*** 4.46** 3.71**

PCA: ESG 2.96** 4.76*** 5.12** 0.32 0.75 1.73 2.35 2.88 3.17
MAHA: ESG 5.16*** 6.89*** 8.60*** 2.29* 3.66** 3.80** 3.98** 4.76** 4.75**

AVGvote: ESG 3.91*** 6.55*** 7.25*** 2.41* 3.63** 4.76** 4.23** 5.03** 3.93**

STVvote: ESG 3.75** 3.11** 1.34** -0.21 1.37 5.80*** 2.46 3.56 7.07**

OPT: ESG 5.76*** 7.49*** 8.78*** 1.69 2.17 5.99*** 4.58*** 5.17** 4.11**

Table 6.6: Excess Returns for ESG Portfolios
FF5 and CAPM alphas for top-bottom ESG portfolios (±40%, ±25%, ±10%). The
alphas are computed using time series regression. The standard errors are computed
using heteroskedastic and autocorrelation consistent standard error estimators, with
statistical significance highlighted at the 1% (***), 5% (**), and 10% (*) levels.
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individual scores. These portfolios behave differently across regions and quantiles.

For example, the STVvote voting aggregate score generally has high ±10 portfolio

alphas in Europe and Japan. Broadly speaking, the alphas of different aggregation

methods are similar to each other, due to high correlation between their scores.

From Table 6.6, we find there are significant excess returns of 4.8%, 2.9% and

9% using individual ESG scores in the U.S., Europe, and Japan, respectively, while

there are excess returns of 6%, 6% and 9.6% using aggregate ESG scores. The alpha

of portfolios based on Reprisk, TVL, Moody’s scores are not statistically significant

(possibly due to the noise in the scores). However, the alphas for the aggregate

ESG portfolios are in general significant, likely due to the stronger signal from the

aggregation methods.

6.4.4 Treynor-Black Portfolios

Along with equal-weighted portfolios, we also construct ESG portfolios using Treynor-

Black weights, as given by Equation (6.7) in Section 6.2.2. In Treynor-Black port-

folios, the weights are inversely proportional to the rank of the ESG score of each

firm. In Table 6.7, we include the excess return (alpha) obtained from the time series

regression using the Fama-French five-factor model and the Capital Asset Pricing

Model.

Comparing the results in Tables 6.7 and 6.6, we do not observe a large difference

between the alphas of the ±25 and ±10 portfolios, but we do find differences in alphas

for the ±40 portfolios. The effect of unequal weighting becomes more prominent when

more firms are included in the portfolio and when firms at extreme percentiles on the

long or short sides are weighted differently. Our other observations about excess

returns described in Section 6.4.3 remain consistent.

6.4.5 Combining ESG and Passive Portfolios

Once the relative weights of securities within an ESG portfolio are determined, one

can combine that portfolio with any other portfolio. For example, we can also add
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USA Europe Japan
Portfolio ±40% ±25% ±10% ±40% ±25% ±10% ±40% ±25% ±10%

FF5 Alpha
ISS: ESG 2.62*** 2.20* 2.37* 2.42 2.43 1.43 5.40** 5.94*** 7.03***

MSCI: ESG 3.31** 3.92*** 4.49** 2.75** 2.88** 1.74** 4.66** 5.51*** 3.62***

Reprisk: ESG 1.52 1.52 3.31 -0.64 0.02 1.47 1.12 1.73 2.44**

SPGlobal: ESG 0.93 0.62 1.66 2.00 2.48 3.80* 5.30*** 5.95*** 8.61***

TVL: ESG 1.19 0.66 -1.59 0.21 0.54 -1.28 -0.17 0.11 0.93
Moody’s: ESG 2.31* 2.89* 3.94** 1.13 1.51 0.58 2.90* 2.80* 6.91**

INDI-AVG: ESG 1.98** 1.97** 2.37** 1.32 1.66 1.32 3.20** 3.67** 4.95***

AVG: ESG 4.09** 5.42*** 4.64** 1.94* 2.16* 1.26* 5.87*** 5.96** 6.37**

PCA: ESG 2.40* 2.88** 2.80* 2.46 2.81 3.28 5.02*** 5.55** 5.90**

MAHA: ESG 4.01*** 4.31** 5.17*** 0.87 1.08 -0.32 5.49** 6.37*** 7.62*

AVGvote: ESG 3.81** 4.61*** 5.12** 2.19 2.71* 2.35* 6.04*** 6.63*** 7.44**

STVvote: ESG 1.85** 1.55** -0.14** 1.95 3.02 6.73*** 5.51** 6.52** 9.94***

OPT: ESG 4.68*** 5.18*** 6.19** 3.05 3.47 6.33** 6.33*** 6.81*** 7.08**

CAPM Alpha
ISS: ESG 5.60*** 5.37*** 5.63*** 3.05** 2.85** 2.93** 4.96** 5.24*** 6.07**

MSCI: ESG 4.68*** 5.37*** 6.49*** 4.34*** 4.64** 4.34* 3.41** 4.10** 1.11**

Reprisk: ESG 2.04** 1.88** 3.33** 3.15 4.40* 7.34** 2.24 2.77 3.68***

SPGlobal: ESG 0.45 0.24 1.92 0.39 0.73 2.63 3.22 3.67 6.10*

TVL: ESG 2.12** 1.65** -0.98** 2.21 2.78* 1.12* -1.12 -1.05 0.59
Moody’s: ESG 2.82* 3.33** 4.47*** -0.09 0.25 -0.38 1.33 1.15 4.78

INDI-AVG: ESG 2.95*** 2.98** 3.48*** 2.19** 2.63** 3.03* 2.33 2.64* 3.73**

AVG: ESG 6.11** 7.79*** 7.32*** 3.43** 3.80** 4.10** 4.40*** 4.37** 3.79**

PCA: ESG 3.67** 4.28*** 4.32** 1.54 2.02 2.89 3.30 3.68 4.00
MAHA: ESG 6.10*** 6.80*** 7.54*** 3.64* 4.27** 4.20** 4.49** 4.84** 4.82**

AVGvote: ESG 5.59*** 6.74*** 6.85*** 3.44* 4.04** 4.67** 4.44** 4.81** 4.15**

STVvote: ESG 2.57** 2.19** 0.36** 2.12 3.01 6.49*** 3.76 4.44 7.37**

OPT: ESG 7.09*** 8.07*** 9.20*** 3.69 4.20 7.22*** 5.04*** 5.32** 4.46**

Table 6.7: Excess Returns for Treynor Black ESG Portfolios
FF5 and CAPM alphas for Treynor-Black top-bottom ESG portfolios (±40%, ±25%,
±10%). The alphas are computed using time series regression. The standard errors
are computed using heteroskedastic and autocorrelation consistent standard error
estimators, with statistical significance highlighted at the 1% (***), 5% (**), and
10% (*) levels.

148



the ESG portfolio to a suite of portfolios that mimic more traditional asset pricing

factors, such as value, size, or momentum.

Perhaps the most natural application is to combine the ESG portfolio with a

passive index fund such as the market portfolio. In this section, we combine the

active Treynor-Black ESG portfolios with market portfolios.16 The weight of the

market portfolio is fixed to be 0.5.17 The market portfolios we use for different

regions are the MSCI USA, the MSCI Europe, and the MSCI Japan indices.

Figure 6-3 presents the expected return and volatility of several combined ESG

portfolios. In each region, we include the top-bottom portfolios (±40, ±25, and ±10)

with the highest Sharpe ratio, based on single or aggregated ESG scores. The Sharpe

ratios of the combined portfolios are higher than those of market portfolios, due to

the signal in the ESG scores. These improved Sharpe ratios are not accessible to

traditional mean-variance optimized portfolios which stay below the capital market

line. This forms a “super-efficient frontier” compared to the capital market line associ-

ated with the passive portfolio, assuming that the alphas from the ESG portfolios are

mispricings. Under the alternate interpretation that ESG scores capture an omitted

pricing factor, the “super-efficiency” of the new frontier may be viewed as the result of

additional risk premia not accessible to investors except for ESG portfolio managers.

In particular, the combined portfolios achieve annual Sharpe ratios reach as high

as 1.25, 0.53 and 0.72 in the U.S., Europe, and Japan, respectively. As a comparison,

the Sharpe ratios of the market portfolios are only 0.75, 0.05, and 0.37. Across all

combined portfolios across ESG scores, the Sharpe ratios are always positive in the

U.S. and Japan, while they are negative for portfolios based on Moody’s scores in

Europe.

16Table E.3 in the supplementary material gives the Sharpe ratio for the portfolios that are built
by combining equal-weighted ESG portfolios and the passive market index.

17More generally, weights can also be determined by other methods. For example, [186] show
that the optimal weights to maximize the Sharpe ratio ! can computed by using an ESG portfolio’s
excess return and idiosyncratic volatility:

!A =

✓
↵A

�(✏A)2

◆.✓E[Rm]�Rf

�2
m

◆
(6.12)

where E[Rm] and �2
m are the expected return and variance of the passive portfolio, respectively.
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(a) USA

(b) Europe

(c) Japan

Figure 6-3: Annualized returns (y-axis) versus volatility (x-axis).
We present the return versus volatility for portfolios that combine a Treynor-Black
ESG portfolio with the market portfolio. The capital market line is represented using
the black dotted line. The combined portfolios lie above the capital market line. The
entries on the legend are in the format: “ESG Dataset portfolio name"
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6.5 ESG as Univariate Impact Factors

We now turn to analyzing portfolios constructed using univariate Environment (E),

Social (S), and Governance (G) scores. Like our analysis of portfolios based on full

ESG scores, we construct top-bottom sorted portfolios using the E, S and G scores

individually, and compute their excess returns.

6.5.1 Environment Portfolios

We include the excess returns for Environment portfolios in Table 6.8. For Envi-

ronment scores, we observe high and statistically significant alphas (up to 10.5%)

for multiple individual vendor scores and aggregate scores for Japan. For the U.S.,

individual vendor scores do not achieve significant alpha, while aggregate scores gen-

erate significant positive alpha, with excess returns of up to 4%. For Europe, we do

not observe significant alphas. However, CAPM alphas are positive, significant and

higher for the U.S. compared to other regions.

6.5.2 Social Portfolios

We find there are similar patterns for Social score portfolios (see Table 6.9). However,

these portfolios have negative significant excess returns (CAPM alpha) in Europe.

Fama-French five-factor annualized alphas for Social score portfolios are positive and

significant in the U.S. (up to 4.3%) and Japan (up to 7.48%).

6.5.3 Governance Portfolios

For Governance score portfolios (see Table 6.10, the aggregation does not produce

significant Fama-French five-factor alphas in the U.S. or Europe compared to individ-

ual vendor scores; however, we find there are Fama-French five-factor excess returns

of up to 11.75% in Japan.
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USA Europe Japan
Portfolio ±40% ±25% ±10% ±40% ±25% ±10% ±40% ±25% ±10%

FF5 Alpha
ISS: E 2.46* 0.76* -0.17* 1.79 1.13 -0.04 3.21 4.19* 8.21***

MSCI: E 3.12* 4.24* 8.72** 0.73 0.24 0.16 3.68*** 4.55*** 6.54***

Reprisk: E 0.55 2.22 0.45 -1.70 -2.65* -0.90* 3.06* 2.53* 1.41*

SPGlobal: E 1.60 1.66 2.20 0.01 1.36 4.02** 4.34*** 5.82*** 10.45***

Moody’s: E 0.74 1.39 -2.35 2.05** 1.26** -0.58** 2.11 1.83 4.42
AVG: E 2.98** 3.95** 4.49** 0.63 0.42 0.84 3.45* 7.30*** 9.99***

PCA: E 2.50** 1.78** -2.10** 0.78 1.37 0.48 3.71*** 4.31*** 7.54***

MAHA: E 1.67 3.30* 5.83* 1.37 1.16 0.50 4.69** 7.37*** 9.65***

AVGvote: E 2.29* 3.34* 4.16* 1.09 1.61 1.63 3.40* 6.94*** 8.88***

STVvote: E 1.95 1.88 2.26 0.06 0.33 3.53* 5.15*** 6.74*** 10.65***

CAPM Alpha
ISS: E 4.96*** 3.37*** 2.93*** 2.44** 2.15** 2.30** 2.97 3.99* 7.24**

MSCI: E 5.63** 7.72** 13.68*** 0.75 0.51 0.97 2.55 3.39* 5.30*

Reprisk: E 1.66 3.17* 1.92* 0.63 0.32 4.27 4.74*** 4.19** 4.09**

SPGlobal: E 2.69* 2.50* 3.85** -1.26 -0.30 2.67* 1.90 3.34* 7.87**

Moody’s: E 1.94** 3.12*** -1.31*** 1.05 -0.04 -1.03 0.57 0.15 3.93*

AVG: E 5.25*** 7.50*** 10.27*** 1.39 0.78 2.13 2.62* 5.86*** 8.42**

PCA: E 4.22*** 3.82** 0.14** -0.27 0.14 -0.55 1.88 2.33 6.03**

MAHA: E 3.67*** 6.32*** 10.96*** 2.62 3.26 3.33 4.50*** 6.86*** 8.95***

AVGvote: E 4.47*** 6.61*** 10.05*** 1.27 1.63 2.73 2.17 5.40** 7.66**

STVvote: E 3.19* 3.13* 5.51*** -1.03 -0.88 2.70 3.26** 4.61** 7.66**

Table 6.8: Excess Returns for E Portfolios
FF5 and CAPM alphas for top-bottom E portfolios (±40%, ±25%, ±10%). The
alphas are computed using time series regression. The stars next to the numbers
represents significance levels. ***: p-val< 0.01, **: p-val<0.05, *: p-val < 0.10.
The standard errors were computed using heteroskedastic autocorrelation consistent
standard error estimators.

152



USA Europe Japan
Portfolio ±40% ±25% ±10% ±40% ±25% ±10% ±40% ±25% ±10%

FF5 Alpha
MSCI: S 0.86 0.37 3.04** 1.70 1.95 -0.62 2.82** 2.66** 2.22**

Reprisk: S 1.76 1.84 0.05 -0.72 -0.14 1.20 0.43 -0.60 -1.28
SPGlobal: S 1.42 1.58 -3.40 -0.78 0.15 -1.61 3.87** 5.12*** 7.61***

Moody’s: S 2.56** 3.28** 1.67** -0.67 -0.80 1.60 3.44** 0.94** 3.13**

AVG: S 2.69*** 3.64*** 3.83* 0.44 0.11 -2.32 2.64** 3.81* 7.10**

PCA: S 1.81 1.51 -0.30 -0.88 0.20 0.87 2.79** 3.89*** 5.10**

MAHA: S 3.93*** 4.28*** 2.54* 0.64 1.13 -1.95 3.00** 3.01* 6.19*

AVGvote: S 2.29*** 2.51** 4.30*** 0.98 -0.48 -2.32 3.45** 4.97** 5.81*

STVvote: S 1.31 1.49 -1.37 -0.43 0.31 -1.36 3.64** 5.68*** 7.48***

CAPM Alpha
MSCI: S 0.90 -0.40 1.49 1.11 1.58 -0.80 1.19 0.57 0.05

Reprisk: S 2.35** 2.13** -1.29** 1.71 2.98* 5.41* 1.96 1.53 1.21
SPGlobal: S 1.46 1.43 -3.20 -2.34*** -2.01* -3.23* 1.43 3.15 5.13
Moody’s: S 3.43** 4.23** 2.71** -2.59*** -2.62** -1.14** 1.18 -1.03 1.51

AVG: S 3.49*** 4.50*** 3.98* -0.40 -0.82 -1.56 1.23 2.11 4.73
PCA: S 2.49* 1.67* -0.06* -3.03*** -2.50*** -2.84*** 0.34 1.02 1.95

MAHA: S 5.19*** 5.97*** 3.29* 0.78 1.77 -0.14 1.95 2.62 4.60
AVGvote: S 2.88*** 2.71** 4.28** -0.37 -1.62 -2.25 1.79 2.57 3.20
STVvote: S 1.37 1.67 -0.47 -1.93*** -1.76*** -2.72*** 1.31 3.61 6.00

Table 6.9: Excess Returns for S Portfolios.
FF5 and CAPM alphas for top-bottom S portfolios (±40%, ±25%, ±10%). The
alphas are computed using time series regression. The stars next to the numbers
represents significance levels. ***: p-val< 0.01, **: p-val<0.05, *: p-val < 0.10.
The standard errors were computed using heteroskedastic autocorrelation consistent
standard error estimators.

153



USA Europe Japan
Portfolio ±40% ±25% ±10% ±40% ±25% ±10% ±40% ±25% ±10%

FF5 Alpha
ISS: G 1.89** 2.32* 3.98* -0.37 0.31 -0.19 4.18*** 4.12*** 3.91**

MSCI: G 2.43** 3.66*** 4.01*** 1.08 0.17 1.90 1.99 2.99** 5.23***

Reprisk: G 0.34 2.32** 1.79* 0.51 0.71 4.60* -0.14 1.34 4.89***

SPGlobal: G -0.25 0.42 2.72 -0.13 1.00 3.98** 3.45** 5.12*** 11.75***

Moody’s: G 0.29 1.21 1.30 0.83 0.45 0.83 1.71 2.88 3.09
AVG: G 2.25** 3.44** 5.84** 0.75 0.81 0.31 4.44*** 5.01*** 6.68*

PCA: G 2.05 1.39 0.86 0.26 1.28 2.79 0.18 -0.44 -3.86
MAHA: G 1.57 1.91 4.27* 0.83 0.54 -1.33 3.33* 5.44*** 3.45***

AVGvote: G 1.74* 2.43* 3.72* 0.79 0.85 0.31 4.50*** 4.85** 7.42***

STVvote: G -0.28 0.40 2.58 0.18 1.36 3.98** 3.46** 5.05*** 9.79***

CAPM Alpha
ISS: G 2.32** 2.65** 4.02** 1.15 1.79 1.20 3.60*** 3.24*** 2.40***

MSCI: G 1.51 2.51** 1.91** 3.09*** 3.34** 7.46** 1.57 2.78 5.31***

Reprisk: G 0.42 2.22** 1.19** 2.61 3.36* 8.61*** 0.85 2.89 6.78***

SPGlobal: G -2.26 -0.82 3.30 -1.86* -1.69** 0.29** 1.15 1.80 7.56***

Moody’s: G -0.08 0.60 -0.43 0.67 -0.13 1.36 -0.29 0.61 -1.06
AVG: G 1.42 2.19 4.03 2.64*** 3.51* 2.45* 3.39** 3.36* 5.58*

PCA: G 1.49 0.58 0.19 -0.27 1.03 2.00*** -0.33 -0.48 -3.98*

MAHA: G 1.01 0.69 1.95 2.71** 3.33** 1.48** 2.77* 4.54** 2.62**

AVGvote: G 0.60 1.20 2.06 2.65*** 3.38** 1.74** 3.25** 2.98* 4.70*

STVvote: G -2.22 -0.55 2.50 -1.36 -1.22 0.87 1.29 2.02 5.82**

Table 6.10: Excess Returns for G Portfolios.
FF5 and CAPM alphas for top-bottom G portfolios (±40%, ±25%, ±10%). The
alphas are computed using time series regression. The stars next to the numbers
represents significance levels. ***: p-val< 0.01, **: p-val<0.05, *: p-val < 0.10.
The standard errors were computed using heteroskedastic autocorrelation consistent
standard error estimators.
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6.6 Conclusion

Using the quantitative framework proposed by [186], we quantify the excess returns

of arbitrary ESG portfolios via the cross-sectional standard deviation of the stock’s

excess returns and the correlation between the excess return and ESG factors (both

combined and individual E, S, and G scores) obtained from six leading ESG score

providers for firms in the U.S., Europe and Japan from 2014 to 2020. Few studies

have analyzed such a comprehensive dataset and as systematically. We also propose

a number of methods to aggregate ESG scores across vendors to produce the best

signal within the data, simultaneously addressing measurement errors and yielding a

single measure of ESG that can potentially be used for portfolio management.

Empirically, we find significant ESG excess returns in the U.S. and Japan. We

also find positive and higher than market risk-adjusted returns. We construct an ag-

gregate ESG measure based on a linear combination of ESG scores that is optimized

to maximize the correlation with excess returns. The ESG portfolio properties of

the optimized ESG score are comparable to the aggregate scores, implying that our

methods of aggregation were successful in amplifying the signal. We evaluate the

properties of ESG portfolios by investigating their exposure to various risk factors,

constructing optimal Treynor-Black-weighted portfolios, and combining them opti-

mally with passive index portfolios, which yields “super-efficient” frontiers that all

investors should be interested in accessing.

One practical implication from our results is that aggregation methods help to

reduce the noise and amplify the signal contained in E, S, and G metrics to yield

better estimates of ESG portfolio properties, even though individual ESG ratings are

noisy and the portfolios constructed using ESG scores from any single vendor may be

quite noisy. This aggregation method can be selected at the preference of the portfolio

manager, since different methods will weight the noise and signal from rating agency

scores in different ways. However, since the true noise and signal component remains

unknown, it is hard to establish the superiority of any particular aggregation method

and we leave this important topic for future research.
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Chapter 7

Finance for Impact: From Pills to

Power: Unveiling the Impact of

BioPharmaceutical Companies

7.1 Introduction

Environmental, Social, and Governance (ESG) scores are measures that assess a com-

pany’s performance in the respective areas. The Environmental component assesses

the company’s impact on the environment by measuring its carbon footprint, manag-

ing pollution, conservation of resources, etc. The Social component measures perfor-

mance on social issues such as labor practices, human rights, diversity, and inclusion,

amongst others. Similarly, the Governance score measures the company’s policies

and evaluates how well the company complies with regulatory and ethical require-

ments. ESG scores are necessary because they provide a framework for stakeholders

and investors to evaluate sustainability and social responsibility practices.

In recent years, ESG scores have gained significant interest from investors. This

can be gauged from the fact that the number of investor signatories to the United

Nations Principles of Responsible Investment has increased significantly, and assets

under management have grown from 40 trillion USD in 2014 to 103 trillion USD in
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2020.1

The sources of ESG evaluations/ratings for investors are rating agencies like MSCI

Inc, S&P Global, ISS, Moody’s ESG Solutions, Reprisk, Refinitiv, and TruValue

Labs. They have developed methodologies to extract ESG information from multiple

sources and generate ratings for companies. These rating agencies compute a variety

of factors; for example, MSCI Inc considers aspects like toxic waste, water stress,

carbon footprint, electronic waste, opportunities in clean tech, and biodiversity &

land use when computing the environmental score.

Pharmaceutical companies specialize in the research and development of drugs and

medications for various diseases. Their products contribute significantly to decreasing

the burden of disease worldwide. For example, an article from Medscape claims that

COVID-19 vaccines have saved more than 3 million US lives since 2020.2 To summa-

rize, the treatment of disease is an important social cause to which pharmaceutical

companies contribute significantly.

In the computation of ESG scores for pharmaceutical companies, some rating

agencies account for factors specific to the pharmaceutical industry. For example, the

MSCI ESG score includes product safety & quality, access to health care, and chemical

safety when computing the social score, while S&P Global and Sustainalytics consider

aspects like drug affordability when computing the ESG score. However, none of

the rating agencies currently take into account the impact of the drugs/treatments

produced by pharmaceutical companies on patients’ lives.

In this chapter, we develop a framework that quantifies the impact of therapeutics

developed by pharmaceutical companies in terms of reducing the burden of diseases.

We collect data from multiple sources and employ a quantitative tool to estimate the

burden that will be reduced by the developed therapeutics. In this work, we quantify

the reduced burden by the decrease in Disability-Adjusted Life Years (DALYs) due

to a therapeutic.

Quantifying the impact of therapeutics will allow investors to accurately gauge the

1https://www.unpri.org/annual-report-2020/how-we-work/building-our-effectiveness/enhance-
our-global-footprint

2https://www.medscape.com/viewarticle/985529
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social impact of pharmaceutical companies. This will also lead to an inflow of ESG

funds, enabling access to capital for financing new research and the development of

more therapeutics. It will also allow the identification of pharmaceutical companies

with high impact scores, leading to enhanced reputation and increased trust from

stakeholders, including investors, customers, and regulators.

From the impact score measures we developed, we found that major pharmaceuti-

cal companies like Pfizer, Sanofi, Novartis, GlaxoSmithKline, and Johnson & Johnson

had the highest impact scores (in decreasing order), which is intuitive given the large

number of launched drugs. We also constructed market capitalization normalized

scores and found that smaller companies like NeuroHitech, AVAX Technologies had

high scores alongside larger companies like GlaxoSmithKline. We found that car-

diovascular diseases, cancer, diabetes, and musculoskeletal disorders contribute the

most to the impact measures. We also found that our impact scores are not correlated

with E, S, G, and ESG scores released by Refinitiv, which implies that existing ESG

scores from Refinitiv are not capturing the social impact of the biopharmaceutical

companies.

The study of impact scores and ESG is a widely examined topic. However, the

impact scores pertaining to pharmaceutical companies have not been explored in

significant detail. The Global Health Impact project quantified the impact of drugs

for major diseases like malaria, tuberculosis, and HIV/AIDS based on historical sales

data, but it doesn’t extend this analysis to all diseases. Existing ESG vendors consider

drug affordability but don’t compute the impact score of the drugs. Similarly, some

organizations like the Institute for Clinical and Economic Review (ICER) and IQVIA

perform cost-effectiveness analyses for a few drugs. In this work, we estimate the

impact scores of therapeutics, a factor not explored in existing literature (to the best

of our knowledge).

In Section 7.2, we discuss the datasets and impact estimation methodology. In

Section 7.3, we study our impact scores and analyze them. We conclude in Section

7.4 with a discussion about the shortcomings and potential future extensions."
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7.2 Methodology

7.2.1 Data

Multiple datasets were utilized to quantify the impact of biopharmaceutical compa-

nies. These datasets are enumerated as follows:

We obtained the drug dataset from Pharmaprojects (Citeline-Informa)3. This is a

widely used dataset that contains information about the drug, its development status,

sponsor, drug-indication, among other information.

Summary Number of Unique
Drugs 6246

Country 157
Companies 1398
Indications 1187

Table 7.1: Informa Data Summary for Launched Drugs.

The burden of disease can be quantified using multiple measures, and one of the

most widely used measures is Disability-Adjusted Life Years (DALYs). This measure

represents the number of years lost due to ill health, disability, or early death. The

dataset on the burden of disease is obtained from the Global Burden of Disease (GBD)

study [219]. This study is one of the most comprehensive systematic evaluations of

the global burden of disease and reports multiple measures such as mortality, years

of life lost (YLLs), years of life lived with disability (YLDs), and DALYs for diseases

grouped in a hierarchy. Diseases are classified based on the International Classification

of Diseases, Tenth Revision (ICD-10) codes, which is the system used by physicians

to classify and group diseases.

The market capitalization of the companies was obtained from the Center for

Research in Security Prices (CRSP) dataset. Effective coverage was obtained from

the study by [191]."

3https://pharmaintelligence.informa.com/products-and-services/clinical-
planning/pharmaprojects
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Summary Number of Unique
Locations 204
Causes 364

Table 7.2: GBD Data Summary.

Pre-processing

The datasets were obtained from different sources. Given these datasets, one of the

challenges was to match data entries across them, as there was no unique identifier

common across all datasets. The necessary mappings included: companies between

the CRSP and drug dataset; diseases between the drug and GBD datasets; and

countries between the GBD, drug dataset, and effective coverage.

We used fuzzy string matching methods to map the companies across datasets.

Along with fuzzy clustering, we manually verified the matches to ensure accurate

mapping. The disease names between datasets were mapped using the ICD-10 codes.

The countries were matched using string matching and manual verification of failed

matches.

7.2.2 Pipeline

The impact of a drug on a disease can be measured by counting the DALYs averted,

which is computed by the following equation:

EffectD,I,C = DALYI,C ⇤ (
1

1� efficacyD,I ⇤ CoverageC
� 1)

ImpactD,I,C = EffectD,I,C ⇤MarketShareD,I,C

ImpactCompany =
X

D,I,C

ImpactD,I,C

where D represents the Drug, I represents the indication, and C represents the

company. DALY represents the burden of the indication treated by the drug, efficacy

is the ability of the drug to reduce the burden for the specific indication, market share
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represents the percentage of market captured by the drug for the specific indication,

and coverage is the availability of intervention/treatment for the particular indication

in the country.

The impact score for the company is computed as the sum of the impact over all

approved drugs for a specific indication in the particular country.

Obtaining DALY for the indication is straightforward from the GBD dataset.

Coverage is obtained from the UHC coverage indicator. The information about drugs

and their indications is obtained from the GBD dataset. However, computing the

market share of a drug is not trivial. The precise market share can be computed based

on the number of doses sold, however, the number of doses needed for treatment varies

among drugs. Hence, computing market share is a complex problem. We approximate

the market share using two models:

• Equal Coverage: In this model, we assume equal market share for all drugs

for a country-indication. For example, if there are five launched drugs for an

indication in a country, we assume a market share of 20% for each of them.

• Age Based: In this model, we assume that market share depends on the age

of the drugs. We model the market share using the Bass model which states

the following:

f(t) = p+ (q � p)F (t)� qF (t)2

where, F(t) is the cumulative number of adopters as a fraction of market po-

tential and f(t) is the number of new adopters as a fraction of market potential.

The Bass model is inspired by [233] as pharmaceutical companies commonly

use it for predicting sales of new drugs. p and q are the parameters obtained

from [233]. In Figure 7-1, we present the values of market share obtained from

solving the Bass model differential equation. The pattern suggests that market

share increases from launch to the first 5 years and starts decreasing after 5-6

years.

Once we have the necessary estimates4, we compute the effect of drugs, the impact
4There is no publicly available dataset to obtain the efficacy scores. In our study, we used an
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Figure 7-1: Bass Model. x-axis: year from launch, y-axis: f(t), number of new
adopters.

of drugs, and aggregate the impact scores of drugs to compute the scores for the

companies.

7.3 Analysis of Scores

After computing the impact scores, we analyze their properties in this section. Given

that we have two models for market share computation, we also have two versions of

impact scores: those based on equal and age-based market share.

In Table 7.3, we include the companies with the highest impact scores based on

both models. We observe that big pharmaceutical companies are on the list, which is

intuitive given that they have multiple drugs on the market treating multiple diseases,

which contributes to the impact scores. However, we find that there is no significant

difference in impact scores obtained from both models. To verify this, we compute the

correlation between impact scores from both models and find a very high correlation:

98% between raw scores from both models and 95% between log-transformed scores

from both models. Hence, the choice of the market share model doesn’t significantly

impact the scores. For further analysis, we will use the equal market share model for

efficacy score of 75% for all drugs. The estimates can be made more accurate by using the efficacy
data from FDA labels. However, this will only be available for drugs/treatments approved in the
U.S.A.
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the computation of the impact score."

Company Impact Score (Equal) *107 Impact Score (Age) *107
Pfizer 16.4 13.2
Sanofi 13.0 10.2

Novartis 11.4 10.6
GlaxoSmithKline 10.1 8.9

Johnson & Johnson 7.5 8.4
Astrazeneca 7.0 6.9

Table 7.3: Companies with High Impact Scores

In Figure 7-2, we include the histograms of the raw and log-transformed impact

scores for the companies. The log-transformed impact score distribution resembles a

bell curve with a lower range.

Given that large companies have multiple drugs on the market, we also com-

pute the market capitalization normalized scores, which measure the impact score

(DALYs reduced) per unit of the company’s market capitalization. In Table 7.4,

we present the impact scores normalized by the companies’ market capitalization,

i.e., log(ImpactScore)
log(MarketCapitalization) . We computed the normalized score for 238 companies with

available market capitalization values. We find that some companies, like NeuroHitech

and AVAX Technologies, have low absolute impact scores but high market cap nor-

malized impact scores because they have only one approved drug on the market and

their market capitalization values are relatively low. NeuroHitech has an approved

drug for people with Alzheimer’s disease or other types of dementia in China, and

AVAX Technologies has one approved drug for Neoplasms in Switzerland. However,

GlaxoSmithKline has high raw and normalized impact scores. It has a total of 303

launched drugs on the market.

The biopharmaceutical companies are broadly divided into two categories (based

on the Global Industrial Classification System): Biotechnology and Pharmaceuticals.

We computed the average impact scores (log-transformed version) for Biotechnology

and Pharmaceutical companies and found that the average score for biotech compa-

nies (11.8±3.1) was smaller than for pharmaceutical companies (13.8±3.2). However,

the difference was not statistically significant.
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Figure 7-2: Histograms of Impact Scores of the Companies. Left: Raw Score, Right:
Log Transformed Scores. x-axis: Impact Scores, y-axis: Number of Companies.

Company Impact Score (Equal) *106 Impact Score (Norm.) # of Drugs
NeuroHitech 0.59 2.33 1

GlaxoSmithKline 109.9 1.0 303
Endo International 4.1 0.93 65
AVAX Technologies 0.006 0.91 1
Acorda Therapeutics 1.7 0.88 4

Table 7.4: Companies with High Market Capitalization Normalized Impact Scores

In addition to the impact scores for the companies, we can compute the impact

scores of the individual drugs. In Table 7.5, we include the impact scores of the

high-impact drugs, along with the indications/diseases they are used to treat. Some

of the drugs that have multiple indications approved across many countries have high

impact scores. These drugs are used for neonatal disorders, musculoskeletal disorders,

and malaria.

Given that drugs are used for the treatment of multiple diseases, we aggregate

the impact scores over disease categories and identify those which contribute most

significantly to the impact scores. In Figure 7-3, we compute the percentage of impact

contributed by each disease category and find that cardiovascular diseases, cancer,

musculoskeletal disorders, and diabetes are among the diseases which contribute most

to the impact scores.

One potential application of the impact score is its use for impact investing (ESG

investing). Investors may use these scores to find the companies with the greatest
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Figure 7-3: y-axis: Percentage of Impact Contributed by the Disease Category. x-
axis: Disease.
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Drug Impact Score
(Equal) *106

Diseases #
Country-
Indications

Rho(D) Immune
Globulin, CSL Lim-
ited

17.9 Neonatal disorders 55

diclofenac, Nuvo-2 13.4 Musculoskeletal disorders 3
human Rho(D)
immunoglobulin, Ka-
mada

10.5 Other non-communicable dis-
eases, Neonatal disorders

9

diclofenac sodium gel,
Novartis

10.1 Musculoskeletal disorders 10

artesunate, rectal,
MMV

8.5 Neglected tropical diseases and
malaria

17

Table 7.5: Drugs with High Impact Scores

impact on society. Hence, we compare these scores with the existing ESG scores

released by Refinitiv. Using Refinitiv Workspace, we obtained E, S, G and ESG scores

for 145 biopharmaceutical companies and compared them with our impact scores.

Table 7.6 presents the correlation between the different score measures. We find that

impact scores (both raw and log-transformed) are not correlated with the E, S, G, and

ESG scores. However, they are negatively correlated with the market cap normalized

scores due to the positive correlation of ESG scores with market capitalization. Hence,

we find that existing ESG scores from Refinitiv are not correlated with our impact

scores, and our scores are capturing information which is not readily available to

investors.

Finally, we compute the correlation between the impact scores and historical re-

turns of the companies. From 7.7, we find that correlation values5 for impact scores

(both raw and log-transformed) are not significant for returns computed over a small

time horizon; however, they are positive and significant for a longer time horizon

(2016-22). The correlation between impact scores and market cap normalized scores

are sometimes negative, possibly due to the positive correlation of the returns with

5There is a forward-looking bias in the correlation values as impact scores are computed based
on the information available on Dec-2022.
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Measures Impact Score Impact Score
(log)

Impact Score
(Mkt Cap
Norm)

Mkt Cap (Log)

ESG 0.31 0.04 -0.58* 0.87**
E 0.41 0.09 -0.55* 0.90**
S 0.32 0.04 -0.57* 0.86**
G 0.09 -0.07 -0.53* 0.67**
Mkt Cap
(Log)

0.62** 0.17 -0.57* 1**

Table 7.6: Correlation between Scores. *: p-val < 0.05 and **: p-val < 0.01

market capitalization in our sample. If the positive correlation between long-term

return and impact scores continues in the future, the portfolios based on the im-

pact scores will achieve positive returns. Hence, along with providing high social

good/impact exposure, investors may realize positive returns on their portfolios.

Return
Years

Impact Score Impact Score
(log)

Impact Score
(Mkt Cap
Norm)

Mkt Cap (Log)

2022 -0.02 -0.02 0.03 -0.08
2021-22 0.21 0.17 -0.07 0.38
2020-22 0.03 -0.03 -0.06 0.08
2019-22 0.05 -0.11 -0.23** 0.30**
2018-22 0.13 0.04 -0.14* 0.34**
2017-22 0.13 0.12 -0.07 0.29**
2016-22 0.14* 0.15* 0.003 0.19**

Table 7.7: Correlation between Scores and Returns. *: p-val < 0.05 and **: p-val <
0.01

7.4 Conclusion

In this work, we have presented a methodology and generated scores for bio-pharmaceutical

companies, which capture the impact on patients’ lives due to approved drugs/treatments.

We have presented the statistical properties of impact scores grouped by companies,

drugs, and diseases, and demonstrated that they are not correlated with Refinitiv’s
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ESG scores, yet show a positive correlation with long-term historic returns. These

scores can be used by investors to identify companies with significant social impact

for investment purposes.

However, this work has some limitations, including several assumptions and pa-

rameters in the estimation of market share and efficacy. With improved estimates of

efficacy and finer-grained data on the burden of diseases treated by the drugs, the

accuracy of the impact scores could be enhanced.
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Part III

Behavioural Finance
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Chapter 8

Behavioural Finance: Real-time

extended psychophysiological analysis

of financial risk processing

In this Chapter, we study the relationships between the real-time psychophysiological

activity of professional traders, their financial transactions, and market fluctuations.

We collected multiple physiological signals such as heart rate, blood volume pulse,

and electrodermal activity of 55 traders at a leading global financial institution during

their normal working hours over a five-day period. Using their physiological measure-

ments, we implemented a novel metric of trader’s “psychophysiological activation”

to capture affect such as excitement, stress and irritation. We find statistically sig-

nificant relations between traders’ psychophysiological activation levels and such as

their financial transactions, market fluctuations, the type of financial products they

traded, and their trading experience. We conducted post-measurement interviews

with traders who participated in this study to obtain additional insights in the key

factors driving their psychophysiological activation during financial risk processing.

Our work illustrates that psychophysiological activation plays a prominent role in

financial risk processing for professional traders.
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8.1 Introduction

Several experimental studies in the field of behavioral economics have documented

that emotional states (for example, fear, excitement, and stress) may influence the

decision making of an agent [46, 116, 199]. In financial markets, sudden fluctuations

in prices, changes in investor holdings, or other factors unknown to the agent may

impact decisions. To better understand the biological and psychological mechanism

of financial decision making under uncertainty, the emerging field of neurofinance has

incorporated insights from psychology and neuroscience into theories of finance [211].

In previous studies, researchers characterized the psychophysiological (PP) activ-

ities of traders using functional magnetic resonance imaging (fMRI), hormonal level

measurement, and physiological signals like heart rate, blood pressure, and skin tem-

perature (reviewed in Section Literature Review). However, these techniques share

the common limitation that, due to the equipment used to measure the physiological

signals, the experiments are either conducted in laboratory settings rather than in

the field, or the data collection procedure interferes with the day-to-day activities of

traders. While controlled experimentation yields cleaner inferences, their findings lack

the direct applicability to real financial settings which in situ experiments provide.

In this work, we conducted an in situ experiment and collected the physiological

signals of 55 professional financial traders at a global financial institution during the

entire trading day over a five-day period for each trader. Using an Empatica E4

wristband, we capture a variety of real-time physiological signals, such as heart rate,

blood volume pulse, inter-beat interval, electrodermal activity, skin temperature, and

three-dimensional accelerations of wrist motion, without interfering with the traders’

daily routines on their trading desks. This non-invasive experimental design offers

the most realistic setting to date for analyzing the traders’ real-time PP activities

during financial decision making.

The primary focus of our analysis was to measure the relation (if any) between a

trader’s PP state and their financial decisions or market events, both contemporane-

ously and temporally. Since a trader’s PP state is not directly observed and must be
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inferred from the physiological signals, we measure each trader’s “psychophysiological

(PP) activation”, defined as the collective deviation of physiological signals from their

baseline values. Higher levels of PP activation indicates emotions such as excitement,

stress, agitation, arousal, and irritation which elevate the physiological activities from

the normal state. By analyzing the changes in the trader’s PP activation levels, we

identify the circumstances in which such changes coincided with, or were caused by,

financial transactions or market events. The key challenge was to accurately measure

the levels of PP activation, and a major contribution of our study is the novel ap-

plication of the Mahalanobis distance [200] on features extracted from physiological

signals as a quantitative metric of PP activation.

There are two underlying assumptions of our analysis. First, financial decision

making and risk processing under uncertainty trigger PP activation in professional

traders. Second, the levels of the trader’s PP activation can be explained by multiple

factors such as market fluctuations, the types of financial products traded, as well as

the trading experience of each trader. We test four hypotheses related to these two

assumptions:

• Traders monitor multiple market indices during working hours. Fluctuations

in these market indices often represent trading signals to the traders and may

affect the existing positions and real-time profit and loss (PnL) of the traders.

We test the hypothesis that market fluctuations have causal influence on the

PP activation of the traders.

• Traders who participated in our study have different lengths of trading experi-

ence ranging from 10 months to 25 years. As traders gain more trading experi-

ence, they may develop skills to manage their PP activation level when making

risky financial decisions. Since we do not observe these skills, we hypothesize

that the ability to manage one’s activation level is positively correlated with the

length of one’s trading experience and test the statistical relationship between

the trading experience and activation levels of the traders.

• Traders who participated in our study worked in different business divisions
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and traded different financial products. Since different financial products have

different market volatility, dollar volume of transactions, and trading frequency,

we expect the traders to have different patterns of PP activation depending on

the type of their business division. We test the hypothesis that the traders’ PP

activation is related to their business divisions or the financial products they

trade.

• As traders engage in risky financial transactions, their PP activation levels may

change due to the financial decision making process before, during, and after

the transaction. The PP activation levels may also depend on other factors

such as the number of transactions and the average dollar volume. We examine

the change in traders’ PP activation before and after making a transaction and

identify the period when the traders are the most highly activated. We test

the hypothesis that the traders’ PP activation levels are related to their trading

frequency and the average dollar volume of their transactions.

We found statistically significant relationships between the levels of PP activa-

tion and financial market movements, and that different traders monitored different

market signals which, in turn, had causal influence on their PP activation levels. We

found that traders with more trading experience had lower levels of activation. We

also found a significant relationship between a trader’s activation level and the type

of financial products being traded. For example, traders specializing in G10 rates,

equities, commodity and foreign exchange had higher level of PP activation, while

traders in securitized market generally had lower activation. Differences in the prop-

erties of the financial products lead to differences in traders’ decision making process,

and hence to their PP activation levels. We also found that traders on average have

the highest activation levels 15 to 25 minutes after making the transaction.

We conducted follow-up interviews with 14 of the 55 traders to review their indi-

vidual results, and received useful feedback which helps us interpret their PP activa-

tion patterns in the context of their specific working environments. The interviews

yielded additional factors which influence traders’ PP activation, such as the demand
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of the workday, social events, and their managerial responsibilities. We found that

busier workdays and social events led to higher PP activation in some traders.

8.2 Literature review

A major challenge in conducting neurofinance field studies is the faithful measurement

of the trader’s real-time neural activities during live trading over extended periods

of time [66, 211]. Most previous studies in the literature encountered an important

tradeoff between measurement and environment, since measuring traders’ neural ac-

tivities in real time required a controlled experimental setting. As a result, these

studies typically used mock trading and simulated market events to replace the con-

ditions of live trading. Many studies [161, 83, 261, 115] used fMRI to continuously

monitor participants’ neural activity during simulated trading exercises. Another

study [151] designed simulated lottery games to study the effect of elevated cortisol

levels on the degree of risk aversion of the participants.

While the controlled experimental setting provides a rigorous framework for data

collection and analysis, several issues prevent one from applying the methodology

and conclusions of these studies to professional traders engaging in real-world trading

activities. First, it is difficult to perform neural activity measurements during live

trading seamlessly without interfering in the normal work routine of the trader. The

act of making the measurements may have a lasting impact on the participant’s men-

tal state, which is difficult to calibrate and remove from the analysis. In addition, the

neural activity profile of a participant (who may not be a professional trader) during

mock trading [83, 151] is likely to be different from professional traders during live

trading, since in the latter situation the traders incur real profit and loss (PnL) to

their companies as a consequence of their decisions. Performing physiological mea-

surements during live trading sessions often required non-disruptive measurement

schemes at discrete points in time during or after trading hours rather than real-time

monitoring. Lo et al. [183] used daily emotional-state surveys, and found that traders

who react more intensely to their monetary gains and losses exhibited significantly
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worse PnL. Numerous studies [13, 67, 73, 291, 222] used saliva samples to measure

traders’ intra-daily cortisol and testosterone levels and studied the relation between

traders’ hormone levels and their trading performance measured by PnL. Although

saliva sampling may faithfully reflect a trader’s PP state during live trading without

causing much disruption to their normal work routine, it is difficult to perform such

measurements continuously in time, and the studies cited above collected saliva sam-

ples twice or three times each day. These measurement schemes cannot effectively

capture a trader’s real-time PP responses to transient market events and fluctuations

in asset prices and market indices.

Lo and Repin [182] were the first to measure traders’ real-time physiology during

live trading sessions. They also collected financial market data relevant to the traders’

financial decisions synchronously during the physiology measurements. The time

series data allowed them to identify PP responses to transient market events and

periods of high market volatility, though their study involved relatively few subjects

(10 traders) and short periods of measurement (ranging from 49 to 83 minutes) when

the physiological signals were collected from each trader.

In this study, we extended the line of research of [182] and collected physiological

signals of 55 professional traders at a global financial institution. Data collection for

each trader lasted five consecutive workdays over a week, and six to eight hours each

day. The larger sample size and longer measurement periods allowed us to study the

PP behavior of traders in a more unconstrained and natural setting. We used the

Empatica E4 wristband to collect high-frequency physiology time series data without

disrupting the traders’ normal work routine. We also collected relevant market data

and financial transaction data of individual traders to analyze their PP responses to

market fluctuations and financial transactions.

Another contribution of this study is our novel method for measuring the PP ac-

tivation from physiological signals to capture psychological states such as excitement,

stress and irritation. Higher activation is known to trigger psychological, behavioral,

and physiological changes in the brain [207]. These changes influence different biolog-

ical signals, such as electrocardiogram readings, blood volume pulse, electrodermal
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activity, heart rate variability, and skin temperature [120]. Since stress is an impor-

tant cause of PP activation, the rich literature of stress detection from physiological

signals may be applied to measure PP activation. Al-Shargie et al. [7] measured

electroencephalography and functional near-infrared spectroscopy on the prefrontal

cortex for stress assessment. Several studies [252, 167, 163, 49] used features extracted

from electrodermal activity to train stress detection machine learning models, while

others [167, 70, 241, 156] analyzed heart rate variability for stress detection. In addi-

tion, photoplethysmography [62] and skin temperature [281] are also used for stress

detection. Fernandez et al. [108] proposed a system which uses commercial devices

to detect stress and alert in traders in real time, which is of direct interest to our

purpose.

Previous experimental studies generally used artificial methods to elevate the acti-

vation levels in the subjects, and measured their biochemical markers or physiological

responses synchronously [20]. This “ground truth” information of the activation pat-

terns makes it possible to train machine learning models for PP activation analysis.

However, such “ground truth” information is not available in our study since we are

agnostic of the factors which elevate the traders’ activation. Instead, we propose a

novel metric for PP activation using the Mahalanobis distance [200] of features ex-

tracted from physiological signals, which to the best of our knowledge has not been

previously explored. This metric allows us to rigorously test the statistical relation-

ship between PP activation and various aspects of financial decision making and risk

processing, discussed in the next section.

8.3 Materials and methods

To rigorously analyze how financial risk processing affects a trader’s PP state, we

collected both financial transaction records and the real-time physiological signals

(Table F.1 in Appendix) of 55 professional day traders at a global financial insti-

tution during their normal trading activities. Before data collection, we collected

the demographic information of the traders such as gender, trading experience, and
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business division via surveys. To understand the impact of market fluctuations on

the trader’s PP activation, we also acquired 10 intraday financial market time series

(Table F.2 in Appendix) commonly monitored by the traders during the same period

as we measured their physiology. The details of data collection and preprocessing

procedures are described in Appendix.

Measuring PP activation

From the physiological signals of the traders, we constructed a synthetic metric to

characterize each trader’s PP activation, defined as the physiological response to

emotions like excitement, stress, and irritation. We chose to measure PP activation

since it is ubiquitous in the context of financial risk processing. Events such as high

market volatility, sudden gain or loss in the trader’s portfolio, or receiving instructions

from clients to place transactions may induce elevated activation in traders. Previous

studies showed that a high level of activation is associated with reduced performance

[140, 229]. In addition, prolonged periods of high activation have an adverse impact

on health [205, 65]. We extract PP activation from the physiological features in the

following way:

• Heart Rate Variability (HRV): HRV measures the variations in the beat-to-beat

intervals. Inspired by [156], we calculated four features from the raw HRV signal

to measure activation: mHR, the average number of beats per minute; mRRi,

the average value of the interbeat (RR) interval; SDNN, the standard deviation

of the RR interval; and RMSSD, the root mean square sum of the successive

interbeat interval difference. All features are calculated as time series using a

5-minute trailing window, similar to [156].

• Electrodermal Activity (EDA): EDA measures the electrical conductivity of the

skin. Elevated activation increases the skin temperature and sweating, which in

turn changes the EDA. We calculated three features from the raw EDA signal

to measure activation: mAmp, the average of the raw skin conductance signal;

Slope, the average of the absolute first difference of the skin conductance signal;
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and Events, the number of times the EDA signal increases more than 0.05µS

in less than 5 seconds. These features are inspired by [163].

• Blood Volume Pulse (BVP): BVP is measured by a photoplethysmogram (PPG)

sensor, which uses optical technique to measure the blood flow rate and blood

volume. Blood pressure is then estimated using BVP readings [293]. Elevated

cardiovascular activity due to higher activation changes the BVP. We calculated

three features from the raw BVP signal to measure activation: the average of

the absolute value of the BVP; the minimum value of BVP, and the maximum

value of BVP. These features are inspired by [163].

• Skin Temperature (TEMP): TEMP generally increases during periods of high

activation. The changes in skin temperature depend on the specific body re-

gion being measured [281] and changes in room temperature. We assume that

changes in room temperature occur much more slowly than the sudden onset

of events that lead to high activation. We compute the instantaneous rate of

change in TEMP to capture the change in levels of PP activation.

Once we extracted these features as a column vector yt 2 Rd at each time t for a

trader, we computed the aggregate measure of PP activation using the Mahalanobis

distance dM [200],

dM(yt) =
q

(yt � µt)T⌃
�1
t (yt � µt) (8.1)

where the column vector µt 2 Rd and matrix ⌃t 2 Rd⇥d are the rolling sample

mean and covariance matrix computed using y1, . . . , yt. The superscript T denotes

vector transposition. We use the rolling mean and covariance to prevent the look-

ahead bias of computing PP activation at time t using signals measured in future time

t0 > t. The Mahalanobis distance captures the trader’s PP activation as the collective

deviation of physiological activities yt from their baseline state µt and adjusts for the

covariance between the components of yt, which tend to be highly correlated if they

are extracted from the same underlying physiological signal measured by the wearable
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device (shown in Table F.6 of Appendix).

Using the Mahalanobis distance, we computed five different measures of PP ac-

tivation: the overall PP activation (using features extracted from all physiological

signals), and the individual HRV, EDA, BVP, and TEMP activation (using features

extracted from one physiological signal) for every trader. In the subsequent analysis,

we focus on the overall PP activation since it captures the collective excitation of all

physiological activities simultaneously.

Next, we identify the time periods when each trader is under mild and extreme

levels of PP activation by measuring their deviations from mean. We label the trader

as “mildly activated” at time t if her PP activation dM(yt) satisfies dM(yt) > µ+1.5�

where µ and � denote the mean and standard deviation of her PP activation during the

trading day. Details of computing µ and � are provided in Section F.6 in Appendix.

Similarly, we label the trader as “extremely activated” at time t if dM(yt) > µ + 3�.

We choose thresholds 1.5 and 3 based on qualitative assessment of the magnitude

of mild and extreme activation. Future extensions of our work may use data-driven

methods to identify periods of mild and extreme activation for each trader.

Finally, we use three aggregate metrics to characterize the PP activation patterns

of each trader: activation proportion, activation length, and average activation. Ac-

tivation proportion measures the percentage of time when the trader was at a mild

or extreme level of activation during a trading day. Traders with higher activation

proportion tended to be more susceptible to elevated activation. Activation length

measures the average duration of the mild or extreme activation periods of a trader.

Traders with longer activation length tended to remain activated for longer periods

of time after the sudden onset of events which triggered activation. Average activa-

tion measures the average value of PP activation over the trading day and reflects

both activation proportion and length. Traders with higher activation proportion

or length also have higher average activation. These aggregate measures allowed us

to directly compare the PP activation patterns across different traders and trading

days. The definition and computation of activation proportion and activation length

are described in Section F.6 in Appendix.
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Activation level attribution regression

To identify the relationship between individual factors and the PP activation of the

traders, we perform the following regression:

yi,t = ↵ + � ⇤ bisi + � ⇤ geni + � ⇤ amti,t + ✓ ⇤ expi + ⇣ ⇤ numTi,t + ⌘ ⇤ voli,t (8.2)

where yi,t denotes the activation metric of the trader i on day t, bisi the business

division (one-hot encoded), geni the gender (male/female), amti,t the average dollar

value of the transactions by trader i on day t, and numTi,t the number of transactions

by the trader on day t. Since traders’ activation may also be correlated with market

volatility on different days, we also include voli,t, the vector of volatility of different

market indices on day t. The right-hand-side explanatory variables of the regression

were extracted from trader survey, financial market indices, and traders’ transaction

data. We use the average activation as the left-hand-side dependent variable yi,t since

it reflects the other activation metrics (proportion and length).

Granger causality test

We test whether there is Granger causality relation between fluctuations of market

indices and trader’s PP activation. Specifically, let yt and mt denote the minute-level

time series of a trader’s PP activation and a market index on a trading day. Since the

activation time series is measured with 1Hz (higher frequency than market indices), we

perform frequency averaging on yt to get the minute-level activation time series y
t
. To

account for non-stationarity in the time series, we perform the Granger causality test

on the first difference �y
t
= y

t
�y

t�1 and �mt = mt�mt�1. For each trader and each

market index on a given trading day, we test the null hypothesis that �mt does not

Granger-cause �y
t
. The Granger causality test is performed with the sum of squared

residual (SSR) test with chi-squared distribution using the statsmodels package in

the SciPy library and a lag of 10 minutes. To correct for multiple hypothesis testing

across all traders, we perform the Holm-Bonferroni correction for each market index

with significance level 0.05.
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Activation around financial transactions

We analyzed the pattern of trader’s PP activation around financial transactions.

Specifically, we computed the evolution of PP activation using a rolling window before

and after placing a trade in the following way:

• We first calculated the z-scores of PP activation zt so that the activation levels

may be consistently compared across different time periods and traders.

• Next, for a transaction at time l placed by the trader, we calculated the mean

values of zt in the windows [zl�30min, zl�25min], [zl�25min,

zl�20min], ..., [zl+20min, zl+25min], [zl+25min, zl+30min]. This computed the time se-

ries of activation averaged over 5 minute windows in 30 minutes timeframe

before and after performing the transaction.

• Finally, for each trader in a trading day, we averaged the rolling window cal-

culation results across all transactions made by this trader on this day. We

computed the evolution of PP activation around a transaction by averaging the

results across all traders and trading days.

Individual trader meetings

The 55 traders who participated in our study had diverse levels of trading experi-

ence and traded a variety of financial products. Since the physiological signals were

recorded during their normal working hours, their PP activation levels may have been

affected by idiosyncratic sources that were exogenous to their trading activities and

unknown to us. To investigate these idiosyncratic sources of PP activation and relate

them to our findings, we invited all participating traders to meet individually with us

after we completed the PP activation analysis. Due to traders’ availability, 14 of 55

traders participated in the individual meetings. During each meeting, we presented

the individual findings to the trader and received the feedback from the trader. We

applied the insights from these trader meetings to identify additional sources of PP

activation.
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Metric Min. Max. Mean Std. Dev.
Average Activation 2.76 5.34 3.79 0.37
Mild Activation Proportion (%) 7.42 17.57 11.54 1.99
Extreme Activation Proportion (%) 0.45 6.78 2.71 1.12
Activation Length (s) 26 1031 152 94

Table 8.1: Summary statistics of four PP activation metrics.
Average activation is a dimensionless quantity. Mild and extreme activation propor-
tions are measured in percentages (%). Activation length is measured in seconds (s).

Ethics Statement

The study was approved by the following IRB/ethics committee: MIT Committee

on the Use of Humans as Experimental Subjects (COUHES). The study approval

number is 0403000144 and the written consent was obtained prior to the study.

8.4 Results

We present the analysis results of traders’ PP activation and investigate the different

sources that may cause elevations in PP activation levels. We discuss both general

patterns of trader’s PP activation observed across all traders and idiosyncratic char-

acteristics specific to individual traders.

Variation in trader’s activation levels

We analyzed the variation in PP activation patterns across different traders as re-

flected by four activation metrics: average activation, mild activation proportion, ex-

treme activation proportion, and activation length. Figure 8-1 shows the histograms

of these metrics for all traders. A trader’s PP activation metric on each trading day

is counted separately in the histogram to account for inter-day variation and there

are a total of 242 trader-day pairs in each histogram. The summary statistics of each

histogram is shown in Table 8.1.

We observed significant variation in all PP activation metrics across the traders.

Several traders were at mild activation for 17% of working hours on certain days,
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Figure 8-1: Histograms of four PP activation metrics.
The y-axis represents the number of trader-days and the x-axis represents the activa-
tion metric values. We observe considerable variations in PP activation levels across
traders. Average activation is a dimensionless quantity. Mild and extreme activa-
tion proportions are measured in percentages (%). Activation length is measured in
seconds (s).
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while others were at mild activation for less than 8% of the time. Similarly, some

traders returned to their normal activation levels in less than 30 seconds from the

onset of elevated activation, while others took as long as 17 minutes. The significant

variation in PP activation metrics can partly be ascribed to the diverse characteristics

of the traders in various aspects, which motivates us to investigate the systematic and

idiosyncratic factors which lead to the variation in PP activation levels.

Factors influencing PP activation

We performed the regression (Eq:8.2) to identify the relationship between different

factors and the PP activation of traders. The dependent variable of the regression

yi,t is the average PP activation of trader i on day t. The correlations between the

covariates of the regression are summarized in Table F.5 in Appendix.

Gender

We do not find statistically significant relationship between the average PP activation

and the gender of a trader (difference between the regression coefficients of male vs.

female: �0.02, p-value: 0.83).

Trading experience

We find that traders with more trading experience have lower average PP activation

(coefficient: �0.02, p-value: 0.01). The possible explanation is two-fold: traders may

become more adept at making risky financial decisions under uncertainty with little

emotional fluctuations or may acquire certain skills over time to actively manage their

PP activation levels during financial risk processing.

Dollar volume, number of transactions, and market volatility

The average dollar volume and number of transactions have positive regression co-

efficients 0.02 (p-value: 0.26) and 0.4e � 4 (p-value: 0.47), respectively. While we

observed an overall positive correlation between the dollar volume, number of trans-
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actions and the average PP activation of the traders, additional factors of their trading

activities might further influence whether the transaction causes high or low PP acti-

vation and lead to the large p-values. During individual trader interviews, we found

that traders’ PP activation highly depends on type of transaction (via a client’s order

or the trader’s own decision) and the changes in risk exposure as a result of the trans-

action. Similarly, the regression coefficients of volatility of different market indices

are not statistically significant. This motivates us to analyze the time series charac-

teristics of market fluctuations and traders’ PP activation via the Granger causality

test discussed later.

Other factors

We also found statistically significant relations between the trader’s average PP ac-

tivation and the type of financial products traded. A detailed discussion of these

results is provided in Section F.8 in Appendix. During individual trader meetings,

traders reported additional idiosyncratic factors that influenced their PP activation,

including whether they had a busy schedule, their managerial responsibilities, and

even the anticipation of the social events after work. These idiosyncratic factors were

not measured in our experiment and may contribute to the variation in traders’ PP

activation unexplained by the regression.

Market fluctuations have causal impacts on traders’ PP activa-

tion

Typically, each trader manages a portfolio of many active positions and monitors a va-

riety of market indices and events during the trading hours. It is reasonable to expect

that increased volatility in market indices relevant to their portfolio values may cause

the traders’ PP activation levels to become elevated. We tested the null hypothesis

that market fluctuations do not have causal influence on traders’ PP activation via

the Granger causality test, with Holm-Bonferroni correction at 5% significance level.

To test whether the observed Granger causality relations between market index
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Market Index Number of significant GC relations
Credit-Default Swap Index IG 22
Credit-Default Swap Index HY 19
USD Index 3
10Y US Treasury Future Price 3
S&P 500 E-mini Future Price 4
5Y US Treasury Future Price 6
Crude Oil Futures Price 4
VIX Futures Price 7

Table 8.2: Granger Causality Test
The number of statistically significant Granger causality relations between each mar-
ket index and traders’ PP activation, with Holm-Bonferroni correction at 5% signifi-
cance level.

and PP activation are statistically significant, we plot the distribution of p-values for

each pair of PP activation and market index in Figure F-4 in Appendix. Under the

null hypothesis H0 that the market index does not Granger-cause traders’ PP activa-

tion, the distribution of p-values of Granger tests should follow a uniform distribution

on [0, 1]. We perform a one-sample Kolmogorov–Smirnov test and reject the null hy-

pothesis H0 for six of the eight market indices (Credit Default Swap Index Investment

Grade (IG), Credit Default Swap Index High Yield (HY), S&P 500 E-mini Futures

Price, 10Y US Treasury Futures Price, 5Y US Treasury Futures Price and Crude Oil

Futures Price) at significance level 0.05.

The number of statistically significant Granger causality relations between market

fluctuations and traders’ PP activation is shown in Table 8.2. We observe that the

two credit default swap (CDS) indices were the most common sources of elevated

PP activation for the traders. Since CDS contracts act as insurance against credit

defaults, it is reasonable that fluctuations in CDS indices have systematic impact on

multiple financial products and elevate the PP activation levels among the largest

number of traders.
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Financial transactions elevate traders’ PP activation

Traders regularly engage in financial transactions which induce considerable risks to

their PnL performance. Real-time financial risk processing during a transaction can

be a major source of high PP activation for the traders. Since transactions are placed

at irregular points in time, we performed an event study to investigate the changes in

trader’s PP activation levels before and after a transaction, as described in Methods

and Materials Section.

Figure 8-2 shows the evolution of the average PP activation levels around a trans-

action, where the results are averaged across all traders. The vertical axis represents

the average PP activation and horizontal axis indicates five-minute intervals around

the transaction, where the transaction time is defined at t = 0. The left half of the

figure corresponds to PP activation levels before the transaction, and the right half

to those after. To account for the variation across traders, we also plot the 95%

confidence band of PP activation.

We observe that traders tended to have the highest PP activation in the time

window of 15 to 25 minutes after the transaction. We also observe a local peak of high

PP activation 5 minutes prior to the transaction. During individual trader interviews,

traders pointed out that their PP activation levels depended on the risk exposure of

the transaction, as well as whether the transaction was placed via a client’s order or

per the trader’s own discretion. In addition, traders mentioned that it usually takes

15 to 30 minutes after a transaction to confirm whether the transaction is executed as

intended and to observe its effect on the trader’s PnL. This anticipation effect partly

explains the elevated PP activation levels 15 to 25 minutes after transaction, shown

in Figure 8-2.

8.5 Discussion

Our analysis confirms that affect, as evidenced by the fluctuations of PP activation

due to market fluctuations or financial transactions, plays a prominent role in the

financial risk processing and decision making process for professional traders in their
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Figure 8-2: Evolution of trader’s PP activation around a transaction.
The shaded region corresponds to the 95% confidence band. The x-axis is the time
difference (in minutes) between the transaction time, defined as time 0, and measure-
ment time. The y-axis is the average PP activation value. We observe that traders
have the highest PP activation during 15 to 25 minutes after the transaction, as well
as a local peak 5 minutes before the transaction.
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daily trading activities [182]. Our results provide contextual support for the growing

literature of affective science investigating the relations between emotions and decision

making [187, 170, 71] in the case of professional traders, whose profession requires

them to make rational decisions under large uncertainties and maximize their payoffs.

Our study also illustrates the feasibility of conducting large field experiments in

affective sciences with non-disruptive physiological measurement and the rich insights

one can extract from this data using appropriate statistical techniques. For example,

by utilizing the time series properties of PP activation, we overcome the challenge

of performing causal inferences with observational data and demonstrate the causal

relationship between certain market indices and traders’ PP activation. The novel

use of Mahalanobis distance to capture the aggregate PP activation from individual

physiological signals may be widely applied in many other contexts in this field.

Our analysis has several limitations to be addressed in future works. First, while

we observed the presence of affect in financial risk processing, our analysis does not

distinguish between positive and negative affects or investigate whether affect con-

stitutes a beneficial or adverse driver of the traders’ financial performance. Previous

studies revealed that positive affect leads to improved decision making [147] while

negative affect such as fear and anger distorts the perception of risk [169] and causes

myopic decisions [171]. During individual trader meetings, 12 of the 14 traders pointed

out that they typically experienced high levels of activation when their real-time trad-

ing performance (measured by PnL) exhibited losses or fluctuations. Future study

may analyze the relation between traders’ PnL performance and their PP activation

under various market conditions using appropriate statistical or machine learning

techniques [56]. Using such findings, one may even quantify the impact of affect on

the trader’s PnL and prescribe strategies for traders to actively manage their affect

and improve their trading performance.

In addition, while the field experiment design allows us to faithfully measure

the physiological and affective state of professional traders in their natural working

environment, it also prevents us from observing and controlling all the factors which

influence the trader’s affect. As a result, our analysis does not make the important
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distinction between integral emotion (the emotion induced by financial risk processing

which is our main interest) and incidental emotion (the emotion carried over from

non-trading situations such as performing managerial tasks or participating in work

meetings) [170]. This limits the interpretation of our findings since previous studies

showed that incidental emotions affect risk perception [249] and induce bias on the

financial decisions [97]. Future studies may improve the experimental design by asking

participants to wear the measurement device only during trading activities or report

the time periods when they are mainly occupied with non-trading activities. While

this improves the statistical inference, researchers must also ensure that participants

adhere to the experiment protocols.

Finally, from an evolutionary biology perspective, professional traders must adapt

to their highly competitive, dynamic and uncertain working environment where sig-

nificant portions of their compensation depend on their PnL. It is natural to hypoth-

esize that the biological and psychological mechanisms of financial risk processing are

markedly different between professional traders and the rest of the population [179].

Another interesting extension of our work is to conduct a similar experiment with a

control group of subjects with little or no trading experience. In this way, one can

determine the unique characteristics of professional traders’ cognitive and emotional

faculties which enable them to thrive in the highly dynamic and uncertain working

environment.

8.6 Conclusion

We conducted a large field experiment and measured the real-time physiological sig-

nals of 55 professional traders during their normal trading activities over a five-day

period. Using a novel metric of PP activation based on the Mahalanobis distance,

we found large variations in PP activation across traders. We showed that the PP

activation is correlated with and influenced by multiple factors, such as market fluc-

tuations, financial transactions, as well as trader’s experience and types of financial

products traded. Our analysis confirms the prominent role of affect in financial risk
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processing for professional traders. Future studies may analyze the impact of traders’

affect on their trading performance and the difference in affect between professional

traders and subjects with no trading experience when making risky decisions under

uncertainty.
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Part IV

Explainable Artificial Intelligence

(xAI)
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Chapter 9

xAI : Explainable Machine Learning

Models of Consumer Credit Risk

In this Chapter, we create machine learning (ML) models to forecast home equity

credit risk for individuals using a real-world dataset, and demonstrate methods to

explain the output of these ML models to make them more accessible to the end user.

We analyze the explainability for various stakeholders: loan companies, regulators,

loan applicants, and data scientists, incorporating their different requirements with

respect to explanations. For loan companies, we generate explanations for every

model prediction of creditworthiness. For regulators, we perform a stress test for

extreme scenarios. For loan applicants, we generate diverse counterfactuals to guide

them with steps towards a favorable classification from the model. Finally, for data

scientists, we generate simple rules that accurately explain 70-72% of the dataset.

Our study provides a synthesized ML explanation framework for all stakeholders,

and is intended to accelerate the adoption of ML techniques in domains that would

benefit from explanations of their predictions.

9.1 Introduction

The total U.S. household debt at the end of the fourth quarter of 2020 is estimated to

be $14.56 trillion, with 189.6 million new credit accounts opened within the prior 12
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months.1 The total amount of home equity lines of credit (HELOCs) at the same time

is around $300 billion.2 Although small in relative terms compared to the total U.S.

household debt, this number is still significant economically, and HELOCs currently

account for the majority of the banking industry’s home equity portfolios. Given

this massive amount of household debt, even a low delinquency rate can significantly

affect the operation of the business and the financial system as a whole. This potential

impact makes the study of credit default risk an important real-world task.

Lenders generally use consumer credit ratings to grant and structure the terms

of credit to consumers. To compute these credit ratings, a variety of factors that

gauge the creditworthiness of individuals have been described in the literature, which

extends as far back as the 1940s [54]. One popular example is the FICO scores created

by the Fair Isaac Corporation, which are used by over 90% of top lenders when making

lending decisions.

Recent advances in computing, innovative algorithms, and an explosion in the

quantity of data have contributed to the growing success of complex nonlinear ma-

chine learning models, including what are known as “deep” learning models. Unlike

traditional machine learning techniques such as logistic regression and decision trees,

deep learning models may have an extraordinary number of parameters. They are

able to automatically learn nonlinear representations and interactions of input fea-

tures from large datasets, a process that helps them to achieve superior performance

compared to other machine learning methods. ML models have been explored for

diverse applications in economics and finance [127]. In particular, they are widely

used for a variety of different credit risk applications, including peer-to-peer lending

[197, 93], mortgage risk [246, 164, 60], credit card risk [45], consumer credit risk [148],

fair credit allocation [269], sovereign default risk [87], and a large pool of loans [260].

However, regulatory compliance is a major obstacle in the adoption of black-box

models for credit risk modeling. In the United States, the Fair Credit Reporting Act

of 1970 mandates that lenders must be able to disclose up to four key factors that

1Source: New York Fed Consumer Credit Panel/Equifax
2Source: FRED Economic Data.
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adversely affected the credit score of a rejected consumer. More recently, the Euro-

pean Union’s General Data Protect Regulation of 2018 creates a right to explanation,

whereby users may ask for an explanation of an algorithmic decision that was made

about them [130]. Similarly, the European Artificial Intelligence act of 2021 imposes

the requirement of global explainability for artificial intelligence algorithms.

Apart from regulatory compliance, different stakeholders have different require-

ments for explanation and transparency. For example, a loan applicant may want to

know the possible steps that she could follow to make her creditworthy. Similarly,

loan companies may need to provide explanations for their decisions regarding the

creditworthiness of applicants, while system developers may need to understand the

specific features and relationships that underpin their models.

In this chapter, we first model a credit risk forecast on a real-world home equity

line of credit (HELOC) dataset released by the Fair Isaac Corporation (FICO). This

dataset is widely used to study interpretability (see, for example, [244] and [59]).

We developed a wide range of ML models, including interpretable rule-based models

(e.g., inductive logic programming and optimal trees) and black-box ML models (e.g.,

neural networks and random forests). We compare these models and find that neu-

ral networks outperform other linear and nonlinear models, reaching an accuracy of

74.75% on a task to predict the creditworthiness label provided by FICO. We also find

that properly-constructed explainable rules can reach an accuracy of up to 70-72%.

Our focus in this paper is the explainability of ML models. As such, we do not view

these models as optimal in terms of prediction accuracy, and they are constructed as

proofs-of-concept for studying the explainability of black-box models.

The explainability of a model means the ability to give answers to the differ-

ent stakeholders involved in the decision-making process [72]. Interpretability for

one party need not be translated to interpretability in the eye of another party.

Hence, in this paper, we identify the different stakeholders involved in credit risk

management—loan companies, regulators, loan applicants, and data scientists—and

provide explanations of the models according to their needs.

For loan companies, we generate interpretable explanations for every prediction
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using two post hoc explainability tools, Local Interpretable Model-Agnostic Explana-

tions (LIME) and SHapley Additive exPlanations (SHAP), that are able to provide

reasons for loan denial. We modify the methodology of the LIME algorithm to incor-

porate the covariance structure of different features implied by constraints on their

relationship. The ability to generate explanations makes a model transparent about

the relationships it has learned. For example, we identify that having a higher average

age of line of credit leads to a decrease in the probability of default. In addition, these

explanations also make it possible to find representative borrowers from the past to

aid loan officers in human decision-making.

For regulators, we suggest a method of investigating fairness of these models. In

addition, regulators may also be interested in evaluating the model’s functionality in

extreme scenarios. In anticipation of this issue, we provide a methodology to perform

stress tests to help the regulators analyze the model’s behavior in extreme scenarios.

In practice, the threshold for regulators to adopt any model will be high and requires

a thorough investigation into the above issues using a comprehensive dataset. Our

study would not be sufficient to definitively answer such questions given the limited

data available publicly. Nonetheless, we provide a methodology to prove the concept

and demonstrate the possibility to carry out such analysis in a systematic way.

For loan applicants, because they are interested in getting approval for a loan,

we generate a diverse set of suggestions that can help individuals deemed non-

creditworthy become creditworthy, even if the black-box ML models are used for loan

approval decisions. For individuals who already have been approved for loans, we are

able to generate suggestions that can help them remain creditworthy. These counter-

factual suggestions are generated by incorporating constraints based on specific items

of domain knowledge, which makes these suggestions more practical in real-world ap-

plications. We generated suggestions successfully for 99% of the individuals in our

testing dataset.

Finally, for data scientists, we are able to summarize the dataset using a few simple

rules that can help them understand the relationships and structure in the dataset.

Understanding these relationships may provide a data scientist with the insights to
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develop better models in the future. Using inductive logic programming, we are able

to explain 70% of the dataset using a single rule, and up to 72% using two simple

rules.

The key contributions of this paper can be summarized as follows:

• We identify and summarize the explainability requirements for different stake-

holders involved in credit risk management.

• We identify the right tools from the literature that can help in answering nec-

essary explainability questions for different stakeholders in a systematic way.

• We modify the existing explainability tools and generate better explanations

for different stakeholders.

This chapter demonstrates that the functionality of black-box ML models can be

explained to a range of different stakeholders, if the right tools are applied to the

task. These progresses unlock the future potential of applying AI to improve credit

modeling. New explainable AI tools can help stakeholders make counterfactual pre-

dictions and explain a model’s output, leading to the ability to answer many “what-if”

questions. This includes stress tests for extreme scenarios, and informing applicants

about how to improve their creditworthiness. More generally, it demonstrates the

importance and potential of explainable AI to advance classical tasks in traditional

fields like credit modeling. However, we emphasize that the data used in the study

and the models developed are meant to be proofs-of-concept. But, similar analysis

can be performed for other larger datasets if they are made available.

The remainder of this paper is structured as follows. Section 9.2 discusses the

relevant literature. Section 9.3 describes the different models used in our paper, and

Section 9.4 describes the dataset. Section 9.5 evaluates the prediction performance

across different models. Section 9.6 develops a range of explainability methods for

various stakeholders. Section 9.7 summarizes our findings and concludes the paper.
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9.2 Literature Review

A range of statistical and operational research methods has been used over the long

history of credit scoring models [275]. Many existing models learn relationships be-

tween risk factors and borrower behavior, either using logistic regression [48, 74, 99, 2]

or cox proportional hazard model [132, 84, 265]. Some studies find non-linear rela-

tionships between the risk factors and mortgage risk [99, 113, 3].

More recently, machine learning techniques have been adopted for credit risk mod-

els. For example, [246] develop a deep learning model and find significant nonlinear-

ities in mortgage delinquency, foreclosure, and prepayment risk. [164] predict mort-

gage default using convolutional neural networks. [172], [275], [39], and [127] give

detailed surveys of ML methods for credit risk forecasting. In the meantime, [127]

also highlight the shortcomings of ML with regard to the explainability of the models

for fintech applications.

On the other hand, an extensive literature has been developed about explainable

AI in healthcare, computer vision, and natural language processing [214, 1]. Even

though these techniques were developed for other domains, some have been adopted

for explaining credit risk forecast models.

A variety of solutions have been proposed to deal with the shortcomings of ML

models used in credit risk forecasting. Interpretable ML models have been used by

[155] (decision trees for a consumer credit risk model), and [223] (a multiclass rule-

based model for corporate credit ratings). Similarly, [94] propose an interpretable

penalized logistic tree regression model for credit scoring, while [59] use an inter-

pretable two-layer additive risk model for a home equity line of credit dataset. Some

studies have explored the use of network-based [123] or latent factor [6] models for

peer-to-peer lending, which can be more interpretable than traditional deep learning

models. A two-layer additive risk model is the award-winning model in the recent

FICO data science challenge. For these models, interpretability generally comes at

the cost of performance compared to black-box models. For example, [50] found that

random forests outperform decision tree classifiers. In this paper, we show that a
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neural network outperforms the two-layer additive risk model proposed in [59], which

we use as a benchmark. Most of these explainable ML models are developed for

applications involving structured data.

There is also a rapidly growing literature on post hoc interpretable ML methods.

These methods can generally be used on both structured and unstructured data.

[246] use first-order derivatives and cross partial derivatives of the fitted transition

probability with respect to features to study marginal and interaction effects. [44] use

Shapley values to explain tree-based ensemble models and apply correlation networks

to group the borrowing companies using the derived explanations. Similarly, [134]

use Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive

exPlanations (SHAP) to obtain local and global explanations for models trained on

a Lending Club dataset. [8] propose a deep learning-based approach that combines

the outputs of tree-based ensemble models and neural networks to predict consumer

default, and use SHAP to provide model explanations. Other methods that use

SHAP for explaining credit risk models include [15] and [38]. More recently, [235]

propose a human-in-the-loop ML method that combines a post hoc explanation from

SHAP with explanations from credit risk experts. [244] propose a minimum set cover

problem to generate a rule-based summary of a machine learning model on the home

equity line of credit dataset. Similarly, [206] propose a rule extraction method from

a trained support vector machine (SVM) for credit scoring. There are some post-hoc

interpretability methods, including Accumulated Local Effects (ALE) and Leave One

Covariate Out (LOCO) [168, 14], that can be used for finding the global relationship

between input features and output. Finally, [232] propose the layerwise relevance

propagation and activation analysis of hidden units of a neural network.3

While these methods generate explanations of model outcomes, they are not tai-

lored specifically for the different stakeholders involved in the credit risk pipeline. For

example, many of the above-mentioned methods do not provide local explainability

that is necessary for many real-world applications. Because interpretability for one

3There are also other interpretability methods, such as those discussed in [125] and [124], that
are yet to be applied to credit risk management.
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party may not always translate to interpretability in the eye of another party, none

of the existing methods can be generalized for all stakeholders. In addition, they do

not embed the specific constraints of the dataset in their methodology of generating

explanations, which may lead to explanations that are not practical or useful. Inter-

pretability for different stakeholders has been introduced in a demo by IBM,4 but it

remains incomplete and does not use the state-of-the-art methods that we employ in

this study.

In this paper, we present a methodology that generates explanations of black-box

models for different stakeholders, a direction that has not been well explored previ-

ously. In some cases, we improve existing methods by making necessary modifications

for our purposes, while in others we develop new models. In the process of generating

these explanations, we embed constraints to ensure that explanations and suggestions

are meaningful and can be adopted for real-world use.

9.3 Machine Learning Methods

The fundamental goal of credit scoring is to determine the creditworthiness of an

individual. Simply put, it is a binary classification task that labels credit applicants

as creditworthy or non-creditworthy. A creditworthy applicant is likely to repay their

financial obligation, while a non-creditworthy applicant is not.

We frame the consumer credit risk classification problem as predicting the proba-

bility of default for a borrower. More specifically, given a set of features, x1, x2, ...xk,

for a borrower i, the task is to predict a variable yi, that is, the probability of default,

Pr(Default). The features xi describes the borrower’s credit history, for example,

the number of lines of credit and the number of times the borrower defaulted in the

past, among others. In practice, yi is determined by long-standing credit scoring

models, which are characterized by decisions such as whether the applicant had 90+

days delinquency in the two years after the opening of a new line of credit.

We frame the classification as a supervised learning problem in which we train

4https://aix360.mybluemix.net/data
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a function f that can approximate the relationship yi = f(x1, x2..xk). To train the

function f , we use variety of ML models, including optimal classification trees, random

forests, inductive logic programming, and neural networks. We describe these models

next.

9.3.1 Random Forests

Random forests are an ensemble supervised learning technique. This technique aggre-

gates multiple outputs from a set of predictors, in this case, multiple decision trees,

in the belief that this will produce a more accurate classifier.

The key idea behind random forests is that a high-performing classifier can be

constructed from a set of non-expert classifiers which are decision trees. A single de-

cision tree is a supervised learning method that predicts the value of a target variable

by learning simple if-then decision rules. It is constructed using the Classification

And Regression Tree (CART) algorithm [40]. Each node in the decision tree is a

condition on the value of a single feature that splits the data into two subsequent

branches. CART recursively identifies the feature-value pair that best minimizes the

tree’s Gini impurity, a metric of the disorderliness of the labels of a set of data points.

Random forests are trained via a method called bootstrap aggregation, or bagging.

The training data points are first randomly assigned into n groups with replacement,

where n corresponds to the number of decision trees. Individual decision trees are

fitted to a randomly chosen set of features in each group. To classify a new data point,

the random forest aggregates the predictions from each of its constituent decision

trees, and uses the majority vote as its classification. The random sampling of data

points and features ensures that the resulting decision trees are uncorrelated. Thus, by

aggregating their independent predictions, random forests are able to reduce variance

and improve generalizability.

Random forests are difficult to interpret. For individual data points, each decision

tree gives its if-else conditions that lead to a classification, but when these conditions

are combined over the many trees of an ensemble, interpreting these conditions is

impossible. This makes random forests effectively a black-box model.
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9.3.2 Inductive Logic Programming

Inductive logic programming (ILP) [218] involves using first-order logic to represent

and explain data. The dataset can be represented by a finite set of rules or clauses.

In this section, the ILP developed is data-driven and clauses are learned from the

data which is an input to the ILP model.

ILP requires that we specify the number of rules N , a given maximum rule size

R, and the dimensional n binary input vector X. We construct ⇧, a N ⇥ R ⇥ 2n

tensor, and interpret softmax(⇧[i, j]) as a probability distribution for the jth term in

the ith rule; that is, we obtain a 2n-sized discrete probability distribution over the n

features and their negations.

The rules are learned in a disjunctive normal form that consists of clauses with ˆ̂

(AND) and _̂ (OR) conditions. The AND and OR operators require binary operands.

However, these operators must be extended to continuous operands to learn clauses

from data. We use the product as a continuous extension of ˆ̂ , while a continuous

extension of _̂ is obtained from DeMorgan’s Law, b_(x) = 1 � A(1 � x), where A is

the continuous extension of ˆ̂ (product as described earlier). From parametrization

and using these continuous extensions of _̂ and ˆ̂ on [0, 1], we can compute an ap-

proximated label ŷ for an input vector X by concatenating X with its 1 �X to get

a 2n-vector X⇤:

ŷ =
c_

i

ĉ

j

(X⇤ · softmax(⇧[i, j]))

where i ranges over the number of rules and j ranges over the size of a rule.

The binary cross-entropy loss between ŷ and ground truth y can be minimized

using stochastic gradient descent in order to learn the probability distributions in ⇧.

Once the model is trained, we use the probability distribution ⇧ to obtain a set of

logical rules in disjunctive normal form, for all n from 1 to N and r from 1 to R,

using the following expression:

target 
N_

n=1

 
R^

r=1

argmax
k
(⇧[n, r, k])

!
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In our study, X is a numerical vector with each dimension corresponding to a different

feature value. We first rank-normalize it to change its range to [0, 1], and use the

transformation T to binarize it: T (x) = �(a(X�b)), where � is the sigmoid function,

a is the fixed scale parameter, and b is the parameter learned during optimization.

We use stochastic gradient descent to learn the clauses based on the input data.

Using the inductive logic programming model, we can thus learn simple inter-

pretable rules that can be used for classification and summarizing datasets.

9.3.3 Optimal Classification Trees

Decision trees are constructed in a top-down greedy way using the CART algorithm

[40] as described in Section 9.3.1. At every node, the split is decided locally with-

out the knowledge of other nodes. This makes decision trees only one-step optimal,

leading to poor performance when classifying unseen points.

Optimal trees [30] are a variant of decision trees that are learned in a globally

optimal manner. Optimal trees decide their split in one step, with knowledge of all

other splits. The tree learning process is modeled as a mixed-integer optimization

problem, which can be solved using fast available optimizers. Because optimal trees

are constructed in a globally optimal fashion, they perform better than decision trees,

and have all the advantages of other decision trees in terms of explainability. However,

optimal trees become difficult to explain if they are very deep, and the rules learned at

every node are complex. In addition, the number of variables involved in optimization

for the creation of an optimal tree model is a linear function of dataset size and an

exponential function of maximum depth. In general, mixed integer optimization does

not scale well with a large number of variables. As a result, deeper optimal trees take

a longer time to train on large datasets compared to decision trees, which limits their

use for Big Data problems.
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9.3.4 Neural Networks

Neural networks (NN) are supervised learning models loosely inspired by the biological

networks of the human brain.

A NN is composed of three types of layers: an input layer, a number of hidden

layers, and an output layer. An input layer relays the input features into the model,

the hidden layers act as the computational engine, and the output layer generates the

final model prediction. The input to each hidden unit is a linear combination of the

units of the preceding layer. The hidden unit then computes its output by mapping

its input through an activation function. A nonlinear activation function is commonly

used to create nonlinear interactions between the units of the neural network. It is

worth noting that logistic regression is a special case of a NN, with one hidden layer

containing one hidden unit with a sigmoid activation function.

In NNs, the value of each hidden unit can be computed as:

hj(x) = f(wj +
nX

i=0

wij · xi).

Here, wij is the weight from input xi to hidden unit hj. The weights wij can be learned

by minimizing the loss function using optimizers like stochastic gradient descent.

The weights of the neural network create complex and nonlinear interactions be-

tween input features, which do not have human-interpretable meanings. However,

the complex nonlinear interactions learned by NNs lead in general to better model

performance. Moreover, the decision boundaries learned by NNs can be both high-

dimensional and extremely nonlinear. Thus, learned features may have varying sig-

nificance at different points of the feature space.

9.4 Data

For our task, we use a home equity line of credit (HELOC) dataset provided by FICO.

A HELOC is a revolving loan in which the collateral is the borrower’s equity in their

house. Like a credit card, a HELOC is available for a set time frame during which
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a borrower can withdraw money as needed. This dataset was released as part of the

explainable machine learning challenge by FICO5, and is widely used for explainable

ML studies (see also Section 9.2). Therefore, we follow this literature and use the same

dataset to study the explainability of several ML models in Section 9.3. However, our

methodology can easily be generalized for other credit risk datasets.

The FICO dataset contains 10,459 borrowers who were granted HELOCs during

a two-year application window from March 2000 to March 2002. In March 2003, a

year after the application window had closed, a performance snapshot was captured,

and the risks of the borrowers were evaluated. In this dataset, an applicant might

have used their HELOC for a duration between one and three years, depending on

the time of their approval. The dataset contains 5,459 non-creditworthy records,

while the remaining 5,000 records are deemed creditworthy. A record is considered

non-creditworthy if the consumer has been 90 days past due at least once over a

period of 24 months since opening the credit. The record is considered creditworthy

if the consumer has been making payments without ever being 90 days delinquent.6 In

addition to the binary target variable of credit risk classification, each credit applicant

is characterized by 23 predictor features, 21 continuous and 2 categorical. Further

information about these features, and important terms relevant to the dataset, are

provided in Appendix G.1.2.

Although our dataset is relatively small compared to the total HELOC market,

it is already sufficient to provide a proof-of-concept benchmark that it is possible to

improve credit predictions using machine learning models and, more importantly, to

explain these machine learning models using our proposed framework. With a much

bigger and more complete dataset in practice, one can expect to explain these models

in a more precise and granular fashion.

5https://community.fico.com/s/explainable-machine-learning-challenge
6In general, default is a rare event. However, in this public dataset, the classification is pro-

vided by FICO and the target variable is relatively balanced between the two classes. Though
this is a re-sampled dataset compared to the population of all HELOCs, it is still widely used in
the literature especially when studying model interpretability (see, for example, [244], [59], and
https://aix360.mybluemix.net/data.)
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9.5 Evaluation

In this section, we evaluate the different models described in Section 9.3. These ma-

chine learning models, including optimal trees, random forests, and neural networks,

are trained by recoding all the features using the weight of evidence encoding. An

inductive logic programming model is trained using the methodology described in

section 9.3.2. We also evaluate the neural network model trained on a one-hot encod-

ing version of the dataset. The details of these implementations and best-performing

models are included in Appendix G.2 for reproducibility.

We include the two-layer additive risk model in our evaluation [59], which was

the best performing model of the FICO Data Challenge7. It partitions features into

different subgroups, combining scores from different subgroups into a global model

score. Its feature subgroups are generally interpretable, as they are created through

the intervention of an expert in the field. The model resembles a two-layer sparse

neural network. This model serves as a baseline for the other black-box models.

We evaluate these models using K-fold cross-validation. In K-fold cross-validation,

the input dataset is randomly partitioned into K equal subsets. In each run, one of

the subsets is chosen as the test set and the remaining as the training set. For this

analysis, we choose K = 5, i.e., in each run of cross-validation, the training set

contains 80% of the dataset (7, 898 points), and the test set contains the remaining

20% (1, 973 points). The class distributions of the train-test sets are included in Table

G.1 in the appendix. The standard errors of the performance measures are obtained

by bootstrap sampling of the dataset (keeping train/test split of 80-20%) followed by

re-training of the model and estimating the performance metric for 1000 iterations.

The performance measures for 1000 iterations can be used to obtain standard errors.

We evaluate the models using different metrics: accuracy, area under the curve

(AUC), false positive rate (Type I error) and false negative rate (Type II error). The

metrics are averaged across all five cross-validation datasets. The AUC measures the

ability of a classifier to distinguish between the classes. Our dataset is fairly balanced,

7http://dukedatasciencefico.cs.duke.edu/
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as is illustrated in Table G.1, hence the accuracy is also a good measure of goodness of

fit along with the AUC. All models predict the Pr(Default) values for every sample.

To classify the different samples, we used a threshold of 0.5.

As Table 9.1 illustrates, we find that the NN model trained on weight-of-evidence

(WoE) data8 has the best performance, with an accuracy of 74.75%. It outperforms

the NN trained on one-hot encoded data, implying that the WoE-encoded features

have more information than one-hot encoded features. The two-layer additive risk

model performs second best, with an accuracy of 74.12%. This model is easy to

interpret; however, it requires the input and involvement of experts who know about

the constraints in the dataset and the relationship between its different features (in

order to divide features into different subgroups) that might not always be available

for various applications.

On the other hand, the rule-based models, optimal trees (black box) and random

forests suffer from the problem of explainability. For random forests, analyzing the

ensemble of 140 trees at a time is intractable. Similarly, the optimal trees (black

box) model has a single deep tree with multiple features deciding every split, which is

difficult to interpret. If we train a shallow optimal tree, its accuracy drops to 72.28%,

but the model is easy to interpret and analyze. We also obtain a small set (1 or 2)

of simple rules from inductive logic programming that are easy to understand, but

they come at the cost of a decrease in accuracy. Even though interpretable rule-based

models do not perform as well as NN model, we will see in Section 9.6 that they are

useful for explainability for the different stakeholders involved.

Using ILP, we obtain a single simple rule, that is, “if ExternalRiskEstimate is

smaller than 72, then classify borrowers as non-creditworthy,” achieves an accuracy of

70.71%. ExternalRiskEstimate is a condensed version of the borrower’s credit risk,

a metric similar to the FICO score.9 In general, companies use the credit score and

a threshold associated with it to decide an individual’s creditworthiness; in our case,

8Appendix G.1.4 provides a summary of the WoE feature pre-processing
9Although this may not be an interpretable feature by itself, we keep this feature in the analysis

because it is widely used and our goal is to generate an explanation methodology given a dataset
and model irrespective of features included in the study.
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Models Test Accu-
racy

Test AUC False Posi-
tive Rate

False Nega-
tive Rate

Precision

ILP (1 rule) 70.71(0.92) 70.64(0.93) 31.13(1.38) 27.57(1.20) 71.56(1.24)

ILP (2 rules) 70.92(0.94) 70.62(0.94) 36.98(1.48) 21.75(1.21) 69.59(1.21)

Optimal Trees (In-
terpretable)

72.28(1.03) 74.18(1.74) 28.25(4.26) 27.21(2.99) 71.59(2.16)

Optimal Trees
(Black Box)

74.12(0.46) 74.46(0.50) 29.16(2.63) 22.85(2.78) 73.54(1.14)

Random Forest
(140 Trees)

73.77(0.01) 79.82(0.01) 29.71(0.02) 23.01(0.02) 73.61(0.02)

Two Layer Addi-
tive Risk

74.12(0.88) 81.01(0.83) 30.31(1.28) 21.77(1.17) 73.63(1.15)

NN (one-hot) 74.10(0.88) 80.59(0.84) 25.16(2.50) 26.60(2.25) 74.06(1.53)

NN (WoE) 74.75(0.98) 81.40(0.84) 28.31(1.56) 22.42(1.37) 74.70(1.30)

Table 9.1: 5-Fold cross-validation performance of ML models.
The NN trained on WoE data performs the best with a mean test accuracy of 74.7%
and AUC of 81.4%. A higher AUC implies the NN model is better able to distinguish
between the creditworthy and non-creditworthy classes compared to other models.
All rule-based classifiers have smaller values of AUC compared to the others. The
NN (one-hot) has the minimum false positive rate, while the two-layer additive risk
model has the minimum false negative rate when the threshold used to classify the
model’s output is 0.5. All the reported values are in percentages. The values in the
brackets “()" are the standard errors of the estimates.

210



it is the ExternalRiskEstimate with a threshold of 72. We observe that the use of

machine learning models using different features about a borrower’s credit history can

increase the accuracy of the delinquency forecast by four percentage points compared

to the naïve use of credit scores.

Credit companies are naturally interested in using models with the best perfor-

mance. If credit companies give loans to borrowers by misclassifying defaulters as

non-defaulters (that is, false negatives), they will suffer losses. Similarly, if credit

companies deny loans to borrowers who can repay (that is, false positives), they will

lose business. A four-percent improvement in accuracy may not seem big, but given

the enormous size of the mortgage business in the United States, even a small in-

crease in model performance can create a substantial economic impact.10 Moreover,

a more accurate model can lead to more borrowers having access to loan opportu-

nities in aggregate.11 However, regulatory practice and the black-box nature of the

models prevent them from harnessing these benefits. This motivates us to analyze

the explainability of these different models.

9.6 Explaining Machine Learning Models

We have shown in Section 9.5 that the neural network model outperforms every other

model tested. However, the non-interpretable nature of neural networks limits its

adoption. In this section, we analyze the explainability of models in order to help

their wider adoption for different applications.

The multiple parties involved in credit risk management require different expla-

nations for different purposes. For instance, loan applicants who are denied loans are

interested in finding the reason for the denials and suggestions that can make them

more creditworthy. Data scientists, on the other hand, are more interested in un-

derstanding the data, while regulators demand fairness from the models and analyze

the model’s behavior in extreme scenarios. We characterize the kinds of explanation

10In practice, with more data available by real lenders, the improvement in model performance
should be even bigger than our proof-of-concept study.

11See, for example, the model of [117].
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that are appropriate for the following end users: loan companies, data scientists, loan

applicants, and regulators.

9.6.1 Interpretability for Loan Companies: Opening the Black

Box

Loan companies use machine learning models to evaluate the creditworthiness of a

borrower. Regulations require the loan companies to give a set of reasons for every

denial of the application. Consequently, loan companies are interested in finding the

factors that contribute to the creditworthiness of the individual. In addition, they

require explanations for every prediction of the model. These explanations make

the model transparent, and they assist in finding the most representative samples

(borrowers from the past) for a data point (a new borrower). We use state-of-the-art

methods to generate explanations for our model predictions, including LIME [239] and

SHAP [195]. We generate explanations for the best-performing NN model. Our key

contributions in this section include applying and comparing existing models (LIME

and SHAP) to generate explanations for loan companies, modifying LIME to improve

the validity of linear approximations in our context, and using the k nearest neighbor

(kNN) algorithm on the explanation to find representative samples for a data point.

LIME

LIME is a model-agnostic technique that approximates the decision boundary of

a model at a particular data point using a linear approximation12. This linearity

makes the LIME model interpretable. The approximation is constructed by training

a locally-weighted linear regression model in the neighborhood of the data point of

interest. The coefficients of the regression can be used to justify the data point’s clas-

sification. Because the features are on the same scale (weight-of-evidence encoded),

the coefficients are comparable.

12The key idea behind LIME is that every segment of the decision boundary begins to look linear
at increasingly smaller scales.
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Constructing a locally-weighted linear regression model involves sampling and

perturbing the data points that are used for training. One of the shortcomings of

LIME is that the perturbed data points sampled by LIME may be invalid. For

example, imagine a dataset with two features A and B, with a constraint that A < B.

Sampling each feature’s value independently, as is done in LIME’s original algorithm,

may produce perturbed data points where this constraint is violated. We address this

shortcoming of LIME by modifying the algorithm to take into account the potential

interdependencies of different input features.

This modification changes the methodology of sampling a data point of the LIME

algorithm. In its original implementation, a data point with n features is sampled

by independently sampling each of its n features from univariate normal distribu-

tions. In our modified implementation, a data point is sampled directly from a joint

multivariate normal distribution across all features. This allows perturbations to be

informed by the correlation of features. The multivariate normal distribution is still

centered on the mean of each feature value, but the standard deviation along each

feature is determined by the correlation matrix of the input data.

We first evaluate our modified LIME with respect to the validity of the perturbed

data points. As noted, LIME samples perturbed points in the neighborhood of the

input data point. We generate a set of 5, 000 perturbed data points from several uni-

variate normal distributions centered on the feature means and a single multivariate

normal distribution centered similarly. We measure the quality of the sampled points

by two metrics.

Correlation. The correlation between features of the perturbed data points should

be similar to that of the features in the training dataset. We compute the mean-

squared error (MSE) between the correlation matrix of the training data and that of

the perturbed points generated by both implementations of LIME. Let us call these

values MSEoriginal and MSEmodified, respectively. We find that MSEmodified is much

smaller than MSEoriginal (0.000 vs 0.053). This is expected because the correlation

matrix of the training data is an input to the multivariate normal distribution that
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samples perturbed points in our modified implementation. Our perturbed data more

closely resemble the characteristics of the original dataset.

Constraint Violation. There are 12 constraints relevant to the HELOC dataset

(6 relational constraints and 6 value constraints). We determined these via discus-

sions with FICO personnel. Examples of these constraints include, “all feature values

with percentage units should be smaller than 100,” and “the number of lines of credit

not delinquent must be less than the total number of lines of credits.” The 5,000

perturbed data points are scanned for violations of these constraints. The results for

all constraints are shown in Table 9.2. We see that the modified implementation of

LIME produces fewer violations than the original implementation in 7 out of the 12

constraints. Moreover, a perturbed point sampled by the modified implementation

has on average 1.954 constraint violations, versus 2.627 for the original implementa-

tion. Hence, the modified LIME does provide an improvement in terms of generating

more realistic data points.

We also compute the average goodness of fit of the linear model in LIME for

all test data points. We find that the average R2 of the modified LIME is 90%,

compared to 88% for the original LIME. Comparing correlation, constraint violation,

and goodness of fit, we conclude that the modified LIME leads to better surrogate

models. In the remainder of the paper, we use this modified LIME for our analysis,

which we refer to as the LIME model for simplicity.

Explaining Model Predictions (LIME)

LIME learns a linear surrogate model. As a result, for each data point, the coefficients

of its linear regression can be interpreted as the change in the output produced by

a unit change in the corresponding feature value, given that other feature values

are held constant. Figure 9-1 shows an example of a LIME explanation. A unit

increase in the values of features with coefficients shown in red lines will increase

the non-creditworthy probability, while a unit increase in the values of features with

coefficients shown in blue lines will decrease the non-creditworthy probability.
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Index Constraint Original
LIME Vio-
lations

Modified
LIME Vio-
lations

1 All feature values interpreted quantitatively
must be non-negative

4383 4024

2 PercentLOCNeverDelq  100 1198 1183
3 PercentInstLOC  100 1 2
4 PercentLOCWBalance  100 340 296
5 FracRevLOCLimitUse  100 62 75
6 FracInstLOCUse  100 509 506
7 NumLOC90PlusDaysDelq  Num-

LOC60PlusDaysDelq
1656 655

8 NumLOCReqLast6MExPastWeek  Num-
LOCReqLast6M

2095 388

9 NumLOC60PlusDaysDelq  NumTotalLOC 191 239
10 NumLOC90PlusDaysDelq  NumTotalLOC 192 233
11 NumLOCNotDelq  NumTotalLOC 2257 1915
12 NumLOCInLast12M  NumTotalLOC 249 255

Table 9.2: Constraints Violation
Comparison of constraint violations among 5,000 perturbed points sampled from the
original and modified implementations of LIME. The points sampled from the mod-
ified implementation of LIME have fewer violations in 7 out of the 12 constraints.

After obtaining the feature importance for all the data points, they can be ag-

gregated to find the overall feature importance. In Figure 9-2, we look at the global

feature importance for the model. The top three most significant features are the

months since the newest request for a new line of credit (excluding those requested

in the past week), the external risk estimate, and the fraction of all revolving line

of credit limits in use. It is worth emphasizing that the external risk estimate is an

important feature of the model, but not the most important one. This can be under-

stood by observing the nonlinear nature of the classifier in Figure 9-2a. For example,

for the feature “months since the newest request for a new line of credit (excluding

those requested in the past week),” having small and large values both contribute to

a decrease in the non-creditworthy probability, while having values around the me-

dian contributes to an increase in the non-creditworthy probability. Such a nonlinear

relationship would be difficult to capture using traditional models. These generated
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Figure 9-1: LIME Approximation
The LIME model approximation for a random data point. A unit increase in features
with a red horizontal line will increase the non-creditworthy probability. Similarly, a
unit increase in features with a blue horizontal line will decrease the non-creditworthy
probability. The contribution of each feature in the model explanation can be obtained
by multiplying each feature coefficient by the feature value.

explanations and the overall feature importance also aid in discovering biases in the

model.

The quality of LIME explanations depends on the fidelity of the LIME model. We

evaluate the fidelity of the approximations produced by our modified implementation

of LIME for the best-performing NN. We do this by constructing an approximation

at each of the 1973 points in the test dataset and computing the fraction of times

the NN and the LIME approximations produce the same classification. We find that

out of 1973 data points, 1935 points have the same classification for the linear LIME

approximation and the NN model being analyzed. The high fidelity of the LIME

approximations shows that LIME is able to generate valid linear approximations that

can be trusted for a large number of data points.

However, for the few cases where the classification of the NN model and LIME do

not match and are different significantly, the linear approximation cannot be trusted.

In order to generate explanations for these points, we discuss another method.
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(a) Feature contribution for all sample in

test set

(b) Average feature contribution (absolute

value) for all samples

Figure 9-2: Feature Importance LIME
Feature importance obtained by aggregating LIME explanations for all samples in the
test set. In Figure (a), the color coding (blue-red) represents the value of the feature.
For example, for the external risk estimate, the larger values (in red) contribute to the
decreasing non-creditworthy probability, while the smaller values (in blue) contribute
to the increasing non-creditworthy probability. The contributions are defined relative
to 0.5 (equal probability of default/non-default). The x-axis is the contribution of
the individual feature in the output of the model relative to 0.5. For example, for
a data point, if the contribution of all other features is zero and the contribution of
external risk estimate is �0.2, the model’s output will be 0.5� 0.2 = 0.3. Figure (b)
is obtained by aggregating the feature importance as obtained for all points, which
illustrates that the three foremost significant features are months since the newest
request for a new line of credit (excluding those requested in the past week), the
external risk estimate, and the fraction of all revolving line of credit limits in use.
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SHapley Additive exPlanations (SHAP)

SHAP is an explainable AI method with an economic foundation. It performs the

Shapley value decomposition of the model output, giving the contributions of every

feature at a data point. Like LIME, it is also a model-agnostic method.

Shapley values have several good properties that satisfy a number of important

criteria, including local accuracy (i.e., the model explanation matches the original

prediction), handling of missing data (i.e., if the feature is absent, its contribution to

the model prediction will be zero), and consistency (i.e., if the model changes in a

way that leads to larger marginal contributions for a feature, the Shapley values also

increase). Shapley values also incorporate the interactions between features in the

process of calculating feature importance, making SHAP a more reliable method for

interpretability than LIME.

We use the Kernel SHAP implementation from [195]. The Kernel SHAP pro-

cedure computes the Shapley values by running a weighted-least-squares regression

whose solution is the Shapley values of features. To explain a point xi, the different

points used in the linear regression are obtained by selecting a subset of features from

xi, and the remaining subset of features not selected are replaced with values from

background data points (that is, from training data). The weights of the linear re-

gression are decided by the size of the sampled subset. For example, a subset of one

feature has the maximum weight because it provides the maximum information about

that feature’s contribution. Using the described weighted-least-squares regression, we

obtain Shapley values for the data point xi. It is worth highlighting that the Kernel

SHAP implementation relies on taking subsets of features, that is, 2Numberoffeatures.

As a result, Kernel SHAP does not scale well.

Using SHAP, we obtain explanations for the classification of all the data points in

the test set. Similar to LIME, the Shapley values for features can be aggregated for

all test points to find the overall impact of a feature on the model. We present the

feature importance for all data points in the test sample in Figure 9-3, which shows

that the months since the newest request for a new line of credit (excluding those
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requested in the past week), the fraction of all revolving lines of credit limits in use,

and the average age of lines of credit are the top three most important features for

the model. We observe a minor difference in the feature contribution obtained from

the LIME and SHAP. This may be due to the fact that not all LIME approximations

are locally accurate.

(a) Feature contribution for all samples in

the test set.

(b) Average feature contribution (absolute

value) for all samples.

Figure 9-3: Feature Importance SHAP
Feature importance (Shapley values) obtained by aggregating Kernel SHAP expla-
nations for all the samples in the test set. In Figure (a), the color coding (blue-red)
represents the value of the feature. For instance, the larger values (in red) for the ex-
ternal risk estimate contribute to the decreasing non-creditworthy probability, while
the smaller values (in blue) contribute to the increasing non-creditworthy probabil-
ity. The contributions are defined relative to 0.5 (equal probability of default/non-
default). The x-axis is the contribution of the individual feature in the output of the
model relative to 0.5. For example, for a data point, if the contribution of all other
features is zero and the contribution of external risk estimate is �0.2, the model’s
output will be 0.5�0.2 = 0.3. We obtain the overall feature importance (as illustrated
in Figure (b)) by aggregating Shapley values for all test points. The most important
features are the months since the newest request for a new line of credit (excluding
those requested in the past week), the fraction of all revolving lines of credit limits
in use, and the average age of lines of credit. These are largely consistent with the
LIME feature importance. Small discrepancies can be attributed to the inaccurate
local approximations of LIME.

It is also worth emphasizing that both LIME and SHAP have their weaknesses,
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which may affect the explanations in the credit risk domain. For example, in addition

to feature importance, we can obtain locally linear approximations using LIME (as

obtained in Figure 9-1), which are not available in SHAP. These local approximations

of the decision boundary are necessary for other applications, as will become clear in

the next section. On the other hand, the explanations using LIME might not satisfy

important properties like local accuracy and consistency that Shapley values allow.

In addition, we have incorporated feature correlations in the sampling of data points

for learning the local linear model in LIME, which leads to fewer constraint violations

in the input feature vector, hence creating more realistic data points. However, in

SHAP such feature correlations are not considered when computing Shapley values.

From the computational perspective, different runs of LIME produce slightly dif-

ferent explanations because of the randomness in sampling local data points. Conse-

quently, it can potentially suffer from instability issues. On the other hand, computing

Shapley values is not scalable for datasets with a large number of features. In such

scenarios, LIME approximations can be computed efficiently. Therefore, both meth-

ods (SHAP and LIME) should be used in practice depending on the use case, carefully

and judiciously.

Finding Representative Samples

Another application of model explanations is to find the most representative data

point for a particular target point analyzed. It can be useful in scenarios where

loan companies might require representative data points from the past to explain the

model prediction of a particular loan candidate. For example, the borrower xi might

default in the future because it is similar to xj and xk who defaulted in past.

The k-nearest neighbors algorithm (kNN) applied to the data naively can generate

the most similar points in the sample. However, if we apply kNN to the original

feature space, the less significant features will end up contributing to the distance

calculations between the data points. To avoid this problem, every data point can

be represented by a feature importance vector (for instance, a vector of Shapley

values), and kNN can be applied to the feature importance vector. Using SHAP will
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ensure that less important features have smaller feature contributions (that is, smaller

Shapley values). Hence, the contributions of less important features to the distance

calculation in the kNN will be minimal. This modification leads to finding a more

representative data point for each new data point being analyzed.

9.6.2 Interpretability for Regulators: Model Fairness and Stress

Testing

In the previous subsection, we generated explanations for model predictions. Apart

from concerns about the transparency of the credit approval algorithm, government

regulations mandate that these algorithms must be fair. Concerns about the fairness

of a model arise when the model gives importance to features like race, religion, or

gender that are specified in law. Our HELOC dataset does not contain any such

features overtly. Nevertheless, the fairness of a black box model can be examined (if

features were present) using the individual and overall feature contributions that are

obtained from LIME and SHAP.

Another important aspect of interpretability for regulators is stress-testing the

models. The credit risk models used by companies need to withstand appropriate

stress testing. This involves simulating extreme scenarios and analyzing the model’s

behavior in response to generally extreme macroeconomic conditions.

Extreme macroeconomic conditions cannot be simulated in our model due to its

lack of macroeconomic features. However, we demonstrate how interpretability meth-

ods can help in stress testing a black-box model for extreme customers. The same

methodology can be generalized for extreme macroeconomic conditions. We use two

extreme customers in our stress testing. In the first case, an extreme customer is

obtained by sampling points from a multivariate normal distribution with extreme

values. While sampling, some feature values may no longer satisfy the feature-specific

constraints; for them, we manually truncated the feature values. In the second case,

we use a customer whose feature values are all -9, that is, there is no bureau record

or investigation on file about this customer. We have multiple such data points in the
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dataset that are not included for training or testing purposes. The extreme points

used in our analysis are included in Table 9.3.

Feature Data Pt 1 Data Pt 2
ExternalRiskEstimate 131 -9
MSinceFirstLOC 935 -9
MSinceNewestLOC 99 -9
AvgAgeOfLOC 467 -9
NumLOCNotDelq 89 -9
NumLOC60PlusDaysDelq 6 -9
NumLOC90PlusDaysDelq 5 -9
PercentLOCNeverDelq 100 -9
MSinceMRecentDelq 115 -9
MaxDelqLast12M 16 -9
MaxDelqEver 13 -9
NumTotalLOC 125 -9
NumLOCInLast12M 6 -9
PercentInstLOC 88 -9
MSinceNewLOCReqExPastWeek 35 -9
NumLOCReqLast6M 13 -9
NumLOCReqLast6MExPastWeek 12 -9
FracRevLOCLimitUse 71 -9
FracInstLOCUse 100 -9
NumRevLOCWBalance 23 -9
NumInstLOCWBalance 25 -9
NumBankOrNatlLoansWHighUtil 21 -9
PercentLOCWBalance 100 -9
Model Prediction 0.53 0.75

Table 9.3: Extreme Customers (data points).
The first point is sampled, assuming features are multivariate Gaussian. The second
point is obtained by setting all feature values to -9 (no bureau record or investigation).
Since the data point 1 is sampled from a multivariate Gaussian distribution, it may
contain feature values that are not coherent.

Regulators are interested in verifying the validity of the model’s output and ana-

lyzing its behavior. We preprocessed features for these extreme customers using the

weight of evidence encoding, which leads to extreme values being assigned to one

of the bins. Due to this binning, the model was able to produce valid predictions.

For case 1, the output is Pr(default) = 0.53, which implies that the person may or

may not default with almost equal probability. Since this data point is sampled ran-
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domly, we cannot comment on the accuracy of the prediction. For case 2, the model’s

prediction is Pr(default) = 0.75, which implies that, when there is no information

about the person on file, the person is likely to default, hence preventing lenders from

approving credit for such individuals with no information in their credit file.

To understand the behavior of the model in the proximity of extreme points,

we use the LIME model approximation. For cases 1 and 2, we present the LIME

approximation in Figure 9-4. In both cases, the predictions from the LIME model are

close to the original model predictions. For extreme customer 1, the model’s output

is 0.53 and the LIME prediction is 0.53. For extreme customer 2, the model’s output

is 0.75 and the LIME prediction is 0.68. We also compute the R2 for the LIME linear

model, which is 99.6% and 88.8% respectively for the two customers. These results

demonstrate that the approximations are fairly trustworthy, and may be useful to

regulators to learn more about the model’s behavior in extreme scenarios.

In this section, our key contributions include a proof-of-concept demonstration

of the use of explainable AI methods for generating explanations in model fairness

testing and stress testing that may be able to assist regulators in their duties. Next,

we discuss the use of model interpretability for loan applicants.

9.6.3 Interpretability for Loan Applicants: Counterfactual Sug-

gestions

Loan applicants are interested in two major aspects of model interpretability. The

first is to learn the reason behind their denial or approval, and the second is how to

modify the features that might change their classification in the future. Explanations

for the reason behind denial or approval can be obtained from the techniques discussed

in the previous sections. In this section, we discuss the methodology of generating

instructions for reversing the model’s classification using state-of-art models in the

literature and make appropriate modifications to the existing models to generate

realistic instructions for reverse classification.

Applicants are interested in counterfactuals that provide information about the
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(a) Case 1: Feature Contribution. (b) Case 1: LIME Model

(c) Case 2: Feature Contribution (d) Case 2: LIME Model

Figure 9-4: Extreme Scenarios: LIME
LIME explanations for the two extreme scenarios (case 1: an extreme sample, case
2: no information in file). The regulators obtain the linear approximation using
the LIME model in the proximity of an extreme sample. In both cases, the LIME
approximation is close to the model’s output. For extreme customer 1, the model’s
output is 0.53 and the LIME prediction is 0.53. For extreme customer 2, the model’s
output is 0.75 and the LIME prediction is 0.68. The R2 of LIME is 99.6% and 88.8%,
respectively. The LIME models are ⌃(FeatureV alue)⇤(LIME�Coefficient) whose
coefficients are represented by the horizontal lines. We can observe that for extreme
case 1, the model gives its maximum importance to the percentage of lines of credit
that are installment lines of credit, while for extreme case 2, the model gives its
highest importance to the months since the newest request for a new line of credit
excluding those requested in the past week. The above analysis can be extended to
different extreme conditions.
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steps that might change the decision of the model. Consequently, the counterfactu-

als being generated should have the following properties: reverse classification (that

is, the model prediction for the counterfactual should be reversed from the original

decision), proximity (that is, the counterfactual should be close to the original data

point), and diversity (that is, there should be multiple different counterfactuals from

which an individual be able to choose).

We generate counterfactuals using the state-of-the-art method, Diverse Counter-

factual Explanations (DiCE) [216]. This method learns the counterfactuals ci for a

data point y optimizing over the requirements of the counterfactual. In particular, it

learns the ci’s by minimizing the following loss:

L =
kX

i=1

loss(f(ci), y) + �1

kX

i=1

dist(ci, y)� �2 ⇤ diversity(c1, c2...ck)

where the first part is the reverse classification loss (cross entropy for our application),

the second part is the proximity to the original data point (average l1 distance),

and the third part is the diversity component (determinant of kernel matrix given

by the distance between counterfactuals). �1 and �2 are the weights for proximity

and diversity components, respectively. The exact details of the implementation of

different loss function components can be found in [216].

We study a few illustrative examples and analyze the properties of the coun-

terfactuals generated using DiCE.13 Counterfactuals can be generated using other

algorithms as demonstrated in [129]. We use DiCE because it implements the di-

versity functionality while generating counterfactuals. We analyze the importance of

diversity next.

Applicants classified as non-creditworthy are interested in the steps that can make

them creditworthy. The steps suggested must be practical enough for an applicant to

implement. Some features are inherently impossible for individuals who are deemed

non-creditworthy to improve. For example, the maximum delinquency ever in days

13We use the publicly available implementation of the DiCE algorithm, found at https://github.
com/interpretml/DiCE.
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cannot be decreased: it is an event that happened in the past, and cannot be changed.

Likewise, the total number of lines of credit established cannot be increased, since

the person has been turned down from opening a new line of credit.

In our system, the features that are impossible to modify are incorporated as

constraints in the optimization of loss L. Table 9.4 shows an example of the set of

suggestions to become creditworthy for an individual who is deemed non-creditworthy.

All of the suggestions are possible to implement, though some might be difficult. In

cases where it is hard for an individual to implement certain changes, he or she may

be able to choose from a diverse set of counterfactuals to reverse the classification.

In Table 9.4, the first counterfactual suggests increasing the months since the

applicant’s most recent delinquency to more than four years. However, this requires

an individual to wait for four years while making payments for all his lines of credit.

In this case, the individual may instead choose to follow another set of steps, as

suggested by the third counterfactual: increasing the percentage of lines of credit

never delinquent (by decreasing the total lines of credit), along with decreasing the

number of lines of credit requests made in the six months prior to applying for a new

line of credit. Similarly, diversity-constrained counterfactual suggestions can be made

for all individuals who are deemed non-creditworthy, and individuals can follow the

steps which are most convenient to their circumstances.

Likewise, the people who are classified as creditworthy would like to maintain their

creditworthy status. Hence, they would like to know which actions to avoid that might

make them non-creditworthy. Table 9.5 presents one such example. The applicant

in Table 9.5 might face a credit denial if he or she takes steps such as opening up

new lines of credit, decreasing the lines of credit that are not currently delinquent,

increasing the fraction of revolving lines of credit, and making new requests for line

of credit in the six months prior to applying for a line of credit. These steps result in

the non-creditworthy probability as suggested by the model increasing from 0.09 to

0.58, which may lead to a denial of credit. From these counterfactuals, the applicant

thus knows the steps not to take that may decrease their creditworthiness.

To gauge the ability of DiCE to generate counterfactuals, we run it for all test data
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Feature Original Value New Value
MSinceMRecentDelq 0� 4 48�
NumLOCReqLast6M 2� 4 1� 2
Pr(Default) 0.63 0.44

AvgAgeOfLOC 75� 98 98�
NumTotalLOC 9� 14 0� 1
NumLOCReqLast6M 2� 4 1� 2
Pr(Default) 0.63 0.43

PercentLOCNeverDelq 0� 82 98�
NumLOCReqLast6M 2� 4 1� 2
Pr(Default) 0.63 0.31

Table 9.4: Counterfactual
The steps toward creditworthiness suggested to an individual deemed non-
creditworthy. Following these steps, an individual should be able to decrease the
non-creditworthy probability predicted by the machine learning model. We present
three diverse counterfactuals. The first counterfactual suggests changing the months
since the most recent delinquency from the value of 0-4 months to greater than 48
months, which means that person should not be delinquent for the next four years.
In the second counterfactual, one of the suggestions is to decrease the total number
of lines of credit to 0-1 (by closing accounts). Because some suggestions may be dif-
ficult for an individual to follow, we provide multiple diverse counterfactuals. The
individual can follow the third counterfactual, which suggests decreasing the number
of lines of credit to increase the percentage of lines of credit never delinquent, and
decrease the number of lines of credit requests in the most recent six months prior to
applying for a new line of credit. Providing multiple diverse counterfactuals allows
the option of selecting the most convenient option for an individual.

points (total: 1973) and count the number of points for which the counterfactuals were

successfully found. In Table 9.6, we show that increasing the proximity constraint

leads to a decrease in the average number of feature changes in the counterfactuals

obtained. We also observe that increasing the proximity constraint leads to a decrease

in the number of successfully generated counterfactuals. An optimal algorithm to

generate counterfactuals for an individual thus is to start with a high value for the

proximity constraint and slowly decrease it until a counterfactual is found.

Using DiCE and related counterfactual generating methods, we can generate sug-

gestions for loan applicants, as discussed above. One limitation of the counterfactual

generation algorithm is the inability to take feature relationships into consideration.
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Feature Original Value New Value
AvgAgeOfLOC 60� 75 4� 29
NumLOCNotDelq 12� 17 4� 6
NumLOCReqLast6M 0� 1 1� 2
FracRevLOCLimitUse 13� 29 77�
Pr(Default) 0.09 0.58

Table 9.5: Counterfactual Creditworthy
The steps that can make a creditworthy-deemed individual non-creditworthy, as sug-
gested by the algorithm. In simple English, if the individual decreases the number of
lines of credit not currently delinquent, opens up multiple new lines of credit leading
to a decrease in the average age of their lines of credit, made multiple requests for
lines of credit in the past six months, and increases the fraction of their revolving line
of credit, then the individual will be deemed non-creditworthy.

Proximity
Constraint(�1)

Mean # of Feature
Changes

Loss Value (Dis-
tance)

# of success counter-
factual found

0.5 3.96 0.054 1961
1.5 3.35 0.045 1909
5.0 2.66 0.035 1854

Table 9.6: Proximity Analysis.
By increasing the proximity constraint (�1), the number of changes required for gen-
erating a successful counterfactual decreases, and the number of data points for which
successful counterfactuals are generated also decreases. An optimal algorithm to gen-
erate counterfactuals for an individual is to start with a larger proximity constraint
and slowly decrease it until a counterfactual is found.

For example, if one of the generated counterfactuals suggests decreasing the number

of the total lines of credit, that also leads to modifications in the features that depend

on the total number of lines of credit. However, this type of relationship is ignored in

the present method. Solving this problem would involve the intervention of an expert

who is familiar with the relationship between the model’s features, and can encode

them as constraints in the counterfactual generation optimization process. We leave

this for future studies.
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9.6.4 Interpretability for Researchers and Data Scientists: Sim-

ple Rules to Summarize the Dataset

One aspect of interpretability of particular interest to data scientists is the summa-

rization of the data and the model, and answering key interpretability questions for

other stakeholders. A global view of the data and the model is able to give the re-

searcher an idea about any possible problems with the model. It can additionally

help them to present a summary of the model to managers or regulators. In this

section, we discuss methods that may help data scientists to demystify these black

box models for their particular needs. The key contribution in this section includes

applying data-driven inductive logic programming and decision trees to generate a

dataset summary which is not discussed in earlier sections.

We have already discussed the first aspect of interpretability, the summarization

of the model. A good summary of the model includes determining the most important

features that contribute to the model’s prediction. Using the methods described in the

previous section (LIME and SHAP), data scientists can obtain the most important

features and know their contribution to the model’s overall prediction. For example,

Figure 9-3 illustrates that the feature, “months since the newest request for a new line

of credit (excluding those requested in the past week),” is the most important feature

in the model. The model summary also includes information about the relationship

between the input and output of the model. Additionally, from Figure 9-3a, we can

observe that higher values of the fraction of all revolving line of credit limits in use

increase the non-creditworthy probability.

Another important aspect for researchers is the summarization of the dataset.

It involves discovering the intrinsic relationships within the dataset. To this end,

we aim to learn a set of simple rules that can summarize the dataset. Tree-based

classification approaches can be used to learn such rules. A tree classifier is a set of

if-else statements that determines the classification of a data point. As illustrated

in Table 9.1, the best optimal tree classifier with our dataset achieves an accuracy

of 74.12%. However, the complexity of rules obtained from the best optimal trees
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classifier makes these rules difficult to analyze and interpret.

To obtain rules that are simple to understand, the decision tree must be con-

strained to a smaller depth, with fewer features at every node. Consequently, we use

a simpler and interpretable optimal tree to obtain more easily analyzed rules. This

simple optimal tree is shown in Figure 9-5. Here we show two simple rules that can

achieve an accuracy of 72.28%. The rules state that a person will default on a loan

(that is, be classified as non-creditworthy) if the number of months since a new line

of credit has been requested (excluding those requested in the past week) is greater

than 1, and the external risk estimate is less than 75, or if the number of months

since a new line of credit has been requested (excluding those requested in the past

week) is less than or equal to 1, and the external risk estimate is less than 68.

Figure 9-5: Optimal Trees Model
Explainable Optimal Tree Model used to learn simple rules summarizing the dataset.
The rules state that a person will default on a loan (that is, be classified as non-
creditworthy) if the number of months since a new line of credit has been requested
(excluding the past week) is greater than 1 and the external risk estimate is less than
75, or the number of months since a new line of credit has been requested (excluding
the past week) is less than or equal to 1 and the external risk estimate is less than
68.

We use inductive logic programming to learn an even simpler set of rules with a
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small decrease in accuracy compared to the rules generated from the optimal trees

model. As discussed earlier, ILP generates rules that are composed of a single condi-

tion: for example, using the rule ExternalRiskEstimate < 72 to classify people into

non-creditworthy and creditworthy groups is able to achieve an accuracy of 70.65%.

In addition to ILP, there exist multiple other rule-finding methods in the literature.

However, the ILP approach stands out in terms of its simplicity and ability to learn

more effective rules. For example, anchors [240] can be used for generating rules based

on data points that are in close proximity. The logistic rule regression/generalized

linear rule model described in [284] is another rule-based model, but it leads to mul-

tiple rules that are difficult to analyze together. Similarly, the Boolean rule column

generation (BRCG) method described in [80] gives a set of rules to describe a dataset,

but it requires users to divide feature values into different bins before learning the

rules. Data-binning limits the quality of the generated rules, because the binning

algorithm may not select the optimal thresholds for the rule.

Using the methods discussed above, data scientists should be more able to sum-

marize datasets and demystify models. Obtaining a good summary of the dataset

and an understanding of the model will help in the creation of better classifiers.

9.7 Conclusion

In this paper, we examine several different machine learning models and use suitable

tools to create explanations of their respective functions according to the needs of dif-

ferent stakeholders involved in credit risk management. We use state-of-the-art inter-

pretable machine learning techniques, including Local Interpretable Model-Agnostic

Explanations (LIME), SHapley Additive exPlanations (SHAP), and Diverse Counter-

factual Explanations (DiCE), and adapt them to our use case. We demonstrate the

importance of domain-specific knowledge in order to explain these black-box models.

These domain-specific constraints must be obtained from experts in the field, and

they can produce pragmatically valid suggestions and explanations.

Our results demonstrate that, with the right tools, even black-box machine learn-
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ing models are able to answer a series of important questions for credit risk modeling.

These questions include: why does the model classify a data point in a certain way?

What small changes in feature values could reverse the model’s classification of an

individual? How does the model behave in extreme scenarios? What relationships

did the model learn? Are the models biased? What is the minimal summary of the

dataset?

Answering these questions not only fulfills the legal requirements specified by

regulators for the use of machine learning models in credit risk management, but also

provides borrowers, lenders, and data scientists with answers to questions that they

may desire from ML models. Improvements in the interpretability of ML models can

not only accelerate their adoption, but also help domain experts troubleshoot their

inner workings, which in turn drives the model to iterate towards higher accuracy

and be tailored to its domain.

Many problems in finance and economics have a common mathematical represen-

tation and internal statistical structure, and may therefore benefit from our framework

to interpret the black-box machine learning models used to analyze them. These in-

clude loan defaults, mortgage prepayments, Federal Reserve rate decisions, corporate

merger and acquisition decisions, asset return maximization, and insurance claims,

among others. Our study is a step in the direction of bridging the gap between these

black-box models and their use in a real-world setting.

Future work can extend our explainability analysis by incorporating second-order

effects into the explainability algorithms (LIME and DiCE), in order to generate more

practical counterfactual suggestions and explanations. It may also be of interest to

compare the insights derived from these explainability tools to the traditional fac-

tors used for credit risk forecast by involving an expert in the process. Finally, large

real-world datasets, in particular those including macroeconomic and demographic

features and the size of loan requests, should be used to extend the model’s capa-

bilities, in order to help quantify its overall fairness, response to stress testing, and

the monetary impact due to the superior performance of black-box machine learning

models.
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Part V

Evolution of NLP
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Chapter 10

From ELIZA to ChatGPT: The

Evolution of NLP and Financial

Applications

Natural language processing (NLP) has revolutionized the financial industry, provid-

ing advanced techniques for the processing, analyzing, and understanding of unstruc-

tured financial text. In this Chapter, we provide a comprehensive overview of the

historical development of NLP, starting from early rules-based approaches to recent

advances in deep-learning-based NLP models. We also discuss applications of NLP

in finance along with its challenges, including data scarcity and adversarial examples,

and speculate about the future of NLP in the financial industry. To illustrate the ca-

pability of current NLP models, we employ a state-of-the-art chatbot as a co-author

of this article.

10.1 Introduction

In 1960s, a natural language processing (NLP) program called ELIZA was developed

by Professor Joseph Weizenbaum from the Massachusetts Institute of Technology

[285], the first chatbot in the history of computer science. It used a simple form

of pattern matching to respond to certain keywords and phrases, and although its
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capabilities were quite limited by today’s standards, its impact was unmistakeable.

As Weizenbaum explained, “Once my secretary, who had watched me work on the

program for many months and therefore surely knew it to be merely a computer

program, started conversing with it. After only a few interchanges with it, she asked

me to leave the room.” [64]. In recent years, deep learning techniques have enabled

the development of advance chatbots like ChatGPT that generate even more human-

like responses. The journey from ELIZA to ChatGPT reflects the ongoing evolution

of NLP, as researchers continue to push the boundaries of what is possible with NLP

and machine learning.

In the context of finance, the technology company Kensho, a next-generation

provider of analytics and artificial intelligence systems to Wall Street banks, was

acquired by the financial information powerhouse S&P Global in 2018.1 The avail-

ability of data from S&P Global combined with NLP technology from Kensho saved

decades of work-hours of manual data analysis.2 Other financial companies are cur-

rently adopting NLP for the automation of analytics. For example, the investment

company BlackRock has designed new NLP models for extracting financial data from

unstructured documents.3 Likewise, many other financial institutions, such as J. P.

Morgan, Goldman Sachs, Citigroup, and Vanguard, are adopting NLP for chatbot

customer service, equity research, and news analytics among other functions.

The use of NLP in finance has evolved significantly over the past few decades.

Initially, NLP was used in finance for comparatively simple tasks, such as sentiment

analysis of financial news articles and stock predictions. However, with advances

in NLP techniques and increased computational power, the application of NLP to

finance has become more sophisticated and diverse. Today, NLP models are used in

finance for a wide range of tasks, including asset management, risk management, and

impact investing.

The finance industry has unique requirements, and thus unique challenges, for

1https://press.spglobal.com/2018-04-09-S-P-Global-Completes-Acquisition-of-Kensho
2https://www.waterstechnology.com/data-management/7950146/four-years-on-sps-kensho-buy-

yields-new-automation-toools-saving-decades-of-manual-data-analysis
3https://www.blackrock.com/aladdin/nlp-aladdin-private-markets-blog
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NLP models such as dealing with unstructured financial data and handling the com-

plexities of financial regulations. As a result, the development and implementation of

NLP in finance have been slower compared to its use in other industries. However, the

potential benefits of using NLP in finance are significant, and include improved risk

management, increased operational efficiency and scalability, and enhanced decision

making.

Figure 10-1: Word cloud representing the most frequently occurring words in this
article.

While not strictly a survey, this chapter includes a comprehensive overview of the

evolution of NLP, starting with the early rules-based models of the 1950s to the 1970s,

to the early statistical models of the 1980s and 1990s, followed by the development

of embedding-based and advanced statistical models of the 1990s to the 2010s. We

then discuss the state-of-the-art deep-learning-based NLP models developed in the

2020s. We explore the applications and current state of NLP in finance, discussing

the challenges faced by NLP models and possible insights into their future in this

domain. We conclude by proposing opportunities for NLP to transform the financial

industry.
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To highlight the current state of NLP in finance, we employ a chatbot—OpenAI’s

ChatGPT—in preparing this article. Although journalistic standards for using chat-

bots and disclosing such use have not yet been set, we propose to initiate the practice

of acknowledging the use of this powerful tool explicitly, and because we include pas-

sages generated by ChatGPT verbatim, we have included it as a co-author. The

complete interaction between the two human authors and ChatGPT that led to these

passages is provided in Appendix.

In the next section, we discuss the timeline of development of NLP models, along

with a summary of the models. We then discuss the current applications of NLP in

finance, following by our view of the future role of NLP in this field.

10.2 Evolution of NLP Models

NLP models have evolved over time with theoretical innovation and the availability

of data and computational resources. Exhibit 10-2 shows the computation and dat-

apoints used by the artificial intelligence (AI)–including language systems– systems

developed over time where we can observe an exponential increase in the compu-

tation and datasets used by AI systems. This was possible due to the increase in

the computational resources and decreasing cost of computational and data storage

facilities.

Increase in computation and datasets implies increasing complexity of the AI/NLP

models over time. The earliest NLP-based models in the literature are rules-based

systems, developed in the 1950s and 1960s. These systems used handcrafted rules and

grammars to analyze natural language text. In the 1980s and 1990s, statistical NLP

models emerged, which supplanted rules-based approaches with statistical models.

During the 2000s, with the increased availability of datasets and the exponential

increase in computational power, machine learning (ML) models were developed that

could learn patterns in textual data and make predictions based on this interpretation

of text.

In this section, we summarize the models that were developed over this decades-
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( Panel-a ). Computation used to train notable artificial intel-

ligence systems.

( Panel-b ). Number of datapoints used to train notable arti-

ficial intelligence systems.

Figure 10-2: Evolution of computation and number of datapoints for AI systems
training.
Dataset is obtained from [253]
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long history. We have divided the timeline of NLP models into multiple categories

based on model complexity, and consider them one by one.

Rules-Based NLP (1950s to 1970s)

Early NLP research focused on rules-based approaches, including grammar-based

parsers and dictionary-based information extraction systems:

• Grammar-based parsers: These systems used formal grammars to analyze

the structure of text, such as its syntax, and to generate parse trees. This

information could then be used to answer questions about the semantics of a

text or to perform other NLP tasks, such as information extraction or text

classification. Some early influential papers include [63], [242], and [95].

• Dictionaries: These systems relied on predefined dictionaries of words and

phrases to identify and extract specific pieces of information from text, such as

names, dates, and locations [193]. Handcrafted rules were used to classify text

into predefined categories, such as positive, negative, or neutral sentiment [231].

They were likewise used to identify and classify named entities in text, such as

people, organizations, and locations.

Exhibit 10-3 provides an example of rule-based parsing of a sentence. Such parsing

and pattern matching was used by the early chatbots like ELIZA. These rules-based

models represented an important early step in the development of NLP, but had

several inherent limitations, including the need for extensive handcrafted rules and

dictionaries, and the inability to handle exceptions and outliers in text. Some recent

works related to rules-based methods are [158], [4], [277] and [220].

Early Statistical NLP Models (1980s to 1990s)

Hidden Markov models (HMMs) [21] and maximum entropy models (MEMs) were

among the first statistical NLP models to be developed and applied to NLP tasks,

240



Figure 10-3: Parsing Tree.
Sentence tree constructed by a rule-based grammar parser for the sentence “Happy
researchers develop a language model.". Such grammar parsers were used by early
chatbots like ELIZA to understand the sentence and respond based on the script
(dictionary of sentences).

including the tagging of parts of speech, named entity recognition, and speech recog-

nition [18, 29, 28]. HMMs are a type of probabilistic model used for the modeling of

sequential data. A sequence is modeled as a series of hidden states and observable

outputs. An HMM is then trained using the Baum-Welch algorithm to estimate the

parameters that maximize the likelihood of the observed sequence. In an analogous

manner, maximum entropy models are probabilistic models that aim to maximize

entropy (i.e., uncertainty) subject to certain constraints. MEMs use a log-linear

approach to model the probability of an output sequence given an input sequence.

However, both these types of models struggled with computational efficiency, and

both have known difficulties in modeling complex relationships among variables.

Lexicon-Based and Topic Modeling (1990s to early 2000s)

An important step forward in NLP modeling was the combination of the dictio-

nary and rules-based approach with statistical modeling. These new methods include

lexicon-based models and topic modeling, relying on predefined and data-driven lexi-

cons of words and phrases employed with mathematical algorithms to uncover hidden

patterns and themes in the data.
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Positive Negative Uncertain Litigious

Best Cyberattack Vague Beneficial

Innovativeness Cybercrime Anomalous Bailment

Achieve Spam Doubt Juriousdictionally

Creative Abolish Undocumented Remised

.. .. .. ..

(a) Example words from the finance sentiment lexicon developed by [189].

The four sentiments included in the dictionary are positive, negative, uncertain and
litigious. Any new document can be given a sentiment score based on the presence
of the above words from the dictionary of sentiment words

Topic 1 Topic 2 Topic 3

Loans Financial Institution Cashflow

Value Bank Interest

Loan Capital Liability

Asset Institution Income

Tax Deposit Rate

.. .. ..

(b) Topics learned from 10-K documents using a popular topic modelling algorithm Latent

Dirichlet Allocation (LDA).

The topic modelling algorithms doesn’t give a topic summary like loans, financial
institutions, cashflow as given in the example. These are assigned from the human
understanding of the words belonging to a particular topic. Any new sentence (tweet,
article, paragraph) can be assigned to a particular topic based on the occurrence of
the words in the sentence.
Source: [61]

Table 10.1: Lexicon and topic-modeling examples of NLP .
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• Lexicon-based models: These models were developed in the early 2000s,

and rely on the use of predefined (or constructed from data) dictionaries of

words and phrases to analyze and understand natural language text [286]. For

example, a lexicon-based model might use a dictionary of financial terms to

identify financial concepts in news articles.

• Topic models: These models were developed in the late 1990s and early 2000s,

and use statistical techniques to identify the main topics discussed in a document

or a collection of documents [33, 16]. For example, a topic model might identify

market trends or company news as topics from the collection of financial news

articles.

The example of financial lexicon model and topic model based on the SEC 10-K

filings is presented in Exhibit 10.1. These lexicons and topics are learned from finan-

cial documents and are further used to assign sentiment scores or topics in multiple

applications. These methods have the significant limitation of relying on the presence

of specific words or phrases in a document to determine their content, which does not

account for the context in which these words appear. Moreover, these lexicons are

predefined or constructed from data, and may not contain all the relevant terms for

a given topic, leading to an incomplete analysis.

Embedding-Based NLP (2000s to 2010s)

Word embeddings are a type of NLP technique that represents words as continuous-

valued vectors in a high-dimensional mathematical space. These word vectors are

able to capture important semantic and syntactic information about words in a way

that can be used for various NLP tasks. Some embedding-based methods include the

following:

• Count-based method: These methods use the frequency of words, phrases,

or other linguistic features in a given corpus of text to extract meaningful in-

formation, and include techniques such as term frequency-inverse document
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frequency (TF-IDF), n-grams, and bag-of-words models. Dimensionality reduc-

tion, using methods like non-negative matrix factorization and singular value

decomposition, can then be applied to count-based embedding to obtain word

embeddings.

• Predictive methods: These methods, such as GloVe [230] and word2vec [212],

use a predictive objective to learn word representations. Their goal is to predict

a target word based on surrounding contextual words.

In addition, some methods, such as FastText [150], combine the strengths of both

count-based and predictive methods to produce high-quality word embeddings.

Figure 10-4: The word embedding vectors (obtained using embedding-based NLP
method word2vec) plotted on 2-D plane.
The key idea behind the embedding is to encode information and preserve the
semantic and relational information. For example, the words in the proximity of
underwriting are distressed, assetbacked, longterm which are related to underwriting
and likewise for mortgage.
Source: BankFin Embeddings, https://github.com/sid321axn/bank_fin_embedding.

As shown in Exhibit 10-4, the the embeddings learn the relational and semantic

information. These embeddings can be used for sentiment prediction, classification

of sentences etc. However, a disadvantage of embedding-based methods is their de-

pendence on the training corpus and sensitivity to data type and training domain.

For example, they often perform poorly on out-of-vocabulary words. Another disad-
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vantage is that word embeddings are context-sensitive. Since the representation for

a word can change depending on its context, it can be challenging to use embedding-

based methods to effectively capture the meaning of phrases and sentences.

Deep Learning-Based Approaches to NLP (2020s)

Most recently, with the joint exponential growth in data and computational infras-

tructure, large “deep learning” based language models have been developed and used

widely for NLP applications. Initially, recurrent neural networks (RNNs) were devel-

oped for the analysis of sequential data, and their use extended to NLP tasks. Along

with RNNs, convolution neural networks (CNNs) were used for text classification

[157]. The architectures of RNNs and CNNs were developed in 1990s, but they could

only be successfully applied with the availability of Big Data and large computational

resources. Over time, RNNs were modified for use in applications like neural machine

translation, for which sequence to sequence models were developed [268].

Figure 10-5: Summary of the different steps in the pipeline of a large language model.
The first step involves pre-training of the model on the multiple datasets. Once the
model is pre-trained, it can be generalized for different tasks like sentiment prediction,
banruptcy prediction by finetuning of the model using the dataset specific to the
application.

The “imagenet moment” for NLP—referring to the development of generic models

that can used for multiple tasks—happened with the development of the transformer-

based large language model, specifically the bidirectional encoder representation from

transformers (BERT) [85]. The transformer model revolutionized NLP by introducing

the self-attention mechanism in NLP, a deep learning technique that allows a model
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to dynamically weigh the importance of each element in an input sequence. Attention

mechanisms can be used in neural network models to understand the relationships

between words in a sentence [279]. Over time, more transformer models were devel-

oped, including the Generative Pretrained Transformer 2/3 (GPT-2/3) [236], and the

robustly optimized BERT approach (RoBERTa) [177]. The detailed survey of large

language models can be obtained from [210].

The summary of a large language model training and prediction is included in the

Exhibit 10-5. The first step involves pre-training of the model using the variety of big

datasets available. It allows the model to learn the general semantics of the language.

The pre-trained model can be finetuned for various applications by training them on

application specific datasets.4

ChatGPT

The most recent development of deep learning-based NLP models is ChatGPT, a

chatbot based on the transformer model GPT-3.

• Architecture: ChatGPT is based on the transformer architecture which, as

mentioned above, is a deep neural network designed for processing sequential

data, such as natural language. The transformer architecture is made up of

multiple layers, including an attention mechanism, which allows the model to

focus on different parts of the input at different times and dynamically adjust

its internal representations.

• Pretraining: Like other GPT models, ChatGPT is pretrained on a large corpus

of text data. During pretraining, the model learns to predict the next word

in a sentence given its preceding context. This enables the model to build a

rich representation of language and to learn patterns and relationships between

words and phrases.

• Fine-tuning: Once the model is pretrained, it can be fine-tuned for specific
4Finetuning refers to the process of retraining of model by making small adjustments to achieve

the desired output.
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tasks and domains, such as conversational AI. During fine-tuning, the model is

trained on a smaller dataset that is relevant to the target task. This allows the

model to learn task-specific information and improve its performance on the

target task.

ChatGPT can be used in a variety of conversational AI applications, including in

chatbots, virtual assistants, and customer service systems. The model can be used to

generate human-like responses to user inputs, answer questions, provide recommen-

dations, and perform other conversational tasks.

A series of chats with ChatGPT is included in Appendix. Based on our experience,

we found that ChatGPT is not capable of writing a complete manuscript by itself.

However, it updates its replies based on the context of the conversation, and is able

to understand the fine details about the questions. However, we found that replies

from ChatGPT were generally rather long, perhaps due to a bias introduced by long

questions and answers in its training data.

Just like any AI or deep learning based model, ChatGPT suffers from limitations.

Like all machine learning models, ChatGPT is only as unbiased as the data it is

trained upon. If the training data contains biases, such as racial, gender, or cultural

biases, the model will reflect those prejudices in its output. Another limitation is

ChatGPT’s lack of common sense. ChatGPT has been trained on a large corpus

of textual data, but it does not have a comprehensive understanding of the world

or common-sense knowledge. This can result in unrealistic or nonsensical responses

when faced with out-of-domain questions or situations. There are situations of hal-

lucinations as well, when AI models gives incorrect response to the questions with

high confidence which may misguide the users. ChatGPT is also not great at logic

and reasoning which humans are good at. An example of failed logical reasoning is

included in the Appendix Section Logical Reasoning. It was able to give a correct

response only after a hint. Finally, deploying ChatGPT in real-world applications

can be challenging, due to its large size and computational requirements. This can

limit its accessibility to smaller organizations or individuals, and make it difficult to

deploy in resource-constrained environments.
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10.3 Applications

To the best of our knowledge, the earliest use of NLP in finance can be traced to the

1980s, when [114] introduced a methodology for the statistical evaluation of narrative

data in accounting reports. Following this application, there were some advances

of NLP use in finance in 1990s by [37], which employed data mining techniques

for analyzing corporate data, and [290], who performed stock market forecasts from

textual web data. However, there was little progress in the use of textual data for

financial applications for many years, as early statistical models were not adequate for

deep understanding of the domain and the availability of structured data was limited.

From 2010 onward, parallel to the development of social media, the availability

of user data increased exponentially, as did the amount of available computational

power. This led to the financial community showing a greater interest in data mining

from textual data. Since then, the use of NLP in finance has continued to grow and

evolve, as companies and researchers have developed more sophisticated NLP models

and applied them to a wider range of financial applications.

Today, the use of NLP for financial applications is far from trivial. Existing NLP

models have been modified for their specific use in financial applications. For example,

[189] developed one of the most popular financial lexicons used to capture sentiment in

analysis, and more recently, [153] developed a lexicon for sentiment score generation.

Similarly, deep NLP models such as bidirectional encoder representations from trans-

formers (BERT) have been modified and trained on specifically financial data, for

example, Financial Phasebank [203] and Reuters TRC2 [173], leading to the develop-

ment of finBERT [144], which obtained state-of-the-art results for financial sentiment

tasks. Today, NLP methods from rules-based to deep NLP models are widely used

in finance for a variety of tasks, from sentiment analysis to risk management and

algorithmic trading, among others.

A detailed literature review of existing works pertaining to financial NLP is beyond

the scope of this article, but in-depth surveys can be found in [292], [112], and [152].

We discuss some of the most important NLP applications in the next few sections.
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Risk Management

Risk management in finance refers to the process of identifying, assessing, and control-

ling risks in financial operations, transactions, and investments. It involves identifying

potential sources of financial loss and taking steps to minimize or mitigate their im-

pact on the financial stability and performance of an organization. Key components

of financial risk management include market risk, credit risk, operational risk, liquid-

ity risk, and reputational risk. The goal of financial risk management is to minimize

the impact of adverse events on an organization’s financial performance and stability.

It is one of the foremost applications of NLP in finance.

NLP methods are used to extract data from news articles, financial reports, and

regulatory filings to identify patterns and relationships between risk factors. [139]

performed language analysis to identify event risk, and [43] developed a method to

determine risk factors via textual analysis. Exhibit 10-6 shows some example of

risk factors obtained using topic modelling. NLP can also be used for regulatory

compliance to mitigate financial risk, as it can be used to automatically scan financial

documents and identify potential compliance violations, such as insider trading or

money laundering. [297] discussed an NLP-based automated compliance checking

system. For credit risk, NLP can be used to analyze financial statements and other

data to predict a company’s credit risk and support the decision-making process in

lending and credit management. [135] performed word content analysis for initial

public offerings that can assist underwriters in finding more accurate prices.

Similarly, NLP can be used in fraud detection. NLP-based systems can analyze

transaction data and detect suspicious patterns that may indicate fraud, helping fi-

nancial institutions minimize their risk exposure. [190] performed a detailed review on

the use of NLP in textual analysis in finance and accounting, while [234] introduced

a domain-specific dictionary for predicting fraud from 10-K documents. Similarly,

NLP-based network analysis is used to identify interconnections between financial in-

stitutions and their exposure to risk. [35] and [143] used NLP in industry classification

and identifying interconnections between firms. NLP-based textual analysis is also
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Risk Category Risk Topic Words Example Companies

Debt Risk Debt, Payment , Acquisi-
tion, Default ..

HEE Equipment services, U
S Concrete Inc,

Drug Research
Risk

Clinical Trial, Marketing,
Approve ..

Hepion Pharmaceuticals,
Leap Therapeutics ..

Government
Funding Risk

State, Healthcare, Medi-
care..

Chemed Corp, U S Physical
Therapy etc

Advertising Risk Station, Advertising,
Broadcast ..

Beasly broadcast group,
Sinclair Broadcast

Figure 10-6: Topic Modelling Risk Factors.
Example of some risk factors that are learned from 10K documents using a topic
modelling algorithm along with the words that contribute to the risk topics.
Third column represents the companies that are exposed to the respective risk factors.
Using text based risk factors, we can find the exposure of different risk factors for each
company. For example, [188] found that Apple Inc is exposed to Supply chain risk,
Software risk, International risk, Internet risk and Demand risk. Such fine-grained
risk automated analysis from the textual data is possible due to NLP models.
The source of risk factors is [188].
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used for climate risk estimation, which we discuss more fully in the next subsection.

Impact Investing

Impact investing is a form of investment that aims to generate a positive social or

environmental impact alongside its financial returns. Impact investments are made

by companies, organizations, and funds with the intention to generate a measurable

social and environmental impact alongside financial returns. This approach to invest-

ment seeks to create financial returns alongside its social or environmental benefits,

as opposed to philanthropy, which aims primarily to create social or environmental

benefits foremost.

NLP models can be used in impact investing in multiple ways. They can assist in

document classification to automatically categorize sustainability reports and disclo-

sures according to specific impact themes, such as climate change, human rights, and

biodiversity (e.g., climate annotation in Exhibit 10-7 Panel-a ). They can analyze and

categorize sustainability-related information contained in a company’s annual reports

and sustainability disclosures, or perform sentiment analysis of news articles and social

media posts to track and quantify the social and environmental impact of companies

(e.g., climate risk classification in Exhibit 10-7 Panel-b ). Natural language genera-

tion can be used to produce impact reports and summaries that highlight a company’s

positive (or negative) impact on society and the environment. These impact-investing

related tasks use NLP models of varying complexity, from dictionary-based methods

to find thematic exposure [162] to the deep learning-based program climateBERT

[283] for detecting climate context and fact-checking claims of climate risk. Deep

learning-based language models can also be used to detect corporate greenwashing

(e.g., fact checking in Exhibit 10-7 Panel-c ), that is, claims of sustainable activity

for marketing purposes without true sustainability efforts [68], a widespread problem

in ESG investing.

One concern regarding the use of deep learning-based language models for impact

investing is the carbon footprint of these language models, since they are highly

computationally intensive. The training of climateBERT caused 115.15 kg of CO2
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climate-related classification: Statement Annotation

ExxonMobil is an American multinational oil and gas company is one of the biggest
contributors to global greenhouse gas emissions in the world

Yes

Risk managers need a wide range of risk measures to create a comprehensive picture of
risk across their portfolios.

No

( Panel-a ). Climate Annotation.

The task is to classify if the statement is climate-related. NLP models can be used for such clas-
sification and obtain climate-related documents and statement for the companies. ClimateBERT
obtained a F1 score of 98% on the climate annotation task. For dataset information refer [283] and
[86]

Climate risk classification: Statement Annotation

American National Insurance Company recognizes that increased claims
activity resulting from catastrophic events and the climate change may also
affect the affordability and availability of property and casualty insurance
and the pricing for such products.

Risk

A similar approach could be used for allocating emissions in the fossil fuel
electricity supply chain between coal miners, transporters and generators.

Neutral

( Panel-b ). Climate Sentiment Annotation.

Given a climate-related statement, the aim is to classify if the sentiment of the state-
ment is risk, neutral or opportunistic in climate-related context. ClimateBERT ob-
tained a F1 score of 83% on the above task. For dataset information refer [283] and
[86]

Claim Evidence Annotation

97% consensus on human-
caused global warming has
been disproven.

In a 2019 CBS poll, 64% of the US popula-
tion said that climate change is a “crisis"
or a “serious problem", with 44% saying
human activity was a significant contrib-
utor.

Refute

Global warming is driving po-
lar bears toward extinction

Environmental impacts include the ex-
tinction or relocation of many species as
their ecosystems change

Support

( Panel-c ). Fact Checking.

The aim is to classify, if the evidence supports or refutes the claim. It can be used for
detecting greenwashing for the claims made by companies. ClimateBERT obtained
a F1 score of 75% on the above task (for dataset information refer [283]). Source of
examples: Climate-Fever Dataset[86].

Figure 10-7: Three examples of NLP application to climate-related impact investing.
252



emissions. An increase in language model research will doubtless have a negative

impact on the climate, which goes against the intent of impact investing. However, the

information generated through NLP can help impact investors make more informed

investment decisions that align with their values, and thus contribute to a greater

positive social and environmental impact.

Asset Management

Asset management in finance refers to the professional management of a portfolio of

financial assets, such as stocks, bonds, commodities, and real estate. The goal of asset

management is to maximize returns and minimize risk for clients, typically by creating

and executing investment strategies that are tailored to their specific financial goals

and risk tolerance. This typically involves analyzing financial data and market trends,

making informed investment decisions, and continuously monitoring and adjusting the

portfolio as market conditions change.

NLP has already been used in asset management for various tasks such as sen-

timent analysis, news analysis, and earnings call analysis. NLP models are used to

process and analyze vast amounts of textual data and extract meaningful informa-

tion to make investment decisions. Sentiment analysis in asset management involves

analyzing the tone and emotion of financial news articles and social media posts to

predict stock market trends. News analysis involves using NLP to extract relevant

information from news articles, such as company news, earnings releases, and analyst

reports. This information can be used in the investment decision-making process and

improve portfolio management. Earnings call analysis involves using NLP to process

and analyze earnings call transcripts. The goal is to extract key financial metrics and

sentiment indicators to better understand a company’s financial performance when

making investment decisions.

Before the adoption of deep learning, a variety of NLP methods were widely used

in stock price predictions, including keyword spotting [290], bag-of-words classifica-

tion [272], manually crafted lexicons [78], pre-existing lexicons [17], mixture models

[256], and lexicon-based statistical modeling [153]. They were based on data obtained
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Figure 10-8: Out-of-sample cumulative log returns of portfolio sorted based on senti-
ment score constructed from news articles.
The sentiment scores are developed based on dictionary based statistical method.
L: Long only, S: Short only, L-S: Long-Short, EW: Equally weighted, VW: Value
weighted, SPY: S&P500. Long portfolio is constructed by buying 50 stocks with
maximum positive sentiment and Short portfolio is constructed by shorting 50 stocks
with most negative sentiment. The equal weighted long-short portfolio achieves an
annualized sharpe ratio of 4.21 while value weighted long-short portfolio achieves a
sharpe of 1.24. The portfolios obtained from the sentiment scores outperforms the
baseline of S&P500. Source: [153, Figure 5] ©

from professional periodicals, aggregated news, Twitter, financial reports, and so on.

Exhibit 10-8 shows the performance of long-short portfolio (inter-day trading) con-

structed using sentiment score from [153]. They found that portfolios constructed

using dictionary based statistical models can obtain an annualized sharpe ratio of

4.21, implying NLP based sentiment scores can be used for inter-day trading. Sim-

ilarly, Exhibit 10-9 shows the intra-day event study done by [5] for the Stocktwit

and Twitter messages when the sentiment score is above and below three standard

deviation of mean. They found that returns are positively correlated to sentiment

score and there is increase in liquidity after messages with, high positive and negative

sentiment implying NLP based sentiment scores can be used for intra-day trading.

More recently, deep learning-based NLP models have increasingly been supplant-

ing these methods. [152] compared the dictionary-based and deep learning-based

approaches (finBERT) for predicting sentiment from earning calls transcripts. NLP

methods (i.e., deep learning-based finBERT) applied to Twitter data have been used
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Figure 10-9: Event Study: Stocktwit and Twitter.
Intraday return event studies for Stocktwit and Twitter messages when the sentiment
score is above (a) and below (b) three standard deviation of mean, along with spread
event study when the sentiment score is above (c) and below (d) three standard devi-
ation of mean. The graphs implies that returns are positively correlated to sentiment
score and there is increase in liquidity after messages with large positive and negative
sentiment. Source: [5, Exhibit 5].
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for the prediction of price movements of cryptocurrencies [299]. The ability of deep

models to learn complex patterns which cannot be achieved by linear models makes

them highly attractive to the stakeholders involved in asset management.

10.4 What’s Next

The future of NLP in finance is promising. Many stakeholders in finance have already

been using NLP in their decision-making process, and there are many new and inno-

vative ways that NLP might be used to improve various financial processes in future.

However, there are potential limitations. These include:

• Data Availability, Quality and Bias: In finance, high quality and relevant

data is necessary for NLP models to generate meaningful results. For the appli-

cations discussed in earlier sections, good quality Big Data is readily available.

However, data is more generally limited and can be unstructured, incomplete or

unreliable. Some applications that are affected by data scarcity include senti-

ment analysis of niche financial products, small business lending, and real estate

financing in developing countries. Also, since NLP models are as biased as their

data, they can be biased towards or against certain groups or perspectives,

leading to discriminatory outcomes and unintended consequences.

• Complexity of Financial Domains: The financial domain is complex and

constantly evolving, making it challenging for NLP models to keep up with

its latest developments and trends. NLP models are often trained on specific

datasets in dynamic financial markets, making them vulnerable to overfitting.

This limits their ability to generalize to new situations and domains.

• Regulation and Compliance: The financial sector is heavily regulated, and

NLP models used in finance must comply with various legal and ethical stan-

dards, which limit the use and application of NLP technologies. For example,

one of the regulatory concern is the black-box nature of deep models. This
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inherent opacity makes these models hard to interpret to find the reasoning

behind the decisions made by these deep NLP models.

• Adversarial Examples: Machine learning models are prone to adversarial

examples. Adversarial examples in NLP are samples of text that have been

deliberately modified to trick an NLP model into making an incorrect prediction.

This potential weakness is a vulnerability that could be exploited in real-world

settings.

Research is ongoing on the limitations of NLP, and new methods to overcome ex-

isting limitations are being developed. For example, explainable AI (xAI) methods

to ameliorate the black-box nature of deep learning models like local interpretable

model explanations [238] and Shapley values [196] among other methods [77] have

been developed and used for financial applications like consumer credit risk [81] and

performance attribution [213]. Similarly, these xAI methods can be adopted for use in

deep NLP models in finance. Adversarial examples are another widely pursued topic,

and researchers have developed ways [11, 294] to train NLP models free of adversarial

examples.

A 2017 article in The Economist claimed that the “The world’s most valuable

resource is no longer oil, but data".5 Big Data is important to financial stakeholders

as its availability is necessary to train NLP models. There is significant work on the

influence of Big Data in finance [128, 137] and on debiasing methods in deep learning

[282, 247] both to make this data unbiased and to make bias-free NLP models more

accessible.

The current GPT-3 model has 175 billion parameters. In comparison, the num-

ber of neurons in human brain is estimated to be 86 billion. Following popularity

of language model, Google Inc. released its conversational AI agent Bard and more

advanced NLP models, like GPT-4, are intended to be released in the near future by

OpenAI. The future of NLP models thus appears promising. However, NLP models

based on historical data will be at a disadvantage in situations when their understand-
5https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-

longer-oil-but-data
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ing of the future is different from that of the past (which is often the case in finance).

Similarly, the scenarios that require logical reasoning may not be best solved by NLP

models. Meanwhile, well-trained humans may have a better understanding of the

future and are good at logical reasoning. In such scenarios, humans in the decision-

making loop will integrate human expertise and understanding into the data-based

machine models. A recent Forbes article calls this integration of human and machine

for investing as “quantamental investing,” one potential future of investment.6

10.5 Conclusion

In this article, we discussed the evolution of NLP models and their applications in

finance, from the early rules-based models of the 1950s to the recent deep learning

models of the 2020s. We summarized how the models were adopted in finance and

discussed their limitations and possibilities for the future.

If “data is the new oil,” as many technology mavens have been claiming for some

time, then NLP may well be the refinery. The availability of data and NLP tools will

significantly alter the financial industry. NLP has already demonstrated its ability

to perform tasks such as sentiment analysis, risk management, and impact investing.

With advances in NLP technology and the increasing volume of available financial

data, NLP is poised to play an increasingly important role in finance, with potential

applications ranging from financial analysis and investment decision-making to fraud

detection and regulatory compliance.

However, it is important to consider the limitations of NLP, such as the problem

of data scarcity, its ethical and legal implications, and the inherent limitations of

NLP models themselves. Another important limitation to consider is the apparent

“hallucinations” of AI bots which can lead to the strange and sometimes unsettling

experiences for users.7 Overall, the future of NLP in finance is bright, but it will likely

be accompanied by a combination of technological pitfalls and practical challengesas

6https://www.forbes.com/sites/michaelmolnar/2019/12/12/quantamental-investing-a-fuzzy-
term-that-describes-an-inevitable-future/?sh=1a0488c6ff07

7https://www.nytimes.com/2023/02/16/technology/bing-chatbot-microsoft-chatgpt.html
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the financial industry adapts to these newfound powerful capabilities.
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Part VI

Conclusion
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A 2017 article in The Economist claimed that the “The world’s most valuable

resource is no longer oil, but data". The data science, machine learning tools can be

the refineries that extract meaningful insights from the data. In this thesis chapters,

we showed that using right tools and datasets, we can find right peers for indus-

tries and crypto-currencies; generate insights and capital for the biopharmaceutical

industries investment management; assist in ESG investing; help traders with their

stress/activation analytics; assist stakeholders in credit risk management. We hope

that the methods introduced will allow the stakeholders to make timely and informed

decisions.

There are some challenges with data availability, quality, interpretability of models

and bias. However, right tools and right dataset can solve multiple problems.
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Appendix A

Peer Grouping : An Artificial

Intelligence-Based Industry Peer

Grouping System

Data

Dataset Coverage

Table A.1 presents the different datasets and the number of companies in each dataset

each year. The starting universe for different datasets is the MSCI USA Investable

Market Index (IMI) universe. The index covers approximately 99% of the free-float-

adjusted market capitalization in the U.S. For the models trained with all of the

datasets, we took the inner join of the companies present in all datasets.

Factor Exposure Features

Table A.2 presents the different factors used in our various models, along with their

description. We also include the speed (slow or fast) with which the feature value

changes. The slow factors were included at a yearly frequency, and fast factors were

included at a monthly frequency.

263



Year Returns-Daily Returns-Monthly Fundamental Data 10-K Filings News
2011 2544 2542 2544 2203 2500
2012 2470 2470 2470 2227 2433
2013 2449 2449 2449 2189 2388
2014 2511 2510 2511 2238 2456
2015 2555 2552 2555 2324 2492
2016 2478 2477 2478 2288 2427
2017 2432 2431 2432 2255 2380
2018 2441 2441 2441 2271 2335
2019 2411 2411 2411 2196 2326
2020 2375 2372 – – –

Table A.1: Datasets used for feature extraction and the number of companies covered
in each dataset every year.

Factor Exposure Description Speed of Change

One-day reversal Fast

Historical Beta Slow

Dividend-to-price ratio Slow

Analyst-predicted dividend-to-price ratio Slow

Lower partial moment Fast

Idiosyncratic lower partial moment Fast

Hybrid tail covariance risk Fast

Idiosyncratic hybrid tail covariance risk Fast

Mean lower partial moment CAPM beta Fast

Accruals - balance sheet version Slow

Accruals - cash flow statement version Slow

Variability in sales Slow

Variability in earnings Slow

Variability in cash flows Slow

Standard deviation of analyst prediction to price Slow

Enterprise Multiple (EBITDA to EV) Slow
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Trailing Earnings-to-Price Ratio Slow

Analyst-predicted earnings-to-price ratio Slow

Long term analyst-predicted growth Slow

Historical earnings per share growth rate Slow

Historical sales per share growth rate Slow

Industry momentum Fast

Market Leverage Slow

Book Leverage Slow

Debt-to-Assets Ratio Slow

Monthly share turnover Slow

Quarterly share turnover Slow

Annual share turnover Slow

Modified Amihud illiquidity measure Slow

Pastor-Stambaugh illiquidity measure Slow

Long-term relative strength Slow

Long-term historical alpha Slow

Asset growth Slow

Issuance growth Slow

Capital expenditure growth Slow

Capital expenditure Slow

Cube of size exposure Slow

Relative strength Slow

Asset turnover Slow

Gross profitability Slow

Gross margin Slow

Return on assets Slow

Return on equity Slow

Skewness Slow

Maximum drawdown Slow

Regional momentum Fast
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Historical Sigma Slow

Volatility implied by call options, 1 month Slow

Volatility implied by put options, 1 month Slow

Volatility implied by call options, 3 month Slow

Volatility implied by put options, 3 month Slow

Seasonality Fast

Revision ratio Fast

Change in analyst-predicted earnings-to-price Fast

Change in analyst-predicted earnings per share Fast

Positive sentiment based on composite sentiment Score Fast

Positive sentiment based on event sentiment Score Fast

Sentiment dispersion based on composite sentiment Score Fast

At-the-money skew Fast

Short interest Fast

Short-term reversal Fast

Log of market capitalization Slow

Book-to-price ratio Slow

Sales-to-price ratio Slow

Cash flow to price ratio Slow

Structural value Slow

Table A.2: Description of different factors and their speed of change.

TF-IDF

For featurization of the 10-K filing documents, all documents from 1994 to 2010 were

used as training data (corpus). The n-grams of lengths 1 and 2 were considered

to learn the vocabulary. Once the vocabulary was learned from all the documents,

the documents from 2011 to 2019 were featurized for their use in the models. Each

document was represented by an 82606-dimension sparse vector. Given the high

dimensionality and sparse nature of TF-IDF features, we performed a truncated SVD
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to decrease the number of dimensions to 100. The implementation from sklearn and

nltk libraries were used.

Distance Metric

In this section, we provide details about the cosine distance model and the ML models

not included in the main text.

Cosine Distance

Given feature vectors fk

i
and fk

j
, we determined the cosine distance. i and j indicate

the company, and k represents the dataset, such as past returns, 10-K filings, news, or

factor exposure. The cosine distance (di,j) between two companies is calculated as 1�

cos(fk

i
, fk

j
). When there are multiple datasets, the cosine distance is calculated for all

datasets individually and then averaged. We believe that the cosine distance between

the companies’ features is a strong predictor of the companies’ similarity because the

cosine distance indicates the relative closeness between a pair of companies.

Machine Learning Models

Ridge Regression: This is a linear ML model widely used for regression tasks. It

is a least squares model with an L2 norm penalty on the weights that increases the

generalization power of the model. We used the sklearn implementation of ridge

regression. The linearity of the model makes its results interpretable and its input–

output relationship transparent.

Neural Network: These are nonlinear supervised learning models used to learn the

relationship between input features and the output. They consist of multiple layers

that act as a computational engine. In neural networks, the values of the hidden units

are computed as

hj(x) = f(wj +
nX

i=0

wij · xi)
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Here, wij is the weight from input xi to the hidden unit, hj. The weights, wij, can

be learned by minimizing the loss function using optimizers like stochastic gradient

descent.

The weights of the neural network create complex nonlinear interactions between

input features, which makes the decision boundaries learned by neural networks non-

linear. The complex relationships learned in neural networks generally do not have

human-interpretable meanings. Hence, the performance improvement obtained by us-

ing neural networks comes at the cost of model interpretability. In this work, we used

neural networks for regression. We applied the implementation from tensorflow-keras

for the construction and training of the model.

XGBoost: XGBoost is a gradient-boosted decision-trees model. A single decision

tree is a supervised learning model that learns simple decision rules to segregate data

points into different bins. The average of the outputs for all data points reaching

the bin is considered as the ultimate output. Each tree is constructed using the

classification and regression tree (CART) algorithm. Each tree acts a weak model.

XGBoost is based on the idea of combining multiple weak models to create a strong

model. Hence, it uses gradient descent to minimize loss while adding new models

to the ensemble. Regression trees in general are interpretable models. It is easier

to analyze the workings of a single regression tree using if-else conditions; however,

XGBoost combines multiple decision trees to make the learned relationship nonlinear.

The set of if-else conditions from multiple decision trees is intractable and difficult to

interpret.

Dataset Split

Table A.3 gives the details of the training–validation–testing split for the different

models trained for various years.
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Test Year Test Inputs Valid. Year Valid. Inputs Train. Year Train. Inputs
2020 2019 2019 2018 2018 2017
2019 2018 2018 2017 2017 2016
2018 2017 2017 2016 2016 2015
2017 2016 2016 2015 2015 2014
2016 2015 2015 2014 2014 2013
2015 2014 2014 2013 2013 2012
2014 2013 2013 2012 2012 2011

Table A.3: Train-validation-test year split.
The testing year is an out-of-sample year. For example, when we learn the model for
grouping companies for the year 2020, the input data (features) is from 2019. For
validation, we use the input data from 2018 predicting groupings for 2019, and for
training, we use the input data from 2017 predicting groupings for 2018.

Model and Results

Cosine Model Evaluation

Table A.4 reports the average return correlations for the peers obtained from the

cosine model. The first row corresponds to the GICS model, and the other rows

correspond to cosine models that are based on different datasets. The cosine model

performed best when all the datasets were combined, as represented by the row “ALL."

However, when compared to GICS, the improvements were minor. Across different

datasets, the cosine distance of past returns was the best predictor of future returns

correlations, followed by different variants of 10-K features, factors, and news.

After we obtained the cosine similarity, we grouped the companies using hier-

archical clustering. Table A.5 presents the average pairwise correlation for clusters

obtained using hierarchical clustering on cosine distances. The number of peers (k

in top k) is decided based on the number of companies belonging to the cluster at

the specified level. The performance of the clusters was comparable to GICS clusters

(except for sub-industry groupings). This implies the need for more complex models,

such as ML models, to predict the similarity between companies.
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Features Sector Industry Sub-industry Top 10 Top 5 Top 2
GICS 32.40 41.23 43.79 - - -
News 27.67 30.15 31.79 33.44 35.23 37.97

Factors 31.45 37.61 39.99 39.80 41.54 44.34
10K-TF-IDF(SVD) 29.87 37.99 42.26 40.97 43.00 45.71

10K-TF-IDF 31.66 40.10 43.09 40.88 42.91 45.76
10K-ALL 31.11 39.49 43.12 41.51 43.49 46.14

Returns-daily 32.56 41.12 44.00 43.76 45.86 48.96
ALL 32.55 41.42 44.34 44.15 46.55 49.97

Table A.4: Evaluation of Cosine Model.
The table presents the average return correlations for peers in the out-of-sample period
in which the peers are decided via the cosine model for different datasets. For a fair
comparison with GICS, the number of peers for sector, industry, and sub-industry
groupings was decided according to the number of companies in the GICS group to
which the company belongs. We observed that the performance improvements using
all datasets combined (ALL) was small compared to GICS.

Features Sector Industry Sub-industry
GICS 32.40 41.23 43.79
News 26.55 29.40 31.39

Factors 30.32 36.33 38.70
10K-TF-IDF(SVD) 26.04 36.99 41.55

10K-TF-IDF 30.69 39.18 43.40
10K-ALL 30.62 39.77 42.11

Returns-daily 28.69 38.04 45.46
ALL 31.40 39.96 44.05

Table A.5: Results after hierarchical clustering: Cosine Model.
This table presents the average return correlations for the clusters obtained using the
cosine model. The number of peers at each level was determined using the number
of companies belonging to the cluster at that level of granularity. The cosine model
clusters failed to outperform GICS at the sector and industry levels, implying the
need of a more complex model, such as ML modeling, to obtain the relative distances
between companies.
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Performance by Year

In Table A.6, we present the average pairwise return correlation between peer com-

panies for the ML model. For a fair comparison with GICS, the number of peers

(k in top k) was decided based on the number of companies belonging to the GICS

group of the company at the specified sector, industry, or sub-industry level. The ML

models consistently outperformed GICS over all years. The best-performing models

are highlighted in bold. The XGBoost model trained on all features, including GICS,

was the best-performing model over the years at various levels. We also include a

column for the maximum possible average correlation values, calculated by selecting

peers on the basis of the forward returns correlation.

In Table A-1, from 2014–2020, we present the average return correlation across

all clusters obtained from the different ML models from 2014–2020. The number of

peers (k in top k) was decided based on the number of companies belonging to the

cluster of the company. The best-performing models over the years are highlighted

in bold. The clusters using ML models outperformed the GICS clusters by a large

margin at the industry and sub-industry levels.

Bootstrapping

In Table A.6 we observed that the ML models outperformed GICS clusters consis-

tently. We obtained an increase in the forward return correlation up to 4%. To

analyze the statistical significance of the improvements, we performed data boot-

strapping, and trained a ridge regression (Ridge+GICS) model and calculated the

forward returns correlation for the peers predicted by the model. We repeated the

process 100 times and obtained the standard errors of the forward returns correlation

values for the peers predicted by the model (Table A.7). We observed that errors

were much smaller (by an order of magnitude) than the performance improvement

obtained. We did not perform bootstrapping for the neural network and XGBoost

models owing to the large training time of those models.
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Year Max GICS Ridge Ridge+GICS NN NN+GICS XGB XGB+GICS
Sector

2014 40.33 30.17 34.06 34.10 33.57 33.81 34.02 33.78
2015 42.70 32.43 36.45 36.47 36.37 36.82 36.97 37.08
2016 43.26 33.91 36.91 36.97 36.97 36.85 37.20 37.30
2017 30.92 22.51 23.38 23.25 23.34 23.85 23.75 23.92
2018 42.85 33.66 35.79 35.88 36.02 36.09 35.87 36.42
2019 40.15 29.79 33.29 33.24 32.97 32.94 33.45 33.38
2020 61.87 49.76 53.51 53.54 53.68 53.76 55.10 54.09

Industry
2014 48.39 38.33 40.77 40.93 39.76 40.01 40.40 40.29
2015 52.37 42.79 45.05 45.30 44.91 45.43 45.55 45.79
2016 51.97 42.99 44.82 45.00 45.01 44.82 45.33 45.55
2017 40.86 32.08 32.87 33.20 32.43 33.29 33.09 33.45
2018 51.73 43.06 44.03 44.47 44.37 44.36 44.03 45.01
2019 47.71 38.07 39.86 40.01 40.05 40.04 40.30 40.42
2020 67.68 56.44 58.82 58.83 58.92 59.13 59.38 59.33

Sub-industry
2014 51.90 41.53 43.92 44.10 42.70 42.91 43.66 43.57
2015 54.39 44.47 46.77 47.06 46.75 47.14 47.10 47.39
2016 54.32 45.69 47.30 47.55 47.33 47.12 47.72 47.90
2017 44.61 36.08 36.80 37.25 36.39 37.19 36.92 37.23
2018 54.14 45.28 46.37 46.81 46.89 46.86 46.70 47.30
2019 50.19 41.03 42.40 42.55 42.66 42.70 42.75 42.97
2020 67.95 57.93 59.97 60.07 59.94 60.23 60.48 60.50

Table A.6: Pairwise Return Correlation: Yearwise.
This table presents the pairwise return correlation over years when the number of
peers (top k) is selected by considering the number of peers in the corresponding
GICS cluster (for fair comparison with GICS). The best model for each year is bolded.
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Year GICS Ridge Ridge+GICS NN NN+GICS XGB XGB+GICS
Sector

2014 30.17 30.49 30.57 28.35 29.16 30.12 31.13
2015 32.43 32.27 30.70 29.42 30.78 31.86 32.69
2016 33.91 32.15 34.34 31.48 31.87 33.56 33.51
2017 22.51 19.60 22.04 20.65 20.41 19.24 21.01
2018 33.66 30.79 34.88 30.25 29.05 32.57 34.66
2019 29.79 30.11 30.63 27.04 24.12 28.10 28.78
2020 49.76 48.89 51.63 47.67 49.82 50.22 48.52

Industry
2014 38.33 41.12 41.24 31.97 34.54 39.47 41.44
2015 42.79 43.70 45.04 41.12 41.40 40.77 44.53
2016 42.99 42.95 44.51 41.10 41.69 44.36 45.65
2017 32.08 38.84 36.26 33.83 34.81 34.80 34.74
2018 43.06 45.11 45.10 42.41 44.32 43.98 45.07
2019 38.07 40.85 41.87 38.40 40.30 38.78 40.67
2020 56.44 60.14 59.08 58.83 60.86 59.30 60.73

Sub-industry
2014 41.53 45.36 45.74 40.23 39.98 45.57 45.14
2015 44.47 47.87 49.45 46.27 48.74 49.11 50.93
2016 45.69 48.60 50.13 49.31 48.18 49.35 50.21
2017 36.08 41.47 42.48 37.92 39.51 38.62 42.61
2018 45.28 48.61 51.27 50.91 50.63 48.12 51.86
2019 41.03 45.35 47.29 47.61 46.73 48.63 47.82
2020 57.93 63.95 64.11 65.15 66.00 66.76 65.69

Figure A-1: Yearwise Average Pairwise Correlation
This table presents the pairwise return correlation from 2014 to 2020 for GICS clusters
and different ML model clusters. The number of peers (k in top k) is decided by the
number of companies belonging to the cluster of the company at a specified level.
The best model for each year is bolded. For industry and sub-industry clusters, the
average pairwise return correlation is higher than for GICS clusters by 10–20%
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Year Sector Industry Sub-industry Top-2 Top-5 Top-10
2014 0.0057 0.0078 0.0097 0.0439 0.0208 0.0157
2015 0.0104 0.0151 0.0160 0.0367 0.0240 0.0206
2016 0.0055 0.0064 0.0077 0.0485 0.0239 0.0163
2017 0.0091 0.0105 0.0110 0.0646 0.00369 0.0286
2018 0.0062 0.0083 0.0080 0.0433 0.0218 0.0159
2019 0.0082 0.0069 0.0061 0.0345 0.0183 0.0149
2020 0.0067 0.0075 0.0077 0.0400 0.0199 0.0144

Table A.7: Return Correlation Standard Errors.
This table presents the standard errors of the correlation in the returns for the peers
obtained from the ridge regression model. The standard errors were smaller by orders
of magnitude when compared to the improvements obtained. The reported values are
in percentages.

Cluster Size

The aim of hierarchical clustering is to avoid having a majority of companies assigned

to very few clusters. To evaluate this, we computed the standard deviation of cluster

size at the sector, industry, and sub-industry levels, because uniformly distributed

clusters will have smaller standard deviations. Table A-2 presents the standard de-

viation of the cluster-size distribution. It shows that companies are more uniformly

distributed in the ML clusters compared to GICS for industry and sub-industry group-

ings.

Dataset Importance

Figure A-3 presents the importance of different datasets over time. Red indicates

higher values,and blue indicates lower ones. From 2014 to 2020, the returns were

consistently the most important dataset.
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Model:Features Sector Industry Sub-industry
GICS 124.10 29.65 16.41

Ridge:ALL 188.95 27.98 15.15
Ridge:ALL+GICS 140.24 26.54 14.89

NN:ALL 159.92 27.34 13.79
NN:ALL+GICS 161.35 26.32 14.47
XGBoost:ALL 124.10 29.65 16.42

XGBoost:ALL+GICS 133.50 23.37 13.50

Figure A-2: Standard Deviation fo Cluster Sizes.
The table presents the standard deviation of cluster sizes averaged over years. The
clusters obtained using ML models were more uniformly distributed than GICS clus-
ters at the industry and sub-industry levels.

Figure A-3: Feature Importance Datasets.
The above figure presents the importance of features from different datasets

aggregated. The returns were consistently the most important dataset from 2014 to
2020.
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Appendix B

Peer Grouping: Crypto-Connections:-

Exploring the Peers

The Table B.1 presents the id-name and symbol mapping of the cryptocurrencies

obtained from CoinGecko.

ID Name

neo NEO (NEO)

maker Maker (MKR)

basic-attention-token Basic Attention Token (BAT)

iota IOTA (MIOTA)

tezos Tezos (XTZ)

eos EOS (EOS)

tether Tether (USDT)

cosmos Cosmos (ATOM)

decentraland Decentraland (MANA)

bitcoin-cash Bitcoin Cash (BCH)

binancecoin Binance Coin (BNB)

filecoin FileCoin (FIL)

vechain VeChain (VET)

enjincoin Enjin Coin (ENJ)

277



chainlink Chainlink (LINK)

tron TRON (TRX)

loopring Loopring (LRC)

cardano Cardano (ADA)

kucoin-shares KuCoin Token (KCS)

theta-token Theta (THETA)

huobi-token Huobi Token (HT)

celsius-degree-token Celsius Network (CEL)

holotoken Holo (HOT)

nexo NEXO (NEXO)

ecomi ECOMI (OMI)

okb OKX (OKB)

usd-coin USD Coin (USDC)

bitcoin-cash-sv Bitcoin SV (BSV)

fantom Fantom (FTM)

wrapped-bitcoin Wrapped Bitcoin (WBTC)

quant-network Quant (QNT)

crypto-com-chain Cronos (CRO)

theta-fuel Theta Fuel (TFUEL)

matic-network Polygon (MATIC)

leo-token LEO Token (LEO)

harmony Harmony (ONE)

algorand Algorand (ALGO)

terra-luna Terra Classic (LUNC)

ftx-token FTX Token (FTT)

chiliz Chiliz (CHZ)

hedera-hashgraph Hedera Hashgraph (HBAR)

binance-usd BUSD (BUSD)

blockstack Stacks (STX)

dai Dai (DAI)
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thorchain Thorchain (RUNE)

klay-token Klaytn (KLAY)

kusama Kusama (KSM)

compound-usd-coin Compound USD Coin (CUSDC)

compound-ether Compound Ethereum (CETH)

cdai Compound Dai (CDAI)

kadena Kadena (KDA)

solana Solana (SOL)

arweave Arweave (AR)

compound-governance-token Compound Governance Token (COMP)

celo Celo (CELO)

polkadot Polkadot (DOT)

avalanche-2 Avalanche (AVAX)

helium Helium (HNT)

curve-dao-token Curve DAO Token (CRV)

the-sandbox The Sandbox (SAND)

sushi Sushi (SUSHI)

elrond-erd-2 Elrond (EGLD)

terrausd TerraClassicUSD (USTC)

amp-token Amp (AMP)

uniswap Uniswap Protocol Token (UNI)

gala Gala (GALA)

pancakeswap-token PancakeSwap (CAKE)

aave Aave (AAVE)

near Near (NEAR)

axie-infinity Axie Infinity Shards (AXS)

ecash eCash (XEC)

the-graph The Graph (GRT)

staked-ether Staked Ether (STETH)

frax Frax (FRAX)
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frax-share Frax Share (FXS)

flow Flow - Dapper Labs (FLOW)

olympus Olympus (OHM)

shiba-inu Shiba Inu (SHIB)

internet-computer Internet Computer (ICP)

convex-finance Convex Finance (CVX)

spell-token Spell Token (SPELL)

magic-internet-money Magic Internet Money (MIM)

radix Radix (XRD)

msol Marinade Staked SOL (MSOL)

osmosis Osmosis (OSMO)

huobi-btc Huobi BTC (HBTC)

bitcoin Bitcoin (BTC)

ethereum Ethereum (ETH)

litecoin Litecoin (LTC)

dash Dash (DASH)

monero Monero (XMR)

ethereum-classic Ethereum Classic (ETC)

dogecoin Dogecoin (DOGE)

zcash ZCash (ZEC)

ripple XRP (XRP)

stellar Stellar (XLM)

waves Waves (WAVES)

Table B.1: ID Name Mapping of the Cryptocurrencies.
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Appendix C

Finance For Impact: The Reaction of

Sponsor Stock Prices to Clinical Trial

Outcomes

C.1 Data

The Citeline dataset contains a large number of records about clinical trials performed

in the recent past. However, it has significant missing data issues. To use this data

for analysis, we perform multiple data cleaning steps, summarized in Figure C-1.

Our first step removes all trials that have a missing reason for termination or reasons

for termination with an ambiguity in event dates. The termination reasons with

ambiguity in their event date include poor enrollment, lack of funding, and business

decisions, such as a drug strategy shift or pipeline reprioritization.

From the remaining 46,003 trials, we remove those trials with missing event dates.

Since an event study analysis can only be performed for public companies with avail-

able stock market returns, we remove the trials that have no stock returns for their

sponsors. These sponsor types included academic institutions, government institu-

tions, and private companies.

Next, we exclude those trials from our analysis when confounding factors such
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as class action lawsuits filed against the company appear in the dataset. Due to

the large size of the dataset, it is not possible to isolate all the confounding events.

However, some trials are isolated when we are able to find such confounding events.

For example, the trials conducted by Repros Therapeutics are not included in our

dataset because of the class action lawsuit filed against them on August 8, 2009, that

led to abnormal returns around its clinical trial outcome dates.

Finally, we remove those trials with missing clinical trial and sponsor company

properties because they are unable to be included in our regression model. After

cleaning the dataset, we are left with 13,807 trials for the study. The number of trials

across outcomes and trial properties are included in Table C.1.

Figure C-1: Data Cleaning Process.
The flowchart presents the different steps involved in data cleaning. The number of
trials left in the dataset after every step are given above the arrows. The total number
of clinical trials used for the study after data cleaning was 13,807.

C.2 Results: Abnormal Returns Over Time

In this section, we perform the regression given by Eq. (4.1), adding an extra variable

for the year on the right-hand side. The year variable is one-hot encoded, taking values

from 2001 to 2020. The event dates for the clinical trial were used to obtain the year.
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Table C.2 presents the average abnormal returns for different years as determined

by the regression. We observed a pattern of increasing abnormal returns during the

period of the financial crisis of 2007–2009, and during 2014 to 2017. We found that

trials in 2007 had the largest abnormal returns, while trials in 2006 had the lowest

abnormal returns.

Figure C-2: Literature Review Summary.
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Table C.1: Number of Trials

Category Adverse Effect Lack of Effi-

cacy

Early +ve Out-

come

Primary

Endpts. Met

Primary Endpts.

not

Total 389 698 127 10156 2437

Phase 1 97 55 12 1060 95

Phase 2 144 364 32 2863 1058

Phase 3 57 168 71 3723 805

Phase 4 18 7 4 1801 297

Phase 1/2 54 77 2 524 99

Phase 2/3 14 26 5 140 63

Phase 3/4 3 0 1 36 18

Big Pharmaceutical 340 568 108 8716 2049

Early-stage Biotechnology 10 28 4 361 105

Late-stage Biotechnology 13 50 11 517 143

Small Pharmaceutical 26 52 4 561 140

Oncology 208 438 73 2626 898

Endocrinology 30 30 11 1815 262

Cardiovascular 33 36 12 869 230

CNS 39 90 14 1431 523

Autoimmune 48 83 10 1815 385

Genitourinary 4 5 0 118 27

Infectious 38 34 6 1454 178

Ophthalmology 3 7 3 177 47

Vaccines 3 6 2 880 58

Randomized 221 420 99 6564 1996

Efficacy 284 612 110 8539 2197

Safety 339 599 114 8903 2021

Placebo Control 132 258 58 3514 1221

Pharmacokinetics 183 308 59 2861 652

Pharmacodynamics 104 189 23 1648 380

Adaptive 10 29 1 96 33

Fixed dose 8 8 0 197 67

Bioequivalence 0 1 0 63 2

Bioavailability 5 0 2 40 2

Cross over 27 25 18 659 164

Drug-drug interaction 6 3 3 53 7

Double-blind/blinded 154 289 73 4760 1433

Open label 239 430 60 5483 1026

Superiority 0 20 15 383 107

Active comparator 53 142 39 2455 667

Non-Inferiority 1 11 1 669 68

Dose Response 46 74 11 878 199

Single Ascending Dose 19 10 2 121 7

Multiple Ascending Dose 12 13 1 145 13

Immunogenicity 23 61 10 1254 157

Observational 4 6 3 564 52

Non-Interventional 1 1 0 227 11

Single Arm 139 234 22 2660 376

Multiple Arm 202 417 88 6167 1800

Basket 1 0 0 10 2

Umbrella 0 0 0 5 5

Patient Registry 1 1 0 34 3

In this table, we present the number of trials across different outcomes and
properties. The rows labeled phase 1, 2, 3, 4, 1/2, 2/3, and 3/4 represent the
different phases of the clinical trial process, while rows containing biotechnology and
pharmaceutical represent the types of the sponsor company. The next nine rows are
for the disease therapeutic category of the clinical trial, and the remaining rows are
for the clinical trial design. The total number of trials in the dataset is 13,807.
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Years Day 0 (SE) Day 0-1 (SE)

2001 �0.54 (0.46) �0.17 (0.64)

2002 0.22 (0.36) �0.95 (0.51)

2003 �0.73 (0.36) �0.71 (0.51)

2004 �0.15 (0.23) �0.38 (0.32)

2005 �0.09 (0.16) �0.27 (0.23)

2006 �0.56 (0.15) �1.11 (0.21)

2007 1.64 (0.11) 2.10 (0.16)

2008 �0.10 (0.08) �0.15 (0.12)

2009 0.21 (0.11) 0.38 (0.16)

2010 �0.90 (0.08) �0.95 (0.12)

2011 �0.10 (0.07) 0.30 (0.10)

2012 0.00 (0.08) 0.07 (0.11)

2013 �0.12 (0.08) 0.19 (0.11)

2014 0.40 (0.08) 0.61 (0.12)

2015 0.82 (0.08) 1.43 (0.12)

2016 0.99 (0.09) 1.78 (0.13)

2017 0.36 (0.09) 0.54 (0.13)

2018 0.29 (0.10) �0.06 (0.14)

2019 0.02 (0.11) �0.13 (0.15)

2020 0.02 (0.13) �0.17 (0.18)

Table C.2: Regression Coefficient: Time Series.
In this table, we present the regression coefficients for each year included in our
dataset. In 2007, 2015, 2016, and 2017, the abnormal returns for clinical trials were
higher, while 2006 and 2010 had small abnormal returns for clinical trial outcomes.
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Table C.3: Outcome types

Outcome ��1 (SE) �0 (SE) �0�1 (SE) �2 (SE)

Early Positive Outcome 0.29 (0.21) 1.99 (0.21) 2.31 (0.30) -0.01 (0.21)

Lack of Efficacy 0.06 (0.11) 0.68 (0.11) 1.38 (0.15) -0.23 (0.11)

Primary Endpoints Not Met 0.02 (0.08) 0.87 (0.08) 1.33 (0.11) 0.12 (0.08)

Safety/Adverse Effect -0.31 (0.11) 0.00 (0.11) 0.06 (0.15) 0.14 (0.11)

Primary Endpoints Met -0.01 (0.07) -0.76 (0.07) -1.08 (0.09) -0.02 (0.06)

Lack of Efficacy 0.06 (0.09) 1.22 (0.09) 2.03 (0.13) -0.19 (0.09)

Negative Finding -0.02 (0.06) 1.29 (0.06) 1.81 (0.09) 0.15 (0.06)

Positive Finding 0.00 (0.05) -0.16 (0.05) -0.36 (0.08) 0.01 (0.05)

Closed Early -0.04 (0.08) 1.35 (0.08) 2.12 (0.11) -0.07 (0.08)

Full Maturity 0.04 (0.06) 0.59 (0.06) 0.76 (0.09) 0.04 (0.06)

Table C.4: Target Accrual

✓�1 (SE) ✓0 (SE) ✓0�1 (SE) ✓2 (SE)

Target Accrual 0.023 (0.021) 0.169 (0.021) 0.149 (0.030) 0.026 (0.021)

Table C.5: Company sponsor category

Company Type ��1 (SE) �0 (SE) �0�1 (SE) �2
Early-stage Biotech -0.31 (0.22) 4.61 (0.23) 6.26 (0.32) 0.38 (0.23)

Small Pharma 0.15 (0.17) 1.62 (0.17) 1.79 (0.25) 0.02 (0.17)

Late-stage Biotech 0.30 (0.17) 0.32 (0.17) 0.60 (0.24) -0.16 (0.17)

Big Pharma -0.02 (0.10) -3.66 (0.10) -4.62 (0.14) -0.12 (0.10)

Table C.6: Phase categories.

Phase ��1 (SE) �0 (SE) �0�1 (SE) �2 (SE)

2/3 -0.06 (0.14) 1.47 (0.14) 1.74 (0.20) 0.12 (0.14)

3 0.09 (0.07) 1.08 (0.07) 1.65 (0.09) -0.03 (0.07)

4 0.01 (0.07) 0.48 (0.07) 0.87 (0.10) 0.08 (0.07)

3/4 -0.14 (0.19) 0.36 (0.19) 0.60 (0.28) -0.22 (0.19)

2 0.12 (0.07) 0.31 (0.07) 0.48 (0.09) 0.12 (0.07)

1 0.2 (0.09) -0.38 (0.09) -0.32 (0.13) 0.10 (0.09)

1/2 -0.04 (0.11) -0.64 (0.11) -1.03 (0.16) 0.01 (0.11)

Table C.7: Disease therapeutic category

Disease ⌘�1 (SE) ⌘0 (SE) ⌘0�1 (SE) ⌘2 (SE)

Genitourinary 0.07 (0.27) 1.60 (0.28) 3.44 (0.39) 0.17 (0.28)

Ophthalmology 0.12 (0.19) 0.32 (0.19) 0.75 (0.27) 0.25 (0.19)

Vaccines (Infectious Disease) -0.04 (0.13) -0.07 (0.13) 0.33 (0.19) 0.17 (0.13)

CNS 0.10 (0.13) 0.23 (0.13) -0.12 (0.18) 0.15 (0.13)

Oncology -0.06 (0.12) -0.18 (0.12) -0.40 (0.17) 0.01 (0.12)

Cardiovascular 0.13 (0.12) 0.07 (0.12) -0.52 (0.17) 0.04 (0.12)

Infectious Disease 0.07 (0.11) -0.47 (0.11) -0.61 (0.15) -0.09 (0.11)

Autoimmune/Inflammation 0.04 (0.12) -0.31 (0.12) -0.71 (0.17) 0.01 (0.12)

Metabolic/Endocrinology -0.03 (0.11) -0.52 (0.11) -0.96 (0.16) 0.08 (0.11)
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Table C.8: Clinical Trial Design

Design ⇣�1 (SE) ⇣0 (SE) ⇣0�1 (SE) ⇣2 (SE)

Placebo Control -0.03 (0.08) 1.12 (0.08) 1.38 (0.11) 0.11 (0.08)

Pharmacokinetics -0.02 (0.07) 0.50 (0.07) 1.0 (0.1) -0.07 (0.07)

Adaptive 0.53 (0.26) 0.48 (0.26) 0.80 (0.37) -0.34 (0.26)

Safety -0.09 (0.07) 0.60 (0.07) 0.71 (0.09) 0.25 (0.07)

Fixed Dose -0.03 (0.16) 0.52 (0.16) 0.68 (0.23) 0.12 (0.16)

Active Comparator 0.14 (0.07) 0.09 (0.07) 0.41 (0.09) 0.11 (0.07)

Non Iinterventional -0.05 (0.14) 0.48 (0.13) 0.32 (0.19) -0.27 (0.13)

Multiple Arm 0.02 (0.09) 0.20 (0.09) 0.17 (0.13) -0.08 (0.09)

Observational 0.02 (0.11) 0.11 (0.11) 0.07 (0.16) 0.09 (0.11)

Randomized -0.11 (0.09) 0.14 (0.09) 0.02 (0.14) -0.05 (0.09)

Single Arm -0.08 (0.10) 0.14 (0.10) -0.02 (0.14) -0.11 (0.1)

Efficacy -0.06 (0.07) -0.19 (0.07) -0.08 (0.10) -0.05 (0.07)

Immunogenicity -0.03 (0.09) 0.24 (0.09) -0.16 (0.12) 0.04 (0.09)

Dose Response -0.01 (0.1) -0.05 (0.1) -0.21 (0.14) -0.05 (0.1)

Cross Over -0.11 (0.11) -0.08 (0.11) -0.27 (0.15) -0.10 (0.11)

Superiority -0.02 (0.11) -0.14 (0.11) -0.28 (0.16) 0.08 (0.11)

Open Label 0.07 (0.09) -0.06 (0.09) -0.42 (0.13) -0.05 (0.09)

Double blind/blinded 0.03 (0.11) -0.10 (0.11) -0.46 (0.15) -0.19 (0.11)

Pharmacodynamics 0.01 (0.07) -0.60 (0.08) -0.77 (0.11) 0.10 (0.07)

Non Inferiority -0.35 (0.1) -0.68 (0.10) -0.93 (0.14) -0.01 (0.1)

Single Ascending Dose 0.13 (0.28) -0.41 (0.28) -0.96 (0.39) 0.28 (0.28)

Multiple Ascending Dose -0.12 (0.25) -1.86 (0.25) -1.90 (0.36) -0.13 (0.25)

Table C.9: Regression Constant

↵�1 (SE) ↵0 (SE) ↵0�1 (SE) ↵2 (SE)

Constant 0.04 (0.13) 2.78 (0.13) 4.01 (0.18) -0.01 (0.13)

In Tables C.3 to C.9, we present the regression coefficients obtained using Eq. (4.1)
for the abnormal returns (computed using constant mean model) for the day prior
to the event date (�1), on the day of the event (0 and 0–1), and the day after the
event date (2). The rows are the trial properties and columns are the coefficients for
the days around the event(�1, 0, 0-1 , 2). The coefficients can be interpreted as the
average abnormal returns observed for the sponsor company for a trial outcome
with a specific property, controlling for other properties of the trial. The abnormal
returns are statistically insignificant prior to and after the event date (day �1 and
day 2), while they are significant for properties on the days of the event (day 0 and
day 0-1).
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Table C.10: Outcome types

Outcome ��1 (SE) �0 (SE) �0�1 (SE) �2 (SE)

Early Positive Outcome 0.14 (0.17) 1.59 (0.17) 1.83 (0.24) -0.02 (0.17)

Primary Endpoints Not Met -0.03 (0.06) 0.9 (0.07) 1.35 (0.09) 0.11 (0.06)

Lack of Efficacy 0.08 (0.09) 0.62 (0.09) 1.34 (0.13) -0.22 (0.09)

Safety/Adverse Effect -0.17 (0.09) 0.21 (0.09) 0.22 (0.13) 0.12 (0.09)

Primary Endpoints Met -0.01 (0.05) -0.57 (0.06) -0.81 (0.08) 0.03 (0.05)

Lack of Efficacy 0.08 (0.08) 1.11 (0.08) 1.91 (0.11) -0.19 (0.08)

Negative Finding -0.05 (0.05) 1.29 (0.05) 1.76 (0.08) 0.14 (0.05)

Positive Finding -0.01 (0.05) -0.04 (0.05) -0.19 (0.07) 0.06 (0.05)

Closed Early 0.0 (0.07) 1.32 (0.07) 2.05 (0.09) -0.07 (0.07)

Full Maturity 0.0 (0.06) 0.66 (0.06) 0.86 (0.08) 0.08 (0.06)

Table C.11: Target Accrual

✓�1 (SE) ✓0 (SE) ✓0�1 (SE) ✓2 (SE)

Target Accrual 0.017 (0.016) 0.171 (0.016) 0.154 (0.023) 0.015 (0.016)

Table C.12: Company sponsor category

Company Type ��1 (SE) �0 (SE) �0�1 (SE) �2
Early-stage Biotech -0.37 (0.22) 4.52 (0.22) 6.42 (0.31) 0.29 (0.22)

Small Pharma 0.13 (0.16) 1.71 (0.16) 1.77 (0.23) 0.13 (0.16)

Late-stage Biotech 0.32 (0.16) 0.33 (0.16) 0.54 (0.22) -0.17 (0.16)

Big Pharma -0.01 (0.09) -3.65 (0.09) -4.68 (0.13) -0.11 (0.09)

Table C.13: Phase categories.

Phase ��1 (SE) �0 (SE) �0�1 (SE) �2 (SE)

3/4 -0.10 (0.12) 1.45 (0.12) 1.83 (0.17) 0.13 (0.12)

3 0.05 (0.06) 1.03 (0.06) 1.60 (0.08) -0.02 (0.06)

3/4 -0.15 (0.16) 0.35 (0.16) 0.74 (0.23) -0.08 (0.16)

4 -0.04 (0.06) 0.39 (0.06) 0.69 (0.08) 0.06 (0.06)

2 0.04 (0.06) 0.27 (0.06) 0.39 (0.08) 0.15 (0.06)

1 0.16 (0.08) -0.33 (0.08) -0.38 (0.12) 0.04 (0.08)

1/2 -0.11 (0.1) -0.55 (0.10) -1.00 (0.15) -0.04 (0.11)

Table C.14: Disease therapeutic category

Disease ⌘�1 (SE) ⌘0 (SE) ⌘0�1 (SE) ⌘2 (SE)

Genitourinary 0.11 (0.23) 1.63 (0.23) 3.62 (0.32) 0.20 (0.23)

Ophthalmology 0.16 (0.16) -0.10 (0.16) 0.40 (0.23) 0.21 (0.16)

Vaccines (Infectious Disease) 0.02 (0.12) -0.19 (0.12) 0.35 (0.17) 0.11 (0.12)

CNS 0.1 (0.11) 0.27 (0.11) 0.16 (0.16) 0.06 (0.11)

Oncology 0.03 (0.11) -0.22 (0.11) -0.26 (0.15) -0.06 (0.11)

Cardiovascular 0.14 (0.11) -0.05 (0.11) -0.53 (0.15) 0.02 (0.11)

Autoimmune/Inflammation 0.12 (0.11) -0.42 (0.11) -0.59 (0.16) -0.04 (0.11)

Infectious Disease 0.07 (0.09) -0.54 (0.09) -0.66 (0.13) -0.13 (0.09)

Metabolic/endocrinology 0.06 (0.1) -0.58 (0.1) -0.87 (0.14) 0.09 (0.1)
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Table C.15: Clinical Trial Design

Design ⇣�1 (SE) ⇣0 (SE) ⇣0�1 (SE) ⇣2 (SE)

Placebo Control -0.09 (0.07) 1.11 (0.07) 1.23 (0.1) 0.15 (0.07)

Adaptive 0.46 (0.24) 0.63 (0.24) 1.0 (0.34) -0.43 (0.24)

Pharmacokinetics -0.04 (0.06) 0.45 (0.06) 1.0 (0.09) -0.09 (0.06)

Fixed Dose -0.01 (0.14) 0.6 (0.14) 0.7 (0.2) 0.04 (0.14)

Safety -0.05 (0.06) 0.6 (0.06) 0.69 (0.08) 0.21 (0.06)

Active Comparator 0.07 (0.06) 0.14 (0.06) 0.48 (0.08) 0.09 (0.06)

Non Iinterventional 0.01 (0.11) 0.44 (0.11) 0.38 (0.16) -0.29 (0.11)

Multiple Arm 0.03 (0.08) 0.17 (0.08) 0.18 (0.11) -0.04 (0.08)

Observational 0.01 (0.09) 0.13 (0.09) 0.05 (0.13) 0.0 (0.09)

Randomized -0.1 (0.08) 0.13 (0.08) -0.06 (0.12) -0.09 (0.08)

Efficacy -0.03 (0.06) -0.19 (0.06) -0.1 (0.09) -0.08 (0.06)

Single Arm -0.06 (0.09) 0.06 (0.09) -0.1 (0.13) -0.03 (0.09)

Immunogenicity -0.01 (0.08) 0.29 (0.08) -0.16 (0.11) 0.06 (0.08)

Cross Over -0.06 (0.09) -0.09 (0.09) -0.3 (0.13) -0.06 (0.09)

Superiority -0.02 (0.1) -0.21 (0.1) -0.36 (0.14) 0.09 (0.1)

Double blind/blinded 0.06 (0.09) -0.07 (0.09) -0.36 (0.13) -0.17 (0.09)

Dose Response 0.05 (0.09) -0.13 (0.09) -0.36 (0.12) -0.02 (0.09)

Open Label 0.05 (0.08) 0.0 (0.08) -0.4 (0.11) -0.03 (0.08)

Pharmacodynamics 0.0 (0.07) -0.61 (0.07) -0.77 (0.09) 0.09 (0.07)

Non Inferiority -0.35 (0.09) -0.7 (0.09) -0.97 (0.12) -0.04 (0.08)

Single Ascending Dose 0.13 (0.26) -0.57 (0.26) -1.13 (0.37) 0.41 (0.26)

Multiple Ascending Dose -0.16 (0.23) -1.71 (0.23) -1.66 (0.33) -0.14 (0.23)

Table C.16: Regression Constant

↵�1 (SE) ↵0 (SE) ↵0�1 (SE) ↵2 (SE)

Constant 0.02 (0.12) 2.75 (0.12) 3.93 (0.17) 0.03 (0.12)

In Tables C.10 to C.16, we present the regression coefficients obtained using Eq.
(4.1) for the abnormal returns (computed using market model) for the day prior to
the event date (�1), on the day of the event (0 and 0–1), and the day after the
event date (2). Rows are the properties in each table, and columns are the
coefficients for the days around the event(�1, 0, 0-1 , 2). The coefficients can be
interpreted as the average abnormal returns observed for the sponsor company for a
trial outcome with a specific property, controlling for other properties of the trial.
The abnormal returns are statistically insignificant prior to and after the event date
(day �1 and day 2) while they are significant for properties on the days of the event
(day 0 and day 0-1).

Table C.17: Outcome types

Outcome ��1 (SE) �0 (SE) �0�1 (SE) �2 (SE)

Primary Endpoints not Met (Negative Outcome) 0.01 (0.06) 1.78 (0.06) 2.64 (0.08) 0.08 (0.06)

Primary Endpoints Met (Positive Outcome) 0.02 (0.05) 0.24 (0.05) 0.31 (0.07) -0.02 (0.05)
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Table C.18: Target Accrual

✓�1 (SE) ✓0 (SE) ✓0�1 (SE) ✓2 (SE)

Target Accrual 0.020 (0.016) 0.226 (0.016) 0.217 (0.023) 0.009 (0.017)

Table C.19: Company sponsor category

Company Type ��1 (SE) �0 (SE) �0�1 (SE) �2
Early-stage Biotech -0.29 (0.21) 4.24 (0.21) 6.03 (0.29) 0.33 (0.21)

Small Pharma 0.12 (0.17) 1.75 (0.16) 1.40 (0.23) 0.24 (0.16)

Late-stage Biotech 0.27 (0.16) -0.43 (0.16) -0.17 (0.22) -0.21 (0.16)

Big Pharma 0.00 (0.09) -3.46 (0.09) -4.33 (0.13) -0.15 (0.09)

Table C.20: Phase categories.

Phase ��1 (SE) �0 (SE) �0�1 (SE) �2 (SE)

2/3 -0.12 (0.13) 1.80 (0.13) 1.99 (0.18) 0.00 (0.13)

3 0.01 (0.06) 0.67 (0.06) 1.12 (0.08) 0.00 (0.06)

2 0.06 (0.06) 0.23 (0.06) 0.41 (0.08) 0.11 (0.06)

4 -0.02 (0.06) 0.10 (0.06) 0.29 (0.08) 0.04 (0.06)

3/4 -0.09 (0.16) 0.02 (0.16) 0.22 (0.22) -0.03 (0.15)

1 0.16 (0.09) -0.32 (0.09) -0.25 (0.13) 0.05 (0.09)

1/2 -0.1 (0.12) -0.79 (0.12) -1.17 (0.16) 0.07 (0.12)

Table C.21: Disease therapeutic category

Disease ⌘�1 (SE) ⌘0 (SE) ⌘0�1 (SE) ⌘2 (SE)

Genitourinary 0.05 (0.23) 1.67 (0.23) 3.49 (0.32) 0.36 (0.23)

Ophthalmology 0.08 (0.16) 0.21 (0.16) 0.79 (0.23) 0.19 (0.16)

Vaccines (Infectious Disease) 0.06 (0.12) -0.13 (0.12) 0.19 (0.17) 0.18 (0.12)

CNS 0.00 (0.12) 0.24 (0.12) -0.14 (0.17) 0.16 (0.12)

Infectious Disease -0.07 (0.09) -0.67 (0.10) -0.85 (0.14) -0.04 (0.10)

Oncology -0.05 (0.11) -0.52 (0.11) -0.89 (0.16) 0.08 (0.11)

Autoimmune/Inflammation 0.04 (0.11) -0.56 (0.11) -0.94 (0.16) 0.06 (0.11)

Cardiovascular 0.00 (0.11) -0.33 (0.11) -0.94 (0.15) 0.14 (0.11)

Metabolic/Endocrinology 0.01 (0.10) -0.72 (0.10) -1.18 (0.14) 0.17 (0.10)
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Table C.22: Clinical Trial Design

Design ⇣�1 (SE) ⇣0 (SE) ⇣0�1 (SE) ⇣2 (SE)

Placebo Control -0.08 (0.07) 1.11 (0.07) 1.37 (0.10) 0.04 (0.08)

Pharmacokinetics -0.04 (0.06) 0.59 (0.06) 0.92 (0.09) -0.03 (0.06)

Safety -0.05 (0.06) 0.48 (0.06) 0.70 (0.08) 0.04 (0.06)

Fixed Dose 0.00 (0.13) 0.39 (0.13) 0.57 (0.18) 0.12 (0.13)

Active Comparator 0.06 (0.06) 0.19 (0.06) 0.37 (0.08) 0.14 (0.06)

Non Iinterventional 0.02 (0.11) 0.39 (0.11) 0.33 (0.15) -0.30 (0.11)

Observational 0.02 (0.09) 0.25 (0.09) 0.18 (0.13) 0.04 (0.09)

Multiple Arm 0.06 (0.08) 0.17 (0.08) 0.16 (0.12) 0.04 (0.08)

Open Label 0.07 (0.08) 0.22 (0.08) -0.07 (0.12) -0.04 (0.08)

Efficacy -0.05 (0.06) -0.12 (0.06) -0.07 (0.09) -0.05 (0.06)

Randomized -0.09 (0.09) 0.06 (0.09) -0.11 (0.12) -0.14 (0.09)

Dose Response 0.01 (0.09) 0.02 (0.09) -0.13 (0.13) -0.06 (0.09)

Single Arm -0.04 (0.09) 0.06 (0.09) -0.13 (0.13) 0.00 (0.09)

Superiority -0.03 (0.10) -0.03 (0.10) -0.14 (0.14) 0.02 (0.10)

Adaptive 0.41 (0.27) 0.06 (0.26) -0.16 (0.38) -0.54 (0.27)

Double blind/blinded 0.08 (0.10) 0.13 (0.09) -0.26 (0.13) -0.05 (0.10)

Immunogenicity -0.01 (0.08) 0.10 (0.08) -0.35 (0.11) 0.00 (0.08)

Cross Over 0.01 (0.10) -0.40 (0.10) -0.57 (0.14) -0.03 (0.10)

Single Ascending Dose 0.01 (0.29) -0.07 (0.28) -0.60 (0.40) 0.52 (0.29)

Non Inferiority -0.37 (0.08) -0.60 (0.08) -0.73 (0.12) -0.05 (0.08)

Pharmacodynamics 0.0 (0.07) -0.73 (0.07) -0.83 (0.1) 0.00 (0.07)

Multiple Ascending Dose -0.08 (0.24) -1.99 (0.24) -2.31 (0.34) -0.13 (0.24)

Table C.23: Regression Constant

↵�1 (SE) ↵0 (SE) ↵0�1 (SE) ↵2 (SE)

Constant 0.03 (0.10) 2.01 (0.10) 2.95 (0.14) 0.06 (0.10)

In Tables C.17 to C.23, we present the regression coefficients obtained using Eq.
(4.1) for the abnormal returns (computed using the Fama-French 5-factor model) for
the day prior to the event date (�1), on the day of the event (0 and 0–1), and the
day after the event date (2). The abnormal return attribution model is built using a
subset of dataset, including only two outcomes: primary endpoints met (positive
outcome) and primary endpoints not met (negative outcome). Rows are the
properties in each table and columns are the coefficients for the days around the
event (�1, 0, 0� 1 , 2). The coefficients can be interpreted as the average abnormal
returns observed for the sponsor company for a trial outcome with that specific
property, controlling for other properties of the trial. The abnormal returns are
statistically insignificant prior to and after the event date (day �1 and day 2), while
they are significant for properties on the days of the event (day 0 and day 0-1).
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Appendix D

Appendix Megafund

D.1 Parameters of Simulation

Construction of a drug development portfolio involved multiple parameters. We de-

scribe them in this section along with the values used for the simulation.

Probability of Success

One of the parameter is the probability of a successful phase transition of the trials.

We estimated them from the [228], [138], [274] and [288]. The PoS used in the

simulation are included in the Figure D.1.

Table D.1: Probability of successful phase transition

293



Cost of Clinical Trial

The cost estimates of the clinical trials are obtained from [251] and [215]. The esti-

mates used in simulation are included in Table D.2.

Table D.2: Cost of a clinical trial

Duration of Clinical Trial

The duration of clinical trials are obtain from [288] and [287]. The estimates used in

simulation are included in Table D.3.

Table D.3: Duration of clinical trials

Market Value of Drugs

One of the important parameter of simulation is the market value of the drugs. The

estimates of the market value are obtained from the various market research reports.
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From Approval values of drugs, the value of drugs intermediate phases are obtained

using the Equation 5.1. The estimates of the market value used in simulation are

included in Table D.4.

Table D.4: Market value of drugs

Correlation Between Compounds

The drugs across therapeutic areas share similar features because of which the out-

comes of the clinical trials across for the drugs are correlated. We use the block

correlation matrix structure for modelling outcome for different clinical trial projects

as presented in the Figure D-1. We assume a correlation of 0.05 for the clinical

trial projects across different therapeutic areas and 0.20 for clinical trials in same

therapeutic areas.

Royalty Asset

As mentioned earlier, the cash flows from royalty assets are estimated using a dis-

counted cash flow analysis. The details of the analysis are included in the Figure D-2.

We modelled the cashflows for the royalty asset for 10 years1. We assume an initial

year 1 sale of 100 million$ that increases to 1000 million$ in period of 5 years and it

grows at a constant rate of 2.5%. The royalty is acquired for 5% of the total sales.

We find that net present value of the cash flows is 222million$. We discount it using

1The patent for drugs usually lasts for 10 years
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Figure D-1: Block correlation matrix

10% rate2 for the associated risk in the cash flows and find that value of a royalty

asset is 200 million $.

Figure D-2: Discounted Cash Flow analysis of royalty investement

D.2 Sensitivity Analsysis

Varying Leverage Ratio

We changed the leverage ratio of portfolio from 80:20 (debt:equity) to 60:40, 40:60,

20:80 and 0:100 and estimated the portfolio performance. The performance of the

portfolio is included in Table D.5.

2https://www.nytimes.com/2017/07/08/business/dealbook/drug-prices-private-equity.
html
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(a) Bechmark and optimized portfolio performance varying leverage ratio; debt: equity

(80:20, 60:40, 40:60, 20:80 and 0:100)

(b) Number of approved drugs for varying leveraged portfolio.

Table D.5
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Varying Probability of Success

We vary the probability of the success to observe the effect on the performance. The

PoS values used in the study are baseline PoS values obtained on the basis of historical

data and literature. We hypothesize that experts involved in portfolio creation can

select the drug development projects that can perform better than baseline values.

We simulated all equity financed megafund varying the PoS from given in Table D.1

to 1.05, 1.10,1.15, 1.20 and 1.25 times the values in Table D.1. The detailed results

are included in Table D.6.

(a)

(b)

Table D.6: Portfolio performance varying Probability of Success

Varying Market Value of Drugs

We modified the value of approved market drugs from D.4 to two different set of

values: moderate (minor modification in the market value) and aggressive (large

modifications in the market value) given in the Table D.7. The megafund performance

varying the market value of drugs is included in the Figure D.8.

298



(a) Moderate Market Values

(b) Aggressive Market Values

Table D.7: Market Value of Drugs
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(a)

(b)

Table D.8: Portfolio performance on varying market value of drugs.
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Appendix E

Finance for Impact: Quantifying the

Returns of ESG Investing

E.1 Rank Autocorrelation

In Table E.1, we present the cross-sectional rank autocorrelation between vendor ESG

scores and aggregate scores averaged over time. We find there is a 99% autocorrelation

computed with a delay of one month, implying that ESG scores do not change sig-

nificantly over short periods. However, lower values of rank autocorrelation at longer

delay windows implies that scores change significantly over longer time windows. This

pattern is consistent across regions. Hence, to rebalance our ESG portfolios, we use

a time window of 12 months.

E.2 Implied Realized Alphas

In Table E.2, we present the realized and implied alphas of the individual portfo-

lios using the Fama-French five-factor model. There is a high degree of consistency

between the realized and implied alphas, hence validating the model described in

Section 6.2.1.
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USA Europe Japan
Delay (Months) 1 3 6 12 1 3 6 12 1 3 6 12

ISS: ESG 99 98 97 94 99 98 97 95 99 98 97 95
MSCI: ESG 99 97 95 90 99 97 94 90 99 97 94 89

Reprisk: ESG 98 96 93 88 98 96 93 86 98 94 89 79
SPGlobal: ESG 99 98 96 92 99 98 97 94 99 99 98 96

TVL: ESG 98 94 86 73 99 95 88 75 99 94 85 69
Moody’s: ESG 99 98 96 94 99 98 97 95 99 98 96 94

AVG: ESG 99 98 96 92 99 98 97 94 99 98 96 92
PCA: ESG 99 99 98 97 99 99 98 97 99 99 98 97

MAHA: ESG 98 96 93 86 98 96 92 86 98 95 91 82
AVG_V: ESG 99 98 96 93 99 98 97 94 99 98 96 92
STV_V: ESG 95 88 82 71 95 90 83 74 96 91 85 76

Table E.1: Cross-sectional rank autocorrelation between vendor ESG scores and ag-
gregate scores.

E.3 Sharpe Ratios of Combined Market and Treynor-

Black ESG Portfolios
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ESG-Data Q-1 (R) Q-1 (I) Q-2 (R) Q-2 (I) Q-3 (R) Q-3 (I) Q-4 (R) Q-4 (I)

US

MSCI -0.9 (1.4) -0.0 (0.5) 1.9 (1.2) 0.7 (0.5) 1.8 (1.1) 1.3 (0.5) 1.3 (1.1) 2.1 (0.5)

SPGlobal 2.1 (1.3) 1.1 (0.5) -0.0 (1.2) 1.0 (0.5) 0.8 (1.1) 1.0 (0.5) 1.3 (1.1) 1.0 (0.5)

ISS 0.5 (1.3) 0.5 (0.5) 0.3 (1.3) 0.9 (0.5) 1.9 (1.2) 1.1 (0.5) 1.4 (1.1) 1.5 (0.5)

Moody’s 1.2 (1.4) 0.8 (0.5) 1.1 (1.2) 1.0 (0.5) 0.2 (1.1) 1.1 (0.5) 1.5 (1.2) 1.3 (0.5)

Reprisk 0.2 (1.1) -0.4 (0.5) -0.3 (1.2) 0.7 (0.5) 2.0 (1.3) 1.4 (0.5) 2.1 (1.3) 2.4 (0.5)

TVL -0.3 (1.2) 0.7 (0.5) 1.8 (1.1) 0.9 (0.5) 1.0 (1.2) 1.1 (0.5) 1.6 (1.4) 1.3 (0.5)

Europe

MSCI 7.5 (2.5) 7.2 (0.6) 7.7 (2.2) 8.1 (0.6) 9.7 (2.3) 8.7 (0.6) 9.6 (2.1) 9.6 (0.6)

SPGlobal 7.8 (2.3) 7.1 (0.6) 7.7 (2.4) 8.1 (0.6) 8.8 (2.3) 8.7 (0.6) 10.0 (2.2) 9.7 (0.6)

ISS 6.6 (2.4) 6.7 (0.6) 9.0 (2.4) 8.0 (0.6) 8.9 (2.3) 8.8 (0.6) 9.8 (2.1) 10.1 (0.6)

Moody’s 7.7 (2.3) 7.2 (0.6) 8.2 (2.4) 8.1 (0.6) 9.1 (2.2) 8.7 (0.6) 9.3 (2.2) 9.6 (0.6)

Reprisk 9.0 (2.3) 9.0 (0.6) 9.9 (2.3) 8.6 (0.6) 6.8 (2.3) 8.2 (0.6) 8.5 (2.3) 7.8 (0.6)

TVL 7.8 (2.3) 8.2 (0.6) 8.6 (2.2) 8.3 (0.6) 9.8 (2.3) 8.5 (0.6) 8.3 (2.4) 8.7 (0.6)

Japan

MSCI 6.9 (3.2) 7.4 (0.5) 7.8 (3.1) 7.9 (0.5) 9.2 (3.2) 8.3 (0.5) 8.4 (3.1) 8.8 (0.5)

SPGlobal 6.4 (3.2) 6.2 (0.5) 7.2 (3.2) 7.6 (0.5) 8.3 (3.2) 8.6 (0.5) 10.4 (3.1) 10.0 (0.5)

ISS 6.5 (3.2) 6.6 (0.5) 7.1 (3.2) 7.7 (0.5) 8.6 (3.2) 8.5 (0.5) 10.2 (3.1) 9.6 (0.5)

Moody’s 6.8 (3.2) 6.9 (0.5) 8.1 (3.3) 7.8 (0.5) 8.7 (3.2) 8.4 (0.5) 8.7 (3.1) 9.3 (0.5)

Reprisk 7.5 (3.3) 7.5 (0.5) 8.7 (3.2) 7.9 (0.5) 7.0 (3.1) 8.2 (0.5) 9.2 (3.1) 8.6 (0.5)

TVL 9.0 (3.1) 8.1 (0.5) 6.6 (3.2) 8.1 (0.5) 8.0 (3.1) 8.1 (0.5) 8.8 (3.2) 8.0 (0.5)

Table E.2: Model-implied and Realized Alphas
Average annual model-implied and realized alphas of quantile ESG portfolios with
respect to Fama-French five-factor regressions, based on data from 2014 to 2020.
Portfolios are rebalanced once a year.
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USA Europe Japan
Portfolio ±40% ±25% ±10% ±40% ±25% ±10% ±40% ±25% ±10%

Mkt 0.75 0.05 0.37
ISS: ESG 1.07 1.03 1.01 0.20 0.18 0.18 0.64 0.65 0.66

MSCI: ESG 1.03 1.08 1.10 0.33 0.36 0.32 0.54 0.58 0.34
Reprisk: ESG 0.81 0.79 0.87 0.22 0.31 0.53 0.45 0.48 0.52

SPGlobal: ESG 0.68 0.66 0.76 0.01 0.03 0.16 0.49 0.51 0.62
TVL: ESG 0.80 0.75 0.54 0.14 0.18 0.06 0.23 0.24 0.33

Moody’s: ESG 0.87 0.91 0.95 -0.03 -0.01 -0.05 0.38 0.36 0.55
INDI-AVG: ESG 0.91 0.91 0.94 0.14 0.18 0.21 0.47 0.49 0.56

AVG: ESG 1.13 1.25 1.13 0.24 0.26 0.28 0.59 0.58 0.50
PCA: ESG 0.94 0.98 0.94 0.09 0.12 0.18 0.51 0.52 0.51

MAHA: ESG 1.12 1.15 1.14 0.26 0.31 0.30 0.62 0.62 0.57
AVGvote: ESG 1.09 1.16 1.10 0.24 0.28 0.33 0.58 0.59 0.51
STVvote: ESG 0.84 0.79 0.63 0.14 0.20 0.46 0.55 0.57 0.72

OPT: ESG 1.21 1.26 1.25 0.25 0.29 0.52 0.64 0.65 0.53

Table E.3: performance of Market+ Treynor Black ESG Portfolios.
Sharpe ratios of combined market and ESG Treynor-Black portfolios. The market
portfolios used for different regions are the MSCI USA, MSCI Europe and MSCI
Japan indices. The weight of the market index is fixed at 0.5. The highest realizable
Sharpe ratio in each portfolio is given in bold.
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Appendix F

Behavioural Finance: Real-time

extended psychophysiological analysis

of financial risk processing

F.1 Market Efficiency

Efficient Market Hypothesis It states that security prices reflect all the available

information. It is based on the standard economic paradigm of rational expecta-

tions postulates that all financial decision makers are rational agents who maximize

their expected utility functions under all market circumstances [255]. However, this

paradigm does not consider the role of psychophysiological state in financial risk pro-

cessing of traders. In recent decades, the rational expectations paradigm has been

challenged by empirical observations in the behavioral finance literature.

Adaptive Market Hypothesis It combines the principles of the efficient market

hypothesis with behavioral finance to explain the deviations from the market efficiency

[179]. It points out that investors are not always rational and security prices do

not always trade at the fair value. It incorporates the psychological and behavioral

characteristics of traders to explain deviations from rationality.
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F.2 Physiological Data Collection

Subjects: Fifty-five professional traders working at a global financial institution

participated in this study. The traders were divided into seven groups according to

their trading desks. Six groups were based in the institution’s headquarters, and

one in a regional office. The traders were recruited by the financial institution and

varied in age, gender, trading experience, and types of financial product they traded.

Each group of traders typically belonged to the same trading desk and specialized

in a particular type of financial products, such as municipal bonds, mortgage-backed

securities, equities, and power and natural gas.

Physiology Data Collection Procedure The physiology data collection re-

quired seven weeks, and took place between March 25, 2019, and June 21, 2019.

Each group of traders recorded their physiological waveforms via the Empatica E4

wristbands over five consecutive workdays (with a few exceptions). On the Friday

before each week of data collection, the study team met with the traders who would

participate in the following week to explain the data collection procedure and ob-

tain their informed consent. Each trader received written instructions to wear the

Empatica E4 wristband (as shown in Figure F-1) on the wrist of their non-dominant

side from the time they arrived at the office until the end of the workday, Monday

to Friday of their week. The collected physiological waveforms were downloaded to

a secure device by the study team at the end of Monday, Wednesday, and Friday

during each week. To ensure the anonymity of the traders, each trader was assigned

a participant ID in the format of “[wristband serial #]_[week #]”.

F.3 Market and Financial Data Collection

Market Time Series Data: To understand how real-time fluctuations of different

market sectors affect trader’s psychophysiological activation, we acquired data for 10

commonly used market indices and futures prices from three sources, as shown in

Table F.2. The market time series data was recorded during the same period as the

306



physiology data collection (between March 25, 2019, and June 21, 2019). We defined

the average of bid and ask prices as the futures prices.

Financial Trading Data: To understand how trading affects the levels of psy-

chophysiological activation of each trader, we acquired the financial trading records

of all traders who participated in our study from the global financial institution. The

features of the financial data we used included trade price, quantity, notional amount,

execution timestamp, and the lifecycle state of the trade, as well as the market sector

and type of financial product being traded.

The number of transactions made by traders in each week is shown in Table F.3.

We observe significant variation in the number of transactions across different weeks.

In particular, traders in week 5 made many more transactions than the others. In

our feedback session, we learned that most of the traders in week 5 used trading

algorithms to place these transactions automatically.

F.4 Trader Survey

We asked traders to fill a survey during the trading days that included multiple

questions. Some of them are years of trading experience, highest degree or level of

school completed, gender, average number of transactions placed, business division

they were part of.

F.5 Data Preprocessing

Preprocessing Physiological Waveforms: The physiological waveforms collected

by the Empatica wristband (Table F.1) are measured in different frequencies. To

reduce the measurement noise and align different physiologies in a multivariate time

series with the same frequency, we first downsampled each raw physiological waveform

to 1Hz by averaging the measurement values within each second. In our subsequent

analysis, we removed the wrist accelerations (ACC) due to large irregularities which

remained even after smoothing to 1Hz.
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The inter-beat interval (IBI) measures the length of the time interval between two

successive heartbeats, and does not have a regular frequency. Due to a measurement

limitation of the Empatica E4 wristband, the IBI measurements for most traders

were missing. To address this issue, we computed an average IBI time series using

the instantaneous heart rate, HRt: IBIt = 60/HRt.

Average IBI: Empatica E4 wristband needs 10 seconds of data for the heart rate

calculation. Hence, IBI values obtained using instantanous heart rate is IBI averaged

over 10 seconds. Hence, IBIt values used in this analysis are average IBI values. When

average IBI values are compared to the instantaneous IBI (when instantaneous IBI is

available for longer durations), the mean squared error is 0.011 seconds and the error

is considerably small as compared to the IBI values (0.6-1 second). In our analysis

average IBI is one of the signal used for heart rate variability feature extraction

that in turn was used for activation levels computation. We observed statistically

significant relationships between activation values computed using average IBI and

market, trading signals.

Remove Inactive Physiological Waveforms: We performed a visual inspec-

tion of each trader’s physiological waveforms. We observed that 13 out of 55 traders

had inactive periods in their physiology measurements when their BVP and EDA

waveforms remained identically zero, as shown in Figure F-2 (A). Since 8 out of these

13 traders showed inactive periods after 5PM ET, we hypothesize that the inactive

periods were due to traders not turning off their wristbands as they left work.

Since no meaningful physiology data was collected during these inactive periods,

it was necessary to identify and remove them from our analysis. To achieve this,

we inspected each trader’s physiological waveforms, manually labeled the start and

end time points of each inactive period, and removed these inactive periods from the

subsequent analysis.

Aggregate Block transactions In the financial trading data, we observed many

instances where multiple transactions, each recorded with a unique trade ID, occurred

within one second. Since it is highly unlikely that these transactions were placed

independently by the trader, we consulted the global financial institution and learned
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that these transactions in fact belonged to one multi-leg “block trade” placed by the

trader, but were recorded as individual transactions in the trading data. However, no

feature in the trading data indicated whether two individual transactions belonged

to the same block trade.

To aggregate the individual transactions back to the original block transactions,

we adopted a simple heuristic: If the trader placed two consecutive transactions within

one second, we assumed that they belonged to the same block trade. The number

of aggregated block transactions is illustrated in Table ?? for three representative

traders. We also validated the results with the number of transactions self-reported

by the traders in their survey responses (column 5 in Table ??).

In most cases (as shown in Table ??), the number of aggregated block transactions

agrees well with the value self-reported by the traders in their survey responses.

However, we should caution that in a few cases, the number of block transactions

is significantly above the self-reported values (which may not be accurate). Overall,

this heuristic produced a reasonable approximation to the original multi-leg block

transactions.

Align Market Time Series The time series of the futures prices (Table F.1)

were recorded at the timestamps when the transactions were executed in the market.

As a result, these timestamps are irregular and do not form a time series with a

uniform frequency. To perform a statistical analysis requiring an evenly spaced time

series (such as a Granger causality test), we aligned the market time series, mt, to

minute-level malign

t . We used minute-level data since the USD index was recorded

at the beginning of each minute. We defined the aligned time series value malign

t at

minute t as the time series value observed closest to and no later than time t, i.e.

malign

t := m⌧ where ⌧ := maxs{s : s  t and ms was observed}. For notational

simplicity, we use mt to denote the market time series aligned to minute level in the

subsequent analysis.
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F.6 Activation Feature Extraction

Activation Proportion Once we obtained a time series of activation for each trader,

we were interested in finding the regions of high activation. These regions of high

activation are characterized by large deviations from the mean of the distribution. To

find these regions, we used heuristics that are generally used for measuring deviations

from mean, specifically choosing those that are dynamic and with a smaller number

of tunable parameters.

• arousalt > mean(arousal)day + ↵*std(arousal)day: If the value of activation

deviates from the mean value of arousal over the day, then it is considered an

outlier. The value of ↵ was set to 1.5 for periods of mild activation, and 3.0 for

extreme activation.

• arousalt > mean(arousal)t:t�60min + ↵*std(arousal)t:t�60min: If the value of

arousal deviates from the mean value of arousal calculated over a rolling window

of 60 minutes, then it is considered an outlier. The value of ↵ was set to 1.5 for

periods of mild activation, and 3.0 for extreme activation.

The second heuristic is adaptive over time. Due to its adaptive nature, however, it

may miss small outliers next to extreme outliers that may be captured by the first

method. Hence, a period is considered high activation when it is flagged by either of

the above methods. Finally, we computed the activation proportion for each trader,

defined as the percentage of active trading time when the trader is at high activation.

We calculated two variants of this proportion:

• Mild activation proportion: this is defined as the percentage of active trading

time when the trader is under mild to high psychophysiological activation. For

its calculation, the value of ↵ was set to 1.5 in the outlier detection method.

This metric captured periods of mild to high activation in traders.

• Extreme activation proportion: this is defined as the percentage of active trad-

ing time when the trader is under extremely high activation. For its calculation,
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the value of ↵ was set to 3.0 in the outlier detection method. This metric cap-

tured periods of extremely high activation in traders.

Activation Length We analyzed the length of periods of continuous activation,

which gave us information about the recovery time from periods of high activation,

which in turn gave us some idea about the well being of the trader. To calculate

the activation length, we followed the following procedure: after determining the

periods of high activation, we calculated the length of each continuous period. If

the periods of high activation were 5 minutes apart or more, they were considered

different activation periods. For each trader on a given day, we calculated the median

of the length of different activation periods to calculate the activation length.

Average Activation We calculate the mean value of activation over the day

for a trader to obtain the average activation. The traders having higher activation

proportion or length will have high average activation. Hence average activation

captures the information from both the metrics activation proportion and length.

F.7 Traders Feedback Session

Initially we invited all 55 traders who participated in our study to the individual

feedback sessions. Due to their busy schedule and limited availability, 14 of the 55

traders signed up for the feedback sessions. Each feedback session is conducted in

a standardized format. For each trader, we created a report which summarized our

PP activation analysis for this trader and shared the report with each trader the day

before the meeting. The report positioned the PP activation level of the trader relative

to the cohort of 55 traders in our study. It also included the market indices which

have Granger-causal relation to the trader’s activation levels. During the feedback

session, we summarized the results and asked them the following questions:

• What causes your extreme activation levels during certain trading days (if there

were any)?

• What market events and indices do you monitor on a regular basis?
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• Are you interested in a follow-up study to analyze the relationship between your

PP activation and trading performance (measured by PnL)?

F.8 Trader’s Activation and Financial Product Type

The traders who participated in our study worked in different business divisions and

traded a variety of financial products, including securitized markets (Securitized),

credit, municipals (Muni), commodities, equities, foreign exchange and local markets

(FXLM), and G10 rates. We investigate the relationship between financial products

and trader activation measured by the regression coefficients.

We find that traders working in different business divisions had different average

activation levels in the decreasing order: Commodities, FXLM, G10 Rates, Equities,

Municipals, Credit and Securitized Markets. In table F.7, we present the regression

coefficient of column business division compared to row business division along with

the p-value and find the pairs of business divisions with statistically significant dif-

ference in their activation levels. For example, value 0.26,0.04 in row Securitized and

column G10 R. means that the difference between regression coefficients of G10 Rates

product type and Securitized product type is 0.26 with p-value 0.04, which implies

that G10 Rates traders had statistically significant higher activation than Securitized

traders. The higher activation of FXLM and Equity traders can be attributed to

high volatility in the markets that affects the PnL in real time while the G10 rate

transactions were of higher amount (Table F.7) that can potentially lead to higher

trader activation. We conclude that traders working in different business divisions

have different profiles of PP activation.
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Physiological Waveform Frequency Unit
Heart Rate (HR) 1 Number of beats
Blood Volume Pressure (BVP) 64 Millimeters of Mercury (mmHg)
Electrodermal Activity (EDA) 4 Microsiemens (µS)
Skin Temperature (TEMP) 4 Celsius (°C)
Wrist Accelerations (ACC) 32 1

32g
Inter-Beat Interval (ACC) Irregular Second(s)

Table F.1: Physiological waveforms measured by the Empatica E4 wristband for each
trader.
The IBI measures the length of the time interval between two successive heartbeats,
and does not have a regular frequency.

Data Source Market Data
Chicago Mercantile Exchange US Treasury Futures (2Y/5Y/10Y)

E-mini S&P 500 Futures
Crude Oil Futures

Global Financial Institution US Dollar Index
Credit-Default Swap Indices (HY and IG)

Chicago Board Options Exchange VIX Futures

Table F.2: Market time series data acquired from different data sources.

Total Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7
51,732 145 308 305 1,577 45,246 3,523 628

Table F.3: Total number of transactions made by the traders in each week.
There is significant variation in the number of transactions across different weeks.
Maximum transactions are concentrated in week 5 due to the use of automatic trading
algorithms by traders.
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Trader ID Date Number of Trade Number of Block Trade Trader’s Survey Response
A01A22 April 8 180 52 20

April 9 279 14 20
April 12 305 13 20

A020A2 April 29 64 22 15-50
April 30 80 41 15-50
April 12 305 13 15-50
May 1 43 15 15-50
May 2 110 75 15-50
May 3 69 24 15-50

A02187 April 29 778 235 200-500
April 30 1157 330 200-500
May 2 946 233 200-500

Table F.4: Aggregating Transactions.
Number of transactions before and after aggregating the block transactions for few
representative traders on different days. The number of block transactions (column
4) is much closer to the number of transactions self-reported by the traders (column
5) than the raw data (column 3).
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Figure F-1: E4 Wristband.
Placement of the Empatica E4 wristband which measured traders’ physiological wave-
forms (Table F.1). This figure was shown to the traders to illustrate how to wear the
Empatica E4 wristband on their non-dominant-side wrist.
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Figure F-2: Inactive Periods Detection.
Inactive periods in traders’ physiological waveforms. (A) waveforms with inactive
periods (plotted in orange). Based on the timestamps of the inactive periods, we

suspect that this trader took off the wristband after work but did not terminate the
measurements on 2019/4/30 and 2019/5/2. (B) waveforms with no inactive periods.

Figure F-3: Examples of rolling correlation between two physiology signals averaged
over all traders. (A) EDA mean vs. EDA slope; (B) EDA mean vs.HR RMSSD; (C)
EDA mean vs. HR mRRi; (D) EDA mean vs. BVP mean.
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Table F.5: Correlation Between Features.
In this table, we present the correlation values between different features that were
used for average activation regression (refer heading Activation Level Attribution Re-
gression under section Materials and Methods in main text). The higher values are
shaded with red colour and lower values are shaded with blue. The number of transac-
tions is positively correlated with experience implying experience traders places more
number of transactions but the transactions were smaller in volume. While, use of
automated trading algorithms led to higher number of transactions for equity traders.
We also observed high correlation between G10 rate traders and dollar volume that
can potentially explain the high activation in G10 rates traders. The activation level
attribution regression was done for 194 different trader-days and similarly the cor-
relation table was calculated using 194 different data points due to unavailability of
trader’s survey data for some traders. The p-values of the correlation are included
in the brackets. The high positive correlation values are shaded in red and the high
negative correlation values are shaded in green.
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Table F.6: Correlation Between PP Signals.
Correlation matrix between physiology signals averaged over all traders. The p-
values (shown in parenthesis) are associated with the one sample t-test with the null
hypothesis that the average correlation is zero for a pair of physiology signals. The
statistically significant correlations (p-value < 0.05) are color coded.

Business Credit Muni. Equity G10 FXLM Commodity
Securitized 0.00,0.99 0.07,0.70 0.21,0.26 0.26,0.04 0.30,0.13 0.30,0.07

Credit 0.07,0.70 0.21,0.28 0.25,0.06 0.29,0.11 0.30,0.10

Muni. 0.14,0.48 0.18,0.30 0.22,0.14 0.23,0.24

Equity 0.04,0.81 0.08,0.66 0.09,0.58

G10 Rates 0.040.82 0.05,0.78

FXLM 0.01,0.96

Table F.7: Regression coefficient of trader activation in the column business division
with row business division as the baseline and the associated p-value.
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Figure F-4: Granger Causality Test Histograms
Histograms of p-values of Granger causality tests between each market index and
overall activation for all traders (using a lag time of 10 minutes). For each histogram,
we perform a one sample KS test with the null hypothesis that the p-values are uni-
formly distributed between 0 and 1 (i.e., no statistically significant Granger causality
relations). (A) Credit Default Swap Index IG; (B) Credit Default Swap Index HY;
(C) USD Index; (D) S&P 500 E-mini Futures Price; (E) 10Y US Treasury Futures
Price; (F) 5Y US Treasury Futures Price; (G) Crude Oil Futures Price; (H) VIX
Futures Price
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Appendix G

xAI : Explainable Machine Learning

Models of Consumer Credit Risk

Figure G-1 Panel-a shows the total household debt balance in the United States

and its composition over time. We observe that the household debt balance reached

an all-time high at the end of the fourth quarter of 2020, with a value of $14.56

trillion. The overall trend line of the debt balance is increasing. Figure G-1 Panel-b

shows the total number of new accounts opened over time, along with the number of

inquiries and number of accounts closed. The total number of accounts opened in the

last single-year period measured is 189.6 million. This enormous debt balance and

number of new accounts opened shows the importance of credit risk management.

The data and the Figure G-1 were obtained from the New York Fed Consumer Credit

Panel/Equifax.

G.1 Dataset Details

G.1.1 Glossary of Relevant Credit Modeling Terms

The following definitions provide helpful context for the description of the dataset’s

features.

1. Line of Credit: An agreement to provide credit.
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( Panel-a ) ( Panel-b )

Figure G-1: Household Debt.
The plots were obtained from the quarterly report on household debt and credit
released by the New York Fed.

2. Revolving Line of Credit: A line of credit with a maximum amount that the

borrower can choose to use each month. The most common example is a credit

card.

3. Installment Line of Credit: A line of credit with a fixed loan amount and a fixed

monthly payment. A mortgage is a common example.

4. Delinquent: A line of credit is delinquent if its payments are not made in a

timely manner.

5. Utilization: The amount still owed divided by the total amount borrowed; the

fraction of available credit currently in use.

G.1.2 Explanation of Predictor Features

In addition to the binary target variable (Risk Classification), each credit applicant

is characterized by 23 predictor features, 21 continuous and 2 categorical. These are:

1. A condensed version of the borrower’s credit risk computed by FICO using all

credit bureau information (ExternalRiskEstimate)

2. Months since the very first line of credit was established (MSinceFirstLOC)
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3. Months since the newest line of credit was established (MSinceNewestLOC)

4. Average age in months of all existing lines of credit (AvgAgeOfLOC)

5. Number of lines of credit not currently delinquent (NumLOCNotDelq)

6. Number of lines of credit ever been 60 or more days delinquent (NumLOC60PlusDaysDelq)

7. Number of lines of credit ever been 90 or more days delinquent (NumLOC90PlusDaysDelq)

8. Percentage of lines of credit never been delinquent (PercentLOCNeverDelq)

9. Number of months since the most recent delinquency (MSinceMRecentDelq)

10. Maximum delinquency in days in the past year (MaxDelqLast12M)

11. Maximum delinquency ever in days (MaxDelqEver)

12. Total number of lines of credit established (NumTotalLOC)

13. Number of lines of credit established in the past year (NumLOCInLast12M)

14. Percentage of lines of credit that are installment lines of credit (PercentInst-

LOC)

15. Months since the newest request for a new line of credit excluding those re-

quested in the past week (MSinceNewLOCReqExPastWeek)

16. Number of requests for new lines of credit in the last 6 months (NumLOCRe-

qLast6M)

17. Number of requests for new lines of credit in the last 6 months excluding those

requested in the past week (NumLOCReqLast6MExPastWeek)

18. Fraction of all revolving credit limits in use (FracRevLOCLimitUse)

19. Fraction of all installment lines of credit in use (FracInstLOCUse)

20. Number of revolving lines of credit with outstanding balances (NumRevLOCW-

Balance)
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21. Number of installment lines of credit with outstanding balances (NumInst-

LOCWBalance)

22. Number of bank loans and national loans (a subset of all revolving trades) with

an outstanding balance of at least 75% of the credit limit (NumBank/NatlLoansWHighUtil)

23. Percentage of lines of credit with outstanding balances (PercentLOCWBalance)

G.1.3 Data Cleaning

Our dataset contains special values, negative integers that are interpreted symboli-

cally and do not hold any numeric significance. As a result, we cannot directly feed

them into our machine learning models. We either have to drop them or encode them

appropriately. A large fraction of the data points in our HELOC dataset contains at

least one special value (7,957 of the 10,459 data points). Hence, dropping all such

data points is infeasible.

In addition, the dataset has 588 records that solely contain the special value -9

for all feature values. 331 of these data points are labeled as non-creditworthy, and

266 as creditworthy. This is a problem for any model because the same input vector

will produce opposite target labels. This happens because a borrower will receive a

special value if they are either a VIP and do not need to be investigated, or if they

have no bureau record at all, i.e., they have no credit history. Such data points are

dropped in our analysis.

We find special values are concentrated in 9 of our 23 input features. A standard

technique for dealing with special values is to replace them with the mean values of

the respective feature. A simple example illustrates that this is not a meaningful

approach for our dataset. If a borrower has never had a delinquency, she will have

the -7 (Condition not met) special value for the feature “months since most recent

delinquency.” Clearly, replacing the feature value with the mean is not correct, since

she will be moved from a desirable value of the feature to a less desirable one. To

handle these special values, we used binning techniques.
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G.1.4 Data Pre-processing

The records in our dataset contain special values, which require a careful approach.

We deal with special values by discretizing continuous features into bins. The ad-

vantage of binning is that special values can be treated as a separate bin, and any

outliers can be consolidated. Once a binning schema has been decided, a feature can

be represented using one-hot encoding and weight of evidence (WoE) encoding.

In one-hot encoding, a feature that contains n bins can be represented as an n-

dimensional vector f . If a feature value belongs to bini then the value of its kth

dimension fk = 1 if k = i and 0 otherwise, for k 2 [0, n). The drawbacks of one-hot

encoding are that bins are treated as unordered categories, and sparsity is introduced.

Sparse features can result in overfitting and biased parameters in a model if the

training dataset is small. In addition, for continuous variables, there is no clear-cut

formula to define the binning schema, and choosing it manually can be sub-optimal.

Weight of evidence (WoE) encoding is a popular statistical technique used in the

credit rating industry [259]. It is used to automatically recode the values of continuous

and categorical predictor variables into discrete bins, and to assign each bin a WoE

value. The bins are determined such that they will produce the largest differences with

respect to the WoE values. Additionally, monotonicity constraints can be specified

to ensure that WoE values are strictly increasing or decreasing in feature values.

The formula for WoE encoding is derived from entropy theory and the information

value. For bini, the WoE value can be computed as follows:

WoEi = [ln (
Relative Frequency of Goods
Relative Frequency of Bads

)] ⇤ 100 (G.1)

where the relative frequency of goods is defined as the ratio of the number of cred-

itworthy individuals in bini to the total number of creditworthy individuals, and the

relative frequency of bads is defined as the ratio of the number of non-creditworthy

individuals in bini to the total number of non-creditworthy individuals.

Intuitively, the WoE value of a bin provides a measure of its predictive ability

to separate creditworthy and non-creditworthy applicants. An important benefit of
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WoE encoding is that it can be used to treat missing values and outliers without

introducing sparsity. As WoE values are on the same scale, we can use them to

compare the univariate effects of bins on the target variable within a feature or across

all features. Its drawback, like most binning techniques, is that it results in a loss

of information. As we will see in Section 9.5, models trained on WoE encoded data

have a better performance than other methods.

G.1.5 Data Visualization

Before using the dataset to train machine learning models, we analyze its properties

using a few exploratory data visualization techniques.

Figure G-2 visualizes the 23x23 correlation matrix of our dataset, identifying

higher correlation values with lighter shades. We find three pairs of features with

correlations greater than 0.8.

1. The total number of lines of credit (NumTotalLOC) and the number of lines of

credit that are not currently delinquent (NumLOCNotDelq)

2. The number of lines of credit that have been 60+ days delinquent (Num-

LOC60PlusDaysDelq) and the number of lines of credit that have been 90+

days delinquent (NumLOC90PlusDaysDelq)

3. The number of request for new lines of credit in the past 6 months (Num-

LOCReqLast6M) and the number of request for new lines of credit in the past

6 months excluding the past week (NumLOCReqLast6MExPastWeek)

G.2 Model Implementation Details

The class distribution of the dataset in the five-fold cross-validation is presented

in Table G.1. By visual inspection, it demonstrates that the dataset is reasonably

balanced.
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Figure G-2: 23 x 23 Correlation Matrix.
The lighter shades represents highly correlated feature pairs. As expected, the diago-
nal has the lightest shade because it represents the correlation of a feature with itself.

We give details of the implementation for the different ML models used in our

evaluation.

For optimal trees, we used the Julia implementation available from the Inter-

pretable AI website 1. We performed a grid search over a depth from 1 to 10,

and the number of features used for the deciding split at each node from the set

1,2,3,4,5,10,15,20,23. The optimal tree (black box) is the best-performing model of

all the parameter combinations. Its parameters are depth=2 and the number of fea-

tures=10. The optimal tree (interpretable) model corresponds to a model depth=2

and a number of features=1.

We used the scikit-learn implementation of the random forest classifier2. A grid

search was performed on the number of estimators (trees) from 1 to 150. The best
1https://docs.interpretable.ai/v1.0/
2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
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Fold
Number

Count of yi = 1
(Train)

Count of yi = 0
(Train)

Count of yi = 1
(Test)

Count of yi = 0
(Test)

1 4118 3770 1010 963

2 4088 3801 1040 932

3 4094 3795 1034 938

4 4111 3778 1017 955

5 4101 3788 1027 945

Table G.1: Five-fold cross-validation data distribution. yi = 1 corresponds to the
data point (i.e., individual) who defaulted. The dataset is fairly balanced.

performing model consisted of 140 trees. Other parameters were set to the provided

default values.

The neural network (WoE) model was implemented using the scikit-learn imple-

mentation of MLPClassifier. We performed a grid search over the different archi-

tectures and the L2-regularization constant. The best-performing model had three

hidden layers consisting of 5 units each, and a L2-regularization penalty constant of

0.5. Other parameters were set to the default values.

The neural network (one-hot) model was implemented using tensorflow-keras.

This was done to ensure the availability of gradients from the model for the coun-

terfactual generating algorithm (DiCE). The best-performing model had one hidden

layer, with the number of nodes=20. It was trained using the Adam optimizer with a

learning rate of 0.01. The activation type used was the Rectified Linear Unit (ReLU),

and a L1-regularization penalty of 0.001 was used.

We used publicly available implementation of SHAP3. We used publicly available

implementation of LIME4 and made appropriate modification to incorporate the fea-

ture correlation in the data sampling. We used publicly available implementation of

DiCE5 and made modification by specifying features that cannot be changed. We
3https://github.com/slundberg/shap
4https://github.com/marcotcr/lime
5https://github.com/interpretml/DiCE
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implemented inductive logic programming using tensorflow-keras.
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Appendix H

From ELIZA to ChatGPT: The

Evolution of NLP and Financial

Applications

H.1 Complete ChatGPT Interaction

One of the co-authors of this paper is ChatGPT, a chatbot developed by OpenAI

and one of the current state-of-the art NLP tools. Here, we include the complete

transcript of our conversation with ChatGPT that resulted in its contributions to

this article.

Permission

authors: Can you write a research paper on evolution of NLP models and their use in

finance?

chatgpt: However, I can provide a brief overview of the evolution of NLP models and their

use in finance:

Early NLP models: Early NLP models were based on rules-based systems and used

hand-coded grammar rules to process language. These models were limited in their

ability to handle complex language structures and were prone to error.

Statistical NLP models: With the advent of large amounts of data and computational

power, statistical NLP models became popular. These models use statistical algorithms
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to analyze patterns in data and generate language outputs.

Deep Learning NLP models: With the development of deep learning algorithms, NLP

models became more sophisticated. Deep learning models use neural networks to pro-

cess and analyze language, allowing them to understand the meaning and context of

language in a more nuanced way.

In finance, NLP models are used for a variety of purposes, including sentiment analysis,

news summarization, and data analysis. NLP models can be used to analyze large

amounts of financial news and information, identify trends and patterns, and provide

insights into market conditions.

Overall, the evolution of NLP models has led to more advanced and sophisticated

models that can better understand and process language, making them valuable tools

for financial analysis and decision making.

ChatGPT was unable to write the full paper, but it gave a good overview of the

topic. Following this, we started asking questions to ChatGPT step by step.

authors: I am writing a paper on evolution of NLP in finance. Can I use your help ?

chatgpt: Yes, I’d be happy to help you with your paper on the evolution of NLP in finance.

What specifically would you like to know or discuss?

Querying Time-line Information: Learning from Context

authors: My first question is, what were the earliest NLP based models in literature?

chatgpt: The earliest NLP-based models in literature were rules-based systems, developed

in the 1950s and 1960s. These systems utilized hand-crafted rules and grammars to

analyze and understand natural language text. Later, statistical NLP models emerged

in the 1980s and 1990s, which used machine learning algorithms to learn patterns in

text data and make predictions about the meaning of text.

authors: When were the advanced statistical NLP models were developed ? Can you give

me a timeline?

chatgpt: A timeline of the development of advanced statistical NLP models is as follows:

Late 1990s to early 2000s: The first statistical NLP models, such as hidden Markov

models (HMMs) and maximum entropy models, were developed and applied to various

NLP tasks.

Mid 2000s to early 2010s: The widespread availability of large text corpora and ad-

vancements in machine learning algorithms led to the development of more sophisti-
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cated statistical NLP models, such as support vector machines (SVMs) and deep neural

networks (DNNs).

Late 2010s to present: With the advent of big data and improvements in computational

resources, deep learning techniques, such as recurrent neural networks (RNNs) and

transformer models, have become the dominant NLP models and have been applied to

a wide range of NLP tasks, including finance.

authors: I have heard about lexicon based models and topic models. When were they

developed and they belong to which category of the NLP models

chatgpt: "Lexicon-based" models and "topic models" are both categories of statistical NLP

models.

Lexicon-based models: These models were developed in the early 2000s and rely on

the use of predefined dictionaries or lexicons of words and phrases to analyze and

understand natural language text. For example, a lexicon-based model might use a

dictionary of financial terms to identify financial concepts in news articles.

Topic models: These models were developed in the late 1990s and early 2000s and use

statistical techniques to identify the main topics discussed in a document or a collection

of documents. For example, a topic model might identify market trends or company

news as topics in financial news articles.

Both lexicon-based models and topic models are considered to be early forms of statis-

tical NLP models and have been largely superseded by more advanced deep learning

techniques, such as RNNs and transformers. However, they still play an important role

in some NLP applications, particularly in the early stages of preprocessing and feature

extraction.

authors: Can you give me a detailed timeline of the development of NLP models and their

use in finance?

chatgpt: A detailed timeline of the development of NLP models and their use in finance is

as follows:

1950s to 1970s: Early NLP research focused on rules-based approaches, such as grammar-

based parsers and dictionary-based information extraction systems.

Late 1980s to early 1990s: The first statistical NLP models, such as hidden Markov

models (HMMs) and maximum entropy models (MEMs), were developed and applied

to various NLP tasks.

Late 1990s to early 2000s: The development of lexicon-based models and topic models,

which relied on predefined dictionaries or lexicons of words and phrases, represented

an important step forward in NLP.
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Mid 2000s to early 2010s: With the widespread availability of large text corpora and

advancements in machine learning algorithms, more sophisticated statistical NLP mod-

els, such as support vector machines (SVMs) and deep neural networks (DNNs), were

developed.

Late 2010s to present: With the advent of big data and improvements in computational

resources, deep learning techniques, such as recurrent neural networks (RNNs) and

transformer models, have become the dominant NLP models.

From the above snippet, we can observe that ChatGPT answer did not include

the advanced statistical models like topic modeling or lexicon-based models initially,

but on asking questions about the topic model and lexicon-based model, it included

them in its answer to the next timeline question. This implies the chatbot is learning

from context and correcting its mistakes.

authors: Can you give me some relevant research papers (citations) for the rules-based

approaches like Grammar-based parsers, Dictionary-based information extraction, Text

classification and Named entity recognition ?

chatgpt: Sure, here are some relevant research papers for the rules-based approaches in

NLP, such as grammar-based parsers, dictionary-based information extraction, text

classification, and named entity recognition:

Grammar-based parsers:

Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the

ACM, 13(2), 94-102.

Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. Proceedings of

the 41st Annual Meeting of the Association for Computational Linguistics-Volume 1.

Dictionary-based information extraction:

Agichtein, E., & Gravano, L. (2000). Snowball: Extracting relationships from large

plain-text collections. Proceedings of the sixth ACM SIGMOD Conference on Man-

agement of data.

Text classification:

Turney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied

to unsupervised classification of reviews. Proceedings of the 40th annual meeting on

Association for Computational Linguistics.

Named entity recognition:

R. Nadeau and S. Sekine. (2007). A survey of named entity recognition and classifica-

tion. Lingvisticae Investigationes, 30(1), 3-26.
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These are some of the classic and influential papers in the field of NLP and provide a

good starting point for understanding the early rules-based approaches in NLP. How-

ever, it’s worth noting that NLP research is a rapidly evolving field, so there are many

other relevant and recent papers and advances that are not included in this list.

authors: Can you give me some relevant research papers (citations) for the rules-based

approaches like Grammar-based parsers, Dictionary-based information extraction, Text

classification and Named entity recognition from 1950-70s?

chatgpt: Sure, here are some relevant research papers for the rules-based approaches in

NLP from the 1950s to 1970s:

Grammar-based parsers:

Chomsky, N. (1957). Syntactic Structures. Mouton.

Ross, J. R. (1967). Constraints on variables in syntax. Doctoral dissertation, MIT.

Dictionary-based information extraction:

H. P. Luhn. (1958). The automatic creation of literature abstracts. IBM Journal of

Research and Development, 2(2), 159-165.

Text classification:

G. H. W. Sperberg-McQueen. (1972). A natural language question-answering system.

In Proceedings of the International Joint Conference on Artificial Intelligence, 397-406.

Named entity recognition:

S. S. Chhabra and J. E. Atwell. (1976). A study of the use of dictionary and grammar

in the analysis of newswire texts. In Proceedings of the 10th International Conference

on Computational Linguistics, 465-471.

These are some of the early and influential papers in the field of NLP from the 1950s to

1970s and provide a good starting point for understanding the rules-based approaches in

NLP during that time. It’s worth noting that the field of NLP has evolved significantly

since then, and there are many other relevant and recent papers and advances that are

not included in this list.

authors: Can you give me the above citations in the bibtex format ?

chatgpt: Certainly, here are the citations in the BibTeX format for the rules-based ap-

proaches in NLP from the 1950s to 1970s: ....

From the above dialogue, it can be observed that ChatGPT understands fine

details about our commands. On asking for references from the 1970s, it was able

to change the references it offered and share ones from the 1970s instead. On asking

a followup request to provide the citations in bibtex format, it was able to do so.
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Following this interaction, we asked many questions related to different NLP models

and their references.

Information/Content Generation

authors: Can you give me a detailed overview of the NLP models in 1980s-1990s:like Hidden

Markov Models (HMMs), Maximum Entropy models, and decision trees?

chatgpt: Sure, here’s an overview of the NLP models in the 1980s-1990s:

Hidden Markov Models (HMMs): HMMs are a type of probabilistic model for modeling

sequential data. They can be used for NLP tasks such as part-of-speech tagging, named

entity recognition, and speech recognition. HMMs model sequences as a series of hidden

states and observable outputs. They are trained using the Baum-Welch algorithm to

estimate the model parameters that maximize the likelihood of the observed sequence.

Maximum Entropy Models: Maximum Entropy Models are probabilistic models that

aim to maximize entropy (i.e., uncertainty) subject to constraints. They can be used

for NLP tasks such as part-of-speech tagging, named entity recognition, and text classi-

fication. Maximum Entropy Models use a log-linear approach to model the probability

of an output sequence given the input sequence. They are trained by maximizing the

likelihood of the observed data subject to the constraints.

Decision Trees: Decision trees are a type of machine learning model that can be used

for NLP tasks such as text classification and sentiment analysis. They model the

decision process as a tree-like structure, where each node represents a decision based

on the input features and each leaf node represents a prediction. Decision trees can be

trained using algorithms such as ID3, C4.5, and CART. They are simple to interpret

and can handle both continuous and categorical features.

Note: These are early models in NLP and there have been many advancements and

improvements since then

authors: Can you give me citations and relevant papers on the use of Hidden Markov Models

(HMMs) and Maximum Entropy models in NLP?

chatgpt: Sure, here are some references and papers on the use of Hidden Markov Models

(HMMs) and Maximum Entropy models in NLP:

Hidden Markov Models (HMMs):

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications

in speech recognition. Proceedings of the IEEE, 77(2), 257-286.

Jiang, X. (2007). Part-of-speech tagging using hidden Markov models. In Natural lan-

guage processing and knowledge engineering, 2007. NLP-KE’07. International Con-
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ference on (pp. 325-328). IEEE.

Maximum Entropy Models:

Berger, A. L. (1996). The maximum entropy approach to natural language processing.

Computational Linguistics, 22(1), 39-71.

McCallum, A., & Li, W. (2003). Early results for named entity recognition with maxi-

mum entropy models. In Proceedings of the workshop on named entities: recognition,

classification, and use in answer extraction (pp. 25-32).

Note: These are just a few references and there are many other papers and studies

that cover the use of HMMs and Maximum Entropy models in NLP.

authors: What were the limitation of Hidden Markov Models (HMMs) and Maximum En-

tropy Models in NLP ?

chatgpt: Here are some of the limitations of Hidden Markov Models (HMMs) and Maximum

Entropy Models in NLP:

Hidden Markov Models (HMMs): HMMs have difficulty in handling long-range depen-

dencies, as they only consider local context. HMMs also have difficulties in dealing

with ambiguity and uncertainty, as they assume that the observations are generated

from a single hidden state.

Maximum Entropy Models: Maximum Entropy Models require a large amount of train-

ing data in order to produce accurate results. They also have difficulty in modeling

complex relationships between variables, as they assume independence between vari-

ables. Maximum Entropy Models also struggle with computational efficiency, as they

require large amounts of computing resources to estimate parameters.

Note: These limitations were more pronounced in the early days of NLP and have

been addressed to some extent with the development of more advanced NLP models.

However, these limitations still persist to some extent in modern NLP models.

authors: Can you give me some influential papers on on lexicon based model and topic

modeling in NLP?

chatgpt: Sure, here are some influential papers on lexicon-based models and topic modeling

in NLP:

Lexicon-based Models:

Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in

phrase-level sentiment analysis. Proceedings of the Conference on Human Language

Technology and Empirical Methods in Natural Language Processing.

Huang, J., Zhang, S., & Zhao, Y. (2012). Improving sentiment classification via senti-

ment concept clustering and transfer learning. Proceedings of the 50th Annual Meeting

of the Association for Computational Linguistics.
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Topic Modeling:

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of

Machine Learning Research, 3(Jan), 993-1022.

Asuncion, A., Welling, M., Smola, A. J., & Teh, Y. W. (2009). On smoothing and

inference for topic models. Proceedings of the 26th Annual International Conference

on Machine Learning.

Note: These are just a few examples of influential papers on lexicon-based models and

topic modeling in NLP and there are many other papers that have made significant

contributions to these areas.

authors: Can you give me overview of the word embeddings based methods in NLP and

their use in finance ?

chatgpt: Word embeddings are a type of NLP technique that represent words as continuous-

valued vectors in a high-dimensional space. These word vectors capture semantic and

syntactic information about words in a way that can be used for various NLP tasks,

including sentiment analysis, text classification, and language translation.

In finance, word embeddings have been used for tasks such as:

Sentiment Analysis: Word embeddings have been used to analyze the sentiment of

financial news articles, investor reports, and social media posts, in order to gauge

market sentiment and predict stock prices.

Text Classification: Word embeddings have been used to classify financial documents

into categories such as earnings reports, balance sheets, and press releases.

Risk Assessment: Word embeddings have been used to analyze the risk associated with

financial products, by identifying potential red flags in regulatory reports and other

financial documents.

Topic Modeling: Word embeddings have been used in topic modeling of financial doc-

uments, in order to identify important themes and topics in financial data.

Overall, word embeddings have proven to be a powerful tool for NLP in finance, as

they enable the use of high-level abstractions to analyze large amounts of unstructured

financial data, and provide insights into market sentiment and risk.

authors: Can you give me citations for the above methods in bibtex format?

chatgpt: I’m sorry, I cannot provide citations for all the word embedding methods listed

in my previous response. However, here are some papers that cover popular word

embedding methods: ...

authors: What are the disadvantages of embedding based methods in NLP?

chatgpt: Some disadvantages of word embedding based methods in NLP include:
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Data sensitivity: word embeddings are highly dependent on the training corpus, and

can be sensitive to the type of data and domain they are trained on.

Out-of-vocabulary (OOV) words: word embeddings do not provide good representa-

tions for words that are not present in the training corpus, and often perform poorly

on OOV words.

Context sensitivity: word embeddings are context sensitive, and the representation for

a word can change depending on the context it is used in. This can lead to issues with

polysemy (multiple meanings for a single word) and synonymy (multiple words with

the same meaning).

Scalability: computing word embeddings for large corpora can be computationally

intensive, and can require significant computational resources.

Semantic compositionality: word embeddings do not directly capture the compositional

nature of language, and it can be challenging to use them to effectively capture the

meaning of phrases and sentences.

Overfitting: word embeddings can overfit to the training corpus, especially when

trained on small data. This can result in the representations capturing irrelevant

information or biases present in the training data.

authors: What are the new deep learning based NLP methods?

chatgpt: New deep learning based NLP methods include:

Transformer models: these models have revolutionized NLP by introducing the self-

attention mechanism, which allows for parallel processing of input sequences. Examples

include BERT (Bidirectional Encoder Representations from Transformers), GPT-2/3

(Generative Pretrained Transformer 2/3), and RoBERTa (Robustly Optimized BERT

Approach).

Neural Machine Translation (NMT): these models use deep neural networks to per-

form machine translation, and have shown significant improvement over traditional

statistical machine translation methods.

Seq2Seq models: these models are designed for sequence-to-sequence tasks such as

machine translation, text summarization, and text generation. They consist of an

encoder-decoder architecture, where the encoder maps an input sequence to a fixed-

length vector, and the decoder generates an output sequence from the vector.

Convolutional Neural Networks (CNNs): these models are designed for text classifica-

tion and sentiment analysis tasks, and have shown good performance on a wide range

of NLP tasks.

Recurrent Neural Networks (RNNs): these models are designed for sequential data,

and have been widely used in NLP for tasks such as language modeling, sentiment
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analysis, and text generation.

Generative Adversarial Networks (GANs): these models are used to generate synthetic

text data, and have shown good performance in tasks such as text generation, data

augmentation, and text style transfer.

These deep learning based NLP methods have shown remarkable progress and have

been widely adopted in NLP research and industry applications.

authors: What are the disadvantages of deep learning based NLP models?

chatgpt: Some disadvantages of deep learning based NLP models include:

Computational cost: deep learning based NLP models are computationally intensive,

and require large amounts of data, memory, and computational resources to train.

Data bias: deep learning models can perpetuate the biases present in the training data,

leading to unfair or undesirable outcomes in real-world applications.

Overfitting: deep learning models can easily overfit to the training data, especially

when trained on small or noisy data. This can result in poor generalization performance

and low accuracy on unseen data.

Explanation difficulty: deep learning models are often considered to be black boxes,

with little understanding of how they make predictions. This can make it challenging to

diagnose and fix issues with the models, and to build trust in the results they produce.

Transfer learning difficulty: deep learning models are often trained on large, diverse

corpora, making it difficult to fine-tune them for specific domains or tasks without

access to large amounts of annotated data.

Adversarial examples: deep learning models are vulnerable to adversarial examples,

where small changes to the input data can lead to incorrect predictions. This can

be a major security concern in NLP applications where the input data can be easily

manipulated.

Overall, deep learning based NLP models have shown great progress, but also have

some significant limitations that need to be considered when designing and deploying

NLP systems.

authors: Can you give me citations for the influential papers related to the deep learning

based NLP models ?

chatgpt: Here are some influential papers in the field of deep learning based NLP models,

with bibtex citations:

BERT: "BERT: Pre-training of Deep Bidirectional Transformers for Language Under-

standing" by Devlin et al., 2018. ....

From the above conversation, we obtained a significant amount of information
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content. However, there were a few times when its response was not very detailed or

relevant to the question. For such replies, we had to select the relevant information.

We also observed that from its history ChatGPT understood the importance of giving

a citation in bibtex format, hence in reply to the last question, it automatically

returned the citation in bibtex format.

Questions About ChatGPT

authors: What is ChatGPT?

chatgpt: GPT-3 (Generative Pretrained Transformer 3) is a language model developed

by OpenAI, a research organization dedicated to creating and promoting artificial

intelligence in a responsible way. It is the third iteration in the GPT series of models,

and the largest one to date, with over 175 billion parameters.

GPT-3 is trained on a massive dataset of internet text and uses a deep neural network

architecture based on the Transformer architecture. The model is capable of performing

various natural language processing tasks, such as text generation, question answering,

machine translation, and sentiment analysis, among others.

ChatGPT is a specific implementation of GPT-3 designed for conversational AI appli-

cations. It is fine-tuned to respond to user inputs in a conversational manner, and can

be integrated into chatbots and other conversational applications to provide human-like

responses.

authors: Can I get more details about the ChatGPT ?

chatgpt: Sure! Here’s some more information about ChatGPT:

Architecture: ChatGPT is based on the transformer architecture, which is a deep neu-

ral network designed for processing sequential data, such as natural language. The

transformer architecture is made up of multiple layers, including an attention mecha-

nism, which allows the model to focus on different parts of the input at different times

and dynamically adjust its internal representations.

Pretraining: Like other GPT models, ChatGPT is pretrained on a large corpus of text

data. During pretraining, the model learns to predict the next word in a sentence

given its preceding context. This enables the model to build a rich representation of

the language and learn patterns and relationships between words and phrases.

Fine-tuning: Once the model is pretrained, it can be fine-tuned for specific tasks and

domains, such as conversational AI. During fine-tuning, the model is trained on a

smaller dataset that is relevant to the target task. This allows the model to learn
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task-specific information and improve its performance on the target task.

Applications: ChatGPT is used in a variety of conversational AI applications, includ-

ing chatbots, virtual assistants, and customer service systems. The model can be used

to generate human-like responses to user inputs, answer questions, provide recommen-

dations, and perform other conversational tasks.

Limitations: Although ChatGPT is a highly advanced and powerful language model,

it is not perfect. Like all machine learning models, it can make mistakes and pro-

duce responses that are irrelevant, incorrect, or offensive. Additionally, its large size

and computational requirements make it difficult to deploy in real-world applications,

especially in resource-constrained environments.

authors: What is the citation for ChatGPT?

chatgpt: ChatGPT is a language model developed by OpenAI, and as such, it does not have

a specific publication or citation. OpenAI is a research organization that develops

and releases a number of advanced AI models, including GPT-3, which is the basis

for ChatGPT. You can learn more about OpenAI and its research on their website

(https://openai.com/).

authors: How much energy ChatGPT uses for generation of 100 words? The energy usage

for generating 100 words of text with ChatGPT would depend on several factors,

including the hardware and software configurations used, the size of the model, and

the computational resources available.

As a large language model, ChatGPT requires significant computational resources,

including a large amount of memory and processing power. The exact energy usage

would therefore vary depending on the specific hardware and software environment in

which the model is running.

It is worth noting that the energy usage of large language models like ChatGPT has

been a topic of concern in the AI community due to the significant carbon footprint

associated with training and using such models. Research is ongoing to find ways

to reduce the energy usage of these models and make them more environmentally

sustainable.

In the above conversation, we asked questions that related ChatGPT to itself,

and it was able to return detailed information. Hence, we conclude that ChatGPT is

self-aware. However, it was not able to reply with technical details about the energy

used by ChatGPT.
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Information/Content Generation

authors: Can you give me examples of use of NLP for risk management in finance?

chatgpt: Yes, here are some examples of the use of NLP in risk management in finance:

Sentiment analysis: NLP techniques can be used to analyze large volumes of unstruc-

tured text data, such as financial news articles, social media posts, and earnings call

transcripts, to gain insights into market sentiment and assess the risk of specific finan-

cial instruments.

News and event analysis: NLP models can be trained to identify and classify relevant

financial news and events and predict their impact on the market and specific financial

instruments.

Regulatory compliance: NLP can be used to automatically scan financial documents

and identify potential compliance violations, such as insider trading or money launder-

ing, to mitigate financial risk.

Credit scoring: NLP can be used to analyze financial statements and other financial

data to predict a company’s credit risk and support decision-making in lending and

credit management.

Fraud detection: NLP can be used to analyze transaction data and detect suspicious

patterns that may indicate fraud, helping financial institutions minimize their risk

exposure.

These are just a few examples of the many ways NLP can be used for risk management

in finance.

authors: Can you give me examples of use of NLP for impact investing in finance?

chatgpt: Use of NLP to analyze and categorize sustainability-related information contained

in companies’ annual reports and sustainability disclosures.

NLP-based sentiment analysis of news articles and social media posts to track and

quantify the social and environmental impact of companies.

NLP-based event extraction to monitor and quantify ESG-related events and their

impact on companies and industries.

NLP-based entity extraction to identify companies and projects with a positive impact

on society and the environment.

NLP-based document classification to automatically categorize sustainability reports

and disclosures according to specific impact themes, such as climate change, human

rights, and biodiversity.

NLP-based natural language generation to produce impact reports and summaries that

highlight a company’s positive and negative impact on society and the environment.

authors: What is risk management in finance ?
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chatgpt: Risk management in finance refers to the process of identifying, assessing, and

controlling risks in financial operations, transactions, and investments. It involves

identifying potential sources of financial loss and taking steps to minimize or miti-

gate their impact on the financial stability and performance of an organization. Key

components of financial risk management include market risk, credit risk, operational

risk, liquidity risk, and reputational risk. The goal of financial risk management is to

minimize the impact of adverse events on an organization’s financial performance and

stability.

authors: Can you give me more examples of influential papers that use of NLP in risk

management in finance ?

chatgpt: I apologize, but I do not have specific references to influential papers that use

NLP in risk management in finance at this time.

authors: What is impact investing ?

chatgpt: Impact investing is a form of investment that aims to generate positive social or

environmental impact alongside financial returns. Impact investments are made into

companies, organizations, and funds with the intention to generate measurable social

and environmental impact alongside financial returns. This investment approach seeks

to create social or environmental benefits alongside financial returns, as opposed to

philanthropy which aims primarily to create social or environmental benefits.

authors: Can you give me detailed summary of use of NLP for asset management in finance?

chatgpt: Natural Language Processing (NLP) has been used in asset management for var-

ious tasks such as sentiment analysis, news analysis, and earnings call analysis.

Sentiment analysis involves analyzing the tone and emotion of financial news articles

and social media posts to predict stock market trends. NLP models are used to process

and analyze vast amounts of text data and extract meaningful information to make

investment decisions.

News analysis involves using NLP to extract relevant information from news articles,

such as company news, earnings releases, and analyst reports. This information can

be used to make investment decisions and improve the portfolio management process.

Earnings call analysis involves using NLP to process and analyze earnings call tran-

scripts. The goal is to extract key financial metrics and sentiment indicators to better

understand a company’s financial performance and make investment decisions.

However, despite its potential, the use of NLP in asset management also faces some

limitations such as the difficulty in accurately interpreting text data, the high compu-

tational cost of training NLP models, and the need for large amounts of labeled data

to train the models.
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authors: what is the future of NLP ?

chatgpt: The future of NLP looks promising with continued advancements in deep learn-

ing techniques and increasing availability of data. Advancements in NLP are likely

to improve areas such as natural language generation, dialogue systems, and multi-

language processing. Additionally, NLP applications are expected to expand beyond

the traditional domains of information retrieval and text classification, to more com-

plex real-world problems, such as recommendation systems, personalization, and data

privacy. The integration of NLP with other areas, such as reinforcement learning,

computer vision, and robotics, is also likely to drive further innovation. However, the

continued development of NLP technology will also bring up new ethical and societal

issues, such as data privacy, bias, and fairness.

Creativity

author: What are the suitable titles for the paper on evolution of NLP in finance ?

chatgpt: “From Text Mining to Intelligent Finance: A Journey Through NLP"

“The Rise of NLP in Financial Services: Opportunities and Challenges"

“NLP in Finance: Past, Present, and Future Trends"

“Leveraging Natural Language Processing for Improved Financial Outcomes"

“Transforming Finance with NLP: A Review of the Literature"

“NLP and Financial Analytics: A Study of Emerging Trends and Techniques"

“The Power of NLP in Financial Decision Making: A Review"

“NLP and Financial Risk Management: Progress and Prospects"

“Enhancing Financial Performance with NLP: A Survey of Applications"

“Natural Language Processing and Finance: A Comprehensive Review".

author: Can you give me famous quotes for the use of NLP in finance?

chatgpt: Here are a few famous quotes related to the use of NLP in finance:

“Data is the new oil and NLP is the refinery." - Anonymous

“The future of finance lies in the intersection of machine learning and NLP." - William

Falcon, CEO of Fast.ai

“NLP is revolutionizing finance by providing insights from unstructured data." - Julie

Delanoy, CEO of Cognitivescale

“The power of NLP lies in its ability to turn data into actionable insights for finance

professionals." - John Giannandrea, CEO of GPT-3

“The use of NLP in finance is providing a more efficient and accurate way to analyze

large amounts of data." - Richard Brown, CTO of AI at Accenture
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“NLP is transforming finance by providing a more human-like understanding of finan-

cial data." - Oren Etzioni, CEO of the Allen Institute for Artificial Intelligence

authors: Can you give me some more famous quotes for the use of NLP in finance?

chatgpt: I’m sorry, I don’t have a database of famous quotes specifically related to the use

of NLP in finance. Quotes are often subjective and personal, so it may be best to

create your own based on your own experiences and opinions.

authors: Whats the future of NLP in finance ?

chatgpt: The future of NLP in finance looks bright as NLP has already demonstrated its

ability to perform tasks such as sentiment analysis, risk management, and impact in-

vesting, among others. With advancements in NLP technology and the increasing

volume of financial data available, NLP is poised to play an increasingly important

role in finance, with potential applications ranging from financial analysis and invest-

ment decision-making to fraud detection and regulatory compliance. However, it is

important to consider the limitations of NLP, such as data scarcity problems, ethical

and legal implications, and limitations of NLP models themselves. Overall, the future

of NLP in finance will likely be shaped by a combination of technological progress and

practical considerations, as the financial industry continues to adopt NLP and reap

the benefits of its powerful capabilities

From the above dialogue with ChatGPT, we can observe that the chatbot is

creative, as it is able to provide us with suitable titles for this paper, along with

quotes related to NLP in finance.

Logical Reasoning

In this section, we discuss an example from ChatGPT where it failed to answer a

simple logical reasoning question without a hint.

authors: I am A’s grandson. A have two sons, B and C. B loves dogs. I love

cats. B doesn’t have children. My brother lives in San Francisco. Who is

my father?

chatgpt: If you are A’s grandson, it means that A is your grandfather. It is not

clear from the information provided who your father is, as the information

only states that A has two sons, B and C, and does not mention which

son is your father.
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authors: There is enough information is you consider the fact that B does

not have children.

chatgpt: I apologize for my previous response. If B is A’s son and he does not

have any children, then C must be your father since A has two sons, and

you are B’s son and you mentioned that B does not have any children.

Therefore, your father must be C.
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