
WACO: Learning workload-aware co-optimization of
the format and schedule of a sparse tensor program

by

Jaeyeon Won
B.S., Seoul National University (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

©2023 Jaeyeon Won. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright,

including to reproduce, preserve, distribute and publicly display copies of
the thesis, or release the thesis under an open-access license.

Authored by:
Jaeyeon Won
Department of Electrical Engineering and Computer Science
August 31, 2023

Certified by:
Joel S. Emer
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Certified by:
Saman Amarasinghe
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by:
Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

WACO: Learning workload-aware co-optimization of the format

and schedule of a sparse tensor program

by

Jaeyeon Won

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2023, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Leveraging the existence of the large number of zeros in sparse tensors offer a powerful
way to solve complex problems efficiently in many applications. However, optimizing
the performance of those applications poses a challenge. Sparse tensor programs must
find the ideal balance between data format and implementation strategy to achieve
optimal performance.

This thesis presents WACO, a novel method of co-optimizing the format and
schedule of a given sparsity pattern in a sparse tensor program. A core challenge
in this thesis is the design of a lightweight cost model that accurately predicts the
runtime of a sparse tensor program by considering the sparsity pattern, the format,
and the schedule. The key idea in addressing this is exploiting a sparse convolutional
network to learn meaningful features of the sparsity pattern and embedding a coupled
behavior between the format and the schedule using a specially designed schedule
template. In addition, within the enormous search space of co-optimization, our novel
search strategy, an approximate nearest neighbor search, efficiently and accurately
retrieves the best format and schedule for a given sparsity pattern.

We evaluate WACO for four different algorithms (SpMV, SpMM, SDDMM, and
MTTKRP) on a CPU using 726 different sparsity patterns. Our experimental results
shows that WACO outperformed four state-of-the-art baselines, Intel MKL, Format-
only auto-tuner, TACO with a default schedule, and ASpT. Compared to the best of
four baselines, WACO achieved 1.43×, 1.18×, 1.14×, and 1.27× average speedups on
SpMV, SpMM, SDDMM, and MTTKRP, respectively.

Thesis Supervisor: Joel S. Emer
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science

3

Acknowledgments

This thesis encompasses the paper [50], co-authored with Charith Mendis, Joel Emer,

and Saman Amarasinghe.

I would like express my gratitude to my two advisors, Professor Joel Emer and

Professor Saman Amarasinghe. Joel’s patient guidance helped me grasp a systematic

approach to understanding sparse tensor programs using fibertrees, which form a

crucial theoretical foundation for this thesis. Throughout our discussions, Saman

consistently encouraged me to think on a broader scale, preventing me from settling

for a locally optimal result. Their guidance sparked the exploration of machine

learning’s potential in sparse tensor compilers. A special note of appreciation is

reserved for Charith Mendis for his technical insights into machine learning techniques

and auto-scheduling.

I would also like to thank to the members of the COMMIT group; the virtual

events we held during the pandemic in my first year significantly uplifted my spirits.

5

Contents

1 Introduction 15

1.1 Overview of WACO . 18

2 Motivating Example 21

2.1 Impact of the Co-optimization . 21

2.2 Sparsity Pattern-Dependent Nature 22

3 Background 25

3.1 Tensor Algebra Compiler . 25

3.2 Cost Model for Auto-Scheduling . 28

4 Workload-Aware Co-Optimization 31

4.1 Cost Model Design . 31

4.1.1 Feature Extractor: WACONet 32

4.1.2 Program Embedder: SuperSchedule 37

4.1.3 Training Cost Model . 40

4.2 Efficient Schedule Search via Nearest Neighbor Search 41

4.2.1 Relationship Between Auto-scheduling and NNS 42

4.2.2 Graph-based ANNS . 42

5 Evaluation 45

5.1 Experimental Setup . 45

5.2 Performance Results . 47

5.2.1 Discussion on Speedup . 51

7

5.2.2 Case Studies . 53

5.3 Cost Model . 54

5.3.1 Model Accuracy . 54

5.3.2 Cost Model Exploration . 55

5.4 Search Strategy Exploration . 56

5.5 Generalization on Other Hardware 58

5.6 Search Overhead and Usage Scenarios 59

6 Related Works 63

7 Conclusion & Future Work 65

8

List of Figures

1-1 Overview of WACO. In the training dataset in (a), (MTX, SS, TIME)

is the abbreviation for (Sparse Matrix, SuperSchedule, Ground Truth

Runtime). SuperSchedule defines the format and the schedule together. 19

2-1 Sparse matrices used for the motivation. 21

3-1 A sparse matrix with dimensions I and J, its fibertree abstraction (in

both level orders) and concrete representations for two data layouts,

𝐼𝑈𝐽𝐶 and 𝐽𝐶𝐼𝐶 . U and C mean Uncompressed and Compressed level

format, respectively. The shaded level indicates the Compressed level

format. 26

3-2 Loop transformation of C[i,j]=A[i,k]*B[k,j] by schedules. It changes the

traversal order of the iteration space. A[i,k] is stored in the UC format. 27

3-3 Different sparse tensors downsampled into the same 3×3 tensor. . . . 28

4-1 Overview of WACO’s cost model. It predicts the program’s runtime by

taking a sparse matrix and SuperSchedule as inputs. SuperSchedule

contains information on both the format and the schedule. 32

4-2 Difference between conventional convolution and (submanifold) sparse

convolution. 33

4-3 When non-zeros are distributed far apart, the receptive field does not

increase even with multiple layers if the stride of sparse convolution is

1. Filter’s center is located at red circles in the stride of 2 as used in

WACONet. 34

9

4-4 Network architecture of WACONet. We omitted non-linear activation

layers in the figure. 35

4-5 (a,b) MV/MM SuperSchedules. (c) The sampled schedule showed how

C[i1,i0] = A[i1,k1,i0] * B[k1] with a BCSR format can be sampled from

the SuperSchedule by choosing the k split size as 1. The shaded lines

in the generated code indicate those can be ignored due to the split

size 1. The SuperSchedule for SDDMM(D[i,j] = A[i,j] * B[i,k] * C[k,j])

can also be defined similarly. 36

4-6 Network architecture of the program embedder. The parameters of the

SuperSchedule are used as the inputs. The green embedder takes a

categorical parameter, while the orange embedder takes a permutational

parameter. 39

4-7 Our search strategy via ANNS. In the stage of building the KNN graph,

the graph is built by connecting the edge between the schedules with

close embeddings in the Euclidean distance. During searching, a query

(input matrix 𝑚) traverses the graph in the direction predicted runtime

𝑦(𝑚, 𝑠) minimizes. 43

5-1 Performance comparison on SpMV. 48

5-2 Performance comparison on SpMM. 49

5-3 Performance comparison on SDDMM. 50

5-4 icc generated assembly for SpMV with the UCU format. b decides

the size of the one-dimensional dense block. icc starts to use the AVX

instructions(vfmadd213ps) from b=16. 52

5-5 Sparse matrices used for the evaluation. 53

5-6 The predicted ranking and true ranking of runtimes in SpMV cost model.

The 𝑥 axis denotes the true ranking and 𝑦 axis denotes corresponding

predicted ranking. The color bar in the right indicates the absolute

difference between predcited and true ranking. 55

10

5-7 Train-validation losses of the SpMM cost models using four different

feature extractors. 56

5-8 Exploring different search strategies and breaking down the search time

of WACO on SpMM . 57

5-9 Tuning overhead of the MKL inspector-executor (Schedule-only tuner),

the BestFormat (Format-only tuner), and the WACO. We compared

all methods against the auto-tuning disabled MKL (MKL-Naive). . . 59

11

List of Tables

2.1 SpMM speedup over the base implementation after auto-tuning. The

three rightmost columns represents different tuning spaces of a sparse

tensor program. Co-optimization tunes both the format and the schedule. 22

2.2 SpMM speedup over the base implementation for different optimiza-

tion methods. opt-X indicates the format and the schedule that are

optimized for matrix X (as a result of Co-optimization in Table 2.1). 23

4.1 MV SuperSchedule parameters. 𝑃 () indicates a permutation of indices.

For parallelize, we used the OpenMP work-sharing policy (#pragma

omp parallel for schedule(dynamic, chunksize)). 38

5.1 Geomean speedup of WACO over other auto-tuners. Format-only and

Schedule-only auto-tuner correspond to the BestFormat and MKL,

respectively. 47

5.2 Geomean speedup of WACO over other state-of-the-art implementations

with a fixed format and schedule. 47

5.3 Speedup analysis of WACO. The number shows the corresponding

factor’s percentile among matrices that had a speedup of over 1.5×

than the Fixed CSR. 51

5.4 WACO’s SpMM geomean speedup over FixedCSR with a cost model

trained on same/different hardware. 58

13

5.5 Real-world applications that require repetitive (a) SpMVs and (b)

SpMMs. Green cells indicate that the corresponding auto-tuner wins.

Initial cost is computed as 𝑇𝑡𝑢𝑛𝑖𝑛𝑔 + 𝑇𝑓𝑜𝑟𝑚𝑎𝑡𝑐𝑜𝑛𝑣𝑒𝑟𝑡, but only 𝑇𝑡𝑢𝑛𝑖𝑛𝑔 for

MKL. 60

14

Chapter 1

Introduction

Sparse tensor algebra is an indispensable tool in many domains, such as graph

analytics [23], scientific computing [2], and deep learning [20]. Unlike in dense tensor

algebra, where only the shape of the tensor matters, the performance of sparse tensor

algebra depends heavily on the often complex sparsity pattern of the tensor. Over

the last several decades, many sparse formats have been proposed, but none of them

was universally optimal across all sparsity patterns. Even with the same format, a

different schedule that transforms the traversal order of the iteration space can lead

to significant performance changes depending on the sparsity pattern. For example, a

sparse matrix with a skewed distribution of non-zeros must exploit fine-grained load

balancing, whereas coarse-grained load-balancing must be applied to a sparse matrix

with uniformly distributed non-zeros.

Recently, tensor compilers like Halide [41], TVM [9], Tiramisu [5], and TACO [25]

have empowered developers to readily write a wide range of tensor computations

while incorporating diverse optimizations. Notably, TACO [25] serves as a compiler

tailored for sparse tensor algebra, which generalizes many proposed sparse formats

by introducing a format abstraction [12]. In addition, a sparse iteration space trans-

formation framework was implemented on top of TACO [43]. This framework allows

the compiler to generate code with schedules that perform loop splitting, reordering,

parallelizing, and other tasks to explore different traversal orders of iteration space.

Although prior studies had built the mechanism of the compiler that enables the code

15

generation supporting many different formats and schedules, the policy of the compiler

that decides the best format and the best schedule for a given sparsity pattern, has

not yet been designed. Unfortunately, a single format or fixed implementation cannot

be globally optimal for all sparsity patterns. Thus, designing this policy is closely

related to the program auto-tuning problem.

Program auto-tuning has been heavily used to optimize dense tensor programs

the performance of which depends on the input size. It started with traditional high-

performance scientific libraries such as ATLAS [49] and FFTW [15]. They self-optimize

their important routines by empirically transforming the program for the given input

shape. Recently, languages such as Halide [41], Tiramisu [5], and TVM [9] decouple

algorithms from schedule primitives to transform the structure of the loop in dense

tensor programs. Such scheduling languages allow the expression of a broader range of

algorithms (compared to the limited BLAS routines in ATLAS) and the introduction

of a huge search space due to schedules.

Auto-tuning sparse computation is not new [30, 34, 36, 44, 48]; even production

systems are introducing auto-tuning workflows for sparse computations. For example,

Intel MKL uses an inspector-executor model to auto-tune a few popular sparse

computations [36]. However, the current production as well as the state-of-the-art

research systems have the following limitations.

Limitations in Capturing Sparsity Pattern. For a dense tensor program, an

auto-tuner only needs the tensor’s shape. However, a shape alone fails to capture

the sophisticated sparsity pattern in a sparse tensor program. To summarize the

sparsity pattern, much more information is required, such as the density, the size of

dense blocks, and the existence of symmetry. Capturing the sparsity pattern with

the entire sparse matrix is costly because the number of non-zeros can reach billions.

Thus, designing features that accurately summarize the sparsity pattern is critical

for optimal decision-making in auto-tuning. Existing approaches fall short of fully

capturing the pattern because they rely either on manually crafted features [28, 42] or

a convolutional neural network with a downsampled matrix [44, 51], both of which

result in significant information loss of the sparsity pattern.

16

Absence of Co-optimization. The joint optimization of the data layout and the

schedule is critical even in dense tensor programs, which are simpler than sparse tensor

programs [22]. Nevertheless, prior auto-tuning studies on sparse tensor programs

mainly tackled only one of two problems: choosing the best schedule or the best format.

For instance, Intel MKL supports the inspector-executor sparse BLAS routines [36]

that the executor calls the routine tuned by an inspector. However, MKL inspector

misses optimization opportunities because it limits the tuning space by fixing the

format. It is necessary to consider a coupled behavior between the format and the

schedule to get the good performance.

Our Approach. This thesis presents the Workload-Aware Co-Optimization (WACO),

a framework for automatically and jointly optimizing the format and the schedule of a

given sparsity pattern. WACO uses a deep-learning based cost model that accurately

and efficiently predicts the performance of the sparse tensor program. The cost model

uses a novel sparse convolutional network, WACONet, to extract rich features of a

sparsity pattern and uses a unified schedule template, SuperSchedule, to understand

both the format and the transformed iteration space. WACO further utilizes an

approximate nearest neighbor search to quickly search for the optimal format and

schedule over the huge search space.

Overall, our main contributions are as follows:

• To the best of our knowledge, WACO is the first auto-tuner that co-optimizes

the format and the schedule in a workload-aware manner for a sparse tensor

program.

• WACO is the first autotuner with a cost model that considers the coupled

behavior of the sparsity pattern, the format, and the schedule.

• WACO introduces a sparsity pattern feature extractor WACONet, a novel sparse

convolutional network architecture to effectively learn meaningful features from

both coarse-grained and fine-grained sparisty patterns.

• WACO uses an extremely fast search strategy, an Approximate Nearest Neighbor

17

Search (ANNS), to retrieve the near-optimal format and schedule.

• We compared WACO against four state-of-the-art baselines, Intel MKL, BestFor-

mat, TACO with a fixed format and schedule, and ASpT. WACO outperformed

the best of four baselines by achieving 1.43×, 1.18×, 1.14×, and 1.27× average

speedups on SpMV, SpMM, SDDMM, and MTTKRP, respectively.

1.1 Overview of WACO

Figure 1-1 shows an overview of WACO. We designed our cost model to predict the

runtime of the program. The cost model takes a sparse matrix and a SuperSchedule,

a unified template that defines the format and the schedule together, as inputs

(Figure 1-1-(a), details in Section 4.1).

After training the cost model, WACO builds a K-Nearest Neighbor(KNN) graph

that helps with the search later. The KNN graph is built on program embeddings of

uniformly sampled SuperSchedules (Figure 1-1-(b), details in Section 4.2).

Finally, when the input matrix comes in, WACO uses a novel search strategy,

an approximate nearest neighbor search (ANNS), to search for the optimal format

and schedule for a given input sparse matrix. ANNS repeats the picking of the next

candidate SuperSchedule using a KNN graph and receives the candidate’s predicted

runtime as feedback until it converges to a locally optimal SuperSchedule (Figure 1-1-

(c), details in Section 4.2).

The remaining chapters of the thesis are structured as follows. Chapter 2 em-

phasizes the significance of co-optimization depending on the sparsity pattern with

motivating examples. Chapter 3 provides an overview of the sparse tensor compiler

and cost model. Chapter 4 explains our methodology, WACO. Chapter 5 discusses

the experimental results and analysis of WACO. Chapter 6 discusses related works.

Finally, in Chapter 7, the thesis concludes by addressing current limitations and

suggesting potential directions for future research.

18

𝑒(
𝑠)

Feature
Extractor

Program
Embedder

Runtime
Predictor

Predicted Runtime

𝑓(𝑚) 𝑒(𝑠)

Sparse Matrix SuperSchedule

C
ostM

odel

(MTX,SS,Time)
Training

KNN Graph
Builder

Program
Embedder

𝑒(
𝑠)

𝑒(
𝑠)

𝑒(
𝑠)

𝑒(
𝑠 !
)

SS

Feature
Extractor

𝑓(𝑚)

ANNS

Runtime
Predictor

𝑒(𝑠)

Predicted
Runtime

Feedback Pick Next Candidate
SuperSchedule
Using KNN Graph

(a) Training Cost Model

(b) Building KNN Graph

(c) Searching Optimal Format and Schedule

Training Dataset
(Uniformly Sampled)

SuperSchedules
(Uniformly Sampled)

Program Embeddings KNN Graph

Input Matrix

Input Pattern
Feature

Candidate
Program Embedding

Top-K SuperSchedule
After Search

Offline
Search Time

1

2

3

4

Figure 1-1: Overview of WACO. In the training dataset in (a), (MTX, SS, TIME) is
the abbreviation for (Sparse Matrix, SuperSchedule, Ground Truth Runtime). Super-
Schedule defines the format and the schedule together.

19

Chapter 2

Motivating Example

In this chapter, we will describe how the co-optimization can impact the performance

of a sparse tensor program. In addition, we will show that the performance of a sparse

tensor program strongly depends on the sparsity pattern. This demonstrates the

strong need for an auto-tuning framework for sparse tensor programs.

pli TSOPF_RS_b2052_c1 sparsine

Name Rows Cols Nonzeros Density
pli 22,695 22,695 1.35M 0.26%
TSOPF 25,626 25,626 6.76M 1.03%
sparsine 50,000 50,000 1.55M 0.06%

Figure 2-1: Sparse matrices used for the motivation.

2.1 Impact of the Co-optimization

Table 2.1 shows the impact of co-optimization in a sparse tensor program by comparing

results of auto-tuning on three different tuning spaces: the format, the schedule, and

both the format and the schedule. We ran a sparse matrix - dense matrix multiplication

21

Table 2.1: SpMM speedup over the base implementation after auto-tuning. The
three rightmost columns represents different tuning spaces of a sparse tensor program.
Co-optimization tunes both the format and the schedule.

Name Base Format-only Schedule-only Co-optimization
pli 1× 1.03× 1.03× 1.21×
TSOPF 1× 1.11× 1.12× 2.02×
sparsine 1× 2.4× 1.02× 2.5×

(SpMM) with different tuning spaces. For the baseline, we used CSR, one of the most

popular sparse matrix formats, with the default schedule generated by TACO. For the

Format-only, we only tuned the format while keeping the iteration order identical to

the baseline, except that we made the traversing order to be concordant [45] with how

the tuned format is aligned. For the Schedule-only, we only tuned the schedule to

transform the iteration order while keeping the format identical to the baseline (CSR).

For the Co-optimization, we co-optimized both the format and the schedule.

Jointly optimizing the format and the schedule yields the most significant speedup

for all the matrices in Figure 2-1, in contrast to the restricted search space. Restricting

the tuning space to either choose the optimal format or the optimal schedule can

miss optimization opportunities. Especially for TSOPF, co-optimization boosts the

performance (2.02×), whereas considering only the format or the schedule yields a

slight performance improvement (∼1.1×).

2.2 Sparsity Pattern-Dependent Nature

The performance of sparse tensor programs is very sensitive to the sparsity pattern

of the input matrix. No single format or implementation can show the optimal

performance for all sparsity patterns, even for highly optimized handwritten libraries

of experts. Table 2.2 demonstrates this nature. We ran a SpMM with the format and

schedule optimized for different sparse matrices. As expected, the diagonal of the

table shows the best performance because it is a result of the co-optimization that

corresponds to the input matrix. A significant performance drop often occurs when

other optimizations are applied.

22

Table 2.2: SpMM speedup over the base implementation for different optimization
methods. opt-X indicates the format and the schedule that are optimized for matrix
X (as a result of Co-optimization in Table 2.1).

Name opt-pli opt-TSOPF opt-sparsine
pli 1.21× 0.82× 0.98×
TSOPF 1.14× 2.02× 0.96×
sparsine 0.81× 0.37× 2.5×

These examples strongly indicate the need to co-optimize the format and schedules

according to the input sparsity pattern. From the perspective of auto-tuning, three

challenges stand out compared to dense applications. ❶ While considering the sparsity

pattern, our framework should automatically decide ❷ which format to store the

tensor in and ❸ which schedules should be applied to transform the iteration order. To

address these challenges, the auto-tuner should understand the complex interactions

among the sparsity pattern, the format, and the schedule.

23

Chapter 3

Background

In this chapter, we describe how TACO generates codes that support various formats

and iteration space transformations. Then, we describe existing sparsity pattern-aware

cost models for sparse tensor program auto-tuning.

3.1 Tensor Algebra Compiler

TACO is a sparse tensor algebra Domain Specific Language (DSL) with an accom-

panying compiler that decouples the algorithm from the data representation and

schedule [25, 12, 43]. Its algorithm is specified by an Einsum notation, for example,

C[i,j] = A[i,k] * B[k,j] represents a matrix multiplication. Chou et al. introduced a

format abstraction that describes how a sparse tensor is stored in different formats

with coordinate hierarchies and level formats [12]. A sparse tensor can be viewed as a

hierarchy of coordinates where each level is stored in one of the level formats. Chou et

al. presented six level formats to represent various formats, but we will mainly focus

on two level formats, Uncompressed and Compressed.

Format Abstraction. TACO uses a coordinate tree abstraction to describe how to

store the tensor, which was first described in the format abstraction [12] in TACO

and later abstracted further and formalized as the fibertree abstraction [45].

Figure 3-1 shows how the fibertree abstraction represents a matrix. Any tensor is

25

2 5 4
3

1 7
6

1

0 1 3

3

0 2 0 3 0 1

3

2 1 5 6 4 3

4

0 1 3 3 0 2 1
0 3 4 6 7

2 5 4 3 1 7 6

size

pos

crd

vals
0 1 2 3

0
1

2

3

J

I

I

J

Matrix

fibertree : Layout IJ I!J"

0

0 3

2 4

1

5

2

0 2

1 7

3

1

6

J

I

2

2

7
0 2 0 3 2 0 1
0 2 4 5 7

2 1 5 6 7 4 3

pos

crd

vals

J"I"

0 1 2 3
0 3pos

crd

fibertree : Layout JI

Fiber

Payload

Figure 3-1: A sparse matrix with dimensions I and J, its fibertree abstraction (in both
level orders) and concrete representations for two data layouts, 𝐼𝑈𝐽𝐶 and 𝐽𝐶𝐼𝐶 . U
and C mean Uncompressed and Compressed level format, respectively. The shaded
level indicates the Compressed level format.

first viewed as a tree with each fiber carrying a set of coordinates and a payload that

is either a fiber at the next level or a value at the bottom of the tree. The order of

the levels indicates the data layout such as row-major or column-major. Once the

layout is specified, a level format specifies what physical storage is used to store the

fiber. An Uncompressed (U) level format encodes a dense coordinate interval [0, 𝑁).

A Compressed (C) level format encodes only non-zero coordinates in the fiber by

explicitly storing coordinates. A format language 𝐼𝑈𝐽𝐶 in the Figure 3-1 says the

matrix is stored in the 𝐼 → 𝐽 layout (row-major), and level formats where 𝐼 and 𝐽

are Uncompressed and Compressed, respectively. We refer to a position as the index

of an element in the concrete data representation. For example, the color-highlighted

coordinate=3 in level J of the 𝐼𝑈𝐽𝐶 has a position=2 in the crd array (assuming

zero-based indexing).

A combination of level splitting, fusing, reordering, and level format choice can

express many representations. For example, if we split two levels 𝐼 and 𝐽 into 𝐼1,

𝐼0, 𝐽1, and 𝐽0, it can have a total of 4! * 24 representations, where 4! indicates the

26

.split(j,j1,j0,64)

.reorder(i,j1,k,j0)

.parallelize(i,24,8)

1: for (int i = 0; i < 1024; i++)
2: for (int kA = A2_pos[i]; kA < A2_pos[i+1]; kA++)
3: int k = A2_crd[kA];
4: for (int j = 0; j < 1024; j++) {
5: int jC = i*1024 + j;
6: int jB = k*1024 + j;
7: C_vals[jC] += A_vals[kA] * B_vals[jB];
8: }}}

1: #pragma omp parallel for num_threads(24) schedule(dynamic,8)
2: for (int i = 0; i < 1024; i++) {
3: for (int j1 = 0; j1 < 16; j1++) {
4: for (int kA = A2_pos[i]; kA < A2_pos[i+1]; kA++) {
5: int k = A2_crd[kA];
6: for (int j0 = 0; j0 < 64; j0++) {
7: int jC = i*1024 + j1*64 + j0;
8: int jB = k*1024 + j1*64 + j0;
9: C_vals[jC] += A_vals[kA] * B_vals[jB];
10: }}}}

Transforming loop
via compute schedule

Figure 3-2: Loop transformation of C[i,j]=A[i,k]*B[k,j] by schedules. It changes the
traversal order of the iteration space. A[i,k] is stored in the UC format.

number of possible level orders and 24 indicates the number of level format choices.

More formats can be formulated depending on the number of levels in the hierarchy.

Iteraion Space Transformation via Schedules. In addition to format abstraction,

schedules decide how to traverse the tensor stored in a particular format by trans-

forming the iteration space. For example, as shown in Figure 3-2, the split schedule

splits a specified loop level into two nested levels, reorder specifies the order of the

nested loops, and parallelize controls the load-balancing across multiple threads.

A good choice of transformations enables parallelism and/or better data locality (e.g.,

register/cache blocking). In sparse computation, however, such loop transformation

must be chosen deliberately while considering the format. For instance, if a loop order

is discordant [45] with how the format is ordered, its generated code may involve an

inefficient traversal routine such as a binary search over the Compressed level format.

Thus, an auto-tuner must understand the coupled behavior between the format and

the traversal order of the iteration space.

27

Sparse Matrix1
Sparse Matrix2

Downsampled

Figure 3-3: Different sparse tensors downsampled into the same 3×3 tensor.

3.2 Cost Model for Auto-Scheduling

In scheduling languages [41], auto-scheduling is the task that finds the best schedule

for a given input [10, 37, 54]. Auto-scheduling mainly has two parts. The first part is

a cost model that quickly predicts the performance of the program, and the second is

a search strategy that finds the best schedule according to the cost model. Although

the actual hardware measurement can be used as a cost, it is very time-consuming, so

designing an efficient and accurate cost model is crucial. For a sparse tensor program,

understanding the sparsity pattern is the most critical design consideration of the

cost model. Two methods of extracting the features of a sparse tensor have been

commonly used: ❶ human-crafted features [28, 42] and ❷ a convolutional network

over downsampled tensors [44, 51].

Human-crafted Features. A feature vector is designed manually by considering

the statistical properties of tensors [28, 42]. Typical features are the total number of

non-zeros, the mean or variance of the number of non-zeros per row, and format-specific

features such as the average distance from the diagonal for DIA format. Nevertheless,

the usefulness of human-crafted features for determining the accuracy is unknown. The

features also have to be manually redesigned whenever a new format to be considered.

Convolutional Neural Network (CNN). Another approach uses a CNN to extract

the features by viewing a sparse tensor as an image [51, 44]. A sparse tensor can have

many different shapes, but since the CNN is limited to taking a fixed-size shape as

28

an input, the sparse tensor is downsampled into a fixed shape. Figure 3-3 illustrates

how tensor downsampling works for arbitrary sparse tensors. In practice, the sparse

tensors are usually downsampled to 128x128. To provide additional information to

the CNN, a non-zero location in a downsampled tensor may contain a corresponding

number of non-zeros in the original sparse tensors. However, as the shape of the sparse

tensor increases, downsampling leads to a significant loss of the information on the

local pattern. For example, while the Sparse Matrix2 in Figure 3-3 only has dense

blocks, both matrices are downsampled into the same matrix. In addition, there are

real-world sparse tensors with shapes in the millions scale, which cannot be helped by

downsampling.

The aforementioned methods have deficiencies in accurately extracting the features

of a sparsity pattern. In the case of human-crafted features, it is impossible to

manually design all the format-specific features in TACO’s format abstraction. In the

case of downsampling, it only works for small sparse tensors or it will lose significant

information, which often leads to sub-optimal decisions.

29

Chapter 4

Workload-Aware Co-Optimization

In this chapter, we introduce Workload-Aware Co-Optimization (WACO), an auto-

tuning framework for sparse tensor programs. WACO automatically searches for the

best format and schedule for a given sparse matrix from among what TACO compiler

can generate.

First, we will describe how WACO uses a novel cost model that understands a

complex interaction of the sparsity pattern, format, and schedule (Figure 1-1-(a)).

Then, we will explain how WACO efficiently searches over the large search space using

a novel search strategy, ANNS (Figure 1-1-(b,c)).

4.1 Cost Model Design

Our cost model has three parts (Figure 4-1). The first part, the feature extractor,

captures the sparsity pattern of the input matrix. The second part, the program

embedder, understands the coupled behavior of the format and the schedule. Finally,

the runtime predictor predicts the runtime through multiple linear-ReLU layers by

concatenating the results of the previous parts.

31

Feature
Extractor

Runtime
Predictor

Predicted Runtime 𝒚"(𝒎, 𝒔)

𝑓(𝑚)

Sparse Matrix 𝑚 SuperSchedule 𝑠

Section 4.1.1: WACONet
New feature extractor
utilizing a sparse convolution

Section 4.1.2: SuperSchedule
Unified template defines both
the format and the schedule

Program
Embedder

𝑒(𝑠)

Figure 4-1: Overview of WACO’s cost model. It predicts the program’s runtime
by taking a sparse matrix and SuperSchedule as inputs. SuperSchedule contains
information on both the format and the schedule.

4.1.1 Feature Extractor: WACONet

As described in 3.2, extracting features of a sparsity pattern is non-trivial. The

core idea of our approach is to use a sparse convolutional neural network to learn

good features. We propose a novel feature extractor, WACONet, based on a sparse

CNN with a novel network architecture. In Section 5.3, our evaluation shows that

WACONet improves the training and validation loss by roughly 50% when compared

to a conventional CNN feature extractor.

Exploring Different Architectures. An obvious solution is to use a conventional

CNN that treated a sparse matrix as a dense matrix, where all levels were stored

in the Uncompressed format. However, as the shape of the matrix grew, it ran out

of computational resources very quickly. For example, if there is a sparse matrix of

shape 105 * 105, it will need a total of 4 * 1010 bytes (assuming 4 bytes single-precision)

regardless of the number of non-zeros. Another approach that we tried is using a

recurrent neural network by viewing a sparse tensor as a sequence of coordinates.

However, since the sequence length (a number of non-zeros) is in the millions scale,

the recurrent neural network cannot remember everything and easily forgets the early

sequences. It is also difficult to decide in which order to put the coordinate sequences

such as the row-major or the column-major. We ended up using CNN for our feature

32

1 1

1

1 1

1 1 1

1 1 1

1 1 1
∗

1 2 2 1

2 3 3 1

1 4 5 4 1

1 3 3 2

1 2 2 1

=

(a) Conventional Convolution

1 1

1

1 1

1 1 1

1 1 1

1 1 1
∗

3 3

5

3 3
=

(b) Submanifold Sparse Convolution

Figure 4-2: Difference between conventional convolution and (submanifold) sparse
convolution.

extractor, but instead of a dense convolution with downsampling, we used a sparse

convolution on the raw sparse matrix itself.

Sparse Convolutional Layer. A sparse convolutional layer [17] (often called as

submanifold sparse convolution) performs a convolution operation over a sparse

input. There is a marked difference between the sparse convolution and conventional

convolution. While conventional convolution operates over all the input activations,

a sparse convolution operates only when the filter’s center is located on a non-zero

input activation (Figure 4-2). This peculiar behavior prevents the activations from

becoming dense as the layers are stacked, thus keeping the computation relatively

cheap. However, this behavior also has an issue when the non-zeros are distributed far

apart. As shown in Figure 4-3-(a), this behavior can only capture the local pattern

but not the global pattern because the non-zeros are not close enough to propagate

information. Sparse convolution has shown a powerful ability to understand 3D point

clouds when their non-zeros are close enough [13]. However, real-world sparse matrices

often have a distant non-zero distribution, so we need to design a network architecture

33

1 1

1 1 1

1

1

Input After 1 Layer After 2 Layers

1 1

2 4 3

3

1

1 1

6 12 10

10

1

(a) Distant Non-zeros with Stride 1

Input After 1 Layer After 2 Layers

1 1

1 1 1

1

1

1 1

2 3

1 1

3 6

3 6

(b) Distant Non-zeros with Stride 2

Figure 4-3: When non-zeros are distributed far apart, the receptive field does not
increase even with multiple layers if the stride of sparse convolution is 1. Filter’s
center is located at red circles in the stride of 2 as used in WACONet.

that addresses this issue while utilizing the advantage of sparse convolution.

WACONet. We propose WACONet, a novel sparse CNN architecture that learns the

rich features of a sparsity pattern effectively (Figure 4-4). Except for the first layer,

we used a strided convolution with a filter size of 3x3 for every sparse convolutional

layer. Multiple stacks of strided convolution help distant non-zeros because a strided

behavior forces the receptive field to increase (Figure 4-3-(b)). Due to the limited

memory size of the GPU, the number of channels in the sparse convolutional layer is

small (32) to fit a sparse matrix with a large number of non-zeros up to 10 million,

unlike in a typical vision CNN model (e.g., 256 and 512). To compensate for decreased

network capacity due to a limited number of channels, WACONet concatenates all 14

intermediate results after the global average pooling rather than using a result of the

final layer.

34

12
8-

d

SpConv 5x5, Stride1,
Channel 32

SpConv 3x3, Stride2,
Channel 32

SpConv 3x3, Stride2,
Channel 32

SpConv 3x3, Stride2,
Channel 32

Global Avg Pooling

Global Avg Pooling

Global Avg Pooling

Global Avg Pooling

C
on

ca
te

na
te

Sp
ar

si
ty

 P
at

te
rn

 F
ea

tu
re

Li
ne

ar
s…

Input Matrix
14

 L
ay

er
s

Figure 4-4: Network architecture of WACONet. We omitted non-linear activation
layers in the figure.

WACONet minimizes the loss of information of the sparsity pattern because it

takes a raw sparse matrix as an input without any downsampling. Due to the nature

of the convolution operation, a small filter (3x3) recognizes the local pattern, and a

global pattern is captured while passing through multiple strided layers. In addition,

WACONet can be easily extended for high-dimensional sparse tensors by simply

changing the dimension of the filter. In Section 5, we demonstrate that WACONet

extracts the rich features for both 2D and 3D sparse tensors.

35

.split(i,i1,i0,2)
.split(k,k1,k0,1)
.reorder(i1,k1,i0,k0)
.parallelize(i1,16,8)A.reorder(i1,k1,i0,k0)

A.format(i1,U)
A.format(i0,U)
A.format(k1,C)
A.format(k0,U)

B.reorder(k1,k0)
B.format(k1,U)
B.format(k0,U)

C.reorder(i1,i0)
C.format(i1,U)
C.format(i0,U)

.split(i,i1,i0,?)
.split(k,k1,k0,?)
.reorder(?)
.parallelize(?,?,?)A.reorder(?)

A.format(i1,?)
A.format(i0,?)
A.format(k1,?)
A.format(k0,?)

B.reorder(?)
B.format(k1,?)
B.format(k0,?)

C.reorder(?)
C.format(i1,?)
C.format(i0,?)

C
om
pute

Schedule

Form
at

Schedule

C[i] = A[i,k] * B[k]
A
lgorithm

.split(i,i1,i0,?)
.split(k,k1,k0,?)
.split(j,j1,j0,?)
.reorder(?)
.parallelize(?,?,?)A.reorder(?)

A.format(i1,?)
A.format(i0,?)
A.format(k1,?)
A.format(k0,?)

B.reorder(?)
B.format(k1,?)
B.format(k0,?)
B.format(j1,?)
B.format(j0,?)

C.reorder(?)
C.format(i1,?)
C.format(i0,?)
C.format(j1,?)
C.format(j0,?)

C
om
pute

Schedule

Form
at

Schedule

C[i,j] = A[i,k] * B[k,j]
A
lgorithm

(a) M
atrix-Vector M

ultiply(M
V) SuperSchedule

(b) M
atrix-M

atrix M
ultiply(M

M
) SuperSchedule

1:
#pragma omp

parallel for
num_threads(16) schedule(dynamic, 8)

2:
for

(int
i1 = 0; i1 < A1_dimension; i1++) {

3:
for

(int
k1A = A2_pos[i1]; k1A < A2_pos[(i1 + 1)]; k1A++) {

4:
int

k1 = A2_crd[k1A];
5:

for
(int

i0 = 0; i0 < 2; i0++) {
6:

int
i0C = i1 * 2

+ i0;
7:

int
i0A = k1A * 2

+ i0;
8:

float
tk0C_val = 0.0;

9:
for

(int
k0 = 0; k0 < 1; k0++) {

10:
int

k0A = i0A * 1
+ k0;

11:
int

k0B = k1 * 1
+ k0;

12:
tk0C_val += A_vals[k0A] * B_vals[k0B];

13:
}

14:
C_vals[i0C] = C_vals[i0C] + tk0C_val;

15:
}}}

(c) Sam
pled Schedule from

 M
V SuperSchedule

and its generated code.

F
igure

4-5:
(a,b)

M
V

/M
M

SuperSchedules.
(c)

T
he

sam
pled

schedule
show

ed
how

C
[i1,i0]

=
A
[i1,k1,i0]

*
B
[k1]w

ith
a

B
C

SR
form

at
can

be
sam

pled
from

the
SuperSchedule

by
choosing

the
k

split
size

as
1.

T
he

shaded
lines

in
the

generated
code

indicate
those

can
be

ignored
due

to
the

split
size

1.
T

he
SuperSchedule

for
SD

D
M

M
(D

[i,j]=
A
[i,j]

*
B
[i,k]*

C
[k,j])

can
also

be
defined

sim
ilarly.

36

4.1.2 Program Embedder: SuperSchedule

We will now consider the second part of the cost model, a program embedder. In a

dense tensor program, a program embedder only needs to encode a traversal order of

the iteration space reflected by the low-level loop abstract syntax tree [4, 10, 37]. In a

sparse tensor program, however, a program embedder must encode both the traversal

order and the format to accurately understand the coupled behavior for the joint

optimization.

Challenges. Encoding a loop order is non-trivial because the number of levels in a

nested loop varies due to the schedule split. The search space expands as well after

splitting, as seen in Figure 3-2, where the number of loop reorderings increased to 4!

from 3!. To deal with the variableness due to the split, we adopted a template-guided

auto-scheduling [10]. In addition, our template specifies both the format and the

schedule and creates the program embedding directly on top of that template.

SuperSchedule. The unified schedule template, which we call SuperSchedule, de-

fines the format and the schedule at the same time. Figure 4-5-(a) shows how the

SuperSchedule template is defined in a matrix-vector multiplication (MV). The Super-

Schedule consists of a compute schedule and a format schedule. A compute schedule

defines the traversal order of the iteration space and a format schedule that defines

how tensors will be stored. While reorder in the format schedule determines the

level order of the tensor (e.g., the row-major or the column-major), reorder in the

compute schedule decides the traversal order of the tensors.

One observation is that a schedule template that already has multiple splits can

be reduced into a schedule that has fewer splits. This reduction can be done by

specifying the split size as 1. To support this, the compute schedule splits each index(i

and k) once, making the MV algorithm (C[i] = A[i,k] * B[k]) a split MV algorithm

(C[i1,i0] = A[i1,i0,k1,k0] * B[k1,k0]). Within this SuperSchedule, we can sample all the

schedules from

1. C[i1] = A[i1,k1] * B[k1]

2. C[i1,i0] = A[i1,i0,k1] * B[k1]

37

Table 4.1: MV SuperSchedule parameters. 𝑃 () indicates a permutation of indices. For
parallelize, we used the OpenMP work-sharing policy (#pragma omp parallel
for schedule(dynamic, chunksize)).

Schedule Parameters Description
split [1, 2, ..., 32768] Split Size
reorder 𝑃 (𝑖1, 𝑖0, 𝑘1, 𝑘0) Loop Order

parallelize
[𝑖1, 𝑖0] Parallelized Index
[24, 48] # Threads
[1, 2, ..., 256] OMP Chunksize

C.reorder 𝑃 (𝑖1, 𝑖0) Level Order of C
A.reorder 𝑃 (𝑖1, 𝑖0, 𝑘1, 𝑘0) Level Order of A
B.reorder 𝑃 (𝑘1, 𝑘0) Level Order of B
format [U, C] Level Format

3. C[i1] = A[i1,k1,k0] * B[k1,k0]

4. C[i1,i0] = A[i1,i0,k1,k0] * B[k1,k0]

by appropriately choosing the split size as 1.

From these split algorithms, SuperSchedule can also derive various formats. For

instance, the UC format in Figure 3-1 can be derived by choosing both split sizes

as 1 and specifying level formats as UC according to the level order of i1 and k1.

Similarly, the UCUU format can be derived by choosing both split sizes greater than

1 and specifying the level format as UCUU according to the level order.

SuperSchedule is a superset of all possible schedules under a fully split algorithm.

For example, the MV and MM SuperSchedule in the Figure 4-5 can represent a

total of 4 and 8 split algorithms, respectively, but SuperSchedule can represent more

algorithms depending on how many splits are defined. We chose a maximum of

one split per dimension since we have found out that more than one split yields

diminishing returns.

38

A.reorder(?)
B.reorder(?)

C.reorder(?)

Split
Em

bedding
R

eorder
Em

bedding
Parallel

Em
bedding

C
.reorder

Em
bedding

A.reorder
Em

bedding
B.reorder

Em
bedding

Form
at

Em
bedding

.reorder(?)
.parallelize(?,?,?)

.split(i,i1,i0,?)
.split(k,k1,k0,?)

C.format(i1,?)
C.format(i0,?)

A.format(i1,?)
A.format(i0,?)
A.format(k1,?)
A.format(k0,?)

B.format(k1,?)
B.format(k0,?)

Split vec
R

eorder vec
Parallel vec

C
.reordervec

A.reordervec
B.reordervec

Form
at vec

Program
 Em

bedding vec

Linear Layers

128-d

Program
 Em

bedder

Em
bedding

Param
eters

1

C
om

bine
them

 into
Program

Em

bedding

2

F
igure

4-6:
N

etw
ork

architecture
ofthe

program
em

bedder.
T

he
param

eters
ofthe

SuperSchedule
are

used
as

the
inputs.

T
he

green
em

bedder
takes

a
categoricalparam

eter,w
hile

the
orange

em
bedder

takes
a

perm
utationalparam

eter.

39

Network Architecture. Such a template-based schedule allowed us to embed the

program more easily. Rather than extracting each loop’s features from the low-level

loop abstract syntax tree, SuperSchedule allowed us to embed the format schedule

and the compute schedule directly from the parameters of the template. Table 4.1

describes each schedule and its possible parameter choices used in our evaluation. All

the parameters are categorical except for the reorder, which take a permutation of

indices. Our program embedder (Figure 4-6) takes parameters of a SuperSchedule

and outputs the program embedding. It first calculates the embeddings of each

parameters. Each categorical parameter passes a learnable lookup table (green box)

that maps the one-hot categorical parameter to a high-dimensional real-valued vector.

Each permutation parameter is converted into a corresponding permutation matrix

and passes multiple linear-ReLU layers (orange box). When the embeddings for

the all schedule parameters are calculated, they are concatenated and pass multiple

linear-ReLU layers into the final program embedding.

4.1.3 Training Cost Model

Our training dataset was a set of tuples (Sparse Matrix, SuperSchedule, Ground

Truth Runtime). We designed our dataset to include various sparsity patterns. We

augmented the 2,893 real-world sparse matrices in the SuiteSparse matrix collection [14]

by arbitrarily resizing them into 21,400 sparse matrices while restricting the number of

rows to less than 131,072 and the number of non-zeros to less than 10 million. During

the augmention process, we densify each sparse non-zero region using a random block

size. For 3D sparse tensor augmentation, we followed a prior work’s approach [44] to

generate the training dataset for 3D sparse tensors.

For each matrix, we randomly sampled 100 formats and schedules from the

SuperSchedule. Then, we generated a corresponding code using TACO for each

sample, repeated the program for 50 rounds, and reported the median time. We

excluded formats and schedules that take more than a minute. We repeated this

process for the four algorithms used in evaluations (SpMV, SpMM, SDDMM, and

MTTKRP), and collected about 2 million tuples for each algorithm. Collecting the

40

dataset took two weeks with 10 computing nodes. During the training, we divided the

total dataset into the training dataset and the validation dataset at an 80:20 ratio.

Training Objective. For a given input sparse matrix 𝑚𝑖 and SuperSchedule 𝑠𝑗, the

goal of our cost model 𝑦(𝑚𝑖, 𝑠𝑗) is not to accurately predict the ground truth runtime

𝑦𝑖𝑗. Instead, we want our cost model to learn the ranking of different SuperSchedules.

Therefore, we used a pairwise ranking loss [8] to reflect the relative order of performance

of the schedules instead of using the L1 or L2 loss.

𝐿 =
∑︁
𝑚𝑖

∑︁
(𝑠𝑗 ,𝑠𝑘)

𝑠𝑖𝑔𝑛(𝑦𝑖𝑗 − 𝑦𝑖𝑘) * 𝜑(𝑦(𝑚𝑖, 𝑠𝑗)− 𝑦(𝑚𝑖, 𝑠𝑘))

where 𝑠𝑖𝑔𝑛(𝑥) is 1 if 𝑥 > 0, or 0 otherwise. 𝜑(𝑥) can be defined as various functions,

such as the hinge function 𝑚𝑎𝑥(0, 1 − 𝑥) or the logistic function 𝑙𝑜𝑔(1 + 𝑒−𝑥). We

adopted the hinge function for our model. We used a SuperSchedule (𝑠𝑗, 𝑠𝑘) batch

size of 32 for each sparse matrix 𝑚𝑖 and an Adam optimizer [24] with a learning rate

of 0.0001.

4.2 Efficient Schedule Search via Nearest Neighbor

Search

Besides the design of the cost model, a search strategy is also an essential component

of auto-scheduling. Many auto-schedulers or tuners rely on black-box optimization

algorithms to find the best parameters in the schedule template [18, 53, 3].

Challenges. The traditional black-box optimization algorithms are often slow because

besides evaluating black-box (cost model), they must manage the metadata required for

optimization. For example, Bayesian optimization trains a surrogate model internally

that facilitates the procedure during the search. To speed up the search, we cast the

auto-scheduling problem as a Nearest Neighbor Search (NNS) [38]. We then exploit

an existing high-performance NNS library to search for the optimal parameters of the

SuperSchedule. In our experiment, the time spent of evaluating costs in the whole

41

search was only 3.9% and 8.1% on two famous black-box optimizers, HyperOpt [6]

and OpenTuner [3], while our search strategy improved the proportion to 93.9%.

4.2.1 Relationship Between Auto-scheduling and NNS

Here, we will show that auto-scheduling can be reduced into the NNS. The definition

of the NNS is as follows :

Definition 4.2.1 (Nearest Neighbor Search) Suppose we have a dataset 𝑆 =

{𝑥1, 𝑥2, ..., 𝑥𝑛} where 𝑥𝑖 ∈ 𝑅𝑑𝑠. Nearest Neighbor Search retrieves a point 𝑝 ∈ 𝑆

which is nearest to a given query 𝑞 ∈ 𝑅𝑑𝑞 .

Here, nearest can be defined with various metrics such as the Euclidean distance

or cosine similarity. Then NNS will retrieve the point that minimizes a distance

metric for a given query. In terms of auto-scheduling, the main objective is to find

a schedule 𝑠 that minimizes the predicted runtime 𝑦(𝑚, 𝑠) for a given input matrix

𝑚. Therefore, we can cast an auto-scheduling as an NNS by setting the dataset 𝑆 to

be all the formats and the schedules in SuperSchedule template, and the query q to

be the input matrix m. If we define a distance metric as a cost ŷ(m, s), NNS

will retrieve the best SuperSchedule 𝑠 for a given input matrix 𝑚 that minimizes the

𝑦(𝑚, 𝑠).

Retrieving an exact nearest neighbor requires exhaustive distance calculations

all over the points in 𝑆, which is intractable. In practice, Approximate Nearest

Neighbor Search (ANNS) [29] has been widely used instead of an exact NNS. For a

given query, ANNS cleverly searches the subset of 𝑆 that speeds up the search while

guaranteeing high recall. While there are several approaches to achieve ANNS, we

used a graph-based algorithm.

4.2.2 Graph-based ANNS

Graph-based ANNS for auto-scheduling has two phases: building a KNN graph and

searching on the KNN graph, as shown in Figure 1-1-(b,c) and Figure 4-7. The first

42

Edge connected if
program embeddings are close
(||𝑒(𝑠!) − 𝑒(𝑠")||#)

SuperSchedule 𝑠$

𝑠#

(a) Building a KNN Graph

Cost 𝑦"(𝑚, 𝑠)

Query(𝑚) traverses
the graph in the way
𝑦"(𝑚, 𝑠) decreases

𝑦"(𝑚, 𝑠!)

𝑦"(𝑚, 𝑠")

(b) Searching on KNN Graph

Figure 4-7: Our search strategy via ANNS. In the stage of building the KNN graph,
the graph is built by connecting the edge between the schedules with close embeddings
in the Euclidean distance. During searching, a query (input matrix 𝑚) traverses the
graph in the direction predicted runtime 𝑦(𝑚, 𝑠) minimizes.

phase builds a KNN graph whose vertex is the SuperSchedule, and the edge between

two vertices is connected only if two program embeddings of the vertices are top-K

closest to each other in the 𝑙2 distance. The second phase starts once the query (the

input matrix 𝑚) comes in. In the second phase, ANNS starts retrieving the schedule

𝑠 in the graph that minimizes the cost 𝑦(𝑚, 𝑠) by traversing the KNN graph in the

direction at which the cost decreases. ANNS can search efficiently because it merely

traverses the pre-built KNN graph that guides the direction, whereas other black-box

optimizations require expensive metadata updates.

Discussions. The distance metric used in each phase is different. The 𝑙2 distance

between two program embeddings of SuperSchedules is used in the building phase,

and the cost itself is used in the searching phase (‖𝑒(𝑠𝑖)− 𝑒(𝑠𝑗)‖2 vs. 𝑦(𝑚, 𝑠)). The

reason for using completely different metrics is that the KNN graph built upon an 𝑙2

distance has a property that guarantees retrieval of top-K candidates at any generic

distance (𝑦(𝑚, 𝑠) in our case) in the searching phase, while promising high recall [46].

In Section 5.4, we empirically show that graph-based ANNS efficiently and accurately

retrieves the optimal SuperSchedule for a given input matrix.

43

One intuitive explanation of graph-based ANNS is a gradient-based search over

discretized space. In fact, our cost model based on a neural network is differentiable,

which means we can calculate the gradient for it. Therefore, when searching for the

best SuperSchedule, we can actually find the local optima SuperSchedule using the first-

order iterative optimization algorithm such as gradient descent. However, there is no

guarantee that the local optima we found is a valid encoding of parameters. Specifically,

most gradient-based searches will end up with invalidly encoded parameters because

we encoded the categorical parameter of SuperSchedule as a one-hot vector and the

permutation parameter as a permutation matrix. On the other hand, if we build a

KNN graph with valid SuperSchedules, we can think of the ANNS on the KNN graph

as a gradient-based search over valid encodings. Projected gradient descent [18] is

another way to resolve this, but it was not able to find a good local minimum in our

experiments.

Implementation Details. In practice, ANNS libraries build a variant of the KNN

graph and traverse it with complicated heuristics to improve the search efficiency.

We implemented our search strategy using a state-of-the-art graph ANNS algorithm,

HNSW [33]. Although HNSW can support up to a billion-scale graph, it is intractable

to build a graph with all formats and schedules in the SuperSchedule as it contains an

astronomical number of parameter choices. Therefore, we built the graph with the

SuperSchedules which appeared in our training dataset.

44

Chapter 5

Evaluation

5.1 Experimental Setup

Algorithms. We chose four sparse tensor algebra algorithms for our evaluation. All

the algorithms were performed with single-precision data.

• SpMV(C[i] = A[i,k] * B[k]): This multiplies sparse matrix(A) by dense

vector(B) and stores the product in dense vector(C).

• SpMM(C[i,j] = A[i,k] * B[k,j]): This multiplies sparse matrix(A) by dense

matrix(B) and stores the product in dense matrix(C). We set the number of

columns of dense matrices (|j| in B, C) at 256, and forced both dense matrices’

level order to be row-major.

• SDDMM(D[i,j] = A[i,j] * B[i,k] * C[k,j]): This performs a sampled matrix

multiplication of two dense matrices(B and C). The output matrix D and the

input matrix A are sparse matrices. We set the dimension |k| in B, C at 256. We

fixed B’s level order to be row-major and C’s level order to be column-major.

• MTTKRP(D[i,j] = A[i,k,l]*B[k,j]*C[l,j]): This performs a matricized ten-

sor times Khatri-Rao product between a 3D sparse tensor(A) and two dense

matrices(B and C). We set |j| at 16 and both dense matrices’ level order to be

row-major. We followed a prior work’s approach [44] to generate the training

45

dataset for 3D sparse tensors.

Baselines. We compared WACO with the following four state-of-the-art baselines.

MKL and BestFormat are auto-tuning-based baselines. FixedCSR and ASpT are

baselines with a fixed format and schedule.

• MKL: Intel MKL sparse BLAS routines [36] utilize an inspector-executor model

that auto-tunes a computation on a fixed format. Because it does not support

SDDMM and MTTKRP, we only compare it with SpMV and SpMM using the

CSR format.

• BestFormat: BestFormat automatically selects the appropriate format among

a handful candidates for a given sparsity pattern. The candidates were chosen

by the five most frequently appearing formats among WACO’s search results in

the test matrices. We’ve used prior works’ artifacts to predict the best format

for a 2D sparse matrix [51] or a 3D sparse tensor [44].

• Fixed CSR: Fixed CSR is a code with a fixed format and schedule generated

by TACO. We used the CCC format(CSF) for MTTKRP and UC format(CSR)

for the rest. We set the OpenMP chunk size at 128, 32, 32, and 32 for SpMV,

SpMM, SDDMM, and MTTKRP.

• ASpT: ASpT [19] is the state-of-the-art sparse format that directly reorders the

sparse matrix to make dense regions. While ASpT is not limited to a specific

algorithm, we only compare it only with SpMM and SDDMM because these are

the only formats publicly released by the authors.

Implementations. We used TACO to generate the code for the best format and sched-

ule that WACO has found. Then we compiled the generated code with icc-2021.3.0

with -march=native -mtune=native -O3 -qopenmp options. All the experiments

were conducted on a dual-socket, 24-core with 48 threads, 2.5 GHz Intel Xeon E5-

2680 v3 machine with 30 MB of L3 cache per socket and 128 GB of main memory

with Ubuntu 18.04.3 LTS. We used numactl –interleave=all to control the NUMA

policy.

46

Table 5.1: Geomean speedup of WACO over other auto-tuners. Format-only and
Schedule-only auto-tuner correspond to the BestFormat and MKL, respectively.

Auto-tuning based baselines
vs. Format-only vs. Schedule-only

SpMV 1.43x 2.32x
SpMM 1.18x 1.68x

SDDMM Not Impl. Not Impl.
MTTKRP 1.27x Not Impl.

Table 5.2: Geomean speedup of WACO over other state-of-the-art implementations
with a fixed format and schedule.

Fixed Implementations
vs. Fixed CSR vs. ASpT

SpMV 1.54x Not Impl.
SpMM 1.26x 1.36x

SDDMM 1.29x 1.14x
MTTKRP 1.35x Not Impl.

We implemented our cost model architecture using PyTorch and MinkowskiEngine

for sparse convolution. We trained four separate models for each algorithm, and it

took four days to train up to 70 epochs for each model on a single GPU, NVIDIA

GeForce RTX 3090 24GB.

5.2 Performance Results

We first evaluated the performance of the format and the schedule that WACO

has found. Experiments were conducted on 726 real-world sparse matrices from

SuiteSparse that were not included in the training dataset. We picked matrices that

had less than 10 million non-zeros and less than 100,000 rows. Among the top-10

SuperSchedules selected by WACO according to the cost model, we report the fastest

after we measured them on the hardware. Before we explain the results in detail, the

geomean of the speedups on each algorithm are shown in Table 5.1 (vs. auto-tuners)

and Table 5.2 (vs. fixed implementations). Overall, WACO performed better than

the baselines as it successfully found a specialized format and schedule together for

each sparse matrix. This improvement is not limited to a specific algorithm; WACO

47

can find a better format and schedule for all four algorithms.

0 200 400 600
Matrix ID

0.1

1.0

10.0

Sp
ee

du
p

of
 W

AC
O

2.3

40.0 Speedup over MKL
geomean
MKL

0 200 400 600
Matrix ID

0.1

1.0

10.0

Sp
ee

du
p

of
 W

AC
O

1.5

40.0 Speedup over Fixed CSR
geomean
Fixed CSR

Figure 5-1: Performance comparison on SpMV.

Figure 5-1, 5-2, and 5-3 show the speedups of WACO over the baselines across the

test matrices on SpMV, SpMM, and SDDMM, respectively.

Figure 5-2 show the speedups of WACO over four baselines across the test matrices

on SpMM. The y axis indicates the speedup of WACO against baselines. All x axes of

figures are sorted according to the speedup. The dots below the 𝑦 = 1.0 show matrices

in which the baseline performed better than WACO. For MKL and BestFormat, there

are more matrices below this line than compared to other baselines because they are

48

0 200 400 6000.1

1.0

10.0
Sp

ee
du

p
of

 W
AC

O
1.7

40.0
Speedup over MKL

geomean
MKL

0 200 400 6000.1

1.0

10.0

Sp
ee

du
p

of
 W

AC
O

1.2

40.0
Speedup over BestFormat

geomean
BestFormat

0 200 400 6000.1

1.0

10.0

Sp
ee

du
p

of
 W

AC
O

1.3

40.0
Speedup over Fixed CSR

geomean
Fixed CSR

0 200 400 600
Matrix ID

0.1

1.0

10.0

Sp
ee

du
p

of
 W

AC
O

1.4

40.0
Speedup over ASpT

geomean
ASpT

Figure 5-2: Performance comparison on SpMM.

49

0 200 400 600
Matrix ID

0.1

1.0

10.0
Sp

ee
du

p
of

 W
AC

O

1.3

40.0 Speedup over Fixed CSR
geomean
Fixed CSR

0 200 400 600
Matrix ID

0.1

1.0

10.0

Sp
ee

du
p

of
 W

AC
O

1.1

40.0 Speedup over ASpT
geomean
ASpT

Figure 5-3: Performance comparison on SDDMM.

able to adopt a larger portion of the space though still not as much as of WACO.

Thus, auto-tuning based baselines perform better at a few patterns when they find a

better format or schedule than WACO.

WACO performed better in SpMM and SDDMM, but to a lesser extent than

the improvement of SpMV. Compared to the SpMV, there are many data reuse

opportunities in SpMM and SDDMM. Especially, we found that the performance

of these algorithms is critically affected by the reuse of (vector) registers. However,

because of the data-dependent nature of sparse tensor programs, our generated codes

50

Table 5.3: Speedup analysis of WACO. The number shows the corresponding factor’s
percentile among matrices that had a speedup of over 1.5× than the Fixed CSR.

Factor SpMV SpMM SDDMM
OpenMP Chunk Size 51% 66% 47%
Dense Block >50% Filled 30% 26% 15%
Dense Block <50% Filled 19% - -
Sparse Block - 8% -
Parallelize over Column - - 38%

contain a lot of indirect accesses. Such accesses prevent C compilers from enabling

register-related optimizations such as unrolling or vectorizing. Thus, a significant

performance improvement happened only in the case of a format with a small size

dense block, which was easy for the C compiler to optimize. A matrix without dense

blocks had a relatively small performance improvement.

5.2.1 Discussion on Speedup

We further analyzed the source of the speedups on SpMV, SpMM, and SDDMM.

We picked the matrices with a speedup > 1.5× than the Fixed CSR and classified

the speedup factors into five categories. Table 5.3 shows these categories and their

proportions.

SpMV. First, half of the matrices benefitted from choosing the appropriate OpenMP

chunk size, which controls the load balancing across multiple processors. Another

half benefits from storing the matrix into a dense blocked format which exploits the

register reuse in the dense block. A dense blocked format can be represented UCU or

UCUU in a format abstraction. One counter-intuitive factor is the speedup of a matrix

with the non-zeros filling less than 50% of the dense block. Storing such matrices

into a dense blocked format usually results in memory increase due to unnecessary

zeros. Nevertheless, a speedup occurs because of the heuristic decision in the Intel

icc compiler regarding utilizing SIMD instructions. As shown in the Figure 5-4, we

found out that icc starts to exploit the SIMD instructions when the block size is

larger than 16. It is surprising to see that WACO learned the compiler’s heuristics

51

1: const int b = ?
2: for (int i1 = 0; i1 < A1_dimension; i1++) {
3: for (int kA = A2_pos[i1]; kA < A2_pos[i1+1]; kA++) {
4: int k = A2_crd[kA];
5: for (int i0 = 0; i0 < b; i0++){
6: int i0A = kA * b + i0;
7: int i0C = i1 * b + i0;
8: C_vals[i0C] += A_vals[i0A] * B_vals[k];
9: }}}

vfmadd231ss xmm0,xmm8,[r8+rcx*4]
vfmadd231ss xmm1,xmm8,[4+r8+rcx*4]
vfmadd231ss xmm2,xmm8,[8+r8+rcx*4]
vfmadd231ss xmm3,xmm8,[12+r8+rcx*4]
vfmadd231ss xmm4,xmm8,[16+r8+rcx*4]
vfmadd231ss xmm5,xmm8,[20+r8+rcx*4]
vfmadd231ss xmm6,xmm8,[24+r8+rcx*4]
vfmadd231ss xmm7,xmm8,[28+r8+rcx*4]

vfmadd213ps ymm0,ymm2,[r8+rdx*4]
vfmadd213ps ymm2,ymm1,[32+r8+rdx*4]

b=16b=8

Figure 5-4: icc generated assembly for SpMV with the UCU format. b decides
the size of the one-dimensional dense block. icc starts to use the AVX instruc-
tions(vfmadd213ps) from b=16.

and intentionally chose the larger block size to utilize the vector registers despite the

memory increase.

SpMM. Like SpMV, most matrices benefitted from better load balancing by choosing

an appropriate chunk size. Other than that, some matrices benefitted from a unique

format, which we call a sparse block format. Compared to the dense block format

where the level format of the inner split level is Uncompressed (e.g., UCU or UCUU),

a sparse block format stores the inner level into the Compressed format (e.g., UUC).

Splitting the level into the Compressed level format with a large split size helps

improving the cache locality in SpMM. For instance, the LLC miss rate was reduced

to 7% from 36% and the performance improved about 2.5× when we stored sparsine

(Figure 2-1) into the 𝑘1(𝑈) → 𝑖(𝑈) → 𝑘0(𝐶) format by splitting 𝑘 by 16,384.

SDDMM. Other than better load balancing and a dense block format, SDDMM

can take an advantage of the use of a column-major format. One difference between

SDDMM and other algorithms is that it is safe to parallelize both rows and columns of

52

Name Rows Cols Nonzeros
amazon0302_T_8 241,096 193,156 837,977
mip1_3 5,382 5,282 613,000
soc-LiveJournal1_T_2 842,771 500,182 489,256

amazon0302_T_8 mip1_3 soc-LiveJournal1_T_2

Figure 5-5: Sparse matrices used for the evaluation.

the sparse matrix in SDDMM. For SpMV(C[i] = A[i,k] * B[k])) or SpMM(C[i,j] = A[i,k]

* B[k,j]), it is inefficient to parallelize over the column of the sparse matrix(k in A[i,k])

because the reduction occurs along that dimension. Therefore, WACO flexibly chose

the row-major or column-major format without any restriction in the parallelizing

dimension on SDDMM.

5.2.2 Case Studies

Case Study : mip1_3. mip_3 is a sparse matrix with dense blocks. In the context

of SpMM, WACO has identified the optimal computational schedule and format as

follows:

.split(i,i1,i0,4)

.split(k,k1,k0,2)

.split(j,j1,j0,32)

.reorder(i1,k1,j1,i0,k0,j0)

.parallelize(i1,48,4)

A.reorder(i1,k1,i0,k0)
A.format(i1,U)
A.format(i0,U)
A.format(k1,C)
A.format(k0,U)

Our feature extractor was able to capture the existence of dense blocks and chose

the 4x2 dense blocked UCUU format, traditionally known as BCSR, for mip_3. When

we take a look into compute schedule, WACO cleverly splits 𝑗 dimension into 32 and

reorder the loops to place the split dimensions (𝑖0, 𝑘0, 𝑗0) at the innermost loop to take

53

advantage of 4× 2× 32 register blocking and inner loop vectorization. Furthermore,

within the parallelize schedule, we determined that the optimal chunk size (4)

discovered by WACO achieves excellent load balancing across threads.

Case Study : soc-LiveJournal1_T_2. This sparse matrix exhibits numerous empty

rows, yet the non-empty rows contain a small number of non-zeros. In the context of

SpMV, WACO has derived the following format and computation schedule:

.split(i,i1,i0,64)

.split(k,k1,k0,1)

.reorder(i1,i0,k0,k1)

.parallelize(i1,48,32)

A.reorder(i1,i0,k0,k1)
A.format(i1,C)
A.format(i0,C)
A.format(k1,C)
A.format(k0,U)

We observe that WACO designates 𝑖1 and 𝑖0 as a Compressed level format – a

hybrid configuration that combines attributes of BCSR and DCSR. This selection

is attributed to the matrix’s significant proportion of empty rows. Given the sparse

distribution of non-zeros per row, effective utilization of a coarse-grained load-balancing

strategy is essential. To achieve this goal, WACO parallelizes 𝑖1 using a chunk size of

32 while splitting the 𝑖 dimension into 64 segments. This approach achieves effects

akin to directly specifying a chunk size of 32*64 without splitting. However, as we

uphold a chunk size limitation of 256 or less (Table 4.1), WACO devises a strategy for

enhanced coarse-grained load balancing through splitting.

5.3 Cost Model

5.3.1 Model Accuracy

We assessed how well our trained model reflects the relative order between different

schedules according to different sparsity patterns. When searching for the best

schedule, predicting the correct order significantly affects the quality of the search

result. Figure 5-6 shows the correlation between the predicted ranking and true

ranking in our SpMV cost model for each matrix. We sampled 500 schedules from

OpenTuner and plotted each point where 𝑥 and 𝑦 axes denote the true ranking among

all points and corresponding predicted ranking using our cost model. Red line, 𝑦 = 𝑥,

54

0 100 200 300 400 500
Rank(True)

0

100

200

300

400

500
Ra

nk
(P

re
d)

amazon0302_T_8

0 100 200 300 400 500
Rank(True)

0

100

200

300

400

500
mip1_3

0 100 200 300 400 500
Rank(True)

0

100

200

300

400

500
soc-LiveJournal1_T_2

0

50

100

150

200

Figure 5-6: The predicted ranking and true ranking of runtimes in SpMV cost model.
The 𝑥 axis denotes the true ranking and 𝑦 axis denotes corresponding predicted
ranking. The color bar in the right indicates the absolute difference between predcited
and true ranking.

depicts a perfect correlation, so the closer to 𝑦 = 𝑥, the better prediction. We also

measured the Spearman’s rank correlation coefficients (𝜌), a measure of how well

two variables are monotonically associated, for each matrix. 𝜌 of amazon0302_T_8,

mip1_3, and soc-LiveJournal1_T_2 were 0.90, 0.93, and 0.86, respectively, indicating

that our model well understands the relative order between different schedules across

different sparsity patterns. Coefficients of our SpMM cost model were 0.91,0.92, and

0.88, which were also highly correlated.

5.3.2 Cost Model Exploration

We conducted the experiment to test how effectively our feature extractor learns mean-

ingful features of the sparsity pattern. The train-validation losses of four alternative

cost models, each of which uses a different feature extractor, are shown in Figure 5-7.

HumanFeature uses three simple statistics of the sparsity pattern, (# rows, # cols, and

non-zeros). DenseConv [51] uses a conventional CNN after downsampling an input

matrix into 256×256. MinkowskiNet [13] is a popular deep learning model based on

sparse convolution layers for 3D point clouds. Due to the limited size of GPU memory,

we reduced the number of channels in MinkowskiNet to support a matrix with 10

million non-zeros. WACONet is our feature extractor that described in Section 4.1.1.

There is a marked difference between the HumanFeature and the remaining three

networks using convolution. WACONet and MinkowskiNet, networks that use a sparse

convolutional layer, learn better than DenseConv because DenseConv causes the loss

55

0 10 20 30 40 50
Epoch

0.10

0.15

0.20

0.25

0.30

0.35
Lo

ss

Train-Validation Loss
HumanFeature train
DenseConv train
MinkowskiNet train
WACONet train

HumanFeature val
DenseConv val
MinkowskiNet val
WACONet val

Figure 5-7: Train-validation losses of the SpMM cost models using four different
feature extractors.

of pattern information during downsampling as explained in Section 3.2. Finally, as

the strided convolution accommodates distant non-zeros, WACONet retrieved more

meaningful features than MinkowksiNet.

5.4 Search Strategy Exploration

Different Search Strategies. We compared ANNS with two other black-box

optimization search strategies, HyperOpt [6] and OpenTuner [3]. HyperOpt utilizes

Bayesian optimization, and OpenTuner utilizes an ensemble of search techniques that

use multi-armed bandit. For each search strategy, we ran 3,000 trials to search for

the optimal parameters of SuperSchedule on the SpMM cost model with a bcsstk29

matrix. As shown in Figure 5-8-(a), ANNS found the lowest cost within an equal

number of trials. OpenTuner also found a comparable cost to that of ANNS, but the

search time is much longer. We can summarize why ANNS is substantially faster than

the others into three reasons. First, ANNS does not require any metadata update,

which is common in machine learning-based black-box optimization, such as a training

56

(a) Comparing Different Strategies

(b) Search Time Breakdown

Figure 5-8: Exploring different search strategies and breaking down the search time of
WACO on SpMM

surrogate model in Bayesian optimization. ANNS can efficiently search for different

formats and schedules merely by traversing the KNN graph. Second, a KNN graph

memorizes the program embedding of each SuperSchedule(vertex) during the building

phase. Thus, it does not have to run for the entire cost model; it only needs to run

for the final part of the cost model (Figure 1-1-(c)). Finally, ANNS is implemented in

C++, whereas most black-box optimization libraries are built on Python.

Search Time Breakdown. Since the sparsity pattern feature is reusable when

57

Table 5.4: WACO’s SpMM geomean speedup over FixedCSR with a cost model trained
on same/different hardware.

Speedup
over FixedCSR

Trained on
Intel CPU AMD CPU

Tested on Intel CPU 1.26x 1.12x
AMD CPU 1.08x 1.21x

calculating the cost of the different schedules, WACO does not run the feature

extractor multiple times for an input matrix. Instead, the search can be divided into

two phases (Figure 1-1-(c)): (1) extracting the sparsity pattern feature by running

WACONet and (2) ANNS with the final part of the cost model. Figure 5-8-(b) shows

the search time breakdown of five different matrices with varying numbers of non-zeros.

When the number of non-zeros is less than 1.5 million, ANNS dominates the entire

search time, but the feature extractor becomes more expensive when the number of

non-zeros increases. This is because the computational cost of sparse convolution

depends on the number of non-zeros.

5.5 Generalization on Other Hardware

WACO’s cost model is somewhat hardware-specific as it does better when trained on

target hardware. However, the cost model does transfer general optimization patterns

between hardware. For example, a sparsity pattern with skewed non-zero distribution

will generally prefer a fine-grained load-balancing. To demonstrate this generalization,

we trained a SpMM cost model on different hardware and compiler: 8-core(16 threads)

AMD EPYC 7R32 with a 16MB L3 cache and gcc-11. Data collection took about

4 days on 8 nodes, and training a cost model took about 3 days on a single GPU.

Table 5.4 shows the speedup of WACO under 2×2 possible configurations. As expected,

the diagonal of the table shows the best performance because the cost model is trained

for the target hardware. WACO, in general, found a better format and schedule than

a baseline with a model trained on a different hardware.

58

41 113 614 5K
Search Time (MKL-Naive SpMV Invocations)

0.1

1.2
2.0
2.9

10
Sp

ee
du

p
ov

er
 M

KL
-N

ai
ve

SpMV overhead and speedup
MKL
BestFormat
WACO

2 3 40 1K
Search Time (MKL-Naive SpMM Invocations)

0.1

1.1
1.61.8

10

Sp
ee

du
p

ov
er

 M
KL

-N
ai

ve

SpMM overhead and speedup
MKL
BestFormat
WACO

Figure 5-9: Tuning overhead of the MKL inspector-executor (Schedule-only tuner), the
BestFormat (Format-only tuner), and the WACO. We compared all methods against
the auto-tuning disabled MKL (MKL-Naive).

5.6 Search Overhead and Usage Scenarios

Tuning Overhead. Because the program auto-tuning pays for the search or tuning

time(𝑇𝑡𝑢𝑛𝑖𝑛𝑔) for the speedup, we will discuss the search overhead of WACO. Figure 5-9

shows the search time - speedup plot of three auto-tuning frameworks, MKL inspector-

59

Table 5.5: Real-world applications that require repetitive (a) SpMVs and (b) SpMMs.
Green cells indicate that the corresponding auto-tuner wins. Initial cost is computed
as 𝑇𝑡𝑢𝑛𝑖𝑛𝑔 + 𝑇𝑓𝑜𝑟𝑚𝑎𝑡𝑐𝑜𝑛𝑣𝑒𝑟𝑡, but only 𝑇𝑡𝑢𝑛𝑖𝑛𝑔 for MKL.

(a) SpMV End-to-end Execution Time
(in MKL-Naive SpMV calls)

Label 𝑁𝑟𝑢𝑛𝑠 WACO BestFormat MKL
Initial Cost 0 821 277 113
PageRank [52] 50 838 302 153
WACO=MKL 1,546 1,356 1,044 1,356
WACO=BestFormat 3,627 2,075 2,075 3,028
GMRES [31] 517K 180K 257K 416K
Mesh sim. [26] 1.8M 623K 892K 1.4M

(b) SpMM End-to-end Execution Time
(in MKL-Naive SpMM calls)

Label 𝑁𝑟𝑢𝑛𝑠 WACO BestFormat MKL
Initial Cost 0 46 7 3
WACO=MKL 115 109 80 109
WACO=BestFormat 412 271 271 382
GNN [7] 10K 5,511 6,432 9,224
Pruned NN [16] 1.0M 546K 642K 922K

executor, BestFormat, and WACO. We compared these frameworks against naive

MKL without an inspector-executor. For the matrices with a speedup >1.0×, SpMV

and SpMM must be repeatedly run for 919 and 101 times to amortize the WACO’s

tuning cost on average. As pointed out in Section 5.4, a feature extractor must be

more lightweight to reduce this amortization cost. When comparing BestFormat and

MKL, BestFormat showed better performance on both search overhead(𝑇𝑡𝑢𝑛𝑖𝑛𝑔) and

speedup than MKL. However, when comparing WACO and BestFormat, there was a

clear trade-off; WACO achieves a better speedup by paying for more search time than

BestFormat.

Real-world Scenarios. Real-world applications that utilize an auto-tuner should

consider both the tuning cost and the format converting cost. To be specific, the

end-to-end execution time (𝑇𝑡𝑢𝑛𝑖𝑛𝑔 + 𝑇𝑓𝑜𝑟𝑚𝑎𝑡𝑐𝑜𝑛𝑣𝑒𝑟𝑡 + 𝑇𝑡𝑢𝑛𝑒𝑑𝑘𝑒𝑟𝑛𝑒𝑙 *𝑁𝑟𝑢𝑛𝑠) needs to be

considered [52, 55]. The auto-tuner with a significant search overhead, such as WACO,

60

is only advantageous over other prior auto-tuners in applications requiring repetitive

runs. We list some real-world applications with tens of thousands of runs of sparse

routines in Table 5.5. We set 𝑇𝑓𝑜𝑟𝑚𝑎𝑡𝑐𝑜𝑛𝑣𝑒𝑟𝑡 = 0 for MKL as it only tunes the schedule

while fixing the format. Although BestFormat has the fastest 𝑇𝑡𝑢𝑛𝑖𝑛𝑔 (Figure 5-9),

MKL is advantageous when N is small due to no format conversion. It is better to

use other auto-tuners if an application does not require many repetitions, such as

PageRank. WACO is beneficial in scenarios that require a lot of runs, such as mesh

simulation or GNN.

61

Chapter 6

Related Works

Auto-scheduling and Cost Model. Halide auto-scheduler [37, 1] uses a cost model

with hand-crafted program features and searches for the best schedule through a beam

search. AutoTVM [10] uses a cost model that embeds the low-level loop AST. While

AutoTVM automates the search process, its search space must be manually defined

by the user’s template. Recently, Ansor [53] allowed the auto-scheduler to find this

template automatically by rewriting rules. The Tiramisu auto-scheduler uses LSTM to

embed the low-level loop AST [4]. There have also been many cost models that tried

to predict the behavior of accelerator or x86 basic blocks [21, 39, 35, 40]. All these

schemes attempted to design a cost model to embed a traversing order of iteration

space alone since they usually targeted a dense tensor program, while WACO’s cost

model considers the sparsity pattern, the format and the schedule all together.

Auto-tuning Sparse Tensor Programs. Previous auto-tuner of sparse tensor

programs can be divided into two categories: format selection studies and schedule

optimization studies. There has been a format selection approach designed a classifier,

which took a downsampled tensor and predicted which format would be optimal for

the input [44, 51]. However, the features extracted over the downsampled tensor did

not capture the pattern well and considered only a few output classes, for example,

five formats, whereas WACO considers a large number of formats from the TACO’s

abstraction. Some other frameworks estimate the number of non-zeros in the dense

63

block to choose the optimal block size in the BCSR [11, 48]. Mehrabi et al. utilized a

predictive model to learn the optimal permutation of rows for better load balancing [34].

Regarding auto-tuning of the schedule, ESB [30] suggested choosing an optimal

load-balancing scheme by running a kernel several times, each time with different

load-balancing schemes. Venkat et al. proposed an inspector-executor method to

transform a sparse loop and data with polyhedral optimizations [47]. Their three

proposed transformations make-dense, compact, and compact-and-pad can actually

demonstrate the same search space as TACO’s transformation framework [43] provided

there is a single sparse input among all input operands. However, they only suggested

how to transform the sparse loop but not how to transform it automatically. Therefore,

WACO can be used as an auto-tuner to automatically transform the code by replacing

TACO with their framework.

64

Chapter 7

Conclusion & Future Work

This thesis presents WACO, a technique co-optimizing the format and the schedule

for a given sparsity pattern. In sparse tensor programs, it is crucial to design the

cost model to consider various sparsity patterns. To address this, we propose a novel

feature extractor that employs a sparse convolutional network. Its obtained features

are universal across various formats and are useful for predicting the coupled behavior

between the format and the schedule. Furthermore, a graph-based ANNS, a discretized

version of gradient-based search, efficiently and accurately finds the best format and

schedule in the large search space of the co-optimization. We evaluate WACO for four

different algorithms (SpMV, SpMM, SDDMM, and MTTKRP) on a CPU using diverse

sparsity patterns. Our experimental results shows that WACO outperformed four

state-of-the-art baselines, Intel MKL, Format-only auto-tuner, TACO with a default

schedule, and ASpT. Compared to the best of four baselines, WACO achieved 1.43×,

1.18×, 1.14×, and 1.27× average speedups on SpMV, SpMM, SDDMM, and MTTKRP,

respectively. While our investigation has unveiled performance improvements across

various algorithms through the use of WACO, it is important to acknowledge the

presence of certain limitations.

Platform-agnostic Cost Model. The current cost model employed by WACO

relies on a training dataset collected from a specific platform. As highlighted in

Section 5.5, this model exhibits a hardware-specific characteristic, demonstrating

65

enhanced performance when trained on the target hardware. Furthermore, a cost

model is also limited by compiler-specific attributes, given our utilization of icc for

compiling the generated C code. Here are two potential solutions to address these

challenges: (1) a redesigned cost model that incorporates platform-specific information

as part of its input, and (2) the application of transfer learning, leveraging knowledge

acquired from one platform to enhance performance on a different platform. These

strategies hold the promise of broadening WACO’s applicability and mitigating the

limitations associated with its current cost model.

Algorithm-agnostic Cost Model. Currently, our cost model is exclusively tailored

to specific algorithms. For instance, the cost model trained for SpMV cannot be

utilized to find the optimal format and schedule for SpMM. However, the process of

collecting datasets and training models for individual algorithms is resource-intensive

and time-consuming. The algorithm-specific nature of the current cost model stems

from two primary factors: (1) the absence of a universal feature extractor, and (2)

the absence of a universal program embedder. Firstly, the feature extractor must

accommodate sparse tensors of any dimensionality, yet the current WACONet design

is limited to only 2D sparse matrices or 3D sparse tensors. Additionally, when multiple

sparse operands are involved, such as in the case of SpMSpM, the feature extractor

needs to consider interactions like intersections among these sparse operands. The

future architecture of the feature extractor may take multiple sparsity patterns as

inputs, allowing for the consideration of interactions between these patterns. This

architecture is commonly observed in 3D point cloud registration models [32, 27].

Secondly, the current program embedder requires a SuperSchedule as input, and

this SuperSchedule depends on the algorithm itself. Consequently, a future program

embedder should adopt an algorithm-agnostic representation as input, such as the

generated C code or LLVM IR, to address this challenge.

66

Bibliography

[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,
Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo
Durand, et al. Learning to optimize halide with tree search and random programs.
ACM Transactions on Graphics (TOG), 38(4):1–12, 2019.

[2] Martin Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet,
Anders Logg, Chris Richardson, Johannes Ring, Marie E Rognes, and Garth N
Wells. The fenics project version 1.5. Archive of Numerical Software, Vol 3, 2015.

[3] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. Opentuner:
An extensible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation, pages 303–316,
2014.

[4] Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas, Kamel
Abdous, Taha Arbaoui, Karima Benatchba, et al. A deep learning based cost
model for automatic code optimization. Proceedings of Machine Learning and
Systems, 3, 2021.

[5] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo,
Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and
Saman Amarasinghe. Tiramisu: A polyhedral compiler for expressing fast and
portable code. In 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 193–205. IEEE, 2019.

[6] James Bergstra, Daniel Yamins, and David Cox. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures.
In International conference on machine learning, pages 115–123. PMLR, 2013.

[7] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering
with graph neural networks for graph pooling. In International Conference on
Machine Learning, pages 874–883. PMLR, 2020.

[8] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. Learning to rank using gradient descent. In Proceedings of
the 22nd international conference on Machine learning, pages 89–96, 2005.

67

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. Tvm: An automated end-to-end optimizing compiler
for deep learning. In Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation, OSDI’18, page 579–594, USA, 2018. USENIX
Association.

[10] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Learning to optimize ten-
sor programs. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, page 3393–3404, Red Hook, NY, USA,
2018. Curran Associates Inc.

[11] Jee W Choi, Amik Singh, and Richard W Vuduc. Model-driven autotuning of
sparse matrix-vector multiply on gpus. ACM sigplan notices, 45(5):115–126, 2010.

[12] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. Format abstraction
for sparse tensor algebra compilers. Proceedings of the ACM on Programming
Languages, 2(OOPSLA):1–30, 2018.

[13] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal con-
vnets: Minkowski convolutional neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3075–3084, 2019.

[14] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1):1–25, 2011.

[15] Matteo Frigo and Steven G Johnson. Fftw: An adaptive software architecture for
the fft. In Proceedings of the 1998 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), volume 3, pages
1381–1384. IEEE, 1998.

[16] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels
for deep learning. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–14. IEEE, 2020.

[17] Benjamin Graham and Laurens van der Maaten. Submanifold sparse convolutional
networks. arXiv preprint arXiv:1706.01307, 2017.

[18] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman Parashar,
and Christopher W. Fletcher. Mind mappings: Enabling efficient algorithm-
accelerator mapping space search. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2021, 2021.

[19] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P Sa-
dayappan. Adaptive sparse tiling for sparse matrix multiplication. In Proceedings
of the 24th Symposium on Principles and Practice of Parallel Programming, pages
300–314, 2019.

68

[20] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. Ge-spmm: General-
purpose sparse matrix-matrix multiplication on gpus for graph neural networks.
In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–12. IEEE, 2020.

[21] Qijing Huang, Aravind Kalaiah, Minwoo Kang, James Demmel, Grace Dinh,
John Wawrzynek, Thomas Norell, and Yakun Sophia Shao. Cosa: Scheduling by
constrained optimization for spatial accelerators. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), pages 554–566, 2021.

[22] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia,
and Alex Aiken. Taso: optimizing deep learning computation with automatic
generation of graph substitutions. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 47–62, 2019.

[23] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz Franchetti,
John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning
Meyerhenke, Scott McMillan, Carl Yang, John D. Owens, Marcin Zalewski,
Timothy Mattson, and Jose Moreira. Mathematical foundations of the graphblas.
In 2016 IEEE High Performance Extreme Computing Conference (HPEC), pages
1–9, 2016.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[25] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Ama-
rasinghe. The tensor algebra compiler. Proceedings of the ACM on Programming
Languages, 1(OOPSLA):1–29, 2017.

[26] Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David IW Levin, Shinjiro
Sueda, Desai Chen, Etienne Vouga, Danny M Kaufman, Gurtej Kanwar, Wojciech
Matusik, et al. Simit: A language for physical simulation. ACM Transactions on
Graphics (TOG), 35(2):1–21, 2016.

[27] Donghoon Lee, Onur C. Hamsici, Steven Feng, Prachee Sharma, and Thorsten
Gernoth. Deeppro: Deep partial point cloud registration of objects. In ICCV,
2021.

[28] Jiajia Li, Guangming Tan, Mingyu Chen, and Ninghui Sun. Smat: an input
adaptive auto-tuner for sparse matrix-vector multiplication. In Proceedings
of the 34th ACM SIGPLAN conference on Programming language design and
implementation, pages 117–126, 2013.

[29] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang,
and Xuemin Lin. Approximate nearest neighbor search on high dimensional
data—experiments, analyses, and improvement. IEEE Transactions on Knowl-
edge and Data Engineering, 32(8):1475–1488, 2019.

69

[30] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. Efficient
sparse matrix-vector multiplication on x86-based many-core processors. In Pro-
ceedings of the 27th international ACM conference on International conference
on supercomputing, pages 273–282, 2013.

[31] Jennifer A. Loe, Heidi K. Thornquist, and Erik G. Boman. Polynomial precondi-
tioned gmres to reduce communication in parallel computing, 2019.

[32] Weixin Lu, Guowei Wan, Yao Zhou, Xiangyu Fu, Pengfei Yuan, and Shiyu Song.
Deepvcp: An end-to-end deep neural network for point cloud registration. In
Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

[33] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. IEEE transac-
tions on pattern analysis and machine intelligence, 42(4):824–836, 2018.

[34] Atefeh Mehrabi, Donghyuk Lee, Niladrish Chatterjee, Daniel J. Sorin, Benjamin C.
Lee, and Mike O’Connor. Learning sparse matrix row permutations for efficient
spmm on GPU architectures. In IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS 2021, Stony Brook, NY, USA, March
28-30, 2021, pages 48–58. IEEE, 2021.

[35] Charith Mendis, Alex Renda, Dr.Saman Amarasinghe, and Michael Carbin.
Ithemal: Accurate, portable and fast basic block throughput estimation using
deep neural networks. In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research.
PMLR, 2019.

[36] Intel MKL. Inspector-executor sparse blas routines. 2022.

[37] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and
Kayvon Fatahalian. Automatically scheduling halide image processing pipelines.
ACM Transactions on Graphics (TOG), 35(4):1–11, 2016.

[38] Sameer A Nene and Shree K Nayar. A simple algorithm for nearest neighbor
search in high dimensions. IEEE Transactions on pattern analysis and machine
intelligence, 19(9):989–1003, 1997.

[39] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W. Keckler, and Joel Emer. Timeloop: A systematic approach to dnn
accelerator evaluation. In 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 304–315, 2019.

[40] Mangpo Phothilimthana, Mike Burrows, and Samuel J. Kaufman. Learned tpu
cost model for xla tensor programs. In Workshop on ML for Systems at NeurIPS,
2019.

70

[41] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. Acm
Sigplan Notices, 48(6):519–530, 2013.

[42] Naser Sedaghati, Te Mu, Louis-Noel Pouchet, Srinivasan Parthasarathy, and
P Sadayappan. Automatic selection of sparse matrix representation on gpus. In
Proceedings of the 29th ACM on International Conference on Supercomputing,
pages 99–108, 2015.

[43] Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson, Stephen Chou,
Shoaib Kamil, Saman Amarasinghe, and Fredrik Kjolstad. A sparse iteration
space transformation framework for sparse tensor algebra. Proceedings of the
ACM on Programming Languages, 4(OOPSLA):1–30, 2020.

[44] Qingxiao Sun, Yi Liu, Ming Dun, Hailong Yang, Zhongzhi Luan, Lin Gan,
Guangwen Yang, and Depei Qian. Sptfs: sparse tensor format selection for mttkrp
via deep learning. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–14. IEEE, 2020.

[45] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing
of deep neural networks. Synthesis Lectures on Computer Architecture, 15(2):1–
341, 2020.

[46] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. Fast item ranking
under neural network based measures. In Proceedings of the 13th International
Conference on Web Search and Data Mining, pages 591–599, 2020.

[47] Anand Venkat, Mary Hall, and Michelle Strout. Loop and data transformations
for sparse matrix code. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’15, page 521–532,
New York, NY, USA, 2015. Association for Computing Machinery.

[48] Richard Vuduc, James W Demmel, and Katherine A Yelick. Oski: A library of
automatically tuned sparse matrix kernels. In Journal of Physics: Conference
Series, volume 16, page 071. IOP Publishing, 2005.

[49] R Clinton Whaley and Jack J Dongarra. Automatically tuned linear algebra
software. In SC’98: Proceedings of the 1998 ACM/IEEE conference on Super-
computing, pages 38–38. IEEE, 1998.

[50] Jaeyeon Won, Charith Mendis, Joel S Emer, and Saman Amarasinghe. Waco:
Learning workload-aware co-optimization of the format and schedule of a sparse
tensor program. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2, pages 920–934, 2023.

71

[51] Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen. Bridging the gap between
deep learning and sparse matrix format selection. In Proceedings of the 23rd
ACM SIGPLAN symposium on principles and practice of parallel programming,
pages 94–108, 2018.

[52] Yue Zhao, Weijie Zhou, Xipeng Shen, and Graham Yiu. Overhead-conscious
format selection for spmv-based applications. In 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 950–959. IEEE, 2018.

[53] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. Ansor:
Generating high-performance tensor programs for deep learning. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), pages
863–879, 2020.

[54] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. FlexTensor:
An Automatic Schedule Exploration and Optimization Framework for Tensor
Computation on Heterogeneous System, page 859–873. Association for Computing
Machinery, New York, NY, USA, 2020.

[55] Weijie Zhou, Yue Zhao, Xipeng Shen, and Wang Chen. Enabling runtime spmv
format selection through an overhead conscious method. IEEE Transactions on
Parallel and Distributed Systems, 31(1):80–93, 2019.

72

	Introduction
	Overview of WACO

	Motivating Example
	Impact of the Co-optimization
	Sparsity Pattern-Dependent Nature

	Background
	Tensor Algebra Compiler
	Cost Model for Auto-Scheduling

	Workload-Aware Co-Optimization
	Cost Model Design
	Feature Extractor: WACONet
	Program Embedder: SuperSchedule
	Training Cost Model

	Efficient Schedule Search via Nearest Neighbor Search
	Relationship Between Auto-scheduling and NNS
	Graph-based ANNS

	Evaluation
	Experimental Setup
	Performance Results
	Discussion on Speedup
	Case Studies

	Cost Model
	Model Accuracy
	Cost Model Exploration

	Search Strategy Exploration
	Generalization on Other Hardware
	Search Overhead and Usage Scenarios

	Related Works
	Conclusion & Future Work

