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Summary 
 

The last decade has seen pivotal changes in the "last mile" of logistics: online order volumes are 
growing, customers are expecting deliveries with quicker turnarounds, and new technologies such as 
drones and electric vehicles are reshaping suppliers' fulfillment strategies (World Economic Forum, 
2020). The unintended consequences of this increased footprint of logistics on cities is only beginning 
to be understood. This study focuses on the effects of e-commerce logistics on urban mobility, seeking 
to quantify how shifting consumer shopping demands, and efforts by e-commerce suppliers and 
carriers to meet these demands, impact traffic congestion as experienced by city drivers. Because the 
impacts to traffic caused specifically by e-commerce operations is not directly observable, we 
estimate these effects using traffic simulation models. Our modeling framework also allows us to 
predict how these impacts might scale over time and what measures e-commerce firms can enact to 
limit negative externalities.  

We find that the impact of last-mile e-commerce activities to traffic congestion depends heavily on  
changes to people's travel behavior as they purchase more goods online. If people make fewer daily 
shopping trips to brick-and-mortar stores, traffic congestion will improve. If people complement 
online shopping with in-store shopping, traffic congestion will degrade. To mitigate potential negative 
traffic impacts, we recommend carriers reform their delivery networks to limit the distances delivery 
vehicles must travel within cities. Introducing micro-fulfillment centers close to end customers, 
serving secure lockers where consumers can pick-up packages, transitioning to alternative delivery 
vehicles with smaller traffic footprints, and consolidating packages onto fewer delivery vehicles with 
larger cargo capacities can all help reduce the traffic congestion induced by last-mile operations.  
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Motivation / Introduction 
 

U.S. consumer purchasing behavior is evolving, accelerated by lifestyle changes during the COVID-19 
pandemic. Many city residents are increasingly ordering goods online via e-commerce platforms for 
shipment directly to their homes. In 2021 74% of people in the U.S. purchased goods online. This 
number is expected to rise to 80% by 2025 (Statista).  

In response to these changes, e-commerce providers are reforming their supply chain networks to 
support faster, cheaper deliveries from warehouses and fulfillment centers directly to residents, the 
distance often designated the “last mile.” These network expansions create convenience for 
customers. However, routing additional delivery vehicles in urban areas exacerbates externalities such 
as greenhouse gas emissions and roadway safety concerns (McKinnon, 2010; Fernández Briseño et 
al., 2020).  

A commonly voiced criticism is that e-commerce distribution in cities contributes significantly to traffic 
congestion, subsequently reducing mobility and accessibility for all transportation system users. This 
study aims to estimate the traffic congestion impacts of e-commerce activities in U.S. cities – whether 
positive or negative – and identify opportunities for e-commerce retailers and distributors to reduce 
their congestion footprints.  
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Precedent Studies 
 

Few studies exist that attempt to measure the effects of e-commerce activities on traffic congestion. 
Below are listed three major precedent studies that helped inform our own work. Their overall findings 
differ widely, likely because of differences in the foundational assumptions they employ and the 
scopes of the congestion-impacting factors they consider.  

 
Table 1. Previous studies describing the impacts of e-commerce distribution on urban traffic. 

Authors Year  Region of Study Findings 

Stinson et al. 2019 Chicago 

E-commerce reduces total city 
vehicle VMT because residents 
likely make fewer in-store 
shopping trips.  

World Economic Forum 2020 
Chicago, Los Angeles, 
Singapore, Amsterdam, 
Paris, London 

If left unchecked, increases in 
numbers of delivery vehicles on 
city streets could add 11 
minutes to each driver’s 
commute time by 2030.  

Komanoff 2021 New York City 

E-commerce delivery vehicles 
cost city drivers, truckers, and 
bus drivers traffic delays worth 
$400 million annually.  

 
 
Our goal is to create a simple traffic modeling framework that can be generalized across major U.S. 
cities and used to compare results under different logistics operation scenarios. Additionally, because 
the ways e-commerce affects people’s purchasing and travel behavior are only beginning to be 
understood, we consider a range of shopping behavior assumptions that help capture the 
uncertainties in our current understanding.  
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Research Questions 
 

This study investigates how last-mile e-commerce distribution strategies affect roadway traffic in U.S. 
cities and what interventions suppliers, carriers, and consumers can enact to reduce any negative 
traffic externalities. Specifically, we explore the following questions: 

I. How much traffic and congestion do urban delivery operations add to or subtract from U.S. city 
road networks? Do different cities experience these congestion externalities to different 
degrees?  

II. How will traffic and congestion as experienced by city drivers evolve as e-commerce service 
continues to expand? 

III. How can e-commerce providers reform their fulfillment strategies and how can consumers 
modify their purchasing behavior to improve mobility for all drivers? 

Our study considers only a narrow definition of mobility: the time required for drivers of personal 
vehicles to reach their destinations using arterial-level (non-highway) city roads. We quantify our 
results in terms of automobile travel times and average roadway speeds. We challenge future authors, 
however, to consider both mobility and accessibility in broader contexts by exploring how e-commerce 
last-mile distribution impacts the abilities of transportation system users to reach destinations across 
travel modes, user income, age, ability, and other factors. The section Future Research identifies 
possible forms this research could take.  

 

Methodology 
 

Because the effects of last-mile logistics on city traffic cannot be directly observed or estimated, we 
tackle these three research questions by creating a city-level simulation framework that models 
roadway traffic during a typical weekday on an aggregated, macroscopic level.  Though our modeling 
framework can be extended to any U.S. city, we specifically apply it to Seattle, WA; Chicago, IL; and 
New York, New York. Several simplifying assumptions make our approach possible. 

§ First, though we model a full 24-hour weekday, only results between 7am and 9pm are 
collected. The first seven hours of the day serve as a simulation warm-up period. 

§ We include vehicle trips that enter and exit each city, but only explicitly model traffic within city 
boundaries.  

§ We consider the traffic effects of last-mile e-commerce package distribution. We assume that 
first and middle-mile traffic exists fully outside city bounds or occurs overnight.  

§ We narrow our focus to business-to-consumer (B2C) retail e-commerce and delivery trips 
taken by suppliers and third-party carriers from distribution centers to end consumers. Food 
delivery and other storefront-based services fall outside our scope.  

The following section describes the assumptions and variables that define the scenarios we tested.  
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Simulation Variables 
 

Below we detail the variables we feed as input to our model. We organize them into three subsets: 
foundational assumptions, future cases, and alternative last-mile fulfillment strategies.  A modeling 
scenario represents a unique combination of these variables. Testing multiple, varied scenarios allows 
us to capture not only current city-wide traffic levels, but how traffic might evolve over time under 
different carrier intervention strategies.  

 

 

Figure 1. Traffic simulation model inputs and outputs.  

 
Online Versus In-Store Shopping Consumer Behavior 
 

Central to our investigation is a model of how increased demand for e-commerce package delivery 
influences the frequency with which people shop at brick-and-mortar stores. Greater demand for e-
commerce services increases the required number of delivery vehicles required to serve customers. 
However, the direction and magnitude of this e-commerce versus in-store shopping relationship 
determines whether expanded e-commerce service leads to a net increase or decrease of vehicles on 
the road. 
 
Understanding of this correlation within the academic community is still developing. Table 2 lists 
selected journal articles grouped by their findings. Some works suggest a substitutive relationship 
whereby households or individuals reduce the frequency, duration, or distance of in-person shopping 
trips as they increase the frequency or size of online orders. Other works report a complementary 
relationship whereby demand for in-person and online shopping increase jointly. Finally, some authors 
report mixed or inconclusive results.  
 
Most authors conclude, however, that the nature of this relationship is heterogenous among 
households, impacted by sociodemographic characteristics such as age, income, and whether children 
live in the household. 

 
Because of the inconclusiveness of this foundational assumption, we consider three possible 
relationships between online and in-store shopping demand in our simulation model. The major 
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substitutive scenario assumes that in-person weekday shopping trip frequencies would increase 15% 
with no available e-commerce. Our minor substitutive scenario assumes only a 5% increase. Finally, 
the minor complementary scenario assumes that shopping trip frequencies would decrease by 5% 
with no e-commerce. Each scenario also assumes a further increase or decrease in in-store shopping 
trip frequency as the market penetration of e-commerce platforms continues to rise. 

 
Table 2. Academic works describing the relationship between demand for e-commerce package delivery and in-store shopping 
trips. 

Dominant Relationship Example Academic Works 

Largely Substitutive Bjerkan et al. (2020), Xi et al. (2020) 

Mixed Results  
Zhai et al. (2017), Dias et al. (2020),  

Spurlock et al. (2020), Titiloye et al. (2022) 

Largely Complementary Ferrell (2004), Cao (2012), Cao et al. (2012), Lee et al. (2017) 

No Relationship Found NHTS (2018) 

 
 

Future Case Variables 
 

We include two variables that help us model predicted changes in personal vehicle usage and e-
commerce delivery demand over time.  

§ Traffic multiplier: This value uniformly increases trip volumes across trip purpose, origin and 
destination, and departure time. Increasing the value of this variable allows us to model how 
traffic might evolve with increased urbanization and no corresponding changes to 
transportation systems or user travel behavior.  

§ Delivery demand: This variable modifies the average per capita demand rate for package 
delivery, modeling the growth of e-commerce over time along with the corresponding change 
in in-store shopping trips. Reducing this value to zero allows us to envision a case where all 
shopping is conducted in-person. 

 

Intervention Strategies 
 

Finally, we model four alternative fulfillment strategies that e-commerce suppliers and carriers might 
adopt to reduce their urban traffic footprints.  

§ Micro-Fulfillment Centers (MFCs): Small distribution centers are located within the densest city 
neighborhoods, reducing the distances to end consumers. We model this strategy by placing 
multiple low-capacity fulfillment centers in traffic regions with the highest population 
densities. Delivery vehicles stationed at these MFCs can subsequently reach end customers in 
less travel time.  
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§ Urban lockers: Some customers elect to pick-up and return packages to secure locations 
within their neighborhoods. We model this strategy by assuming that proportions of customers 
pick up and return packages to locker locations near their residence or place of work. This 
consumer behavior reduces the number of carrier-provided delivery vehicles required to serve 
customers. 

§ Alternative delivery vehicles: Logistics carriers use multiple cargo bikes, e-scooters, “walkers", 
or other small-footprint modes to deliver packages from a given parked delivery van to 
customers in densely urban locations. To model this strategy, we assume the delivery vehicle 
does not contribute to traffic while it is parked. Alternative deliverers instead contribute to 
traffic during the delivery process at comparatively lower rates.  

§ High-capacity delivery vans: Carriers either use a fleet of vehicles with larger cargo holds or 
delivery drivers more efficiently load packages onto existing delivery vehicles. We assume that 
the overall size of the vehicle and its contribution to traffic, however, remains unchanged. We 
model this strategy by increasing the assumed number of packages a van can deliver on a 
single route by 75 percent. Increasing the capacities of delivery vans reduces the number of 
vehicles required to serve a given geographic area.  

 

We selected these four potential intervention strategies because they have all been either tested or 
are currently used by e-commerce carriers in the U.S. or abroad. Additionally, we expected that these 
strategies would all reduce the traffic congestion of last-mile e-commerce by either reducing the 
numbers of delivery vehicles on the roads or the distances these vehicles must travel to serve end 
customers. See Appendix I: E-Commerce Fulfillment Strategy Modeling Assumptions for more 
information on how we mathematically incorporated these strategies into our model. For a more in-
depth overview of potential interventions reported across stakeholders, see the report "The Future of 
the Last-Mile Ecosystem" by the World Economic Forum (2020).   

 

Simulation Modeling Framework 
 

Figure 1 illustrates the key information fed to and reported from our simulation model. Its inputs are 
threefold and will be detailed further in the subsequent sections: 

I. A simplified mathematical representation of the city that reduces the size of the model and the 
computing time it requires to run. 

II. Traffic dynamics, a set of rules governing how traffic moves throughout space.  

III. A matrix of traffic flows dictating when, where, and how many vehicles move throughout the 
city and for what purposes.  

The model outputs two forms of results:  

§ The average speeds in different areas of the city over time. 

§ The average travel times of representative trips within the model from and to different 
locations, at different times of day, and for different travel purposes.  

 

The following sections describe each model input in more detail. 
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Mathematical Representation of Cities  
 

Because modeling vehicular traffic across an entire city’s street network would be computationally 
impractical, we reduce our model’s representation of a city’s road network into key components. First, 
we divide each city into traffic regions, each between 5 and 10 km2 in area. Rather than track traffic 
flows on individual road segments, we monitor traffic accumulations as they move among traffic 
regions. We assume each traffic region has the same vehicle capacity as the totality of the road 
segments within it. When routing vehicles throughout the city, we consider representative paths both 
among traffic regions and to/from designated city entry/exit points (see Figure 2 for visualization). 
These simplifications allow us to reduce the size of our network from thousands of road lane-miles to 
a handful of regions through which vehicles are produced, attracted, and routed.  

 

 
Figure 2. Network representations of each city (not to scale). Vehicles travel along black dotted lines to move between regions 
(consolidated into blue dots) and city entry/exit points (represented as red dots). 

 

Traffic Dynamics 
 

A second simplifying assumption further reduces the scale of our model. Rather than track the 
movements of individual vehicles, we group vehicles making the same trip into pods that move as 
single units.  

To determine the travel speeds of vehicle pods throughout their journeys, we use macroscopic 
fundamental diagrams (MFDs), which describe the relationships among total traffic flow and density 
within each region. These MFDs dictate, for a given region, the average travel speed of vehicles within 
it given the total number of vehicles traveling on its roadways. When few vehicles are traveling within a 
region, they move at free-flow speeds. However, as more vehicles vie for space on the roadways, often 
during peak hours, streets become congested, and vehicles slow. An MFD describes the average 
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speed of vehicle pods at every possible traffic state based on characteristics of the region’s roadway 
network such as its total lane-miles, density of signalized intersections, and posted speed limit, 
among many other factors. For more information on MFDs, see Daganzo (2007) and Gerolimis and 
Daganzo (2008). Appendix II outlines how we estimate an MFD for each traffic region.  

Given the average speed of each region at a given simulation instance, vehicle pods can determine 
their expected travel times from origin to destination. They select routes that minimize this expected 
travel times according to the principle of user equilibrium routing. See Sheffi (1985) for an overview of 
user equilibrium routing and other common vehicle routing approaches.  

 

City-Wide Traffic Flows 
 

To determine the effects of e-commerce distribution on city traffic, we require an understanding of 
current traffic volumes. For each city of study, we input to our model a matrix detailing the number of 
vehicles traveling between every two pairs of destinations, at what time, and for what purpose. We 
employ a modified four-stage travel demand model to estimate these quantities. In each step, we 
combine survey data, assumptions, and/or mathematical models to arrive at reasonable expected 
travel demands. See Table 4 for a list of the national, regional, and city travel surveys we consulted.  

 

 
Figure 3. Modeling steps used to estimate trip volumes for each city of study. 

 

The four steps we follow are outlined below.  

1. Trip generation. We estimate the numbers of trips a given city region (or nearby region) is likely 
to produce or attract over the course of a weekday. We consider four main trip purposes: trips 
to and from work; trips to and from school; shopping and errands trips; and social and 
recreational trips. We employ recent travel survey data to estimate these totals whenever 
possible. Otherwise, we revert to trip totals derived from those reported by the 2017 National 
Household Travel Survey, listed in Table 3, and apply them to 2023 population estimates. 
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Table 3. Approximate per-capita daily trip totals used when more detailed survey data is unavailable. 
Trip Purpose Approx. Per-Capita Weekday Trip Count 

Home to Work 0.4 – 0.5 

Work to Home 0.5 

Home to School 0.2 – 0.25 

School to Home 0.25 

Shopping and Errands 1.3 – 1.4 

Social and Recreation 0.9 

Total 3.5 – 3.7 

 

2. Trip distribution. Next, we calculate the expected trip totals between every pair of origins and 
destinations. We use gravity models to estimate the decline in the numbers of people that will 
travel between pairs of locations as the distance between them grows. For more information 
on gravity models for travel demand estimation, see NCHRP Report 716 (2012). We run gravity 
models to determine origin-destination pairings for each trip purpose separately. Therefore, 
our model does not consider trip chaining. For more information on our trip generation and 
distribution methodologies, see Appendix III: City-Wide Travel Demand Estimation. 

3. Trip mode choice. We only explicitly consider trips made by personal vehicles. Though other 
travel modes – mass transit, biking, and walking – may also experience and contribute to 
congestion, the per-capita traffic impact of automobiles is significantly higher. We use mode 
share percentages reported by city-wide travel surveys, assuming that only the longest trips 
are made by personal vehicles.  

4. Trip start time assignment. Finally, we distribute trip start times throughout the day. This step 
helps us reflect that, for example, commuting trips are most likely to be made during peak 
hours and shopping trips are most likely to be made during afternoons and evenings. We 
consult the Chicago Metropolitan Agency for Planning (CMAP) 2010 report “Trips Underway by 
Time of Day by Travel Mode and Trip Purpose for Metropolitan Chicago” for this purpose. To 
estimate the times at which vehicles that start their journeys outside the city enter city bounds, 
we use assume an outside-city travel speed of 45 mph.  

 

To ensure that our estimates of travel demand volumes and our descriptions of regional traffic 
dynamics are accurate, we compare the average regional speed measurements our models produce 
against both speed measurements reported by city transportation agencies and average travel times 
gleaned from Google Maps’ Distance Matrix API.  
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Table 4. Travel surveys and reports used to estimate travel demand for cities of study. 
City of Study Resources Used to Estimate Travel Flows 

Seattle, WA 
2019 Puget Sound Regional Travel Study 

2022 Seattle Commute Survey 

New York, NY 

2009 New York State National Household Travel Survey Add-On  

2019 NYC Department of City Planning Commuting Report 

2019 NYC Department of Transportation Mobility Report 

Chicago, IL 
2007 Chicago Metropolitan Agency for Planning (CMAP) Household Travel Inventory  

2016 CMAP On To 2050 Snapshot Report 

All Cities 

2009 National Household Travel Survey 

2017 National Household Travel Survey 

U.S. Census Bureau American Community Survey (2015-2019) 

 
 
Delivery Vehicle Routes 
 

Delivery vehicle traffic flows are the final input to our simulation model. To determine the locations of 
customers requiring delivery, we assume a geographically uniform base demand rate of 0.155 online 
orders per person per weekday, where one order corresponds to a single package. We increase this 
demand value in future-case scenarios to model the expected growth of retail e-commerce over time.  
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Figure 4: Delivery vans used by four major carriers with approximate cargo capacities similar to that of representative delivery 
vehicle considered in model. Images are selected from Wikimedia Commons under Creative Commons License. Images have 
been altered.  

 

Though numerous e-commerce platforms operate in the U.S., we assume that packages are delivered 
by one of four carriers: Amazon, FedEx, UPS, or USPS. We consult Google Maps to find the locations of 
distribution centers, warehouses, and large post offices from which these carriers’ delivery vehicles 
are likely to begin their routes. We solve a travel distance-minimizing mathematical optimization 
problem to find expected least-distance delivery routes that serve all required customers. To simplify 
our delivery model, we assume all packages are serviced by delivery vans with capacity of 200 
packages. For information on the methodology by which delivery vehicle traffic was represented in the 
simulation models, see Appendix I: E-Commerce  Fulfillment Strategy Modeling Assumptions. 
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Findings  
 

We run simulation models to predict the impact to traffic congestion levels in each city under different 
assumptions of consumer purchasing behavior, values of e-commerce delivery demand, and 
congestion-reducing intervention strategies. Table 5 and Table 6 compare current-day operations 
against the imagined case where consumers purchase all goods in stores, none online. Table 5 
provides the expected number of trips saved and Table 6 reports the expected total vehicle travel time 
saved due to the operation of e-commerce suppliers and carriers. Values in parentheses provide these 
city-wide quantities normalized by the population of each city 18 years and older. 

 
Table 5. Predicted number of city-wide vehicle trips saved due to current e-commerce operations. Values in parentheses are 
normalized by the city’s adult population. 

City 
Approx. Total Number of Avg. Weekday Vehicle Trips Saved 

Major Substitutive Minor Substitutive Minor Complementary 

Seattle, WA 63,800 (0.10) 17,000 (0.03) -35,200 (-0.05) 

New York, NY 446,100 (0.07) 90,700 (0.01) -265,100 (-0.04) 

Chicago, IL 273,600 (0.13) 64,200 (0.03) -145,400 (-0.07) 

 
Table 6. Predicted number of city-wide vehicle travel hours saved due to current e-commerce operations. Values in 
parentheses are normalized by the city’s adult population. 

City 
Approx. Total Number of Avg. Weekday Vehicle Travel Hours Saved 

Major Substitutive Minor Substitutive Minor Complementary 

Seattle, WA 20,300 (0.03) 5,400 (0.01) -11,400 (-0.02) 

New York, NY 126,200 (0.02) 11,500 (0.00) -108,200 (-0.02) 

Chicago, IL 169,700 (0.08) 26,900 (0.01) -87,800 (-0.04) 

 

The results above show that the traffic impacts of current urban e-commerce operations depend 
heavily on our assumption of consumer purchasing patterns. Under the assumption that in-person 
shopping trips decreased by 15% due to the availability of e-commerce service (major substitutive), 
both the number of vehicle trips and the total vehicle trip-hours each city experience on a given 
weekday are reduced. Assuming only a 5% decrease in in-store shopping trips (minor substitutive), 
both citywide vehicle-trip and vehicle trip-hour counts decrease, but only slightly. When supposing 
that consumers have increased their frequency of trips to stores by 5% as e-commerce services 
expanded (minor complementary), traffic levels degrade. Finally, we see that these effects when 
normalized by city population are less pronounced in New York, likely because a comparatively lower 
percentage of city residents use personal vehicles for daily trips.  

 

As online order volumes continue to grow, we model how city traffic levels may be affected. Figure 5 
illustrates how city-wide weekday vehicle travel times would respond as delivery demand rates climb. 
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We compare current estimated traffic levels corresponding to the current day scenario of a delivery 
rate of 0.155 packages per person against future cases in which this rate might increase. We find that 
results are again heavily dependent on the consumer purchasing behavior assumption we feed our 
model. This finding reiterates that though delivery vehicles contribute noticeably to traffic congestion, 
the daily travel behavior of the city’s inhabitants have greater impact.  

 

 

 
Figure 5. Expected impacts to total weekday city-wide vehicle travel times of increasing e-commerce delivery demand beyond 
the current assumed rate of 0.155 packages per capita per weekday. Results under different consumer purchasing behavior 
assumptions are reported separately. Note that positive percent change values correspond to an increase in city-wide travel 
times.  

 

Finally, we model how e-commerce suppliers and carriers might reform their delivery networks to 
reduce their traffic footprints. We consider four strategies: micro-fulfillment centers located in dense 
urban neighborhoods; lockers to which carriers can deliver packages and via which customers can 
return orders; alternative delivery vehicles including cargo bikes and walkers; and high-capacity 
delivery vans able to distribute more parcels during a single route. Table 7 outlines the expected city-
wide travel hours that might be saved on a typical weekday if these strategies are widely adopted.  
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Table 7. Total city-wide travel time expected to save under four tested intervention strategies with respect to current traffic 
levels on a typical weekday. 

Intervention 
Strategy 

Approx. Total Number of Avg. Weekday Travel Hours Saved 

With Respect to Current Operations 

Major Substitutive Minor Substitutive Minor Complementary 

Seattle, WA 
Micro-Fulfillment 
Centers 103 115 214 

Urban Lockers 485 497 486 

Alternative 
Delivery Vehicles 590 572 575 

High-Capacity 
Delivery Vans 271 288 286 

 

New York, NY 

Micro-Fulfillment 
Centers 353 507 484 

Urban Lockers 338 362 345 

Alternative 
Delivery Vehicles 1,794 1,902 1,908 

High-Capacity 
Delivery Vans 751 758 752 

 

Chicago, IL 
Micro-Fulfillment 
Centers 61 38 32 

Urban Lockers 1,768 1,727 504 

Alternative 
Delivery Vehicles 710 1,261 1,326 

High-Capacity 
Delivery Vans 492 1,244 1,792 

 

Time-savings estimates are approximate and highly dependent on model parameters. Still, we find 
that each strategy has the potential to reduce traffic levels. We encourage e-commerce providers to 
explore how these fulfillment schemes might reduce their own contributions to urban traffic.  
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Recommendations 
 

Preserving the travel mobility of people within cities will require a concerted effort among all 
stakeholders: consumers, e-commerce service providers, and municipal governments. Though the 
scopes of the intervention strategies we tested in this study are limited in comparison, we can 
recommend several traffic mitigation strategies. Primarily, we encourage e-commerce suppliers and 
carriers to reform their delivery networks to reduce the distances large delivery vehicles travel on 
urban road networks. This can be accomplished by managing micro-fulfillment centers whereby high-
volume goods are prepositioned close to customers; by delivering to lockers located in centralized 
locations easily accessible to consumers; by using cargo bikes, e-scooters, and "walkers" that impose 
smaller footprints on city roads; and by consolidating packages onto a smaller number of delivery 
vehicles with larger capacities. 

Whenever possible, we also encourage consumers to combine in-store shopping trips with trips for 
other purposes; leverage mass transit, walk, or bike; and order multiple products per order that can be 
delivered in a single shipment.  

 

Future Research 
This research study is intended to provide a high-level understanding of the impacts of last-mile e-
commerce fulfillment on traffic congestion in U.S. cities. We invite future authors to expand our 
analysis. Potential areas for development are outlined below.  

§ Model additional cities. Due to time and capacity restrictions, we limit our analysis to Seattle, 
Chicago, and New York City. These cities, however, all boast large populations who use 
sustainable transportation modes. We invite future authors to broaden the study to cities with 
populations that rely more heavily on personal vehicles.  

§ Model additional travel modes. We only explicitly model traffic caused by automobiles because 
personal vehicles contribute most heavily to traffic on a per-capita basis. A more robust traffic 
model might include the traffic impacts of bicycles, buses, and other common forms of 
transportation in urban areas.  

§ Refine assumptions surrounding online order frequency. The parcel delivery demand rates we 
assume are uniform across each city's population. This is a simplification. Future work could 
model demand rates as a function of household size, household income, age, and other 
sociodemographic factors.  

§ Consider the broader effects of delivery traffic on mobility and accessibility. Our study only 
quantifies the impacts of e-commerce fulfillment to vehicle travel times. The effects of e-
commerce on urban mobility, however, are more extensive and nuanced. For example, delivery 
vehicles spend considerable time searching for parking while delivering (Muriel et al., 2021). 
Future authors could consider the impacts of e-commerce on parking availability. We also 
invite authors to consider how illegal delivery van parking contributes to traffic; the obstruction 
of bike lanes, bus lanes, and sidewalks; and the perceived safety of these transportation 
facilities.  
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Appendix I: E-Commerce Fulfillment Strategy Modeling 
Assumptions 
 

Below are listed the primary assumptions used to incorporate last-mile logistics fulfillment traffic into 
the simulation models. All listed assumptions lacking an explicit source were informed by 
conversations with industry experts. 

 

Package Delivery Demand 
We assume that every city resident orders 0.155 packages per weekday. This value was estimated 
based on results from the National Household Travel Survey (McGuckin and Fucci, 2017) adjusted for 
the increase in total e-commerce sector revenue between 2017 and 2023 as reported by Statista 
(2023). We assume the package ordering rate is uniform across geographic and sociodemographic 
variables.  

 

Base Case 
The "base case" scenario corresponds to current typical e-commerce parcel delivery strategies. This 
scenario is informed by the assumptions below: 

§ Orders are randomly assigned to a carrier according to the carrier’s market share in the last-
mile delivery sector, shown in Table 8. Market share values are reported by Calimlin (2022).  

 
Table 8. Proportions of parcels served by primary last-mile logistics carriers. 

Logistics Carrier Percentage of Package 
Demand Delivered by Carrier 

United States Postal Service (USPS) 32% 

United Parcel Service (UPS) 24% 

Amazon 22% 

FedEx 19% 

 

§ We assume all routes are executed by delivery vans with capacity of 200 packages. We assume 
that all delivery vehicles are filled to capacity. 

§ Though delivery vans are larger than typical automobiles, they contribute equally to traffic 
congestion. 

§ Fulfillment center/ distribution center locations are sampled from Google Maps and Amazon-
provided documentation. We assume fulfillment centers have a capacity of 70,000 packages or 
approximately 350 delivery vans. 

§ Delivery routes contain two components: a linehaul to reach the vehicle’s assigned delivery 
area and back again, and a delivery time equal to 8-10 hours. During each simulation, we 
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randomly assign a delivery tour duration to each vehicle between 8 and 10 hours. These 
delivery times correspond to a rate of 20-25 packages per hour. 

§ Fulfillment centers are assigned to serve demand in specific traffic regions according to the 
solution of a carrier-specific optimization problem that minimizes the combined distances 
delivery vehicles must travel during their linehaul to serve all customer locations.  

 

Urban Micro-Fulfillment Centers Model 
 

The urban micro-fulfillment centers model  is equivalent to the base case with the following 
modifications: 

§ MFCs are assumed to have capacity of 5,000 packages (Cuppett, 2022).  

§ Each carrier constructs and operates one MFC per every 3 square miles in study traffic regions 
where the population density exceeds 30,000 people per square mile in Chicago and NYC, and 
15,000 in Seattle. 

§ Micro-fulfillment centers store up to one day’s worth of inventory. Resupplying MFCs occurs 
overnight and adds negligibly to traffic.  

§ Because MFCs are located close to end customers, we assume delivery routes from MFCs 
require no linehaul component.  

 

Package Locker Model 
 

The package locker model is equivalent to the base case with the following modifications: 

§ Hub lockers are dispersed throughout each city of study such that every customer is within one 
mile of a locker location. 

§ 10% of customers regardless of carrier opt to receive their package at a locker location rather 
than use home or office delivery. 

§ 50% of customers regardless of carrier make package returns to a locker location rather than 
travel to a nearby retail store, post office, or UPS or FedEx store.  

§ Customers who elect to use lockers make such trips via travel modes consistent with shopping 
trip mode share in their city. 

§ Customers make trips to lockers at uniform times between 9am and 7pm.  

§ Lockers are filled/emptied overnight or at dispersed times during the day such that this action 
adds negligibly to traffic. 
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Alternative Delivery Vehicles Model 
 

The alternative delivery vehicle model is equivalent to the base case with the following modifications: 

§ Delivery vans route from existing delivery station locations to each region between 10am and 
12pm. Enough delivery vans are loaded to serve all customers. Each delivery van remains 
parked while walkers and bikers deliver packages, therefore contributing to vehicle traffic only 
during the line-haul. After enough time has passed for walkers/bikes to deliver all packages, 
the delivery van routes back to the delivery station. 

§ At any given time, 15 walkers or 10 bikes are delivering packages for each delivery van.  

§ Walkers deliver 2 packages in 10 minutes. Cargo bikers and e-scooters deliver 4 packages in 
10 minutes.  

§ For the purposes of calculating contributions to vehicle traffic, each walker counts as zero 
vehicles. Each cargo bike and electric scooter counts as ½ vehicles. 

 

High-Capacity Delivery Vehicles 
 

The alternative delivery vehicle model is equivalent to the base case with the following modifications: 

§ Delivery vehicles are assumed to have capacity of 350 packages, a 75 percent increase over 
the base-case vehicle capacity of 200 packages.  

§ The delivery route time remains unchanged at 8-10 hours.  
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Appendix II: Regional Macroscopic Traffic Dynamics Estimation 
 

Recognizing that creating detailed traffic simulation models at city scale would introduce 
insurmountable complexity and uncertainty, we choose to model average traffic behavior within 
clearly defined traffic regions. We concern ourselves with the movements of groups of vehicles within 
and among these regions. To estimate the possible traffic states within each region of study, we apply 
an aggregated modeling approach based on Macroscopic Fundamental Diagrams (MFDs). First 
introduced by Godfrey (1969), MFDs provide a way of describing average traffic states within 
geographic “reservoirs”, each with approximately homogeneously distributed congestion that evolves 
slowly over time. MFDs provide us a means of estimating average vehicle speed within a given region 
based on the accumulation of vehicles within it. The shape of a well-defined MFD is based on myriad 
network factors including the geometry of the road network. For our cities of study, when possible, we 
estimate MFDs based on publicly available vehicle count and average speed measurements. When 
such information is unavailable, we estimate the shapes of MFDs based on those of other regions with 
similar characteristics.  

 

Estimating Traffic Dynamics Using Average Speed and Vehicle Count Data 
 

When possible, we estimate regional MFDs using vehicle volume and speed measurements provided 
by city agencies for street segments evenly distributed within regions’ arterial road networks.  
Measurements are typically provided in 10 or 15-minute time intervals. Speed measurements are 
usually either estimated via GPS traces from vehicles such as buses or taxis, or loop detectors 
dispersed at fixed locations. Ideally, traffic volume and speed measurements are reported at 
corresponding roadway locations. In cases where speed and traffic sensor locations vary slightly, we 
pair volume and speed measurements using a procedure that ensures only measurements on the 
same roadway in the same travel direction are paired. Table 9 lists data sources we consulted.  

 
Table 9. Traffic data sources consulted during study. 

Data Set Data Provider Data Hosting Platform 

Automated Traffic Volume 
Counts 

New York City Department of 
Transportation (NYCDOT) 

NYC Open Data 

Real-Time Traffic Speed Data NYCDOT Traffic Management 
Center (TMC) 

BetaNYC 

Chicago Traffic Tracker – 
Historical Congestion Estimates 
by Segments 

City of Chicago Chicago Data Portal 

Hourly Traffic Data Illinois Department of 
Transportation  

Traffic Count Database System 
(TCDS) 

2018 Traffic Flow Counts Seattle Department of 
Transportation 

Seattle GeoData 
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Once measurements have been cleaned and validated, we apply Equation 1 to collect the traffic 
accumulation 𝑛!  (veh/lane-mi) at each location and time (𝑖, 𝑡) given its vehicle flow or production 𝑝(!,$) 
(veh/lane-hr) and average speed 𝑣(!,$) (mi/hr): 

      𝑛(!,$) =
&(",$)
'(",$)

.      (1) 

We note that 𝑣(!,$) in Equation 1 denotes space-mean speeds. In situations where only time-mean 
speed values are available, we assume the measures are equivalent. For each defined region, we 
model its MFD as an exponential equation of form: 

     𝑝 = 𝑛 ∙ 𝑣()**𝑒𝑥𝑝 -−
+
,
/ -
-&'"$

0
,
1     (2) 

We fit this equation to our observations 𝑛(!,$), 𝑝(!,$) to estimate parameters 𝑣()**, the region’s free-flow 
average speed and 𝑛.)!$, its critical accumumulation. To help find an adequate fit, we assume the jam 
density 𝑛/01 is 240 veh/lane-mi (150 veh/lane-km). In some cases, the fit of Equation 2 is poor and no 
discernable vehicle production-accumulation relationship is apparent. In these instances,  we redraw 
region boundaries until a clearer fit can be approximated.  

Finally, we multiply both sides of Equation 2 by 𝑑)*2!3- the total lane-miles of arterials in each region. 
We estimate this value using OpenStreetMap data accessed via the OSMnx Python package (Boeing, 
2017). The result is a relationship describing production and attraction on a regional rather than per 
lane-mile basis.  

We end this section by acknowledging that our approach for traffic dynamics is only approximate, both 
due to biases in the data we employ and the ability of MFDs to accurately describe traffic states in city 
regions as we define them. For more information on the estimation and veracity of MFDs, an active 
area of research, see Geroliminis and Daganzo (2008); Geroliminis and Sun (2011); and Leclercq et al. 
(2014).  

 

Estimating Traffic Dynamics When No Data is Available 
 

In cases where high-resolution traffic data is not available or accessible, we predict the shapes of 
regions’ MFDs based on those of other regions with better-defined input data.  We find that a region’s 
average density of roadway intersections per mile (both signalized and unsignalized) provides an 
adequate predictor for its critical production 𝑝.)!$ (veh/lane-hr), the production value that corresponds 
to its critical accumulation 𝑛.)!$. Regions with higher intersection density have lower critical 
production. We use this relationship as well as 𝑛/01 = 240	to provide a rough estimate for a given 
region’s MFD.  
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Appendix III: City-Wide Travel Demand Estimation 
 

When estimating travel demand within, from, and to our cities of study, we relied on published data 
sources whenever possible (see Table 4). In many cases, however, the detailed nature of our 
simulation models required that we make additional assumptions. Below we outline the methods we 
used and major assumptions we relied on to supplement travel demand information when necessary. 
We focus specifically on the trip generation and distribution phases of our four-step model.  

 

Trip Generation: Production and Attraction 
 

To estimate city-wide travel on a given weekday, we first aggregate the areas within and surrounding 
each city into discrete zones. Each zone serves as a point from which trips are produced and to which 
trips are attracted. The traffic regions we define all serve as zones. Additionally, in order to estimate 
the numbers of trips that enter and exit each city, we also consider zones beyond city boundaries. In 
Seattle we take all census tracts in Snohomish, King, and Pierce counties as zones. In Chicago we 
consider the townships that make up the CMAP region. The 26 counties outside New York City and 
within the New York Metro Region serve as zones in our New York City travel model (see report "The 
Ins and Outs of NYC Commuting" (2019)). For each city, our choice of zones is informed by the 
aggregation level at which published survey data is reported.   

We assume all trips serve one of the following purposes: travel to and from work, travel to and from 
school; shopping and errands trips; and social and recreational trips. Whenever possible, we use 
published data to estimate both trip production and attraction for each city zone and trip purpose. 
When data is unavailable, we use the trip rates reported in Table 3 to estimate the trip generation 
within each city zone by travel purpose. These trip generation rates are reported on a per-capita basis 
and do not reflect the myriad other factors that might affect travel, which reflect the sociodemographic 
characteristics of the traveler and the distribution of land uses within the city zone.  

 

Trip Distribution: Gravity Model Form and Parameters 
 

Once we have estimates for the numbers of trips produced from and attracted to each zone, we 
approximate the numbers of trips travel from each origin to each destination for each travel purpose. 
This step is trip distribution. Numerous factors affect the likelihood of a given trip, generally related to 
the ease of travel between destinations, the presence of competing opportunities, and extenuating 
circumstances such as weather, for example. In the absence of trip distribution data, we posit that trip 
volumes are a product of three factors: the emissivity of the origin, the attractiveness of the 
destination, and the ease of travel between them. Gravity models, one of the most common trip 
distribution models, assume that trip volumes are directly proportional to the number of trips 
produced in the origin, directly proportional to the number of trips attracted by the destination, and 
inversely proportional to the cost of travel between these zones. We use Equation 3a to estimate the 
number of trips 𝑇!,/

&  taken between a given origin region 𝑖	 ∈ 𝑍 and destination 𝑗	 ∈ 𝑍 for trip purpose 𝑝, 
where 𝑃!

& denotes the trip production of the origin and 𝐴/
& the attraction of the destination. Travel 

impedance function 𝐹!,/
&  provides the travel impedance between these regions.  
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We use Equation 3a, a doubly-constrained gravity model,  to estimate trip distribution in cases where 
both trip production and attraction are known. When only trip production is estimated, we use a singly-
constrained gravity model, provided in Equation 3b. 

      𝑇!,/
& = 𝑃!

& 6",(
)

∑ 6",(*
)

(*+(∈-
      (3b)

  

Both forms of the gravity model employ travel function 𝐹!,/
& , reported in Equation 4. The subsequent 

travel impedance value is determined by the travel distance between the origin and destination zones 
𝑡!,/, as well as parameters 𝑎 and 𝑏, which together represent the typical traveler's sensitivity to travel 
time. The parameter values we used for each city are reported in Table 10. We note that travelers in 
the New York region are especially sensitive to travel distance, more likely to travel to destinations 
within their own borough or neighborhood.  

 

     𝐹!,/
& = 𝑡!,/8 ∙ 𝑒𝑥𝑝@𝑐 ∙ 𝑡!,/B      (4) 

 
Table 10. Gravity model travel impedance function parameters. 

City Parameter 
Value 

Work Trips Non-Work Trips 

Seattle, WA 
b 

c 

-0.503 

-0.078 

-3.993 

-0.019 

New York, NY 
b 

c 

-6.000 

-0.01 

-8.000 

-0.008 

Chicago, IL 
b 

c 

-0.503 

-0.078 

-3.993 

-0.019 

 

We tuned the parameters in Table 10 by comparing the origin-destination trip volumes the 
subsequent models produced against known values provided in survey data. The forms of each trip 
distribution function as well as preliminary gravity model parameter values were informed by National 
Academies of Sciences, Engineering, and Medicine NCHRP Report 716 (2012).  

By repeatedly solving Equation 3a or 3b, we create a trip matrix, which denotes the numbers of trips 
taken between each pair of zones for each travel purpose.  

 

 


