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ABSTRACT

The inverse scattering theory concept of layer stripping is applied to a
variety of inverse seismic problems. This results in fast algorithms that solve
these problems more simply and quickly than techniques used previously on
thege problems, and also admit physical insight into their operation.

A layer stripping algorithm works by recursively identifying and stripping
away differential layers of the medium. As the wave front of the excitation
passes through a given depth z, the first non-zero value of the medium
response at depth z yields information about the medium at depth z. Then the
excitation and response can be propagated through the known differential layer
at depth z to depth z + A, where the process is repeated.

The inverse seismic problems for which layer stripping fast algorithm
solutions are obtained include: (1) the reconstruction of layered acoustic and
elastic media from their reflection responses to impulsive plane waves at non-
normal incidence; (2) the reconstruction of a layered acoustic medium from
its reflection response to a point impulsive or harmonic source; and (3) the
reconstruction of a two-dimensionally inhomogeneous medium from its plane
wave reflection response. None of these algorithms has appeared previously
in the literature.

Computer runs of some of these algorithms are included, and their
performance is quite satisfactory. Several procedures for improving their
performance on noisy data are given. Some results on general inverse
scattering theory, and relations between these fast algorithms and fast
algorithms that exploit structure in matrices or the kernels of integral
equations, are also presented.

Thesis Supervisor: Dr. Bernard C. Levy
Title: Associate Professor of Electrical Engineering and
Computer Science.
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CHAPTER 1

Introduction

1.1 Motivation

The inverse seismic problem can be defined roughly as follows.
The medium to be probed (i.e., the earth or the ocean floor) is
excited by some sort of source, generally explosive in nature. The
response of the medium to this source is measured, and from this response
some properties of the medium are determined. The importance of this
problem in locating oil and mineral deposits should be evident.

The above definition is vague because the problem can be
specialized in many different ways. The experiment may take place
entirely on land, in which case the medium response is measured by
seismometers as the (particle) displacement, velocity, or acceleration at
a given point. Alternately, the experiment may take place at sea, in
which case the medium being probed is the sea bottom, and the medium
response is measured by hydrophones as the pressure in the ocean water.
The medium itself may be assumed to consist of homogeneous layers of
varying thicknesses, horizontally stratified, or lateral variation in medium
properties may be permitted. The medium may support the propagation
of elastic (P and S) waves, or of acoustic (P) waves only.

A particular case of the inverse seismic problem that has been the
focus of considerable attention in recent years is the case where the
medium is parametrized by profiles of local density p(z) and local

acoustic wave speed c(z), and these two quantities vary continuously
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with depth. Since any medium discontinuity likely to occur in the real
world could be modelled by a fast-changing continuous function, this

is in a sense the most general case of a one-dimensional acoustic medium.
In addition, the difficulty of the general problem necessitates some
simplifying assumptions; this case (henceforth referred to as the

"1-D problem") is specialized enough to admit an exact (in principle)
analytic solution, while still being general enough to be of some practical
use.

Starting with the landmark paper of Ware and Aki (1969), solutions
to the 1-D problem have generally employed a mathematical physics
approach. This is because the basic acoustic and stress-strain
equations of the 1-D problem may be transformed into a Schrodinger
equation, to which exact inverse scattering solutions are already known
(See Section 3.2.2). However, these solutions require the solution of
a Marchenko integral equation, which is computationally unattractive since
the amount of computation involved for a discretization of order N is
O(Ns). In addition, the medium parameter profiles are required to be
twice differentiable.

In searching for computationally faster ways of solving the 1-D
problem, the general inverse scattering problem concept of layer-
stripping‘ suggests itself. A layer-stripping algorithm applied to the
1-D problem works conceptually as follows. The basic equations for the
1-D problem are transformed into a coupled set of partial differential
equations which describe the propagation of up- and down—goihg waves as
they interact with the medium and with each other. If the downgoing
wave is assumed to contain a leading impulse (representing an explosive

source), then the first reflection of this impulse into the upgoing wave
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at a given depth reveals information about the medium at that depth.
This information is then used to propagate the waves downward, where
information about the medium at this (lower) depth is obtained.
Proceeding recursively in this manner, differential layers of the medium
are "peeled away" as the algorithm penetrates deeper and deeper.
Mathematical details of this procedure are given in Chapter II; the
physical interpretation of the workings of such an algorithm should be
quite apparent. The advantage of such an algorithm is that it requires
only O(Nz) computation--a considerable savings.

How can the layer-stripping algorithm get by with 0(N2) computation?
Details are given in Chapter II and are too complicated to recount here, but
the special structure (identity-plus-Hankel kernel) of the Marchenko
integral equation allows a fast algorithm solution to the discretized version
of this equation in the same manner that the special structure of a Toeplitz
matrix allows a fast algorithm solution to a Toeplitz system of equations by
the Levinson algorithm. In fact, the layer-stripping algorithm consists in
part of a continuous-parameter version of the fast Cholesky algorithm
encountered in studying the factorization of Toeplitz matrices, and there
is a close relationship between this algorithm and the Levinson algorithm.

Thus, layer-stripping is more than just a technique for solving
inverse scatterihg' problems. In addition to admitting an unusually vivid
physical interpretation of its operation, it ties in quite readily with
factorization of mafrices and solutions of integral equations whose kernels
have specific forms. This in turn is related to the capacity of this
procedure to exploit these forms to generate faster and simpler algorithms
for solving these inverse scattering problems. This suggests that layer-

stripping might be a powerful technique to bring to bear on various



inverse seismic problems--more so than has generally been recognized.

The subject of this thesis is the theoretical development of the

layer-stripping methodology, and the application of layer-stripping

methods to a wider variety of inverse seismic problems than has been

dealt with so far. Among the major problems considered are:

(1)

(2)

(3

€))

The "offset" problem in which the medium is probed
with impulsive plane pressure waves at non-normal
incidence. This allows the recovery of density and
wave speed. profiles separately as functions of depth,
which is not possible for the 1-D problem described
above;

The "point-source" problem in which the medium is
probed with spherical waves emanating from an
impulsive point source, or from a point harmonic
source. This is a situation far more likely to be
encountered in practice than infinite plane waves,
which must be simulated by stacking d_ata;

The "elastic" problem in which the medium supports
the propagation of both P and S waves, with continual
interconversion between the two types of waves. The
goal is to recover profiles of the Lamé parameters

A(z) and p(z) as well as the density p(z);
Higher-dimensional problems in which lateral variations
of density and wave speed are allowed, viz. p(x,z)

and c(x,z).

The goal of this thesis is not merely to obtain algorithms that

solve these problems, but to interpret these algorithms physically and

18
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relate them to past work done in solving these problems, insofar as
possible. It is also noted how the various algorithms generalize from
one problem to another, pointing out mathematical similarities in the

problems themselves that may not be immediately apparent.

Comparison with Other Inversion Methods

The inversion algorithms given in this thesis are all amplitude-based
procedures, since the amplitude of the measured medium response is
used to reconstruct the medium. ("Amplitude" here refers to the
amplitude and phase of the reflection response.) Ths is in contrast to
travel time inversion methods, which use only the arrival times of various
modes or converted waves. It should be noted that travel time inversion
methods such as the Herglotz—Wiéchert formula (Aki and Richards,
1980) generally have difficulty with low-velocity zones in the medium,
require the assumption of geometrical seismics (i.e., high frequencies),
and are unable to reconstruct the density of the medium. None of
these difficulties applies to the layer stripping inversion procedures given
in this thesis.

However, the requirement of measuring the amplitude of the
reflection response introduces noise into the inversion problem. In
Chapter V, some study is made of the behavior of the offset problem
layer stripping algorithms of Chapter IV in the presence of noise. The
results of this study show that the algorithms work well in the presence
of small amounts of additive noise, but break down at some depth for
higher noise levels. This is due in part to the poor conditioning of the
inverse problem at this depth, and does not reflect an inherent fault in

the algorithms themselves, as is commonly believed. This issue is
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diScussed in more detail in Chapter V.

The presence of a significant amount of noise in the data suggests
the use of deconvolution methods in which the medium is modelled as
an autoregressive (AR) filter. In using this approach, it is necessary
to assume that the medium reflection coefficients constitute a white
(i.e., completely uncorrelated) random process, which is tantamount
to neglecting all multiple reflections within the médium. Thus
deconvolution methods are inherently inexact. Further, Lash (1982)
reports that multiple reflections can constitute a significant part of the
reflection response, particularly for sedimentary, layered media.

This last point is particularly important, since sedimentary,
layered media constitute a likely milieu for deposits of petroleum.
Petroleum deposits tend to be found in "traps" about half a square mile
in extent and about four miles deep. Such traps tend to arise in
layered media generally formed by sedimentary processes. Since
searching for these traps by inverse seismic methods is of great
interest to oil companies, the felevance of the approach used in this

thesis should be evident.

1.2 Literature Survey

Details of past work done on each of the problems considered in
this thesis are given in the introductions to each chapter. In this

section, the most important references are collected and summarized.

Application of the Layer-Stripping Principle

The concept of layer stripping has been developed only recently,
and not many references are available on the application of this concept

to inverse scattering problems. Although the concept of dynamic
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deconvolution (e.g., Robinson; 1982) can be considered to be a
precursor to the results of application of the layer-stripping idea,
application of the layer-stripping concept itself has occurred only
recently.

Bruckstein et al. (1983) is a good survey paper on the concept and
its relations to other means of solving inverse scattering problems,
i.e., integral equations. Chapter II of this thesis contains most of
the important ideas of this paper, with more emphasis on applications.
Symes (1981), Santosa and Schwetlick (1982), Symes and Zimmerman
(1982), and Bube and Burridge (1983) have all applied layer stripping
ideas to the 1-D problem at normal incidence, and the latter two report
satisfying results for numerical tests on synthetic data. Corones et
al. (1983) used the time-domain version of a Riccati equation as an
invariant embedding equation, which can be considered to be a layer
stripping approach. This also solved the one-dimensional problem at
normal incidence.

Carrion (1983) has recently applied layer stripping ideas to the
one-dimensional problem at non-normal incidence (i.e., the "offset"
problem). However, Carrion's procedure is much more complicated than
the alogrithm specified in Chapter IV, and lacks the physical
interpretability of that algorithm. Carrion's procedure is also not
easily related to layer stripping algorithms for the one-dimensional
problem at normal incidence, and does not generalize to algorithms for
the elastic problem and higher-dimensional problems, as does the
algorithm of Chapter IV.

Similar objections apply to the layer stripping algorithm given in

Clarke (1984) for the elastic problem. In particular, the medium
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parameter updates are far too complicated to consider this algorithm

a "fast" algorithm. Although Clarke's (1984) algorithm, unlike the

algorithm given in Chapter VI, does in principle furnish an exact

solution for a discrete medium (i.e., a medium whose properties change

sharply at each interface between layers), the numerical results

presented in Chapter VI indicate that the more complicated discrete

medium updates may not be worth the added computation time they require.
Mendel and Habibi-Ashrafi (1980) and Habibi-Ashrafi and Mendel

(1982) have utilized the principle of layer stripping in a somewhat

different manner from the approach taken in this thesis. Their approach

is to perform a maximum-likelihood estimation of the time and strength

of each primary reflection, using a matched filter and a transversal

equalizing filter, and then use this data to propagate the waves downward.

This a posteriori approach is in contrast to the a priori approach used

in this thesis. Although it is more complex and time-consuming, it

may well work better on noisy data. Shiva and Mendel (1983) apply

this approach to the elastic problem,‘ but as in Clarke (1984) the use

of discrete medium updates results in a very complicated procedure.

The One-Dimensional Problem at Normal Incidence

The landmark paper of Ware and Aki (1969) stimulated interest
in the 1-D problem, in which an infinite impulsive plane pressure wave
is normally incident on a medium supporting the propagation of acoustic
(sound) waves and having depth-dependent density p(z) and wave
speed c(z). By suitable transformations (see Chapter III), the basic
acoustic and stress-strain equations of the 1-D problem are transformed

into a Schrodinger equation. The inverse scattering problem for a
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Schrodinger equation is well known both in mathematical physics and in
inverse scattering theory, and its solution requires the solution of

a Marchenko integral equation, as discussed in Chapter II. This
approach, which may be termed the "classical" approach to the 1-D
problem, has been employed by many authors.

The result of solving the 1-D problem is the impedance pc(T)
as a function of travel time 1. Gerver (1970) showed that the
impedance is all that can be reconstructed for an excitation by plane
waves at normal incidence, and that the reconstruction is unique,
subject to mild assumptions.

Other methods for solving the 1-D problem have been given by
Burridge (1980), who derives the Marchenko integral equation and
several related integral equations directly in the time domain, bypassing
the Schrodinger equation formulation. Gray (1983) derives a
Marchenko equation directly in terms of a reflectivity function r(t),
bypassing the Schrodinger potential. This allows discontinuities in r(t)
and requires only that the impedance be continuous, unlike the
Schrodinger formulation for which the impedance must be twice
differentiable. The excellent review paper by Newton (1981)
summarizes several different ways of solving the 1-D problem.

The discrete version of the 1-D problem consists of a layered
medium being probed by a discrete impulsive plane wave. The layered
medium is assumed to be composed of horizontally stratified homogeneous
layers whose thicknesses are such that the travel time At through each
layer is the same. Then all events (reflections at or transmissions
through any interface, or arrivals at the surface) occur at integer

multiples of A1, making the problem a digital signal processing problem.
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This model of the medium was first proposed by Goupillaud (1961), and
is often referred to in the literature as a "Goupillaud medium." Analysis
of wave propagation through such a medium has been performed in
Kunetz (1962), Berryman and Greene (1980), AKi and Richards (1980),
and Robinson (1982), among others, and it is shown that the impedance
of the layers may be recovered by solving an identity—plus—Hankél
system of equations. It is shown further in the above references that
this system can be solved by a fast, Levinson-like algorithm that
exploits the structure of the system matrix. Berryman and Greene
(1980) showed that discretizations of the Marchenko integral equation
and the Schrodinger equation lead to the same identity-plus-Hankel
system, so that discretization of the medium is equivalent to

discretization of the equations.

The Offset and Point-Source Problems

The offset problem is a variation on the 1-D problem described above
in that the probing impulsive plane wave is not incident normally on
the medium, but arrives at the top of the medium at a slant or
offset (see Figure 4.1). Although the density and wave speed are still
functions of depth only, the medium itself is now assumed to be two-
dimensional in extent--the waves no longer propagate only along a
single vertical ray path. Since the offset experiment may be performed
at two different angles of incidence, resulting in two different ray
paths through the medium, the density and wave speed profiles p(z)
and c(z) can be recovered separately as functions of depth. This is
unlike the 1-D experiment, for which only the impedance as a function

of travel time pe(t) can be recovered.
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The offset problem was first analyzed by Ware (1969), who showed
how it could be transformed into a 1-D problem parametrized by the
angle of incidence. Coen (1981) used a different transformation to
obtain a Schrodinger equation which, upon solution of a Marchenko
integral equation, yields the index of refraction. Coen's procedure
requires the solution of two Marchenko integral equations (one for
each experiment) and some algebra to recover p(z) and c(z).

Howard (1983) gives still another procedure that results in a
matrix Marchenko integral equation. The profiles p(z) and c(z) are
then recovered using a rather messy reconstruction procedure. Although
Howard uses the transformation into upvgoing and downgoing waves used
in Chapter IV, his procedure is not at all well suited for computation.

In the point-source problem the medium is probed with spherical

impulsive waves emanating from a single point source. This is a more
realistic set-up than supposing an infinite plane wave, which cannot
exist in the real world and must be simulated by stacking data.
Although transformations between plane waves (actually cylindrical
waves) and spherical waves are well known (e.g., the Sommerfeld
integral; see AKki and Richards, 1980), surprisingly little work has been
done on the inverse problem with a point-source excitation.

Coen (1982) uses the Hankel transform of order zero to transform
the point source problem to the offset problem. A Hankel transform must
be performed on the original data (vertical particle velocity at the
surface), and Coen notes that this can be interpreted as a Radon
transform. However, the resulting (synthetic) offset problem may
involve an impulsive plane wave incident at a post-critical angle, which

must be dealt with in a manner different from that of the case of
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pre-critical incidence.

Coen (1982) and Stickler (1983) consider the inverse problem in
which the medium is excited by a point harmonic source. By performing
this experiment at two different source frequencies, the profiles 0 (z)
and c(z) are recovered separately. Coen posits an experiment run on
land, obtains a Schrodinger-like equation, and requires the solution of
two Marchenko integral equations. Stickler posits an experiment run at
sea, and requires the solution of a Schrodinger equation inverse

potential problem by trace methods.

The Elastic Problem

The elastic problem is a variation on the offset problem in which the
medium is now assumed to support the propagation of both P waves
and S waves. This is a more realistic assumption for the earth than
the assumption of acoustic (P) wave propagation only, which is
tantamount to treating the earth as a fluid. The problem is difficult
in that the two wave types are being continually interconverted as they
propagate throﬁgh an inhomogeneous medium. The goal of the elastic
prdblem is recovery of profiles of the Lamé parameters A(z) and u(a),
and the density p(z).

Previous work on this problem has yielded methods of solution
that are computationally arduous to implement. Blagoveschenskii (1967)
exhibited several integral equations whose solutions yielded the
parameter profiles, and by combining the Gel'fand-Levitan inverse
scattering procedure with the solution of a Volterra-type equation,
Carroll and Santosa (1982) were able to recover the parameter profiles
more simply. Baker (1982) solved the related problem of

reconstructing radially-varying parameters by using spherical harmonics



27

and Marchenko integral equations.

Kennett and Illingworth (1981) gave a very complicated procedure
involving approximations by Airy functions and propagator matrices,
which "propagate" displacements and stresses from one depth to another
as a state transition matrix propagates the state of a system from one
time to another. Frasier (1969) gave a treatment of the discrete
elastic problem analogous to Berryman and Greene's (1980) treatment of
the 1-D problem, although the different wave speeds of P and S waves
cause problems in defining a Goupillaud medium model.

In summary, none of the methods brought to bear on the elastic
problem so far can be considered to be attractive from a practical,

computational perspective.

Higher Dimensional Problems

Very little work has been done in obtaining exact solutions to
higher-dimensional inverse seismic problems, in which the density p(x,z)
and wave speed c(x,z) are allowed to vary laterally as well as with
depth. The most commonly used approach is migration, in which an
observed wave field is back-propagated into the medium to determine
its strength at the point of reflection, yielding the reflection coefficient
at that point. This is effective if the medium consists of a few large
homogeneous regions, with variation only at a few (nonéhorizontal)
interfaces. Tomographic approaches employing the Born (weak SCattering)
approximation are useful only if the wave speed has little variation.
Neither of these approaches can reconstruct density or account for
multiple reflections.

Newton (1980) has extended the Gel'fand-Levitan potential

reconstruction procedure to general 3-D media. However, this result has
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proven to be of limited use in solving higher-dimensional seismic

problems.

1.3 Contributions of Thesis

The major contribution of this thesis is the demonstration that layer
stripping principles can be applied to a much wider variety of inverse
seismic problems than has generally been realized. Other contributions
include the numerical demonstration that the new algorithms do in fact
work on synthetically generated data, and that the offset problem
algorithm works on slightly noisy data as well.

The material of Chapter II is a synthesis of the major results of
Bruckstein et al. (1983) and Yagle and Levy (1984a). The results on
inverse scattering for asymmetric two-component wave systems, and on
recovery of the potential of a Schrodinger equation by conversion to a
symmetric two-component wave system (Section 2.3.5) have not previously
appeared in the literature (save for Yagle and Levy, 1984a), although
Jaulent (1982) used an approach similar to the former to solve the
inverse problem for a lossy non-uniform transmission line.

The material covered in Chapter IIl is a compendium of results from
a variety of sources, including Ware and Aki (1969), Berryman and
Greene (1980), Robinson (1982), Bube and Burridge (1983), and Yagle
and Levy (1984b). The results on the use of the continuous-parameter
fast Cholesky algorithm to reconstruct a continuous layered medium were
obtained concurrently with and independently of the work of Bruckstein
et al. (1983) and Bube and Burridge (1983). The Schur and dynamic
deconvolution algorithms for reconstructing a continuous medium seem to

be new to the literature, although they are only a trivial generalization
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of the discrete medium results. However, Chapter III does do an
excellent job of linking together the various approaches to solving the
one-dimensional normal incidence inverse problem, and of showing the
dual nature of the layer stripping and integral equation/matrix equation
methods for both continuous and discrete layered media.

The layer stripping algorithms of Chapter IV are all new, with the
continuous medium algorithms for plane wave and point source excitations
having appeared in Yagle and Levy (1984b). The material of Sections
4.2.1., 4.3.1, and 4.4.1 on integral equations solutions, Hankel and
Radon transforms, and turning points, respectively, is necessary
foundation material taken from a variety of sources (See references for
Chapter IV).

Chapter V consists of a variety of modifications to the algorithms
of Chapter IV, and numerical tests of the various algorithms on
synthetically-generated data. The discussion of forward and backward
stability is due to Stewart (1973), and the condition number threshold
modification is adapted from Bruckstein et al. (1984). The modification
of using a least-squares fit to compute the updates at each depth,
the lossy medium algorithm, and all of the numerical results and
observations are new.

All of the results of Chapter VI (save for the contents of Section
6.3.3, which are taken from Frasier, 1969) are new. The contents of
Sections 6.2 and 6.4 appear in Yagle and Levy (1985). It should be
noted that the 4x4 system matrix for upgoing and downgoing waves in
inhomogeneous media has been derived in several papers by B.L.N.
Kennett, e.g., Kennett and Illingworth (1981).

In Chapter VII two different inverse problems are treated, since
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they are mathematically analogous. This analogy seems to have gone
unnoticed previously. The fast algorithms for solving the two
formulations of the inverse problem with a point harmonic source are
new, and they appear in Yagle and Levy (1984c). The results on the
inverse resistivity problem are taken from Levy (1984).

In Chapter VIII the layer stripping approach is applied to higher-
dimensional inverse seismic problems, in which the density and wave
speed vary laterally as well as with depth (viz. p(x,z) and c(x,z)).
All of the results in this chapter are new. The results of Sections 8.2

and 8.4 have appeared in Yagle (1983).

In this section the contributions of and new results in this thesis
have been summarized. In the process, an overview of the thesis as a
whole has been given. Since the major contribution of this thesis is
the application of the layer stripping concept to a wide variety of
inverse seismic problems, considerable attention is paid throughout the
thesis to analogies between various problems and solutions, and to ways
in which solutions to one problem generalize to those of another. In
the next chapter a foundation for all of this is laid by discussing the
concept of layer stripping itself, the ways in which it may be used to
solve various types of inverse scattering problems, and the ways in
which these methods are mathematically dual to the usual, integral-

equation-based methods of solving these problems.
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CHAPTER 11

Layer Stripping and Inverse Scattering Theory

2.1 Introduction

In this chapter we collect a variety of results on inverse scattering
theory from several sources, and present a unified treatment of several
methods for solving inverse scattering problems. In particular, the

mathematical concept of layer stripping (Bruckstein et al, 1983) is

explained and used to develop algorithms for solving inverse scattering
problems.

In Section 2.2 the concept of an inverse scattering problem is quickly
reviewed, and the symmetric two-component wave system inverse
scattering problem is defined. Most of the inverse seismic problems
dealt with in this thesis can be cast into this form, or into an analogous
form. Thus approaches used to solve this problem can be (and will be)
used to solve other problems in this thesis. The properties of the
scattering matrix are then discussed, with attention paid to physical
interpretation of these properties in terms of conservation of energy.

In Section 2.3 differential methods for solving inverse scattering
problems are derived and discussed. These methods utilize the concept

of layer stripping, which means that the scattering medium is

reconstructed differentially, layer by layer, rather than all at once in
a "batch" procedure. The continuous-parameter fast Cholesky, Schur,
and dynamic deconvolution algorithms (which are all different versions
of the same algorithm) are derived and applied to the inverse scattering

problem for a lossless transmission line. Next, a fast algorithm for the
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asymmetric two-component wave system inverse scattering problem is
derived and applied to the inverse scattering problem for a lossy
transmission line. Finally, other differential methods are derived,
including the misnamed "method of characteristics" of Santosa and
Schwetlick (1982), and two methods for recovering the potential of a
Schrodinger equation. These methods will be used in Chapters VIII
and VII, respectively.

In Section 2.4 integral equation methods for solving inverse
scattering problems are derived and discussed. The Marchenko,
Gel'fand-Levitan, and Krein integral equations are all derived using the
tréatment of Bruckstein et al. (1983). The Krein-Levinson algorithm,
a continuous-parameter version of the famous Levinson algorithm
for solving Toeplitz systems of equations, is shown to solve these
integral equations. Finally, an approach due to Levy (1985) which
interprets the inverse scattering problem as an orthogonalization
problem is uséd to again obtain the Marchenko integral equation.

In Section 2.5 relations between differential and integral methods
are explored. In particular, the relation between the fast Cholesky
algorithm (a differential method) and the Krein-Levinson algorithm
(which soives the integral equations) is discussed. The relations are
then illustrated by interpreting the problem of linear least-squares
estimation of a stationary stochastic process as an inverse scattering

problem, and solving it using both algorithms.

2.2 Inverse Scattering Problems

In an inverse scattering problem a medium is probed with some sort

of disturbance (e.g., acoustic or electromagnetic) and the effect on the
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disturbance (either the scattered field or the transmitted field, or both)
is measured. From this measurement an attempt is made to reconstruct
the medium. Obviously a priori assumptions about the medium are
necessary. For example, in Chapter IV it will be assumed that the
acoustic medium being probed is lossless, layered (medium parameters
vary only with depth z), isotropic (no variation with direction), linear
(small strains), and completely specified by wave speed c(z) and

density p(z). The problem is then to recover two functions po(z) and
c(z) from measurement of the scattered field. This is now a mathematical

problem, but in general still a difficult one.

The Symmetric Two-Component Wave System

Consider a lossless, one-dimensional scattering medium described by

the coupled partial differential equations

dp/ox + 3p /ot = -r(x)q(x,t) (2-1a)

9q/9x - 3g /ot = -r(x)p(x,t) (2-1b)

These equations are a special case of equations discussed by Zakharov
and Shabat (1972) and Ablowitz and Segur (1981). The reflectivity
function r(x) completely characterizes the medium, and it is assumed that
r(x) =0 for x < 0 and r(x)GLl[O,oo). This means that for x < 0 and

x+» p(x,t) and q(x,t) have the forms
p(x,t) = p(x-t), q(x,t) = q(x+t). (2-2)

Thus p and q can be interpreted as waves propagating rightward and
leftward at unit velocity. The interpretation of the medium being probed
by waves at x = 0 and x> « is evident.

What measurements are necessary to recover the reflectivity function
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r(x)? To answer this question, we look at the scattering matrix for the

two-component system.

The Scattering Matrix

By taking the Fourier transform of (2-1), we obtain

Leps

p -jw -r(x)
d (2-3)
dx

flop)

q -r(x) jw

Now if x is discretized with discretization length 4 (i.e., x = nd),
a simple forward difference approximation to the derivative in (2-3)
and noting that 1 - ijze_jwA for small A gives the elementary
scattering section described in Figure 2.1. This figure shows that
r(x) A is the fraction of the rightgoing wave D which is reflected by a
section of thickness A at point x inside the medium. The discrete
ladder structure displayed by Figure 2.1 has been used to design signal
processing architectures for speech processing (Markel and Gray, 1983),
digital wave-filter synthesis (Deprettere and Dewilde, 1980), spectral
estimation (Makhoul, 1977), and linear estimation (Dewilde, 1982;
Dewilde and Dym, 1981; Dewilde et al., 1978).

The elementary scattering layers of Figure 2.1 can be composed by
using the rules of composition for scattering layers described in
Redheffer (1962). The resulting aggregate medium is described by the

scattering matrix

'1\‘ (w) f{ (w)
L R
S(w) = (2-4)

~

RL(u)) TR(u))
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A - A
p(x,w) —>{ e Jol P— P(x+A,w)
r(x)AA r(x)A
A -.
qlx,w)e—— eIwb e qx+A, w)
2.1 Elementary scattering sectibns obtained by discretizing

the two-component wave equations.
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which relates the incoming and outgoing waves appearing in Figures

2.2a2 and 2.2b. In Figure 2.2a, the medium is probed from the left by
a rightward propagating wave e 1% and ftL(u))ejwX and 'fL(w)e_jwX
are respectively the reflected and transmitted waves. Figure 2.Zb
corresponds to the case when the medium is probed from the right.

More generally, for arbitrary waves p(x,w) and q(x,w)

A

B, = pp(we 1™ q(x0) = ap (el (2-52)

for x <0, and

PG, = b (e ™ 4w = gy el (2-5b)
as x > %, and

Py (W) Py (W)

R = sw | (2-6)

G (9 dg (W

expresses the outgoing waves (ﬁR, €1L) as a function of the incoming

waves (ﬁL,, éIR) .

If
B, (x,w)

ai(x,w) =1 i=1,2 (2-7)
q; (x,w)

are two arbitrary solutions of (2-3), and if z é diag(1l,-1), the system

(2-3) has the properties that

o @) W Dayx,w) = 0 (2-8)
and
o W, (xw, a,w) =0, (2-9)
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where H denotes the Hermitian transpose, and where

é AN _ A A 2_10

is the Wronskian of ay and CPYS Equations (2-8) and (2-9) may be
easily verified by direct computation, but they have important
implications. Equation (2-8) shows that |§1 (x,m)l2 - |€11 (x,u))l2 is

independent of x, and employing this at x = 0 and x > « yields
A A 2 A 2 ~
8,00,0 (% + [g=w|® = [Bye.w [P+ [a;00,0] % (2-11)

The left side of (2-11) represents the incoming energy of the probing
waves, and the right side of (2-11) represents the outgoing energy.

Thus equation (2-11) is a statement of conservation of energy, i.e.,

the system is lossless..

In equation (2-9), let a; be the solution of (2-3) when the
medium is probed from the left, and let a, be the solution of (2-3)
when the medium is probed from the right (see Figure 2.2). Then
employing the implication of (2-9) that W(al,az) is the same at x = 0

and x » « yields

T IWK L WX LR WX, T e 1™ . % - 9. ﬁRe—]wx (2-12)

or

TR(w‘) = TL(w) . (2-13)
Physically, this means that the transmission loss through the system is
the same going in either direction. This is a statement of reciprocity.

Note that if time were reversed the leftgoing and rightgoing waves would

switch their identities but still suffer the same transmission losses.
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If TL and TR were different, the system would depend on the direction
of time.
From equations (2-6) and (2-11) we have, for any solution,

~ ~ ~

p p P
A ~ L ~ ~ R ~ * ~ H L
(pragl | " | = [Pg 471 = by agl sos| “|. (219
R 4, 9R
Since this holds for any solution we must have
sfs =1 (2-15)

i.e., the scattering matrix is unitary. Writing out (2-15) element by

element yields

T ?+ Bpw|® = [Tw®+ |Ryw|?=1 (2-16a)
TRy (W* + ’f‘(w)*f{R(w) = 0. (2-16b)

Equation (2-16a) is an obvious statement of conservation of energy, while
equation (2-16b) is a phase relationship that can be derived by
considering the following two experiments.

Let the medium be probed from both ends at once, first with two

waves each of amplitude unity (e—]mx and e]“K) , and then with the waves

e 1% and ].e]wx. Equating the incoming and outgoing energies for each

experiment, we have

12 412 = ]’II\‘+1€L'|2 + |’l/‘\+RAR|2 = |’f|2 + |f{L|2 + ['f[z
(2-17a)

AA

+ |Rg|?+ TR + T*Rp + (TR +T*Rp)*
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2 . .2 aa 2 A a - - A
¥+ [ = TR (2w TRy | - ]T|2+|RL]2+]T|2

(2-17b)

A 2 S AX A A LA E3 A A
+ ]RR| + ](TRL+T*RR) - ](TRL +T*RR)* .
Subtracting off (2-16a) from (2-17a) and (2-17b), dividing (2-17b) by
i, and adding (2-17a) and (2-17b) yields (2-16b). Hence (2-16b) can be

obtained entirely from the principle of conservation of energy. Note

that superposition of energy equations is only valid for lossless systems,
so (2-16b) depends on the losslessness of the medium.

Another way of deriving (2-16) is by considering time reversal.
Suppose that the medium is prdbed from the left, as in Figure 2.2a,

and time is reversed. This is now equivalent to probing the medium

with ’f‘(—cu) = 'f*(w) and ﬁL(—w) = ﬁz (w), and getting out ej(’”X at the
left end of the medium and 0 at the right end. Interpreting this in
terms of Figures 2.2a and 2.2b as an experiment forward in time,
and equating the results of the experiments running backward and
forward in time immediately yields (2-16). This interpretation, unlike
the previous one, utilizes the reciprocity of the lossless system.

The relations (2-16) furnish considerable information about the
scattering matrix S(w). Indeed, it can be shown (Faddeev, 1967;
Chadan and Sabatier, 1977) that if it is known a priori that 'i‘(m) has
no poles in the lower half of the complex plane, then "/I\‘(w) also has
no zeros in the lower half-plane and is therefore minimum phase.
Then, since the magnitude of f(w) is known from 1- [ﬁL(w)l 2 or
1- ]ﬁR(w)Iz, the argument of TA(m) can be recovered from its magnitude
using the Hilbert transform and cepstrum. The other reflection
coefficient can then be obtained from (2-16b). Thus é(w) can be

completely reconstructed from knowledge of either f{L(w) or f{R(w)
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alone (explicit formulae are given by Chadan and Sabatier, 1977, and
by Faddeev, 1967). This means that the inverse scattering problem
defined by the two-component system (2-1) being probed by a wave '
e 1% 4nd knowledge of either ﬁL(w) or ﬁR(w) is well-posed.

The significance of poles of TA(w) in the lower half-plane is

that such a pole allows a localized solution to exist. Such a solution

cannot be discerned from the results of this experiment. To see this,
suppose there is a pole of 'i‘(w) at —jwp, where wp is real and positive.
Take Figure 2.2a and divide all three waves by rf‘(u)). Then there is
a solution which behaves like I x _ WpX o 4 © j.e., it
vanishes. The reflected wave at x = 0 behaves like ll'f‘ (wp), hencev it
is also zero. Yet there is a non-zero solution inside the medium. Such
a solution is called a bound state (Chadan and Sabatier, 1977).
Technically, a bound state is a square-integrable solution with negative
energy. Physically, a bound state corresponds to an inverse
scattering problem in which no scattering occurs. In nuclear
physics, for example, this corresponds to an incident particle
being captured by the nucleus. In seismology, this corresponds
to a low-velocity zone in which energy is trapped in a waveguide-
like effect.

Bound states can often be ruled out by causality. Suppose a

medium initially at rest is probed with a causal disturbance

p(x,t) =p(x,)1(t-x). (2-18)

If p(x,t) is causal, its Fourier transform must be analytic in the
Jower half plane for all x. Then ’f‘(w) = ﬁ(w, w) /p(0,w) must also have

this property, implying that there are no bound states (Newton, 1981).
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Then the scattering matrix S(w) can be completely reconstructed from
I’{\L(w) or ﬁR(w). This is important, since in the inverse seismic
problem, we have access to only one side of the scattering medium.

Note that our sign convention for the Fourier transform is the
opposite of that of Faddeev (1967) and Chadan and Sabatier (1977),
which explains why we use the lower half-plane to study the
properties of S(w), instead of the upper half-plane used in the
mentioned references.

Having defined the inverse scattering problem for the two-

component wave system, we now define procedures for solving it.

2.3 Differential Methods for Inverse Scattering--Layer Stripping

A differential or layer-stripping method for solving an inverse ‘

scattering problem works as follows:. Suppose that the medium is
being probed from the left, as in Figure 2.2a, and that the leftgoing
and rightgoing waves p(x,t) and gq(x,t) are known at x from previous
recursions. The first reflection of the rightgoing wave p(x,t) into
the leftgoing wave q(x,t) yields information about the medium at x.
This information is then used to propagate the waves from x to x + A.
The problem has now been altered to one starting at x + A instead of
at x. Since the waves continue to propagate through the medium, the
procedure can be performed recursively, reconstructing the medium
as the waves propagate through it..

This concept has been develoﬁed in some detail by Bruckstein et
al (1983), and applied by Symes (12981), Santosa and Schwetlick (1982),
and Bube and Burridge (1983) to t;he one-dimensional inverse seismic

problem, and by Sondhi and Resnicé*k (1983) to the inverse problem of
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determining the shape of the human vocal tract. Note that it is a
stripping principle instead of a constructive one: instead of extending
the reconstructed medium from [0,x] to [0,x+A], each recursion
strips away the effect of the medium in [x,x+4), transforming the
problem support from [x,<) to [x+A,»). Hence the name "layer

stripping."”

2.3.1 The Continuous-Time Schur and Fast Cholesky Algorithms

The archetypical layer stripping algorithm is the fast Cholesky

algorithm, so named because in its discrete form it performs a Cholesky
factorization (LDU, or lower-triangular times diagonal times upper-
triangular) of a Toeplitz matrix (Rissanen, 1973; Morf 1974; Musicus,
1981). The connection between this factorization and inverse
scattering will be explored in Chapter III. The frequency-domain

version of this algorithm is the Schur algorithm, and dynamic

deconvolution utilizes a Riccati equation derived from the Schur

algorithm. Although these three are different forms of the same
algorithm, the fast Cholesky algorithm forms the most efficient procedure

of the three for solving problems.

Fast Cholesky Algorithm

To obtain the fast Cholesky algorithm, we assume that the medium
is quiescent at t = 0, and that it is probed from the left by a known

rightward propagating wave
p(0,t) = &(t) + p(0,t)1(t) (2-19)

which is incident on the medium at t = 0. Here &(¢) denotes the

Dirac delta function and
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1 fort2>20
1(t) = (2-20)
0 fort <0

is the unit step function. Note that the main feature of p(0,t) is that it

contains a leading impulse which can be thought of as a tag indicating

the wavefront of the probing wave. The measured data is the reflected

wave

q(0,t) = q(0,t)1(t) (2-21)

recorded at x = 0. In the special case when p(0,t) = 0, q(0,t) = RL(t)
is the impulse response of the scattering medium and its Fourier transform
IA{L(w) is the left reflection coefficient. Note that f{L(w) can also be
measured by sending into the medium sinusoidal waveforms at various
frequencies and measuring the magnitude and phase shift of the
reflected sinusoidal wave. In the following, for convenience we will
omit the subscript L of RL(t) and f{L(w).

Since the medium is causal and originally at rest, the waves p(x,t)

and q(x,t) inside the medium must have the form

p(x,t) = 8(t-x) + p(x,t)1(t-x) (2-22a)

4 (x,t)1(t-x) (2-22b)

q(x,t)

where p(x,t) and q(x,t) are smooth functions. By substituting (2-22)
inside (2-1), and identifying coefficients of the impulse d&(t-x) on both

sides of (2-16), we find that
r(x) = 24(x,x) (2-23)

and
dp/ox + 9p/ot = -r(x)q(x,t) (2-24a)

3q/9x - 3 /9t = -r(x)p(x,t) . (2-24b)
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The recursions (2-23) - (2-24) constitute the fast Cholesky recursions

(Bruckstein et al, 1983), and have also been called the downward
continuation recursions by Bube and Burridge (1983). Note that only
the smooth parts of p(x,t) and q(x,t) are propagated--it is not necessary
to represent the impulse numerically.

The initial data for these recursions are the measured waves
p(0,t) and §(0,t). The algorithm (2-23) - (2-24) can be viewed as
using a layer stripping principle to identify the parameters of the
scattering medium. Thus, assume that the waves p(x,t) and q(x,t) at
x have been computed. The reflectivity function r(x) is obtained from
(2-23) and is used in (2-24) to compute the waves pP(x+A,t) and g(x+A,t)
at x + A, The effect of the recursions (2-23) - (2-24) is therefore

to identify and then strip away the layer [x,x+A).

Discretization of the Fast Cholesky Algorithm

To see how the fast Cholesky algorithm is propagated, let distance
x and time t be discretized by x = nA and t =mA, where n and m
are positive integers. Then a forward-difference approximation to the

partial derivatives in (2-24) yields the fast Cholesky recursions

P(x+At+D) = p(x,t) - r(x)Aq(x,t) (2-25a)
q(x+At-8 = q(x,t) - r(x)Ap(x,t) (2-25b)
rF(x+A) = 2 (x+0x+D) . (2-25c)

The recursion patterns for the waves are illustrated in Figures 2.3a
and 2.3b. We start off knowing the waves at x for all t, and we wish to
to find the waves at x + A for all t. Although it may seem as though

information for t <x is being lost, recall that by causality there can be
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50

no wave at x until the initial excitation has had time to reach that far.

Hence both waves are zero for t < x.

The Schur Algorithm

An alternative procedure for reconstructing the medium is to utilize
directly the coupled differential equations (2-3) for the two-component

wave system together with

r(x) = 24(x,x) = LIM 2jwe™ q(x,uw) = lf ¥q(x,w)dw  (2-26)
wW—> oo m 0

which follows immediately from the initial value theorem. It is still
being assumed that the probing wave contains an impulse, as in (2-22).

Equations (2-3) and (2-26) form the Schur algorithm.

Dynamic Deconvolution

Still another procedure is to consider the left reflection coefficient

Rex,w) £ 80,0 /P (x,0) (2-27)

which is associated with the section of the medium extending over
[x,°). ﬁ(x,w) 'is the transfer function for this section of the medium,
relating the rightgoing probing wave P(x,w) to the leftgoing scattered
wave §(x,w). It is easy to show, using (2-3), that ﬁ(x,w) satisfies

the Riccati equation

dR/dx = 2juR - r(x)(1-R%) (2-28)
and since R and dR /dx are strictly proper we also have

r(x) = LIM 2juR (x,w). (2-29)
w>roo

The dynamic deconvolution algorithm (2-28) - (2-29) is propagated in x,
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vielding the left reflection coefficient R(x,w) and reflectivity function
r(x) for each x. This algorithm is a particularly dramatic illustration
of the layer-stripping concept, in that each step of this algorithm
transforms a complete inverse scattering problem on [x,x), including
the known medium response P:(x,w) , to an equivalent problem on
[x+A,2), including the medium response R (x+A,w).

It should be noted that many authors (e.g., Tolstoy and Clay,
1966; Pusey, 1975) have noted the Riccati equation (2-28), and in
fact it is a direct consequence of the rules of composition of scattering
layers (Redheffer, 1962). Gjevick et al. (1976) used this equation to
develop an interative method for reconstructing r(x). However, none
of these results utilized (2-29) to propagate the Riccati equation in x.
Corones et al. (1983) used the time-domain version of the Riccati

equation as an invariant embedding equation, and Robinson (1982) and

others derived the discrete form of this algorithm for the discrete one-
dimensional inverse seismic problem. This is discussed in Chapter III.
It is worth noting that the ﬁz term in the Riccati equation accounts

precisely for all multiple reflections within the scattering medium. To

see this, neglect the ﬁz term in (2-23), leaving
dR/dx = 2juR - r(x). (2-30)
This differential equation has the solution
R(x,w) = [:r(y)e‘zjw(y"‘)dy (2-31)

- 80 that the reflection response of the medium is merely the superposition
of the primary reflections at each depth y. These primary reflections

have strength r(y) and are phase-delayed by the two-way travel time
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2(y-x). Candel et al. (1980) used this assumption to recover r(x) from
ﬁ(O,w). This point was also noted by Corones et al. (1983) for the

time-domain version of the Riccati equation.

Historical Background of the Algorithms

The fast Cholesky algorithm, as mentioned earlier, is so named
because its discrete form performs a Cholesky (LDU) factorization of a
Toeplitz matrix (seé Musicus, 1981, for details). This algorithm, in
its discrete form, seems to have appeared first in Rissanen (1973) and
Morf (1974). The continuous algorithm similarly performs a causal-
anticausal factorization of Toeplitz operators, a fact first brought to wide
attention by Kailath et al. (1979).

The Schur algorithm (2-3) and (2-26) is the continuous version of
an algorithm obtained by Schur (1917; see also Akhiezer, 1965) for
testing the boundedness of a function R(z) which is analytic outside
the unit disk. Given R(z), Schur showed that [R(z)| < 1 outside
the unit disk if and only if the reflection coefficients ro obtained from

the recursions

Rn(z)—rn
Rn+1(z) = s Ro(z) = R(z) (2-32a)
z(1l-r_ R_(z))
nn
r. = lim Rn(z) (2-32b)

zr®

are such that Irn l < 1. Some recursions similar to (2-32) can in fact
be obtained by performing a backwards-difference discretization of the

Riccati equation (2-28), as was done by Tolstoy and Clay (1966).
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2.3.2 Example: The Lossless Non-uniform Transmission Line

In this section we study the inverse problem for the lossless non-
uniform transmission line, and show that its solution is given by the
Schur or fast vCholesky algorithms (see Gopinath and Sondhi, 1971,
for an earlier solution of this problem). In the process, we give a
scattering inferpretation of transmission line phenomena such as waves,
reflections, and impedances. This treatment can be found in many
references, e.g., Kraus and Carver (1973) and Pusey (1975).

Consider an infinitesimal section of length 4 of a lossless non-
uniform transmission line. Such a section is illustrated in Figure 2.4.
Noté that L(x) and C(x) represent inductance and capacitance per unit
length, i.e., they are distributed quantities. Writing equations for

Figure 2.4, we have

v(x,t)= LAJGifOt + v(x + A, t) (2-33a)

i(x,t) = CAov /ot +i(x + A, t) (2-33b)

Dividing by A and letting A +0, we obtain the telegrapher's equations

Il
(=]

ov/ox + L(x)di/ot (2-34a)

1l
<

di/ox + C(x)ov/ot (2-34b)

which also arise in acoustics (Santosa and Schwetlick, 1982) and in
studies of the human vocal tract (Sondhi and Resnick, 1983;
Gopinath and Sondhi, 1970) under the assumption of losslessness.
For a uniform line, it is well known (see Kraus and Carver,
1973) that (2-34) admits wave solutions, and that for such waves the

ratio of the amplitudes of the voltage and current is the characteristic
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2.4 Infinitesimal section of a lossless non-uniform transmission
line . '
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impedance

Z, & (L/C)E. (2-35)

Since the quantities p and q appearing in the two-component wave
equations must be dimensionally equivalent, this suggests defining for

the non-uniform line the dimensionally equivalent variables

Vx,t) = ZO% v(x,t) (2-36a)

Ix,t) =z T i, © (2-36b)
where Zo(x) = (L(x) /C(x))%. Substituting (2-36) in (2-34) yields

3V /9 + (LC)¥ 31/%t = —% (‘li—x In Z, V(x,1) (2-37a)

1
3I/9x + (LC)? aV/dt = c%{ n 2, 1(x,t) . (2-37b)

DO

In order to make the dependent variables x and t dimensionally

equivalent, we replace x with the travel time z defined by
X 1
z(x) = -[0 (L(u) C(u))? du (2-38)

-1
Since (L(x) C(x)) ? is the local wave speed at x, z(x) is the time
required for a wave, starting at x = 0, to reach position x. Making the

additional change of variables

P(z,t) = 3 (V(z,t) + I(z,1) (2-39)

a4zt = 3 (V@D - I(z,1) (2-39b)

and defining the reflectivity function
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r(z) = —21— g—z in Z(2) (2-40)

we obtain the two-component wave system (2-1). The relations (2-39)

provide an interpretation of the right and left propagating waves in

terms of the normalized voltage and current.

Interpretation of the Reflection Coefficient

Suppose a uniform transmission line is terminated with a load ZL'

Then a wave travelling down the line will be reflected back by the load.

Define R (w), the reflection coefficient for the load, to be the ratio of

the Fourier transforms of the primary and reflected voltage waves, at

the frequency w. It is easy to show (see Kraus and Carver, 1973) that

s _ VRerLW ZW) - Z,

(2-41)

(w)y —
PRIM Zp (W) +Z

where ZL(w) is the impedance (defined below in (2-42)).

For the non-uniform transmission line considered here, since there
is a one-to-one correspondence between position x and travel time z,
we will use x instead of z in the qualitative analysis to follow. Then,
at point x on the line, the load perceived due to all of the line to the

right of x is the impedance
ZL(X’LU) = {;(X,U))/f(x,w) . (2-42)

This is illustrated in Figure 2.5. By substituting this expression in
(2-41), we find that for the non-uniform transmission line, the
reflection coefficient at point x is

VI - 2y(x) viI-1

ﬁ(x,w) = = ~=
v+ Zy(x) V/I +1
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2.5 The perceived load to the right of x.
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= q(x,w)/p(x,w) (2-43)

This is precisely the expression (2-27) for the left reflection coefficient

of the section of the two-component system (2-1) extending over [x,*).
We see therefore the meaning of ﬁ(z,w). For a given point x on

the line, and any given frequency w, it is the ratio of the reflected

and primary voltage waves, with the reflection due to the inhomogeneity

of the line at x. From Section 2.3.1, we know that f{(z,w) satisfies

the Riccati equation (2-28), and that r(x) may be found from

ﬁ(x,w) by using (2-29). Also nbte that if the line is locally uniform

at point X, we have dZO/dxlx.0 = 0, hence r(xo) = 0 and no

reflection occurs. Reflections occur only where the line is inhomogeneous.

Inverse Problem

Suppose now that the line characteristics L(x) and C(x) are
unknown and that we want to determine them from the measured
impedance Z (W) = ZL(O,M). This problem arises not only when we want
to find the characteristics of an existing transmission line, but also if
we want to synthesize.a' transmission line with prescribed impedance
Z(W). It is assumed here that we have access to only one end of the
line. The line characteristics can be partially reconstructed as

follows. First, scale Z;(0) to 1 and consider the reflection coefficient

Z(w) -1 . (2-44)

R(w)y = Z(0) 1

Then, run the Schur algorithm (2-3) - (2-26), using R(w) as initial
condition, to obtain r(z). Alternately, we may compute the inverse
Fourier transform R(t) of ﬁ(w), and use the fast Cholesky recursions

(2-23) - (2-24) to obtain r(z). Given r(z), the expression
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z
Z,(z) = exp 2 fO r(u) du (2-45)

enables us to recover the characteristic impedance ZO(z) = (L(z) /C(z))%
as a function of the travel time z. However, we cannot reconstruct
L(x) and C(x) separately as functions of the position x.

The same difficulty will appear in Chapter III for the one-
dimensional inverse seismic problem, except that in this case we will be
able to use an additional degree of freedom, the angle of incidence of

the probing waves, in order to reconstruct the medium completely.

2.3.3 Inverse Scattering for Asymmetric Two-Component Wave Systems

In this section, the inverse scattering problem for asymmetric two-
component wave equations is examined, and solved by using two coupled
fast Cholesky algorithms. The systems which are described by

asymmetric two-component wave equations are not necessarily lossless,

and we can therefore use these equations to describe a larger class of
physical phenomena than those that we have studied in the previous
sections. Our results will be illustrated by considering the inverse
problem for a nonuniform transmission line with losses. It is worth
noting that a solution of the inverse scattering problem for asymmetric
two-component wave equations was presented in Ablowitz and Segur
(1981) and was used by Jaulent (1982) to solve the inverse problem
for lossy transmission lines. However, this method relied on the
solution of two coupled Marchenko equations, whereas the solution that
we present here is differential, and uses the layer stripping principle.
The system that we consider is described by the asymmetric two-

component wave equations
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d p\ —j(L) ‘S(X) f’ |
d_}{ R = ] . (2_46)
q -r(x) jw q
which in the time domain correspond to

(9/3x + 9/3t)p

-s(x) q(x,t) (2-47a)

(9/9x - 9/3t)q = -r(x) p(x,t) (2-47b)

It is assumed that r(x) = s(x) = 0 for x < 0, and that r, s € L1[0,°°),
so that r(x) and s(x) are localized, i.e., they go to zero as x » o,
Then, the scattering matrix S(w) can be defined as in Section
2.2 by relating the outgoing and incoming waves appearing in Figure
2.2. In addition, the property (2-9) for the Wronskian of two
independent solutions a'ir(x,w) = (f)i(x,w), ’qi(x,w)),i =1, 2 of (2-46)
remains valid, and by applying it to the waves al(x,w) and az(x,w)
appearing in Figures 2.2a and 2.2b, respectively, we obtain again

the reciprocity relation
TL(w) = TR(w) . (2-48)

However, if aT(x,m) = (P(x,w), q(x,w)) is an arbitrary solution of

(2-46) we have

B2 - (8D = 20 - 5(x) Re(d(x,m)8*(x,0)) (2-49)

so that the scattering medium associated to (2-46) is not lossless unless
r(x) = s(x), which corresponds to the case when the two-component

wave equations are symmetric. This implies that S(w) is not a unitary

matrix, and consequently we cannot recover S(yw) from the knowledge

of the left reflection coefficient ﬁL(w) alone.
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Inverse Scattering Procedure

The inverse scattering method that we develop here relies on the
observation that if time is reversed (i.e., t is changed to -t in
(2-47), or w is changed to -w in (2-46)), and if the waves p and q
are interchanged, we obtain a (synthetic) asymmetric two-component

wave system

“r(x) a®x,t) (2-50a)

(a/ox + 8/5t)p™

(3/3% - 3/3t)g™ = -s(x) pP(x,t) (2-50b)

where r(x) replaces s(x) and vice-versa. The scattering matrix

associated to this system is

s®w)

1l
|
- o
(=T
L _J
w
|
—
~
I
(>
~
|
| el =
(=
—J

sHen™ . (2-51)

where to obtain (2-51) we have used the reciprocity relation (2-48).

The system (2-50) is a fake system, which does not really exist,

but its scattering matrix is entirely specified by the knowledge of S(w).
Then, in order to reconstruct r(x) and s(x), we assume that the

true system (2-46) and the fake system (2-50) are probed

simultaneously by some waves which have the form

p(x,t) = 8(t-x) + p(x,t) 1 (t-x)

ax,t) = qx,t) 1 (#-x) (2-52)

and

pA(x,t) = S(t-x) + p(x,t)1(t-x)
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Aty = P En1t . (2-53)

By substituting these waves in (2-46) and (2-50), we obtain the system

of coupled fast Cholesky recursions

(8/3x + 9/3t)p = -s(x) q(x,t)
(/% - 3/3t)§ = -r(x) P(x,t) (2-54a)
and
(alax + 3P = 1) §7 b
(3/3x - '3/8t)(iA = -s(x) i)A(x,t) (2-54b)
with
r(x) = 24(x,x), s(x) = 24" (x,%) (2-54c)

which can be propagated recursively for increasing values of x,
starting from x = 0. The specification of the initial conditions for these
recursions is very important, since as noted above, the system (2-50)
does not really exist, and cannot be relied upon to provide some
experimental waves f)A(O,t) and c]A(O,t).

The initial conditions that we select are

B5C0,t) = p(0,1) = 0 (2-55a)
40,6 = R.(1) , §(0,0) = RE(®) (2-55b)

where RL(t) and R‘g(t) denote the inverse Fourier transforms of the
left reflection coefficients f{L(m) and ﬁi‘(w). ﬁL(w) can be measured

directly, and from (2-51)

B2 = MWy, (2-56)
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i.e., ﬁ% (w) is the (2, 1) entry of the inverse of SH(w). Thus,
ﬁf(m) can be expressed as a function of the whole scattering matrix
S(w), and it will be specified provided that we can measure all the
enti'ies of S(w). This implies that we must have access to both ends
of the scattering medium. In some cases, such as for the inverse
seismic problem, this is impossible; but for some other problems,
such as the reconstruction of non-uniform lossy transmission lines,
the medium can be probed from both sides, and all the entries of S(w)
can be measured.

Instead of expressing our reconstruction procedure in terms of the
coupled fast Cholesky recursions described above, we can also use a

set of coﬁpled Schur recursions. Let

_ <A
and R3x,0) = wl (2-57)
p(x,w

~
>

R(x,u) =

oiRe)t
”~~
N \
EIE

be the left reflection coefficients for the true and fake systems over

~

the interval [x,<), where the waves D, fi, P, &A in the definition
(2-57) are assumed to have the forms (2-52) - (2-53). Then,

R(x,w and ﬁA(x,w) satisfy the coupled Riccati equations
dR/dx = 2juR + s(x) RZ - r(x) (2-58a)
arR?A/dx = iR + rx) @™2 - sx) (2-58b)
with initial conditions
R(0,w = R ), R*(0,0 = R (w (2-59)

By using the initial value theorem for the reflection coefficients (2-57),
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and taking into account the form of the waves (2-52) - (2-53), we get

lim 2juR (x,0) = r(x) (2-60a)
) > ©
. . AA '
lim 2jwR™ (x,w) = s(x) (2-60b)
) => ®©

which can be combined with (2-58a) and (2-58b) to propagate ﬁ(x ,W)
and ﬁA(x,w) recursively, and to reconstruct r(x) and s(x) for all x.

This algorithm constitutes the generalization of the Schur algorithm.

2.3.4 Example: The Non-uniform Transmission Line with Losses

In Section 2.3.2, the reconstruction problem for a non-uniform
lossless transmission line was solved using the fast Cholesky and
Schur algorithms. We now consider the more general case where some
losses, in the form of series and shunt resistances per unit length
have been added to the transmission line. This reconstruction
problem is then solved as an asymmetric two-component inverse
scattering problem, using the method obtained at the beginning of
this section. The problem is set up as in Jaulent (1982).

An infinitesimal section of the line is shown in Figure 2.6. R(x)
is the nonuniform series resistance per unit length, representing the
finite resistance of the ‘wires, and G(x) is the shunt conductance
per unit length, representing leakage current between the wires.

The circuit equations are

v(x,t) = (L3i/3t + RI)A + v(x+A, t) (2-61a)

i(x,t) = (Cov/at + GV)A + i(x+A, t) (2-61b)
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i,t) L(x)A  R(x)A i(x+A,t)
+o—.—fYYY'\ AVAYAY S PP 4
v(x,t) T~ C(x)A §G(x)A vix+A,t)
-0 —e — -0 -

2.6 Infinitesimal section of a lossy non-uniform transmission
line,
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Dividing by A4, and letting 4 > 0 yields the transmission line equations
ov/ax + L ifagt + Ri =0 (2-62a)
oi/ox + C v/ot + Gv =0 (2-62b)

As in Section 2.3.2, we replace the position x by the travel time

z(x) given by (2-38), and we introduce the dimensionally equivalent:

variables
-1
V(z,t) = Z *v(z,t) (2-63a)
1
I(z,t) = Zfi(z,t) (2-63b)

1
where Z(z) = (L(z)/C(2z))? is the characteristic impedance. Then, the

equations (2-62) take the form

BV/oz+3l/3t = - & I - m(@V (2-64a)

91/3z +0V/ot =m(z) 1 - & V (2-64b)
where

mz) = 3 3z . (2-65)

Making the change of variables

p(z,t) (V+D) (2-66a)

S i e

qa(z,t) (V-1) (2-66b)

gives

(3/3z + 3/at)p

-a(z)p(z,t) - (m(z) + b(z))q(z,t) (2-67a)

(3/0z - 3/3t)q

- (m(z) - b(z))p(z,t) + a(z)q(z,t) (2-67b)
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which is almost in the desired form, and where

a(z) = + ( + ) (2-68a)

b(z) = % {% - %) (2-68b)
Considering the scaled variables

pl(z,t) = p(z,t) exp foz a(u) du (2-69a)

al(z,t) = a(z,t) exp -[,% a(w qu (2-69)

and taking the Fourier transforms yields the asymmetric two-component

wave equations

diz Bl = -jupl(z,w) - s(@dl(z,w (2-70a)
%z 6" = -r@pl(z,m + jvglz,w (2-70b)
where

0 = v [Fawase(} § 0 1E-Bleco (B o
0
(2-T1a)
s(2) = mb)expz [ "a(wdu = (7 £ g+ 2@ -Dlexp foz(%*%) du
(2-71b)

Thus, if we are given the scattering matrix S(w) associated to the system
(2-70), the coupled fast Cholesky (2-54) or Schur (2-58) - (2-60)

algorithms may be used to reconstruct the rather bizarre quantities r(z)



68

and s(z). Further, these two quantities are the most information about
the line that can be obtained from this data. Although r(z) and s(z)
may seem to be peculiar quantities, this result is in agreement with
Jaulent (1982).

Note that in the event
R(z)/L(z) = G(2)/C(2) (2-72)

we may recover Z(z) and R(z)/L(z) by multiplying and dividing r(z)

and s(z), and then solving two differential equations. Thus, in this

case it is possible to recover R(z), L(z), C(z), and G(z) in wvarious
ratios quite easily. This case is referred to as the Heaviside

condition for a distortionless line (Kraus and Carver, 1973), since if
(2-72) holds then the true characteristic impedance ((R + jwL) /(G + ij))%
which relates the current and voltage for a wave travelling down the

line, is real. Thus, the current and voltage for such a wave are in
phase, just as in the lossless line, and it is not surprising that ratios

of various line parameters can be recovered, as in the lossless case.

2.3.5 Other Differential Methods

In this section we quickly cover three other differential or layer
stripping algorithms. These consist of the misnamed "method of
characteristics” of Santosa and Schwetlick (1982), and two procedures
for recovering the potential of a Schrodinger equation. These procedures

will all be applied to inverse seismic problems in Chapters VII and VIII.

The "Method of Characteristics"

This refers to the impedance reconstruction procedure used by

Santosa and Schwetlick (1982). Although it is technically incorrect
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terminology, it has been used both by Santosa and Schwetlick (1982)
and by Bruckstein et al. (1983), and no other term has come along to
replace it. Hence, to be in accord with the literature, the term
"method of characteristics" will be used here and in Chapter VIII. The
true method of characteristics is discussed in Courant and Hilbert
(1962) , and applied to the propagation of axial shear waves in
Achenbach (1975).

The method will be illustrated by applying it to the problem of
reconstructing the impedance of a lossless transmission line. Recall
from Section 2.3.2 that this problem was transformed into a two-

component wave system problem by defining the waves

P(z,t) = 3 (V(z,t) +1(z,1)) (2-73a)

a(z,t) =3 (V(z,1) - I(z,1)) (2-73b)
where

V(z,t) = zg% v (z,t) (2-74a)

Ity = z,* i(z,t) (2-74b)

Here v(z,t) and i(z,t) are the voltage and current, ZO(Z) is the

characteristic impedance (which is to be recovered), and z is travel
time. Suppose now that the probing wave p(z,t) does not contain a
leading impulse, contrary to equations (2-22). Then, by causality,

the waves p(z,t) and q(z,t) have the form

p(z,t)1(t-2) (2-75a)

p(z,t)

a(z,t) = q(z,t)1(t-2) (2-75b)
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Substituting equations (2-75) into the two-component wave system

(2-1) yields

q(z,z' ) =0 - (2-76)
and, using (2-73b), this implies that

V(z,2) = I(z,z%) . (2-77)
From definitions (2-74) we have

ZO(Z) = v(z,z+)/i(z,z+) (2-78)

and changing variables from position x to travel time z in the

telegrapher's equations (2-34) yields

Il
o

ov(z,t)/dz + ZOBi(z,t)/at (2-179a)

Zoai(z,t) /3z + 3v(z,t) /ot

1
o

(2-79b)

Equations (2-78) - (2-79) form the method of characteristics for
the lossless transmission line. The voltage v(z,t) and current i(z,t)
can be propagated in z, yielding the impedance ZO(Z) by (2-73).

As in the fast Cholesky algorithm, ZO(Z) can be recovered
because in the instant after the wavefront passes v and i must be
related by (2-78). Unlike the fast Cholesky algorithm, no probing
impulse is necessary. However, all physical interpretations in terms of
waves and scattering have been lost--the procedure is a purely

mathematical technique applied to partial differential equations.

Inverse Scattering and the Schrodinger Equation

Inverse scattering problems are often formulated using the
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Schrodinger equation

2

diz §+ @ - VEDNFEW =0 (2-80)
X

and a scattering matrix, which was described in Section 2.2. Here the
aim is to reconstruct the potential V(x). V(x) is usually assumed to

be localized, i.e., V(x) =0 for x < 0 and
f0°°(1+x) | V(x)|dx < . (2-81)

The Schrodinger equation appears frequently in the literature on
inverse scattering problems in nuclear physics (e.g., Chadan and
Sabatier, 1977) and seismology (Ware and Aki, 1969, and many others).
In this section two layer-stripping methods for recovering V(x) are
presented. Both methods will be used in Chapter VII, where the
inverse problem for a layered acoustic medium probed by spherical
harmonic waves is formulated using the Schrodinger equation. The
standard integral equation methods for recovering V(x) are covered in

Section 2.4.

Reformulation of the Schrodinger Equation as a Two-Component System

Any two-component wave system inverse scattering problem can be
recast as a Schrodinger equation inverse scattering problem. Thus in
seeking a layer stripping solution to the Schrodinger inverse problem,
it seems natural to try to recast it as a two-component wave system
inverse problem. This has been done in Yagle and Levy (1984),
and their technique is repeated below.

Taking the derivative of the two-component system (2-3) with
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respect to x, we obtain the matrix Schrodinger equation

2 r® -r P(x,u)
<(f? r ) "[ D[ } = 0 (2-82)
X _: 2

r r q(x,w

where I, denotes the 2 x 2 identity matrix and r(x) = dr/dx. By

making the change of variable

V0 = B(x,0) + G(x,w) (2-83a)

¥o(x,0) = P(x,0) - 4(x,w) (2-83b)

this equation can be decoupled into two scalar Schrodinger equations

az 2 N

_2 1 + (U) —V].(X) )YI(X,‘U) = 0 (2"843.)
dx

a2 . 2 R

—2' YZ + ((.l) —Vz(X))Yz(X,w) = 0 (2_84b)
dx

where

V60 = e - F) (2-858)
V,(x) = r2(x) + F(x) (2-85b)

This shows how any two-component wave system inverse problem can be
recast as a Schrodinger inverse problem. In addition, we observe

from (2-83) and from the definition of the scattering matrix S(w) of

the two-component system (2-3) that the scattering matrix associated

to VI(X) is identical to that of (2-3), and that the scattering matrix
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Sz(w) associated to V2(x) is given by

'I‘L(w) —ﬁR(w)
S, =] . = IS(WI , (2-86)
—RL(w) TR(w)

i.e., it is obtained by changing the sign of the reflection coefficients

~ ~

RL and RR of (2-3).
Consequently, given a potential V(x), we can always view its

left reflection coefficient ﬁL(w) as arisjng from a two-component system

such as (2-3). Then, given ﬁL(w) or the impulse reponse RL(t) , We

can use the Schur or fast Cholesky recursions to reconstruct the

reflectivity function r(x), which in turn can be used to recover

V(x) from the relation (2-85a). The relation (2-85a) is known in

soliton theory as the Miura transformation (Ablowitz and Segur, 1981;

Lamb, 1980), and it maps solutions of the modified Korteweg-de Vries

equation into solutions of the Korteweg-de Vries equation.

Direct Recovery of Potential

Bruckstein et al. (1983) have pointed out that the potential V(x)
may also be recovered directly, without first reconstructing the
reflectivity function r(x). Applying their procedure to the
Schrodinger equation (2-80), we take the inverse Fourier transform

of (2-80), which is

22y /ax? - dyiat? = Vv (x,b). (2-87)
Note that this is the equation for an elastically braced string. Defining

P(x,t) é (9/3x + d/at)y(x,t) (2-88)
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equation (2-87) can be rewritten as the coupled system

(9/9x + 9/dt)y(x,t)

Y(x,t) (2-89a)

(9/3x - 9/dt) Y(x,t)

V(x)y(x,t) (2-89b)

Now, if y(x,t) can be shown to contain a leading impulse, as p(x,t)

does in (2-22a), we have
V(x) = -2 V(x,xt) . (2-90)

Equations (2-89) - (2-90) can be propagated in x as a recursive
algorithm. Initialization of y and ¥ at x = 0 depends on the problem;
see Chapter VII for an example.

Bruckstein et al. (1983) have pointed out that this algorithm can
be interpreted as successively truncating the potential V(x). If the
algorithm is at point x in the medium, the current problem being
solved is one in which the medium to the left of x has been replaced
by free space (i.e., V(z) = 0 for z < x). Thus again we see how a
layer stripping algorithm transforms at each step a problem on the

interval [x,®) to one on [x + 4, ®).

2.4 Integral Equation Methods for Solving Inverse Scattering Problems

In this section we switch gears and review integral equation methods
for solving inverse scattering problems. None of these methods will be
employed in this thesis; indeed, the purpose of this thesis is to
obviate these methods. Nevertheless, it is important that integral
equation methods be understood so that the dual nature of differential

and integral methods be appreciated.
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Recall the layer-stripping action of differential methods, in which

a problem on the interval [x,®) is transformed into one on [x + A, ®)
at each step of the algorithm. In contrast, integral equation methods

are constructive, in that the entire medium is involved at each step,

and the reconstructed portion is extended from [0,x] to [0, x +A]
at each step. The concept of adding to the reconstructed portion of
medium, in contrast to stripping away from the unreconstructed portion

of the medium, will be illustrated throughout this section.

2.4.1 The Marchenko, Gel'fand-Levitan, and Krein Integral Equations

In this subsection we follow Bruckstein et al. (1983) in deriving
the above three integral equations for solving the two-component wave
system inverse scattering problem. Other approaches are possible;
Burridge (1980) derives these equations entirely in the time domain,
using Green's functions, convolutions, and Green's identities. In
contrast, Chadan and Sabatier (1977) and Lamb (1980) use a
spectral, frequency-domain approach, while Faddeev (1963) uses an
operator approach. However, the approach of Bruckstein et al. is
the simplest, and fits in most readily with the material of Section 2.3.

Note that the two-component wave system in the frequency domain
ﬁ(x,w)]

qx,w

we may define the state transition matrix M(x,w) for this system.

(2-3) can be viewed as a state equation in the state [ Then

hﬁ(x,w) is specified by

d -jw -r(x)| . :
= M) = . M (x,w) (2-91)

and
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M(0,w) = I, , (2-92)

and has the property that

[@(x,w) X [ﬁ(o,m} o
= M(x,w) . (2-93)
4 (x,w) 4q(o,w)

Taking the inverse Fourier transforms with respect to time yields

-9/t -r(x)
aM(x,t)/ox = M(x,t) (2-94)
-r(x) a/at
s(t) 0
M(0,t) = (2-95)
0 8(t)
q(x,t) M21(X,t) | MZZ(x’t) q(0,t) .

Equations (2-94) and (2-95), and the principle of causality, show that

Mll(x,t) and M21(x,t) have the forms

My (x,t) = 8(x-t) + 1\7111(x,t)(1(x—t) ~ 1(x+t)) (2-97a)

My, (x,t) = le(x,t)(l(x-t) - 1(xtt)) . (2-97b)

This simply means that Mll(x,t) contains a leading impulse (from (2-95))
Mll(x,t) and M21(x,t) have support on [-x,x], and M11 and M21 are the
smooth parts of M11 and M21. We also note that if time is reversed,

the left and right propagating waves are interchanged, so that

Mll(x,t) = M22(x,—t) (2-98a)

M21(x,t) = Mlz(x,—t) (2-98b)
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Now, if the medium is being probed from the left, we have by

causality
p(x,t) = q(x,t) = 0 for t < x . (2-99)

Note that we have not yet specified how the probing is to take place.
Using ‘(2—97), (2-98), and (2-99) in (2-96) yields the coupled integral

equations

t ~ X ~
f_xp(O,t—T)Mll(x,T)dT + -/;t q(O,t+T)M21(x,T)dT,= 0 (2-100a)

x N t -
q(0,t+x) + f_tq(O,t-rT)Mll(x,T)dT + f_xp(O,t—T)MZI(x,T)dT =0 (2-100b)

In these equations, a change in the sign of the dummy variable T
has been made in the terms involving q(x,t) in order to make use of
(2-98). This explains the t + T dependence of q.

The Marchenko, Gel'fand-Levitan, and Krein integral equations
are all derived from (2-100). The particular equation obtained depends

on how the medium is probed.

Marchenko equation (half-space boundary): Let the probing waves take

the form
p(0,t) = &) (2-101a)
q(0,t) = R(1) (2-101b)

where R(t) is causal. This corresponds to the case of a medium being

probed from an infinite homogeneous half-space. Define

K(x,t) = 1\7111(x,t) + 1\7121(x,t). (2-102)
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Then, adding (2-100a) and (2-100b) and inserting (2-101) and (2-102)

yields the Marchenko integral equation (Agranovich and Marchenko,

1963; Chadan and Sabatier, 1977)

X
K(x,t) + R(xtt) + f_tK(X,T)R(‘Ht)dT =0, 1t <x (2-103)

Upon solving this integral equation for K(x,t) we may use

~

r(x) = —2M21(x,x“) (2-104a)

2 d - _
r(x) = 2& Mll(x,x ) (2-104b)

which are obtained by substituting (2-97) into (2-94), and recall that
for the Schrodinger equation associated with the two-component system

(2-3) the potential V(x) is given by (2-85a) as
Vx) = r2(x) - #(x) . (2-105)
Then we have

Vix) = 2 %K(x,x-) (2-106)

so that the solution of the Marchenko equation yields the Schrodinger
potential.

The procedure of solving the Marchenko equation (2-103) and
then using (2-106) to recover the Schrodinger potential is the standard
mathematical physics procedure for solving Schrodinger equation inverse
scattering problems. Ware and Aki (1969) used this procedure to

solve the one-dimensional inverse seismic problem.
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Gel'fand-Levitan equation (free surface): Let the probing waves take

the form
p(0,t) = 4S(t) + k(t) (2-107a)
q(0,t) = k(t) (2-1070)
K(w) = R(w)/(1-R(w)) (2-107c)

where k(t) is causal. This corresponds to the case of a medium being
probed from a perfectly reflecting surface ((2-107¢c) follows from a simple
feedback argument). An example of this situation is probing the earth
from an earth-air or ocean-air interface, which is quite well modelled

by a pressure-release or "free" surface. Define

K_(x,t) =% (K(x,t) + K(x,~t)). (2-108)

Then, adding (2-100a), (2-100b), and their time-reversals, and

inserting (2-107) and (2-108) yields the Gel'fand-Levitan integral

equation (Gel'fand and Levitan, 1955; Faddeev, 1963)

X
KS(x,t) + %(k(x—t) + k(x+t)) +f0 %(k(lt-Tl)+k(t+T))KS(X,T)dT
=0, 0<t <x. (2-109)

Again we may use (2-106) to recover the Schrodinger potential V(x).

Krein integral equation (free surface): Let the probing waves again

take the form (2-107) and define

L(x,t) = Mll(x,t) + 1\7112(x,t) ) (2-110)

Adding (2-100a) to the time-reversal of (2-100b) and using (2-107) and
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(2-110) yields the Krein integral equation (Krein, 1954)

k(x-t) + L(x,t) + [_z k([t-THL(x, T)dt= 0, 0<t <x (2-111)
By setting t = -x in (2-100a) we get
M, (x,-x) = 0 (2-112)
and using this with (2-104a) and (2-98b) and adding yields
r(x) = -2L(x,-X) (2-113)

so that the solution to the Krein integral equation yields r(x).

2.4.2 The Krein-Levinson Algorithm

Any of the integral equations derived above can be solved
numerically by discretizing x and t. If x and t are discretized by
x =nd and t = mA, where n and m are integers in the intervals
[0,N] and [-N,N], respectively, then 0(N3) operations are necessary
to solve the integral equation and reconstruct r(x).

However, the fast Cholesky algorithm in Section 2.3 requires only
O(Nz) operations to reconstruct r(x) for the same discretization. If
there is some duality between differential and integral methods for
solving inverse scattering problems, then there should be some way
to reduce the amount of computation required to solve the integral
equations to O(Nz).

In this subsection we derive the Krein-Levinson algorithm, a

continuous-parameter, slightly modified version of the famous Levinson
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algorithm for solving Toeplitz systems of equations (Musicus, 1981,
is a thorough treatment). This algorithm solves the Marchenko
integral equation using O(N 2) operations by taking advantage of its
Hankel structure. Slight modifications of this algorithm can be used
to solve integral equations with Toeplitz or Toeplitz-plus-Hankel
structure (Gohberg and Koltracht, 1983).

The continuous-parameter fast Cholesky and Krein-Levinson
algorithms thus provide two different ways of solving inverse
scattering problems using O(Nz) computation. In Section 2.5 we shall
discuss how these two algorithms are "flip sides" of each other, and
why the fast Cholesky algorithm requires less storage and computation.
and M into

1 21°
(2-94), the time-domain system satisfied by M(x,t), and taking the

Inserting (2-97), which specifies the forms of M1

first column of the result yields

2 1\7111(x,t) _ -9/t -r(x) 1\7111(x,t) (2_114)
ox M21(x,t) -r(x) 9d/ot 1\7121(x,t) ,» x<t< x
with the initial condition

M, (0,0) 0
M21(0,0) 0 .
Equations (2-114) look like the fast Cholesky algorithm dynamics,
but there is an important difference. In the fast Cholesky algorithm
the quantities propagated were the waves p(x,t) and q(x,t), which

were non-zero (by causality) for t > x. Here the quantities propagated

are elements of the transition matrix M(x,t), and are non-zero for
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-x<t <x. The update patterns are shown in Figures 2.7. These
should be compared with Figures 2.3, the update patterns for the fast
Cholesky algorithm.

Examination of Figure 2.7 shows that in order to propagate (2-114)
it is necessary to supply values for Mll(x’—X) and MZI(X,X_)

independently of (2-114). Setting t= -x in (2-100a) yields
Mll(x,-x) =0 . (2-116)

However, 1\7121(x,x") = -r(x)/2 from (2-104a), and we certainly need
r(x) to propagate (2-114). The only way we can get this is to set

t = x7 in (2-100b), yielding the rather unwieldly expression
~ _ X -
r(x) = —2M21(x,x ) = 2(q(0,2x) + f—x q(O,X+T)M11(X,T)dT
L i
+ x p(O,X—T)le(X,T)d T). (2-117)

In the case of probing from a half-space, the last term in (2-117)
vanishes. In this case (2-117) should be compared to the "inner
product" expression in the discrete Levinson algorithm.

The Krein-Levinson algorithm thus consists of equations (2-114)
and (2-117), with the additional trivial condition (2-116). Its dynamics
are the same as the fast Cholesky algorithm, but the quantitites in the
algorithm are different, and the inner product expression (2-117)
replaces the trivial first reflection relation (2-23). Thus the Krein-
Levinson algorithm requires more computation and storage than the
fast Cholesky algorithm, although both algorithms require O(Nz)

operations.



my,(xg) my(xo+A)

2.7a Recursion pattern for updating mll(x,t) in the Krein-
Levinson algorithm.. '

My (xg) My (xg+A)

' — X
,’xo+A

’ \/slope= -1
N

2.7 Recursion pattern for updating m, (x,t) in the Krein-
Levinson algorithm. 1
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2.4.3 Inverse Scattering as Orthonormalization

Levy (1985) has recently pointed out that the solution of a two-
component wave system inverse scattering problem can be viewed as
an orthonormalization procedure. It is well known (e.g., Kailath,

1981) that the problem of linear least-squares estimation of an
autoregressive (AR) stationary stochastic process can be regarded as

a polynomial orthonormalization, with the Levinson algorithm carrying out
the orthonormalization and the Szego polynomials (representing the
residuals) the result. For the inverse scattering problem, the
orthonormalization procedure is applied to continuous analogues of
matrix orthogonal polynomials. The Marchenko integral equation results
from application of orthogonality to residuals, such as the Wiener-Hopf
equations are derived in linear least-squares estimation theory (e.g.,
Kailath, 1981).

This result is presented here to give another perspective on
inverse scattering, and to show similarities between inverse scattering
and linear least-squares estimation theory. These two problems will
be linked more tightly in Section 2.5.

Define the matrix inner product of two 2 x 2 complex-valued

matrix functions A(w) and B(w) as

<aB> 2 [ awwwsHEwae ‘ (2-118)

where the Hermitian weighting matrix W(w) is

A p |1 BR¥w
Ww = 77 | A (2-119)
R (w) 1

Here R(w) is the left reflection coefficient of the scattering medium.
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If the medium is lossless, |R(w)| <1 for w real, and by Sylvester's
criterion W(w) is positive semidefinite. Hence <A,A>>0 unless the medium
is perfectly reflecting.

The weighting matrix W(y) in (2-119) was suggested by Newton

(1983, p. 20) as follows. Let the matrix Jost solution ¥ (x,n) for the

two-component wave system (2-3) be that solution which behaves like

(e—jmx 0 ‘I
Y(x,w) = if\{ eij r'I\‘e]LUXJ as x > - (2-120a)
L L .
[ 1% ﬁRe_ij
Y(x,w >~ ux as x > ©, (2-120b)
0 e

Note that the first column of ¥(x,w) represents a scattering experiment

in which the medium is probed from the left, while the second column
represents a scattering experiment in which the medium is probed from the
right. Now, the two columns of the state transition matrix M(x,w) also
represent two independent experiments, so M(x,w) can be obtained from the

matrix Jost solution ¥(x,w) by multiplying it by the Jost function J(w),

M(x,0) = J(W)¥(x,w). | (2-121)

Then the spectral function

W(w) = % AP wIwn™t (2-122)

turns out to be the weighting matrix specified by (2-119).

Note that the probing waves
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ij:l (2-123)
e

have the property that

01

<EGew), B(y,0> = 8Geyly + |
1 0

} R(x+y). (2-124)

Thus E(x,w) and E(y,w) are orthonormal in free space (x,y< 0) since
R(t) is causal.

The inverse scattering problem is solved recursively by orthonormalizing
E(x,w) and E(y,w) for successively larger x and - <y < x. This is done
by the usual Gram-Schmidt procedure: E(x,n) is projected onto the
subspace €X é SPANIE(y,w), - <y <x], and the residual is then

orthogonal to &y The projection operator takes the form
X
FIEC,] = mx.yE(y wdy (2-125)
— 0o

where m(x,y) is an unknown 2 x 2 matrix kernel. The residual l\7!(x,w)

is
M(x,w) = E(x,0) - ZIE(x,0)]
X
= EGow) + [ m(x,p)E(y,wdy. (2-126)
Now, l\//\I(x,w) is orthogonal to é;{ by construction. This means m(x,y)
satisfies

0 1 X 0 1
[1 OJR(x+Z) + m(x,z) + f_z m(x,y)[1 0] R(y+z)dy = 0, -x<z<x. (2-127)
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2.5 Relations Between Differential and Integral Methods

In this section the dual nature of differential and integral methods of
solving inverse scattering problems is discussed. These two methods are
not merely related, but are complements of each other. This is
illustrated in particular by the complementary nature of the fast Cholesky
algorithm (a differential method) and the Krein-Levinson algorithm
(which solves the integral equations). Finally, in order to furnish an
example outside the usual context of inverse scattering theory, the
familiar problem of linear least-squares estimation of a stationary stochastic
process is interpreted as an inverse scattering problem, and solved
using both algorithms. This illustrates the physical meanings of various
quantities in a novel setting, adding depth to an understanding of inverse

scattering concepts and quantities.

2.5.1 Differential vs. Integral Methods

In Section 2.3 it was seen that the differential or layer str_ippinig’
methods operate in a stripping fashion: At each step of a layer stripping
algorithm, a problem on the interval [x,») is replaced by one on the
interval [x + A,~). This was particularly vivid for the dynamic
deconvolution procedure, in which the quantity being propagated was
the reflection response of the remaining unknown portion of the medium.
An advantage of layer stripping methods is that they are clearly
efficient: The effects of the reconstructed portion of the medium are
included in a cumulative fashion at each step, while all aspects of the
medium itself are discarded. And any unknown portion of the medium can
have no effect until the algorithm reaches it (this is why causality is so

important to these algorithms). Thus a layer stripping algorithm is only
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concerned with that differential slice of the medium where the algorithm is
currently operating.

In Section 2.4 it was seen that integral equation methods utilize all
of the data (measured medium response) at each step. Although the
medium is again reconstructed one layer at a time (the integral equation
must be solved for each x), the entire medium affects the reconstruction at
each step, since all of the data are being used. This is why bound states
affect integral methods at the start, while not bothering layer stripping
algorithms until that part of the medium is reached. No attempt is ever made
to isolate the effects of part of the data or medium on reconstruction of any
layer. This is why unwieldly integral equations are necessary, which
might seem to require O(N3) operations to solve completely.

On the other hand, it is not necessary to account for the cumulative
effect of the reconstructed medium at each step. The integral equation
methods are constructive in nature: At each step, the reconstructed
portion of the medium is extended from [0,x] to [0, x + Al. Note that
this complements perfectly the layer stripping approach: one decreases
the size of the problem at each step, while the other increases the size of
the solution at each step.

The structure of the integral equations (Hankel for the Marchenko,
Toeplitz-plus-Hankel for the Gel'fand-Levitan, Toeplitz for the Krein)
allows fast algorithm solutions for them. This reduces the computation
required to O(N2) , the same as for the layer stripping methods.
Nevertheless, it should be noted that the integral equation methods amount

to formulating a problem mathematically and solving it from a mathematical

perspective. The layer stripping methods amount to formulating a problem

physically, in terms of clearly physical variables such as waves and
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Since this equation is centrosymmetric, we have

my (X,¥) = myy(x,y) and m,(x,¥) = my; (x,¥) (2-128)

and this simplifies (2-127) to

X
m, (x,2) + f_z m,, (x,y)R(y+2)dy = 0, -x<z<x (2-129a)
X
R(x+z) + m21(x,z) + f,mll(x,y)R(y+z)dy =0, -xX<ZzZ<X. (2-129b)
-7

Adding these two equations and recalling (2-102) yields the Marchenko
integral equation (2-103).
Two comments are in order here. First, the original choice (2-123)
for the probing waves E(x,w) is tantamount to probing the medium from a
half-space, as in (2-101). This is why the Marchenko equation is obtained,
rather than the Gel'fand-Levitan or Krein equations. These latter equations
were obtained by a choice of probing waves associated with a free surface,
as in (2-107). Second, the centrosymmetric equalities (2-128) do not
quite agree with the time reversal equalities (2-98). The reason for this
is that m'zz(x,t) in (2-98) contains a probing impulse §(x-t), while the
probing impulse in the second component of the present experiment is
8(x+t). This cancels the time reversal in (2-98), leaving (2-128).
Operating on (2-129a) and (2-129b) respectively with the operators
(5/5% + 3/3z) and (5/dx - 9/3z) yields the Krein-Levinson algorithm
dynamics (2-114). Proceeding as before, the Krein-Levinson algorithm
can be shown to solve (2-129). And the residual K/I(x,m) therefore

satisfies (2-91) and (2-92), and is therefore the state transition matrix.
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reflectivity functions. Thus a layer stripping approach is much "closer"
to the problem; indeed, layer stripping methods have been described as
"letting the medium perform the inversion itself" (Bruckstein and Kailath,
1983). It would seem, then, that a layer stripping approach is the

"right way" to look at the problem. This is emphasized by the comparison

of the fast Cholesky and Krein-Levinson algorithms to follow.

2.5.2 Fast Cholesky vs. Krein-Levinson Algorithms

For convenience these two algorithms are summarized below.

Fast Cholesky Algorithm

basic (3/x + 3/3)P(x,t) = ~r(x)q(x,t)
dynamics: (3/6x - 3/AIG(x,1) = -r(x)P(x,1).

update patterns: See Figure 2.3.

reflectivity:  r(x) = 24(x,x")
function update:

,£)=0, q(0,t)=R(t);
(0,t) = §(0,t)=K (t).

initial conditions: half-space: (0
free surface: P

quantities being rightgoing and leftgoing waves,

propagated: P

p(x,t) and q(x,t), respectively.
support: t >x%

factorization  free surface i.c.: ¢ (1) +k (1) +k (- 1) =(causal) (anticausal) ;
performed: half-space i.c.: S(T)—R(T)*R(—T)=(causal)(anticausal).

The latter follows from noting in the operator domain that (using (2-52¢))
1-RR* = 1 - (k/(1+k)) (k*/(1+k*) = (1+k+k®) ((14k) (1+R*)  (2-130)

which is clearly factored if 1 + k + k* is,
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Krein-Levinson Algorithm

basic (8/8% + 3/30M,, (x,8) = -r(X)M,, (x,1)
dynamics: (3/3x - 8/3t)M21(x,t) = —r(x)Mll(x,t).
update patterns: See Figure 2.7.

reflectivity

X
function update: r(x) = 2(3(0,2x)+ j;x'q'(O,X+T)M11(X,T)dT +
J5B@,x-Df,; (x,)d 1 ), where B(0,t) and F(0,0)

are the probing waves, as in the fast Cholesky
algorithm.

initial conditions: 1\7111(0,0) = le(o,m = 0. Also need l\7lll(x,—x)=0.

quantities being elements of the state transition matrix, i.e., the

propagated: medium transmission matrix.

support: -x *t *x

factorization 8(t-s) + H(t,s;x) = (anticausal)(causal) .
performed:

In the factorization performed by the Krein-Levinson algorithm, H(t,s;x)

represents the Fredholm resolvent operator to k(|T| ). This operator is

defined in the operator domain by the operator equation

(I +HU+kK+k* =1 (2-131)

which is equivalent to the integral equation
H(t,s;x) + k(|t-s|) + f_f{H(t,v;x)k(lv—s])dv= 0, -x<s,t<x. (2-132)

Note that although the dynamics of the two algorithms are the same,
the quantities being propagated differ. The fast Cholesky quantities carry
the clear interpretation of waves propagating leftward and rightward in the
medium at the point x. The Krein-Levinson quantities carry the murkier
interpretation of being one column of the transmission matrix of the medium

to point x. The supports of these quantities are exactly complementary,
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but the fast Cholesky algorithm supplies r(x) directly, while the Krein-
Levinson algorithm requires that r(x) be computed. In Chapter III the
simple equation r(x) = 2q(x,x) will be interpreted physically as the
first reflection from the medium at x having strength r(x)/2. No such
interpretation of the inner product expression for r(x) is available.

It should also be noted that the Krein-Levinson algorithm requires
that the original scattering data q(0,t) = R(t) be stored in addition to the
propagating quantities Mll(x,t) and 1\7121(x,t). Thus the Krein-Levinson
algorithm requires a storage capacitonf 3N words, while the fast Cholesky
requires only 2N words. And the extra computation involved in the inner
product expression for r(x) runs the total operation (multiplication-and-
add) count for the Krein-Levinson algorithm to 3N2 vs. 2N2 for the
fast Cholesky algorithm.

The "factorization performed" by each algorithm requires some
explanation. The quantities in these algorithms can be interpreted as
operators in L;), the Hilbert space of square-integrable p-vector
functions (Kailath et al., 1979). The action of the fast Cholesky
algorithm is to perform a causal-times-anticausal factorization of the
Toeplitz operator §(t) + k(1) + k(-1), where k(1) is the (causal)
free surface response. The Krein-Levinson algorithm, on the o{her hand,
performs an anticausal-times-causal factorization of the operator §(t-s) +
H(t,s;x), where H(t,s;x) is the Fredholm resolvent of k(|t-s|). This
again illustrates the cbmplementary nature of these two algorithms. The
discretized versions of these algorithms perform LDU and UDL factorizations,
respectively, of the Toeplitz matrix I + k(|i-j [) and its inverse (see

Musicus, 1981, for details).
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2.5.3 Example: Linear Least-Squares Estimation of a Stochastic Process

In this example it is shown how this familiar problem can be posed as
an inverse scattering problem and solved using integral equations, the
Krein-Levinson algorithm, or the fast Cholesky algorithm. This will
lend some perspective to the various inverse scattering concepts, which
were already introduced in the lossless transmission line example (Pusey,
1975, shows the connections between these two examples). More details
on the connection between linear estimation, inverse scattering, and fast
algorithms can be found in Dewilde et al. (1981), Dewilde and Dym (1981),
and Dewilde et al. (1978).

The basic problem to be considered is as follows. Let
y@) = z(t) + v(t) (2-133)

be some observations of a zero-mean stationary stochastic process z(:)

with covariance

E[z(t)z(s)] = k(|t-s]), (2-134)

where v(-) is a white noise process with unit intensity, i.e.,

E[v(t)v(s)] = S§(t-s) . (2-135)

We assume that z(:) and v(-) are uncorrelated and that k()€ L1[0,°°),

so that its Fourier transform
k(w) = fk(t) exp-jut dt (2-136)
0

exists. In this case, the spectral density of y(-.) is
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Ww) =1 +k@w +k(-u). (2-137)
Given the Hilbert space
Y(t; x) = Hly(t+s), -x £ s £ x] (2-138)

spanned by the observations over the interval [t-x, t+x], our objective
is to compute the forwards and backwards linear least-square estimates of

z at the endpoints of this interval. These estimates can be denoted as

X
Z(t+x|Y (t; x)) f_x A(x; u) y(t+u)du (2-139a)

X
2(t-x|Y(t; x)) f_x B(x; u) y(t+u)du , (2-139b)

where A(x; ) and B(x; -) are the optimal forwards and backwards
prediction filters, respectively. Note that since the process z(:) is
stationary the filters A(x; ') and B(x; -) do not depend on t, the center
of the interval [t-x, t+x]. Then, if the forwards and backwards residuals
are defined as

e(t,x) =y(t+x) - z(t+x|Y(t; x)) (2-140a)

b(t,x) = y(t-x) - z(t-x|Y(t; %)), (2-140b)
by using the orthogonality property

e(t,x), b(t,x) | Y(t; x) (2-141)

of linear least-squares estimates, we find that the filters A(x; +) and

B(x; -) satisfy the Wiener-Hopf equations
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k(x-s) (2-142a)

X
A(x; s) + /_x A(x; u) k(Ju-s|) du

x
B(x; s) + f—x B(x; u) k(Ju-s|) du = k(x+s) (2-142b)

with -x < s £ x. These integral equations should be compared to the Krein

equation (2-111).

. 9 0 a  _ -
Applylng the operators % + s % ~ 3s to (2-142a) and

(2-142b) respectively, and using the linearity of the resulting equations

and 9

yields the Krein-Levinson algorithm

9 9 . _ . _
(ﬁ + a—s-) A(x; s) = - r(x) B(x; 8) (2-143a)

3 _ 9 ) - _ . _
(‘S_X ﬁ) B(x; s) = r(x) A(x; s) (2-143b)

with - x < s £ x, and where
r(x) = 2A(x; -x) = 2B(x; x) (2-144a)
X

= 2(k(2x) - f_x A(x, Wk (x+u)du) (2-144b)

is the reflectivity function. The fact that r(x) is well-defined can be
obtained by noting from a time-reversal argument that B(x; s) = A(x; -s).
So far this has all been routine--it is certainly well-known that the
Krein-Levinson algorithm solves the Wiener-Hopf equations. We now show
that an inverse scattering interpretation can be assigned to this problem,
and that the fast Cholesky algorithm may be used to solve it.
9

If we apply the operators %‘1 5t

forwards and backwards residuals e(t,x) and b(t,x) and use the Krein-

to the definition (2-140) of the
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Levinson equations (2-143), we obtain the two-component wave system

(% - %) e(t,x) = - r(x) b(t,x) (2-145a)
2+ 2 bt,x) = - r(x) e(t,x) (2-145b)
3x ot ‘ ’ :

This shows that the residuals satisfy a two-component wave system, where
the waves e(t,x) and b(t,x) propagate respectively leftward and rightward,

and where the waves at x = 0 are given by

e(t, 0) =b(t, 0) = y(t) . (2-146)

As a consequence of this observation, the process y(t) can be viewed as

the ouput of a modeling filter driven by e(t,x) as shown in Figure 2.8a.

This modeling filter is obtained by aggregating infinitesimal ladder
sections of the type described in Figure 2.8b. Clearly the filter problem
is solved if r(x) can be recovered.

The scattering matrix associated to the two-component wave system

(2-145) can be identified by noting that as x»> «
e(t,x) = \)F(t+x),b(t,x) = \)B(t—x) (2-147)

where \)F(-) and \)B(-) denote respectively the forwards and backwards
innovations processes associated to y(*) (Kailath et al., 1978). The
processes \)F(-) and \)B(-) are white noise processes and are related to the

observations y(-) through the identities

V) = Fw) S (2-148a)

FW) = F(-w) V(W) (2-148b)
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y(t) e—p—

e— e (1,x)

S(w;x,o)

»D(t,x)

e(t,x) e—p gjwd

b(t,X)—. e_ij

—F e(t,x+A)

r(x)A r(x)A

Py D(t, x+ )

2.8b Infinitesimal ladder sections associated with the Krein-
Levinson algorithm,
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where y(W), \A)F(w) and \A)B(w) denote formally the Fourier transforms of
y(), VF(-) and VB(-), and where the shaping filter F(W) is the outer
or minimum phase spectral factor of GI(UJ) , the spectral density of y(-).

That is,
M =1+ k@ +kew) = |Fuw)| 2 (2-149)

on the real axis, and F(®) and F_l(w) are analytic in the lower half-plane.
The relations (2-146) and (2-147), or Figure 2.8a, imply that the

scattering matrix S(w) satisfies

Vg (W) (W)
= S(w , (2-150)
(@) V()

and by substituting (2-148) inside this relation and cancelling y(w), we

obtain the identity

_1 ~ A
F "(-w) T RR 1
= (2-151)
-1
1 ~ ~ F (w)
RL T

for the entries of S(w). Using the fact (2-15) that the scattering matrix

is unitary, this gives after some algebra

R () = —2 (2-152a)
1 + k(w)
Tw)y = —F® (2-152b)

1+ k)
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-k (-w) Flw) (2-152¢)
1+ ke FCwW

Rp () =

so that the left reflection coefficient ﬁL(m) depends only on the covariance
data given by k(w).
Thus, the linear least-squares estimation problem has now been

recast as an inverse scattering problem. The two-component wave system

(2-145) has been defined, with the residuals e(t,x) and b(t,x) acting as
waves, and the scattering matrix for this system has been specified by
(2-152). In particular, the left reflection coefficient ﬁL(w) has been
specified entirely in terms of the known covariance k(t). The aim is to
reconstruct r(x), and once this has been done the optimal modelling
filter is specified by Figure 2.8.

Moreover, the form of (2-152a) allows the choice of probing waves
(made by Dewilde et al., 1981; note that this choice corresponds to a

free surface)

b(t,0) = §(t) + k(t)1(t) (2-153a)

e(t,0) = k(1) 1(t) (2-153b)

which now replaces (2-146) but leaves f{L(w)v (2-152a) unaltered. And
since ﬁL(w) determines the rest of the scattering matrix, the choice
(2-153) of probing waves leaves the entire inverse scattering problem
unaltered. The choice of probing waves (2-153) means that the fast

Cholesky algorithm

(0 /ox - 3/ot)e(t,x) = -r(x)b(t,x) (2-154a)

(3/3x + 3/3t)b(t,x) = -r(x)é(t,x) (2-154b)
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r(x) = 28(x,%) (2-154c)

b(t,0) = &(t,0) = k(t)1(t) (2-154d)

(recall that only the smooth parts of the waves are propagated) can be
used to reconstruct r(x).

It should also be noted that this results in a causal-times-anticausal
factorization of &(1) + k(t) + k(-71). Furthermore, from (2-1523) and

(2-152b) we have

F(w)

so that the choice of probing waves (2-146) implies

1 + k(w)
S (w) [ (2-155)
0

b(x,w) = F(w) e "% g5 x + «. (2-156)

Thus the fast Cholesky recursions also generate F(w).

On the other hand, the Krein-Levinson algorithm (2-143) - (2-144)
operated not on the residuals e(t,x) and b(t,x), but on the forwards and
backwards filters A(x,-) and B(x,:). This again illustrates that the fast
Cholesky algorithm operates directly on the waves in the scattering
interpretation of the problem, while the Krein-Levinson algorithm operates
on the transmission matrix, and is thus less physically interpretable in its

operation.

In this chapter, we have investigated in detail both differential and
integral equation methods for solving inverse scattering problems. In the

next chapter we shall see how these methods are applied to the one-
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dimensional inverse seismic problem, and derive their discrete counterparts

for the discrete version of this problem.
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CHAPTER III

The One-Dimensional Inverse Problem at Normal Incidence

3.1 Introduction

In this chapter the inverse seismic problem for a one-dimensional
acoustic layered medium probed by impulsive plane waves at normal incidence
is reviewed. The goal is to recover the acoustical impedance pc(T) as a
function of travel time 1. The case of a medium with continuous variation
of material parameters, and the case of a medium with variations only at
discrete depths, are both covered.

A considerable body of literature exists on both of these problems;
indeed, the majority of published work on theoretical methods for solving
inverse seismic problems has dealt with these two problems. Newton
(1981) is a good review paper for references and methods for solving

the continuous medium problem. In general, these methods have employed

a mathematical physics approach: the basic equations of the problem are
transformed into a Schrodinger equation, and the potential of this
equation is recovered by solving a Marchenko integral equation. This
procedure is described in detail in Section 3.2.2 below. Ware and Aki
(1969) popularized this approach, which has been employed many times
since (see the list of references in Newton (1981)).

Other methods for solving the continuous medium problem have been
proposed. Gray (1983) derived a Marchenko equation directly in terms of
a reflectivity function r(t), bypassing the necessity of solving for the

Schrodinger potential. This allows discontinuities in r(t) and requires
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only that the impedance be continuous, unlike the Schrodinger formulation
for which the impedance must be twice differentiable. Burridge (1980)
derived the Marchenko integral equation and several related integral
equations directly in the time domain, bypassing the Schrodinger

equation formulation.

As for the discrete layered medium problem, the assumption is
generally made that the medium is composed of horizontally stratified
homogeneous layers whose thicknesses are such that the travel time
through each layer is the same. In this case, all events (arrivals at,
reflections at, or transmissions through any interface, including the
surface) occur at integer multiples of A1, making the problem a digital
signal processing problem. This model of the medium was first proposed by
Goupillaud (1961), and is generally referred to as a "Goupillaud medium."
The inverse seismic problem for such a medium being probed by plane
waves at normal incidence has been solved by Goupillaud (1961), Kunetz
(1962), Claerbout (1968), Ware and Aki (1969), and Berryman and Greene
(1980), among others. Berryman and Greene (1980) also discuss this
problem for the case of unequal travel times through the layers; in this
case the problem is no longer discrete in time, since arrivals can occur
at any time at any depth.

Layer stripping methods have been applied to the inverse problem
for a continuous medium by Symes (1981), Santosa and Schwetlick (1982),
and Bube and Burridge (1983), and to the inverse problem for a discrete
medium by Symes and Zimmerman (1982). The one-dimensional inverse
seismic problem at normal incidence is, to our knowledge, the one inverse
seismic problem to which the layer stripping concept has been applied

extensively prior to this thesis. (Some work has been done on the elastic
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problem covered in Chapter VI.)

In Section 3.2 the solution of the inverse problem for a continuous
medium is discussed. After some basic concepts of acoustics (plane
waves, impedance, reflection and transmission coefficients, energy
normalization, and free and half-space surface boundary conditions)
are reviewed, the standard Gel'fand-Levitan procedure (Ware and Aki,
1969) for solving this problem is presented. Then the concept of layer
stripping is applied, and the fast Cholesky, Schur, dynamic deconvolution,
and method of characteristics algorithms for solving this problem are
obtained.

In Section 3.3 the solution of the inverse problem for a discrete
Goupillaud layered medium is discussed. An approach similar to that of
Claerbout (1968) and Ware and Aki (1969) is used to derive the matrix
equations appearing in Ware and Aki (1969), Aki and Richards (1980),
and Berryman and Green (1980). These equations are discrete analogues
of the integral equations of Section 2.4. The discrete Levinson algorithm
for solving these matrix equations is also derived (Berryman and Green,
1980). Next, discrete layer stripping algorithms for solving this problem
are derived. The discrete Schur and dynamic deconvolution algorithms
obtained here were noted by Robinson (1982). It is most instructive
to compare these discrete results with their continuous counterparts.

In Section 3.4 relations between the solutions of Section 3.2 and
those of Section 3.3 are discussed. In particular, it is shown how the
discrete medium problem approaches the continuous medium problem in
the limit of the layer thicknesses going to zero. Gerver (1970) showed
that for sufficiently small layer thicknesses the discrete problem

solution approximates the continuous problem solution. Other aspects
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of the discrete-to-continuous and continuous-to-discrete transitions are
also discussed, including transmission losses, variations in impulses,
a subtle distinction between discrete inverse scattering solutions and
discretization of the medium, as pointed out by Berryman and Greene

(1980).

3.2 Solution of the Inverse Problem for a Continuous Medium

The inverse seismic problem for a one-dimensional acoustic medium
probed by impulsive plane waves at normal incidence is formally defined
as follows. An impulsive acoustic plane wave, propagating vertically
downward, is incident on a layered medium from a homogeneous half-space
z <0 in which the density Do and local speed of sound c, are known. This
half-space could, for example, be the ocean above the ocean floor. The

layered medium is laterally homogeneous, so that material parameters vary

only in depth. The medium is also assumed to be acoustic (i.e., a fluid),
so that it is entirely characterized by the profiles of density p(z) and
wave speed c(z). If the medium is continuous, then p(z) and c(z) are
continuous functions of depth z. The reflection response of the medium
(i.e., the reverberations making their way back to the surface) is
measured at the surface; the actual physical quantity being measured
depends on the surface boundary conditions, as described in Section
3.2.1 below. The goal is to recover the profile functions p(z) and c(z).

The problem is clearly one-dimensional in that all action can be

represented by action along the z axis. The situation is illustrated in
Figure 3.1.
Several variations on this problem will be considered in this

chapter. In particular, the case of a continuous medium, in which p(z)
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and c(z) are continuous functions of z, and the case of a discrete medium,
in which p(z) and c(z) are piecewise constant, will both be treated.

In the latter case it will be assumed, following Goupillaud (1961), that

the layers have equal travel times, i.e., that the thickness of a layer

is proportional to the wave speed in that layer. This makes the discrete
problem a digital signal processing one. Two different sets of boundary
conditions at the surface will be employed: the half-space configuration

described above; and a free surface boundary condition, for which the

surface pressure is zero.

For all of the above experimental configurations, Gerver (1970)
has proved that it is impossible to recover p(z) and c(z) separately; all
that can be obtained is their product pc(t) as a function of travel time
T. Further, this reconstruction is unique, subject to mild assumptions.
This_vis reasonable from a degrees-of-freedom point of view--the
measurement of a single time function should not be expected to
determine two different depth functions. In order to determine o(z)
and c(z) separately, the oblique incidence experiment of Chapter IV
must be employed. If the medium is not acoustic but elastic (i.e., not
a liquid but a solid), then it can support shear stresses and shear wave

propagation. This elastic problem is covered in Chapter VI.

3.2.1 Basic Concepts of Acoustics

In this section we quickly review some basic acoustical concepts,
including plane waves, impedance, reflection and transmission coefficients,
energy normalization, and sufface boundary conditions. This will clear
up some confusing points and lend physical insight into the meanings of

various quantities appearing in the algorithms.
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The two basic equations of acoustics are (Dowling and Williams, 1983)

p = -pc’v. u (3-1a)

22u/3t2 = -(1/p)Vp (3-1b)

where 1~1 is the particle or medium displacement and p is the negative
isotropic stress, i.e., pressure. Equation (3-1a) can be interpreted as
an equation of conservation of mass, while equation (3-1b) is a
convervation of momentum equation (compare (3-1b) to Newton's second
law of motion F = ma). For a one-dimensional layered medium (3-1)

becomes

p = —pczaulaz (3-23)

32unt? = ~(1/p) aphz (3-2b)

where u(z,t) is the vertical displacement (the z-component of the vector
‘u). Note that (3-2a) can be interpreted as Hooke's law for fluids: an

applied stress -p produces the strain 3u/dz, with the stress and strain

linearly related by the elastic constant pcz.

Plane waves

In a homogeneous medium, insertion of (3-2a) in (3-2b) yields the

wave equation

o2mt2 - Z2p2tuz.t) = 0 (3-3)

which has the fundamental solutions

u(z,t) = u(t + z/c) (3-4)



113

These solutions describe waves traveling upward and downward with
speed c¢. These waves can take many forms (e.g., sinusoidal or
impulsive), with some recognizable feature (an impulsive wave front, or
a point of constant phase) moving through the medium at speed c.
Note that there is no variation with x or y, so the wave can be thought
of as a plane of constant phase or a planar impulse moving in the z or -z
direction. This absence of spatial variation over a plane normal to the
direction of propagation at a fixed time defines a plane wave (Aki and
Richards, 1980, p. 125).

In general, if a plane wave is propagating in a space :5 in direction
n with speed ¢, the quantity being propagated (displacement, pressure,
etc.) is a function of (t - n - §/c). Note that the component in the
direction y of a plane wave moving in direction 0 has dependence
t-(n-y)(x-y) /e, which corresponds to an apparentspeed of propagation

faster than c. Since this is a phase velocity, there is no violation of

causality.

Impedance

Consider the sinusoidal plane pressure wave

jw(t-z/c)

p(z,t) = pye (3-5)

propagating through a homogeneous medium. From (3-2) the particle or

medium velocity v(z,t) = 5u/3t associated with the wave is

jw(t-z/c)

v(z,t) = polpc e (3-6)

so that
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p(z,0) v(z,t) 2 7 = pe (3-7)

i.e., the pressure and velocity associated with the wave are related
linearly by the impedance Z. Impedance is thus a measure of medium
resistance to motion, i.e., the amount of pressure p required to set
particles in motion with velocity v. Equation (3-7) should be compared to
the electrical definition (2-42) of impedance as the ratio of voltage to
current.

It should be noted (AKki and Richards, 1980, p. 137) that impedance
depends on the type of wave. For example, a pressure wave propagating
through a homogeneous medium at an angle 6 from the vertical has

impedance pc/cos 6, while a similar displacement wave has impedance

oc cos 6, even though the waves are physically identical. How can this
be true? For both waves, the ratio of stress to particle velocity in the

direction of propagation is pc. However, the impedance for the pressure

wave is defined by

A
v, = p/Z = v cos = (p/pc) cos B (3-8)
so Z = pc/cos 6. The impedance for the displacement wave is defined by
A
Tyy = Zv= p cos 0= (pc v) cos © (3-9)
so Z = pc cos 8. The reasons that impedance is defined in terms of the

z-components of the produced stress or particle velocity will become
apparent below. Also, the impedances for waves travelling in opposite

directions have different signs.
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Energy and energy normalization

It may be shown (Aki and Richards, 1980, p. 127) that the energy flux
(energy per unit time per unit area normal to the direction of propagation)
for a displacement plane wave is pcvz, where v is the particle velocity
amplitude of the wave. The energy flow in the z-direction is then ZV2
=. pC COS evz, where 6 is the angle between the direction of propagation
of the plane wave and the z-axis. This can be seen by projecting a unit
area of wavefront on a unit area normal to the z-axis.

Suppose now that the medium is inhomogeneous in the z-direction.

Then the amplitude of the wave will be continually varying as pc varies,
in order that the energy flux pc cos sz be kept constant (save for
losses due to reflections). This phenomenon has often been observed in
earthquakes, when a seismic wave that had small amplitude when it was
passing through hard rock (high impedance) suddenly becomes much
larger (and more damaging) when it passes through landfill or sediment
(low impedance).

This continual variation of the wave amplitude makes it difficult to
note the effects of reflections, since the wave amplitude is varying due
both to reflection losses and impedance variations. For this reason, the

(energy)-normalized pressure Y and displacement ¢ are defined by

1>

ol

Y =pl/Z (3-10a)

ne>

1
2

¢ = uz (3-10b)

These quantities have the property that the energy flux in a wave is
simply the square of the amplitude of the wave--it is no longer necessary

to multiply or divide by Z. Thus variations in amplitude are due solely
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to transmission and reflection losses. Note that normalized pressure and

velocity have the same dimensions.

Reflection and transmission coefficients

Suppose a wave is propagating through a medium #1 with density Py and
speed of sound ¢y and reaches an interface between medium #1 and
another medium #2 with density Pg and local speed of sound cy- Some
of the wave will be reflected and some transmitted. The ratios of the
amplitudes of the reflected and transmitted waves to the amplitude of
the incident wave are the reflection and transmission coefficients for that
particular wave type.

Reflection and transmission coefficients are determined by boundary
conditions at the interface: displacement and normal stress are continuous
across the interface. Derivations are made in almost any seismic or
acoustics text; the coefficients for various wave types are simply
summarized below. These expressions are still valid for non-normal

incidence on the interface if the impedance expressions (3-8) and (3-9)

are used.
DEFINITIONS: r = reflection coefficient for a wave incident from medium #1
7 = reflection coefficient for a wave incident from medium #2
t = transmission coefficient for a wave incident from
_ medium #1
t = transmission coefficient for a wave incident from
medium #2
DISPLACEMENT Zy - 22 221
WAVES: r= v t=14r = ——mMm— (3-11a;b)
7o — Z B 27
F= ot ,t=1m= 2 (3-11c,d)
2 + 21 7. +Z

r=-r, tt-rfe=1 (3-11e,f)



PRESSURE Z, - 7, 22,
WAVES: r= —, t =14r =
Zg + 27 Zy +1Z,
7. -7 } 27
p= 1 2 o qar= 1
Z;1*+ 12 Z) +Z,
r=-r, tt -rr=1
7. -7 2Z. 7))t
NORMALIZED r= —1 "2 .7 1 %9
DISPLACEMENT Z, + 12, Z, + 2,
WAVES
- Ly- 7y
r =
Zy +Z,
- 2 - -
r=-r,t +r =1, tt -rr =1
( )?
7. -7 _ 2zZ. 7.
NORMALIZED r=—2 1  _§- i St i
PRESSURE Zy+ 2, Z, + 2,
WAVES : 2"
- Zy-1Z,
r =
Z, + 7,
r=-r, t2+r2=1, tt - rr =1
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(3-12a,b)

(3-12¢,d)

(3-12e,f)

(3-13a;b)

(3-13c)

(3-13d-f)

(3-14a,b)

(3-14c)

(3-144-1)

Several comments are in order. Note that the reflection coefficients

are the same for normalized and unnormalized waves. This is as expected;

since the wave is reflected back into the same medium, normalization

should have no effect. However, normalization does affect the transmission

coefficients; the normalized coefficients are the same going in either

direction (reciprocity), while the unnormalized coefficients must alter the
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wave amplitude to preserve the energy flux through the medium.

Note that the reflection coefficients for pressure and displacement
waves have opposite signs. Physically this amounts to a phase inversion;
mathematically, it may be seen as follows. Recall that the amplitudes of
the pressure and velocity associated with a wave are related by the
impedance. Hence the reflection coefficients for pressure and velocity
are related by the ratio of the impedances of upgoing and downgoing
waves, since the incident and reflected waves travel in opposite directions.
But these two impedances differ in sign, so their ratio is minus one.

For the normalized coefficients, we have the conservation of energy
relation 'c2 + r2 = 1 (incoming energy = outgoing energy). For all
coefficients, we have r = -r (simply exchange the media) and the
relation tt - rr = 1, which should not be confused with the energy

conservation relation ’c2 + r2 = 1.

Surface boundary conditions

In an inverse seismic problem, the medium is probed by a downgoing
wave D(0,t) at the surface, and the resulting upgoing wave U(0,t) is
measured at the surface. These waves must be specified in terms of

known or measured quantities.

Half-space

If the medium is probed from a homgeneous half-space, then we set

D(0,t)

S(t) (3-15a)

U(0,t) = R(t) (3-15b)

Here § (*) is the impulse (Dirac delta) function and R(t) is the measured

response. This is the most common choice of boundary condition in the
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literature, since the mathematical physics solution procedure described
next requires this as a boundary condition. However, it is physically
reasonable to make this choice when the actual physical experiment consists
of detonating an explosive charge just above the ground for a land
experiment, or close to the sea bottom (far away from the ocean surface)
for an ocean experiment. In the latter case, the water column
reverberations (reflections from the ocean surface) must be removed from

the data.

Free surface

A free surface is also known as a pressure release surface, since the

boundary condition is that the pressure at the surface is zero. The
surface of the ocean is modelled quite well by a free surface (Claerbout,
1976), and the surface of the earth in a flat region is also modelled well
by such a surface.

The effect of the free surface is to reflect the upcoming waves into
the downgoing waves at the surface. It is necessary to assume that the
density and wave speed are known immediately below the free surface,
in lieu of specifying them in a half-space. Of course, the pressure
release boundary condition is violated for an instant by the impulsive
source, but as long as the source stops before any reflections return to
the surface, there is no problem.

The boundary conditions for a free surface are

D(0,t) = 6(t) + k(1) (3-16a)

U(0,t) = k(1) (3-16b)

where the upper sign is for displacement waves and the lower sign is for
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pressure waves (to see this, set Z1 = 0 in (3-11ec) and (3-12¢)). Note
that the reflection response for a free surface can be synthesized from

the response for a half-space boundary, and vice-versa, by

R(W) = kW) /(1 + K(w)) (3-17a)

I+

R(w) = R)/(1 3 R®)) (3-17b)

where the same sign convention as in (3-16) is followed. Indeed, the
entire scattering matrix for a free surface can be synthesized from the

half-space scattering matrix and vice-versa; see Ware and Aki (1969).

Bottom boundary conditions

A radiation boundary condition is also assumed throughout: at
sufficiently great depths, there is no upcoming wave (U(x~,t) = 0).
The transmitted wave at great depths is unknown. The medium is also
assumed to be relaxed (quiescent) before the experiment beings. This is

clearly necessary in order to use causality.

3.2.2 Mathematical Physics Solution for a Continuous Medium

Here the standard mathematical physics procedure for solving the
one-dimensional inverse seismic problem for a continuous medium is
presented. First popularized by Ware and Aki (1969), it has been used
so often since then that it might well be termed the "classical" approach to
solving this problem. The basic equations (3-2) are transformed into a
Schrodinger equation, an equation often encountered in quantum mechanical
scattering problems (Chadan and Sabatier, 1977). The Gel'fand-Levitan
procedure for recovering the potential of the Schrodinger equation is well

known (Faddeev, 1967; Chadan and Sabatier, 1977; etc.), and the
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impedance is recovered by solving a differential equation involving the
potential, or is recovered directly from the Schrodinger solution. A major
problem with this method is that it requires the impedance profile Z (1)
to be twice differentiable, or impulses will appear in the Schrodinger
potential.

Note that the travel time 1(z) from the top of the medium to depth

z is given by

Z
W@ = ) ds/e(s), (3-18)

and recall the definitions of impedance Z = pc (3-7) and normalized

1
displacement ¢ = Z?u (3-10b). Substituting all of these in the basic

acoustic equations (3-2) and Fourier transforming with respect to time

yields the Schrodinger equation

2
<ii§- + ol —'V):b(T,w) =0 (3-19)
5t

where $(T,w) is the Fourier transform of ¢(1,t) and the potential V(t)

is defined as

a?
drz

V() = 7% (z%). (3-20)

Note that equation (3-20) requires Z(t) to be twice differentiable to avoid
impulses in the potential V(7).

The boundary conditions for the Gel'fand-Levitan solution procedure
are those for a half-space boundary (3-15). Taking Fourier transforms

of (3-15), employing the radiation condition, and recalling that ¢ =D + U

results in
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e T Rwe™ , 1< 0 (above surface)
BCT,0) = {A e (3-21)
T(w)e ] , T> o (at great depth)
where e %7 is the source impulsive plane wave, R(w)e]LUT is the

(measured) reflected plane wave response, and /’i‘(uu)e_j(DT is the (unknown)
transmission response of the medium. The situation is illustrated in
Figure 3.1.

The Gel'fand-Levitan procedure applied to the inverse scattering
problem specified by (3-19) - (3-21) results in the following procedure

for solving the one-dimensional inverse seismic problem:

(1) Measure R(w) or its inverse Fourier transform R(t);

(2) Solve the Marchenko integral equation

T
K(t,t) +R(t+1) + f—t K(s,T)R(s+t)ds = 0, t < 7 (3-22)
- (3) Compute the potential V(1) from
v = 23 Ker,1) (3-23)
dt ’

(4) Solve the differential equation (3-20) for Z(t).

Berryman and Greene (1980) have pointed out that steps (3) and (4)

may be replaced by
T
Z(t)/Z(0) =1 + /_T K(s,T1)ds (3-249)

since the differential equation (3-20) has the same form as the Schrodinger
equation (3-19) with w = 0. From (3-22) it is evident that reconstruction
of Z(1t) on [0,T] requires R(t) on [0,2T], where 2T is the two-way

travel time.
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The Gel'fand-Levitan procedure is derived in Chadan and Sabatier
(1977); the appearance of a Marchenko integral equation in an inverse
scattering problem with a half-space boundary condition should not be
surprising in light of Chapter II. It should be noted that this procedure
requires that there be no bound states (see Chapter II) and that the

potential V(1) be localized, i.e.
fo(l + )| V(D|dr < » - (3-25)

Neither of these conditions presents any problem for the one-dimensional
problem at normal incidence, but they do present problems when the

medium is probed at non-normal incidence. This is discussed in Chapter IV.

3.2.3 Layer Stripping Solutions for a Continuous Medium

To obtain layer stripping solutions, it is first necessary to obtain a
two-component wave system from the basic acoustic equations (3-2). This
is done as follows. Fourier transformation of (3-2) and changing
variables from depth z to travel time Tt usi‘ng (3-18) results in the

symmetrized equations

p = -Z du/dr ' (3-262)

w2 = (1/2)dp /dr (3-26b)

which can be written as the matrix system

2 ~
_di {J:{ } {A] (3-27)
u -1/Z 0 u | .

~

. . P,
Claerbout (1976, p. 169) has pointed out that if the state vector [IAJ:I is
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multiplied by the matrix of row eigenvectors of the system matrix, the
new state variables can be interpreted as upgoing and downgoing waves.

To see this, write the system (3-27) as

dx
ar - Ax (3-28)
AP

where X = al and let R and C be the matrices of row and column

eigenvectors, respectively, of the system matrix A. Then, defining

w=Rx |, (3-29)

substituting (3-29) into (3-28), premultiplying by R, and using RC =1

results in
dw
- _ _ dC

But RAC is the diagonal matrix of eigenvalues of A, i.e.,
RAC = DIAG[-jw, jw]. In a homogeneous medium, the second term Rg_(z:
is zero, and from (3-30) it is evident that w is indeed a vector whose

components are upgoing and downgoing waves.

However, in an inhomogeneous medium, the second term of (3-30)

Rg—g differs from zero. But the interpretation of W as consisting of upgoing
. . . . dC

and downgoing waves will be preserved if the diagonal elements of Rd_z

are zero. This can be achieved by scaling R appropriately (scaling the

elements of R will not affect their status as eigenvectors). Since R

1 juZ
R = (3-31)
1 —jwz

is

resulting in the waves
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resulting in the waves

f) f) + ijﬁ
u P - iju
the obvious scaling to try is the energy-normalized waves

>
]

p
u (3-33)

IS/Z% + jwZ 24 Y o+ jowd
szt - juzta b b |

Indeed this works and the waves D(T,w) and U(T,w) satisfy the two-

[B(T,m)j\
E](T 9(1))

component wave system

d f) -ju  -r ]A)
e = . (3-34)
U -r jw U

where the reflectivity funection r(t) is defined as

1 az
r(t) = 37 T . (3-35)

Two comments are in order here. Recall the definition of impedance
and the fact that impedances of waves travelling in opposite directions are

opposite in sign. Then, in a homogeneous medium, the waves (3-33)

both become waves in the normalized pressure ¥, i.e., the normalized
pressure ¥ is decomposed into upgoing and downgoing waves. Next,

recall the reflection coefficient (3-14a) for normalized pressure waves.
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A continuous medium may be modelled by a stack of thin homogeneous

layers, each with travel time A, and then letting A approach zero. This

gives
LIM r _ LIM Z(TH) - Z(D) 1 _ 1 dZ _ i
A+0 B T A+0 ZGH) FZ A - 22 dr - T (3-36)

This will be discussed in more detail in Section 3.4. In the present
context, the sign of (3-35) implies that the waves are really normalized
pressure waves, rather than displacement waves. This is in accordance

with the first comment.

Fast Cholesky algorithm

If the downgoing wave D(t,t) contains an impulse, as it does in
both the half-space and free surface boundary conditions, then we

immediately have the fast Cholesky algorithm

(3_8%+ aa_t) D(t,t) = -r(1)U(T,t) (3-37a)
(2= - 2D U@, = -r(0D(r,t) (3-37b)
r(t) = 2U0(t,1) (3-37c)

initialized by either set of boundary conditions (3-15) or (3-16). The

impedance Z(t) is then recovered by integrating (3-35), yielding
T
Z(1) = Z(0) exp 2/(; r(s)ds. (3-38)

This algorithm is preferable to the Gel'fand-Levitan procedure (3-20),

(3-22), (3-23) on both computational and aesthetic grounds. The
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quantities in the algorithm have obvious physical interpretations, allowing
the user to physically envision the inversion process, and the algorithm
is guaranteed stable as long as j :[r(r)ldt < o, which merely requires
that the impedance be positive and bounded. Bube and Burridge

(1983) have experimented with various discretizations of this algorithm
(which they call the "downward continuation" algorithm), and have

gotten excellent results.

Schur algorithm

In the frequency domain we have

d ]S(T,w) -ju  -r ﬁ(T,w)

T | ~ = . (3-39a)
U(t,w) -r jw U(T,w)

r( = LM 2jo o O(t,0 = (1/-n)fo Gerwe”T au (3-39D)

which may be preferable if all of the waves are only known over a
limited frequency range (i.e., are bandlimited in measurement). In
this case, the lack of high frequency components will cause some error

in (3-39b). Z(1) is obtained from (3-38).

Dynamic deconvolution

Defining the reflection coefficient for the entire medium below depth z

~ A A ~
R(T,w) = U(t,w)/D(1,w) (3-40)
we have the Riccati equation

A Rt,0) = 2juR - r(1)(1-R?) (3-41)
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along with

rt) = ngV.gO zjwﬁ = (1/Tr)foﬁ(m,r)dw . (3-42)

This algorithm, in which ﬁ(T,w) is propagated in T by (3-41), is

initialized by

ﬁ(O,w) ﬁ(w) for a half-space boundary (3-43a)

ﬁ(O,w) = ﬁ(m)/(l—T((w)) for a free surface boundary . (3-43b)

Tolstoy and Clay (1966) noted the Riccati equation (3-41) for
propagating the forward problem, as did Newton (1981). Corones et al.
(1983) used the inverse Fourier transform of (3-41) as an invariant

embedding equation, along with

r(t) = 2R(1,0) (3-44)

to solve the inverse problem.

Note that ﬁ(T,w) is the Fourier transform of the seismogram at depth
T that would be obtained if all of the medium above depth T were stripped
away, and the remaining portion of the medium probed with an impulsive
plane wave. Equation (3-44) then states that the first reflection from
the medium is caused solely by r(t). Equation (3-37c) in the fast
Cholesky algorithm has a similar interpretation: the first reflection from
the downgoing wave into the upgoing wave at depth T is caused solely

by r(T).

Method of characteristics

The choice of variables in using the method of characteristics is

dictated by the relation Z = p/v. Letting
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p(T,t) = p(T,t)1(t-1) (3-45a)

v(T,t) = v(T,t)1(t-1) (3-45b)

and changing variables from z to T in the basic acoustic equations (3-2)

results in the symmetrized system

op(t,t)/ot

-Z3v(t,t) /ot (3-46a)

v(T,t) /9T

-(1/Z)sp(t,t) /ot . (3-46b)

Along the wave front, which is a plane wave in (1,t) space propagating

with unit velocity, we have by the definition of impedance

Z(t) =pt,tH/iv(t,tH . (3-47)

The set of equations (3-46) - (3-47) can be propagated in T, yielding
Z(1t). However, there is no guarantee of stability, and all physical
interpretation in terms of waves and reflections is gone.

Each of the above algorithms has its counterpart in the inverse
seismic problem for a discrete layered medium. This is explored in the

next section.

3.3 Solution of the Inverse Problem for a Discrete Medium

The inverse seismic problem for a one-dimensional acoustic discrete
medium is defined as follows. The medium consists of a stack of
homogeneous layers whose thicknesses are proportional to the speeds
of sound within them. Such a medium is called a Goﬁpillaud medium,
after Goupillaud (1961). The medium is probed by an impulsive
acoustic plane wave at normal incidence, as before, and the reflection

response of the medium is measured. The goal is to recover the
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impedance in each layer, which is equivalent to finding impedance as a
function of travel time. The medium is illustrated in Figure 3.2.

The special structure of a Goupillaud medium causes all events
(wave arrivals, reflections, and transmissions at all interfaces,
including the surface) to occur at half-integer multiples of the two-way
travel time AT through each layer. This means that the actual
mathematical problem, invblving impulses, can be replaced by a completely
equivalent digital signal processing problem. This makes things much
simpler mathematically, and allows much easier visualization of what is
happening inside the medium.

It should be noted that the Goupillaud assumption is not as
restrictive as it may first appear. Thick layers of various thicknesses
may be built up by stacking various numbers of the fundamental layers,
each having the same density and wave speed. This can be used to
approximate a general discrete medium. For At small, the Goupillaud
medium may be a good approximation to a continuous medium. Indeed,
it will be shown in Section 3.4 below that the Goupillaud medium results
approach the continuous medium results as At > 0 (this result is due to
Gerver, 1970).

In the course of solving the discrete problem, discrete analogues
of integral equations and of all of the layer stripping algorithms will be
obtained. The approach will be similar to that of Aki and Richards
(1980), with results from Kunetz (1967), Ware and AKki (1969), Berryman
and Greene (1980), and Robinson (1982) also worked in. Bruckstein
and Kailath (1984) gave a similar treatment for the discrete transmission

line.
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3.3.1 Matrix Equation Solutions for a Discrete Medium

For convenience we consider the medium as consisting of N equal-
traveltime layers sandwiched between two infinite half-spaces. The
two-way travel time through each layer is AT. Insertion of the lower
half-space is simply equivalent to cutting off the data record after NAT.
In due course, a free surface will be introduced in lieu of the upper
half-space (this can be done by setting Po = C = 0). The medium is

illustrated in Figure 3.2.

The medium will be probed by an.impulsive displacement wave, and

the problem will be treated as a digital signal processing problem. The

downgoing and upgoing normalized displacement waves at the top of

layer i will be designated as di and w, respectively, while the waves at
the bottom of layer i will be designated as d‘i and u'i. The wave

notation is illustrated in Figure 3.3. Note that

d'i(t) d;(t - ) (3-48a)

u'i(t) u(t+ 3 . (3-48b)

It should also be noted that di(t) and ui(t) are zero except at

1 1
t (G-1/2 +k, k =0,1,2,..., and di (t) and ui(t) are zero except at

t

i/2 +k, k =0,1,2,... Hence successive non-zero values of any
wave are separated by one, i.e., the layer two-way traveltime At. If
the one-way layer traveltime were being used, the waves would have
every other value being zero, and the notation would be even worse.
At any given moment, the four waves at an interface i interact as

shown in Figure 3.4. We have
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"+ T (3-49a)

di+1 = tidi + riui_|_1

' ' (3-49b)

. =r.d. + t.u
u1 ii t1 i+1

where r., t., r., and t_1 are defined in (3-13) for normalized displacement

Equations (3-49) can be rewritten, using (3-13d) and (3-13f),

u. u.
i+1 1 1 —ri i (3-50)
d Coh 1] g

and defining the layer two-way travel time delay operator z we have,

waves.

as

using (3-48)

ui+1 ) 1 —zri ui
= (3-51)
vd z%t. -r. Z di

induction argument similar to that of Aki and

A straightforward
N

Richards (1980, p. 666) shows that for n = 1,2,...

n n
u M., (z) z M,,(1/z) u
[ n+1J. o1 { 11 21 } { 1] (3-52)
n/2 n n .
dn+1 zZ MZl(z) z Mll(l/z) d1

where Mll(z) and M21(z) are polynomials in z having the forms

n
n z n i n _ n _
Mll(z) = 5 My z /(tltZ"‘tn) , my, =1, my = 0 (3-53a)
n .
Mn z _ n i n _ _ n _ _
91(2) 2 myz/(tyty..t ), myo =-r, mp =0 (3-53b)

-
1]
o



136

Note that (3-52) defines the discrete state transition matrix, in direct

analogy to (2-93). Note that properties analogous to the time-reversal

properties (2-98) have been revealed by the induction, and have been

used to simplify Mlllz(z) and M;lz(z). Note also that the finite order of the

polynomials is analogous to the support (2-97) of Mll(x,t) and M21(x,t).
The polynomials Mrlll(z) and Mrzll(z) are generated recursively by

the recursions

M?;-l(z) - tl—(lel(z) - zr M (2)) (3-54a)
n

Mgfl(z) = -tl—(zMrzll(z) - MY (@) . (3-54b)
n

which also follow directly since [Mir; (z)] is the transition matrix (compare
to (2-91)). Equations (3-53) and (3-54) are similar to equations (41)
and (42) in Ware and Aki (1969), and to equations (22), (13), and (12)
in Berryman and Greene (1980). However, these latter equations were

derived for the upgoing (i.e., in decreasing i) transition matrix.

Half-space boundary condition

For an infinite half-space boundary the boundary conditions are
'ul} |:R(z):| (3-55a)
Ldl 1

'“N+1} {0 } (3-55b)
d RS

- ON+1

where
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I
=
N

R(z) o n (3-56a)

T(z) n (3-56b)

I
o]
:‘H

N

are constructed from the reflection response sequence at the surface
{Rn}, and the transmission response sequence at the bottom {Tn}.

The layer matrix in (3-51) has a determinant of unity, hence the
propagator matrix in (3-52) also has a determinant of unity. Inserting

(3-55) into (3-52), setting n = N, and adding results in

< N
20 (MY (1/2) + MY (1/2)) + R(2) (M) (2) + My (2) = z 210 .

(3-57)
N
Multiplying (3-57) by t and inserting (3-53) and (3-56) results in

N N N

N-i, N. N z i Z N N N+1
Z Z (mli +m21) + ya z . 4 .(ml,N—j+m2, )R1+] N + O(z )
i=0 i=0 j=N-1

N
N .
N/24H 1
= Ghty 1;/2 T+ 0@
N
=z (] Lt Ty * oz, (3-58)

where the order of the inner sum of the nested sum has been reversed.

N N
Clearly Ty ,, = ].Elt]., so the right side of (3-58) is just zN I
N+1

O(z ). Equating coefficients of powers of z on both sides of (3-58)

(1r)+

results in the matrix equation
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N N
O Ry MmNt My I
. . N
' . N ., N i 2
R0 R1 RN m10 + Mo ].=1(1—r].)

which is (70) in Berryman and Greene (1980), and which can be

rewritten as

= N7 7 1 N N 9 r -
MmN T MoN R, F() Ro | [™in* mon 0

N N + I?l + R1 N N =
m + m . Z m + m 0

11~ Ta21 : ////. 11 21 N

N N : : N N il 2
m10 + m20— 1 RN R0 Rl"‘RN m10 + m20—1 j=1(1_r]')_1
! I | 1L I ]

(3-60)

Equation (3-60) is just a discrete version of the Marchenko integral

N
1i

From (3-53b), and in analogy to (2-104a), we have

equation (2-103), in terms of the kernel m.. + mIZ\Ii (compare to (2-102)).

(3-61)

Free surface boundary condition

Here we return to Aki and Richards (1980), pPp. 667-669). Now

the boundary conditions are

(ul k(z)
4 = (3-623)
1 1+k(z)
uN+1 0
dN+1 = T (z) (3-62b)
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(3-62c)

where R(z) and T (z) are defined by (3-55) and (3-56) and {kn} is

the free surface response sequence.

n = N yields

MY, 2) + 2" My, (1/2)

N N..N
le(Z) + 2z M11(1/z)

Defining the polynomial

A
G(z) = lel(z) N zNMgll(l/z) ,

N

N Z .
_ : i __N N _ _
= (/L) 55 g2 - 8 My My Ne 8= L BN T Ty

i=0

Inserting (3-62) in (3-52) with

zNMI;II(I/z) K(z)
(3-63)
zNlel(l/z) 1
(3-64a)
(3-64b)

replacing z with 1/z in (3-63a), multiplying by zN, and adding to

(3-63b) yields

-N/

y/ 2T(z)

Replacing z with %in (3-65) shows that z

6 A + k@@ + kG

(3-65)

N/ZT(z)G(z) remains unchanged

if z is replaced with % Since this is a causal polynomial, this is only

possible if it is a constant polynomial, and (3-53) and (3-64b) show that

this constant is one. Hence we have

G(z) = 1/(z V21 (2))

(3-66)

so that G(z) is the causal and stable deconvolution, inverse, or
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whitening filter that outputs the source impulse when the transmission

-N/2

seismogram is fed into it (the z removes the delay before {Tn}

becomes non-zero).

Inserting (3-66) into (3-65) we get the important equation
1+ k(z) + k(1/2z) = T(2)T(1/2) = 1/(G(2)G(1/2)) (3-67)

which states that the medium response, for a free surface boundary

condition, forms one side of the autocorrelation of the transmission

seismogram. This famous result is due to Kunetz (1962), and should be
compared with (2-149).

Writing out the polynomials in (3-65) using (3-64b) and (3-62c),
multiplying by G(1/z), and equating coefficients of negative powers of

z to zero (since 1/G(z) is causal by (3-66)) yields the matrix equation

(3-68)

ky myp MI;,N—I 2k Kyreer Ky myy * mI;,N—l

]%{It. + | ml . mI;,N—Z I \ : mYy ! mIZ\],N—2

k| 71 N © N :\ ‘1 N ° N

N miN * Mg kgt By 2K d bmyg v Mg
(3-69)

Equation (3-69) is a discrete version of the Krein integral equation

. N N
(2-111), in terms of the kernel my. +my

i (compared to (2-110)).
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In the continuous medium case, the transmission losses become negligible

N
(see Section 3.4), so jzltj becomes unity. From (3-64b) we have
- _ _ N N . ~
ry = -8y = - (myg +my.), in analogy to (2-113).

Levinson algorithm

It should not be surprising that the discrete Levinson algorithm can
be used to solve the matrix equations (3-60) and (3-68). Indeed, the
recursions (3-54) are the Levinson recursions in the form of recursions
on the Szego polynomials Mrlll(z) and M?z(z). All that is needed is an
"inner product" expression to generate the reflection coefficients, allowing
the algorithm to propagate. Equation (52) in Ware and Aki (1969) and

equation (21) in Berryman and Greene (1980) are both

1

n-1
r. = z k m’n/ﬁ_
n  i=0 "n-i 1i'j=0

(1—r].2) (3-170)

(proved by induction in Appendix A of Ware and AKki, 1969), and this

in conjunction with

.n _ 1 _
My = 1chy? (myg =+ T, My 5oq) (3-7la)
i
n 1 n-1 n-1 . _
my, = (1_1-2)% (mZ,i-l + rn m11 ), 1<i<n (3-T71b)

forms the Levinson algorithm for obtaining the reflection coefficients

{rn}. Note that the sums mllg + mg]i solve the Marchenko-like Hankel
matrix system (3-60), while the solution to the Krein-like Toeplitz matrix
system (3-68) can be generated from (3-71) and (3-64).

" Having obtained discrete analogues to the Marchenko and Krein
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integral equations and the Levinson algorithm, we now derive discrete

analogues to the layer stripping algorithms of Section 3.2.3.

3.3.2 Layer Stripping Solutions for a Discrete Medium

The layer stripping algorithms for solving the discrete medium problem

can be obtained almost immediately from the above development. Recalling

(3-51)
liui+1j| 1 l: 1 -zri} [ui}
= 1 - (3-72)
di+1 2%t ooz ]9
2.1 o .
where ti = (1—ri)2 from (3-13e). d1 can be initialized using either

(3-55) for a half-space boundary or (3-62) for a free surface.
At the leading edge or wave front, there is no upcoming wave from
farther below by causality and the initial quiescence of the medium.

Hence we may set u, , = 0 in (3-49b), yielding

1 ' . ui
r, = ui/di = ui(l + %)/di(l - 3) = zd. | (3-73)
i lz=0
The fast Cholesky algorithm is then, from (3-72) and (3-73),

= —_1 - 1 - 1 _

4 (O = g (Gt - ) - rut + 1) (3-74a)
(1_ri)

= 1 1) - -1 _

%a® = T (gt + 1) - rdit - ) (3-74b)

1

r, = ui(i + 3) /di(i -3 . (3-74e)
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The Schur algorithm (here in its original form as developed by

Schur) is (Robinson, 1982)

1
_ z* -1 5

d4 (2 Y (d; - z ) (3-75a)
i
-1

u,,.(2) oIt (u; - zr;d,) (3-75b)
i

Y
= Nl (3-75¢)

The dynamic deconvolution algorithm (Robinson, 1982) is obtained by

defining

u.

Ri(z) - zdl. (3-76)
i

and noting from (3-75) that Ri(z) satisfies

1 Byl

Ri+1(Z) =z ————1_riRi(Z) (3-77a)

r, = R,(0), (3-77b)

Note that (3-77a) is a discrete Riccati equation (compare with (3-41)).
Ri(z) represents the seismogram that would be obtained if all of the
layers 1,2, .... i were stripped off and the remaining portion of the
medium were probed with an impulse. Equation (3-77b) simply states
that the first reflection from the remaining portion of the medium

(Robinson, 1982, refers to it as the "first bounce") is caused by the
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reflection coefficient r; of the next interface. The dynamic deconvolution

algorithm is initialized by

Ro(z) R(z) (half-space boundary) (3-78a)

RO(z) k(z)/(1+k(z)) (free surface) (3-78b)

(Note the sign change between (3-43b) and (3-78b); this is caused by
the switch from pressure waves to displacement waves.)

The Schur-Cohn stability test is to run the algorithm (3-77),
starting with R (z) = f(z). Then [f(z)] < 1 and f(z) is analytic inside
the unit circle if and only if the reflection coefficients all have the
property that |ri[ < 1. This test is tantamount to the synthesis of a
lossless transmission line; the conditions [f(z)| < 1 and [ril <1 are
both statements of the passivity of the line. To see this, recall that
each section of the line is implemented by the layer matrix (3-51), which
has a determinant of unity. Then, if Iri| < 1, each layer matrix
multiplication becomes a lossless rotation, so that the line is lossless.
The test is also analogous to the Darlington synthesis of a lossless
digital filter. References for all of this are given in Chapter II.

Note that the fast Cholesky algorithm (3-74) does not match the
discretized version of the continuous fast Cholesky algorithm presented
in (2-25). However, we can easily obtain this form of the fast Cholesky
algorithm for the discrete medium problem by making two changes: (1)
exchange the roles of the primed and unprimed waves in Figures 3.3
and 3.4, so that the waves in the (revised) fast Cholesky algorithm are
the waves at the bottom of each layer; and (2) change from two-way

travel time to one-way travel time. Then the wave interactions at an
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interface i are described by

1

d . =td. +1

i+ T HY T Ty (3-79)
_ T ! -
ui = ridi + tiui+1 . (3-79b)

We also have

u;(t) = u,(t-1) (3-80a)
d'i(t) = di(t+1) (3-80b)
to=f =1- riz (3-80c)

where the one-way travel time through each layer is unity and (3-80¢)
follows from the (continued) use of normalized displacement waves.

From (3-79) and (3-80) we get

dj(t+1) = —Lz—% (d;(t) - r;u.(t)) (3-81a)
(l_ri )

U - D = s () - rd () (3-81b)
(1—1‘1 )

r, = w (i) /d,d) (3-81c)

which has the same form as the discretized algorithm, except for the
transmission losses and a factor of two in (3-81c). These are discussed
in Section 3.4.

It should be noted that Symes and Zimmerman (1982) and
Bruckstein et al. (1984) have made detailed numerical studies of the

performance of the discrete fast Cholesky algorithm in the presence of
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noise and using bandlimited data. The algorithm seems to work quite
well for fifty or sixty layers, at which point the conditioning of the
problem itself becomes so poor that further inversion by any means would
give poor results. Bandlimitation of the data does not affect the algorithm
too severely, although the lack of low-frequency components causes
problems in reconstructing the trend of the profiles. These results
emphasize the comments of Bruckstein and Kailath (1984) that layer
stripping methods are NOT inherently inferior to integral equation or
matrix methods, as commonlyAbelieved. Indeed, a major purpose of
Chapters II and III of this thesis is to emphasize that the two approaches

are mathematically equivalent, and in fact are dual to each other.

3.4 Relations Between Discrete and Continuous Problems and Solutions

In this section the problems and results of Sections 3.2 and 3.3
are linked. One might intuitively expect the results for a continuous
medium to closely match those for a sufficiently finely discretized medium.
For the most part this is the case (Gerver, 1970) ; however, there are
some important distinctions. These distinctions are discussed and
clarified here, so that the relation between the continuous and discrete

problems may be more readily understood.

3.4.1 Discrete to Continuous Transformation

It is a well known development that the two-component wave system
inverse scattering problem for a continuous medium can be treated by
solving the same problem for a discrete, equal-traveltime medium, and
then letting the layer travel time approach zero. This is a common
procedure in mechanics; Pusey (1975) employed it in studying the lossless

non-uniform transmission line, and Gerver (1970) applied it to the present
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problem. Here we quickly sketch over the argument.

Consider a one-dimensional stratified acoustic medium comprised of
homogeneous layers, each of which has a thickness proportional to the
wave speed within it, so that the one-way traveltime through each layer
is A. Splitting the medium displacement or pressure in each layer into

upgoing and downgoing waves, we have the relations (from (3-74))

Ay ® = —I57 (@t - Tt +) (3-82a)
(l—ri )
(1_1'1 )

for waves defined at the top of each layer, and the relations (from (3-81))

A, (48 = —Iom (@) - Tuy(D) (3-83a)
(1_ri )

u (- W) = —p @) - i) (3-83b)
(1-r)

for waves defined at the bottom of each layer. In both cases, the

reflection coefficient for normalized displacement waves is

Z. - Z.

i i+l

r. = —_— (3-84)
1 Zi + Zi+1

while the reflection coefficient for normalized pressure waves is

7. - Z.

i+l 1
r., = —_— (3-85)
1 Zig vy
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Since the continuous medium results of Section 3.2 were derived using
pressure waves, we shall use pressure waves and (3-85) in the sequel.

Now, letting the layer travel time A approach zero is tantamount to
taking a finer discretization of the medium, i.e., approximating a
continuous medium by a stack of thin homogeneous layers. No matter
how small A is, the relations (3-82), (3-83), and (3-85) all hold; but
as A +~ 0 the equations for the discrete medium approach those for a
continuous medium. To see this, note that (3-85) can be written as

_ Z(T+AI2) - Z(t-A/2)
T Z(T+A2) + ZG@ -A/2)

(3-86)

where T is the travel time to the interface i and Z(1) is defined in the

middle of each layer. If the medium is continuous at T, we then have

A LIM T LIM  Z@G+A/2)-Z(t-A2) 1 _
(D= 2 0T T Ao R TGIND G 88D

_ 1 dz

T T2Z dr

in agreement with (3-35). The reflectivity function r(t), defined in
this manner, is finite as long as the medium is continuous. A step change
in the medium properties results in an impulse in r(t).

Using (3-87), rewrite (3-82) as

2.1
d (t)y-d (t-2)/(1-r_ )2 r
T+4/2 T-A/2 T T 1
= -1 b ) 4-88
A A (1—r_E2)2 T-4/2 ( 2)
2,3
Urpnjp(® = Up ppptHD/A-r D 2y 1 .
' B 2.7 Y8207 (3 g8p)y

A A (l—rT )2
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and letting A~ 0 yields

(L + 55 DT, = ~r(DUCT,) (3-89a)
(-2 - L) = -r@D(r,D) (3-89b)

in agreement with (3-37a,b). Here the waves D(t,t) and U(71,t) are
simply dr(t) and uT(t), and (3-87) has been used to show that rT+ 0.

A similar argument applied to (3-83) also results in (3-89). This is
as expected; it shouldn't matter whether the waves are defined at the top
of a layer or at its bottom, if the layer thickness is going to zero.
However, it does show that D(t,t) and U(t,t) are well defined, even
though there is no physical basis for defining upgoing and downgoing

waves in a continuous inhomogeneous medium.

3.4.2 Continuous to Discrete Transformation

From the above results, it might seem that the discrete medium results
could be obtained from the continuous medium results by a simple dis-
cretization. However, this is not so: the effects of transmission losses
and discrete impulsive medium excitations must also be taken into account.

For a simple example of this, consider the discretization of the
Marchenko (2-103) and Krein (2-111) integral equations. These result in
the matrix equations (3-60) and (3-69), supporting the idea that
discretization of the medium is equivalent to discretization of the equations
for a continuous medium. However, note that the right side of (3-60)
includes a term (1 - riz) - 1. This term goes to zero as O(Az),
however it is non-zero for non-zero A. |

A similar phenomenon is observed in the fast Cholesky algorithm, as
would be expected by the mathematical equivalence of the matrix equation

and layer stripping approaches. Comparing the algorithm for a discrete
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medium (3-81) with the discretized continuous algorithm (2-25), the extra
factor (l—riz)% is noted. Like the matrix equation term, this factor is O(Az)
and hence is negligible for small A. However, it is non-zero for non-zero A.

Both of these terms represent transmission losses through the medium.

As a propagating wave travels through the medium, it is partially reflected,
and loses strength. This is not accounted for in the continuous case,
since the reflections are 0(A) (from (3-87)), while the transmission losses
are O(Az) (from (3-80c)) and hence are negligible as A-> 0. In practical
terms, the transmission losses are negligible compared to the reflections for
a continuous medium if A is sufficiently small. Nevertheless, they should
be included by employing (3-81) instead of (2-25) when running the fast
Cholesky algorithm on a computer. Note that (3-81) is an orthogonal trans-
formation (i.e., a rotation), and is therefore lossless, while (2-25) is not.
Another difference between (3-81) and (2-25) is the factor of two
present in (2-25c) that is not present in (3-8lc). This factor results
from the effect of a change of time scale on the probing impulse for the

continuous medium. The applicable formula is
s(at) = (1/a)8(t) (3-90)

for a continuous-time impulse (Dirac delta)§(t) and constant a. Figuratively,

(3-90) states that if the time axis is stretched, a continuous-time impulse
becomes weaker, since its constant area is spread over a wider range.

When the time axis is stretched by converting the two-way travel time (used
in the original discrete medium formulation, hence in (3-81)), to one-way
travel time (implicitly used in (2-25)), the impulse becomes weaker. This
does not happen for the discrete-time impulse used to obtain (3-8lc),

hence (3-8lc) contains no factor of two. In (2-25¢) the weaker reflection

from the weaker impulse must be bolstered by a factor of two.
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Similar effects will be noted in Chapters IV and VI, in which the

expressions for the first reflection (analogous to (2-25c)) will contain
factors correcting for variations in the size of the probing impulse
caused by variations in the local travel time (i.e., the differential delay
time at that depth). These factors disappear in the discrete formulation
of these problems, since the discrete-time impulse is unaffected by a
change of time scale. Hence the discretized algorithms (to be run on
a computer) do not contain these factors.

Berryman and Greene (1980) have pointed out another subtle
distinction between the discrete medium solution and the discretized
continuous medium solution. From (3-85), the impedances of the discrete

medium satisfy
Zi+1/Zi = (1+ri)/(1—ri) (3-91)

(for normalized pressure waves). However, a formal discrete inverse
~ scattering solution using a discretized Schrodinger equation (Berryman

and Greene, 1980) results in
zi+1/zi = (1+ri_1)/(1—ri) . (3-92)

If the medium is continuous, then (3-91) and (3-92) give the same result
for the impedance Z(1) as A+ 0. HoweVer, if there is a step change in

the medium at 71, then the discrete medium formula (3-91) assigns
A +
Z(t) = Z(t™) (3-93)

i.e., the value just below the discontinuity, while the discretized

continuous formula (3-92) assigns
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Z2() £ 2 (T = (GG + L) /2 (3-94)

i.e., the arithmetic mean of the values on either side of the discontinuity.

In this chapter the one-dimensional inverse seismic problem at
normal incidence has been solved, using both integral equation methods
and layer stripping methods. In the next chapter we proceed to the
more difficult, but more interesting, one-dimensional problem at non-

normal incidence.
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