
Machine Learning Based Algorithms for Improving
Forecasting in Subsurface Energy Resources

by
Omar S. Alolayan

B.S., Computer Engineering, King Fahd University of Petroleum &
Minerals, 2013

M.S., Computational Science, Mathematics & Engineering, UC San
Diego, 2018

Submitted to the Department of Civil and Environmental Engineering
and the Center for Computational Science and Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2023

© 2023 Omar S. Alolayan: The author hereby grants to MIT a
nonexclusive, worldwide, irrevocable, royalty-free license to exercise any

and all rights under copyright, including to reproduce, preserve,
distribute and publicly display copies of the thesis, or release the thesis

under an open-access license.

Authored by: Omar S. Alolayan
Department of Civil and Environmental Engineering and the Center for
Computational Science and Engineering
April 25, 2023

Certified by: John R. Williams
Professor of Civil and Environmental Engineering
Thesis Supervisor

Accepted by: Colette L. Heald
Chair, Graduate Program Committee

Accepted by: Nicolas Hadjiconstantinou
Co-Director, Center for Computational Science and Engineering



4



Machine Learning Based Algorithms for Improving

Forecasting in Subsurface Energy Resources

by

Omar S. Alolayan

Submitted to the Department of Civil and Environmental Engineering and the
Center for Computational Science and Engineering

on April 25, 2023, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Abstract

Energy is an essential human need that is necessary for maintaining and improving
quality of life. It also plays a crucial role in sustaining and developing the world
economy. Accurate production forecasting models are important for governments,
organizations, and companies as they enable them to make informed decisions and
develop returns on investments. However, forecasting models for subsurface energy
resources still face several challenges, such as mathematically ill-posed problems and
lack of reliable data. Machine learning offers new methods to develop better fore-
casting models due its capacity to learn desired behavior from interacting with an
environment of interest, as well as its ability to create optimal non-linear mappings
between input and output data.

In this research work, we reformulate the history matching problem from a least-
square mathematical optimization problem into a Markov Decision Process to de-
velop a method in which reinforcement learning can be utilized to solve the problem.
This method provides a mechanism where an artificial deep neural network agent
can interact with the reservoir simulator and find multiple different solutions to the
problem. Such formulation allows for solving the problem in parallel by launching
multiple concurrent environments enabling the agent to learn simultaneously from all
the environments at once, achieving significant speed up.

Additionally, we use deep neural networks to generate more accurate shale gas
production forecasts in counties with a limited number of sample wells by utilizing
transfer learning. By using transfer learning, we provide a way of transferring the
knowledge gained from other deep neural network models trained on adjacent counties
into the county of interest. This research project uses data from more than 6000
shale gas wells across 17 counties from Texas Barnett and Pennsylvania Marcellus
shale formations to test the capabilities of transfer learning. The results reduce the
forecasting error between 11% and 47% compared to the widely used Arps decline
curve model.

5



Thesis Supervisor: John R. Williams
Title: Professor of Civil and Environmental Engineering

6



Acknowledgments

Õ
�

�
æ


k�QË@ 	á

�

�
Ôg�QË@ é� <Ë @ Õ

�
æ
�
��.�

(The Arabic texts in this acknowledgement are prayers and poems for thanking God

and my family)

When I started my PhD journey at MIT, I did not think it would be this chal-

lenging. Those challenges were even more difficult due to the fact that I had to face

them during a global pandemic. I am lucky that I had tremendous help and support

from my advisor, family and friends to help me complete this journey.

( �
ÐA�k.

�
B@ AëX� @Q

�
Ó ú




	
¯

�
I

�
J.ª�

��
K

�
@PAJ.»�

�
�ñ

	
®
�	
JË @

�
I
�

�	
K A¿ @

	
X @
�

�
ð )

I would like to start by thanking God, the most gracious, the most merciful, for the

blessings bestowed upon me and providing me with this the opportunity along with

the tools necessary to achieve my dream.

( ��ø



�
YË� @

�
ð ú

�
Î
�
«
�
ð

��ú



�
Î
�
«

��
I

�
Ò
�
ª
�	
K

�
@ ú



�
æ
�

��
Ë @

�
½
��
J
�
Ò
�
ª
	
K�
�Q
�
º

�
�
�

�
@
�	
à

�
@ ú



	
æ
�

�
« 	P
�

�
ð

�
@

��
H.

�P)

I owe a debt of gratitude to my parents Suliman Alolayan ( 	àA�J
ÊªË@
	
àAÒJ
Ê�) and Fa-

timah Alsaadi (ø


Yª�Ë@

�
éÒ£A

	
¯) for believing in me and providing my with all the help

and support needed to succeed. My parents have always believed in the importance

of education and invested time, effort and money in my education from a young age.

By earning my PhD from MIT, I hope to bring them a sense of pride and accomplish-

ment. They have inspired me to be a better parent for my kids and I hope to be as

dedicated and supportive of my children as they were for me.

( @ �Q�

	
ª�
�
� ú




	
G
�
A
�
J


��
K.
�P A

�
Ò
�
» A

�
Ò
�
ê
�
Ô
�
g �P@

��
H.

��P)

I would also like to thank my wife Basmah Alhudhayf ( 	
J


	
�mÌ'@

�
éÖÞ�AK.) who closely

supported me during this journey and endured all the challenges and difficulties that

came with it. She sacrificed a lot especially during the difficult times of the Covid-19

pandemic. I am grateful to her as it would have been extremely difficult to pursue

my PhD if it were not for her support.

7



My advisor, Professor John R. Williams, deserves special recognition for his guid-

ance, patience, and support throughout my PhD journey. He provided me with all

the tools needed to succeed at MIT, trusted me, and gave me the confidence to pursue

difficult research topics. During the difficult times, he was patient and did everything

he could to ensure my academic success. I am grateful to him for being available at

all times to provide me with both academic and non-academic support.

I am also grateful to my father in law Abdullah Alhudhayf ( 	
J


	
�mÌ'@ é

�
<Ë @YJ.«) and

my mother in law Reem Almohsin ( 	á�jÖÏ @ Õç'
P) for their tremendous support for both

me and Basmah during this journey. They helped us during one the most difficult

times when our son Tammam (ÐA�Ü �ß) was born as they traveled all the way from

Albukariyah, Saudi Arabia to Boston to provide us with all the help we needed. I am

grateful for them as I always knew that whenever things got difficult I can count for

their support.

I would also like to thank my siblings Khowlah, Khalid, Hajar, Asma and Aminah

along with my nieces (Leen, Rawh, Mohrah, Deemah, Dorrah and Elaf) and nephews

(Rayyan, Tameem, Ebraheem, Suliman). Living away from home was difficult and I

am grateful for their support during that time.

I would like to express my deep appreciation to Dr. Abdullah Almaatouq, Dr.

Mohammed Alhassoun, Abdullah Alomar, Mohammad Alsobay, Dr. Fahad Alha-

soun, Dr. Tariq Alshaalan, Dr. Ahmad Alyoubi, and Dr. Nabeel Alzamil for their

invaluable guidance during my thesis. Their technical and academic expertise pro-

vided me with the necessary knowledge to develop the algorithms that were crucial

to generating the results and advancing the findings of my research.

I would like to express my sincere appreciation to my doctoral thesis committee,

particularly Professor Ruben Juanes for serving as my committee chair. Under the

guidance of Professors Juanes and Professor Herbert Einstein, I was able to develop

and refine my research ideas into an algorithm that can be used by the industry to

solve the history matching problem in a timely manner.

I would also like to express my gratitude to the Saudi Arabian Oil Company

(Aramco) for their invaluable support during my graduate studies. Thanks to their

8



generous graduate fellowship, I have been able to pursue my PhD and further enhance

my academic development. Aramco’s investment in my career has been instrumental

in helping me achieve my goals, and I will always be deeply grateful for their generosity

and support.

9



10



Contents

1 Introduction 23

2 Parallel automatic history matching algorithm using reinforcement

learning 27

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 SPE9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 SPE1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 History Matching Using Reinforcement Learning . . . . . . . . 39

2.3.3 Proximal Policy Optimization . . . . . . . . . . . . . . . . . . 44

2.3.4 Parallel Reinforcement Learning History Matching . . . . . . . 49

2.3.5 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Analysis & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.7 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Towards better shale gas production forecasting using transfer learn-

ing 69

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

11



3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.1 Arps Forecasting Model . . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Deep Neural Network Forecasting . . . . . . . . . . . . . . . . 74

3.3.3 Transfer Learning Models . . . . . . . . . . . . . . . . . . . . 75

3.3.4 Training and Testing Procedure . . . . . . . . . . . . . . . . . 77

3.3.5 Reproducibility and Verification . . . . . . . . . . . . . . . . . 78

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . 80

3.4.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Analysis & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Conclusions 93

4.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Future work 95

5.1 History matching future work . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Using convolutional neural network . . . . . . . . . . . . . . . 95

5.2 Transfer learning future work . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Building flexible DNN models . . . . . . . . . . . . . . . . . . 98

5.2.2 Improving the source model data . . . . . . . . . . . . . . . . 98

6 Appendices 101

6.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

12



List of Figures

1-1 A chart showing the sources of global energy supply where oil and gas

generate 54% of the world energy (4, 5). . . . . . . . . . . . . . . . . 23

1-2 Machine learning types (7). In this research work, supervised learning

and reinforcement learning will be utilized to overcome challenges in

production forecasting models. . . . . . . . . . . . . . . . . . . . . . . 24

2-1 SPE9 reservoir model grid plot. SPE9 reservoir model is a three-

dimensional 9000 cells models with 24 cells in the X direction, 25 cells

in the Y direction and 15 cells in the Z direction. The reservoir model

contains 25 producer wells and one injector well. . . . . . . . . . . . . 32

2-2 SPE9 reservoir model grid (top view). . . . . . . . . . . . . . . . . . . 33

2-3 The geo-correlated random noise added to the permeability values in

each cell in order to create a synthetic case for the algorithm. The plot

shows the first and last layer of the noise added to the truth model

permeability values in the X, Y and Z directions. . . . . . . . . . . . 34

2-4 The difference between the actual historical FOPR (Field Oil Produc-

tion Rate) values and the FOPR values generated from running the

simulation on the starting point of the model. The objective function

is calculated using Equation 2.1. . . . . . . . . . . . . . . . . . . . . . 35

13



2-5 SPE1 reservoir model grid. SPE1 reservoir model is small 3D model

with 10 cells in the X direction, 10 cells in the Y direction and 3 cells

in the Z direction.The reservoir model has one injector located in cell

(x = 1, y = 1,z = 1) and one producer located in cell (x = 10, y = 10,z

= 1) where the measurement of BHP is recorded. . . . . . . . . . . . 36

2-6 The difference between the actual historical BHP (Bottom Hole Pres-

sure) values and the BHP values generated from running the simulation

on the starting point of the model. The objective function is calculated

using Equation 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2-7 Sutton and Barto (45) illustration of how the artificial deep neural

network agent learns by interacting with the environment. The agent

reads the current state of the environment, takes an action and collects

a reward for the action taken. . . . . . . . . . . . . . . . . . . . . . . 39

2-8 Reformulating the history matching problem from a least-square math-

ematical optimization problem into a Markov Decision Process by cre-

ating an environment that allows the agent to interact with the reser-

voir simulator. The agents observes the current state 𝑠𝑡 of the uncertain

parameters 𝑢, takes action 𝑎𝑡 against these parameters and collects a

reward 𝑟𝑡 quantifying the quality of its action. . . . . . . . . . . . . 41

2-9 Diederichs (49) illustration of actor-critic architecture. . . . . . . . . 45

2-10 The deep neural network design for the actor network 𝜋𝜃 is composed

of an input layer containing 27,000 neurons allowing it to observe the

current state of each uncertain parameter, two hidden layers where each

layer contains 4096 tanh activated neurons and an output layer that

also equal to 27,000 allowing it to take action against 27,000 different

uncertain values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

14



2-11 The deep neural network design for the critic network 𝑉 (𝜃) is composed

of an input layer containing 27,000 to observe the current state of the

environment, two hidden layers where each layer contains 4096 tanh

activated neurons and an output layer that also equal to one neuron

as it only needs to estimate one value. . . . . . . . . . . . . . . . . . 48

2-12 Redesigning the environment from Figure 2-8 in order allow the agent

to learn from multiple simultaneous environments. The agent can ob-

serve 𝑁 states, take 𝑁 actions and collect 𝑁 rewards in parallel using

the new parallel architecture. . . . . . . . . . . . . . . . . . . . . . . 50

2-13 In the beginning of the training, the agent explore the environment

often making bad actions and collecting negative rewards. Then, it

starts to learn how to increase its rewards which enables it to find

solutions that meet the tolerance criteria. . . . . . . . . . . . . . . . . 53

2-14 Algorithm 1 enabled the artificial deep neural network agent to learn

from multiple environments simultaneously. Thanks to the stochastic

policy used, 9 multiple and different solutions to the history matching

problem are found to the history matching problem during the 20,000

time-step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2-15 To test the forecasting capabilities of the realizations found by the

artificial deep neural network agent, the realizations are validated by

running them for one more year that the agent did not train on. The

realizations found by the agent shows a good forecasting capabilities

and provided multiple production scenarios that are within close range

of the truth model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2-16 A significant reduction in run-time is achieved when computing re-

sources are doubled. On average, a reduction of 41% in run-time is

achieved when the computing resources are doubled resulting in total

run-time reduction of 88% when using 16 environments instead of one.

For reproducibility purpose, each column represents the average time

taken across 10 runs to find one solution to the history matching problem. 57

15



2-17 Based on the run-time values shown in Figure 2-16, Algorithm 1 scala-

bility plot shows a significant speed-up when more computing resources

are added. On average, a speed-up of 1.57 is achieved every time the

computing resources are doubled. . . . . . . . . . . . . . . . . . . . . 58

2-18 Based on the run-time values reported in Figure 2-16, Algorithm 1

had the capacity to efficiently scale when increasing the number of

environments without significantly increasing the number of simulation

runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2-19 A multi-agent approach to solve the history matching problem. Us-

ing multiple collaborating artificially intelligent agents may provide a

mechanism to handle more complex problems. . . . . . . . . . . . . . 64

2-20 A flowchart illustrating the process of applying Algorithm 1 on multiple

rounds in order to archive tolerance with tighter tolerance criteria. The

use of transfer learning may improve the learning process for future

rounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3-1 Layers used by the DNN model, which consists of an input layer with

30 neurons, two hidden layers with 35 and 50 neurons, and an output

layer with a number of neurons equal to the desired number of output

months. The first three layers are followed by a dropout layer with a

value of 0.1 to reduce training data overfitting. . . . . . . . . . . . . . 75

3-2 In this chapter, transfer learning is implemented by extracting the

knowledge transfer layer from the source model F𝑆 and using it along

with a new untrained output layer to develop a target model F𝑇 . While

training the transfer learning target model F𝑇 , the knowledge transfer

layers must not be trained to preserve the knowledge that they have

from training the source model F𝑆. . . . . . . . . . . . . . . . . . . . 77

16



3-3 A flowchart showing the process of comparing the two forecasting mod-

els over the course of 100 trials to address both the reproducibility

concerns caused by the randomness in the DNN and to ensure a fair

comparison between the models of interest across multiple test sets. . 79

3-4 A sample test well from the Barnett shale shows the DNN model and

the Arps model forecasting compared to the actual production data

where 8 months of input data is used to forecast the production. The

plot shows that with enough data, the DNN model can generate a

more accurate production forecast than the Arps model. The gray

area on the left of the plot indicates the data points used as input to

the forecasting models while the rest of the plot shows the production

forecast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3-5 A sample test well from the Marcellus shale shows the DNN model

and the Arps model forecasts compared to the actual production data

where 6 months of input data is used to forecast the production. The

plot shows that with enough data, the DNN model can generate a

more accurate production forecast than the Arps model. The gray

area on the left of the plot indicates the data points used as input to

the forecasting models while the rest of the plot shows the production

forecast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3-6 The new suggested county-specific DNN models achieved an error re-

duction between 47% in Hill County and 30% in Wise County compared

to the Arps model benchmark when 6 months of input data were used

to generate both forecasts. . . . . . . . . . . . . . . . . . . . . . . . . 83

3-7 The new suggested county-specific DNN models achieved an error re-

duction between 34% in Susquehanna County and 11% in Westmore-

land County compared to the Arps model benchmark when 6 months

of input data were used to generate both forecasts. . . . . . . . . . . 84

17



3-8 County-specific DNN models were able to achieve a significant error

reduction compared to the Arps model ranging between 30% in Palo

Pinto County and 48% in Ellis County despite the fact that the DNN

model was not trained on that specific county data and the whole

county’s data was used for testing. The use of transfer learning enabled

the DNN models to generate accurate forecast despite data scarcity in

these counties. The source model F𝑆 was trained on all other counties

in the state, except for the county of interest, then all of this county’s

data was used for testing. . . . . . . . . . . . . . . . . . . . . . . . . 85

3-9 The error reduction achieved when using the county-specific DNN mod-

els compared to the Arps models on the whole Barnett data set. The

error reduction is computed as the weighted average error reduction

across all counties in the data set using Equation 3.2 when different

values of input months is used. . . . . . . . . . . . . . . . . . . . . . 87

3-10 The error reduction achieved when using the county-specific DNN mod-

els compared to the Arps models on the whole Marcellus data set. The

error reduction is computed as the weighted average error reduction

across all counties in the data set using Equation 3.2 when different

values of input months is used. . . . . . . . . . . . . . . . . . . . . . 88

3-11 Adding well-specific physical properties such as perforated length, frack-

ing fluid volume or sand volume may introduce further improvement

to the DNN forecasting model as the DNN may be able to learn the

relationship between such parameters and the rate of decline in pro-

duction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5-1 An illustration of multi-dimensional convlutional network can detect

features in images (107) . . . . . . . . . . . . . . . . . . . . . . . . . 96

5-2 Encoding the values of permeability into each pixel creates a unique

image of the current state of the system to utilize CNN architecture. . 97

18



5-3 A map showing the locations of shale gas formations in the US (108).

These formations can be used to build source models F𝑆 . . . . . . . 99

19



20



List of Tables

3.1 Sample wells from Texas Barnett shale . . . . . . . . . . . . . . . . . 72

3.2 Sample wells from Pennsylvania Marcellus shale . . . . . . . . . . . . 72

3.3 Number of wells per county in the Barnett data set . . . . . . . . . . 82

3.4 Number of wells per county in the Marcellus data set . . . . . . . . . 82

21



22



Chapter 1

Introduction

Nowadays, energy is one of the most important basic needs that is necessary for

social progress and improving quality of life (1, 2). It is a cornerstone for sustaining

and developing the world economy (3). Oil and gas, which are subsurface energy

resources, constitute a significant proportion of the global energy production. As

shown in Figure 1-1, these resources account for over 50% of the world’s energy

supply (4, 5).

Figure 1-1: A chart showing the sources of global energy supply where oil and gas
generate 54% of the world energy (4, 5).

Given the crucial role that these energy resources play in supporting societal

23



progress and economic development, it is essential to have accurate production fore-

casting models. Such models are necessary for government policy makers as they

provide an insight that enables them to come up with informed decisions (6). It is

also important for oil and gas companies to maintain and manage the wells as well

as optimize returns on investments.

However, there are challenges and difficulties related to developing accurate fore-

casting models. For this reason, a lot of research has been done to overcome or

mitigate such difficulties. Some of these challenges arise from the fact that the prob-

lem itself is mathematically ill-posed. In other cases, the models developed to forecast

the production lack enough data to generate a reliable forecast.

In recent years, machine learning has gained lots of popularity as a tool to tackle

research problems. Machine learning uses data to build a predictive model that can

map input data to a useful output. In the literature, as shown in Figure 1-2 , ma-

chine learning is usually classified into three types: supervised learning, unsupervised

learning and reinforcement learning.

Figure 1-2: Machine learning types (7). In this research work, supervised learning
and reinforcement learning will be utilized to overcome challenges in production fore-
casting models.

24



This research work will utilize reinforcement learning and supervised learning to

address two current challenges in subsurface energy production forecasting models.

In chapter 2, we will utilize reinforcement learning to develop an algorithm for solving

the history matching problem in parallel. This algorithm can help reservoir engineers

refine and enhance oil and gas reservoir models in a timely manner. The research

findings in chapter 2 have been published in Energies Journal, in a paper titled:

"Parallel Automatic History Matching Algorithm Using Reinforcement Learning" (8).

After that, chapter 3 employs supervised learning to develop more accurate shale

gas production forecasting models. To overcome the challenges of data scarcity, trans-

fer learning techniques are applied to the supervised learning models. The research

findings in chapter 3 have been published in the Upstream Oil and Gas Technology

Journal, in a paper titled: "Towards better shale gas production forecasting using

transfer learning" (9).

In this research work, we will explore the following areas and try to answer the

following questions:

• What scale of history matching complexity can reinforcement learning solve in

a timely manner?

• How can human intuition and professional experience affect the speed of the

algorithm and the quality of the solutions found?

• How does the initial guess in history matching affect the convergence of the

suggested algorithm?

• How can machine learning utilize data from a similar domain to generate accu-

rate forecasting models?

• How does transfer learning help to develop accurate production forecasts if the

available data is very limited?

25



26



Chapter 2

Parallel automatic history matching

algorithm using reinforcement

learning

2.1 Background

Optimally developing an oil and gas field requires predicting future production us-

ing a reservoir model, whose key material properties are tuned in a process called

history matching. This process of adjusting the key parameters is non-unique and

computationally challenging. Typically, the reservoir model is divided into cells that

match the geology of the field. The key properties of these cells, such as porosity

and permeability, are assigned initially using core sample data, where available. For

computational efficiency, the geological model is converted to a reservoir model using

upscaling (10, 11, 12) to reduce the number of the cells in the model.

Due to the challenges of finding the key properties in each cell, history matching is

used to adjust the values of these properties so the model reflects historical production

data (13, 14, 15). History matching is typically done by matching the computed

pressure and saturation data (oil, gas and water rates) from the simulation model and

comparing it the actual historical data. The difference between the actual data and

27



data generated by the reservoir model is then computed using an objective function

that quantifies the mismatch between the two quantities.

The problem of history matching can be expressed mathematically as a non-linear

least-square optimization problem, where the optimization algorithm minimizes the

objective function:

𝐹 (𝑢) = 𝛼[(𝑞 − 𝑞)𝑇𝐶𝑞(𝑞 − 𝑞) + 𝜆(𝑢− 𝑢𝑝𝑟𝑖𝑜𝑟)𝑇𝐶𝑢(𝑢− 𝑢𝑝𝑟𝑖𝑜𝑟)] (2.1)

where 𝛼 is a constant scaling factor used scale the quantity of the objective function,

𝑞 is a vector containing the actual historical pressure or saturation quantity and 𝑞

is a vector that represents the calculated quantity from the simulation model. 𝐶𝑞

is a weight matrix used to assign weights to production data where it can be used

if there is an order of magnitude difference in the production data. 𝑢 is a vector

containing the uncertain parameters in the reservoir model. The rates generated by

the reservoir simulator 𝑞 can be expressed as a function of the reservoir simulator

with respect to 𝑢 i.e., 𝑞 = 𝑓(𝑢). The second half of the equation is a regularization

term where 𝜆 refers to the regularization parameter, 𝑢𝑝𝑟𝑖𝑜𝑟 refers to a priori estimate

of the uncertain parameters 𝑢 and 𝐶𝑢 is another weight matrix that can be used to

assign weights for each uncertain parameter.

The history matching problem is an ill-posed problem where multiple solutions

can be found to match historical data (16, 17, 18). Due to such ill-posedness, multi-

ple solutions are used to better assess the uncertainty in the forecasts(19, 20). The

regularization term in the objective function in Equation 2.1 is used to mitigate the

effect of ill-posedness of the history marching problem (21, 22).

History matching can be done manually where an experienced professional tunes

the parameters of interest to find a matching model. However, manual history match-

ing can be time consuming and prone to human bias and error (23, 24). History

matching can also be done with the help of computers, which is known as assisted

or automatic history matching. In automatic history matching, different methods

have been used to search for parameters values that minimizes the objective function.

28



The methods used in the literature include gradient-based, stochastic or probabilistic

algorithms.

Gradient-based algorithms, such as Levenberg-Marquardt, are exploitative by na-

ture where the algorithm follow the gradient direction in order to search for a minima.

Gradient-based algorithms can be powerful as they can convergence quadratically to

a local minima under certain conditions (25). However, these algorithms are not

feasible for large problems with a large number of parameters (26).

Stochastic optimization algorithms such as Genetic Algorithm which is inspired

by the biological evolution of genes can better explore the parameters space. By

allowing the parameters to evolve independently and then combining the results to

choose the model with least error, Genetic Algorithm can handle large number of

parameters (27). However, they require a large number of of function evaluations

compared to gradient-based algorithms (28).

Probabilistic algorithms, such as Ensemble Kalman Filter (EnKF), uses an en-

semble of realizations to represent the model uncertainty where these realizations are

updated using a variance minimizing scheme (29). EnKF require fewer function eval-

uations but may not converge, and the parameters are assumed to have a Gaussian

distribution (27, 28). Li and Misra (28) showed that the history matching problem

can alternatively be solved by formulating it as a Markov Decision Process and then

utilizing reinforcement learning methods. While Li and Misra (28) showed a success-

ful proof of concept, their work was limited to a simple model with a small number

of parameters.

The scalability and applicability of such approach to a more realistic complex

model is yet to be established. The research detailed in this chapter introduces a

novel algorithm where the use of a parallel stochastic reinforcement learning policy

can efficiently find multiple solutions to the problem using a more complex 3D model

and up to 27,000 uncertain parameters. Such parallelization allows for utilizing more

computing resources to find multiple solutions to large models in a timely manner.

Solving the history matching problem in parallel using deterministic gradient de-

scent algorithms can be complicated as such algorithms require to know the previous

29



objective function before taking a minimization step. Due to the fact that this kind

of problems requires a great deal of function evaluations, a lot of research work have

been done in order to parallelize the problem or some aspects of it. In the literature,

ensemble Kalman filter was used to solve the history matching problem in paral-

lel (30, 31, 32). Tanaka et al. (33) developed an optimization workflow in which the

field development optimization can be solved in parallel. Sarma et al. (34) showed

that the model based optimization and uncertainty quantification can be massively

parallelized across thousands of commercial cloud computing nodes.

However, to the best of the authors’ knowledge, at the time of publishing this

research work no previous work has shown that the history matching problem can be

solved in parallel using reinforcement learning. In addition, no work has been done

previously to show that employing a stochastic policy in reinforcement learning can

lead to finding multiple and different solutions to the history matching problem.

Section 2.2 of this chapter shows the details of the two reservoir models used as

test cases and how their historical data is obtained. Then, Section 2.3 explains in

details the methodology in which the suggested algorithm is developed and how it

can be utilized to find multiple history matched models. Next, Section 2.4 shows the

results of applying the algorithm on the two data sets and how the algorithm scales

when increasing the number of computing resources. After that, Section 2.5 offers

a thorough discussion and analysis of the algorithm and results along with future

research work related to improving the algorithm.

2.2 Data

2.2.1 SPE9

To illustrate the algorithm capacity to find multiple solutions to the history matching

problem, SPE9 reservoir model (35, 36) will be used. The reservoir model developed

by Killough (37) is a three-dimensional 9000 cells models with 24 cells in the 𝑋

direction, 25 cells in the 𝑌 direction and 15 cells in the 𝑍 direction. The reservoir

30



model contains 25 producer wells and one injector well as shown in Figure 2-1 and

2-2.

The well controls for this model are set as described by Killough (37) and Open

Porous Media data repository (36), where the water injector is set to a maximum rate

of 5000 STBW/day with 4000 PSIA as the maximum bottom whole pressure at 9110

ft reference depth. For the producer wells, a 1500 STBO/day is set as the maximum

rate at the beginning with a minimum flowing bottom whole pressure of 1000 PSIA at

a reference depth of 9110 ft for all the wells. The model described will be considered

as the truth model where the reservoir simulator will simulate this truth model to

generate field oil production rate (FOPR) values. The data generated contains five

years worth of FOPR values collected every 15 days.

After that, for each cell, the permeability values 𝐾𝑥, 𝐾𝑦 and 𝐾𝑧 are scrambled

with a geo-spatially correlated random noise to generate a starting point for the

algorithm. The starting point is generated by adding the random noise vector that

contains both positive and negative entries to the truth model permeability values.

The goal of using a geo-spatial random noise is to ensure that the starting model

presents a realistic model where the permeability values are mostly geo-correlated.

Figure 2-3 shows the noise added to the permeability values. Since it is difficult to plot

all values, the figure only shows a sample of the added noise on the first and last layer

of the reservoir model. However, it is important to note that all permeability values

across all layers have been scrambled with noise in order to generate the starting

point for the algorithm. The added noise have altered the statistical mean by 7.4%

in 𝐾𝑥, 19.0% in 𝐾𝑦 and by 8.0% in 𝐾𝑧 compared to the truth model.

The truth model is then discarded and only its FOPR values are kept to be con-

sidered as the historical values 𝑞. The starting point after scrambling the truth values

is shown in Figure 2-4. The goal of starting with a known model then scrambling its

permeability values is to imitate a real life scenario where the actual uncertain values

(in this case permeability values) are not known exactly and the historical pressure

or saturation data (in this case FOPR) are used to tune the uncertain parameters.

31



Figure 2-1: SPE9 reservoir model grid plot. SPE9 reservoir model is a three-
dimensional 9000 cells models with 24 cells in the X direction, 25 cells in the Y
direction and 15 cells in the Z direction. The reservoir model contains 25 producer
wells and one injector well.

32



Figure 2-2: SPE9 reservoir model grid (top view).

33



Figure 2-3: The geo-correlated random noise added to the permeability values in each
cell in order to create a synthetic case for the algorithm. The plot shows the first and
last layer of the noise added to the truth model permeability values in the X, Y and
Z directions.

2.2.2 SPE1

To measure the scalability of the suggested algorithm, a smaller reservoir model is

used. The main reason for choosing a smaller model is the fact that the scalability

test requires repeating the experiment for a number of trials as it will be discussed in

the Methodology Section.

The model used for testing the scalability in this chapter is a three-dimensional

300 cells model with 10 cells in the 𝑋 direction, 10 cells in the 𝑌 direction and 3 cells

in the 𝑍 direction as shown in in Figure 2-5. The reservoir model has one injector

located in cell (𝑥 = 1, 𝑦 = 1,𝑧 = 1) and one producer located in cell (𝑥 = 10,

𝑦 = 10,𝑧 = 1) where the measurement of BHP is considered in the objective function.

The well controls for this model are set as described by Open Porous Media data

repository (36), Odeh (38), where the gas injector (INJ) is set to a maximum rate

of 100 MMscf/day with 9014 PSIA set as the maximum bottom whole pressure. For

the producer well (PROD), a 20,000 STBO/day is set as the maximum rate with a

34



Figure 2-4: The difference between the actual historical FOPR (Field Oil Production
Rate) values and the FOPR values generated from running the simulation on the
starting point of the model. The objective function is calculated using Equation 2.1.

35



Figure 2-5: SPE1 reservoir model grid. SPE1 reservoir model is small 3D model with
10 cells in the X direction, 10 cells in the Y direction and 3 cells in the Z direction.The
reservoir model has one injector located in cell (x = 1, y = 1,z = 1) and one producer
located in cell (x = 10, y = 10,z = 1) where the measurement of BHP is recorded.

minimum flowing bottom whole pressure of 1000 PSIA.

The second data set, shown in Figure 2-6, employs a synthetic historical data

obtained from running SPE1 (35, 36, 38) by following the same procedure used in the

first data set, except that in this data set the Bottom Hole Pressure (BHP) values

for the producer well is used to match the history instead of FOPR.

2.3 Methodology

2.3.1 Reinforcement Learning

In recent years, machine learning has been employed extensively to tackle research

problems thanks to its capacity to map input data to a useful output by identifying

certain features. In the literature, machine learning tasks usually falls into one of

three categories: supervised learning, unsupervised learning and reinforcement learn-

ing (39). In supervised learning, a model is trained with labeled data i.e., examples

in order to later predict new data with no label.

In unsupervised learning, the model is trained with unlabeled data points to iden-

tify certain features and subsequently classify them into clusters. In reinforcement

learning, the model learns a policy that maximizes a certain reward in an environ-

36



Figure 2-6: The difference between the actual historical BHP (Bottom Hole Pressure)
values and the BHP values generated from running the simulation on the starting
point of the model. The objective function is calculated using Equation 2.1.

37



ment of interest. The policy is often learned by directly interacting with the environ-

ment (40).

In the oil and gas industry, machine learning have been used extensively in a wide

variety of problems. Montgomery et al. (41) used supervised learning to build data

driven models to forecast shale gas production where Zhang et al. (42) developed

a multi-component method for reservoir characterisation using unsupervised learn-

ing. Miftakhov et al. (43) used reinforcement learning to maximize the Net Present

Value (NPV) of waterflooding by training a reinforcement learning agent to control

the water injection rate.

Reinforcement learning is somewhat similar to the way humans learn by interact-

ing with an environment and using a trial and error mechanism. The reinforcement

learning agent, as shown in Figure 2-7, observes the state of the environment, takes an

action and collects a reward for its action. The agent will learn from these interactions

how to search the parameters space in order to maximize its rewards. Reinforcement

learning gained more popularity after van Hasselt et al. (44) showed that a rein-

forcement learning agent was capable of achieving super human intelligence just by

monitoring pixels on the screen. However, reinforcement learning is more generic,

and is suitable for all problems that can be formulated a Markov Decision Process

(MDP).

An MDP represents the sequential decision making paradigm in which the actions

taken by the agent does not only affect the immediate reward but it also affects

future long term rewards and future states (45). MDPs are often defined by the

tuple (𝒮,𝒜,𝒫 ,ℛ, 𝛾), where 𝒮 denotes the state space, 𝒜 denotes the action space,

𝒫 : 𝒮 × 𝒜 × 𝒮 → [0, 1] denotes the transition kernel, ℛ : 𝒮 × 𝒜 → R denotes the

reward function, and 𝛾 denotes the discount factor. For the transition kernel, we use

𝒫(𝑠′ | 𝑠, 𝑎) to denote the probability of transitioning from state 𝑠 to state 𝑠′ if action

𝑎 is taken. We denote a stochastic policy by 𝜋 : 𝒮×𝒜 → [0, 1], where we use 𝜋(𝑎 | 𝑠)

to denote the probability of choosing action 𝑎 when in state 𝑠 under policy 𝜋.

Under each policy, the value function 𝑉𝜋(𝑠) represents the reward-to-go when

38



Figure 2-7: Sutton and Barto (45) illustration of how the artificial deep neural net-
work agent learns by interacting with the environment. The agent reads the current
state of the environment, takes an action and collects a reward for the action taken.

starting from state 𝑠 and using policy 𝜋. Specifically, we have

𝑉𝜋 (𝑠𝑡) = E

[︃
∞∑︁
𝑙=0

𝛾𝑙𝑅 (𝑠𝑡+𝑙, 𝑎𝑡+𝑙)

]︃
, (2.2)

where 𝑠𝑡+1 ∼ 𝒫(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡), and 𝑎𝑡 ∼ 𝜋(𝑎𝑡 | 𝑠𝑡), and the expectations are nat-

urally taken with respect to the randomness in the policy and the transition ker-

nel. In reinforcement learning, the goal is often to estimate the optimal policy

𝜋*(𝑠) = argmax𝜋 𝑉𝜋 (𝑠) or the optimal value function 𝑉 *(𝑠) = max𝜋 𝑉𝜋 (𝑠).

2.3.2 History Matching Using Reinforcement Learning

In this chapter, we utilize reinforcement learning to solve the history matching prob-

lem by formulating it into a Markov Decision Process as illustrated in Figure 2-8.

By using the reservoir simulator as an environment where the reinforcement learning

agent 𝐴𝑔 can take action 𝑎𝑡 and receive the new state of the environment 𝑠𝑡 along

with a reward 𝑟𝑡 quantifying how good the action taken by the agent is. The current

state returned by the environment is a vector containing all the uncertain parameters

that need to be tuned in order to match the history and is equivalent to 𝑢 in Equation

2.1.

39



For both cases used in this chapter, 𝐾𝑥, 𝐾𝑦 and 𝐾𝑧 permeability values of each

cell are stacked into a vector as follows:

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐾𝑥(𝑥 = 0, 𝑦 = 0, 𝑧 = 0)
...

𝐾𝑥(𝑥 = 𝑋, 𝑦 = 𝑌, 𝑧 = 𝑍)

𝐾𝑦(𝑥 = 0, 𝑦 = 0, 𝑧 = 0)
...

𝐾𝑦(𝑥 = 𝑋, 𝑦 = 𝑌, 𝑧 = 𝑍)

𝐾𝑧(𝑥 = 0, 𝑦 = 0, 𝑧 = 0)
...

𝐾𝑧(𝑥 = 𝑋, 𝑦 = 𝑌, 𝑧 = 𝑍)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3)

where this vector is considered as the state of the environment 𝑠𝑡. The action 𝑎𝑡 taken

by the agent is also a vector with the same dimensions as the state, allowing the

artificial deep neural network agent to act on the uncertain parameters and adjusting

them to find a solution. At each reinforcement learning time-step 𝑡, the action taken

by the agent is given a reward value 𝑟𝑡 to quantify the quality of the action allows

the agent to learn whether the action it took is good or bad. In this work, Open

Porous Media Flow reservoir simulator (46) is used in the reinforcement learning

environment.

Formulating the history matching problem in such manner allows for the use of

reinforcement learning, where the agent will be able to learn from the reservoir sim-

ulator how to take actions that lead to minimizing the objective function. The agent

is allowed to only select actions that are within a certain range i.e., the agent action

space 𝒜 at each entry of the action vector is = [-𝐾Δ,+𝐾Δ]. It is important to note

that 𝐾Δ is a design parameter that can be chosen by the engineers running the experi-

ment based on their knowledge of the reservoir model at hand. The choice of 𝐾Δ must

not be too small nor too large. Choosing a small 𝐾Δ value will change the objective

function by a very small quantity, causing very slow convergence. While, choosing a

large value can encourage the agent to take actions that push the permeability values

40



Figure 2-8: Reformulating the history matching problem from a least-square math-
ematical optimization problem into a Markov Decision Process by creating an envi-
ronment that allows the agent to interact with the reservoir simulator. The agents
observes the current state 𝑠𝑡 of the uncertain parameters 𝑢, takes action 𝑎𝑡 against
these parameters and collects a reward 𝑟𝑡 quantifying the quality of its action.

41



out of allowed bounds.

If the agent takes an action that causes the current state 𝑠𝑡 to be out of bounds

(outside of all possible state space 𝒮), then the current state is clipped to satisfy

physical restrictions. For example, if the agent takes an action that results in negative

permeability values in some of the vector entries, then these values are set to zero in

order to avoid feeding the reservoir simulator negative permeability values causing it

to crash. The 𝐾Δ parameter is similar to the step size parameter in gradient descent

optimization algorithms where selecting a very small value will slow the convergence

process and a big value may cause divergence. Another approach can be used to

avoid reaching states with negative permeability values is to change the actions of

the agent to multiply the current permeability value instead of addition or subtraction.

By setting 𝐾Δ to a small value, to avoid large updates, for example 0.1 the agent can

sample an action between 1 +𝐾Δ and 1−𝐾Δ in order to tune the permeability.

Reinforcement learning process consist of episodes where an episode is defined as

a series of reinforcement learning time-steps starting from the initial state and ending

when a termination criteria is met. This termination criteria is usually governed by a

reward function. Typically, in reinforcement learning the reward function is designed

in manner where the agent is given a positive reward for good desired actions and a

negative reward for bad undesired actions.

However, choosing a reward function can be a challenging task as sometimes there

are good actions and even better actions or bad actions and worse actions which can

be difficult to quantify. Luckily, in the history matching problem, the quality of

the action can be measured directly from the objective function, where the difference

between the value of the previous objective function and the value of the new objective

function after the agent took an action can quantify the quality of the match.

In the context of applying reinforcement learning to solve the history matching

problem, the reward function can be computed as:

𝑟𝑡 = F𝑡−1 − F𝑡 (2.4)

42



ℱ𝑡−1 is computed using Equation 2.1 and refers to the value of the objective function

at time = (𝑡−1) before the agent takes an action, whereas ℱ𝑡 refers to the value of the

objective function after the agent takes an action. This reward function will return

a positive value if the agent took a good action that led to reducing the objective

function and a negative value if the agent took a bad action that caused the objective

function to become larger.

The advantage of using this reward function is that it will assign larger rewards

to actions that leads to a larger reduction in the objective function, thus helping to

guide the agent to take actions that will speed-up the convergence process. Assigning

a higher reward to an action increases the probability of choosing that action again

given the same state. The value of the objective function is scaled down using a scaling

factor 𝛼 in order to avoid feeding the deep neural networks very large quantities that

might destabilize the training process.

The choice of the error quantification function can affect the reward function and

subsequently the performance of the algorithm. Equation 2.1 utilizes a weighted

squared error formula for the objective function. The weighted squared error is used

since it is the common choice for history matching problems and it would provide the

agent with a good feedback that quantify the quality of its action. However, weighted

root squared error might provide a better error quantification for the algorithm as it

would provide a somewhat uniform reward function to the agent unlike squared error,

which penalizes larger error more severely possibly leading to a non-uniform reward

function.

The reward function defined in Equation 2.4 is not enough on its own and it

needs to address termination criteria when the agent takes an action that reduces

the objective function to the tolerance level accepted. In order to address that,

the agent is assigned a big constant reward (i.e., 50,000) to incentivize it with a

big reward upon good episode termination. In addition, in order to save computing

power and incentivize the agent to take actions that speed up the convergence process,

the environment sets a time limitation (47) on the maximum time-steps allowed per

episode. Once the maximum time-steps is reached without meeting any termination

43



criteria, the episode terminates with a constant negative reward (i.e., -20,000) if the

agent does not find a solution.

The maximum time-steps per episode parameter is also a design parameter and

should be chosen based on the problem at hand but it must not be too small. Small

time-steps per episode can hinder the agent from exploring the environment properly

due to the fact that in reinforcement learning the agent sometimes might pick actions

that are not good at the current time-step, but can lead to better rewards in the

future time-steps.

Furthermore, if the agent diverges away from the solution by making a sequence

of bad decisions rendering the objective function to grow large. In this case, the

episode is terminated with a big negative constant rewards (i.e., -50,000) as soon as

the objective function value becomes twice as large as the initial objective function.

In addition to saving computing power, such a limitation on the value of the objective

function will punish the agent so it can learn from that mistake and avoid following

such a trajectory in the future. The rewards of termination criteria are also design

parameters and the engineers running the experiment should choose proper values

relevant to the problem at hand. The rewards should be chosen so they can incentives

the agent towards meeting the tolerance criteria as well as providing a good feedback

to the engineers so they can monitor the learning process.

This formulation of the history matching problem into a Markov Decision Process

means that at each reinforcement learning time-step, a simulation run is required to

compute the new objective function and assess the quality of the action taken by the

agent.

2.3.3 Proximal Policy Optimization

In this work, we use Proximal Policy Optimization (PPO) (48) algorithm to find

multiple solutions to the history matching problem. PPO algorithm is an actor-critic

method in which the agent utilizes two deep neural networks parameterized by 𝜃, one

for the actor and one for the critic as shown in Figure 2-9. The value function and

the policy are represented by these two deep neural networks. Specifically, the actor

44



Figure 2-9: Diederichs (49) illustration of actor-critic architecture.

and critic networks represent the policy and the value function, respectively.

One of the prevalent issues in policy gradient methods is the destructively large

policy updates. To overcome this issue, PPO suggests a simple surrogate objective

that penalizes large changes in the policy update. Specifically, the objective function

in PPO is as follows

𝐿𝑡(𝜃) = E[𝐿𝑐𝑙𝑖𝑝
𝑡 (𝜃)− 𝑐1𝐿

𝑉 𝐹
𝑡 (𝜃)], (2.5)

where E refers to the expectation operator, 𝐿𝑐𝑙𝑖𝑝
𝑡 (𝜃) represents the clipped objective

function for the policy network and 𝐿𝑉 𝐹
𝑡 represents the error in estimating the value

function. Specifically, for the policy loss, the clipped objective function is defined as

𝐿𝑡
𝑐𝑙𝑖𝑝(𝜃) = E𝑡[min(𝛿𝑡(𝜃)𝐴𝑡, clip(𝛿𝑡(𝜃), 1− 𝑒, 1 + 𝑒))], (2.6)

where 𝛿𝑡(𝜃) is a probability ratio of the new policy to the old policy computed as
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡) , 𝑒 is a clipping range variable and is set to 0.2 in the case study, and 𝐴𝑡

45



represents the estimate of the advantage function calculated as

𝐴𝑡 =
𝑇∑︁

𝑘=0

𝛾𝑘𝑟𝑡+𝑘 − 𝑉𝜃(𝑠𝑡), (2.7)

where 𝑉𝜃(𝑠𝑡) is the value function estimate given by the value network.

Note that the advantage function at time 𝑡 is defined as the discounted sum of

rewards (starting from t) minus a baseline. The value function at 𝑠𝑡 is often used

as the baseline, as done in PPO. The goal of the clipping operator is to stop drastic

policy updates based on the noisy estimation 𝐴𝑡, and hence it avoids drastic policy

updates. Further, 𝐿𝑉 𝐹
𝑡 (𝜃), which denotes the loss in estimating the value function

is defined as

𝐿𝑉 𝐹
𝑡 (𝜃) = (𝑉𝜃(𝑠𝑡)− 𝑉𝑡)

2 = 𝐴2
𝑡 , (2.8)

where 𝑉𝑡 =
∑︀𝑇

𝑘=0 𝛾
𝑘𝑟𝑡+𝑘 are samples estimates collected from the environment, and

𝑇 is the maximum number of steps. Recall that the value function 𝑉𝜃(𝑠𝑡) represents

an estimate of the expected rewards for a given state 𝑠𝑡 at a given time = 𝑡.

This estimate is estimated using the critic network, which along with the policy

network, is updated during training. Recall also that 𝛾 is a discount factor which

controls the trade off between short-term and long-term rewards. Specifically, as 𝛾

decreases, more emphasis is given to short-term rewards.

While seemingly complicated, the objective function described above is quite in-

tuitive. Minimizing 𝐿𝑉 𝐹
𝑡 ensures that the critic’s estimate of the value function is

close to what the observed samples suggest. On the other hand, maximising 𝐿𝑡
𝑐𝑙𝑖𝑝,

if we ignore the clipping, encourages policies with a better advantage, i.e., policy

that chooses relatively better actions. The clipping, as mentioned above, mitigate

potentially destructive updates due to potentially huge values of 𝛿𝑡.

Note that while PPO is used in this work, other actor-critic methods such as

A2C (50) which supports sampling from parallel environments can also work with

this problem formulation. However, PPO outperforms other alternatives in terms of

speed and quality of solutions found. In addition, PPO is sample efficient which is

46



Figure 2-10: The deep neural network design for the actor network 𝜋𝜃 is composed
of an input layer containing 27,000 neurons allowing it to observe the current state
of each uncertain parameter, two hidden layers where each layer contains 4096 tanh
activated neurons and an output layer that also equal to 27,000 allowing it to take
action against 27,000 different uncertain values.

very important in the history matching problem due to the fact that the objective

function computation is costly.

In order to find multiple different solutions, it is important that we use a stochastic

policy when we interact with the environment. Specifically, a stochastic policy will

lead to a better exploration of the state-action space and hence it will find multiple

solutions in each run.

The deep neural network design for the actor network 𝜋𝜃 is shown in Figure 2-10.

It is composed of an input layer containing 27,000 neurons (equal to the number of

uncertain parameters in SPE9); two hidden layers where each layer contains 4096

tanh activated neurons; and an output layer that is also equal to 27,000 as it needs

to take action against 27,000 different uncertain values. The critic network 𝑉 (𝜃), as

shown in Figure 2-11, has the same structure as the actor network except for the last

layer where it has only one neuron since it is only trying to estimate a scalar value.

47



Figure 2-11: The deep neural network design for the critic network 𝑉 (𝜃) is composed
of an input layer containing 27,000 to observe the current state of the environment,
two hidden layers where each layer contains 4096 tanh activated neurons and an
output layer that also equal to one neuron as it only needs to estimate one value.

48



The second data set uses the same structure. However, since the problem has

much fewer uncertain parameters (900 compared to 27,000) resulting in 900 neurons

in the input and output layers. In addition, the number of the hidden neurons in the

hidden layer is equal to 128 instead of 4096 used in the first data set.

2.3.4 Parallel Reinforcement Learning History Matching

History matching in general is a serial problem where the use of optimization methods

to find the minimum of the objective function via gradient descent makes it necessary

to know the previous objective function before taking the next step. However, in

reinforcement learning the agent learns how to find the minimum by interacting with

the environment one step at a time and collecting these experiences then training the

deep neural network agent. So in essence, the deep neural network is trying to map

states into actions so the agent needs only the current state, the action taken and

the reward assigned to this action in order tune its deep neural network weights and

choose the decisions that will maximize the rewards. PPO allows for the experiences

to be collected into a batch every few time-steps and then sent to the agent for training

even if the episode is not completed.

The way in which the actor-critic reinforcement learning train and optimize its

agent gives us the chance to speed up the history matching process by training the

agent in parallel and allowing it to collect experiences from running multiple sce-

narios of the history matching process at once. This can be done by allowing the

agent to simultaneously interact with 𝑁 number of environments, observe different

𝑁 states, take 𝑁 number of different actions and collect 𝑁 different rewards as shown

in Figure 2-12. For example, in the case of SPE9, the batch size is set to 192 where

the algorithm will run 192 experiments by interacting with the environment then

collects these experiments in a batch then sends it to the agent to train its deep neu-

ral networks and update their weights. Instead of waiting for a single environment

to collect 192 experiments, the algorithm will launch eight environments in parallel

where each environment collects 24 experiments which allows the agent to collect the

192 experiments in a much shorter time period.

49



Figure 2-12: Redesigning the environment from Figure 2-8 in order allow the agent
to learn from multiple simultaneous environments. The agent can observe 𝑁 states,
take 𝑁 actions and collect 𝑁 rewards in parallel using the new parallel architecture.

Stable Baselines 3 (51) implementation provides a wrapper that allow for the

launch 𝑁 CPU threads, each thread works on an environment to collect the expe-

riences then these experiences are sent to the GPU to train the agent’s deep neural

networks in a faster manner. In addition to running multiple environments in parallel,

inside each thread running an environment to collect the experiences, the environment

itself can run the reservoir simulator in parallel to speed up the process of computing

the objective function which is very common in reservoir simulation. For example,

when running the experiment on SPE9, 4 MPI processes were used per environment.

However, it is very important to note that only the process of collecting the

experiences and running the reservoir simulator can be done in parallel but each

environment will run each episode in a serial manner and thus each environment

must have its own desk directory with its own DATA, ECL and SMSPEC files. For

50



example, the state of environment 12 at time-step (𝑡) will depend on the state and

the action of environment 12 at time (𝑡 − 1) as this process can not be parallelized.

The details of the algorithm is shown in Algorithm 1 pseudocode.

Algorithm 1: Parallel Reinforcement Learning History Matching
1 Launch N parallel environments
2 Create active disk directory for each environment
3 Set B = Batch Size
4 Set t = 0
5 Previous Objective Function F𝑡−1 = Initial Objective Function F𝑡=0

6 while 𝑡 < max time-steps do
7 do in parallel
8 for 𝑖 = 0, 1, . . ., 𝑖 < 𝐵/𝑁 do
9 Observe state 𝑠𝑡

10 Take Action 𝑎𝑡 against uncertain parameters
11 Run Reservoir Simulator with adjusted parameters
12 Compute New Objective Function Value F𝑡

13 Reward 𝑟𝑡 = F𝑡−1 − F𝑡

14 F𝑡−1 = F𝑡

15 if F𝑡 < 𝜖 then
16 save history matched reservoir model to disk

17 Update 𝜋𝜃 & 𝑉 networks using 𝐵 experiments

2.3.5 Reproducibility

One of the major challenges faced while dealing with deep neural networks is repro-

ducibility (52, 53) in which repeating the experiment may lead to a different result

with a different run-time taken to find the solution. The reproducibility problem is

caused by the random network weights initialization prior to training in addition to

using stochastic optimizers to optimize such weights. Another factor contributing

to the reproducibility problem is the stochastic policy used by PPO where a small

random noise is added to the action suggested by the agent or in some cases some

the actions taken by the agents are sampled from a random noise matrix to ensure

that the agent explores the environment efficiently to find multiple solutions to the

history matching problem.

51



The reproducibility problem does not affect the outcome of the results in the first

data set as all the solutions found meet the tolerance criteria. However, it becomes

important when running the scalability test on the second data set due to the fact

that some runs might find a solution quickly and other runs may take a while to find a

solution. For this reason, an approach similar to Alolayan et al. (9) was used to reduce

the effects of the reproducibility problem where each of the scalability test run-time

measurement is repeated 10 times and the average of these 10 runs is considered the

final result.

2.4 Results

Algorithm 1 was used to run 20,000 reinforcement learning time-steps in parallel on

the first data set to search the parameters space for solutions to the history matching

problem. As shown in Figure 2-13, in the beginning of training the algorithm behaved

as expected from any reinforcement learning algorithm where it kept making wrong

decisions and collecting negative rewards. As the agent spends more time interacting

with the environment, it learns how to map states into actions that enables it to

increase its rewards.

Per the definition of the reward function in Equation 2.4, as the agent tries to

increase its rewards, it will tune the uncertain parameters and find models that reduce

the objective function. As the agent spends more time in the environment trying to

maximize its reward, it will reduce the objective function to meet the tolerance criteria

and thus it will find a solution to the history matching problem. As shown in Figure

2-14, thanks to the stochastic policy the agent uses, it can find multiple different

solutions as it tries to take different trajectories to better explore the environment.

The approach of using a stochastic policy may encourage the agent to take bad

actions and waste computing power. However, it is necessary for the agent to do

so in order to search for new different solutions as this is always the case with the

exploration-exploitation dilemma. Such behaviour can be seen from the agent’s learn-

ing progress it appears in Figure 2-13 around the 13,000 time-step. Although the

52



Figure 2-13: In the beginning of the training, the agent explore the environment often
making bad actions and collecting negative rewards. Then, it starts to learn how to
increase its rewards which enables it to find solutions that meet the tolerance criteria.

53



agent found few solutions and collected positive rewards by that time-step, it did not

repeat its actions to maximize rewards. Instead, the agent explored the environment

for new different solutions causing it to make decisions that resulted in less rewards

than previously acquired.

In order to study the forecasting capabilities for the model realizations found by

the artificial deep neural network agent, the quality of the models are then validated

by running each model for an additional year that the agent did not train on. Figure

2-15 shows each realization forecast compared to the truth model and the starting

point. As shown from the figure, the realizations found by the agent exhibited a

good forecasting capabilities for the reservoir model and provided multiple production

scenarios where some models over-predicted and some models under predicted.

This can help engineers run uncertainty quantification analysis with a higher de-

gree of confidence. When using this algorithm, it is recommended to reserve a portion

of the historical data for validation in order to assess the quality of the solutions found

by the agent. Additionally, the validation period can also be used by the engineers

to further filter out unwanted solutions based on their own criteria.

To examine and measure how Algorithm 1 scales with the number of available

computing resources, a scalability test was conducted on the second data set. The

scalability test was conducted using the second data set as it has a fewer number of

uncertain parameters and a smaller initial objective function, making the problem

easier to solve resulting in a shorter run-time. A reasonable run-time is necessary

for the scalability test as it requires the experiments to be repeated tens of times for

reproducibility purpose as discussed in the Methodology.

Figure 2-16 shows the capacity of Algorithm 1 to reduce the run-time when dou-

bling the number of available computing resources. On average, every time the com-

puting resources are doubled, a 41% reduction in run-time is achieved. When using

16 environments instead of one, Algorithm 1 reduced the total run-time from 18.6

minutes to 2.2 minutes, achieving an 88% reduction in the time needed to find one

solution.

As shown in Figure 2-17, Algorithm 1 achieved a speed-up of 8.45 when using

54



Figure 2-14: Algorithm 1 enabled the artificial deep neural network agent to learn
from multiple environments simultaneously. Thanks to the stochastic policy used,
9 multiple and different solutions to the history matching problem are found to the
history matching problem during the 20,000 time-step.

55



Figure 2-15: To test the forecasting capabilities of the realizations found by the
artificial deep neural network agent, the realizations are validated by running them
for one more year that the agent did not train on. The realizations found by the agent
shows a good forecasting capabilities and provided multiple production scenarios that
are within close range of the truth model.

56



Figure 2-16: A significant reduction in run-time is achieved when computing resources
are doubled. On average, a reduction of 41% in run-time is achieved when the com-
puting resources are doubled resulting in total run-time reduction of 88% when using
16 environments instead of one. For reproducibility purpose, each column represents
the average time taken across 10 runs to find one solution to the history matching
problem.

57



Figure 2-17: Based on the run-time values shown in Figure 2-16, Algorithm 1 scal-
ability plot shows a significant speed-up when more computing resources are added.
On average, a speed-up of 1.57 is achieved every time the computing resources are
doubled.

16 environments compared to one environment. The algorithm scored an average

speed-up of 1.57 when doubling the number of resources compared to a speed-up of

2 in the ideal scenario where the ideal scenario refers to the non-realistic case when

an algorithm achieves a speed-up of 2 every time the resources are doubled. The

algorithm achieved a maximum speed-up of 1.88 when running the algorithm on two

environments instead of one, and a minimum speed-up of 1.51 when running the

algorithm on eight environments instead of four.

A major advantage of the parallelization procedure employed by Algorithm 1 is

the fact that the number of reinforcement learning time-steps (number of forward

simulation runs) did not increase significantly while increasing the number of com-

puting resources as shown in Figure 2-18. Such property indicates that the algorithm

can scale efficiently when adding computing resources. As shown in the figure, it

takes the algorithm around 2,000 time-steps to find a minima and instead of taking

18.6 minutes running on one environment, it only took 2.2 minutes when running on

58



Figure 2-18: Based on the run-time values reported in Figure 2-16, Algorithm 1 had
the capacity to efficiently scale when increasing the number of environments without
significantly increasing the number of simulation runs.

16 environments while slightly increasing the number of simulation runs from around

1990 to around 2133 runs.

2.5 Analysis & Discussion

By reformulating the history matching problem from a mathematical least-square

optimization problem into a Markov Decision Process problem, the suggested algo-

rithm provided a way in which the history matching problem can be solved in parallel

where adding more computing resources can speed up the convergence process. In

addition, the suggested algorithm can be used to find multiple and different solutions

to the history matching problem, allowing for better forecasting uncertainty analysis.

By creating multiple environments and allowing the artificial neural network agent

59



to sample from these multiple environments simultaneously, the algorithm had the

capacity to tune 27,000 uncertain parameters. Such capacity allowed the agent to

find multiple and different historically matching models in a timely manner.

The multiple different solutions shown in Figure 2-14 does not have to necessarily

be 9 solutions as more solutions can be found. As a matter of fact, there are infinite

solutions to the problem (54) and if more solutions are desired to better assess the

uncertainty, then the engineer running the experiment can run Algorithm 1 for a

longer period of time. Giving the agent more time to learn from the environment will

allow it to find more solutions. The process of training the agent for a longer time to

find more solutions does not require the training process to be repeated from scratch.

In order to avoid retraining, the agent’s knowledge can be re-used by saving the deep

neural network models to the disk and then re-loading them later to resume training

if the number of solutions found is not sufficient.

The results also show that the agent learns how to interact with the environment in

order to maximize its rewards, where in the beginning the algorithm will not be able to

find any solutions until it learns how to map the current states of the environment into

actions that reduce the objective function, eventually finding a solution. Naturally,

the more complex the problem (i.e., the more uncertain parameter needs to be tuned)

the longer the training needed. This is due to the fact that the agent will need

more samples to explore and learn from the environment. In addition, the deep

neural networks used to map the state into action will be larger as explained in the

Methodology, thus needing more data to be able to successfully find multiple solutions

to the history matching problem.

It is important to also note that as the number uncertain parameters increases, the

training process becomes more difficult. Such difficulty is expected as the higher the

number of uncertain parameters, the larger more complex the deep neural network

needed to handle the problem. A larger network can cause instability in training

and would require a smaller learning rate that slows down the algorithm. We found

out that adding a regularization term to the objective function would not only help

mitigate the ill-posedness effect on the problem, but it also can help stabilize the

60



learning process and allow for a larger learning rate to be used which can speed up

the convergence of the algorithm.

Although the algorithm have successfully found solutions to the history matching

problem by tuning 27,000 uncertain parameters on SPE9 reservoir model, it would

be very challenging to tackle larger models such as SPE10 if the targeted uncertain

parameters are permeability values in each cell. SPE10 reservoir model is a 3D model

with 220 cells in the X direction, 60 in the Y direction and 85 in the Z direction

resulting in a reservoir model with 1,122,000 cells. By choosing all three permeabilty

values in each cell to be tuned, then the number of uncertain parameters would be

3,366,000.

This is mainly caused by the combinatorial impact of the solution space which

grows exponentially with the number of parameters hindering the algorithm’s abil-

ity to successfully maps states into good actions. For example, assuming at each

time-step the algorithm will tune each uncertain parameter by the following actions

[+1,0,-1] i.e., the algorithm would choose one of three options: either increase the

permeability by one, decrease it by one or do nothing. This means that if we have

1,000 uncertain parameters, the algorithm would have 31000 (approximately 10477)

different actions to take. To put it in perspective, this number is larger than the

number of atoms in the observable universe which is estimated to be around 1080.

For this reason, the algorithm will not explore the whole solution space as it is not

mathematically feasible to do so. However, instead of exploring the whole solution

space the algorithm will search for solutions that are within the vicinity of the starting

point. Thus it is essential that the starting point of the algorithm present a good

estimate of the truth model where it should be chosen based on the knowledge of the

geologist reservoir structure.

It is important to note that the starting point also plays an important rule in terms

the speed of convergence. Naturally, a model with a small initial objective function of

100,000 will converge faster than a model with an initial objective function of 500,000.

This is an expected behavior that also occurs when using optimization algorithms to

solve the problem where the closer the starting point to the solution, the faster the

61



convergence.

Faster convergence can also be achieved if the tolerance criteria is loosened as this

is the case with other algorithms as well (55). Reducing the historical mismatch by

more than 99% when tuning 27,000 uncertain parameters will always be difficult as it

will require most algorithms to get more samples from the reservoir model parameters.

As with other algorithms, a trade-off between accuracy and speed will also needs to

be considered. Moreover, faster convergence may also be achieved if the maximum

time-steps per episode parameter is set to a smaller value. However, this might hinder

the algorithm’s ability to explore the parameters space efficiently as sometimes the

agent takes few bad actions on purpose in order to search for new solutions.

The run-time might be reduced by reducing the number of uncertain parameters

using sensitivity analysis where the cells that have the least effect on the change of the

objective function can be ignored and not included in the uncertain parameters vector

just like when dealing with inactive cells. The number of uncertain parameters can

also be reduced using permeability multipliers, where instead of tuning each single

permeability value, a group of constant multipliers are tuned, where each multiplier

is used to multiply the permeability values in certain cells. However, in both data

sets used in this chapter, no multipliers are used in order to show the capacity of the

algorithm to tune thousands of parameters. Another approach to reduce the run-time

is the use of proxy models (15, 56, 57) where the reservoir simulator 𝑓(𝑢) is replaced

by a fast approximate model 𝑔(𝑢) that can map the input of the reservoir simulator

into an output within some acceptable accuracy.

A major advantage of using the suggested algorithm is its flexibilty in terms of

the parameters space. Where unlike Ensemble Kalman Filter (EnKF), it does not

require the parameters space to have a Gaussian distribution. Another advantage is its

versatility, where some optimization algorithms might diverge away from the solution

if the initial objective function is large, this algorithm is less prone to divergence

with an initial guess that is reasonably far from any solution if given enough time.

This is mainly caused by the nature of this algorithm where it would restart itself

to the starting point upon divergence. Then, thanks to the shaping of the reward

62



function the agent will be punished severely for diverging. By punishing the agent

for diverging away from the solution, it will reduce the probability of choosing these

actions in the future to enable the agent to learn from such mistakes and not repeat

the same actions again that lead to divergence.

It is important to note that when using a very large number of computing resources

across hundreds of environments, the algorithm scalability will be lower compared

to the case when utilizing tens of environments . This is due to the fact that the

batch size (1024, 512, etc.) may not be big enough to divide the work efficiently

amongst the environments. When this occurs, the batch size would have to be fixed

when increasing the number of environments causing PPO to be less sample efficient

as resources increase.

In that case, a good speed-up is still expected to be achieved when adding more

computing resources but Algorithm 1 might not scale very well compared to its

scaling performance when using tens of environments. When dealing with a very

large model that requires hundreds of environments, engineers will have to spend

some time adjusting the hyperparameters and ensuring efficient workload for each

environment in order to achieve high scalability.

One of the major challenges arising from using Algorithm 1 is the number of

hyperparameters related to each experiment. Where in addition to the usual deep

neural networks hyperparameters (batch size, learning rate, number of neurons, etc.)

and reinforcement learning hyperparameters (𝛾, maximum time-steps, etc.), the ex-

periments itself has its own hyperparameters, such as 𝐾Δ and maximum time-steps

per episode as these parameters are problem-specific that depend on the reservoir

model at hand. The engineer using the algorithm must rely on his knowledge of

the reservoir model to find proper hyperparameters to help guide the algorithm into

convergence. In addition, the engineer might have to spend some time trying to find

optimal parameters that can make the algorithm converge faster.

The vector containing all uncertain parameters 𝑢 does not have to only contain

permeability values. Any uncertain parameters, for example the porosity 𝜑, can also

be included in 𝑢. However, the engineer running the experiment must also adjust the

63



Figure 2-19: A multi-agent approach to solve the history matching problem. Using
multiple collaborating artificially intelligent agents may provide a mechanism to han-
dle more complex problems.

action space 𝒜 to take into account the scale of change between different properties

at each reinforcement learning time-step, where the maximum change allowed for the

permeability value 𝐾Δ might differ than the maximum change for porosity 𝜑Δ.

A future research opportunity can be explored by extending this framework using

Multi-Agent Reinforcement Learning (MARL) (58, 59, 60) instead of using a single

agent across multiple environments. As shown in Figure 2-19, the multiple agents

can work collaboratively towards reducing the objective function where each agent is

responsible for a section of the reservoir model. Each agent can observe the entire

environment or just a part of it to take actions. Such approach can allow researchers

to tackle very large models because each agent would have to map an easier function

with a smaller number of actions. The small number of actions per agent would result

in smaller deep neural networks, requiring less training time.

However, such an approach comes with its own difficulties as well, where it would

64



be difficult to come up with an appropriate reward function. The most difficult part

would be figuring out a way to reward good actions and punish bad ones, where at

each time-step it would be difficult to identify which agents took good actions and

which agents took bad ones from a single reward function.

Applying the algorithm in multiple rounds can be used in order to achieve toler-

ance with a tighter tolerance criteria. The approach may be used to speed up the

process when the tolerance criteria and help the algorithm to start in the later rounds

from a point that is closer to the tolerance criteria. However, changing the starting

point will require the algorithm to restart training process the for the agent due to

the fact that the previous knowledge will not applicable to the new starting point

i.e., the paths or trajectories that the agent learned to follow in order to minimize

the objective function will not be the same when using a different starting point.

Restarting the training process at every round will slow the agent learning process

especially at the beginning of the round. However, such slowness might be compen-

sated by saving more time by starting from a closer point and might be worth the

computing time spent in order to find better models with a tighter condition for

tolerance. Additionally, the knowledge gained by the agent in the previous round

might also be used to help the agents’ learning in the next round by utilizing transfer

learning. A flowchart of the approach is shown in Figure 2-20.

It is important to note that changing the starting point multiple times will limit

the exploration process as the agent might only find solutions that are very similar.

This is caused by the fact the agent will search for solutions that are within close

approximate to the first round best model.

2.6 Conclusions

The results drawn from the research conducted in this chapter show that suggested

parallel automatic history matching algorithm using reinforcement learning (Algo-

rithm 1) can train an artificial deep neural network agent that is capable of finding

multiple different solutions to the history matching problem, even when dealing with

65



Figure 2-20: A flowchart illustrating the process of applying Algorithm 1 on multiple
rounds in order to archive tolerance with tighter tolerance criteria. The use of transfer
learning may improve the learning process for future rounds.

66



tens of thousands of uncertain parameters. By reformulating the problem from an

optimization problem into a Markov Decision Process, the algorithm gave the chance

to sample data from multiple trajectories across multiple environments, allowing the

agent to learn faster as more computing resources are added.

As shown from the Results, the algorithm achieved an average speed-up of 1.57

when the computing resources are doubled and had the capacity to reduce the run-

time needed to find one solution by 88% from 18.6 minutes to 2.2 minutes, when

using 16 environments instead of one. Such parallelization gave the opportunity to

tackle complex problems and find multiple solutions in a timely manner when tuning

27,000 uncertain parameters.

67



2.7 Nomenclature

𝑎𝑡 : Reinforcement learning action taken by an agent at time-step 𝑡.

𝒜 : Set of all possible actions that can be taken by the agent.

𝐴𝑔 : artificial deep neural network agent.

𝐵: Reinforcement learning batch size.

𝑓(𝑢): Function representing the reservoir simulator.

𝑔(𝑢): Function representing the proxy model.

𝐾𝑥,𝐾𝑦 and 𝐾𝑧 : Permeability in the x,y and z directions.

𝐾Δ: Permeability limits of each action taken.

𝑚 : Number of time-steps in the simulation model.

𝑛 : Number of wells in the reservoir model.

𝑁 : Number of environments.

𝑞 : Actual pressure or saturation from historical data.

𝑞 : Simulated rate from the simulator or proxy model.

𝑟𝑡 : The reward obtained from the environment at time-step 𝑡.

𝑠𝑡 : Current state of the reinforcement learning environment at time-step 𝑡.

𝒮 : Set of all possible states in the reinforcement learning environment.

𝑡 : Reinforcement learning time-step iterator.

𝑢 : Vector containing all uncertain parameters in the model.

𝑋,𝑌 and 𝑍: Number of cells in the x,y and z direction in the reservoir model.

𝜖 : Error tolerance level accepted.

𝛾: Reinforcement learning discount factor.

𝜋𝜃: PPO Actor Network.

68



Chapter 3

Towards better shale gas production

forecasting using transfer learning

3.1 Background

Thanks to hydraulic fracturing technology, extracting oil and gas in an unconven-

tional shale formation became economically viable making the United States the top

oil and gas producer in the world in 2020 according to the US Energy Information

Administration (EIA) (61). Accurate production forecasting is necessary for many

reasons such as decision making, developing returns on investments, and maintaining

and managing the wells. As natural gas consumption is expected to grow in the near

future increasing the demand for such resource (62), developing accurate production

forecasting models plays an important role in helping policy makers better assess the

supply and demand situation and allocate resources based on better understanding

of the matter.

The most accurate method for oil and gas production forecasting is reservoir sim-

ulation. However, current reservoir simulation techniques that are used in forecasting

conventional oil and gas wells still face some challenges when it comes to forecasting

unconventional resources due to challenges in modeling (63), costly data acquisition

(64), complex fracture network (65) and variation of fracture permeability (66). An-

other approach used to forecast unconventional gas resources is decline curve analysis

69



(DCA) in which different models have been developed and used over the years (67, 68).

Some of these decline curves were developed from physical interpretation of gas flow

(69, 70) and some of them are developed empirically based on observations (71, 72).

One of the most common ones that is also used by EIA is the hyperbolic func-

tion known as the Arps model (73). Arps decline curves are cheap,fast and easy to

implement, and the model can generate forecasts with a minimal amount of data.

However, it is a heuristic approach based on empirical observation and does not gen-

erate accurate predictions for unconventional gas wells as it tends to overestimate the

production after the early stages of a well’s production (74). Montgomery et al. (75)

show that DCA shale gas forecasting is an ill-posed problem due to non-unique model

parameter estimates especially when the production history is short.

The availability of historical data along with the recent advancement in machine

learning granted a new method for forecasting production by using a deep neural

network (DNN) that helps generate a more accurate production forecast. Al-Fattah

and Startzman (76) developed a DNN to forecast the US cumulative natural gas

production using different physical and economic input parameters such as the gas

annual depletion rate and growth rate gross domestic product (GDP). DNNs also have

been used in order to improve decline curves where Li and Han (77) used a DNN to

get an estimation of parameters in a logistic decline curve model. Sun et al. (78) used

recurrent neural networks to build time series models that forecast the production

using the well’s production history and the tubing head pressure as input.

Montgomery et al. (75) developed a DNN forecasting model that used data aggre-

gated from multiple counties in Texas Barnett shale to forecast production in which

the first few months of actual production data is used to forecast the production for

the next few years. This research detailed in this chapter uses a similar approach

in which transfer learning is used to build county-specific DNN models by utilizing

the knowledge acquired from other nearby counties. In general, the DNN can be ex-

pressed as a function F that is theoretically able to learn the best non-linear mapping

from the input data, which are the first few months of production, to the output data

which are the next few years of production (75). A DNN can be trained by dividing

70



the well production data into input data and label (output) data, the input data

are the first 4,6,8 or 10 cumulative monthly production while the label data are the

remaining cumulative monthly production data. The function F is then trained to

map a specific well’s first few months of cumulative production into a forecast of its

future production.

This research conducted in this chapter presents a novel approach in which transfer

learning DNN models can reduce the error in forecasting between 11% and 47%

compared to Arps decline curve models. This chapter also demonstrates that by

utilizing transfer learning to apply the knowledge acquired from production data in

nearby counties into counties with limited data, this approach helps mitigate a major

disadvantage that machine learning models have which is the need for a large amount

of data to develop a good predictive model. In addition, the research conducted in

this chapter also shows how transfer learning can still be useful in generating accurate

production forecasts even when the data available for a certain county is not enough

to properly train a transfer learning model.

This chapter starts first by going over the details data sets used for this study

in Section 3.2. Then, in Section 3.3, it explains the methodology in which the Arps

decline curve model is used as a benchmark for the suggested new approach and the

details of the comparison procedure between the two models. Next, in Section 3.3

and 3.4, this chapter shows that DNNs can map input production data into output

future production forecast and hence can be used effectively to develop shale gas

production forecasts. After that, Section 3.4 shows how the technique of transfer

learning is utilized to overcome data availability that limits DNNs from developing

county-specific models. Lastly, Section 3.5 offers a thorough discussion and analysis

of the results and its potential for further improvements in the future.

3.2 Data

Two data sets were used in this chapter. The first data set is composed of 4439 wells

from Texas Barnett shale with 120 months worth of cumulative monthly production

71



Sample wells from Texas Barnett shale
Well-API County State Production

(Mscf), Month:1
... Production

(Mscf),
Month:120

42-367-
34721

Parker Texas 22660.3 ... 2302.3

42-425-
30160

Somervell Texas 21295 ... 1373.6

Table 3.1: Sample wells from Texas Barnett shale

Sample wells from Pennsylvania Marcellus shale
Well-
API

County State Production
(Mscf),
Month:1

... Production
(Mscf),
Month:66

059-
26033

Greene Pennsylvania 87601 ... 18529

115-
21351

Susquehanna Pennsylvania 96286.8 ... 31708.6

Table 3.2: Sample wells from Pennsylvania Marcellus shale

data (79). The second data set is composed of 2172 gas wells from the Marcellus shale

in Pennsylvania with 66 months worth of cumulative monthly production data (80).

The cumulative production in both data sets is measured in thousands of standard

cubic feet (Mscf). In addition, both data sets contain which county the well is located

in. However, both data sets lack geological formation physical properties as well as

well-specific physical properties (fracking volume, perforated length, etc). Table 3.1

and Table 3.2 provide sample wells from both data sets where the Well-API refers to

well-specific unique identifier.

3.3 Methodology

3.3.1 Arps Forecasting Model

To measure how accurate the forecasts of the suggested DNN models are, this chapter

compares the DNN models to the Arps decline curve model that is widely used by

the industry and currently used by EIA (61, 81). Although the Arps model is an

72



empirical model that lacks physical basis compared to other forecasting models such

as Rate Transient Analysis (RTA) (82), it is still widely used due to its simplicity and

low data requirements. Due to the lack of physical data needed for RTA, this chapter

uses the Arps model as a benchmark. The Arps model was first introduced in 1945

by Arps (73) and it empirically forecasts the decline in production of a specific well

using historical data fit into a three-parameter model (83) as shown in Equation 3.1:

𝑄𝑡 =
𝑄𝑖

(1 + 𝑏 *𝐷𝑖 * 𝑡)1/𝑏
(3.1)

where 𝑄𝑡 refers to the production at month 𝑡, 𝑄𝑖 is the production rate at time 0, 𝑏

is the line curvature degree, 𝑡 is the months in production and 𝐷𝑖 is the initial decline

rate. The Statistical and Analytical Agency in the US Department of Energy (81)

provides county-specific parameters by averaging the production of all wells in the

county and then fitting the average production to the decline curve using Equation

3.1.

However, the Arps model uses only 𝑄𝑖 (first month of production) as input to gen-

erate predictions, while the DNN utilizes the first 4,6,8 or 10 months of production

data. In order to provide a fair comparison between the two models, the Leven-

berg–Marquardt algorithm (84, 85, 86) (a non-linear least square fit) is used to find

optimal 𝑏, 𝑄𝑖 and 𝐷𝑖 parameters that give the best fit between the Arps model and

the input data (first few months of production) as this approach is usually followed

to utilize the first known months of actual production data. Simply put, for each

well, the actual first 4,6,8 or 10 months of production data will be used to tune the

Arps parameters so it would generate a better forecast. This procedure provides a

fair comparison between the DNN and the Arps model as it allows both models to

utilize exactly the same data given as input.

73



3.3.2 Deep Neural Network Forecasting

A traditional supervised learning technique was used to train and test a DNN denoted

as a mathematical function F to generate a predictive relationship between the input

and output (87), by mapping the input vector 𝑋 = {𝑥1, 𝑥2..., 𝑥𝑛} to an output vector

𝑌 = {𝑦1, 𝑦2, ...., 𝑦𝑚} where 𝑛 is the number of months used as an input to the DNN, 𝑥1

is the first cumulative monthly production, 𝑦1 denotes the first cumulative monthly

production forecast, and 𝑦𝑚 denotes the last month production forecast. Figure

3-1 illustrates how the DNN maps the input 𝑋, which are the first few months of

production data, to 𝑌 which represents the production forecast.

The DNN model developed for this chapter is composed of a four-layer deep se-

quential neural network with an input dense layer of 30 neurons, two hidden dense

layers with 35 and 50 neurons, and an output layer with a number of neurons equal to

the desired number of output months as shown in Figure 3-1. All the neurons in the

network used a rectified linear unit (ReLU) as an activation function. In addition,

three dropout layers with a value of 0.1 were used. The dropout layers were added

after each of the first three layers to reduce the effects of overfitting (88). The model

was trained with the Adam stochastic optimizer (89) minimizing the mean absolute

error (MAE) of the loss between the predictions and the labels.

This chapter employs MAE as a loss function instead of Mean Square Error (MSE)

due to the fact that MSE penalizes large errors more than small errors. This property

would put more weight on the data outliers making them more important to the loss

function. Due to the fact that the data is volatile especially in the first few months

of production, MAE was chosen instead of MSE in order to avoid assigning larger

weights to the outliers and generate a better fit for the decline in production. This

model configuration was chosen as it resulted in the least testing error after extensive

testing for all of the DNN parameters including all available activation functions and

optimizers. In addition, the input and output data points (number of months) of the

DNN are flexible and can be chosen during training time in order to see how the DNN

will behave given a certain number of input months.

74



Figure 3-1: Layers used by the DNN model, which consists of an input layer with
30 neurons, two hidden layers with 35 and 50 neurons, and an output layer with a
number of neurons equal to the desired number of output months. The first three
layers are followed by a dropout layer with a value of 0.1 to reduce training data
overfitting.

3.3.3 Transfer Learning Models

DNNs are powerful tools and have been utilized heavily to tackle research problems,

but one of their major drawbacks is that DNNs need an abundance of data to generate

accurate predictions and in shale gas forecasting that can be a problem especially for

counties with limited data. Transfer learning, which is a machine learning technique

that can effectively use the knowledge from a pre-trained model to make predictions

on a new set of data from a related problem (90), can be utilized to overcome the

limitation of the available data. Transfer learning can be very useful in the case where

the data set from the new problem is not large enough to properly train a DNN.

The formal definition of transfer learning in the context of machine learning as

defined by Yang et al. (91) is: "Given a source domain 𝐷𝑆 and learning task 𝑇𝑆 ,

a target domain 𝐷𝑇 and learning task 𝑇𝑇 , transfer learning aims to help improve

the learning of the target predictive function F𝑇 in 𝐷𝑇 using the knowledge in 𝐷𝑆

and 𝑇𝑆 , where 𝐷𝑆 ̸= 𝐷𝑇 , or 𝑇𝑆 ̸= 𝑇𝑇". The goal is to use the knowledge stored

75



in F𝑆 acquired from the pre-trained model that had enough data for proper training

and testing, to assist the new models’ predictive function F𝑇 in making accurate

predictions despite data scarcity (92) .

For example, a marine biology research team wants to develop a DNN that can

classify images of sharks and dolphins but does not have enough data (images) to

train the DNN to generate accurate predictions. The team can use transfer learning

by utilizing the VGG16 (93) model as a source model F𝑆 to help increase the accuracy

of the predictions in their own target model F𝑇 . The VGG16 model is a convolutional

DNN model that achieves more than 90% accuracy in ImageNet (94) which contains

more than 10 million labeled images. Although the VGG16 may not necessarily

have been developed to classify images of sharks and dolphins, utilizing its ability of

feature extraction (95) can help generate a more accurate classifier for the sharks and

dolphins pictures.

In the research work detailed in this chapter, transfer learning is implemented

by taking the pre-trained model F𝑆 and removing its output layer that makes the

predictions and only keeping prior layers (knowledge transfer layers) as shown in

Figure 3-2 then designing the new model F𝑇 by taking the knowledge transfer layers

and adding a new untrained output layer to be trained only on the new data. However,

it is very important that the knowledge transfer layers are not trained while training

F𝑇 to preserve the knowledge that they have from training the source model F𝑆. In

this chapter, transfer learning will be used to develop county-specific DNN models in

order to compare the results to the Arps model benchmark since the Arps models are

county-specific models as described by EIA (81). Transfer learning will be used to

overcome the need for a large data set to properly train a DNN since most of these

counties do not have enough samples (wells).

These county-specific DNN models are developed in the following manner, for each

specific county in the state’s data set a source model F𝑆 was developed by training

it on all of the available data except for that specific county. Then, using transfer

learning, a target model F𝑇 was trained and tested only on that county’s data. After

that, in order to compare the forecasting quality, the MAE of both forecasting models

76



Figure 3-2: In this chapter, transfer learning is implemented by extracting the knowl-
edge transfer layer from the source model F𝑆 and using it along with a new untrained
output layer to develop a target model F𝑇 . While training the transfer learning target
model F𝑇 , the knowledge transfer layers must not be trained to preserve the knowl-
edge that they have from training the source model F𝑆.

are computed against the actual production for each individual well. Then, the mean

error across all the sample wells in the testing set is reported as the forecasting error.

3.3.4 Training and Testing Procedure

For the DNN forecasting models, 75% of the data is used for training while the

remaining 25% is used for testing. Due to the fact that the testing set is only used

when the training of the model is complete, a small portion (10%) of the training

data is reserved for validation to monitor the error of the model during training

where it helps the training algorithm perform better by providing it feedback to tune

its hyperparameters before the learning process is finished (96). The DNN models are

initially set to be trained for 200 epochs where in each single epoch the DNN model

goes over the entire training data set and updates its weight accordingly using the

back propagation algorithm (97).

However, more training epochs than needed can cause overfitting because the

optimization algorithm will over-optimize the weights of the model based only on the

77



training data. This results in a model that does not generalize well and will produce

a high error during testing (98). For this reason, an auto-stopping mechanism is used

to monitor the validation score and if the validation score has not improved in the

last 10 epochs then the training will automatically be stopped and the model with

least error on the validation set will be considered as the forecasting model. The

auto-stopping mechanism would prevent the model from overfitting or underfitting

the data, save computing power and reduce unnecessary training time (99).

3.3.5 Reproducibility and Verification

In DNN and in machine learning in general, one of the main challenges is repro-

ducibility (100) which is difficult to achieve due to the random initialization of the

weights prior training in addition to many other factors such as using a stochastic

optimization algorithm. The problem complicates the efforts of quantifying the im-

provement of the suggested enhanced forecasting models due to the fact that each

time a model is trained and tested it generates slightly different results. To make

sure that the improvement in the forecasts was not caused by such randomness, the

process of initializing, compiling, training, and testing of each model were repeated

100 times and the average of those 100 runs was reported as the final result.

Furthermore, to take into account the possibility that the DNN models outperform

the Arps model only on a specific testing set (i.e, Arps may perform similar or better

if the testing set is changed), at each run before the data is split into training and

testing sets the data is randomly shuffled. However, it is important to mention that

although the data is shuffled at the beginning of each run, the measurement of the

forecasting error in terms of MAE across all models is done on exactly the same

testing data set for that run. Figure 3-3 explains the flowchart of the comparison

process between the models of interest.

78



Figure 3-3: A flowchart showing the process of comparing the two forecasting models
over the course of 100 trials to address both the reproducibility concerns caused by
the randomness in the DNN and to ensure a fair comparison between the models of
interest across multiple test sets.

79



Figure 3-4: A sample test well from the Barnett shale shows the DNN model and
the Arps model forecasting compared to the actual production data where 8 months
of input data is used to forecast the production. The plot shows that with enough
data, the DNN model can generate a more accurate production forecast than the Arps
model. The gray area on the left of the plot indicates the data points used as input
to the forecasting models while the rest of the plot shows the production forecast.

3.4 Results

3.4.1 Deep Neural Networks

As described in Section 3.3.2, two DNN models were trained and tested where the first

DNN model was developed on the Barnett data set and the other one on the Marcellus

data set. A sample well production forecast is shown in Figure 3-4 and Figure 3-5

where the grey area on the left of the plot indicates the data points (number of input

months) used as an input to generate the forecast while the rest of the plot shows the

models’ predictions. To measure the accuracy of the forecasting models, each model

is compared to the actual production in terms of MAE.

Both figures show that DNN can generate more accurate production forecasts than

the Arps model. The DNN models were able to achieve more than 35% error reduction

80



Figure 3-5: A sample test well from the Marcellus shale shows the DNN model and
the Arps model forecasts compared to the actual production data where 6 months
of input data is used to forecast the production. The plot shows that with enough
data, the DNN model can generate a more accurate production forecast than the Arps
model. The gray area on the left of the plot indicates the data points used as input
to the forecasting models while the rest of the plot shows the production forecast.

81



Number of wells per county in the Barnett data set
Johnson Tarrant Denton Parker Wise Hood Hill Erath Jack Palo Pinto Ellis Somervell
1372 1050 620 469 425 272 131 36 24 16 12 12

Table 3.3: Number of wells per county in the Barnett data set

Number of wells per county in the Marcellus data set
Susquehanna Greene Wyoming Washington Westmoreland
658 535 94 703 182

Table 3.4: Number of wells per county in the Marcellus data set

on the Barnett sample well and more than 28% error reduction on the Marcellus

sample well. These results show that DNN models have the ability to map input

data into useful output and generate accurate production forecasts. However, the

two DNN models are statewide-level models and the Arps models are county-specific

models so in order to fairly compare the results across all the wells in the testing set

we need to compare DNN county-specific models to the current Arps county-specific

model benchmark.

3.4.2 Transfer Learning

As described in Section 3.3.3, this chapter employed the technique of transfer learning

to develop a better shale gas production forecast than the Arps benchmark model.

Tables 3.3 and 3.4 show that in both data sets most counties do not have enough

samples to properly train a DNN.

After following the procedure described in the Methodology Section 3.3.3 and ap-

plying it on both the Barnett and the Marcellus data sets, the DNN transfer learning

models were able to reduce the error significantly. Figure 3-6 shows that when this

method is used with 6 months of input data on the Barnett shale data set, DNN trans-

fer learning models were able to reduce the error between 47% in Hill County and

30% in Wise County when compared to the Arps benchmark model. Similar results

as shown in Figure 3-7 is obtained from applying the same method on the Marcellus

shale data set where an error reduction between 34% in Susquehanna County and

11% in Westmoreland County is achieved compared to Arps.

However, in the Barnett data set the counties of Somervell, Ellis, Palo Pinto, Jack

82



Figure 3-6: The new suggested county-specific DNN models achieved an error reduc-
tion between 47% in Hill County and 30% in Wise County compared to the Arps
model benchmark when 6 months of input data were used to generate both forecasts.

83



Figure 3-7: The new suggested county-specific DNN models achieved an error re-
duction between 34% in Susquehanna County and 11% in Westmoreland County
compared to the Arps model benchmark when 6 months of input data were used to
generate both forecasts.

84



Figure 3-8: County-specific DNN models were able to achieve a significant error
reduction compared to the Arps model ranging between 30% in Palo Pinto County
and 48% in Ellis County despite the fact that the DNN model was not trained on that
specific county data and the whole county’s data was used for testing. The use of
transfer learning enabled the DNN models to generate accurate forecast despite data
scarcity in these counties. The source model F𝑆 was trained on all other counties in
the state, except for the county of interest, then all of this county’s data was used for
testing.

and Erath do not even have enough data to train a transfer learning model where

the number of samples is very small to even train the last layer and develop a good

predictive model. For this reason, the source model F𝑆 which was trained on all other

counties in that data set, except for the county of interest, was imported and used

as is without any training where all that county’s data will be used for testing. The

model is then used to forecast the production in the county of interest. Figure 3-8

shows that when 6 months of input data is used, an error reduction between 48%

in Ellis County and 30% in Palo Pinto County is achieved compared to the Arps

model. Figures 3-9 and 3-10 show the error reduction compared to Arps when using

85



county-specific DNN models across all counties for each state. The percent reduction

in error shown in the figures represents the weighted average error reduction on the

all of the testing sets across all counties as shown in Equation 3.2:

Overall Error Reduction =

∑︀
𝑖 Error Reduction in County(i) × Number of test wells in County(i)

Number of test wells in all counties
(3.2)

The figures show that the DNN approach consistently outperformed the Arps

model across all counties and input months used as it averaged an error reduction on

the Barnett shale data set between 41% when 4 months of input data is used to 33%

when 10 months of input data is used and between 24% and 15% on the Marcellus

shale data set.

The county-specific DNN models performed better on the Barnett data set than

they did on the Marcellus data set due to the fact that production history avail-

able is longer allowing the DNN to learn better with more data. This shows that

the county-specific DNN models can be improved further as more production history

becomes available. The web pages of Railroad Commission of Texas (79) and Penn-

sylvania Department of Environmental Protection (80) publish new production data

frequently giving the new approach an advantage over the Arps models which tend

to overestimate the production in the middle and late life of a well.

3.5 Analysis & Discussion

As the results show in Section 3.4, DNN models can significantly reduce the error

in forecasting compared to the Arps models. The use of transfer learning to develop

county-specific DNN models generated a more accurate production forecast and pro-

vided the chance to develop DNN models for counties with very limited numbers of

samples. One of the main reasons behind the improvement introduced by the DNN

models is they have the ability to fit the data on models with up to 800 million pa-

rameters (101) giving them the power to generate models that can map very complex

86



Figure 3-9: The error reduction achieved when using the county-specific DNN models
compared to the Arps models on the whole Barnett data set. The error reduction is
computed as the weighted average error reduction across all counties in the data set
using Equation 3.2 when different values of input months is used.

87



Figure 3-10: The error reduction achieved when using the county-specific DNN models
compared to the Arps models on the whole Marcellus data set. The error reduction
is computed as the weighted average error reduction across all counties in the data
set using Equation 3.2 when different values of input months is used.

88



data. The DNN developed for this chapter uses more than 5000 parameters to gen-

erate its forecast while the Arps model only uses three and unlike Arps parameters

which are provided by EIA as described in the Methods Section 3.3, the DNN tunes

its parameters directly from the data through the training process in order generate

a model that generalizes well on out-of-sample test data. The advancement in com-

puting power along with efficient machine learning libraries and optimizers gave the

chance to tune those 5000 parameters on thousands of samples in a few minutes on

an average laptop.

As production data continue to grow due to numerous shale gas wells currently

in production, the DNN models can be further improved by more data as they scale

very well with data. Unlike the Arps model where the ill-posedness limits its ability

to improve with more data, as the more the data becomes available the more the

fluctuation in production can occur between different wells leading to non-unique

parameter estimates.

This study showed using transfer learning to build county-specific DNN models

offer a significant error reduction as the county-specific DNN model allowed the DNN

to generate a more accurate forecast due to the fact the model can utilize the knowl-

edge gained from other nearby counties then fine-tune its output (forecasting) layer

specifically for the county of interest. Besides increasing the accuracy of the forecasts,

transfer learning also helps overcome the data scarcity problem faced when a certain

county or area of interest might not have enough data to properly train a DNN.

Transfer learning introduced a way of utilizing data from other counties’ aggre-

gate DNN model into a county-specific model despite the fact that two DNN models

may have different domains 𝐷𝑇 and 𝐷𝑆 where the domain in this case refers to the

geological formation. Although the two models have different domains, there is still

similar features in the pattern of production decline and transfer learning allowed the

target model F𝑇 to improve its forecasting based on those similar patterns extracted

by the source model F𝑆. Even in the counties of Somervell, Ellis, Palo Pinto, Jack and

Erath where data is not even enough to train a transfer learning model, the model

that was trained only on adjacent counties’ data was able to achieve significant error

89



reduction thanks to the ability of DNN pattern extraction.

However, there is still uncertainty on how much the change in geological properties

and the reservoir conditions between the two domains 𝐷𝑇 and 𝐷𝑆 is affecting the

results. The uncertainty is caused by the heterogeneity of the geology, which can be

heterogeneous even at a small scale (102). Naturally the more the geology of the

two domains differs, the less accurate the target model will be. Unfortunately, the

data sets available do not contain geological information, which makes it difficult to

investigate how the change in geology is affecting the accuracy of the target model.

In addition to the uncertainty emerging from the variation in geology, both the

Arps and the DNN models have a major uncertainty regarding the effect of the change

in technology and how that might affect the forecasting on a new well especially

because these models are data driven and do not take into account the physical

properties of each well. Developing a DNN model that utilizes physical properties

such as well-bore sensors data, geology or geophysical data to enhance forecasting

may introduce further improvement to the forecasting.

Similar to Sun et al. (78) where they used well head pressure as input, a good

assumption can be made that further improvement can be achieved by incorporating a

well-specific physical property such as perforated length, fracking fluid volume or sand

volume, etc., as an input to the DNN as shown in Figure 3-11 since these parameters

have an impact on the decline in production and the DNN may be able to learn the

relationship between these parameters and the production decline. For example, in

general a longer perforated length in a certain well leads to more production (103),

where the DNN may be able to learn such a relationship between the perforated

length and the rate of decline to enhance its forecasting. Unfortunately, due to data

limitation on these properties such hypothesis was not tested.

The described DNN approach has a disadvantage compared to Arps models as

DNN forecasting requires multiple models depending on the number of input months

used to generate forecasts due to the fact the DNN will tune its weights during

training specifically to map the input data of a certain length to the output data.

For example, if a well has seven months of data and we want to forecast the next ten

90



Figure 3-11: Adding well-specific physical properties such as perforated length, frack-
ing fluid volume or sand volume may introduce further improvement to the DNN
forecasting model as the DNN may be able to learn the relationship between such
parameters and the rate of decline in production.

years of production then only the previously trained seven months DNN model can be

used. The same challenge also applies to the output, where if the desired forecasting

period is more or less than the desired period, only the previously trained model on

that specific forecasting period can be used.

This causes the need for developing multiple DNN models for each field or county

of interest in order to get flexibility in choosing the number of input months available

to generate the forecast. Although the process of building DNN models requires

more work to develop, compared to the Arps forecasting models, the DNN training

process to generate the models can easily be automated, and is only needed once at

the beginning. Thereafter, these DNN models can be used efficiently to generate the

forecasts.

91



3.6 Conclusions

In this chapter the results show that DNNs can generate much better forecasts than

the Arps decline curves by using transfer learning to develop county-specific DNN

models fine-tuned to the county of interest as they were able to reduce the forecasting

error up to 47% compared to the Arps decline curve model. The new suggested

approach improves the current forecasting techniques used which is crucial for decision

making and calculating returns on investment. Moreover, the results also show that

the need for a large amount of data to produce accurate shale gas forecasts is no longer

a hurdle for machine learning forecasting models as transfer learning can be used to

overcome the data scarcity arising from a limited number of samples by transferring

the knowledge gained from the other counties in the data set.

By offering a mechanism that allows the use of data from a specific area of interest

as well as other nearby areas, this approach also offers the chance to easily improve the

forecasting models further with more data as more production data will be available

in the future. A realistic goal would be to gather all the production data from all

the shale formations in the US to build a large model for each formation to serve

as a source function F𝑆 to transfer the knowledge it holds into county-specific DNN

models that can produce much better forecasting results than the current widely used

Arps model.

92



Chapter 4

Conclusions

The research work conducted in this thesis focused on developing machine learning

based algorithms to address current challenges faced in subsurface energy production

forecasting models. The field of production forecasting in both conventional and non-

conventional energy resources faces considerable challenges. Some of these challenges

arise from the fact that the problem itself is mathematically ill-posed. Another ma-

jor challenge is that, in some cases the models lack reliable data that is necessary

to achieve good accuracy. This research shows that machine learning methods can

significantly improve the current models and techniques used to forecast future oil

and gas production.

The research work in this thesis employed reinforcement learning to build an

algorithm that can solve the history matching problem in parallel. The algorithm

can train an artificial deep neural network agent that is capable of finding multiple

different solutions to the history matching problem, even when dealing with tens of

thousands of uncertain parameters. Solving the history matching problem gives the

reservoir engineers the chance to find reliable reservoir models that can be used to

forecast production in conventional oil and gas resources in a timely manner. The

algorithm showed the capacity to reduce the run-time needed to find one solution by

88% from 18.6 minutes to 2.2 minutes, when using 16 computing cores instead of one.

Thanks to such speed-up, we had the opportunity to tackle complex problems and

find multiple solutions in a timely manner when tuning 27,000 uncertain parameters.

93



Additionally, this research shows that DNNs can generate much better forecasts

than the Arps decline curves by using transfer learning to develop county-specific

DNN models fine-tuned to the county of interest. The county-specific DNN models

were able to reduce the forecasting error up to 47% compared to the Arps decline

curve model. By using transfer learning, we also showed that the need for a large

amount of data to produce accurate shale gas forecasts is no longer a hurdle for

machine learning forecasting models. The utilization of transfer learning gave the

chance to overcome the data scarcity arising from a limited number of samples by

transferring the knowledge gained from the other counties in the data set. By offering

a mechanism that allows the use of data from a specific area of interest as well as other

nearby areas, this approach also offers the chance to easily improve the forecasting

models further with more data as more and more production data becomes available

in the future.

4.1 Contributions

The research presented in this thesis has made multiple contributions to the field

of subsurface energy production forecasting. Specifically, this work has achieved the

following:

• Successful parallelization of the history matching problem using reinforcement

learning, resulting in high scalability and efficiency.

• Demonstration of the ability of reinforcement learning to find multiple solutions

to the history matching problem by employing a stochastic policy. This property

allows reservoir engineers to better quantify uncertainties in the production

forecast.

• Establishment of transfer learning as a highly accurate method for creating

county-specific models, which outperform traditional Arps decline curve models.

• Successful development of accurate shale gas production forecasting models de-

spite the challenge of data scarcity.

94



Chapter 5

Future work

In terms of future work, both projects offer future research opportunities to build on

the current findings. We plan to further improve the current framework for solving the

history matching problem as well as explore new techniques that can help reduce the

total run-time needed to solve the problem. We also plan to enhance the forecasting

capabilities of the transfer learning project by further improving the source model data

as well as developing a mechanism to provide the DNN models with more flexibility.

5.1 History matching future work

5.1.1 Using convolutional neural network

In the current framework, we use Multilayer perceptron (MLP) deep neural networks

in order for the agent to map states to useful actions that minimize the error and

reduce the objective function. However, convolutional neural networks (CNNs) (104)

might provide a better way of mapping states to actions for some problems.

CNN is a variant of MLP that is best suited for images as input data. This is due

to the fact that it uses convolutional layers in order to extract certain features from

input data (105, 106) as shown in Figure (5-1).

In the future, we plan to encode each state of the reservoir model permeability

into an image. This can be done by creating an image where each pixel represent the

95



Figure 5-1: An illustration of multi-dimensional convlutional network can detect
features in images (107)

96



Figure 5-2: Encoding the values of permeability into each pixel creates a unique
image of the current state of the system to utilize CNN architecture.

permeability value at a specific cell. Images are represented by a 2-D group of pixels,

where each pixel is composed of 3 bytes number that holds the value of red, green

and blue colors in the following manner pixel =[Red Green Blue]. These values are

then used to generate the color of the pixel.

By encoding the values of permeability into each pixel as follows: pixel value

=[PERMX PERMY PERMZ], a unique image of the current state of the system can

be generated and fed to the CNN. Figure 5-2 shows an illustration of how to create a

unique image for the permeability current state. However, such approach might have

its own limitations due to the fact that CNNs usually detects features in images such

as edges and in the created permeability image there might not be clear features to

detect. This approach might work best for small models with a good geo-correlation

between the cells.

97



5.2 Transfer learning future work

5.2.1 Building flexible DNN models

In terms of future work to improve the current transfer learning framework, we plan

to explore techniques that help overcome the DNN model flexibility problem. As

discussed in 3.5, the current framework requires the input data to have the same

number of data points as the DNN model used for forecasting production.

We plan to develop a tool that automates the training process for the DNN models.

The tool can create hundreds of DNN models for all the counties across different input

data points. Such approach gives the users the flexibility of generating production

forecasts without manipulating the data to fit the already built DNN model.

5.2.2 Improving the source model data

In the future we plan to improve the source model F𝑆 by creating better data reposi-

tories that can be used to train it. The goal is to create a data pool for each shale gas

formation in the US shown in Figure 5-3. This data repository can be used to easily

develop county-specific models and also serve as data source for other researchers

working on similar problems.

98



Figure 5-3: A map showing the locations of shale gas formations in the US (108).
These formations can be used to build source models F𝑆

99



100



Chapter 6

Appendices

6.1 Appendix A

Chapter 2 Experiments Hyperparameters

𝐾Δ = 100 for for PermX, PermY and PermZ in SPE1.

𝐾Δ = 100 for PermX and PermY and = 1 for PermZ in SPE9.

𝛼 = 1𝑒−3

𝐶𝑞 = Identity Matrix (I).

𝐶𝑢 = Identity Matrix (I).

𝜆 = 1 for SPE9 and = 0.1 for SPE1.

Algorithm total time-steps = 20,000 for SPE9 and until at least 1 solution is found

for SPE1.

Learning rate = 1× 10−5 for SPE9 and = 9× 10−4 for SPE1.

MPI Processes per environment = 4 for SPE9 and = 1 for SPE1.

OMP threads per MPI Process = 2.

𝛾 = 0.99.

Tolerance 𝜖 = 1,000 for SPE1 and = 2,500 for SPE9.

Reward for good termination = 1× 104 for SPE1 and = 2.5× 106 for SPE9.

Reward for divergence = −1× 104 for SPE1 and = −2.5× 106 for SPE9.

Reward for exceeding maximum time-steps per episode = −1× 104 for SPE1 and =

−1.25× 106 for SPE9.

101



PPO Clipping Range = 0.2.

Maximum time-steps per episode = 100.

Batch size = 192 for SPE9 and = 32 for SPE1.

102



6.2 Appendix B

Chapter 2 Reservoir Models Data

SPE9

DX = 300 ft.

DY = 300 ft.

DZ = [20 , 15 , 26 , 15 , 16 , 14 , 8 , 8 , 18 , 12 , 19 , 18 , 20 , 50 , 100] ft.

Porosity = [0.087 , 0.097 , 0.111 , 0.16 , 0.13 , 0.17 , 0.17 , 0.08 , 0.14 , 0.13 , 0.12 ,

0.105 , 0.12 , 0.116 , 0.157]

103



Wells Specs
Well i value of well head j value of well head Reference depth Phase
INJE1 24 25 9110 Water
PRODU2 5 1 9110 Oil
PRODU3 8 2 9110 Oil
PRODU4 11 3 9110 Oil
PRODU5 10 4 9110 Oil
PRODU6 12 5 9110 Oil
PRODU7 4 6 9110 Oil
PRODU8 8 7 9110 Oil
PRODU9 14 8 9110 Oil
PRODU10 11 9 9110 Oil
PRODU11 12 10 9110 Oil
PRODU12 10 11 9110 Oil
PRODU13 5 12 9110 Oil
PRODU14 8 13 9110 Oil
PRODU15 11 14 9110 Oil
PRODU16 13 15 9110 Oil
PRODU17 15 16 9110 Oil
PRODU18 11 17 9110 Oil
PRODU19 12 18 9110 Oil
PRODU20 5 19 9110 Oil
PRODU21 8 20 9110 Oil
PRODU22 11 21 9110 Oil
PRODU23 15 22 9110 Oil
PRODU24 12 23 9110 Oil
PRODU25 10 24 9110 Oil
PRODU26 17 25 9110 Oil

104



SPE1

DX = 300 ft.

DY = 300 ft.

DZ = [20 , 30 , 50] ft.

Porosity = 0.3

Wells Specs
Well i value of well head j value of well head Reference depth Phase
INJ 1 1 8335 Gas
PROD 10 10 8400 Oil

105



106



Bibliography

[1] Tara Energy. What is energy? a guide to under-
standing energy. URL https://taraenergy.com/blog/
what-is-energy-a-guide-to-understanding-energy/#:~:text=Energy%
20is%20so%20important%20in,or%20even%20lifting%20your%20finger.

[2] Exxon Mobil. The importance of energy: Imperial. URL https://www.
imperialoil.ca/en-CA/company/about/the-importance-of-energy.

[3] Food and Agriculture Organization. Chapter 1: Energy in the world
economy. URL https://www.fao.org/3/X8054E/x8054e04.htm#:
~:text=Energy%20is%20a%20foundation%20stone,extraction%2C%
20industrial%20production%20and%20transportation.

[4] Pennsylvania State University. Global energy sources. URL https://www.
e-education.psu.edu/earth104/node/1345.

[5] International Energy Agency. Charts –&nbsp;data &amp; statistics. URL
https://www.iea.org/data-and-statistics/charts.

[6] Henrik Wachtmeister, Petter Henke, and Mikael Höök. Oil projections in ret-
rospect: Revisions, accuracy and current uncertainty. Applied Energy, 220:
138–153, 2018. ISSN 0306-2619. doi: https://doi.org/10.1016/j.apenergy.
2018.03.013. URL https://www.sciencedirect.com/science/article/pii/
S0306261918303428.

[7] Raj Subrameyer. High level overview of machine learning classification -
ml 101, Aug 2020. URL https://www.rajsubra.com/blog/2019/01/23/
ml-classification.

[8] Omar S. Alolayan, Abdullah O. Alomar, and John R. Williams. Parallel
automatic history matching algorithm using reinforcement learning. Ener-
gies, 16(2), 2023. ISSN 1996-1073. doi: 10.3390/en16020860. URL https:
//www.mdpi.com/1996-1073/16/2/860.

[9] Omar S. Alolayan, Samuel J. Raymond, Justin B. Montgomery, and John R.
Williams. Towards better shale gas production forecasting using transfer
learning. Upstream Oil and Gas Technology, 9:100072, 2022. ISSN 2666-
2604. doi: https://doi.org/10.1016/j.upstre.2022.100072. URL https://www.
sciencedirect.com/science/article/pii/S266626042200010X.

107

https://taraenergy.com/blog/what-is-energy-a-guide-to-understanding-energy/#:~:text=Energy%20is%20so%20important%20in,or%20even%20lifting%20your%20finger.
https://taraenergy.com/blog/what-is-energy-a-guide-to-understanding-energy/#:~:text=Energy%20is%20so%20important%20in,or%20even%20lifting%20your%20finger.
https://taraenergy.com/blog/what-is-energy-a-guide-to-understanding-energy/#:~:text=Energy%20is%20so%20important%20in,or%20even%20lifting%20your%20finger.
https://www.imperialoil.ca/en-CA/company/about/the-importance-of-energy
https://www.imperialoil.ca/en-CA/company/about/the-importance-of-energy
https://www.fao.org/3/X8054E/x8054e04.htm#:~:text=Energy%20is%20a%20foundation%20stone,extraction%2C%20industrial%20production%20and%20transportation.
https://www.fao.org/3/X8054E/x8054e04.htm#:~:text=Energy%20is%20a%20foundation%20stone,extraction%2C%20industrial%20production%20and%20transportation.
https://www.fao.org/3/X8054E/x8054e04.htm#:~:text=Energy%20is%20a%20foundation%20stone,extraction%2C%20industrial%20production%20and%20transportation.
https://www.e-education.psu.edu/earth104/node/1345
https://www.e-education.psu.edu/earth104/node/1345
https://www.iea.org/data-and-statistics/charts
https://www.sciencedirect.com/science/article/pii/S0306261918303428
https://www.sciencedirect.com/science/article/pii/S0306261918303428
https://www.rajsubra.com/blog/2019/01/23/ml-classification
https://www.rajsubra.com/blog/2019/01/23/ml-classification
https://www.mdpi.com/1996-1073/16/2/860
https://www.mdpi.com/1996-1073/16/2/860
https://www.sciencedirect.com/science/article/pii/S266626042200010X
https://www.sciencedirect.com/science/article/pii/S266626042200010X


[10] Louis J. Durlofsky. Upscaling and gridding of fine scale geological models for
flow simulation. 06 2005.

[11] Knut-Andreas Lie. An Introduction to Reservoir Simulation Using MAT-
LAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox
(MRST). Cambridge University Press, 2019. doi: 10.1017/9781108591416.

[12] Xian-Huan Wen and J.Jaime Gómez-Hernández. Upscaling hydraulic conduc-
tivities in heterogeneous media: An overview. Journal of Hydrology, 183(1):
ix–xxxii, 1996. ISSN 0022-1694. doi: https://doi.org/10.1016/S0022-1694(96)
80030-8. URL https://www.sciencedirect.com/science/article/pii/
S0022169496800308.

[13] Ruijian Li, A. C. Reynolds, and D. S. Oliver. History Matching of Three-Phase
Flow Production Data. SPE Journal, 8(04):328–340, 12 2003. ISSN 1086-055X.
doi: 10.2118/87336-PA. URL https://doi.org/10.2118/87336-PA.

[14] Sylvester Okotie and Bibobra Ikporo. Reservoir Engineering: Fundamen-
tals and Applications. 01 2019. ISBN 978-3-030-02392-8. doi: 10.1007/
978-3-030-02393-5.

[15] Jincong He, Jiang Xie, Xian-Huan Wen, and Wen Chen. An alternative proxy
for history matching using proxy-for-data approach and reduced order modeling.
Journal of Petroleum Science and Engineering, 146:392–399, 2016. ISSN 0920-
4105. doi: https://doi.org/10.1016/j.petrol.2016.05.026. URL https://www.
sciencedirect.com/science/article/pii/S0920410516301966.

[16] Yamada Tomomi. Non-Uniqueness of History Matching. All Days, 04 2000. doi:
10.2118/59434-MS. URL https://doi.org/10.2118/59434-MS. SPE-59434-
MS.

[17] Jérémie Bruyelle and Dominique Guérillot. Proxy Model Based on Artificial
Intelligence Technique for History Matching - Application to Brugge Field. Day
2 Tue, October 22, 2019, 10 2019. doi: 10.2118/198635-MS. URL https:
//doi.org/10.2118/198635-MS. D021S010R004.

[18] Boxiao Li, Eric W. Bhark, (ret.) Stephen Gross, Travis C. Billiter, and Kaveh
Dehghani. Best Practices of Assisted History Matching Using Design of Ex-
periments. SPE Journal, 24(04):1435–1451, 05 2019. ISSN 1086-055X. doi:
10.2118/191699-PA. URL https://doi.org/10.2118/191699-PA.

[19] Célio Maschio and Denis José Schiozer. Bayesian history matching using ar-
tificial neural network and markov chain monte carlo. Journal of Petroleum
Science and Engineering, 123:62–71, 2014. ISSN 0920-4105. doi: https:
//doi.org/10.1016/j.petrol.2014.05.016. URL https://www.sciencedirect.
com/science/article/pii/S0920410514001338. Neural network applications
to reservoirs: Physics-based models and data models.

108

https://www.sciencedirect.com/science/article/pii/S0022169496800308
https://www.sciencedirect.com/science/article/pii/S0022169496800308
https://doi.org/10.2118/87336-PA
https://www.sciencedirect.com/science/article/pii/S0920410516301966
https://www.sciencedirect.com/science/article/pii/S0920410516301966
https://doi.org/10.2118/59434-MS
https://doi.org/10.2118/198635-MS
https://doi.org/10.2118/198635-MS
https://doi.org/10.2118/191699-PA
https://www.sciencedirect.com/science/article/pii/S0920410514001338
https://www.sciencedirect.com/science/article/pii/S0920410514001338


[20] D.J. Schiozer, S.L. Almeida Netto, E.L. Ligero, and C. Maschio. Integration of
History Matching And Uncertainty Analysis. Journal of Canadian Petroleum
Technology, 44(07), 07 2005. ISSN 0021-9487. doi: 10.2118/05-07-02. URL
https://doi.org/10.2118/05-07-02.

[21] Karl-Heinz Ilk. On the regularization of ill-posed problems. Proc. Int. Symp.
Figure and Dynamics of the Earth, Moon, and Planets, Prague, -1:365, 01 1987.

[22] Mohammad Sayyafzadeh, Manouchehr Haghighi, and Jonathan N. Carter. Reg-
ularization in History Matching Using Multi-Objective Genetic Algorithm and
Bayesian Framework. All Days, 06 2012. doi: 10.2118/154544-MS. URL
https://doi.org/10.2118/154544-MS. SPE-154544-MS.

[23] Alireza Shahkarami. Artificial intelligence assisted history matching – proof of
concept. 2012.

[24] Ibnu Arief. Computer assisted history matching: A comprehensive study of
methodology. PhD thesis, 2013.

[25] N. Yamashita and M. Fukushima. On the Rate of Convergence of the Levenberg-
Marquardt Method. Springer Vienna, Vienna, 2001. ISBN 978-3-7091-6217-0.

[26] Mehrdad G. Shirangi and Alexandre A. Emerick. An improved tsvd-
based levenberg–marquardt algorithm for history matching and comparison
with gauss–newton. Journal of Petroleum Science and Engineering, 143:
258–271, 2016. ISSN 0920-4105. doi: https://doi.org/10.1016/j.petrol.
2016.02.026. URL https://www.sciencedirect.com/science/article/pii/
S0920410516300687.

[27] L. Sanghyun and K. D. Stephen. Optimizing Automatic History Matching for
Field Application Using Genetic Algorithm and Particle Swarm Optimization.
Day 1 Tue, March 20, 2018, 03 2018. doi: 10.4043/28401-MS. URL https:
//doi.org/10.4043/28401-MS. D011S002R004.

[28] Hao Li and Siddharth Misra. Reinforcement learning based automated his-
tory matching for improved hydrocarbon production forecast. Applied En-
ergy, 284:116311, 2021. ISSN 0306-2619. doi: https://doi.org/10.1016/
j.apenergy.2020.116311. URL https://www.sciencedirect.com/science/
article/pii/S0306261920316950.

[29] Vibeke Haugen, Geir Nævdal, Lars-Jøergen Natvik, Geir Evensen, Aina M.
Berg, and Kristin M. Flornes. History Matching Using the Ensemble Kalman
Filter on a North Sea Field Case. SPE Journal, 13(04):382–391, 12 2008.
ISSN 1086-055X. doi: 10.2118/102430-PA. URL https://doi.org/10.2118/
102430-PA.

109

https://doi.org/10.2118/05-07-02
https://doi.org/10.2118/154544-MS
https://www.sciencedirect.com/science/article/pii/S0920410516300687
https://www.sciencedirect.com/science/article/pii/S0920410516300687
https://doi.org/10.4043/28401-MS
https://doi.org/10.4043/28401-MS
https://www.sciencedirect.com/science/article/pii/S0306261920316950
https://www.sciencedirect.com/science/article/pii/S0306261920316950
https://doi.org/10.2118/102430-PA
https://doi.org/10.2118/102430-PA


[30] Xian-Huan Wen and Wen H. Chen. Real-Time Reservoir Model Updating Using
Ensemble Kalman Filter With Confirming Option. SPE Journal, 11(04):431–
442, 12 2006. ISSN 1086-055X. doi: 10.2118/92991-PA. URL https://doi.
org/10.2118/92991-PA.

[31] Xian-Huan Wen and Wen H. Chen. Some Practical Issues on Real-Time
Reservoir Model Updating Using Ensemble Kalman Filter. SPE Journal, 12
(02):156–166, 06 2007. ISSN 1086-055X. doi: 10.2118/111571-PA. URL
https://doi.org/10.2118/111571-PA.

[32] Binghuai Lin, Paul Crumpton, and Ali Dogru. Parallel Implementation of
Ensemble Kalman Smoother for Field-Scale Assisted History Matching. Day
4 Thu, March 09, 2017, 03 2017. doi: 10.2118/183755-MS. URL https:
//doi.org/10.2118/183755-MS. D041S045R001.

[33] Shusei Tanaka, Zhenzhen Wang, Kaveh Dehghani, Jincong He, Baskar
Velusamy, and Xian-Huan Wen. Large Scale Field Development Optimization
Using High Performance Parallel Simulation and Cloud Computing Technol-
ogy. Day 3 Wed, September 26, 2018, 09 2018. doi: 10.2118/191728-MS. URL
https://doi.org/10.2118/191728-MS. D031S030R007.

[34] Pallav Sarma, Jim Owens, Wen Chen, and Xian-Huan Wen. Massively dis-
tributed simulation and optimization on commercial compute clouds. Society
of Petroleum Engineers - SPE Reservoir Simulation Symposium 2015, 3:1529–
1536, 01 2015. doi: 10.2118/173280-MS.

[35] Society of Petroleum Engineers. Spe comparative solution project. https:
//www.spe.org/web/csp/index.html.

[36] Open Porous Media data repository. Opm data repository. "https://github.
com/OPM/opm-data", 2022. Accessed: 2022-03-30.

[37] J.E. Killough. Ninth SPE Comparative Solution Project: A Reexamination
of Black-Oil Simulation. All Days, 02 1995. doi: 10.2118/29110-MS. URL
https://doi.org/10.2118/29110-MS. SPE-29110-MS.

[38] Aziz S. Odeh. Comparison of Solutions to a Three-Dimensional Black-Oil
Reservoir Simulation Problem (includes associated paper 9741 ). Journal
of Petroleum Technology, 33(01):13–25, 01 1981. ISSN 0149-2136. doi:
10.2118/9723-PA. URL https://doi.org/10.2118/9723-PA.

[39] Maxim Lapan. Deep Reinforcement Learning Hands-on: Apply Modern RL
Methods, with Deep Q-networks, Value Iteration, Policy Gradients, TRPO,
AlphaGo Zero and More. Expert insight. Packt Publishing, 2018. ISBN
9781788834247. URL https://books.google.com/books?id=9ZGvuAEACAAJ.

[40] Ahmad Hammoudeh. A concise introduction to reinforcement learning. 02 2018.
doi: 10.13140/RG.2.2.31027.53285.

110

https://doi.org/10.2118/92991-PA
https://doi.org/10.2118/92991-PA
https://doi.org/10.2118/111571-PA
https://doi.org/10.2118/183755-MS
https://doi.org/10.2118/183755-MS
https://doi.org/10.2118/191728-MS
https://www.spe.org/web/csp/index.html
https://www.spe.org/web/csp/index.html
https://github.com/OPM/opm-data
https://github.com/OPM/opm-data
https://doi.org/10.2118/29110-MS
https://doi.org/10.2118/9723-PA
https://books.google.com/books?id=9ZGvuAEACAAJ


[41] JB Montgomery, SJ Raymond, FM O’Sullivan, and JR Williams. Shale gas
production forecasting is an ill-posed inverse problem and requires regular-
ization. Upstream Oil and Gas Technology, 5:100022, 2020. ISSN 2666-
2604. doi: https://doi.org/10.1016/j.upstre.2020.100022. URL https://www.
sciencedirect.com/science/article/pii/S2666260420300220.

[42] Kai Zhang, Niantian Lin, Chao Fu, Dong Zhang, Xing Jin, and Chong Zhang.
Reservoir characterisation method with multi-component seismic data by unsu-
pervised learning and colour feature blending. Exploration Geophysics, 50(3):
269–280, 2019. URL https://doi.org/10.1080/08123985.2019.1603078.

[43] Ruslan Miftakhov, Abdulaziz Al-Qasim, and Igor Efremov. Deep Reinforcement
Learning: Reservoir Optimization from Pixels. Day 2 Tue, January 14, 2020,
01 2020. doi: 10.2523/IPTC-20151-MS. URL https://doi.org/10.2523/
IPTC-20151-MS. D021S052R002.

[44] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning, 2015. URL https://arxiv.org/abs/1509.06461.

[45] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. A Bradford Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

[46] Atgeirr Flø Rasmussen, Tor Harald Sandve, Kai Bao, Andreas Lauser, Joakim
Hove, Bård Skaflestad, Robert Klöfkorn, Markus Blatt, Alf Birger Rustad,
Ove Sævareid, Knut-Andreas Lie, and Andreas Thune. The open porous me-
dia flow reservoir simulator. Computers & Mathematics with Applications,
81:159–185, 2021. ISSN 0898-1221. doi: https://doi.org/10.1016/j.camwa.
2020.05.014. URL https://www.sciencedirect.com/science/article/pii/
S0898122120302182. Development and Application of Open-source Software
for Problems with Numerical PDEs.

[47] Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. Time limits
in reinforcement learning. CoRR, abs/1712.00378, 2017. URL http://arxiv.
org/abs/1712.00378.

[48] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms, 2017. URL https://arxiv.
org/abs/1707.06347.

[49] Elmar Diederichs. Reinforcement learning - a technical introduction. Journal
of Autonomous Intelligence, 2:25, 08 2019. doi: 10.32629/jai.v2i2.45.

[50] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim-
othy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. CoRR, abs/1602.01783,
2016. URL http://arxiv.org/abs/1602.01783.

111

https://www.sciencedirect.com/science/article/pii/S2666260420300220
https://www.sciencedirect.com/science/article/pii/S2666260420300220
https://doi.org/10.1080/08123985.2019.1603078
https://doi.org/10.2523/IPTC-20151-MS
https://doi.org/10.2523/IPTC-20151-MS
https://arxiv.org/abs/1509.06461
https://www.sciencedirect.com/science/article/pii/S0898122120302182
https://www.sciencedirect.com/science/article/pii/S0898122120302182
http://arxiv.org/abs/1712.00378
http://arxiv.org/abs/1712.00378
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1602.01783


[51] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernes-
tus, and Noah Dormann. Stable-baselines3: Reliable reinforcement learning im-
plementations. Journal of Machine Learning Research, 22(268):1–8, 2021. URL
http://jmlr.org/papers/v22/20-1364.html.

[52] Saeed S. Alahmari, Dmitry B. Goldgof, Peter R. Mouton, and Lawrence O.
Hall. Challenges for the repeatability of deep learning models. IEEE Access, 8:
211860–211868, 2020. doi: 10.1109/ACCESS.2020.3039833.

[53] Matthew Hutson. Artificial intelligence faces reproducibility crisis. Science, 359
(6377):725–726, 2018. doi: 10.1126/science.359.6377.725. URL https://www.
science.org/doi/abs/10.1126/science.359.6377.725.

[54] Ruijian Li, A. C. Reynolds, and D. S. Oliver. History Matching of Three-Phase
Flow Production Data. SPE Journal, 8(04):328–340, 12 2003. ISSN 1086-055X.
doi: 10.2118/87336-PA. URL https://doi.org/10.2118/87336-PA.

[55] Leila Heidari, V. Gervais, Mickaele Le Ravalec, and Hans Wackernagel. His-
tory matching of reservoir models by ensemble kalman filtering: The state
of the art and a sensitivity study. AAPG Memoir, 01 2011. doi: 10.1306/
13301418M963486.

[56] Mohamed Shams, Ahmed. H. El-Banbi, and Helmy Sayyouh. A Comparative
Study of Proxy Modeling Techniques in Assisted History Matching. Day 3 Wed,
April 26, 2017, 04 2017. doi: 10.2118/188056-MS. URL https://doi.org/10.
2118/188056-MS. D033S020R003.

[57] B. M. Negash, Mohammed A. Ayoub, Shiferaw Regassa Jufar, and Aban John
Robert. History matching using proxy modeling and multiobjective optimiza-
tions. In Mariyamni Awang, Berihun Mamo Negash, Nur Asyraf Md Akhir,
Luluan Almanna Lubis, and Abdul Ghani Md. Rafek, editors, ICIPEG 2016,
pages 3–16, Singapore, 2017. Springer Singapore. ISBN 978-981-10-3650-7.

[58] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement
learning: A selective overview of theories and algorithms. 2019. doi: 10.48550/
ARXIV.1911.10635.

[59] Pieter Jan ’t Hoen, Karl Tuyls, Liviu Panait, Sean Luke, and J. A. La Poutré.
An overview of cooperative and competitive multiagent learning. In Proceedings
of the First International Conference on Learning and Adaption in Multi-Agent
Systems, LAMAS’05, page 1–46, Berlin, Heidelberg, 2005. Springer-Verlag.
ISBN 3540330534. doi: 10.1007/11691839_1. URL https://doi.org/10.
1007/11691839_1.

[60] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of
the art. Autonomous Agents and Multi-Agent Systems, 11:387–434, 2005.

112

http://jmlr.org/papers/v22/20-1364.html
https://www.science.org/doi/abs/10.1126/science.359.6377.725
https://www.science.org/doi/abs/10.1126/science.359.6377.725
https://doi.org/10.2118/87336-PA
https://doi.org/10.2118/188056-MS
https://doi.org/10.2118/188056-MS
https://doi.org/10.1007/11691839_1
https://doi.org/10.1007/11691839_1


[61] US Energy Information Administration. URL:https://www.eia.gov/. Ac-
cessed: 2021-01-30.

[62] A. Agosta, G. Boccara, B. Heringa, N. Browne, and D. Dediu. Mckinsey & com-
pany global gas outlook to 2050. https://www.mckinsey.com/industries/
oil-and-gas/our-insights/global-gas-outlook-to-2050, 2021. Accessed:
2021-05-30.

[63] W. Lee and R. Sidel. Gas reserves estimation in resource plays. Society of
Petroleum Engineers, 2, 2010. doi: 10.2118/130102-PA.

[64] C. Clarkson, J. Williams-Kovacs, F. Qanbari, and M. Heidari Sureshjanid.
History-matching and forecasting tight/shale gas condensate wells using com-
bined analytical, semi-analytical, and empirical methods. Journal of Natural
Gas Science and Engineering, 26, 2015. doi: /10.1016/j.jngse.2015.03.025.

[65] L. Lee, J. Lim, D. Yoon, and H. Jung. Prediction of shale-gas production
at duvernay formation using deep-learning algorithm. Society of Petroleum
Engineers, 24, 2019.

[66] D. Han, J. Jung, and S. Kwon. Comparative study on supervised learning
models for productivity forecasting of shale reservoirs based on a data-driven
approach. Applied Science, 10, 2020.

[67] L. Tan, L. Zuo, and B. Wang. Methods of decline curve analysis for shale gas
reservoirs. Energies, 11, 2018. doi: 10.3390/en11030552.

[68] P. Manda and D. Nkazi. The evaluation and sensitivity of decline curve mod-
elling. Energies, 13:2765, 2020. doi: 10.3390/en13112765.

[69] T. Patzek, F. Male, and M. Marder. Gas production in the barnett shale obeys
a simple scaling theory. Proceedings of the National Academy of Sciences, 2013.

[70] R. De Holanda, E. Gildin, and P. Valko. Combining physics, statistics, and
heuristics in the decline-curve analysis of large data sets in unconventional reser-
voirs. Society of Petroleum Engineers, 2018. doi: 10.2118/185589-PA.

[71] A. Duong. Rate-decline analysis for fracture-dominated shale reservoirs. Society
of Petroleum Engineers, 2011. doi: 10.2118/137748-PA.

[72] A. Clark, L. Lake, and T. Patzek. Production forecasting with logistic growth
models. In Society of Petroleum Engineers, 2011. doi: 10.2118/144790-MS.

[73] J. Arps. Analysis of decline curves. Transactions of the American Institute of
Mining Engineers, 160, 1945. doi: 10.2118/945228-G.

[74] Q. Zhao, H. Wang, Q. Sun, X. Jiang, R. Yu, L. Kang, and X. Wang. A logical
growth model considering the influence of shale gas reservoirs and development
characteristics. Natural Gas Industry B, 7, 2020. doi: https://doi.org/10.1016/
j.ngib.2020.05.005.

113

URL: https://www.eia.gov/
https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-gas-outlook-to-2050
https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-gas-outlook-to-2050


[75] J. Montgomery, S. Raymond, F. O’Sullivan, and J Williams. Shale gas pro-
duction forecasting is an ill-posed inverse problem and requires regularization.
Upstream Oil and Gas Technology, 5, 2020. doi: 10.1016/j.upstre.2020.100022.

[76] S. Al-Fattah and R. Startzman. Predicting natural gas production using ar-
tificial neural network. Society of Petroleum Engineers, 2001. doi: 10.2118/
68593-MS.

[77] Y Li and Y Han. Decline curve analysis for production forecasting based on
machine learning. In SPE Symposium: Production Enhancement and Cost Op-
timisation, Kuala Lumpur, Malaysia, 2017.

[78] J. Sun, X. Ma, and M. Kazi. Comparison of decline curve analysis dca with
recursive neural networks rnn for production forecast of multiple wells. In SPE
Western Regional Meeting, 2018. doi: https://doi.org/10.2118/190104-MS.

[79] Railroad Commission of Texas. Online research queries. https://www.rrc.
state.tx.us/, 2019. Accessed: 2020-01-30.

[80] Pennsylvania Department of Environmental Protection. Pa oil and gas map-
ping. https://www.dep.pa.gov/DataandTools/Reports/Oil%20and%20Gas%
20Reports/Pages/default.aspx, 2020. Accessed: 2021-03-30.

[81] US Energy Information Administration. Oil and gas supply module of the
national energy modeling system 2018b. 2018.

[82] Abdolrahim Ataei, Eghbal Motaei, Mohammad Ebrahim Yazdi, Rahim Ma-
soudi, and Aamir Bashir. Rate Transient Analysis RTA and Its Application for
Well Connectivity Analysis: An Integrated Production Driven Reservoir Char-
acterization and a Case Study. volume Day 1 Tue, October 23, 2018 of SPE
Asia Pacific Oil and Gas Conference and Exhibition, 10 2018. doi: 10.2118/
192046-MS. URL https://doi.org/10.2118/192046-MS. D011S001R001.

[83] K. Okuszko, B. Gault, and L. Mattar. Production decline performance of cbm
wells. Journal of Canadian Petroleum Technology, 2008. doi: https://doi.org/
10.2118/08-07-57.

[84] K. Levenberg. A method for the solution of certain non-linear problems in least
squares. Quarterly of Applied Mathematics, 2, 1944. doi: 10.1090/qam/10666.

[85] D. Marquardt. An algorithm for least-squares estimation of nonlinear parame-
ters. Journal of the Society for Industrial and Applied Mathematics, 11, 1963.
doi: 10.1137/0111030.

[86] M. Newville, T. Stensitzki, M. Allen, D.and Rawlik, A. Ingargiola, and A. Nel-
son. Non-linear least-squares minimization and curve-fitting for python. URL:
https://lmfit.github.io/lmfit-py/, 2020. Accessed: 2020-01-30.

114

https://www.rrc.state.tx.us/
https://www.rrc.state.tx.us/
https://www.dep.pa.gov/DataandTools/Reports/Oil%20and%20Gas%20Reports/Pages/default.aspx
https://www.dep.pa.gov/DataandTools/Reports/Oil%20and%20Gas%20Reports/Pages/default.aspx
https://doi.org/10.2118/192046-MS
URL: https://lmfit.github.io/lmfit-py/
URL: https://lmfit.github.io/lmfit-py/


[87] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learn-
ing: Data mining, inference, and prediction, second edition. Springer Series in
Statistics, 2016.

[88] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Jour-
nal of Machine Learning Research, 15, 2014.

[89] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd
International Conference for Learning Representations, San Diego, 2017.

[90] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A
comprehensive survey on transfer learning, 2020.

[91] Q. Yang, Y. Zhang, W. Dai, and SJ Pan. Transfer Learning. Cambridge
University Press, 2020. doi: 10.1017/9781139061773.

[92] S. Pan and Q. Yang. A survey on transfer learning. Institute of Electrical and
Electronics Engineers Transactions on Knowledge and Data Engineering, 22,
2010. doi: 10.1109/TKDE.2009.191.

[93] A. Zisserman and K Simonyan. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations ,
San Diego, Ca, USA, 2015.

[94] J. Deng, W. Dong, R. Socher, and L. Li. Imagenet: a large-scale hierarchical
image database. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2009), Miami, Florida, USA, 2009.

[95] J. Brownlee. How to classify photos of dogs and cats
(with 97% accuracy). https://machinelearningmastery.com/
how-to-develop-a-convolutional-neural-network-to-classify-photos\
protect\@normalcr\relax-of-dogs-and-cats/, 2019. Accessed: 2020-09-30.

[96] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
ISBN 978-0262035613.

[97] M. Nielsen. Neural Networks and Deep Learning. 2020. "https://static.
latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.
pdf" Accessed: 2021-05-30.

[98] C. Bishop. Pattern recognition and machine learning. Springer, 2006.

[99] J. Brownlee. Use early stopping to halt the training of neural net-
works at the right time. https://machinelearningmastery.com/
how-to-stop-training-deep-neural-networks-at-the-right-time\
protect\@normalcr\relax-using-early-stopping/, 2019. Accessed:
2021-05-30.

115

https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-to-classify-photos\protect \@normalcr \relax -of-dogs-and-cats/
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-to-classify-photos\protect \@normalcr \relax -of-dogs-and-cats/
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-to-classify-photos\protect \@normalcr \relax -of-dogs-and-cats/
https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time\protect \@normalcr \relax -using-early-stopping/
https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time\protect \@normalcr \relax -using-early-stopping/
https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time\protect \@normalcr \relax -using-early-stopping/


[100] M. Huston. American association for the advancement of science. American
Association for the Advancement of Science, 359, 2018. doi: 10.1126/science.
359.6377.725.

[101] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, and
L Bharambe, A. andvan der Maaten. Exploring the limits of weakly super-
vised pretraining. CoRR, abs/1805.00932, 2018. URL http://arxiv.org/
abs/1805.00932.

[102] J. Montgomery and F. O’Sullivan. Spatial variability of tight oil well pro-
ductivity and the impact of technology. Applied Energy, 195, 2017. doi:
10.1016/j.apenergy.2017.03.038.

[103] Y. Xia, T. Xu, Y. Yuan, and X. Xin. Effect of perforation interval design
on gas production from the validated hydrate-bearing deposits with layered
heterogeneity by depressurization. Geofluids, Hindawi, 2020. doi: 10.1155/
2020/8833884.

[104] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural net-
works, 2015. URL https://arxiv.org/abs/1511.08458.

[105] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a
convolutional neural network. In 2017 International Conference on Engineering
and Technology (ICET), pages 1–6, 2017. doi: 10.1109/ICEngTechnol.2017.
8308186.

[106] L. Alzubaidi, J. Zhang, and A.J. Humaidi. Review of deep learn-
ing: concepts, cnn architectures, challenges, applications, future direc-
tions. Journal of Big Data, 8:53, 2021. doi: https://doi.org/10.1186/
s40537-021-00444-8. URL https://journalofbigdata.springeropen.com/
articles/10.1186/s40537-021-00444-8.

[107] Victor Roman. Convolutional neural networks in practice - develop and imple-
ment your first cnn with keras!, 2020. URL https://towardsdatascience.
com/convolutional-neural-networks-in-practice-406426c6c19a.

[108] Angela Goodman, Isis Fukai, Robert Dilmore, Scott Frailey, Grant Bromhal,
Daniel Soeder, Charlie Gorecki, Wes Peck, Traci Rodosta, and George Guthrie.
Methodology for assessing co2 storage potential of organic-rich shale formations.
Energy Procedia, 63:5178–5184, 12 2014. doi: 10.1016/j.egypro.2014.11.548.

116

http://arxiv.org/abs/1805.00932
http://arxiv.org/abs/1805.00932
https://arxiv.org/abs/1511.08458
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00444-8
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00444-8
https://towardsdatascience.com/convolutional-neural-networks-in-practice-406426c6c19a
https://towardsdatascience.com/convolutional-neural-networks-in-practice-406426c6c19a

	Introduction
	Parallel automatic history matching algorithm using reinforcement learning
	Background
	Data
	SPE9
	SPE1

	Methodology
	Reinforcement Learning
	History Matching Using Reinforcement Learning
	Proximal Policy Optimization
	Parallel Reinforcement Learning History Matching
	Reproducibility

	Results
	Analysis & Discussion
	Conclusions
	Nomenclature

	Towards better shale gas production forecasting using transfer learning
	Background
	Data
	Methodology
	Arps Forecasting Model
	Deep Neural Network Forecasting
	Transfer Learning Models
	Training and Testing Procedure
	Reproducibility and Verification

	Results
	Deep Neural Networks
	Transfer Learning

	Analysis & Discussion
	Conclusions

	Conclusions
	Contributions

	Future work
	History matching future work
	Using convolutional neural network

	Transfer learning future work
	Building flexible DNN models
	Improving the source model data


	Appendices 
	Appendix A
	Appendix B




