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Abstract

A primary objective within the robotics research community is the development of
robotic agents capable of executing long-horizon tasks within complex and novel envi-
ronments. The sparse and factored nature of object-centric planning makes it a good
candidate for the reasoning engine inside such an agent. However, several challenges
remain under an object-centric planning framework. Challenges arise in areas such
as efficiently grounding states with novel objects in cluttered environments, main-
taining efficiency under large object sets, and safe exploration and manipulation in
partially observable and nondeterministic environments. This thesis examines these
limitations and proposes several strategies for solving them while maintaining the
generalizability and flexibility of object-centric planning in long-horizon tasks.
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Chapter 1

Introduction

This thesis outlines a comprehensive approach for creating generalizable robotic ma-

nipulation policies, capable of effectively and safely interacting with large collections

of unfamiliar objects in partially observable environments. The general framework

subscribed to in this thesis is that of task and motion planning [38], which combines

the established tools of long-horizon symbolic planning with shorter-horizon manipu-

lation primitives such as sample-based motion planning, trajectory optimization, and

reinforcement learning.

The field of robotic manipulation has witnessed the emergence of several methods

aimed at enhancing robots’ adaptability and capability to handle complex tasks in

dynamic environments. Among these, reinforcement learning (RL) and learning from

demonstrations have gained considerable attention. RL enables robots to learn opti-

mal policies through trial and error by interacting with their environment. RL has

demonstrated success in various domains; however, its reliance on extensive explo-

ration and convergence issues can limit its applicability in long-horizon manipulation

scenarios. Learning from demonstrations (LfD) describes a set of approaches that

leverage human-generated demonstrations to teach robots effectively. Some meth-

ods that fall into this category include behavior cloning [35], inverse reinforcement

learning [32], offline reinforcement learning [74], and program synthesis [29]. While

LfD has proven efficient when provided with high-quality demonstrations in narrow

problem settings, its performance can be constrained by the quality and diversity of

15



the demonstrations provided, thus potentially hindering its ability to generalize in

certain long-horizon manipulation tasks.

In light of the limitations presented by RL and LfD, task and motion planning

(TAMP) emerges as a promising alternative for addressing long-horizon manipulation

challenges. TAMP offers the distinct advantage of being able to generalize to arbitrary

goals and adapt to novel scenes, making it particularly suitable for tackling problems

with extensive constraints. This flexibility stems from TAMP’s capacity to integrate

high-level task planning, which is responsible for determining the sequence of actions,

with low-level motion planning, which focuses on the robot’s specific movements. By

combining these generalizable methods, TAMP provides a comprehensive solution

that can efficiently handle complex robotic manipulation tasks in a wide range of

environments.

Despite the numerous benefits offered by task and motion planning, this approach

is not without its limitations. One of the primary constraints of TAMP is its assump-

tion of a complete world model, which may not always be available or attainable in

real-world scenarios. This reliance on a full model can make TAMP’s performance

sensitive to discrepancies between the assumed and actual environment states. Addi-

tionally, TAMP’s effectiveness tends to diminish when faced with large object sets, as

the complexity of the planning problem increases significantly, leading to prolonged

computation times and potential scalability issues. Lastly, TAMP’s fully determin-

istic nature inherently lacks the provision for exploration, specifically goal-driven

exploration. This lack of exploration can result in suboptimal or overly conserva-

tive solutions under determinized abstract transition models. In this master’s thesis,

we will thoroughly examine these limitations and seek potential avenues to enhance

TAMP’s adaptability and performance in the context of robotic manipulation.

The outline of this thesis is as follows. In Chapter 3 we propose a system for long-

horizon object manipulation from human-specified goals and visual input. Beyond

visual grounding for object-centric planning, our system, which we call Manipulation

with Zero Models (M0M), calculates object affordances and affordance-specific object

models dynamically in order to limit expensive post-processing operations and work
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in an open-world capacity [20]. In Chapter 4 we discuss one of the limitations of

such a system and of object-centric planning in general. Namely, how can we ensure

planning efficiency with large object sets. First, we look at the case where a major-

ity of objects are irrelevant to the task and propose a method called Planning with

Learned Object Importance (PLOI) where we use a graph neural network to learn

object importance scores from examples [97]. We then use those importance scores to

speed up planning. Next, we investigate the case where the large object sets contain

mainly relevant objects. In a system we call GenTAMP, we show that it is more

efficient to learn an abstraction that enables planning in a numerically qualitative ab-

straction of the original problem [22]. In Chapter 5 we investigate another limitation

of the M0M system, purposeful exploration. The M0M system is capable of passive

and one-step exploration, but mobile manipulation environments often necessitate

long-horizon planning for exploration that may involve manipulation and visibility

reasoning subproblems. In this chapter we will discuss this class of problems termed

visibility-aware navigation among movable obstacles and our Look and Manipulation

Backchaining (LaMB) algorithm for solving them [21].
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Chapter 2

Background

2.1 Symbolic Task Planning

Task planning, a longstanding focus in AI with applications often aimed at robotics,

deals with object-centric planning in fully discrete domains [42, 65]. A task planning

problem can be defined by a tuple Π = ⟨𝒫 ,𝒜, 𝑇,𝒪, 𝐼, 𝐺⟩, where 𝒫 is a finite set

of properties, 𝒜 is a finite set of object-parameterized actions, 𝑇 is a (potentially

stochastic) transition model, 𝒪 is a finite set of objects, 𝐼 is the initial state, and 𝐺

is the goal [92].

A property in this context is a real-valued function on a tuple of objects. Predicates,

a special case of properties with binary outputs, and object types as unary properties

are included. A state represents the assignment of values to all possible applications

of properties in 𝒫 with objects in 𝒪. A goal is an assignment of values to any subset

of the ground properties, representing a set of states implicitly. We use 𝒮 to denote

the set of possible states and 𝒢 for the set of possible goals over 𝒫 . The transition

model 𝑇 maps a state, ground action, and the next state to a probability, defining

the dynamics of the environment.

Classical planning approaches, such as STRIPS and PDDL, utilize first-order logic

for representing states, actions, and goal conditions, allowing for concise and expres-

sive problem formulations. This makes it easier to design algorithms that efficiently

search the state space for an optimal or near-optimal plan using search-based algo-
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rithms like A* or state-space planning algorithms like Graphplan [6], SATPlan [66],

and heuristic search planners [11, 52]. The ultimate objective of task planning is to

discover a sequence of actions that, when executed starting from an initial state, leads

to a goal state that satisfies a set of goal conditions.

2.2 Motion Planning and Control

Motion planning algorithms attempt to find a collision-free path for a robotic system

or an autonomous agent through a geometrically-defined environment, often repre-

sented as a configuration space 𝐶. The configuration space comprises a set of feasible

configurations 𝑞 that the robot or agent can attain, and is subdivided into free space

𝐶𝑓𝑟𝑒𝑒, where no obstacles are present, and obstacle space 𝐶𝑜𝑏𝑠, where the agent must

avoid collisions. The objective is to find a continuous path 𝛾 : [0, 1]→ 𝐶𝑓𝑟𝑒𝑒 that con-

nects a start configuration 𝑞𝑠 to a goal configuration 𝑞𝑔, with 𝛾(0) = 𝑞𝑠 and 𝛾(1) = 𝑞𝑔,

and adheres to the given geometric constraints.

Various algorithms have been developed to tackle geometric motion planning

problems, such as the Probabilistic Roadmap [67] and Rapidly-exploring Random

Trees [72, 64]. These algorithms aim to efficiently explore the configuration space

and construct a collision-free path between the start and goal configurations while

considering the underlying geometric structure of the environment.

Similarly, control through trajectory optimization involves determining the most

efficient path for a robotic system or an autonomous agent to follow while avoiding

obstacles and respecting constraints. Given a start and a goal position, the objec-

tive is to find a feasible and optimal trajectory that connects these positions while

considering the physical limitations of the system. The optimization process is typi-

cally carried out by minimizing a cost function 𝐽(𝑥, 𝑢), which depends on the state

variables 𝑥 and the control inputs 𝑢.

In this optimization problem, the constraints include the initial state 𝑥(𝑡0) =

𝑥0, the final state 𝑥(𝑡𝑓 ) = 𝑥𝑓 , the system dynamics represented by the function

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡), and the inequality constraints 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) ≤ 0 that ensure
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the trajectory stays within feasible regions and obeys physical constraints.

To solve this problem, various techniques can be employed. One common approach

is to discretize the problem and convert it into a finite-dimensional optimization prob-

lem that can be solved using standard numerical methods like Sequential Quadratic

Programming (SQP) [3, 33].

2.3 Task and Motion Planning

Task and motion planning (TAMP) is a powerful framework that combines symbolic

task planning and motion planning/trajectory optimization. TAMP aims to generate

high-level plans consisting of a sequence of actions and their corresponding motion

trajectories while respecting the system’s kinematic and dynamic constraints, as well

as the environment’s geometric and logical constraints. This integration enables the

generation of executable plans that not only satisfy the high-level goals but also

guarantee the feasibility of the resulting motion trajectories.

To solve TAMP problems, various approaches have been proposed, including hi-

erarchical methods [60], iterative sampling methods [41, 16], and optimization-based

methods [105, 106]. All of these approaches assume full state knowledge. Several

extensions to tamp-based systems that actively deal with uncertainty from realistic

perception, including substantial occlusions, have also been demonstrated [58, 48, 40],

including some that support open domains [107] where the set of objects in the world

is not known a priori. The key extension is planning in belief space, over distributions

of object poses and space occupancy. Belief-space tamp-based systems engage in ac-

tive information gathering, for example, through manipulating objects to observe the

contents of uncertain space [61]. Existing belief-space tamp-based systems have not

addressed general shape uncertainty, however; they model only uncertainty over a

small set of possible object types and over 4- or 6-dof poses.
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2.4 Limitations

2.4.1 Perception

Techniques for perception in robotics have experienced significant advancements in

recent years, primarily driven by the rapid progress in machine learning and computer

vision [95]. Object classification, detection, and segmentation have become essential

components of a robotic system’s perceptual capabilities, enabling them to recognize,

locate, and differentiate objects in their environment. The advent of deep learning

techniques such as Convolutional Neural Networks (CNNs) has facilitated the devel-

opment of highly accurate and efficient models, such as the widely adopted YOLO

[88], Faster R-CNN [89], and Mask R-CNN [51] architectures. These models have not

only improved the performance of robotic systems in a variety of applications, such

as autonomous vehicles [7], drones [55], and manipulation tasks [75], but have also

contributed to a better understanding of the challenges involved in designing robust

perception modules for real-world scenarios.

The development of end-to-end trained visual robotic policies has emerged as a way

of integrating these advancements into robot systems [34]. These policies are learned

directly from raw visual inputs and optimize the robot’s actions without explicitly

modeling the underlying environment or objects [63]. While these approaches have

shown promising results in specific tasks, such as grasping [113] or navigation [62],

their generalizability remains limited. The primary reason for this limitation lies in

the fact that end-to-end trained policies are highly reliant on the quality, quantity

and diversity of the training data [104]. Furthermore, these policies often struggle to

adapt to novel situations, as they lack an explicit representation of the environment

that could facilitate transfer learning or adaptation to new scenarios [79].

To overcome these limitations, researchers have explored various techniques for

integrating perception into a model-based planning framework [57]. This paradigm

shift aims to leverage the strengths of both data-driven and model-based approaches,

by combining the ability of deep learning techniques to extract meaningful representa-

tions from raw data with the structure and prior knowledge provided by the planning
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models [49]. Some notable efforts include the incorporation of semantic segmentation

into SLAM (Simultaneous Localization and Mapping) algorithms [77], the develop-

ment of differentiable physics models for improved object manipulation [13], and the

fusion of probabilistic graphical models with deep learning architectures to better

model uncertainty in the environment [36]. While these approaches are still in their

early stages, they hold great promise in enhancing the robustness and generalizability

of robotic perception, thereby enabling robots to operate more effectively in complex

and dynamic environments.

2.4.2 Scaling to Many Objects

TAMP systems’ dependency on a high-level discrete search across objects and rela-

tionships limits their scalability when dealing with large object sets. The challenge

of planning for problem instances comprising numerous objects fuels the continued

research in the domain of lifted planning [91, 18]. Lifted planners, operating in

STRIPS-like domains, bypass the computationally intensive preprocessing stage that

involves grounding actions over all objects. An alternative approach to lessen the

grounding load is to streamline the planning problem through the formation of ab-

stractions [23, 25, 54, 1]. In this thesis, We will describe two approaches that handle

different components of this problem.

Our first approach, called PLOI [97], utilizes graph neural networks (GNNs) [93,

68, 2], an increasingly popular option for relational machine learning, with proven

effectiveness in planning applications [109, 78, 94, 92]. In comparison to logical rep-

resentations [83, 73, 27], GNNs provide the inherent capability to handle continuous

object-level and relational attributes. We capitalize on this during our experimenta-

tion, presenting our findings within a simulated robotic context.

Our second approach, GenTAMP [22], is designed to tackle planning problems

involving multiple objects that are relevant to the goal, or where irrelevant objects are

difficult to distinguish from relevant ones. For example, a robot may need to retrieve

a single nail from a pile of similar objects. To simplify the problem, GenTAMP

learns abstractions that enable it to plan in a qualitative numerical bisimulation
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of the original planning space. This bisimulation is independent of the number of

objects in the problem, and scales linearly with the number of necessary objects

rather than exponentially. By employing this approach, GenTAMP can effectively

address complex planning tasks that were previously intractable.

2.4.3 Exploration & Partial Observability

The exploration problem in robotics is a fundamental aspect of model-based planning,

typically involving the robot interacting with unknown environments to gather data

and build a world model. One such approach is frontier exploration, which guides

robots towards the boundaries between explored and unexplored areas, or "frontiers",

for systematic expansion of the known environment [112]. Another strategy is Infor-

mative Path Planning (IPP), which optimizes the robot’s trajectory to collect the

most informative data [15, 4]. While frontier exploration and IPP provide powerful

tools for exploration, they often do not consider the visibility of the environment.

Thus, visibility reasoning has emerged as an approach incorporating occlusions and

field-of-view constraints in planning [37, 44].

Partial observability poses a significant challenge in robotic task and motion plan-

ning (TAMP). In an environment with partial observability, a robot only has access

to a limited subset of the world’s state at any given moment. This limitation ne-

cessitates the robot to maintain a belief state - a probability distribution over all

possible states - and update it based on observations and actions [59]. Some existing

TAMP approaches have attempted to plan in belief space [40, 61]. However challenges

still remain, especially in cases of mobile-base navigation with severely limited visual

scope and large open-world environment uncertainty.
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Chapter 3

Long-Horizon Planning from Vision

In this chapter, we will discuss a possible strategy for overcoming the state grounding

limitation in object-centric planning for robotics. More specifically, we will outline a

system for task and motion planning from estimated affordances, which we call M0M.

We leverage the planning capabilities of general-purpose task and motion planning

(tamp) systems [38]. These planners can construct long-horizon manipulation plans

to achieve complex goals requiring tightly-knit discrete and geometric decision mak-

ing. The principal realization underlying our methodology is that these planners do

not necessarily demand a perfect and exhaustive world model, contrary to common

assumptions. Instead, they only require responses to a series of "affordance queries",

which can be addressed directly via perceptual data. These varying queries might

employ diverse representations of entities, including point clouds, meshes, or image

properties, depending on what is most suitable for the specific query.

Consider the example problem illustrated in figure 3-1. The objective is to have

all objects positioned on a green designated area. Crucially, the robot does not

have pre-existing geometric models of objects and lacks information regarding the

presence and quantity of objects in the environment. It utilizes RGB-D images as

input, which it segments and analyzes to identify potential surfaces and objects. Goals

are communicated through first-order logical expressions.
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Figure 3-1: The robot starts with one object (the cracker box) visible. The goal is
for all perceivable objects to be on a green target region. Multiple re-perceiving and
re-planning steps are necessary to achieve the goal.

∀obj . ∃region. On(obj , region) ∧ Is(region, green).

This equation incorporates a spatial relationship concerning object volumes, On,

which the system can strategize to accomplish through actions like picking up and

placing. It also includes perceptual characteristics like color (green), computed from

input images by the system. Notably, the goal does not single out any objects by

name. This is because, in the context of our problem, object instances do not have

distinct identities and are identified through their properties. Consequently, goals

broadly and specifically quantify over perceived objects, which can significantly vary

in number and properties across or within problem instances.

In the beginning, a pair of objects are concealed behind the tall cracker box, ren-

dering them invisible to the robot. Detecting only a single object on the table, the

robot’s initial action is to pick up and place the cracker box on the green designated

area. Upon reevaluating the scene, the robot identifies two previously unseen ob-

jects. In order to satisfy the goal formula, the robot recalculates its strategy and

purposefully relocates the cracker box to a temporary spot to create space for the

tape measure and mustard bottle. Ultimately, the robot devises a new positioning

strategy for the cracker box that avoids collisions with the other two objects, while

simultaneously satisfying the goal.

This example demonstrates key traits of intelligent manipulation systems. Firstly,
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Figure 3-2: Structure of the goal-conditioned M0M policy, which maps RGB-D and
robot configuration observations to robot position-controller commands.

our robot functions without needing to to explicitly identify specific object models

or categories within its surroundings. In addition, unlike many methods that de-

velop task-specific policies, our strategy can achieve any goal expressible in first-order

logic using the provided relational vocabulary, without the need for images, physi-

cal demonstrations, or additional training for new tasks. Our approach considers

the complex interplay between high-level planning and low-level geometry, such as

obstruction, displaying reasoning that exceeds just lifting and placing objects in set

positions. It formulates geometrically feasible plans under limited visibility, where

objects may be partially or entirely unseen, but previously noted or included in the

goal, combining shape completion, state estimation, and visibility reasoning. Lastly,

our system integrates feedback during execution to reassess the plan when complica-

tions arise or more information becomes available. It maintains continuous memory

throughout the re-planning process to enhance state estimation and manage scenarios

where objects become hidden.

3.1 Method

Our method, termed Manipulation with Zero Models (M0M) [20], is the strategy we

adopt. The M0M technique generates a “most likely” approximation of the world

state, combining a segmentation of the existing scene and deductions drawn from
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previous observations, actions, and the objective. Following this, it computes a multi-

step motion plan to fulfill the goal, based on that interpretation. It executes one or

more steps of the plan, reassesses the scene, verifies if the goal has been met, and if

not, reinitiates the planning process. This straightforward approach to dealing with

partial observability proves to be unexpectedly effective in many scenarios, though it

could be extended to include explicit belief-space planning [58, 40]. A system diagram

illustrating the M0M manipulation policy to achieve a specified goal 𝒢 can be seen

in Figure 3-2.

The policy employs a set of parameterized manipulation actions 𝒜 and mod-

ules which fall into one of three categories: robot-centric operations are coordinated

through theℳℛ modules, perceptual representations are computed byℳ𝒫 modules,

and object-centric affordances are calculated by ℳ𝒜 modules. Notably, the planner

interacts with the physical world solely through these modules.

During each decision-making cycle, the robot captures the current RGB-D image 𝐼

with its camera and obtains its current joint configuration 𝑞 from its joint encoders. It

then segments surface point clouds 𝑆 and object point clouds 𝑂 from each input RGB-

D image. The estimated state is revised based on the segmented objects, surface point

clouds, robot configuration, previous action, and the goal. This updated estimated

state, along with the goal 𝒢, actions 𝒜, and modules ℳ𝑅 ∪ ℳ𝐴, constitute an

implicit tamp planning problem, where interaction with the state is restricted to

calls to the specified modules. This is a highly adaptable strategy, applicable to a

range of manipulation domains with different perception and affordance modules; we

will elaborate on the modules for a specific implementation of M0M in the remainder

of the paper.

If the goal 𝒢 can be attained from the current state 𝑠, plan will yield a plan 𝜋,

composed of a finite sequence of instances of the actions in 𝒜. If the plan is void,

the current state 𝑠 meets the goal and the policy successfully concludes. If not, the

robot performs the first action 𝜋[0] utilizing its position controllers and repeats this

procedure by reevaluating the scene.
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3.1.1 PDDLStream formulation

M0M employs pddlstream[39], a pre-existing, open-source, domain-agnostic plan-

ning framework designed for hybrid discrete-continuous domains. pddlstream in-

gests models of manipulation actions, given as Planning Domain Definition Language

(pddl) operator descriptions (refer to Figure3-3), and a collection of samplers (also

known as streams). These samplers generate potential values for continuous param-

eters, including joint configurations, grasps, object placements, and robot motion

trajectories that meet the constraints specified in the problem’s vocabulary (see Fig-

ure 3-4).

It’s important to note that aside from a brief declaration of the properties their

inputs and outputs adhere to, each stream’s implementation is regarded as a blackbox.

Consequently, pddlstream remains impartial to the representation of stream inputs

and outputs and to whether operations are engineered or learned from data. This

flexibility allows the seamless integration of cutting-edge machine learning techniques,

which can be utilized as-is during planning. The pddlstream planning engine will

then automatically combine them with other independent operations.

(:action move
:parameters (?q1 ?t ?q2)
:precondition (and (Motion ?q1 ?t ?q2) (HandEmpty) (AtConf ?q1)

(forall (?oc2 ?p2) (imply (AtPose ?oc2 ?p2)
(CFreeTrajPose ?t ?oc2 ?p2))))

:effect (and (AtConf ?q2) (not (AtConf ?q1)))

(:action place
:parameters (?q ?oc ?g ?p ?oc2 ?p2)
:precondition (and (Grasp ?oc ?g) (Kin ?q ?g ?p) (Stable ?oc ?p ?oc2 ?p2)

(AtConf ?q) (AtGrasp ?oc ?g) (AtPose ?oc2 ?p2))
:effect (and (HandEmpty) (AtPose ?oc ?p) (On ?oc ?oc2)

(not (AtGrasp ?oc ?g))))

Figure 3-3: A pddlstream description of move and place actions.

The pddlstream planning language facilitates the description of problems that

can be addressed by a range of pddlstream planning algorithms [39]. The respon-

sibility for querying perceptual operations (in the form of streams) rests with the

pddlstream planning engine, enabling it to autonomously determine online which
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operations pertain to the problem and the number of generated values required. More-

over, certain pddlstream algorithms, such as the focused algorithm, employ a lazy

querying approach to perceptual operations to circumvent unnecessary computation.

Consequently, the planner doesn’t execute resource-intensive perceptual operations

on images and point clouds to predict properties and grasps unless the segmented

object or property is deemed pertinent to the problem.

In pddl, an action is characterized by a series of free parameters (:parameters),

a precondition logical formula (:precondition) that must be satisfied for the action

to be executed correctly, and an effect logical conjunction (:effect) that delineates

state alterations upon the action’s execution. Figure 3-3 presents the pddl depiction

of the move and place actions for M0M.

The move action represents the robot’s collision-free motion when it’s not holding

anything. On the other hand, the place action encapsulates the immediate transition

from the robot’s hand exerting a force to hold an object to the cessation of that force

and the subsequent release of the object.

A state achieves the goal if the goal formula is satisfied within it. Even goal

specifications involving quantifiers can be conveniently and automatically encoded in

a pddl configuration using axioms, which are logical deduction rules [87, 103, 39].

An axiom, much like an action, has a similar precondition and effect structure but is

automatically inferred at each state. Due to their resemblance to actions, axioms can

be easily integrated into pddl, empowering a planner to efficiently tackle complex

goal conditions, like those found in M0M.

In addition to the domain and problem descriptions typical of and STRIPS plan-

ning formulations, pddlstream includes stream descriptions, maintaining a syntax

similar to pddl operator descriptions. A stream is defined by a set of input param-

eters (:inputs), a logical formula that all valid input parameter values must fulfill

(:domain), a list of output parameters (:outputs), and a logical conjunction that all

valid input parameter values and produced output parameter values are guaranteed

to comply with (:certified). Alongside each stream is a procedure that maps input

parameter values to a potentially infinite series of output parameter values. Figure 3-
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4 showcases some of the streams utilized in M0M, which will be elaborated in the

subsequent section.

3.1.2 Streams

In the following, we outline the streams and the constraint predicates they certify.

We emphasize the difference between streams that can be directly engineered and

those that require at least some degree of learning. The engineered streams under

consideration are robot-centric operations that can be executed using the robot’s fully-

observed urdf, which represents the robot’s kinematics and geometry. For instance,

the inverse-kinematics stream computes configurations ?q that meet the kinematic

constraint (Kin ?q ?g ?p) with grasp ?g and pose ?p, using tools like IKFast [24].

The plan-motion stream generates a continuous trajectory ?t between configu-

rations ?q1 and ?q2 that adheres to joint limits and avoids self-collisions, thereby

certifying (Motion ?q1 ?t ?q2). This stream can be directly implemented by any

readily available motion planner, such as RRT-Connect [70].

The predict-grasps stream generates grasps ?g for object cloud ?oc that are

predicted to remain stably in the robot’s hand, certifying (Grasp ?oc ?g). The

predict-placements stream generates poses ?p1 for object cloud ?oc1 that are pre-

dicted to rest stably on object cloud ?oc2 when at pose ?p2, certifying (Stable ?oc1

?p1 ?oc2 ?p2)).

3.1.3 Manipulation policy

The core of the manipulation policy, which relies heavily on a fast symbolic planner,

is detailed in Algorithm 1. The solution strategy of M0M is exhibited in a flowchart

in Figure 3-2. The policy is built upon the set of manipulation actions 𝒜 and the

engineered streams 𝒮𝐸. It also necessitates an implementation of the learned streams

𝒮𝐿. The policy is designed around a specific robot ℛ and a defined goal 𝒢. To adapt

the policy to a new robot ℛ, a urdf description of the robot’s kinematics ℛ and a

position configuration controller for the robot are required.
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(:stream predict-grasps
:inputs (?oc)
:domain (ObjectCloud ?oc)
:outputs (?g)
:certified (Grasp ?oc ?g))

(:stream inverse-kinematics
:inputs (?oc ?g ?p)
:domain (and (Grasp ?oc ?g) (Pose ?oc ?p))
:outputs (?q)
:certified (and (Kin ?q ?g ?p) (Conf ?q)))

(:stream plan-motion
:inputs (?q1 ?q2)
:domain (and (Conf ?q1) (Conf ?q2))
:outputs (?t)
:certified (and (Motion ?q1 ?t ?q2) (Traj ?t)))

(:stream predict-placements
:inputs (?oc1 ?oc2 ?p2)
:domain (and (ObjectCloud ?oc1) (Pose ?oc2 ?p2))
:outputs (?p1)
:certified (and (Stable ?oc1 ?p1 ?oc2 ?p2)

(Pose ?oc1 ?p1)))
(:stream predict-cfree
:inputs (?t ?oc2 ?p2)
:domain (and (Traj ?t) (Pose ?pc2 ?p2))
:certified (CFreeTrajPose ?t ?oc2 ?p2))

(:stream detect-property
:inputs (?oc ?pr)
:domain (and (ObjectCloud ?oc) (Property ?pr))
:certified (Is ?oc ?pr))

Figure 3-4: A pddlstream description of the streams, which represent engineered and
learned operations.

In each decision-making cycle, the robot captures the current RGB-D image 𝐼

from its camera and gets its current joint configuration 𝑞 from its joint encoders.

From every input RGB-D image, it segments the table point clouds 𝑇 and object

point clouds 𝑂. The segmented object and table point clouds, coupled with the robot

configuration, constitute the current pddlstream state 𝑠 of the world and robot.

This present state, along with the goal 𝒢, actions 𝒜, and streams 𝒮𝐸 ∪ 𝒮𝐿, shapes

a pddlstream planning problem. This problem is solved by solve-pddlstream,

a procedure symbolizing a generic pddlstream planning algorithm. In certain situ-

ations, such as when a critical attribute is not identified, solve-pddlstream will

return None, indicating that the goal 𝒢 cannot be achieved from the current state

𝑠. If not, solve-pddlstream will return a plan 𝜋, composed of a finite sequence of
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instances of the actions in 𝒜. If the plan is empty (i.e., 𝜋 = [; ]), it means the current

state 𝑠 has been verified to meet the goal, and the policy terminates successfully.

If not, the robot implements the first action 𝑎1 = 𝜋[0] using its position controllers

and repeats this process by reobserving the scene. It is important to note that this

control structure requires the robot to observe the scene to confirm goal achievement;

otherwise, the robot could falsely claim success after executing an open-loop plan.

Algorithm 1 The M0M policy
Assume: 𝒜 = {move, move-holding, pick, place}
Assume: 𝒮𝐸 = {inverse-kinematics, plan-motion}
Require: 𝒮𝐿 = {predict-grasps, predict-placements,

predict-cfree, ..., detect-attribute}
1: procedure execute-policy(ℛ,𝒢) Robot urdf ℛ, goal 𝒢
2: while True do
3: 𝐼, 𝑞 ← observe() ◁ RGB-D image 𝐼, robot conf 𝑞
4: 𝑇,𝑂 ← segment(𝐼) ◁ Tables 𝑇 , objects 𝑂
5: 𝑠← obj-state(𝐼, 𝑇,𝑂) ∪ robot-state(ℛ, 𝑞)
6: 𝜋 ← solve-pddlstream(𝑠,𝒢,𝒜,𝒮𝐸 ∪ 𝒮𝐿)
7: if 𝜋 = None then return False ◁ Failure: unreachable
8: if 𝜋 = [ ] then return True ◁ Success: 𝑠 ∈ 𝒢
9: execute-action(ℛ, 𝜋[0])

3.1.4 Segmentation of objects and surfaces

Figure 3-5: Three segmentation masks predicted by uois-net-3d during the system’s
execution. White pixels correspond to the table, chromatically-colored pixels corre-
spond to object instances, and grey pixels are unassigned. Our system does not track
objects over time, so each object instance is independently and arbitrarily assigned
a color. Left: the initial segmentation mask. Middle: an intermediate segmentation
mask after picking and placing two objects. Right: the final segmentation mask in a
goal state.
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We use category-agnostic segmentation to identify clusters of rigid points that

move as a unified object upon manipulation. We examine three distinct segmentation

methods: uois-net-3d, geometric clustering, and a hybrid approach.

The uois-net-3d method [111] employs a neural network model that processes

RGB-D images to yield a segmentation of the scene. This model operates under the

presumption that objects are typically situated on a table, thus it aims to identify

and segment image regions corresponding to the table and the objects upon it.

Geometric clustering begins by eliminating points assigned to the table via uois-

net-3d. It then uses the density-based spatial clustering of applications with noise

(dbscan) [30] approach, which identifies linked components in a graph generated by

connecting proximate points in the point cloud based on 3D Euclidean distance.

Our hybrid approach applies dbscan to the point cloud segmented by uois-net-

3d in an effort to minimize under-segmentation. This is further complemented by

post-processing to exclude degenerate clusters.

Figure 3-5 illustrates the segmentation mask as predicted by uois-net-3d. As

observable in the figure, uois-net-3d generally segments the four instances accurately,

though it does split the cracker box into two adjacent instances in the final two images.

We evaluated all three segmentation techniques on the ARID-20 subset of the

Object Clutter Indoor Dataset (OCID)[102], and the GraspNet-1Billion[31] datasets.

Comprehensive results are presented in Table 3.1. Each segmentation algorithm

demonstrated strengths in different scenarios. In situations where objects possess

simple shapes and are spread across the table, an Euclidean-based approach tends

to deliver reliable predictions. However, in more cluttered environments, the learned

approach often surpasses the Euclidean-based method. In complex scenarios where

objects exhibit intricate geometries, while the performance of the learned method

does decrease, it still outperforms the purely Euclidean-based approach. Across all

experiments, the combined approach outperformed the purely learned one, which

suggests the efficacy of applying dbscan and filtering to results predicted by neural

networks.
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Dataset dbscan uois-net-3d combined

OCID Uncluttered 98.7 95.5 97.2
OCID Cluttered 68.7 87.5 89.6
GraspNet-1Billion 69.1 80.1 82.6

Table 3.1: Comparison of the segmentation approaches in terms of F-measure.

3.1.5 Shape estimation

Shape estimation, a subroutine in our implementation of both the predict-placements

and predict-cfree stream operations (Section 3.1.2), takes a partial point cloud as

input and predicts a completed volumetric mesh. Here, we also explore a blend of

neural-network-based and geometric methods.

The Morphing and Sampling Network (MSN) [76] is a neural network model that

predicts a completed point cloud from an input of a partial one. Our geometric

method enhances the partial point cloud by calculating the projection of the visible

points onto the table plane. This heuristic is simple but effective, driven by the idea

that the base of an object must be sufficiently large to stably support the visible

part of the object. This becomes especially useful given a viewpoint that typically

observes objects from above. For both methods, we incorporate a post-processing

step that filters the result by back-projecting predicted points onto the depth image

and removing any visible points that are closer to the camera than the observed depth

value.

Mesh interpolation

Although it is feasible to use the estimated point cloud directly in downstream opera-

tions, such as treating the points as spheres or downsampling them into a voxel grid,

it is often more precise and efficient to interpolate among the points to generate a

volumetric mesh. The most straightforward way to accomplish this is by constructing

the convex hull of the points. However, this method can significantly overestimate the

volume when the object is non-convex and fail to find feasible plans when attempt-

ing to grasp non-convex objects like bowls. Thus, we generate the final volume by
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computing a "concave hull" in the form of an alpha shape [28], a non-convex general-

ization of a convex hull, from the amalgamation of the visible, network-predicted, and

projected points. To facilitate efficient collision checking in the predict-cfree stream,

we construct an additional representation that approximates the mesh as the union

of several convex meshes, implemented by the Volumetric Hierarchical Approximate

Convex Decomposition (V-HACD) [85].

Figure 3-6: RViz visualizations of estimated shapes overlaid on top of raw point cloud
data. a) the convex hull of the visible points only (V ), b) the concave hull of the
visible points only (V ), c) the concave hull of the visibility-filtered visible and shape-
completed points (VLF ), and d) the concave hull of the visibility-filtered visible,
shape-completed, and projected points points (VLPF ).

Figure 3-6 illustrates the estimated meshes produced by four of the shape estima-

tion strategies in a scene with a varied set of objects and no clutter. The first two

images compare the mesh created by using the convex hull (Figure 3-6 left) versus

a concave hull (Figure 3-6 middle-left) of the set of visible points (V ). The convex

hull can notably overestimate non-convex objects in certain regions, as seen with the

spray bottle in the top left of the image and the power drill on the right side of the

image. The last three images compare three strategies for populating the set of points

to be used as the input to a concave hull. Including the shape-completed points from

MSN (VLF ) fills in some, but not all, of the occluded volume of each object, as

demonstrated by the cracker box in the center of the image (Figure 3-6 middle-right).

Also incorporating the projection of the points to the table (VLPF ) more effectively

fills in the occluded volume, but at the cost of overestimating the volume when the

ground truth base projection is smaller than the visible base projection (Figure 3-6

right). We assessed the performance of these methods in four different domains, each

on 2000 images taken from a randomly-sampled camera pose; detailed experiments

and results are presented in table 3.2. The fully combined method (VLPF ) gener-
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ally performed the best across the domains and is the one we employ in the system

experiments.

Clutter Complex V VP VPF VL VLF VLPF

No No 0.489 0.639 0.678 0.633 0.649 0.703
Yes No 0.417 0.556 0.589 0.565 0.573 0.612
No Yes 0.497 0.568 0.604 0.530 0.615 0.620
Yes Yes 0.398 0.464 0.483 0.446 0.503 0.497

Table 3.2: Comparison of the shape-estimation strategies.

3.1.6 Grasp affordances

Grasp affordances refer to transformations between the robot’s hand and an object’s

reference frame such that, if the robot positioned its hand at the specified pose and

closed its fingers, it would secure the object in a stable grasp. These affordances are

purely local and do not consider reachability, obstacles, or any other constraints.

The flexibility of our planning framework allows us to explore three different grasp-

ing methods for executing the predict-grasps stream, each requiring a partial point

cloud as input. The Grasp Pose Detection (GPD)[47] initially creates grasp candi-

dates by aligning one of the robot’s fingers parallel to an estimated surface in the

partial point cloud, and then scores these candidates using a convolutional neural

network that has been trained on successful real-object grasps. GraspNet[82] em-

ploys a variational autoencoder (VAE) to learn a latent space of grasps which, when

conditioned on a partial point cloud, generates grasps.

We have also devised a method, Estimated Mesh Antipodal (EMA), that conducts

shape estimation utilizing the methods detailed in Section 3.1.5 and then pinpoints

antipodal contact points on the estimated mesh. Specifically, to generate a new grasp,

EMA samples two points on the surface of the estimated mesh that could potentially

serve as contact points for the center of the robot’s fingers. The pair of points is

dismissed if the distance between them exceeds the gripper’s maximum width, or

if the surface normal at either of the corresponding faces is not roughly parallel to

the line connecting the two points. Then, EMA samples a rotation for the gripper
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Figure 3-7: Grasps produced by each of the three grasp generation modules overlaid
in green on the observed point cloud for three scenes with varying amounts of clutter.

around this line and yields the resulting grasp if the gripper, when open and at this

transformation, does not collide with the estimated mesh. A key difference between

EMA’s and GPD’s candidate grasp generation process is that EMA, through the use

of shape estimation, is able to directly consider the occluded areas of an object rather

than only the visible partial point cloud. Furthermore, it can account for potentially

dangerous contacts between the robot’s gripper and the object.

Figure 3-7 displays some of the grasps created by the aforementioned three tech-

niques in three scenes with a range of clutter, where clutter provides extra occlusion

opportunities. We carried out a real-world experiment to compare the success rates

of GPD, GraspNet, and EMA. The specifics of the experiment and the outcomes can

be found in Table 3-8. GPD and EMA surpassed GraspNet in our tests, in terms of

both speed and precision, with EMA holding a slight advantage over GPD. For our

system experiments, we opted for EMA.
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Method Uncluttered Cluttered
Successes Time Successes Time

GPD 27/35 8.7s 23/35 6.8s
GraspNet 21/35 48.3s 16/35 21.7s
EMA (ours) 27/35 10.3s 27/35 7.3s

Figure 3-8: Grasp success rates in uncluttered and cluttered settings.

3.1.7 Object properties

In our execution of the detect-property stream, we looked at detectors for two object

properties: category and color. We employ Faster R-CNN [90], trained on the bowl-

cup subset of IIT-AFF [86], to detect bowls and cups so the robot can determine

which objects have the capacity to hold other objects. We also use Mask R-CNN [50],

trained on real images from the Yale-CMU-Berkeley (YCB) Video Dataset [110] and

a synthetic dataset we created using PyBullet [19], to classify any YCB objects [14]

mentioned in the goal formula. In addition, we have simple modules that collate color

statistics directly from segmented RGB images.

3.2 Experiments

3.2.1 Results

Lastly, we tested the entire M0M system’s capability to solve difficult real-world

manipulation tasks. For instance, Figure 3-9 presents a task where the goal is to

place a mustard bottle on a blue target region:

∃obj .; ∃region.;On(obj , region) ∧ Is(region, blue) ∧ Is(obj , mustard).

In the process of accomplishing this task, the robot moved two obstructing objects

aside to securely pick up the mustard bottle and then position it on the goal region.

Although not shown, the robot’s initial attempt to grasp the mustard bottle was

unsuccessful, leading the system to halt execution, re-observe, re-plan, and implement

a new grasp that was successful this time.
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Figure 3-9: M0M acting to satisfy the goal for a mustard bottle to be on a blue target
region. Left: for its first action, the robot picks up a water bottle that prevents the
robot from safely reaching the mustard bottle. Middle: the robot also picks and
relocates the obstructing cracker box. Right: finally, the robot places the mustard
bottle on the blue target region.

3.2.2 Repeated trials

We carried out experiments encompassing five repeated trials in the real world for

five different tasks, with the outcomes presented in Figure 3-10. In this context, tasks

are loosely categorized as a collection of problems sharing the same goal formula and

exhibiting similar initial states qualitatively. We provide a summary of the results

here and delve into the task descriptions in the following subsections. In addition to

these tasks, we tested the system on more than 25 separate problem instances.

The Iterations column signifies the average number of combined estimation and

planning iterations executed per trial. Unless the initial state already fulfills the goal

conditions, the system invariably undertakes two or more iterations because it must

at least accomplish the goal and then confirm that the goal has indeed been met.

In some cases, the system may carry out more than two iterations if the perception

module discovers a new object due to undersegmentation, an action is aborted due

to a failed grasp, or an action results in unexpected effects.

The Estimation, Planning, and Execution columns indicate the average time con-

sumed per iteration in perception, planning, and execution, respectively. Each module

was developed in Python to enable flexible support for multiple implementations of

each module. Many perceptual operations involving raw point clouds could be ac-

celerated by utilizing C++ instead of Python and running the system on graphics

hardware. During the planning stage, most of the time is spent on collision checks,
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Task Iterations Estimate Plan Execute Success

1 2.0 29.6s 18.5s 16.1s 5/5
2 3.0 34.0s 37.4s 23.6s 5/5
3 3.0 36.8s 28.3s 40.5s 4/5
4 2.0 39.6s 41.6s 44.6s 5/5
5 2.4 47.7s 18.9s 28.3s 5/5

Figure 3-10: Full-system task completion experiments

especially when the robot is planning free-space movements. The overall runtime

could be trimmed by concurrently planning motions for later actions while imple-

menting earlier ones [40]. The Successes column denotes the number of times out

of five trials that the system ended having confirmed that it achieved the goal. Our

system managed to achieve the goal in every trial except for one, which was part of

Task 3. These results demonstrate that this single system can perform a wide array

of long-horizon manipulation tasks with robustness and reliability.
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Chapter 4

Long-Horizon Planning with Large

Object Sets

While the above approach serves as a good starting point for a robot system that plans

to achieve goals in real-world settings from only visual input, several challenges still

remain. One limitation of the task and motion planner used for M0M, and of object-

centric planners in general, is that it struggles to scale with increasing object set sizes.

Real-world settings contain thousands of objects, most of which are irrelevant and

don’t play a role in our reasoning about a specific task. If many objects do play a

role in a specific task, it often makes more sense to reason about groups or numerical

abstractions of those large object sets such “that pile” or “all but one”. Below we

will present two strategies that learn from data to create representations that lend

themselves to efficient planning in the presence of large numbers of irrelevant and

relevant objects.

4.1 Learning Object Importance

In this section, we suggest a method that learns to identify a subset of the entire

object set that is needed for planning. For large problems with varying object counts,

we train models that are agnostic the identity and quantity of objects. We adopt a

convolutional graph neural network architecture [93, 68, 2] which can learn from a
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Figure 4-1: Example problem from the PyBullet domain. Left: The robot arm
must move the target can (green) to the stove (black) and then to the sink (brown)
while avoiding other cans (gray). Middle: GNN importance scores for this problem,
scaled from blue (low importance) to red (high importance). We can see that cans
surrounding the sink, stove, and target have been assigned higher importance score,
meaning the GNN has reasoned about geometry. Right: The reduced problem in
which the robot plans. Only objects with importance score above some threshold
remain in the scene.

small set of training problems and be applied to more complex test problems with

more objects.

Our strategy of predicting object importance has several advantages over alterna-

tive learning-based methodologies. First, it can operate with the planner and tran-

sition model as black boxes, and its runtime does not rely on the number of ground

actions, given a constant number of objects. Additionally, it enables efficient infer-

ence, thus adding negligibly to the total planning time. Lastly, it tolerates a large

margin of error in one direction, as the planning time can be significantly improved

even if only some nonessential objects are excluded.

4.1.1 Methods

In this section, I’ll illustrate our method for learning how to plan efficiently in large-

scale problems. At a high level, we first learn a model capable of predicting a subset

of the complete object set that is sufficient to solve the problem. During testing, we

use the model to form a reduction of the planning problem, create a plan within this

reduction, and then validate the derived plan in the original problem. In order to

ensure completeness, we repeat this process, gradually expanding the subset until a

solution emerges.
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Figure 4-2: Overview of our method, ploi, with an example. Left: To solve this
problem, the robot must move block A to the free space, then stack B onto D. The
GNN computes the per-object importance score. Block C is irrelevant, and therefore
it receives a low score of 0.03. Right: We perform incremental planning. In this
example, 𝛾 = 0.95, so that 𝛾2 ≈ 0.9. The first iteration tries planning with the object
set {B, D}, which fails because it does not consider the obstructing A on top of B.
The second iteration succeeds, because the object set {A, B, D} is sufficient for this
problem.

We now present a more detailed explanation of ploi, beginning with a for-

mal description of the reduced planning problem. Given a planning problem Π =

⟨𝒫 ,𝒜, 𝑇,𝒪, 𝐼, 𝐺⟩ and a subset of objects �̂� ⊆ 𝒪, the problem reduction Π̂ =

ReduceProblem(Π, �̂�) is defined by Π̂ = ⟨𝒫 ,𝒜, 𝑇, �̂�, 𝐼, �̂�⟩, where 𝐼 (or �̂�) is

𝐼 (or 𝐺) with properties only over �̂�.

A reduction of the object set abstracts all components of the initial state and goal

relating to the omitted objects, and restricts any ground actions that include these

objects. This could result in a significantly simplified planning problem, but at the

same time, it might oversimplify to the point where planning within the reduction

produces an invalid solution or none at all. To segregate these sets from the beneficial

ones we are seeking, we introduce the following definition.

Considering a planning problem Π = ⟨𝒫 ,𝒜, 𝑇,𝒪, 𝐼, 𝐺⟩ and planner Plan, a sub-

set of objects �̂� ⊆ 𝒪 is designated as sufficient if 𝜋 = Plan(Π̂) resolves Π, where
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Π̂ = ReduceProblem(Π, �̂�). In simpler terms, an object set is considered suffi-

cient if planning in the associated reduction results in a valid solution for the original

problem. An object set that lacks essential objects, like a required key to unlock a

door or a necessary obstacle to avoid, will not be sufficient as planning will fail in

the absence of the key, and validation will fail without the obstacle. Trivially, the

complete set of objects 𝒪 is always sufficient if the planning problem is satisfiable

and the planner is complete. However, our goal is to identify a smaller sufficient set

that allows for more efficient planning. Thus, our target is to learn a model that can

predict such a set based on a given initial state and goal.

Scoring Object Importance Individually

Our objective is to learn a model that can recognize a small sufficient subset of objects

provided an initial state, goal, and complete set of objects. Such a model has three

fundamental requirements. First, given that our ultimate aim is to improve planning

time, the model should allow for fast querying of object importance. Second, as we

want to optimize the model using a moderate number of training problems, the model

should allow for data-efficient learning. Lastly, as we desire to retain completeness

when the original planner is complete, the model should provide some recourse when

the first predicted subset turns out to be invalid.

These requirements exclude models that directly predict a subset of objects, as

such models do not offer an apparent recourse when the predicted subset is insufficient.

Furthermore, models that reason about sets of objects generally require vast amounts

of training data and may consume considerable time during inference.

We instead choose to learn a model 𝑓 : 𝒪 × 𝒮 × 𝒢 → (0, 1] that scores objects

individually. The output of the model 𝑓(𝑜, 𝐼, 𝐺) can be interpreted as the probability

that the object 𝑜 will be included in a small sufficient set for the planning problem

⟨𝒫 ,𝒜, 𝑇,𝒪, 𝐼, 𝐺⟩. We refer to this output score as the importance of an object. To

get a candidate sufficient subset �̂� from such a model, we can simply take all objects

with importance score above a threshold 0 < 𝛾 < 1.

Using the graph neural network architecture, this inference process is highly ef-
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ficient, requiring just a single inference pass. This parameterization also supports

efficient learning, as the loss function decomposes as a sum over objects. As an op-

timization step, we always include in �̂� any objects mentioned in the goal, as such

objects are a necessity in any sufficient set.

A significant benefit of individually predicting scores for objects is the natural

recourse available when the initial candidate set �̂� does not lead to a solution: we

can simply decrease the threshold 𝛾 and attempt again. In practice, we reduce the

threshold geometrically (as described in Algorithm 2), ensuring completeness.

While predicting scores for individual objects simplifies the set prediction problem

by constraining the hypothesis class, it is worth noting that this constraint also makes

it impossible to predict certain object subsets. For instance, in planning problems

where a specific number of identical objects are required, such as three eggs in a recipe

or five nails for assembly, individual object scoring can only predict the same score

for all copies. However, we find that this limitation is significantly outweighed by the

benefits of efficient learning and inference in practical applications.

4.1.2 Training with Supervised Learning

We will now describe a method for learning an object scorer 𝑓 given a collection of

training problems Πtrain = Π1,Π2, ...,Π𝑀 , with each Π𝑖 = ⟨𝒫 ,𝒜, 𝑇,𝒪𝑖, 𝐼𝑖, 𝐺𝑖⟩. The

core concept involves framing the problem within the context of supervised learning.

From each training problem Π𝑖, we aim to obtain input-output pairs ((𝑜, 𝐼𝑖, 𝐺𝑖), 𝑦),

where 𝑜 ∈ 𝒪𝑖 represents each object from the full set for the problem, and 𝑦 ∈ 0, 1

is a binary label signifying whether 𝑜 should be predicted for inclusion in the small

sufficient set. Thus, the overall dataset for supervised learning will include an input-

output pair for every object from each of the 𝑀 training problems.

The 𝑦 labels for the objects are not provided, and it can be quite challenging to

accurately compute a minimal sufficient object set, even in smaller problem instances.

We suggest a straightforward approximation method for automatically deriving the

labels. Given a training problem Π𝑖, we execute a greedy search over object sets:

starting with the full object set 𝒪𝑖, we progressively remove a single object from the
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set, accepting the new set if it is sufficient, until no more individual objects can be

eliminated without compromising sufficiency. All objects in the final sufficient set

are labeled with 𝑦 = 1, while the remaining objects are labeled with 𝑦 = 0. This

method, which requires planning several times per problem instance with full or near-

full object sets to check sufficiency, leverages the fact that the training problems are

substantially smaller and simpler than the test problems.

It’s important to note that the aforementioned greedy method is an approxi-

mation, meaning that there could exist a smaller sufficient object set than the one

produced. For example, consider a domain with a certain number of widgets where

the only parameterized action is destroy(?widget). If the goal is to end up with

a number of widgets divisible by 10, and the full object set contains 10 widgets,

the greedy procedure will end after the first iteration, as no object can be removed

while retaining sufficiency. However, the empty set is actually sufficient as it leads

to the empty plan, which trivially fulfills this goal. Despite such potential cases, this

greedy method for deriving the training data is effective in practice at identifying

small sufficient object sets.

Having prepared a dataset for supervised learning, we can advance in the standard

fashion by defining a loss function and optimizing model parameters. To facilitate

data-efficient learning, we employ a loss function that decomposes over objects:

ℒ(Πtrain) =
𝑀∑︁
𝑖=1

∑︁
𝑜𝑗∈𝒪𝑖

ℒobj(𝑦𝑖𝑗, 𝑓(𝑜𝑗, 𝐼𝑖, 𝐺𝑖)),

where 𝑦𝑖𝑗 signifies the binary label for the 𝑗𝑡ℎ object in the 𝑖𝑡ℎ training problem, and

𝑓(𝑜𝑗, 𝐼𝑖, 𝐺𝑖) ∈ (0, 1]. We use a weighted binary cross-entropy loss for ℒobj, where the

weight (10 in experiments) imposes a higher penalty on false negatives than false

positives, in order to account for class imbalance.
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Algorithm 2 Planning with Learned Object Importance
Require: Planning problem Π = ⟨𝒫 ,𝒜, 𝑇,𝒪, 𝐼, 𝐺⟩.
Require: Object scorer 𝑓 .

Hyperparameter: Geometric threshold 𝛾.
// Step 1: compute importance scores

1: Compute score(𝑜) = 𝑓(𝑜, 𝐼, 𝐺) ∀𝑜 ∈ 𝒪
// Step 2: incremental planning

2: for 𝑁 = 1, 2, 3, ... do
// Select objects above threshold

3: �̂� ← {𝑜 : 𝑜 ∈ 𝒪, score(𝑜) ≥ 𝛾𝑁}
// Create reduced problem & plan

4: Π̂← ReduceProblem(Π, �̂�)
5: 𝜋 ← Plan(Π̂)

// Validate on original problem
6: if IsSolution(𝜋,Π) or �̂� = 𝒪 then
7: return 𝜋

4.1.3 Experiments

In this section, we present empirical results for ploi and several baselines. We find

that ploi improves the speed of planning significantly over all these baselines.

Baselines

In our baselines, we evaluate a variety of experimental methods which span from

the traditional planning approach to the most current learning-to-plan strategies.

All GNN baselines undergo supervised learning using the plan set discovered by an

optimal planner on minor training problems.

Pure planning applies the planner plan directly on the comprehensive test

problems, including all objects. Random object scoring uses the incremental

procedure, but in contrast to using a trained GNN for object importance scoring,

each object is assigned a uniformly random importance score ranging from 0 to 1.

This can be perceived as an ablation study, effectively removing the GNN from our

process. Neighbors uses a simple heuristic that attempts incremental planning with

all objects that are connected within a certain number of steps (denoted as 𝐿) in the

relation graph to any goal-named object. This is applied for 𝐿 = 0, 1, 2, . . .. If no plan

is found even after considering all goal-connected objects, we default to pure planning
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to maintain completeness. Reactive policy uses a learned goal-conditioned reactive

policies, similar to many previous works [46, 92]. We adjust our GNN architecture to

predict a ground action per timestep. The input remains identical, but the output now

has a dual structure: one head predicts a probability over the set of actions 𝒜, and

the other predicts a probability over objects for every parameter of the action. During

testing, we calculate all valid actions in each state and implement the one with the

highest policy probability. This baseline does not utilize plan during testing. ILP

action grounding replicates the method described by [43] using their best reported

settings. We use the implementation provided by the authors for both training and

testing, employing the SVR model with round robin queue ordering and incremental

grounding with an increment of 500. Lastly, GNN action grounding Uses a GNN

instead of the inductive logic programming (ILP) model used in the previous baseline.

To achieve this, we adjust our GNN architecture to input a ground action along with

the state and goal, and output the probability that the ground action should be

incorporated into the planning problem.

Results

We evaluate on 9 domains: 6 classical planning, 2 probabilistic planning, and 1

simulated robotic task and motion planning. We selected several standard classical

and probabilistic domains from the International Planning Competition (IPC) [12].

However, we altered these domains to generate problems involving a larger number

of objects than usual. In each domain, we train on 40 problem instances and test on

an additional 10 that are significantly larger, all using the PDDLGym library [96].

4.2 Learning Generalized Policies

While identifying minimal object sets can enhance efficiency in problems where most

objects are irrelevant, it doesn’t solve the scalability issues when plans involve many

relevant objects or when one object is needed from a group of objects with similar

attributes. This is where generalized planning comes into play.
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Pure Plan PLOI (Ours) Rand Score Neighbors Policy ILP AG GNN AG
Domains Time Time Time Time Time Time Time
Blocks 7.47 0.62 49.99 0.52 7.25 2.33 52.95
Logistics 8.55 6.44 42.05 15.40 – – 49.31
Miconic 87.71 21.64 – 93.86 – – –
Ferry 12.64 7.52 43.79 39.66 34.78 33.77 –
Gripper 24.48 0.47 56.58 37.63 28.94 5.71 86.29
Hanoi 3.19 3.39 3.47 4.63 – 6.15 7.55
Exploding 11.52 0.81 44.96 1.08 10.18 4.69 48.53
Tireworld 24.58 4.38 44.09 47.13 30.36 – 63.03
PyBullet – 2.05 – 8.58 – – –

Table 4.1: On test problems, planning times in seconds over successful runs. All
numbers report a mean across 10 random seeds, which randomizes both GNN training
(if applicable) and testing. All times are in seconds; bolded times are within two
standard deviations of best. AG = action grounding. Policy and AG baselines are
not run for PyBullet because these methods cannot handle continuous actions. Across
all domains, ploi is consistently best and usually at least two standard deviations
better than all other methods.

Generalized planners focus on identifying abstract high-level plans that are appli-

cable to a broad, often infinite, class of problem instances sharing a common structure.

For instance, a generalized plan such as "While there are objects in the box, pick up

a reachable object in the box and place it on the table." can be applied to settings

with any number of objects. Solving every problem instance individually with stan-

dard planning approaches can be highly inefficient because planners often slow down

significantly as the solution length increases.

The aim of generalized planning is to bypass search in large state-space problem

instances by detecting and utilizing structure in a few example problems with smaller

state spaces. Moreover, languages used to express generalized plans often incorporate

looping constructs, resulting in generalized plans that are more compact than tradi-

tional ones for larger domains. Discrete generalized planning methods have proven

to accelerate planning in problems with large numbers of objects. However, this dis-

creteness limits expressiveness on continuous features of the environment, such as the

remaining capacity of a backpack, the water level of a camping thermos, or subtle

collision constraints common in any robotic setting.

Although there are multiple approaches to generalized planning for classical AI,

our method is the first to apply these strategies to continuous robotics domains where
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Figure 4-3: GenTAMP conceptual overview. Several robotics tasks are defined
within a single domain. For each task, a policy is learned from a small set of ex-
ample plans and compiled into a set of action and ordering constraints added to the
original domain to create a task-specific domain. This task-specific domain forces
tamp search to follow the abstract policy, thus reducing the search space leading to
faster planning.

the generalized plan necessitates complex continuous features.

We introduce GenTAMP, a novel framework for learning and executing gener-

alized plans in environments with mixed discrete-continuous elements. Figure 4-3

provides a high-level overview of the GenTAMP approach. The detailed workings of

this approach and its results will be discussed in the thesis.

4.2.1 Background

Generalized Planning

The generalized planning problem extends the task planning problem, introducing

a meta-problem 𝑄 = ⟨Π1,Π2, . . . ⟩ that comprises a (potentially infinite) set of task

planning problems. The aim of generalized planning is to find a deterministic policy

𝜋 : 𝒮 → 𝒜 that, when consecutively applied from an initial state, creates a feasible

sequence of actions reaching the goal for as many Π𝑖 ∈ 𝑄 as possible. Our problem

formulation is based on the one proposed in [10], where problem instances do not

share a state or action representation Π𝑖 = ⟨𝒮𝑖, 𝐼𝑖,𝒜𝑖, 𝐺𝑖⟩.
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Generalized TAMP Formulation

Different TAMP solvers rely on different TAMP formulations. We utilize the pddlstream

[41] problem definition language and associated algorithms as the foundation for gen-

eralized planning in our implementations. However, our approach remains compatible

with other tamp methodologies. This tamp problem definition expands the entity set

to incorporate sampled entities such as grasps, collision-free pose trajectories, and ob-

ject placement samples. These entities are generated from high-dimensional nonlinear

continuous spaces by streams, which are continuous samplers with both procedural

and declarative elements. The procedural component is a function 𝑔(𝑜) that accepts a

tuple of objects and produces sampled entities from a continuous space based on the

inputs. The declarative component defines the semantics of these sampled entities

and their relationship to existing entities in the domain through certified predicates.

These predicates have the entities sampled by the stream as arguments and are refer-

enced only in initial states, goals, and the preconditions of actions. Algorithms using

the pddlstream problem definition generally start with an insufficient set of sampled

entities and certified predicates. During planning, they sample additional entities,

appending corresponding certified predicates until a classical planner can achieve the

goal.

A generalized plan for TAMP can be conceptualized as an abstract program de-

signed to solve a particular problem. It defines the sequence and behaviour of high-

level operations without directly specifying all of the continuous parameters. A step-

by-step execution of this program, choosing parameters "on-the-fly" is not feasible

due to the geometric and physical constraints imposed by the environment. For in-

stance, in a packing task, if object placements are sampled and executed in a greedy

manner, it might lead to situations where objects placed at the beginning of a plan

obstruct the placement of objects later in the plan. Consequently, a generalized task

and motion planner aims to construct a new domain constrained by each task. This

constrained domain, when solved using a tamp solver, accelerates the discovery of a

ground plan in terms of actual computation time for any problem instance adhering
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Abstract Features

Abstract Actions

Figure 4-4: An abstract policy for the working Load task example. The generalized
plan that solves this Load task picks an object (𝐴1) and places it on the tray (𝐴2)
until either the tray is full (¬𝜑3) or no objects are remaining on the table (¬𝜑2). After
one of these two features evaluates to false, the tray is grasped (𝐴3). Here Free(𝑜)
is used as a shorthand for the larger feature ∃𝑝, 𝑟∀𝑜2, 𝑝2 : Tray(𝑟) ∧ ¬On(𝑜, 𝑝, 𝑟) ∧
On(𝑜2, 𝑝2, 𝑟)⇒ ¬CFree(𝑜, 𝑝, 𝑜2, 𝑝2, 𝑟)

to the task specification. (Refer Figure 4-3)

This formulation presents a notable departure from traditional generalized plan-

ning in several critical ways. Firstly, in line with tamp robotics applications, all tasks

are defined under a single lifted domain comprising the same set of actions, streams,

and properties that describe the world. Secondly, goals and initial states are now

expressed in a logical language that incorporates continuous geometric and physical

parameters (for example, a pose being within a specific region). Lastly, due to the

impracticality of direct execution of a generalized tamp plan, we instead measure the

speed of search across numerous test problem instances.

Working example.

To build an understanding of generalized tamp, we illustrate a basic working example

of a generalized tamp problem, adhering to the specification discussed above. We

start by outlining a robotics domain that includes a free-flying robotic gripper agent

capable of picking up and placing movable objects.
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The domain includes predicates such as Holding(𝑜), On(𝑜1, 𝑝, 𝑜2), Movable(𝑜),

Tray(𝑜), and HandEmpty. It also incorporates certified predicates like Pose(𝑜, 𝑝, 𝑠),

defining possible object placement, and CFree(𝑜1, 𝑜2, 𝑝1, 𝑝2), indicating the non-collision

of two objects at particular poses on the same surface. The domain further includes

the following action schemas:

Pick(𝑜, 𝑝, 𝑠)

pre: HandEmpty, On(𝑜, 𝑝, 𝑠), Pose(𝑜, 𝑝, 𝑠)

eff: Holding(𝑜), ¬On(𝑜, 𝑝, 𝑠), ¬HandEmpty

Place(𝑜, 𝑝, 𝑠)

pre: Holding(𝑜), Pose(𝑜, 𝑝, 𝑠), ∀𝑜2, 𝑝2 : CFree(𝑜, 𝑝, 𝑜2, 𝑝2)

eff: ¬Holding(𝑜), On(𝑜, 𝑝, 𝑠), HandEmpty

The domain also contains two streams that produce sampled entities and certified

predicates. The first stream, SamplePlacement(𝑜, 𝑠), accepts a surface and an object,

samples a pose entity 𝑝, and appends Pose(𝑜, 𝑝, 𝑟) to the initial state. The second

stream, CheckCollision(𝑜1, 𝑝1, 𝑜2, 𝑝2), examines for collisions and adds the certified

predicate CFree(𝑜1, 𝑝1, 𝑜2, 𝑝2) if no collision is detected.

We then define the Load task, one among several potential tasks within this do-

main. The task’s objective (𝐺Load) is to ensure all objects are on the tray or that the

tray is filled, with the initial state (𝐼Load) being all objects placed on the table. The

Load task comprises problem instances 𝑃𝑁 , . . ., where 𝑁 represents the number of

objects. Each problem within this task begins with an initial entity set comprising a

robotic gripper agent 𝑟, a set of 𝑁 objects 𝑏1, . . . 𝑏𝑁 and their initial poses bp1, . . . bp𝑁 ,

a tray 𝑡 with an initial pose tp, and a table src. The literals in a problem instance’s

initial state are HandEmpty, Tray(𝑡), , On(𝑡, tp, src), , Pose(𝑡, tp, src), On(𝑏𝑖, bp𝑖, src),

Pose(𝑏𝑖, bp𝑖, src), and Movable(𝑏𝑖) for all 𝑏𝑖. The optimal policy for this straightfor-

ward task would be to repeatedly pick an object and place it on the tray until it is

full, followed by picking up the tray. This task is a subtask of the Transport task,

which is elaborated upon and evaluated in the Experiments section.
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4.2.2 Methods

GenTAMP Training

In this section, we outline our suggested approach for learning a deterministic policy

from a small number of tamp example plans. Initially, we leverage these example

plans to extract a set of unique state features within the domain. These features are

then combined with a range of constraints to form a SAT theory. Solving this theory

yields a subset of features from the original pool, collectively forming an approxi-

mately valid abstraction. We utilize these selected features along with an initial state

to construct a fully observable non-deterministic (FOND) planning problem. The

solution to this FOND problem manifests as a policy, which when queried with an

evaluation of the selected features, deterministically provides an abstract action. The

specifics of the policy learning pipeline are provided in Algorithm 1. This strategy for

generalized planning was first presented by [8]. In subsequent sections, we present

a novel adaptation of this framework, suitable for problem domains with continuous

state and action spaces.

Algorithm 3 GenTAMP Training
Require: 𝑃 = {𝑃1, 𝑃2, . . . , 𝑃𝑁−1} ⊆ 𝑄
Ensure: 𝜋𝜑

1: 𝒟 ← {}, pool← {}
2: for 𝑃𝑖 ∈ 𝑃 do
3: 𝒟 ← 𝒟 ∪ TAMP(𝑃𝑖)

4: for 𝑐 ∈ {1 . . . max_complexity} do
5: pool← Prune(pool ∪ Generate(pool))
6: 𝒯 ← EncodeSAT(𝒟, pool)
7: 𝐹,𝐴← SATSolve(𝒯 )
8: 𝐼, �̄�← 𝐹 (𝑃 )
9: 𝜋𝜑 ← FONDPlan(𝐹,𝐴, 𝐼, �̄�)

10: return 𝜋𝜑, F

State and action abstractions

In order to establish a policy with inputs that comply with a standard representation

across problem instances within a task, we initiate a transformation of the problem-
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instance state space. This is achieved using a set of Boolean features 𝜑𝑏 : 𝒮𝑖 → {0, 1}

applicable to any instance state space 𝒮𝑖, and numeric features 𝜑𝑛 : 𝒮𝑖 → N0, along

with their corresponding qualitative projections 𝜑�̃� : 𝒮𝑖 → {0, >0}. These features,

defined as relations over entity sets, can be applied to states with varying quantities

of entities and properties. For instance, the numeric feature 𝜑𝑛(𝑠) ≡ |{𝑥 ∈ 𝒪𝑠 :

Blue(𝑥)}| receives a state 𝑠 and returns the count of blue objects within that state.

This feature is applicable to any state, independent of the number of objects present.

Typically, these features are inadequate for reconstructing the state, and hence

provide an abstract state representation 𝜑(𝑠), which is an evaluation of each 𝜑𝑏, 𝜑�̃�

for a state from any of the problem instances in the generalized planning problem.

This abstract transformation can be applied to the initial and goal states of a problem

instance to derive an abstract initial state 𝐼 and goal state �̄�. Abstract actions 𝐴 are

characterized by preconditions and effects that are Boolean features or qualitative

evaluations of numeric features. Abstract actions can be easily inferred from the

features 𝜑𝑏, 𝜑�̃�. More specifically, the effects of a derived abstract action are the

qualitative effects over the features, and the preconditions of a derived action are

the features that qualitatively align in the states where that qualitative effect was

observed. These abstract actions are no longer deterministic as actions that decrease

a numeric feature can result in two possible effects on the qualitative abstract state:

reducing the feature value to 0 or maintaining it above 0.

An abstraction for a task is denoted by the tuple ⟨𝐹,𝐴, 𝐼, �̄�⟩, where 𝐹 denotes

the set of Boolean and qualitative numeric features. Given such an abstraction, it

is possible to determine an abstract policy 𝜋𝜑(𝑠) either by using generate-and-test

methods [100], or more efficiently, through the application of a non-deterministic

planner [84]. This abstract policy can then be applied to novel problem instances,

irrespective of the number of objects they contain.

The aim of our research is to learn 𝜑𝑏 and 𝜑𝑛, as well as the necessary abstract

actions, for a task 𝑄 using data gathered from transitions sampled from the problem

instances of task 𝑄. It is essential that the learned feature sets and the resulting

abstract actions adhere to three crucial properties: soundness, completeness, and
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goal-distinguishability.

These three abstraction properties are proven to be valid, meaning they sufficient

to guarantee that a policy within the space of abstract states and actions can always

be refined to a concrete plan in any domain problem instance [9].

Collecting training data.

To generate valid abstractions, a comprehensive search through the state space is

required in order to confirm soundness, completeness, and goal distinguishability on

every transition. However, due to the continuous and high-dimensional nature of

tamp problems, it is not feasible to enumerate every attainable state and transition

in the environment. Hence, we concentrate on constructing approximately valid ab-

stractions from a subset of potential transitions in the environment. Our strategy uses

a tamp solver to find example plans for each training problem instance, using the

transitions from these plans to create approximately valid abstractions. The states

that make up the plan encompass all symbolic predicates and entities, along with any

sampled entities and certified predicates found in the plan’s preimage.

Creating a feature pool

In order to select a set of features that form an approximately valid abstraction, we

generate a pool of candidate features with bounded complexity and select a subset

from these that collectively yield a valid abstraction. To enable to high-arity certified

predicates with sampled entities, we devise a generative grammar that allows for

features containing implications and a mix of existential and universal quantifiers.

A tamp domain is accompanied by a set of primitive predicates 𝑝(𝑜). We also de-

fine a set of named variables 𝑥1, . . . , 𝑥𝑀 where 𝑀 represents the maximum predicate

arity. These predicates and named variables serve as terminals in constructing a set

of concepts 𝐶(𝑧) through primitive negation, conjunction, and a single implication.

Concepts are merged to form quantified concepts 𝐶𝑞(𝑥, 𝑧1, 𝑧2), where 𝑥 is a free vari-

able, 𝑧1 is a tuple of bound variables, and 𝑧2 is a tuple of variables that are yet to

be bound. Formulas containing only a single free variable are created by quantifying
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all but one of the free variables using chained universal and existential quantifiers.

Lastly, features are derived from the quantified concepts that contain only a single

free variable. These resulting features are functions that, given a state, return a natu-

ral number indicating the quantity of entities that can be plugged into the remaining

free variable such that the feature’s concept holds. The particulars of this generative

grammar can be found in Table 4.2.

Each feature in this grammar is paired with a feature complexity score, which is

defined as the maximum of the number of generative grammar rules used to create the

feature and the number of arguments of the feature. This grammar is implemented

in a bottom-up manner, combining primitives, concepts, and quantified concepts to

form a complete feature, and discarding features when they surpass a fixed complexity

limit (5 in our experiments).

Arguments Features

𝑧𝑚 → 𝑥1 | 𝑥2 | . . . | 𝑥𝑀 𝜑𝑛 → 𝑓 : 𝑠 ↦→ |{𝑥 ∈ 𝒪𝑠 : 𝐶𝑞(𝑥, 𝑧, ∅)}|
Concepts Quantified Concepts

𝐶𝑟(𝑧)→ 𝑝(𝑧) 𝐶𝑞(𝑥, ∅, 𝑧)→ 𝐶({𝑥} ∘ 𝑧)
𝐶𝑟(𝑧)→ ¬ 𝑝(𝑧) 𝐶𝑞(𝑥, 𝑞 ∘ {𝑧1}, 𝑧2:𝑁)→ ∃𝑧1.𝐶𝑞(𝑥, 𝑞, 𝑧1:𝑁)

𝐶𝑟(𝑧1 ∘ 𝑧2)→ 𝐶𝑟1(𝑧1) ∧ 𝐶𝑟2(𝑧2) 𝐶𝑞(𝑥, 𝑞 ∘ {𝑧1}, 𝑧2:𝑁)→ ∀𝑧1.𝐶𝑞(𝑥, 𝑞, 𝑧1:𝑁)

𝐶 → 𝐶𝑟(𝑧)

𝐶 → 𝐶𝑟1(𝑧1)⇒ 𝐶𝑟2(𝑧2)

Table 4.2: Generative grammar for features that take in a state and generate per-
entity first-order logical expressions.

This grammar specification embodies two key properties that are indispensable

for tamp domains. Initially, we employ arbitrary-arity features as opposed to binary

features to cater to the high-arity predicates prevalent in most tamp domains. To

manage these higher arity predicates, our grammar integrates alternating quantifiers

evaluated in Prolog [17]. Secondly, we incorporate certified predicates and sampled en-

tities into the grammar via the terminals (𝑝), so the resulting features blend geometric

and symbolic properties. These modifications significantly augment the total number

of features, necessitating more stringent pruning at every generation stage. We apply
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pruning of concepts and quantified concepts at each stage through uniqueness and

equivalence. Uniqueness pruning examines each gathered transition to ensure that no

feature of lower complexity shares the same value on every transition. Equivalence

pruning employs standard logical inference rules to assess equivalence between logical

formulas.

Outlined below are some representative quantified concepts from our operational

Load task, including quantified concepts composed from both symbolic and geomet-

ric primitives from the tamp specification.

• 𝑓1(𝑜) ≡ Holding(𝑜) ∧ ¬Tray(𝑜)

• 𝑓2(𝑜) ≡ Holding(𝑜) ∧ Tray(𝑜)

• 𝑓3(𝑜) ≡ ∃𝑝, 𝑟 : On(𝑜, 𝑝, 𝑟) ∧ ¬Tray(𝑟)

• 𝑓4(𝑜) ≡ ∃𝑝, 𝑟∀𝑜2, 𝑝2 : Tray(𝑟)∧¬On(𝑜, 𝑝, 𝑟)∧On(𝑜2, 𝑝2, 𝑟)⇒ ¬CFree(𝑜, 𝑝, 𝑜2, 𝑝2, 𝑟)

Upon conversion of these quantified concepts to features, we obtain numeric eval-

uations of each concept. As an illustration, the feature corresponding to the final

concept gives the count of objects that can be positioned on a tray without clash-

ing with other objects already on the tray. This feature merges sampled continuous

properties of the state, such as collision constraints, with symbolic properties like On

and Tray. It’s easy to see how this feature could be beneficial in a generalized task

and motion plan for the Load task.

Abstraction Learning.

With a feature pool generated by the aforementioned grammar and the set of gathered

transitions, our next step is to identify a subset from that feature pool that meets the

soundness, completeness, and goal-distinguishability criteria for the example plans in

the training dataset. We translate the desired constraints (explained in the appendix)

into a SAT theory, then employ a SAT solver to create an approximately valid ab-

straction. Our methodology uses the OpenWBO [80] weighted Max-SAT solver and

assigns weights to the features that correspond to the complexity of that feature in

the grammar. When we apply the SAT solver to our operational Load task to en-
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force our criteria over the set of selected features, we discover that the set of features

with the lowest weight that fulfill the correctness criteria is exactly those outlined in

the previous section; the abstracted actions are in Figure4-4. This step is usually the

most time-consuming part of the policy learning pipeline as the construction of the

SAT theory requires evaluation of every numeric feature on all example transitions.

Due to the non-closed world assumption of sampled entities and certified pred-

icates, we cannot assure the accuracy of any feature evaluation on the state that

quantifies over continuous state variables. For instance, we cannot confirm the cor-

rectness of the Boolean feature “All object grasps are not reachable” because there

is an infinite number of possible grasps. However, provided that the sampled enti-

ties are drawn uniformly from their respective continuous spaces, the features will be

evaluated correctly in the limit of infinite samples. Given that this uniform assump-

tion is violated when extracting sampled entities in the preimage of tamp plans, we

incorporate additional stream samples in each plan prior to abstraction learning.

Qualitative Numeric Planning

Given an abstraction, we implement the feature transformation to the initial and

final states of the training instances to derive abstract representations of our initial

state and goal. We subsequently pass this abstract fully observable non-deterministic

planning (FOND) problem to a standard non-deterministic planner to derive a gen-

eralized plan. In this study, we employ the state-of-the-art PRP [84] as our FOND

planner. Figure 4-4 illustrates the consequent generalized plan for the active Load

task using our learned features.

GenTAMP Constraint Satisfaction

We will now explore how the acquired generalized plan can be concretized (or ex-

ecuted) in a fresh tamp problem instance within the same task. Conventional ap-

proaches to generalized planning implement learned policies by randomly choosing

from a set of ground actions that 1.) are feasible in the state and 2.) incite the same

effects on the abstract state as the abstract action from the policy. However, the
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direct execution of a generalized task and motion plan is unfeasible due to additional

geometric and physical constraints imposed by the environment.

A common structure for tamp planners is an outer loop that iterates over plan

“skeletons”, which consist of operator instances with the discrete parameters bound,

yet the continuous parameters are still free, and a set of constraints that must be met

to validate the plan. An inner loop then searches for a satisfying assignment of the

continuous parameters. To incorporate our learned policy into the standard tamp

framework, we create a new set of planning operators that encode the action-ordering

constraints and abstract action preconditions and effects of the generalized plan, and

input these new operators into pddlstream. The resulting constrained domain can

conduct a more efficient concurrent search through the joint space of skeletons and

continuous-parameter bindings, thus diminishing the overall search time of the tamp

solver.

Taking our Load task as an example, a conventional tamp solver would explore

actions that place objects on the table. However, this would be strictly unfeasible in

the constrained task-specific problem specification because the abstract Load policy

stipulates that if an object is being held, the next action must augment the number

of objects on the tray (Figure 4-4).

4.2.3 Results

We demonstrate GenTAMP on four continuous robotic tamp tasks detailed below

and demonstrated in Figure 4-5. We selected tasks that are physical incarnations

of widely employed tasks in the generalized planning literature [99, 8, 56] or clas-

sically challenging TAMP domains with large numbers of objects. We outline the

goal of each of the tasks and the qualitative behavior of the policies uncovered by

GenTAMP.

We compare GenTAMP with two baseline methods. Unguided TAMP sim-

ply executes a state-of-the-art task and motion planner (the same one utilized for

data collection). Partial skeleton employs the same task and motion planner but is

supplied with an input skeleton that contains a known feasible action schema ordering
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Figure 4-5: The top panels show sample initial states for our continuous tamp prob-
lems. The bottom four panels show planning speed comparisons between our ap-
proach, standard tamp, and partial skeleton. Each trial contains six seeds used to
randomize object type, placement, size, and color. The plot error bars show a 95%
confidence interval. The red line indicates a timeout.

for each task. The actions in the skeleton lack populated object parameters, reduc-

ing the problem to constraint satisfaction. We consider four tasks within a domain

containing a PR2 robot with comprehensive kinematic constraints.

In the Unstack task, the objective is to remove all stacked blocks and position

them on the table’s surface. The policy discovered by GenTAMP involves locating

a block without any other blocks stacked on top, picking it up, and placing it on the

table until no stacked blocks are left.

The goal of the Sort task is to arrange all objects on the table into their corre-

sponding colored regions. The policy discovered by GenTAMP consists of placing

all green objects in the green region, followed by placing all red objects in the red

region. This policy is identified even though none of the example plans sort objects

in this specific color-based order.

For the Clutter task, the aim is to pick up the target object, which is compli-

cated by obstructions from numerous distractor objects. The policy discovered by

GenTAMP is to detect objects that collide when reaching for the target object and
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move those objects out of the way by placing them elsewhere on the table until the

target object can be reached. This task is notoriously difficult for tamp solvers and

has previously required significant engineering, including collision error feedback, to

be feasible in large problems [98]. GenTAMP circumvents such engineering by learn-

ing features from small examples that guide search towards moving objects blocking

trajectories.

In the Transport task, the objective is to transfer all objects from the source

platform to the destination platform. The agent can utilize a tray to transport mul-

tiple objects to the destination region simultaneously. The strategy discovered by

GenTAMP is to place objects onto the tray until no more physical space is avail-

able, carry the tray to the destination location, and unload the tray until no objects

remain at the source location. Since objects vary in size, the generalized tamp plan

considers geometry to determine if more objects can be placed on the tray.

Our experiments show that execution speed from the GenTAMP policy greatly

outperforms a state-of-the-art tamp algorithm. Planning speed increases exponen-

tially with object count, as can be seen in Figure 4-5.
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Chapter 5

Long-Horizon Planning with Partial

Observability

5.1 Background

One of the constraints of the Task and Motion Planning (TAMP) problem formulation

is its reliance on the full observability assumption. This can limit the potential of

TAMP-based systems to explore unfamiliar environments, as it requires extensive

knowledge about the world state to either be known in advance or gathered through

initial observation, a requirement that can prove challenging in scenarios such as

navigating unknown environments.

Robust and safe navigation is a necessary capability for mobile-base robots. How-

ever, robots with limited sensing abilities, for instance, a single-camera vision system

Figure 5-1: A partial simulated execution of a VANAMO task showing the unviewed
regions (blue), observed static obstacles (red), and observed movable obstacles (yel-
low)
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and an omnidirectional base, might not always possess a comprehensive view of their

workspace. This results in workspace regions that the robot has neither observed nor

can access due to safety and reliability considerations. Traditional heuristics that

necessitate the robot to visually scan a region before venturing into it might be in-

adequate when the robot’s vision is obstructed by the objects being manipulated or

when specific areas of the workspace can only be viewed from certain angles. To

overcome this challenge, many papers have proposed algorithms for Visibility-Aware

Motion Planning (VAMP), a problem that, despite being NP-hard, has effective solu-

tions under many realistic problem constraints. In scenarios where the task involves

moving obstructing objects to reach the goal, additional constraints become rele-

vant, which is addressed under the domain of Navigation Among Movable Obstacles

(NAMO).

The VANAMO Problem

Integrating NAMO with VAMP gives rise to a novel problem category, denoted as

Visibility-Aware Navigation Among Movable Obstacles (VANAMO). This problem

demands reasoning about both object movability and partial observability. In a paper

that we recently published, we introduced an algorithm to tackle VANAMO problems,

utilizing goal backchaining and visibility reasoning [21]. The details of this algorithm

will be expanded upon in this chapter, but an illustration of the algorithm’s execution

can be seen in figure 5-1.

The VANAMO problem is defined by a tuple ⟨𝒞,𝒲 ,𝒪,ℳ, ℐ, 𝑞𝑔,𝒜, 𝑓,Obs⟩. Here,

𝒞 represents the configuration space of the robot, while 𝒲 stands for the workspace

of the robot, typically a 3D space with defined bounds. 𝒪 is a collection of static

obstacles, and ℳ is a set of movable objects. Every 𝑜 ∈ 𝒪 and 𝑚 ∈ ℳ is depicted

by an object shape sharing the same dimensionality as 𝒲 . ℐ specifies the state

of the world, including the initial robot configuration 𝑞0 and the pose of all static

obstacles 𝑞𝑜 for each 𝑜 ∈ 𝒪, and movable obstacles 𝑞⇕ for every 𝑚 ∈ ℳ. The

navigation goal is symbolized by 𝑞𝑔. The robot also possesses an action space 𝒜.

The function 𝑓 : 𝒞 × 𝒜 → 𝐶 represents the dynamics function, mapping a robot
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configuration 𝑞𝑡 and action 𝑎𝑡 to a new configuration 𝑞𝑡+1. Finally, the observation

function Obs : 𝒞 → Img(𝑞ℳ, 𝑞𝒪) maps a configuration 𝑞 to an image projection of

the environment, providing partial information of the movable and static objects.

In situations where the object shapes in 𝒪 and ℳ are pre-known, the observation

function is defined as Obs : 𝒞 → 𝒫((𝑖, 𝑞𝑖) | 𝑖 ∈ℳ∪𝒪), with 𝒫 being the power set.

In our experimental setup, a holonomic robot acts within an 𝑆𝐸(2) configuration

space, with the degrees of freedom corresponding to 𝑥, 𝑦 movement and 𝜃 rotation.

The Obs function is fully characterized by the intrinsics of a forward-facing camera,

which maintains a fixed pose relative to the robot base. Despite having a holonomic

base, it is crucial to explicitly model 𝜃 as it determines the camera direction for

directional visibility.

The robot can engage with the environment through various controllers. The move

controller alters the 𝑥, 𝑦, and 𝜃 dimensions by adding or subtracting to them in fixed

increments. The pick controller forms a rigid attachment with a movable object,

provided that the object is within an 𝜖 distance of the robot, the bounding box for

the movable object is smaller than a specified maximum height and width (i.e., it

can be enveloped by the robot’s arms), and a part of the object shape is within a

certain 𝜃 deviation from the robot’s orientation (i.e., the robot must be facing the

object). The place controller eliminates a rigid attachment, if present. The push

controller operates on movable objects of any size that the camera is within 𝜖 distance

of, as long as some part of the object is within a certain 𝜃 deviation from the robot’s

orientation.

5.2 Method

In the following section, we present an algorithm designed to tackle VANAMO prob-

lems, termed Look and Manipulate Backchaining (LaMB). This algorithm utilizes a

hierarchical search approach with two levels. The primary or lower level involves an

A* algorithm which functions by taking an initial configuration, goal configuration,

an attachment (should it exist) and its relative pose, along with a set of obstacles
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Figure 5-2: An example trace of the LaMB algorithm on the obstructed visibility
task. We denote each nested recursive call with a darker shade of grey. The start
location is marked with a purple circle, and the goal location is marked with a green
circle. VA*

𝑉 𝑅 denotes vision-relaxed motion planning, and VA*
𝐶𝑅 denotes movable

object relaxed motion planning. For clarity, we collapse successive move & manipulate
calls and denote them with solid lines.
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(a) (b) (c) (d) (e) (f )

Figure 5-3: Problem Instance Visualization. A picture of problem instances
from each task category (top row) with illustrated depictions of the envioronments
for visual clarity (bottom row). The green dot indicates the goal position, the yellow
objects in the botom row indicate movable objects. The large box is pushable, but
not directly graspable.

that need to be avoided. The goal often can’t be reached directly via motion plan-

ning, so the secondary or higher level search identifies a sequence of navigation and

manipulation actions to eliminate the constraints that hinder goal reachability.

Two types of constraints impede navigation. Visibility constraints guarantee that

the robot never traverses through or moves obstacles into a region that has not been

observed. Collision constraints ensure the robot never navigates or moves obsta-

cles through areas filled with obstacles. The LaMB algorithm conducts a high-level

search through look actions (considered as move actions for the purposes of looking)

that discard visibility constraints, and manipulation actions that displace objects,

thereby modifying collision constraints. Interdependencies between these configura-

tions occasionally result in one visibility or collision constraint inhibiting the removal

of another constraint. To manage these intricate interactions, the higher-level search

decomposes goals into subgoals with an aim to eliminate each constraint individually.

The LaMB planner functions within the execution context specified in algo-

rithm 6. Visibility, static occupancy, and movable occupancy grids are initialized

as empty before any observations.

The observations are represented as segmented point clouds, with segments being

labeled as per their object index. This segmentation offers insights about whether
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a specific object is movable. Realistically, this could be inferred from the object’s

material or shape properties. However, in our experiments and simulations, the ob-

jects are identified using ground truth per-pixel object identities from the simulation.

The visibility grid for a given configuration, symbolized as Vis(𝑞), is calculated by

casting rays from the camera to the point delineated by the captured depth image,

marking all traversed voxels as viewed. The LaMB algorithm is then initiated with

the updated grids along with the navigation goal and the initial state. The first ac-

tion from the plan returned by LaMB is executed in the environment, and the fresh

observation is employed to update the grids. This cycle continues until the goal is

achieved or the process times out.

Within LaMB , we account for three scenarios: direct planning, visibility-relaxed

planning, and collision-relaxed planning, as delineated in Algorithm 6. In each sce-

nario, VA* is used to assess if the goal is reachable with various degrees of relaxed

constraints. VA* is a modified variant of 𝐴* that efficiently manages path-dependent

visibility. Specifically, once a path to a certain state is identified, we disregard any

shorter paths to that state, and we link each state with the visibility grid derived

from the path that first arrives at that state. This may not always lead to optimal

visibility-based paths but serves as an effective approximation [45]. As the planner

can’t predict the observations the robot will make as it traverses a path, we cannot

ascertain the visibility of an imagined configuration. Consequently, we employ opti-

mistic visibility. In other words, within VA*, we assume that voxels not known to

contain an obstacle are unoccupied space. If a direct path with VA* is feasible, we

return that path as the plan. In the event that a direct path isn’t viable, LaMB

initially attempts to ease visibility constraints. This is achieved by planning with

VA* and an empty visibility grid. If a plan is discovered under these relaxed con-

straints, we determine the region that needs to be viewed by intersecting the swept

volume of the path, denoted as Swept(path), with the existing visibility and gener-

ate a subgoal for viewing that area. Often, the necessary region cannot be seen from

a single perspective. As a result, we employ a unique heuristic that drives progress

towards partially viewing the required region. By calculating a scalar field, F, in our
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workspace, which represents the shortest distance from any point in the workspace to

the needed region, we define our new heuristic as H𝐹 (𝑞) = min𝑥 ∈ Vis(𝑞)𝐹 (𝑥). The

new subgoal is obtained by running our VA* algorithm in an obstacle-relaxed setting.

Every subgoal demands a separate plan, which we acquire using a recursive call to

LaMB. This call must be recursive because additional constraints, like obstructing

movable obstacles, might hinder the reachability of the necessary viewing positions.

In our experiments, the robot’s configuration is set to always see its base. This con-

figuration lowers the number of visibility subgoals needed for task completion but

isn’t strictly essential for our algorithm to function.

If a visibility-relaxed plan is unattainable, LaMB calculates a collision-relaxed

plan that eliminates collision constraints enforced by movable obstacles. This is done

by setting the movable occupancy grid to empty and planning a path to the goal

using VA*. If a path is identified, the first movable object collision is detected using

the same Swept subprocedure employed for computing the visibility subgoal. In

this work, we focus on moving only the first obstacle the robot encounters along a

path to the goal. This method assumes we are addressing 𝐿𝑃1 NAMO problems [69].

Although this algorithm can be extended to consider multiple obstacles, doing so

would significantly increase computational cost and isn’t required for our environ-

ments. Nevertheless, we do examine multiple ways of interacting with the object.

For each object, we consider push and pick/place operations (depending on the ob-

ject’s size) from various grasp locations. Pushing is a more restricted operation but

may be necessary if the object is too wide for the robot to encircle with its arms.

For each manipulation action considered, there is a 𝑞𝑝𝑟𝑒 and 𝑞𝑝𝑜𝑠𝑡 robot configuration.

With these intermediate configurations, we can plan a path to manipulate the object

and subsequently reach the goal through recursive calls to LaMB. Additionally, we

need to compute the updated occupancy grid and swept volume. The updated occu-

pancy grid is crucial for planning after manipulation, while the swept volume is vital

for planning before manipulation. The swept volume introduces a constraint to the

planner that prevents moving other obstacles into the swept path of the manipulated

object prior to its manipulation. For more information on this approach, see [101].
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If no plan can be identified under these relaxations, the planner is terminated and

a failure result is returned. Figure 5-2 illustrates an example trace of this algorithm on

one of the more intricate tasks involving multiple recursive calls with both visibility

and collision relaxation.

Algorithm 4 EvaluatePlanner(𝒪,ℳ, ℐ, 𝑞𝑔,𝒜, 𝑓,Obs)
1: 𝑞𝑡 ← 𝑞0
2: GridV← ∅,Grid𝒪 ← ∅,Gridℳ← ∅
3: while ¬(𝑞𝑡 = 𝑞𝑔) do
4: 𝑜← Obs(𝑞𝑡)
5: GridV← UpdateVis(∅, 𝑜)
6: Grid𝒪,Gridℳ← UpdateObs(Grid𝒪,Gridℳ, 𝑜)
7: plan← LaMB(𝑞0, 𝑞𝑔, 𝑓,Grid𝒪,Gridℳ,GridV)
8: 𝑞𝑡 ← 𝑓(𝑞𝑡, plan[0])
9: trace← trace⊕ (𝑝𝑙𝑎𝑛[0], 𝑞𝑡)

10: return trace

Algorithm 5 VA*(𝑞0, 𝐺,G𝒪,G𝒱 ,H(𝑞) = ||𝑞 − 𝑞𝑔||2)
1: 𝑄← [[𝑞0]], visited← ∅
2: while |𝑄| ≠ 0 do
3: path← 𝑄.pop(0), 𝑞last ← 𝑄[0][0]
4: if 𝑞last ∈ 𝐺 then
5: return path
6: if 𝑞last ∈ visited then
7: continue
8: V← PathVision(path,G𝒪)
9: 𝑉 ′ ← 𝐺𝒱 ∪ 𝑉

10: 𝑁𝑞 ← Neighbors(𝑞last)
11: 𝑄← {path⊕ [𝑞′] | 𝑞′ ∈ N𝑞,Swept([𝑞′]) ∩ 𝑉 ′)𝑐 = ∅}
12: 𝑄← Sorted(𝑄, key = Cost(path) + H(𝑞last))
13: visited← visited ∪ {𝑞last}

5.3 Experiments

In order to showcase the relevance of visibility reasoning in NAMO and assess our

algorithm, we have created a set of five task categories. Each of these categories

presents unique challenges. The initial state for each category is displayed in Figure 5-

3. The objective of each task category is to navigate to a particular area highlighted in
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Algorithm 6 LaMB(𝑞0, 𝑞𝑔,G𝒪,Gℳ,G𝒱)
plan← VA*(𝑞0, {𝑞𝑔},G𝒪 ∪Gℳ, ∅,GV) ◁ Direct
if plan then

return plan
GS← G𝒪 ∪Gℳ
plan← VA*(𝑞0, {𝑞𝑔},G𝒪 ∪Gℳ, ∅) ◁ Visibility-Relaxed
if plan then

V𝑠𝑔 ← Swept(plan) ∩G𝒱 𝑐

𝑞 ← 𝑞0
for 𝑞′ ∈ VA*(𝑞, 𝑉𝑠𝑔,G𝒪,H = 𝐻𝐹 )) do

plan← plan⊕ LaMB(𝑞0, 𝑞
′,G𝒪,Gℳ,GV)

𝑞 ← 𝑞′

plan← plan⊕ LaMB(𝑞, 𝑞𝑔,G𝒪,Gℳ,GV)
if None /∈ plan then

return plan
plan← VA*(𝑞0, {𝑞𝑔}, ∅,GV) ◁ Collision-Relaxed
if plan then

Obj← FirstCollision(plan,G𝒪)
GS← G𝒪 ∪Gℳ ∖ {Object}
for 𝑞𝑝𝑟𝑒, 𝑞𝑝𝑜𝑠𝑡 ∈ SampleManip(Obj,GS) do

mid← LaMB(𝑞𝑝𝑟𝑒, 𝑞𝑝𝑜𝑠𝑡,G𝒪,Gℳ∖Obj,GV)
G𝒪′ ← G𝒪 ∪ Swept(plan,Obj)
pre← LaMB(𝑞0, 𝑞𝑝𝑟𝑒,G𝒪′,Gℳ∖Obj,GV)
G𝒪′′ ← UpdatePose(Obj,G𝒪)
post← LaMB(𝑞𝑝𝑜𝑠𝑡, 𝑞𝑔,G𝒪′′,Gℳ∖Obj,GV)
if None /∈ pre⊕mid⊕ post then

return pre⊕mid⊕ post
return None
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green. Within each category, we experiment with random placement of objects, robot

positions, and goal region locations, adhering to the constraints of the respective task

category. Here we detail each task category and the baselines incorporated in our

evaluation.

5.3.1 Task Categories

The Simple Navigation (T1) task category is the simplest, where the robot can

reach the navigation goal without needing to move any obstacles (Figure 5-3a). Vis-

ibility (T2) tasks take inspiration from issues found in the visibility-aware motion

planning literature [45, 53, 26, 5, 71]. In these tasks, direct navigation to the goal

is not possible due to visibility constraints. Figure 5-3b illustrates a situation where

the robot can only traverse the hallway sideways, hence it must observe the hallway

from outside before navigating through it to avoid colliding with unseen areas. The

Movable Obstacles (T3) tasks represent standard NAMO problems featuring mov-

able obstacles that are entirely visible from the initial state. These tasks generally do

not require additional visibility reasoning (Figure 5-3c). The Obstructed Visibility

(T4) tasks have visibility constraints similar to the visibility tasks, but to obtain nec-

essary observations, one or more obstacles must be moved (Figure 5-3e). Occluding

Obstacles (T5) tasks include movable objects that partially or completely block

the robot’s view during interaction. Resolving these tasks frequently requires viewing

certain regions before interacting with an object, as shown in Figure 5-3d. Finally,

Obstructed Affordances (T6) tasks necessitate the manipulation of obstacles from

configurations that cannot be accessed without manipulating other obstacles. In the

example given in Figure 5-3f, the box object needs to be pushed but it cannot be

done directly as it would block the goal. The box also cannot be immediately pushed

from the bottom due to visibility constraints at the top. The robot has to first move

the obstructing chair and then push the box from either the bottom or top.

74



T1 T2 T3 T4 T5 T6

VA* 5/5 0/5 0/5 0/5 0/5 0/5

NAMO 5/5 0/5 4/5 0/5 0/5 0/5

FO-NAMO 5/5 0/5 5/5 0/5 0/5 0/5

VAMP 5/5 5/5 0/5 0/5 0/5 0/5

LaMB 5/5 5/5 5/5 5/5 5/5 5/5

Figure 5-4: Experimental results

5.3.2 Baselines

We compared LaMB with four search baselines that include visibility constraints.

The VA-Star baseline executes an VA* search in the discretized configuration space

using a distance-to-goal heuristic. An extra constraint was imposed on the VA*

search, limiting actions to those that do not pass through unobserved regions. The

A* baseline was only successful on the simple navigation task where the heuristic

was a useful metric. When direct navigation to the goal wasn’t feasible, VA* would

default to a comprehensive search until a timeout occurred.

The Fully Observable NAMO baseline offers a solution for fully observable

NAMO problems [81]. Initially, this baseline identifies a relaxed path to the goal by

navigating through movable obstacles. It then contemplates transfer paths for each

obstacle in reverse collision order, starting from the goal. For each movable object

the planner engages with, it introduces artificial collision constraints for motion on

the subsequent obstacle it attempts to maneuver. The search process follows a depth-

first approach where motion constraints deemed unfeasible mark the end of search

nodes. The backward planning approach from the goal makes it impossible to enforce

visibility constraints, leading this baseline to assume all unseen space is unoccupied.

Our findings indicate that this baseline is effective when obstacles block all paths to

the goal, but fails when visibility constraints limit obstacle movement.

The Constrained-NAMO baseline draws inspiration from related research in

visual NAMO [108]. This algorithm iterates through all identifiable visible objects,

assesses if relocating an object would result in a more direct path to the goal, and if so,
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relocates the object. Much like the VA* baseline, visibility constraints are imposed

on the low-level configuration-space search. Our data show that this baseline fails

when moving obstacles directly is unfeasible due to visibility or obstruction.

The VAMP baseline represents a cutting-edge algorithm for visibility-aware mo-

tion planning [45]. Similar to FO-NAMO and LaMB , VAMP conducts back chaining

from the goal by establishing intermediate subgoals based on failure from relaxed goal

planning. Rather than setting subgoals that involve movable obstacle manipulation,

VAMP initially tries to plan straight to the goal while disregarding vision constraints.

It then identifies the workspace regions that were navigated through but not observed

and sets viewing these regions as a subgoal. Since VAMP does not consider setting

object manipulation subgoals, it only succeeds on simple navigation and visibility

tasks.

Our findings demonstrate that LaMB is the only algorithm capable of solving the

last three tasks, which each require some degree of reasoning about the relationship

between visibility and manipulation.

5.3.3 Results

Each task was executed with five distinct seeds that define a unique initial position

for the robot and obstacles. The total success rate out of these five runs is reported

in Table 5-4. As anticipated, the VA* baseline was only successful in solving simple

navigation tasks. VA*, in contrast to other motion planning algorithms, is not prob-

abilistically complete due to its reliance on visibility-based path dependence. This

probabilistic incompleteness results in certain failure when visibility constraints are

not satisfied via the shortest path to a configuration. Like other motion planning

algorithms, VA* slows down significantly with the increasing dimensions of the con-

figuration space introduced by additional movable obstacles, leading to a timeout

on the NAMO problems. The Fully Observable and Constrained NAMO baselines

mostly succeeded in the simple navigation and movable obstacles tasks. However, the

Fully Observable baseline occasionally fails on the NAMO task because it attempts

to position movable objects in unobserved regions or navigate through unseen regions
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while carrying an object. These two baselines failed in all other tasks as they did not

regard visibility as a potential subgoal. The VAMP baseline succeeded in all tasks

where visibility was the only constraint (simple navigation and visibility constrained)

but failed when placed in an environment where obstacle movement was necessary.

LaMB demonstrated success on all seeds for each task.
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Chapter 6

Conclusion

This thesis introduces a novel approach to long-horizon robotic planning using visual

input. This approach overcomes the constraints of existing Task and Motion Plan-

ning (TAMP) methodologies by facilitating the automatic construction of problems

without prior knowledge of object models, their properties, or their affordances. The

system has demonstrated its effectiveness by generalizing to unique object sets and

scene configurations in several real-world robotic contexts, underscoring its potential

to resolve TAMP issues and address the fundamental challenge of proficient world

modeling and planning from perception.

Furthermore, this work has addressed numerous limitations inherent in this frame-

work. Specifically, it enhances the framework’s capacity to manage large sets of ob-

jects, encompassing scenarios with a handful of distinguishable relevant objects as

well as situations with numerous indistinguishable but relevant objects. We also in-

troduced an algorithm that actively seeks crucial world information and refines the

constructed abstraction based on prior experience, thereby enabling efficient future

planning.

These contributions chart a path for future research aimed at developing advanced,

intelligent robotic systems capable of autonomous operation in complex environments.
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