LASER SPECTROSCOPY OF ALKAIINE EARTH OXIDE FLAMES
AND DEPERTURBATION OF DIATOMIC MOLECULAR SPECTRA

by
Richard Alan Gottscho B.S. The Pennsylvania State University (1974)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF
DOCTOR OF PHILOSOPHY
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
(February, 1979)
(C) Massachusetts Institute of Technology, 1979
certified by. . Signature redacted
Thesis Supervisor Signatúre" redacted

TRCHIVES Departmental Committee on
OF TEOMNLDSY
FEB a 21979

This Doctoral Thesis has been examined by a Committee of the Department of Chemistry as follows:

Professor Robert Silbey

Professor James Kinsey

Professor Robert Field
(Signature redacted
Chairm $/$ of/Thesis comn $/$ teee Signature redacted

Signature redacted
Thesis Supervisor

LASER SPECTROSCOPY OF ALKALINE EARTH OXIDE FLAMES

AND DEPERTURBATION OF DIATOMIC MOLECULAR SPECTRA
by

Richard Alan Gottscho

Submitted to the Department of Chemistry on February 8, 1979,in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

ABSTRACT

Optical-optical double resonance (OODR) spectroscopy using two tunable dye lasers is used to systematically analyze the high lying and low lying electronic states of BaO. Three new electronic states - $D^{1} \Sigma^{+}, E^{1} \Sigma^{+}$, and $a^{3} \Sigma^{+}$are observed directly for the first time. Numerous perturbations are observed in both high lying and low lying states. a ${ }^{3} \Sigma^{+}$is shown to be the lowest excited electronic state of BaO from the vibrational dependence of $a^{3} \Sigma^{+} \sim A^{1}{ }_{I I}$ spin-orbit interaction matrix elements. Improved spectroscopic constants for every BaO electronic state except $X^{1} \Sigma^{+}$are obtained from separate deperturbation of the low and high lying states.
$C^{1} \Sigma^{+}-a^{3} \Sigma^{+}, C^{l} \Sigma^{+}-b^{3} \Pi$, and $\cdot C^{l} \Sigma^{+}-A^{1}{ }^{1} I$ band systems are proposed as a viable means to determine nascent populations in these metastable, reservoir. BaO states,

Sub-Doppler OODR excitation spectra are used to simultaneously monitor $\mathrm{BaO}\left(\mathrm{A}^{1} \Sigma^{+}\right)$rotational, translational, and angular momentum orientational relaxation with Ar and CO_{2} collision partners. OODR collisional satellite line widths are interpreted in terms of moments of the center of mass scattering angle. Propensities for small changes in J and small angle scattering are observed and qualitatively understood in terms of a long range, weak collision model. A cross section for $\mathrm{J}^{2}=1, \mathrm{M}=0 \rightarrow$ $J=1,|M|=1$ reorientation of $4.2 \pm 1.2 \AA^{2}$ is measured when BaO collides" with CO_{2}. J $=1 \rightarrow J=2^{-}$transfer is also accompanied by significant reorientation of the vector with respect to space-fixed axes.
Ar^{+}and dye laser excitation of CaO is also reported. These spectra prove unambiguously that the a^{3} II and A^{11} II states of CaO are lower levels for at least part of the orange and green band systems.
-5-

To My Family

ACKNOWLEDGEMENTS

First of all, I thank Professor Robert Field for his generous support and encouragement during the last four and a half years. Many of the ideas expressed by this work were originally his.

Conversations with Professors James Kinsey of the Chemistry Department and David Pritchard of the Physics Department are always enlightening and have been particularly helpful in interpreting the results in Chapter 5. Working with Dr. Roger Bacis and Professor Stuart Silvers on the energy transfer experiments described in Chapters 5 and 6 was exhilatating. I am most grateful for the generous experimental assistance received from Professor John Lombardi, Phil Brucat, Jeff Manni, Mike Dulick, and Paul Weiss. Conversations with Tony Kotlar on least squares fitting were informative and I am glad he modified the fitting routine. Conversations with Professor J. Gary Pruett, Afranio Torres-Filho, Professor Paul Dagdigian, Louise Pasternack, Jim Reuther, and Tim Brunner have been stimulating. I also thank these people for giving me results of their work prior to publication.

Carter Kittrell and Professor Robert Bernheim first introduced me to laser spectroscopy.
professor Robert Silbey will never be forgotten for his colorful quantum mechanics lectures, for which I commute hịs sentence to life(see C.C.Jenson, MIT, Ph.D.,1979).

While in France for two months, I was warmly entertained and educated by Drs. Hélène Lefebvre-Brion, Joëlle Rostas, Marcel Horani, Joël Schamps, Jean-Michel Robbe, Roger Bacis, Jean d'Incan, Rene Stringat and Christian Arthénour. I thank them all and hope to reciprocate repeatedly in the future.

Ray Dove and Murray Somerville are in no small way responsible for the success of these experiments by their prompt response to my pleas for help.

Without Maureen Frangioso, this thesis would not have been submitted for at least two more months. I hope that she doesn't have to type another table for at least three weeks.

Brooke Koffend is responsible for much of the deperturbation work in Chapter 3 as well as development of the home built lasers. His ever constant enthusiasm for his work has been an inspiration to me.

Ron Marks' friendship and creative wit have helped me to endure the many hours of writing. I wish him continued success on and a speedy conclusion to the CaO green and orange band analyses.

To Craig Jensen, Chief Space Cadet, and the

Rolling Stones, I am indebted for their alleviation of my states of depression and amplification of my states of mania.

Bill Browder and Isaac Asimov have the dubious distinction of being responsible for this work in that they first turned me on to science and science fiction.

Finally, I thank my family, to whom this thesis
is dedicated, for their unfailing love and faith.

TABLE OF CONTENTS

Page

Title Page 1
Examination Page 2
Title Page with Abstract 3
Dedication 5
Acknowledgements 6
Table of Contents 9
List of Figures 13
List of Tables 15
Volume I 17
Chapter l. Introduction 17
References 24
Chapter 2. Deperturbation of Diatomic Band Spectra 27
I. Introduction. 28
II. Method 30
III. Computer Programs 33
IV. Interpretation and Use of Perturbation Matrix Elements 36
V. Conclusion 39
References 40
Chapter 3. Optical-Optical Double Resonance Spectroscopy of BaO 45
I. Introduction 46
II. Experimental 53

TABLE OF CONTENTS (Cont.)

Page

Chapter 3. (cont.)

III. Results.................................. 62
A. $* \leftarrow A^{1} \Sigma^{+}$Excitation Spectra...... 62
B. $C^{1} \Sigma^{+}$Fluorescence Spectra........ 133
IV. Discussion............................ 230
A. Peturbation Matrix Elements..... 230
B. Singlet-Triplet Energy Split-
tings............................... 234
C. Electronic Structure of BaO...... 235
D. Population Monitoring............ 239
V. Conclusion............................. 241

References............................. 242
Chapter 4. Laser Spectroscopy of CaO................ 248
I. Introduction.......................... 249
II. Experimental........................... 253
III. Results................................ 255
A. Ar^{+}Laser Excitation.............. 255
B. Dye Laser Excitation Spectra..... 267
C. Effects of co Addition to the
Flame.............................. 277
IV. Conclusion............................. 278

References............................... 280
Volume II 283

Chapter 5. Optical-Optical Double Resonance Moni-	
	toring of BaO A \sum^{+}Rotational and
	Translational Relaxation.................. 283

TABLE OF CONTENTS (Cont.)
Page

Chapter 5. (cont.)

I. Introduction. 284
II. Theory 294
A. Velocity Selection and Analysis. 294
B. Line Shapes 304
C. Determination of State to State Rate Constants 305
III. Experimental 310
A. Pressure Measurements 310
B. Line Intensities. 311
IV. Results 313
A. Line Shapes and Widths. 313
B. Rotational State to State Rate Constants 338
V. Discussion. 374
References. 377
Chapter 6. Optical-Optical Double Resonance Moni- toring of Depolarizing Collisions. 382
I. Introduction. 383
II. Experimental. 386
III. Theory 391
A. Line Intensities. 391
B. Presssure Dependence. 392
IV. Results and Analysis 393
A. Elastic Depolarization. 393
B. Inelastic Depolarization 396

TABLE OF CONTENTS (Cont.)
Page
Chapter 6. (cont.)
V. Conclusion. 398
References. 399
Appendix 1. Deperturbation of the ${ }^{N} 2^{+}$First Nega- tive Group. $B^{2} \Sigma \frac{+}{\mathrm{u}}-\mathrm{X}^{2} \Sigma_{\mathrm{g}}^{\ddagger}$. 401
Appendix 2. Computer Programs 447
Appendix 3. Observed and Calculated Interactions between Valence States of the NO Molecule 562
Appendix 4. Ab Initio and Semiempirical Estimates of PN Valence State Interactions 583
Appendix 5. OODR Spectroscopy of BaO.II. New Observations of $a^{3} \Pi$ and $A^{11} \Pi$ and Re- examination of the Parkinson Band System. 596
Appendix 6. The Lowest Energy Excited Electronic State of BaO. 610
Appendix 7. Assignment of Extra Lines in a Perturbed Band Spectrum Using Power Broadened Line Widths 623

LIST OF FIGURES

Page

3.1 High resolution OODR excitation spectrum 48
3.2 Optical schematic of OODR experiment. 55
$3.3 \mathrm{Al}^{1} \Sigma^{+} \leftarrow \mathrm{X}^{1} \Sigma^{+}$high resolution excitation spectrum. 61
3.4 $\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{X}^{1} \Sigma^{+}$resolved UV fluorescence 65
3.5 Low resolution $\mathrm{D}^{1} \Sigma^{+} \rightarrow \mathrm{A}^{1} \Sigma^{+}(4,2)$ excitation spectrum 69
3.6 High resolution excitation spectrum of $C^{l} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1)$ band head 70
3.7 Summary of $\mathrm{C}^{1} \Sigma^{+}$perturbations 108
3.8 Perturbations in $C^{1} \Sigma^{+}\left(v^{*}=3\right)$ 127
3.9 Summary of $A^{1} \Sigma^{+}$perturbations 177
3.10 Summary of $A^{11} I I$ perturbations 178
3.11 Double perturbation between $a^{3} \Sigma^{+}\left(v_{a}=8\right)$, $A^{\prime l} I I\left(v_{A}^{\prime}=6\right)$, and $A^{1} \Sigma^{+}\left(v_{A}=7\right)$ 180
3.12 BaO potential energy curves 228
3.13 BaO energy level diagram 236
4.1 Green band system of CaO. 269
4.2 Orange band system of CaO. 270
4.3 CaO Orange band fluorescence 275a
5.1 OODR excitation scheme 286
5.2 Velocity vector diagram and center of mass transformation. 297
5.3 Center of mass scattering. 298
5.4 Principal excitation line shape. 316
5.5 Principal line width vs. Ar pressure. 318

LIST OF FIGURES (cont.)

5.6 Principal line width vs. CO_{2} pressure 319
$5.7 \Delta \mathrm{~J}=-1$ collisional satellite line width vs. Ar pressure 325
5.8 $\Delta J=-1$ collisional satellite line width vs. CO_{2} pressure 326
5.9 Excitation line widths vs. ΔJ 329
5.10 Excitation spectrum for $\mathrm{v} 1 \mathrm{x}>0$ selection 332
$5.11 C^{1} \Sigma^{+}-A^{1} \Sigma^{+}(3,1) \quad R(14)$ satellite line shape and deconvoluted velocity distribution. 335
5.12 Same as 5.11 except more Fourier frequency components are zeroed. 336
5.13 Same as 5.11 except line shape is merely inversely transformed after component zeroing 337
5.14 Population ratios as a function of ΔJ and pressure for $J_{O}=0$. 368
5.15 Population ratios as a function of ΔJ
for $J_{0}=0$ and 15 369
6.1 OODR scheme for probing $J=1 \rightarrow J=1$ de- polarization 389
6.2 I_{y} / I_{z} vs CO_{2} pressure for $J=1 \rightarrow J=1$ collisions. 395

List of Tables

Page

$3.1 * \leftarrow A^{1} \Sigma^{+}$Band Heads 63
$3.2 \mathrm{C}^{1} \Sigma^{+}-\mathrm{A}^{1} \Sigma^{+}$Transition Wave Numbers 72
$3.3 \mathrm{D}^{1} \Sigma^{+}-\mathrm{A}^{1} \Sigma^{+}$Transition Wave Numbers 84
$3.4 \mathrm{E}^{1} \Sigma^{+}-\mathrm{A}^{1} \Sigma^{+}$Transition Wave Numbers 89
$3.5 \mathrm{C}^{1} \Sigma^{+}$Term Values 90
$3.6 \mathrm{D}^{1} \Sigma^{+}$Term Values 100
3.7 $\mathrm{E}^{1} \Sigma^{+}$Term Values 104
3.8 Summary of $\mathrm{C}^{1} \Sigma^{+}$Perturbations. 105
3.9 e-Parity Hamiltonian Matrix for $\mathrm{c}^{1}{ }^{+}{ }^{+}$ Deperturbation. 111
$3.10 \mathrm{C}^{1} \Sigma^{+}$Parameters 112
$3.11 \mathrm{C}^{1} \Sigma^{+}$Correlation Matrices. 117
3.12 Spectroscopic Constants for High Lying States of BaO 132
$3.13 \mathrm{D}^{1} \Sigma^{+}$Parameters 134
3.14 $\mathrm{D}^{1} \Sigma^{+}$Correlation Matrices 135
3.15a E ${ }^{1} \Sigma^{+}$Parameters 136
3.15b E ${ }^{\uparrow 1} \Sigma^{+}$Correlation Matrix. 136
3.16 Observed $C^{1} \Sigma^{+}$Emission Bands. 139
$3.17 \mathrm{C}^{1} \Sigma^{+}-\mathrm{a}^{3} \Sigma^{+}$Transition Frequencies 145
3.18 $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Frequencies 147
3.19 $\mathrm{C}^{1} \Sigma^{+}-\mathrm{b}^{3} \Pi$ Transition Frequencies 148
3.20 $\mathrm{C}^{1} \Sigma^{+}-A^{1} I I$ Transition Frequencies 151
$3.21 \mathrm{a}^{3} \Sigma^{+}$Term Values 156
$3.22 \mathrm{~A}^{1} \Sigma^{+}$Term Values 159
Page
$3.23 \mathrm{~b}^{3}$ II Term Values. 160
$3.24 \mathrm{~A}^{1 \mathrm{l}} \mathrm{II}$ Term Values 165
3.25 Hamiltonian Matrix Used for Deperturbation of Low Lying States of BaO. 172
3.26 Summary of $A^{1} \Sigma^{+} \sim b^{3} I I$ Perturbations 181
3.27 Summary of $A^{1} \Sigma^{+} \sim A^{\prime l} I I$ Perturbations. 182
3.28 Summary of $A^{1} \Pi \sim a^{3} \Sigma^{+}$Perturbations 183
3. 29 Deperturbed Constants for Low Lying States of BaO. 184
3.30 Low Lying State Correlation Matrices. 198
3.31 Spectroscopic Constants for Low Lyings States of BaO 223
3.32 One-Electron Perturbation Matrix Elements 233
4.1 Ar^{+}Laser Induced Fluorescence of CaO. 256
4.2 CaO Green System. Band Heads 271
4.3 CaO Orange System Band Heads 272
5.1 Deconvolution of $I(v)$ and Moments of $\cos \psi$. 339
5.2 Rotational Intensity Factors. 341
5.3 Summed Line Intensities 343
5.4 Population Ratios for $J_{0}=0$ 346
5.5 Population Ratios for $\mathrm{J}_{\mathrm{O}}=15$. 355
5.6 Single Collision Rates for $J_{0}=0$. 365
5.7 Single Collision Rates for $J_{0}=15$ 366

Volume I.

Chapter 1: Introduction

This thesis represents an extensive study of alkaline earth oxide structure and dynamics in low pressure flames. Specifically, BaO formed in the reaction

$$
\begin{equation*}
\mathrm{Ba}+\mathrm{CO}_{2}+\mathrm{Ar} \rightarrow \mathrm{BaO}+\mathrm{CO}+\mathrm{Ar} \tag{1.1}
\end{equation*}
$$

and CaO formed by

$$
\begin{equation*}
\mathrm{Ca}+\mathrm{N}_{2} \mathrm{O}+\mathrm{Ar} \rightarrow \mathrm{CaO}+\mathrm{N}_{2}+\mathrm{Ar} \tag{1.2}
\end{equation*}
$$

are studied by laser spectroscopy. The results obtained include: (1) discovery of a new, low-lying, metastable electronic state of $\mathrm{BaO}, \mathrm{a}^{3} \Sigma^{+}$; (2) development of a spectroscopic map by which the nascent populations of low lying metastable BaO electronic states can be monitored;
(3) unambiguous assignment of two lower states in the complex and controversial orange and green band systems of CaO as $A^{1} I I$ and $a^{3} I I$ (4) simultaneous monitoring of BaO rotational and translational relaxation in $\mathrm{BaO} \sim \mathrm{Ar}$ and $\mathrm{BaO} \sim \mathrm{CO}_{2}$ collisions; (5) interpretation of velocity changing collisions in terms of a simple kinematic picture whereby OODR line widths are related to moments of the center of mass scattering angle; and (6) measurements of collision induced angular momentum reorientation in low J levels of excited $\mathrm{BaO}\left(\mathrm{A}^{1} \Sigma^{+}\right)$.

Interest in alkaline-earth oxide flames stems
from the range of chemiluminescent photon yields observed
for different metal atom-oxidant combinations. ${ }^{1-8}$
For example, at total pressures of ≈ 1 torr, photon yields for reactions of $\mathrm{N}_{2} \mathrm{O}$ with Ca, Sr, and Ba are, respectively, $1.2 \%, 46.6 \% 5$, and $15 \%{ }^{2}$ Moreover, these yields are observed to be strongly pressure dependent: in the $\mathrm{Ba}+\mathrm{N}_{2} \mathrm{O}$ reaction the photon yield varies from 0.2 \% at 3×10^{-3} torr to 23% at 10 torr. 2,3 The pressure dependence of these photon yields has been interpreted as evidence for a precursor to $A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$chemiluminescence. ${ }^{3,5-7,9,10}$

Although there is a consensus that a metastable, reservoir state acts as precursor to chemiluminescence, the identity of this state has been the subject of controversy: both $b^{3} \Pi^{3,5,6,9-11,+~ a n d ~ h i g h ~ v i b r a t i o n a l ~ l e v e l s ~ o f ~} \mathrm{X}^{1} \Sigma^{+} 7,12$ have been suggested. Evidence for $b^{3} \Pi$ comes from the observation that $A^{1} \Sigma^{+}$vibrational levels perturbed by $b^{3} \Pi$ (via spin-orbit interaction) exhibit greater photon yields than do unperturbed $\mathrm{A}^{1} \Sigma^{+}$vibrational levels. ${ }^{9,10}$ The primary argument invoked for $X^{l} \Sigma^{+}$is spin-conservation: the ground states of Ba and $\mathrm{N}_{2} \mathrm{O}$ are, respectively, ${ }^{1} \mathrm{~S}$ and ${\underset{\sim}{x}}^{1} \Sigma^{+}$so that chemical production of $b^{3} I I$ would violate the spinconservation rule. 7,21 on the other hand, the spinforbidden reaction \qquad
${ }^{\dagger}$ In BaO this state has recently been renamed as $b^{3} \frac{1}{\pi}$ in light of the discovery of the lower lying a ${ }^{3} \Sigma^{+}$state (Appendix 6). In all other alkaline-earth oxides it is called $a^{3} \Pi$.

$$
\begin{equation*}
\mathrm{Ba}\left({ }^{1} \mathrm{~S}\right)+\mathrm{SO}_{2}\left(\mathrm{X}^{1} \mathrm{~A}\right) \rightarrow \mathrm{BaO}\left(\mathrm{X}^{1} \Sigma^{+}\right)+\mathrm{SO}\left(\mathrm{X}^{3} \Sigma^{-}\right), \tag{1.3}
\end{equation*}
$$

where the reaction exothermicity is insufficient to populate either the lowest BaO triplet state or the lowest So singletstate, is found to proceed four times more rapidly than the spin-allowed reaction: ${ }^{13,14}$

$$
\begin{equation*}
\mathrm{Ba}\left({ }^{1} \mathrm{~S}\right)+\mathrm{CO}_{2}\left(\mathrm{X}_{\sim}^{1} \Sigma^{+}\right) \rightarrow \mathrm{BaO}\left(\mathrm{X}^{1} \Sigma^{+}\right)+\mathrm{CO}\left(\mathrm{X}^{1} \Sigma^{+}\right) . \tag{1.4}
\end{equation*}
$$

The role of intramolecular perturbations in efficient intersystem transfer is well established. ${ }^{15-19}$ perturbations arise from mixing of Born-Oppenheimer basis states and a sharing of structural properties. Thus, perturbations between $b^{3} \Pi$ and $A^{1} \Sigma^{+}$result in the loss of spin as a good quantum number and intersystem transfer rates comparable to those for rotational energy transfer. It is certain therefore, that $b^{3} I I$ is a precursor to $A^{1} \Sigma^{+}$but the question remains as to which state, $\mathrm{X}^{1} \Sigma^{+}$or $b^{3} \Pi$, is initially formed in the reaction. Recently, Reuther and Palmer have demonstrated from the vibrational dependence of $A^{1} \Sigma^{+}$photon yields measured over a pressure range of several orders of magnitude that high vibrational levels of $x^{1} \sum_{\text {are }}^{+}$initially formed and transfer to b^{3} II occurs subsequentlysia $\mathrm{b}^{3} \Pi \sim \mathrm{X}^{1} \Sigma^{+}$perturbations. ${ }^{20}$

The role of excited state metal reactants in these reactions has also been investigated both experimentally ${ }^{21-23}$ and theoretically. 12,24 The reactions appear to be well
suited to the study of laser induced excited state chemistry.

The addition of CO results in
production of excited, metastable metal atoms. 25,26
This reaction has been proposed as an efficient generator for atomic metastables to be used in alkali-akaline-earth excimer lasers. 27

Spectroscopic questions relative to the chemistry discussed above are: (1) where are the low lying, energy reservoir states; (2) where do these metastable states cross and perturb $X^{1} \Sigma^{+}$and $A^{1} \Sigma^{+}$; and (3) what is the high energy electronic structure of the alkaline-earth oxides? The first two questions are relevant to ground state reactions as shown above and the third question to excited state reactions. If the high energy structure is known, populations can be probed and the energy flow pathways established unambiguously. To an extent, these spectroscopic questions are answered for BaO by this thesis. Some of the results have already been employed by Torres-Filho and Pruett in probing populations in high vibrational levels of $\mathrm{X}^{1} \Sigma^{+}$ and low levels of $A^{1} \Pi$ and $b^{3} \Pi$. ${ }^{28}$

The technique employed to characterize both the high lying and low lying states of BaO is OODR. Appendix 5 reported the first observations of OODR excitation into
$C^{1} \Sigma^{+}$and subsequent fluorescence into $b^{3} \Pi$ and $A^{1} \Pi$. Appendix 6 reports the first observation of $a^{3} \Sigma^{+}$, also via OODR induced $C^{1} \Sigma^{+}$fluorescence. Appendix 7 describes the ease with which extra lines in the OODR excitation spectrum can be recognized by virtue of their narrower power broadened line widths. The OODR technique, excitation spectra, fluorescence spectra, and the deperturbation analysis employed in characterizing all of these states is described in detail in Chapter 3. Chapter 2 of this thesis summarizes the methods and utility of deperturbation. The principles are further illustrated in Appendices 1, 3, and 4. The computer programs as well as sample output are given in Appendix 2.

Chapter 4 presents preliminary results of Ar^{+}and dye laser excitation of CaO where the orange and green band systems of this molecule are established as potential population probes for $a^{3} \Pi$ and $A^{\prime 1} I$. These bands should also permit the characterization of $a^{3} I I \sim X^{1} \Sigma^{+}$and $A^{\prime}{ }^{1} I I \sim X^{1} \Sigma^{+}$perturbations.

In Chapters 5 and 6 OODR is shown to be a powerful means by which energy transfer processes subsequent to chemical reaction can be monitored. Specifically, a single $A^{1} \Sigma^{+}$rovibronic level is prepared with a narrow distribution of speeds along the laser propagation
direction as well as a specific orientation of the total angular momentum with respect to space fixed axes. Rotational,translational, and orientational relaxation is then monitored simultaneously via excitation to $C^{1} \Sigma^{+}$while $C^{l} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$UV fluorescence is detected. Chapter 5 presents the rotational and translational relaxation results. The latter are interpreted in terms of moments of the center of mass scattering angle. Depolarization, or orientational relaxation,is discussed in Chapter 6.

I will state several times in this thesis that a spectroscopic assignment is straightforward (in fact, embarrassingly so). Simplicity is the virtue of double resonance laser spectroscopy.

References for Chapter 1

1. D.J. Eckstrom, S.A. Edelstein, and S.W. Benson, J. Chem. Phys. 60, 2930 (1974).
2. C.R. Jones and H.P. Broida, J. Chem. Phys. 60, 4373 (1974)
3. C.J. Hsu, W.D. Krugh, and H.B. Palmer, J. Chem. Phys. 60, 5118 (1974).
4. G.A. Capelle, C.R. Jones, J. Zorskie, and H.P. Broida, J. Chem. Phys. 61, 4777 (1974).
5. H.B. Palmer, W.D. Krugh, and C.J. Hsu, Symp. Combust., l5th, Tokyo, Japan, 1974 (1975), p. 951.
6. G.A. Capelle, H.P. Broida, and R.W. Field, J. Chem. Phys. 62, 3131 (1975).
7. D.J. Eckstrom, S.A. Edelstein, D.L. Huestis, B.E. Perry, and S.W. Benson, J. Chem. Phys. 63, 3828 (1975).
8. P.J. Dagdigian, Chem. Phys. Lett. 55, 239 (1978).
9. R.W. Field, C.R. Jones, and H.P. Broida, J. Chem. Phys. 60, 4377 (1974).
10. R.W. Field, "Long-Lived, Energetic Products of Chemical Reactions: $\mathrm{Ba}+\mathrm{N}_{2} \mathrm{O}$, A Case Stùdy", in Molecular Spectroscopy: Modern Research Volume II (Academic Press, New York, 1976), ed. N.K. Rao, p. 261 .
11. R.W. Field, C.R. Jones, and H.P. Broida, J. Chem. Phys. 62, 2012 (1975).
12. D. Husain and J.R. Wiesenfeld, J. Chem. Phys. 62, 2010 (1975).
13. G.P. Smith and R.N. Zare, J. Am. Chem. Soc. 97, 1985 (1975).
14. R. Behrens; Jr., A. Freedman, R.R. Herm, and T.P. Parr, J. Am. Chem. Soc. 98, 294 (1976).
15. A.T. Wager, Phys. Rev. 64, 18 (1943).
16. H.P. Broida and S. Golden, Can. J. Chem. 38, 1666 (1960).
17. H.E. Radford and H.P. Broida, J. Chem. Phys. 38 , 644 (1963).
18. W.M. Gelbart and K.F. Freed, Chem. Phys. Lett. 18, 470 (1973).
19. D. Grimbert, M. Lavollee, A. Nitzan, and A. Tramer, Chem. Phys. Lett. 57, 45 (1978).
20. J.J. Reuther and H.B. Palmer, 33 rd Symposium on Molecular Spectroscopy, Ohio State University, Columbus, Ohio, 1978. Talk RFll.
21. B.G. Wicke, M.A. Revelli, and D.O. Harris,
J. Chem. Phys. 63, 3120 (1975).
22. S.A. Johnson, R.W. Solarz, J.W. Dubrin, and R. Brotzmann, American Chemical Society Meeting, Anaheim, Ca., 1978.
23. L. Pasternack and P.J. Dagdigian, Chem. Phys. (in press).
24. M.H. Alexander and P.J. Dagdigian, Chem. Phys. (in press).
25. D.J. Benard, W.D. Slafer, and P.H. Lee, Chem. Phys. Lett. 43, 69 (1976).
26. D.J. Benard, W.D. Slafer, J. Hecht, and P.H. Lee, Electronic Transition Lasers II, eds. L.E. Wilson, S.N. Suchard, J.I. Steinfeld, M.I.T. Press, Cambridge, Mass., 1977, Chapter II-8.
27. D.J. Benard, P.J. Love, and W.D. Slafer, Chem. Phys. Lett. 48, 321 (1977).
28. A. Torres-Filho and J.G. Pruett, J. Chem. Phys. (in press).
29. R.W. Field, J. Chem. Phys. 60, 2400 (1974).
I. Introduction

The regular patterns exhibited by diatomic band spectra are often interrupted by missing, shifted and extra lines. These phenomena are collectively referred to as perturbations and result from mixing of Born-Oppenheimer basis states via interactions in the molecular Hamiltonian. These interactions can ordinarily be neglected but are significant when the energy separation between mutually interacting levels becomes comparable to the interaction matrix element. Often, one of the interacting states is not readily observed owing to electric dipole selection rules (e.g. a low lying triplet state). Although perturbations complicate spectral analysis, they can provide a wealth of information on the structure of such dark states.

The goal of deperturbation is to express observed eigenvalues in terms of basis state properties and mixing coefficients. This allows the calculation of both static and dynamic molecular properties in both perturbed and unperturbed spectral regions. For example, intersystem crossing has been shown to proceed principally via levels which share the properties of both electronic states; the branching ratio from one state to another can be calculated from
the perturbed level mixing coefficients. ${ }^{1-4}$
The purpose of this chapter is to outline the techniques of deperturbation employed in Appendix 1 on the First Negative Group of $N_{2}{ }^{+}, B^{2} \Sigma_{u}^{+}-X^{2} \Sigma_{g}^{+}$, and in Chapter 3 on the high and low lying states of BaO. The computer programs used for these works are listed in Appendix 2 and are described below.
II. Method

The techniques of deperturbation are not new. 5-19 First, a model is chosen by selecting a basis set of electronic states and then by setting up the Hamiltonian matrix, whose off-diagonal elements connect different basis states and are responsible for spectroscopic perturbations. Methods for deriving the Hamiltonian can be found in Refs. 5 through 24. An excellent review of the perturbations found in diatomic molecules has been written by Lefebvre-Brion. ${ }^{25}$ The matrix elements are expressed in terms of parameters, such as energies, rotational constants and perturbation matrix elements, which are to be least squares fitted.

Initial guesses for the parameters are made, the Hamiltonian is numerically diagonalized, and differences between eigenvalues are calculated to obtain transition frequencies. These are then compared to experimental frequencies and the parameters are varied to obtain the best fit to the data. This is the socalled direct approach to determining molecular constants. ${ }^{27-30}$ In order to deal with small matrices and avoid computer storage problems, each band is usually fit individually and the results from each band-fit are subsequently merged in a statistically rigorous fashion by taking into account correlations
between different parameters. $26,31,32, \dagger$
Although this method works well for unperturbed systems where all non-zero constants can be determined, deperturbation usually suffers from incomplete information on the perturbing state so that many paramețers must be held fixed at estimated values. If uncertainties in these parameters and correlations with other parameters, both varied and fixed, are not considered, the merge procedure is not statistically rigorous and may fail (see Appendix 1 for further discussion).

Fixing parameters which cannot be determined by least squares adjustment is essential in obtaining fitted parameters which are physically significantly. For example, if one spin component of a ${ }^{2} \Pi$ state perturbs a ${ }^{2} \Sigma^{+}$state with larger rotational constant,but the other component lies below the ${ }^{2} \Sigma^{+}$origin and does not perturb ${ }^{2} \Sigma^{+}$significantly, the ${ }^{2} \Pi$ spin-orbit constant, $A_{I I}$, cannot be determined. However, if A_{Π} is fixed at zero, the energy obtained for the ${ }^{2}$ II level will be incorrect by an amount comparable to A_{Π}. Generally, it is useful to calculate and fix perturbation matrix elements which cannot be determined in order to

[^0]obtain physically significant rotational and centrifugal distortion constants.

After preliminary fits to the data, energies and rotational constants are obtained which are used to construct a Rydberg Klein Rees (RKR) ${ }^{34}$ potential energy curve which is in turn used to calculate second order perturbation parameters,centrifugal distortion constants, and correct initial guesses for fixed interaction matrix elements (see below, Appendix l, and Refs. 35-37). The above procedure is repeated until self-consistency is attained.

Two criteria are used to define complete deperturbation: (1) observed minus calculated transition frequencies must be random and comparable to experimental error and (2) perturbation matrix elements and secondorder constants such as centrifugal distortion must be internally consistent. When the data are fit band by band, as opposed to a global fit of all bands simultaneously, an additional criterion for complete deperturbation is employed: vibrational intervals and rotational constants must decrease monotonically in a regular fashion with increasing vibrational quantum number. If these criteria are not met, either the data are systematically in error or the model Hamiltonian is incomplete.

Appendix 1 illustrates these principles in the deperturbation of the $\mathrm{N}^{+} \mathrm{B}^{2} \Sigma_{\mathrm{u}}^{+}-\mathrm{X}^{2} \Sigma_{\mathrm{g}}^{+}$band system.
III. Computer Programs

The two programs used in Appendix 1 and Chapter 3 are listed in Appendix 2. The second program consists of a main, calling routine, LSQ, and subroutines NEWFIT, DMFSD, DSINV, TRED2, TQL2, PRINT, PRINTA, PUNCH, PLOT, NAMEIT, LEVEL, SETUP, and MATRIX. NEWFIT is a non-linear least squares algorithm based on the work by Wentworth ${ }^{38}$ and Marquardt ${ }^{39}$ and was originally written by R. Stern and T. Bergeman with modifications made by A. Kotlar and myself. The DMFSD and DSINV routines are standard matrix inversion algorithms. TRED2 and TQL2 are matrix diagonalization routines: PRINT, PRINTA, PUNCH, and PLOT are all output subprograms.

The subroutines NAMEIT, LEVEL, SETUP, and MATRIX are unique to a specific deperturbation problem and separate routines are given for $N_{2}^{+} B^{2} \Sigma_{u}^{+}-X^{2} \Sigma_{g}^{+}$, BaO high lying state, and BaO low lying state deperturbation. NAMEIT simply assigns names to parameters in MATRIX. The order of these names corresponds to a code used to input the initial guesses; the parameters for each deperturbation model are listed in Appendix 2 along with their physical origin. LEVEL is a calling routine for the calculation of energy levels and transition frequencies: it first calls SETUP to calculate J independent factors in MATRIX, then calls MATRIX to calculate all non-
zero matrix elements, and then calls TRED2 and TQL2 to diagonalize MATRIX.

Sample output for a fit to the BaO $A^{1} \Sigma^{+}-X^{1} \Sigma^{+}(0,0)$ band is given in Appendix 2. The output consists of initial, intermediate, and final parameters followed by a listing of the covariance and correlation matrices and eigenvalues and eigenvectors of the scaled curvature matrix. The latter may be used in diagnostic least squares ${ }^{40}$ but are not used here. The observed transitions, or energies, are then compared to calculated values. Each transition is labeled by upper and lower level rotational quantum numbers, ranks, and parities; if energies are fitted, the lower level labels are set equal to zero. The rank is an energy ordering index: 1 corresponds to highest energy. Following this is a plot of the residuals and then a table of term values,beneath which mixing fractions are given. In the doublet fitting routines, fractional Π character corresponds to ${ }^{2} \Pi_{3 / 2}$; the difference between the sum of the Σ fraction and $I I$ fraction, from unity is, therefore, the ${ }^{2}{ }^{I} 1 / 2$ fractional character. In the BaO low lying state fitter, II character represents ${ }^{1} I I$ and Σ character represents total Σ character. In the BaO high lying state fitter, II character represents state \#3 in the Hamiltonian, Σ character represents state \#l. The specification of Σ and $I I$ character to be
output is done in LEVEL by squaring and summing elements of the unitary matrix which diagonalizes MATRIX.

The first program in Appendix 2 is called CALC and calculates frequencies for perturbed ${ }^{2} \Sigma^{+}-{ }^{2} \Sigma^{+}$ and ${ }^{2} I I-{ }^{2} \Sigma^{+}$band systems. The ground state must always be ${ }^{2} \Sigma^{+}$. It requires subroutines MATRIX, SETUP, NAMEIT, TQL2, and TRED2 from the doublet fitter. This program was used in the deperturbation of $N_{2}+B^{2} \Sigma_{u}^{+}-X^{2} \Sigma_{g}^{+}$ (Appendix 1) to aid in extending rotational analyses as well as predict positions and relative intensities (from mixing fractions) of extra lines. Sample output is included (the $B^{2} \Sigma_{u}^{+}-X^{2} \Sigma_{g}^{+}(3,5)$ band) and is selfexplanatory.
IV. Interpretation and use of perturbation matrix elements

Besides deperturbed energies and rotational constants which permit the construction of basis state potential energy curves, perturbation matrix elements are obtained. These can be used to determine second order constants, perturbing state absolute vibrational numberings, and an LCAO description of the molecular bonding.

These principles are illustrated in Appendices 1 and 6. In Appendix $1, N_{2}+A^{2} \Pi_{u} \sim B^{2} \Sigma_{u}^{+}$vibronic ro-tation-electronic and spin-orbit interaction matrix elements are factored into vibrational and electronic parts. From calculated vibrational integrals, obtained from deperturbed RKR curves, a constant electronic matrix element is obtained. The validity of this factorization is discussed in Refs. 41 and 42. These electronic factors can then be used with different calculated vibrational integrals to generate vibronic matrix elments which are otherwise indeterminate. Moreover, perturbation sums can be evaluated in the calculation of second order constants. For example, the $N_{2}^{+} B^{2} \Sigma_{u}^{+}$spin-rotation constant, γ, for a given vibrational level is calculable from second-order spinorbit interactions with all $\mathrm{A}^{2} \Pi_{u}$ vibrational levels
not included in the deperturbation model Hamiltonian (see Appendix l). Agreement between calculated and fitted second order constants is used as a criterion for complete deperturbation.

More importantly, factorization of perturbation matrix elements has been used to determine absolute vibrational numberings for perturbing states ${ }^{18,43}$ (Appendix 6). When the absolute numbering is unknown, deperturbed energies and rotational constants yield a family of potential energy curves,corresponding to different v numberings, with different fundamental vibrational frequencies and internuclear distances. However, vibrational integrals between mutually interacting states are generally different for each member of the family of perturbing state curves. By choosing trial numberings, calculating vibrational factors, and then checking for constancy in the electronic factor, the correct numbering is determined,

By representing each interacting state by a molecular orbital configuration and perturbation operators by sums or products of one-electron operators, electronic perturbation matrix elements can be written in terms of one-electron integrals. $25,44,45$ These principles are applied in Appendices 1, 3, and 5. One-electron molecular integrals can, in turn, be further reduced to sums of atomic one-electronic integrals by the

LCAO-MO method. 25,46-48 When the atomic integrals are known, this procedure can be inverted to obtain descriptions of the molecular orbitals in terms of atomic orbitals. In Appendix l, for example, atomic and ionic nitrogen spin-orbit splittings are used to show that the valence $1 \pi_{u}$ and $2 \sigma_{u}$ orbitals are comprised of $\approx 100 \%$ and $\approx 33 \% 2 p$ atomic orbital character, respectively. When electronic perturbation matrix elements are unknown, these semi-empirical techniques provide the experimentalist with crucial estimates of interaction matrix elements and spin-orbit constants with which he can begin to analyze a perturbed spectrum. Finally, the importance of $a b$ initio calculations in deperturbation is noted. $\underline{A b}$ initio calculations are not only an alternative to semi-empirical estimates but more importantly provide estimates of parameters where semi-empirical estimates do not exist or are expected to be unreliable. These principles are exemplified in Refs. 41,49 through 54 and in Appendix 4. For example, Λ-doubling in CH was calculated ab initio by Hammersley and Richards to within 1% of experimental values and is in better agreement with the astronomical value than are terrestrial experimental values. 50
V. Conclusion

In summary, deperturbation yields a characterization of band spectra in terms of a physically meaningful model which in turn may be used to calculate a variety of molecular properties as well as extend band analyses. This should be contrasted with the fitting of spectroscopic data to an arbitrary model which can merely result in reproduction of the experimental data and has no useful predictive power.

References for Chapter 2

1. A.T. Wager, Phys. Rev. 64, 18 (1943).
2. H.P. Broida and S. Golden, Can. J. Chem. 38, 1666 (1960).
3. H.E. Radford and H.P. Broida, J. Chem. Phys. 38, 644 (1963).
4. W.M. Gelbart and K.F. Freed, Chem. Phys. Lett, 18, 470 (1973).
5. A. Lagerqvist and E. Miescher, Helv, Phys. Acta 31, 221 (1958).
6. P. Felenbok and H. Lefebvre-Brion, Can. J. Phys. 44, 1677 (1965).
7. A. Lagerqvist and E. Miescher, Can. J. Phys. 44, 1525-1539 (1966).
8. H. Lefebvre-Brion, Can. J. Phys. 47, 541 (1969).
9. K. Dressler, Can. J. Phys. 47, 547 (1969).
10. R.W. Field and T.H. Bergeman, J. Chem. Phys. 54, 2936 (1971).
11. a) M. Leoni and K. Dressler, J. Appl. Math. Phys, 22, 794 (1971).
b) E. Bartholdi, M. Leoni, and K. Dressler, J. Appl. Math. Phys. 22, 797 (1971).
12. M. Leoni and K. Dressler, Helv. Phys. Acta 45, 959 (1972).
13. R.W. Field, S.G. Tilford, R.A. Howard, and J.D. Simmons; J. Mol. Spectrosc. 44, 347 (1972).
14. R.W. Field, B.G. Wicke, J.D. Simmons, and S.G. Tilford, J. Mol. Spectrosc. 44, 383 (1972).
15. R.W. Martin and A.J. Merer, Can. J. Phys. 5l, 125 (1973).
16. A.J. Merer, D.N. Malm, R.W. Martin, M. Horani, and J. Rostas, Can. J. Phys. 53, 251 (1975).
17. D. Cossart and T. Bergeman, J. Chem. Phys. 65, 5462 (1976).
18. R.W. Field, A. Lagerqvist, and I. Renhorn, Phys. Scripta 14, 298 (1976).
19. D. Cossart, M. Horani, and J. Rostas, J. Mol. Spectrosc. 67, 283 (1977).
20. K.F. Freed, J. Chem. Phys. 45, 4214 (1966).
21. I. Kovács, Rotational Structure in the Spectra of Diatomic Molecules (American Elsevier, New York, 1969).
22. J.T. Hougen, Natl. Bureau Stand. U.S. Monogr. 115 (1970).
23. T.E.H. Walker, Mol. Phys. 23, 489 (1972).
24. L. Klynning, "Multiplet Structure of Spectra of Diatomic Molecules", in Atoms, Molecules, and Lasers, International Atomic Energy Agency (Vienna, 1974), p. 449.
25. H. Lefebvre-Brion, "Perturbations in the Spectra of Diatomic Molecules" in Atoms, Molecules, and Lasers, International Atomic Energy Agency (Vienna, 1974), p. 411.
26. For a review see, D.L. Albritton, A.L. Schmeltekopf, and R.N. Zare, "An introduction to the least-squares fitting of spectroscopic data" in Modern Spectroscopy, Modern Research II (K. Narahari Rao, Ed.) pp. 1-67, Academic Press, New York, 1976.
27. R.N. Zare, A.L. Schmeltekopf, W.J.Harrop, and D.L. Albritton; J. Mol. Spectrosc. 46, 37-66 (1973).
28. D.L. Albritton, W.J.Harrop, and A.L. Schmeltekopf, R.N. Zare, and E.L. Crow, J. Mol. Spectrosc. 46, 67 (1973).
29. D.L. Albritton, W.J.Harrop, and A.L. Schmeltekopf, and R.N. Zare, J. Mol. Spectrosc. 46, 103 (1973).
30. J.A. Coxon, J. Mol. Spectrosc. 58, 1 (1975).
31. D.L. Albritton, A.L. Schmeltekopf, and R.N. Zare; J. Mol. Spectrosc. 67, 132 (1977).
32. D.L. Albritton, A.L. Schmeltekopf, W.J. Harrop, R.N. Zare, and J. Czarny, J. Mol. Spectrosc. 67, 157 (1977).
33. C. Athénour, Ph.D. thesis, University of Nice, France, 1975.
34. R. Rydberg, Z. Physik 73, 376 (1931); 80, 514 (1933); O. Klein, Z. Physik 76, 226 (1932); and A.L.G. Rees, Proc. Phys. Soc. 59, 998 (1947).
35. D.L. Albritton, W.J. Harrop, A.L. Schmeltekopf, and R.N. Zare, J. Mol. Spectrosc. 46, 25 (1973).
36. W.M. Kosman and J. Hinze, J. Mol. Spectrosc. 56, 93 (1975).
37. J. Tellinghuisen and D.L. Albritton, J. Mol. Spectrosc. 57, 160 (1975).
38. W.E. Wentworth, J. Chem. Ed. 42, 96-103 (1965).
39. D.W. Marquardt, J. Soc. Indust. Appl. Math. Il, 431 (1963).
40. R.F. Curl, Jr., J. Comp. Phys. 6, 367 (1970).
41. J.A. Hall, J. Schamps, J.M. Robbe, and H. LefebvreBrion, J. Chem. Phys. 59, 3271 (1973).
42. J. Schamps, J. Quant. Spectrosc. Radiat. Transfer 17, 685 (1977).
43. R.W. Field, J. Chem. Phys. 60, 2400 (1974).
44. E.U. Condon and G.H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, Cambridge, 1951.
45. M. Tinkham, Group Theory and Quantum Mechanics, McGraw-Hill (New York, 1964).
46. H. Lefebvre-Brion and C.M. Moser, J. Chem. Phys. 44, 2951 (1966).
47. E. Ishiguro and M. Kobori, J, Phys. Soc. Japan 22, 263 (1967).
48. S. Leach, Act. Phys. Polon. 34, 705 (1968).
49. T.E.H. Walker and W.G. Richards, Phys. Rev. 177, 100 (1969).
50. R.E. Hammersley and W.G. Richards, Nature 251, 598 (1974).
51. I.D.L. Wilson and W.G. Richards, Nature 258, 133 (1975).
52. J.A. Coxon and R.E. Hammersley, J. Mol. Spectrosc. 58, 29 (1975).
53. J.M. Robbe and J. Schamps, J. Chem. Phys. 65, 5420 (1976).
54. S. Green and R.N. Zare, J. Mol. Spectrosc. 64, 217 (1977).

Chapter 3: Optical-Optical Double Resonance Spectroscopy of BaO

I. Introduction

As discussed in Chapter 1 , the spectroscopic characterization of low lying, long lived, electronic states is essential to the understanding of alkalineearth oxide flame dynamics. This chapter describes the results of optical-optical double resonance (OODR) experiments on BaO used to detect and characterize not only $a^{3} \Sigma^{+}, b^{3} \Pi$, and $A^{\prime}{ }^{1} \Pi$ but also three high lying states $-D^{1} \Sigma^{+}, C^{1} \Sigma^{+}$, and $E^{1} \Sigma^{+}$-which can be used to probe lower level populations.

OODR is defined as stepwise excitation from
an initial to a final via a real intermediate level: in these experiments $A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}$is pumped and $* \leftarrow A^{1} \Sigma^{+}$, where * denotes $D^{1} \Sigma^{+}, C^{1} \Sigma^{+}$, or $E^{1} \Sigma^{+}$, is subsequently probed using two tunable dye lasers. OODR transitions are detected by $* \rightarrow \mathrm{X}^{1} \Sigma^{+}$UV fluorescence or by decreases in $A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$pump laser induced fluorescence (Fig. 3.1). Two types of dye lasers - broad bandwidth ($\Delta \nu_{\text {FWHM }} \approx 1 \mathrm{~cm}^{-1}$) and frequency stabilized, narrow bandwidth $\left(\Delta \nu_{\text {FWHM }} \approx 3 \times 10^{-5} \mathrm{~cm}^{-1}\right)$ - are used. Broad bandwidth lasers are employed for survey spectra and low resolution characterization of $D^{1} \Sigma^{+}(v=4-6), C^{1} \Sigma^{+}(v=0$ and 4$)$, and $E^{1} \Sigma^{+}(v=$?).

OODR with two narrow spectral width lasers yields (1) sub-Doppler excitation spectra (* $\rightarrow \mathrm{X}^{1} \Sigma^{+}$UV fluorescence

Figure 3.1: OODR excitation spectrum illustrating the two means of detection: (1) decrease in $A \rightarrow X$ fluorescence (upper trace) and increase in $C \rightarrow X$ UV fluorescence (lower trace). $A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}(1,0) P(1)$ is pumped while $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1) R(0)$ is probed. The upper trace is slightly broadened instrumentally; the lower trace linewidath is determined solely from homogeneous broadening mechanisms (Chapter 5),

Second Excitation R (0)

First Excitation $\mathrm{P}(1)$

Figure 3.1
vs. probe laser frequency) and (2) enhances $* \leftarrow A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}$pumping efficiency. The former results in $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}(1,0),(2,1)$, and $(3,1)^{\dagger}$ transition frequencies measured to a precision of $3 \times 10^{-3} \mathrm{~cm}^{-1}$ and unambiguous detection of extra lines at perturbations (Appendix 7). Enhanced OODR pumping makes $\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{a}^{3} \Sigma^{+}$and $\mathrm{b}^{3} \Pi_{0}$ emission detectable and improves the $* \rightarrow \mathrm{X}^{1} \Sigma^{+}$emission signal to noise ratio (S/N) by a factor of ≈ 50.

Previous OODR experiments employed broad bandwidth or unstabilized, narrow bandwidth or fixed frequency lasers in demonstrating the utility of OODR in simplfying excitation spectra and in accessing states with nominally zero transition moments to the ground state ${ }^{1-5}$ (Appendix 5). A review of double resonance spectroscopy including OODR has recently been published by Steinfeld and Houston. 6

Previous spectroscopic studies of the low lying $\left(\mathrm{T}_{\mathrm{e}}<20,000 \mathrm{~cm}^{-1}\right)$ states of BaO dealt with $\mathrm{X}^{1} \Sigma^{+}, \mathrm{A}^{1} \Sigma^{+}$, $b^{3} \Pi$, and $A^{1} \Pi$. Until this work $a^{3} \Sigma^{+}$had not been detected (Appendix 6). Mahanti ${ }^{7}$ was the first to correctly analyze $A^{1} \Sigma^{+}-X^{1} \Sigma^{+}$vibrational structure. Lagerqvist, Lind, and Barrow 8 (LLB) rotationally analyzed eleven bands (through
${ }^{+}\left(v^{*}, v^{\prime}\right)$ where v^{*} and v^{\prime} denote the $C^{1} \Sigma^{+}$and $A^{1} \Sigma^{+}$ vibrational quantum numbers, respectively. $\mathrm{v}^{\prime \prime}$ and v are reserved for $X^{1} \Sigma^{+}$and the final level of OODR induced * fluorescence, respectively.
$v^{\prime}=5$) of the $A^{1} \Sigma^{+}-X^{1} \Sigma^{+}$system and detected numerous perturbations but were not able to definitely determine the perturbing state symmetries. Field ${ }^{9}$ re-examined LLB's data and from perturbation patterns and magnitudes as well as the vibrational variation of interaction matrix elements not only assigned the perturbing state symmetries as $b^{3} \Pi$ and $A^{1} \Pi$ but also determined the zero vibration energies of these states with respect to $\mathrm{X}^{1} \Sigma^{+}$. Field's analysis was subsequently verified by the detection of $A^{1}{ }^{1} \rightarrow X^{1} \Sigma^{+}$chemiluminescence ${ }^{10,11}$, time-resolved laser induced $A^{1}{ }^{1} I \rightarrow X^{1} \Sigma^{+}$fluorescence, ${ }^{12}$ and broad bandwidth OODR induced $C^{1} \Sigma^{+} \rightarrow A^{1} \Pi$ and $b^{3} \Pi_{1}$ fluorescence (Appendix 5). Microwave ${ }^{13-15}$ and microwave-optical double resonance (MODR) ${ }^{17-20}$ experiments have provided precise $X^{1} \Sigma^{+}$and $A^{1} \Sigma^{+}$rotational constants and dipole moments. Higher lying states ($\mathrm{T}_{\mathrm{e}}>20,000 \mathrm{~cm}^{-1}$) of BaO were first observed by Parkinson ${ }^{21}$ who vibrationally analyzed bands observed in shock tube absorption between 290 and 390 nm and assigned the lower state as $\mathrm{X}^{1} \Sigma^{+}$but he could not determine. the upper state electronic symmetry. Parker ${ }^{22}$ re-examined this spectral region, extended Parkinson's analysis, and corrected Parkinson's upper state vibrational constants which were inexplicably in error. The upper electronic state of this Parkinson band system was established as $C^{1} \Sigma^{+}$in OODR experiments described in Appendix 5. Field, Capelle, and Revelli ${ }^{3}$, using an Ar^{+}
laser to pump $A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}$and a broadband dye laser to probe * $\leftarrow A^{1} \Sigma$, detected excitation into nineteen * vibrational levels but could not unambiguously group these levels into electronic states owing to irregular energy and rotational constant variations. However, every level observed exhibited ${ }^{1} \Sigma^{+}$electronic symmetry. ${ }^{3}$ Recently, Torres-Filho and Pruett ${ }^{23}$ (TP) observed and vibrationally assigned over one hundred $C^{1} \Sigma^{+}-X^{1} \Sigma^{+}$bands by pulsed dye laser excitation from high $X^{1} \Sigma^{+}$vibrational levels ($v^{\prime \prime}=7$ through 33); TP also noted irregular $C^{1} \Sigma^{+}$vibrational intervals signalling the presence of perturbations. In fact, these perturbations are primarily responsible for the finite electric dipole $C \rightarrow a$ and b transition moments.

This work reports observation of two additional high lying electronic states, $\mathrm{D}^{1} \Sigma^{+}$and $\mathrm{E}^{1} \Sigma^{+}$, and partial deperturbation of $C^{1} \Sigma^{+} v=0,1,2$, and 3 (Section III.A.).
$C^{1} \Sigma^{+}$emission into $a^{3} \Sigma^{+}, A^{1} \Sigma^{+}, b^{3} \Pi$, and $A^{1} \Pi$ is analyzed and combined with data from Refs. 8 and 19 in idepertưrbation and improved spectroscopic constants for these low lẏing states are obtained (Section III.B.). The results of this deperturbation, discussed in Section IV, suggest: that another low lying, hitherto unseen electronic state of BaO exists in this energy region.

The known electronic structure of BaO and means by which low lying level populations can be monitored
are reviewed and discussed in Section IV.
In Section II, experimental details of the OODR
experiment are presented.
II. Experimental

The method for producing diatomic metal oxides has been described in detail elsewhere. 24,25 Briefly, Ba metal (Alfa, 99.999\% purity) was placed into an alumina crucible (Mathis) which was, in turn, inserted into a tungsten basket heater (Mathis) and then resistively heated ($\approx 50 \mathrm{amps}$ at $\approx 3-6 \mathrm{VAC}$) until the metal melted. Ba vapor was then entrained in a flow of Ar carrier gas (Airco, 99.998\% purity) and mixed with CO_{2} (Airco, 99.8\% purity) to spontaneously form BaO. A weak, red chemiluminescent flame was observed initially but was no longer visible to the eye after about one hour. Steady state operating pressures were typically 0.5-4 torr $\mathrm{Ar}, 0.05$ torr CO_{2} and 1×10^{-4} torr Ba .

From an Ar flow rate of $\approx 10 \mathrm{~cm}^{3} \mathrm{sec}^{-1}$, measured (using a Matheson \#603 calibrated flow tube) before expansion, and knowledge of the flame pressure, a flow rate in the flame of $\approx 5 \times 10^{2} \mathrm{~cm} \mathrm{sec}{ }^{-1}$ is estimated. This produces a negligible Doppler shift in $C \leftarrow A$ excitation spectra.

Fig. 3.2 illustrates the optical arrangement for narrow bandwidth OODR. A Coherent Radiation CRIO Ar ${ }^{+}$ laser operating at 514.5 nm with 4.4 W output power was used to simultaneously pump two Coherent Radiation CR599-21 dye lasers. Dye laser outputs were typicallyFigure 3.2: Optical schematic diagram of OODRapparatus. The focussing lens 2 wassometimes removed (see Chapter 5). Seetext for discussion of components andfilters used.

Figure 3.2

100 mW single mode $\left(\Delta \nu_{\text {FWHM }} \approx 1 \mathrm{MHz}\right)$ and frequency stabilized at $\lambda \approx 600 \mathrm{~nm}$. The pump laser frequency was monitored using a Spectra Physics 2 GHZ free spectral range (FSR) spectrum analyzer; the probe laser was monitored using a Tropel 1.5 GHz FSR spectrum analyzer, a 300 MHz FSR fixed length semi-confocal Fabry-Perot etalon, and an I_{2} cell. I_{2} fluorescence excited by the probe laser was detected perpendicular to the laser propagation direction through a Corning 2-60 color glass filter by a Hamamatsu R372 photomultiplier tube (PMT) operated at - 600 VDC; the PMT current was measured using a Hewlett Packard 425 microammeter. Pump and probe lasers were combined at beam splitter 5 so that they propagated collinearly (Fig. 3.2). The beam splitter resulted in $\approx 50 \%$ loss in each beam ${ }^{\dagger}$. The lasers were then focussed into the oven chamber using a 2 in. diameter, 12 in., focal length quartz lens (this lens was sometimes removed for experiments described in Chapters 5 and 6). The minimum beam waists (1/e intensity points) were estimated to be $\approx 50 \mu \mathrm{~m}$ at the focal point which was ≈ 1 in. below flame center. These conditions resulted in optimum S / N of ≈ 200. Pump laser

[^1]induced $A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$fluorescence was monitored perpendicular to the laser propagation direction through Corning glass color and Ditric Optics 10 nm bandpass interference filters: for $A \rightarrow X(0,2)$ emission, Corning 2-61 and Ditric 650 nm (center frequency); for $A \rightarrow X(1,2)$ emission, Corning 2-62 and Ditric 630 nm ; for $A \rightarrow X(2,1)$, Corning 3-66 and Ditric 590 nm ; and for $A \rightarrow X(3,1)$, Corning 3-67 and Ditric $570 \mathrm{~nm} . * \rightarrow X^{1} \Sigma^{+}$ UV fluorescence was monitored through a Corning glass 7-37 color filter and a Ditric Optics 480 nm cut-off (short λ passing)interference filter. Both $A \rightarrow X$ and $* \rightarrow X$ duorescence were focussed using 2 in. diameter; 2.5-in\% focal Iength quartz lenses onto Hamamatsu R372 and R212 PMTs, respectively. PMTs were operated at -600 VDC and currents were measured using Keithley 417-fast picoammeters. Resolved spectra were obtained by collimating the fluorescence with a 2 in. diameter, 4 in. focal length lens and then focussing with a 2 in. diameter, 8 in. focal length lens onto the entrance slit of a Spex 1802 monochromator equipped with a 1200 groove/mm classical grating blazed at 1.2μ. Monochromator output was monitored using an RCA C31034A PMT cooled to $-20.0^{\circ} \mathrm{C}$ (Products for Research) and operated at - 1400 VDC. The C31034A output was subsequently measured using Ortec photon counting equipment (9301 preamplifier, AN302/N quad amplifier, Tl05/NL dual
discriminator, 416A gate and delay generator, 441 ratemeter, and M250/N nimbin). Typical $* \rightarrow \mathrm{X}^{1} \Sigma^{+}$total UV fluorescence signals were 1×10^{-7} amps. $A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+},{ }_{*} \rightarrow X^{1} \Sigma^{+}, I_{2}$ fluorescence, and the 300 MHz Fabry-Perot transmission peaks were simultaneously recorded on a four pen EsterlineAngus strip chart recorder. I_{2} excitation spectra were used for absolute frequency calibration ${ }^{26}$ to $.003 \mathrm{~cm}^{-1}$ and the 300 MHz Fabry-Perot transmissions were used for relative frequency calibration to $.003 \mathrm{~cm}^{-1}$.

Exciton 590 dye was used in the CR599-21 probe laser always and in the CR599-21 pump laser for $A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}$ $(0,0)$ and $(1,0)$ excitation. $A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}(2,0)$ and $(3,1)$ were pumped with a broad bandwidth dye laser with Exciton 540 dye.

The broad bandwidth lasers (home-made) exhibited a spectral width (FWHM) of $\approx 1 \mathrm{~cm}^{-1}$ with a three stage birefringent filter inserted in the laser cavity. 27-30 Typical output powers were $0.5-1 \mathrm{~W}$. The optical arrangement was identical to that described above except that spectrum analyzers and an I_{2} cell were not used and the 3.00 MHz Fabry-Perot was relaced by a $3.057 \mathrm{~cm}^{-1} \mathrm{FSR}$ solid quartz etalon, which provided a relative precision of $0.2 \mathrm{~cm}^{-1}$. Absolute frequency calibration to $0.5 \mathrm{~cm}^{-1}$ was obtained by passing the probe laser through the monochromator along with Ne emission from an Oriel pen lamp. ${ }^{31}$

The OODR experiment would proceed by tuning
the pump laser to an $A \nleftarrow X$ transition and monitoring resolved $A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$fluorescence through the monochromator in both thepumped band and in at least one additional band; separations between fluorescence lines correspond to known ${ }^{8,15,16}$ ground state combination differences and were thus used to determine J'. 32,33 Knowledge of the laser frequency was sufficient to determine the $A^{1} \Sigma^{+}-X^{1} \Sigma^{+}$band excited. ${ }^{7,8}$ For narrow bandwidth excitation, only the most abundant isotope, ${ }^{138_{B a}}{ }^{16} O$ was selected (Fig. 3.3), but the shifts corresponding to different isotopes of Ba were unresolvable when broad bandwidth excitation was employed. Broad bandwidth pumping usually resulted in excitation of two lines corresponding to different values of J ' but the fluorescence could always be resolved in an $A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$band other than the one pumped and the transitions were thereby unambiguously assigned. The pump laser frequency was then fixed while the probe laser was scanned to obtain $* \leftarrow A^{1} \Sigma^{+}$excitation spectra.
Figure 3.3: $A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}(1,0)$ excitation spectrum (probe laser blocked) illustrating the isotopic selectivity of single mode pumping. Lines corresponding to the most abundant isotope, ${ }^{138} \mathrm{Ba}^{16} \mathrm{O}$ (71.7\%), are labeled only by the rotational transition. Note the intensity of $P(1)$ relative to $135_{\mathrm{Ba}^{16} \mathrm{O}}$ (6.6\%) $\mathrm{R}(11)$.

Figure 3.3
III. Results
A. $\quad * \leftarrow A^{1} \Sigma^{+}$Excitation Spectra

1. Electronic and Vibrational Structure

* $\leftarrow \mathrm{A}^{1} \Sigma^{+}$band heads observed here are given
in Table 3.l. * state vibrational assignments are made by counting nodes in resolved $* \rightarrow \mathrm{X}^{1} \Sigma^{+}$UV fluorescence spectra (Fig. 3.4): because the * state equilibrium internuclear distances $\left(R_{e}\right)$ are ≈ 1.14 times $\operatorname{Re}\left(\mathrm{X}^{1} \Sigma^{+}\right)$(see below), Franck-Condon intensity distributions for emission from a single * vibrational level are reflections of * vibrational wave functions. 34,35 Fluorescence from the $\mathrm{E}^{1} \Sigma^{+}$and c levels in Table 3.1 is too weak to provide reliable node counts.

$$
C^{l} \Sigma^{+}\left(\mathrm{v}^{*}=1\right) \text { is strongly perturbed at low } J \text { (see }
$$

below) so that an extra band head is observed (Table 3.1).
Fluorescence from this extra band exhibits the same Franck-Condon intensity distribution as the main band indicating that the extra band fluorescence intensity is borrowed from the main band; this precludes a vibrational assignment by the above method for the perturbing level. It should be noted that the vibrational assignments in Table 3.1 indicate that $D^{1} \Sigma^{+}$lies below $C^{1} \Sigma^{+}$but since $C^{1} \Sigma^{+}$was discovered ${ }^{21}$ and named previously (Appendix 5) it seems undesirable to re-name these states here.

Table 3.1: * $\leftarrow \mathrm{A}^{1} \Sigma^{+}$Band Heads ${ }^{\mathrm{a}}$

*	($\mathrm{v}^{*}, \mathrm{v}^{\prime}$)	$\lambda_{\text {Head (nm) }}^{\text {Air }}$	$\sigma_{\text {Head }}\left(\mathrm{cm}^{-1}\right)$	$\begin{gathered} A^{1} \Sigma^{+} \leftarrow \mathrm{X}^{1} \Sigma^{+} \\ \text {Band Pumped } \\ \left(\mathrm{v}^{\prime}, \mathrm{v}^{\prime \prime}\right) \end{gathered}$	
$\overline{C^{1} \Sigma}{ }^{+}$	$(0,0)$	623.58(2)	16032.0(5)	$(0,1),(0,0)$	
$\mathrm{C}^{1} \Sigma^{+}$	$(1,0)\} \frac{\text { main }}{\text { extra }}$	$\begin{aligned} & 607.7585(11) \\ & 606.4684(11) \end{aligned}$	$\begin{aligned} & 16449.359(3) \\ & 16484.352(3) \end{aligned}$	$\{(0,0)$	
$\mathrm{Cl}^{1} \Sigma^{+}$	$(2,1)$	609.2764 (11)	16408.380(3)	$(1,0)$	
$\begin{aligned} & \mathrm{C}^{1} \Sigma^{+} \\ & \mathrm{c} \end{aligned}$	$\left.\begin{array}{l} (3,1) \\ (c+2,1)^{\prime} \end{array}\right\}$	$\begin{aligned} & 594.0521(20) \\ & 593.4745(10) \end{aligned}$	$\begin{aligned} & 16828.894(6) \\ & 16845.268(3) \end{aligned}$	\{ 11,0$)$	
$C^{1} \Sigma^{+}$	$(3,2)$	611.64 (4)	16345.(1)	$(2,0)$	
$\mathrm{Cl}^{1} \Sigma^{+}$	$(4,2)$	596.28(4)	16766.(1)	$(2,0)$	
$C^{1} \Sigma^{+}$	$(5,3)$	598.35 (2)	16708.1(5)	$(3,1)$	
$\mathrm{D}^{1} \Sigma^{+}$	$(3,2)$	618.83(4)	16155.(1)	$(2,0)$	
$\mathrm{D}^{1} \Sigma^{+}$	$(4,2)$	604.83(4)	16529.(1)	$(2,0)$	
$\mathrm{D}^{1} \Sigma^{+}$	$(5,3)$	609.39(2)	16405.3(5)	$(3,1)$	
$\mathrm{D}^{1} \Sigma^{+}$	$(6,3)$	595.71(2)	16782.1(5)	$(3,1)$	
$E^{1} \Sigma^{+}$	$(e, 2)$	605.31(4)	16516.(1)	$(2,0)$	
c	$(\mathrm{c}+4,3)$	600.25(2)	16655.2(5)	$(3,1)$	¢

Figure 3.4: $\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{X}^{1} \Sigma^{+}$resolved UV fluorescence The number of nodes in the Franck-Condon intensity distribution indicates that v* $=4$. Each band consists of a P and R doublet.

Figure 3.4

Observation of only $P\left(\Delta J=J^{*}-J^{\prime}=-1\right)$ and $R(\Delta J=+1)$ branches in $* \leftarrow A^{1} \Sigma^{+}$excitation is the basis for assigning the electronic symmetries as ${ }^{1} \Sigma^{+}$. The $c \leftarrow A^{1} \Sigma^{+}(c+4,3)$ band does not exhibit simple P and R branch structure but is extensively perturbed; no rotational analysis of this band or of $C \nleftarrow A(5,3)$ was attempted. The vibrational assignment, $c+4$, results from deperturbation of $C^{1} \Sigma^{+}$and is discussed more fully below.

2. Rotational Structure

As mentioned above, the rotational structure for all of the bands in Table 3.1, except ($c+4,3$), consists of two branches, P and R; thus, only e parity levels (corresponding to reflection of electronic coordinates in a plane containing the internuclear axis) ${ }^{36}$ are observed. In unperturbed spectral regions, the rotational assignments are straightforward owing to selection of at most two (when broad bandwidth pumping is employed) $A^{1} \Sigma^{+}$rovibronic levels by the pump laser, and the fact that $R\left(J^{\prime}\right)$ always lies to higher frequency from $P\left(J^{\prime}\right)$. Rotational relaxation in $A^{1} \Sigma^{+}$resulting in many weaker transitions in the $*_{\leftarrow} A^{1} \Sigma^{+}$excitation spectrum (Chapter 5) permits a rotational analysis of the entire band for one pump laser frequency: the collisional satellite rotational assignments are easily and quickly
made as a result of the unambiguous assignments made for the $* * A^{1} \Sigma^{+}$transitions from the pumped $A^{1} \Sigma+$ rovibronic level (hereafter referred to as principal lines) (see Fig. 3.5) . In practice, more than one $A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}$ pump frequency isk used to facilitate rotational assignments in perturbed spectral regions.

When single mode pumping is employed, sub-Doppler excitation spectra are obtained not only for the principal lines but also for the collisional satellites (see Chapter 5 for a discussion of velocity randomization and line broadening observed as a function of the collisional change in J'). Fig. 3.6 illustrates the resolution obtained in the $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1)$ band head.

Because of low resolution and low precision, perturbations are not readily detectable in broad bandwidth excitation spectra. However, the opposite is true for single mode OODR: perturbations are sensitively detected by the appearance of extra and shifted Ines (Appendix"7). It is usually possible to analyze perturbed spectral regions from $A^{1} \Sigma^{+}$combination differences ${ }^{8}$ but it is sometimes necessary to verify assignments by selecting a different intermediate $A^{1} \Sigma^{+}$ rovibronic level: for example, for the $C^{1} \Sigma^{+} \mathrm{v}^{*}=3$, $J^{*}=50$ perturbed level both $A^{1} \Sigma^{+} V^{\prime}=1, J^{\prime}=49$ and 51 are pumped,in turn, and the $R(49)$ and $P(51)$ principal transitions probed to reveal and verify the existence of

Figure 3.5: Low resolution $D^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(4,2)$ excitation spectrum (broad bandwidth excitation). $A^{1} \Sigma^{+}\left(v^{\prime}=2, J^{\prime}=22\right)$ is pumped. Note the strong $R(22)$ and $P(22)$ principal lines above the many weaker collisional satellite transitions; $P\left(J^{\prime}\right)$ (lower numbers) and $R\left(J^{\prime}+10\right)$ (upper numbers are unresolved at low J'.

Figure 3.6: High resolution excitation spectrum of $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1)$ band head $[R(6)]$. $A^{1} \Sigma^{+}\left(V^{\prime}=1, J^{\prime}=15\right)$ is pumped; the principle $R(15)$ and $P(15)$ lines are at lower frequency and would be off scale. Note the resolution of $\approx 0.01 \mathrm{~cm}^{-1}$.

[^2]

Figure 3.6
four J* $^{*} 50$ extra lines (see Appendix 7)!

$$
C^{1} \Sigma^{+}-A^{1} \Sigma^{+}, D^{1} \Sigma^{+}-A^{1} \Sigma^{+}, \text {and } E^{1} \Sigma^{+}-A^{1} \Sigma^{+} \text {transi- }
$$

tion frequencies are given in Tables $3.2,3.3$, and 3.4, respectively. Only the $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}(1,0),(2,1)$, and $(3,1)$ bands are measured by single mode OODR.

Rather than fit the bands in Tables 3.2-3.4 by varying $A^{1} \Sigma^{+}$constants as well as * state constants, transition frequencies are converted to * term values by adding calculated $A^{1} \Sigma^{+}$term values (precise to $0.01 \mathrm{~cm}^{-1}$) determined below (Section III.B.). This greatly simplifies the deperturbation since the lower state need not be considered and, except for the single mode OODR data, results in an insignificant loss in precision. For the single mode OODR data the sub-Doppler precision is all but lost. The factor of three gain in precision obtainable by fitting transition frequencies rather than term values is sacrificed for faster and more economical fitting of term values. Term values for $\mathrm{C}^{1} \Sigma^{+}, \mathrm{D}^{1} \Sigma^{+}$, and $\mathrm{E}^{1} \Sigma^{+}$are given in Tables $3.5,3.6$, and 3.7 .
3. $\mathrm{C}^{1} \Sigma^{+}$Deperturbation

A total of eleven peturbations in $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}$excitation spectra have been detected and are summarized in Table 3.8 and Fig. 3.7. ${ }^{\dagger}$ Extra lines

[^3]

Table 3.2: $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Wave Numbers (continued)

Table 3.2: $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Wave Numbers (continued)

J			$\underline{R(J)}$	P (J)
				$(1,0)$ continued
26			16472.660	
27			16471.498	
28			16470.289	
29			16469.034	
30	16	467.732		
31	16	466.383		16437.634
32	16	$464.980 *$		16435.309
33	16	463.545		16432.931
34	16	462.052		16 430.508*
35				16428.054
36	16	458.921		16425.543
37	16	457.232		16422.973
38	16	455.544		16420.361
39	16	453.682		
40	16	451.492		

Table 3.2: $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Wave Numbers (continued)

J			R (J)	$(2,1)^{d}$		P (J)
0	16	406.662				
1	16	407.066			16	405.695
2	16	407.418			16	405.135
3	16	407.715			16	404.510
4	16	407.957			16	403.839
5	16	408.144*			16	403.106
6	16	408.276*			16	402.321
7	16	408.356*			16	401.488
8	16	408.380			16	400.593
9					16	399.645*
10					16	398.648
11	16	408.124*			16	397.591
12	16	407.930			16	396.481
13	16	407.678			16	395.313
14	16	407.370			16	394.095
15	16	407.004			16	392.817
16	16	406.578			16	391.487
17	16	406.094			16	390.096
18	16	405.552			16	388.643
19	16	404.939			16	387.137
20	16	404.251			16	385.560
21	16	403.451				
22	16	402.518	$16404.835^{\text {c }}$			
23	16	401.301	16403.252		16	380.395

Table 3.2: $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Wave Numbers (continued)
$\underline{J} \underline{R(J)} \quad \underline{P(J)}$
$(2,1)$ continued

24	16	401.917	16399.678	16	378.432	$16 \quad 380.747$
25	16	400.753	$16 \quad 397.714$	16	376.196	$16 \quad 378.145$
26	16	399.624*		16	375.786	
27	16	398.401	$16 \quad 399.128$	16	373.604	,
28	16	397.398		16	371.453	
29	16	396.110		16	369.207	16369.929°
30	16	394.766		16	367.183	
31	16	393.337		16	364.876	
32	16	391.795		16	362.518	
33				16	360.071	
34				16	357.510	

$40 \quad 16 \quad 377.062^{\dagger} \quad 16 \quad 377.508^{\dagger}$
4216372.108^{\dagger}

Table 3.2: $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Wave Numbers (continued)

J			R (J)				$\mathrm{P}(\mathrm{J})$		
					$\underline{(3,1)}^{d}$				
0	16	844.029*							
1	16	844.403							
2	16	844.711	16	828.602*					
3	16	844.952	16	828.784*		16	841.828	16	825.777
4	16	845.124*				16	841.113		
5	16	845.230*	16	828.894*		16	840.327	16	824.178
6	16	845.268*		828.822		16	838.476	16	823.248
7	16	845.244*		828.662		16	838.544	16	822.233
8	16	845.158*		828.415		16	837.568		
9	16	845.010	16	828.080		16	836.520		919.939
10	16	844.800		827.653		16	335.406	16	818.666
11	16	844.532	16	827.133		16	834.234*	16	817.307
12	16	844.206		826.521		16	832.998		815.849*
13	16	843.826		825.816		16	831.707	16	814.305
14	16	843.388		825.015		16	830.356		812.676*
15	16	842.897		824.122		16	828.943		810.941
16	16	842.352		823.123		16	827.486		809.114
17	16	841.744		822.027		16	825.971		807.194
18	16	841.139		820.832		16	824.412	16	805.349
19	16	840.426	16	819.526		16	822.783		
20	16	839.684		818.134*		16	821.152*		
21			16	816.632*		16	819.409		
22	16	838.053		815.029		16	817.644		
23	16	837.166	16	813.334*		16	815.825*		

Table 3.2: $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Wave Numbers (continued)

Table 3.2: $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Wave Numbers (continued)

J	$\underline{R(J)} \quad(3,1)$ continued					$\underline{P(J)}$			
48	16	797.723			16		754.246		
49	16	794.898		804.947	16	750.866			
50	16	791.729	16	801.314	16	747.294			
51			16	788.175	16	743.448		753.500	
52					16	739.283		748.871	
53					16	734.735			

Table $3.2: C^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Wave
J Numbers (continued)

Table 3.2: $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Wave Numbers (continued)

Table 3.2: $C^{1} \Sigma^{+}-A^{l} \Sigma^{+}$Transition Wave Numbers (continued) J $\quad \underline{R(J)} \quad(4,2)^{a}$

16
17
18
19
20
21
$27 \quad 16 \quad 750.7$
2816748.8
2916747.3

31
32
33
34
35
36
16748.8
16747.3
16745.6
16744.0
16742.2
16740.2
16738.3
16736.3
16734.1
16731.6
16729.5
16727.0
16724.2
16721.7
16718.6
16715.6
16712.4
16709.0
16705.3
16701.7
16697.6

Table 3.2: $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Wave Numbers (continued) Footnotes:
$a_{\text {Absolute }}$ accuracy of $0.5 \mathrm{~cm}^{-1}$ and relative precision of $0.2 \mathrm{~cm}^{-1}$ from broadband ($\Delta \nu \approx 1 \mathrm{~cm}^{-1}$) laser spectra. b_{J} is $\mathrm{A}^{\mathrm{l}} \Sigma^{+}$rotational quantum number.
${ }^{\text {Cunderlined }}$ frequencies correspond to extra lines. $d_{\text {Absolute }}$ accuracy of $0.005 \mathrm{~cm}^{-1}$ and relative precision of $0.003 \mathrm{~cm}^{-1}$ from single mode ($\Delta \nu \approx 3.3 \times 10^{-5} \mathrm{~cm}^{-1}$) laser spectra.
*Blended line, accuracy and precision of $0.01 \mathrm{~cm}^{-1}$. \dagger Not included in deperturbation analysis.

Table 3.3: $D^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Wave Numbers

$\underline{\mathrm{J}}^{\mathrm{b}}$	R (J)		P (J)	
		$(3,2)^{\text {a }}$		
17	16	149.2	16	134.3
18	16	148.1	16	132.6
19	16	147.1		
20	16	146.1	16	128.2
21	16	144.8	16	126.1
22	16	143.5	16	124.2
23	16	141.8	16	121.7
24	16	140.0	16	119.3
25	16	138.2	16	116.8
26	16	136.9	16	114.5
27	16	135.1	16	112.0
28	16	133.3	16	109.1
29	16	131.3	16	106.1
30	16	129.1	16	103.2
31	16	127.0	16	100.2
32			16	097.0
33	16	122.4	16	094.1
34	16	120.2	16	090.8
35	16	117.5	16	087.6
36	16	115.2	16	084.1
37			16	080.4

Table 3.3: (continued)

$$
(4,2)^{\mathrm{a}}
$$

16511.2
16523.5 16509.4
16522.5
16507.5
16521.3
16505.6
16520.2
16503.5
16518.9
16501.3
16517.5
16499.2

22
16516.1
16497.2
16514.5
16494.5
16512.9
16492.1
16511.2
16489.6
16509.4
16486.9
16507.5
16484.3
16505.6
16481.4

29
16475.4
16472.0

Table 3.3: (continued)
$\underline{J} \quad \underline{(4,2) \quad \text { (cont.) }}$

32
33

$(5,3)$

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
16465.4
16382.8
$16 \quad 380.4$
16378.0
16375.8
16392.8
$16 \quad 373.7$
16391.4
16371.3
16389.8
16368.8
16387.8
16366.3
16386.1
16364.0
16384.1
16361.3
16382.7
16358.6
$16 \quad 380.4$
16355.6
16378.0
16352.5
16375.8
16349.3
16373.7
16346.5
16371.3
16343.0
16368.8
$16 \quad 339.9$
16366.3
16336.3

Table 3.3: (continued)

J	R (J)			(J)
		$(5,3)$ (cont.)		
37	16	361.3		
38	16	358.6	16	326.2
39	16	355.6	16	322.5
40	16	352.5	16	318.4
41	16	349.3	16	314.5
42	16	346.5	16	310.9
43	16	343.0	16	306.6
44	16	339.9	16	302.2
45	16	336.4	16	298.5
46	16	333.4	16	294.1
47	16	328.9		
48	16	325.9		
49	16	322.8		
50	16	318.4		
51	16	314.5		
52	16	310.3		

$$
(6,3)^{a}
$$

$$
16756.7
$$

16772.4
16770.8

22
23
16769.7
16768.1
16752.5
16754.7
16750.6
16748.2

Table 3.3: (continued)

J	$\underline{R(J)}$		$\underline{P(J)}$	
		$(6,3)^{\text {a }}$		
24	16	766.5	16	745.4
25	16	764.6	16	743.1
26	16	763.0	16	740.4
27				
28			16	735.0
29	16	756.7	16	732.3
30	16	754.7	16	728.9
31	16	752.5	16	725.8
32	16	750.6	16	722.4
33	16	748.2	16	719.3
34	16	745.4		
35	16	743.1		
36	16	740.4		

$\mathrm{a}_{\text {See }}$ footnote a in Table 3.2
$\mathrm{b}_{\text {See }}$ footnote b in Table 3.2

Table 3.4: $E^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Wave Numbers

$\overline{\mathrm{a}}_{\text {See }}$ footnote a in Table 3.2 .
$\mathrm{b}_{\text {See }}$ footnote b in Table 3.2.

J	e	3.5: $C^{1} \Sigma^{+}$	Values (continued)		
			$\underline{T}\left(\mathrm{~cm}^{-1}\right)$		
$\mathrm{v}=1{ }^{\text {c }}$					
0			33204.834		
1			33205.274		
2			33206.168		
3			33207.524		
4	33	173.023	$33 \quad 209.325$		
5	33	175.505	33211.572		
6	33	178.445	33214.270		
7	33	181.835	33217.415		
8	33	185.690	33221.017		
9	33	189.991	33225.065		
10	33	194.756*	$33 \quad 229.566$		
11	33	199.959*	33234.518		
12	33	205.616	$33 \quad 239.920$		
1	33	211.724	$33 \quad 245.778$		205.266
14	33	218.289	33252.092		211.328
15	33	225.317	33258.858		217.822
16	33	232.765	33266.078		224.803
17	33	240.698	33273.755		232.159
18	33	249.073	33281.884		
19	33	257.898	$33 \quad 290.477$		
20	33	267.169	$33 \quad 299.524$		
21	33	276.898	33 309.029		
22	33	287.068	$33 \quad 319.002$		
23	33	297.685			

Table 3.5: $\mathrm{C}^{1} \Sigma^{+}$	Term Values (continued)
\underline{J}	$\underline{T\left(\mathrm{~cm}^{-1}\right)}$
	$\underline{v=1 \text { (continued) }}$

24
25
26
27
28
29
$33 \quad 375.751$
$33 \quad 388.490$
33401.695
$30 \quad 33 \quad 415.363 \quad \underline{33 \quad 415.363}$
3133429.501
3233444.102

3333 459.166*
3433474.710
3533490.709
$36 \quad 33 \quad 507.163$
$37 \quad 33 \quad 524.087$
$38 \quad 33541.422$
$39 \quad 33 \quad 559.269$
$40 \quad 33 \quad 577.452$
4133595.817

Tab	e	3.5: $\mathrm{C}^{1} \Sigma^{+}$	rm Values (continued)
J			$\underline{T}\left(\mathrm{~cm}^{-1}\right)$
			$\mathrm{v}=2^{\mathrm{C}}$
0	33	623.410	
1	33	623.871	
2	33	624.786	
3	33	626.166	
4	33	628.000	
5	33	630.294	
6	33	633.049	
7	33	$636.264 *$	
8	33	$639.928 *$	
9	33	644.058*	
10	33	648.650*	
11	33	653.695*	
12	33	659.189	
13	33	665.150	
14	33	671.564	
15	33	678.437	
16	33	685.762	
17	33	693.541	
18	33	701.771	
19	33	710.448	
20	33	719.579	
21	33	729.142	
22	33	739.106	
23	33	749.443	33751.760

Table 3.5: $C^{l}+$	Term Values (continued)	
J		
24	33760.013	$\frac{\mathrm{~T}\left(\mathrm{~cm}^{-1}\right)}{\underline{\mathrm{V}=2 \text { (continued) }}}$
25	33772.923	$\underline{33761.963}$
26	33784.567	$\underline{33781.526}$
27		
28	33809.358	
29	33822.693	
30	33	836.253
31	33	850.269

Table 3.5: $C^{1} \Sigma^{+}$			Term Values (continued)
J			$\mathrm{T}\left(\mathrm{~cm}^{-1}\right)$
			$\mathrm{v}=3$ (continued)
24	34	195.876	34172.047^{*}
25	34	207.240	34182.538
26	34	219.071	$34 \quad 193.443$
27	34	231.353	34204.755
28	34	244.105	$34 \quad 216.439$
29	34	257.317	
30	34	270.993	
31	34	285.122	
32	34	299.719	
33	34	314.756	
34	34	330.426	
35	34	346.294	
36	34	362.651	
37	34	379.473*	
38	34	397.038	
39	34	414.828*	
40	34	433.069	
41	34	451.761	
42	34	470.910*	
43	34	490.489	
45	34	530.930	
46	34	551.778	
47	34	573.031	

Table 3.5: $\quad \mathrm{C}^{1} \Sigma^{+}$Term Values (cont.)

$\underline{\mathrm{J}}$		$\mathrm{T}\left(\mathrm{cm}^{-1}\right)$ $\mathrm{v}=3$ (cont.)
48	34594.627	
49	34616.513	
50	34639.664	$\underline{34648.714}$
51	34660.973	$\underline{34670.559}$
52		

Table 3.5: $\mathrm{C}^{1} \Sigma^{+}$Term Values (continued)

Table 3.5: (cont.) (footnotes)
$\mathrm{b}_{\text {Underlined }}$ energies correspond to perturbing levels (derived from extra lines).
${ }^{C}$ Absolute accuracy of $0.02 \mathrm{~cm}^{-1}$ and relative precision of $0.01 \mathrm{~cm}^{-1}$. Energies are relative to $\mathrm{X}^{1} \Sigma{ }^{+}(\mathrm{v}=0$, J"=0).
*
Blended or otherwise degraded line. Relative precision $0.02 \mathrm{~cm}^{-1}$.

Table 3.6: $\mathrm{D}^{1} \Sigma^{+}$Term Values

\underline{J}	$\underline{T}\left(\mathrm{~cm}^{-1}\right)$
	$\underline{v}=3^{a}$
16	33924.8
17	33932.3
18	33940.7
19	33947.8
20	33956.4
21	33965.7
22	33975.0
23	33984.9
24	33995.1
25	33005.9
26	34016.9
27	34028.7
28	34040.5
29	34053.0
30	34065.7
31	34079.0
32	34092.7
33	34107.0
34	34121.3
35	34136.4
36	34151.6
37	34167.4

Table 3.6: (continued)

Table 3.6: (continued)

J	$\frac{\mathrm{T}\left(\mathrm{cm}^{-1}\right)}{\mathrm{V}=4^{\mathrm{a}}}$
31	34451.1
32	34.464 .2

$\underline{\mathrm{J}}$	$\underline{T}\left(\mathrm{~cm}^{-1}\right)$		$\underline{v}=5^{\text {a }}$	J	$T\left(\mathrm{~cm}^{-1}\right)$	
17	34	670.0		36	34	887.0
18	34	678.1		37	34	903.1
19	34	685.7		38	34	919.1
20	34	694.1		39	34	935.5
21	34	703.1		40	34	952.2
22	34	712.3		41	34	969.6
23	34	722.1		42	34	987.2
24	34	732.3		43	35	005.3
25	34	743.1		44	35	024.0
26	34	754.0		45	35	042.9
27	34	765.4		46	35	062.1
28	34	777.1		47	35	082.3
29	34	789.6		48	35	102.3
30	74	802.1		49	35	122.9
31	34	815.2		50	35	144.5
32	34	828.6		51	35	165.3
33	34	842.7		52	35	187.1
34	34	856.9		53	35	209.1
35	34	871.8				

Table 3.6: (continued)

\underline{J}	$T\left(\mathrm{~cm}^{-1}\right)$	
18	35	054.5
19	35	062.4
20	35	070.9
21	35	080.1
22	35	089.2
23	35	098.9
24	35	109.2
25	35	119.7
26	35	130.6
27	35	142.1
28	35	154.1
29	35	165.9
30	35	178.5
31	35	191.5
32	35	205.2
33	35	219.6
34	35	233.9
35	35	248.4
36	35	263.8
37	35	279.4

[^4]Table 3.7: $E^{l} \Sigma^{+}$Term Values

J	$\underline{T}\left(\mathrm{~cm}^{-1}\right)$
18	34301.0
19	34309.0
20	34317.8
21	34326.9
22	34336.2
23	34346.3
24	34357.0
25	34367.8

Table 3.8: Summary of $\mathrm{C}^{1} \Sigma^{+}$Perturbations

$\mathrm{Cl}^{1} \Sigma^{+}\left(\mathrm{v}^{*}\right)$	2	Perturbing State $\begin{aligned} & 3 \\ & \hline \end{aligned}$	5
0	$\begin{aligned} J_{2} & =41.5 \\ \eta & =0.139(2) \\ B^{1} \Pi & (v=b) \end{aligned}$		-
$1{ }^{\text {b }}$	$\begin{aligned} & J_{2}<0 \\ & n=-0.09(3) \\ & B^{1} \Pi \quad(v=b+1) \end{aligned}$	$\begin{array}{ll} J_{3}=31.0 & J_{4}>41 \\ \xi=17.64(25) & \xi=1.09(11) \\ & c(v=c) \end{array}$	-
2	$\begin{aligned} J_{2} & =24.0 \\ \xi & =1.004(5) \end{aligned}$		-
3	$\begin{aligned} & \mathrm{J}_{2}<0 \\ & \xi=7.689(12) \\ & \mathrm{c}(\mathrm{v}=\mathrm{c}+2) \end{aligned}$	$\begin{aligned} J_{3} & =33.6 & J_{4} & =37.4 \\ \xi & =0.19(3) & \xi & =0.35(4) \end{aligned}$	$\begin{aligned} J_{5} & =51.5 \\ \xi & =4.824(7) \end{aligned}$

Table 3.8: (Continued) (Footnotes)
perturbing state assignment (when possible). Uncertainties of 1σ in the last digit are given in parentheses. Values of η and ξ may also be found in Table 3.10 with extra digits necessary to reproduce the data precisely (see Footnote a to Table 3.10).
b_{A} heterogeneous interaction matrix element between perturbing states 2 and 3 was also fitted (see Table 3.10).

Figure 3.7: $C^{1} \Sigma^{+}$vibration-rotation energy vs. $J(J+1)$ indicating presence of spectroscopic perturbations. \square s denote culminations of heterogeneous $B^{1} \Pi \sim C^{l} \Sigma^{+}$interactions; - s denotes homogeneous $c \sim C^{1} \Sigma^{+}$interactions; $O s$ and x s denote unassigned homogeneous and heterogeneous interactions, respectively.

and corresponding term values may be found in Tables 3.2 and 3.5 respectively.

TO deperturb $\mathrm{C}^{1} \Sigma^{+}$, a simple, phenomenological Hamiltonian matrix (Table 3.9) is employed for reasons discussed below. Only e-parity levels are considered: a total of four perturbing states, numbered 2 through 5, (1 corresponds to $C^{1} \Sigma^{+}$), are included with two types of interactions: J-dependent, or heterogeneous, and Jindependent, or homogeneous. The computer program is listed in Appendix 2.

In Hund's case 'a', homogeneous perturbations result from spin-orbit or configuration interactions; heterogeneous perturbations are a consequence of rotationelectronic interactions. ${ }^{37}$ States which can perturb ${ }^{1} \Sigma^{+}$ are ${ }^{1} \Sigma^{+},{ }^{1} \Pi,{ }^{3} \Pi_{0}$, and ${ }^{3} \Sigma^{-}$in the case 'a' limit; only the ${ }^{1}{ }_{\Sigma}{ }^{+} \sim{ }^{1} \pi$ interaction is J-dependent. However, if the ${ }^{3}$ II state is intermediate between Hund's case 'a' and Hund's case 'b' (i.e. if spin is partially decoupled from the internuclear axis), nominal ${ }^{3} \Pi_{1}$ and ${ }^{3} \Pi_{2}$ may also perturb ${ }^{1} \Sigma^{+}$; and since spin-uncoupling increases with $J,^{3} \Pi \sim^{1} \Sigma^{+}$interactions may exhibit a J dependence. ${ }^{37}$ only one interaction matrix element - either homogeneous or heterogeneous - is fit for each perturbation; where the J-dependence of the interaction is not obvious, the homogeneous model is selected.

Diagonal matrix elments are represented by ${ }^{1} \Sigma^{+}$ rotational energy expressions: E+BJ(J+l)-DJ ${ }^{2}(J+1)^{2}$. Deperturbed $\mathrm{C}^{1} \Sigma^{+}$and perturbing state energies, rotational constants, and interaction matrix elements are given in Table 3.10. Correlation matrices for each fitted level are given in Table 3.11. The results are discussed below for each $C^{1} \Sigma^{+}$vibrational level. $\mathrm{v}^{*}=0$

One perturbation culminating at $J=41.5$ was previously reported and analyzed (Appendix 5). From interference between $\|$ and \perp transition moments in $C^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$UV fluorescence, it was concluded that the perturbation was heterogeneous and the perturbing state was assigned as $B^{l} \Pi(v=b)$ which lies higher and has a smaller rotational constant than $C^{1} \Sigma^{+}\left(v^{*}=0\right)$.
$\mathrm{v}^{*}=1$

Three perturbations are observed. A strong, homogeneous perturbation culminating at $J=31.0$ results in a doubling of the $C \leftarrow A(1,0)$ head (Table 3.1). The perturbing state (\#3) lies higher and has a smaller rotational constant than $C^{1} \Sigma^{+}\left(v^{*}=1\right)$.

In addition, several extra lines (Table 3.2) are observed corresponding to a level (\#2) below $C^{1} \Sigma^{+}$($\mathrm{v}^{*}=1$) but with a smaller rotational constant so that no crossing

Table 3.9: e-Parity Hamiltonian Matrix for $\mathrm{C}^{1} \Sigma^{+}$Deperturbation

State

$$
\begin{aligned}
& 1 E_{1}+B_{1} x-D_{1} x^{2} \\
& 2 \xi_{12}+\eta_{12} x^{\frac{1}{2}} \quad E_{2}+B_{2} x-D_{2} x^{2} \\
& \begin{array}{cc}
\eta_{23} x^{\frac{1}{2}} & E_{3}+B_{3} x-D_{3} x^{2} \\
0 & 0
\end{array} \\
& \begin{array}{ccccc}
4 & \xi_{14}+\eta_{14} x^{\frac{1}{2}} & 0 & 0 & E_{4}+B_{4} \mathrm{x}-\mathrm{D}_{4} \mathrm{x}^{2} \\
5 & \xi_{15} & 0 & 0 & 0
\end{array} \\
& \text { SYMMETRIC } \\
& 3 \\
& \begin{array}{c}
E_{4}+B_{4} x-D_{4} x^{2} \\
0
\end{array} \\
& \text { where } \mathrm{x}=\mathrm{J}(\mathrm{~J}+\mathrm{l}) \\
& \text { E vibronic energy } \\
& B=\frac{h}{8 \pi^{2} C \mu R^{2}} \text { rotational constant } \\
& \text { D centrifugal distortion constant } \\
& \xi \text { homogeneous interaction parameter } \\
& n \text { heterogeneous interaction parameter }
\end{aligned}
$$

Table 3.10: $\quad C^{1} \Sigma^{+}$Parameters ${ }^{a}$

$$
\begin{aligned}
& \underline{v}=0 \\
& E_{1}= 3.27497_{000} \pm 0.00005 \times 10^{4} \\
& B_{1}= 0.2383_{290} \pm 0.0003 \\
& D_{1}= \text { fixed } \times 10^{-7} \\
& E_{2}= 3.27708_{000} \pm 0.00010 \times 10^{4} \\
& B_{2}= 0.22644_{188} \pm 0.0006 \\
& D_{2}= 2.8 \\
& \quad \text { fixed } \times 10^{-7} \\
& n_{12}= 0.139_{540} \pm 0.002
\end{aligned}
$$

$$
\sigma^{2}=0.4
$$

Table 3.10: (cont.)

$$
\sigma^{2}=0.9
$$

$$
\begin{aligned}
& \mathrm{v}=1 \\
& E_{1}=3.31808874 \pm 0.00007 \times 10^{4} \\
& B_{1}=0.2379_{111} \pm 0.0005 \\
& D_{1}=1.30_{106} \pm 0.18 \quad \times 10^{-6} \\
& E_{2}=3.316689918 \pm 0.000006 \times 10^{4} \\
& B_{2}=0.2223938 \pm 0.0014 \\
& D_{2}=2.8 \quad \text { fixed } \times 10^{-7} \\
& { }^{\eta_{12}}=-0.09093 \pm 0.03 \\
& E_{3}=3.31918_{415} \pm 0.00008 \times 10^{4} \\
& B_{3}=0.2167_{654} \pm 0.0010 \\
& D_{3}=2.8 \quad \text { fixed } \times 10^{-7} \\
& \xi_{13}=1.764_{284} \pm 0.025 \times 10^{1} \\
& E_{4}=3.323611_{595} \pm 0.000016 \times 10^{4} \\
& B_{4}=0.21 \quad \text { fixed } \\
& D_{4}=2.8 \quad \text { fixed } \times 10^{-7} \\
& \xi_{14}=1.09_{293} \pm 0.11 \\
& \eta_{23}=0.23_{938} \pm 0.04
\end{aligned}
$$

Table 3.10: (cont.)

$$
\sigma^{2}=0.5
$$

$$
\begin{aligned}
& v=2 \\
& E_{1}=3.3623484700 \pm 0.0000003 \times 10^{4} \\
& B_{1}=0.2314_{050} \pm 0.0004 \\
& D_{1}=-5.8_{029} \pm 2.4 \times 10^{-7} \\
& \mathrm{E}_{2}=3.363831_{560} \pm 0.000006 \times 10^{4} \\
& B_{2}=0.20469_{540} \pm 0.00009 \\
& D_{2}=2.8 \quad \text { fixed } \quad \times 10^{-7} \\
& \xi_{12}=1.004_{086} \quad \pm 0.005 \\
& E_{3}=3.3639631_{100} \pm 0.0000011 \times 10^{4} \\
& B_{3}=0.21 \quad \text { fixed } \\
& D_{3}=2.8 \quad \text { fixed } \quad \times 10^{-7} \\
& \xi_{13}=0.270_{146} \quad \pm 0.016 \\
& \mathrm{E}_{4}=3.36629_{340} \pm 0.000020 \times 10^{4} \\
& B_{4}=0.21 \quad \text { fixed } \\
& D_{4}=2.8 \quad \text { fixed } \\
& \eta_{14}=0.27_{034} \pm 0.04
\end{aligned}
$$

Table 3.10: (cont.)

$$
\sigma^{2}=1.6
$$

$$
\begin{aligned}
& v=3 \\
& E_{1}=3.405545_{520} \pm 0.000003 \times 10^{4} \\
& B_{1}=0.23027713 \pm 0.00003 \\
& D_{1}=2.11_{005} \pm 0.12 \quad \times 10^{-7} \\
& \mathrm{E}_{2}=3.405042{ }_{181} \pm 0.000003 \times 10^{4} \\
& B_{2}=0.20753_{364} \pm 0.00003 \\
& D=2.8 \quad \text { fixed } \times 10^{-7} \\
& \xi_{12}=7.689_{472} \pm 0.012 \\
& E_{3}=3.40843_{613} \pm 0.00003 \times 10^{4} \\
& B_{3}=0.2068_{682} \pm 0.0003 \\
& D_{3}=2.8 \quad \times 10^{-7} \\
& \xi_{13}=0.19_{134} \pm 0.03 \\
& \mathrm{E}_{4}=3.40880_{230} \pm 0.00011 \times 10^{4} \\
& B_{4}=0.2080771 \pm 0.0008 \\
& \mathrm{D}_{4}=2.8 \\
& \times 10^{-7} \\
& \xi_{14}=0.35_{352} \pm 0.04 \\
& E_{5}=3.41226_{168} \pm 0.00004 \times 10^{4} \\
& B_{5}=0.20563_{445} \pm 0.00015 \\
& D_{5}=2.8 \quad \text { fixed } \quad \times 10^{-7} \\
& \xi_{15}=4.824_{352} \pm 0.007
\end{aligned}
$$

Table 3.10: (cont.)

$$
\begin{aligned}
& \underline{v}=4 \\
& E_{1}=3.447602018 \\
&{ }^{2} \pm 0.000017 \times 10^{4} \\
& B_{1}=0.2291_{425} \\
& \pm 0.0005 \\
& D_{1}=9.22_{277} \\
& \pm 0.4 \times 10^{-7}
\end{aligned}
$$

$$
\sigma^{2}=0.5
$$

a All units are cm^{-1}. Parameters are defined by Table 3.9. Uncertainties quoted are lo estimates. Three extra digits, statistically insignificant, are given in order to account for correlations among parameters when using these parameters to reproduce the data (Ref. 38); correlation coefficients can be found in Table 3.ll. Variances quoted are a measure of the accuracy of the experimental errors quoted in Table 3.5: $\sigma^{2}>1$ means these errors were underestimated and vice versa for $\sigma^{2}<1 ; \sigma^{2}=1$ means the uncertainties quoted are comparable to the differences between observed and calculated term values. This variance is approximately related to the rms deviation by: $\sigma_{\mathrm{rms}}{ }^{2} 0.2 \sigma \mathrm{~cm}^{-1}$ for $\mathrm{v}^{*}=1$ and 4 and $\sigma \mathrm{rms} \sim 0.01 \overline{\mathrm{c}} \mathrm{cm}^{-1}$ for $\mathrm{v} *=\frac{\mathrm{rms}}{2}, 3$, and 4. All parameters not listed were fixed at zero.

Table 3.11: $\mathrm{C}^{1} \Sigma^{+}$Correlation Matrices ${ }^{\mathrm{a}}$

$$
\begin{array}{rrrrrr}
\mathrm{E}_{1} & 1.000 & & & & \\
\mathrm{~B}_{1} & -0.941 & 1.000 & & & \\
\mathrm{E}_{2} & -0.440 & 0.462 & 1.000 & & \\
\mathrm{~B}_{2} & 0.432 & -0.483 & -0.986 & 1.000 & \\
{ }^{\mathrm{n}} & 0 & 0.263 & -0.308 & -0.848 & 0.842
\end{array} 1.000
$$

Table 3.11: (cont.)

$$
V=1
$$

$$
\begin{aligned}
& \mathrm{E}_{1} \quad 1.000 \\
& B_{1} 0.553 \quad 1.000 \\
& \begin{array}{llll}
D_{1} & 0.589 & 0.998 & 1.000
\end{array} \\
& \mathrm{E}_{2}-0.648-0.921-0.934 \quad 1.000 \\
& \begin{array}{lllll}
B_{2} & -0.650 & -0.819 & -0.836 & 0.973 \\
1.000
\end{array} \\
& \begin{array}{lllll}
\mathrm{E}_{3}-0.614-0.996-0.999 & 0.938 & 0.841 & 1.000
\end{array} \\
& \begin{array}{lllllll}
B_{3}-0.552 & -0.982 & -0.975 & 0.843 & 0.720 & 0.973 & 1.000
\end{array} \\
& \begin{array}{llllllll}
E_{4} & 0.061 & -0.215 & -0.197 & -0.022 & -0.204 & 0.194 & 0.293
\end{array} 1.000 \\
& \begin{array}{lllllllllll}
\xi_{13} & 0.641 & 0.992 & 0.997 & -0.941 & -0.847 & -0.999 & -0.968 & -0.183 & 1.000
\end{array} \\
& \begin{array}{lllllllllll}
\eta_{12} & 0.563 & 0.980 & 0.971 & -0.863 & -0.758 & -0.968 & -0.992 & -0.252 & 0.963 & 1.000
\end{array} \\
& \begin{array}{llllllllllll}
\eta_{23} & 0.594 & 0.987 & 0.981 & -0.886 & -0.785 & -0.979 & -0.992 & -0.234 & 0.976 & 0.998
\end{array} \\
& \xi_{14} \quad 0.288 \quad 0.081 \quad 0.105-c .366-0.546-0.110 \quad 0.030 \quad 0.916 \quad 0.123 \quad 0.024 \\
& \mathrm{~V}=1 \text { (CONT.) } \\
& \begin{array}{lll}
\eta_{23} & 1.000 & \\
{ }^{\xi} 14 & 0.051 & 1.000
\end{array}
\end{aligned}
$$

Table 3.11: (cont.)

$$
V=2
$$

$$
\begin{aligned}
& \mathrm{E}_{1} \quad 1.000 \\
& { }^{B_{1}} 0.127 \quad 1.000 \\
& D_{1}-0.261-0.950 \quad 1.000 \\
& { }^{\xi} 120.195 \quad 0.049 \quad 0.058 \quad 1.000 \\
& \mathrm{E}_{2}-0.147-0.122-0.001-0.7861 .000 \\
& \begin{array}{lllllll}
B_{2} & 0.142 & 0.087 & 0.038 & 0.790 & -0.995 & 1.000
\end{array} \\
& \begin{array}{llllllll}
\mathrm{E}_{4} & 0.091 & 0.984 & -0.891 & 0.064 & -0.146 & 0.116 & 1.000
\end{array} \\
& E_{3}-0.143-0.212 \quad 0.227-0.190 \quad 0.146-0.137-0.1641 .000 \\
& \xi_{13}-0.059-0.828 \quad 0.779 \quad 0.053 \quad 0.048-0.019-0.841-0.209 \quad 1.000 \\
& \begin{array}{lllllllllll}
\eta_{14} & 0.155 & 0.999 & -0.959 & 0.030 & -0.102 & 0.068 & 0.983 & -0.203 & -0.833 & 1.000
\end{array}
\end{aligned}
$$

Table 3.11 (cont.)

$$
v=3
$$

E_{1}	1.000									
B_{1}	-0.954	1.000								
D_{1}	-0.858	0.954	1.000							
${ }^{\xi_{12}}$	-0.963	0.889	0.766	1.000						
E_{2}	-0.971	0.920	0.804	0.957	1.000					
B_{2}	0.880	-0.862	-0.765	-0.839	-0.936	1.000				
E_{5}	-0.179	0.152	0.314	0.067	0.092	-0.091	1.000			
B_{5}	0.156	-0.122	-0.278	-0.047	-0.070	0.070	-0.999	1.000		
ξ_{15}	0.398	-0.444	-0.536	-0.326	-0.347	0.335	-0.080	0.052	1.000	
E_{3}	0.015	0.087	0.174	-0.008	-0.013	0.007	0.068	-0.058	-0.110	1.000
B_{3}	-0.010	-0.093	-0.179	0.004	0.008	-0.002	-0.068	0.057	0.111	-0.998
${ }^{\xi} 13$	0.115	-0.017	0.078	-0.100	-0.109	0.097	0.058	-0.051	-0.068	0.962
E_{4}	-0.069	0.208	0.306	0.068	0.069	-0.075	0.067	-0.052	-0.162	0.189
B_{4}	0.074	-0.216	-0.312	-0.072	-0.074	0.080	-0.062	0.047	0.162	-0.205
${ }^{\xi} 14$	0.027	0.110	0.229	-0.020	-0.023	0.013	0.076	-0.062	-0.139	0.158

Table 3.11 (cont.)
$V=3 \quad(\operatorname{CONT}$.

```
B3 1.000
\mp@subsup{\xi}{13}{1-0.959 1.000}
E
B}\mp@subsup{B}{4}{}0.198-0.203-0.998 1.00
\mp@subsup{\xi}{14}{\prime-0.149 0.170}
```

Table 3.11 (cont.)

$$
V=4
$$

```
E 1 1.000
B
D D -0.5:33 0.983 1.000
```

$a_{\text {Parameters }}$ are defined by Table 3.9. Correlation matrices are symmetric and related to the covariance matrix by: $c_{i j}=\sigma_{i j}^{2} /\left(\sigma_{i}^{2} \sigma_{j}^{2}\right) \frac{1}{2}$ where $c_{i j}$ is the ijth correlation coefficient, $\sigma_{i j}^{2}$ the ijth covariance matrix element, and σ_{i}^{2} the ith variance
occurs. In order to fit the data, interactions between not only this state and $\mathrm{v}^{*}=I\left(n_{12}\right)$ but also interaction between 2 and $3\left(n_{23}\right)$ meeds to be considered; both interactions are found to be heterogeneous. Comparing E_{2} and B_{2} values in the $\mathrm{v}^{*}=0$ and v* $=1$ fits (Table 3.10),

$$
\begin{align*}
& \mathrm{E}_{2}\left(\mathrm{v}^{*}=1\right)-\mathrm{E}_{2}\left(\mathrm{v}^{*}=0\right)=396.1 \mathrm{~cm}^{-1} \tag{3.1}\\
& \mathrm{~B}_{2}\left(\mathrm{v}^{*}=1\right)-\mathrm{B}_{2}\left(\mathrm{v}^{*}=0\right)=-0.004 \mathrm{~cm}^{-1}
\end{align*}
$$

where E_{2} and B_{2} are the perturbing state energy and rotational constant, respectively. These differences are typical of vibrational and rotational intervals observed in this energy region (see below and Ref. 3) and it seems plausible, therefore, that these vibrational levels belong to the same electronic state (i.e. B^{1} II); the heterogeneous nature of the $1 \sim 2$ and $2 \sim 3$ interactions in $\mathrm{v}^{*}=1$ further supports this hypothesis.

A third perturbation is apparent at $J>40$
and is assumed to be homogeneous.
$\mathrm{v}^{*}=2$

Three perturbations are observed with crossings at $J_{2}=24.0, J_{3}=28.5$, and $J_{4}>33$. The first two (states 2 and 3) are well characterized by the appearance
of extra lines and appear to be J-independent although the interactions are two weak to be certain. At $J>33$ a strong perturbation becomes apparent; it is not possible to extend the analysis with only the R branch data in hand. A J-dependent interaction is assumed but the term values could be equally well fit assuming a J-independent interaction. The former model is chosen because it results in a more reasonable value for the $C^{1} \Sigma^{+}$rotational constant; the homogeneous interaction model gives a value of $B_{1}\left(v^{*}=2\right)$ less than the value of $B_{1}\left(v^{*}=3\right)$. It is apparent from the negative value of D_{1} (Table 3.10) that $\mathrm{v}^{*}=2$ is incompletely deperturbed.
$\mathrm{v}^{*}=3$

Four interactions are observed with crossings $J_{2}<0, J_{3}=33.6, J_{4}=37.4$, and $J_{5}=51.5$. An extra head results from the $1 \sim 2$ perturbation (Table 3.1, Fig. 3.8); extra lines are also observed, at the other crossings. All four perturbations are fit to homogeneous interaction models but only the $1 \sim 2$ interaction is definitely J-independent. This level is well fit despite the exclusion of at least three other weakly interacting perturbing states detected by the appearance of extra lines (Appendix 7). $\mathrm{v}^{*}=3$ perturbations
are illustrated in Fig. 3.8.
Comparing the energies of perturbing levels $4\left(v^{*}=1\right), 3\left(v^{*}=2\right)$, and $2\left(v^{*}=3\right)$,

$$
\begin{align*}
& E_{2}\left(v^{*}=3\right)-E_{3}\left(v^{*}=2\right)=410.8 \mathrm{~cm}^{-1} \tag{3.2}\\
& E_{3}\left(v^{*}=2\right)-E_{4}\left(v^{*}=1\right)=403.6 \mathrm{~cm}^{-1}
\end{align*}
$$

and considering that these interactions are all homogeneous, it is plausible that they belong to the same electronic state. Unfortunately, the data are insufficient to determine rotational constants except for level $2\left(v^{*}=3\right)$. Extrapolating to higher energy, the next two levels of this state are predicted to lie at $34458 \mathrm{~cm}^{-1}$ and $34865 \mathrm{~cm}^{-1}$. The latter is close to the $c(v=c+4)$ level mentioned above, $E(v=c+4) \approx 34855 \mathrm{~cm}^{-1+}$, which is in turn near $C^{1} \Sigma^{+}\left(v^{*}=5\right)$ from which it may borrow oscillator strength. On this basis the $4\left(v^{*}=1\right), 3\left(v^{*}=2\right)$, and $2\left(v^{*}=3\right)$ perturbing levels, and the level with head at $16655.2 \mathrm{~cm}^{-1}$ in Table 3.1 are tentatively assigned as $c(v=c), c(v=c+1)$, $\mathrm{c}(\mathrm{v}=\mathrm{c}+2)$, and $\mathrm{c}(\mathrm{v}=\mathrm{c}+4)$, respectively. The lower case c label for this state is chosen because oscillator strength to $A^{1} \Sigma^{+}$and $X^{1} \Sigma^{+}$appears to be borrowed from

[^5]Figure 3.8: Perturbations in $C^{1} \Sigma^{+}\left(v^{*}=3\right)$. Observed minus calculated term values are plotted against J.
a) Calculated term values with ξ_{12}, ξ_{13}, ξ_{14}, and ξ_{15} (see Table 3.9) set equal to zero. O s denote main levels (> 50\% $C^{1} \Sigma^{+}$character), \square s denote \#2 perturbing state levels, denotes \#3 extra level and x s denote \#5 extra levels.
b) As in(a) except ξ_{12} included and equal to $7.689 \mathrm{~cm}^{-1}$. Insert shows $1 \sim 3$ and I ~ 4 interactions when $\xi_{15}\left(4.824 \mathrm{~cm}^{-1}\right)$ is also included. Note that the center of gravity for the 1 ~ 3 interaction is preserved despite appearances when $\xi_{12}=\xi_{15}=0$. This illustrates the complicated level shifts associated with multiple perturbations.

FIGURE 3.8a

Figure 38 b
$C^{l} \Sigma^{+}$. This intensity borrowing, the homogeneous nature of $c \sim C^{1} \Sigma^{+}$interactions, and observation of $C^{1} \Sigma^{+} \rightarrow a^{3} \Sigma^{+}$and $b^{3} \Pi_{0}$ emission (Section III.B) suggest that this state has predominantly triplet character. ${ }^{\dagger}$
$\mathrm{v}^{*}=4$

No perturbations are obvious within the precision of the broad bandwidth excitation spectrum.

It is seen From Table 3.10 that the deperturbed $C^{1} \Sigma^{+}$energies and rotational intervals decrease

[^6]monotonically with increasing v as expected from anharmonicities in the potential but in contrast to the irregularities observed for perturbed values. ${ }^{23}$ However, the variations are not regular even after deperturbation. This is not surprising considering (1) the phenomenological nature of the Hamiltonian matrix, (2) strong correlations between fitted parameters (Table 3.11), (3) neglect of second order energy and rotational constant corrections, and (4) neglect of additional perturbing states. The great density of electronic states in this energy region manifested by the large number of perturbing levels detected would make complete deperturbation difficult even with additional data; second order effects, in particular, are on the order of $1-10 \mathrm{~cm}^{-1}$ owing to strong spin-orbit interactions associated with the heavy Ba atom. Nonetheless, local deperturbation of individual vibrational levels has been achieved: the constants given in Table 3.10 reproduce the spectra to within experimental error and provide reliable mixing coefficients essential to population monitoring of lower energy states.

It is convenient to summarize spectroscopic data in the form of potential energy curves. To this purpose $C^{1} \Sigma^{+}$energies and rotational constants from Table 3.10 are combined with data from Ref. 23 and least squares fitted to a polynomial in (v $+1 / 2$) (i.e. a Dunham
expansion ${ }^{39}$) :

$$
\begin{equation*}
E(v, J)=\sum_{\ell, k} Y_{\ell k}(v+l / 2)^{\ell} J^{k}(J+1)^{k} \tag{3.3}
\end{equation*}
$$

where $E(v, J)$ is the vibration-rotation energy and the $Y_{\ell k}$ are spectroscopic constants ($\omega_{e}, B_{e}, \ldots$). Ref. 23 data are assigned uncertainties of $1 \mathrm{~cm}^{-1}$, which is greater than the quoted error, since they are derived from band heads and not origins. Although the energies from Ref. 23 are perturbed, the unperturbed energies determined here are weighted according to their uncertainties in Table 3.10 and constrain the fitted parameters. In addition, first order perturbation energy shifts tend to average to zero if enough levels are considered; the results presented in Table 3.12 represent a potential not designed to precisely reproduce observed energies but rather provide estimates for properties such as bond strength, equilibrium internuclear distance, and Franck-Condon factors. Comparison with constants from Refs. 22 and 23 is also given; the latter rotational constants were determined by matching observed and calculated $C^{l} \Sigma^{+} \rightarrow X^{l} \Sigma^{+}$FranckCondon intensity factors. Vibrational constants reported in Ref. 22 were obtained from less precise as well as perturbed data. Also given in Table 3.12, are spectroscopic constants for $B^{1} I I$ and c determined from the

Table 3.12: Spectroscopic Constants for High Lying States of $\mathrm{BaO}^{\mathrm{a}}$

	$\mathrm{D}^{1} \Sigma^{+}$	$\mathrm{Cl}^{1} \Sigma^{+}$		$\mathrm{B}^{1} \mathrm{II}$		$E^{1} \Sigma^{+}$		C	
$v_{00} \times 10^{-4}$	3.2701 (6)	3.27562	(30)	≤ 3.27708	(30)	3.4226		≤ 3.32361	(30)
$\mathrm{T}_{\mathrm{e}} \times 10^{-4}$	3.2835 (6)	3.28727	(30)						
Y_{00}	-0.425	0.943							
$\mathrm{Y}_{10}\left(\omega_{\mathrm{e}}\right) \times 10^{-2}$	4.036 (28)	$\begin{gathered} 4.360 \\ {[4.39] b} \end{gathered}$	(8)	≥ 3.96	(5)			≥ 4.08	(5)
$\mathrm{Y}_{20}\left(-\omega_{e} \mathrm{x}_{\mathrm{e}}\right)$	-3.8 (3)	-0.90	(16)					-1.2	(5)
$Y_{30}\left(\omega_{e} \mathrm{Y}_{\mathrm{e}}\right) \times \mathrm{xl0}{ }^{2}$		4.1	(10)						
$\mathrm{Y}_{01}\left(\mathrm{Be}_{\mathrm{e}}\right)$	$0.2197(20)$	0.2397	${ }_{1}^{(6)}$	≥ 0.2284	(10)	≥ 0.2174	(10)	$) \geq 0.210$	(10)
$\mathrm{Y}_{11}\left(-\alpha_{\mathrm{e}}\right) \times 10^{3}$	-1.5 (4)	-2.70	(18)	-4.1	(15)				
$\mathrm{Re}_{\mathrm{e}}\left(\mathrm{O}_{\text {A }}\right)$	2.314 (10)	$[-0.17]$ 2.2151	(28)	≤ 2.269	(5)	≤ 2.326	(5)	≤ 2.37	(6)

$\mathrm{a}_{\text {All }}$ units are cm^{-1} except where noted. Uncertainties of 1σ in last digit are given in parentheses and are generously estimated to account for incomplete deperturbation. Previously reported values are given in brackets below the values determined here.
$\mathrm{b}_{\text {Ref. }} 22$
$\mathrm{C}_{\text {Ref. }} 23$
assignments made above and the fitted parameters in Table 3.10.
4. $\mathrm{D}^{1} \Sigma^{+}$and $\mathrm{E}^{1} \Sigma^{+}$

Since no perturbations are obvious within the limited precision and resolution afforded by broad bandwidth OODR, $D^{1} \Sigma^{+}$and $E^{1} \Sigma^{+}$term values from Tables 3.6 and 3.7 , respectively, are least squares fitted to ${ }^{1} \Sigma^{+}$energy expressions. The results are given in Tables 3.13-3.15. The $\mathrm{D}^{1} \Sigma^{+}$energies and rotational constants are subsequently fit to polynomials in $v+1 / 2$. The results are given in Table 3.12; in the energy expansion, $D^{1} \Sigma^{+}\left(v^{*}=6\right)$ is excluded because the energy is $\approx 20 \mathrm{~cm}^{-1}$ too high due to a perturbation near the band origin. Insufficient data preclude varying a perturbation matrix element and deperturbing the $D^{1} \Sigma^{+}-A^{1} \Sigma^{+}(6,3)$ band origin.
B. $\quad C^{1} \Sigma^{+}$Fluorescence Spectra

1. Electronic and Vibrational Assignments Emission from $C^{1} \Sigma^{+}$to not only $X^{1} \Sigma^{+}$ and $A^{1} \Sigma^{+}$but also $a^{3} \Sigma^{+}, b^{3} \Pi_{0}, b^{3} \Pi_{1}$, and $A^{1}{ }^{1} \Pi$ is observed (Appendices 5 and 6) $\cdot C^{1} \Sigma^{+} \rightarrow b^{3} \Pi$ and $A^{1} I I$ fluorescence assignments are based upon the constants for the lower states reported by Field ${ }^{9}$ as well as the rotational

Table 3.13: $\mathrm{D}^{1} \Sigma^{+}$Parameters ${ }^{\text {a }}$

$\underline{\mathrm{V}=3}$
$\mathrm{E}_{1}=3.386637768 \pm 0.000012 \times 10^{4}$
$\mathrm{~B}_{1}=0.2149_{985} \pm 0.0003$
$D_{1}=6.2_{415} \quad \pm 2.0 \quad \times 10^{-7}$
$\sigma^{2}=0.9$

$$
\begin{aligned}
& \underline{v=4} \\
& \mathrm{E}_{1}=3.423970_{344} \pm 0.000013 \times 10^{4} \\
& \mathrm{~B}_{1}=0.2147_{217} \pm 0.0005 \\
& \mathrm{D}_{1}=1.8_{237} \pm 0.4 \quad \times 10^{-6} \\
& \sigma^{2}=0.24
\end{aligned}
$$

$$
\begin{gathered}
\underline{v=6} \\
E_{1}=3.498212789 \pm 0.000010 \times 10^{4}
\end{gathered}
$$

$$
B_{1}=0.21167_{334} \pm 0.00013
$$

$$
\begin{array}{ll}
\mathrm{D}_{1}=2.8 & \text { fixed } \times 10^{-7} \\
\hline \sigma^{2}=0.5 &
\end{array}
$$

[^7]Table 3.14: $\mathrm{D}^{1} \Sigma^{+}$Correlation Matrices ${ }^{\mathrm{a}}$

E_{1}	1.000			E_{1}	1.000		
${ }^{B} 1$	-0.959	1.000		B_{1}	-0.962	1.000	
D_{1}	-0.904	0.984	1.000	D_{1}	-0.907	0.983	1.000
$\underline{v}=5$				$\underline{v}=6$			
E_{1}	1.000			E_{1}	1.000		
${ }^{B_{1}}$	-0.934	1.000		B_{1}	-0.929	1.000	
D_{1}	-0.844	0.970	1.000				

$a_{\text {See }}$ footnote a, Table 3.11 .

Table 3.15a: $E^{1} \Sigma^{+}$Parameters ${ }^{a}$

$$
\begin{aligned}
& \mathrm{E}_{1}=3.422650_{281} \pm 0.000027 \times 10^{4} \\
& \mathrm{~B}_{1}=0.2174_{172} \pm 0.0005 \\
& \mathrm{D}_{1}=2.8 \quad \text { fixed } \times 10^{-7} \\
& \hline \sigma^{2}=0.6 \\
& \mathrm{a}_{\text {See footnote a, Table 3.10. }}
\end{aligned}
$$

Table 3:15b: $E^{1} \Sigma^{+}$Correlation Matrix ${ }^{a}$

$$
\begin{array}{lrr}
\mathrm{E}_{1} & 1.000 & \\
\mathrm{~B}_{1} & -0.979 & 1.000
\end{array}
$$

$$
\mathrm{a}_{\text {See }} \text { footnote } \mathrm{a}, \mathrm{Table} 3.11
$$

structure observed: P, R, doublets for $b^{3} \Pi_{0}$ and P, Q, R triplets for $b^{3} \Pi_{1}$ and $A^{1}{ }_{\Pi}$ (Appendix 5). The former implies $\Delta \Omega=0$ and the latter implies $\Delta \Omega=1$, where Ω is the projection of J onto the internuclear axis. ${ }^{32,40}$ $a^{3} \Sigma^{+}$assignments are made from (1) the pattern of emission $\left({ }^{P} P,{ }^{P}{ }_{Q},{ }^{P}{ }_{R}\right.$, and ${ }_{R}$ branches, where the superscript denotes the change in $N=J, J \pm 1)^{41}$ and (2) observation of $a^{3} \Sigma^{+} \sim A^{\prime l} I I$ perturbations described below. ${ }^{37}$ In addition, emission ascribed to $a^{3} \Sigma^{+}$could not be accounted for by any other known lower state (Appendix 6). Typical emission spectra can be found in Appendices 5 and 6. The ${ }^{3} \Sigma^{+}$energy level structure is illustrated in Figure 1 of Appendix 6.

Vibrational assignments for $b^{3} \Pi$ and $A^{1} \Pi$ are made from Field's analysis. ${ }^{9} \mathrm{a}^{3} \Sigma^{+}$vibrational
assignments are made from the vibrational variation of $a^{3} \Sigma^{+} \sim A^{1} I$ matrix elements (see Chapter 2 and Appendix 6). Observed $C^{1} \Sigma^{+}$emission bands are given in Table 3.16 along with calculated band head positions. Band heads are not observed since emission from a single $C^{l} \Sigma^{+}$rovibronic level is monitored; evidence for $C^{l} \Sigma^{+}$ rotational relaxation, which could produce a band head, in the form of collisional satellite lines is not observed at pressures ≈ 1 torr. In order to provide estimates of band head positions useful to the experimentalist, perturbed $A^{1} \Pi_{I}$ and $b^{3} \Pi_{1}$
energies ${ }^{\dagger}, 17577 \mathrm{~cm}^{-1} 10-12$ and $17322 \mathrm{~cm}^{-1} 9$ respectively, are used. $C^{1} \Sigma^{+}$perturbed energies are also used by correcting the deperturbed energies in Table 3.10 by the difference between observed (from Table 3.1) and calculated (from constants in Tables 3.10 and 3.31) $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}$band heads observed in excitation. Differences between perturbed and deperturbed energies for the remaining states are neglected since large, low J interactions responsible for shifting the band head are not present (see below). The heads calculated in Table 3.16 are accurate to $\pm 5 \mathrm{~cm}^{-1}$. Emission from $C^{l} \Sigma^{+}\left(V^{*}=4\right), D^{1} \Sigma^{+}$, and $E^{1} \Sigma^{+}$to states other than $X^{1} \Sigma^{+}$was not examined.

2. Rotational Analysis

32 of the bands listed in Table 3.1% are rotationally analyzed. Transition wave numbers and rotational assignments are given in Tables 3.17 through 3.20. The bands are only partially analyzed since emission from a single rovibronic level populates at most four (e.g. $\mathrm{C}^{1} \Sigma^{+} \rightarrow a^{3} \Sigma^{+}$emission) and as few as two (e.g. $\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{A}^{1} \Sigma^{+}$or $\mathrm{b}^{3} \mathrm{I}_{0}$) lower levels. Thus, to obtain complete rotational analyses it is necessary to painstakingly re-tune both pump and probe

[^8]Table 3.16: Observed $\mathrm{Cl}^{1} \Sigma^{+}$Emission Bands ${ }^{\mathrm{a}}$

$\begin{aligned} & \text { Band } \\ & \left(\mathrm{v}^{*}, \mathrm{v}\right) \end{aligned}$	$\sigma_{\mathrm{Head}}\left(\mathrm{~cm}^{-1}\right)$	$\lambda_{\text {Head }}^{\text {Air }}(\mathrm{nm})$
$\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{a}^{3} \Sigma^{+}$		
$(3,6)$	14813	674.9
$(3,7)$	14362	696.1
$(3,8)$	13916	718.4
$(2,11)$	12166	821.7
$(2,12)$	11735	851.9
$\mathrm{C}^{1} \Sigma^{+} \rightarrow A^{1} \Sigma^{+}$		
$(3,0)$	17325	577.0
$(2,0)$	16905	591.4
$(3,1)$	16829	594.1
$(1,0)$	16449	607.8
$(2,1)$	16408	609.3
$(3,2)$	16336	612.0
$(0,0)$	16032	623.6
$(1,1)$	15953	626.7
$(2,2)$	15916	628.1
$(3,3)$	15846	630.9
$(0,1)$	15536	643.5
$(1,2)$	15460	646.6
$(2,3)$	15426	648.1
$(3,4)$	15359	650.9
$(0,2)$	15043	664.6

Table 3.16: (cont.)

$\begin{aligned} & \text { Band } \\ & \left(\mathrm{v}^{*}, \mathrm{v}\right) \end{aligned}$	$\sigma_{\text {Head }}\left(\mathrm{cm}^{-1}\right)$	$\lambda_{\text {Head }}^{\text {Air }}(n m)$
$\mathrm{Cl}^{1}{ }^{+} \rightarrow \mathrm{A}^{1} \Sigma^{+}$(cont.)		
$(1,3)$	14971	667.8
$(2,4)$	14939	669.2
$(3,5)$	14875	672.1
$(0,3)$	14553	686.9
$(2,5)$	14455	691.6
$(3,6)$	14394	694.5
$(2,6)$	13974	715.4
$(3,7)$	13915	718.4
$(1,6)$	13519	739.5
$(2,7)$	13495	740.8
$(3,8)$	13439	743.9
$(2,8)$	13019	767.9
$(3,9)$	12966	771.1
$(1,9)$	12092	826.8
$(2,10)$	12074	828.0
$(1,10)$	11621	860.3
$\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{b}^{3} \mathrm{I}_{1}$		
$(3,1)$	16264	614.7
$(2,1)$	15844	631.0
$(1,0)$	15833	631.4
$(3,2)$	15826	631.7
$(0,0)$	15416	648.5

Table 3.16: (cont.)
Band
$\left(v^{*}, v\right)$

$\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{b}^{3} \mathrm{I}_{1}$ (cont.)			
$(1,1)$	15	390	649.6
$(0,1)$	14	973	667.7
$(2,3)$	14	973	667.7
$(3,4)$	14	964	668.1
$(1,2)$	14	952	668.6
$(3,5)$	14	540	687.6
$(0,2)$	14	535	687.8
$(3,6)$	14	120	708.0
$(3,7)$	13	705	729.5
$(2,6)$	13	700	729.7
$(3,8)$	13	294	752.0
$(2,7)$	13	284	752.6
$(3,9)$	12	888	775.7
$(1,7)$	12	829	779.3
$(2,9)$	12	467	801.9
$(1,8)$	12	418	805.0
$(3,11)$	12	089	827.0
$(1,9)$	12	012	832.3

Table 3.16: (cont.)

Band $\left(\mathrm{v}^{*}, \mathrm{v}\right)$	$\sigma_{\text {Head }}\left(\mathrm{cm}^{-1}\right)$	$\lambda_{\text {Head }}^{\text {Air }}(n m)$
	$\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{b}^{3} \mathrm{II}_{\text {。 }}$	
$(3,0)$	16551	604.0
$(2,1)$	15689	637.2
$(3,3)$	15238	656.1
$(2,3)$	14818	674.7
$(3,4)$	14810	675.1
$(3,5)$	14385	695.0
$(1,3)$	14364	696.0
$(3,6)$	13965	715.9
$(3,7)$	13550	737.8
$(2,6)$	13545	738.1
$(3,8)$	13139	760.9
$(3,9)$	12733	785.1
$(2,8)$	12719	786.0
$(3,10)$	12331	810.7
$(1,8)$	12264	815.2
$(3,11)$	12934	837.7
$(1,9)$	11857	843.1
	$\mathrm{Cl}^{1} \Sigma^{+} \rightarrow \mathrm{A}^{1}{ }^{\text {II }}$	
$(3,1)$	16018	624.1
$(2,1)$	15598	640.9
$(1,0)$	15588	641.3

Table 3.16: (cont.)

Band $\left(v^{*}, v\right)$	$\sigma_{\text {Head }}\left(\mathrm{cm}^{-1}\right)$	$\lambda_{\text {Head }}^{\text {Air }}(n m)$
	$\mathrm{Cl}^{1} \Sigma^{+} \rightarrow \mathrm{A}^{1}{ }^{1} \mathrm{I}$	
$(3,2)$	15580	641.7
$(0,0)$	15171	659.0
$(1,1)$	15144	660.1
$(0,1)$	14727	678.8
$(2,3)$	14725	678.9
$(3,4)$	14714	679.4
$(1,2)$	14705	679.8
$(2,4)$	14294	699.4
$(0,2)$	14288	699.7
$(3,5)$	14287	699.7
$(1,3)$	14270	700.6
$(2,5)$	13867	720.9
$(3,6)$	13864	721.1
$(1,4)$	13839	722.4
$(3,7)$	13445	743.6
$(2,6)$	13444	743.6
$(3,8)$	13029	767.3
$(2,7)$	13024	767.6
$(3,9)$	12618	792.3
$(3,10)$	12210	818.8
$(2,9)$	12197	819.6
$(1,8)$	12154	822.6

Table 3.16: (cont.) (Footnote)

Table 3.17: $\mathrm{C}^{1} \Sigma^{+}-\mathrm{a}^{3} \Sigma^{+}$Transition Frequencies $\left(\mathrm{cm}^{-1}\right)^{\dagger}$

J^{\prime}	$\underline{R_{R\left(J^{\prime}-1\right)}}$		$\underline{R_{Q}\left(J^{\prime}\right)}$		$(3,6)$		$\mathrm{P}^{\left.\text {P(} J^{\prime}+1\right)}$	
9	14	818.1	14	815.9	14	804.3	14	808.5
13	14	818.0*	14	815.0*	14	800.6*	14	804.0*
20	14	815.5	14	812.3	14	792.8	14	795.2
30	14	810.0	14	806.3	14	779.0*	14	779.0*
40	14	804.4*	14	797.3	14	745.8	14	763.5
$(3,7)$								
9	14	368.2	14	366.4	14	356.8	14	358.9
13	14	368.3*	14	366.5*	14	353.5*	14	355.4*
20	14	367.1	14	364.6	14	345.9	14	347.1
27	14	364.9	14	361.7	14	338.9*	14	338.9*
30	14	363.0	14	358.5	14	334.0	14	335.1
40	14	338.5	14	350.7	14	305.2		
$(3,8)$								
20	13	920.6	13	918.7	13	892.4		
30	13	907.9	13	914.7				
$(2,11){ }^{\prime}$								
16	12	166.8	12	165.8	12	150.1	12	151.1
22	12	165.4*	12	165.4*	12	143.8	12	144.8
32	12	163.6*	12	163.0*	12	131.3	12	132.5
43	12	153.2*	12	152.7*	12	110.6	12	112.0

Table 3.17: $\mathrm{C}^{1} \Sigma^{+}-\mathrm{a}^{3} \Sigma^{+}$Transition Frequencies (cm^{-1}) (cont.)

\underline{J}^{\prime}	$\underline{R_{R\left(J^{\prime}-1\right)}}$	${ }^{R_{Q(J)}}$	$\mathrm{P}_{\underline{Q}\left(\mathrm{~J}^{\prime}\right)}$	$\underline{P^{P\left(J^{\prime}+1\right)}}$
	$(2,12)^{\neq}$			
16	11735.4	11734.4	11718.5	11719.5
22	11 734.3*	11 734.3*	11712.5	11713.6
32	11 733.1*	11 732.5*	11701.0	11702.1
43	11 723.5*	11 723.5*	11681.2	11682.3

$F_{\text {Assignments }}$ chosen correspond to $C_{a}\left(a^{3} \Sigma^{+}\right.$spin-spin constant, See Table 3.25) greater than 0.See text for discussion of the branch assignments.
${ }^{\dagger} J^{\prime}$ is $C^{1} \Sigma^{+}$rotational quantum nmuber.
*Blended or otherwise degraded line. See text for discussion.

Table 3.18: $C^{1} \Sigma^{+}-A^{1} \Sigma^{+}$Transition Frequencies $\left(\mathrm{cm}^{-1}\right)^{\dagger}$

\underline{J}^{\prime}	R (J	$\left.{ }^{\prime}-1\right)$	$(3,6) \xrightarrow{\text { P }\left(J^{\prime}+\right.}$	
9	14	406.2	14	396.9
13	14	405.8	14	392.6
20	14	404.8	14	384.2
27	14	400.8	14	373.0
30	14	397.9	14	367.1
40	14	386.8	14	345.7
	$(3,7)$			
9	13	928.8	13	919.4
13	13	928.5	13	914.8
20	13	926.2	13	905.5
27			13	896.6
30	13	918.9	13	888.6
	$(3,8)$			
20	13	451.9	13	431.6
30	13	445.8	13	415.1
	$(3,9)$			
13	12	978.6	12	965.0
27	12	973.4	12	946.4

[^9]$$
-148-
$$

Tabie 3.19: $\mathrm{c}^{1} \Sigma^{+}-\mathrm{b}^{3}$ II Transition Frequencies $\left(\mathrm{cm}^{-1}\right)^{\dagger}$

Table 3.19: $\mathrm{C}^{1} \Sigma^{+}-\mathrm{b}^{3} \mathrm{II}$ Transition Frequencies (cm^{-1}) (cont.)

$\Omega=0$								$\Omega=1$			
Ј'	$\underline{R\left(J^{\prime}-1\right)}$		P(J^{\prime} +1)			R($\mathrm{J}^{\prime}-1$)		Q(J)		$P(5+1)$	
	$(3,5)$										
9	14	417.9	14	409.4		14	560.7	14	556.8	14	552.4
13	14	419.7	14	407.8*		14	563.2	14	557.3	14	551.4
20	14	424.4	14	406.4		14	568.1	14	559.3	14	550.1
27	14	430.7	14	406.6		14	574.7	14	563.0	14	550.7
30	14	432.6	14	406.4		14	576.5	14	563.3	14	549.7
40					$(3,6)$	14	588.0	14	570.4	14	552.3
9	13	993.8	13	985.7		14	137.3	14	133.4	14	129.1
13	13	996.2	13	984.0		14	139.7	14	134.2	14	128.1
20	14	002.5*		984.4		14	144.9	14	136.1	14	127.0
27						14	151.8	14	140.0	14	127.8
30						14	154.5	14	141.2	14	127.8

$(3,7)$

$9 \quad 13573.8 \quad 13565.5$
$\begin{array}{lllll}13 & 717.7 & 13 & 713.6 & 13 \\ 709.5\end{array}$
$\begin{array}{llll}20 & 13 & 582.6 & 13 \\ 564.7\end{array}$
$40 \quad 13606.4 \quad 13571.6$
$\begin{array}{llllll}13 & 725.4 & 13 & 716.8 & 13 & 707.7\end{array}$
$\begin{array}{lllll}13 & 748.6 & 13 & 731.6 & 13 \\ 713.8\end{array}$

Table 3.19: $\mathrm{C}^{1} \Sigma^{+}-\mathrm{b}^{3} \Pi$ Transition Frequencies (cm^{-1}) (cont.)

Table 3.20: $\mathrm{C}^{1} \Sigma^{+}-\mathrm{A}^{\prime} \mathrm{IF}$ Transition Frequencies $\left(\mathrm{cm}^{-1}\right)$

\underline{J}^{\prime}	$\underline{R(J '-1)}$		Q(J')	$\underline{P\left(J^{\prime}+1\right)}$	
			$(0,0)$		
18	15	191.0	15182.7	15	174.4
27	15	199.2	15186.6	15	174.6
34	15	206.8	15189.8	15	175.2
48	15	233.9	15209.4	15	189.4
			$(0,1)$		
18	14	751.6	14743.2	14	735.0
27	14	760.6	14748.4	14	735.9
34	14	769.5	14753.7	14	738.1*
48	14	798.7	14776.2	14	755.3
			$(0,2)$		
18	14	314.4	14306.4	14	298.1
27	14	324.6*	14 312.4*	14	300.0*
34	14	331.7	14316.5	14	301.5
48	14	363.8	14342.4	14	320.3
			$(3,2)$		
9	15	616.9	15612.8	15	608.2
13	15	618.2	15612.6	15	606.4
40	15	640.8	15623.1	15	604.9

[^10]$$
-152-
$$

Table 3.20: $C^{1} \Sigma^{+}-A^{1}$ II Transition Frequencies $\left(\mathrm{cm}^{-1}\right.$) (cont.)

\underline{J}^{\prime}	$\underline{R(J '-1)}$		Q(J')	$\underline{P\left(J^{\prime}+1\right)}$	
			$(3,4)$		
9	14	748.1		14	739.7
13	14	750.6	14744.6	14	738.6
20	14	754.6	14745.4	14	736.5
30	14	762.2	14747.6	14	735.2
40	14	770.7	14768.2		
			$(3,5)$		
9	14	320.5	14316.4	14	312.2
13	14	322.8	14316.8	14	310.8
20	14	327.6	14317.8	14	309.3
27	14	333.1	14319.0	14	308.6
30	14	334.0	14317.0	14	306.8
40	14	361.3	14334.7	14	324.2
			$(3,6)$		
9	13	897.4	13893.3	13	889.1
13	13	899.6	13893.2	13	887.5
20	13	903.4	13902.4	13	885.2
27	13	907.8	13902.9	13	881.8
30	13	923.0	13903.8	13	895.0
40		931.9	13914.7		896.5

Table $3.20: C^{1} \Sigma^{+}-A^{\prime}{ }^{1}$ Transition Frequencies $\left(\mathrm{cm}^{-1}\right.$) (cont.)

\underline{J}^{\prime}	$\underline{R(J '-1)}$		Q(J')		$\underline{P\left(J^{\prime}+1\right)}$	
			$(3$,			
9	13	478.7	13	474.6	13	470.6
20	13	488.6	13	479.6	13	470.2
30	13	497.9	13	485.2	13	472.3
40	13	511.7	13	494.2	13	476.9
			$(3,8)$			
9	13	062.2*	13	058.4	13	053.8*
13	13	063.8	13	058.3	13	052.2
20	13	071.7	13	063.4	13	054.7
27	13	077.2	13	065.6	13	053.7
30	13	082.8	13	069.9	13	056.5
40	13	096.9*	13	079.6	13	062.1
			$(3,9)$			
9	12	649.2	12	645.2*	12	641.0
13	12	650.8	12	645.7*	12	639.9
20	12	659.0				
27	12	665.2	12	653.7	12	641.8
30	12	670.3	12	657.6	12	644.3
40	12	685.7	12	668.5	12	651.1
				10)		
9	12	239.5		235.6		231.4

lasers and then re-scan the monochromator from $\approx 600 \mathrm{~nm}$ to $\approx 850 \mathrm{~nm}$. Instead, a grid of $\mathrm{C}^{1} \Sigma^{+}$levels spanning J* $=9$ to 40 was used to provide bits of rotational data in the lower levels over the same J range without undue loss in spectroscopic characterization of the lower states.

Rotational assignments are straightforward from knowledge of J^{*} determined by $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}$excitation spectra (Section III.A) and ΔJ selection rules. ${ }^{32}$ However, in perturbed spectral regions where the relative positions of P, Q, and R branches are anomalous,assignments are more difficult but still possible. From predicted perturbation patterns ${ }^{37}$ and random differences comparable to experimental error between calculated and observed term values, the rotational assignments made in these regions are verified.

In the case of $C^{1} \Sigma^{+} \rightarrow a^{3} \Sigma^{+}$emission where the lower levels are not perturbed ($\mathrm{v}_{\mathrm{a}}=11$ and 12) it is not possible to distinguish between P and Q or R and Q in the P-form and R-form branches, respectively ${ }^{\dagger}$. This corresponds to an ambiguity in the sign of the $a^{3} \Sigma^{+}$

[^11]spin-spin constant, C_{a}. In Table $3.17, C_{a}>0$ has been assumed. For perturbed ${ }^{3} \Sigma^{+}$levels, the sign of C_{a} is unambiguously determined, for $A^{1} \Pi I \sim a^{3} \Sigma^{+}$interactions are diagonal in J and not N so that each spin sub-level with a different"value of J"
is affected differently. In this case,
only one sign for C_{a} (i.e. one set of line assignments), yields a calculated spectrum with random residuals comparable to experimental error.

Transition frequencies are converted to term values, relative to $\mathrm{X}^{1} \Sigma^{+}\left(\mathrm{v}^{\prime \prime}=0\right.$, $\mathrm{J}^{\prime \prime}=0$), by subtracting the frequencies in Tables 3.17-3.20 from $C^{1} \Sigma^{+}$term values in Table 3.5. This does not degrade the data precision since $E\left(V^{*}, J^{*}\right)$ is precise to $0.01 \mathrm{~cm}^{-1}$ whereas the fluorescence transition frequencies are measured to an accuracy of only $0.5 \mathrm{~cm}^{-1}$ and a precision of $\sim 0.2 \mathrm{~cm}^{-1}$. Term values are given in Table 3.21 through 3.24. In fitting these term values, differences between transitions belonging to different branches but the same band were fit, weighted according to their uncertainty of $0.2 \mathrm{~cm}^{-1^{\dagger}}$, as well as term values for each level, which were given uncertainties of $0.5 \mathrm{~cm}^{-1}$. The discrepancy between

[^12]

Table 3.21: $a^{3} \Sigma^{+}$Term Values (cont.)
J
$\mathrm{Fr}^{\left(\mathrm{cm}^{-1}\right)}$

$\mathrm{F}_{2}\left(\mathrm{~cm}^{-1}\right)$

$19869.6 \mathrm{v}=7$ (cont.)

19 892.5*

19908.0

19912.5

19936.9

20094.6
$\mathrm{F}_{3}\left(\mathrm{~cm}^{-1}\right)$
19 892.5*
20082.4
20127.8

$$
\mathrm{v}=8
$$

20234.5
20236.3
20262.6
20363.1
20356.3

$$
\mathrm{v}=11
$$

21519.0
21520.0
21534.7

21 573.7*
21 573.7*
21594.3

21 701.1*
21 701.8*
21732.2

21 898.4*
21 898.9*
21939.6
21535.7
21595.3
21733.4
21940.9

Table 3.21: $\mathrm{a}^{3} \Sigma^{+}$Term Values (cont.)

$\underline{\mathrm{J}}$	$\mathrm{F}_{1}\left(\mathrm{~cm}^{-1}\right)$	$\underline{\mathrm{F}_{2}\left(\mathrm{~cm}^{-1}\right)}$	$\mathrm{F}_{3}\left(\mathrm{~cm}^{-1}\right)$
	$\underline{v}=12$		
15		21950.4	
16	21951.4		21967.2
17		21966.2	
21		22 004.8*	
22	22 004.8*		22026.6
23		22025.5	
31		22 131.6*	
32	22 132.2*		22163.7
33		22162.6	
42		22 328.0*	
43	22 328.0*		22369.2
44		22370.4	

[^13]| J | T | $\left(\mathrm{cm}^{-1}\right)$ | J | | $\left(\mathrm{cm}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{v}=6$ | | | 7 | '. |
| 8 | 19 | 674.6 | 8 | | 152.0 |
| 10 | 19 | 683.9 | 10 | | 161.4 |
| 12 | 19 | 695.6 | 12 | | 172.9 |
| 14 | 19 | 708.6 | 14 | 20 | 186.6 |
| 19 | 19 | 750.3 | 19 | 20 | 228.9 |
| 21 | 19 | 770.9 | 21 | 20 | 249.5 |
| 26 | 19 | 830.6 | 26 | | |
| 28 | 19 | 858.3 | 28 | 20 | 334.7 |
| 29 | 19 | 873.1 | 29 | 20 | 352.1 |
| 31 | 19 | 903.9 | 31 | 20 | 382.4 |
| 39 | 20 | 046.2 | 39 | 20 | 524.2 |
| 41 | 20 | 087.4 | 41 | 20 | 564.7 |
| | $\mathrm{v}=8$ | | | | |
| 19 | 20 | 703.2 | 12 | | 122.8 |
| 21 | 20 | 723.5 | 14 | 21 | 136.4 |
| 29 | 20 | 825.2 | 26 | 21 | 258.0 |
| 31 | 20 | 855.9 | 28 | 21 | 285.0 |

Table 3.23: bT Term Values

J	$\begin{aligned} & \Omega=0 \\ & \mathrm{~T}_{\mathrm{e}}\left(\mathrm{~cm}^{-1}\right) \end{aligned}$		$\left(\mathrm{cm}^{-1}\right)$	T_{f}	$\left(\mathrm{cm}^{-1}\right)$	
$\underline{V}=0$						
17			400.9	17408.6		
18						
19		17	417.8			
26			489.2	17501.4		
27						
28		17	514.2			
33		17	583.2	17	598.5	
34						
35			614.2			
47		17	838.0	17	859.4	
48						
49		17	881.6			
$\underline{\mathrm{v}}=1$						
17		17	843.3	17851.3		
18						
19			860.1			
26		17	929.9	17	942.4	
27						
28		17	954.6*			
33		18	023.5	18037.9		
34						
35		18	054.4			
47		18	279.0	18299.3		
48						
49		18	321.1*			
$\underline{v}=2$						
8		18	228.2	18231.8		
9						
10		18	236.3			
17		18	279.7	18287.5		
18						
19		18	296.1			
Blended or otherwise degraded line. See text for discussion of precision.						

Table 3.23: $b^{3} \Pi$ Term. Values (cont.)

J	$\begin{aligned} & \Omega=0 \\ & \underline{T}_{\mathrm{e}}{\underline{\left(\mathrm{~cm}^{-1}\right)}}^{-1} \end{aligned}$		$v=4$	$\Omega=1$				
				$\left(\mathrm{cm}^{-1}\right)$		$\left(\mathrm{cm}^{-1}\right)$		
8	19	238.9			19	093.3		
9						19	097.3	
10	19	247.0		19	101.6			
12	19	256.9		19	111.2			
13						19	116.7	
14	19	269.0		19	123.0			
19	19	306.3		19	160.0			
20						19	168.7	
21	19	324.2		19	178.2			
29				19	268.8			
30						19	281.8	
31				19	295.8			
39	19	562.8		19	420.0*			
40						19	437.8	
41	19	598.9		19	455.4*			

$$
\underline{v}=5
$$

19663.0
19671.4
19681.7
19693.8
19730.6
19748.7
19800.6
19824.8
19838.4
19864.6

19	520.1		
19	528.4		524.0
19	538.2		
19	550.0		19
19	587.0		
			19.1
19	605.0		595.7
19	656.7		
19	680.7		19
19	694.5		
19	721.3		19
19	845.0		
19	880.8	19	862.6

8	20	507.0
9		
10	20	515.3
19	20	572.5
20		
21	20	590.3
39	20	826.6
40		
41	20	861.4

20	363.2		
		20	367.2
20	371.3		
20	429.7	20	438.2
20	447.4		
20	684.4	20	701.5
20	719.3		

Table 3.23: $b^{3} \Pi$ Term Values (cont.)

$$
\mathrm{v}=9
$$

8
9
10
12
13
14
19
20
21
26
27
28
29
30
31
39
40
41
21336.1
21344.3
21354.5
21365.8
21400.2
21417.4
21470.1
21493.5

21 504.6*
21 530.4*
21651.4

21 685.4*
21192.6
21200.7
21211.4
21223.0
21256.9
21274.5
21327.6
21350.9
21361.6
21388.0
21509.2
21543.8
21196.4

21 217.1*
21265.6
21399.0
21374.5
21526.3

21
26
28
29
31
39
41
21809.6
21826.5
21878.3
21901.1
21913.2
21939.0

22 058.9*
22 093.2*

$$
\mathrm{v}=11
$$

21140.5
21163.5
21175.6

21 301.1
21 420.8*
21 455.0*

J	$\mathrm{T}_{\mathrm{e}}\left(\mathrm{~cm}^{-1}\right)$			
	$\mathrm{v}=2$			
8	18	464.0		
9	18.468 .0			
10	18	472.6		
12	18	483.2		
13	$18 \quad 495.0 \quad 18488.8$			
14				
17	18	516.6		
18	18524.6			
19	18	532.9		
27	18	602.3*		
28	18 614.6*			
29	18	627.0*		
33	18	696.3		
34	18711.5			
35	18	726.5		
39	18	792.3		
40	18809.9			
41	18	828.1		
47	$18945.5 \quad 18966.9$			
48				
49	18	989.0		
	$\mathrm{v}=4$			
8	19	332.7		
9				
10	19	341.1		
12	$19 \quad 19356.8$			
13				
14	19	362.8		
19	$19400.5 \quad 19409.6$			
20				
21	19	418.6		
29	$19508.8 \quad 19 \quad 523.4$			
30				
31	19	535.8		
39	19662.41964 .8			
40				

precision and accuracy results from calibration of spectra against Ne and Ar reference lines: ${ }^{31}$ absolute wavelength measurements made on different days varied by as much as $0.02 \mathrm{~nm}\left(\approx 0.5 \mathrm{~cm}^{-1}\right)$ because of irreproducibility in alignment of the standard atomic pen lamp with respect to both OODR induced fluorescence and the monochromator slit. Interpolation between atomic lines separated by more than 5 nm is accurate to no better than 0.02 nm . On the other hand, separations between OODR fluorescence lines separated by less than 3 nm are precise to $\approx 0.01 \mathrm{~nm}\left(\approx 0.2 \mathrm{~cm}^{-1}\right)$ from day to day. Thus, differences between emission line frequencies for given J* are weighted more heavily than absolute term values. Blended line (indicated by an asterisk in Tables 3.17-3.24) uncertainties were estimated to be $1.0 \mathrm{~cm}^{-1}$ absolute accuracy and $0.5 \mathrm{~cm}^{-1}$ relative precision.

3. Deperturbation

In order to more precisely deperturb the low lying states of $\mathrm{BaO}, \mathrm{Al}^{1} \Sigma^{+} \rightarrow \mathrm{X}^{1} \Sigma^{+}$transition frequencies from Ref. 8^{\dagger} and MODR frequencies from Ref. 19

[^14]are included. Ref. 8 data are first converted to term values by adding ground state term values calculated from Ref. 16 (rotational energies) and Ref. 3 (vibrational energies) to the transition frequencies in Ref. 8. Although, this is not statistically rigorous, the superior precision with which $\mathrm{X}^{1} \Sigma^{+}$rotational constants are known effectively breaks correlations between $A^{1} \Sigma^{+}$and $X^{1} \Sigma^{+}$ term values. The term values so obtained are given uncertainties of $0.05 \mathrm{~cm}^{-1}$ and $0.25 \mathrm{~cm}^{-1}$ for unblended and blended lines, repspectively. MODR data from Ref. 19 are weighted according to the uncertainties quoted there.

The Hamiltonian matrix used for deperturbation is given in Table 3.25. In addition to one $a^{3} \Sigma^{+}$, one. $b^{3} I I$, and one $A^{1} I I$ vibrational level a second $A^{1} \Sigma+$ level and a second $b^{3} \Pi_{2}$ level are included. These matrix elements have been derived previously but with a different phase convention ${ }^{42}$; the phase convention of Condon and Shortley ${ }^{43}$ [i.e. $\left.\langle S \Sigma \pm 1| S_{ \pm} \mid S \Sigma>\quad=+\sqrt{S(S+1)-\Sigma(\Sigma \pm 1)}\right]$ is employed here. The second $\mathrm{b}^{3} \mathrm{I}_{2}$ (b2) diagonal matrix element (H_{99}) is taken from Ref. 32 and is accurate for any degree of spin uncoupling. The interaction of this state with $A^{1} \Sigma^{+}$is expressed as a product of $a \mathrm{~J}$-dependent $\mathrm{b}^{3} \Pi_{0} \sim{ }^{3} \Pi_{2}$ mixing coefficient and the $b^{3} \Pi_{o} \sim A^{1} \Sigma^{+}$spin-orbit matrix element since no first order interaction between $b^{3} \Pi_{2}$ and $A^{1} \Sigma^{+}$exists. ${ }^{37}$

Table 3.25: Hamiltonian Matrix Used for Deperturbation of Low Lying States of BaO^{a}

$H_{11}^{e}=\left[E_{a}+B_{A} x-D_{A} x^{2}\right]$
$H_{22}=E_{A},+B_{A},(x-1)-D_{A},(x-1)^{2}$
$H_{33}=E_{b}+B_{b}(x+1)-D_{b}\left(x^{2}+4 x+1\right)-A_{b}-C_{b}$
$H_{44}=E_{b}+B_{b}(x+1)-D_{b}\left(x^{2}+6 x-3\right)+2 C_{b}$
$H_{55}=E_{b}+B_{b}(x-3)-D_{b}\left(x^{2}-4 x+5\right)+A_{b}-C_{b}$
$H_{66}^{f}=\left[E_{a}+B_{a}(x+2)-D_{a}\left(x^{2}+8 x+4\right)+2 C_{a}-2 \gamma_{a}\right]$
$H_{77}=E_{a}+B_{a} x-D_{a}\left[x^{2}+2 x\left(1 \mp_{1}\right)\right]-C_{a}-\gamma_{a}$
$H_{88}^{e}=\left[E_{A 2}+B_{A 2} x-D_{A 2} x^{2}\right]$
$\mathrm{H}_{99}=\mathrm{E}_{\mathrm{b} 2}+\mathrm{B}_{\mathrm{b} 2}\left(\mathrm{x}-\mathrm{Z}_{1}{ }^{\frac{1}{2}}-2 \mathrm{Z}_{2}\right)-\mathrm{D}_{\mathrm{b} 2}\left[0.5(1+4 \mathrm{x})^{\frac{1}{2}}-1\right]^{4}$
$H_{12}^{\mathrm{e}}=\mathrm{H}_{21}^{\mathrm{e}}=-2^{\frac{1}{2}}\left[\eta_{A A^{\prime}}+\eta_{A A^{\prime}}^{J} x\right] x^{\frac{1}{2}}$
$\mathrm{H}_{13}^{\mathrm{e}}=\mathrm{H}_{31}^{\mathrm{e}}=2^{\frac{1}{2}}{ }^{\mathrm{E}} \mathrm{Ab}$
$\mathrm{H}_{19}^{\mathrm{e}}=\mathrm{H}_{91}^{\mathrm{e}}=\left[\mathrm{B}_{\mathrm{b} 2}\left[(1+4 \mathrm{x})^{\frac{1}{2}}-1\right] /\left(2 \mathrm{~A}_{\mathrm{b} 2}\right)\right]^{2}{ }_{\xi_{\mathrm{Ab} 2}}$
$\mathrm{H}_{24}=\mathrm{H}_{42}=\xi_{\mathrm{A} \cdot \mathrm{b}}$
$\mathrm{H}_{27}=\mathrm{H}_{72}=\xi_{\mathrm{A}}{ }^{\prime} \mathrm{a}$
$\mathrm{H}_{28}=\mathrm{H}_{82}=-2^{\frac{1}{2}} \eta_{A} A^{\prime} 2^{\mathrm{x}^{\frac{1}{2}}}$
$H_{34}=H_{43}=-(2 x)^{\frac{1}{2}}\left[B_{b}-2(x+1) D_{b}\right]^{\frac{1}{2}}$
$\mathrm{H}_{35}=\mathrm{H}_{53}=2 \mathrm{D}_{\mathrm{b}}[\mathrm{x}(\mathrm{x}-2)]^{\frac{1}{2}}$
$H_{36}^{f}=H_{63}^{f}=2\left[\xi_{b a}-\eta_{b a}\right]$
$\mathrm{H}_{37}=\mathrm{H}_{73}=\mp \mathrm{x}^{\frac{1 / 2}{2}} \eta_{b a}$
$\mathrm{H}_{38}^{\mathrm{e}}=\mathrm{H}_{83}^{\mathrm{e}}=2^{\frac{1}{2}} \xi_{\mathrm{A} 2 \mathrm{~b}}$
$\mathrm{H}_{45}=\mathrm{H}_{54}=-[2(\mathrm{x}-2)]^{\frac{1}{2}}\left[\mathrm{~B}_{\mathrm{b}}-2(\mathrm{x}-1) \mathrm{D}_{\mathrm{b}}\right]$
$\mathrm{H}_{46}^{\mathrm{f}}=\mathrm{H}_{64}^{\mathrm{f}}=(2 \mathrm{x})^{\frac{1}{2}} \eta_{\mathrm{ba}}$

$$
\begin{aligned}
& \mathrm{H}_{47}=\mathrm{H}_{74}=(2)^{\frac{1}{2}}\left[\xi_{\mathrm{ba}}-\eta_{\mathrm{ba}}\right] \\
& \mathrm{H}_{57}=\mathrm{H}_{75}=-(\mathrm{x}-2)^{\frac{1}{2} \eta_{\mathrm{ba}}} \\
& \mathrm{H}_{67}^{\mathrm{f}}=\mathrm{H}_{76}^{\mathrm{f}}=-2 \mathrm{x}^{\frac{1}{2}}\left[\mathrm{~B}_{\mathrm{a}}-2(\mathrm{x}+1) \mathrm{D}_{\mathrm{a}}-\gamma_{\mathrm{a}} / 2\right]
\end{aligned}
$$

where $\mathrm{x}=\mathrm{J}(\mathrm{J}+1)$
$1,2, \ldots, 9$ denotes $A^{1} \Sigma^{+}\left(v_{A}\right), A^{\prime} H^{1}\left(v_{A},\right), b^{3} \Pi_{b}\left(v_{b}\right)$,

$$
b^{3} \Pi_{1}\left(v_{b}\right), \quad b^{3} \Pi_{2}\left(v_{b}\right), \quad a^{3} \Sigma_{o}^{+}\left(v_{a}\right)
$$

$$
a^{3} \Sigma_{1}^{+}\left(v_{a}\right), A^{1} \Sigma^{+}\left(v_{A}+1\right) \text {, and }
$$

$b^{3} \Pi_{2}\left(v_{b}+1\right)$, respectively
A2 denotes $A^{1} \Sigma^{+}\left(v_{a}+1\right)$
b 2 denotes $\mathrm{b}^{3} \mathrm{I}_{2}\left(\mathrm{v}_{\mathrm{b}}+1\right)$
E vibronic energy
$B=\frac{h}{8 \pi^{2} \mathrm{C} \mu \mathrm{R}^{2}}$ rotational constant
D centrifugal distortion constant
$A_{b} b^{3} I I$ spin-orbit constant
C spin-spin constant
$\gamma_{a} a^{3} \Sigma^{+}$spin-rotation constant

$$
\mathrm{Z}_{1}=\mathrm{Y}(\mathrm{Y}-4)+4 / 3+4 \mathrm{x}
$$

$$
\mathrm{Z}_{2}=\left(3 \mathrm{Z}_{1}\right)^{-1}[\mathrm{Y}(\mathrm{Y}-1)-4 / 9-2 \mathrm{x}]
$$

$$
\mathrm{Y}=\mathrm{A}_{\mathrm{b}} / \mathrm{B}_{\mathrm{b}}
$$

$$
\eta_{i j}=\langle i|\left|B L_{ \pm}\right||j\rangle \text { rotation-electronic interaction }
$$

$$
\xi_{i j}=<i| | H S O| | j>\text { spin-orbit interaction }
$$

$\mathrm{a}_{\text {All }}$ elements are for both e and f parity ${ }^{36}$ except where parity labels are explicitly given. When two signs are given the upper (lower) refers to e(f).

Only those parameters which could be determined are given in Table 3.25; since no $A^{\prime l}$ II or b^{3} II Λ-doubling is observed, these terms are not included. The computer program is given in Appendix 1.

Tables 3.26 and 3.27 and Figure 3.9 summarize the $A^{1} \Sigma^{+} \sim b^{3} \Pi$ and $A^{1} \Sigma^{+} \sim A^{1 l} I I$ perturbations observed here as well as those observed and analyzed previously. 8,9 $a^{3} \Sigma^{+} \sim A^{1 l}$ II perturbations are summarized in Table 3.28 and Fig. 3.10. The double perturbation between $a^{3} \Sigma^{+}$ $\left(v_{a}=8\right)$ and $A^{\prime} I_{I}\left(v_{A}^{\prime}=6\right)$ and $A^{1} \Sigma^{+}\left(v_{A}=7\right)$ at $J \approx 28.5$ is depicted in Fig. 3.11. Perturbations in each level and the corresponding deperturbation model are described below. The final set of parameters and the corresponding correlation matrices are given in Tables 3.29 and 3.30, respectively. $A^{1} \Sigma^{+}$term values calculated by diagonalizing the matrix in Table 3.25 with the parameters in Table 3.29 were used in converting $* * A^{1} \Sigma^{+}$transition frequencies to * term values above (Section III.A.).

Not all parameters in Table 3.25 are determined but some are fixed at estimated values in order to obtain physically significant varied parameters (see Chapter 2). Centrifugal distortion constants were fixed at $2.8 \times 10^{-7} \mathrm{~cm}^{-1}$, the value reported for $A^{1} \Sigma^{+}$in Ref. 8, except where noted. Fixed energies and rotational constants were calculated from Ref. $8\left(A^{1} \Sigma^{+}\right)$, Ref. $9\left(A^{\prime} I I\right.$, and $b^{3} \Pi$), or Appendix 6
$\left(a^{3} \Sigma^{+}\right)$. When indeterminate, $b^{3} I I$ spin-orbit constants (A_{b}) and $b^{3} I I \sim A^{1} I I$ spin-orbit interaction matrix elements ($\xi_{A^{\prime}, b}$) are fixed at $-100 \mathrm{~cm}^{-1}$ which is approximately the final mean value for both A_{b} and $\xi_{A \prime b} . b^{3} \Pi$ and $a^{3} \Sigma^{+}$ spin-spin constants, C_{b} and C_{a} respectively, and $a^{3} \Sigma^{+}$ spin-rotation constants, γ_{a}, are fixed at zero except where noted. All other off-diagonal matrix elements which could not be varied are fixed at values calculated from the product of electronic (Ref. 9 for $A^{1} \Sigma^{+} \sim A^{1} I I, A^{1} \Sigma^{+} \sim b^{3} I I$, and $a^{3} \Sigma^{+} \sim b^{3} \Pi$ and Appendix 6 for $\mathrm{a}^{3} \Sigma^{+} \sim \mathrm{A}^{1} \Pi$) and vibrational factors. The latter are calculated by generating Rydberg Klein Rees (RKR) potential curves ${ }^{44}$ from spectroscopic constants in Ref. 8 $\left(A^{1} \Sigma^{+}\right)$, Ref. $9\left(A^{1} I I\right.$ and $\left.b^{3} I I\right)$, and Appendix $6\left(a^{3} \Sigma^{+}\right)$ and then numerically solving the Schrodinger equation to obtain vibrational wavefunctions and matrix elements.

Figure 3.9: $A^{1} \Sigma^{+}$vibration-rotation energy vs. J (J+1) illustrating perturbations by $\mathrm{b}^{3} \Pi_{2}(\mathrm{O})$, $b^{3} \Pi_{1}(\square), b^{3} \Pi_{0}(\bullet)$, and $A^{1} \Sigma^{+}(x)$. Data for $\mathrm{v}_{\mathrm{A}}=0$ through 5 is primarily from Ref. 8.

Figure 3.10: $A^{\prime l}$ II vibration-rotation energy vs. $J(J+1)$ illustrating perturbations by $a^{3} \Sigma^{+}$ $F_{3}(\square), F_{2}(-), F_{1}(\mathbb{1})$, and $A^{1} \Sigma^{+}(x)$. Note double crossing, $A^{1} I I \sim a^{3} \Sigma^{+} \sim A^{1} \Sigma^{+}$, at $J_{O} \sim 28.5$ in $\mathrm{v}_{\mathrm{A}^{\prime}}=6$.

Figure 3.9

$-8 \angle T-$
Figure 3.10

Figure 3.11: Double perturbation between $a^{3} \Sigma^{+}\left(v_{a}=8\right)$, $A^{\prime}{ }^{1} \Pi\left(v_{A},=6\right)$, and $A^{1} \Sigma^{+}\left(v_{A}=7\right)$. The $a^{3} \Sigma^{+}\left(F_{3}\right) \sim A^{\prime}{ }^{1} I$ crossing is depicted here. The $A^{1} \Sigma^{+} \sim A^{\prime l} \Pi$ interaction, which culminates at $J_{0}=28.5$, is still weak. $C^{1} \Sigma^{+}\left(v^{*}=3, J^{*}=20\right)$ is prepared by OODR.

Figure 3.1I

Table 3.26: Summary of $A^{1} \Sigma^{+} \sim b^{3} \Pi$ Perturbations

$A^{1} \Sigma^{+}\left(v_{A}\right)$	b^{3} II $\left(\mathrm{v}_{\mathrm{b}}\right)$	$\Omega=2$	$\frac{\mathrm{J}_{\mathrm{O}}^{\mathrm{a}}}{1}$	0	$\xi_{A b}\left(\mathrm{~cm}^{-1}\right)^{\mathrm{b}}$	$\xi_{\mathrm{Ab}^{\prime \prime}<\mathrm{v}}$	$\mathrm{v}_{\mathrm{A}}\left\|\mathrm{v}_{\mathrm{b}}\right\rangle$	$\left(\mathrm{cm}^{-1}\right)$
$1^{\text {C }}$	0	45.1	60.3	89.6	11.02(2)	22.79		
$2^{\text {c }}$	1	27.6	43.6	79.7	-2.78(4)	22.7	(3)	
3^{c}	2		18.8	68.7	-7.89(2)	21.92		
- $4^{\text {c }}$	3			55.6	-6.485(12)	22.76	(4)	
$4^{\text {c }}$	4	97.7			7.08 (fixe			
$5^{\text {c }}$	4			38.3	-1.52(3)	20.8	(4)	
$5^{\text {c }}$	5	88.9			11.(5)	38.	(17)	
6	5			<0	3.5 (3)	26.3	(22)	
7	6			<0	14.0(21)	54.	(8)	
				$\left\langle\mathrm{b}^{3} \Pi\right\|\left\|\mathrm{H}^{\mathrm{SO}}\right\|\left\|\mathrm{A}^{1} \Sigma^{+}\right\rangle=22.6 \pm 0.4 \mathrm{~cm}^{-1}$				

[^15]Table 3.27: Summary of $A^{1} \Sigma^{+} \sim A^{1}$ II Perturbations

$A^{1} \Sigma^{+}\left(v_{A}\right)$	$A^{\prime}{ }^{1} I I\left(v_{A}{ }^{\prime}\right)$	J_{0}^{a}	${\stackrel{\mathrm{n}}{A A^{\prime}}}\left(\mathrm{cm}^{-1}\right)$	$\mathrm{n}_{\text {AA }}{ }^{1 /<v_{A}}$	$\mid \mathrm{v}_{A^{\prime}}>$ (unitless)
1	0	104.0	$0.11117(11)$. 1.0114	(10)
$2^{\text {c }}$	1	96.0	-0.0212 (19)	0.64	(6)
$3^{\text {ct, }} \mathrm{d}$	2	85.7	-0.0512 (21)	0.61	(3)
$4^{\text {c }}$	3	75.7	-0.0700 (4)	1.128	(6)
$5^{\text {c }}$	4	63.9	-0.0149 (9)	1.37	(8)
$5^{\text {c }}$	5	-	0.063 (20)	0.9	(3)
7	6	28.5	0.088 (14)	1.44	(23)
8	7	<0	0.086 (16)	1.4	(3)
		$\left\langle A^{\prime}{ }^{1} I\right\|\left\|L_{+}\right\|\left\|A^{1} \Sigma^{+}\right\rangle=1.014 \pm 0.024$ unitless			

[^16]Table 3.28: Summary of $A^{\prime} I I \sim a^{3} \Sigma^{+}$Perturbations
$\left.A^{\prime \prime}{ }^{1} \Pi\left(v_{A^{\prime}}\right) \quad a^{3} \Sigma^{+}\left(v_{a}\right) \quad F_{1}(f) \quad \frac{J_{0}{ }^{a}}{F_{2}(e)} \quad F_{3}(f) \quad \xi_{A^{\prime} a}^{b} \quad \xi_{A^{\prime} a^{\prime}} /<v_{A^{\prime}} \right\rvert\, v_{a}$

| 0 | 2 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^17]Table 3.29: Deperturbed Constants for Low Lying States ${ }^{\text {a }}$ of BaO

Fit 1

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{A}}=0, \mathrm{v}_{\mathrm{b}}=0, \mathrm{v}_{\mathrm{A}}{ }^{\prime}=0 \\
& \mathrm{E}_{\mathrm{A}}=1.6722373_{000} \pm 0.0000003 \times 10^{4} \\
& B_{A}=0.2578369200 \pm 0.0000015 \\
& D_{A}=2.7435_{127} \pm 0.0016 \quad \times 10^{-7} \\
& \mathrm{E}_{\mathrm{b}}=1.7388 \quad \text { fixed } \quad \times 10^{4} \\
& \mathrm{~B}_{\mathrm{b}}=0.2237 \text { fixed } \\
& D_{b}=2.8 \quad \text { fixed } \quad \times 10^{-7} \\
& A_{b}=-1.00 \quad \text { fixed } \quad \times 10^{2} \\
& \xi_{\mathrm{Ab}}=7.2886 \quad \text { fixed } \\
& E_{A^{\prime}}=1.7515 \quad \text { fixed } \quad \times 10^{4} \\
& B_{A^{\prime}}=0.2237 \quad \text { fixed } \\
& D_{A^{\prime}}=2.8 \quad \text { fixed } \quad \times 10^{-7} \\
& n^{n_{A A}}=0.05017 \quad \text { fixed } \\
& \xi_{A}{ }^{\prime} \text { b }=-1.00 \quad \text { fixed } \quad \times 10^{2} \\
& \sigma^{2}=0.07^{b} \\
& { }^{\text {a }} \text { See Table } 3.25 \text { for definitions of parameters. } \\
& \mathrm{b}_{\text {See }} \text { Footnote } \mathrm{a} \text { in Table } 3.10 \text { for definition of } \sigma^{2} \text {. }
\end{aligned}
$$

Table 3.29: (cont.)

Fit 2

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{A}}=1, \mathrm{v}_{\mathrm{b}}=0, \mathrm{v}_{\mathrm{A}}=0, \mathrm{v}_{\mathrm{a}}=2 \\
& \mathrm{E}_{\mathrm{A}}=1.7218100000 \pm 0.0000009 \times 10^{4} \\
& B_{A}=0.256734740 \quad \pm 0.000004 \\
& D_{A}=2.775_{313} \pm 0.010 \quad \times 10^{-7} \\
& \mathrm{E}_{\mathrm{b}}=1.738771_{200} \pm 0.000004 \times 10^{4} \\
& \mathrm{~B}_{\mathrm{b}}=0.22243_{333} \pm 0.00012 \\
& D_{b}=1.36_{094} \pm 0.09 \quad \times 10^{-7} \\
& A_{b}=-9.65904 \quad \pm 0.012 \quad \times 10^{1} \\
& C_{b}=-0.4_{408} \quad \pm 0.3 \\
& \xi_{\mathrm{Ab}}=1.1020_{567} \quad \pm 0.0018 \quad \times 10^{1} \\
& \mathrm{E}_{\mathrm{A}^{\prime}}=1.75180_{650} \pm 0.00008 \times 10^{4} \\
& B_{A^{\prime}}=0.22277_{100} \quad \pm 0.00018 \\
& D_{A^{\prime}}=1.2538652 \quad \text { fixed } \times 10^{-7} \\
& \eta_{A_{A}}=0.1116_{819} \quad \pm 0.0011 \\
& \xi_{A^{\prime} b}=9.14098 \quad \pm 0.07 \quad \times 10^{1} \\
& \mathrm{E}_{\mathrm{a}}=1.74335_{590} \quad \pm 0.00022 \quad \mathrm{x} 10^{4} \\
& B_{a}=0.256426 \quad \text { fixed } \\
& \mathrm{D}_{\mathrm{a}}=2.8 \quad \text { fixed } \times 10^{-7} \\
& \xi_{A^{\prime} \mathrm{a}}=3.59_{291} \quad \pm 0.22 \quad \times 10^{1} \\
& \xi_{b a}=-9.85 \quad \text { fixed } \\
& n_{A}{ }^{\prime}=-0.0902 \quad \text { fixed } \\
& \sigma^{2}=1.0
\end{aligned}
$$

Table 3.29 (cont.)

Fit 3
$\mathrm{v}_{\mathrm{A}}=2, \mathrm{v}_{\mathrm{b}}=1, \mathrm{v}_{\mathrm{A}^{\prime}}=1, \mathrm{v}_{\mathrm{a}}=3$
$\mathrm{E}_{\mathrm{A}}=1.7712318{ }_{000} \pm 0.0000010 \times 10^{4}$
$B_{A}=0.255676_{960} \pm 0.000004$
$D_{A}=2.809_{186} \quad \pm 0.006 \quad \times 10^{-7}$
$\mathrm{E}_{\mathrm{b}}=1.783804700 \pm 0.000003 \times 10^{4}$
$\mathrm{B}_{\mathrm{b}}=0.22246_{869} \quad \pm 0.00019$
$\mathrm{D}_{\mathrm{b}}=2.65_{489} \pm 0.22 \quad \times 10^{-7}$
$A_{b}=-9.18_{621} \pm 0.06 \times 10^{1}$
$c_{b}=4.8_{617} \quad \pm 0.7$
$\xi_{\mathrm{Ab}}=-2.77_{951} \pm 0.04$
$E_{A^{\prime}}=1.79398_{430} \quad \pm 0.00004 \times 10^{4}$
$B_{A^{\prime}}=0.2205_{635} \pm 0.0016$
$\mathrm{D}_{\mathrm{A}^{\prime}}=2.3_{553} \pm 1.9 \quad \times 10^{-7}$
$n_{A A},=-0.0212386 \quad \pm 0.0019$
$\begin{aligned} \xi_{A^{\prime} b} & =1.0587_{442} \\ E_{a} & =1.7877_{063}\end{aligned}$
$\mathrm{B}_{\mathrm{a}}=0.254903$ fixed
$D_{a}=2.8$
fixed $\times 10^{-7}$
$\xi_{A^{\prime} a}=2.4_{611} \quad \pm 0.8 \quad \times 10^{1}$
$\xi_{\mathrm{ba}}=-8 \cdot 452 \pm 3$.
$n_{b a}=-0.03855$

$$
\sigma^{2}=0.7
$$

Table 3.29 (cont.)
Fit 4

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{A}}=3, \mathrm{v}_{\mathrm{b}}=2, \mathrm{v}_{\mathrm{A}} \mathrm{I}^{\prime}=2, \mathrm{v}_{\mathrm{b}}=4 \text { (fixed) } \\
& \mathrm{E}_{\mathrm{A}}=1.8201474_{000} \pm 0.0000007 \times 10^{4} \\
& \mathrm{~B}_{\mathrm{A}}=0.254555_{720} \quad \pm 0.000004 \\
& D_{A}=2.811_{358} \pm 0.007 \quad \times 10^{-7} \\
& \mathrm{E}_{\mathrm{b}}=1.826884_{100} \pm 0.000016 \times 10^{4} \\
& B_{b}=0.2226_{030} \pm 0.0004 \\
& \mathrm{D}_{\mathrm{b}}=3.1_{338} \pm 0.4 \quad \times 10^{-7} \\
& A_{b}=-1.108_{952} \pm 0.008 \times 10^{2} \\
& C_{b}=2.298_{514} \pm 0.013 \quad \times 10^{1} \\
& \xi_{\mathrm{Ab}}=-7.891_{379} \quad \pm 0.018 \\
& E_{A^{\prime}}=1.834618900 \pm 0.000028 \times 10^{4} \\
& B_{A^{\prime}}=0.2193_{150} \quad \pm 0.0004 \\
& \mathrm{D}_{\mathrm{A}^{\prime}}=1.6_{176} \quad \pm 0.4 \quad \times 10^{-7} \\
& \eta_{A A},=-0.0511_{855} \quad \pm 0.0021
\end{aligned}
$$

$$
\begin{aligned}
& \xi_{A^{\prime} b}=1.1636_{320} \pm 0.0010 \quad \times 10^{2} \\
& \mathrm{E}_{\mathrm{a}}=1.833263 \\
& \text { fixed } \\
& \times 10^{4} \\
& \mathrm{~B}_{\mathrm{a}}=0.25338 \text { fixed } \\
& D_{a}=2.8 \quad \text { fixed } \quad \times 10^{-7} \\
& \xi_{A^{\prime} a}=-7.307 \quad \text { fixed } \\
& \xi_{\mathrm{ba}}=1.853 \quad \text { fixed } \\
& \begin{array}{ll}
\eta_{b a}=0.0172 & \text { fixed } \\
\sigma^{2}=0.4 &
\end{array}
\end{aligned}
$$

Fit 5

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{A}}=4, \mathrm{v}_{\mathrm{b}}=3, \mathrm{v}_{\mathrm{b} 2}=4, \mathrm{v}_{\mathrm{A}},=3, \mathrm{v}_{\mathrm{a}}=5 \text { (fixed) } \\
& \mathrm{E}_{\mathrm{A}}=1.8688413_{000} \pm 0.0000005 \times 10^{4} \\
& B_{A}=0.25354 l_{330} \pm 0.0000023 \\
& D_{A}=2.795_{837} \pm 0.003 \quad \times 10^{-7} \\
& \mathrm{E}_{\mathrm{b}}=1.869603_{100} \pm 0.000010 \times 10^{4} \\
& \mathrm{~B}_{\mathrm{b}}=0.22032746 \pm 0.00004 \\
& D_{b}=2.8 \quad \text { fixed } \quad \times 10^{-7} \\
& A_{b}=-9.607877 \quad \pm 0.019 \quad \times 10^{1} \\
& \xi_{\mathrm{Ab}}=-6.484_{644} \pm 0.012 \\
& \mathrm{E}_{\mathrm{A}^{\prime}}=1.883477_{500} \pm 0.000013 \times 10^{4} \\
& B_{A^{\prime}}=0.22011_{257} \pm 0.00012 \\
& D_{A^{\prime}}=2.8 \quad \text { fixed } \times 10^{-7} \\
& \eta_{\text {AA }} \text { ' }=-0.0700_{302} \pm 0.0004 \\
& \xi_{A^{\prime} b}=9.64547 \quad \pm 0.06 \quad \times 10^{1} \\
& \mathrm{E}_{\mathrm{a}}=1.879089 \text { fixed } \\
& \mathrm{B}_{\mathrm{a}}=0.251858 \text { fixed } \\
& D_{a}=2.8 \quad \text { fixed } \times 10^{-7} \\
& \xi_{A^{\prime} \mathrm{a}}=-2.1017 \quad \text { fixed } \quad \times 10^{1} \\
& \xi_{b a}=5.329 \quad \text { fixed } \\
& \eta_{b a}=0.0487 \quad \text { fixed } \\
& \mathrm{E}_{\mathrm{b} 2}=1.9136169_{000} \pm 0.022 \quad \times 10^{4} \\
& \mathrm{~B}_{\mathrm{b} 2}=0.21882542 \text { fixed } \\
& \mathrm{D}_{\mathrm{b} 2}=2.9752034 \text { fixed } \times 10^{-7}
\end{aligned}
$$

Table 3.29 (cont.)
Fit 5 (cont.)
$A_{b 2}=-1.0$
fixed
$\mathrm{x} 10^{2}$
$\xi_{\mathrm{Ab} 2}=-7.08$
fixed

$$
\sigma^{2}=0.25
$$

Fit 6

$$
\mathrm{B}_{\mathrm{A}^{\prime}}=0.21874_{284} \quad \pm 0.00008
$$

$$
\begin{array}{rlrl}
D_{A^{\prime}} & =2.8 & \text { fixed } \\
{ }^{n} A_{A}^{\prime} & =-0.0142_{142} & & \pm 0.0009
\end{array}
$$

$$
\xi_{A^{\prime} b}=1.0088_{293} \quad \pm 0.0019 \quad \times 10^{2}
$$

$$
\mathrm{E}_{\mathrm{a}}=1.92475_{570} \quad \pm 0.00003 \quad \times 10^{4}
$$

$$
B_{a}=0.2495473 \quad \pm 0.0003
$$

$$
D_{a}=2.8 \quad \text { fixed }
$$

$$
\times 10^{-7}
$$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{A}}=5, \mathrm{v}_{\mathrm{b}}=4, \mathrm{v}_{\mathrm{A}}=4, \mathrm{v}_{\mathrm{a}}=6 \\
& \mathrm{E}_{\mathrm{A}}=1.9172725_{000} \pm 0.0000011 \times 10^{4} \\
& \mathrm{~B}_{\mathrm{A}}=0.252450_{720} \pm 0.000006 \\
& D_{A}=2.793_{857} \quad \pm 0.016 \quad \times 10^{-7} \\
& \mathrm{E}_{\mathrm{b}}=1.913455_{600} \pm 0.000009 \times 10^{4} \\
& B_{b}=0.21890_{975} \pm 0.00009 \\
& D_{b}=2.8 \quad \text { fixed } \\
& \times 10^{-7} \\
& A_{b}=-8.844_{690} \quad \pm 0.013 \quad \times 10^{1} \\
& \xi_{\mathrm{Ab}}=-1.5 \text { 19 }_{492} \quad \pm 0.029 \\
& \mathrm{E}_{\mathrm{A}^{\prime}}=1.925747_{600} \pm 0.000013 \quad \times 10^{4}
\end{aligned}
$$

Table 3.29 (cont.)
Fit 6 (cont.)

$$
\begin{aligned}
c_{a} & =0.83_{855} & & \pm 0.15 \\
\gamma_{a} & =-0.012_{642} & & \pm 0.004 \\
\xi_{A^{\prime} a} & =-1.93_{913} & & \pm 0.07 \\
\xi_{b a} & =4.1_{267} & & \pm 0.6 \\
n_{b a} & =0.094_{683} & & \pm 0.007
\end{aligned}
$$

$$
\sigma^{2}=1.5
$$

Fit 7

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{A}}=5, \mathrm{v}_{\mathrm{b}}=5, \mathrm{v}_{\mathrm{A}},=5, \mathrm{v}_{\mathrm{a}}=7, \mathrm{v}_{\mathrm{A} 2}=6 \\
& \mathrm{E}_{\mathrm{A}}=1.91739_{311} \pm 0.00011 \quad \times 10^{4} \\
& B_{A}=0.25227_{678} \quad \pm 0.00026 \\
& D_{A}=2.54374 \pm 0.27 \quad \times 10^{-7} \\
& E_{b}=1.9556_{846} \quad \pm 0.0004 \quad \times 10^{4} \\
& B_{b}=0.2175_{796} \quad \pm 0.0006 \\
& D_{b}=2.8 \quad \text { fixed } \\
& \times 10^{-7} \\
& A_{b}=-9.1_{965} \\
& \xi_{\mathrm{Ab}}=1.0_{603} \\
& E_{A^{\prime}}=1.9689_{342} \\
& \pm 0.4 \\
& \times 10^{1} \\
& \pm 0.5 \\
& \times 10^{1} \\
& B_{A^{\prime}}=0.2174_{055} \\
& \pm 0.0003 \\
& D_{A^{\prime}}=2.8 \\
& \text { fixed } \\
& \times 10^{-7} \\
& \eta_{A A^{\prime}}=0.062952 \\
& \pm 0.020 \\
& \xi_{A^{\prime} b}=9.80_{652} \\
& \pm 0.25 \\
& \times 10^{1}
\end{aligned}
$$

Table 3.29 (cont.)

	Fit 7 (con	
$\mathrm{E}_{\mathrm{a}}=1.969662_{318}$	± 0.000026	$\times 10^{4}$
$\mathrm{B}_{\mathrm{a}}=0.24910{ }_{899}$	± 0.00027	
$D_{a}=2.8$	fixed	$\times 10^{-7}$
$C_{a}=-0.07_{477}$	± 0.05	
$\xi_{\mathrm{A}^{\prime} \mathrm{a}}=-1.648075$	± 0.029	$\times 10^{1}$
$\xi_{\mathrm{ba}}=4.3$	fixed	
$\eta_{\mathrm{ba}}=0.0388$	fixed	
$\mathrm{E}_{\mathrm{A} 2}=1.96534_{646}$	± 0.00005	$\times 104$
$\mathrm{B}_{\mathrm{A} 2}=0.2521_{213}$	± 0.00041	
$D_{\text {A2 }}=2.8$	fixed	$\times 10^{-7}$
$\xi_{\mathrm{bA} 2}=-3.4891$	± 0.3	
$n_{A^{\prime} A 2}=-0.022$	fixed	

$$
\sigma^{2}=3.9
$$

Table 3.29 (cont.)
Fit 8

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{A}}=7, \mathrm{v}_{\mathrm{b}}=6, \mathrm{v}_{\mathrm{A}^{\prime}}=6, \mathrm{v}_{\mathrm{a}}=8 \\
& \mathrm{E}_{\mathrm{A}}=2.01270_{264} \pm 0.00023 \quad \mathrm{x} 10^{4} \\
& B_{A}=0.2527_{363} \quad \pm 0.0008 \\
& D_{A}=2.8 \quad \text { fixed } \quad \times 10^{-7} \\
& \mathrm{E}_{\mathrm{b}}=1.9981_{766} \quad \pm 0.0016 \quad \times 10^{4} \\
& \mathrm{~B}_{\mathrm{b}}=0.2163_{528} \quad \pm 0.0013 \\
& D_{b}=2.8 \quad \text { fixed } \quad \times 10^{-7} \\
& A_{b}=-9.5_{898} \quad \pm 1.5 \\
& \times 10^{1} \\
& \xi_{\mathrm{Ab}}=1.40_{327} \quad \pm 2.1 \\
& E_{A^{\prime}}=2.0111_{821} \quad \pm 0.0016 \quad \times 10^{4} \\
& B_{A^{\prime}}=0.2157_{984} \pm 0.0004 \\
& D_{A^{\prime}}=2.8 \quad \text { fixed } \\
& \times 10^{-7} \\
& \eta_{A A^{\prime}}=0.088_{526} \quad \pm 0.014 \\
& \xi_{A^{\prime} b}=9.9856 \quad \pm 1.1 \times 10^{1} \\
& \mathrm{E}_{\mathrm{a}}=2.01433_{090} \pm 0.00006 \quad \times 10^{4} \\
& B_{a}=0.2478_{206} \quad \pm 0.0010 \\
& D_{a}=2.8 \\
& \text { fixed } \\
& \times 10^{-7} \\
& c_{a}=-0.57035 \quad \pm 0.26 \\
& \xi_{A^{\prime} \mathrm{a}}=-8.5_{520} \quad \pm 0.7 \\
& \xi_{\mathrm{ba}}=1.692 \quad \text { fixed } \\
& \eta_{b a}=0.01494 \quad \text { fixed } \\
& \sigma^{2}=1.5
\end{aligned}
$$

Table 3.29 (cont.)

Fit 9

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{A}}=8, \mathrm{v}_{\mathrm{b}}=7, \mathrm{v}_{\mathrm{A}}{ }^{\prime}=7, \mathrm{v}_{\mathrm{a}}=9 \\
& \mathrm{E}_{\mathrm{A}}=2.06072882 \pm 0.00005 \quad \times 10^{4} \\
& B_{A}=0.2506_{302} \pm 0.0007 \\
& D_{A}=2.8 \quad \text { fixed } \times 10^{-7} \\
& \mathrm{E}_{\mathrm{b}}=2.04034532 \pm 0.00024 \quad \times 10^{4} \\
& B_{b}=0.21484028 \quad \pm 0.00028 \\
& \mathrm{D}_{\mathrm{b}}=2.8 \quad \text { fixed } \times 10^{-7} \\
& A_{b}=-8.82_{193} \pm 0.23 \quad \times 10^{1} \\
& \xi_{\mathrm{Ab}}=6.6984 \quad \text { fixed } \\
& \mathrm{E}_{\mathrm{A}^{\prime}}=2.05301_{065} \pm 0.00024 \quad \times 10^{4} \\
& B_{A^{\prime}}=0.2151_{103} \pm 0.0003 \\
& D_{A^{\prime}}=2.8 \quad \text { fixed } \quad \times 10^{-7} \\
& \eta_{A A^{\prime}}=0.086_{365} \quad \pm 0.016 \\
& \xi_{A^{\prime} b}=1.012{ }_{132} \pm 0.016 \quad \times 10^{2} \\
& \mathrm{E}_{\mathrm{a}}=2.058736966 \text { fixed } \\
& B_{a}=0.245677 \text { fixed } \\
& \begin{aligned}
D_{a} & =2.8 & & \text { fixed } \\
A^{\prime} a & =1.0_{360} & & \pm 0.6
\end{aligned} \\
& \xi_{\mathrm{ba}}=-1.0 \quad \text { fixed } \\
& \eta_{b a}=-0.00946 \quad \text { fixed } \\
& \sigma^{2}=2.8
\end{aligned}
$$

Fit 10

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{A}}=8 \text { (fixed), } \mathrm{v}_{\mathrm{b}}=8, \mathrm{v}_{\mathrm{A}^{\prime}}=8, \mathrm{v}_{\mathrm{a}}=10 \text { (fixed), } \mathrm{v}_{\mathrm{A} 2}=9 \text { (fixed) } \\
& \mathrm{E}_{\mathrm{A}}=2.060136 \quad \text { fixed } \quad \times 10^{4} \\
& B_{A}=0.249225 \quad \text { fixed } \\
& D_{A}=2.8 \quad \text { fixed } \\
& \pm 0.0008 \quad \times 10^{4} \\
& \mathrm{~B}_{\mathrm{b}}=0.2138894 \quad \pm 0.0006 \\
& D_{b}=2.8 \quad \text { fixed } \\
& \pm 0.8 \\
& \times 10^{1} \\
& \xi_{\mathrm{Ab}}=-4.4574 \quad \text { fixed } \\
& \mathrm{E}_{\mathrm{A}^{\prime}}=2.0954887 \quad \pm 0.0008 \quad \times 10^{4} \\
& B_{A^{\prime}}=0.2115_{919} \quad \pm 0.0004 \\
& D_{A^{\prime}}=2.8 \\
& \eta_{\text {AA }} \text {, }=-0.02993 \text { fixed } \\
& \xi_{A^{\prime} b}=9.8982 \quad \pm 0.6 \quad \times 10^{1} \\
& \mathrm{E}_{\mathrm{a}}=2.102578 \text { fixed } \times 10^{4} \\
& B_{a}=0.244243 \text { fixed } \\
& D_{a}=2.8 \quad \text { fixed } \\
& \text { fixed } \quad \times 10^{1} \\
& \begin{aligned}
\xi_{\text {A' }^{\prime} \mathrm{a}} & =1.2368 & & \text { fixed } \\
\xi_{\text {ba }} & =-3.136 & & \text { fixed } \\
{ }^{n_{b a}} & =-0.0286 & & \text { fixed }
\end{aligned} \\
& \mathrm{E}_{\mathrm{A} 2}=2.107154 \quad \text { fixed } \\
& \mathrm{B}_{\mathrm{A} 2}=0.248155 \quad \text { fixed } \\
& D_{\text {A2 }}=2.8 \quad \text { fixed } \\
& \eta_{A}^{\prime}{ }_{A 2}=0.02803 \text { fixed } \\
& \begin{array}{rlr}
\xi_{\mathrm{bA} 2} & =-4.336 & \text { fixed } \\
\hline \sigma^{2} & =3.8 &
\end{array}
\end{aligned}
$$

Table 3.29 (cont.)
Fit 11

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{A}}=9, \mathrm{v}_{\mathrm{b}}=9, \mathrm{v}_{\mathrm{A}^{\prime}}=9, \mathrm{v}_{\mathrm{a}}=10 \text { (fixed) } \\
& \mathrm{E}_{\mathrm{A}}=2 .{10835_{194} \pm 0.00006 \quad \times 10^{4}, ~}_{\text {4 }} \\
& B_{A}=0.2521_{374} \quad \pm 0.0023 \\
& D_{A}=2.8 \quad \text { fixed } \\
& \times 10^{-7} \\
& \begin{array}{ll}
\mathrm{E}_{\mathrm{b}}=2.1223_{958} & \pm 0.0004 \\
\mathrm{~B}_{\mathrm{b}}=0.21190_{686} & \pm 0.00021
\end{array} \\
& \mathrm{D}_{\mathrm{b}}=2.8 \\
& \times 10^{-7} \\
& A_{b}=-9.6_{253} \quad \pm 0.4 \\
& \times 10^{1} \\
& \xi_{\mathrm{Ab}}=-6.17562 \\
& \text { fixed } \\
& \begin{array}{lll}
\mathrm{E}_{A^{\prime}}=2.1368_{192} & \pm 0.0004 & \times 10^{4} \\
B_{A^{\prime}}=0.21248_{284} & \pm 0.00021 & \\
D_{A^{\prime}}=2.8 & \text { fixed } & \times 10^{-7}
\end{array} \\
& n_{A A^{\prime}}=-0.04118 \quad \text { fixed } \\
& \xi_{A^{\prime} \cdot b}=9.5_{968} \quad \pm 0.3 \\
& \times 10^{1} \\
& \mathrm{E}_{\mathrm{a}}=2.102578 \quad \text { fixed } \\
& B_{a}=0.244243 \quad \text { fixed } \\
& D_{a}=2.8 \quad \text { fixed } \\
& \times 10^{-7} \\
& \xi_{A^{\prime} \mathrm{a}}=1.7259 \quad \text { fixed } \\
& \xi_{\mathrm{ba}}=-4.376 \quad \text { fixed } \\
& \eta_{\text {ba }}=-0.0395 \quad \text { fixed } \\
& \sigma^{2}=1.7
\end{aligned}
$$

Table 3.29 (cont.)

Fit 12

Table 3.29 (cont.)

Fit 13

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{A}}=11 \text { (fixed), } \mathrm{v}_{\mathrm{b}}=11, \mathrm{v}_{\mathrm{A}^{\prime}}=11 \text { (fixed), } \mathrm{v}_{\mathrm{a}}=12 \\
& E_{A}=2.200247 \\
& \mathrm{~B}_{\mathrm{A}}=0.246015 \\
& \text { fixed } \\
& \times 10^{4} \\
& D_{A}=2.8 \quad \text { fixed } \\
& \pm 0.00007 \times 10^{4} \\
& \mathrm{~B}_{\mathrm{b}}=0.2101_{431} \quad \pm 0.0006 \\
& \mathrm{D}_{\mathrm{b}}=2.8 \\
& \text { fixed } \\
& \times 10^{-7} \\
& A_{b}=-1.062406 \\
& \pm 0.020 \\
& \times 10^{2} \\
& \xi_{\mathrm{Ab}}=-3.606 \\
& \mathrm{E}_{\mathrm{A}^{\prime}}=2.218382 \\
& \text { fixed } \\
& \times 10^{4} \\
& B_{A^{\prime}}=0.2083 \\
& \text { fixed } \\
& D_{A^{\prime}}=2.8 \\
& \text { fixed } \\
& \times 10^{-7} \\
& \eta_{\text {AA }} \text {, }=-0.0237 \quad \text { fixed } \\
& \xi_{A^{\prime} b}=1.0 \quad \text { fixed } \\
& \times 10^{2} \\
& \mathrm{E}_{\mathrm{a}}=2.189347785 \\
& \pm 0.000025 \\
& \times 10^{4} \\
& B_{a}=0.24150_{537} \\
& D_{a}=2.8 \\
& \left|C_{a}\right|=0.43_{585} \\
& \text { fixed } \\
& \times 10^{-7} \\
& \xi_{\mathrm{A}^{\prime} \mathrm{a}}=-7.8326 \\
& \xi_{b a}=1.9861 \\
& \pm 0.03 \\
& \text { fixed } \\
& \text { fixed } \\
& { }^{n} \mathrm{ba}=0.01871 \quad \text { fixed } \\
& \sigma^{2}=1.3
\end{aligned}
$$

Table 3.30: Low Lying State Correlation Matrices ${ }^{\text {a }}$
FI里 1
$\begin{array}{lrrr}\mathrm{E}_{\mathrm{A}} & 1.000 & & \\ \mathrm{~B}_{\mathrm{A}} & -0.722 & 1.000 & \\ \mathrm{D}_{\text {A }} & -0.546 & 0.943 & 1.000\end{array}$

Table 3.30:(cont.)
FIT 2

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{A}} \quad 1.000 \\
& \mathrm{E}_{\mathrm{A}}, 0.090 \quad 1.000 \\
& E_{b}-0.200 \quad 0.120 \quad 1.000 \\
& \begin{array}{llll}
B_{A} & -0.363 & 0.084 & -0.125 \\
1.000
\end{array} \\
& \begin{array}{lllll}
B_{A^{\prime}} & -0.058 & 0.117 & 0.207 & 0.145 \\
1.000
\end{array} \\
& \begin{array}{lllll}
\mathrm{B}_{\mathrm{b}} \quad 0.000-0.649 & -0.344-0.194-0.725 & 1.000
\end{array} \\
& \begin{array}{lllllll}
D_{A} & -0.024 & -0.479 & -0.225 & 0.373 & -0.635 & 0.695
\end{array} 1.000 \\
& \begin{array}{llllllll}
\mathrm{D}_{\mathrm{b}}-0.001 & -0.537-0.261 & -0.275 & -0.558 & 0.920 & 0.485 & 1.000
\end{array} \\
& \begin{array}{llllllll}
A_{b} & -0.004 & -0.401 & -0.405 & 0.085 & -0.632 & 0.566 & 0.624 \\
0 & 0.240 & 1.000
\end{array} \\
& \begin{array}{llllllllll}
c_{b} & -0.014 & -0.651 & -0.260 & -0.121 & -0.806 & 0.932 & 0.783 & 0.735 & 0.712
\end{array} 1.000 \\
& \begin{array}{llllllllllll}
n_{\text {AA }} & -0.049 & 0.514 & 0.013 & 0.262 & 0.730 & -0.824 & -0.691 & -0.743 & -0.420 & -0.815
\end{array} \\
& \xi_{\mathrm{Ab}}-10.179-0.692-0.195-0.125-0.430 \quad 0.656 \quad 0.504 \quad 0.431 \quad 0.657 \quad 0.754 \\
& \begin{array}{lllllllllll}
\xi_{\mathrm{A} ' \mathrm{~b}} & -0.023 & 0.397 & 0.291 & 0.116 & 0.924 & -0.890 & -0.733 & -0.728 & -0.687 & -0.936
\end{array} \\
& \begin{array}{lllllllllll}
\mathrm{E}_{\mathrm{a}} & 0.038 & -0.055 & -0.113 & -0.022 & -0.447 & 0.230 & 0.195 & 0.158 & 0.302 & 0.302
\end{array} \\
& \xi_{A^{\prime} \mathrm{a}}-0.095-0.429 \quad 0.135 \quad 0.005 \quad 0.648-0.143-0.152-0.098-0.250-0.206
\end{aligned}
$$

Table 3.30: (cont.)

FIT 2 (CONT.)

$$
\begin{array}{lrrrrr}
\eta_{A A} & 1.000 & & & & \\
\xi_{\mathrm{Ab}} & -0.459 & 1.000 & & & \\
\xi_{A^{\prime} b} & 0.752 & -0.610 & 1.000 & & \\
\mathrm{E}_{\mathrm{a}} & -0.164 & 0.123 & -0.450 & 1.000 & \\
\xi_{A^{\prime} \mathrm{a}} & 0.100 & 0.097 & 0.509 & -0.604 & 1.000
\end{array}
$$

Table 3.30: (cont.)

FIT 3

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{A}} \quad 1.000 \\
& \mathrm{E}_{\mathrm{A}}, 0.273 \quad 1.000 \\
& E_{b}-0.351-0.312 \quad 1.000 \\
& \begin{array}{lllll}
B_{\text {A }} & -0.408 & 0.019 & 0.018 & 1.000
\end{array} \\
& \begin{array}{lllll}
B_{A} & 0.017 & -0.268 & 0.002 & 0.134 \\
\hline
\end{array} \\
& \begin{array}{lllll}
B_{b}-0.123 & -0.199 & -0.133-0.256 & -0.407 & 1.000
\end{array} \\
& \begin{array}{llllllll}
\mathrm{D}_{\mathrm{A}} & 0.047 & 0.260 & -0.086 & 0.811 & 0.024 & -0.250 & 1.000
\end{array} \\
& \begin{array}{llllllll}
D_{A}
\end{array}, 0.020-0.278 \quad 0.014 \quad 0.126 \quad 0.982-0.328 \quad 0.034 \quad 1.000 \\
& \begin{array}{lllllllll}
D_{b} & -0.047 & 0.113 & -0.103 & -0.266 & -0.275 & 0.621 & -0.245 & -0.310
\end{array} 1.000 \\
& \begin{array}{lllllllllll}
A_{b} & 0.023 & -0.011 & -0.458 & 0.041 & 0.170 & 0.255 & 0.014 & 0.217 & -0.208 & 1.000
\end{array} \\
& \begin{array}{llllllllll}
c_{b} & -0.174 & -0.572 & 0.326 & -0.067 & 0.001 & 0.456 & -0.127 & 0.125 & -0.133
\end{array}-0.124 \\
& \begin{array}{llllllllllll}
n_{\text {AA }} & 0.337 & 0.631 & -0.059 & -0.063 & -0.426 & 0.132 & 0.325 & -0.393 & 0.257 & -0.123
\end{array} \\
& \begin{array}{lllllllllll}
\xi_{\mathrm{Ab}} & 0.410 & 0.643 & -0.117 & 0.171 & 0.087 & -0.531 & 0.491 & 0.063 & -0.176 & -0.163
\end{array} \\
& \begin{array}{lllllllllll}
\xi A^{\prime} \mathrm{b} & 0.017 & 0.243 & 0.025 & -0.107 & -0.882 & 0.239 & 0.012 & -0.930 & 0.229 & -0.268
\end{array} \\
& \begin{array}{llllllllll}
\mathrm{E}_{\mathrm{a}}-0.012 & -0.268 & 0.024 & 0.102 & 0.907 & -0.213 & 0.000 & 0.956 & -0.254 & 0.204
\end{array} \\
& \begin{array}{lllllllllll}
\xi_{\text {A' } a} & -0.017 & 0.178 & 0.048 & -0.123 & -0.936 & 0.341 & -0.019 & -0.958 & 0.240 & -0.242
\end{array} \\
& \xi_{\mathrm{ba}} \quad 0.064 \quad 0.397-0.162-0.045-0.709-0.051 \quad 0.032-0.787 \quad 0.239-0.077
\end{aligned}
$$

Table 3.30: (cont.)

FIT 3 (CONT.)

```
    \(C_{b} \quad 1.000\)
\(n_{A A^{\prime}}-0.213 \quad 1.000\)
\(\xi_{\mathrm{Ab}} \begin{array}{llll}-0.488 & 0.678 & 1.000\end{array}\)
\(\xi_{A^{\prime} b}-0.097 \quad 0.440 \quad 0.038 \quad 1.000\)
    \(\mathrm{E}_{\mathrm{a}} \quad 0.230-0.406-0.027-0.940 \quad 1.000\)
\(\begin{array}{lllllll}\xi_{\text {A'a }} & 0.010 & 0.406 & -0.063 & 0.930 & -0.947 & 1.000\end{array}\)
    \(\begin{array}{llllllll}\xi_{\mathrm{ba}} & -0.638 & 0.334 & 0.181 & 0.680 & -0.837 & 0.665 & 1.000\end{array}\)
```


Table 3.30: (cont.)

```
        EA 1.000
    EA
    E b
    B}\mp@subsup{\textrm{B}}{\textrm{A}}{
    B}\mp@subsup{A}{}{\prime
    B}\mp@subsup{B}{b}{
    D[\mp@code{D D}
    D (A, -0.251-0.479 0.458-0.052 0.991 -0.924-0.315 1.000
    \mp@subsup{D}{\textrm{b}}{}}00.206 0.426 -0.396 -0.066 -0.919 0.997 0.142 -0.923 1.000
```



```
    Cb
# #AA' 0.937 0.460 -0.113 -0.122 -0.139 0.145 0.419 -0.161 0.149 0.201
    \mp@subsup{\xi}{\textrm{Ab}}{}}00.651 0.652-0.551 0.488 0.245-0.295 0.627 0.206 -0.287-0.338
```



```
\eta | J, -0.921 -0.426 0.098 0.129 0.264 -0.233 -0.455 0.268 -0.227 -0.278
```

Table 3．30：（cont．）
FIT 4 （CONT．）

```
    Cb
n #AA'
    \mp@subsup{\xi}{Ab}{\prime-0.400}}00.542 1.000
\mp@subsup{\xi}{\mathrm{ A'b }}{\prime}}\begin{array}{l}{-0.653}\end{array}00.055 0.264 1.000 
\eta | J, 0.327 -0.977 -0.447 0.083 1.000
```

Table 3.30: (cont.)

```
                            FIT 5
    E A
E EA' -0.184 1.000
    E E -0.553 0.291 1.000
    BA -0.289 -0.309 -0.206 1.000
```



```
    B}\mp@subsup{\textrm{b}}{\textrm{b}}{}-0.028-0.070 0.256 -0.084-0.251 1.00
    D ( 0.083 -0.484 -0.456 0.880 0.057 -0.028 1.000
    A A
n #A', -0.098 0.637 0.253-0.195 0.0.655 -0.311-0.362 -0.032 1.000
    \mp@subsup{\xi}{\textrm{Ab}}{}
\mp@subsup{\xi}{\mathrm{ A'b }}{l}\begin{array}{lllllllllll}{0.015}&{0.095}&{0.128}&{-0.007}&{0.973}&{-0.135}&{-0.052}&{0.044}&{0.757}&{0.051}\end{array}]
Eb2 0.078-0.007 -0.039 -0.083 -0.003 0.036 0.035
    FIT 5 (CONT.)
\mp@subsup{\xi}{\mathrm{ A'b b }}{}\quad1.000
E
```

Table 3.30: (cont.)

E 1.000 FIT 6										
$E_{A}{ }^{\prime}$	0.089	1.000								
E_{b}	-0.351	-0.151	1.000							
$\mathrm{B}_{\text {A }}$	-0.242	-0.045	-0.297	1.000						
$B_{A}{ }^{\prime}$	0.090	0.080	-0.157	0.008	1.000					
B_{b}	-0.023	-0.314	-0.083	0.062	-0.460	1.000				
$\mathrm{D}_{\text {A }}$	0.142	0.093	-0.433	0.830	0.040	0.031	1.000			
A_{b}	-0.156	-0.417	0.428	-0.083	-0.341	0.778	-0.179	1.000		
${ }^{\prime}{ }_{\text {AA }}$,	0.103	0.763	0.018	-0.117	0.287	-0.380	-0.026	-0.326	1.000	
$\xi_{\text {Ab }}$	0.262	0.211	-0.837	0.316	0.155	0.012	0.443	-0.421	0.062	1.000
$\xi^{\prime}{ }^{\prime} \mathrm{b}$	0.109	0.365	-0.189	-0.009	0.821	-0.148	0.058	-0.150	0.464	0.190
E_{a}	-0.019	-0.133	-0.019	0.036	-0.415	-0.207	0.020	-0.214	-0.213	0.012
B_{a}	0.032	-0.016	-0.050	-0.003	0.458	-0.052	0.000	0.046	0.123	0.045
C_{a}	-0.022	-0.169	-0.028	0.051	-0.609	-0.109	0.032	-0.191	-0.291	0.011
γ_{a}	0.022	-0.144	-0.095	0.041	0.045	-0.318	0.033	-0.236	-0.109	0.081
$\xi_{\text {A }}{ }^{\text {a }}$	-0.027	-0.130	-0.016	0.046	-0.648	-0.119	0.030	-0.199	-0.268	0.004
$\xi_{\text {ba }}$	0.013	0.211	0.052	-0.057	0.489	0.202	-0.035	0.240	0.293	-0.032
${ }^{n} \mathrm{ba}$	-0.046	0.020	0.078	0.003	-0.668	0.288	-0.003	0.042	-0.163	-0.078

Table 3.30: (cont.)
FIT 6 (CONT.)

```
\mp@subsup{\xi}{\mathrm{ A'b }}{}\quad1.000
    E a -0.691 1.000
    Ba}\quad0.550-0.642 1.000 
    c
```



```
\mp@subsup{\xi}{\mp@subsup{A}{}{\prime}a}{a}
\xi
n na -0.474 0.166-0.484 0.426 -0.318
```

Table 3.30: (cont.)

FIT 7										
E_{A},	-0.555	1.000								
E_{b}	0.557	-0.996	1.000							
$\mathrm{B}_{\text {A }}$	-0.945	0.526	-0.526	1.000						
$B_{A}{ }^{\prime}$	-0.073	-0.172	0.117	0.068	1.000					
B_{b}	-0.510	0.991	-0.994	0.457	-0.143	1.000				
$\mathrm{D}_{\text {A }}$	-0.979	0.514	-0.516	0.879	0.061	0.483	1.000			
A_{b}	0.615	-0.985	0.989	-0.550	0.093	-0.989	-0.592	1.000		
${ }^{\prime}{ }^{\text {AA }}$,	0.773	-0.134	0.131	-0.585	0.006	-0.127	-0.866	0.240	1.000	
$\xi_{\text {Ab }}$	-0.592	0.321	-0.326	0.304	0.042	0.360	0.717	-0.440	-0.849	1.000
$\xi_{\text {A ' b }}$	-0.563	0.997	-0.998	0.533	-0.117	0.992	0.522	-0.988	-0.135	0.327
E_{a}	-0.022	0.141	-0.115	0.027	-0.302	0.123	0.018	-0.112	0.005	-0.004
B_{a}	-0.083	0.019	-0.036	0.071	0.425	0.028	0.078	-0.053	-0.023	0.067
c_{a}	0.235	-0.367	0.375	-0.204	0.021	-0.378	-0.229	0.385	0.098	-0.183
$\xi_{\text {A'a }}$	-0.496	0.888	-0.879	0.475	-0.142	0.872	0.458	-0.866	-0.119	0.276
$\mathrm{E}_{\mathrm{A} 2}$	-0.186	0.494	-0.470	0.176	-0.329	0.461	0.170	-0.418	-0.019	0.107
$\mathrm{B}_{\mathrm{A} 2}$	0.104	-0.364	0.341	-0.101	0.456	-0.338	-0.095	0.292	0.010	-0.053
$\xi_{\text {bA2 }}$	-0.200	0.476	-0.473	0.186	-0.165	0.456	0.184	-0.413	-0.020	0.124

Table 3.30: (cont.)

FIT 7 (CONT.)

```
\mp@subsup{\xi}{\mathrm{ A'b }}{}1.000
    Ea 0.126 1.000
    Ba 0.030 -0.773 1.000
    c}\mp@subsup{c}{a}{-0.382-0.036 0.009 1.000
```



```
E E A2 0.472 0.254-0.248-0.160 0.411 1.000
B B22 -0.341 -0.291 0.461 0.109 -0.292 -0.879 1.000
\xi
```


Table 3.30 (cont.)

FIT 8

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{A}} \quad 1.000 \\
& \mathrm{E}_{\mathrm{A}^{\prime}} \quad 0.631 \quad 1.000 \\
& \mathrm{E}_{\mathrm{b}} \text {-0.632-1.000 } 1.000 \\
& \begin{array}{llll}
B_{A} & -0.956 & -0.639 & 0.639 \\
1.000
\end{array} \\
& \begin{array}{llllll}
B_{A^{\prime}}, & -0.309 & -0.604 & 0.598 & 0.374 & 1.000
\end{array} \\
& \begin{array}{lllllll}
\mathrm{B}_{\mathrm{b}} & 0.605 & 0.955 & -0.958 & -0.612 & -0.644 & 1.000
\end{array} \\
& \begin{array}{llllllll}
A_{b} & -0.541 & -0.994 & 0.994 & 0.557 & 0.607 & -0.950 & 1.000
\end{array} \\
& \begin{array}{lllllllll}
\eta_{\text {AA }}, & -0.766 & -0.838 & 0.839 & 0.764 & 0.538 & -0.820 & 0.799 & 1.000
\end{array} \\
& \begin{array}{llllllllll}
\xi_{\mathrm{Ab}} & 0.997 & 0.624 & -0.626 & -0.943 & -0.292 & 0.603 & -0.534 & -0.764 & 1.000
\end{array} \\
& \begin{array}{llllllllll}
\xi_{\text {A'b }} & 0.631 & 1.000-1.000 & -0.638 & -0.598 & 0.956 & -0.994 & -0.839 & 0.625 & 1.000
\end{array} \\
& \begin{array}{lllllllllll}
\mathrm{E}_{\mathrm{a}} & 0.018 & 0.003 & -0.003 & -0.021 & 0.116 & -0.040 & -0.003 & 0.277 & 0.009 & 0.004
\end{array} \\
& \begin{array}{llllllllllll}
B_{a} & -0.003 & 0.013 & -0.012 & -0.002 & -0.180 & 0.069 & -0.012 & -0.318 & 0.005 & 0.011
\end{array} \\
& \begin{array}{lllllllllll}
c_{a} & -0.243 & -0.333 & 0.333 & 0.274 & 0.196 & -0.328 & 0.326 & 0.144 & -0.242 & -0.332
\end{array} \\
& \begin{array}{llllllllllll}
\xi_{\text {A'b }^{\prime}} & 0.606 & 0.961 & -0.961 & -0.630 & -0.583 & 0.917 & -0.955 & -0.735 & 0.601 & 0.960
\end{array}
\end{aligned}
$$

Table 3．30：（cont．）

FIT 3 （CONT．）

$$
\begin{array}{crrrr}
E_{a} & 1.000 & & & \\
B_{a} & -0.950 & 1.000 & & \\
C_{a} & -0.472 & 0.477 & 1.000 & \\
\xi_{A^{\prime} b} & 0.160 & -0.121 & -0.509 & 1.000
\end{array}
$$

```
Table 3.30: (cont.)
```

FIT 9

```
    EA 1.000
E (A, -0.050 1.000
    E
    B B -0.882 0.027 -0.048 1.000
BA,
    B}\mp@subsup{B}{\textrm{b}}{-0.109 0.405 -0.492 0.103 0.370 1.000
    A ( 0.072 -0.992 0.994-0.042 -0.262-0.433 1.000
\eta
\mp@subsup{\xi}{\mathrm{ A'b b}}{\prime\prime-0.078 0.993 -0.994 0.042 0.0.267 0.435 -0.994 0.020}
\mp@subsup{\xi}{\mathrm{ A'a }}{l}00.037
```

Table 3．30：（cont．）

FIT 10

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{A}^{\prime}} \quad 1.000 \\
& \mathrm{E}_{\mathrm{b}}-0.998 \quad 1.000 \\
& B_{A},-0.127 \quad 0.095 \quad 1.000 \\
& \mathrm{~B}_{\mathrm{b}} \quad 0.757-0.775-0.082 \quad 1.000 \\
& \begin{array}{llllll}
A_{b} & -0.999 & 0.999 & 0.102 & -0.763 & 1.000
\end{array} \\
& \begin{array}{lllllll}
\xi_{\text {A'b }} & 0.999 & -0.999 & -0.096 & 0.757 & -0.999 & 1.000
\end{array} \\
& \text { FIT } 11 \\
& \mathrm{E}_{\mathrm{A}} \quad 1.000 \\
& \mathrm{E}_{\mathrm{A}^{\prime}} \quad 0.011 \quad 1.000 \\
& \mathrm{E}_{\mathrm{b}} \text {-0.003-0.997 } 1.000 \\
& \begin{array}{lllll}
B_{A} & -0.835 & -0.020 & 0.022 & 1.000
\end{array} \\
& \mathrm{~B}_{\mathrm{A}^{\prime}}{ }^{\prime}-0.078 \quad 0.041-0.087-0.009 \quad 1.000 \\
& \begin{array}{llllll}
\mathrm{B}_{\mathrm{a}} & -0.026 & 0.482 & -0.522 & -0.035 & 0.448 \\
1 & 1.000
\end{array} \\
& \begin{array}{llllllll}
A_{b} & -0.007 & -0.999 & 0.999 & 0.022 & -0.072 & -0.497 & 1.000
\end{array} \\
& \begin{array}{lllllllll}
\xi_{\text {A'b }} & 0.006 & 0.999 & -0.999 & -0.021 & 0.073 & 0.497 & -0.999 & 1.000
\end{array}
\end{aligned}
$$

Table 3．30：（cont．）

FIT 12							
$E_{A}{ }^{\prime}$	1.000						
E_{b}	－0．187	1.000					
$B_{A}{ }^{\prime}$	－0．744	0.052	1.000				
B_{b}	－0．209	－0．854	－0．121	1.000			
E_{a}	0.000	0.000	0.000	0.001	1.000		
B_{a}	－0．000	0.000	0.000	－0．001	－0．822	1.000	
C_{a}	－0．001	－0．003	0.002	0.005	0.057	－0．032	1.000
FIT 13							
E_{b}	1.000						
B_{b}	－0．926	1.000					
A_{b}	0.123	－0．260	1.000				
E_{a}	－0．015	0.019	－0．042	1.000			
B_{a}	0.016	－0．019	－0．015	－0．818	1.000		
C_{a}	0.015	－0．019	0.065	0.028	－0．009	1.000	

Fit 1: $\quad v_{A}=0, v_{b}=0$ (fixed), $\mathrm{v}_{A^{\prime}}=0$ (fixed) No perturbations in $A^{1} \Sigma^{+}\left(v_{A}=0\right)$ are observed so this level is fit with $b^{3} \pi\left(v_{b}=0\right)$ and $A^{\prime}{ }^{1}\left(v_{A}{ }^{\prime}=0\right)$ constants held fixed.

Fit 2: $\quad \mathrm{v}_{\mathrm{A}}=1, \mathrm{v}_{\mathrm{b}}=0, \mathrm{v}_{\mathrm{A}}{ }^{\prime}=0, \mathrm{v}_{\mathrm{a}}=2$
In addition to $A^{1} \Sigma^{+} \sim b^{3} I$, and $A^{1} \Sigma^{+} \sim A^{1} \Pi$ perturbations reported in Ref. 8, $A^{\prime l} I I \quad \Lambda$-doubling resulting from interaction with $a^{3} \Sigma^{+}$is detected although no $a^{3} \Sigma^{+} \sim A^{1} \Pi$ crossings are observed in the J range sampled. The $A^{\prime 1}{ }^{I I} \sim A^{1} \Sigma^{+}$perturbation at $J_{0}=104.0$ is poorly characterized since the $A^{1} \Sigma^{+}-X^{1} \Sigma^{+}(1,0)$ band analysis in Ref. 8 ends at this point. Although D_{b} could be determined, D_{A}, could not be and is fixed at a preliminary value of D_{b} which is nearly equal to the final D_{b} fitted value. It was also necessary to vary C_{b} although it is only marginally determined.

Fit 3: $\quad v_{A}=2, v_{b}=1, v_{A}=1, v_{a}=3$
In addition to the perturbations reported in Ref. $8, \mathrm{a}^{3} \Sigma^{+} \sim \mathrm{A}^{1} \Pi$ interactions are again observed in the form of Λ-doubling and level shifts of the $A^{\prime l}$ II state at $J>40$. No crossings are observed in the J range sampled.

Fit 4: $\quad v_{A}=3, v_{b}=2, v_{A},=2, v_{b}=4$ (fixed) No new perturbations are observed, however these term values could not be fit without varying a centrifugal distortion $A^{l} \Sigma^{+} \sim A^{\prime l} I$ interaction parameter, $n_{A A}$. Other problems are apparent when this fit is compared with others: (1) the $A^{1}{ }^{1} \Pi$ energy is anomalously low by $\approx 35 \mathrm{~cm}^{-1}$; (2) both the b^{3} II spin-orbit constant, A_{b}, and the b^{3} II $\sim A^{11} I I$ spin-orbit interaction parameter, $\xi_{A ' b}$, are anomalously large by $\approx 15 \mathrm{~cm}^{-1}$; (3) the b^{3} II spin-spin constant, C_{b},is also unusually large by $\approx 15 \mathrm{~cm}^{-1}$; and (4) the $b^{3} \Pi$ rotational constant, B_{b}, is larger than expected by $\approx 0.003 \mathrm{~cm}^{-1}$, which is ten times the 1σ error. Attempts to force the program to converge about the expected parameter values were utterly unsuccessful. Nor did varying the b^{3} II spin-rotation constant or the third order $A^{1} \Sigma^{+}$centrifugal distortion constant, H, diminish the magnitude of these anomalies: neither parameter could be determined. Explanations for these problems, which are unique to this fit, are discussed below.

Fit 5: $\quad \mathrm{v}_{\mathrm{A}}=4, \mathrm{v}_{\mathrm{b}}=3, \mathrm{v}_{\mathrm{b} 2}=4, \mathrm{v}_{\mathrm{A}},=3, \mathrm{v}_{\mathrm{a}}=5$ (fixed) No new perturbations are detected. As mentioned above, a second $b^{3} \Pi$ vibrational level is needed to simultaneously fit the $A^{1} \Sigma^{+}\left(v_{A}=4\right) \sim b^{3} \Pi_{2}$ $\left(v_{b 2}=4\right)$ perturbation at $J_{0}=97.7$ and the $A^{1} \Sigma^{+}\left(v_{A}=4\right) \sim b^{3} \Pi_{0}\left(v_{b}=3\right)$ perturbation $a t$ $J_{o}=55.6$. Only the energy for $b^{3} \Pi\left(v_{b}=4\right)$ is varied; $\mathrm{B}_{\mathrm{b} 2}$ and $\mathrm{D}_{\mathrm{b} 2}$ are fixed at preliminary Fit 6 values.

The $b^{3} I I\left(v_{b 2}=4\right)$ energy so determined agrees well with the value determined in Fit $6 .{ }^{\dagger}$

Fit 6: $\quad v_{A}=5, v_{b}=4, v_{A},=4, v_{a}=6$ Both $a^{3} \Sigma^{+} \sim A^{1} \Pi$ and $a^{3} \Sigma^{+} \sim b^{3} \Pi$ perturbations are observed. No crossing for the latter is observed since the $b^{3} \Pi_{o}\left(v_{b}=4\right)$ origin lies below $a^{3} \Sigma^{+}\left(v_{a}=6\right)$ and $B_{a}>B_{b}$; however, both $a^{3} \Sigma^{+} \sim b^{3} \Pi$ perturbation parameters, $\xi_{b a}$ and $\eta_{b a}$, are determined. One $a^{3} \Sigma^{+} \sim A^{1} \Pi$ crossing is observed at $J_{O}=39.5$. A second $b^{3} \Pi$ vibrational level must be considered at $J>74$ owing to the $b^{3} \Pi_{2}\left(v_{b}=5\right)$
${ }^{\dagger}$ Although the difference between the two values exceeds three times their combined standard errors, this is reasonable when one considers the effects of fixing
parameters as discussed in Chapter 2 and Appendix 1.
$\sim A^{1} \Sigma^{+}\left(v_{A}=5\right)$ crossing at $J_{O}=88.9$; however,this is treated differently from Fit 5 since $b^{3} \Pi_{0}\left(v_{b}=5\right) \sim A^{1} \Sigma^{+}\left(v_{A}=6\right)$ interactions are observed (Fit 7).

Instead of including $b^{3} I_{2}\left(v_{b}=5\right)$ in this fit, $A^{1} \Sigma^{+}\left(v_{A}=5\right)$ data from Ref. 8 are truncated at $J=74$ and included in Fit 7, where all three Ω components of b^{3} II $\left(v_{b}=5\right)$ are fit simultaneously. The two sets of $A^{1} \Sigma^{+}\left(v_{A}=5\right)$ parameters determined from Fits 6 and 7 are in agreement to within 3 standard deviations. Both the $a^{3} \Sigma^{+}$spin-spin and spin-rotation constants, C_{a} and γ_{a} respectively, are determined.

Fit 7: $\quad \mathrm{v}_{\mathrm{A}}=5, \mathrm{v}_{\mathrm{b}}=5, \mathrm{v}_{\mathrm{A}},=5, \mathrm{v}_{\mathrm{a}}=7, \mathrm{v}_{\mathrm{A} 2}=6$ As mentioned above, $A^{1} \Sigma^{+}\left(v_{A}=5\right) \mathrm{J}$ levels above $J=74$ (from Ref. 8) are fit along with $v_{A 2}=6$ OODR data. Two $a^{3} \Sigma^{+} \sim A^{1} I_{I}$ crossings are observed. Although no $A^{1} \Sigma^{+}\left(v_{A 2}=6\right) \sim b^{3} \Pi_{0}$ crossing is observed the two levels are nearly degenerate at $J=0$ and $\xi_{\mathrm{bA} 2}$ is determined,

Fit 8: $\quad v_{A}=7, v_{b}=6, v_{A},=6, v_{a}=8$
Two new perturbations are observed:
$A^{1} \Sigma^{+}\left(v_{A}=7\right) \sim A^{\prime} l_{I}\left(v_{A},=6\right)$ and $A^{\prime}{ }^{1} I\left(v_{A}{ }^{\prime}=6\right) \sim$ $a^{3} \Sigma^{+}\left(v_{a}=8\right)$. A double e-parity crossing occurs between $A^{1} \Sigma^{+}, A^{1} I I$, and $a^{3} \Sigma^{+}\left(F_{2}\right)$ and is illustrated in Fig. 3.11. Although $b^{3} \Pi_{0}\left(v_{b}=6\right)$ lies below the $v_{A}=7$ origin, ξ_{Ab} could still be determined from the $A^{\prime}{ }^{1} I \sim A^{1} \Sigma^{+}$interaction owing to $A^{1} I_{I} \sim b^{3} \Pi_{1}$ mixing and $b^{3} \Pi$ spin-uncoupling
which results in finite $b^{3} \Pi_{0}$ character in the nominal $A^{\prime l} I I V_{A}=6$ level. These perturbations were previously observed by Sakurai, Johnson, and Broida ${ }^{45}$ but these authors made no attempt at analysis.

Fit 9: $\quad \mathrm{v}_{\mathrm{A}}=8, \mathrm{v}_{\mathrm{b}}=7, \mathrm{v}_{\mathrm{A}},=7, \mathrm{v}_{\mathrm{a}}=9$
A very small perturbation ($\xi_{A^{\prime} a}=1.0 \mathrm{~cm}^{-1}$) between $A^{\prime 1} \Pi\left(v_{A^{\prime}}=7\right)$ and $a^{3} \Sigma^{+}\left(v_{a}=9\right)$ is observed at $J_{O}=11.2$. Although no $A^{1} \Sigma^{+} \sim A^{1} I$ crossing is observed, $\eta_{A A}$, is marginally determined.

Fit $10: \quad v_{A}=8$ (fixed) $, \mathrm{v}_{\mathrm{b}}=8, \mathrm{v}_{\mathrm{A}}^{\prime}=8, \mathrm{v}_{\mathrm{a}}=10$ (fixed), $\mathrm{v}_{\mathrm{A} 2}=9$ (fixed) No perturbations are observed.

Fit 11: $\quad v_{A}=9, v_{b}=9, v_{A},=9, v_{a}=10$ (fixed) No perturbations are observed.

Fit 12: $\quad v_{A}=10$ (fixed), $\mathrm{v}_{\mathrm{b}}=10, \mathrm{v}_{\mathrm{A}},=10, \mathrm{v}_{\mathrm{a}}=11$ No perturbations are observed. As mentioned above, $\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{a}^{3} \Sigma^{+} \mathrm{P}$-and R -form branch emission is arbitrarily assigned such that $C_{a}>0 ; i f$ the Q branch assignments are systematically interchanged with the P and R assignments in Table 3.17 the values in Table 3.29 change by less than the lo estimates quoted except for C_{a} which changes sign (but has the same magnitude). Thus, the absolute value of C_{a} is reported.

Fit 13: $\quad v_{A}=11$ (fixed), $v_{b}=11, v_{A}=11$ (fixed), $v_{a}=12$ No perturbations are observed. Again,only $|\mathrm{Ca}|$ is determined.

From Table 3.29, it is seen that vibrational
intervals and rotational constants, particularly those for $A^{\prime 1} I I$ and $b^{3} I$, do not vary in a regular fashion. The precision to which second order corrections to E and B^{46-49} can be calculated ($\approx 40 \%$) does not warrant making these adjustments. However, the magnitude of these corrections precludes their being responsible for the anomalies apparent from examination of Table 3.29: for example, the $A^{\prime}{ }^{1} I\left(V_{A},=2\right)$ energy is low by $\approx 35 \mathrm{~cm}^{-1}$ with respect to v_{A} ' $=1$ and 3 ,whereas the second order energy correction (from interaction with $a^{3} \Sigma^{+}$) is estimated to be $-1.0 \pm 0.4 \mathrm{~cm}^{-1}$. Similarly, second order $A^{1} \Sigma^{+} \sim b^{3} \Pi$ and $a^{3} \Sigma^{+} \sim b^{3} \Pi$ spin-orbit interactions which primarily determine $C_{b} 42,48,50-53$ cannot account for the anomalous value of $22.98 \mathrm{~cm}^{-1}$ determined for $\mathrm{v}_{\mathrm{b}}=2 .^{\dagger}$ On the other hand, these interactions, as well as second order $A^{1}{ }^{1}$ II $\sim b^{3} \Sigma^{+}$interactions, are of the right magnitude to explain observed C_{a} values. In fact, the $A^{1} \Sigma^{+}$and $a^{3} \Sigma^{+} E$ and B values are not anomalous.

It is curious that in Fit 4 it is necessary to vary an additional $A^{1} \Pi \sim A^{1} \Sigma^{+}$interaction parameter,

[^18]$\eta_{\text {AA }}^{J}$. Although this centrifugal distortion parameter can be explained as second order interactions with $A^{\prime l} I I$ and $A^{1} \Sigma^{+}$vibrational levels not explicitly included in the Fit 4 Hamiltonian, it is peculiar that it is not required in any other fit. These problems are not unique to $\mathrm{v}_{\mathrm{A}^{\prime}}=\mathrm{v}_{\mathrm{b}}=2: \mathrm{B}_{\mathrm{A}^{\prime}},\left(\mathrm{v}_{\mathrm{A}^{\prime}}=3\right)$ is certainly too large when contrasted with $B_{A^{\prime \prime}}$ for $v_{A^{\prime}}=2$ and 4. And the B_{b} values for $v_{b}=0,1$, and 2 are the same to within experimental error, contrary to the expected monotonic decrease of B with v.

The magnitude of these anomalies and the inability of second order effects to account for them is suggestive of incomplete deperturbation. The presence of an additional perturbing state (or states) is indicated. The fact that these anomalies are manifested only by A^{11} II and b^{3} II leads to the conclusion that this state (or states) has Δ symmetry (see discussion below). ${ }^{37}$

The above observations illustrate the utility and sensitivity of deperturbation in detecting the presence of new electronic states. Experiments designed to test this hypothesis are described below.
4. Equilibrium Constants

Dunham coefficients (Eq. 3.1) ${ }^{39}$ for
the low lying states of BaO are given in Table 3.31. The E and B values from Table 3.29 were fit to polynomials

Table 3.31: Spectroscopic Constants for Low Lying States of $\mathrm{BaO}^{\text {a }}$

	$\mathrm{X}^{2} \Sigma^{+b}$	$\mathrm{a}^{3} \Sigma^{+}$	$A^{1} \Sigma^{+}$	b^{3} II	$A^{\prime 1}{ }^{1}$
${ }^{\nu} 00 \times 10^{-4}$	0.0	1.6496 (3)	$\begin{aligned} & 1.6722373(10) \\ & {[1.672225] \mathrm{C}} \end{aligned}$	$\begin{aligned} & 1.73915(10) \\ & {[1.7372] \mathrm{e}} \end{aligned}$	1.75088(12)
$T e^{x 10^{-4}}$	0.0	1.6596 (3)	1.6807345 (10)	1.75026 (10)	1.76197(12)
Y_{00}	0.0173	0.0928	-0.0611	-0.1468	-0.1230
$\mathrm{Y}_{10}\left(\omega_{\mathrm{e}}\right) \times \mathrm{xl0}{ }^{-2}$	6.6976 (6)	4.690(7)	$\begin{aligned} & 4.99620(19) \\ & {[4.997] \mathrm{C}} \end{aligned}$	$\begin{gathered} 4.4762(8) \\ {[4.483] \mathrm{e}^{2}} \end{gathered}$	$\begin{gathered} 4.4795(22) \\ {[4.4245] \mathrm{f}} \end{gathered}$
$Y_{20}(-\omega e \mathrm{x})$	2.028 (17)	-1.48(4)	${ }_{[-1.716]^{-1 .}}{ }^{(8)}$	$\begin{gathered} -2.287(12) \\ {[-2.39] e^{-2}} \end{gathered}$	$\begin{gathered} -2.139(8) \\ {[-1.652] \mathrm{f}} \end{gathered}$
$\mathrm{Y}_{30}\left(\omega_{\mathrm{e}} \mathrm{Y}_{\mathrm{e}}\right) \times 10^{2}$	2-0.35 (11)		2.14 (9)		1.02 (3)
$\left.\mathrm{Y}_{40}\left(\omega_{\mathrm{e}} \mathrm{z}\right)\right) \times 10^{5}$	-6.3(21)				
$Y_{01}\left(B_{e}\right)$	0.3126140 (7)	0.2594 (5)	$\begin{aligned} & 0.2583908(26) \\ & {[0.25832] \mathrm{d}} \end{aligned}$	$\begin{gathered} 0.22426(16) \\ {[0.2244] \mathrm{e}^{-}} \end{gathered}$	$\begin{gathered} 0.22385(16) \\ {[0.2244] \mathrm{e}^{(1)}} \end{gathered}$
$Y_{11}\left(-\alpha_{e}\right) \times 10^{3}$	-1.3921(9)	-1.44 (5)	$\underset{[-1.070]}{-1.111} \mathrm{~d}^{(3)}$	$\begin{gathered} -1.18 \\ {[-1.4] e^{(4)}} \end{gathered}$	$\begin{gathered} -1.15 \\ {[-1.4] \mathrm{e}^{(4)}} \end{gathered}$
$Y_{21}\left(\gamma_{e}\right) \times 10^{6}$	-4.33 (24)		7.0 (7)		-4.0 (21)
A $\quad \times 10^{1}$				$-9.4{ }^{9}(4)$	
$\mathrm{Re}^{(}\left({ }_{\text {A }}\right)$	1.939677 (3)	2.1294 (20)	2.133512 (11)	2.2901(8)	2.2922 (8)

All units are cm^{-1} except where noted. All energies are deperturbed. Uncertain- $\underset{\sim}{\sim}$ ties of lo are given in parentheses. Previously reported values are given in parentheses.

Table 3．31：（cont．）Footnotes（cont．）
$\mathrm{b}_{\mathrm{X}}{ }^{1} \Sigma^{+}$constants taken from Ref． 3.
$C_{\text {Ref．}} 8$.
$\mathrm{d}_{\text {Ref．}} 19$ ．
${ }^{\text {Ref．}} 9$.
$f_{\text {Ref．}} 11$ ．
$\mathrm{g}_{\text {Weighted }}$ average of values in Table 3．29．
in ($\mathrm{v}+1 / 2$) ignoring correlations between parameters
but weighting according to the uncer-
tainties $\left(1 / \sigma^{2}\right)$ in Table 3.29. For $A^{\prime 1} I I, G\left(v_{A}\right.$,
values up to $v_{A^{\prime}}=29$ from Ref. 11 and $B\left(v_{A}\right.$, $)$ values up to v_{A} ' $=18$ from Ref. 12 are fit along with these data. ${ }^{\dagger}$

The constants for $a^{3} \Sigma^{+}, A^{1} \Sigma^{+}, b^{3} \Pi$, and $A^{1} \Pi$
have been extended and improved over previous determinations. Discrepancies between $A^{\prime l} \Pi$ constants in Table 3.31 and those in Ref. 11 result from the use of band heads instead of origins as well as extrapolation from high v in the latter. It cannot be overemphasized that the energies in Table 3.31 are deperturbed and should not be used to reproduce spectra without diagonalizing the matrix in Table 3.25. In fact, the parameters in Table 3.29 reproduce the spectra to within experimental error but those in Table 3.31 will not owing to incomplete deperturbation (see above) and neglect of correlations

[^19]between parameters. The constants in Table 3.31 are useful for calculating potential energy curves (Fig. 3.12) and vibrational matrix elements. The A_{b} value in Table 3.31 is a weighted average of the values in Table 3.29. Values for $C_{a}, \quad C_{b}$, and γ_{a} are not averaged as they are generally small and vary from level to level.

Figure 3.12: a) RKR potential energy curves for the vibrationally analyzed states of BaO. On this scale, the $a^{3} \Sigma^{+}$ and $A^{1} \Sigma^{+}$as well as the $b^{3} \Pi$ and A'lll states are indistinguishable.
b) Expanded view of the low energy region.

FIGURE 3.12a

FIGURE 3.12b
IV. Discussion
A. Perturbation Matrix Elements

Spin-orbit and rotation-electronic interactions are responsible for perturbations among low-lying states of BaO :

$$
\begin{align*}
& H^{R E}=-B\left(J_{+} L_{-}+J_{-} L_{+}-L_{+} S_{-}-L_{-} S_{+}\right) \tag{3.2a}\\
& H^{S O}=e^{-} \hat{a} l_{i} \cdot S_{i} \tag{3.2b}
\end{align*}
$$

where $H^{R E}$ and $H^{S O}$ are the rotation-electronic and spinorbit Hamiltonians, respectively;
$\hat{a}=\frac{Z_{B a}}{r_{B a}^{3}}+\frac{Z_{O}}{r_{0}^{3}}$ is the one-electron radial part of
the spin-orbit operator, Z is an effective nuclear charge, r is the distance between nucleus and
electron, and all other symbols have their usual meanings. 40,54

Weighted averages of $A^{1} \Sigma^{+} \sim b^{3} \Pi, A^{1} \Sigma^{+} \sim A^{1} I I$, and $a^{3} \Sigma^{+} \sim A^{1} \Pi$ electronic perturbation matrix elements are given in Tables $3.26,3.27$, and 3.28 respectively. These were obtained by dividing the vibronic matrix elements by the appropriate vibrational factors (see Chapter 2). The constancy of preliminary values for these electronic factors has been used to determine
vibrational numberings for $a^{3} \Sigma^{+}$(Appendix 6), $b^{3} I_{1},{ }^{9}$ and $A^{1}{ }^{1} .^{9}$

That vibronic matrix elements can be factored into vibrational and electronic parts results from constant R-centroids for pairs of mutually interacting levels 55,56 , where

$$
\begin{equation*}
\mathrm{R}-\text { centroid }=\frac{\langle\mathrm{V}| \mathrm{R}\left|\mathrm{~V}^{\prime}\right\rangle}{\left\langle\mathrm{V} \mid \mathrm{V}^{\prime}\right\rangle} \tag{3.3}
\end{equation*}
$$

For the above states with interacting v and v ' levels, average R -centroids are:

$$
\begin{aligned}
& \text { R-centroid }\left(A^{1} \Sigma^{+} \sim b^{3} I\right)=2.26 \pm 0.04 \AA(3.4 a) \\
& \text { R-centroid }\left(A^{1} \Sigma^{+} \sim A^{1} I I\right)=2.26 \pm 0.04 \AA(3.4 b) \\
& R \text {-centroid }\left(a^{3} \Sigma^{+} \sim A^{1} I I\right)=2.34 \pm 0.15 \AA(3.4 c)
\end{aligned}
$$

where the uncertainties quoted represent the range of R-centroid values sampled. As expected, these values correspond to the internuclear distances where the potential energy curves intersect (see Fig. 3.12b). 55

In this single configuration limit, matrix elements of operators in Eq. 3.2 between pairs of electronic states are related by matrix elements of oneelectron operators between molecular orbitals ${ }^{55-58}$
(Appendices 3 and 4). The lowest lying states of BaO derive from the following electronic configurations:

$$
\begin{equation*}
\mathrm{X}^{1} \Sigma^{+} \mathrm{z} \sigma^{2} y \sigma^{2} \mathrm{w} \pi^{4} \tag{3.5a}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{a}^{3} \Sigma^{+}, A^{1} \Sigma^{+} \quad \mathrm{z} \sigma^{2} \mathrm{y} \sigma \mathrm{x} \sigma \mathrm{w} \pi^{4} \tag{3.5b}\\
& \mathrm{~b}^{3} \Pi, A^{1} \Pi \quad \mathrm{Z} \sigma^{2} \mathrm{Y} \sigma^{2} \mathrm{x} \sigma \mathrm{w} \pi^{3} \tag{3.5c}
\end{align*}
$$

Using these configurations and the methods outlined in Refs. 54, 57, 58 and in Appendix 3, matrix elments between lowest lying states of BaO are expressed in terms of one-electron integrals in Table 3.32. It is seen from this table that these one-electron integrals have different values when evaluated for different pairs of interacting states.

In addition to the relationships in Table 3.32 , values of b, a_{+}, and a_{z} (defined in Table 3.32) can be related to atomic integrals by employing the LCAO method:

$$
\begin{align*}
& |\mathrm{w} \pi\rangle=|\pi \mathrm{O} 2 \mathrm{p}\rangle \tag{3.6a}\\
& |\mathrm{y} \sigma\rangle=\varepsilon|\sigma 02 \mathrm{p}\rangle+\left(1-\varepsilon^{2}\right)^{\frac{1}{2}}|\sigma \mathrm{Ba}\rangle . \tag{3.6b}
\end{align*}
$$

In Eq. 3.6, the molecular orbital $\mathrm{w} \pi$ is assumed to be localized on O and $y \sigma$ is localized on O but has some Ba atomic character. Field ${ }^{9}$ has shown that Eq. 3.6a adequately accounts for the b^{3} II spin-orbit constant which is small ($-94 \mathrm{~cm}^{-1}$) compared with atomic Ba ${ }^{3}$ P spin-orbit splittings ($833 \mathrm{~cm}^{-1}$). ${ }^{59}$ If ε is unity in Eq. 3.6b (i.e. y^{σ} is comprised primarily of $02 p$), $\mathrm{a}_{+}=\sqrt{\ell(l+1)} \mathrm{a}_{\mathrm{z}}=\sqrt{2} \mathrm{a}_{\mathrm{z}}$. On the other hand, if $\varepsilon \neq 0$, the Ba atomic character does not contribute significantly to the off-

Table 3.32: One-Electron Perturbation Matrix Elements

	b (unitless)	$a_{+}\left(\mathrm{cm}^{-1}\right)$	$\mathrm{a}_{\mathrm{z}}\left(\mathrm{cm}^{-1}\right)$
$A^{1} \Sigma^{+} \sim A^{11} \Pi$	$1.014 \pm 0.024^{\text {a }}$		
$\mathrm{A}^{1} \Sigma^{+} \sim \mathrm{b}^{3} \mathrm{I}$		$63.9 \pm 1.1^{\text {b }}$	
$\mathrm{a}^{3} \Sigma^{+} \sim \mathrm{A}^{1}{ }^{1}$		167. $\pm 8{ }^{\text {c }}$	
$\mathrm{a}^{3} \Sigma^{+} \sim \mathrm{b}^{3} \Pi$	$1.26 \pm 0.09^{\text {d }}$	52. $\pm 8^{\text {d }}$	
b^{3} II $\sim \mathrm{A}^{1} \mathrm{I}^{\text {I }}$			222 ± 16^{e}
b^{3} II			$188 \pm 16^{\text {f }}$

```
where \(b=\langle w \pi| \ell_{+}|y \sigma\rangle=\eta_{A A}, /\left\langle v_{A}\right| B\left|v_{A},\right\rangle=-\eta_{b a} /\left\langle v_{b}\right| B\left|v_{a}\right\rangle\)
    \(a_{+}=\langle w \pi| \hat{a} \ell_{+}|y \sigma\rangle=(2)^{3 / 2} \underset{A}{\xi} /\left\langle v_{A} \mid v_{b}\right\rangle=(2)^{3 / 2} \underset{A}{\xi}{ }_{A} /\left\langle v_{A}, \mid v_{a}\right\rangle=-4 \xi_{b a} /\left\langle v_{b} \mid v_{a}\right\rangle\)
    \(a_{z}=\langle w \pi| \hat{a}|w \pi\rangle=-2 A_{b}=2 \xi_{A^{\prime} b}\)
```

```
\(\mathrm{a}_{\text {From Table }} 3.27\).
\(\mathrm{b}_{\text {From Table }} 3.26\).
\(\mathrm{C}_{\text {From Table }} 3.28\).
\(\mathrm{d}_{\text {Obtained }}\) from Table 3.29 , Fits 3 and 6 , and calculated \(\left\langle\mathrm{v}_{\mathrm{b}} \mid \mathrm{v}_{\mathrm{a}}\right\rangle\) and \(\left\langle\mathrm{v}_{\mathrm{b}}\right| \mathrm{B}\left|\mathrm{v}_{\mathrm{a}}\right\rangle\) factors.
\(e_{\text {From weighted }}\) average of values in Table 3.29 .
\(\mathrm{f}_{\text {From Table }} 3.31\).
```

diagonal matrix elements, a_{+}, since two-center contributions to these integrals are small. ${ }^{60}$ Thus, Ba atomic character in yo merely dilutes the yo ~ w interaction and a_{+}can be less than a_{z} :

$$
\begin{equation*}
a_{+}=\langle w \pi| \hat{a} \ell_{+}|y \sigma\rangle=\varepsilon \sqrt{2} \quad a_{z} . \tag{3.7}
\end{equation*}
$$

Using the $a^{3} \Sigma^{+} \sim A^{1} \Pi$ and $A^{1} \Sigma^{+} \sim b^{3} \Pi a_{+}$values and average a_{z} values from Table 3.32,

$$
\begin{align*}
& \varepsilon\left(a^{3} \Sigma^{+}\right) \approx 0.58 \tag{3.8a}\\
& \varepsilon\left(A^{1} \Sigma^{+}\right) \approx 0.22 .^{+} \tag{3.8b}
\end{align*}
$$

These simple arguments indicate that the yo orbital in $A^{1} \Sigma^{+}$is different from the $a^{3} \Sigma^{+} y \sigma$ orbital. Alternatively, configuration interaction, which also dilutes the one-electron spin-orbit interaction, plays a greater role in determining the $A^{1} \Sigma^{+}$electronic structure than it does for $a^{3} \Sigma^{+}$.
B. Singlet ~ Triplet Energy Splittings

To the extent that the single configuration

[^20]approximation is valid, the $a^{3} \Sigma^{+}-A^{1} \Sigma^{+}$and $b^{3} I I-A^{1} I I$ deperturbed (i.e. not considering spin-orbit interactions) energy splittings are a function of the exchange integrals: ${ }^{61}$
\[

$$
\begin{align*}
& \left.\Delta E_{\Sigma}=\mathrm{E}\left(\mathrm{~A}^{1} \Sigma^{+}\right)-\mathrm{E}\left(\mathrm{a}^{3} \Sigma^{+}\right)=2<\mathrm{y} \sigma(1) \mathrm{x} \sigma(1)\left|\frac{1}{r_{12}}\right| \mathrm{y} \sigma(2) \mathrm{x} \sigma(2)\right\rangle \tag{3.9a}\\
& \Delta \mathrm{E}_{\Pi}=\mathrm{E}\left(\mathrm{~A}^{1} 1 \Pi\right)-\mathrm{E}\left(\mathrm{~b}^{3} \Pi\right)=2<\mathrm{w} \pi(1) \mathrm{x} \sigma(1)\left|\frac{1}{r_{12}}\right| \mathrm{w} \pi(2) \mathrm{x} \sigma(2)> \tag{3.9b}
\end{align*}
$$
\]

where 1 and 2 are electron indices. If the $w \pi, y^{\sigma}$, and x σ orbitals were identical for each electronic state, and $w \pi$ and yo were both comprised of only $02 p \Delta E_{\Sigma}$ would equal $\Delta \mathrm{E}_{\Pi}$. In fact $\Delta \mathrm{E}_{\Sigma}\left(226 \mathrm{~cm}^{-1}\right)$ is remarkably close to $\Delta \mathrm{E}_{\mathrm{I}}\left(117 \mathrm{~cm}^{-1}\right)$. The similarity between the pairs of Σ and $I I$ potential energy curves (Figure 3.12) is a further manifestation of the validity of the single configuration approximation.

This apparent contradiction with the bonding picture drawn above from perturbation matrix elements results simply from the sampling of different properties of electronic wave functions by different operators $\left(\frac{Z_{K}}{r_{i K}{ }^{3}}\right.$ for spin-orbit, where K is a nuclear index, and $1 / r_{i j}$ for exchange interactions).
C. Electronic Structure of BaO

Figures 3.12 and 3.13 summarize the known electronic structure of BaO . From measurements of $X^{1} \Sigma^{+}$and $A^{1} \Sigma^{+}$
Figure 3.13: BaO energy level diagram illustrating the emission observed from a single $C^{1} \Sigma^{+}\left(v^{*}=3, J\right)$ level. Rotational constants are given on the levels; shortest and longest wavelengths of band heads are given in nm along the transition arrows.

FIGURE 3.13
dipole moments, 7.955D ($\mathrm{v}^{\prime \prime}=0$) and 2.20D ($\mathrm{v}^{\prime}=1$) respectively, it has already been concluded that $\mathrm{X}^{1} \Sigma^{+}$is ionic, $\mathrm{Ba}^{+} \mathrm{O}^{-}$, while $\mathrm{A}^{1} \Sigma^{+}$is primarily covalent. ${ }^{13,20} A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}$excitation entails charge transfer from O^{-}to Ba^{+}with a concomittant decrease in bond strength (ω_{e} " $>\omega_{e}$ ') and increase in bond length $\left(B_{e}{ }^{\prime \prime}>B_{e}^{\prime \prime}\right)$. Similarly the $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}$and $D^{1} \Sigma^{+} \leftarrow C^{1} \Sigma^{+}$transitions result in further weakening of the bond (ω_{e} ' > $\omega_{e}{ }^{*}$) which is suggestive of additional charge transfer. The relatively long $A^{1} \Sigma^{+}$lifetime, 356 nsec for $v^{\prime}=0,62$ is further evidence that an electron is being promoted from O to Ba .

The most curious feature of these band systems is the observation of strong parallel $(\Delta \Lambda=0)$ but weak perpendicular ($\Delta \Lambda= \pm 1$) transitions: the $A^{\prime l} I I$ lifetime, for example, is $9 \mu \sec$ 12 strong excitation from $A^{1} \Sigma^{+}$ into a ${ }^{1}$ II state is not observed. Zare and Herschbach have shown that the dominance of parallel over perpendicular transition intensity in alkali halide (isoelectronic with alkaline-earth oxides) results from (1) equally mixed covalent and ionic character in both the upper and lower states or (2) pure covalent character in both states. 63 Pure ionic to pure covalent charge transfer transitions on the other hand, result in strong perpendicular and weak parallel bands.

Again, there seems to be a paradox. The electronic states are both ionic and covalent and can appear to have different charge distributions depending on which observable, is sampled. No one, simple molecular orbital configuration accounts for all of the observations.

It is not surprising that many electronic states in the high energy ($>20,000 \mathrm{~cm}^{-1}$) range are observed via a plethora of $\mathrm{C}^{1} \Sigma^{+}$perturbations. From the first excited state of $\mathrm{Ba}\left(6 s 5 d^{3} \mathrm{D}\right)$ and the ground state of $O\left(2 s^{2} 2 p^{4}{ }^{3} p\right)$, alone, twenty-seven molecular electronic states of singlet, triplet, and quintet multiplicity are derived. ${ }^{32}$ To be sure, not all of these states will be bound but it is certain that many will be. In particular, molecular states correlating to these atomic states may be responsible for the anomalous $A^{1} \Pi$ and $b^{3} \Pi$ deperturbation results obtained above.

D. Population Monitoring

The band systems described above can be used in population probes of low lying states of BaO^{23} although several points warrant consideration before proceeding with such experiments. The perturbations responsible for the intercombination bands observed
also complicate population monitoring: line intensities will generally vary with both J and v in an irregular fashion. In principle, the J variations can be computed from the depeturbation results above: the unitary transformation matrices which diagonalize the Hamiltonians provide mixing coefficients which in turn permit the relative line intensities to be calculated. For example, percent Σ character in the $C^{l} \Sigma^{+}\left(v^{*}=3\right)$ main levels near the vibrational origin varies from 64% at $J=0$ to 83% at $J=20$. Competing transition moments, owing to the multiplicity of perturbing states in both the upper and lower levels make reliable relative intensity calculations difficult at best.

It is recommended, instead, that careful fluorescence intensity measurements be made via OODR pumping of $\mathrm{Cl}^{1} \Sigma^{+}$prior to using these same transitions in excitation (e.g. $\mathrm{C}^{1} \Sigma^{+} \leftarrow \mathrm{b}^{3}$ II followed by $\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{X}^{1} \Sigma^{+} \mathrm{UV}$ fluorescence) to monitor populations. This is particularly necessary for comparisons of populations between different vibrational levels where the upper level perturbing state vibrational numberings remain undetermined: for example, $c-b^{3}$ II Franck-Condon factors most likely determine the vibrational envelope of $\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{b}^{3} \Pi$ emission intensity.
V. Conclusion

The technique of optical-optical double resonance has been shown to be a convenient and sensitive means by which low lying, long lived electronic states can be systematically detected and characterized. Although crucial intercombination bands result from ubiquitous perturbations in the highly excited electronic states of the heavy BaO molecule, the OODR technique assisted by perturbations is by no means unique to this molecule. Local perturbations exist in most molecules and with the selectivity afforded by OODR these isolated perturbed levels can be prepared at will.

A population monitoring scheme for the $a^{3} \Sigma^{+}, b^{3} \Pi$, and $A^{\prime l}$ II reservoir states has been established. It is hoped that this work will stimulate such experiments in the future.

Additional spectroscopic OODR experiments on BaO are warranted in light of the evidence for metastable reservoir Δ states in the $\sim 16,000 \mathrm{~cm}^{-1}$ energy range.

References For' Chapter' 3

1. R.H. Barnes, C.E. Moeller, J.F. Kircher, and C.M. Verber, Appl. Phys. Lett. 24, 610 (1974).
2. D.L. Rousseau and P.F. Williams, Phys. Rev. Lett. 33, 1368 (1974).
3. R.W. Field, G.A. Capelle, and M.A. Revelli, J. Chem. Phys. 63, 3228 (1975).
4. M.D. Danyluk and G.W. King,
a) Chem. Phys. Lett. 43, l (1976);
b) Chem. Phys. Lett. 44,440 (1976);
c) Chem. Phys. Lett. 22, 59 (1977).
5. M.E. Kaminsky, R.T. Hawkins, F.V. Kowalski, and
A.L. Schawlow, Phys. Rev. Lett. 36, 671 (1976).
6. J.I. Steinfeld and P.L. Houston, "Double Resonance Spectroscopy", in Laser and Coherence Spectroscopy, ed. J.I. Steinfeld, (Plenum, 1978), p. 1.
7. P.C. Mahanti, Proc. Phys. Soc. 46, 51 (1934).
8. A. Lagerqvist, E. Lind, and R.F. Barrow, Proc. Phys. Soc. A 63, 1132 (1950).
9. R.W. Field, J. Chem. Phys. 60, 2400 (1974).
10. C.J. Hsu, W.D. Krugh, H.B. Palmer, R.H. Obenauf, and C.F. Aten, J. Mol. Spectrosc. 53, 273 (1974).
11. J.C. Wyss and H.P. Broida, J. Mol. Spectrosc. 59, 235 (1976).
12. J.G. Pruett and R.N. Zare, J. Chem. Phys. 62, 2050 (1975).
13. L. Wharton, M. Kaufman, and W. Klemperer, J. Chem. Phys. 37, 621 (1962).
14. L. Wharton and W. Klemperer, J. Chem. Phys. 38, 2705 (1963).
15. E. Tiemann, M. Bojaschewsky, Ch. Sauter-Servaes, and T. Törring, Z. Naturforsch. 29a, 1692 (1974).
16. W.H. Hocking, E.F. Pearson, R.A. Creswell, and G. Winnewisser, J. Chem. Phys. 68, 1128 (1978).
17. R.W. Field, R.S. Bradford, D.O. Harris, and H.P. Broida, J. Chem. Phys. 56, 4712 (1972).
18. R.W. Field, R.S. Bradford, H.P. Broida, and D.O. Harris, J. Chem. Phys. 57, 2209 (1972).
19. R.W. Field, A.D. English, T. Tanaka, D.O. Harris, and D.A. Jennings, J. Chem. Phys. 59, 2191 (1973).
20. R.F. Wormsbecher, S.I. Lane, and D.O. Harris, J. Chem. Phys. 66, 2745 (1977).
21. W.H. Parkinson, Proc. Phys. Soc. 78, 705 (1961).
22. R.W. Parker, "BaO, the Parkinson System", unpublished report, Department of Physics, University of California, Santa Barbara (1971).
23. A. Torres-Filho and J.G. Pruett, J. Chem. Phys. (in press, 1979).
24. C.R. Jones and H.P. Broida, J. Chem. Phys. 60, 4369 (1974).
25. J.B. West, R.S. Bradford Jr., J.D. Eversole, and C.R. Jones, Rev. Sci. Instrum. 46, 164 (1975).
26. S. Gerstenkorn and P. Luc, Atlas du Spectra de la Molecule de L'iode, Laboratoire Aimé Cotton, CNRS II, Bât. 505, 91405-Orsay, France.
27. D. Jennings and R. Barger, National Bureau of Standards, Boulder, Co.
28. A.L. Bloom, J. Opt. Soc. 64, 447 (1974).
29. H.W. Kogelnik, E.P. Ippen, A. Dienes, and C.V. Shank, I.E.E.E. J. Quant. Electr. QE-8, 373 (1972).
30. J.B. Koffend, Ph.D. Thesis, Massachusetts Institute of Technology, 1978.
31. H.M. Crosswhite and G.H. Dieke, "Important Atomic Spectra", in Amer. Inst. Phys. Handbook, 2nd Ed., D.E. Gray, ed., (McGraw-Hill, 1963).
32. G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules,
(Van Nostrand Reinhold, New York, 1950).
33. R.W. Field, Coherent Focus on Science 1, 1 (1977).
34. E.U. Condon, Phys. Rev. 32, 858 (1928).
35. G. Gerber and H.P. Broida, J. Chem. Phys. 64,

3423 (1976).
36. J.M. Brown, J.T. Hougen, K.-P. Huber, J.W.C. Johns, I. Kopp., H. Lefebvre-Brion, A.J. Merer, D.A. Ramsay, J. Rostas, and R.N. Zare, J. Mol. Spectrosc. 55, 500 (1975).
37. I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules (American Elsevier, New York, 1969).
38. J.K.G. Watson, J. Mol. Spectrosc. 66, 500 (1977).
39. J.L. Dunham, Phys. Rev. 41, 721 (1932).
40. J.T. Hougen, Natl. Bureau Standards, U.S. Monogr. 115, (1970).
41. R. Schlapp, Phys. Rev. 39, 806 (1932).
42. K.F. Freed, J. Chem. Phys. 45, 4214 (1966).
43. E.U. Condon and G.H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, Cambridge, 1951.
44. R. Rydberg, Z. Physik 73, 376 (1931); 80, 514 (1933); O. Klein, Z. Physik 76, 226 (1932); and A.L.G. Rees, Proc. Phys. Soc. 59, 998 (1947).
45. K. Sakurai, S.E. Johnson, and H.P. Broida, J. Chem. Phys. 52, 1625 (1970).
46. a) E.L. Hill and J.H. Van Vleck, Phys. Rev. 32, 250 (1928);
b) J.H. Van Vleck, Phys. Rev. 33, 467 (1929);
c) J.H. Van Vleck, Phys. Rev. 40, 544 (1932);
d) J.H. Van Vleck, Rev. Mod. Phys. 23, 213 (1951).
47. R.N. Zare, A.L. Schmeltekopf, W.J. Harrop, and D.L. Albritton, J. Mol. Spectrosc. 46, 37 (1973).
48. J. Rostas, D. Cossart, J.R. Bastien, Can. J. Phys. 52, 1274 (1974).
49. J.A. Coxon, J. Mol. Spectrosc. 58, 1 (1975).
50. M.H. Hebb, Phys. Rev. 49, 610 (1936).
51. K. Kayama and J.C. Baird, J. Chem. Phys. 46, 2604 (1967).
52. M. Horani, J. Rostas, and H. Lefebvre-Brion, Can. J. Phys. 45, 3319 (1967).
53. R.W. Field and H. Lefebvre-Brion, Acta. Phys. Acad. Scient. Hung. 35, 51 (1974).
54. H. Lefebvre-Brion, "Perturbations in the Spectra of Diatomic Molecules" in Atoms, Molecules, and Lasers, International Atomic Energy Agency (Vienna, 1974) pp. 411-448.
55. J.A. Hall, J. Schamps, J.M. Robbe, and H. LefebvreBrion, J. Chem. Phys. 59, 3271 (1973).
56. J. Schamps, J. Quant. Spectrosc. Radiat. Transfer 17, 685 (1977).
57. T.E.H. Walker, Mol. Phys. 23, 489 (1972).
58. R.W. Field, B.G. Wicke, J.D. Simmons, and S.G. Tilford, J. Mol. Spectrosc. 44, 383 (1972).
59. C.E. Moore, A Multiplet Table of Astrophysical Interest, Natl. Stand. Ref. Data Ser. 40 , (1972).
60. T.E.H. Walker and W.G. Richards, J. Chem. Phys. 52, 1311 (1970).
61. J. Raftery, P.R. Scott, and W.G. Richards, J. Phys. B5, 1293 (1972).
62. S.E. Johnson, J. Chem. Phys. 56, 149 (1972).
63. R.N. Zare and D.R. Herschbach, J. Mol. Spectrosc. 15, 462 (1965).

I. Introduction

This chapter reports results of Ar^{+}and dye laser excitation of CaO. Emission from five Ar^{+}lines $(501.717,487.986,476.486,472.689 \text {, and } 457.936 \mathrm{~nm})^{\dagger}$ is observed and partially analyzed. Excitation spectra of the CaO green and orange band systems using a broad bandwidth, tunable dye laser have also been obtained. The results of these experiments indicate that: (1) the green and orange $C a$ arc bands are certainly comprised of diatomic CaO emission and (2) at least two of the lower electronic states of these systems correspond to the energy reservoir $a^{3} I I$ and $A^{1} I I$ states.

The known spectrum of CaO consists of six band systems: ultraviolet $\left(C^{1} \Sigma^{+}-X^{1} \Sigma^{+}\right)^{1}$, blue $\left(B^{1} \Pi-X^{1} \Sigma^{+}\right)^{1}$, green ${ }^{2-9}$, orange e^{2-9}, infra-red $\left(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}\right) 10,11$, and $A^{1} I I-X^{1} \Sigma^{+} .{ }^{12}$ The $A^{1} \Sigma^{+}-X^{1} \Sigma^{+}$system was first vibrationally and rotationally analyzed correctly by Hultin and Lagergvist ${ }^{10}$ who observed, 30 perturbations in the $A^{1} \Sigma^{+}$ state of which all but were subsequently assigned by Field ${ }^{13}$ to the $a^{3} I I$ and $A^{11} \Pi$ states, Brewer and Hauge ${ }^{11}$ extended the analysis of this system and improved both the $\mathrm{X}^{1} \Sigma^{+}$and $\mathrm{A}^{1} \Sigma^{+}$constants. The blue and ultraviolet systems were first correctly analyzed by Lagerqvist. ${ }^{1}$

[^21]The green and orange systems have been the subject of controversy ever since their discovery ${ }^{2-4}$ and have yet to be analyzed. Only one band in the green system has been rotationally analyzed but the electronic symmetries were not unambiguously established. ${ }^{6}$

The controversy surrounding the green and orange systems stems from their extraordinary complexity leading several authors to conclude that they do not arise from diatomic CaO at all but rather from $\mathrm{CaOH}^{5,11}$ or $\mathrm{Ca}_{2} \mathrm{O}_{2} \cdot{ }^{5}$ Isotopic substitution of deuterium for hydrogen provided further evidence that the bands resulted from $\mathrm{CaOH} .^{11}$ In fact, both CaO and CaOH bands exist in the green and orange and confusion has resulted primarily from flame reactions with water as an impurity. Benard et al. ${ }^{7,8}$ have recently distinguished emission from these two systems and by analogy with Mgo bands have assigned the $C a O$ green system as ${ }^{l} \Delta-A^{l} I I$ and the orange system as $d^{3} \Delta-a^{3} \Pi$. These conclusions seem overly simple in light of theoretical predictions that not only $C^{1} \Sigma^{+}, B^{1}$ It, and $d^{3} \Delta$ but also ${ }^{3} \Pi$, ${ }^{3} \Sigma^{+},{ }^{3} \Sigma^{-},{ }^{3} \Delta,{ }^{1} \Sigma^{+}$, ${ }^{1} \Delta(2)$, and ${ }^{1} \Sigma^{-}$states lie in this energy range. ${ }^{14}$

Although the green and orange systems have not yet been analyzed they have already been used as measures of $a^{3} I I$ and $A^{1}{ }^{1} I$ populations in reactions of metastable Ca atoms with O_{2} and $\mathrm{CO}_{2} \cdot{ }^{15}$

Green and orange band intensities are a sensitive function of $C O$ concentration in $\mathrm{Ca}+2 \mathrm{~N}_{2} \mathrm{O}+\mathrm{CO} \rightarrow \mathrm{CaO}+2 \mathrm{~N}_{2}+\mathrm{CO}_{2}$ flame reactions in the presence of a buffer gas). 7,8 The proposed mechanism for this reaction is:

$$
\begin{align*}
& \mathrm{Ca}+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{CaO}+\mathrm{N}_{2} \tag{4.la}\\
& \left.\mathrm{CaO}+\mathrm{CO} \rightarrow \mathrm{Cai}^{3} \mathrm{P}\right)+\mathrm{CO}_{2} \tag{4.1b}\\
& \mathrm{Ca}\left({ }^{3} \mathrm{P}\right)+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{CaO}\left(\mathrm{~d}^{3} \Delta\right)+\mathrm{N}_{2} \tag{4.1c}\\
& \mathrm{CaO}\left(\mathrm{~d}^{3} \Delta\right) \xrightarrow{\mathrm{h} v} \mathrm{CaO}\left(\mathrm{a}^{3} I \mathrm{I}\right) \tag{4.1d}
\end{align*}
$$

where CaO* denotes dark, metastable, vibrationally excited CaO $X^{l^{2}} \Sigma^{+}$. The addition of $C O$ converts the chemically stored energy in $X^{1} \Sigma^{+}$to optical energy via $d^{3} \Delta \rightarrow a^{3} I I$ fluorescence in the orange and green systems. $7,16,17$ The reaction sequence in Eqs. 4.1a and 4.1b has been proposed as an efficient means for the efficient production of metastable alkaline-earth atoms to be used in excimer lasers. ${ }^{16,17}$

The Ar^{+}and dye laser experiments described below are intended as a beginning to the analysis of the green and orange band systems in order that the kinetic work described briefly above may be verified and further characterized. Although time has not permitted me to
finish these experiments, the preliminary analyses presented below prove unambiguously that $a^{3} \Pi$ and $A^{\prime}{ }^{1} \Pi$ are lower levels in both the green and orange systems. Upper level symmetries identified include $C^{1} \Sigma^{+},{ }^{3} \Delta$, and ${ }^{1} I I$.

Besides spectroscopic investigations, the CO dependence of green and orange band dye laser excitation spectra is qualitatively characterized and found to be consistent with the reaction mechanism described by Eq. 4.1.

In Section II a brief description of experimental details is presented. Section III describes Ar^{+}and dye laser fluorescence and excitation spectra and assignments. This work is summarized and future experiments are suggested in Section IV.
II. Experimental

CaO is prepared in the same fashion as BaO (Chapter 3) except that $\mathrm{N}_{2} \mathrm{O}$ (Matheson, 99.0\% purity) is used as an oxidant. Co (Matheson, 99.5\% purity) is added by mixing with $\mathrm{N}_{2} \mathrm{O}$ prior to injection into the reactor. Ca metal from Alfa, Inc. (99.5\%) is used. Typical operating pressures are 1-4 torr $\mathrm{Ar}, 1 \times 10^{-4}$ torr $C a, 1 \times 10^{-2}$ torr CO , and 3×10^{-2} torr $\mathrm{N}_{2} \mathrm{O}$.

In order to eliminate overlapping from chemiluminescence, both Ar^{+}and dye lasers are amplitude modulated by mechanical chopping and fluorescence is detected with a Keithley 840 Autotrac Lock-In detector.

For Ar^{+}laser (Spectra Physics \#l71) experiments, fluorescence is resolved by a Spex 1802 monochromator. Absolute frequency calibration is provided by Ar^{+}laser lines; ${ }^{18}$ relative frequency calibration is obtained from marker pulses output by the Spex 1802 monochromator. For some Ar^{+}laser experiments an intracavity etalon (Spectra Physics \#589) is used to obtain. single frequency operation and consequently simplify fluorescence spectra. The laser is operated at maximum power [Spectra Physics specifications: $4.0 \mathrm{~W}, 0.5 \mathrm{~W}, 3.2 \mathrm{~W}, 1.0 \mathrm{~W}, 0.2 \mathrm{~W}, 0.3 \mathrm{~W}$, for $514.5 \mathrm{~nm}, 501.7 \mathrm{~nm}, 488.0 \mathrm{~nm}, 476.5 \mathrm{~nm}, 472.7 \mathrm{~nm}$, and 457.9 nm , respectively].

For dye laser excitation spectra (home made dye
laser described in Chapter 3), total fluorescence is collected through the monochromator in $0^{\text {th }}$ order. Absolute frequency calibration is provided by excitation of Ca and Na (an impurity in the Ca) atomic lines. ${ }^{19}$ For single mode dye laser excitation, a 60\% reflecting, solid quartz etalon is inserted into the laser cavity.

A Hamamatsu R2l2 photomultiplier tube operated at -600 VDC is mounted on the monochromator exit slit.
III. Results
A. Ar^{+}laser excitation

Table 4.1 summarizes the observations. Two types of fluorescence - relaxed and unrelaxed (or resonant) - are usually resolved. The upper level rotational quantum number, J^{\prime}, is assigned from P and R branch splittings when $\mathrm{B}^{\prime \prime}$ and $\mathrm{D}^{\prime \prime}$ are known:

$$
\begin{equation*}
\Delta P R=\left(4 B^{\prime \prime}-6 D^{\prime \prime}\right)\left(J^{\prime}+0.5\right)-8 D^{\prime \prime}\left(J^{\prime}+0.5\right)^{3} \tag{4.2}
\end{equation*}
$$

where $B^{\prime \prime}$ and $D^{\prime \prime}$ are the lower level rotational and centrifugal distortion constants, respectively, and $\triangle P R$ is the splitting between $P\left(\Delta J=J^{\prime}=J^{\prime \prime}=-1\right)$ and $R(\Delta J=+1)$ branch emission.

Fluorescence from each analyzed excitation
line is described and discussed in detail below.
501.717 nm (19 $926.014 \mathrm{~cm}^{-1}$) line

Two progressions of P, R doublets extending from 345 nm to 400 nm are observed. P, R splittings as well as spacings between successive PR doublets indicate that: (1) $J^{\prime}=28$ and $J^{\prime}=51$ are simultaneously excited and (2) the lower levels of the progression are $\mathrm{X}^{1} \Sigma^{+} \mathrm{v}^{\prime \prime}=1$ to 6 . A single maximum at $\mathrm{v}^{\prime \prime}=3$ and no nodes are observed. P to R branch intensity ratios

Table 4.1 (cont.)

Laser Line (nm) a	Excitation	Fluorescence
472.689	$\mathrm{C}^{1} \Sigma^{+} \leftarrow \mathrm{X}^{1} \Sigma^{+}(2,13)$ $P(28)$ and $R(48)$ At least two additional transitions. Multi-mode and single mode.	a) Resonant and relaxed structure from 350 to 480 nm . Two PR progressions into $\mathrm{X}^{1} \Sigma^{+}$ $\mathrm{v"}=0$ to 13 with two nodes in each. b) Relaxed and resonant structure in orange and green.
$457.936^{\text {b }}$	$\begin{aligned} & { }^{1} \Pi \leftarrow X^{1} \Sigma^{+} \quad(1,7) \\ & \mathrm{P}(32) \text { and } Q(37) \\ & \text { Multi-mode. } \end{aligned}$	a) Two progressions (P,Rand Q) into $\mathrm{X}^{1} \Sigma^{+} \mathrm{v}^{\prime \prime}=0$ to 8 with one node between $\mathrm{v}^{\prime \prime}=2$ and 3. b) ${ }^{1} \Pi \rightarrow A^{\prime}{ }_{I I}(1,0)$ and $(1,1)$ in green. c) Relaxed and resonant structure in orange.
$335.849^{\text {C }}$	$\begin{aligned} & \mathrm{C}^{1} \Sigma^{+} \\ & \mathrm{R}(41) \end{aligned} \mathrm{X}^{1} \Sigma^{+}(2,0)$ At least two additional transitions. Multi-mode.	a) $C^{1} \Sigma^{+} \rightarrow A^{1} \Pi(2,0)$ and $(2,1) R(41), Q(42)$, and $P(43)$ at $468.55,469.30,469.80$, 481.41, and 482.08 respectively.

$\mathrm{a}_{\text {Ref. }}$ 18. Air wavelengths.
$\mathrm{b}_{\text {The electronic and }}$ vibrational assignments of ${ }^{1} \Pi$ and $v^{\prime}=1$ respectively are tentative, see text.
$\mathrm{C}_{\text {Ref. }} 20$.
deviate markedly from the expected value ${ }^{21}$ of 1 and vary dramatically with $\mathrm{v}^{\prime \prime}$. This is indicative of heterogeneous (i.e. J-dependent, $\Delta \Omega= \pm$ 1) perturbations in the upper level and resultant interference between parallel $(\Delta \Omega=0)$ and perpendicular $(\Delta \Omega= \pm$ l) transition moments (see Appendix 5 and references therein),

From the laser frequency, fluorescence frequencies, and $\mathrm{X}^{1} \Sigma^{+}$term values, 10,11 energies for lower levels of the laser excited transitions are $9795 \pm 5 \mathrm{~cm}^{-1}\left(J^{\prime}=28\right.$ excited) and $10465 \pm 5 \mathrm{~cm}^{-1}{\left(J^{\prime}=51\right.}^{\prime}$ excited) ${ }^{\dagger}$. Known levels nearest in energy and capable of undergoing an electric dipole transition into $J^{\prime}=28$ and 51 are $a^{3} \Pi_{2}(v=2, J=27), 9793 \pm 25 \mathrm{~cm}^{-1}$ and $a^{3} \Pi_{2}(v=2, J=52)$, $10451 \pm 25 \mathrm{~cm}^{-1} .13$

Fluorescence in the laser band was not resolved but resonant structure was apparent.

It seems likely that the upper level of this transition is ${ }^{3} \Sigma^{-}$since transitions from $a^{3} \Pi_{2}$ to ${ }^{3} \Sigma^{-}$ are electric dipole allowed ${ }^{23}$ and spin-orbit perturbations with both $\Omega=0$ and $\Omega=1$ states, particularly ${ }^{1} \Sigma^{+}$and ${ }^{1}$ II, are non-zero ${ }^{22}$ and could account for emission into $X^{1} \Sigma^{+}$with anomalous P and R branch intensity ratios. Both singlet $\Omega=\mathrm{O}^{+}$and $\Omega=1$ character is required for the X intensity anomalies; such is not possible for ${ }^{3} \Sigma^{+}$.

[^22]Strong laser dependent, resonant emission in both the green and orange systems is observed but could not be linked to either of the laser excited transitions assigned above.
$487.986 \mathrm{~nm}\left(20486.69 \mathrm{~cm}^{-1}\right)$

A Q branch progression into $\mathrm{X}^{1} \Sigma^{+}$from $\mathrm{v}^{\prime \prime}=0$ to 12 with one node at $\mathrm{v}^{\prime \prime}=6$ is observed. Excitation is from a rotational level in $\mathrm{X}^{1} \Sigma^{+} \mathrm{v}^{\prime \prime}=10$,

From single mode experiments ${ }^{23}$, a progression of three P, R doublets in the green system is linked to the Q branch progression into $X^{1} \Sigma^{+}$. The wavelengths for these transitions are: $\lambda_{1}=534.63 \lambda_{2}=535.00$, $\lambda_{3}=550.26, \lambda_{4}=550.90, \lambda_{5}=567.15$, and $\lambda_{6}=567.82 \mathrm{~nm}$ ($\pm 0.02 \mathrm{~nm}$). The 3,4 doublet is ≈ 10 times more intense than the 1,2 and 5,6 doublets. Green band P, R splittings and vibrational intervals suggest that (l) the lower levels of this progression are either a^{3} II or $A^{\prime 1}$ II $\mathrm{v}=0,1$, and 2 and (2) $\mathrm{J}^{\prime}=16 .{ }^{12,13}$ Thus the laser pumps $Q(16)$ from $X^{1} \Sigma^{+} \mathrm{v}^{\prime \prime}=10$.

Since $\mathrm{J}^{\prime \prime}=16$ and $\mathrm{v}^{\prime \prime}=10$ are known, the energy of the upper level of the laser excited transition is calculated from $\mathrm{X}^{1} \Sigma^{+}$term values ${ }^{10,11}$ and the laser frequency: $E^{\prime}=27402 \mathrm{~cm}^{-1}$. This corresponds to neither $\mathrm{C}^{1} \Sigma^{+}$ nor B^{1} II. ${ }^{l}$ The vibrational numbering of the upper level
is inferred to be $v^{\prime}=1$ from observation of only a single node in the $X^{1} \Sigma^{+} Q$ branch progression (Chapter 3). 24,25 Q branch emission to $X^{1} \Sigma^{+}$and P and R branch emission to $A^{1} \Pi$ or $a^{3} \Pi$ indicates that the upper level is an f-parity $\Omega=1$ state. ${ }^{21}$

From E' and λ_{1} through λ_{6}, term values for lower levels of the green band progression are: $E_{1}=8703$, $\mathrm{E}_{2}=8716, \mathrm{E}_{3}=9234, \mathrm{E}_{4}=9255, \mathrm{E}_{5}=9775$, and $\mathrm{E}_{6}=9796 \mathrm{~cm}^{-1}\left(\pm 5 \mathrm{~cm}^{-1}\right)$. Calculated A^{1} II energies are ${ }^{12}$:

$$
\begin{aligned}
& v=0 \quad J=15 \quad 8693 \pm 15 \mathrm{~cm}^{-1} \\
& J=178715 \\
& \mathrm{v}=1 \quad \mathrm{~J}=15 \quad 9233 \\
& J=179255 \\
& v=2 \quad J=159768 \\
& J=179790 .
\end{aligned}
$$

Since emission occurs from the upper level of the laser excited transition into both $X^{1} \Sigma^{+}$and $A^{1}{ }^{1}$ it seems likely that this $\Omega=1$ level is in fact ${ }^{1} \Pi$; however, only one ${ }^{1}$ II state is predicted in this energy region and this is presumably $B^{1} \Pi .^{14}$

In addition to the Q branch progression into $X^{1} \Sigma^{+}$, a progression of P, R doublets into $X^{1} \Sigma^{+} \mathrm{v}^{\prime \prime}=0$ to 6 with no nodes is observed. The PR spacings were not measured with sufficient precision to determine J' to better than 40 ± 4. This large uncertainty in J^{\prime} precludes
assignment of the lower level from which excitation occurs. The most probable states are $A^{11} I(v=0)$ and $a^{3} \Pi_{0}(v=0)$.

Several other progressions in the green system are observed as well as relaxed structure in the green and orange. These have not yet been linked to emission into $\mathrm{X}^{1} \Sigma^{+}$.

$$
476.486 \mathrm{~nm}\left(20981.13 \mathrm{~cm}^{-1}\right)
$$

Strong emission extending from 390 to 630 nm is observed. The anti-Stokes emission exhibits both resonant and relaxed structure but only one progression is assigned: P, R doublets into $\mathrm{X}^{1} \Sigma^{+} \mathrm{v}^{\prime \prime}=2$ to 6 with the laser exciting from $v "=5$. From P, R splittings, $J^{\prime}=35 \pm 1$ is excited by $P(36)$. The upper level term value is $25064 \pm 5 \mathrm{~cm}^{-1}$.

At least three other transitions, resulting in anti-Stokes emission, are excited but complicated structure and overlapping prohibits assignment with multi-mode excitation. Single mode excitation is required.

In the green system a progression of three P, R, doublets, in addition to relaxed structure, is observed:
$\lambda_{1}=539.33, \lambda_{2}=540,18, \lambda_{3}=554.54, \lambda_{4}=555.42$, $\lambda_{5}=570.55$, and $\lambda_{6}=571.47 \mathrm{~nm}(\pm 0.02 \mathrm{~nm})$. The 3,4
doublet is ≈ 3 times stronger than the 1,2 and 5,6 doublets. Spacings between successive doublets and P,R splittings indicate that the lower levels are either $a^{3} \Pi$ or $A^{1}{ }^{1} I V=6,7$, and $8(J=21 \text { and } 23)^{12,13}$ and, therefore, $J^{\prime}=22$. Single mode excitation should allow this progression to be linked with emission into $x^{1} \Sigma^{+}$

In the orange system, two sets of P, Q, R, triplets separated by $51 \mathrm{~cm}^{-1}$ and with P, R spacings of $49 \mathrm{~cm}^{-1}$ and $52 \mathrm{~cm}^{-1}$ are observed in addition to complicated relaxed and resonant structure. The triplet wavelengths are: $\lambda_{1}=622.55, \lambda_{2}=623.51, \lambda_{3}=624.47 \mathrm{~nm}(\pm 0.02 \mathrm{~nm})$ and $\lambda_{4}=624.8, \lambda_{5}=625.8, \lambda_{6}=626.8 \mathrm{~nm}(\pm 0.1 \mathrm{~nm})$. The 1,2,3, triplet is ~ 17 times more intense than the 4,5,6 triplet. The separation between triplets of $51 \mathrm{~cm}^{-1}$, comparable to the $a^{3} \Pi$ spin-orbit constant $\left(A_{I}=-58 \mathrm{~cm}^{-1}\right)^{13}$, and the lack of an asymmetry in the $P Q$ and $Q R$ splittings suggest that the $1,2,3$ and $4,5,6$ levels belong to $a^{3} \Pi_{2}$ and $a^{3} \Pi_{1}, \quad$ respectively. Assuming that the lower vibrational level is $v=0$, the P, R splittings give $J^{\prime}=37 \pm 1 .{ }^{13}$ Although this value of J^{\prime} is the same to within experimental error as the value determined from the analyzed progression into $X^{1} \Sigma^{+}\left(J^{\prime}=35 \pm 1\right.$, see above), making this assignment yields energies for the lower levels of these orange band transitions which are $\approx 100 \mathrm{~cm}^{-1}$ from calculated
$a^{3} \Pi$ ($v=1$) energies. Therefore, the upper levels of -263- $^{\text {- }}$ $a^{3} I I(v=1)$ energies. Therefore, the upper levels of these two progressions appear to be different. From the emission complexity, it is not unreasonable that two upper levels with nearly equal J^{\prime} are excited. Single mode excitation will unambiguously determine whether or not the transitions are linked.
$472.689 \mathrm{~nm}\left(21149.66 \mathrm{~cm}^{-1}\right)$

When multi-mode excitation is employed several progressions are observed to the blue of the laser line. Some of these do not include the laser line and one progression, in particular, appears to be composed of band heads only (i.e. no resonance structure). When single mode excitation is employed two strong progressions are isolated and assigned as emission into $\mathrm{X}^{1} \Sigma^{+} \mathrm{v}^{\prime \prime}=0$ to $\mathrm{v}^{\prime \prime}=13$ with nodes at $\mathrm{v}^{\prime \prime}=2$ and $\mathrm{v}^{\prime \prime}=5$ indicating that $\mathrm{v}^{\prime}=2$. From PR separations, the transitions excited are $P(28)$ and $R(48) . C^{1} \Sigma^{+}-X^{1} \Sigma^{+}(2,13) P(28)$ and $R(48)$ transitions are calculated to be: 21140.3 and $21145.9 \mathrm{~cm}^{-1}$, respectively. Lagerqvist reports perturbations in $C^{1} \Sigma^{+}\left(v^{\prime}=2\right)$ which culminate at $J_{0}=27.5$ and $48.5 i^{1}$ these perturbations may be responsible for the discrepancies between calculated and laser frequencies as well as error in B_{13}^{13} which is extrapolated from lower vibrational B values. 10,11 Alternatively, the laser may be exciting extra lines associated with the perturbing state.

Emission in the green and orange bands is by and large relaxed, although some resonance structure is apparent in the green system.
$457.936 \mathrm{~nm}\left(21931.01 \mathrm{~cm}^{-1}\right)$

A progression of P, R doublets from 370 to 475 nm corresponding to emission into $\mathrm{x}^{1} \Sigma^{+} \mathrm{v}^{\prime \prime}=0$ to 8 with one node between $\mathrm{v}^{\prime \prime}=2$ and 3 is observed. The laser line fits into this progression at $\mathrm{X}^{1}{ }^{+} \mathrm{V}^{\prime \prime}=7$ and from P, R splittings it is determined that $P(32 \pm 2)$ $\left(^{\prime}=31 \pm 2\right)$ is excited. The P branch lines are always ≈ 2.5 times more intense than the R branch lines and in some bands the P branch appears to be an unresolved doublet. This implies that a Q branch transition is simultaneously excited from $X^{1} \Sigma^{+} v^{\prime \prime}=7$. This overlapping is responsible for the uncertainty in J' quoted above: P, R splittings from different bands give a range of J^{\prime} values from 30 to 34 . Assuming $J^{\prime}=31$ m the upper level energy is $E^{\prime}=27130 \pm 5 \mathrm{~cm}^{-1}$ which corresponds to neither $C^{1} \Sigma^{+}$nor $B^{1} \Pi$.

Emission in the green and orange systems is observed again. Although the orange band emission is a complicated mixture of resonance and relaxed structure, emission in the green consists of a simple quartet: $\lambda_{1}=549.18, \lambda_{2}=549.26, \lambda_{3}=550.56$, and $\lambda_{4}=550.69 \mathrm{~nm}$
$(\pm 0.02 \mathrm{~nm})$. The λ_{1}, λ_{3} splitting corresponds to $J^{\prime}=31$, assuming λ_{1} and λ_{3} terminate in $A^{\prime} l_{I I} V=0$. Thus λ_{1} and λ_{3} appear to be connected to the P, R doublet progression into $X^{1} \Sigma^{+}$. From λ_{1}, λ_{3}, and E^{\prime} the lower level energies are: $E_{1}=8926 \pm 5 \mathrm{~cm}^{-1}$ and $E_{2}=8972 \pm 5 \mathrm{~cm}^{-1}$. $A^{\prime}{ }^{1} \Pi \mathrm{~V}=0$ energies are $\mathrm{E}(\mathrm{J}=30)=$ $8924 \pm 15 \mathrm{~cm}^{-1}$ and $\mathrm{E}(J=32)=8966 \pm 15 \mathrm{~cm}^{-1} .12$ This validates the assumption made above: λ_{1} and λ_{3} do terminate in $A^{\prime l} \Pi \quad v=0, J=30$ and 32 , respectively. This excellent agreement suggests that λ_{2} and λ_{4} share the same upper level as the $X^{1} \Sigma^{+} Q$ branch progression; the λ_{2}, λ_{4} splitting yields $J^{\prime}=37$ and from $X^{1} \Sigma^{+}$term values ${ }^{10,11}$ and the laser frequency $E^{\prime}\left(J^{\prime}=37\right)=27276 \pm 5 \mathrm{~cm}^{-1}$. From this energy and λ_{2} and $\lambda_{4}, E_{2}=9074 \pm 5 \mathrm{~cm}^{-1}$ and $\mathrm{E}_{\mathrm{V}}=9122 \pm 5 \mathrm{~cm}^{-1}$. Calculated $\mathrm{A}^{\prime l} \mathrm{II} \mathrm{V}=0$ energies are: $E(J=36)=9058 \pm 15 \mathrm{~cm}^{-1}$ and $E(J=38)=9109 \pm 15 \mathrm{~cm}^{-1}$. Again, agreement is excellent and it is concluded that the laser excites both $P(32)$ and $Q(37)$.

Note that the excited $\mathrm{J}^{\prime}=32$ and 37 levels have e and f parity, respectively. ${ }^{26} \mathrm{P}, \mathrm{R}$ emission into A^{11} II and P, R and Q branch emission into $X^{1} \Sigma^{+}$implies that the upper level of the laser excited transition has
 node in $\mathrm{X}^{1}{ }^{+}$emission implies $\mathrm{V}^{\prime}=1.24,25$

$$
\text { From } E^{\prime}\left(J^{\prime}=31\right) \text { and } E^{\prime}\left(J^{\prime}=37\right), B^{\prime} \text { and } E^{\prime}\left(J^{\prime}=0\right) \text { are }
$$

determined to be $0.353 \pm 0.005 \mathrm{~cm}^{-1}$ and $26780 \pm 20 \mathrm{~cm}^{-1}$, respectively.

Resonant structure is also observed with low resolution between 560 and 570 nm where emission into $A^{\prime l}$ II $(v=1)$ is expected. However, the intensity of this band is ≈ 10 times weaker than emission into $A^{1}{ }^{1} I, V=0$. However, from the similarity between B values for the upper and lower, $A^{1 l} I$, levels the $\Delta v=0$ sequence is expected to be more intense than the $\Delta v= \pm 1$ sequences. It is also curious that this value of E^{\prime} is approximately one vibrational quantum lower than the ${ }^{1}$ II state excited by the 488.0 nm line,hinting that these levels belong to the same electronic state. However, progressions into $\mathrm{X}^{1} \Sigma^{+}$indicate that $\mathrm{v}^{\prime}=1$ for both laser excitation lines! If both ưpper Ievels belong to different ${ }^{1} I$ 'states, then three ${ }^{1} \Pi$ states (including $B^{l} \Pi$) lie in the same energy region. This is, again, inconsistent with theoretical expectations. ${ }^{14}$

It seems plausible that these two previously unseen ${ }^{1} \Pi$ levels belong to the same electronic state and that they borrow radiative character from $B^{l} \Pi$ thus invalidating node counting in $\mathrm{X}^{1} \Sigma^{+}$progressions as a means of determining the v^{\prime} numbering. By analogy with $A^{\prime}{ }^{1} \Pi \sim a^{3} \Pi_{1}$ spin-orbit mixing, ${ }^{13}$ the most likely state to mix with $B^{l} \Pi$ would be the ${ }^{3} \Pi$ state from the same
$1 \sigma^{2} \ldots 7 \sigma^{2} 8 \sigma 1 \pi^{4} \ldots 3 \pi^{4} 4 \pi$ configuration. ${ }^{14}$ However, this assignment suffers from the lack of observed emission into a^{3} II.
B. Dye Laser Excitation Spectra

1. Band Structure

Dye laser excitation spectra of the green and orange band systems are shown in Figs. 4.1 and 4.2, respectively. Band head positions are given in Tables 4.3 and 4.4. The resolution in these spectra is determined primarily by the $\approx 1 \mathrm{~cm}^{-1}$ FWHM of the dye laser.

While the green system appears to be comprised of only violet degraded bands, the orange system consists of both violet and red degraded features. No assignments are obvious.
2. Single mode laser induced fluorescence in 609.8 band

Fluorescence in the 609.8 orange band induced by single mode dye laser excitation exhibits very simple structure: only two P, Q, R, triplets separated by $55 \pm 2 \mathrm{~cm}^{-1}$ (Fig. 4.3) are observed. The longer wavelength triplet includes the laser, which
Figure 4.l: Green band system of CaO. Total fluorescence intensity is plotted against laser frequency.
Figure 4.2: Orange band system of CaO. Total fluorescence intensity is plotted against laser frequency.

CaO Green Band
 EXCITATION SPECTRUM

FIGURE 4.1

CaO
 EXCITATION SPECTRUM

Table 4.2: CaO Green System Band Heads

$\sigma_{\text {Head }}\left(\mathrm{cm}^{-1}\right)$	$\lambda_{\text {Head }}^{\text {Air }}(\mathrm{nm})$	Relative Intensity
17980 ± 3	556.0 ± 0.1	4.5
18008	555.2	5.0
18026	554.6	4.8
18036	554.3	4.5
18053	553.8	3.0
18153	550.7	2.1
18177	550.0	3.0
18192	549.5	3.0
18214	548.9	3.7
18240	548.1	2.8

Table 4.3: CaO Orange System Band Heads

$\sigma_{\text {Head }}\left(\mathrm{cm}^{-1}\right)$	$\dot{\lambda}_{\text {Head }}^{\text {Air }}(\mathrm{nm})$	Relative Intensity	$\sigma_{\text {Head }}\left(\mathrm{cm}^{-1}\right)$	$\lambda_{\mathrm{Head}}^{\text {Air }}(\mathrm{nm})$	Relative Intensity
15928 ± 3	627.7 ± 0.1	0.2	16183	617.8	0.6
15937	627.3	0.2	16190	617.5	2.3
15947	626.9	0.8	16197	617.2	4.0
15950	626.8	0.7	16204	617.0	1.6
15958	626.5	1.4	16210	616.7	0.5
15961	626.4	5.7	16224	616.2	0.8
15968	626.1	2.6	16305	613.1	5.4
15974	625.8	2.7	16309	613.0	2.3
15976	625.8	1.0	16313	612.8	0.6
15980	625.6	0.5	16315	612.8	0.1
16028	623.7	4.5	16329	612.2	0.8
16035	623.5	2.9	16334	612.1	1.5
16041	623.2	1.4	16340	611.8	0.6
16045	623.1	1.4	16363	611.0	0.5
16057	622.6	0.9	16395	609.8	5.3

Table 4.3: (cont.)

$\sigma_{\text {Head }}\left(\mathrm{cm}^{-1}\right)$	$\lambda_{\text {Head }}^{\text {Air }}(\mathrm{nm})$	Relative Intensity	$\sigma_{\text {Head }}\left(\mathrm{cm}^{-1}\right)$	$\lambda_{\text {Head }}^{\text {Air }}(\mathrm{nm})$	Relative Intensity
16071	622.1	1.0	16396	609.7	4.6
16077	621.8	1.0	16401	609.6	1.0
16082	621.6	0.5	16411	609.2	0.4
16087	621.4	0.5	16418	608.9	1.0
16132	619.7	0.2	16422	608.8	1.0
16140	619.4	0.2	16453	607.6	4.3
16158	618.7	0.2	16457	607.5	3.0
16163	618.5	2.7	16459	607.4	2.0
16168	618.3	1.5	14463	607.3	1.0
16169	618.3	1.9	16470	607.0	4.0
16177	618.0	0.4	16472	606.9	5.5
			16499	605.9	2.0
			16516	605.3	2.3
			16571	603.3	0.2
			16579	603.0	0.3

Table 4.3: (cont.)

$\sigma_{\text {Head }}\left(\mathrm{cm}^{-1}\right)$	$\lambda_{\text {Head }}^{\text {Air }}(\mathrm{nm})$	Relative Intensity
16644 ± 3	600.7 ± 0.1	4.0
16653	600.3	2.2
16667	599.8	0.6
16703	598.5	1.7
16709	598.3	1.5
16720	597.9	1.0
16723	597.8	2.7
16738	597.3	0.2
16752	596.8	1.5
16759	596.5	1.8
16769	596.2	0.7
16772	596.1	0.2
16778	595.7	1.1

Figure 4.3: Orange band fluorescence into $a^{3} I_{0}$ and $a^{3} \Pi_{1}$ when the 609.8 nm band is pumped with a single mode dye laser: The laser (off scale) pumps a Q branch transition out of $a^{3} \Pi_{0}$.

FIGURE 4.3
excites a Q branch line, and is ≈ 10 times more intense than the shorter wavelength triplet. The splitting between triplets suggests that the lower level is $a^{3} I I \quad\left(A_{I}=-58 \mathrm{~cm}^{-1}\right)^{13}$ and that the short and long wavelength components are either $a^{3} \Pi_{1}$ and $a^{3} \Pi_{0}$ or $a^{3} \Pi_{2}$ and $a^{3} \Pi_{1}$, respectively. Asymmetries in the long wavelength P, Q, R, splittings (i.e. $\triangle P Q \neq \triangle Q R$) which persist even at low J indicate that the lower level is Λ-doubled. Only $a^{3} \Pi_{0}$ can be Λ-doubled as J approaches $z e r o^{21}$ so that the short and long wavelength triplets are assigned as $a^{3} \Pi_{1}$ and $a^{3} \Pi_{0}$ respectively. Since strong Q branches are observed, the upper state must have $\Omega=1$ symmetry. Lack of emission into $a^{3} \Pi_{2}$ and the greater intensity of emission into $a^{3} \Pi_{0}$ relative to $a^{3} \Pi_{1}$ indicates that the upper state must be ${ }^{3} \Delta_{I}$: emission from ${ }^{3} \Sigma^{-}$or ${ }^{3} \Sigma^{+}$into each Ω component of ${ }^{3} \Pi$ should exhibit comparable intensity. ${ }^{21}$

These assignments have recently been verified by Mr. Ronald Marks who is at present rotationally analyzing this band system using the technique of intermodulation fluorescence spectroscopy. 23,27 No vibrational assignment has yet been made.
C. Effects of $C O$ addition to the flame

The addition of CO to CaO flames has been observed to increase chemiluminescence and absorption intensity in the orange and green systems. $7,8,16,17$ This is observed here as well: addition of $\approx 1 \times 10^{-2}$ torr of $C O$ increases the entire orange and green system laser induced fluorescence intensity by a factor of 2 to 3. However, excess CO (> 0.1 torr) quenches CaO laser induced fluorescence but enhances the Ca $5^{3} S_{1} \leftarrow 4{ }^{3} P_{2}^{0}$, $5^{3} S_{1} \leftarrow 4{ }^{3} P_{1}^{0}$, and $5^{3} S_{1} \leftarrow 4{ }^{3} P_{0}^{0}$ atomic resonance lines. These observations are consistent with the reaction mechanism in Eq. 4.1: an excess of CO quenches not only high $\mathrm{X}^{1} \Sigma^{+}$vibrational levels but also the lower levels of the green and orange systems, $a^{3} \Pi$ and $A^{1} I I$, and produces metastable Ca $4^{3} p^{\circ}$.
IV. Conclusion

The experiments described above demonstrate that: (1) much of the green and orange band systems of CaO can be explained in terms of transitions involving A^{11} II and $a^{3} I$ and (2) the $A^{1}{ }^{1}$ il vibrational assignments made by Field ${ }^{13}$ are correct.

Clearly, much work remains. The most difficult problem is linking the energies of the upper and lower levels of the green and orange systems to the ground state,since strong progressions into $\mathrm{X}^{1} \Sigma^{+}$have not been observed when the orange and green systems are pumped with a dye laser. Ar^{+}laser excitation, on the other hand, generally yields anti-Stokes emission into $X^{1} \Sigma^{+}$ and permits levels of the green system to be vibrationally assigned. Additional, single mode Ar^{+}laser experiments can provide more information of this sort in both the green and orange systems.

Determining the upper state symmetries and rotational constants is best done by systematic, high resolution tunable dye laser spectroscopy of the sort that Marks ${ }^{23}$ has already begun. The combination of dye laser and Ar^{+}laser excitation in an optical-optical double resonance experiment (Chapter 3) is an attractive approach to the understanding of these systems: decreases in Ar^{+}laser induced fluorescence as the dye laser is
tuned will indicate which transitions are linked via
a common upper or lower level.

References for Chapter 4

1. A. Lagerqvist, Ark. Fys. 8, 83 (1954).
2. B. Rosen, Nature 156 , 570 (1945).
3. J.M. Lejeune, Bull. Soc. Roy. Sci. Liége 14 , 318 (1945).
4. J.M. Lejeune and B. Rosen, Bull. Soc, Roy. Sci. Liége 14, 322 (1945).
5. A.G. Gaydon, Proc. Roy. Soc. A231, 437 (1955).
6. G.A. Volnyets, G.V. Kovalenok, and V.A. Sokolov, Opt. Spectrosc. 36, 609 (1974).
7. a) D.J. Benard, W.D. Slafer, and J. Hecht, J. Chem. Phys. 66, 1012 (1977).
b) D.J. Benard and W.D. Slafer, J. Chem. Phys. 66, 1017 (1977).
8. D.J. Benard, W.D. Slafer, P.J. Love, and P.H. Lee, Appl. Opt. 16, 2108 (1977).
9. P. Frank and L. Krauss, to be published,
10. M. Hultin and A. Lagerqvist, Ark. Fys, 2, 471 (1951).
11. a) L. Brewer and R. Hauge, J. Mol, Spectrosc. 25, 330 (1968).
b) R.H. Hauge, Ph.D. thesis, University of California, Berkeley (1965).
12. R.W. Field, G.A. Capelle, and C.R. Jones, J. Mol. Spectrosc. 54, 156 (1975).
13. R.W. Field, J. Chem. Phys. 60, 2400 (1974).
14. C.W. Bauschlicher, Jr, and D.R. Yarkony, J. Chem. Phys. 68, 3990 (1978).
15. L. Pasternack and P.J. Dagdigian, Chem. Phys. (in press).
16. D.J. Benard, W.D. Slafer, and P.H. Lee, Chem. Phys. Lett. 43, 69 (1976).
17. a) W.D. Slafer, D.J. Benard, and P.H. Lee, Electronic Transition Lasers II, eds. L.E. Wilson, S.N. Suchard, and J.I. Steinfeld, MIT Press, Cambridge, Mass., Chapter II-8 (1977);
b) D.J. Benard, W.D. Slafer, J. Hecht, and P.H. Lee, ibid, Chapter II-7.
18. W.B. Bridges and A.N. Chester, IEEE J. Quant. Electron. QEl,66 (1965).
19. G.R. Harrison, MIT Wavelength Tables, MIT Press (1969).
20. I. Renhorn and P.G. Cummins, unpublished results.
21. G. Herzberg, Molecular Spectra and Molecular Struc-
ture I. Spectra of Diatomic Molecules, (Van Nostrand
Reinhold, New York, 1950).
22. I. Kovács, Rotational Structure in the Spectra of

Diatomic Molecules (American Elsevier, New York, 1969).
23. R.F. Marks, unpublished results.
24. E.U. Condon, Phys. Rev. 32, 858 (1928).
25. G. Gerber and H.P. Broida, J. Chem. Phys. 64, 3423 (1976).
26. J.M. Brown, J.T. Hougen, K.-P. Huber, J.W.C. Johns, I. Kopp, H. Lefebvre-Brion, A.J. Merer, D.A. Ramsay, J. Rostas, and R.N. Zare, J. Mol. Spectrosc. 55, 500 (1975).
27. M.S. Sorem and A.L. Schawlow, Opt. Comm. 5, 148 (1972).
Volume II. Laser Spectroscopy of Alkaline EarthOxide Flames and Deperturbation of DiatomicMolecular Spectra
by
Richard Alan Gottscho
Submitted to the Department of ChemistryFebruary 8, 1979, in partial fulfillmentof the requirements for the degree ofDoctor of Philosophy.
CHAPTER 5: Optical-Optical Double Resonance Monitoring
of $\mathrm{BaO} \mathrm{A}^{1} \Sigma^{+}$Rotational and Translational
Relaxation

I. Introduction

Optical-optical double resonance (OODR) (Chapter 3)
is a unique means by which the dynamics of gaseous molecular interactions in bulk can be extensively characterized. A pump laser with spectral width less than the Doppler width prepares,via the Doppler shift, a specific rovibronic level with a narrow distribution (dictated by the laser and homogeneous line widths) of speeds along the laser propagation direction, $\mathrm{v}_{\mathrm{x}}{ }^{\dagger}$. A narrow bandwidth probe laser subsequently samples the populations of both initially pumped and collisionally populated levels while simultaneously determining the final v_{x} distributions from the excitation line shape (Fig. 5.1). If these populations and line shapes are studied as a function of pressure, state to state rate constants can, in principle, be obtained:

$$
\begin{equation*}
\left|J, M, n, v_{x}\right\rangle \xrightarrow{k P} \longrightarrow\left|J^{\prime}, M^{\prime}, n^{\prime}, v_{x}^{\prime}\right\rangle \tag{5.1}
\end{equation*}
$$

where J, M, n, and v_{x} denote initial rotational quantum number, projection of J onto the pump laser polarization direction (laboratory fixed z axis), vibrational and electronic quantum number(s), and speed along the laser propagation direction, respectively. A prime denotes final

[^23]Figure 5.l: OODR excitation scheme for probing BaO $A^{1} \Sigma^{+}$rotational and translational relaxation. The $A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}(1,0) P(16)$ pump line prepares $J^{\prime}=15$; collisions subsequently transfer population to $J^{\prime}=12$, which is probed by exciting $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1) R(12)$.

FIGURE 5.1
quantum numbers; k is the state to state rate constant in units of torr ${ }^{-1} \mathrm{sec}^{-1}$ and P is the pressure in torr.

This chapter reports the results of OODR experimental studies of the dynamics of $\mathrm{BaO}\left(\mathrm{A}^{1} \Sigma^{+}\right) \sim \mathrm{Ar}$ and CO_{2} interactions in a $\mathrm{Ba}+\mathrm{CO}_{2}+\mathrm{Ar} \rightarrow \mathrm{BaO}+\mathrm{CO}+\mathrm{Ar}$ flame reaction. Reaction (5.1) averaged over initial and final M states is considered here; discussion of collision induced changes in M are deferred to Chapter 6. Although precise, quantitative determinations of state to state rate constants were not obtained (owing to multiple collision complications), propensities for small changes in J were observed for both Ar and $\mathrm{CO}_{2}: k(|\Delta J|=1)>k(|\Delta J|=2)>$ $\mathrm{k}(|\Delta \mathrm{J}|=3)$, where $\Delta \mathrm{J}=\mathrm{J}^{\prime}-\mathrm{J}$.

For both Ar and CO_{2}, velocity randomization, or translational relaxation, was found to proceed via forward scattering in the center of mass (COM) coordinate system ($\psi<60^{\circ}$ where ψ is the COM scattering angle) at rates comparable to $\Delta J= \pm 1$ transfer. Two differences between $\mathrm{BaO}\left(\mathrm{A}^{1} \Sigma^{+}\right) \sim \mathrm{Ar}$ and $\mathrm{BaO}\left(\mathrm{A}^{1} \Sigma^{+}\right) \sim \mathrm{CO}_{2}$ collisions were apparent: 1) CO_{2} pressure broadening ($\mathrm{k}_{\mathrm{T}} \sim 19 \pm 3 \mathrm{MHz}$ torr ${ }^{-1}$) for a specific $\mathrm{BaO}\left(\mathrm{A}^{1} \Sigma^{+}\right)$rovibronic level is ≈ 1.5 times that for Ar and 2) CO_{2} translational relaxation proceeds via smaller angle scattering than does Ar relaxation. These observations are qualitatively consistent with a longer range interaction for $\mathrm{BaO} \sim \mathrm{CO}_{2}$ than for $\mathrm{BaO} \sim \mathrm{Ar}$ collisions owing to the CO_{2} quadrupolar moment $\left(-4.3 \times 10^{26} \text { esu } \mathrm{cm}^{2}\right)^{1}$
and internal degrees of freedom (facilitating long range exchange resonances).

In Section II.A. theoretical relationships between moments of the v_{x} distribution and moments of $\cos \psi$ are derived. These relationships are applicable when the collisional change in relative translational energy can be neglected with respect to the initial relative energy: in other words, the rotational energy change is small compared to kT . Section II.B. presents theoretical representations for observed principal (probe excitation from pumped level) and collisional satellite line shapes in terms of convolution integrals of the homogeneous line shape function with the v_{x} distribution; a deconvolution procedure to obain the v_{x} distribution is described. In Section II.C. the method by which line intensities are transformed into state to state rate constants is outlined.

Experimental details pertinent to this kinetic work are given in Sec. III. The OODR experiment is described generally and in more detail in Chapter 3.

In Section IV the experimental results are presented and analyzed.

Section V summarizes the observations, and theoretical interpretations, and suggests future experiments.

The remainder of this introduction is devoted to a summary of previous work and its relationship to these experiments.

State to state reaction cross sections have been measured by laser induced fluorescence (LIF) detection of molecular beam reaction ${ }^{\dagger}$ products. ${ }^{2}$. Molecular beams allow specification of a well defined initial relative translational energy. In conjunction with IIF probes of internal state distributions and angular resolution of scattered products this yields differential cross sections for production of a specific final state as a function of initial relative velocity. If the reactant states are selectively prepared as well, state to state cross sections can be obtained. ${ }^{2,3}$ Dagdigian and coworkers have recently measured state to state cross sections for LiF \sim rare gas collisions in a beam-gas arrangement ${ }^{2}$ by initial quadrupolar state selection of an LiF beam followed by LIF probes of the final state distributions. ${ }^{4}$

Kinsey ${ }^{5}$ has shown that the three dimensional COM scattering angle distribution may be simultaneously obtained with product internal energy distributions employing the LIF technique of Fourier Transform Doppler Spectroscopy (FTDS) with an increase in data acquisition rate for a given signal to noise ratio of $\approx 10^{4}$ over traditional molecular beam detection methods. 5 Experimentally, this technique has already been demonstrated

[^24]by obtaining state-resolved differential cross sections in a $\mathrm{Na}\left(3^{2} \mathrm{P}_{1 / 2}\right)+\mathrm{Ar} \rightarrow \mathrm{Na}\left(3^{2} \mathrm{P}_{3 / 2}\right)+\mathrm{Ar}$ crossed beam reaction. ${ }^{6}$

In the bulk phase, monochromatic excitation is a long proven technique for obtaining state to state rate 7,8
constants. The most systematic and precise determinations of state to state rate constants have been done by Steinfeld et al. 7 and more recently by Brunner r et al. ${ }^{9}$ The dependence of $J \rightarrow J^{\prime}$ rate constants on initial J and the inequality of $\Delta J>0$ and $\Delta J<0$ (for equal $|\Delta J|$) rate constants has led to the conclusion that M tends to be conserved in these collisions. 9 (See Chapter 6 for a more complete discussion.) However, no attempts were made in Refs. 7 and 9 to measure either the initial velocity dependence of the rate constants or the final v_{x} distribution.

Advantage has been taken of the Doppler shift in determining the velocity dependence of state to state rate constants in both molecular ${ }^{10,11}$ and atomic ${ }^{12}$ systems. Phillips and Pritchard ${ }^{13}$ have derived an expression for the energy, or velocity, resolution resulting from velocity selection by Doppler shift (VSDS).

A variety of double resonance experiments on both atomic and molecular systems, in bulk, have already been employed in the characterization of velocity changing collisions ${ }^{14-31}$ (VCC). Beginning in 1969, ${ }^{16}$
the pressure dependence of Lamb dip line shapes and widths in $\mathrm{He}-\mathrm{Ne}, 16,17 \mathrm{CO}_{2}^{18}$, and CO^{19} lasers have been interpreted in terms of VCC.

Infrared-infrared double resonance experiments have been used to study velocity randomization in collisions of various inert molecules and atoms with $\mathrm{NH}_{3}{ }^{20,25}, \mathrm{CO}_{2} 22,26, \mathrm{H}_{2} \mathrm{CO}^{24}$ and $\mathrm{CH}_{3} \mathrm{~F} .{ }^{23,24}$ The technique of coherent optical transients has also been used to study the time dependence of velocity randomizing collisions in $\mathrm{CH}_{3} \mathrm{~F} \sim \mathrm{CH}_{3} \mathrm{~F}$ interactions. 21,25 In atomic systems,optical double resonance (either saturation spectroscopy involving two levels or OODR involving three levels) has been the technique of choice in measuring quasi-elastic (i.e. no change in the internal electronic degrees of freedom) VCC. $14,18,30,31$ The theoretical interpretation of double resonance line shapes influenced by VCC has been developed largely by Berman ${ }^{14,27}$ using the density matrix formalism. Quantitative analyses have proceeded by fitting the observed line shape to a theoretical line shape function involving a phenomenological collision kernel; an average speed change, $\delta \mathrm{v}_{\mathrm{x}}$, is obtained. $14,24-26$ The magnitude of $\delta \mathrm{v}_{\mathrm{x}}$ has been interpreted in terms of collision strength: large (small) velocity jumps are associated with strong (weak) interactions. Values of

to $\sim 10^{3} \mathrm{~cm} \mathrm{sec}{ }^{-1}$ in Xe \sim Xe collisions ${ }^{30}$ have been observed Energy transfer studies of $\mathrm{BaO} \mathrm{A}^{1} \Sigma^{+}$have emphasized the elucidation of $A^{1} \Sigma^{+} \sim b^{3} \Pi$ intersystem crossing mechanisms and rates (see Chapter 1). 32-37 Sakurai, et al., ${ }^{32}$ have measured total cross sections (summed over final states) for electronic quenching (with He), vibrational relaxation (with He, Ar, and N_{2}) and rotational relaxation (with $H e$) from a single $A^{1} \Sigma^{+}$rovibronic level prepared by Ar^{+}laser excitation. Johnson ${ }^{33}$ has measured radiative lifetimes and He quenching rates as a function of $A^{1} \Sigma^{+}$vibration by excitation with a pulsed tunable dye laser.

The experiments described below differ in several respects from the works referenced above. Because of the disparity in $\mathrm{BaO} \mathrm{C}^{1} \Sigma^{+}$and $\mathrm{A}^{1} \Sigma^{+}$radiative lifetimes $\left(25 \pm 10 \mathrm{nsec}^{37}\right.$ and $363 \mathrm{nsec}{ }^{33,}{ }^{3}$ trespectively). OODR line shapes are determined primarily by $A^{1} \Sigma^{+}$relaxation. All previous VCC studies on molecular systems measured both upper and lower state dynamics simultaneously making analysis more difficult. VCC are understood here in terms of the COM scattering angle distribution rather than $\delta \mathrm{v}_{\mathrm{x}}$; deconvolution of the observed line shape to obtain moments of $\cos \psi$ is completely model independent.

$$
{ }^{\dagger} A^{1} \Sigma^{+}(\mathrm{v}=1) .
$$

Previous molecular VCC experiments utilized $\mathrm{CO}, \mathrm{CO}_{2}$ or $\mathrm{N}_{2} \mathrm{O}$ infrared lasers of limited tunability. ${ }^{16-26}$ Visible dye lasers yield not only greater velocity resolution (the Doppler shift is proportional to frequency) but also tunability over hundreds of nanometers permitting systematic studies of state to state cross sections. The combined tunability and high resolution of OODR allows investigation of rotational and translational relaxation out of rotationless levels ($J=0$) whose transitions are usually weak and unresolvable by small monochromators. In general, any initial level may be chosen and examined for unique dynamical properties.
II. Theory
A. Velocity Selection and Analysis

Because of the Doppler shift, molecules travelling with different velocity components along the laser propagation direction (specified by \hat{x}) are resonant with the field at different frequencies:

$$
\begin{equation*}
v=v_{0}\left(1+v_{x} / c\right), \tag{5.2}
\end{equation*}
$$

where v is the resonant frequency for molecules with velocity component along the laser propagation direction $\mathrm{v}_{\mathrm{x}}, \nu_{\mathrm{o}}$ is the rest frequency (when $\mathrm{v}_{\mathrm{x}}=0$), and c is the speed of light. Note that v_{x} is a signed quantity (+ (-) for travel with (against) $\hat{\mathrm{x}}$). Thus, molecules with different speeds may be selected by tuning the pump laser across the Doppler line profile. Similarly, the probe laser may be used to analyze the final, $\mathrm{v}_{\mathrm{x}}^{\prime}$, velocity distribution.

The relationship between $\delta \mathrm{v}_{\mathrm{x}}=\mathrm{v}_{\mathrm{x}}^{\prime}-\mathrm{v}_{\mathrm{x}}$ and moments of the scattering angle distribution is derived below for molecules with well defined v_{x} but thermal (Maxwellian) distributions of v_{y} and v_{z} velocity components colliding with particles characterized by a completely thermal velocity distribution.

In the laboratory coordinate system,

$$
\begin{equation*}
\vec{v}_{i}=v_{i x} \hat{x}+v_{i y} \hat{y}+v_{i z} \hat{z} \tag{5.3}
\end{equation*}
$$

where v_{i} is the $i^{\text {th }}$ molecular velocity with magnitude $v_{i}=\frac{\sqrt{v_{i x}}{ }^{2}+v_{i y}{ }^{2}+v_{i z}{ }^{2}}{} \quad i=1$ is chosen for the v_{x} selected molecule and $i=2$ denotes the collision partner.

It is most convenient to picture the collision in the COM coordinate system where the COM kinetic energy (a constant of the motion) is zero. Since the OODR experiment samples only $v_{i x}$, it is sufficient and simpler to work only with x velocity components:

$$
\begin{equation*}
w_{i x}=v_{i x}-\frac{1}{M}\left(m_{i} v_{i x}+m_{j} v_{j x}\right)=w_{i} \cos n_{i} \tag{5.4}
\end{equation*}
$$

where $w_{i x}$ is the laboratory x component of the $i^{\text {th }}$ molecular COM velocity, \vec{w}_{i} (with magnitude w_{i}); $M=\left(m_{1}+m_{2}\right)$ is the total mass of the collision system; η_{i} is the polar angle of \vec{w}_{i} with respect to x (Fig. 5.2); and $i=1(2)$ when $j=2(1)$. The collision between i and j is simply represented by pivoting the relative velocity vector $\overrightarrow{\mathrm{w}}=\overrightarrow{\mathrm{w}}_{i}-\overrightarrow{\mathrm{w}}_{j}$ about the COM by an angle ψ (COM scattering angle) in the plane specified by $\overrightarrow{\mathrm{v}}_{i}$ and $\overrightarrow{\mathrm{v}}_{j}$ and by an angle γ out of the plane and by changing the length of \vec{w} consonantly with the change in internal energy (Fig. 5.3). All values of γ from 0 to 2π are equally probable so that a cone of equal scattering intensity is obtained. ${ }^{38}$

Changes in the magnitude of $\overrightarrow{\mathrm{w}}, \delta \mathrm{w}$, can be

Figure 5.2: Collision of molecule 1 with molecule 2 and transformation to COM. For simplicity $\overrightarrow{\mathrm{v}}_{1}$ is chosen equal to $\mathrm{v}_{1 \mathrm{x}} \hat{\mathrm{x}}\left(\mathrm{v}_{1 y}=\mathrm{v}_{1 z}=0\right)$ and the collision takes place in the $x z$ plane $\left(v_{2 y}=0\right)$.

Figure 5.3: Elastic scattering ($\left.w^{\prime}=w\right)$ in the COM. \vec{W}^{\prime} is rotated in the plane about COM by ψ and out of the plane by γ. All values of γ from 0 to 2_{π} are equally probable resulting in a cone of equal scattering intensity for given ψ. Two w^{\prime} s on the same cone are shown, corresponding to the same value of ψ but different γs.

FIGURE 5.2

FIGURE 5.3
neglected when the internal energy change, $\Delta \mathrm{E}_{\text {int }}$, is much less than $k T$. This is the situation in BaO $A^{1} \Sigma^{+}$ rotational relaxation considered below; hereafter, $\mathrm{w}^{\mathrm{\prime}}=\mathrm{w}$ is assumed. ${ }^{\dagger}$

From geometrical considerations, the projection of w_{i} ' on x is derived ${ }^{39}$

$$
\begin{equation*}
w_{i x}^{\prime}=w_{i}\left[\cos \psi \cos \eta_{i}-\cos \gamma \sin \psi \sin \eta_{i}\right] \tag{5.5}
\end{equation*}
$$

where the quasi-elastic condition, $w_{i}^{\prime}=w_{i}$, is assumed. It is convenient to examine only the change in $v_{i x}, \delta v_{i x}=v_{i x}^{\prime}-v_{i x}=\delta w_{i x}=w_{i x}^{\prime}-w_{i x}$, induced by the collision; in the frequency domain, this corresponds to $\delta v=v^{\prime}-v=\delta v_{i x}\left(v_{0} / c\right)$ (not to be confused with the line width $\Delta \nu_{\text {FWHM }}$):

$$
\begin{equation*}
\delta v_{i}=\frac{v_{o}}{c} w_{i}\left[\cos \eta_{i}(\cos \psi-1)-\cos \gamma \sin \psi \sin \eta_{i}\right] . \tag{5.6}
\end{equation*}
$$

1. Average frequency shift

Equation (5.6) relates a frequency shift to the COM scattering angles ψ and γ for given initial trajectories of molecules 1 and 2 (specified by η_{1} and w_{1}). It is necessary to average over the y and z velocity components of molecule 1 and all three velocity components

[^25]of molecule 2 since these are not selected. Averaging γ from 0 to 2π and ψ over the scattering angle distribution $P(\psi)$ results in an average frequency shift which may be obtained from the observed line shape (see Section IIB). First averaging γ from 0 to 2π,
\[

$$
\begin{equation*}
\left\langle\delta v_{1}\right\rangle=\frac{\nu_{0}}{c} \int_{0} 2 \pi \delta v_{1 x} d \gamma=\frac{\nu_{0}}{c} w_{1} \cos \eta_{1}(\cos \psi-1) . \tag{5.7}
\end{equation*}
$$

\]

Substituting for $\cos \eta_{i}$ from Eq. (5.4),
$\left\langle\delta v_{1}\right\rangle=\frac{\nu_{0}}{c}\left[v_{1 x}-\frac{1}{M}\left(m_{1} v_{1 x}+m_{2} v_{2 x}\right)\right](\cos \psi-1)$,
averaging $\mathrm{v}_{2 \mathrm{x}}$ over the Maxwellian distribution from $-\infty$ to $+\infty$,

$$
\begin{equation*}
\left\langle<\delta v_{1} \gg=\frac{\nu_{0}}{c} v_{1 x} \frac{m_{2}}{M} \quad[\langle\cos \psi\rangle-1]\right. \tag{5.9}
\end{equation*}
$$

where $\langle\cos \psi\rangle=\int_{0}^{\pi} \cos P(\psi) \sin \psi d \psi$ and $\left\langle v_{2 x}\right\rangle=0$. The great simplicity of Eq. 5.9 results from neglect of changes in the relative translational energy and the energy dependence of ψ. Note that v_{y} and v_{z} for both molecules 1 and 2 need not be considered. Several predictions are immediately obvious from Eq. 5.9: 1) << $<\delta \nu_{1} \gg$ scales as $\mathrm{v}_{1 \mathrm{x}}[\langle\cos \psi\rangle-1]$ so that asymmetric lines skewed towards $\nu_{0}\left(v_{1 x}=0\right)$ are expected for $v_{1 x} \neq 0$ and $\psi>0$; 2) large asymmetries imply large scattering angles or backward scattering; 3) when $v_{1 \mathrm{x}}=0\left(\nu=\nu_{0}\right)$ is
selected, the probe laser excitation line shapes should be symmetrical with an average shift of zero so that $<\cos \psi\rangle$ cannot be determined from $\left\langle<\delta \nu_{1} \gg\right.$; and 4) the relative masses of the two collision partners affects the precision with which $\langle\cos \psi>$ can be determined from $\ll \delta v_{1} \gg$ (if $m_{1} \approx M \gg M_{2},\left\langle<\delta v_{1} \gg \approx 0\right.$ and $\cos \psi$ is indeterminate.

$$
\ll \delta v_{1} \gg \text { is zero when } v_{l x}=0 \text { because collision }
$$ partners with $v_{2 x}>0$ and $v_{2 x}<0$ for given $\left|v_{2 x}\right|$ produce average frequency shifts of equal magnitude but opposite sign: from conservation of linear momentum and energy $\mathrm{v}_{2 \mathrm{x}}>0$ produces blue shifts (i.e. $v^{\prime}{ }_{l x} \geq 0$) and $v_{2 x}<0$ produces red shifts (i.e. $v_{1 x} \leq 0$). Thus, if Eq. 5.8 is averaged over $v_{2 x}$ from 0 to ∞ (or $-\infty$ to 0) rather than from $-\infty$ to ∞, the average blue (red) shift is given by

$\left\langle<\delta v_{1}>\right\rangle_{0} \equiv\left\langle<\delta v_{1} \gg{ }_{0}^{\text {Blue }}=-\langle<\delta \nu \gg\rangle_{0}^{\text {Red }}=-\frac{\nu_{0}}{\mathrm{C}} \frac{\mathrm{m}_{2}}{\mathrm{M}}\left(\frac{\mathrm{kT}}{2 \pi m_{2}}\right)[1-<\cos \psi\rangle\right]$
and $\langle\cos \psi\rangle$ can be determined when $v_{1 x}=0 .{ }^{+}$
2. Second Moment of the Frequency Shift Higher moments of $\cos \psi$ can be determined from higher moments of δv_{1}. The second moment of δv_{1} as a function of $\left\langle\cos ^{2} \psi\right\rangle$ and $\langle\cos \psi\rangle$ is derived below.

[^26]Squaring Eq. 5.6,

$$
\begin{align*}
\left(\delta v_{1}\right)^{2}= & \frac{v_{0}^{2}}{c^{2}} w_{1}^{2}\left\{\left[\cos \psi \cos \eta_{1}-\cos \gamma \sin \psi \sin \eta_{1}\right]^{2}\right. \\
& -2 \cos \eta_{1}\left[\cos \psi \cos n_{1}-\cos \gamma \sin \psi \sin \eta_{1}\right] \\
& \left.+\cos ^{2} \eta_{1}\right\} \tag{5.11}
\end{align*}
$$

and averaging γ from 0 to 2π,

$$
\begin{align*}
\left\langle\delta v_{1}^{2}\right\rangle= & \frac{\nu_{0}^{2}}{c^{2}} w_{1}^{2}\left\{\left[\cos ^{2} \psi \cos ^{2} n_{1}+\frac{1}{2} \sin ^{2} \psi \sin ^{2} n_{1}\right]\right. \\
& \left.-2 \cos ^{2} n_{1} \cos \psi+\cos ^{2} n_{1}\right\} . \tag{5.12}
\end{align*}
$$

From Eq. 5.4

$$
\begin{align*}
\mathrm{w}_{1}^{2} \cos ^{2} n_{1} & =v_{1 x}^{2}-\frac{2 v_{1 x}}{M}\left(m_{1} v_{1 x}+m_{2} v_{2 x}\right) \\
& +\frac{1}{M^{2}}\left(m_{1}^{2} v_{1 x}^{2}+2 m_{1} m_{2} v_{1 x} v_{2 x}+m_{1}^{2} v_{2 x}^{2}\right) \tag{5.13a}
\end{align*}
$$

Averaging $v_{2 x}$ from $-\infty$ to $+\infty$,

$$
\begin{equation*}
\left\langle\mathrm{w}_{1}^{2} \cos ^{2} \mathrm{n}_{1}\right\rangle=\left[\mathrm{v}_{1 \mathrm{x}}+\frac{1}{3}\left\langle\mathrm{v}_{2}^{2}\right\rangle\right] \cdot \frac{\mathrm{m}_{2}^{2}}{\mathrm{~m}^{2}} \tag{5.13b}
\end{equation*}
$$

where $\left\langle\mathrm{v}_{2}^{2}\right\rangle=\left\langle\mathrm{v}_{2}{ }_{\mathrm{x}}^{2}\right\rangle+\left\langle\mathrm{v}_{2} \underset{\mathrm{y}}{2}\right\rangle+\left\langle\mathrm{v}_{2}{\underset{\mathrm{z}}{2}}_{2}\right\rangle=3\left\langle\mathrm{v}_{2}{ }_{\mathrm{x}}^{2}\right\rangle$ for collision partner 2 with a thermal velocity distribution. Similarly,

$$
\begin{equation*}
\left\langle\mathrm{w}_{1}^{2}\right\rangle=\frac{\mathrm{m}_{2}^{2}}{\mathrm{M}^{2}}\left[2\left\langle\mathrm{v}_{1}^{2}\right\rangle+\mathrm{v}_{1}^{2}+\left\langle\mathrm{v}_{2}^{2}\right\rangle\right] \tag{5.14}
\end{equation*}
$$

where $\left\langle\mathrm{v}_{1}{ }_{1}^{2}\right\rangle=\left\langle\mathrm{v}_{1}{ }_{\mathrm{Y}}^{2}\right\rangle=\left\langle\mathrm{v}_{1 \mathrm{Z}}{ }^{2}\right\rangle$ is the average square speed perpendicular to x for molecule l. Providing the
temperature, T , is known, $\left\langle\mathrm{v}_{1}{ }_{1}^{2}\right\rangle$ and $\left\langle\mathrm{v}_{2}^{2}\right\rangle$ are readily calculated:

$$
\begin{align*}
& \left\langle\mathrm{v}_{1}{ }_{\perp}^{2}\right\rangle=\mathrm{kT} / \mathrm{m}_{1} \tag{5.15a}\\
& \left\langle\mathrm{v}_{2}^{2}\right\rangle=3 \mathrm{kT} / \mathrm{m}_{2} . \tag{5.15b}
\end{align*}
$$

Combining Eqs. 5.12, 5.13b, 5.14, and 5.15,

$$
\begin{align*}
\ll \delta v_{1}^{2} \gg & \frac{v_{0}^{2}}{\mathrm{c}^{2}} \frac{\mathrm{~m}_{2}^{2}}{\mathrm{M}^{2}}\left\{\left[\mathrm{v}_{1}^{2}-\frac{\mathrm{kT}}{\mathrm{~m}_{1}}\right]\left\langle\cos ^{2} \psi\right\rangle-\right. \\
& \left.2\left[\mathrm{v}_{1 \mathrm{x}}^{2}+\frac{\mathrm{kT}}{\mathrm{~m}_{2}}\right]\langle\cos \psi\rangle+\left[\mathrm{v}_{1 \mathrm{x}}^{2}+\mathrm{kT}\left(\frac{1}{\mathrm{~m}_{1}}+\frac{2}{\mathrm{~m}_{2}}\right)\right]\right\} \tag{5.16}
\end{align*}
$$

where ψ has been averaged over the distribution $P(\psi)$. Eq. 5.16 relates the second moment of the frequency shift to first and second moments of $\cos \psi$. Again if $m_{1} \approx M \gg m_{2}$ little information is obtained since $\left\langle\left\langle\delta \nu_{1}^{2}\right\rangle>\approx 0\right.$. If $\mathrm{v}_{\mathrm{l}_{\mathrm{X}}} \approx \mathrm{kT} / \mathrm{m}_{\mathrm{l}}$ is selected $\left\langle\cos ^{2} \psi\right\rangle$ is undetermined. When $v_{l_{x}}=0$,
$\left\langle\left\langle\delta \nu_{1}^{2} \gg{ }_{0} \frac{\nu_{0}{ }^{2}}{c^{2}} \frac{\mathrm{~m}_{2}^{2}}{\mathrm{M}^{2}} \mathrm{kT}\left\{\frac{1}{\mathrm{~m}_{1}}\left[1-\left\langle\cos ^{2} \psi\right\rangle\right]+\frac{2}{\mathrm{~m}_{2}}[1-\langle\cos \psi\rangle]\right\}\right.\right.$.

Qualitatively, Eq. 5.17 states that the frequency shift increases monotonically with scattering angle. For narrow scattering angle distributions, $\left\langle\cos ^{2} \psi\right\rangle \sim\langle\cos \psi\rangle^{2}$ and Eq. 5.17 can be solved for $\langle\cos \psi\rangle$ given an experimental value of $\left\langle\left\langle\delta \nu_{1}{ }^{2}\right\rangle>\right.$.
B. Line Shapes

1. General expression

The observed excitation line shape is proportional to a convolution integral of a pressure and power dependent homogeneous line shape function with a sum of v_{x} distributions. Each v_{x} distribứtion corresponds to molecules with different trajectories between time of excitation and emission: ${ }^{40}$

$$
\begin{equation*}
I(v) \sim \int_{-\infty}^{\infty} G\left(\nu-v^{\prime}\right)\left[\sum_{i=0}^{N} n_{i} V_{i}\left(v^{\prime}\right)\right] d \nu^{\prime} \tag{5.18a}
\end{equation*}
$$

or

$$
\begin{equation*}
I(\nu) \sim \int_{-\infty}^{\infty} G\left(\nu-v^{\prime}\right) V\left(\nu^{\prime}\right) d \nu^{\prime} \tag{5.18b}
\end{equation*}
$$

where $G\left(\nu-v^{\prime}\right)$ is the homogeneous line shape, n_{i} is the number density of molecules which have traversed trajectory $i, V_{i}\left(\nu^{\prime}\right)$ is the velocity distribution resulting from trajectory i, N is the pressure dependent number of trajectories, and $v\left(v^{\prime}\right)$ is the resultant, total velocity distribution. For low pressures, the single collision limit is applicable and only one class of trajectories for satellite lines corresponding to $J \rightarrow J^{\prime}$ transfer and two classes of trajectories for the principal line corresponding to stationary state oscillation and elastic (i.e. $\Delta J=0$) velocity randomization need be included in Eq. 5.18.
$G\left(\nu-v^{\prime}\right)$ is generally not a simple Lorentzian but rather a sum of three functions resulting from (l) step-wise excitation ($\mathrm{C}^{1} \Sigma^{+} \leftarrow \mathrm{A}^{1} \Sigma^{+} \leftarrow \mathrm{X}^{1} \Sigma^{+}$) and population of $A^{1} \Sigma^{+}$, (2) two-photon excitation ($C^{1} \Sigma^{+} \leftrightarrow X^{1} \Sigma^{+}$) involving only virtual intermediate levels, and interference between (1) and (2). 41-43 $G\left(\nu-v^{\prime}\right)$ is a function of pump and probe laser power and detuning from ν_{0} as well as pressure. ${ }^{42}$
2. Deconvolution procedure

If $G\left(v-v^{\prime}\right)$ is known, $I(v)$ can, in principle, be deconvoluted to obtain $V\left(v^{\prime}\right)$, which may then be used to obtained moments of $\cos \psi$ via Eqs. 5.9, 5.10 and 5.16:44

$$
\begin{equation*}
I^{*}(t)=G^{*}(t) \cdot V^{*}(t) \tag{5.19a}
\end{equation*}
$$

and

$$
\begin{equation*}
V(\nu)=(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} \frac{I^{*}(t)}{G^{*}(t)} e^{i \nu t} d t \tag{5.19b}
\end{equation*}
$$

where starred functions are one-dimensional Fourier transforms.
C. Determination of State to State Rate Constants

1. Fluorescence intensity

$$
\text { Populations in a }\left|J, M, v_{x}, n\right\rangle \text { state, with }
$$

speed distribution V, are sampled by OODR or $A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$fluorescence. The integrated fluourescence intensity is proportional to the number density in $\mid J, M, n>$, but is also a function of probe laser polarization and probe laser frequency (for OODR population monitoring), fluorescence detection geometry, and fluorescence frequency: ${ }^{2,45-47}$

$$
\begin{equation*}
I_{J M}^{\mu \mu} \sim_{J^{\prime}} f(M) E^{\mu}\left(a, b, v_{E}\right) F^{\mu^{\prime}}\left(b, c, v_{F}\right) D^{\mu \mu^{\prime}}\left(v_{F}\right) \tag{5.20}
\end{equation*}
$$

where $I_{J M}^{\mu \mu '}$ is the LIF signal from the |JM> level in the |n> state; a, b, and c are shorthand for initial, intermediate, and final state quantum numbers; n_{J} is the total number density in the $J^{\text {th }}$ level; $f(\mathbb{M})$ is the fraction of n_{J} in the $M^{\text {th }}$ sub-level; E is an excitation factor, related to the Einstein B coefficient, for probe laser polarization μ; F is defined analogously to $E ; D$ is a polarization and frequency dependent fluorescence detection factor; and ν_{E} and ν_{F} are probe laser excitation and fluorescence frequencies, respectively. Obtaining $I_{J M}^{\mu \mu}{ }^{\mu}$ experimentally is non-trivial (see Chapter 6). Instead, $I_{J}^{\mu \mu^{\prime}}$ is measured; where:

$$
\begin{equation*}
I_{J}^{\mu \mu^{\prime}}=\sum_{M=-J}^{J} I_{J M}^{\mu \mu^{\prime}} \tag{5.21}
\end{equation*}
$$

If $D^{\mu \mu^{\prime}}$ and $I_{J}^{\mu \mu^{\prime}}$ are experimentally determined, E^{μ} and F^{μ}, can be calculated ${ }^{47}$ to yield n_{J} provided $f(M)$ is known. In practice $f(M)$ has been assumed to be a constant and equal to $(2 J+1)^{-1}$, implying equal M sublevel populations. This assumption is justified when the variation in intensity ratios, used to determine $k\left(J \rightarrow J^{\prime}\right)$ as μ and μ^{\prime} are varied is comparable to the experimental error in $I_{J}{ }^{\prime} / I_{J}$ (for example, see Ref. 9). A recent review by Kinsey ${ }^{2}$ gives a more complete discussion of LIF measurements of internal energy state distributions.

2. Rate constants

In steady state, the number densities in each rovibronic level are interrelated (the following discussion closely follows Ref. 9b):

$$
\begin{equation*}
\frac{d n_{J}}{d t}=0=\sum_{J^{\prime}}^{*} n_{J}, k_{J J^{\prime}}-n_{J}^{\Gamma}-\sum_{J^{\prime}}^{*} n_{J} K_{J J} \tag{5.22}
\end{equation*}
$$

where $K_{J J}$, is the pressure dependent rate for $J \rightarrow J^{\prime}$ collisions, starred summations denote exclusion of $J=J^{\prime}$ terms (elastic $J \rightarrow J$ rates are not determined), and Γ is a pressure dependent decay constant given by,

$$
\begin{equation*}
\Gamma=k_{\mathrm{rad}}+\sum_{\ell} k_{\ell}^{c_{\ell} n_{\ell}} \tag{5.23}
\end{equation*}
$$

where $k_{r a d}$ is a radiative decay rate and k_{l}^{c} is a quenching rate (removal from the vibrational level considered by vibrational or electronic transfer or by chemical reaction) for collision species ℓ with number density n_{ℓ}. Eq. 5.22 is not valid when $J=J_{0}$, where J_{0} denotes the pumped level, since no pump source term is included. The effects of probe laser saturation are neglected (valid when the probe excitation rate is much less than the collision rate which is the situation for this work). The first term in Eq. 5.22 represents collisional transfer into J from $J^{\prime} ;$ the third term represents transfer from J to J'.

If $K_{J J \text { ' }}$ is assumed to be a function only of $\Delta J=J^{\prime}-J$, Brunner, et al. ${ }^{96}$ have shown that:

$$
\begin{equation*}
1=\sum_{J^{\prime}=-J_{\min }}^{J_{\max }}\left(R_{J^{\prime} J}-1\right) T(\Delta J) \tag{5.24}
\end{equation*}
$$

where $R_{J} J_{J}=n_{J}{ }^{\prime} / n_{J}$ is the ratio of number densities in levels J^{\prime} and J and $T(\Delta J)=K(\Delta J) \Gamma^{-1}$. Eq. 5.24 leads to a set of equations for each value of J which is conveniently expressed in matrix form:

$$
\begin{equation*}
\underset{\sim}{I}=\underset{\sim}{X} \underset{\sim}{T} \tag{5.25a}
\end{equation*}
$$

and

$$
\begin{equation*}
{\underset{\sim}{X}}^{-1} \underset{\sim}{I}=\underset{\sim}{T} \tag{5.25b}
\end{equation*}
$$

where $\underset{\sim}{X}$ is the matrix of $\left(R_{J} J^{-1}\right)$ values, $\underset{\sim}{T}$ is the vector
of $T(\Delta J)$ values, and $\underset{\sim}{l}$ is the identity vector. Providing $K_{J J}$ is only a function of ΔJ, Eq. $5.25 b$ yields $T(\Delta J)$ corrected for the effects of multiple collisions. In using Eqs.5.24 and 5.25, it should be noted that if J ranges from J_{1} to $J_{2}, J_{\min }=J_{1}-J_{0}$ and $J_{\max }=J_{2}+J_{0} .9 \mathrm{~b}$
III. Experimental

The OODR experiment was described in Chapter 3. Details relevant to kinetic measurements only are presented here.
A. Pressure measurements

Pressure measurements were made using both a Wallace and Tiernan (model \#FA 160) 0 to 20 torr mechanical gauge and an MKS baratron (model \#220-2A6-1) 0 to 1 torr capacitance manometer gauge. The position of the baratron gauge was varied with respect to the flame and pump; identical readings were obtained when the end of the gas collection tube (≈ 6 in. from capacitance manometer) was placed in the flame and when placed z 2 ft. downstream toward the pump (Welch \#1397B). All experiments were carried out under flow conditions (pumping speed ≈ 300 emin $^{-1}$). A constant discrepancy of 0.22 torr between the W\&T and MKS gauges was observed. By checking against a second MKS gauge, the W\&T readings were corrected accordingly by adding 0.22 torr to the observed readings. Partial pressures of Ar and CO_{2} were determined, under flow conditions, by first adjusting the Ar pressure and then adding CO_{2}; ideality (Dalton's law) is assumed.

Pressures are precise to 0.02 torr; 0.01 torr was the smallest detectable pressure change.

B. Line intensities

For J § 20, populations were probed via OODR $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1)$ excitation and $C^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$UV fluorescence detection. For $J>20$, the probe laser was blocked and $A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}(1,1)$ fluorescence was resolved through a Spex 1802 spectrometer (See Chapter 3 for details); spectral resolution was $\approx 0.3 \AA$.

Pump and probe lasers were polarized along \hat{z} and propagated along $\hat{x} . \hat{x}+\hat{y}$ polarized $C^{I} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$OODR induced fluorescence and $\hat{y}+\hat{z}$ polarized $A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$fluorescence were detected. Integrated intensities were approximated from probe laser excitation spectra by multiplying peak heights by widths (FWHM) to account for variations in velocity randomization with J (see below). For spectrometer data, peak heights alone were used as intensity measures since all line widths were equal and determined by the $0.3 \AA$ spectral slit width.

The lasers were sometimes focussed with a 12 in. focal length lens into the flame center in order to obtain optimal signal to noise ratios. However, intensity ratios were insensitive to laser focussing.

Line intensities were corrected for pump and probe
laser power fluctuations by monitoring $A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$91,2) fluorescence (Chapter 3) and the transmission intensities of a 300 MHz Fabry-Perot, respectively: ${ }^{\dagger}$

$$
\begin{equation*}
\left[I_{J}, / I_{J_{0}}\right]_{\text {true }}=\left[I_{J}, / I_{J_{0}}\right]_{\text {obs }} \frac{P_{\text {pump }}\left(J_{0}\right) P_{\text {probe }}\left(J_{0}\right)}{P_{\text {pump }}\left(J^{\prime}\right) P_{\text {probe }}\left(J^{\prime}\right)} \tag{5.26}
\end{equation*}
$$

where the Ps are monitor signals proportional to laser intensities ($P_{\text {probe }}$ was not used for spectrometer data). The difference between true and observed intensity ratios were less than 10%. Note that $A \rightarrow X(1,2)$ fluorescence monitoring corrects for not only oump laser power fluctuations but also BaO concentration fluctuations. Line widths and intensity ratios were measured as a function of oven current over a range of 40 to 70 amps (corresponding to estimated oven temperatures from ~ 600 to 1000 K) for various CO_{2} and Ar pressures. No dependence of widths or intensity ratios on oven current was observed.

[^27]IV. Results
A. Line shapes and widths

1. Principal line

The observed excitation line shape for the $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1), R(15)$ principal line at 0.32 torr Ar and 0.05 torr CO_{2} and no focussing lens is shown in Fig. 5.4; $A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}(1,0), R(14), v_{x}=0$ is pumped. Also shown is a least squares fit ${ }^{\dagger}$ of the observed line shape to a Lorentzian with FWHM=34.24+0.14 MHz. Figs. 5.5 and 5.6 illustrate the $R(15)$ principal line width dependence upon Ar and CO_{2} partial pressure, respectively. Over the pressure range sampled, the principal excitation line shape is well characterized by a Lorentzian function. Without the
focussing lens, the line widths remain unchanged when the power of both pump and probe lasers are attenuated (using neutral density filters) by a factor of ten each. These observations imply that velocity randomization and twophoton transitions (TPT) make smaller contributions to the line shape than do dephasing and decay processes. If VCC and TPT are neglected, then

[^28]the principal line shape function may be used to deconvolute satellite line shapes according to Eq. 5.19. Further evidence that VCC make only small contributions, relative to Lorentz broadening, to the principal line shape is provided by comparing the satellite and principal line width dependences on CO_{2} pressure for fixed Ar pressure: increasing $\mathrm{P}_{\mathrm{CO}_{2}}$ merely broadens the principal line width but narrows the satellite line widths via VCC (see below); if VCC collisions were important, the principal line should also narrow as $\mathrm{P}_{\mathrm{CO}_{2}}$ is increased. There remain four contributions to the line shape: collisions and radiative decay in the upper $C^{1} \Sigma^{+}$and lower $A^{1} \Sigma^{+}$levels. The laser line width is $\approx 1 M H z$ and is neglected. Because $C^{1} \Sigma^{+}$radiatively decays ten times more rapidly than $A^{1} \Sigma^{+33,37}, A^{1} \Sigma^{+}$radiative decay and $C^{T^{+}}{ }^{+\quad{ }^{+}}$ collisional broadening are neglected. No evidence of $\mathrm{C}^{1} \Sigma^{+}$ relaxation is apparent at total pressures below 1 torr. If tertiary and higher order collisions are unimportant, principal line widths vary linearly with Ar and CO_{2} partial pressures:
\[

$$
\begin{equation*}
\Delta \nu_{\mathrm{FWHM}}=(2 \pi)^{-1}\left[k_{\mathrm{rad}}+\mathrm{k}_{\mathrm{Ar}}^{\mathrm{T}} \mathrm{Ar}+\mathrm{k}_{\mathrm{CO}_{2}}^{\mathrm{T}} \mathrm{CO}_{2}\right] \tag{5.27}
\end{equation*}
$$

\]

where $\mathrm{k}_{\text {rad }}$ is the $\mathrm{C}^{1} \Sigma^{+}$radiative decay rate and k^{T} represents a total collision rate for a single $A^{1} \Sigma^{+}$rovibronic level. Linear least squares fits to the data are shown in Figs. 5.4

Figure 5.4: Experimental (Δ) excitation line shape for the principal line $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1)$, $R(15)$ as a function of detuning frequency, $\Delta \nu=\nu-v_{0}$; the solid line is a least squares fit of the data to a Lorentzian with FWHM $=34.24 \pm 0.14 \mathrm{MHz}$. Ar pressure, 0.32 torr. CO_{2} pressure, 0.05 torr. $\mathrm{A}^{1} \Sigma^{+} \leftarrow \mathrm{X}^{1} \Sigma^{+}$ $(1,0), R(14), v_{x}=0$ is pumped.

FIGURE 5.4
Figure 5.5: Plot of line width $\Delta \nu_{\text {FWHM }}$ vs. total pressure $\mathrm{P}_{\mathrm{t}}\left(\mathrm{P}_{\mathrm{CO}_{2}}<0.01\right.$ torr.) for $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1) R(15)$ principal line. Circles are experimental measurements; line is a linear least squares fit to data with slope of $14 \pm 2 \mathrm{MHz}$ torr $^{-1}$ and intercept of $28 \pm 2 \mathrm{MHz}$.
Figure 5.6: Same as Fig. 5.4 except $P_{A R}=0.32$ torr is held fixed. Slope is $19 \pm 3 \mathrm{MHz}$ torr ${ }^{-1}$ and intercept is $30 \pm 3 \mathrm{MHz}$. Error bars are lo estimates.

FIGURE 5.5

-6TE•

FIGURE 5.6
and 5.5 and yield † :

$$
\begin{align*}
& \mathrm{k}_{\mathrm{Ar}}^{\mathrm{T}}=8.8 \pm 1.3 \times 10^{7} \mathrm{sec}^{-1} \mathrm{torr}^{-1}=4.3 \pm 0.6 \times 10^{-9} \mathrm{~cm}^{3} \mathrm{sec}^{-1} \\
& \mathrm{k}_{\mathrm{CO}_{2^{\mathrm{i}}}^{\mathrm{T}}}^{\mathrm{T}} 1.19 \pm 0.19 \times 10^{8} \mathrm{sec}^{-1} \mathrm{torr}^{-1}=5.9 \pm 0.9 \times 10^{-9} \mathrm{~cm}^{3} \mathrm{sec}^{-1} \\
& \mathrm{k}_{\mathrm{rad}}=1.68 \pm 0.13 \times 10^{8} \mathrm{sec}^{-1} \text { or }{ }^{\tau}{ }^{(5.28 \mathrm{~b})} \\
& \mathrm{rad}^{-1}=6.0 \pm 0.5 \times 10^{-9} \mathrm{sec}
\end{align*}
$$

In terms of cross sections,

$$
\begin{align*}
& \sigma_{\mathrm{Ar}}^{\mathrm{T}}=\left\langle\mathrm{W}_{\mathrm{Ar}^{\prime}}\right\rangle^{-1} \mathrm{k}_{\mathrm{Ar}}^{\mathrm{T}}=870 \pm 120 \mathrm{~A}^{2} \tag{5.29a}\\
& \sigma_{\mathrm{CO}_{2}}^{\mathrm{T}}=\left\langle\mathrm{W}_{\mathrm{CO}_{2}}\right\rangle^{-1} \mathrm{k}_{\mathrm{CO}_{2}}^{\mathrm{T}}=1230 \pm 190 \mathrm{~A}^{2} \tag{5.29b}
\end{align*}
$$

where $\left\langle w_{2}\right\rangle=\frac{(k T)^{\frac{1}{2}}}{2}\left[\left(\frac{\pi}{m_{1}}\right)^{\frac{1}{2}}+\frac{4}{\left(\pi m_{2}\right)^{\frac{1}{2}}}\right]$ is the mean square relative speed for particle 1 (BaO) colliding with particle 2 (Ar or CO_{2}) when $\mathrm{v}_{1 \mathrm{x}}=0$ has been selected. 48 The collision rates in Eq. 5.28 are total rates including all quenching and relaxation mechanisms as well as phase changing collisions and are upper bounds to $A^{1} \Sigma^{+}$relaxation
† In converting from sec^{-1} torr $^{-1}$ to $\mathrm{cm}^{3} \mathrm{sec}^{-1}$ in Eqs. 5.28a and 5.28 b the ideal gas equation, $\mathrm{P}=\mathrm{nkT}$, has been used with $T=\left[\Delta v_{D}^{C}{ }^{2} \mathrm{M} / 8 v_{O_{0}} \ln ^{\dagger} \mathrm{n} 2\right]=475 \mathrm{~K}$ where $\Delta \nu_{D}=790 \mathrm{MHz}$ is the observed $A^{1} \Sigma^{+}-X^{1} \Sigma^{+}$Doppler width, M is the BaO molecular mass and R is the gas constant. 40
processes since line width contributions from TPT, $C^{1} \Sigma^{+}$relaxation, and VCC are neglected. Identical line width vs. pressure curves (Fig. 5.5 and 5.6) are obtained for $J_{O}=0$ through 15 .

The value of ${ }^{\tau}$ rad in Eq. 5.28c is significantly different from the vibrationaly and rotationally averaged $\mathrm{C}^{1} \Sigma^{+}$radiative lifetime of $25 \pm 10 \mathrm{nsec}$ reported by Torres-Filho and Pruett (TP) by pulsed dye laser excitation of $\mathrm{C}^{1} \Sigma^{+} \leftarrow \mathrm{X}^{1} \Sigma^{+}$and subsequent temporal monitoring of $\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{X}^{1} \Sigma^{+}$fluorescence ${ }^{37 a}$. Because of $C^{l} \Sigma^{+}$perturbations (Chapter 3), ${ }^{\tau}$ rad is expected to vary with both vibration and rotation; in fact Pruett recently measured $C^{1} \Sigma^{+}$lifetimes for individual rotational levels near the $v=3$ vibrational origin and found $\tau=14 \pm 1$ nsec ${ }^{37 b}$. Nonetheless, a discrepancy still exists between this value and that of Eq. 5.28c. As mentioned above, power broadening is not detectable without the focussing lens. Transit time broadening resulting from molecules leaving the field of interaction can also be neglected since the beam waist, u, without the focussing lens (1/e distance from maximum intensitý) is $\approx 0.8 \mathrm{~cm}$ and the average BaO speed transverse to \hat{x} is $1.47 \times 10^{4} \mathrm{~cm} \mathrm{sec}^{-1}$ so that:

$$
{ }^{\tau} \text { trans } \approx \frac{u}{\left\langle\mathrm{v}_{1}\right\rangle} \approx 5 \times 10^{-5} \mathrm{sec}
$$

$$
\begin{equation*}
\Delta \nu_{\text {trans }}=\frac{1}{2 \pi \tau_{\operatorname{trans}}} \approx 3 \times 10^{3} \mathrm{~Hz} \tag{5.30a}
\end{equation*}
$$

Residual Doppler broadening owing to beam misalignment is small:

$$
\begin{equation*}
\Delta \nu_{\mathrm{D}}=\frac{\nu_{\mathrm{O}}\left\langle\mathrm{v}^{2}\right\rangle^{\frac{1}{2}}}{\mathrm{C}} \theta \leqslant 5 \times 10^{6} \mathrm{~Hz} \tag{5.30b}
\end{equation*}
$$

where $\Delta \nu_{D}$ is the residual Doppler width, $\left\langle v^{2}\right\rangle^{\frac{1}{2}}$ the BaO rms speed, and θ is the angle between the pump and probe estimated to be less than 0.01 rad; this correction results in only a 1 nsec increase in the lifetime. It seems likely, therefore, that $\Delta \nu_{\text {FWHM }}$ varies in a nonlinear fashion at low pressures (< 0.3 torr) where VCC can no longer be neglected with respect to Lorentz broadening. This non-linear behavior has been observed in other systems ${ }^{11,29,30}$. It follows that extrapolation of the lines in Figs. 5.5 and 5.6 to zero pressure leads to a lower bound for the $C^{1} \Sigma^{+}$radiative lifetime not inconsistent with the values measured by Pruett et al. ${ }^{37}$
2. Satellite lines

As expected (Section II.B.), satellite line shapes cannot be represented as simple Lorentzians or Gaussians: velocity randomization results in broadening comparable to the homogeneous linewidth.

Fig. 5.7 illustrates the dependence of the $R(14)$ collisional satellite ($\triangle J=-1$) line width, $\triangle \nu_{\text {FWHM }}$, upon Ar pressure for a CO_{2} pressure less than 0.01 torr (without the focussing lens). $\Delta \nu_{\text {FWHM }}$ is seen to vary linearly with Ar pressure with a slope of $27 \pm 2 \mathrm{MHz}$ torr $^{-1}$ and an intercept of $66 \pm 3 \mathrm{MHz}$. Because of velocity randomization, the satellite-width pressure slope and intercept are greater than the corresponding principal-line-width slope and intercept.

Fig. 5.8 illustrates the $R(14)(\Delta J=-1)$ satellite line width dependence upon CO_{2} pressure for an Ar pressure of 0.31 torr. A dramatic decrease of 30% in line width is observed upon addition of only 0.06 torr CO_{2}. This should be contrasted with the principal line width dependence on CO_{2} pressure (Fig. 5.6) where a monotonic, linear increase in line width is observed. This line narrowing may be understood by examination of Eqs. 5.9, 5.10, and 5.17: the mass change from Ar to CO_{2} (40 amu as opposed to 44 amu) would be expected to result in slightly larger frequency shifts for CO_{2} (i.e. broader lines); however, if ψ is smaller ($\cos \psi$ larger) for CO_{2} than for Ar , smaller frequency shifts,or narrower lines,are predicted. Thus, Fig. 5.7 implies smaller angle scattering for CO_{2} than for Ar . This effect is not apparent in Fig. 5.6, $\Delta J=0$, because velocity

Figure 5.7: $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1) R(14)$ collisional
satellite line width ($\Delta \mathrm{J}=-\mathrm{I}$) vs.
total pressure, P_{t}, for fixed
${ }^{\mathrm{P}} \mathrm{CO}_{2}<0.01$ torr. Line is linear
least squares fit with slope =
$27 \pm 2 \mathrm{MHz}$ torr $^{-1}$ and intercept $=$
$66 \pm 3 \mathrm{MHz}$. Error bars are 1σ
estimates.

Figure 5.8: Same as Fig. 5.6 except for fixed

$$
\mathrm{P}_{\mathrm{Ar}}=0.31 \text { torr }
$$

FIGURE 5.7

FIGURE 5.8
randomization for Ar as well as CO_{2} is minimal when J is not changed; increases in pressure merely increase the collisional deactivation and dephasing rates.

Fig. 5.9 illustrates the variation in line width with ΔJ for $J_{O}=15$ at an Ar pressure of 0.31 torr and CO_{2} pressure of 0.01 torr; the monotonic increase of $\Delta \nu_{\text {FWHM }}$ with $|\Delta J|$ exhibited in Fig. 5.8 is observed for all pressures and for different J_{0}. Two mechanisms for this phenomenon are possible: (1) ψ increases, $\cos \psi$ decreases, monotonically with ΔJ under single collision conditions; and, (2) large changes in ΔJ result from a series of small ΔJ collisions,each of which randomizes v_{x}. It is certain that the latter mechanism is important (see discussion below of multiple collision effects). When satellite line widths are linearly extrapolated to zero pressure, the monotonic increase of $\Delta \nu_{\text {FWHM }}$ with J seems to persist but the non-linear dependence of $\Delta v_{\text {FWHM }}$ on pressure (see discussion above) precludes drawing a definite conclusion concerning the importance of the former mechanism.

Eqs. $5.9,5.10$, and 5.16 predict that VCC frequency shifts should scale with initial $\mathrm{v}_{1 \mathrm{x}}$ selected. Thus if $\left|v_{1 x}\right|>0$ is selected, satellite line profiles are expected to be asymmetric and shaded towards $\nu_{o}\left(v_{1 x}=0\right)$ for $\psi \neq 0$. Principal and satellite excitation line shapes

Figure 5.9: $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1)$ excitation line widths as a function of J for $J_{O}=15$. Δ data denote without focussing lens. All other data are with focussing lens and are power broadened. Error bars are lo estimates.

FIGURE 5.9
for $J_{0}=11$ and $v_{1 x}=+4.27 \times 10^{4} \mathrm{~cm} \mathrm{sec}{ }^{-1}$ $\left(\nu-v_{0}=+720 \mathrm{MHz}\right)$, taken with the focussing lens for optimal signal to noise, are shown in Fig. 5.10. Focussing both lasers not only power broadens these lines but also increases the TPT probability resulting in a slight asymmetry for the principal, $R(11)$, line 42,43 : without the focussing lens, the principal is symmetric whereas satellite lines remain asymmetric. The line asymmetry clearly increases with $|\Delta J|$ (see Fig. 5.10) consistent with the $\mathrm{v}_{1 \mathrm{x}}=0$ results displayed in Fig. 5.9.

As described above (Section II.B.), excitation line shapes can be deconvoluted when the homogeneous line shape function is known. Neglecting $\Delta J=0$ velocity randomization and TPT, permits deconvolution of satellite line profiles, assuming that the homogeneous line shape is only a function of Ar and CO_{2} pressure and not of J . This assumption appears to be valid since the same width vs. pressure curves (Figs. 5.5 and 5.6) are obtained for different values of J_{O}. Thus G in Eq. 5.18 is a simple Lorentzian with pressure dependent FWHM given by Figs. 5.4 and 5.5. Since the spectra were recorded onto graph paper (see Chapter 3), it was necessary to first digitize the data by hand before using the Fast Fourier Transform (FFT) algorithmn ${ }^{49, \dagger}$ to deconvolute $I(v)$

[^29]Figure 5.10: $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1)$ ooDR excitation spectrum with focussing lens for $J_{0}=11$ and $v_{1 x}=4.27 \times 10^{4} \mathrm{~cm} \mathrm{sec}{ }^{-1}$. Note asymmetry in line shapes with shading towards $v_{o}\left(v_{1 x}=0\right)$. slight asymmetry in $R(l l)$ (off scale) principal line results from two-photon transitions and not velocity randomization (see text).

-zعє-
FIGURE 5.10
according to Eq. 5.19 and obtain the v_{x} distribution, V. Unfortunately, hand digitization reduced the signal to noise ratio (S/N) from ≈ 200 to ≈ 30. Poor S / N complicates deconvolution because high frequency noise in $I(\nu)$ is amplified when I^{*} is divided by G^{*} (Eq. 5.19). Since I is a slowly varying function, high frequency components of $I *$ result largely from noise; setting these frequency components to zero acts as a filter on I and reduces the noise in V. However, as more and more frequency components of $I *$ are zeroed, information on V is lost. Figures 5.11 and 5.12 illustrate the results of this procedure for the $R(14)$ satellite line ($\Delta J=-1$) at $P_{A r}=0.32$ torr and $\mathrm{P}_{\mathrm{CO}_{2}}=0.05$ torr $\left(\mathrm{G}\left(\nu-\nu_{0}\right)\right.$ is illustrated in Fig. 5.3). The line shape was digitized into 128 bits over the frequency range $\Delta \nu=-138$ to +136 MHz (triangles); the lines in Figs.5.10 and 5.11 are the $V(v)$ distributions obtained when I^{*} components 24 to 128 and 14 to 128 were zeroed, respectively (0 and 128 correspond to lowest and highest frequency components respectively). In order to test for distortion, I^{*} was inversely transformed after zeroing to obtain I. Fig. 5.13 shows the maximum distortion resulting from zeroing components 14 to 128. It is apparent from Figs. 5.11 and 5.12 that V is poorly determined (the oscillations are spurious) even when 114 components are discarded; however, first and second

Figure 5.ll: $R(14)$ satellite line ($\Delta \mathrm{J}=-1$) (triangles) at $\mathrm{P}_{\mathrm{AR}}=0.32$ torr and $\mathrm{P}_{\mathrm{CO}_{2}}=0.05$ torr with deconvoluted $\mathrm{V}(\mathrm{v})$ distribution (line) obtained when I*(t) components 24 through 128 were zeroed. Noise in experimental line profile results from hand digitization of data.

Figure 5.12: Same as Fig. 5.10 except I*(t) components 14 through 128 were zeroed. Note broadening of $V(v)$ relative to Fig. 5.11.

Figure 5.13: Same as Fig. 5.11 except line is I(v), R(14) satellite line shape, obtained by zeroing $I *(t)$ components 14 through 128 and then inverse Fourier transforming.

FIGURE 5.11

FIGURE 5.12

FIGURE 5.13
moments of V are found to be relatively insensitive to component zeroing and $\langle\cos \psi\rangle$ is estimated in Table 5.1. $<\cos ^{2} \psi>o b t a i n e d$ by simultaneously solving Eqs. 5.10 and 5.17 is negative which results from underestimating $\ll \delta v_{1}^{2} \gg$, by numerical computation over only a finite range of $\left.v . \ll \delta v_{1}>\right\rangle_{0}$ is less sensitive to truncation of V and yields ${ }^{\dagger}$:

$$
\begin{aligned}
\langle\cos \psi\rangle & =0.5 \pm 0.1 \\
\langle\psi\rangle & \equiv \arccos \langle\cos \psi\rangle=60 \pm 6^{0} \\
\left\langle\left\langle\delta \mathrm{v}_{1 \mathrm{x}}\right\rangle\right\rangle & =\mathrm{c} / \nu_{0}\left\langle\left\langle\delta \nu_{1}\right\rangle\right\rangle_{0}=1.3 \pm 0.2 \times 10^{3} \mathrm{~cm} \mathrm{sec}^{-1}
\end{aligned}
$$

Note that the values quoted in Eq. 5.31 represent averages over multiple collisions with both Ar and CO_{2}.
B. Rotational State to State Rate Constants

As mentioned above (Section II.C.), $A^{1} \Sigma^{+}$
rotational populations are measured by monitoring $A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$resolved fluorescence or probing $C^{1} \Sigma^{+}{ }_{\leftarrow} A^{1} \Sigma^{+}$and detecting. $\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{X}^{1} \Sigma^{+}$fluorescencé. The formér method is uséd for J levels greater than 20 where P and R branches (J'-J" $=-1$ and +1 , respectively, where J^{\prime} denotes upper

[^30]Table 5.1: Deconvolution of $I(\nu)^{\mathrm{a}}$ and Moments of $\cos \psi$

Components Zeroed	$\left\langle\left\langle\delta \nu_{1}\right\rangle>{ }^{\operatorname{Red}}(\mathrm{MHz})\right.$	$\ll \delta \nu_{1} \gg^{\text {Blue }}(\mathrm{MHz})$	$\ll \delta \nu_{1}^{2}$	$<\cos \psi$	$<\cos ^{2}$
34 to 128	-26	18	2367	0.50	-4
24 to 128	-23	21	2245	0.50	-4
14 to 128	-24	21	2312	0.50	-4
$a_{R(14)}$ satellite $(\Delta J=-1)$ with $P_{A R}=0.32$ torr, $P_{C O_{2}}=0.05$ torr, and $G\left(\nu-v^{\prime}\right)$ equal to a Lorentzian with $\mathrm{FWHM}=34.24 \mathrm{MHz}$.					
b Average of values obtained from using red and blue average shifts in Eq.					
$\mathrm{C}_{\text {From simlu }}$	eous solution	Eqs. 5.10 and 5.			

and J" denotes lower level of transition) are resolvable; OODR is used for population probes at low J near the bandhead and origin. In order to convert line intensities to populations, a form for the M sub-level distribution, $f(M)$, (see Eq. 5.20) must be assumed. Two models are considered: (1) M is conserved upon collision so that $f(M)$ is determined by the pump transition and (2) M is completely randomized upon collision so that $f(M)=(2 J+1)^{-1}$. It is always assumed that $f(M)$ for J_{o} is determined by the $A \leftarrow X$ pump transition. (This assumption is justified in Chapter 6.) Table 5.2 presents intensity factors (corresponding to terms in Eq. 5.20) for both $f(M)$ models and for both $A \rightarrow X$ fluorescence and $C \leftarrow A$ OODR, monitoring. Table 5.3 presents intensity expressions divided by n_{J}, I_{J} / n_{J}, for the detection geometries described in Section III for both $f(M)$ models. The frequency dependence of excitation and fluorescence factors is neglected since the maximum variation is $\sim 2 \%$ (ν^{3} factor) over the range of J levels sampled compared with an experimental uncertainty in intensity ratios of 20%. The detection factor of 0.5 for resolved Z polarized fluorescence results from the polarization dependence of grating reflection; note that this factor conveniently (and coincidentally) makes the $A \rightarrow X(1,1)$ probe insensitive to the form of $f(M)$.

Table 5．2：Rotational Intensity Factors ${ }^{\text {a }}$

Monitor $\quad \mathrm{f}(\mathrm{m})$	E^{μ}（ R branch）	$\mathrm{F}^{\mu^{\prime}}(\mathrm{R}$ branch）	$\mathrm{F}^{\mu^{\prime}}$（P branch）	$D^{\mu \prime} \mathrm{c}$
OODR $\begin{array}{lc} \mu^{\prime}=\hat{Z} \\ \mu^{\prime}=\hat{\mathrm{X}}=\hat{\mathrm{Y}} & {[2 J+1]^{-1}} \\ \text { OODR } & \text { b } \\ \mu=\hat{Z} & J_{O}^{2}-\mathrm{M}^{2} \\ \mu^{\prime}=\hat{\mathrm{X}}=\hat{\mathrm{Y}} & J_{O}^{\prime}\left(2 J_{<}+1\right)-\frac{1}{3} J_{<}\left(J_{<}+1\right)\left(2 J_{<}+1\right) \end{array}$	$\left\{\begin{array}{l}(J+1)^{2}-M^{2} \\ (2 J+1)(2 J+3)\end{array}\right.$	$\frac{\mathrm{J}(\mathrm{~J}+1)+\mathrm{M}^{2}}{2(2 \mathrm{~J}+3)(2 \mathrm{~J}+1)}$	$\frac{(\mathrm{J}+3)(\mathrm{J}+2)+\mathrm{M}^{2}}{2(2 \mathrm{~J}+3)(2 \mathrm{~J}+5)}$	1
$\begin{aligned} & \begin{array}{l} A \rightarrow X(1,1) \\ \mu^{\prime}=\hat{Y} \end{array} \\ & \begin{array}{l} A \rightarrow X(1,1) \\ \mu^{\prime}=\hat{Z} \end{array} \end{aligned}\left\{\quad[2 J+1]^{-1}\right.$	1	$\begin{aligned} & \frac{J(J-1)+M^{2}}{2\left(4 J^{2}-1\right)} \\ & \frac{J^{2}-M^{2}}{4 J^{2}-1} \end{aligned}$	$\begin{aligned} & \frac{(\mathrm{J}+1)(\mathrm{J}+2)+\mathrm{M}^{2}}{2(2 \mathrm{~J}+1)(2 \mathrm{~J}+3)} \\ & \frac{(\mathrm{J}+1)^{2}-\mathrm{M}^{2}}{(2 \mathrm{~J}+1)(2 \mathrm{~J}+3)} \end{aligned}$	1 0.5
$\begin{aligned} & A \rightarrow X(1,1) \\ & \mu^{\prime}=\hat{Y} \\ & R \text { pump } \\ & A \rightarrow X(1,1) \\ & \mu^{\prime}=Z \\ & R \text { pump } \end{aligned}\left\{\frac{J_{O}^{2}-M^{2}}{J_{0}^{2}\left(2 J_{<}+1\right)-\frac{1}{3} J_{<}\left(J_{<}+1\right)\left(2 J_{<}+1\right)}\right.$	1	$\begin{aligned} & \frac{\mathrm{J}(\mathrm{~J}-1)+\mathrm{M}^{2}}{2\left(4 \mathrm{~J}^{2}-1\right)} \\ & \frac{\mathrm{J}^{2}-\mathrm{M}^{2}}{4 \mathrm{~J}^{2}-1} \end{aligned}$	$\begin{aligned} & \frac{(J+1)(J+2)+M^{2}}{2(2 J+1)(2 J+3)} \\ & \frac{(J+1)^{2}-M^{2}}{(2 J+1)(2 J+3)} \end{aligned}$	1 0.5

$a_{J_{o}}$ and J denote initial and final（collisionally populated）$A^{1} \Sigma^{+}$levels，respective－ ly．$J_{<}$denotes the lesser of J_{O} and $J . ~ R$ and P branch mean $J^{\prime}-J "=+1$ and -1 respectively，where J^{\prime} is upper and $J "$ is lower level rotational quantum number． f，E，F，and D are defined by Eq．5．20；only those polarizations relevant to this work

Table 5.2 (continued) (Footnotes)
are considered.
$\mathrm{b}_{\text {For }} R$ branch \hat{Z} polarized pumping only. When J_{O} was prepared by pumping $A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}(1,0) P(1)$ with Z polarization, $f(M)=1$ always when M is conserved since only $M=0$ exists for $J_{O}=0$.
$C_{\text {Determined }}$ from grating reflection efficiency vs. polarization curve at $\lambda=600 \mathrm{~nm}$ corresponding to $A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}(1,1)$ emission.

Table 5.3: Summed Line Intensities ${ }^{\text {a }}$

Table 5.3: (continued)

$$
\begin{aligned}
& \delta=\sum_{M=-J}^{J_{<}} M^{6}=\frac{1}{21} J_{<}\left(J_{<}+1\right)\left(2 J_{<}+1\right)\left(3 J_{<}^{4}+6 J_{<}^{3}-3 J_{<}+1\right) \\
& \alpha^{\prime}, \beta^{\prime}, \text { and } \gamma^{\prime} \text { are defined analogously to } \alpha, \beta, \text { and } \gamma \text { with } \\
& J \text { substituted for } J_{<} \cdot
\end{aligned}
$$

[^31]Using the factors in Table 5.3, it is
found for $O O D R$ probing that the maximum discrepancy between ratios of n_{J} 's calculated with the two $f(M)$ models is $\sim 20 \%$; since this is comparable to experimental error, the M conserved distribution is assumed in what follows below.

Intensities as a function of J were measured for $J_{O}=0$ and $J_{O}=15$ over a range of Ar and CO_{2} partial pressures and then converted to relative populations using the M conserved model factors in Table 5.3. The results are given in Tables 5.4 and 5.5. Fig. 5.13 illustrates the results for $J_{O}=0, P_{A R}=0.33$ and 0.82 torr, and $\mathrm{P}_{\mathrm{CO}_{2}}=0.01$ torr. Propensities for small ΔJ changes are observed: $k(\Delta J=1)>k(\Delta J=2)>$ $k(\Delta J=3)$. For $\Delta J>3$,level populations do not vary significantly even at the lowest pressures attained. $\left(\mathrm{P}_{\mathrm{AR}}=0.33\right.$ torr, $\mathrm{P}_{\mathrm{CO}_{2}}=0.01$ torr).

Fig. 5.14 compares population ratios, $n_{J} / n_{J_{O}}$, for $J_{0}=0$ and 15 as a function of ΔJ.

To obtain pressure dependent, single collision $J_{0} \rightarrow J$ rates, the data of Tables 5.4 and 5.5 are inverted according to Eq. 5.25b; the results are given in Tables 5.6 and 5.7 for $|\Delta J|=1$ to 4 and compared to the corresponding population ratios ${ }^{\dagger}$.

[^32]Table 5.4: Population Ratios for $J_{o}=o^{a}$

1
0.132

2
0.077
$3 \quad 0.057$
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
0.047
(0.041)
(0.036)
(0.030)
0.024
0.032
0.032
0.035
0.024
0.021
0.022
0.021
0.024
(0.02)
(0.02)
(0.015)
(0.015)
apopulation ratios obtained from intensity ratios based on M conserved model (see Text and Table 5.3). Io uncertainties are estimated to be 20%. Numbers in parenthesis are interpolated or extrapolated values (see text).

$$
\begin{aligned}
& \text { Table 5.4: (cont.) } \\
& \underline{P}_{\mathrm{Ar}}=\frac{0.33 \text { torr }}{\underline{J}} \quad \stackrel{\mathrm{P}}{\mathrm{CO}} \mathrm{CO}_{2} \frac{=0.12 \text { torr }}{\underline{n}_{J} / \underline{n}_{J_{0}}}
\end{aligned}
$$

0	1.000
1	0.168
2	0.094
3	0.071
4	0.061
5	(0.054)
6	(0.046)
7	(0.039)
8	0.032
9	0.020
10	0.040
11	0.030
12	0.029
13	(0.030)
14	0.031
15	0.021
16	0.033
17	0.027
18	(0.02)
19	(0.015)
20	(0.015)

$$
\begin{aligned}
& \underline{\mathrm{P}}_{\mathrm{Ar}}=0.33 \text { torr, } \quad \underline{\mathrm{P}}_{\mathrm{CO}}^{2} 2=0.27 \text { torr } \\
& \text { J } \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& \underline{n}_{J} / \underline{n}_{J} \\
& 1.000 \\
& 0.165 \\
& 0.128 \\
& 0.079 \\
& 0.060 \\
& 0.055 \\
& 0.040 \\
& 0.053 \\
& 0.030 \\
& 0.040 \\
& 0.030 \\
& \text { (0.02) } \\
& \text { (0.02) } \\
& \text { (0.015) } \\
& \text { (0.01) } \\
& \text { (0.01) } \\
& \text { (0.01) } \\
& \text { (0.005) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Table 5.4: (cont.) } \\
& \underline{P}_{\mathrm{Ar}}=0.82 \text { torr, } \quad \underline{\mathrm{P}}_{\mathrm{CO}_{2}}=0.01 \text { torr } \\
& \text { J } \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& 8 \\
& 9 \\
& n_{J} / n_{J_{0}} \\
& 1.000 \\
& 0.182 \\
& 0.127 \\
& 0.091 \\
& 0.088 \\
& \text { (0.082) } \\
& \text { (0.076) } \\
& \text { (0.070) } \\
& 0.064 \\
& 0.066 \\
& 0.074 \\
& 0.062 \\
& 0.067 \\
& 0.073 \\
& 0.072 \\
& 0.067 \\
& 0.067 \\
& 0.072 \\
& 0.064 \\
& 0.056 \\
& 0.053 \\
& 0.078 \\
& 0.065
\end{aligned}
$$

$$
\begin{aligned}
& \text { Table 5.4: (cont.) } \\
& \text {-351- } \\
& \underline{P}_{A r}=0.82 \text { torr }, \quad \underline{\mathrm{P}}_{\mathrm{Ar}}^{2}=0.01 \text { torr }(\text { cont }) \\
& \text { J } \\
& 23 \\
& 24 \\
& 26 \\
& 27 \\
& 28 \\
& 29 \\
& 30 \\
& 31 \\
& 32 \\
& n_{J} / n_{J_{0}} \\
& 0.062 \\
& 0.054 \\
& 0.063 \\
& 0.054 \\
& 0.056 \\
& 0.044 \\
& 0.052 \\
& 0.040 \\
& 0.043 \\
& 0.047 \\
& 0.026 \\
& 0.051 \\
& 0.043 \\
& 0.043 \\
& 0.043 \\
& 0.038 \\
& 0.034 \\
& 0.016 \\
& 0.026
\end{aligned}
$$

$$
\begin{aligned}
& \text { Table 5.4: (cont.) } \\
& \underline{P}_{\mathrm{Ar}}=2.33 \text { torr }, \quad \underline{P}_{\mathrm{CO}_{2}}=0.01 \text { torr } \\
& \text { J } \\
& 0 \\
& 1 \\
& \underline{n}_{\mathrm{J}} / \underline{n}_{\mathrm{J}} \\
& 1.000 \\
& 0.164 \\
& 0.118 \\
& 0.097 \\
& 0.090 \\
& \text { (0.088) } \\
& \text { (0.087) } \\
& \text { (0.086) } \\
& 0.084 \\
& 0.104 \\
& 0.105 \\
& 0.116 \\
& 0.107 \\
& 0.118 \\
& 0.112 \\
& 0.114 \\
& 0.133 \\
& 0.126 \\
& 0.116 \\
& 0.116 \\
& 0.096 \\
& 0.124 \\
& 0.121 \\
& 0.118
\end{aligned}
$$

$$
\begin{array}{cc}
\text { Table } 5.4: \text { (cont.) } \\
\underline{\mathrm{P}}_{\mathrm{Ar}}= & 2.33 \text { torr, } \\
\underline{\mathrm{J}} & \underline{\mathrm{P}}_{\mathrm{CO}}^{2}
\end{array} \frac{=0.01 \text { torr }}{\underline{n}_{J} / n_{J_{O}}} \text { (cont.) }
$$

Table 5.5: Population Ratios for $J_{0}=15^{a}$

$\underline{P}_{\text {Ar }}=0.35$ torr,	${\stackrel{\mathrm{P}}{\mathrm{CO}_{2}}}=0.02 \text { torr }$
J	$\underline{n}_{J} / \underline{n}_{J_{O}}$
0	(0.0005)
1	(0.0023)
2	0.0035
3	0.0062
4	0.0083
5	(0.011)
6	0.014
7	(0.013)
8	0.012
9	0.032
10	0.028
11	0.034
12	0.035
13	0.064
14	0.093
15	1.000
16	0.093
17	0.079
18	0.030
19	0.012

$a_{\text {See }}$ footnote a in Table 5.4.

$$
\begin{aligned}
& \text { Table 5.5: (cont.) }
\end{aligned}
$$

$$
\begin{aligned}
& 20 \\
& 21 \\
& 0.039 \\
& 0.027 \\
& 0.037 \\
& 0.036 \\
& 0.038 \\
& \text { (0.036) } \\
& \text { (0.033) } \\
& \text { (0.031) } \\
& \text { (0.028) } \\
& 0.026 \\
& 0.026 \\
& 0.019 \\
& 0.031 \\
& 0.026 \\
& 0.028 \\
& 0.028 \\
& \text { (0.026) } \\
& \text { (0.024) } \\
& \text { (0.022) } \\
& \text { (0.019) } \\
& \text { (0.017) } \\
& \text { (0.014) }
\end{aligned}
$$

Table 5.5: (cont.)

$$
\underline{P}_{A r}=0.35 \text { torr, }, \quad \underline{P}_{\mathrm{CO}_{2}}=\frac{0.02 \text { torr }}{\underline{n}_{J} / \underline{n}_{J_{0}}} \text { (cont.) }
$$

(0.010)
(0.01)

Table 5.5: (cont.)		-358-
$\underline{P}_{\text {Ar }}=0.35$ torr ,	$\underline{\mathrm{P}}_{\mathrm{CO}_{2}}=0.08 \text { torr }$	
J	$\underline{n}_{J} / \underline{n}_{J_{0}}$	
0	(0.001)	
1	0.003	
2	0.0043	
3	0.0065	
4	0.012	
5	(0.014)	
6	0.017	
7	(0.023)	
8	0.029	
9	0.043	
10	0.047	
11	0.047	
12	0.059	
13	0.080	
14	0.144	
15	1.000	
16	0.141	
17	0.098	
18	0.068	
19	0.079	
20	0.042	
21	0.041	
22	0.041	

$$
\begin{aligned}
& \text { Table 5.5: (cont.) } \\
& \text {-359- } \\
& \underline{\mathrm{P}}_{\mathrm{Ar}}=0.35 \text { torr }, \quad \underline{\mathrm{P}}_{\mathrm{CO}_{2}}=0.08 \text { torr } \text { (cont.) } \\
& \text { J } \\
& 23 \\
& 24 \\
& 25 \\
& 26 \\
& 27 \\
& 28 \\
& 29 \\
& 30 \\
& 31 \\
& 32 \\
& 33 \\
& 34 \\
& 35 \\
& 36 \\
& 37 \\
& 38 \\
& n_{J} / n_{J} \\
& 0.039 \\
& 0.035 \\
& 0.033 \\
& 0.049 \\
& 0.046 \\
& 0.036 \\
& 0.024 \\
& 0.043 \\
& 0.016 \\
& 0.028 \\
& 0.043 \\
& 0.020 \\
& \text { (0.022) } \\
& 0.024 \\
& 0.016 \\
& 0.016 \\
& \text { (0.015) } \\
& \text { (0.014) } \\
& \text { (0.013) } \\
& \text { (0.012) } \\
& \text { (0.012) } \\
& \text { (0.011) } \\
& \text { (0.010) }
\end{aligned}
$$

Table 5.5: (cont.)

$$
\underline{P}_{\mathrm{Ar}} \frac{0.50 \text { torr }}{\underline{\mathrm{J}}}, \quad{\stackrel{\mathrm{P}}{\mathrm{CO}_{2}}{ }_{2}=\frac{0.04 \text { torr }}{\mathrm{n}_{\mathrm{J}} / \mathrm{n}_{J_{\mathrm{O}}}}}_{0}^{(0.0012)}
$$

(0.0051)
0.0070
0.010
0.012
(0.017)
0.022
(0.025)
0.029
0.033
0.038
0.045
0.056
0.073
0.115
1.000
0.114
0.073
0.047
0.057
0.062
0.041
0.043
0.045

Table 5.5 (cont.)

$$
\underline{P}_{\mathrm{Ar}}=\frac{0.50 \text { torr }}{\underline{J}}, \quad \underline{P}_{\mathrm{CO}_{2}}=\frac{0.04 \text { torr }}{\underline{\mathrm{n}}_{\mathrm{J}} / \underline{n}_{J_{O}}} \text { (cont.) }
$$

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
0.039
0.031
0.033
0.028
0.029
0.026
0.023
0.030
0.021
0.021
0.025
0.013
0.019
0.026
0.018
0.020
0.016
0.011
0.011
(0.01)
(0.01)
(0.01)

$$
\begin{aligned}
& \text { Table 5.5: (cont.) } \\
& \text {-362- } \\
& \underline{\mathrm{P}}_{\mathrm{Ar}}=0.77 \text { torr }, \quad \underline{\mathrm{P}}_{\mathrm{CO}_{2}}=0.04 \text { torr } \\
& \text { J } \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 0.013 \\
& 0.015 \\
& \text { (0.021) } \\
& 0.028 \\
& \text { (0.034) } \\
& 0.040 \\
& 0.042 \\
& 0.040 \\
& 0.053 \\
& 0.065 \\
& 0.078 \\
& 0.137 \\
& 1.000 \\
& 0.129 \\
& 0.106 \\
& 0.082 \\
& 0.074 \\
& 0.070 \\
& 0.063 \\
& 0.057 \\
& 0.054
\end{aligned}
$$

$$
\begin{aligned}
& \text { Table 5.5: (cont.) } \\
& \text {-363- } \\
& \underline{\mathrm{P}}_{\mathrm{Ar}}=0.77 \text { torr, } \quad \underline{\mathrm{P}}_{\mathrm{CO}_{2}}=0.04 \text { torr (cont.) } \\
& \text { J } \\
& 24 \\
& 25 \\
& 26 \\
& 27 \\
& 28 \\
& 29 \\
& 30 \\
& 31 \\
& 32 \\
& 33 \\
& 34 \\
& 35 \\
& 36 \\
& 37 \\
& 38 \\
& 39 \\
& 40 \\
& 41 \\
& 42 \\
& 43 \\
& 44 \\
& 45 \\
& 46 \\
& n_{J} / n_{J} \\
& 0.053 \\
& 0.044 \\
& 0.044 \\
& 0.043 \\
& 0.041 \\
& 0.034 \\
& 0.038 \\
& 0.033 \\
& 0.034 \\
& 0.028 \\
& 0.025 \\
& 0.028 \\
& 0.028 \\
& 0.022 \\
& 0.021 \\
& 0.021 \\
& 0.020 \\
& 0.018 \\
& 0.016 \\
& 0.016 \\
& 0.014 \\
& 0.013 \\
& 0.016
\end{aligned}
$$

Table 5.5: (cont.) -364-
$\underline{P}_{A r}=0.77$ torr, $\quad \underline{P}_{\mathrm{CO}_{2}} \frac{=0.04 \text { torr }}{\underline{\mathrm{n}}_{J} / \underline{n}_{J}} \quad$ (cont.)
47
0.013

48
0.010

49
0.0088

50
0.0098

Table 5.6: Single Collision Rates for $J_{O}=0$

$T(\Delta J){ }^{\text {a }}$						
$\overline{\left.\mathrm{P}_{\text {Ar }} \text { (torr }\right)}$	$\mathrm{P}_{\mathrm{CO}_{2}}$ (torr)	$\Delta \mathrm{J}$	1	2	3	4
0.33	0.01		$\begin{gathered} 0.242 \\ (0.132) \end{gathered}$	$\begin{gathered} 0.110 \\ (0.077) \end{gathered}$	$\begin{gathered} 0.072 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.054 \\ (0.047) \end{gathered}$
0.33	0.12		$\begin{gathered} 0.337 \\ (0.168) \end{gathered}$	$\begin{gathered} 0.133 \\ (0.094) \end{gathered}$	$\begin{gathered} 0.089 \\ (0.071) \end{gathered}$	$\begin{gathered} 0.070 \\ (0.061) \end{gathered}$
0.33	0.27		$\begin{gathered} 0.298 \\ (0.165) \end{gathered}$	$\begin{gathered} 0.182 \\ (0.128) \end{gathered}$	$\begin{gathered} 0.075 \\ (0.079) \end{gathered}$	$\begin{gathered} 0.048 \\ (0.060) \end{gathered}$
0.50	0.01		$\begin{gathered} 0.263 \\ (0.136) \end{gathered}$	$\begin{gathered} 0.131 \\ (0.086) \end{gathered}$	$\begin{gathered} 0.050 \\ (0.047) \end{gathered}$	$\begin{gathered} 0.069 \\ (0.051) \end{gathered}$
0.82	0.01		$\begin{gathered} 0.848 \\ (0.182) \end{gathered}$	$\begin{gathered} 0.440 \\ (0.127) \end{gathered}$	$\begin{array}{r} 0.238 \\ (0.091 \end{array}$	$\begin{gathered} 0.236 \\ (0.088) \end{gathered}$
2.33	0.01		$\begin{gathered} 0.786 \\ (0.164) \end{gathered}$	$\begin{gathered} 0.436 \\ (0.118) \end{gathered}$	$\begin{gathered} 0.300 \\ (0.097) \end{gathered}$	$\begin{gathered} 0.253 \\ (0.090) \end{gathered}$

[^33]Table 5.7: Single Collision Rates for $J_{0}=15$

$T(\Delta J){ }^{\text {a }}$								
$\overline{\left.\mathrm{P}_{\text {Ar }} \text { (torr }\right)}$	$\mathrm{P}_{\mathrm{CO}_{2}}$ (torr)	$\Delta \mathrm{J}=-4$	-3	-2	-1	+1	+2	+3 +4
0.35	0.02	$\begin{gathered} 0.037 \\ (0.034) \end{gathered}$	$\begin{gathered} 0.033 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.098 \\ (0.064) \end{gathered}$	$\begin{gathered} 0.159 \\ (0.093) \end{gathered}$	$\begin{gathered} 0.154 \\ (0.093) \end{gathered}$	$\begin{gathered} 0.131 \\ (0.079) \end{gathered}$	$\begin{gathered} 0.017-0.024 \\ (0.030)(0.012) \end{gathered}$
0.35	0.08	$\begin{gathered} 0.044 \\ (0.047) \end{gathered}$	$\begin{gathered} 0.067 \\ (0.059) \end{gathered}$	$\begin{gathered} 0.107 \\ (0.080) \end{gathered}$	$\begin{gathered} 0.301 \\ (0.144) \end{gathered}$	$\begin{gathered} 0.281 \\ (0.141) \end{gathered}$	$\begin{gathered} 0.151 \\ (0.098) \end{gathered}$	$\begin{array}{cc} 0.063 & 0.126 \\ (0.068) & (0.079) \end{array}$
0.50	0.04	$\begin{gathered} 0.050 \\ (0.045) \end{gathered}$	$\begin{gathered} 0.070 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.102 \\ (0.073) \end{gathered}$	$\begin{gathered} 0.213 \\ (0.115) \end{gathered}$	$\begin{gathered} 0.208 \\ (0.114) \end{gathered}$	$\begin{gathered} 0.100 \\ (0.073) \end{gathered}$	$\begin{array}{cc} 0.033 & 0.065 \\ (0.047)(0.057) \end{array}$
0.77	0.04	$\begin{gathered} 0.062 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.089 \\ (0.066) \end{gathered}$	$\begin{gathered} 0.107 \\ (0.078) \end{gathered}$	$\begin{gathered} 0.298 \\ (0.137) \end{gathered}$	$\begin{gathered} 0.252 \\ (0.129) \end{gathered}$	$\begin{gathered} 0.179 \\ (0.106) \end{gathered}$	$\begin{array}{cc} 0.103 & 0.083 \\ (0.082)(0.074) \end{array}$

$\mathrm{a}_{\text {See }}$ footnote a in Table 5.6.
$\mathrm{b}_{\text {Population }}$ ratios from Table 5.5 are given in parentheses.

Figure 5.14: Population ratios, $n_{J} / n_{J_{O}}$ as a function of J for $J_{0}=0, P_{A R}=0.33$
torr (closed circles), $P_{A R}=0.82$ torr (open circles), and $\mathrm{P}_{\mathrm{CO}_{2}}=0.01$ torr. Typical error bars of 20% are shown.

Figure 5.15: Population ratios $n_{\Delta J} / n_{J O}$ as a function of $|\Delta J|$ for $J_{0}=15$ (closed circles for $\Delta J<0$, open circles for
$\Delta J>0$) at $P_{A R}=0.33$ torr, $P_{\mathrm{CO}_{2}}=0.01$
torr, and $J_{0}=0$ (triangles) at
$\mathrm{P}_{\mathrm{Ar}}=0.35$ torr, $\mathrm{P}_{\mathrm{CO}_{2}}=0.02$ torr. Typical error bars of 20% are shown.

FIGURE 5.14

FIGURE 5.15

Even at the lowest pressures attained, the $T(\Delta J)$ are significantly different from observed population ratios (e.g. ~ 100% for $|\Delta J|=1$) indicating the importance of multiple collisions: in the single collision limit,T($\Delta J)=n_{J+\Delta J} / n_{J}$.

From Eq. 5.23, four rate constants determine $T(\Delta J)$ at given P_{Ar} and $\mathrm{P}_{\mathrm{CO}_{2}}{ }^{\dagger}$:
$T(\Delta J)=K(\Delta J) \Gamma^{-1}=\frac{k_{A r}(\Delta J) P_{A r}+{ }_{\mathrm{k}_{\mathrm{CO}}}(\Delta J) P_{\mathrm{CO}_{2}}}{k_{\mathrm{rad}+\mathrm{k}_{\mathrm{Ar}}^{\mathrm{C}} \mathrm{P}_{A r}+k_{\mathrm{CO}_{2}}^{\mathrm{C}}{ }^{P} \mathrm{CO}_{2}}}$
Attempts to least squares fit the $T(\Delta J)$ as a function of P_{Ar} and $\mathrm{P}_{\mathrm{CO}_{2}}$ to obtain the pressure independent rate constants, k s, were unsuccessful. This problem is attributed to (1) neglect of the J_{0} dependence of $T(\Delta J)$ (the assumption used in obtaining Eq. 5.24 from 5.22 ${ }^{9}$) and (2) experimental error in $n_{J} / n_{J_{O}}$; both types of errors are amplified under multiple collision conditions. Consider, for example, the two collision process $J_{0} \rightarrow J_{1} \rightarrow J_{2}$ such that $J=J_{1}-J_{0}=J_{2}-J_{1}$. Strictly, there are two rates, $T\left(J_{1}-J_{0}\right)$ and $T\left(J_{2}-J_{1}\right)$, but in Eq. 5.24 they are treated is one, $\mathbb{T}(\Delta J)$; the error associated with the approximation that $T(\Delta J) \neq f\left(J_{0}\right)$

[^34]clearly increases with collision frequency. In the single collision limit, only $T(\Delta J)=T\left(J_{1}-J_{0}\right)$ is measured. Similarly, errors in $n_{J} / n_{J_{O}}$ propagate further with increasing collision frequency: both $n_{J_{1}} / n_{J_{0}}$ and $n_{J_{2}} / n_{J_{0}}$ are used to determine $T(\Delta J)$ instead of $n_{J_{1}} / n_{J_{0}}$ in the single collision limit. Thus, when the multiple collision corrections are comparable to or greater than $n_{J} / n_{J_{O}}$, the $T(\Delta J)$ obtained from Eq. 5.25b must be used with caution. Quantitative comparisons between single collision rates would provide detailed dynamical information (see Ref. 9 for example) but are unwarranted here.

However, it is possible to make some qualitative statements and factor of two estimates of rate constants for $\mathrm{BaO} \sim \mathrm{Ar}$ and $\mathrm{BaO} \sim \mathrm{CO}_{2}$ rotational relaxation. From low pressure data in Tables 5.6 and 5.7 and neglecting quenching rates in Eq. 5.32,

$$
\begin{align*}
\mathrm{k}_{\mathrm{Ar}}(|\Delta J|=1) & \approx \mathrm{k}_{\mathrm{CO}_{2}}(|\Delta J|=1) \approx 10^{6} \operatorname{torr}^{-1} \sec ^{-1} \\
& \approx 5 \times 10^{-11} \mathrm{~cm}^{3} \mathrm{sec}^{-1} \tag{5.34}
\end{align*}
$$

or $\sigma(|\Delta J=1|) \approx 10 \AA^{2}$.
A lower bound to the total rotational inelastic collision rate is estimated by summing the $n_{J} / n_{J_{O}}$ at low pressures and multiplying by the total pressure and
radiative rate:

$$
\begin{align*}
2 \mathrm{k}^{\operatorname{rot}}\left(J_{0}=0\right) & \approx \mathrm{k}^{\operatorname{rot}}\left(J_{0}=15\right) \\
& \approx 5 \times 10^{7} \operatorname{torr}^{-1} \mathrm{sec}^{-1} \tag{5.34}\\
& \approx 10^{-10} \mathrm{~cm}^{3} \mathrm{sec}^{-1}
\end{align*}
$$

or $2 \sigma^{\operatorname{rot}}\left(J_{0}=0\right) \approx \sigma^{\operatorname{rot}}\left(J_{0}=15\right) \approx 100 A^{2}$.

The difference between $J_{0}=0$ and 15 results from the different number of final channels available: from Table 5.7 and Fig. 5.15 it is apparent that for small $|\Delta J|, \Delta J<0$ transfer occurs at rates comparable to $\Delta J>0$ transfer; but $\Delta J<0$ transfer is not possible for $J_{0}=0$. The rate constant in Eq. 5.34 implies a rotation changing collision frequency of ≈ 4 per radiative lifetime at the lowest total pressure attained of 0.34 torr.

From Fig. 5.15, two additional qualitative conclusions are drawn: (1) $\Delta J=1$ transfer is slightly more efficient for $J_{0}=0\left(n_{1} / n_{0}=0.13\right)$ than for $J_{0}=15\left(n_{16} / n_{15}=0.09\right)$ (also see Tables 5.6 and 5.7) and (2) an asymmetry between $\Delta J<0$ and $\Delta J>0$ transfer from $J_{O}=15$ is observed for $|\Delta J| \geqslant 9\left(n_{J} / n_{J_{O}}=0.02\right.$ as opposed to 0.01). The first observation is qualitatively consistent with both information theory which states that $k\left(J_{0} \rightarrow J\right)$ should be proportional to $\exp \left(-\theta\left|\Delta E_{r}\right|\right)$, where ΔE_{r} is the collision induced change
in rotational energy and θ is the surprisal parameter ${ }^{50}$, and the empirical scaling law found for $\mathrm{Na}_{2} \sim \mathrm{Xe}$
 second observation is merely a manifestation of statistical factors: fewer M sub-levels are available for $\Delta J<0$ than for $\Delta J>0$ transfer.

Finally, by comparing $\delta v_{1 x}$ to the thermal root mean square speed, $\left\langle\mathrm{v}_{1 \mathrm{x}}^{2}>\frac{1}{2}\right.$, and $\mathrm{n}\left(\mathrm{J}_{0}+1\right) / \mathrm{n}\left(\mathrm{J}_{0}\right)$ to the thermal population ratio, $\left(2 J_{o}+2\right)\left(2 J_{O}+1\right)^{-1} \exp \left(-\Delta E_{r} / k T\right)$, a ratio of translational to rotational relaxation rates of approximately 1 is obtained.

V. Discussion

The results presented above are readily interpreted, albeit qualitatively, by considering the long range form of the intermolecular potential. 51-54 Propensities for small $|\Delta J|$ transfer result from the symmetry of the anisotropic part of the potential ${ }^{54}$. For $\mathrm{BaO} \sim \mathrm{Ar}$ collisions, the leading terms in the multipole expansion of the potential correspond to dipole (BaO) \sim induced dipole (Ar) and quadrupole (BaO) \sim induced dipole (Ar) interactions with BaO rotational selection rules: $\Delta J=0, \pm 1, \pm 2, \Delta M=0, \pm 1, \pm 2,+\rightarrow+, \rightarrow-$ and $\Delta J=0, \pm 1, \pm 2, \pm 3, \Delta M=0, \pm 1, \pm 2, \pm 3,+\rightarrow-$, respectively $54,55 .+$ and - refer to total parity corresponding to space inversion. For $\mathrm{BaO} \sim \mathrm{CO}_{2}$ collisions, dipole $(\mathrm{BaO}) \sim$ quadrupole $\left(\mathrm{CO}_{2}\right)$ interaction is dominant with selection rules: $\Delta J=0, \pm 1, \Delta M=0, \pm 1$, and $+\rightarrow-54,58$. These selection rules are by no means rigorous; the extent to which they are obeyed depends on the collision strength so that weak, long-range interactions exhibit propensities for transfer in accordance with the above selection rules whereas strong, shortrange collisions exhibit no propensity rules and the ΔJ dependence of transfer rates is dictated by statistical factors alone. The observation of forward peaked scattering is consistent with a weak
collision picture.
As mentioned in Sec. IV.A.2, a monotonic increase in $\Delta \nu_{\text {FWHM }}$, or $\left\langle\left\langle\delta v_{1_{x}}>\right\rangle_{0}\right.$ with $| \Delta J \mid$ is observed. It seems likely, in light of the discussion above, that this results partly from the impact parameter dependence of $k(\Delta J)$: large impact parameters resulting in weak interactions produce only small changes in J and ${ }^{v} 1 x$ whereas small impact parameters yield broad final J and $v_{1 x}$ distributions dictated by statistical factors. In order to verify this hypothesis, OODR experiments need to be performed in a single collision regime.

The radial dependences of the long range interaction described above are: R^{-6}, R^{-7}, and R^{-4} for dipole \sim induced diple, quadrupole \sim induced dipole, and dipole ~ quadrupole interactions, respectively, where R is the intermolecular distance. 55 Thus $\mathrm{BaO} \sim \mathrm{CO}_{2}$ interactions. are weaker, longer ranged than are $\mathrm{BaO} \sim \mathrm{Ar}$ interactions. Although this prediction cannot be verified from state to state cross section data, it is clearly manifested by satellite line narrowing, smaller angle scattering, induced by excess CO_{2} (Fig. 5.8) and by the greater (relative to Ar) total pressure broadening rate of the principal line for CO_{2} (Eqs. 5.28 and 5.29).

In summary, OODR has been used to simultaneously monitor rotational and translational relaxation in a low pressure flame. Double resonance intensities are
used to measure rovibronic populations while line shapes are inverted in a model-independent fashion to yield moments of the COM scattering angle distribution. Although precise, quantitative results are not obtained, a complete, qualitative picture of $\mathrm{BaO} \sim \mathrm{Ar}$ and $\mathrm{BaO} \sim \mathrm{CO}_{2}$ scattering is realized. It is the relatively high operating pressure of the metal oxide oven (Chapter 3) and long lifetime of $\mathrm{A}^{1} \Sigma^{+}$which prohibits quantitative analysis and not the OODR technique. It is hoped that these experiments and the methods of analysis employed will inspire and aid future investigations.

References for Chapter 5

1. D.E. Stogyrn and A.P. Stogyrn, Mol. Phys. 11, 371 (1966).
2. For review see J.L. Kinsey, Ann. Rev. Phys. Chem. 28, 349 (1977) and references therein.
3. J.G. Pruett and R.N. Zare, J. Chem. Phys. 64, 1774(1976).
4. P.J. Dagdigian, MIT Physical Chemistry Seminar, Fall 1978.
5. J.L. Kinsey, J. Chem. Phys. 66, 2560 (1977).
6. W.D. Phillips, J.A. Serri, D.J. Ely, D.E. Pritchard, K.R.Way, and J.L.Kinsey,Phys. Rev. Lett. 41,937 (1978).

7a. J.I. Steinfeld and W. Klemperer, J. Chem. Phys. 42, 3475 (1965);

7b. R.B. Kurzel, J.I. Steinfeld, D.A. Hatzenbuhler, and G.E. Leroi, J. Chem. Phys. 55, 4822 (1971).

7c. R.B. Kurzel and J.I. Steinfeld, J. Chem. Phys. 53, 3293 (1970).
8. C.B. Moore and P.F. Zittel, Science 182, 541 (1973) and references therein.

9a. T. Brunner, R. Driver, N. Smith, and D.E. Pritchard, Phys. Rev. Lett. 41, 856 (1978).

9b. T. Brunner, R. Driver, N. Smith, and D.E. Pritchard, (submitted to J. Chem. Phys.).
10. A.T. Mattick, A. Sanchez, N.A. Kurnit, and A. Javan; Appl. Phys. Lett. 23, 675 (1973).
11. A.T. Mattick, N.A. Kurnit, and A. Javan, Chem. Phys. Lett. 38, 176 (1976).
12. J. Apt and D.E.Pritchard, Phys. Rev. Lett. 37, 91 (1976).
13. W.D. Phillips and D. Pritchard, Phys. Rev. Lett. 33, 1254 (1974).
14. P.R. Berman, Adv. Atom. Mol. Phys. 13, 57 (1978), D.R. Bates and B. Bederson, Ed., Academic Press, N.Y., and references therein.
15. W.K. Bischel and C.K. Rhodes, The Physics of Electronic and Atomic Collisions, p. 820, J.S. Risley and R. Meballe, ed., University of Washington, (Seattle, 1976).
16. T.W. Hänsch and P.E. Toschek,I.E.E.E. J. Quant. Electron. QE-5, 61 (1969).
17. P.W. Smith and T. Hänsch, Phys. Rev. Lett. 26, 740 (1971).
18. T. Kan and G.J. Wolga, I.E.E.E. J. Quant. Electron. QE-7, 141 (1971).
19. C. Freed and H.A. Haus, I.E.E.E. J. Quant. Electron. QE-9, 219 (1973).
20. S.M. Freund, J.W.C. Johns, A.R.W. McKellar, and T. Oka, J. Chem. Phys. 59, 3445 (1973).
21. J. Schmidt, P.R. Berman, and R.G. Brewer, Phys. Rev. Lett. 31, 1103 (1973).
22. T.W. Meyer and C.K. Rhodes, Phys. Rev. Lett. 32, 637 (1974).
23. R.L. Shoemaker, S. Stenholm, and R.G. Brewer, Phys. Rev. Al0, 2037 (1974).
24. J.W.C. Johns, A.R.W. McKellar, T. Oka, and M. Römheld, J. Chem. Phys. 62, 1488 (1975).
25. P.R. Berman, J.M. Levy, and R.G. Brewer, Phys. Rev. All, 1668 (1975).
26. W.K. Bischel and C.K. Rhodes, Phys. Rev. Al4, 176 (1976).
27. P.R. Berman, Phys. Rev. Al3, 2191 (1976).
28. C. Bréchignac, R. Vetter, P.R. Berman, J. Phys. Blo, 3443 (1977).
29. L.S. Vasilenko, V.P. Kochanov, and V.P. Chebotayev, Opt. Comm. 20, 409 (1977).
30. P. Cahuzac, E. Marié, O. Robaux, R. Vetter, and P.R. Berman, J. Phys. Bll, 645 (1978).
31. C. Brechign, R. Vetter, and P.R. Berman, Phys. Rev. Al7, 1609 (1978).
32. K. Sakurai, S.E. Johnson, and H.P. Broida, J. Chem. Phys. 52, 1625 (1970).
33. S.E. Johnson, J. Chem. Phys. 56, 149 (1972).
34. H.B. Palmer, W.D. Krugh, and C.J. Hsu, Fifteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1975), p. 951.
35. C.J. Hsu, W.D. Krugh, and H.B. Palmer, J. Chem. Phys. 60, 5118 (1974).
36. W. Felder, R.K. Gould, and A. Fontijn, J. Chem. Phys. 66, 3256 (1977).

37a. A. Torres-Filho and J.G. Pruett, J. Chem. Phys. (in press).

37b. J.G. Pruett, private communication, 1/5/79.
38. See for example, R.D. Levine and R.B. Bernstein, Molecular Reaction Dynamics, Oxford University Press, New York (1974).
39. H. Goldstein, Classical Mechanics, Addison-Wesley (Mass. 1950), Chapter 4.
40. See for example, A.C.G. Mitchell and M.W. Zemansky, Resonance Radiation and Excited Atoms, Cambridge University, (Cambridge, England, 1971).
41. M.S. Feld, Fundamental and Applied Laser Physics: Proceedings of the Esfahan Symposium August 29 - September 5, 1971, M.S. Feld, A. Javan, and N. Kurnit, eds., (Wiley, 1973), p. 369.
42. I.M. Beterov, Y.A. Matyugin, V.P. Chebotayev,Zh. Eksp. Teor. Fiz. 64, 1495 (1973), Sov. Phys. JETP 37, 756 (1973).
43. V.S. Letokhov and V.P. Chebotayev, Nonlinear Laser Spectroscopy, Springer-Verlag (Berlin, 1977), particularly Chapter 5.
44. See for example, R. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill Book Co., New York, 1965.
45. G. Breit, Rev. Mod. Phys. 5, 91 (1933).
46. P.A. Franken, Phys. Rev. 121, 508 (1961).
47. J.T. Hougen, Natl. Bur. Stand. U.S. Monogr. 115 (1970).
48. See for example, G.W. Castellan, Physical Chemistry, Addison-Wesley, Reading, Ma., 1971.
49. J.W. Cooley and J.W. Tukey, Math. Comp. 19, 297 (1965).
50. R.D. Levine and R.B. Bernstein, Acc. Chem. Res. 7, 393 (1974).
51. P.W. Anderson, Phys. Rev. 76, 647 (1949).
52. R.J. Cross and R.G. Gordon, J. Chem. Phys. 45, 3571 (1966).

53a. H.A. Rabitz and R.G. Gordon, J. Chem. Phys. 53, 1815 (1970);

53b. H.A. Rabitz and R.G. Gordon, J. Chem. Phys. 53, 1831 (1970).
54. For a review see, T. Oka, Adv. At. Mol. Phys. 9, 127 (1973).
55. J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird, Molecular Theory of Gases and Liquids, John Wiley \& Sons, Inc., (New York, 1954).

Chapter 6: Optical-Optical Resonance Monitoring of Depolarizing Collisions
I. Introduction

Optical-optical double resonance (OODR) spectroscopy has already been shown to be a powerful means of monitoring rotational and translational relaxation in the $\mathrm{Ba}+\mathrm{CO}_{2}+\mathrm{Ar} \rightarrow \mathrm{BaO}+\mathrm{CO}+\mathrm{Ar}$ flame (Chapter 5). This chapter illustrates how the combined selectivity afforded by OODR and the variation of laser polarization can yield definitive measures of angular momentum reorientation processes (i.e. M changing collisions).

The results presented below indicate that M is not conserved when low J BaO $\mathrm{A}^{1} \Sigma^{+}$levels undergo collisions with CO_{2}. Specifically, the $\mathrm{A}^{1} \Sigma^{+} J=1, \mathrm{M}=0$ level is pumped; $J=1, M= \pm 1$ and $J=2, M=0, \pm 1, \pm 2$ levels are probed as a function of probe laser polarization.

Besides being essential for the conversion of laser induced fluorescence intensities to level population densities (Chapter 5), collisional M sub-level distributions are a manifestation of the intermolecular forces at play in a collision.

There has been considerable theoretical ${ }^{1-4}$ and experimental work on the depolarization of molecular fluorescence. 5-15 Additional references can be found in the review articles by oka ${ }^{15}$ and Baylis ${ }^{17}$, which also provide excellent summaries of both the theoretical and experimental work.

A wide range of experimental results have been obtained. Generally, M seems to be conserved in collisions between non-polar molecules such as I_{2} or Ná 2 with themselves or with rare gases. ${ }^{9,12-15}$ However, Kurzel and Steinfeld ${ }^{7}$ have measured $I_{2} \sim$ rare gas depolarization cross sections as large as $23 \AA 2$ and average reorientation angles of 50°. 2,7 In polar systems, conflicting results have also been obtained. Unland and Flygare did not observe reorientation in OCS $J=1 \rightarrow J=1$ collisions with OCS and $O_{2}{ }^{6}$. Cox and Flynn also report negligible reorientation in OCS \sim OCS collisions ${ }^{5}$. Experiments on $\mathrm{CH}_{3} \mathrm{OH} \sim \mathrm{CH}_{3} \mathrm{OH}$ collisions indicate that only small changes in. M consonant with long range dipole \sim dipole interactions occur. ${ }^{11}$ on the other hand, Shoemaker et al. ${ }^{8}$ report a cross section of $100 \AA^{2}$ for $\Delta J=0, \Delta M= \pm 1$ transfer in $\mathrm{CH}_{3} \mathrm{~F} \sim \mathrm{CH}_{3} \mathrm{~F}$ collisions and Leite et al. ${ }^{10}$ report reorientation cross sections for $\mathrm{NH}_{3} \sim \mathrm{NH}_{3}$ collisions that are 50\% larger than $\Delta J \neq 0$ collisional cross sections.

One reason for the wide range of experimental results is the selection of different initial J levels: classically, a rapidly rotating molecule is more difficult to reorient than is a rotationless molecule. Shoemaker et al., ${ }^{8}$ for example, do not observe reorientation in $\mathrm{CH}_{3} \mathrm{~F} \sim \mathrm{CH}_{3} \mathrm{~F} \mathrm{~J}=12 \rightarrow \mathrm{~J}^{\prime}=12$ but do observe the $100 \AA^{2}$ reorientation cross section mentioned above for
$J=4 \rightarrow J^{\prime}=4$ transfer. Jeyes et al. ${ }^{14}$ attempted to excite low J values in $I_{2} B^{3} \Pi_{o}{ }_{u}^{+}$but could not precisely determine the extent of reorientation relative to higher J selection owing to overlapping of $B^{3} \Pi_{O_{u}}^{+} \rightarrow X^{1} \Sigma^{+}$ transitions at low J.

The experiments described below involve selection of a single $A^{1} \Sigma^{+}$J,M level. Sub-Doppler resolution afforded by OODR eliminates problems associated with overlapping transitions near the band origin. By pumping $A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}(1,0) R(0)$ with \hat{z} polarization, $A^{1} \Sigma^{+} J^{\prime}=1$, $M^{\prime}=0$ is prepared. Probing $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1) P(1)$ with first \hat{z} polarization and then \hat{y} polarization yields an unambiguous value for the $\mathrm{BaO} \sim \mathrm{CO}_{2} \Delta \boldsymbol{J}=0, \Delta|\mathrm{M}|=1$ reorientation cross section of $4.2 \pm 1.2 \AA^{2}$. When $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1) P(2)$ is probed as a function of probe laser polarization a measure of the relative probabilities for $\Delta J=1, \Delta|M|=0,1$, and 2 transfer is obtained and indicates that J is significantly reoriented.
II. Experimental

Only those details pertinent to these experiments and not presented in Chapters 3 and 5 will be described here.

The pump laser is \hat{z} polarized and propagates in the \hat{x} direction. In order to vary the polarization of the probe laser, which also propagates in the \hat{x} direction, it is first circularly polarized by a Fresnel rhomb ${ }^{18}$ (Carl Lambrecht Co:) and then linearly polarized in either the \hat{z} or \hat{y} directions by a calcite polarizer (Inrad). The dye lasers (Coherent Radiation Model CR599-21) are single mode and frequency stabilized with line widths (FWHM) equal to 1 MHz .

By the time the lasers have been combined, are propagating collinearly, and are reflected into the flame reactor, the beams have acquired a small ellipticity of polarization. ${ }^{\dagger}$ The extent of this depolarization is measured with an analyzer placed directly before the input window. The polarization dependent intensity ratios, I_{Y} / I_{z}, used in determining M' sub-level populations are corrected accordingly.

[^35]In addition, because the Fresnel rhomb produces slightly elliptically polarized light instead of pure circular polarization, the probe laser, power varies slightly as the calcite polarizer is rotated to select \hat{z} or \hat{Y} polarization. Corrections for this power variation are also made.

Typical dye laser powers after polarizers, beam splitters, and mirrors are 50 mW for the pump and $10-20 \mathrm{~mW}$ for the probe. The lasers are not focussed.

1. Elastic ($\Delta \mathrm{J}=0$) Depolarization

The pump laser excites $A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}(1,0)$ $R(0)$ and prepares the $J^{\prime}=0, M^{\prime}=0$ sub-level; the state is said to be aligned. The probe laser is tuned to the $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1) P(1)$ transition and samples the $J^{\prime}=0, M^{\prime}=0$ population when \hat{z} polarized and the $J^{\prime}=0,\left|M^{\prime}\right|=1$ sub-levels when \hat{Y} polarized since the electric dipole selection rules are $\Delta \mathrm{M}=0, \pm 1$. Thus a signal for \hat{y} probe laser polarization results only when collisional transfer from $M^{\prime}=0$ to $\left|M^{\prime}\right|=1$ has occurred (Figure 6.1). $\quad \mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{X}^{1} \Sigma^{+} \mathrm{P}(1) \hat{z}$ and \hat{Y} polarized fluorescence is detected through UV passing, visible absorbing filters (see Chapter 3).

Figure 6.1: Schematic energy level diagram for OODR probing of $J=1 \rightarrow J=1, \Delta M= \pm 1$ depolarizing collisions. $A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}$ $(1,0) R(0)$ is pumped while $C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1)$ $P(1)$ is probed. The pump laser is \hat{z} polarized. The probe laser polarization
is \hat{z} for sampling $J^{\prime}=1, M^{\prime}=0$ and \hat{Y}
for sampling $J^{\prime}=1 \mathrm{M}^{\prime}= \pm 1$. The
splitting of the degenerate M^{\prime} sub-levels
is merely schematic.

$$
\begin{array}{l|l}
x^{1} \Sigma^{+} & 0,0
\end{array}
$$

FIGURE 6.1
2. Inelastic $(\Delta J \neq 0)$ Depolarization

The pump laser again prepares $A^{1} \Sigma^{+} V^{\prime}=1$, $J^{\prime}=1, M^{\prime}=0$. The probe laser, however, is now tuned to the $C^{l} \Sigma^{+} \leftarrow A^{1} \Sigma^{+} P(2)$ resonance line so that $J^{\prime}=2, M^{\prime}$ sub-level populations resulting from J changing collisions are monitored by varying the probe laser polarization.
III. Theory
A. Line intensities

The relationship between OODR laser induced fluorescence intensity and $f\left(M^{\prime}\right)$, the M^{\prime} sub-level population distribution, is given in Chapter 5.

Averaging over M^{\prime} sub-levels is not performed here. For $\mathrm{J}^{\prime}=1$,

$$
\begin{equation*}
\frac{I^{y}}{I_{z}}=\frac{n_{1}}{n_{0}} \tag{6.1}
\end{equation*}
$$

and for $\mathrm{J}^{\prime}=2$,

$$
\begin{equation*}
\frac{I_{y}}{I_{z}}=\frac{n_{0}+6 n_{1}+9 n_{2}}{8 n_{0}+9 n_{1}} \tag{6.2}
\end{equation*}
$$

where $n_{i}(i=0,1,2)$ is the $|M|=i$ sub-level population density, I_{y} and I_{z} are corrected $C^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$fluorescence intensities when the probe is \hat{y} and \hat{z} polarized, respectively. Eqs. 6.1 and 6.2 are dependent upon excitation and detection geometry as desribed in Chapter 5.

The $n_{i} s$ can be viewed as diagonal density matrix elements; off-diagonal density matrix elements representing coherence terms are rigorously zero since z polarized pumping is employed. ${ }^{17}$ Similarily, $n_{M}=n_{-M}$ always, since collisions in the absence of an external field cannot produce an oriented $\quad \therefore$ and
state (where $n_{M} \not \|_{-M}$) nor did the laser prepare an orientedvstater 7
B. Pressure Dependence

In the single collision and steady state regimes, the number density of molecules in the final, collisionally populated J,M level is given by:

$$
\begin{equation*}
n_{f}=\sum_{\ell} n_{i} n_{\ell} k_{\ell}(i \rightarrow f) / k_{r a d} \tag{6.3}
\end{equation*}
$$

where n_{i} and n_{f} are the initial and final $B a O A^{1} \Sigma^{+}$ rovibronic level population densities, respectively, n_{ℓ} is the $\ell^{\text {th }}$ collision partner number density, $k_{\ell}(i \rightarrow f)$ and $\mathrm{k}_{\text {rad }}$ are state to state and radiative rate constants, respectively. Eq. 6.3 is not valic for $\Delta J=0, \Delta M=0$ collisions since a pump source term is not included. The probe laser transition rate is estimated to be at least an order of magnitude smaller than $k_{r a d}$ and is therefore neglected.
IV. Results and Analysis

A. Elastic Depolarization

The intensity ratio, $I_{y} / I_{z}=n_{1} / n_{0}$, is
measured as a function of both Ar and CO_{2} pressures. At CO_{2} pressures < 0.01 torr the ratio is less than 0.03 and does not vary signficantly with Ar pressure. Thus $\sigma_{A r}(J=1 \rightarrow J=1, \Delta|M|=1)<1 \AA^{2}$. The finite value of I_{Y} observed under these conditions is due to either the residual CO_{2} presssure being higher than indicated or failure to completely correct for laser beam depolarization.
I_{y} / I_{z} does vary significantly with CO_{2} pressure (Figure 6.2). Measurements at a fixed Ar pressure of 0.3 torr are shown by open circles and $I_{y^{\prime}} I_{z}$ values averaged over different Ar pressures but constant CO_{2} pressure are shown by crosses. The errors are such that only a linear least squares fit to the data are warranted. The effects of multiple collisions are ignored and Eq. 6.3 is employed:

$$
\begin{equation*}
\frac{I_{y}}{I_{z}}=\frac{n_{1}}{n_{0}}=k_{\mathrm{CO}_{2}}(J=1, M=0, \rightarrow J=1,|M|=1) n_{\mathrm{CO}_{2}} \mathrm{k}_{\mathrm{rad}}^{-1} \tag{6.4}
\end{equation*}
$$

The observed linear variation of $\mathrm{I}_{\mathrm{y}} / \mathrm{I}_{\mathrm{z}}$ with $\mathrm{n}_{\mathrm{CO}_{2}}$ suggests that, to within experimental error,multiple collisions

Figure 6.2: Ratio of $\mathrm{C}^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1) \quad \mathrm{P}(1)$ OODR excitation signals for \hat{y} and \hat{z} polarized probes vs. CO_{2} partial pressure. Ar pressure is fixed at 0.3 torr (open circles). x s denote averages over all Ar pressures from 0.3 to 1.00 torr.

FIGURE 6.2
affect I_{y} and I_{z} equally.
Using a value of $\mathrm{k}_{\mathrm{rad}}=2.75 \times 10^{6} \mathrm{sec}^{-1}$, the slope of the line in Fig. 6.2 yields $\mathrm{k}_{\mathrm{CO}_{2}}(J=1 \rightarrow 1$, $|\Delta \mathrm{M}|=1)=4.2 \pm 1.2 \times 10^{5}$ torr $^{-1} \mathrm{sec}^{-1}=2.0 \pm 0.6 \mathrm{x}$ $10^{-11} \mathrm{~cm}^{3} \mathrm{sec}^{-1}$ and the corresponding cross section is $4.2 \pm 1.2 \AA^{2} .^{\dagger}$ Since the cross section for $\Delta M=-1$ equals that for $\Delta M=+1$, the total depolarization cross section is $8.4 \pm 2.4 . \AA^{2}$. These cross sections are comparable to state to state J changing cross sections (Chapter 5).

One other observation is noted: the line widths and shapes for \hat{z} and \hat{Y} polarized probes are identical indicating that velocity randomization is insignificant for $\Delta M=0, \Delta J=0$ collisions; the line shape is determined solely from homogeneous pressure and radiative broadening mechanisms.
B. Inelastic depolarization

The experimental intensity ratio I_{y} / I_{z} shows no significant systematic variation with either CO_{2} or Ar pressure. When the ratio is averaged over thirteen pressure combinations, a value of $I_{y} / I_{z}=0.54 \pm 0.10$

[^36]is obtained.
From Eq. 6.2 it is seen that this one number is insufficient to determine all three M sub-level population densities.

Two conclusions can be drawn, however: (l)
M changing collision cross sections are determined by dynamical rather than statistical factors, for the latter implies equal M sub-level populations in $J=2$ and an intensity ratio of 0.941; and (2) M is not conserved, for this implies $I_{y} / I_{z}=0.125$.

The fact that no pressure dependence to I_{y} / I_{z} is observed suggests that Ar and CO_{2} yield similar M branching ratios for $J=1 \rightarrow 2$ collisions.
V. Conclusion

The results presented above provide conclusive evidence that M is conserved in neither $\mathrm{BaO} \sim \mathrm{CO}_{2}$ $J=1 \rightarrow 1$ nor $\mathrm{BaO} \sim \mathrm{CO}_{2}$ and $\mathrm{BaO} \sim \mathrm{Ar} J=1 \rightarrow 2$ collisions. The data are not inconsistent with the long range, weak collision picture established in Chapter 5.

If the long range multipole moment interactions are the dominant mechanisms by which changes in angular momentum orientation are effected, then 'flourescence is not expected to be readily depolaried when higher initial J levels are selected: although changes in M of ± 1 and ± 2 may be efficient, they do not result in substantial depolarization ratios at higher J values where $\Delta \mathrm{M}$ is small compared with $2 J+1$, the number of M sub-levels.

Future experiments of the type suggested by Case et al. ${ }^{4}$ are warranted to definitively determine M sub-level populations in collisionally populated $J=2$.

The OODR experiment seems ideally suited for a systematic investigation of depolarization phenomena as a function of initial J,from low to moderate J values.

References for Chapter 6

1. P.W. Anderson, Phys. Rev. 76, 647 (1949).
2. R.G. Gordon, J. Chem. Phys. 45, 1643 (1966).
3. J.L. Kinsey, J.W. Riehl, and J.S. Waugh, J. Chem, Phys. 49, 5269 (1968).
4. D.A. Case, G.M. McClelland, and D.R. Herschbach, Mol. Phys. 35, 541 (1978).
5. A.P. Cox, G.W. Flynn, and E.B. Wilson, Jr., J. Chem. Phys. 42, 3094 (1965).
6. M.L. Unland and W.H. Flygare, J. Chem. Phys. 45, 2421 (1966).
7. J.I. Steinfeld and R.B. Kurzel, J. Chem. Phys. 56, 5188 (1972).
8. R.L. Shoemaker, S. Stenholm, and R.G. Brewer, Phys. Rev. Al0, 2037 (1974).
9. H. Katô, R. Clark, and A.J. McCaffery, Mol. Phys. 31, 943 (1976).
10. J.R.R. Leite, M. Ducloy, A. Sanchez, D. Seligson, and M.S. Feld, Phys. Rev. Lett. 39, 1465 (1977).
11. R.M. Lees, Can. J. Phys. 56, 1417 (1978).
12. M.D. Rowe and A.J. McCaffery, Chem. Phys. 34, 81 (1978).
13. R. Clark and A.J. McCaffery, Mol. Phys. 35, 617 (1978).
14. S.R. Jeyes, A.J. McCaffery, and M.D. Rowe, Mol. Phys. 36. 845 (1978).
15. a) T. Brunner, R. Driver, N. Smith, and D.E. Pritchard, Phys. Rev. Lett. 41, 856 (1978).
b) T. Brunner, R. Driver, N. Smith, and D.E. Pritchard (submitted to J. Chem. Phys.).
16. T. Oka, Adv. At. Mol. Phys. 9, 127 (1973).
17. W.E. Bayliss, Progress in Atomic Spectroscopy, W. Hanle and H. Kleinpopper, eds., Plenum, (London, 1978).
18. G.R. Fowles; Introduction to Modern Optics; Holt, Reinhart, and Winston; (New York, 1968).
19. S.E. Johnson, J. Chem. Phys. 56, 149 (1972).

Appendix I:

Deperturbation of the N_{2}^{+}First Negative Group. $B^{2} \Sigma_{u}^{+}-X^{2} \Sigma_{g}^{+}$

Richard A. Gottscho and Robert W. Field
Massachusetts Institute of Technology
Department of Chemistry
Cambridge, Massachusetts 02139
and
K.A. Dick and W. Benesch

University of Maryland
Institute for Physical Science and Technology College Park, Maryland 20742
3. Mol. Snectrosc. (in press).

Abstract
Twelve bands of the $N_{2}^{+} B^{2} \Sigma_{u}^{+}-X^{2} \Sigma_{g}^{+}$system, including $v_{B}=0-6$ and $v_{x}=0-8$, are reanalyzed. All effects of $B^{2} \Sigma_{u}^{+} \sim A^{2} \Pi_{u}$ perturbations are explicitly considered. A major motivation for this work was the hope of utilizing recent high precision line measurements to detect small level shifts due to new perturbing states, particularly $a^{4} \Sigma_{u}^{+}$. No evidence for a perturber other than $A^{2} \Pi_{u}$ is obtained.

Deperturbed constants for the $B^{2} \Sigma_{u}^{+}$and $X^{2} \Sigma_{g}^{+}$states are derived. The deperturbation is shown to be self-consistent and complete (excluding effects of the $C^{2} \Sigma_{u}^{+}$state) by examining semi-empirical relationships of the perturbation matrix elements with the spinrotation constants of the B and X states and atomic spin-orbit parameters.

A number of previous analyses of transitions involving the $\mathrm{v}_{\mathrm{B}}=3$ and 5 levels are found to be incorrect.

I. Introduction

Recently, highly precise and accurate spectral measurements of the first negative group of $N_{2}^{+}\left(N_{2}^{+} 1 N G: B \Sigma_{u}^{+}-X^{2} \Sigma_{g}^{+}\right)$were obtained (1). We have used these data to deperturb the $B^{2} \Sigma_{U}^{+}$state and obtain constants for $B^{2} \Sigma_{u}^{+}$, the perturbing $A^{2} \Pi_{u}$ state, and $X^{2} \Sigma_{g}^{+}$.

Two criteria are used to define complete deperturbation: (1) the residuals must result solely from random measurement errors; and (2), perturbation matrix elements and second order constants such as centrifugal distortion and spin-rotation must be internally consistent. If these criteria are not met, either the data are systematically in error or the model Hamiltonian is incomplete. We show below that these criteria are met for $N_{2}^{+} \mathrm{ING}(\underline{1})$ and that this system may be completely understood in terms of only the three states above. Several previous analyses are shown to be in error.

The high resolution data of (1) were least squares fitted band by band and the derived constants were merged (2,3). This analysis has led to the discovery of extra lines arising from levels with predominant $A^{2} \Pi_{u}$ character ($\geq 50 \%$) but with a substantial admixture of $B^{2} \Sigma_{u}^{+}$. In addition, several transitions reported in (1) have been reassigned and several bands have been extended.

Several pitfalls have made analysis of the N_{2}^{+}ING hazardous: overlapping by the ubiquitous N_{2} second positive system, the complex nature (four crossings, two competing perturbation mechanisms) of the $\mathrm{B}^{2} \Sigma_{u}^{+} \sim \mathrm{A}^{2} \mathbb{I}_{u}$ perturbations, and F_{1} vs. F_{2} assignment ambiguity. Four analyses of $B^{2} \Sigma_{u}^{+}\left(v^{\prime}=3\right)$ alone exist in the literature (4-7). This paper verifies the assignment by Crawford and Tsai $(\underline{6})$ of the $(3,5)$ band.

For $v^{\prime}=5$, the analyses of Refs. ($\underline{5}, \underline{6}$, and $\underline{8}$) are shown to be incorrect.
It had been hoped that a rigorous deperturbation of N_{2}^{+}ING combined with more precise line positions would supply evidence for small $a^{4} \Sigma_{u}^{+} \sim B^{2} \Sigma_{u}^{+}$perturbations. However, no such evidence has been obtained; therefore we can neither verify nor contest earlier reports concerning the metastable $a^{4} \Sigma_{u}^{+}$state (9-13).

II. Experimental

The spectral data which form the basis of the present analysis were obtained using a 5-m vacuum spectrograph at Johns Hopkins University under conditions detailed in Ref. (1). The spectra were generated in a specially designed hollow cathode source and were photographed from 380.0 to 475.0 nm in high ($12^{\text {th }}$ through $15^{\text {th }}$) orders with a reciprocal dispersion of $\sim 0.018 \mathrm{~nm} / \mathrm{mm}$. A total of over twenty sets of two 10 in . plates were used, each with several exposures, in order to provide complete coverage with various and complementary intensities. Calibration against standard iron lines led to an accuracy of approximately $0.01 \mathrm{~cm}^{-1}$ for N_{2}^{+}isolated lines and a relative precision over band segments on a single plate of approximately $0.005 \mathrm{~cm}^{-1}$.
III. Theory

$$
2_{\Sigma}{ }^{+}-{ }^{2} \Sigma^{+} \text {Transitions }
$$

Herzberg (14) has adequately detailed the nature of ${ }^{2} \Sigma^{+}-{ }^{2} \Sigma^{+}$ transitions. Only one point needs to be reiterated here. In the absence of perturbations and without observation of a Q branch transition which connects levels of different Kronig symmetry [e and f(15) or F_{1} and F_{2}, respectively], it is difficult to distinguish between P_{1} and P_{2} (or R_{1} and R_{2}) branches and therefore to determine the signs of γ^{\prime} and $\gamma^{\prime \prime}$ (upper and lower state spin-rotation constants, respectively) (14). In the past, these assignments have been made for N_{2}^{+}iNG on the basis of intensity considerations ($\underline{4}, \underline{6}, \underline{8}, \underline{16}, \underline{18}$): the unperturbed P_{1} to P_{2} (or R_{1} to R_{2}) intensity ratio is $(N+1) / N$ (14). However, for large N this ratio approaches one; moreover, in the presence of perturbations which affect e and f levels differently this ratio may vary significantly from the expected value. This problem was clearly realized by Childs in 1932 (17) but has nevertheless contributed to erroneous analyses (see below). Because ${ }^{2} \Sigma \sim{ }^{2} \pi$ interactions are parity dependent (see Table I) they can provide an unambiguous determination of the signs of γ^{\prime} and $\gamma^{\prime \prime}$ and a correct labelling of the branches. ${ }^{1}$

$$
{ }^{2} \Sigma^{+} \sim{ }^{2} \Pi \text { Perturbations }
$$

${ }^{2} \Sigma^{+}$and ${ }^{2}$ II Born-Oppenheimer basis functions mix via rotation-electronic $\left[H^{R E}=-B\left(J_{+} L_{-}+J_{-} L_{+}\right)+\tilde{B}\left(L_{+} S_{-}+L_{-} S_{+}\right)\right]$and spin-orbit $\left[H^{S O}=\Sigma_{\mathbf{i}} \quad a_{i} \ell_{i} \cdot s_{i}\right]$ interactions (18). Both operators are diagonal in J and parity. Additional selection rules for $H^{R E}$ are $\Delta S=0, \Delta \Sigma=0, \Delta \Omega=\Delta \Lambda \pm 1$ (first term) or $\Delta S=0, \Delta \Sigma=-\Delta \Lambda= \pm 1, \Delta \Omega=0$ (second term). For $H^{S 0}: \Delta S=0, \pm 1$,
$\Delta \Sigma=-\Delta \Lambda= \pm 1$, and $\Delta \Omega=0$, where S, Σ, Λ, and Ω have their usual meanings (19). Matrix elements of these operators are given in Table I along with the remaining Hamiltonian matrix used in deperturbing $N \frac{1}{2}$ iNG. The parity dependence of ${ }^{2} \Sigma^{+} \sim{ }^{1} \Pi_{1} / 2$ interactions should be noted. In fact, the effects of a perturbation may be unobservable for one set of parity levels and yet large in the other set due to interference between H^{SO} and H^{RE}.

Derivation of the matrix elements in Table I has been described elsewhere (18-21). We have used throughout this paper the phase convention detailed by Hougen (19) and the Kronig symmetry definition of Brown et al. (15). Only those parameters which could be fitted or calculated are included.

IV. Method

The least squares fitting of spectroscopic data has been well treated in the literature ($\underline{2}, \underline{3}, \underline{21}, \underline{22}$) and need not be considered in detail here. The methods of deperturbation are also not new (23-26).

The data of (1) were compared with the calculated differences of upper and lower state eigenvalues of the Hamiltonian matrix given in Table I. The molecular parameters of Table I were then varied band by band using a weighted, non-linear, least squares routine (27) to obtain the best fit to the data. ${ }^{2}$ The band by band constants obtained from these fits (Table II) were then combined along with band origins from Ref. (28) using the program MERGE (2) to yield molecular constants for $B^{2} \Sigma_{u}^{+}, A^{2} \Pi_{u}$, and $X^{2} \Sigma_{g}^{+}$(see Tables III-VI).

The final fitted parameter values depend on the deperturbation model employed. For each band, at least two $A^{2} \Pi_{u}$ perturbing vibrational levels were included even when the parameters for only one (or perhaps none) could be determined from the data. Structural and perturbation parameters which could not be varied but could be calculated were held fixed at these calculated values (See Table II).

For $A^{2} I_{u}$, the results of Ref. (29) were used to calculate vibronic energies, rotational constants, and spin-orbit constants.

When it was impossible to determine D and H centrifugal distortion constants for $X^{2} \Sigma_{g}^{+}$and $B^{2} \Sigma_{u}^{+}$, they were held fixed at values calculated from RKR potential curves (30). For $A^{2} \Pi_{u}, D$ and H were always fixed at calculated values. In Table V these calculated centrifugal distortion constants are compared with fitted values.

V. Results

Band by band and merged constants and uncertainties of one standard deviation are presented in Tables II-VI. Constants are reported with more significant figures than their uncertainties warrant in order to compensate for correlation among parameters (31). ${ }^{3}$

Although ill-determined, the values of H_{0}^{\prime} and $H_{0}^{\prime \prime}$ were of necessity varied in the (0,0) band fit in order to eliminate systematic deviations between observed and calculated values for $N^{\prime}>45$. Bands not extending to $N>50$ (1) were fit with H^{\prime} and $H^{\prime \prime}$ fixed at the values given in Table V.

In Tables III, IV, and V the constants derived here are compared with those obtained by earlier workers. Although the values and precision of the present $X^{2} \Sigma_{g}^{+}$constants are comparable to previous results, a substantial improvement in precision for the $\mathrm{B}^{2} \Sigma_{u}^{+}$constants should be noted. Both $\omega_{e} y_{e}$ and $\omega_{e} z_{e}$ for $B^{2} \Sigma_{u}^{+}$, which are unusually large (compare ω_{e} ' y_{e} ' with ω_{e} " y_{e} " for example), had to be considered in accounting for observed spacings.

Table IV gives Dunham coefficients for $X^{2} \Sigma_{g}^{+}$and $B^{2} \Sigma_{U}^{+}$based on the merged fits. ${ }^{4}$ The $A^{2} \Pi_{u}$ constants in Table IV were obtained by combining merged T_{Π} 's and B_{Π} 's and data from (29) and (32) in (v + 1/2) polynomial fits; correlations with other parameters were ignored so that the uncertainties quoted for $A^{2} \Pi_{u}$ constants in Table IV are underestimated.

The standard deviation of the merged fit, σ_{m}, is 11.56 (66 degrees of freedom) indicating the existence of systematic errors between different band segments: ideally, σ_{m} should be unity (2). Comparison of constants from band to band in Table II further illustrates this problem: the
$E_{\Pi}-E_{\Sigma}$ values in $(0,0)$ and (0,1), for example, differ by more than three times their combined standard deviations. It should be noted, however, that no systematic errors are observed within a particular band: o for each band fit is nearly unity. Systematic errors between band segments are most likely a result of experimental measurement errors (in the wavelength dispersion curve) as well as the inability to vary all constants associated with a perturbing level. Fixing constants presumes that they are precisely known and completely uncorrelated with other parameters. To the extent that these presumptions are false, discrepancies between constants from two bands sharing a common level will be larger than the statistical uncertainties would suggest. As a result, σ_{m} is much larger than one; uncertainties quoted in Tables II, III, and IV are lower bounds to true one standard deviation limits; and merged constants cannot be expected to reproduce observed spectra as well as band by band constants.

Table III is a summary of the perturbations observed in (1) with the fitted spin-orbit and rotation-electronic vibronic interaction parameters, ξ and 2η. $\quad \xi$ and $2 n$ were divided by $\left\langle v_{A} \mid v_{B}\right\rangle$ and $\left.<v_{A}|B| v_{B}\right\rangle$, respectively, to obtain the constant electronic factors $H_{e 1}^{S O}$ and $H_{e 1}^{R E}(\underline{23}, 24, \underline{33}, \underline{34})$. The weighted average values are $\mathrm{H}_{\mathrm{el}}^{\mathrm{SO}}=\frac{\xi}{\left\langle\mathrm{v}_{\mathrm{B}} \mid \mathrm{V}_{\mathrm{A}}\right\rangle}=-33.2 \pm 0.6 \mathrm{~cm}^{-1}$ and $H_{e l}^{R E}=\frac{2 \eta}{\left\langle\mathrm{v}_{\mathrm{B}}\right| \mathrm{B}\left|\mathrm{V}_{\mathrm{A}}\right\rangle}=1.069 \pm 0.027$ unitless. These factors were in turn multiplied by the appropriate vibrational matrix elements to obtain fixed ξ and n values for those $v_{B} \sim v_{A}$ interactions for which these values could not be obtained by fitting.

In fitting the data of (1), we found it necessary to change some previous assignments, particularly in the $(3,5)$ band. As stated above, four distinct analyses of $B^{2} \Sigma_{u}^{+}\left(v^{\prime}=3\right)$ exist in the literature (4-7); the assignments for $(3,5)$ made in (1) were based on the work of Ref. (5). However, these assignments were found to be inconsistent with the Hamiltonian matrix given in Table I. We have been able to reassign a large portion of the $(3,5)$ band near the origin and achieve a fit comparable in quality to that of other bands (see Table VII).
$B^{2} \Sigma_{u}^{+}\left(v^{\prime}=3\right)$ is perturbed by $A^{2} \pi_{u 1 / 2}(v=14)$ with crossings at the hypothetical J values 6.0 and 10.0 for the f and e levels, respectively. The signs and magnitudes of ξ and η for this perturbation are such that the f level interaction is weak (maximum level shift of $\sim 1 \mathrm{~cm}^{-1}$) while the e level perturbation is strong (maximum level shift of $\sim 12 \mathrm{~cm}^{-1}$) (see Fig. 1). This perturbation causes deviations from the expected $(N+1) / N P_{1}$ to P_{2} (or R_{1} to R_{2}) intensity ratio (14). Moreover, the perturbation causes a change in the relative positions of the P_{1} and $P_{2}\left(R_{1}\right.$ and R_{2}) lines: below the e level crossing for example, the P_{1} lines, which would normally lie at higher frequency than the P_{2} lines, are shifted to lower frequency than the P_{2} lines; after the perturbation culminates, the branches usually recross. Incorrect analyses (4, $\underline{5}$, and 7) resulted from either confusing the F_{1} and F_{2} transitions ($\underline{4}$ and $\underline{7}$) or from inclusion of spurious lines probably due to the second positive group of N_{2} (5). ${ }^{5}$ Crawford and Tsai (6) very carefully considered the effects of perturbations on line positions and intensities in making their assignments. Our analysis confirms theirs.

These reassignments and the subsequent deperturbation of the $(3,5)$ band have also led to the prediction and discovery of several extra
lines (see Table VIII) which arise from the sharing of $B^{2} \Sigma_{u}^{+}$and $A^{2} \Pi_{u}$ character. Ordinarily $A^{2} \Pi_{u} \rightarrow X^{2} \Sigma_{g}^{+}$emission is not observed in this spectral region due to small Franck-Condon factors (however, see Ref. (35)).

Similarly, other bands were extended to higher J and extra lines were found at perturbations in $B^{2} \Sigma_{u}^{+}\left(v^{\prime}=1\right.$ and 5). Extra lines, reassignments, and extensions are given in Table VIII.

$$
\text { Analysis of } v^{\prime}=5
$$

$B^{2} \Sigma_{u}^{+}\left(v^{\prime}=5\right)$ also warrants special attention. Janin et al. (36) first deperturbed this level and obtained an energy for $A^{2} \Pi_{U}(v=17)$ equal to $36805 \mathrm{~cm}^{-1}$ (relative to $\mathrm{X}^{2} \Sigma_{\mathrm{g}}^{+}, \mathrm{v}^{\prime \prime}=0, \mathrm{~J}^{\prime \prime}=0$). This value is $\sim 20 \mathrm{~cm}^{-1}$ higher than the energy calculated from Table IV. However, Maier and Holland (35) observed emission from an ion beam, with low resolution, in the Meinel $A^{2} \pi_{u} \rightarrow X^{2} \Sigma_{g}^{+}$system from levels up to $v^{\prime}=19$. They did not observe an anomaly near $v^{\prime}=17$. On the contrary, emission was observed exactly where expected for $v^{\prime}=17$ but they felt that their data were inconclusive and that another perturbing state (e.g. $a^{4} \Sigma_{u}^{+}$) might be responsible for the anomalies observed in $B^{2} \Sigma_{u}^{+}(v=5)$.

Our analysis of the (5,7) band from (1) is consistent with an $A^{2} \Pi_{u} \sim B^{2} \Sigma_{u}^{+}$ perturbation (see Table III); $\mathrm{T}_{17}^{I T}$ is in agreement with the calculated value (Table IV) and also with that calculated with the constants of (28). Since the (5,7) band of (1) is incomplete near the region of interest (See (1) and Table III), we decided to further test the assignments made in ($\underline{6}$ and $\underline{8}$).[The assignments of the $(5,8)$ band in ($\underline{5}$) and ($\underline{8}$) are essentially identical so that data from (5) were not examined]. Neither the $(5,7)$ band from (6) nor the $(5,8)$ band from (8) could be fitted with a ${ }^{2} \Sigma^{+} \sim{ }^{2}$ II model: even excluding the lines with lowest N-values,
the bands were poorly fit ($\sigma_{\mathrm{rms}} \sim 0.3 \mathrm{~cm}^{-1}$) and under no circumstances were the perturbation matrix elements found to be consistent with the results of Table III. We then proceeded to fit the $(5,8)$ band recently reported by Klynning and Pages (7) who have stated (37) that the previous determination of $T_{17}^{\mathbb{I}}$ (36) was indeed in error. Holding the $A^{2} \Pi_{u}$ energy and perturbation parameters fixed at values calculated from Tables III and IV, but varying $B^{\prime}, D^{\prime}, \gamma^{\prime}, B^{\prime \prime}$, and D" we obtained a good fit ($\sigma_{\mathrm{rms}} \sim .05 \mathrm{~cm}^{-1}$) and values of the varied parameters consistent with those determined in our fits to the $(5,7)$ and $(6,8)$ bands from Ref. (1). The above tests suggest that the analyses
($\underline{5}, \underline{6}$, and $\underline{8}$) are in error and if a perturbing state other than $A^{2}-1 \mathrm{u}$ is present, its effect on the energy levels of $B^{2}{\underset{L}{u}}_{+}^{\left(v^{\prime}=5\right)}$ is a level shift smaller than $0.03 \mathrm{~cm}^{-1}$.
VI. Discussion

$$
\mathrm{B}^{2} \Sigma_{\mathrm{u}}^{+} \text {and } \mathrm{X}^{2} \Sigma_{\mathrm{g}}^{+} \text {Spin-Rotation Interactions }
$$

Spin-rotation interaction in a ${ }^{2} \Sigma$ state has been shown by Van Vleck (38) to arise from true spin-rotation interaction and second order spin-orbit and rotation-electronic effects (20, 21):
$\gamma_{\Sigma}=\gamma_{\Sigma}^{\text {true }}-p_{\Sigma}$
or $\gamma_{\Sigma}=\gamma_{\Sigma}^{\text {true }}-2 \underset{v, \Pi}{\Sigma} \frac{\left\langle^{2} \Sigma, v\right| A(R) L_{+}\left|v^{\prime},{ }^{2} \Pi><^{2} \pi, v^{\prime}\right| B L+\left|v,{ }^{2} \Sigma\right\rangle}{E_{\Sigma}(v)-E_{\Pi}\left(v^{\prime}\right)}$

and $\left.\quad<{ }^{2} \Pi, v^{\prime}\left|B L_{+}\right| v,{ }^{2} \Sigma\right\rangle \doteq H_{e 7}^{R E}\left\langle v^{\prime}\right| B|v\rangle$.
Using the method of Green and Zare (39) ${ }^{6}$, $\gamma_{\Sigma}{ }^{\prime \prime}$ true $=3.5 \times 10^{-5} \mathrm{~cm}^{-1}$. This is negligible compared with the experimental values of $\gamma^{\prime \prime}$ given in Table VI and the γ_{Σ} determined here is really $-p_{\Sigma}$.

The spin-orbit and rotation-electronic operators in Eq. (1) are composed primarily of one-electron operators so that only II states arising from configurations differing by one spin-orbital from the ${ }^{2} \Sigma$ configuration interact strongly and make a significant contribution to p_{Σ}.

The dominant configurations for the lowest states of N_{2}^{+}are (40):

$$
\begin{align*}
& X^{2} \Sigma_{g}^{+}{ }^{1 \sigma_{g}}{ }^{2} 1 \sigma_{u}{ }^{2} 2 \sigma_{g}{ }^{2} 2 \sigma_{u}{ }^{2} 1 \pi u^{43 \sigma_{g}} \tag{2a}\\
& A^{2} \pi_{u}{ }_{i}{ }^{2}{ }_{g}{ }^{2}{l \sigma_{u}}^{2} 2 \sigma_{g}{ }^{2} 2 \sigma_{u}{ }^{2} 1 \pi \pi_{u}{ }^{3} 3 \sigma_{g}{ }^{2} \tag{2b}\\
& B^{2} \Sigma_{u}^{+}{ }^{1 \sigma_{g}}{ }^{2} l \sigma_{u}{ }^{2} 2 \sigma_{g}{ }^{2} 2 \sigma_{u} 1 \pi_{u}{ }^{4} 3 \sigma_{g}{ }^{2} \tag{2c}
\end{align*}
$$

Because $H^{S O}$ and $H^{R E}$ are diagonal with respect to g-u inversion symmetry, $X^{2} \Sigma_{g}^{+}$and $A^{2} \Pi_{u}$ cannot perturb one another. Two configurations which give rise to ${ }^{2} \Pi_{\mathrm{g}}$ states and can interact with $\mathrm{X}^{2} \Sigma_{\mathrm{g}}^{+}$are:

$$
\begin{align*}
& \text { I }{ }^{l \sigma_{g}}{ }^{2} 1 \sigma_{u}{ }^{2} 2 \sigma_{g}{ }^{2} 2 \sigma_{u}{ }^{2} 1 \pi u^{4} 1 \pi_{g} \tag{3a}\\
& \text { II } \tag{3b}\\
& l \sigma_{g}{ }^{2} 1 \sigma_{u}{ }^{2} 2 \sigma_{g}{ }^{2} 2 \sigma_{u}{ }^{2} 1 \pi_{u}{ }^{3} 3 \sigma_{g}{ }^{3 \sigma \sigma_{u}}
\end{align*}
$$

Configurations other than I and II are unimportant because they have the wrong g-u symmetry, differ by more than one spin-orbital, or are composed of atomic orbitals with n \& character different from those comprising the $X^{2} \Sigma_{g}^{+}$molecular orbitals. Using the techniques outlined in Refs.(18, 23, 24, and 41) we obtain ${ }^{7}$:

$$
\begin{align*}
& \left.\left\langle X^{2} \Sigma_{g}^{+}, v\right| H^{S 0}\left|v^{\prime},{ }^{2} H_{g l} / 2(I)\right\rangle=\frac{1}{2}\left\langle 7_{g}\right| \hat{a} \quad \ell_{+}\left|3 \sigma_{g}><v\right| v^{\prime}\right\rangle \tag{4a}\\
& \left.\left\langle X^{2} \Sigma_{g}^{+}, v\right| H^{R E}\left|v^{\prime},{ }^{2} \Pi_{g l / 2}(I)\right\rangle=<1 \pi_{g}\left|\ell_{+}\right| 3 \sigma_{g}><v|B| v^{\prime}\right\rangle[1 \mp x], \tag{4b}
\end{align*}
$$

where $\mathrm{x}=\mathrm{J}+7 / 2$ and the upper (lower) sign refers to $\mathrm{e}(\mathrm{f})$ parity. First, it should be noted that the vibronic parts of $H^{S O}$ and $H^{R E}$ in Eq. (4) have the same $\operatorname{sign}{ }^{8}$ so that for the ${ }^{2} \pi_{g}(I)$ state, which lies above $X^{2} \Sigma_{g}^{+}, p_{\Sigma}$ is negative (see Eq. (1))in accord with the experimental values of Table VI. Assuming pure precession,

$$
\begin{align*}
& \left|3_{\sigma_{\mathrm{g}}}\right\rangle=\frac{1}{\sqrt{2}}\left\{\left|\sigma 2 p_{\mathrm{N}_{1}}>-\right| \sigma 2{\left.p_{N_{2}}>\right\}}^{\left\lvert\, 1_{\pi_{\mathrm{g}}}>\quad \frac{1}{\sqrt{2}}\left\{\left|\pi 2 p_{\mathrm{N}_{1}}>-\right| \pi 2 p_{N_{2}}>\right\}\right.}\right. \tag{5a}
\end{align*}
$$

and ignoring the overlap between orbitals localized on different centers, we can rewrite Eq. (4) in terms of $\zeta\left(n_{\ell}\right)$ atomic spin-orbit parameters (18, 42, 43):

$$
\begin{align*}
&\left.<{ }^{2} \Sigma_{g}^{+}, v\left|H^{S 0}\right| v^{\prime},{ }^{2} \Pi_{g^{1 / 2}}(I)\right\rangle=\sqrt{\frac{2}{4}}\left[\zeta\left(2 p_{N^{+}}\right)+\zeta\left(2 p_{N}\right)\right]\left\langle v \mid v^{\prime}\right\rangle=57\left\langle v \mid v^{\prime}\right\rangle \\
&\left.<X^{2} \Sigma_{g}^{+}, v\left|H^{R E}\right| v^{\prime},{ }^{2} \Pi_{g^{1} / 2}(I)\right\rangle=\sqrt{2}\langle v| B\left|v^{\prime}\right\rangle[1 \mp x] \tag{6}\\
& \text { using } \quad \zeta\left(2 p_{N}\right)=73.3 \text { and } \zeta\left(2 p_{N^{+}}\right)=87.5 \mathrm{~cm}^{-1}(\underline{43}) .
\end{align*}
$$

To the extent that Eq. (5) is valid, one may also assume

$$
\left\langle v \mid v^{\prime}\right\rangle=\delta_{v v^{\prime}}
$$

and

$$
\begin{equation*}
\langle v| B|v\rangle=B_{v}^{I I}=B_{v}^{\Sigma} \sim B_{e}^{\Sigma}=1.9316 \mathrm{~cm}^{-1} . \tag{7}
\end{equation*}
$$

A similar analysis of the interactions between configuration II of Eq. (5) and $X^{2} \Sigma_{g}^{+}$shows $H^{R E}$ to be zero in this case, so in fact configuration I and Eq. (6) are sufficient to estimate $p_{\Sigma}{ }^{\prime \prime}$.

The lowest known ${ }^{2} \Pi_{g}$ state of N_{2}^{+}is $D^{2} \Pi_{g}$ which bears little resemblance to $X^{2} \Sigma_{g}^{+}$at values of R near R_{e} (i.e. $D^{2} \Pi_{g}$ and $X^{2} \Sigma_{g}^{+}$spectroscopic constants are very different) (29). By analogy with isoelectronic $C N(\underline{44}), D^{2} \Pi_{g}$ can be represented as a mixture of configurations I and

III

$$
\begin{equation*}
1 \sigma_{g}{ }^{2} 1 \sigma_{u}{ }^{2} 2 \sigma_{g}{ }^{2} 2 \sigma_{u}{ }^{2} 3 \sigma_{g}{ }^{2} 1 \pi_{u}{ }^{2} 1 \pi g \tag{8}
\end{equation*}
$$

In $C N$, configuration III is dominant at values of R near R_{e} but at values of R near the inner $D^{2} \Pi$ wall, where overlap with low $X^{2} \Sigma^{+}$vibrational levels is important, configuration I prevails. Thus,
$E_{\Sigma}(v)-E_{\Pi}\left(v^{\prime}\right) \sim T_{e}\left(D^{2} \Pi_{g}\right)=52815.2$ (29) is assumed, placing an upper bound on $\gamma_{\Sigma}^{\prime \prime}$ of $.012 \mathrm{~cm}^{-1}$ which is in accord with the results in Table VI.

In calculating p_{Σ}^{\prime} (for $B^{2} \Sigma_{u}^{+}$) the effect of the $A^{2} \Pi_{u}$ state is considered. Using the values of $\mathrm{H}_{\mathrm{el}}^{\mathrm{SO}}$ and $\mathrm{H}_{\mathrm{el}}^{\mathrm{RE}}$ in Table III and vibrational matrix elements
calculated from RKR curves generated from the constants in Table IV we compute p, being careful to exclude from the summation in Eq. (1) $A^{2} \Pi_{u}\left(v_{A}\right)$ levels which are explicitly included in the v_{B} matrix (see Table II). The results of these computations are tabulated in Table VI and are illustrated in Fig. 2.

Second Order Corrections to B and ν_{0}

B and ν_{0} are completely correlated with second order perturbation parameters (20, 21):
where

$$
\begin{align*}
& \tilde{B}_{v}=B_{v}+q_{\Sigma} \tag{9}\\
& \tilde{v}_{0}=E^{\prime}+o_{\Sigma}^{\prime}-E^{\prime \prime}-o_{\Sigma}^{\prime \prime} \\
& q_{\Sigma} \equiv \underset{v^{\prime}, \Pi}{2 \Sigma} \frac{L^{2} \pi, v^{\prime}\left|B L_{+}\right| v,{ }^{2} \Sigma>\left.\right|^{2}}{E_{\Sigma}(v)-E_{\Pi}\left(v^{\prime}\right)} \\
& o_{\Sigma}=\frac{1}{4} \Sigma \frac{1<^{2} \pi, v^{\prime}\left|A(R) L_{+}\right| v,{ }^{2} \Sigma>\left.\right|^{2}}{E_{\Sigma}(v) \cdot-E_{\Pi}\left(v^{\prime}\right)}
\end{align*}
$$

As for p_{Σ}, these summations were evaluated explicitly for $B^{2} \Sigma_{u}^{+}$. \tilde{B}^{\prime} and $\tilde{\nu}_{0}$ were converted to B^{\prime} and v_{0} before merging (see Table II). q_{Σ} " and o_{Σ} " were ignored since they do not vary significantly with $v^{\prime \prime}$ and they can not be reliably estimated.

$$
\text { Semi-Empirical Estimates of } \mathrm{H}_{\mathrm{e} 1}^{\mathrm{SO}} \text { and } \mathrm{H}_{\mathrm{e} 1}^{\mathrm{RE}}
$$

The $2 \sigma_{u}$ orbital in Eq. (2b) and (2c) must have some $2 p$ atomic character in order to be strongly perturbed by $A^{2} \Pi_{u}$:

$$
\begin{align*}
& \left\lvert\, 2 \sigma_{u}>=\left[\frac{1-\varepsilon^{2}}{2}\right]^{1 / 2}\left[\left|\sigma 2 \mathrm{~s}_{N_{1}}>-\right| \sigma 2 s_{N_{2}}>\right]+\frac{\varepsilon}{\sqrt{2}}\left[\left|\sigma 2 p_{N_{1}}>+\right| \sigma 2 p_{N_{2}}>\right]\right. \tag{10a}\\
& \left\lvert\, 1_{\pi_{u}}>=\frac{1}{\sqrt{2}}\left[\pi 2 p_{N_{1}}>+\mid \pi 2 p_{N_{2}}>\right]\right. \tag{10b}
\end{align*}
$$

where ε^{2} represents the $2 p$ character in $2 \sigma_{u}$. Employing the same assumptions used in deriving Eq. (6), and assuming Eq.(10) to be valid:

$$
\begin{gather*}
\begin{array}{c}
H^{R E} \\
e l
\end{array}=\varepsilon\langle\pi 2 p| \ell_{+}|\sigma 2 p\rangle=1.414 \varepsilon \tag{11a}\\
H_{e l}^{S O}=-\frac{\varepsilon \sqrt{2}}{4}\left[\zeta\left(2 p_{N}\right)+\zeta\left(2 p_{N^{+}}\right)\right]=-56.85 \varepsilon . \tag{11b}
\end{gather*}
$$

Using the Hartree Fock value for $\varepsilon=.573$ determined for $X^{2} \Sigma_{g}^{+}(\underline{45})$ and assuming the $B^{2} \Sigma_{u}^{+}$and $X^{2} \Sigma_{g}^{+} 2 \sigma_{u}$ orbitals to be identical,

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{e}]}^{\mathrm{RE}} \sim 0.810 \\
& \mathrm{H}_{\mathrm{e} ~}^{\mathrm{SO}} \sim-32.6 \mathrm{~cm}^{-1} .
\end{aligned}
$$

These values are in surprisingly good agreement with the results of Table III.

The Determination and Interpretation of γ_{j}^{\prime}
Table VI reports values of γ_{j}^{\prime} for $B^{2} \Sigma_{u}^{+}\left(v^{\prime}=0-3\right)$. Although these parameters were only marginally determined, their inclusion in the fits for $v^{\prime}=0-3$ were essential to eliminate small systematic deviations between observed and calculated transition frequencies. An attempt was
also made to vary γ_{J} " but it was found that γ_{j}^{\prime} and $\gamma_{j}^{\prime \prime}$ were almost completely correlated (correlation coefficient ~ 0.95) so that only $\gamma_{j}^{\prime}-\gamma_{j}^{\prime \prime}$ could be determined (all other γ_{J}^{\prime} and $\gamma_{J}^{\prime \prime}$ correlation coefficient magnitudes were <0.1).

Veseth (46) has derived an expression for γ_{J} in terms of higher order $(>2){ }^{2} \pi \sim^{2} \Sigma$ interactions which for the case of pure precession reduces to:

$$
\begin{equation*}
\gamma_{J} \sim-2 \gamma \frac{D_{V}}{B_{V}} \tag{12}
\end{equation*}
$$

As shown above, $X^{2} \Sigma_{g}^{+}$may be considered to be in pure precession with ${ }^{2} \pi_{g}(I)$, so that Eq. (12) should be a reasonable approximation for $\gamma_{j}^{\prime \prime}$:

$$
\gamma_{j}^{\prime \prime} \sim-6 \times 10^{-8} \mathrm{~cm}^{-1}
$$

This is approximately an order of magnitude smaller than the values of γ_{j}^{\prime} in Table VI and indicates that we are primarily determining γ_{j}^{\prime} and not $\gamma_{j}^{\prime}-\gamma_{j}^{\prime \prime}$. Eq. (12) is not expected to be valid for $B^{2} \Sigma_{u}^{+}$because of interaction with the significantly different $A^{2} \Pi_{u}$ state. An additional term to Eq. (12) may be considered in the case where pure precession is invalid but interaction with only one ${ }^{2}$ I level is important (46):

$$
\begin{equation*}
\gamma_{J} \sim-2 \gamma \frac{D_{V}}{B_{V}}-\gamma \frac{B_{\Pi}-B_{\Sigma}}{\gamma_{e}(\Pi \Sigma)} \tag{13}
\end{equation*}
$$

Although this equation is of dubious value here, it provides an order of magnitude estimate of $\gamma_{j}^{\prime} \sim-6 \times 10^{-7} \mathrm{~cm}^{-1}$, which is comparable to the values given in Table VI.

$$
\text { Anharmonicity of the } \mathrm{B}^{2} \Sigma_{u}^{+} \text {Potential Well }
$$

From Table IV we note the large negative values of Y_{30} and Y_{40}. If these values are used to extrapolate $B^{2} \Sigma_{u}^{+}$to the dissociation limit, dissociation is predicted between $v^{\prime}=17$ and 18; however, $v^{\prime}=29$ has been observed (28). Thus, these constants are valid only for interpolation through $v^{\prime}=6$ and extrapolation to $v^{\prime} \approx 8$. Higher order terms $\mathrm{Y}_{50}, \mathrm{Y}_{60}$, etc. are important for higher v'. This anharmonicity is caused by the J independent $B^{2} \Sigma_{u}^{+} \sim C^{2} \Sigma_{u}^{+}$interaction (47), which may also be responsible for $C^{2} \Sigma_{u}^{+}$predissociation (48). Douglas (47) has already discussed the "peculiar manner in which $B^{2} \Sigma_{u}^{+}{ }_{u}$ dissociates.
VII. Conclusion

Described above is the deperturbation of N_{2}^{+}1NG using a model Hamiltonian including only ${ }^{2} \Pi_{u}$ perturbing states. It should be emphasized that the numbers given in Tables II-VI are not minimum-variance-linear-unbiased (MVLU) estimates (22). On the contrary, we have exercised a bias by holding fixed many constants at calculated values to insure an internally consistent, complete deperturbation. To the extent that our calculated values are in error, our quoted uncertainties are underestimates. We believe this method to be a practical deperturbation procedure if not statistically rigorous.

Our analysis has been shown to be self-consistent using the following critera: ${ }^{9}$ 1) centrifugal distortion constants calculated from RKR potential energy curves agree with the experimental, fitted values; 2) the fitted values of $\gamma_{\Sigma}{ }^{\prime \prime}$ are less than semi-empirically predicted upper bounds; 3) $\gamma_{\Sigma}{ }^{\prime}$ may be calculated from fitted matrix elements and vibrational factors calculated from RKR potential energy curves; 4) the magnitude of the spin-orbit and rotation-electronic matrix elements are explained in terms of simple LCAO-MO theory; and 5) the deperturbed band by band constants reproduce the observed spectra to within the estimated experimental uncertainty without systematic deviations.

Acknowledgements
We are indebted to Dr. Daniel Albritton for generously giving us copies of and helpful advice on the computer programs MERGE and DHL.

We also thank Dr. H. Lefebvre-Brion for kindly providing us with results from $\underline{a b}$ initio calculations on $X^{2} \Sigma_{g}^{+}$and Mr . Anthony Kotlar for his modifications of the least squares fitting program. Discussions with Dr. R. Bacis, Dr. I. Renhorn, and Professor J. d'Incan were both stimulating and informative. We thank Dr. L. Klynning for graciously supplying us with results of his studies on N_{2}^{+}ING prior to publication.

Critical readings of the original manuscript by Dr . J. Coxon, Dr. M. Horani, and Dr. J. Rostas, and Dr. H. Lefebvre-Brion are most appreciated.

This work was supported, in part, by grants from the National Science Foundation. Computer time for this project was partly provided by the Computer Science Center of the University of Maryland, the M.I.T. Chemistry Department, and by a contract from IBM to the M.I.T. Laboratory for Computer Science.

Footnotes:

1. If the ${ }^{2} \Sigma$ state is not known to be either ${ }^{2} \Sigma^{+}$or ${ }^{2} \Sigma^{-}$, it is never possible to unambiguously determine the signs of γ^{\prime} and $\gamma^{\prime \prime}$. It should ve noted that the sign of $\gamma^{\prime \prime}$ could be determined from $A^{2} \Pi_{U}-X^{2} \Sigma_{g}^{+}$band spectra but to date this has not been accomplished owing to insufficient resolution.
2. Lines from Ref. (1) are divided into five categories for the weighting procedure:

Line Type	Uncertainty
δ	0.1
)	0.03
intensity 0	0.02
intensity 1	0.01
all others	0.007

The weight associated with each line is equal to the reciprocal of the uncertainty squared. δ denotes a doubly assigned line;) denotes an incompletely resolved line.
3. The covariance and correlation matrices are available from the authors upon request. If for some reason the authors cannot be reached, a limited number of copies have been deposited at the Editorial Office.
4. We have combined the $(2,5),(4,7),(5,3),(5,8)$, and $(6,9)$ band origins of Ref. (28) with our data [using uncertainties of $0.5 \mathrm{~cm}^{-1} \mathrm{~J}$.
5. The authors of (ㄱ) have indicated to us that the branches as given are indeed mislabelled.
6. Although Green and $\operatorname{Zare}\left(\underline{36)}\right.$ give a formula for $\gamma^{\text {true }}$ [Eqn. (5) in (36)] applicable to a ${ }^{2}$ II state, it is also valid for a ${ }^{2} \Sigma^{+}$ state arising from a o orbital outside a closed shell, as in the case of $N_{2}^{+} X^{2} \Sigma_{g}^{+}$. These ab initio calculations were performed for us by Dr. H. Lefebvre-Brion.
7. Only matrix elements between $X^{2} \Sigma_{g}^{+}$and ${ }^{2} \Pi_{g_{1 / 2}}$ are considered because the second order $X^{2} \Sigma_{g}^{+} \sim{ }^{2} \Pi_{g} 3 / 2$ interaction contributes nothing to γ_{Σ} in Eqn. (1).
8. $\left.<7_{g}\left|\hat{a} \ell_{+}\right| 3 \sigma_{g}\right\rangle$ and $\left.<7_{g}\left|\ell_{+}\right| 3 \sigma_{g}\right\rangle$ are positive definite (18); $\langle v| V^{\prime}>$ and $\langle v| B\left|V^{\prime}\right\rangle$ have the same sign except for small overlap when their signs might be different.
9. Except for criterion number five, these conditions are met for both band by band and merged constants.

References

1. K.A. Dick, W. Benesch, H.M. Crosswhite, S.G. Tilford, R.A. Gottscho, and R.W. Field; J. Mol. Spectrosc. 69, 95-108 (1978).
2. D.L. Albritton, A.L. Schmeltekopf, and R.N. Zare; J. Mol. Spectrosc. 67, 132-156 (1977).
3. D.L. Albritton, A.L. Schmeltekopf, W.J. Harrop, and R.N. Zare;
J. Mol. Spectrosc. 67, 157-184 (1977).
4. D. Coster and H.H. Brons, Z. Physik 73, 747-774 (1932).
5. H.H. Brons, K. Akad. Wet. Amst. (Sci.) 38, 271-280 (1935).
6. F.H. Crawford and P.M. Tsai, Proc. Am. Acad. Arts Sci. 69, 407437 (1935).
7. L. Klynning and P. Pagés, Physica Scripta 6, 195-199 (1972).
8. A.E. Parker, Phys. Rev. 44, 914-918 (1933).
9. J. d'Incan and A. Topouzkhanian, J. Chem. Phys. 63, 2683-2689 (1975).
10. K. Dressler, J. Chem. Phys. 64, 3493-3494 (1976).
11. J. d'Incan and A. Topouzkhanian, J. Chem. Phys. 64, 3494 (1976).
12. V. Cermak and Z. Herman, Coll. Czech. Chem. Commun. 27, 1493-1495 (1962).
13. J.Dufayard and 0. Nedelec, Comp. Rend. Ac. Sc. B 285, 173-174 (1977).
14. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Nostrand Reinhold Co., New York, 1950).
15. J.M. Brown, J.T. Hougen, K.-P. Huber, J.W.C. Johns, I. Kopp,
H. Lefebvre-Brion, A. J. Merer, D.A. Ramsay, J. Rostas, and R.N. Zare, J. Mol. Spectrosc. 55, 500-503 (1975).
16. A.E. Parker, Phys. Rev. 44, 90-91 (1933).
17. W.H.J. Childs, Proc. Roy. Soc. A 137, 641-661 (1932).
18. H. Lefebvre-Brion, "Perturbations in the Spectra of Diatomic Molecules" in Atoms, Molecules, and Lasers, International Atomic Energy Agency (Vienna, 1974) pp. 411-448.
19. J.T. Hougen, "The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules", Nat. Bur. Std. Mono. 115 (1970).
20. J.A. Coxon, J. Mo1. Spectrosc. 58, 1-28 (1975).
21. R.N. Zare, A.L. Schmeltekopf, W.J.Harrop, and D.L. Albritton; J. Mo1. Spectrosc. 46, 37-66 (1973).
22. D.L. Albritton, A.L. Schmeltekopf, and R.N. Zare, "An introduction to the least-squares fitting of spectroscopic data" in Modern Spectroscopy, Modern Research II (K. Narahari Rao, Ed.), pp. 1-67, Academic Press, New York, 1976.
23. R.W. Field, S.G. Tilford, R.A. Howard, and J.D. Simmons; J. Mol. Spectrosc. 44, 347-382 (1972).
24. R.W. Field, B.G. Wicke, J.D. Simmons, and S.G. Tilford; J. Mol. Spectrosc. 44, 383-399 (1972).
25. A. Lagerqvist and E. Miescher, Can. J. Phys. $\underline{44}$, 1525-1539 (1966).
26. E. Bartholdi, M. Leoni, and K. Dressler, J. Appl. Math. Phys. (ZAMP) 22, 797-799 (1971).
27. a) W.E. Wentworth, J. Chem. Ed. 42, 96-103 (1965).
b) D.W. Marquardt, J. Soc. Indust. Appl. Math. 11, 431-441 (1963). This program was originally written by R. Stern and has since been modified by T. Bergeman and A. Kotlar.
28. A. Lofthus and P. Krupenie, J. Phys. Chem. Ref. Data 6, 113-307 (1977).
29. J. Janin, J. d'Incan, R. Stringat, and J. Magnaval; Rev. d'Opt. 42, 120-128 (1963).
30. D.L. Albritton, W.J. Harrop, A.L. Schmeltekopf, and R.N. Zare, J. Mol. Spectrosc. 25-36 (1973).
31. J.K.G. Watson, J. Mo1. Spectrosc. 66, 500-502 (1977).
32. A.E. Douglas, Astrophys. J. 117 , 380-386 (1953).
33. J.A. Hall, J. Schamps, J.M. Robbe, and H. Lefebvre-Brion;
J. Chem. Phys. 59, 3271-3283 (1973).
34. R.W. Field, J. Chem. Phys. 60, 2400-2413 (1974).
35. W.B. Maier and R.F. Holland, J. Chem. Phys. 59, 4501-4534 (1973).
36. J. Janin, J. d'Incan, and J. Marchand; Annales, Sec. B; Univ. Lyon, Sci. Phys. Chim. 12, 29-42 (1959).
37. P. Pagès, "The N_{2}^{+}Molecule", pp. 17-18 in Annual Report 1976/77, Molecular Physics, Institute of Physics, University of Stockholm.
38. J.H. Van Vleck, Phys. Rev. 33, 467-506 (1929).
39. S. Green and R.N. Zare, J. Mol. Spectrosc. 64, 217-222 (1977).
40. R.C. Sahni and B.C. Sawhney. Int. J. Quant. Chem. 1, 251-270 (1967).
41. T.E.H. Walker, Mol. Phys. 23, 489-498 (1972).
42. H. Lefebvre-Brion and C.M. Moser, J. Chem. Phys. 44, 2951-2954 (1966).
43. E. Ishiguro and M. Kobori, J. Phys. Soc. Japan 22, 263-270 (1967).
44. H.F. Schaeffer and T.G. Heil, J. Chem. Phys. 54, 2573-2580 (1971).
45. H. Lefebvre-Brion (private communication).
46. L. Veseth, J. Phys. B. Atom. Molec. Phys. 3, 1677-1690 (1970).
47. A.E. Douglas, Can. J. Phys. 30, 302-313 (1952).
48. J. Tellinghuisen and D.L. Albritton, Chem. Phys. Lett., 31, 91-96 (1975).

Figure Captions

Figure 1. Perturbations in the $N_{2}^{+} B^{2} \Sigma_{u}^{+}-X^{2} \Sigma_{g}^{+}(3,5)$ band illustrating the different interaction strengths for e and f parity levels. Plotted against $N^{\prime \prime}$ is $R\left(N^{\prime \prime}\right)_{\text {calc }}-R\left(N^{\prime \prime}\right)_{\text {obs }}$ where $R_{1,2}\left(N^{\prime \prime}\right)_{c a l c}=\nu_{0}+F_{1,2}^{\prime}\left(N^{\prime \prime}+1\right)-F_{1,2}\left(N^{\prime \prime}\right)$, $F_{1}(N)=B N(N+1)-D N^{2}(N+1)^{2}+\mathrm{HN}^{3}(N+1)^{3}+1 / 2 \gamma N$ and $F_{2}(N)=F_{1}(N)-\gamma(N+1 / 2)$. Open circles o represent $R_{1, \text { calc }}-R_{1, \text { obs }}$ and closed circles erepresent $R_{2, c a l c}{ }^{-}$ $R_{2, o b s}$.

Figure 2. $B^{2} \Sigma_{u}^{+}$spin rotation constant, γ, as a function of v. Error bars represent one standard deviation. Closed circles \bullet are calculated $-p_{\Sigma}$'s (see text).

Table Headings
Table I. $\quad 2_{\Sigma}{ }^{+}-{ }^{2}$ Hamiltonian ${ }^{\mathrm{a}, \mathrm{b}}$
Table II. Band by Band Fitted Constants ${ }^{\text {a }}$
Table III. Summary of $B^{2} \Sigma_{u}^{+} \sim A^{2} \Pi_{u}$ Perturbations ${ }^{a}$
Table IV. $\quad N_{2}{ }^{+}$Dunham Coefficients ${ }^{\text {a }}$
Table V. Experimental and Calculated Centrifugal Distortion Constants ${ }^{\text {a }}$
Table VI. Experimental and Calculated Spin-Rotation Constants
Table VII. Least Squares Fit to $(3,5)$ Band $^{\text {a }}$
Table VIII. New Assignments and Extra Lines

${ }^{2} \Sigma^{+}$		${ }^{2} \Pi_{1 / 2}$	${ }^{2} \Pi_{3 / 2}$
$2_{\Sigma}{ }^{+}$	$T^{\Sigma}+0^{\Sigma}+\left(B^{\Sigma}+q^{\Sigma}\right) x(x \overline{+1})-D^{\Sigma} x^{2}(x+1)^{2}+H^{\Sigma} x^{3}(x \overline{+1})^{3}$		
	$-\frac{1}{2}(1+\bar{x})\left[r^{\Sigma}+\gamma_{j}^{\Sigma}\left(x^{2}-1 / 4\right)\right]$	symmetric	symmetric
$2^{\Pi_{1 / 2}}$	$\xi+2 \pi(1 \mp x)$	$T^{\pi}+B^{\Pi 1} x^{2}-D^{\Pi}\left[x^{4}+x^{2}-1\right]$	
		$+H^{\text {II }}\left[x^{6}+3 x^{4}-5 x^{2}+2\right]-\frac{1}{2} A^{\text {II }}$	symmetric
$2_{\Pi_{3 / 2}}$	$-2 n\left(x^{2}-1\right)^{1 / 2}$	$-B^{\Pi 1}\left(x^{2}-1\right)^{1 / 2}+2 D^{\Pi}\left(x^{2}-1\right)^{3 / 2}$	$T_{v}{ }^{\Pi 1}+B^{\Pi 1}\left(x^{2}-2\right)-D^{\Pi}\left[x^{4}-3 x^{2}+3\right]$
		$-H^{\text {II }}\left[\left(x^{2}-7\right)^{1 / 2}\left(3 x^{4}-5 x^{2}+3\right)\right]$	$+H^{\text {II }}\left[\left(x^{2}-2\right)^{3}+3 x^{4}-7 x^{2}+4\right]+\frac{1}{2} A^{\text {I }}$

where $T=$ vibronic energy
$B=h / 8 \pi^{2} c_{\mu} \mathrm{R}^{2}=$ rotational constant
$\mathrm{D}=2^{\text {nd }}$ order centrifugal distortion constant
$\mathrm{H}=3^{\text {rd }}$ order centrifugal distortion constant
$\gamma=$ spin-rotation constant
$\gamma_{J}=$ centrifual distortion of γ
$\mathrm{A}=$ spin-orbit constant
$\left.\xi=\left.\left\langle v^{\prime}, 2_{I}\right| \Sigma \hat{a}_{j} \ell_{i} \cdot s_{i}\right|^{2} \Sigma^{+}, v\right\rangle=$ vibronic spin-orbit matrix element.
$\left.2 n=\left.\left\langle v^{\prime}, 2 \pi\right| B L_{+}\right|^{2} \Sigma^{\top}, v\right\rangle=$ vibronic rotation-electronic matrix element.
$\mathrm{x}=\mathrm{J}+1 / 2$
${ }^{a}$ Only parameters which were either fitted or fixed at non-zero values are included here.
${ }^{\text {b }}$ Upper(lower) signs are for e(f) parity levels [J. M. Brown et al., J. Mol. Spectrosc. 55, 500-503 (1975)].

	$(0,0)^{\text {b }}$	$(0,1)$	$(0,2)$
\tilde{v}_{0}	25566.051 ± 0.022	23391.307 ± 0.0010	21249.081 ± 0.022
o_{1}^{1}	0.025	0.025	0.025
ν_{0}	25566.026	23391.282	21249.056
B"	1.9220488 ± 0.00004	1.9033125 ± 0.000024	1.8842765 ± 0.00004
$\mathrm{D}^{\prime \prime} \times 10^{6}$	5.89767 ± 0.027	5.933945 ± 0.011	6.002490 ± 0.03
$\gamma^{\prime \prime}$	0.008228 ± 0.0016	0.0085318 ± 0.0010	0.0068812 ± 0.0014
\tilde{B}^{\prime}	2.0743336 ± 0.00004	2.0745547 ± 0.000024	2.0746170 ± 0.00004
$\mathrm{q}^{\prime} \times 10^{3}$	0.903	0.903	0.903
B^{\prime}	2.0734306	2.0736517	2.0737140
$D^{\prime} \times 10^{6}$	6.27900 ± 0.029	6.29159 ± 0.011	6.31464 ± 0.04
γ^{\prime}	0.023011 ± 0.0016	0.023111 ± 0.0010	0.021494 ± 0.0014
$\gamma_{j}^{\prime} \times 10^{6}$	-1.3748 ± 0.05	-1.3230 ± 0.09	-1.3842 ± 0.27
$\mathrm{v}_{\mathrm{I}}{ }^{\text {c }}$	9, 10, $11^{\text {d }}$	9, 10, 11	9, 10, 11
$\mathrm{E}_{\text {II }}-\mathrm{E}_{\Sigma}$	837.337 ± 0.14	836.371 ± 0.10	834.886 ± 1.1
$\mathrm{B}_{\text {II }}$	1.541078 ± 0.00015	1.5418722 ± 0.00011	1.5421220 (fixed)
$\mathrm{A}_{\text {II }}$	-74.6 (fixed)	-74.6 (fixed)	-73.602583 (fixed)
ξ	$\left\{\begin{array}{c} -1.77700 \pm 0.015 \mathrm{v}_{\mathrm{H}}=10 \\ 1.7504 \pm 0.5 \quad \mathrm{v}_{\mathrm{H}}=11^{\mathrm{d}} \end{array}\right.$	-1.74660 ± 0.012	-1.7836639 (fixed)
$2 n$	$\left\{\begin{array}{c}0.1394485 \pm 0.00023 v_{\Pi}=10 \\ -0.107334 \pm 0.0004 v_{\Pi}=11\end{array}\right.$	0.1391175 ± 0.00026	0.134519 ± 0.0017

${ }^{\mathrm{a}}$ See text and Table I for definitions of parameters. Uncertainties quoted represent one standard deviation.
${ }^{\mathrm{b}}$ For $(0,0)$ it was necessary to vary the third order centrifugal distortion constants: $H_{0}^{\prime}=4.918 \pm 5 \times 10^{-12}$ and $H_{0}^{\prime \prime}=7.431 \pm 5 \times 10^{-12} \mathrm{~cm}^{-1}$. For all other bands the values of H^{\prime} and $\mathrm{H}^{\prime \prime}$ were held fixed (see Table V).

	$(1,1)$	$(1,2)$	$(1,3)$
\tilde{v}_{0}	25762.9405 ± 0.0025	23620.7310 ± 0.0024	21511.2695 ± 0.006
$0 \cdot$	0.028	0.028	0.028
ν_{0}	25762.9125	23620.703	21511.2415
$B^{\prime \prime}$	1.9034268 ± 0.00004	1.8842233 ± 0.000024	1.8651016 ± 0.00004
D" $\times 10^{6}$	6.03681 ± 0.029	5.96975 ± 0.017	6.12577 ± 0.029
$\gamma^{\prime \prime}$	0.010630 ± 0.0012	0.008187 ± 0.0008	0.010021 ± 0.0017
\tilde{B}^{\prime}	2.0518113 ± 0.00004	2.0517413 ± 0.000024	2.0519134 ± 0.00005
$\mathrm{q}^{\prime} \times 10^{3}$	1.09	1.09	1.09
B^{\prime}	2.0507213	2.0506513	2.0508234
$D^{\prime} \times 10^{6}$	6.60360 ± 0.029	6.51156 ± 0.016	6.62873 ± 0.028
γ^{\prime}	0.030147 ± 0.0012	0.027826 ± 0.0008	0.029781 ± 0.0017
$\gamma_{j}^{\prime} \times 10^{6}$	-2.8463 ± 0.25	-3.0620 ± 0.14	-2.7845 ± 0.22
$\mathrm{v}_{\mathrm{II}} \mathrm{C}$	11, 12	11, 12	11, 12
$E_{\Pi}-E_{\Sigma}$	36.3159 ± 0.012	36.0589 ± 0.008	35.8311 ± 0.023
B_{I}	1.524082 ± 0.0004	1.5262590 ± 0.00029	1.527876 ± 0.0008
$A_{\text {II }}$	-74.7061 ± 0.16	-74.1101 ± 0.11	-73.8283 ± 0.38
ξ	-3.64284 ± 0.012	-3.66083 ± 0.012	-3.68234 ± 0.036
27	0.295327 ± 0.0012	0.292143 ± 0.0013	0.288508 ± 0.0036

${ }^{c}$ Values of $v_{\text {II }}$ given are those levels included in the band fit. The underlined v_{II} corresponds to the level or levels for which constants were varied. Constants for these levels only are given in the entries below V_{I}.
$d_{\text {For }}(0,0)$, only the matrix elements ξ and n for the $v_{\Pi}=11 \sim v^{\prime}=0$ interaction were varied. The $v_{\pi}=11$ energy and rotational constant were held fixed at the values determined by fits to $v_{\Sigma}^{\prime}=1$. The energy and rotational constant given under $(0,0)$ for the II state are those. for $v_{\Pi}=10$.

	$(2,3)$	$(2,4)$	$(3,5)$
\tilde{v}_{0}	23830.163 ± 0.04	21753.674 ± 0.002	21971.475 ± 0.003
O1	0.024	0.024	0.027
ν_{0}	23830.139	21753.650	21971.448
$B^{\prime \prime}$	1.8613181 ± 0.00022	1.8452253 ± 0.00004	1.8259291 ± 0.00007
D" $\times 10^{6}$	5.5238 ± 0.27	5.9444 ± 0.04	6.1429 ± 0.06
$\gamma^{\prime \prime}$	0.01717 ± 0.004	0.008127 ± 0.0014	0.010202 ± 0.0021
\tilde{B}^{\prime}	2.0236871 ± 0.00021	2.0268155 ± 0.00005	2.0010520 ± 0.00007
$\mathrm{q}^{1} \times 10^{3}$	0.906	0.906	1.03
B^{\prime}	2.0227811	2.0259095	2.000022
$\mathrm{D}^{\prime} \times 10^{6}$	6.6493 ± 0.23	6.7702 ± 0.05	7.1534 ± 0.07
γ^{\prime}	0.030980 ± 0.0034	0.022374 ± 0.0014	0.030862 ± 0.0020
$\gamma_{j}^{\prime} \times 10^{6}$	-6.808 ± 0.8	-3.906 ± 0.4	-5.694 ± 0.5
$\mathrm{v}_{\mathrm{I}} \mathrm{c}^{\text {c }}$	12, 13	12, 13	14, 15
$E_{\Pi I}-E_{\Sigma}$	754.46 ± 5.0	$774.317 \pm$	-2.251 ± 0.04
$\mathrm{B}_{\text {II }}$	1.478 (fixed)	1.478 (fixed)	1.466822 ± 0.0007
$A_{\text {II }}$	-74.6 (fixed)	-74.6 (fixed)	-76.4256 ± 0.27
ξ	4.551 (fixed)	4.551 (fixed)	5.96180 ± 0.010
2η	-0.284447 ± 0.013	-0.32797 ± 0.008	-0.474730 ± 0.0008

v_{B}	$\mathrm{v}_{\text {A }}$	$\mathrm{J}^{\mathrm{e}}{ }_{1 / 2}$	$\mathrm{J}_{1 / 2}^{\mathrm{f}}$	$\mathrm{J}_{3}^{\mathrm{e}}{ }^{2}$	$\mathrm{J}_{3 / 2}^{f}$	$\xi\left(\mathrm{cm}^{-1}\right)$	$\xi /<\mathrm{v}_{\mathrm{A}} \mid \mathrm{v}_{\mathrm{B}}>\left(\mathrm{cm}^{-1}\right.$	-) $2 \mathrm{n}\left(\mathrm{cm}^{-1}\right)$	$2 \mathrm{n} /<\mathrm{v}_{\mathrm{B}}\|\mathrm{B}\| \mathrm{v}_{\mathrm{A}}{ }^{\text {c }}$
0	10	43.0	39.0	39.2	35.9	-1.77192 ± 0.09	-34.7 ± 1.7	0.1387880 ± 0.0018	1.067 ± 0.014
0	11	69.0	65.1	66.0	62.7	1.8051 ± 0.5	-50 ± 14	-0.107340 ± 0.004	1.17 ± 0.04
1	11	13.8	10.0	-	-	$\begin{aligned} & -3.68494 \pm 0.09 \\ & {[-3]^{\mathrm{b}}} \end{aligned}$	-33.2 ± 0.8	$\begin{aligned} & 0.289337 \pm 0.009 \\ & {[0.24]} \end{aligned}$	1.05 ± 0.03
2	13	-	-	-	33.8	4.551 (fixed)	--	-0.30115 ± 0.06	0.90 ± 0.18
3	14	10.0	6.0	-	-	$\begin{array}{r} 5.95605 \pm 0.09 \\ {[-5.51 \pm 0.27] \mathrm{c}} \end{array}$	-33.1 ± 0.5	$\begin{gathered} -0.475710 \pm 0.007 \\ {[0.206 \pm 0.020]} \end{gathered}$	1.064 ± 0.016
5	17	<0.5	<0.5	-	-	-6.6993 ± 0.7	-32 ± 3	0.47716 ± 0.13	0.92 ± 0.25
Weighted average of $\xi /\left\langle v_{B} \mid v_{A}\right\rangle=H_{e l}^{S 0}=-33.2 \pm 0.6\left(\mathrm{~cm}^{-1}\right)$ Weighted average of $\left.2 \eta /<v_{B}\|B\| v_{A}\right\rangle=H_{e l}^{R E}=1.069 \pm 0.027$ (unitless)									

${ }^{a}$ Only perturbations observed in this work are summarized here. The $J_{\Omega}(e$ and $f)$ entries are the J values for which the $B^{2} \Sigma_{u}^{+}$and $A^{2} \Pi_{u_{\Omega}}$ (e and f) levels would be degenerate in the absence of any interaction. Uncertainties quoted represent one standard deviation. The uncertainties in $\left\langle v_{B} \mid v_{A}\right\rangle$ and $\left\langle v_{B}\right| B\left|v_{A}\right\rangle$ were neglected so that our uncertainties of $\mathrm{H}_{\mathrm{el}}^{\mathrm{SO}}$ and $\mathrm{H}_{\mathrm{el}}^{\mathrm{RE}}$ are slightly underestimated.
${ }^{\text {b A.M. Bouchoux and J.P. Goure, Can. J. Phys. 55, }} 1492$ (1977).
C_{L}. Kynning and P. Pagès Physica Scripta $\underline{6}$, 195-199 (1972).

TABLE IV

	$x^{2} \Sigma^{+}{ }^{+}$	$A^{2} I_{u}{ }^{\text {b }}$	$\mathrm{B}^{2} \Sigma_{u}^{+}$
Te	0.0	$\begin{aligned} & 9167.4668 \pm 0.20 \\ & {[9167.4]} \end{aligned}$	$\begin{gathered} 25461.1267 \\ {[25462.8]^{-}} \end{gathered}$
Y_{00}	-0.0936	0.9822	-1.3354
$Y_{10}\left(\omega_{e}\right)$	$\begin{aligned} & 2207.0366+0.05 \\ & {[2207.00]} \end{aligned}$	$\begin{gathered} 1903.5111+0.10 \\ {[1903.53]} \end{gathered}$	$\begin{aligned} & 2420.8255+0.15 \\ & {[2419.84]} \end{aligned}$
$Y_{20}\left(-\omega_{e} x_{e}\right)$	$\frac{-16.07860}{[-16.10]} \pm 0.019$	$\begin{gathered} -15.02904+0.017 \\ {[-15.017]} \end{gathered}$	$-23.8506+0.10$
$\gamma_{30}\left(\omega_{e} y_{e}\right)$	$\begin{aligned} & -0.039756 \pm 0.0023 \\ & \quad[-0.040] \end{aligned}$	0.002027 ± 0.0010	-0.35865 ± 0.026
$Y_{40}\left(\omega_{e} z_{e}\right)$	-	-	-0.061924 ± 0.0020
$Y_{01}\left(B_{e}\right)$	$\begin{array}{r} 1.9316578 \\ {[1.9319]} \end{array} \pm 0.00015$	$\begin{aligned} & 1.75302+0.007 \\ & {[1.748]} \end{aligned}$	$\underset{[2.073]}{2.0844684}+0.00015$
$\gamma_{11}\left(-\alpha_{e}\right) \times 10^{2}$	$\left\lvert\, \begin{gathered} -1.87791 \\ {[-1.9]} \end{gathered} \pm 0.009\right.$	$\frac{-2.2168}{[-2.0]} \pm 0.20$	$\underset{[-2.0]}{-2.13210} \pm 0.013$
$Y_{21}\left(\gamma_{e}\right) \times 10^{4}$	-0.9572 ± 0.21	1.948 ± 1.3	-8.510 ± 0.5
$r_{e}(\mathrm{~A})$	$\begin{aligned} & 1.116454 \\ & {[1.116384]} \end{aligned}$	$\begin{aligned} & 1.17196 \\ & {[1.17364]} \end{aligned}$	$\begin{aligned} & 1.074752 \\ & {[1.07772]} \end{aligned}$

${ }^{\text {a Numbers in }}$ brackets are values from: A. Lofthus and P. Krupenie, J. Phys. Chem. Ref. Data 6, 113-307 (1977). Uncertainties quoted represent one standard deviation. All units are cm^{-1} except where noted.
${ }^{\text {b Determined from merged constants and data from A.E. Douglas, Astrophys. J. 117, }}$ 380-386 (1953) and J. Janin, J. d'Incan, R. Stringat, and J. Magnaval, Rev. d'Opt. 42, 120-128 (1963).

v	Exp.	DX10 ${ }^{6}\left(\mathrm{~cm}^{-1}\right)$		$x^{2} \Sigma_{g}^{+}$	$\begin{aligned} & \mathrm{HX10} \\ & \text { Calc. } \end{aligned}$	$\mathrm{m}^{-1} \text { Calc. II }$
0	$5.9099+0.08$	5.9330	5.9342	$-0.0649+1.5$	2.37	2.39
1	5.9223 ± 0.08	5.9676	5.9667		2.53	1.78
2	5.9350 ± 0.08	6.0099	6.0013		2.82	1.16
3	5.9354 ± 0.09	6.0607	6.0383		3.26	0.53
4	5.8864 ± 0.16	6.1200	6.0778		3.88	-0.10
5	5.7508 ± 0.37	6.1894	6.1202		4.70	-0.79
6	5.352 ± 0.7	6.2690	6.1652		5.12	-2.29
7	5.763 ± 10.	6.3542	6.2062		$-6.34{ }^{\text {b }}$	$-17.40{ }^{\text {b }}$
8	0.560 ± 11.	6.3347	6.1243		-216.b	-273.b
		DX10 ${ }^{6}\left(\mathrm{~cm}^{-1}\right) \quad A^{2} \pi_{u}$			$\mathrm{HX10}{ }^{12}\left(\mathrm{~cm}^{-1}\right)$	
v	Exp.	Calc. I	Calc. II	Exp.	Calc.	Calc. II
9		6.0258			-3.77	
10		6.0613			-3.45	
11		6.1025			-2.94	
12		6.1498			-2.20	
13		6.2041			-1.18	
14		6.2658			0.17	
15		6.3360			1.88	
16		6.4152			3.90	
17		6.5047			$5.44{ }^{\text {b }}$	
18		6.6050			$2.12{ }^{\text {b }}$	
19		6.7156			$-28.6{ }^{\text {b }}$	
		DX10 ${ }^{6}\left(\mathrm{~cm}^{-1}\right)$		B2 $\Sigma_{L_{u}^{+}}^{+}$	$\mathrm{H} \times 10^{12}\left(\mathrm{~cm}^{-1}\right)$	
v	Exp.	Calc. I	Calc. II	Exp.	Calc.	Calc. II
0	6.2691 ± 0.08	6.2534	6.2522	-7.05 ± 18.	4.18	-1.96
1	6.5002 ± 0.08	6.4252	6.4200		5.81	-6.37
2	6.7354 ± 0.29	6.6115	6.6478		7.80	-9.78
3	6.608 ± 0.4	6.8140	6.9835		10.02	-10.97
4	7.156 ± 0.7	7.0336	7.4874		13.10	$-8.41{ }^{\text {b }}$
5	10.823 ± 13.	7.2728	8.2347		16.62	-8.78 ${ }^{\text {b }}$
6	19.977 ± 11.	7.5334	$9.2143{ }^{\text {b }}$		20.47	-213.b

${ }^{a}$ Calculated I values were used as fixed parameters in cases where D or H could not be varied. They were generated using the method of D.L. Albritton et al., J. Mol. Spectrosc. 46, 25-36 (1973) and constants from A. Lofthus and P. Krupenie (see footnotes to Table IV). Calculated II values were generated from the constants in Table IV. Experimental values are merged constants (2). Uncertainties quoted are one standard deviation.
${ }^{\mathrm{b}}$ Summation is incomplete. See Albritton et al. (30).

TABLE VI

$$
X^{2} \Sigma_{g}^{+} \quad B^{2} \Sigma_{u}^{+}
$$

v	$\gamma_{v} \times 10^{2}\left(\mathrm{~cm}^{-1}\right)^{\mathrm{a}}$	$\gamma_{v} \times 10^{2}\left(\mathrm{~cm}^{-7}\right)^{\mathrm{a}}$	$-\mathrm{p}_{\mathrm{v}}^{\Sigma} \times 10^{2}\left(\mathrm{~cm}^{-1}\right)^{\mathrm{c}} \gamma_{\mathrm{J}} \times 10^{6}\left(\mathrm{~cm}^{-1}\right)^{\mathrm{a}}$	
0	$0.929 \pm 0.5^{\mathrm{d}}$	$2.401 \pm 0.5^{\mathrm{d}}$	2.63	-1.323 ± 0.5
1	$0.938 \pm 0.5^{\mathrm{d}}$	$2.902 \pm 0.5^{\mathrm{d}}$	3.30	-2.900 ± 1.2
2	0.949 ± 0.5	2.351 ± 0.5	2.87	-5.689 ± 4.0
3	0.935 ± 0.5	2.810 ± 2.3	3.32	-6.00 ± 6.0
4	0.913 ± 0.5	1.333 ± 0.3	2.03	-
5	0.749 ± 2.4	0.537 ± 1.9	2.56	-

${ }^{\mathrm{a}}$ Merged values. Uncertainties quoted are one standard deviation.
${ }^{\mathrm{b}}$ See Fig. 2.
${ }^{c}$ See text for definition.
${ }^{d}$ A.M. Bouchoux et al., J. Quant. Spectrosc. Radiat. Transfer 66, 451-456 (1976) report: $\gamma_{0}^{\prime \prime}=0.010 \pm 0.008$ and $\gamma_{0}^{\prime}-\gamma_{0}^{\prime \prime}=0.015 \pm 0.002 \mathrm{~cm}^{-1}$.
A.M. Bouchoux and J.P. Goure, Can. J. Phys. 55, 1492-1498 (1977) report $\gamma_{j}^{\prime}=$ ₹ $0.025 \mathrm{~cm}^{-1}$. E.A. Colbourn and A.E. Douglas, J. Mol. Spectrosc. 65, 332-333 (1977) report: $\gamma_{0}^{\prime \prime}=\gamma_{1}^{\prime \prime}=0.0083$ and $\gamma_{0}^{\prime}=0.0229 \mathrm{~cm}^{-1}$.

TRANSITION	OBSERVED FREQUENCY (CM ${ }^{-1}$)	$\begin{aligned} & \text { EXPT-CALC } \\ & \left(\mathrm{cM}^{-1}\right) \end{aligned}$	UNCERTAINTY $\left(\mathrm{CM}^{-1}\right)$	TRANSITION	OBSERVED FREOUENCY $\left(C M^{-1}\right)$	$\begin{aligned} & \text { EXPT-CALC } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	UNCERTAINTY $\left(\mathrm{CM}^{-1}\right)$
R_{1} (0)	21974.439	-0.003	0.100	P_{1} (5)	21955.247	0.000	0.100
R_{1} (1)	21978.688	0.000	0.020	p_{1} (6)	21953.055	-0.013	0.030
R_{1} (2)	21983.242	-0.011	0.007	P_{1} (7)	21951.084	0.002	0.020
R_{1} (3)	21988.111	-0.007	0.020	P_{1} (8)	21949.160	0.004	0.007
R_{1} (4)	21993.243	0.002	0.007	P_{1} (9)	21947.014	0.004	0.020
R_{1} (5)	21998.562	0.009	0.020	P_{1} (10)	21.944 .033	-0.019	0.010
R_{1} (6)	22003.965	0.042	0.100	$Q_{Q_{21}}(10)$	21963.012	-0.032	0.100
R_{1} (7)	22009.072	0.001	0.100	$\mathrm{QP}_{21}(11)$	21939.357	-0.008	0.020
R_{1} (8)	22013.416	0.010	0.007	P_{1} (11)	21958.794	-0.002	0.020
$S_{R_{21}}(8)$	22032.395	-0.002	0.020	P_{1} (12)	21956.407	-0.021	0.100
R_{1} (9)	22035.442	0.003	0.020	P_{1} (13)	21955.592	0.051	0.100
$\mathrm{S}_{\mathrm{R}_{21}}(9)$	22015.989	-0.018	0.030	$\mathrm{P}_{1}(14)$	21955.592	-0.017	0.100
R_{1} (10)	22040.351	-0.005	0.070	P_{1} (15)	21956.407	0.065	0.100
R_{1} (11)	22046.753	0.002	0.020	P_{1} (16)	21957.648	0.052	0.100
R_{1} (12)	22054.102	0.003	0.007	P_{1} (17)	21959.287	-0.011	0.030
R_{1} (13)	22062.113	0.007	0.020	P_{1} (18)	21961.418	0.003	0.007
R_{1} (14)	22070.630	0.000	0.007	P_{1} (19).	21963.914	-0.006	0.020
R_{1} (15)	22079.600	0.001	0.020	$\mathrm{P}_{1}(20)$	21966.832	0.029	0.100
R_{1} (16)	22088.978	0.002	0.007	P_{1} (21)	21970.045	-0.008	0.020
R_{1} (17)	22098.745	0.007	0.030	P_{1} (22)	21973.676	0.010	0.030
R_{1} (18)	22108.868	-0.002	0.007	P_{1} (23)	21977.642	0.006	0.100
R_{1} (19)	22119.368	0.002	0.020	P_{1} (24)	21981.959	-0.001	0.010
R_{1} (20)	22130.212	-0.004	0.007	P_{1} (25)	21986.648	0.010	0.100
R_{1} (21)	22141.428	0.008	0.010	P_{1} (26)	21997.667	0.003	0.007
R_{1} (22)	22152.968	-0.007	0.010	P_{1} (27)	21997.002	-0.035	0.020
R_{1} (23)	22164.870	0.004	0.020	P_{1} (28)	22002.763	0.004	0.020
R_{1} (24)	22177.090	-0.013	0.010	P_{1} (30)	22015.238	0.005	0.030
R_{1} (25)	22189.685	0.003	0.020	P_{1} (31)	22021.989	0.006	0.020
R_{1} (26)	22202.589	-0.009	0.010	P_{1} (32)	22029.082	0.008	0.020
R_{1} (27)	22215.851	-0.001	0.020	P_{1} (34)	22044.280	0.012	0.020
R_{1} (28)	22229.434	-0.006	0.020				
R_{1} (29)	22243.377	0.014	0.020	R_{2} (1)	21979.130	-0.007	0.020
	21966.832	-0.041	0.100	R_{2} (2)	21983.911	0.002	0.010
P_{1} (2)	21963.472	-0.005	0.100	$\begin{array}{ll}\mathrm{R}_{2} \\ \mathrm{R}_{2} & 3\end{array}$	21989.003	-0.005 0.006	0.010 0.070
P_{1} (3)	21960.418	-0.000	0.020 0.100	$\mathrm{R}_{2}(5)$	21999.999	0.054	0.050
$P_{1}(4)$	21957.648	-0.035	0.100	R_{2} (5)	21999.999	0.054	0.050

TRANSITION	OBSERVED FREQUENCY $\left(\mathrm{CM}^{-1}\right)$	$\begin{aligned} & \text { EXPT-CALC } \\ & \left(\mathrm{CM}^{-1}\right) \end{aligned}$	UNCERTAINTY $\left(\mathrm{CM}^{-1}\right)$	TRANSITION	OBSERVED FREQUENCY $\left(\mathrm{CM}^{-1}\right)$	$\begin{aligned} & \text { EXPT-CALC } \\ & \left(\mathrm{CM}^{-1}\right) \end{aligned}$	UNCERTAINTY $\left(\mathrm{CM}^{-1}\right)$
R_{2} (6)	22007.683	-0.003	0.010	P_{2} (12)	21950.841	-0.032	0.100
R_{2} (7)	22013.416	-0.025	0.020	P_{2} (13)	21951.423	-0.018	0.007
R_{2} (8)	22020.146	-0.005	0.007	P_{2} (14)	21952.361	-0.000	0.100
R_{2} (9)	22027.276	-0.006	0.010	P_{2} (15)	21953.635	0.004	0.100
R_{2} (10)	22034.781	0.000	0.007	P_{2} (16)	21955.247	-0.000	0.100
R_{2} (11)	22042.633	0.001	0.030	P_{2} (17)	21957.215	0.003	0.020
R_{2} (12)	22050.834	0.004	0.007	P_{2} (18)	21959.515	-0.009	0.100
R_{2} (13)	22059.365	-0.008	0.030	P_{2} (19)	21962.188	0.004	0.020
$\mathrm{R}_{2}(14)$	22068.259	-0.002	0.007	P_{2} (20).	21965.187	-0.002	0.100
R_{2} (15)	22077.491	-0.000	0.030	P_{2} (21)	21968.539	-0.003	0.007
R_{2} (16)	22087.063	-0.002	0.007	P_{2} (22)	21972.242	0.000	0.010
R_{2} (17)	22096.990	0.009	0.020	P_{2} (23)	21976.259	-0.027	0.100
R_{2} (18)	22107.256	0.019	0.030	P_{2} (24)	21980.680	0.002	0.010
R_{2} (19)	22117.856	0.021	0.020	P_{2} (25)	21985.423	0.010	0.020
R_{2} (20)	22128.772	-0.000	0.007	P_{2} (26)	21990.487	-0.006	0.100
R_{2} (21)	22140.043	-0.006	0.100	P_{2} (27)	21995.943	0.024	0.020
R_{2} (22)	22151.670	0.003	0.100	P_{2} (28)	22001.693	0.006	0.020
R_{2} (23)	22163.625	0.004	0.020	P_{2} (30)	22014.258	0.007	0.100
R_{2} (24)	22175.904	-0.008	0.010	P_{2} (31)	22021.046	0.000	0.020
$\mathrm{R}_{2}(25)$	22188.519	-0.022	0.020	P_{2} (32)	22028.125	-0.054	0.020
R_{2} (26)	22201.599	0.092	0.030	P_{2} (32)	22.028 .125		
R_{2} (27)	22214.815	0.009	0.020				
R_{2} (28)	22228.448	0.009	0.030				
R_{2} (29)	22242.422	0.017	0.020				
$\mathrm{P}_{\mathrm{Q}_{12}}(1)$	21966.832	-0.056	0.030				
P_{2} (2)	21963.692	-0.066	0.100				
P_{2} (3)	21960.883	-0.005	0.020				
P_{2} (4)	21958.361	0.002	0.020				
P_{2} (5)	21956.159	0.002	0.010				
P_{2} (6)	21954.258	0.003	0.007				
P_{2} (7)	21952.484	-0.010	0.030				
P_{2} (8)	21952.921	-0.018	0.030				
P_{2} (9)	21951.423	0.022	0.007				
P_{2} (10)	21950.841	0.022	0.100				
P_{2} (11)	21950.650	-0.011	0.100				

[^37]

No changes.

No changes.

$\mathrm{S}_{\mathrm{R}_{21}}(12)$	$23708.99{ }_{1}$
$Q_{P_{21}}(14)$	23607.354
$\mathrm{R}_{7}(3)$	23848.351_{1})
$\mathrm{R}_{2}(3)$, 23848.260 ${ }_{\text {¢ }}$)
$\mathrm{R}_{7}(29)$	
$\mathrm{R}_{2}(29)$)	24090.9193
$\mathrm{R}_{1}(30)$ \}	
$\left.\mathrm{R}_{2}(30)\right\}$	24104.2973
$\mathrm{R}_{7}(31)$	24117.9293
$\mathrm{R}_{2}(31)$	24118.048
$\mathrm{R}_{1}(32)$	24131.633_{3}
$\mathrm{R}_{7}(33)$	24145.319_{3}

Line	Energy ${ }^{\text {a }\left(\mathrm{cm}^{-1}\right)}$		Intensity ${ }^{\mathrm{b}}$	Commen
		$(2,3)$ Cont.		
$\mathrm{P}_{1}(24)$	23830.550_{1}		0	N
$\mathrm{P}_{2}(24)$	23830.256_{1}		0	N
$\mathrm{R}_{2}(31)$	21569.247_{1}	$(0,2)$	0	N

No changes.

No changes.

$(3,5)$			
$\mathrm{R}_{7}(0)$	21974.439_{2}	0	N
$\mathrm{R}_{2}(1)$	21979.130_{2}	0	N
$\mathrm{R}_{2}(2)$	21983.911_{2}	1	N
$\mathrm{R}_{2}(3)$	21989.003_{2}	1	N
$\mathrm{R}_{2}(4)$	21994.412_{2}	1	N
$\mathrm{R}_{2}(5)$	21999.992_{2})	1	N
$\mathrm{R}_{2}(6)$	22007.683_{2}	1	N
$\mathrm{R}_{2}(7)$	22013.416_{2}	3	N
$\mathrm{S}_{\mathrm{R}_{21}(8)}$	22032.395_{2}	0	$E\left[R_{1}(8)\right]$
$\mathrm{S}_{\mathrm{R}_{21}(9)}$	$22015.989{ }_{2}$	0	$E\left[R_{1}(9)\right]$
$\mathrm{R}_{7}(21)$	$22141.428{ }_{2}$	1	N
$\mathrm{P}_{7}(2)$	21963.472_{2}	0	N
$\mathrm{P}_{2}(2)$	21963.692_{2})	3	N
$\mathrm{P}_{2}(3)$	21960.883_{2}	0	N
$\mathrm{P}_{2}(4)$	21958.361_{2}	0	N
$\mathrm{P}_{2}(5)$	21956.159_{2}	1	N
$\mathrm{P}_{7}(6)$	21953.055_{2})	3	N
$\mathrm{P}_{2(6)}$	21954.2582	1	N
$\mathrm{P}_{2}(7)$	21952.484_{2})	1	N
$\mathrm{P}_{2}(8)$	21952.921_{2}	5	N
$\mathrm{P}_{2}(9)$	$21951.423{ }_{2}$	3	N
$Q_{P_{21}}(10)$	21963.012_{2}	5	$E\left[P_{1}(10)\right]$
$\mathrm{Q}_{\mathrm{P}_{21}}(11)$	21939.3572	0	$E\left[P_{1}(11)\right]$

Line	Energy ${ }^{\text {a }}\left(\mathrm{cm}^{-1}\right)$		Intensity ${ }^{\text {b }}$	Comments ${ }^{\text {c }}$
		$(3,5)$ Cont.		
$\mathrm{P}_{2}(29)$	-		-	D
$\mathrm{P}_{\mathrm{Q}_{12}(1)}$	$21966.832{ }_{2}$)		2	A
$\mathrm{R}_{\mathrm{Q}_{21}}(0)$	$\underline{\square}$			D
	$(4,6)$			
$\mathrm{R}_{7}(17)$)	22279.571_{3}			N
$\left.\begin{array}{l} \mathrm{R}_{2}(17) \\ \mathrm{R}_{2}^{2}(22) \end{array}\right\}$			0	N
$\mathrm{R}_{7}(24)$	$22354.485{ }_{3}$		0	N
$\mathrm{R}_{2}(24)$	22354.873_{3}		0	N
$\mathrm{R}_{7}(26)$	22378.463_{3}		0	N
$\mathrm{R}_{2}(26)$	22379.0273		0	N
$\mathrm{P}_{1}(23)$	22158.626_{3}		0	N
$\mathrm{P}_{2}(23)$	22158.783_{3}		0	N
P_{1} (24)	22162.4653		0	N
$\mathrm{P}_{2}(24)$	22162.708_{3}		0	N
$\mathrm{P}_{7}(25)$	22166.599_{3}		0	N
$\mathrm{P}_{2}(26)$	22171.4783		0	N
		$(5,7)$		
$S_{R_{21}}(3)$	22309.1393		1	$E\left[R_{1}(3)\right]$
$\mathrm{P}_{7}(18)$	22291.0573	$(6,8)$	0	A
$\left.\mathrm{R}_{1}(12)\right\}$	22477.2423		0	N
$\mathrm{R}_{2}(12)$				
$\mathrm{R}_{7}(13)$)			-	D
$R_{2}(13)$ $R_{7}(14)$	$\underline{22492.186_{3}}$			
$\mathrm{R}_{7}(14)$ \%			0	N
$\left.\mathrm{R}_{2}(14)\right\}$				
$\mathrm{R}_{1}(15)$			-	D
$\left.\mathrm{R}_{2}(15)\right\}$	22508.205_{3}		-	
$\mathrm{R}_{1}(16)$)			0	N
$\left.\mathrm{R}_{2}(16)\right\}$			0	N
$\left.\mathrm{R}_{1}(17)\right\}$			-	D
$\mathrm{R}_{2}(17) \mathrm{f}$			-	D

${ }^{\mathrm{a}}$ For explanation of subscripts, parenthesis, and δ see Ref. 1.
${ }^{\mathrm{b}}$ See Ref. 1.
${ }^{C} A \equiv$ additional value not reported in Ref. 1 determined from an extended analysis.
$D \equiv$ value reported in Ref. 1 is in error and should be deleted.
$E \equiv$ extra line. Main line is given in brackets.
$N \equiv$ value reported in Ref. 1 is in error and should be replaced by value given here.

Computer Programs

```
THIS PROGRAM CAICULATES 2SIG+-2SIG+ AND 2RI-2SIG+ TRANSITIONS CALC0001
CALCOOO2
CA LCOOO 3
CALCOOO4
CALCO005
CALC0006
CALCO OO7
CA LC0008
CALC0009
CALCOO10
CALC0011
CALC0012
CALC0013
CALCOO14
CALC0015
CAL,COO16
CA LCO017
CALC0018
CALCOO19
CALCO020
CA LCOO21
CALCO022
CALCOO23
CALCOO24
CALCOO25
CA LC0026
CALC0027
CALCOO28
CALCOO29
CA LCOO}3
CALC0031
CALCOO32
CALCOO33
CALCOO34 
CALC0035 \infty
CALCOO36
```

```
            OITH PARAMET ER NUMBER, AND CODE FOR UNITS.
```



```
        APTER LAST RARAMETEF CARD THERE MUST BE A CARD NTTH A -99 TYPED
        INIS FORMAT
            THE NUMBER OF PARAMETERS IS LIMITED IO 75.
IREG IS INPUT IN IT FORMAT. IF IREG=1 PI STATES NRE REGULAR
            OTHERWISE IREG=0 AND RI STATE IS INVERTED.
    SLIM AND ICODE INPUT IN F4.1, I1 FORMAT
        IF ICODE=1 DI STATES ARE PRINTED OUT
IF ICODE=2 ALL LINES ARE PRINTED OUT
            OTHERGISE STGMA STATES ARE PRINTED OUT
    SLIM IS FRACTION OF SIGMA CHATACTER USED TO JUDGE WHETHRR A LEVEI IS
    SIGMA OR PI. FOR EXAMPLE, IF SIGMA IS . O1 AND ICODE IS 0
        ALL LEVELS UTTH GREATER THAN 1 PERCENT SIGMA CHARACTER ARE PRINTED OUT CALCOOS4
IF ICODE=1 AND SLIM=0.01 ALL STATES UITH LESS THAN 99% SIGMA CHARACTER
    ARE OUTPUT
        IF NO FURTHER DECKS ARE TO BE INPUT PUT THO BLANK CABDS AT END
            OF DECK.
INTEGER FLAG,UNITS
INTEGER GAMAX,GVAR
INTEGER GFIAG
INTEGER GFLAG
DIMDNSION GPLAG(75)
DOUBJE PRECISION D (9), E(9),GP(75),GS(26),GT (26),BOT (2,101)
DOUBIE PRBCISION SAVE
DIME NSION TS (9,2,101),TP(9,2,101), PP (4300), PS (4300)
DOURI, P PRECISTON P (75),S (26),T (26),DELOAT,
1X,H(9,9),0(9,9), TE (9,2,101),VU(
14300), TERM (4300), SHIFT
DIMENSION FLAG(75), IRANK(4300), PTY (4300), DJ (4300),NCVAR(
CALCOO 37
                            CAI COO39
CA LC0040
```



```
CALCOO41
CALCOO42
CALCOO43
CALCOO44
CNC0045
CALC0045
```



```
CAL COO46
CALC0047
CAL COO48
CALCOO49
CA LC0049
CALCOO50
    CALC0051
    CALCOO52
    CA LCOO53
CALCO054
CA LCOO55
CALC0056
CALC0057
CALCO058
CA LCOO59
CALC0060
CALCO061
CALC0062
CA LC0063
CALC0064
CALCOO65
CALC0066
CALC0067
CALC0068
CALCO069
CA LC0070
```

 130),DIM(2)
 CALC0073
 DOURLE PRECISION X1,X2,X3,X4,X5,DN,VLAM(4300)
 REAL *8 NAMES (75)
 REAL*4 PAR (2)/1HE,1HF/
 REAL*8 BCE (4300)
    ```

```

 15H-P 12(,5H-Q 12(, 4H-Q2(,5H-021).4H-Q1(/
 DATA DIM(1)/2HMC/,DIM(2)/2HCM/
 RRAL*8 FIT (2)/6HEITTED.5HFIXED/
 1 DO 820 I=1,4300
 VLAM (I) =0.0
 DJ (I) =0.0
 PY (I)=0.0
 TERM (I)=0.0
 PP(I)=0.0
 PS (I)=0.0
 BCH(I) =0.0
 VD (I) =0.0
 820 IPANK(I) =0
DO 821 I=1,75
GFLAG(I)=0
GP(I)=0.0
FLAG (I)=0
221 P(J)=0.0
READ9
9 FORMAT(10X,70H
1
BEAD 19, NMAX, MAX RK, NERGY
19 FORMAT(3I5)
IF(NMAX.EO.?) GO TO 999
READ29,GAMAX
READ 29.(GVAR(I),I=1,GAMAX)
17 WAVE=1.0
READ39,I,GP(I),GFIAG(I)
IF(I.EQ.-99) GO TO 22
IF (GFLAG (I).EQ.1) WAVE=29979.25DO
CALCOO74
CA LC0075
CALCO076
CALC0077
C ALC 0078
CALC0079
CALC0080
CALC0081
CALC0082
CALCOO83
CALCOO84
CALC0085
CA LC0086
CALC0087
CA LCDO88
CALC0089
CALC0090
CALC0091
CALC0092
CALC0093
CALCO094
CA LC0095
CALCOO96
CA LC0097
CALC0098
CA LC0099
CALC0100
CALC0 101
CALC0102
CALC0103
CALC0104
CALCO }10
CALC0106
CALC0107
CALCO }10

```
```

 GP(I)=GP(I)*GAVE
 GO TO 17
 2 2 CONTINJP
READ29, IAMAX
29 FORMAT(15I5)
RGAD 29,(NCVAR(I),I=1, IAMAX)
7 WAVE=1.?
READ39,T,P(I),FLAG(I)
IF(I.\&Q.-99) GO TO 2
39 FORMAT(I 5, D15.8,I5)
IF (FLAG(I).EQ.1) GAVE=29979.25DO
P(I)=P(I) *WAVE
GO TO 7
2 CONTINUE
READ59,IREG
59 FORMAT (I 1)
READ69,SLIM,ICODE
69 FOBMAT (F4.1,I1)
4 SHIPT=DPLOAT (NFRGY)
NCALC=NM AX + 1
CALL NAMEIT (NAMES,75)
CALI SEIUP (GP,GS,1.0)
CALL SETUP(GP,GT,-1.0)
M=MAXRK
DO 1010 J=1,NCALC
X=DPLOAT (J)
CALL. MATRIX(GS,GP,X,H)
BOT (1,J) = \# (1, 1)/29979.25DO
CALI MATRIX (GT,GP,X,H)
1010 BOT (2,J)=H (1,1)/29979. 25DC
CALL SETUP (}\textrm{P},\textrm{S},1.0
CALL. SEPUP (P,T,-1.0)
DO 10 J=1, NCALC
X= DF LO AT (J)
CALL, MATRIX(S,P,X,H)
DO 932 KK=1,9

```

CALC0109
CALCO 110
CALC0111
CALC0 112
CALC0113
CALCO 114
CALC0115
CALCO 116
CALC0117
CALC0118
CALCO 119
CALC 0120
CALCO 121
CALC0122
CALCO 123
CALC0124
CALCO 125
CALCO 126
CALC 0127
CALCO 128
CALC0129
CALCO 130
CALCO131
CALCO 132
CA LCO 133
CALC0134
CA LC0 135
CALC0136
CALCO 137
CALC0138
CALCO 139
CA LCO 140
CALCO141
CALCO 142 灾
CALCO143
CALCO 144

DO 822 II \(=1,9\)

CA LCO 145
CALC0146
CAICO 147
CALC0148
CALC0 149
CALC0150
CALC0151
CALCD 152
CALC0153
CALCO 154
CALC0155
CALCO 156
CALC0157
CALCO 158
CALC0 159
C AL C0160
CA LCO 161
CALC 0162
CALC0 163
CALC0164
CALCO 165
CALC0166
CALCO 167
CALCO 168
CALC0169
CALCO 170
CALC0171
CALCO 172
CALC0173
CALCO 174
CALC0175
CALC0 176
CALCO 177
CALC 0178
CALCO 179
CALC0180
```

$\operatorname{IF}\left(T F_{(1, I, J)} L E .0 .1\right)$ GO TO 200

```

CAL C0181
TR \((\mathrm{I}, \mathrm{I}, \mathrm{J})=T \mathrm{~T}(\mathrm{~L}, \mathrm{I}, \mathrm{J})+\mathrm{SHIFT}\)
200 CONTINUE
\(I C O D E=I C O D E+1\)
\(\mathrm{N}=1\)
DO \(50 \mathrm{~J}=3\), NMAX
DO \(59 \mathrm{~L}=1\), MAX 1
DO \(50 \mathrm{I}=1,2\)
IF (TR (L,I, J).LT..01) GO TO 59
GO TO \((51,52,53)\), ICODE
51 IF (TS (L,I,J).LE.SLIM) GO TO 50 GO TO 53
\(52 \mathrm{SLIM}=1.0 \mathrm{DO}-\mathrm{SIIM}\)
IF (TS (L,I,J).GE.SLIM) GO TO 50
53 CONTINUE
\(V(J \quad(N)=T E(I, I, J)-B O T(I, J-1)\)
TERM (N) \(=T E(\mathrm{~L}, \mathrm{I}, \mathrm{J})\)
IRANK (N) =L
\(P P(N)=T P(L, I, J)\)
PS (N)=TS (L, I, J)
\(\operatorname{PRP}=1.0-\operatorname{PD}(\mathbb{N})-\operatorname{PS}(N)\)
PMAX=AMAX1 (PS (N), PP (N), PRP)
IF (I.RQ. 2) GO TO 701
\(\mathrm{BCH}(\mathrm{N})=\mathrm{B}(1)\)
IF (PMAX.EQ.PS(N)) GO TO 702
IF (PMAX. EQ.PRP) \(\quad \mathrm{BCH}(\mathrm{N})=\mathrm{B}(2)\)
GO TO 702
\(701 \mathrm{BCH}(\mathbb{N})=\mathrm{B}(3)\)
IF (PMAX. EQ.PS (N)) GO TO 702
IF(PMAX.EQ.PP(N)) \(\quad B C H(N)=B(4)\)
\(702 \operatorname{PTY}(\mathbb{N})=\mathrm{PAR}\) (I)
\(\mathrm{DJ}(\mathrm{N})=\mathrm{FLCAT}(\mathrm{J}-1)-0.5\)
\(\mathrm{N}=\mathrm{N}+1\)
5 CONTINUE
DO \(70 \mathrm{~J}=2\), NMAX
DO 7 N \(\mathrm{L}=1\), MAX 1

CALCO 182
CALC 0183
CALCO 184
CALCO 185
CAL CO 186
CALCO187
CALC0 188
CALC0 189
Calco190
CALCO 191
CALC0192
CALCO 193
CALC0194
CALC0 195
CA LC0196
CALC0 197
CALC0 198
CALC0199
CALCO 200
CALC 0201
CALCO202
CALC0203
CALCO 204
CA LC0205
CALCO 206
CALCO207
CALC0208
CALC0 209
CALC 0210
CALCO 211
CALC0212
CALC0 213
CALC0214
CALC0 \(215 \underset{\sim}{\omega}\)
CALC0216
```

 DO 70 I=1.2
 IF(TE(I, I,J).LT..01) GO TO 70
 GO TO (71,72,73). I CODE
 71 IF (TS(L,I,J).LE.SLIM) GO TO 70
GO TO 73
72 SLIH=1.0DO-SLIM
IF (TS (L,I,J).aE.SLIM) GO TO 7%
7 3 CONTINUE
VO(N)=Te(L,I,J)-BOT(I,J+1)
IRANK(N) = L,
PP(N)={P(L,I,J)
PS (N)=TS (L,I,J)
PRP=1.0-PP (N)-PS (N)
PMAR =A MAX1(PS(N), PP(N),RRP)
IF(I.EQ. 2) GO TO 703
BCH(N)=B (5)
IF(PMAX.EQ.PS(N)) GO TO 704
IF(PMAX.EQ.PRP) BCE (N)=B(6)
GO TO }70
703 BCH (N)=B(7)
IF(PMAX.EQ.PS(N)) GO TO 704
IF(PMAX.EO.PE(N)) BCH(N)=B(8)
794
DU(N)=FL,CAT(J+1) -0.5
PTY (N)=PAR(I)
TRRM (N)=TE (L,I,J)
N=N+1
70 CONTINUE
DO 90 J=2,NMAX
DO 90 J,=1,MAX1
DO }90I=1,
IF (TE(L,I,J).LT..01) GO TO 90
GO TO (91,92,93), ICODE
91 IF(TS(I,I,J).LE.SLIN) GO TO 90
GO TO }9
92 SLIM=1.0DO-SLIM
IF (TS (L,I,T).GE.SLTM) GO TO 9%

```
```

9 3 CONTINUE
MR=2
IF(I.EQ.2) MR=1
VU(N)=TE (L,I,J) - BOT (MR,N)
IRANR(N)=L
PP(N)=TP(L,I,J)
PS (N)=TS (L,I,J)
PRP=1.0-PP(N)-PS (N)
PMAX=AMAX1(PS(N),PP(N),PRP)
IF (I.EQ. 2) GOTO 705
BCH (N)=B(9)
IF(PMAX.EQ.PS(N)) GO TO 706
IF (PMAX.ER.PRP) BCH(N)=B(10)
GO mo 706
705 BCH (N)=B(11)
IF (PMAX. EQ.PS (N)) GO TO 706
IP(PMAX.EQ.PP(N)) BCH(N)=B(12)
706 DJ(N)=FLOAT (J)-0.5
PTY (N)=PAR(I)
TERM (N)=TE(L,I,J)
N=N+1
90 CONTINUE
DO 120 L=1,MAX 1
DO 120 I=1,2
IF (TE (L,I,1).LT..01) GOTO 120
GO TO (121,122,123), ICODE
121 IF (TS (L,I,1).LE.SLIH) GO TO }12
GO TO 123
122 SLIM=1.0DO-SLIM
IF (TS(L,I,1).GR.SLIP昨) GO TO 120
123 CONTINUE
VU (济)=TE (L,I,1)-BOT(I,2)
IRAUK(N)=I,
PP {N)=TP (L,I,1)
PS(N)=\operatorname{TS}(L,I,1)
PRR=1.0-PP(N)-PS(N)
$P R P=1.0-P P(N)-P S(N)$

```

CALC0253
CALCO 254
CALC0255
CALCO 256
CALC0257
CALC0258
CALCO 259
CALC 0260
CALCO 261
CALC0262
CALCO 263
CALC0264
CALC0 265
CALCO 266
CALC0267
CALC0 268
CALC 0269
CALCO 270
CALC0271
CALCO 272
CALC0273
CAL C0 274
CALC0275
CALCO 276
CA LCO 277
C ALC0278
CA LC0 279
CALC 0280
CALC0 281
CALC0282
CALC0 283
CA LC0284
CALCO 285
CALCO286
CALC0 287
CALC0288
```

 PMAX=AMAX1(PS(N),PP(N),PRP) CALC0289
 IF(I.EQ.2) GO TO 707
 BCH(N)=B(5)
 IF(PMAX.EQ.PS(N)) GO TO 708
 IF (PMAX.EQ.PRP) BCH (N)=B(6)
 GO TO 708
 707 BCH (N)=B(7)
IF(PMAX.EQ.PS(N)) GO TO 708
IF(PMAX. E2.PE(N)) BCH(N)=B(8)
708 DJ (N) =1.5
PTY (N)=PAR(I)
TERM (N)=TE (I,I,1)
N}=\textrm{N}+
120 CONT INUE
DO 140 L=1,MAX1
DO 140 I=1,2
IF(TE(E,I,1).IT..01) GO TO 140
GO TO (143, 144,145), ICODE
143 IF(TS(L,I,1).IE.SLIM) GO TO 140
GO TO 145
144 SLIM=1.0DO-SLIM
IF (TS(L,I,1).GE.SLIM) GO TO 140
145 CONTINUE
IF(I.EQ.2) GO TO 141
VU (N)=TE (L,I,1)-BOT (2,1)
GO TO }14
141 VU (N)=TE (I,I,1)-BOT (1,1)
142 IRANK(N)=L
PP(N)=TP (L,I,1)
PS (N)=TS (L,T,1)
PRP=1.0-PP(N)-PS (N)
PMAX=AMAX1 PSS(N),PP(N),PRP)
IF(I.EQ.2) GO TO 709
BCH (N)=B(9)
IF(PMAX.EQ.PS(N)) GO TO 710
IF (PMAX.EQ.PRP) BCH(N)=B(10)

```

CALC0289
CALC0 290
CA LC 0291
CALCO 292
CALCO 293
CALC0294
CA LCO 295
CALC 0296
CALCO 297
CALC0298
CALCO 299
CALC0300
CALCO 301
CALCO 302
CALC03 03
CALCO 304
CALC 0305
CALC0306
CALC0307
CALC0 308
CALC0309
CALCO 310
CALCO 311
CALC0312
CALCO 313
CALC 0314
CALCO 315
CALC 0316
CALCO 317
CALC0318
CALCO 319
CALCO 320
CALC0321
CALC0 322
CALC0323 o
CALCO 324

GO TO 710
CALCO325
\(709 \mathrm{BCH}(\mathrm{N})=\mathrm{B}(11)\)
IF (PMAX. EQ.PS (N)) GO TO 710
CALC0 326
CALCO327
CALC0328
calco 329
calc 0330
CALCO 331
CALC0332
CALCO 333
CA LCO 0334
CALCO 335
CALCO 336
C ALC0337
CA LCO 338
CALC0339
CALCO 340
CALC0341
CALCO 342
CALCO343
CALCO 344
CALCO 345
CALCO 346
CA LC 0347
CALCO 348
CA LCO 349
CALC0350
CALCO 351
CALC 0352
CALCO 353
CALCO 354
CALC0 355
CALCO 356
CAI_C0357
CALC0 358
CALC0359
CALCO 360
```

150 CONTINUR
MCALC=N-1
DO 211 N=1,MCALC
PS (N)=100.0*PS (N)
211 PP(N)=100.0*PP(N)
211 NF=0
DO 230 N=2,MCALC
K=N-1
IF(VU(N).LE.VO(K)) GO TO 230
SAVE= VU (K)
VO(K)=VU(N)
VO(N)= SAVE
ISAVE=IRANK(K)
T. RANK (K)=IRANK (N)
IRANK(N)=ISAVE
SAVE=BCH (K)
BCH(K)=BCH (N)
BCH(N)=SAVR
SAVE 1=DJ (K)
D.T(K)=DJ (N)
DJ (N)= SAVE1
SATE 1= PT Y (K)
BTY(K)=PTY(N)
PTY(N)=SAVE1
SAVE=T RRM(K)
TERM (K)=TERM (N)
TERM(N) =SAVE
SAVE1=PP(K)
PP(K)=PP(N)
PP(N)= SAVE1
SAV是 1= PS (K)
PS(K)=PS(N)
PS (N)=SA VE1
NF=1
230 CONPINUE
IF(NF.GT.0) GO TO 210

```
Ca Len 361
CALC0362
CALC0 363
CALC0364
CALC0 365
CALC0366
CALC0367
CALCO 368
CALC0369
CA LCO 370
CALC0371
CALC0 372
CALC0373
CALCO 374
CA LC0 375
C AL C0376
CALCO 377
CALC 0378
CALCO 379
CALC0380
CALC0 381
CALC 0382
CALCO 383
CALCO 384
CALC0385
CALCO 386
CALC 0387
CALC0 388
CALC0389
CAL C0 390
CALC0391
CALC0 392
CALC0393
CALC 0394
```

 X1=1.0 D0 +6.4328 D-05
 X2=2.9498100+06
 X 3 =2. 5540D+04
 X4=1.46D+10
 X5=4.1 D+09
 DO 2.40 L= 1,MCALC
 DN=X 1+X2/(X4-VO(L)**2) +X 3/(X5-VU(I)**2)
 VLAM(L) =1.0D+08/VO(L)
 VLAM (T)=VLAM (L)/DN
 240 CONTINUE
PRINT219
219 FORMAT(1H1,///,20X,25H2-SIGMA+ 8-, 2-PI ESTIMATOR,//)
pRINTG
PRJNT419
419 FOPMAT(///20X,28HGROUND STATE PARAMETERS USED)
DO 425 I=1.75
IF(GFLAG (I).EQ.1) GO TO 451
GO TO 452
451 GP(I)=GP(I)/29979.25D0
452 CONTINUE
L=2
DO 450 J=1,GAMAX
450 IF (I.EQ.GVAR(J)) L=1
K=GFLAG (I) +1
PRINT239,NAMES (I),GP(I),DIM(K),FIT(L)
4 2 5 ~ C O N T I N U E ~
PRIMT229
229 FORMAT ('1'.////,20X,29 HEXCITED STATE PARAMETERS USED)
DO 225 I=1,75
IF (PLAG(I).EQ.1) GO TO 251
GO TO 252
251P(I)=P(I)/29979.25D0
252 CONTTNUE
L=2
DO 250 J=1,T AMAX
250 IF(I.EQ.NCVAR (J)) I=1

```

CALC0 397
CALC0398
CAL C0 399
CALCO 400
CALC 0401
CALCO 402
CALC0403
CALCO 404
CALCO 405
CALC0406
CA LCO 407
CALCO 408
CALCO 409
CALC0410
Calco 411
CALC0412
CALCO413
CALCO 414
CALC 0415
CALCO4 16
CALC0417
CALCO 418
CALCO4 19
CALC0 420
CALCO421
CALC0422
CALCO 423
CALC0424
CALC0 425
CALC0426
CALCO 427
CALC0428
CALC0429
CALCO430
CALC 0431
```

 K=FLAG (I)+1
 PRINT239,NAMES(I),P(I),DIM (K),FIT(L)
 239 FORMAT (10X,A 8,5X,D 15.8,2X,A6,2X, A 10)
225 CONmINUE
PRTNT779,NERGY
779 FORMAT(' *,5X,I5,' CM-1 SHOULD BE ADDED TO UPPER STATE ENERGIES')
PRINT259
259 FORMAT('1',5X,32HENERGY ORDERED TRANSISITION LIST//)
PRINT897
897 FORMAT (3X,11HRANK-BRANCH, 13X,6HENERGY,9X,7HPERCPNT,10X,7HPERCENT,2
13X,13HEXCITED STATE,9X,3HAIR)
IF (IREG.BQ. 1) GO TO 920
PRINTR9P
838 FORMAT (28X,6H(CM-1),9X,5HPI 3/2,13X,5HSIGMA,23X,11HTMRM ENERGY, 3X,6
1HPARITY,1X,9HLAMBDA(A)//)
GO TO 922
9 2 0 ~ P R T N T 8 9 9 ~
899 FORMAT(2 XX,6H(CM-1),9X,5HPI1/2,13X,5HSIGMA,23X,11HTERM ENERGY,3X,6
1HPARITY, 1X,9HLAMBDA(A)//)
922 DO 910 N=1,MCALC
910 PRINT900,TRANK(N),BCH (N),DJ (N),VU(N), PR(N),PS(N),TERM(N),PTY(N)
1.VLAM (N)
900 FORMAT (2X,T2,A5,F4.1, 1H),10X,F12.4, 3X,F10.4,7X,F10.4,8X,13X,F13.6,
15X,A1,3X,F9.3)
998 GO TO 1
999 STOP
END

```

CA LCO433
CAL CO 434
CALCO435
CALC 0436
CALCO 437
CALCO438
CALCO 439
CALCO 440
CALCO 441
CALCO442
CATCO 443
CALCO444
CALCO 445
CALCO 446
CALC 0447
CALCO 448
CALCO 449
CALCO 450
CALC0451
CALCO 452
CALCO 453
CALCO454
CALCO455
CALC 0456
CALCO 457
CALC0458
CALCO 459

2-SIGMA + - - 2 -PI BSTIMATOR
\(\mathrm{N} 2+\mathrm{B} 2 \mathrm{Sig}+-\mathrm{X} 2 \mathrm{SIG}+(3,5)\) Calcolated SPBCTRUM
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{GROUND STATE PARAMETRRS USED} \\
\hline E1S & \(0.10552040 \mathrm{D}+05\) & CM & FIXED \\
\hline B15 & \(0.18259093 \mathrm{D}+01\) & CM & FITtED \\
\hline D1s & \(0.18081905 \mathrm{D}+00\) & \(\mathrm{m}^{\text {C }}\) & Pltted \\
\hline gamis & \(0.52306955 \mathrm{D}-02\) & CM & PITTED \\
\hline beta 12 & 0.0 & sc & PIXED \\
\hline \({ }_{\text {A } 13}\) & 0.0 & ac & PIXED \\
\hline C14 & 0.0 & 4C & FIXED \\
\hline beta 15 & 0.0 & \({ }^{\text {ac }}\) & PIXED \\
\hline A 16 & 0.0 & \({ }^{12}\) & PIXED \\
\hline B1P & 0.0 & \({ }^{\text {MC }}\) & PIXED \\
\hline B1P & 0.0 & 4 C & PIXBD \\
\hline \({ }^{1} 18\) & 0.0 & MC & FIXED \\
\hline Gam1P & 0.0 & MC & PIXBD \\
\hline Q1P+ & 0.0 & BC & FIXED \\
\hline D1P & 0.0 & HC & PIXRD \\
\hline AJV \(1 P\) & 0.0 & 4C & PIXED \\
\hline AVo 1P & 0.0 & MC & PIXBD \\
\hline P1P+ & 0.0 & HC & PIXED \\
\hline beta 24 & 0.0 & mC & FIXED \\
\hline H1P & 0.0 & MC & PIXED \\
\hline H2P & 0.0 & nc & PIXED \\
\hline 01 P & 0.0 & \({ }_{8 C}\) & PIXED \\
\hline A34 & 0.0 & MC & PIXED \\
\hline H1S & \(0.69100000 \mathrm{D}-07\) & 4 C & PIXED \\
\hline H2S & 0.0 & \({ }_{4}\) & PIXED \\
\hline E2S & 0.0 & HC & PIXED \\
\hline B2S & 0.0 & HC & PIXED \\
\hline D2S & 0.0 & \%C & PIXRD \\
\hline Gam2S & 0.0 & mC & PIXED \\
\hline BETA45 & 0.0 & nc & PIXED \\
\hline \({ }^{1} 46\) & 0.0 & \({ }^{\text {a }}\) & PIXED \\
\hline A2P & 0.0 & HC & PIXED \\
\hline GAM2P & 0.0 & HC & PIXRD \\
\hline Q2P+ & 0.0 & AC & PIXED \\
\hline D2P & 0.0 & \({ }^{\text {ac }}\) & PIXCOD \\
\hline AJV2P & 0.0 & MC & FIXED \\
\hline A V02P & 0.0 & MC & PIXad \\
\hline P2P+ & 0.0 & HC & FIXED \\
\hline 02 P & 0.0 & MC & PIXED \\
\hline E2P & 0.0 & nc & FIXED \\
\hline B2P & 0.0 & צC & PIXED \\
\hline Q1F- & 0.0 & 4 C & PIXED \\
\hline P1P- & 0.0 & 4 C & FIXEC \\
\hline Q2P- & 0.0 & HC & PIXED \\
\hline P2P- & 0.0 & 4 C & PIXED \\
\hline Q1S & 0.0 & MC & PIXED \\
\hline P15 & 0.0 & MC & P1XLD \\
\hline 015 & 0.1 & ac & PIXED \\
\hline Q2S & 0.0 & MC & PIXLD \\
\hline P2S & 0.0 & nc & pIX 51 \\
\hline 02 S & 0.0 & MC & FIXED \\
\hline gamu1s & 0.0 & нC & PIX \({ }^{\text {cie }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GAMJ2S & 0.0 & MC & PIXED \\
\hline BETA 17 & 0.0 & MC & PIXAOD \\
\hline \({ }^{118}\) & \(0.0)\) & MC & PIXED \\
\hline 83P & 0.0 & 4C & PIXED \\
\hline в3P & 0.0 & MC & PIXED \\
\hline \({ }^{\text {a }}\) P & 0.0 & uc & FIXED \\
\hline GAs3P & 0.0 & MC & PIXAD \\
\hline Q3p+ & 0.0 & MC & PIXSD \\
\hline D3P & 0.0 & MC & PIXED \\
\hline AJV3P & 0.0 & MC & pixee \\
\hline Avo3p & 0.0 & MC & PIXED \\
\hline Q3P- & 0.0 & MC & FIXED \\
\hline H3P & 0.0 & Mc & FIXEid \\
\hline P3P+ & 0.0 & BC & PIXED \\
\hline P3P- & 0.0 & HC & PIXED \\
\hline BETA47 & 0.0 & MC & FIXED \\
\hline 03 P & 0.0 & MC & FIXED \\
\hline 148 & 0.0 & MC & PIXED \\
\hline & 0.0 & MC & FIXED \\
\hline & 0.0 & нс & FIXED \\
\hline & 0.0 & MC & FIXED \\
\hline & 0.0 & Mc & fixed \\
\hline & 0.0 & MC & PIXED \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline B1S & 0.0 & \({ }_{4 C}\) & PIXED \\
\hline B1s & 0.0 & mC & PIXeD \\
\hline D1s & 0.0 & MC & PIXED \\
\hline Gam1S & 0.0 & mC & PIXED \\
\hline betal2 & 0.0 & MC & PIXED \\
\hline A 13 & 0.0 & MC & FIXED \\
\hline c14 & 0.0 & MC & PIXED \\
\hline beta 15 & 0.0 & MC & FIXED \\
\hline 116 & 0.0 & HC & FIXED \\
\hline 81P & \(0.12522270 \mathrm{D}+05\) & см & Pitted \\
\hline B1P & \(0.14652300 \mathrm{D}+01\) & CM & pitted \\
\hline \({ }_{\text {A } 1 P}\) & -0.74600000D+02 & cu & PIXED \\
\hline Gam1P & 0.0 & MC & PIXED \\
\hline Q1P+ & 0.0 & \({ }^{4} \mathrm{C}\) & PIXED \\
\hline D1P & \(0.12290000 \mathrm{D}+00\) & MC & FIXED \\
\hline AJV1P & 0.0 & MC & PIXED \\
\hline avolp & 0.0 & MC & PIXED \\
\hline P1P+ & 0.0 & MC & PIXED \\
\hline BETA24 & \(0.49504233 \mathrm{D}+00\) & CM & fitted \\
\hline H1P & -0.45900000D-07 & HC & PIXED \\
\hline H2P & -0.459000000-07 & MC & PIXED \\
\hline 01 P & 0.0 & MC & PIXED \\
\hline A34 & -0.58444630D+01 & CM & FITTED \\
\hline [15 & 0.0 & MC & PIXED \\
\hline H2S & \(0.10300000 \mathrm{D}-06\) & MC & FIXED \\
\hline E2S & \(0.12523469 \mathrm{D}+05\) & cM & PITTED \\
\hline B2S & \(0.20007736 \mathrm{D}+01\) & CM & PITTED \\
\hline D2S & \(0.21507079 \mathrm{D}+00\) & MC & PITTED \\
\hline gam2s & \(0.17551033 \mathrm{D}-01\) & ca & PITTED \\
\hline beta 45 & -0.16375000D+00 & CM & PIXED \\
\hline A46 & \(0.52931100 \mathrm{D}+01\) & CM & PIXED \\
\hline A2P & -0.74600000D+02 & CM & FIXED \\
\hline GAm2P & 0.0 & MC & PIXED \\
\hline Q2P+ & 0.0 & MC & FIXED \\
\hline D2P & U.12290000D+00 & MC & PIXED \\
\hline AJV2P & 0.0 & MC & PIXED \\
\hline AV02P & 0.0 & MC & PIXED \\
\hline P2P+ & 0.0 & MC & FIXED \\
\hline 02 P & 0.0 & MC & PIXZD \\
\hline B2P & \(0.13966800 \mathrm{D}+05\) & CM & PIXED \\
\hline B2P & \(0.143800000+01\) & CM & PIXED \\
\hline Q1P- & 0.0 & mC & PIXED \\
\hline P1P- & 0.0 & MC & PIXED \\
\hline Q2P- & 0.0 & HC & PIXED \\
\hline P2P- & 0.0 & MC & PIXED \\
\hline Q1S & 0.0 & MC & FIXED \\
\hline P1S & 0.0 & MC & PIXED \\
\hline 015 & 0.0 & nc & PIXED \\
\hline Q2S & 0.0 & MC & PIXED \\
\hline P2S & 0.0 & \({ }^{\text {MC }}\) & FIXED \\
\hline 02 S & 0.0 & MC & PIXED \\
\hline gamj 15 & 0.0 & MC & FIXED \\
\hline GamJ2S & 0.0 & ac & PIXid \\
\hline beta 17 & 0.0 & MC & PIXED \\
\hline A18 & 0.0 & HC & FIXed \\
\hline 83P & 0.0 & MC & FIXED \\
\hline B3P & 0.0 & MC & P1X94 \\
\hline A3P & 0.0 & Mc & PIXED \\
\hline G AM3P & 0.0 & MC & FIXED \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline R1s & 0.0 & \({ }_{8}\) & PIXED \\
\hline B1s & 0.0 & mC & FIXed \\
\hline D1s & 0.0 & MC & PIXED \\
\hline gam1s & 0.0 & MC & PIXED \\
\hline betal2 & 0.0 & MC & PIXED \\
\hline A 13 & 0.0 & MC & FIXED \\
\hline c14 & 0.0 & HC & PIXED \\
\hline bETA 15 & 0.0 & MC & FIXED \\
\hline 116 & 0.0 & HC & FIXED \\
\hline 81P & \(0.12522270 \mathrm{D}+05\) & См & Pitted \\
\hline B1P & \(0.14652300 \mathrm{~d}+01\) & CM & PITTED \\
\hline \({ }_{\text {A } 1 P}\) & -0.74600000D+02 & CM & PIXED \\
\hline Gam1P & 0.0 & MC & PIXbD \\
\hline Q1P+ & 0.0 & \%С & PIXED \\
\hline D1p & \(0.12290000 \mathrm{D}+00\) & mC & FIXED \\
\hline AJV1P & 0.0 & MC & FIXED \\
\hline avolp & 0.0 & \({ }^{\text {MC }}\) & PIXED \\
\hline P1P+ & 0.0 & HC & PIXED \\
\hline BETA24 & \(0.49504233 \mathrm{D}+00\) & CM & FITted \\
\hline H1P & -0.459000000-07 & HC & PIXED \\
\hline H2P & -0.459000000-07 & MC & PIXED \\
\hline 01P & 0.0 & MC & PIXED \\
\hline 134 & -0.58444630D+01 & CM & FITTED \\
\hline 115 & 0.0 & MC & PIXRD \\
\hline H2S & \(0.10300000 \mathrm{D}-06\) & MC & FIXCD \\
\hline E2S & \(0.12523469 \mathrm{D}+05\) & CM & PITTED \\
\hline B2S & \(0.20007736 \mathrm{D}+01\) & CM & PITTED \\
\hline D2S & \(0.21507079 \mathrm{D}+00\) & MC & PITTED \\
\hline Gam2S & \(0.17551033 \mathrm{D}-01\) & ca & PITTED \\
\hline beta45 & -0.16375000D+00 & CM & FIXED \\
\hline A 46 & \(0.52931100 \mathrm{D}+01\) & CM & PIXED \\
\hline A2P & \(-0.74600000 \mathrm{D}+02\) & CM & FIXED \\
\hline GAm2P & 0.0 & MC & PIXED \\
\hline Q2P+ & 0.0 & MC & FIXED \\
\hline D2P & \(0.12290000 \mathrm{D}+00\) & 8C & PIXED \\
\hline AJV2P & 0.0 & MC & FIXED \\
\hline AV02P & 0.0 & MC & PIXED \\
\hline P2P+ & 0.0 & ¢C & PIXED \\
\hline 02 P & 0.0 & mC & PIXZD \\
\hline B2P & \(0.13966800 \mathrm{D}+05\) & CM & PIXED \\
\hline B2P & \(0.14380000 \mathrm{D}+01\) & CH & PIXED \\
\hline Q1p- & 0.0 & MC & PIXED \\
\hline P1P- & 0.0 & MC & PIXED \\
\hline Q2P- & 0.0 & \({ }^{\text {c }}\) & PIXED \\
\hline P2P- & 0.0 & MC & PIXED \\
\hline Q1S & 0.0 & нC & FIXED \\
\hline P1S & 0.0 & MC & PIXED \\
\hline 015 & 0.0 & nC & PIXED \\
\hline Q2S & 0.0 & MC & PIXED \\
\hline P2S & 0.0 & \({ }^{\text {c }}\) & FIXED \\
\hline 02 S & 0.0 & MC & PIXED \\
\hline gamj1S & 0.0 & MC & FIXED \\
\hline GAMJ2S & 0.0 & ac & PIXcid \\
\hline beta 17 & 0.0 & MC & PIXED \\
\hline A18 & 0.0 & HC & FIXED \\
\hline E3P & 0.0 & MC & FIXED \\
\hline в3P & 0.0 & MC & F1X34 \\
\hline A3P & 0.0 & MC & EIXED \\
\hline GAM3P & 0.10 & MC & FIXED \\
\hline
\end{tabular}
PIXED
PIXED
\begin{tabular}{|c|c|c|c|}
\hline Q3P+ & 0.0 & \(n \mathrm{c}\) & P1x \({ }^{\text {a }}\) \\
\hline D3P & 0.0 & MC & fixel \\
\hline ajv3p & 0.5 & Mc & PIXaE \\
\hline a V03P & 0.0 & ac & F1XED \\
\hline Q3P- & 0.0 & \(\square \mathrm{C}\) & FIXAL \\
\hline H3P & 0.0 & nc & FIXCL \\
\hline P3P* & 0.0 & MC & PIXzid \\
\hline P3P- & 0.0 & MC & Fixed \\
\hline betal 7 & 0.0 & MC & Pixid \\
\hline 03P & 0.0 & MC & PIXĖi \\
\hline 148 & 0.0 & \({ }_{3 C}\) & PIXED \\
\hline & 0.0 & MC & FIXED \\
\hline & 0.0 & MC & FIX \(\sim_{\text {c }}\) L \\
\hline & 0.3 & Mc & PIXED \\
\hline & 0.0 & MC & FIXYD \\
\hline & 0.0 & sc & FIXED \\
\hline 20000 CM-1 SHOULL & BE ADDED TO UPPEE & State & nergips \\
\hline
\end{tabular}
energy ordered transisition list
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline RANK-brancti & energy & PERCENT & PERCENT & EXCITED State tBRE ENERGY & PakIty & \[
\underset{\operatorname{LASBDA}(\mathrm{A})}{\text { AIR }}
\] \\
\hline & & & & & & \\
\hline 6-82 ( 81.5) & 23425.2039 & 0.0159 & 99.9724 & 46125.504446 & \({ }_{\text {F }}{ }_{\text {F }}\) & 4267.705
4267.784 \\
\hline 6-021 (82.5) & 23424.7723 & 0.0159 & 99.9724 & 46125.504446
45811.563765 & E & 4267.784
4272.844 \\
\hline 6-R1 ( 81.5) & 23397.0324 & 0.0166 & 99.9579 & 45811.563765
45809.710256 & E & 4272.844
4273.104 \\
\hline 6-82 ( 80.5) & 23395. 6052 & 0.0163 & 99.9717 & 45809.710256 & \({ }_{\text {P }}\) & 4273.104
4273.182 \\
\hline 6-221 (81.5) & 23395.1789 & 0.0163 & 99.9717 & 45809.710256 & P & 4273.182 \\
\hline 6-81 ( 80.5) & 23367.6746 & 0.0171 & 99.9565 & 45499.179310 & \({ }_{\text {P }}\) & 4278.212
4278.472 \\
\hline 6-R2 ( 79.5) & 23366.2529 & 0.0168 & 99.9710 & 45497.336505 & \({ }_{F}\) & 4278.549 \\
\hline 6-221 (80.5) & 23365.8318 & 0.0168 & 99.9710 & 45497.336505 & E & 4278.549
4283.548 \\
\hline 6-R1 ( 79.5) & 23338.5658 & 0.0176 & 99.9549 & 45190.229527
45188.397090 & \({ }_{\text {E }}^{\text {E }}\) & 4283.548
4283.808 \\
\hline 6-82 ( 78.5) & 23337.1492 & 0.0173 & 99.9703 & 45188.397090 & F & 4283.884 \\
\hline 6-Q21 (79.5) & 23336.7334 & 0.0173 & 99.9703 & 44884.728183 & \({ }_{\text {P }}\) & 4288.851 \\
\hline 6-81 ( 78.5) & 23309.7083 & 0.0181 & 99.9533
99.9695 & 44882.905747 & P & 4289.111 \\
\hline 6-82 ( 77.5) & 23308.2965 & 0.0178 & 99.9695 & 44882.905747 & \({ }_{F}\) & 4289.187 \\
\hline 6-Q21 (78.5) & 23307.8859 & 0.0178 & 99.9695
99.9516 & 44582.688883 & E & 4294.121 \\
\hline 6-81 ( 77.5 ) & 23281.1044
23279.6970 & 0.0186
0.0183 & 99.9516
99.9686 & 44580.876047 & \({ }_{F}\) & 4294.380 \\
\hline 6-R2 ( 76.5) & 23279.6970
23279.2916 & 0.0183
0.0183 & 99.9686 & 44580.876047 & P & 4294.455 \\
\hline 6-021 (77.5) & 23279.2916
232529 & 0.0192 & 99.9497 & 44284.125078 & E & 4299.356 \\
\hline & 23252.7564
23251.3529 & 0.0192
0.0189 & 99.9677 & 44282.321401 & P & 4299.615 \\
\hline \(6-\mathrm{R2}\)
\(6-\mathrm{e} 21(76.5)\) & 23250.9527 & 0.0189 & 99.9677 & 44282.321401 & P & 4299.689 \\
\hline 6-81 ( 75.5 ) & 23224.6666 & 0.0198 & 99.9476 & 43989.050059 & E & 4304.556 \\
\hline 6-82 ( 74.5) & 23223.2665 & 0.0195 & 99.9668 & 43987.255053 & P & 4304.816 \\
\hline 6-Q21 (75.5) & 23222.8716 & 0.0195 & 99.9668 & 43987.255053 & F & 4304.889 \\
\hline 6-R1 ( 74.5) & 23196.8372 & 0.0205 & 99.9454 & 43697.476965 & E & 4309.720 \\
\hline 6-R2 ( 73.5) & 23195.4401 & 0.0202 & 99. 9657 & 43695.690090 & P & 4309.980 \\
\hline 6-Q21 (74.5) & 23195.0504 & 0.0202 & 99.9657 & 43695.690090 & P & 4310.052 \\
\hline 6-81 ( 73.5) & 23169.2705 & 0.0212 & 99.9430 & 43409.418779 & E & 4314.848 \\
\hline 6-82 ( 72.5) & 23167.8757 & 0.0209 & 99.9647 & 43407.639431 & \({ }^{\text {P }}\) & 4315.108 \\
\hline 6-221 (73.5) & 23167.4912 & 0.0209 & 99.9647 & 43407.639431 & F & 4315.179 \\
\hline 6-81 ( 72.5) & 23141.9688 & 0.0220 & 99.9403 & 43124.888335
43123.115837 & \({ }_{\text {E }}^{\text {E }}\) & 4319.939
4320.199 \\
\hline 6-82 ( 71.5) & 23140.5755 & 0.0217 & 99.9635 & 43123.115837
43123.115837 & F & 4320.199 \\
\hline 6-Q21 (72.5) & 23140.1963 & 0.0217 & 99.9635 & 43123.115837 & \({ }_{\text {F }}\) & 4320.270
4324.991 \\
\hline 6-R1( 71.5 ) & 23114.9341 & 0.0228 & 99.9374 & 42843.898319
42842.131907 & \({ }_{\text {F }}\) & 4324.951
43252 \\
\hline 6-R2 ( 70.5) & 23113.5417 & 0.0225 & 99.9622 & 42842.131907 & \({ }_{\text {F }}\) & 4325.252
4325.322 \\
\hline 6-Q21 (71.5) & 23113.1677 & 0.0225 & 99.9622 & 42842.131907 & F & 4325.322
4330.005 \\
\hline 6-R1 ( 70.5 ) & 23088.1688 & 0.0236 & 99.9342 & 42566.461274
42564.700077 & F & 4330.005
4330.266 \\
\hline 6-R2 ( 69.5) & 23086.7764 & 0.0234 & 99.9609 & 42564.700077 & \({ }_{F}\) & 4330.266
4330.335 \\
\hline 6-Q21 (70.5) & 23086.4076 & 0.0234 & 99.9609 & & \(\stackrel{F}{\text { E }}\) & 4330.335
4334.980 \\
\hline 6-R1 ( 69.5) & 23061.6752 & 0.0246 & 99.9305 & 42292.589605
42290.832627 & \({ }_{\text {F }}\) & 4334.980
4335.242 \\
\hline 6-82 ( 68.5) & 23060.2817 & 0.0244 & 99.9594 & 42290.832627 & \({ }_{8}^{\text {F }}\) & 4335.242
433510 \\
\hline 6-Q21 (69.5) & 23059.9182 & 0.0244 & 99.9594 & 422922.895589 & & \\
\hline 6-81( 68.5) & 23035.4553 & 0.0256 & 99.9264 & 42022.295589 & \({ }_{\text {P }}\) & 4339.914
4340.177 \\
\hline 6-R2 ( 67.5) & 23034.0597 & 0.0255 & 99.9578 & 42020.541676
42020.541676 & & 4340.177 \\
\hline 6-Q21 (68.5) & 23033.7014 & 0.0255 & 99.9578 & 42620.541676 & F & 4340.244
4344.807 \\
\hline 6-81 ( 67.5) & 23009.5115 & 0.0268 & 99.9218 & 41755.591381 & \({ }_{8}^{8}\) & 4344.807
4345.072 \\
\hline 6-R2 ( 66.5) & 23008.1124 & 0.0267 & 99.9560 & 41753.839188
41753.839188 & P & 4345.072
4345.138 \\
\hline 6-Q21 (67.5) & 23007.7593 & 0.0267 & 99.9560 & 41753.839188
41492.489037 & \(\stackrel{P}{8}\) & 4345.138
4349.659 \\
\hline 6-R1 ( 66.5) & 22983.8461 & 0.0280 & 99.9164 & 41492.489037
41490.736975 & \({ }_{\text {e }}\) & 4349.659
4349.925 \\
\hline 6-R2 ( 65.5) & 22982.4419 & 0.0280 & 99.9541 & 41490.736975
41490.736975 & P & 4349.925
4349.991 \\
\hline 6-Q21 (66.5) & 22982.0941 & 0.0280 & 99.9541 & 41490.736975
41233.000526 & \(\stackrel{\text { ? }}{\text { E }}\) & 4349.991
4354.469 \\
\hline 6-R1 (65.5) & 22958.4615
22957.0503 & \begin{tabular}{l}
0.0294 \\
\hline .0295
\end{tabular} & 99.9101
99.9518 & 41233.000526
41231.246699 & E & 4354.469
4354.736 \\
\hline 6-R2 6 ( 64.5 ) & 22957.0503
22956.7077 & 0.0295
0.0295 & 99.9518
99.9518 & 41231.246699 & \(p\) & 4354.801 \\
\hline 6-R1 ( 64.5 ) & 22933.3600 & 0.0310 & 99.9027 & 40977.137770 & s & 4359.235 \\
\hline 6-R2 ( 63.5) & 22931.9395 & 0.0312 & 99.9493 & 40975.379876 & F & 4359.505 \\
\hline 6-021 (64.5) & 22931.6021 & 0.0312 & 99.9493 & 40975.379876 & F & 4359.569 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 6-81 ( 63.5\()^{\circ}\) & & 0.0327 & 99.8939 & 40724.912684 & E & 4363.957 \\
\hline 6-R2( 62.5\()\) & 22957.1117 & 0.0332 & 99.9464 & 40723.147890 & P & 4364.230 \\
\hline 6-221(63.5) & 22906.7795 & 0.0332 & 99.9464 & 40723.147350 & F & 4364.293 \\
\hline 6-R1 ( 62.5 ) & 22884.0172 & \(\bigcirc .0347\) & 99.3830 & 40476.337252 & \({ }^{\text {c }}\) & 4368.634 \\
\hline 6-R2 ( 61.5) & 22382.5689 & 0.0355 & 99.9431 & 40474.561999 & \({ }_{\text {P }}\) & 4368.911
4368.973 \\
\hline \(6-\) Q21 (62.5) & 22382.2423 & 0.0355 & 99.9431 & 40474.561999
40231.423638 & F & 4368.973
4373.266 \\
\hline 6-81( 61.5 ) & 22859.7818 & \(\cup .0369\) & 99.8693 & 40231.423638
40229.633356 & \(\stackrel{\rightharpoonup}{F}\) & +4373.547 \\
\hline 6-R2 ( 60.5) & 22858.3132 & 0.0382
0.0382 & 99.9391
99.9391 & 40229.633356 & \({ }_{F}\) & 4373.609 \\
\hline \(6-221\) (61.5) & 22357.9915
22843.3375 & 0.0382
0.0154 & 99.9724 & 46125.504446 & F & 4376.414 \\
\hline \begin{tabular}{l}
\(6-\mathrm{P2}\) \\
\(6-\mathrm{R1}\) \\
( 83.5 ) \\
\hline 60.5
\end{tabular} & 22843.3375
22835.8416 & 0.6394 & 99.3516 & 39990.184385 & E & 4377.851 \\
\hline 6-R1 6 -R2 ( 59.5 ) & 22834.3467 & 0.0416 & 99.9342 & 39988.373038 & F & 4378.137 \\
\hline 6-021 (60.5) & 22834.0303 & 0.0416 & 99.9342 & 39988.373038 & F & 4378.198 \\
\hline 6-012 (82.5) & 22821.9053 & 0.0166 & 99.9579 & 45811.563765 & \({ }^{\text {E }}\) & 4380.524 \\
\hline 6-P1 ( 83.5) & 22821.4685 & 0.0166 & 99.9579 & 45811.563765 & E & 4380.608 \\
\hline 6-P2 ( 82.5) & 22820.0518 & 0.0163 & 99.9717 & 45809.710256 & F & 4380.880 \\
\hline 6-R1 ( 59.5) & 22812.2013 & 0.0422 & 99.8279 & 39752.632747 & E & 4382.388 \\
\hline 6-R2( 58.5) & 22810.6718 & 0.0457 & 99.9282 & 39750.792089 & \({ }_{\text {P }}\) & 4382.682
4382.741 \\
\hline 6-221 (59.5) & 22810.3676 & 0.0457 & 99.9282 & 39750.792089
45499.179310 & \({ }_{\text {F }}\) & 4382.741
4384.949 \\
\hline 6-Q12 (91.5) & 22798.8787 & 0.0171 & 99.9565
99.9565 & 45499.179310 & \(\varepsilon\) & 4385.032 \\
\hline 6-P1 ( 32.5 ) & 22798.4472 & 0.0171
0.0168 & 99.9710 & 45497. 336505 & \({ }_{\text {P }}\) & 4385.303 \\
\hline 6-P2 ( 31.5 ) & 22797.0359
22788.8667 & 0.0452 & 99.7944 & 39518.783343 & \& & 4386.875 \\
\hline 6-R1
\(6-\mathrm{R} 2\) & 22787.2910 & 0.0509 & 99.9204 & 39516.901603 & F & 4387.178 \\
\hline 6-Q21 (58.5) & 22786.9850 & U. 0509 & 99.9204 & 39516.901603 & P & 4387.237 \\
\hline 6-212 (80.5) & 22776.1245 & 0.0176 & 99.9549 & 45190.229527 & 8 & 4389.329 \\
\hline 6-P1( 81.5) & 22775.6982 & 0.0176 & 99.9549 & \(45190.2 \angle 9527\) & E & 4389.412 \\
\hline 6-P2 ( 80.5) & 22774. 2921 & 0.0173 & 99.9703 & 45188.397090 & F & 4389.683 \\
\hline 6-81 ( 57.5) & 22765.8468 & 0.0481 & 99.7442 & 39288.653509 & \({ }_{\text {E }}\) & 4391.311 \\
\hline 6-R2 ( 56.5 ) & 22764.2069 & 0.0579 & 99.9100 & 39286.712358 & P & 4391.685 \\
\hline 6-Q21 (57.5) & 22763.9062 & 0.0579 & 99.9103 & 44884.728183 & E & 4393.666 \\
\hline 6-Q12 (79.5) & 22753.6446 & 0.0181 & & 44884.728183 & E & 4393.747 \\
\hline 6-P1 ( 80.5) & 22753.2235 & 0.0181 & 99.9595 & 44882.905747 & F & 4394.018 \\
\hline 6-P2 ( 79.5 ) & 22751.8221 & 0.0498 & 99.6610 & 39062.266522 & \(\varepsilon\) & 4395.692 \\
\hline 6-81 ( 56.5 ) & 22743.1565
22741.4231 & 0.0498
0.0675 & 99.8953 & 39060.237588 & F & 4396.027 \\
\hline 6-82( 55.5 ) & 22741.1275 & 0.0675 & 99.6453 & 39060.237588 & P & 4396.084 \\
\hline 6-Q12 (78.5) & 22731.4410 & 0.0186 & 99.9516 & 44582.688883 & E & 4397.958 \\
\hline 6-P1( 79.5) & 22731.0252 & 0.0186 & 99.9516 & 44582.688883 & E & 4398.038 \\
\hline 6-P2 ( 78.5) & 22729.6282 & 0.0183 & 99.9686 & 44580.876047 & P & 4398.309 \\
\hline 6-R1 ( 55.5) & 22720.8261 & 0.0474 & 99.4998 & 38639.660951 & E & 4400.012 \\
\hline 6-R2 ( 54.5) & 22718.9440 & 0.0815 & 99.8733 & 38837.488534 & \({ }_{\text {F }}\) & 4400.377
4406.433 \\
\hline 6-021 (55.5) & 22718.6537 & 0.0815 & 99.8733 & 388384.125078 & L & 4402.204 \\
\hline 6-Q12 (77.5) & 22709.5158 & 0.0192
0.0192 & 99.9497
99.9497 & 44284.125078 & E & 4402.283 \\
\hline 6-P1 ( 78.5 ) & 22709.1052
22707.7121 & 0.0192
0.0189 & 99.94977 & 44282.321401 & \(\stackrel{\rightharpoonup}{P}\) & 4402.554 \\
\hline \(6-\mathrm{P} 2(77.5)\)
\(6-\mathrm{R} 21(51.5)\) & 22707.7121
22705.350 & 26.0147 & 1.0270 & 38057.459836 & L & 4403.011 \\
\hline 6-81( 54.5) & 22698.9397 & 0.0335 & 99.0761 & 38620.928907 & E & 4404.255 \\
\hline 6-R2 ( 53.5 ) & 22696.7766 & 0.1037 & 99.8370 & 38618.480740 & P & 4404.675 \\
\hline 6-Q21 (54.5) & 22696.4915 & c. 1037 & 99.8370 & 38618.480740 & P & 4404.730 \\
\hline 6-Q12 (76.5) & 22687.8710 & 0.0198 & 99.9476 & 43989.050059 & E & 4406.404 \\
\hline 6-P1 ( 77.5) & 22687.4656 & U. 0198 & 99.9476 & 43989.050059 & E & 4406.483 \\
\hline 6-P2 ( 76.5) & 22686.0760 & 4.0195 & 99. 9668 & 43987.255053 & P & 4400.752 \\
\hline 6-81 ( 53.5 ) & 22677.9445 & 0.1246 & 96.5460 & 38400.525483 & E & 4408.333 \\
\hline 5-81( 47.5) & 22675.5406 & 73.9077 & 1. 1577 & 37316.283955 & E & 4408.800 \\
\hline 6-82 ( 52.5 ) & 22674.9339 & 0.1431 & 99.7685 & 38403.235079 & \% & 4408.918 \\
\hline 6-221 (53.5) & 22674.6541 & 0.1431 & 99.7685 & 38403.235079 & P & 4408.972 \\
\hline 6-R21 (52.5) & 22673.5636 & 21.0881 & 13.6415 & 38212.181559 & \(\pm\) & 4409.184 \\
\hline 6-212 (75.5) & 22666.5085 & 0.0205 & 99.9454 & 43697.476965 & 8 & 4410.557 \\
\hline 6-P1 ( 76.5) & 22666.1083 & 0.0203 & 99.9454 & 43697.476965 & E & 4410.635 \\
\hline 6-P2 ( 75.5) & 22664.7216 & 0.0202 & 99.9657 & 43695.690090 & F & 4410.904 \\
\hline 6-R2 ( 51.5) & 22653.4471 & \(0.2 \angle 71\) & 99.6072 & 38191.790452 & F & 4413.100 \\
\hline 6-221 (52.5) & 22653.1724 & 0.2271 & 99.6072 & 38191.790452 & ? & 4413. 153 \\
\hline 5-i11 ( 52.5 ) & 22652.5293 & 7.3373 & 85. 3131 & 38191.147298 & \(\pm\) & 4413.279 \\
\hline 6-012 (74.5) & 22645.4303 & 0.0212 & 99.9430 & 43409.418779 & \(\stackrel{\square}{6}\) & 4414.662 \\
\hline 6-P1 ( 75.5 ) & 22645.0353 & J. 0212 & 94.9430 & 43409.418779 & ? & 4414.739 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 6-P2 ( 74.5 ) & 22643.6509 & 0.0209 & 99.9647 & 43407.639431 & F & \\
\hline 5-81 ( 48.5) & 22643.2307 & 72.1427 & 3.4635 & 37456.599381 & \({ }_{\text {E }}\) & 4415.091 \\
\hline 5-821 (53.5) & 22634.7533 & 28.2277 & 2.8854 & 38363.334275 & L & 4416.745 \\
\hline 5-81( 51.5 ) & 22634.1112 & 3.1826 & 96.7567 & 37986. 219092 & L & 4416.870 \\
\hline 6-R2 ( 50.5 ) & 22632.4293 & 0.4897 & 99.0180 & 37984.267760 & F & 4417.198 \\
\hline 6-Q21 (51.5) & 22632.1599 & 0.4897 & 99.0180 & 37984.267760 & P & 4417.251 \\
\hline 6-R2 ( 48.5 ) & 22627.4951 & 25.7147 & 3.2028 & 37616.712127 & P & 4418.161 \\
\hline 6-021 (49.5) & 22627.2362 & 25.7147 & 3.2028 & 37616.712127 & P & 4418.212 \\
\hline 6-012 (73.5) & 22624.6383 & 0.0220 & 99.9403 & 43124.888335 & E & 4418.719 \\
\hline \(6-\mathrm{P1}(74.5\) ) & 22624.2486 & 0.0220 & 99.9403 & 43124.888335 & E & 4418.795 \\
\hline 6-P2 ( 73.5 ) & 22622.8658 & 0.0217 & 99.9635 & 43123.115837 & P & 4419.065 \\
\hline 5-R1 ( 50.5 ) & 22615.8841 & 8.5505 & 90.1898 & 37784.942149 & E & 4420.430 \\
\hline 6-R2 ( 49.5) & 22614.6714
22613.0324 & 56.5819 & 25.5363 & 37604.147280 & E & 4420.667 \\
\hline 6-021 (50.5) & 22612.7682 & 3.2950 & 90.5806
90.5806 & 37781.826278 & \({ }^{\text {F }}\) & 4420.987 \\
\hline 6-012 (72.5) & 22604. 1345 & 0.0228 & 99.9374 & 37781.826278
42843.898319 & E & 4421.039 \\
\hline 6-P1 ( 73.5) & 22603.7501 & 0.0228 & 99.9374 & 42843.898319
42843.898319 & \({ }_{\text {E }}^{E}\) & 4422.727
4422.803 \\
\hline 6-P2 ( 72.5) & 22602.3681 & 0.0225 & 99.9622 & 42842.131907 & E & 4422.803 \\
\hline 5-R2 ( 48.5 ) & 22588. 9153 & 0.3226 & 96.5522 & 37578.132316 & \({ }_{F}\) & 4425.707 \\
\hline 5-R2 ( 49.5 ) & 22588.7571 & 23.0678 & 9.2774 & 37757.551007 & \({ }_{\text {F }}\) & 4425.738 \\
\hline 5-021 (49.5) & 22588.6564 & 0.3226 & 96.5522 & 37578.132316 & \({ }_{F}\) & 4425.758 \\
\hline 5-Q21 (50.5) & 22588.4930 & 23.0678 & 9.2774 & 37757.551007 & F & 4425.790 \\
\hline 6-812 (71.5) & 22583.9209 & 0.0236 & 99.9342 & 42566.461274 & E & 4426.686 \\
\hline 6-P1 ( 72.5 ) & 22583.5417 & 0.0236 & 99.9342 & 42566.461274 & E & 4426.760 \\
\hline 4-81 ( 49.5 ) & 22582.4368 & 17.4210 & 74.2099 & 37571.912709 & E & 4426.977 \\
\hline 5-R12 (45.5) & 22574.0383 & 0.0234 & 99.9609 & 42564.700077 & F & 4427.031 \\
\hline 5-01 ( 46.5) & 22573.7951 & 73.6113 & 1.4359
1.4359 & 37045.402038 & F & 4428.624 \\
\hline 5-R2 ( 47.5) & 22569.4902 & 0.1391 & 98.7965 & 37045.402038
37382.605173 & \({ }_{\text {F }}\) & 4428.672 \\
\hline 5-Q21 (48.5) & 22569. 2365 & 0.1391 & 98.7965 & 37382.605173
373205173 & \(\stackrel{P}{\text { F }}\) & 4429.517
4429.566 \\
\hline 4-81 ( 48.5) & 22567.7445 & 2.1268 & 96.3453 & 37381.113200 & \({ }_{\text {E }}\) & 4429.566
4429.359 \\
\hline 4-R1 ( 50.5 ) & 22566.8763 & 65.2844 & 9.3905 & 37735.934383 & L & 4430.030 \\
\hline 6-Q12 (70.5) & 22563.9994 & 0.0246 & 99.9305 & 42292.589605 & E & 4430.594 \\
\hline 6-P1 ( 71.5 ) & 22563-6254 & 0.0246 & 99.9305 & 42292.589605 & 8 & 4430.668 \\
\hline \(\left.\begin{array}{l}6-\mathrm{P2} \\ 5-\mathrm{R2}\end{array} \mathrm{l}^{70.5} 40.5\right)\) & 22562.2424
22551.3482 & 0.0244 & 99.9594 & 42290.832627 & F & 4430.939 \\
\hline 5-221(47.5) & 22551.3482
2551.0998 & 9.1719
9.1719 & 85.8283
85.8283 & \(\begin{array}{r}37191.843125 \\ \\ \hline 7191.843125\end{array}\) & \({ }^{\text {F }}\) & 4433.080 \\
\hline 4-81 ( 47.5) & 22548.8535 & 0.6740 & 98.6796 & 37191.843125
37189.596832 & \(\underset{8}{2}\) & 4433.129
4433.570 \\
\hline 6-212 (69.5) & 22544.3719 & 0.0256 & 99.9264 & 42022.295589 & \({ }_{\text {E }}\) & 4434.452 \\
\hline & 22544.0032 & 0.0256 & 99.9264 & 42022.295589 & E & 4434.524 \\
\hline 6-P2
\(4-12(46.5)\)
4 & 22542.6180
22535.7287 & 0.0255 & 99.9578 & 42020.541676 & P & 4434.797 \\
\hline 4-01 ( 47.5) & 22535.4802 & 65.4915
65.4915 & 13.9260
13.9260 & 37176.223605 & P & 4436.153 \\
\hline 4-R1( 51.5) & 22533.6870 & 70.8325 & 13.9260
2.1357 & 37176.223605
37885.794817 & F & 4436.202 \\
\hline 4-R1( 46.5) & 22529.5791 & 0.3252 & 99.2913 & 37885.794817
37001.186000 & \({ }_{\text {E }}\) & 4436.555
4437.364 \\
\hline 4-R2 ( 45.5) & 22528.8359 & 1.4516 & 98.4111 & 37000.199602 & \({ }_{\text {F }}\) & 4437.364
4437.510 \\
\hline 4-021 (46.5) & 22528.5927 & 1.4516 & 98.4111 & 37000.199602 & \({ }_{F}\) & 4437.558 \\
\hline \(6-212(68.5)\) & 22525.0405 & 0.0268 & 99.9218 & 41755.591381 & \({ }^{\text {E }}\) & 4438.258 \\
\hline 6-P1 ( 69.5\()\)
\(6-\mathrm{P} 2(68.5)\) & 22524.6769
22523.2883 & 0.0268 & 99.9218 & 41755.591381 & E & 4438.329 \\
\hline 4-R1 ( 45.5 ) & 22523.2883
22510.3931 & 0.0267
0.1968 & 99.9560
99.5328 & 41753.839188 & P & 4438.603 \\
\hline 4-R2 ( 44.5) & 22509.7870 & 0.3805 & 99.5898 & 36816.359260
36815.515125 & E & 4441.146 \\
\hline 4-221 (45.5) & 22509.5490 & 0.3805 & 99.5898 & 36815.515105
36815.515105 & P & 4441.265
4441.312 \\
\hline \(6-212\) (67.5) & 22506.0070 & 0.0280 & 99.9164 & 41492.439037 & \({ }_{\text {F }}\) & 4441.312 \\
\hline \(6-\mathrm{P} 1\) ( 68.5) & 22505.6487 & 0.0280 & 99.9164 & 41492.489037 & \({ }_{E}\) & 4442.082 \\
\hline \(6-\mathrm{P2}\)
\(4-\mathrm{R1}\)\(\left(\begin{array}{l}67.5 \\ 44.5\end{array}\right.\) & 22504.2550 & 0.0280 & 99.9541 & 41490.736975 & \({ }_{F}\) & 4442.357 \\
\hline \(4-81(44.5)\)
\(4-R 2(43.5)\) & 22491.4210 & 0.1376 & 99.6501 & 36635.248602 & \(\Sigma\) & 4444.892 \\
\hline \(4-021\) (44.5) & 22490.5458 & 0.1948 & 99.7789
99.7789 & 36634.373440
36634.373440 & F & 4445.019 \\
\hline 6-Q12 (66.5) & 22487.2737 & 0.0294 & 99.9101 & & F & 4445.065
4445.712 \\
\hline \(6-\mathrm{P1}(67.5)\) & 22486.9207 & 0.0294 & 99.9101 & 41233.000526 & E & 4445.712
4445.781 \\
\hline 6-P2 ( 66.5) & 22485.5199 & 0.0295 & 99.9518 & 41231.246699 & \(\stackrel{8}{8}\) & 4445.781
4446.058 \\
\hline 4-R1 ( 43.5 ) & 22472.7108 & 0.1065 & 99.7141 & 36457.908585 & \(\pm\) & 4448.593 \\
\hline \(4-\mathrm{R} 2\left(\begin{array}{l}42.5\end{array}\right)\)
\(4-\mathrm{Q} 21(4.5)\) & 22472.0205
22471.7929 & 0.1294 & 99.8436 & 36456.990737 & P & 4448.729 \\
\hline 6-012 (65.5) & 22468.3427 & 0.1294
0.0310 & 99.3436 & 36455.990737 & \({ }^{\text {F }}\) & 4448.774 \\
\hline & & & & 40971.13770 & \(\Sigma\) & 4449.359 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 6-P1 ( 66.5 ) & 22408.4949 & 0.0310 & 99.9027 & 40977.137779 & F & 4449.427 \\
\hline 6-P2 ( 65.5) & 22467.0848 & 0.0312 & 99.9493 & 40975.379876 & \(r\) & 4445.707 \\
\hline 4-R1 ( 42.5 ) & 22454.2853 & 0.0887 & 99. 7513 & 36284.368402 & L & 4452.243 \\
\hline 4-R2 ( 41.5) & 22453.5519 & 0.0991 & 99.6728 & 36283.412699 & F & 4452.389 \\
\hline 4-Q21 (42.5) & 22453.3296 & 0.0591 & 99.8728 & 36283.412699 & ; & 4452.433 \\
\hline 6-Q12 (64.5) & 22450.7163 & 0.0327 & 99.8939 & 40724.912684 & 上 & 4452.951 \\
\hline 6-P1 ( 65.5) & 22450.3736 & 0.0327 & 99.0939 & 40724.912634 & E & 4453.019 \\
\hline 6-P2 ( 64.5) & 22448.9515 & 0.0332 & 99.9464 & 40723.147890 & F & 4453.301 \\
\hline 4-R1 ( 41.5) & 22436.1573 & 0.0780 & 99.7733 & 36114.547126 & \(\varepsilon\) & 4455.841 \\
\hline 4-R2 ( 40.5) & 22435.3869 & 0.0830 & 99.8879 & 36113.659581 & F & 4455.994 \\
\hline 4-Q21 (41-5) & 22435.1698 & 0.0830 & 99.8879 & 36113.659581 & P & 4456.037 \\
\hline 6-012 (63.5) & 22432.8969 & 0.0347 & 99.8830 & 40476.337252 & 8 & 4456.488 \\
\hline 6-P1 ( 64.5) & 22432.5595 & 0.0347 & 99.8830 & 40476.337252 & E & 4456.555 \\
\hline 6-P2 ( 63.5) & 22431.1216 & 0.0355 & 99.9431 & 40474.561999 & F & 4456.841 \\
\hline 4-81 ( 40.5 ) & 22418.3347 & 0.0714 & 99.7861 & 35948.758520 & E & 4459.383 \\
\hline 4-R2 ( 39.5) & 22417. 5324 & 0.0739 & 99.8961 & 35947.744349 & P & 4459.543 \\
\hline 4-Q21 (40.5) & 22417.3206 & 0.0739 & 99.8961 & 35947.744349 & F & 4459.585 \\
\hline 6-Q12 (62.5) & 22415.3874 & 0.0369 & 99.8693 & 40231.423638 & E & 4459.969 \\
\hline 6-P1( 63.5) & 22415.0553 & 0.0369 & 99.8693 & 40231.423638 & E & 4460.035 \\
\hline 6-P2 ( 62.5) & 22413.5972 & 0.0382 & 99.9391 & 40229.633356 & F & 4460.326 \\
\hline 4-R1 ( 39.5) & 22400.8229 & 0.0674 & 99.7927 & 35786.713928 & E & 4462.369 \\
\hline 4-R2 ( 38.5) & 22399.9926 & 0.0686 & 99.9003 & 35785.677092 & F & 4463.035 \\
\hline 4-821 (39.5) & 22399.7860 & 0.0686 & 99.9003 & 35785.677092 & F & 4463.076 \\
\hline 6-812 (61.5) & 22398-1913 & 0.0394 & 99.8516 & 39990.184385 & \(s\) & 4463.394 \\
\hline 6-P1 ( 62.5) & 22397.8674 & 0.0394 & 99.8516 & 39990.184385 & E & 4463.459 \\
\hline 6-P2 ( 61-5) & 22396.3799 & 0.0416 & 99.9342 & 39988. 37.3038 & F & 4463.755 \\
\hline 4-R1 ( 38.5 ) & 22383.6257 & 0.0652 & 99.7949 & 35628.523069 & E & 4466.298 \\
\hline 4-R2 ( 37.5) & 22382.7705 & 0.0657 & 99.9022 & 35627.466493 & F & 4466.469 \\
\hline 4-Q21 (38.5) & 22382.5691 & 0.0657 & 99.5022 & 35627.466493 & F & 4466.509 \\
\hline 6-812 (60.5) & 22381.3126 & 0.0422 & 99.8279 & 39752.632747 & E & 4466.760 \\
\hline 6-P1 ( 61.5) & 22380.9909 & 0.0422 & 99.3279 & 39752.632747 & E & 4466.824 \\
\hline 6-P2 ( 60.5) & 22379.4719 & 0.0457 & 99.9282 & 39750.792089 & F & 4467.127 \\
\hline 4-81 ( 37.5) & 22366.7462 & 0.0641 & 99.7936 & 35474.194659 & E & 4469.669 \\
\hline 4-R2 ( 36.5 ) & 22365.8682 & 0.0642 & 99.9025 & 35473.120427 & F & 4469.844 \\
\hline 4-021 (37.5) & 22365.6720 & 0.0642 & 99.9025 & 35473.120427 & F & 4469.883 \\
\hline 6-012 (59.5) & 22364.7570 & 0.0452 & 99.7944 & 39518.783343 & E & 4470.066 \\
\hline 6-P1 ( 60.5) & 22364.4406 & 0.0452 & 99.7944 & 39518.783343 & E & 4470.129 \\
\hline 6-P2 ( 59.5 ) & 22362.8753 & 0.0509 & 99.9204 & 39516.901603 & \({ }_{F}\) & 4470.442 \\
\hline 4-81 ( 36.5) & 22350.1871 & 0.0638 & 99.7896 & 35323.736721 & E & 4472.980 \\
\hline 4-R2 ( 35.5) & 22349.2876 & 0.0639 & 99.9017 & 35322.646243 & F & 4473.160 \\
\hline 4-Q21 (36.5) & 22349.0966 & 0.0639 & 99.9017 & 35322.646243 & F & 4473.199 \\
\hline 6-Q12 (58.5) & 22348-5333 & 0.0481 & 99.7442 & 39288.653509 & E & 4473.311 \\
\hline 6-P1 ( 59.5 ) & 22348.2220 & 0.0481 & 99.7442 & 39288.653509 & e & 4473.374 \\
\hline 6-P2 ( 58.5) & 22346.5926 & 0.0579 & 99.9100 & 39286.712858 & F & 4473.700 \\
\hline 4-R1 ( 35.5) & 22333.9505 & 0.0643 & 99.7832 & 35177.156775 & - & 4476.232 \\
\hline 4-R2 ( 34.5) & 22333.0303 & 0.0643 & 99.9000 & 35176.050904 & \({ }_{\text {F }}\) & 4476.417 \\
\hline 4-021 (35.5) & 22332.8446 & 0.0643 & 99.9000 & 35176.050904 & F & 4476.454 \\
\hline 6-212 (57.5) & 22332.6559 & 0.0498 & 99.6610 & 39062.266522 & E & 4476.492 \\
\hline 6-P1 ( 58.5) & 22332.3499 & 0.0498 & 99.6610 & 39062.266522 & E & 4476.553 \\
\hline 6-P2 ( 57.5) & 22330.6270 & 0.0675 & 99.8953 & 39060.237583 & \({ }_{F}\) & 4476.898 \\
\hline 6-02 ( 52.5 ) & 22329.1587 & 26.0147 & 1.0270 & 38057.459836 & \(\bar{E}\) & 4477.193 \\
\hline 6-P21 (53.5) & 22328.8783 & 26.0147 & 1.0270 & 38057.459836 & E & 4477.249 \\
\hline 5-Q12 (48.5) & 22327.0670 & 73.9677 & 1.1577 & 37316.283955 & E & 4477.612 \\
\hline 5-P1 ( 49.5) & 22326.8080 & 73.9077 & 1.1577 & 37316.283955 & E & 4477.664 \\
\hline 4-R1 ( 34.5) & 22318.0382 & 0.0652 & 99.7745 & 35034.461949 & \(\stackrel{\rightharpoonup}{4}\) & 4479.424 \\
\hline 6-Q12 (56.5) & 22317.1551 & 0.0474 & 99.4998 & 38839.660991 & E & 4479.601 \\
\hline 4-82 ( 33.5) & 22317.0978 & 6.0653 & 99.3976 & 35033.341062 & \({ }_{F}\) & 4479.612 \\
\hline 4-Q21 (34.5) & 22316.9174 & 0.0653 & 99.4976 & 35033.341062 & \(F\) & 4479.649 \\
\hline 6-P1 ( 57.5) & 22316.8543 & 0.0474 & 99.4998 & 38839.660991 & F & 4479.661 \\
\hline 6-P2 \({ }_{4}(56.5)\) & 22314.9826 & 0.0815 & 99.8733 & 38837.488534 & F & 4480.037 \\
\hline 4-81 ( 33.5) & 22302.4522 & 0.0666 & 99.7635 & 34895.659050 & 5 & 4482.554 \\
\hline 6-212 (55.5) & 22302.1144 & 0.0335 & 99.0761 & 38620.928937 & e & 4482.622 \\
\hline 6-P1 ( 56.5 ) & 22301.8189 & 0.0335 & 99. 0761 & 38620.928907 & \(b\) & 4482.681 \\
\hline 4-R2 ( 32.5) & 22301.4915 & 0.0668 & 49.8946 & 34894.523112 & F & 4482.747 \\
\hline 4-021 \(6-\mathrm{P} 2(53.5)\) & 22301. 3162 & 0.0663 & 99.8940 & 34894.523112 & F & 4482.752 \\
\hline 6-P2 ( 55.5) & 22299.6662 & 0.1037 & 99.8370 & 30618.430740 & F & 4483.114 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 6-02( 53.5 ) & 22290.4774 & 21.0881 & 13.6415 & 38212.181559 & E & 4484.962 \\
\hline 6-221 (54.5) & 22290.1923 & 21.0881 & 13.6415 & 38212.181559 & L & 4485.020 \\
\hline 6-012 (54.5) & 22287.9809 & 0.1246 & 96.5460 & 38406.525483 & \(\varepsilon\) & 4485.465 \\
\hline 5-012 (49.5) & 22287.8055 & 72.1427 & 3.4635 & 37456.599381 & \% & 4485.500 \\
\hline 6-P1 ( 55.5 ) & 22287.6906 & 0.1246 & 96.5460 & 38406.525483 & E & 4485.523 \\
\hline 5-P1 ( 50.5) & 22287.5413 & 72.1427 & 3.4635 & 37456.599381 & E & 4485.553 \\
\hline 4-R1 ( 32.5) & 22287.1939 & 0.0683 & 99.7503 & 34760.754620 & E & 4485.623 \\
\hline 4-R2 ( 31.5) & 22286.2125 & 0.0688 & 99.8911 & 34759.603211 & F & 4485.821 \\
\hline 4-821 (32.5) & 22286.0425 & 0.0688 & 99.8911 & 34759.603211 & F & 4485.855 \\
\hline 6-P2 ( 54.5 ) & 22284.6905 & 0.1431 & 99.7685 & 38403.235079 & P & 4486.127 \\
\hline 4-81( 31.5) & 22272.2650 & 0.0704 & 99.7346 & 34629.754968 & E & 4488.630 \\
\hline 4-R2 ( 30.5) & 22271.2621 & 0.0712 & 99.8872 & 34628.587303 & P & 4488.832 \\
\hline 4-021 (31.5) & 22271.0973 & 0.0712 & 99.8872 & 34628.587303 & F & 4488.865 \\
\hline 6-P2 ( 53.5 ) & 22270.0863 & 0.2271 & 99.6072 & 38191.790452 & F & 4489.069 \\
\hline 5-Q12 (53.5) & 22269.4432 & 7.3373 & 85.3811 & 38191.147298 & E & 4489.199 \\
\hline 5-P1 ( 54.5 ) & 22269.1581 & 7.3373 & 85.3811 & 38191.147298 & b & 4489.256 \\
\hline 6-P2 ( 50.5) & 22264.3737 & 25.7147 & 3.2028 & 37616.712127 & & 4490.120 \\
\hline 5-012 (52.5) & 22257.9179 & 3.1826 & 96.7567 & 37986.219092 & E & 4491.523 \\
\hline 4-K1 ( 30.5 ) & 22257.6669 & 0.0727 & 99.7163 & 34502.666198 & B & 4491.574 \\
\hline 5-P1 ( 53.5) & 22257.6381 & 3.1826 & 96.7567 & 37986. 219092 & E & 4491.580 \\
\hline 4-R2 ( 29.5) & 22256.6413 & 0.0740 & 99.8827 & 34501.481125 & P & 4491.781 \\
\hline 4-Q21 (30.5) & 22256.4818 & 0.0740 & 99.3827 & 34501.481125 & F & 4491.813 \\
\hline 6-P2 ( 52.5 ) & 22255.9666 & 0.4897 & 99.0180 & 37984.267760 & F & 4491.917 \\
\hline 5-212 (50.5) & 22252.3088 & 56.5819 & 25.5363 & 37604.147280 & \(\varepsilon\) & 4492.655 \\
\hline 5-P1( 51.5) & 22252.0394 & 56.5819 & 25.5363 & 37604.147280 & E & 4492.710 \\
\hline 5-812 (51.5) & 22246.5988 & 8.5505 & 90.1898 & 37784.942149 & b & 4493.808 \\
\hline 5-P1 ( 52.5) & 22246.3241 & 8.5505 & 90.1898 & 37784.942149 & E & 4493.864 \\
\hline 5-22 ( 54.5 ) & 22244. 7897 & 28.2277 & 2.8854 & 38363.334275 & z & 4494.174 \\
\hline 5-P21 (55.5) & 22244.4994 & 29.2277 & 2.8854 & 38363.334275 & E & 4494.233 \\
\hline 6-P2( 51.5 ) & 22243.4829 & 3.2950 & 90.5806 & 37781.826278 & F & 4494.438 \\
\hline 4-81 ( 29.5) & 22243.4010 & 0.0752 & 99.6948 & 34379.494232 & E & 4494.455 \\
\hline 4-82 ( 28.5) & 22242.3513 & 0.0771 & 99.8778 & 34378.290217 & P & 4494.667 \\
\hline 4-Q21 (29.5) & 22242. 1970 & 0.0771 & 99.8778 & 34378.290217 & F & 4494.698 \\
\hline 5-P12 (47.5) & 22232. 2871 & 73.6113 & 1.4359 & 37045.402038 & P & 4496.701 \\
\hline 4-R1( 28.5) & 22229.4688 & 0.0780 & 99.6697 & 34260.244833 & E & 4497.271 \\
\hline 4-R2 ( 27.5 ) & 22228. 3930 & 0.0806 & 99.8725 & 34259.019928 & F & 4497.489 \\
\hline 4-021(23.5) & 22228.2439 & 0.0806 & 99.8725 & 34259.019928 & P & 4497.519 \\
\hline 5-P2 ( 50.5 ) & 22226.2938 & 0.3226 & 96.5522 & 37578.132316 & P & 4497.914 \\
\hline 4-212 (50.5) & 22220.0742 & 17.4210 & 74.2099 & 37571.912709 & E & 4499.173 \\
\hline 4-P1( 51.5) & 22219.8049 & 17.4210 & 74.2099 & 37571.912709 & - & 4499.227 \\
\hline 5-P2 ( 51.5 ) & 22219.2076 & 23.0678 & 9.2774 & 37757.551007 & F & 4499.348 \\
\hline 4-81( 27.5 ) & 22215.8718 & 0.0809 & 99.6404 & 34144.923624 & E & 4500.024 \\
\hline 4-82 ( 26.5 ) & 22214.7674 & 0.0844 & 99.8667 & 34143.675418 & F & 4500.248 \\
\hline 4-221 (27.5) & 22214.6236 & 0.0844 & 99.8667 & 34143.675418 & P & 4500.277 \\
\hline 5-P2 ( 49.5) & 22213.8113 & 0.1391 & 98.7965 & 37382.605173 & F & 4500.441 \\
\hline 4-812 (49.5) & 22212.3193 & 2.1268 & 96.3453 & 37381.113200 & E & 4500.744 \\
\hline 4-P1 ( 50.5 ) & 22212.0552 & 2.1268 & 96.3453 & 37381.113200 & E & 4500.797 \\
\hline 5-P2 ( 48.5) & 22202.6261 & 9.1719 & 85.8283 & 37191.843125 & F & 4502.709 \\
\hline 4-R1 ( 26.5 ) & 22202.6113 & 0.0840 & 99.6060 & 34033.536110 & を & 4502.712 \\
\hline 4-R2 ( 25.5 ) & 22201.4755 & 0.0887 & 99.8604 & 34032.261659 & P & 4502.942 \\
\hline 4-021 (26.5) & 22201.3369 & 0.0887 & 99.8004 & 34032.261659 & P & 4502.970 \\
\hline 4-012 (48.5) & 22200.3798 & 0.6740 & 98.6796 & 37189.596832 & E & 4503.164 \\
\hline 4-P1 ( 49.5) & 22200.1209 & 0.6740 & 98.6796 & 37189.596832 & \({ }^{\text {E }}\) & 4503.217 \\
\hline 4-Q12 (51.5) & 22197.5910 & 65.2844 & 9.3905 & 37735.934383 & k & 4503.730 \\
\hline 4-P1 ( 52.5 ) & 22197.3164 & 65.2844 & 9.3905 & 37735.934383 & E & 4503.786 \\
\hline 4-R1 ( 25.5 ) & 22189.6889 & 0.0872 & 99.5653 & 33926.087709 & E & 4505.334 \\
\hline 4-R2 ( 24.5 ) & 22188.5181 & 0.0933 & 99.8537 & 33924.783438 & F & 4505.572 \\
\hline 4-Q21 (25.5) & 22188. 3847 & 0.0933 & 99.8537 & 33924.783438 & P & 4505.599 \\
\hline 4-Q12 (47.5) & 22188.0710 & 0.3252 & 99.2913 & 37001.186000 & E & 4505.662 \\
\hline 4-P1 ( 48.5) & 22187.8173 & 0.3252 & 99.2913 & 37001.186000 & b & 4505.714 \\
\hline 4-P2 ( 47.5) & 22187.0846 & 1.4516 & 98.4111 & 37000.199602 & F & 4505.863 \\
\hline 4-P12 (48.5) & 22187.0066 & 65.4915 & 13.9260 & 37176.223605 & F & 4505.879 \\
\hline 4-81( 24.5 ) & 22177. 1063 & C. 0904 & 99.5160 & 33822.583791 & E & 4507.890 \\
\hline 4-R2 ( 23.5 ) & 22175.8960 & 0.0983 & 99.8465 & 33221.245359 & F & 4508.136 \\
\hline 4-Q12 (46.5) & 22175.8644 & 0.1968 & 99.5328 & 36816.3592b0 & \(\stackrel{\rightharpoonup}{4}\) & 4508.143 \\
\hline 4-021(24.5) & 22175.7678 & 0.6983 & 99.8465 & 33621.245359 & F & 4508. 162 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 4-P1 ( 47.5 ) & 22175.6159 & 0.1968 & 99.5323 & 36४16.359260 & \& & 4508.193 \\
\hline 4-P2 ( 46.5 ) & 22175.0202 & 0.3805 & 99.5898 & 36815.515105 & F & 4508.314 \\
\hline 4-81( 23.5) & 22164.8651 & 0.0935 & 99.4503 & 33723.029719 & 上 & 4510.380 \\
\hline 4-Q12 (45.5) & 22163.8849 & 0.1376 & 99.6501 & \(36635.24860<\) & E & 4510.579 \\
\hline 4-P1 ( 46.5) & 22163.6417 & 0.1376 & 99.6501 & 36635.248602 & E & 4510.629 \\
\hline 4-82 ( 22.5) & 22163.6101 & 0.1038 & 99.8387 & 33721.651839 & F & 4510.635 \\
\hline 4-Q21 (23.5) & 22163.4872 & 0.1038 & 99.8387 & 33721.6518 .39 & F & 4510.660 \\
\hline 4-P2 ( 45.5 ) & 22163.0097 & 0.1948 & 99.7789 & 36634.373440 & F & 4510.757 \\
\hline 4-012 (52.5) & 22157.4937 & 70.8325 & 2.1357 & 37885.794817 & E & 4511.880 \\
\hline 4-P1 ( 53.5) & 22157.2138 & 70.8325 & 2.1357 & 37885.794817 & c & 4511.937 \\
\hline 4-81( 22.5) & 22152.9673 & 0.0964 & 99.3871 & 33627.430930 & E & 4512.802 \\
\hline 4-Q12 (44.5) & 22152.1805 & 0.1065 & 99.7141 & 36457.908585 & E & 4512.963 \\
\hline 4-P1 ( 45.5) & 22151.9425 & 0.1065 & 99.7141 & 36457.908585 & E & 4513.011 \\
\hline 4-R2 ( 21.5) & 22151.6611 & 0.1097 & 99.8305 & 33626.007113 & P & 4513.068 \\
\hline 4-Q21 (22.5) & 22151.5434 & 0.1097 & 99.8305 & 33626.007113 & F & 4513.092 \\
\hline 4-P2 ( 44.5) & 22151.2626 & 0.1294 & 99.3436 & 36456.990737 & \% & 4513.150 \\
\hline 4-R1( 21.5) & 22141.4152 & 0.0988 & 99.2989 & 33535.793024 & E & 4515.157 \\
\hline 4-212 (43.5) & 22140.7736 & 0.0887 & 99.7513 & 36284.368462 & E & 4515.288 \\
\hline 4-P1 ( 44.5) & 22140.5409 & 0.0887 & 49.7513 & 36284.368462 & E & 4515.335 \\
\hline 4-R2 ( 20.5 ) & 22140.0493 & 0.1161 & 99.8219 & 33534.315229 & P & 4515.435 \\
\hline 4-221(21.5) & 22139.9374 & 0.1161 & 99.8219 & 33534.315229 & P & 4515.458 \\
\hline 4-P2 ( 43.5) & 22139.8179 & 0.0991 & 99.8728 & 36283.412699 & P & 4515.483 \\
\hline 4-R1 ( 20.5) & 22130.2115 & 0.1006 & 99.1877 & 33448.121924 & E & 4517.443 \\
\hline 4-212 (42.5) & 22129.6768 & 0.0780 & 99.7733 & 36114.647126 & ¢ & 4517.552 \\
\hline 4-P1 ( 43.5) & 22129.4493 & 0.0780 & 99.7733 & 36114.647126 & E & 4517.598 \\
\hline 4-R2 ( 19.5) & 22128.7768 & 0.1230 & 99.8128 & 33446.580051 & P & 4517.736 \\
\hline 4-P2 ( 42.5 ) & 22128.6893 & 1.0830 & 99.8879 & 36113.659581 & p & 4517.753 \\
\hline 4-Q21 (20.5) & 22128.6690́ & 0.1230 & 99.8128 & 33446.580051 & F & 4517.757 \\
\hline 4-81 ( 19.5) & 22119.3597 & 0.1013 & 99.0447 & 33364.424106 & \(\varepsilon\) & 4519.659 \\
\hline 4-012 (41.5) & 22118.8977 & 0.0714 & 99.7861 & 35948.758520 & E & 4519.753 \\
\hline 4-P1 ( 42.5 ) & 22118.6754 & 0.0714 & 99.7861 & 35948.758520 & E & 4519.759 \\
\hline 4-P2 ( 41.5 ) & 22117.8835 & 0.0739 & 99.8961 & 35947.744349 & F & 4519.961 \\
\hline 4-R2 ( 18.5) & 22117.8428 & 0.1304 & 99.0033 & 33362.805257 & ? & 4519.969 \\
\hline 4-Q21 (19.5) & 22117.7408 & 0.1304 & 99.8033 & 33362.805257 & F & 4519.990 \\
\hline 4-81 ( 18.5) & 22108.8643 & 0.1004 & 98.8562 & 33284.706971 & z & 4521.805 \\
\hline 4-812 (40.5) & 22108.4412 & 0.0674 & 99.7927 & 35786.713928 & c & 4521.891 \\
\hline 4-P1( 41.5) & 22108.2241 & 0.0674 & 99.7927 & 35786.713928 & E & 4521.936 \\
\hline 4-P2 ( 40.5 ) & 22107.4044 & 0.0686 & 99.9003 & 35785.677092 & \(\stackrel{F}{F}\) & 4522.103 \\
\hline 4-82 ( 17.5) & 22107.2484 & 0.1382 & 99.7936 & 33282.994340 & F & 4522.135 \\
\hline 4-Q21 (18.5) & 22107.1517 & 0.1382 & 99.7936 & 33282.994340 & F & 4522.155 \\
\hline 4-R1 ( 17.5) & 22098.7315 & 0.0971 & 98.6000 & 33208.979456 & \(\checkmark\) & 4523.878 \\
\hline 4-Q12 (39.5) & 22098.3111 & 0.0652 & 99.7949 & 35628.523069 & E & 4523.964 \\
\hline 4-P1 ( 40.5) & 22098.0993 & 0.0652 & 99.7949 & 35628.523069 & f & 4524.007 \\
\hline 4-P2 ( 39.5) & 22057. 2546 & 0.0657 & 99.9022 & 35627.466493 & \(r\) & 4524.180 \\
\hline 4-R2 ( 16.5) & 22096.9941 & 0.1465 & 99.7839 & 33207.150607 & P & 4524.234 \\
\hline 4-Q21 (17.5) & 22096.9026 & 0.1465 & 99.7839 & 33207.150607 & F & 4524.252 \\
\hline 4-81 ( 16.5) & 22088.9702 & 0.0905 & 98.2393 & 33137.253155 & \(\mathfrak{E}\) & 4525.677 \\
\hline 4-Q12 (38.5) & 22388.5102 & 0.0641 & 99.7936 & 35474.194659 & 8 & 4525.971 \\
\hline 4-P1 ( 39.5) & \(22 \mathrm{J88}\). & 0.0641 & 99.7936 & 35474.194659 & E & 4526.014 \\
\hline 4-P2 ( 38.5) & 22037.4350 & 0.0642 & 99.9025 & 35473.120427 & P & 4526.192 \\
\hline 4-R2 ( 15.5 ) & 22087.0805 & 0.1552 & 99.7744 & 33135.277189 & P & 452 b .264 \\
\hline 4-021 (16.5) & 22086.9942 & 0.1552 & 49.7744 & 33135.277129 & F & 4526.282 \\
\hline 4-R1 ( 15.5) & 22079.5941 & 0.0793 & 97.7086 & 33069.544173 & \(\varepsilon\) & 4527.799 \\
\hline 4-Q12 (37.5) & 22079.0407 & 0.0638 & 99.7896 & 35323.736721 & \(\varepsilon\) & 4527.913 \\
\hline 4-P1 ( 38.5) & 2207. 8393 & 0.0638 & 99.7896 & 35323.736721 & c & 4527.954 \\
\hline 4-P2 ( 37.5) & 22077.9502 & 0.0639 & 99.3017 & 35322.646243 & P & 4528.136 \\
\hline 4-R2 ( 14.5) & 22077.5080 & 0.1640 & 99.7658 & 33467. 377040 & P & 4528.227 \\
\hline 4-Q21 (15.5) & 22077.4270 & 0.1640 & 99.7658 & 33067. 377040 & F & 4528.244 \\
\hline 4-R1 ( 14.5) & 22.970 .6254 & 0.0621 & 96.8855 & 33005.076980 & E & 4529.639 \\
\hline 4-Q12 (36.5) & 22069.9045 & U. 0643 & 99.7832 & 35177.156775 & ミ & 4529.787 \\
\hline 4-P1 ( 37.5) & 22069.7084 & 0.0643 & 99.7832 & 35177.156775 & E & 4529.827 \\
\hline 4-P2 ( 36.5 ) & 22068.7936 & 0.0643 & 99.9000 & 35176.050904 & F & 4530.014 \\
\hline 4-R2 ( 13.5) & 22068.2772 & 0.1729 & 99.7587 & 33003.452903 & F & 4530.121 \\
\hline 4-221(14.5) & -2068. 2014 & \(\checkmark .1729\) & 99.7587 & 3.3003 .452963 & F & 4530.137 \\
\hline 4-81 ( 13.5) & 22062. 1024 & 0.0384 & 95.5227 & 32946. 292072 & : & 4531.389 \\
\hline 4-012 (35.5) & ?2061.1013 & 0.0652 & 99.7745 & . 35034.461949 & \(f\) & 4531.594 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 4-P1 ( 36.5 ) & 22060.9123 & 0.0652 & 99.7745 & 35034.461949 & E & 4531.633 \\
\hline 4-P2 ( 35.5 ) & 22059.9824 & 0.0653 & 99.8976 & 35033.341062 & P & 4531.824 \\
\hline 4-R2 ( 12.5) & 22059.3885 & 0.1813 & 99.7544 & 32943.507644 & P & 4531.946 \\
\hline 4-Q21(13.5) & 22059.3179 & 0.1813 & 99.7544 & 32943.507644 & P & 4531.961 \\
\hline 4-81 ( 12.5) & 22054.0964 & 0.0117 & 93.0834 & 32890.862825 & E & 4533.034 \\
\hline 4-212 (34.5) & 22052.6384 & 0.0666 & 99.7635 & 34895.659050 & E & 4533.334 \\
\hline 4-P1 ( 35.5) & 22052.4528 & 0.0666 & 99.7635 & 34895.659050 & E & 4533.372 \\
\hline 4-P2 ( 34.5) & 22051.5025 & 0.0668 & 99.8946 & 34894.523112 & P & 4533.567 \\
\hline 4-82 ( 11.5) & 22050.8426 & 0.1887 & 99.7545 & 32887.543727 & P & 4533.703 \\
\hline 4-Q21 (12.5) & 22050.7773 & 0.1887 & 99.7545 & 32887.543727 & F & 4533.716 \\
\hline 4-81( 11.5) & 22046.7502 & 0.0019 & 88.3317 & 32839.733898 & E & 4534.544 \\
\hline 4-212 (33.5) & 22044.5114 & 0.0683 & 99.7503 & 34760.754620 & k & 4535.005 \\
\hline 4-P1 ( 34.5 ) & 22044.3309 & 0.0683 & 99.7503 & 34760.754620 & \({ }_{B}\) & 4535.042 \\
\hline 4-P2 ( 33.5) & 22043.3600 & 0.0688 & 99.8911 & 34759.603211 & F & 4535.242 \\
\hline 4-R2 ( 10.5) & 22042.6404 & 0.1941 & 99.7616 & 32835.563995 & F & 4535.390 \\
\hline 4-Q21 (11.5) & 22042.5803 & 0.1941 & 99.7616 & 32835.563995 & F & 4535.402 \\
\hline 4-R1 ( 10.5) & 22040.3588 & 0.0807 & 78.5545 & 32793.202031 & E & 4535.859 \\
\hline 4-Q12 (32.5) & 22036.7233 & 0.0704 & 99.7346 & 34629.754968 & \(\varepsilon\) & 4536.608 \\
\hline 4-P1 ( 33.5) & 22036.5481 & 0.0704 & 99.7346 & 34629.754968 & E & 4536.644 \\
\hline 4-P2 ( 32.5) & 22035.5557 & 0.0712 & 99.8872 & 34628.587303 & F & 4536.848 \\
\hline 4-R1( 9.5) & 22035.4450 & 0.3990 & 60.3051 & 32751.791497 & B & 4536.871 \\
\hline 4-R2 ( 9.5) & 22034.7835 & 0.1956 & 99.7787 & 32787.571799 & F & 4537.007 \\
\hline 4-Q21 (10.5) & 22034.7286 & 0.1956 & 99.7787 & 32787.571799 & P & 4537.018 \\
\hline 4-R21 ( 8.5) & 22032.4099 & 0.9230 & 37.6692 & 32715.905007 & E & 4537.496 \\
\hline 4-R21 ( 7.5) & 22030.7734 & 1.2588 & 21.4521 & 32685.063708 & E & 4537.833 \\
\hline 4-821 ( 6.5) & 22029.6179 & 1.2870 & 12.8419 & 32658.351146 & E & 4538.071 \\
\hline 4-212 (31.5) & 22029.2755 & 0.0727 & 99.7163 & 34502.666198 & E & 4538.142 \\
\hline 4-P1 ( 32.5) & 22029. 1055 & 0.0727 & 99.7163 & 34502.666198 & E & 4538.177 \\
\hline 4-821 ( 5.5 ) & 22028.3532 & 1.1328 & 8.4017 & 32635.178177 & E & 4538.332 \\
\hline 4-P2 ( 31.5) & 22028.0904 & 0.0740 & 99.8827 & 34501.481125 & P & 4538.386 \\
\hline 4-R2 ( 8.5) & 22027.2755 & 0.1900 & 99.8054 & 32743.572289 & P & 4538.554 \\
\hline 4-Q21 ( 9.5) & 22027.2258 & 0.1900 & 99.8054 & 32743.572289 & \(F\) & 4538.564 \\
\hline 4-821 ( 4.5) & 22026. 7035 & 0.9033 & 5.9535 & 32615.269694 & \(E\) & 4538.671 \\
\hline 4-R21 ( 3.5) & 22024.5417 & 0.6580 & 4.4967 & 32598.499607 & E & 4539.117 \\
\hline 4-812 (30.5) & 22022.1690 & 0.0752 & 99.6948 & 34379.494232 & E & 4539.606 \\
\hline 4-P1 ( 31.5) & 22022.0042 & 0.0752 & 99.6948 & 34379.494232 & E & 4539.640 \\
\hline 4-R21 ( 2.5 ) & 22021.8057 & 0.4293 & 3.5733 & 32584.806125 & E & 4539.681 \\
\hline 4-P2 ( 30.5 ) & 22020.9650 & 0.0771 & 99.8778 & 34378.290217 & F & 4539.854 \\
\hline 4-82 ( 7.5) & 22020.1262 & 0.1701 & 99.8098 & 32703.576828 & F & 4540.027 \\
\hline 4-021 ( 8.5 ) & 22020.0817 & 0.1701 & 99.8098 & 32703.576828 & F & 4540.036 \\
\hline 4-R21 ( 1.5) & 22018.4622 & 0.2362 & 2.9602 & 32574.156597 & E & 4540.370 \\
\hline 3-R21 (10.5) & 22016.3876 & 5.4090 & 20.7521 & 32769.230803 & E & 4540.798 \\
\hline 3-R21( 9.5 ) & 22016.0042 & 4.4691 & 38.9696 - & 32732.350683 & \& & 4540.877 \\
\hline 4-812 (29.5) & 22015.4050 & 0.0780 & 99.6697 & 34260.244833 & E & 4541.001 \\
\hline 4-P1 ( 30.5 ) & 22015.2455 & 0.0780 & 99.6697 & 34260.244833 & E & 4541.034 \\
\hline 3-R21 (11.5) & 22014.9547 & 6.1252 & 11.0123 & 32807.938442 & E & 4541.094 \\
\hline 4-R21( 0.5 ) & 22014.4926 & 0.0907 & 2.5419 & 32566.532577 & E & 4541.189 \\
\hline 4-P2 ( 29.5) & 22014. 1801 & 0.0806 & 99.8725 & 34259.019928 & F & 4541.253 \\
\hline 3-R1( 8.5) & 22013.4045 & 3.3393 & 61.5837 & 32696.899604 & E & 4541.413 \\
\hline 4-82 ( 6.5) & 22013. 3760 & 0.1149 & 99.4041 & 32667.627115 & F & 4541.419 \\
\hline 4-221 ( 7.5) & 22013.3368 & 0.1149 & 99.4041 & 32667.627115 & P & 4541.427 \\
\hline 3-821 (12.5) & 22012.2269 & 6.7674 & 6.3004 & 32848.993401 & E & 4541.656 \\
\hline 4-82 ( 1.5) & 22010.5396 & 0.2474 & 2.0641 & 32573.526969 & P & 4542.005 \\
\hline 4-Q21 ( 2.5) & 22010.5265 & 0.2474 & 2.0641 & 32573.526969 & P & 4542.007 \\
\hline 4-82 ( 0.5 ) & 22010.4381 & 0.0935 & 1.9520 & 32566.124632 & P & 4542.026 \\
\hline 4-Q21 ( 1.5) & 22010.4302 & 0.0935 & 1.9520 & 32566.124632 & P & 4542.027 \\
\hline 4-82 ( 2.5 ) & 22009.9934 & 0.4554 & 2.4208 & 32583.933026 & P & 4542.117 \\
\hline 4-221 ( 3.5) & 22009.9751 & 0.4554 & 2.4208 & 32583.933026 & F & 4542.121 \\
\hline 5-Q21 ( 0.5) & 22009.6825 & 0.0 & 1.9652 & 32561.722520 & F & 4542.181 \\
\hline 3-81( 7.5) & 22009.0702 & 2.4126 & 77.7951 & 32663.360530 & 2 & 4542.308 \\
\hline 4-Q12 (28.5) & 22008.9847 & 0.0809 & 99.6404 & 34144.923624 & E & 4542.325 \\
\hline 4-P1 ( 29.5) & 22008.8304 & 0.0809 & 99.6404 & 34144.923624 & E & 4542.357 \\
\hline 4-82 ( 3.5) & 22008.8176 & 0.6972 & 3.5070 & 32597. 360301 & F & 4542.360 \\
\hline 4-Q21 ( 4.5) & 22008. 7941 & 0.6972 & 3.5070 & 32597.360301 & P & 4542.365 \\
\hline 3-R21 (13.5) & 22008.4979 & 7.4053 & 3. 9011 & 32892.687653 & E & 4542.426 \\
\hline 4-P2 ( 28.51 & 22007.7365 & 0.0844 & 99.8667 & 34143.675418 & \({ }_{F}\) & 4542.583 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 4-- 1 ( \({ }^{\text {2 }} 22.5\) ) & 21973.6583 & 0.1006 & 99.1877 & 33448.121924 & E & 4549.628 \\
\hline 4-P2 ( 21.5) & 21972.2341 & 0.1230 & 99.8128 & 33446.530051 & F & 4549.923 \\
\hline 4-Q12 (20.5) & 21970.1587 & 0.1013 & 99.0447 & 33364.424106 & K & 4550.353 \\
\hline 4-P1 ( 21.5) & 21970.0462 & 0.1013 & 99.0447 & 33364.424106 & E & 4550.376 \\
\hline 4-Q2 ( 8.5) & 21968.7669 & 1.2588 & 21.4521 & 32685.063708 & z & 4550.641 \\
\hline 4-P21 ( 9.5) & 21963.7172 & 1.2588 & 21.4521 & 32685.063708 & L & 4550.651 \\
\hline 4-P2 ( 5.5) & 21968.6611 & 0.6972 & 3.5070 & 32597.360301 & P & 4550.663 \\
\hline 4-P2 ( 20.5) & 21968.5399 & 0.1304 & 99.8033 & 33362.805257 & P & 4550.688 \\
\hline 4-Q12 (19.5) & 21966.9038 & 0.1004 & 98.8562 & 33284.706971 & L & 4551.027 \\
\hline 4-812 ( 0.5) & 21966.8757 & 0.0 & 97.7431 & 32522.562270 & E & 4551.033 \\
\hline 4-P1( 1.5) & 21966.8679 & 0.0 & 97.7431 & 32522.562270 & E & 4551.035 \\
\hline 4-P1 ( 20.5) & 21966. 7965 & 0.1004 & 98.8562 & 33284.706971 & E & 4551.049 \\
\hline 4-P2 ( 19.5) & 21965.1911 & 0.1382 & 99.7936 & 33282.994340 & P & 4551.382 \\
\hline 4-Q12 (18.5) & 21964.0171 & 0.0971 & 98.6000 & 33208.979466 & E & 4551.625 \\
\hline 4-P1 ( 19.5) & 21963.9151 & 0.0971 & 98.6000 & 33208.979466 & E & 4551.646 \\
\hline 4-P2 ( 1.5) & 21963.7616 & 0.0 & 98.0337 & 32526.748992 & P & 4551.678 \\
\hline 3-Q12 ( 1.5) & 21963.4819 & 0.1048 & 97.3829 & 32526.469311 & E & 4551.736 \\
\hline 3-P1( 2.5) & 21963.4688 & 0.1048 & 97.3829 & 32526.469311 & E & 4551.739 \\
\hline 4-02 ( 9.5) & 21963.1167 & 0.9230 & 37.6692 & 32715.905007 & E & 4551.812 \\
\hline 4-P21 (10.5) & 21963.0618 & 0.9230 & 37.6692 & 32715.905007 & E & 4551.823 \\
\hline 4-P2 ( 18.5) & 21962.1882 & 0.1465 & 99.7839 & 33207.150607 & P & 4552.004 \\
\hline 4-812 (17.5) & 21961.5072 & 0.0905 & 98.2393 & 33137.253155 & E & 4552.145 \\
\hline 4-P1( 18.5) & 21961.4105 & 0.0905 & 98.2393 & 33137.253155 & B & 4552.165 \\
\hline 3-P2 ( 2.5) & 21960.9020 & 0.0655 & 98.0025 & 32534.841625 & P & 4552.271 \\
\hline 3-Q12 ( 2.5 ) & 21960.4285 & 0.2825 & 96.8442 & 32534.368130 & E & 4552.369 \\
\hline 3-P1( 3.5) & 21960.4102 & 0.2825 & 96.8442 & 32534.368130 & E & 4552.373 \\
\hline 4-P2 ( 6.5) & 21959.6728 & 0.8561 & 9.2926 & 32613.923898 & P & 4552.526 \\
\hline 4-P2 ( 17.5) & 21959.5313 & 0.1552 & 99.7744 & 33135.277189 & F & 4552.555 \\
\hline 4-Q12 (16.5) & 21959.3877 & 0.0793 & 97.7086 & 33069.544173 & E & 4552.585 \\
\hline 4-P1 ( 17.5) & 21959.2962 & 0.0793 & 97.7086 & 33069.544173 & E & 4552.604 \\
\hline 4-Q12 (10.5) & 21958.8679 & 0.3990 & 60.3051 & 32751.791497 & E & 4552.693 \\
\hline 4-P1 ( 11.5) & 21958.8078 & 0.3990 & 60.3051 & 32751.791497 & E & 4552.705 \\
\hline 3-P2 ( 3.5) & 21958.3845 & 0.1456 & 97.8409 & 32546.927160 & F & 4552.793 \\
\hline 3-Q12 ( 3.5) & 21957.7001 & 0.5151 & 96.0860 & 32546.242804 & E & 4552.935 \\
\hline 4-812(15.5) & 21957.6803 & 0.0621 & 96.8855 & 33005.876980 & \(\varepsilon\) & 4552.939 \\
\hline 3-P1 ( 4.5) & 21957.6766 & 0.5151 & \$6.0860 & 32546.242804 & E & 4552.940 \\
\hline 4-P1 ( 16.5 ) & 21957.5940 & 0.0621 & 96.8855 & 33005.876980 & E & 4552.957 \\
\hline 4-P2 ( 16.5) & 21957.2206 & 0.1640 & 99.7658 & 33067.377040 & F & 4553.034 \\
\hline 4-0.12 (11.5) & 21956.5010 & 0.0807 & 78.5545 & 32793.202031 & E & 4553.183 \\
\hline 4-P.1 ( 12.5) & 21956.4356 & 0.0807 & 78.5545 & 32793.202031 & E & 4553.197 \\
\hline 4-Q12 (14.5) & 21956.4231 & 0.0384 & 95.5227 & 32946.292072 & E & 4553.200 \\
\hline 4-P1 ( 15.5) & 21956.3420 & 0.0384 & 95.5227 & 32946.292072 & E & 4553.216 \\
\hline 3-P2 ( 4.5) & 21956.2000 & 0.2300 & 97.4415 & 32562.996172 & \({ }_{F}\) & 4553.246 \\
\hline 4-812 (13.5) & 21955.6871 & 0.0117 & 93.0834 & 32890.862825 & E & 4553.352 \\
\hline 4-Q12 (12.5) & 21955.6148 & 0.0019 & 88.3317 & 32839.733898 & E & 4553.367 \\
\hline 4-P1 ( 14.5) & 21955.6112 & 0.0117 & 93.0834 & 32890.862825 & E & 4553.368 \\
\hline 4-P1 ( 13.5) & 21955.5442 & 0.0019 & 88.3317 & 32839.733898 & E & 4553.382 \\
\hline 3-Q12 ( 4.5) & 21955.2712 & 0.7807 & 95.0196 & 32562.067405 & E & 4553.438 \\
\hline 4-P2 ( 15.5 ) & 21955.2563 & 0.1729 & 99.7587 & 33003.452963 & P & 4553.442 \\
\hline 3-P1 ( 5.5) & 21955.2425 & 0.7807 & 95.0196 & 32562.067405 & E & 4553.444 \\
\hline 3-P2 ( 5.5) & 21954. 3268 & 0.3293 & 96.3249 & 32583.026037 & F & 4553.634 \\
\hline 4-P2 ( 14.5) & 21953.6386 & 0.1813 & 99.7544 & 32943.507644 & P & 4553.777 \\
\hline 3-012 ( 5.5 ) & 21953.1018 & 1.0689 & 93.4438 & 32581.801002 & E & 4553.888 \\
\hline 3-P1 ( 6.5) & 21953.0678 & 1.0689 & 93.4438 & 32581.801002 & E & 4553.895 \\
\hline 4-P2 ( 7.5) & 21952.7021 & 0.0072 & 85.4722 & 32636.152790 & P & 4553.971 \\
\hline 3-P2 ( 6.5) & 21952.6462 & 0.5556 & 90.5214 & 32606.897325 & P & 4553.983 \\
\hline 4-P2 ( 13.5) & 21952.3680 & 0.1887 & 99.7545 & 32887.543727 & F & 4554.041 \\
\hline 4-P2 ( 12.5) & 21951.4449 & 0.1941 & 99.7616 & 32835.563995 & P & 4554.232 \\
\hline 4-P2 ( 8.5) & 21951.3303 & 0.1149 & 99.4041 & 32667.627115 & \({ }_{F}\) & 4554.256 \\
\hline 3-012 ( 6.5 ) & 21951. 1230 & 1.3936 & 90.9115 & 32605.374110 & \& & 4554.299 \\
\hline 3-P1( 7.5) & 21951.0338 & 1.3936 & 90.9115 & 32605. 374110 & \% & 4554.307 \\
\hline 4-P2 ( 11.5) & 21950.8707 & 0.1956 & 99.7787 & 32787.571799 & F & 4554.351 \\
\hline 4-P2 ( 9.5) & 21950.7886 & 0.1701 & 99.8098 & 32703.576828 & P & 4554.368 \\
\hline 4-P2 ( 10.5) & 21950.6487 & 0.1900 & 99.6054 & 32743.572269 & F & 4554.397 \\
\hline 3-212 ( 7.5 ) & 21949.2035 & 1.8063 & 86.4230 & 32632.654117 & s & 4554.697 \\
\hline 3-P1( 8.5) & 21949.1590 & 1.8063 & 86.4230 & 32632.054117 & \(\stackrel{1}{2}\) & 4554.706 \\
\hline
\end{tabular}

1.8318
2.4126
2.4126
3.3393
3.3393
4.4691
4.4691
5.4090
5.4090
6.1252
6.1252
6.7674
6.7674
7.4053
7.4053
8.0564
8.0564
8.7216
8.7216
9.3976
9.3976
14.5349
77.7951
77.751
61.5837
61.5837
38.9696
38.9696
20.7521
20.7521
11.0123
11.0123
6.004
6.3004
3.9011
3.9011
2.5773
2.5773
1.7911
1.7911
1.2952
1.2952
32632.077287
32663.360530
32663.360530
32696.899604
3269.899604
32732.350683
32732.350683
3276.230803
32769.230803
3287.938442
32807.9384442
3284.993401
32848.993401
3289.687653
3292.687653
32939.160771
3239.160771
32988.480729
3298.480729
33040.682312
33040.682312
4554.817
4555.141
455.152
4555.754
455.766
4556.727
455.739
4558.160
455.173
455.971
4559.986
456.052
4562.068
456.343
4564.360
456.815
4566.833
4569.453
459.472
4572.251
4572.271
- \(\downarrow\) LV一。
C THIS IS LSQ9. IT CAN HANDLE A \(9 \times 9\) HAMILTONIAN, ODD AND EVEN MULTIPLICITES.

C THIS IS LSQ9. IT CAN HANDLE A \(9 \times 9\) HAMILTONIAN, ODD AND EVEN MULTIPLICITES. LSO SIMU LA TOR PACRAGE. COMPARES EIGENVALUES OF HAMILTONTAN TO transitions or tera en ergirs.
THIS IS MAIN FOR ANY PROBLEM INVOLVING A HAMILTONIAN WITH MAXIMOM DIMENSION OF 9 BY 9.
MODIFIED SO THAT ALI ENERGIES, TRANSITIONS, AND PARAMETERS ARE DOUBLE RRECISION.
MODIFIED TO USE DISC (SYSQUE) IJNIT 2 FOR INTERMEDIATE STORAGE. JCL IOR DISC IS AS FOLLONS:
C/GO.FTO2F001 DD UNIT=SYSQUE,SPACE=(TRK, (50,50)), DSN=\&FIELD,
C/ DISP=(NEV, PASS), \(\mathrm{DCB}=(\mathrm{RECFH}=\mathrm{VSB}, \mathrm{BLKSIZE}=7234\), \(\mathrm{BUFNO}=1)\)
\(\square\)
        FTRST CARD IS A 70 SPACE HOLLERITH STATEMENT STARTING IN ITNE 11 THIS CARD MOST BE TNCLUDED

ITEST AND IPLOT IN \(2 I 5\) FORMAT. IF ITEST=0 PROGRAM STOPS, ITEST=1 AND ITEST=2 ARE FOR ODD AND EVEN MULTIPLICITTES RESPECTIVELY. IF IPLOT=1 OBS-CALC ARE PLOTTED OTHERGISE NOT YMIN AND YMAX (2F5.2) ARE THE MIN AND MAX POINTS ON ORDINATE OF GRAPH OF OBSERV ED-CALCTILATED VERSUS J
 these give the tdentification and valie or the exptl point NUM = THE QUA NTUM NUMBERS OR A TRANSITION FBOM NUM (1 THRU 3, N) TO NUM ( 4 THRU \(6, N\) ). NUM 1 AND 4 ARE J , NUM 2 AND 5 ARE THE RANK THE RANK IS A NOMBEE FBOM 1 TO 9 WHICH DESCRIBES THE LOCATION OF teis Level with respect to others with same j and parity. RANK = 1 CORRESPONDS TO HIGHEST ENERGY. PARITY IS INDICATED BY NOM 3 AND 6 NHRRE 1 IS E AND 2 IS F y is the line freodency or tera energy.

LSQ 0001
LSQ 0002
ISQ 0003
LSQ 0004
LSQ 0005
LSQ 0006
LSQ 0007
LSQ 0008
LSQ 0009
LSQ 0010
LSQ 0011
LSQ 0012
LSQ 0013
LSQ 0014
LSQ 0015
LSQ 0016
LS Q 0017
LSQ 0018
LSQ 0019
LSQ 0020
LSQ 0021
LSQ 0022
LSQ 0023
LSQ 0024
ISQ 0025
LSQ 0026
LS Q 0027
LSQ 0028
LSQ 0029
LSQ 0030
LSQ 0031
LSQ 0032
LSQ 0033
LSQ 0034
LSQ 0035
LSQ 0036

```

PROGRAM STOPS AFTER NENUF PASSES OR IF THE CHANGE IN THE VARIANCE
FROM THE PREVIOUS PASS IS LFSS THAN FITS
NPRINT, NPUNCH,L PUNCH ARE INPUT IN 3I5 FORMAT
NPUNCH=0 NOTHING IS PUNCHED
NDUNCH=1 A ND LPUNCH=0 ONLY NEW PARAMETERS ARE PUNCHED NOT
COVARIANCE MATRIX UNLESS CONVERGRNEE IS ACHIEVFD
NPUNCH=1 AND LPUNCH=1 BOTH PARAMETERS AND COV MATRIX
ARE PUNCHED NO MATTER WHAT
DEL, LAMBDA,NU,TAO,ERS, AND TRACE ARE INPUT
FORMAT(5E10.3.I5)
SUGGESTED VALUES:
DEL=0.001 INCREMENT FOR DERIVATI VES
LAMBDA=0.1 NU*VALOE OF LAMBDA YOU WANT
NU=10.0 RESULTS IN INITIAL LAMBDA OF . 01
TAU=5.4E-79 EFFECTIVELY ZERO
EPS=1.0E-06 DEFINES CONV ERGENCE (SEE MARQUARDT PAPER)
TRACE=0 OR 1 1 WILL PRINT OUT COSINE,LAMBDA,VARB, AND STEP
O THE ABOVE ARE NOT PRINTED
REFCOS IS INPUT IN E10.3 FORNAT.
MARQUARDT SUGGESTS BEFCOS=0.707; IPC SUGGESTS REFCOS=.866
INTEGER FLAG,FLAGA, WAVE,CFLAG
REAL*9 NAMES(75)
DOUBIE PRECISION CINV,SCR1, YAREX,VRLD,P,GE,A,Y,CSQT
DOUBLE PRECI SION UNITS,PS;UN,TERM,PSA,COR (30,30)

| LSQ | 0073 |
| :--- | :--- |
| LSQ | 0074 |
| LSQ | 0075 |
| LSQ | 0076 |
| LSQ | 0077 |
| LSQ | 0078 |
| LSQ | 0079 |
| LSQ | 0080 |
| LSQ | 0081 |
| LSQ | 0082 |
| LSQ | 0083 |
| LSQ | 0084 |
| LSQ | 0085 |
| LSQ | 0086 |
| LSQ | 0087 |
| LSQ | 0088 |
| LSQ | 0089 |
| LSQ | 0090 |
| LSQ | 0091 |
| LSQ | 0092 |
| LSQ | 0093 |
| LSQ | 0094 |
| LSQ | 0095 |
| LSQ | 0096 |
| LSQ | 0097 |
| LSQ | 0098 |
| LSQ | 0099 |
| LSQ | 0100 |
| LSQ | 0101 |
| LSQ | 0102 |
| LSQ | 0103 |
| LSQ | 0104 |
| LSQ | 0105 |
| LSQ | 0106 |
| LSQ | 0107 |
| LSQ | 0108 |

```
```

 DIMENSION DNOM (2,600)
 DIUENSION NUM (6,600),Y(600), DEV (600), GAVE(600),NCVAR(30),FLAG(75),
 10NITS(75),PS(75),PSA(76),FLAGA(76), DIM(2),A(30),P(75),GE
 2(600,3), , DELA (30), CHGZ(30), AERR(30), CINV(30,30),UNCRT(30
 3),SER1 (30,30), OGH(600)
 ,PART (2)
 DIMENSION TERM(150,9,2),FZERO(600)
 DIME NSION TP (9,2,150),TS (9, 2, 150)
 DIMENSION YY (600),CSQT (30)
 DIMENSION Y NUM(600)
 COMMON P,GE,NUM
 COMMON/BLK1/ CINV,SCR1,VAREX,CSQT,A,Y,DELA,DEV ,FZERO,AERR,
 1UNCRT,CHGE,NCVAR, IXMAX,IAMAX,NDATA, CFLAG
 COMMON/BIK2./ TERM,JMAX 1,M101,MAXP1,MAXM1
 COMMON/BLK 3/TP,TS
 EquIVALENCE (PSA(2),PS(1)),(FLAGA(2),Flag(1))
 DATA DIM(1)/2HMC/,DIM (2)/2GCM/,PART (1)/1 HE/.PART (2)/1HF/
 CALL NMMEIT (NAMES,75)
 READ INPUT
 READ (5,5)
 5 FORMAT (10X,70H
 1
 CFLAG=0
 READ (5,10) ITEST,IPLOT
 10 FORMAT (2I5)
 IF (ITEST.EQ.0) GO TO 999
 READ 11,YMIN,YMAX
 11 FORMAT(2F5.2)
N=1
1 2 CONTINUE
READ (5,20) ((NUM (L,N),L=1,6), X (N),DEV (N),WAVE (N))
IF (NUM (2,N).EO.0) GO mO 13
N}=\textrm{N}+
GO TO 12
13 NDATA=N-1
20 FORMAT (6I5, 2F 10.3,I5)
ADJUST EXPTL VAEUES TO GC
LSQ 0109
)
LSQ 0111
LSQ 0}11
LSQ 01113
LSQ 01114
LSQ 0115
LSQ 01116
LSQ 0117
LSQ 0118
LSQ 0119
LSQ 0120
LSQ 0 121
LSQ 0122
LSQ 0123
LSQ 0123
LSQ 0124
LSQ 0125
LSQ 0126
LSQ 0127
LSQ 0128
LSQ 0129
LSQ 0130
LSQ 0131
LSQ 0132
LSQ 0133
LSQ 0 134
LSQ 0135
LSQ O 136
LSQ 0137
LSQ 0138
LSQ 0139
LSQ 0140
LSQ 0140

```
        DO 25 N=1,NDATA
        IF(GAVE(N).EQ.0) GO TO 25
        Y (N)=Y (N)*29979.25D0
        DEV (N)=DEV (N)*29979.25
    25 CONPINDE
    READ (5,30) IAMAX
    33 FORMAT (I5)
    READ (5,32) (NCVAR (I),I=1.IAMAX)
    32 FORMAT (15I5)
    READ (5,35) JMAX1,M101,MAXP1,MAXM1
35 FORMAT (4I5)
C REAL PARAMETERS SO THAT NUMBER NEED NOT BE SPECIFIED
    DO 40 I= 1,75
    FLAG (I) =0
C FILL UNITS ARRAY FOR PARAMETRRS
    UNITS(I) =1.0DO
    40 PS(I)=0.000
    45 READ (5,50) I,PSA (I+1), FLAGA (I+1)
    50 FORMATT (I5,D15.P,T5)
        IF (I.EQ.O) GO TO 51
        IF (FLAG(I).EQ.1) UNITS(I)=29979.25DO
        GO TO 45
    5 1 ~ C O N T I N O E ~
    READ (5,70) NENUF,FITS
    70 FORMAT (I5,F10.5)
    READ (5,75) NPRINT, NPUNCH , LPUNCH
    75 FORMAT (3I5)
        IXMAX=0
C INITIAL HEADING
    WRITE (6,4545)
4545 FORMA T (1#1)
    #RITE (6,5)
    WRITE (6,85)
    85 FORMAT (///20X,18HINITIAL PARAMETERS//)
    DO 100 I=1,75
    K=FLAG (I) +1
```

LSQ 0145
LSQ 0146
LSQ 0147
LSQ 0148
LSQ 0149
LSQ 0150
LSQ 0151
LSQ 0152
LSQ 0153
LSQ 0154
LSQ 0155
LSQ 0156
LSQ 0157
LSQ 0158
LSQ 0159
LSQ 0160
LSQ 0161
LS Q 0162
LSQ 0163
LSQ 0164
LSQ 0165
LSQ 0166
LSQ 0167
LSQ 0168
LSQ 0169
LSQ 0170
LSQ 0171
LSQ 0172
LSQ 0173
LSQ 0174
LSQ 0175
LSQ 0176
LSQ 0177
LSQ 0178
LSQ 0179
LSQ 0180

```
            WRITE (6,95) NAMES(I),PS (I),DIM(X)
    95 FORMAT (10X,A8,5X,D15.8,2X,A6)
    100 CONSTNDE
C
    SFT FINAL OUTPUT AND LSQ PASS INDICATORS
        NTRI=0
        㫙ITE (6,110)
    110 FOR明早 (1H1///20X, 11HTHE I_SQ FIT//)
    SET INITIAL PARAMETERS IN-LSQ
    DO 120 T=1, IAMAX
    NBR=NCVAR(I)
    120 A (I) =PS (NB R)*UNI TS (NBR)
    170 DO 172 I=1,75
172 P(I)=PS (I)*UNITS (I)
    CALL IEEVE (1,NDATA)
C INPUT TRANSITTONS TO LSQ
C SET UP DIEEERENCES
    210 DO 215 N=1, NDATA
215 EZERO(N)=GE(N,1)-V(N)
    CALL NERFIT (1,NPRINT)
    VRLD=VAREX
    GO TO 8165
    OUQDUT AFTRR ZACH LSQ PASS
    130 NTRY=NTRY+1
        NRITE (6,140) NTRY
    140 FORMAT (///10X, 15HARTER LSQ PASS ,T5,22H THE FITTED VALUES ARE//)
        RESET PARAMETERS TO NEN VALUES
        DO 160 I=1,I AMAX
        NBR=NCVAR(I)
        PS(NRR)=A(I)/UNITS (NBR)
        K=FLAG (NBR)+1
C PRINT NEM VALUES OF PARAMETTEES
        #RIT: (6,155) I,NAMES (NBR), PS (NBR),DIM(K)
155 FORMAT (11X,I4,5X,A8, 2X,D 15.8,3X, 11X , 4X, A4)
    160 CONT INUS
C SET DP PARAMETERS FOR ENERGY CALCULATION
8165 WRIT# (5,165) VARvX
```

 LSQ 0181
 LSQ 0183
LSQ 0184
LSQ 0185
LSQ 0186
LSQ 0187
LSQ 0188
LSQ 0189
LSQ 0190
LSQ 0191
LSQ 0192
LSQ 0193
LSQ 0194
LSQ 0195
LSQ 0196
LSQ 0197
LSQ 0198
LSQ 0199
LSQ 0200
LSQ 0201
LSQ 0202
LSQ 0203
LSQ 0204
LSQ 0205
LSQ 0206
LSQ 0207
LSQ 0208
LSQ 0209
LSQ 0210
LSQ 0211
LSQ $\mathrm{C}_{3} 212$
LSQ 0213
LSQ 0214
LSQ 0215
LSQ 0216

```
    165 FORMAT (/10x, 19HVARIANCE OF THE FIT,D15.7////)
    TEST FOR COMPLETION OF FIT
    IF (NTRY.GR.NENIF) GO TO 275
    IXMAX=0
C CALL ISQ ROUTINE
    CATL NEGFIT(2,NPRINT)
    IF (CFLAG.EQ.1) GO TO 275
    IF (DABS (VAREX-VRLD).LT.DBLE(FITS)) GO TO 276
    VRLD=VAREX
C LOOP ON LSQ
    GO TO 130
C FINAL DIAGNOSTIC LSQ PASS
    276 WRITE (6,279)
    279 FORMAT //' SONV grgenCE/VARIANCE',/)
    C FLAG=1
    275 IF (NENUF.EQ.2) GO TO 3912
    CALI NEMFIT(3,NPRINT)
C FINAL OUTPUT FROM LSQ ROUTINE
    MRITE (6,300)
    300 FORMAT (1H1:///, 20X,25HOUPRUT FROM LAST LSQ PASS)
    WRITE (6,305)
    305 FORMAT (///,34X,5HETNAL, 12X,8HSTANDARD)
    WRITE (6,306)
    306 FORMAT (10X,6HNUMBER,4X,4HNAME,10X,5 HVALUE,12X,9 HDEV IATION,/)
    D0 308 I=1,75
    K=FL AG (I) +1
        DO 311 IB=1.IAMAX
        NBR=NCVAR(IB)
    310 IF (NBR.EQ.I) GO TO 320
    3 1 1 \text { CONTINUR}
    315 WRITE (6,3151) NAMES(I),PS(I),DIM(K)
3151 FORMAT (20X,A8,2X,D15.8,21X,A4)
    GO TO 30B
320 ABRR (IB) =A BRR (IB)/SNGL (UNITS (I))
    WRITE (6,3201) IB,NAMES(I),PS (I),AERR (IB),DIM(K)
    3201 FORMAT (11X,I4,5X,A8,2X,D15.8,5X,D11.4,4X, A4)
3201 FORM AT ( \(11 \mathrm{X}, \mathrm{I4}, 5 \mathrm{X}, \mathrm{A} 8,2 \mathrm{X}, \mathrm{D} 15.8,5 \mathrm{~K}, \mathrm{D} 11.4,4 \mathrm{X}, \mathrm{A} 4\) )
```

LSQ 0217
LSQ 0218
LSQ 0219
LSQ 0220
LSQ 0221
LSQ 0222
LSQ 0223
LSQ 0224
LS Q 0225
LSQ 0226
ISQ 0227
LSQ 0228
LSQ 0229
LSQ 0230
LSQ 0231
LSQ 0232
LSQ 0233
LSQ 0234
LSQ 0235
LSQ 0236
LSQ 0237
LSQ 0238
LSQ 0239
LSQ 0240
LS Q 0241
LSQ 0242
LSQ 0243
ISQ 0244
LSQ 0245
LSQ 0246
LSQ 0247
LSQ 0248
LSQ 0249
LSQ 0250
LSQ 0251

```
    308 CONTINUP
    WRITE (6,340)
    340 FORMAT (///,20又, 17HCOVARIANCE MATRIX,/.10X,42HELEMENTS ARE ARRANGE
        1D BY PARAMETER NUMBERS,/)
        CALL PEINI (CINV, 30,TAMAK,IAMAX)
        IE(NPUNCH.EQ.1) CALL PUNCH (IAMAX,NCVAR,PS,FLAG,CINV,CPLAG,LPUNCH)
C COMPUTE AND PRINT CORRELATION MATRIX
            L=IAMAX-1
            DO 3000 I= 1, L
            K=I+1
            DO 3000 J=R,IAMAX
            COR(I,J) =CINV (I,J) /DSQRT(CINV(I,I) *CINV(J,J))
    3000 COR(J,I)=COR (I,J)
            DO 30 10 I=1,IAMAX
    3010 COR (I,I) =1.0DO
        MRITE (6,3009)
    3009 FORMAT (///.20X,'CORRELATION MATEIX'./.10X,'ELEMENTS ARE ARRA NGED B
        1Y PARAMETER NUMBERS',/)
            CALL PRINT (COR, 30,IAMAX,IAMAX)
C PRINT OUT STL DEVS OF LINEARLY INDEPRNDENT PARAMETER COMBINATIONS.
            WRITE (5,380)
    380 FORMAT(//,20X,' EIGENVAIUES OF SCALED CURVATURE MATRIX:,/10X,
        1'PARAMETER EIGENVALUE',13X,'SQRT',21X,'SCALE FACTOR',//)
            DO 390 I=1,IAMAX
            SD=SQRT (UNCRT(I))
            WRITE (6,3905) I, WNCRT(I),SD,CSQT(I)
3905 FORMAT (15X,I2,8X,E15.7,5X, E15.7,15X, D15.7)
390 CONPINUE
            WRITE (6,385)
    385 FORMAT (///10X,'EIGENVECTOBS OF SCALED CURVATURE MATRIX',/10X, こOL
        IUMNS ARE IND COMBINATIONS IN THE ORDER OF EIGENVALUES ABOVE',1)
            DO 391 T=1,IAMAX
            NBR=NCVAR(I)
    391 WRITE (5,3911) NAMES(NBR), (SCR1(I,J),J=1,IAMAX)
3911 FORMAT (1X,A8,15(1X,F7.4))
3912 CONTINJE
```

LSQ 0253
LSQ 0254
LSQ 0255
LSQ 0256
LSQ 0257
LSQ 0258
LSQ 0259
LSQ 0260
LSQ 0261
LSQ 0262
LSQ 0263
LSQ 0264
LSQ 0265
LSQ 0266
LSQ 0267
LSQ 0268
LSQ 0269
LSQ 0270
LSQ 0271
LSQ 0272
LSQ 0273
LSQ 0274
LSQ 0275
LSQ 0276
LSQ 0277
LSQ 0278
LSQ 0279
LSQ 0280
LSQ 0281
LSQ 0282
LSQ 0283
LSQ 0284
LSQ 0285
LSQ 0286
LSQ 0287
LSQ 0288

GRTTE（6．395）NTRY
395 FORMAT（／／／， $10 \mathrm{X}, 22$ HNTBMBER OF LSQ PASSES $=, I 5)$
400 WRITE $(6,410)$
410 FORMAT（／／／／20X，26HFIT TO EXPERIMENTAL POINTS，／／20X，33HTRANSITION
1BETHEEN LEVELS 1 AND 2，／／） WRITE $(6,420)$
 1 PARI TY $2,9 \mathrm{X}, 4 \mathrm{AEXPT}, 3 \mathrm{X}, 4 \mathrm{HCALC}, 5 \mathrm{X}, 9 \mathrm{HEXPT}-\mathrm{CALC}, 2 \mathrm{X}, 13 \mathrm{HEXPSL}$ STD DEV， 3 X ， 25HOMITS：／／）
DO $430 \mathrm{~N}=1$ ，NDATA
C ADJUST OUTPUT TO INPUT UNITS
$\mathrm{UN}=1.000$
TF（HAVE（N）．EQ．1）ON＝29979．25D0
$\operatorname{GE}(\mathrm{N}, 1)=\mathrm{GE}(\mathrm{N}, 1) / \mathrm{JN}$
$\mathrm{Y}(\mathrm{N})=\mathrm{Y}(\mathrm{N}) / \mathrm{UN}$
$\operatorname{UGH}(N)=\operatorname{SNGL}(\mathrm{Y}(N)-G E(N, 1))$
$\operatorname{DEV}(\mathrm{M})=\operatorname{DEV}(N) / S N G L(U N)$
K＝TAVE（N）＋ 1
$\mathrm{L}=\mathrm{NOM}(3, \mathrm{~N})$
$n=\operatorname{NOM}(6, N)$
GOTO（421，422），ITEST
421 DNOM $(1, \mathrm{~N})=\mathrm{FLOAT}(\operatorname{NOM}(1, \mathrm{~N}))$
$\operatorname{DNU}(2, N)=F L O A T(N U M(4, N))$
GO TO 423
$422 \operatorname{DNUM}(1, N)=\operatorname{FLOAT}(\operatorname{NUK}(1, \mathrm{~N}))-0.5$
$\operatorname{DNUM}(2, \mathrm{~N})=\operatorname{FLOAT}(\operatorname{NUM}(4, \mathrm{~N}))-0.5$
423 TF（M．EQ．0）GO TO 426
WRJTE $(6,425)$ DNOM（ $1, N$ ），NOM $(2, N), \operatorname{PART}(L), D N U M(2, N), N U M(5, N), P A R T(M$
1）， $\mathrm{P}(\mathbb{N}), \operatorname{GE}(\mathbb{N}, 1), \operatorname{UGII}(\mathrm{N}), \operatorname{DEV}(\mathbb{N}), \operatorname{DIM}(\mathrm{K})$
425 FORMAT（ $4 \mathrm{X}, 2(5 \mathrm{X}, \mathrm{R} 5.1,5 \mathrm{X}, \mathrm{T} 3,8 \mathrm{X}, \mathrm{A} 1), 2 \mathrm{X}, 4(1 \mathrm{X}, \mathrm{F} 12.5), 4 \mathrm{X}, \mathrm{A} 6)$
GO TO 430
426 WRITR $(6,427) \operatorname{DNUM}(1, N), N U M(2, N), \operatorname{PART}(L), Y(N), G E(N, 1), U G H(N), \operatorname{DEV}(N)$ 1，DIM（K）
427 TORMAT（4X，5X，F5．1，5X，13，8X，A1，29X，4（1X，P12．5），4X，A6）
430 CONTINUE
IE（IPLOT．NE．1）GO TO 433

LSQ 0289
LSQ 9290
LSQ 0291
LSQ 0292
LSQ 0293
LSQ 0294
LSQ 0295
LSQ 0296
LSQ 0297
LSQ 0298
LSQ 0299
LSQ 0300
LSQ 0301
ISQ 0302
LSQ 0303
LSQ 0304
LSQ 0305
LSQ 0306
LSQ 0307
LSQ 0308
LSQ 0309
LS Q 0310
LSQ 0311
LSQ 0312
LSQ 0313
LSQ 0314
LSQ 0315
LSQ 0316
LSQ 0317
LSQ 0318
LSQ 0319
LSQ 0320
LSQ 0321
LSQ 0322
LSQ 0323
LSQ 0324

```
PRIN\4 31
    431 FORMAT (' '', 2X,' OBSERVED-CALCULATED', 2X,//)
        DO 432 N=1,NDATA
        YNUM (N)=DNUM (1,N)
    432 YY (N)=U3H(N)
    CALE PLOT (YY,NDATA,YMIN,YMAX,6,1,YNUM)
    433 CONTINUE
C
    PRINT OUT TERM ENERGIES JN CM-1.
    DO 443? I=1,JMAX 1
    DO 4435 II=1,MAXP1
    4435 TERM (I,II,1)=TERM (I,II,1)/29979.25DO
    DO 4436 II =1,MAXM1
    4436 TERM (I,II,2)=TERM (I,II,2)/29979.25[0
    4430 CONTINUE
    WRITE (6,4442)
4442 FORMAT (1H1)
    WRITE (6,4445)
4445 FORMAT (9X,25HTERM ENERGIES PIUS PARITY,//)
    DO 4444 I=1,JMAX1
    GOTO (4447,4448), ITEST
    4447 XI=FLOAT (I) - 1.0
    GO TO 4449
    4448 XI=FLOAT(I) -0.5
    4449 WRITE (5,4446) XI, (TERM (I,J,1),J=1,MAXP 1)
    4446 FORMAT (1X,F5.1.9(2X,F12.5))
    WRITE (6,5446) (TP (J,1,I),TS(J,1,I),J=1,MAXP1)
    5446 FORMAT(7X,9(1X,2HPI,F4.3,3HSIG,F4.3))
4444 CONTINUE
    WRTTE (6,4450)
4450 FORMAT (//,9X,26HTERN ENERGIES MINUS EARITY,//)
    DO 4452 I=1,JMAX1
    GO TO (4453,4454),TTEST
4453 XI=FLOAT (I)-1.0
    GOTO4455
4454 XI=FLOAT (I)-0.5
4455 W RITE (6,4446) XI, (TERM (T,J,2),J=1,MAXM1)
```

LSQ 0325
LSQ 0326
LSQ 0327
LSQ 0328
LSQ 0329
LSQ 0330
LSQ 0331
LSQ 0332
LSQ 0333
LSQ 0.334
LSQ 0335
LSQ 0336
LSQ 0337
LSQ 0338
LSQ 0339
LSQ 0340
LSQ 0341
LSQ 0342
LSQ 0343
LSQ 0344
LSQ 0345
LSQ 0346
LSQ 0347
LSQ 0348
LSQ 0349
LSQ 0350
LSQ 0351
LSQ 0352
LSQ 0353
LSQ 0354
LSQ 0355
LSQ 0356
LSQ 0357
LSQ 0358
LSQ 0359
LSQ 0360

VPITE $(5,5446)(T P(J, 2, I), T S(J, 2, I), J=1$, MAXM1)
LSQ 0361
4452 CONT INUB
LSQ 0362
GO TO 4
LSQ 0363
999
Stop
LSQ 0364
END
LSQ 0365

```
    SUBROUTINE NEWFIT(NHELP,NPRINT)
    REAL NO, LAMBDA
    INTEGRR CFIAG
    INTEGER TRACE, RFLAG
    DODBLE PRECISION D(30), L,TP,CNORM,ERNORM,CINV,DDELA,SREM,DDENM
    1,VAREX,SCR 1,SCR3,CSQT,Y,A,QNORH,SUM1,SUM 2,PSAVE,VARB
    DOUBLE PRECISION P,GE,DP,SCR2
    DOTBLE PRECISION DBLI,DSQRT,DABS
    DIMENSION A(30), DEV (600),NCVAR (30) ,SCR2(600),
    1Y(600),PZERO (600),L (600), CNORM(30,30), ERNORM (30), CINV (30,30),DE
    2LA (30),AERR(30), INCRT(30), DDRLA(30),SCR1(30,30) , SSCR (4
    365) , CSOT (30)
    DIMENSION P(75),GE(600,3),NOM (6,600), CHGE (30)
    COMMON P,GE,NUM
    COMMON/BLK 1/ CINV,SCB1, VAREX,CSQT,A,Y,DELA,DEV .FZERO,AERR,
    1UNCRT,CHGE,NCVAE, IXMAX,IAMAX,NDATA,CFLAG
    GO TO (205,236,8000),NHELP
    205 EFLAG=0
    DO 2.20 N=1,NDATA
    L(N)=DBLE(DEV (N))**2
    220 CONTIN UR
        READ(5,8010) DEL, LAMBDA, NW, TAU, EPS, TRACE
8010 FORMAT(5E10.3.I5)
    READ (5,8050) REFCOS
gO50 FORMAT(1E1 0.3)
    SREM=0.0D+00
    DO 235 N=1,NDATA
    235 SREM=SREM+(DBLE(FZERO(N))**2)/L(N)
    DENM=NDATA-TAMAX
    DDSNM=DBLE (DENM)
    VAREX=SREM/DDENM
    IF (NHEIP.EQ.1) GO TO 500
236 CONTINUE
    LAMBDA=L AMBDA/NU
8500 DO 245 I=1,IAMAX
    IENORM (I) =0.OD+00
```

NEWFOOO 1
NEVF0002
NEVFOOO3
NEWFOOO4
NEGF 0005
NER FOOO6
NEWF 0007
NEMFOOOB
NEHF 0009
NEWFOO 10
NEWF0011
NEWFOO 12
NEWFOO13
NEWFOO14
NEWFOO15
NEWFOO 16
NEW F0017
NEGF 0018
NEVFOO 19
NEGFOO2 0
NEWFOO21
NETFOO22
NEWFOO23
NEWFOO24
NEMF 0025
NEWFOO26
NEWF 0027
NEWFOO 28
NEDF 0029
NEWFOO 30
NEWFO031
NEWFOO32
NEK FOO33
NEWFO034
NEW F0.035
NEWF0036

```
    DO 245 J=1,IAMAX
245 CNORM(I,J) =2.0D+00
    REWIND 2
    DO 260 I=1,IAMAX
    NBR=NCVAR(I)
    PSAVR=P(NBR)
        DP=DABS(DSAVE*DBLE(DEL))
    P(NBR)=PSAVE+DP
    IF(PSAVE.EQ.O.ODO) P(NBR)=DEL
    IF(PSAVE.EQ.0.0DO) DP=DEL
    CALL LEVEL (3,NDATA)
    P(NBR)=PSAVE
    DO 258 N=1,NDATA
    GE(N,2)=(GE(N,3)-GE(N,1))/DP
258 ERNORM (I)=ERNORM (I) +DBLE(FZERO (N))*GR(N,2)/L (N)
260 MRITE(2) (GB(N,2),N=1,NDATA)
    REMIND 2
    DO 262 I=1, IAMAX
    BZAD (2) (GE (N,2),N=1,NCATA)
    DO 263 N=1,NDATA
263 CNORH (I,I) =CNORM (I,I) +GE (N,2) *GE (N,2)/L(N)
    IF (I.EQ.IAMAX) GO TO 262
    JJ=I+1
    DO 261 J=JJ,IAMAX
    READ (2) (SCR2(N),N=1,NDATA)
    DO 261 N=1,NDATA
261 CNORM(I,N)=CNOFM (I,J) +GE (N,2)*SCR2 (N)/L (N)
    RETIND 2
    DO 2622K=1,I
2622 READ (2) (GE (N,2),N=1,NDATA)
    262 CONTINOE
    DO 264 I=1,IAMAX
    DO 264 J=I,IAMAX
264 CNORM (J,I) =CNORM (I,J)
    IF (NPRI NT.EQ.O) GO TO 256
    NRITE (6,250)
```

NEWFOO 37
NEFFOO38
NEWFOO 39
NEW FOO 040
NEWF 0041
NEWFOO42
NEWF 0043
NEWFOO44
NEMFO 045
NEWFOO46
NEW FOO 47
NEWFOO48
NEWFOO49
NEWFOO50
NEQ FOO51
NEWFOO52
NEWFOO53
NEWF 0054
NEWFOO55
NEWF 0056
NEGF0057
NEGF 0058
NEWFOO59
NEWF0060
NEGF0061
NEW FOO52
NEWF0063
NEW FO 064
NEWFOO65
NEW POO66
NEIF 0067
NEWFO068
NeWF 0069
NEWF007G
NEWFO 071
NEWF0072

```
250 FORMAT (///,20X, 16HNORMAL EQ MATRIX,//)
    CALL PRINT (CNORM,30,IAMAX,IAMAX)
256 CONTINUE
    IF (NPRINT.EQ.0) GO TO 2691
    VRITE (6,265)
265 FORMAT (///,10X,24GN, EXPT POINT, CAIC-EXPT,//)
    DO 267 N=1,NDATA
    WRITE (6,266) N,Y(N),FZERO(N)
266 FORMAT (10X,I5,2F15.7)
267 CONPINUS
    WRTTE (6,268)
268 FORMAT (///,20x,9HRENORM (I) ,//)
    CALE PRINTA(EENORM, 30, IAMAX)
2691 CONTINUE
    QNORM= O. ODO
    DO 2681 I=1,IAMAX
    CSQT(I)=DSQRT (CNORM (I,T))
2681 QNORM=QNORM+(ERNORM(I)/CSQT (I))**2
    REXIND 2
    DO 2692 I= 1,IAMAX
    D0 2692 J=1, J
    II=, J +I* (I-1)/2
    SCR3 (IT) =CNORM(J,I)/CSQT(I)/CSQT (I)
2692 HRITE(2) SCE3(II)
    GO TO 7130
7778 DO 7779 I=1,IAMAX
    D0 7779 J=1,J.
        II=J+I* (I-1)/2
7779 READ (2) SCR3(II)
7130 REMIND 2
    IF (BFLAG.EQ.1) GO TO 2796
7 7 7 7 \text { DO 2795 I=1,IAMAX}
    II=I+I* (I-1)/2
2795 SCR3 (II) =SCR3 (II)+DBLE (LAMBDA)
2796 CAFL DSINV (SCR3,IAMAX,1.0E-13,IER)
    IF (IER.NE.0) WRITE (6,2693) IER
```

NEW F0073
NETFOO74
NEMFOO75
NEWF 0076
NEWFOOT7
NEWF 0078
NE WFOO 79
NEWFOO80
NEWFO081
NEQ F0082
NEWFOO83
NEWECO84
NEWF0085
NEW FOO86
NEWFO087
NEVFOO88
NEWF 0089
NE:WFOO90
NEGF 0091
NEWF0092
NEWFOO93
NEWFOO94
NEWFO095
NEFFO096
NED F0097
NEWF 0098
NEWF0099
NESF 0100
NEWFO 101
NEWFO102
NESFO 103
NEMFO104
NETFO105
NEWFO 106
NEWF 0107
NETFO 108

```
2693 FORMAT (5X, #RROR PARAMETER IN INYERSION ROUTINE, IER=*,I3,/)
    DO 2694 I= 1, IAMAX
    DO 2694 J=1.I
    II=T +I*(I-1)/2
    CINV (J,I)=SCR3(II)/CSQT(I)/CSQT(J)
2694\operatorname{CINV (I,J)=CINV (I,I)}
    IP (EFLAG.EQ.1) GO TO 8600
    DO 270 I=1, IAMAX
    DELA (I)=0.0
    DDELA (I) =0.0D +00
    DO 270 J=1,IAMAX
    DDELA (I) =DDELA(I) +CINV (I,J)*ERNORM (J)
270 DEI,A(I)=SNGL(DDELA(I))
    IF (NPRINT.EQ.0) GO TO 297
    WRITE (6,275)
275 FORMAT (////, 108, 27HINVERSE OF NORMAL EQ MATRIX,//)
    CALL PRINT(CINV, 30,IAMAX,IAMAX)
    URITE (6.291)
291 FORMAT (//,10X,25HTEST PRODUCT CINV X CNORM,//)
    DO 292 I=1,IAMAX
    DO 292 J=1.I IMAX
    SCR1(I,J)=i). OD0
    DO 292. K=1, IAMAX
292SCE1 (I,J)=SCR1 (I,J) +CINV (I,K)*CNORM (K,J)
    CAIT, PRI NT (SCB1, 30, I AMAX, I AM AX)
    WRITE (6,295)
295 FORMAT (///,20X,7HDELA(I),//)
    CALL PRINTA(DDEI,A,15,IAMAX)
297 SUM1=0.ODO
    SUM2=0.ODO
    DO 7000 I=1,IAMAX
    SUM1=SUM1+DDELA (I) **RNORM (I)
7000 SUM2=SUM 2+(DDELA (I)*CSQT (I))**2
    COSTNE=S NGL(SUM1/D SQRT(SUM 2*QNORM))
    IF (TRACE.EQ.O) GO TO 7171
    WRITE(6,9200) COSINE,I AMBDA
```

NETFO109 NEGFO 110 NET FO 111 NEWFO112
NEWFO113
NEWFO 114
NEW FO 115
NEWFO 116
NEW FO 117
NEAF 0118
NEWFO 119
NEWFO120
NEWFO 121
NEW FO 122
NEWFO123
NEWFO124
NEDFO 125
NEN FO 126
N EWF 0127
NEHFO 128
NETPF 0129
NEWFO 130
NEWF0131
NEWFO 132
NEWFO133
NEGFO 134

- NETEO135

NEWFO136
NEW F0137
N EWF 0139
NEHEO 139
NEWEO140
NEWFO 141
N WheO 142
NEWEO 143
NEWFO144

```
8200 FORMAT (5X,'COSINE:',E15.7,' LAMBDA:', E11.3) NSWFO 145
7171 STEP=1.0 NENF0146
7170 DO 7180 I=1,IAMAX NEWFO 147
    NBR=NCVAR(I)
    P(NBR)=A(I)
    IF (ABS(STEP*DELA(I)).GT.TAU+EPS*ABS(SNGL.(A(I)))) GO TO 7190
7 1 8 0 ~ C O N T I N U E ~
    CFLAG=1
        WRI TE (6,7182)
7182 FORM AT (5X,'`ONV KRGENCE',///)
    CALT, LEVEL (1,NDATA)
    DO }7185\textrm{N}=1\mathrm{ ,NDATA
7185 FZERO(N)=GE(N,1)-Y(N)
    RETURN
7 1 9 0 ~ D O ~ 7 2 0 0 ~ I = 1 , ~ I A M A X ~
    NBR=NCVAR (I)
7200 P(NBR)=A (I) -DBLE (STEP) *DDELA (I)
    SREM=0.0DO
    CATL LEVEL (1,NDATA)
    DO 7220 N=1,NDATA
    F ZRRO (N)=GE (N, 1)-Y (N)
7220 SREM=SRRM+((GR (N,1)-Y (N))**2)/L(N)}\mathrm{ NEWF0166
    VARB=SRRM/DDENM
    IF (TRACE.RQ.O) GO TO 7221
    WRITE(6,8300) VARB,STEP
3300 FORMAT (5X,VARB:',D 15.7.' STEP:',715.7)
7221 IF (VARB.L E.VAREX) GO TO 7240
    IF (COSINE.LT.REFCOS) GO TO 7239
    STEP= . 5* STEP
    GO T0 717%
7230 LAMB DA = , AMBDA*NU
    GO PO 7778
7240 VAEEX=VARB
    DO 9000 I= 1, IAMAX
    NBR=NC VAR(I)
9000 A(I) = P(N BR)
NEWF0148
NEWFO149
NENFO 150
NEWFO151
NES FO152
NEWF 0153
NEWFO154
NEWF 0155
NEWEO 156
NEWE0157
NEWFO 158
NEWFO159
NEWTO160
NENFO161
NEWFO 162
NEVFO163
NE昨 0164
NEWFO165
NEWFO }16
NEWFO168
NEWFO169
NEWFO169
NEN F0170
NEWFO171
NEW FO172
NEGEO173
NE%FO174
NEMF 0175
NEWFO }17
NEWFO177
NEWFO178
NEWFO 180
```

```
        RETURN
8000 EFLAG=1
    REWIND 2
        NPLUS1=FFTAG+1
        GO TO (8500,7778), NDLUS1
8600 DO 41n I=1,IAMAX
    DO 410 J=1, I AMAX
    41? CNORM(I,J)=CNORM (I,J)/CSQT (I)/CSQT(J)
        DO 420 J=1, IAMAX
        DO 420 I=1,IAMAX
    420 CINV (I,J)=CINV (I,J) *VAREX
        DO 425 I=1,IAMAX
    425 A PRR (I) = SNGL (DSQRT (CINV (I,I)))
        ERNORM USED AS DUMMY TO CONSERVE CORE FOR TRIDIAGONAL ELEMZNTS
        DO 45% I=1.30
        DO 451 II=1,30
    451 SCR1 (I,II)=0.0D%
        ERNORM (I)=0. ODO
        D (I) =1.000
    450 SCR1(I,I)=1.0D0
    CALL TRED2 (IAMAX, 30,CNORM,D, BRNORM,SCR1)
    CALL TQL2(TARAX, 30,D,ERNORM,SCR1,IERR3)
    DO 460 I=1,IAMAX
    460 UNCRT(T) =SNGI.(D (I))
        IF (IERR3.NE.O) GO TO 426
        GO T+O 427
    426 जRITE(6,429) IERR3
    429 FORMAT(" ERROR IN COVARIANCE NATRIX DIAGONALIZATION, IERR=',I2)
    4 2 7 \mathrm { CONTINUE }
    5:0 CONTINTE
        RETIRN
        END
```

NEWFO 181
NEWF 0182
NEWFO 183
NEW FO184
NEWFO 185
NETFO 186
NFWFO187
NEW FO 188
NEWF 0189
NETEO 190
NEWF 0191
NETEO 192
NEWF0193
NEWFO 194
N EN FO 195
NEWFO 196
NEGFO197
NEWF 0198
NEW FO 199
NEWFO200
NEWFO201
NEWF 0202
NEWFO 203
NEWFO204
NEWFO 205
NEWFO206
NEWFO207
NEW FO208
NEWFO209
NEW FO2 10
NEMF 0211
NEWFO212

| C | | DSIN | 10 | DS IN0001 |
| :---: | :---: | :---: | :---: | :---: |
| c | | . DS IN | 20 | DSIN0002 |
| C | | DSIN | 30 | DSIN0003 |
| C | SIBROUTINE DS INV | DSIN | 40 | DSIN0004 |
| C | | DSIN | 50 | DSIN0005 |
| C | PURPOSE | DSIN | 60 | DSIN0006 |
| C | INVERT A GIVEN SYMMETRIC positive definite uatrix | DSIN | 70 | DSIN0007 |
| C | | DSIN | 80 | DSIN0008 |
| C | TSAGE | DS IN | 90 | DSIN0009 |
| C | CALL DSINV(A, N, EPS, IRE) | DSIN | 100 | DSIN0010 |
| C | | DSIN | 110 | DSINOO 11 |
| C | DESCRTPTION OF PARAMETERS | DSIN | 120 | DSIN0012 |
| C | a - double precision uppre triangolar part of given | DSIN | 130 | DSIN00 13 |
| C | SYMMETRIC POSITIVE DEFINITE ${ }^{\text {N }}$ BY N COEFFICIENT | DSIN | 140 | DSINOO14 |
| c | Matrix. | DSIN | 150 | DS INOO 15 |
| C | ON RETUEN A CONTAINS THE RESULTANT UPPER | DSIN | 160 | DSI N0016 |
| C | triangular matrix in double precision. | DSIN | 170 | DSIN0017 |
| C | N - the NUMBEB OF BOWS (COLGMNS) IN GIVEN MATRIX. | DSIN | 180 | DSI N0018 |
| C | EPS - SINGLE PRECISION INPUT CONSTANT WHICH IS USED | DSIN | 190 | DSIN0019 |
| C | AS relative tolbrance for test on loss of | DSIN | 200 | DSIN0020 |
| C | SIGNIPICANCE. | DSIN | 210 | DSIN0021 |
| C | IEr - Resulting error parameter coded as follows | DSIN | 220 | DSIN0022 |
| C | IER=0 - NO ERROR | DSIN | 230 | DSIN0023 |
| C | IER $=-1$ - NO RESULT BECAUSE OF GRONG INPUT PARAME- | DSIN | 240 | DSINOO24 |
| c | TER N OR BECAUSE SOME RADICAND IS NON- | DSIN | 250 | DSIN0025 |
| C | positcye (MAtrix a is not positive | DSIN | 260 | DSIN0026 |
| C | DEFINITE, POSSIBLy DJE TO LOSS OF SIGNI- | DSIN | 270 | DSIN0027 |
| C | FICA NCE) | DSIN | 280 | DS IN0028 |
| C | IER=K - WARNING WHICH INDICATES LOSS OF SIGNIFI- | DS IN | 290 | DSI N0029 |
| C | CANCE. THE RADICAND FOKMED AT FACTORIZA- | DSIN | 300 | DS IN0030 |
| C | TION STEP K+1 RAS Still positive bot no | DSIN | 310 | DSI NOO31 |
| c | LONGEE GREATER than AbS (EPS*A ($\mathrm{K}+1, \mathrm{~K}+1)$). | DSIN | 320 | DSIN0032 |
| C | | DSIN | 330 | DSIN0033 |
| c | REMARKS | DSIN | 340 | DSIN0034 |
| C | THE UPPER TRIANGULAR PART Of GIVEN MATEIX IS ASSUMRD TO Bia | DSIN | 350 | DSIN0035 |
| c | STORED COLUMNKISE TM $\mathrm{N} *$ ($\mathrm{N}+1$)/2 SJCCESSIVE STCRAGE LOCATIONS | . DSIN | 360 | DSI N0036 |

DIMENSTON A (1)
DOUBLE PEECISION A, DIN, WORK
FACDRIZE GIVEN MANRIX BY MEANS OF SUBROUTINE DMFSD
$A=$ TRANSPOSE $(T) * T$
CALL DMFSD (A,N,EPS,IER)
IF (IER) $9,1,1$
INVERT IPPER TRIANGULAR MATRIX T
PREPARE I NVERSION-LOOP
$1 \operatorname{IPIV}=\mathrm{N} *(\mathrm{~N}+1) / 2$
$I N D=I P I V$
$\stackrel{C}{C}$

IN THE SAME STOKAGE LOCATIONS THE RESULTING UPPER TRIANGULAR MATRIX IS STORED COL OMNHISE TOO. THE PBOCEDTDE GIVES EESULTS IF N IS GERATER THAN O AND ALL CAICDLATED RADICANDS ARE POSITIVE.

3 UBROUTINES AND FUNCT ION SUBPROGRAMS REQUI RED DMFSD

IT ETHOD SOLOTION IS DONE USING FACTORIZATION BY SUBROUTINE DMFSD.

DSIN 370 DSIN0037
DSIN 380 DSINOO38
DSIN 397 DSIN0039
DSIN 400 DSINOO40 DSIN 410 DSIN0041 DSIN 420 DSINO042 DSIN 430 DSINOO43 DSIN 440 DSINOO44 DSIN 450 DSINO 045 DSIN 460 DSINOO46 DSIN 470 DSIN0047 . DS IN 480 DSINOO48 DSIN 490 DSIN0049 DSIN 500 DSINO050 DSIN 510 DSINO051 DSIN 520 DSIN0052 DSIN 530 DSI NOO53 DSIM 540 DSINOO54 DSIN 550 DSINO055 DSIN 560 DSIN0056 DSIN 570 DSINOO57 DSIN 580 DSINO058
DSIN 590 DSINOO59 DSIN 600 DSIN0060 DSIN 610 DSIND061 DSIN 620 DSINOO62 DSIN 630 DSIN0063 DSIN 640 DSINOO64 DSIN 650 DSIN0065 DSIN 660 DSINO066 DSIN 670 DSIN0067 DSIN 680 DSINO 068 DSIN 690 DSIN0069 DSIN 700 DSIN0070 DSIN 710 DSIN0071 DSIN 720 DSIN0072
$\triangle I N=N$
$K F N D=I-1$
L $A N P=N-K E N D$

IN ITIALIZE INV BRSI ON-LOOP
DO $6 I=1, N$
$D I N=1 . D 0 / A(I P I V)$
$A(I P I V)=D I N$

```
        IF (KE ND) 5,5,2
        2 J=J.ND
C
C INITIAITZE ROW-LOOP
    DO 4 K=1,KEND
    MORK=0.DO
    MIN=MIN-1
    LHOR=T PIV
    LJRR=J
C
C
C
C
    A(J)=-MORK*DIN
    4 J=J- MIN
        END OF ROW-L,OOP
    5 IPIV=I PIV-MIN
    6 IND=IND-1
        END OF INYERSION-LOOP
        ~ALCULATE INVERSE (A) BY MEANS OF INVERSE(T)
        INVERSE(A) = INVERSE(T) * TRANSPOSE (INVEESE(T))
        TNITIALIZE MULTIPIICATION-LOOP
    DO & I=1,N
    IPIV=IPIV+I
    J=IPIV
    INITIALIZF EOG-IOOP
    DO B K=T,N
    MORK=O.DO
    IHOR=J
```

DSIN 730 DSINOO73
DSIN 740 DSIN0074
DSIN 750 DSINOO75
DSIN 760 DSIN0076
DSIN 770 DSINO077
DSIN 780 DSIN0078
DSIN 790 DSIN0079
DSIN 800 DSIN0080
DSIN 810 DSIN0081
DSIN 820 DSINOO82
DSIN 830 DSIN0083
DSIN 840 DSINOO84
DSIN 850 DSIN0085
DSIN 860 DSIN0086
DSIN 870 DSIN0087
DSIN 880 DSIN0088
DSIN 890 DSIN0089
DSIN 900 DSINOO 90
DSIN 910 DSINOO91
DSIN 920 DSINOO92
DSIN 930 DSINOO93
DSIN 940 DSINDO94
DSIN 950 DSINDO95
DSIN 960 DSIN0096
DSIN 970 DSIN0097
DSIN 980 DSINOO98
DSIN 990 DSINOO99
DSIN1000 DSINO 100
DSIN1010 DSINO101
DSIN1020 DSINO 102
DSIN1030 DSINO 103
DSIN1040 DSIN01 04
DSIN 1050 DSINO 105
DSIN1060 DSIN0106
DSIN 1070 DSINO 107
DSIM1080 DSINO108

```
C
C START INNER T,OOP
    907 L=K,N
        I. VER=L HOE K K-I
        WORK=WORK+A (LHOR)*A(LVER)
        7 LHOR=LHOR+L
            RND OP INNER LOOR
C
C
        A (J)=HOR K
        8 J=J+K
        END OF ROW- AND MOLTIPLICATION-LOOP
C
C
9 RETURN
END
```

DSIN1090 DSIR0109
DSIN 1100 DSINO 110
DSIN1110 DSINO111
DSIN 1120 DSINO 112
DSIN1130 DSINO113
DSIN 1140 DSINO 114
DSIN1150 DSINO115
DSIN1160 DSINO116
DSIN1170 DSINO 117
DSIN1180 DSIN0118
DSIN 1190 DSINO 119
DSIN1200 DSIN0120
DSIN 1210 DSINO 121
DSIN1220 DSIN0122

FACTOR A GIVEN SYMMETRIC POSITIVE DEFINITE MATRIX
USAGE
CALI. $\operatorname{DMFSD}(A, N, E P S, I E R)$
descetption of parameters
A - DOUBLE precision upper tefangular part of given SYMMETRIC POSITIVE DEFINITE N BY N COEFFICIENT MATRIX.
ON RETURN A CONTAINS TGE RESOL TANT UPPER triangular matrix in double precision.
N - THE NUMBER OF ROWS (COLEMNS) IN GIVEN MATRIX.
EPS - SINGLE PRECISION INPUT CONSTANT GHICH IS USED AS RELATIVE TOLERANC FOR TEST ON LOSS OF SISNIFICANCE.
IER - RESULTING ERROR PARAMETER CODED AS FOLLOKS IR $B=0$ - NO FRROR IER=-1 - NO RESULT BECAUSE OF WRONG INPUT pA\&AMETER N OR BECAUSE SOME RADICAND IS HONpoSitive (matrix a is not positive DEFINITE, POSSIBLY DUE TO LOSS OF SIGNIFICANCE)
IER=K - WARNING GHICG INDICATES LOSS OF SIGNIFICANCE. THE RADICAND FORHED AT FACTORIZATION STEP K+1 WAS STILL POSITIVE BUT NO Longer greater than abs (EPS*a(K+1,K+1)).

REMAR KS
THE UPPER TRIANGULAR PART OR GIVEN MATRIX IS ASSUMED TO BE STOR RD COLUMNGISE IN $N *(N+1) / 2$ SUCCESSIVE STORAGE LOCATION in the same storagr locations the resulting upper trianguLAR MATRIX IS STORZD COLUMNWISE TOO. THE PROCEDURE GIVES RESULTS IF N IS GREATER THAN O AND ALL

DMSD 50 DMFSO002
DMSD 60 DMFSO003
DMSD 70 DMFS0004
DMSD 80 DMFSOOO5
DMSD 90 DMFS0006
DMSD 100 DMFSO 007
DMSD 110 DMFS0008
DMSD 120 DMFS0009
DMSD 130 DMFS0010
DHSD 140 DMFSOO11
DMSD 150 DMFSO012
DMSD 160 DMFSOO13
DMSD 170 DMFS0014
DMSD 180 DMFSJO 15
DMSD 190 DAFS0016
DMSD 200 DMFSOO 17
DMSD 210 DMFSOO18
DMSD 220 DMPSOO19
DMSD 230 DMFSO020
DMSD 240 DMFSO 021
DUSD 250 DMFSOO22
DMSD 260 DMFSO 023
DMSD 270 DMPS0024
DMSD 280 DMFSOO25
DMSD 290 DMFSOO26
DMSD 300 DMFSO027
DMSD 310 DMFSOO28
DMSD 320 DHFSOO29
DASD 330 DMESOO30
DMSD 340 DMFS0031
DMSD 350 DMFS0032
DMSD 360 DMFSO033
DMSD 370 DMFS0034
DMSD 380 DAFSOO35
DMSD 390 DMFS0036

CALCULATED RADICANDS ARE ROSITIVE. THE PRODUCT OF RETURNED DIAGONAL TERMS IS EQUAL TO TEE SQUAPE-ROOT OF THE DET OR MINANT OF THE GIVEN MATRIX.

SUBROUTINES AND FUNCTION SUBRROGRAMS REQUIRED NON:

METHOD SOLUTION IS DONE USING THE SQUARE-ROOT METHOD OF CHOLESKY. THE GIVEN MATRIX IS REPRESENTED AS PRODUCT OF TWO TRIANGULAR MATRICES, WHERE THE LETT HAND FACTOR IS THE TRANSPOSE OF THE RETURNED RIGHT HAND FACTOR -

SUBRDUTI NE DMFSD (A, N, EPS. IEB)

DTMENSION A (1)
DOUBLE PRECISION DPIV,DSUM, A
DOUBLE PRECISION DSQETT
TEST ON FBONG INPUT PAKAMETEE N
$I T(N-1) \quad 12,1,1$
1 IER=0
INITIALIZE DIAGONAL-LOOP
$\mathrm{KPIV}=0$
DO $11 \mathrm{~K}=1, \mathrm{~N}$
$K P I V=K P I V+K$
$I N D=K P I V$
IS END $=K-1$
CALCO LATE TOLERANCE
$T O L=A B S(E P S * S N G L(A(K P I V)))$

DMSD 400 DMFSOO37
DMSD 410 DMFS0038
DMSD 420 DMFS0039
DMSD 430 DUFSO040
DMSD 440 DAFS0041
DMSD 450 DMFSOO42
DUSD 460 DAESO 043
DMSD 470 DMFS0044
DMSD 480 DMFSOO45
DMSD 490 DMFS0046 DMSD 500 DMFSO 047 DMSD 510 DMFSOO48 DNSD 520 DNFSOO49 DMSD 530 DMFS0050 DMSD 540 DMFSOO51 DMSD 550 DMES0052 DUSD 560 DMFSO053 DMSD 570 DMFSO054
DMSD 580 DMFS0055
DMSD 590 DMFSOO56 DMFS0057
DMSD 600 DMFSO058
DMSD 610 DMFS0059
DMSD 620 DMFS0060
DMSD 630 DMFS0061
DKSD 640 DMFSOO62
DMSD 650 DMES0063
DMSD 660 DMFS0064
DMSD 670 DMFSOO65
DMSD 680 DMFS0066
DMSD 690 DMFS0067
DMSD 700 DMFS0068 DMSD 710 DMFS0069
DMSD 720 DMFS0070
DASD 730 DMFS0071
DMSD 740 DMFS0072

```
C START FACTORIZATION-LOOP OVER K-TH RON
    DO }11I=K,
    DSOM=0.DO
    IF (LEND) 2,4,2
C
C START INNER LOOP
    2 DO 3 L=1,LEND
        LANP=KPIV-I
        LIND =IND-L
        3 DSUM=DSUM+A(LANP)*A (LIND)
            END OF INNER LOOE
C
C
    DSUM=A (IND) - DSUM
        IF (I-K) 10,5,10.
C
C TRST FOR NEGATIVE PIVOT ELRMENT AND FOR LOSS OF SIGNIFICANCE
        5 IF (SNGL(DSUM)-TOL) 6,6,9
        6 IF(DSUM) 12,12,7
        7 IF (ITR) 3,8,9
        8 IER=K-1
C
C COMPOTE PIYOT ELEMRNT
        9 DPIV= DSQRT(DSUM)
        A (KPIV)=DPIV
        DPIV=1.DO/DPIV
        GO TO 11
C
C
    CALCULATE TBRMS IN ROW
    10 A (IND) =D SUM*DPIV
    11 IND=TN C+I
C END OF DJAGONAL-LOOP
C
        RETURN
    12 ITR=-1
        RETURN
```

DHSD 750 DMFS0073
DMSD 760 D MFS0074
DMSD 770 DMFS0075
DMSD 780 DMFS0076
DMSD 790 DMF S0077
DMSD 800 DMFS0078
DHSD 810 DMFS0079
DMSD 820 DMFS0080
DMS D 830 DMFS0081
DMSD 840 DMFS0082
DMSD 850.DMFSOO83
DMSD 860 DMFS0084
DMSD 870 DMFSO085
DMSD 880 DMFS0086
DMSD 890 DMFS0087
DHSD 900 DMFS0088
DMSD 910 DMFS0089
DMSD 920 DMFS0090
DMSD 930 DMES0091
DMSD 940 DMFSO092
DMSD 950 DMFSO093
DMSD 960 DMFSO094
DMSD 970 DMFS0095
DMSD 980 DMFS0096
DMSD 990 DMFS0097
DMSD1 000 DMFS0099
DMSD 1010 DMESO099
D\&SD 1020 DMF S0100
DMSD 1030 DMPSO 101
DMSD1040 DMES0102
DMSD 1050 DMFSO 103
DMSD1060 DNFSO104
DMSD 1070 DMFSO 105
DASD 1080 DMFSO 106
DMSD1090 DMFS0107
DMSD 1100 DMFSO 108

| | $\begin{array}{r} 78440001 \\ -78440002 \end{array}$ | tred000 1 TREDO 002 |
| :---: | :---: | :---: |
| | 78440003 | TREDO003 |
| SUBROUTT NR TRED 2 (NM, NN, $\mathrm{A}, \mathrm{D}, \mathrm{E}, \mathrm{Z})$ | | TREDO 004 |
| | 78440005 | TRED0005 |
| INTEGER I, J, $\mathrm{K}, \mathrm{I}, \mathrm{N}, \mathrm{II}, \mathrm{NM}, \mathrm{JP} 1, \mathrm{NN}$ | | TRED0006 |
| REAL* $\%$ A (NN,NN), D(NN), E(NN), Z (NN,NN) | | TRED0007 |
| REAL*8 F,G, $\mathrm{H}, \mathrm{HH}, \mathrm{SCALE}$ | 78440908 | TRED0008 |
| REAI *8 DSQPT, DABS, DSIGN | 78440009 | TREDO009 |
| | 78440010 | TRED00 10 |
| meis subrouttne is a translation of the algol procedure tred2, | 78440011 | TRED0011 |
| NUM. Mar H. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON. | 78443012 | PREDO012 |
| HANDBOOK POR AJTC. COMP. VOL. II-LINEAR ALGEBRA, 212-226(1971). | 78440013 | TREDO013 |
| | 78440014 | TRED0014 |
| THIS SUBROUTINE REDDCES A REAL SYMMETRIC MATRIX TO A | 78440015 | TRED0015 |
| Stmmetric tridiagonal matrix using and accumulating | 78440016 | TAEDO016 |
| ORTHOGONAL SIMILARITY TRANSFORMATIONS. | 78440317 | TREDC017 |
| | 78440018 | TRED0018 |
| ON INPUT: | 78440019 | TRED00 19 |
| | 78440020 | TREDO 020 |
| NM IS dimension of matrix actualty transformed. | | TRED0021 |
| | 78440024 | TRED0022 |
| NN IS THE dimension of the whole matrix including parts | | TRED0023 |
| WHICH WILI NOT BE TRANSFORMED. | | TRED0024 |
| | 78440026 | TRED0025 |
| A Contains the real symmetric input matrix. only the | 78440027 | TRED0026 |
| LOGER triangle of the matrix need be supplied. | 78440028 | TRED0027 |
| | 78440029 | TreD9028 |
| ON OUT Pros: | 78440030 | TREDO 029 |
| | 78440031 | tredo 030 |
| D CONTAIHS t日e diagonal elements of the tridiagonal matrix; | 78440032 | TRED0031 |
| | 78440033 | TRED0032 |
| E Contains the Subdiagonal elements of the tridiagonal | 78440034 | TRED0033 |
| MATFIX IN ITS LAST N-1 POSITIONS. E(1) IS SEr TO ZERO; | 78440035 | TREL0 034 |
| Z CONTATNS THE ORTHOGONAL TEANSFORMATION MATB IX | 78440036 | TRED9035 |
| 2 Conmains the orthogonal teansformation matrix | 78440037 | TaEDO036 |

100 CONTINUE
C
IF (N .EQ. 1) GO TO 320
::::::::: FOR I=N STEP -1 UNTIL 2 DO -- :::::::::
DO $300 \mathrm{II}=2, \mathrm{~N}$
$I=N+2-I I$
$I=I-1$
$\mathrm{H}=0.0 \mathrm{DO}$
$S C A L E=0.0 D C$
IF (L .LT. 2) GO TO 130
$::::::::$ SCALE ROW (ALGOL TOL THEN NOT NEEDED) $:::::::::$
DO $120 \mathrm{~K}=1, \mathrm{~L}$
$S C A L E=S C A L E+\operatorname{DABS}(Z(I, K))$
C
13
C

PRODUCED IN THE REDUCTION;
A AND Z MAY COINCIDE. IF DISTINCT, A IS UNALTEPED.
QU ESTIONS ANL COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW, APPIIRD MATHFMARICS DIVISION, ARGONNE NATIONAL LABORATORY

$\mathrm{N}=\mathrm{N} \mathrm{M}$
DO $100 \mathrm{I}=1, \mathrm{~N}$
DO $100 \mathrm{~J}=1, \mathrm{I}$
$Z(I, J)=A(I, I)$

IF (N . PQ. 1) GO TO 320
DO $300 \mathrm{II}=2, \mathrm{~N}$
$I=N+2-I I$
$L=I-1$
$S C A L E=0.0 D C$
TF (L .LT. 2) GO TO 130
$:::::::$: SCALE ROW (ALGOL TOL THEN NOT NEEDED) $:::::::::$
$120 \quad S C A L E=S C A L E+\operatorname{DABS}(Z(I, K))$

130
$E(I)=Z(I, I)$
GO TO 290
c
$140 \quad D 0 \quad 150 K=1, L$ $Z(I, K)=Z(I, K) / S C A L E$ $H=H+Z(I, K) * Z(I, K)$
CONTINUE

78440038 TREDO 037

78440040 TREDO 039
78440041 TREDOO40
78440042 TRED0041
78440043 TRED9042
78440044 TREDOO43
78440045 TREDOO44
78440046 TREDO045
TERDO046
78440047 TREDOO47
78440048 TREDO048
78440049 TREDOO49
78440050 TREDO 050
78440051 TREDOO51
78440052 TREDO052
78440053 TREDO053
78440054 TREDO054
78440055 TREDO055
78440056 TRZDO056
78440057 TRRD0057
78440058 TREDO 058
78440059 TREDOO59
78440060 TR ED0060
78440061 TREDO061
78440062 TR EDOO62
78440063 TREDOO63
78440064 TREDO064
73440065 TREDO 065
78440066 TRED0066
78440067 TREDOO67
78440068 TREDO068
78440069 TRZDO069
78440070 TRED0070
78440071 TRED0071
78440072 TRED0072

C

C

C

200
$G=G+Z(K, J) * Z(I, K)$

C
220
240
C
C : : : : : : : : : : FORM REDUCBD A : : : : : : : : : :
DO $260 \mathrm{~J}=1$, L
$F=Z(I, J)$
$G=E(J)-H H * F$
$\mathrm{E}(\mathrm{J})=\mathrm{G}$
c
DO $260 \mathrm{k}=1, \mathrm{~J}$
$Z(J, K)=Z(J, K)-F * E(K)-G * Z(I, K)$

$$
\begin{aligned}
& P=Z(I, I) \\
& G=-D S T G N(D S Q R T(H), F) \\
& E(I)=S C A L E * G \\
& H=H-F * G \\
& Z(I, I)=F-G \\
& E=0.0 D O
\end{aligned}
$$

$$
\begin{aligned}
& \text { Do } 240 \mathrm{~J}=1, \mathrm{~L} \\
& \mathrm{Z}(\mathrm{~J}, \mathrm{I})=\mathrm{Z}(\mathrm{I}, \mathrm{~J}) / \mathrm{H} \\
& \mathrm{G}=0.0 \mathrm{D} 0
\end{aligned}
$$ Do $180 \mathrm{~K}=1$, J $G=G+\%(J, K) * Z(I, K)$

220

$$
\text { 形 } 1=J+1
$$ IF (L. .LT. JP1) GO TO 220

DO $200 \mathrm{~K}=\mathrm{JP} 1, \mathrm{~L}$
::::::::: FORM ELEMENT OF P :::::::: $\mathrm{E}(\mathrm{J})=\mathrm{G} / \mathrm{H}$ $F=F+E(J) * Z(I, T)$
CONTINUE

~ONTI NUE

78440073 TREDOO73
78440074 TREDOOT4
78440075 TREDOO75
78440076 TRED0076
78440077 TRED0077
78440078 TRED0078
78440079 TREDOO 79
78440080 TREDO 080
78440081 TRED0081
78440082 TRED0082
78440083 TEED0083
78440084 TREDOO84
78440085 TREDOO85
78440086 TREDOO 66
78440087 TREDOO87
78440088 TREDO088
78440089 TREDO089
78440090 TREDOO90
78440091 TREDO091
78440092 TR EDO092
78440093 TREDJO93
78440094 TREDOO94
78440095 TREDO095
78440096 TREDO 096
78440097 TREDO097
78440098 TREDOO98
78440099 TREDO 099
78440100 TREDO 100
78440101 TREDO 101
78440102 TREDO 102
78440103 TRED0103
78440104 TREDO 104
78440105 TREDO 105
78440106 TREDO 106

```
    290 D (I) = H
    300 CONTINUE
C
    32) D(1) = 0.000
        E(1)=0.0DO
C ::::::::;: ACCUMDLATION OF TRANSFORMATION MATRICES :::::::::::
    DO 500 I = 1,N
        I=I - 1
        IF (D (I) .EQ. O.ODO) GO TO 380
c
        DO 360 J = 1, L
                G = 0.0D0
C
    340 G = G + Z (I,K) * Z (K,J)
C
                Z(K,J) = Z (K,J) - G * Z (K,I)
C
    380 D (I) = Z(I,I)
        Z(I,I)=1.0D0
        IF (L. .LT. 1) GO TO 500
C
                Z(J.I) = 0.0DO
    400 CONTINOR
C
    500 CONTINUE
C
    RFTURN
C :::::::::: LAST CARD OF TRED2 ::::::::::
    END
\[
-11
\]
                DO 340K=1,L
                DO }360\textrm{K}=1,\textrm{L
    360
        DO 400 J = 1, L
                Z(I,J) = 0.0D0
```

78440109 TREDO 109
78440110 TRED0110
78440111 TREDO 111
78440112 TREDO112
78440113 TREDO113
78440114 TREDO 114
78440115 TRED0115
78440116 TRED 116
78440117 TREDO117
78440118 TREDO 118
78440119 TREDO119
78440120 TREDO 120
78440121 TREDO 121
78440122 TREDO122
78440122 TREDO122
78440123 TREDO 123
78440124 TREDO 124
78440125 TRFDO 125
78440126 TREDO 126
78440127 TREDO 127
78440128 TREDO 128
78440129 TRED0129
78440130 TREDO 130
78440131 TREDO 131
78440132 TREDO 132
78440133 TREDO 133
78440134 TREDO134
78440135 TREDO 135
78440136 TREDO136
78440137 TREDO 137
78440138 TREDO 138
78440139. TEBD0139
78440140 TREDO 140
78440141 TREDO 141
78440142 TREDO 142

INTEGRE I, J, K, L, M, N,II, L 1, NM, MML, IRRR,NN
REAL*R $D(N N), E(N N), Z(N N, N N)$
RTEAL* B B, $\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{P}, \mathrm{R}, \mathrm{S}, \mathrm{MACHEP}$
REAL* 8 DSQRT, DABS, DSIGN
THIS SUBROUTJNE IS A TRANSLATION OF THE ALGOL PROCEDURE TQL2, NOLT MATH. 11, 293-306(1968) BY BOGDLER, MARTIN, REINSCH, AND WILKINSON.
HAND BOOK FOR AJTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240 (1971).
THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS
OF A SYMETEIC TRIDIAGONAL MATRIX BY THE QL METHOD.
THE EIGENVBCTORS OF A FULI SYMMETRIC MATRIX CAN ALSO BE FOUND IF TRED2 HAS BEEN USED TO REDUCE THIS FULL MATPIX TO TRIDIAGONAL FORM.

ON INPUT:
nM is dimension of matery actually transfoemed.
NN IS THR DIMENSION OF THE WHOLE MATRIX INCLUDING PARTS GHICH WILI NOT BE TRANSFORMED.

D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX;
E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX IN ITS LAST N-1 PCSITIONS. E(1) IS ARBITRARY;

7 CONTAINS THE TEANSFORMATION MATRIX PRODUCED IN THE REDUCTION BY TRED2, IF PERFORMED. IF THE EIGENVECTORS of the tridiagonal matrix are desired, z must contain the identity matrix.

ON OUTPUT:

90220005
TQL20002
TQL20003
TQL20004
90220008 TQL20005
90220009 TQL 20006
90220010 TQL20007
90220011 TQL20008
90220012 TQL20009
90220013 TQL20010
90220014 TQL20011 90220015 TQL 20012 90220016 TQL 20013 90220017 TQL 20014 90220018 TQL 20015 90220019 TQL20016 90220020 TQL 20017 90220021 TQL20018 90220022 TQL20019 90220023 TQL 20020 TQL20021
90220027 TQL 20022 TQL20023 TQL 20024
90220029 TQL20025
90220030 TOL20026 90220031 TQL20027 90220032 TQL20028 90220033 TQL 20029 90220034 TQL20030 90220035 TQL 20031 90220036 TQL20032 90220037 TQL 20033 90220038 TQL20034

TEER = 0

IF (N E EO. 1) GO TO 1001
D0 $101 \mathrm{I}=2, \mathrm{M}$
$100 \mathrm{E}(I-1)=\mathrm{E}(I)$
$P=0.000$
2. HAS BEEN DESTROYED; eIGenvalues;

IERR IS SET TO
ZERO FOR NORMAL RBEURN,

90220041 PQL 20037
D CONPAINS THE EIGENVAIUES IN ASCENDING ORDER. IF AN Feror exit IS MADE, Tis EIGfNVALUES ARE CORRECT BUT UNORDERED FOR INDICES 1,2,..., IERR-1;

Z CONTATMS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC TRIDIAGONAL (OR FULL) MATRIX. IF AN ERBOR EXIT IS MADE, 2 CONTAINS THE EIGENVECTORS ASSOCIATED WITH THE STORED

J IF maE J-th eigenvalua has not bern
DETERMINED AFTER 30 ITERATIONS.
QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORA TORY

90220042 TQL20038 90220043 TQL20039 90220044 TQL20040 90220045 TQL20041 90220046 TQL 20042 90220047 TQL 20043 90220048 TQL 20044 90220049 TQL20045 90220050 TQL 20046 90220051 TQL20047 90220052 TQL 20048 90220053 TQL20049 90220054 TRL 20050 90220055 TQL20051 90220056 TQL 20052 90220057 TQL20053 90220058 TQL20054 90220059 TQL 20055 9022.0060 TQL 20056 90220061 TQL 20057 90220062 TQL20058 90220063 TQL 20059 90220064 TQL20060 90220065 TQL 20061 90220066 TQL20062 90220067 TQL 20063 90220068 TQL20064 TQL 20065
90220069 TQL20066 90220070 TQL20067 90220071 TQL 20068 90220072 TQL20069 90220073 TQL 20070 90220074 TQL 20071 90220075 TQL 20072

```
    B = 0.0DO
    E(N)=0.0DO
C
    DO 240 I = 1,N
        J=0
        H = MACHEP * (DABS(D(L)) + DABS (E (L)))
        IF (B.IT.H) B=H
    :::::::::: LOOK FOR SMALI SUB-DIAGONAL ELEMENT ::::::::::
        DO 110 M=L,N
            IF (DABS(E(M)).LE. B) GO TO 120
C :::::::::: E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
                THROUGH THE BOTTCM OF THE LOOP ::::::::::
    110 CONTINUE
C
    120 IF (M . B2. L) GO TO 220
        IF (J .EQ. 30) GO TO 1000
        J = J + 1
C :;:::::::: FORM SHIET :::::::::::
        L1 = L + 1
        G=D(L)
    P=(D(L1)-G)/(2.0DO*F(L))
    R = DSQRT (P*P+1.0DO)
    D(L) = E(L) / (P + DSIGN (R,P))
    H=G - D(L)
C
    140-D(I) = D(I) - H
C
    F=F+H
C :::::::::: OL TRANSFORMATION ::::::::::
    P = D(M)
    c=1.3D?
    S = 0.0DO
    MML=M - L
C :::::::::: FOR I=M-1 STEP - 1 JNTIL L DO -- ::::::::::
    DO 200 II = 1, MML
```

90220076 TQL 20073
90220077 TQL20074
90220078 TQL20075
90220079 TQL20076
90220080 TQL20077
90220081 TQL 20078
90220082 TQL20079
90220083 TQL 20080
90220084 TQL20081
90220085 TQL 20082
90220086 TQL20083
90220087 T2L20084 90220088 TQL. 20085 90220089 TQL20086 90220090 TQL 20087 90220091 TQL20088 90220092 TQL 20089 90220093 TQL20090 90220094 T2L 20091 90220095 TQL20092 90220096 TQL 20093 90220397 TQL20094 90220098 TQL20095 90220099 TQL20096 90220100 TQL20097 90220101 TQL 20098 90220102 TQL20099 90220103 TQL 20100 90220104 TQL 20101 90220105 TQL 20102 90220106 TQL 20103 90220107 TQL20104 90220108 TQL 20105 90220109 TQL20 106 90220110 TQL 20107 90220111 TQL20 108

```
            I = M - II
            G=C*E(I)
            H=C*P
            IF (DABS(P) .IT. DABS (E(I))) GO TO 150
            C=Z(I) / P
            R = DSQRT(C*C+1.0D0)
            E(I+1) = S*P*R
            S = C / R
            C=1.0D0 / R
            go to 160
            C=P/E(I)
            R = DSQRT (C*C+1.OD )
            E(I+1)=S * E(I) * R
            S = 1.0DO / R
            C=C*S
            P = C * D(I) - S *G
            D(I+1)=H+S* (C*G+S*D(I))
C :::::::::: FORM VECTOR :::::: ::::
            DO 180 K = 1, N
                    H=Z(K,I+1)
                    Z (K,I+1) = S * Z(K,I) + C * H
                    Z (K,I) = C % Z (K,I) - S*H
            CONTINUE
    18.
C
    200 CONTINUE
c
            E (L) =S *P
            D(L)=C*P
            IF (DABS (E(L)) .GT. B) GO TO 130
    22.
            D(L) = D(L) + P
    240 CONTINIE
C :::::::::: OPDER EIGENVALDES AND EIGENVECTORS ::::::::::
    DO 300 II = 2, N
        I = II - 1
        K = I
    p=D(I)
```

90220112 TQL20109 90220113 TQL 20110 90220114 TQL20111 90220115 TQL20112 90220116 TQL23 113 90220117 TQL20114 90220118 TQL 20115 90220119 TQL20116 90220120 TQL 20117 90220121 TQL20118 90220122 TQL 20119 90223123 TQL20 120 90220124 TQL 20121 90220125 TQL20122 90220126 TQL 20123 90220127 TQL20 124 90220128 TQL20125 90220129 TQL20 126 90220130 TQL20127 90220131 TQL20 128 90220132 TQL20129 90220133 TQL20130 90220134 TQL20131 90220135 TQL 20132 90220136 TQL20133 90220137 TQL 20134 90220138 TQL20135 90220139 TQL20136 90220140 TQL 20137 90220141 TQL20138 90220142 TQL20 139 90220143 TQL20140 90220144 TQL 20141 90220145 TOL20142 90220146 TQL 20143 90220147 TQL20144

```
C
C
C
    280 CONTINUE
C
    300 CONTTNUE
C
C GOTO 1001 SET ERROR -- NO CONVERGTNCE TO AN
C EIGENVALUE AFTER 30 ITERATIONS ::::::::::
1000 TERF = I
1001 RETITRN
C :::::;:::: LAST CARD OF TQL2 ::::::::::
END
DO 260 J = II, N
        IF (D (J) ,GF. P) GO TO 260
        K=J
        P}=\textrm{D}(\textrm{J}
IF (K .EQ. I) GO TO 300
D ( K ) = D ( I )
B(I)}=
        DO 280 J = 1,N
            P = Z (J,I)
            Z (J,I)=Z (J,W)
            Z (J,K) = P
```

```
    260
```

```
    260
```

$$
\begin{gathered}
\text { DO } 280 \mathrm{~J}=1, \mathrm{~N} \\
\mathrm{P}=\mathrm{Z}(\mathrm{~J}, \mathrm{I}) \\
Z(\mathrm{~J}, I)=Z(J, K) \\
Z(J, K)=\mathrm{K}
\end{gathered}
$$

90220148 TQL20145 90220149 TQI 20146 90220150 TQL20147 90220151 TQL 20148 90220152 TQL20149 90220153 reL 20150 90220154 TQL20 151 90220155 TQL 20152 90220156 TQL20 153 90220157 TQL20154 90220158 TQL 20155 90220159 TQL20156 90220160 TQL 20157 90220161 TQL20 158 90220162 TQL 20159 90220163 TQL20160 90220164 TQL20161 90220165 TQL 20162 90220166 TQL20163 90220167 TOL 20164 90220168 TQL20 165 90220169 琾QL20166 90220170 TQL20 167 90220171 TQL 20168 90220172 TQL20169 90220173 TQL20170
SUBROUTI NE PRINT (A, NA, NROW, NCOL)
PRTNTS DP AREAY OF AN UNKNOWN NUMBER OF COLUMNS
SUBROUTINE PRINT (A,NA, NROW,NCOL)
C PRJNTS DP ARKAY OF AN UNKNOWN NUMBER OF COLUMNS
C NA=DIMENSION OF SQUARE MATRIX A IN CALLTNG PROGRAM
PEIN0001
C NBOW, NCOI =DIMENSION OF NROR BY NCOL UPPER LEPT HAND BLOCK OF A
C
ACTUALIY PRINTED
PRINOOO 2
PRINOOO3
PRINOOO4
DOURLE PRECISION A
PRIN0005
DIME NSTON A (NA, NA)
PRIN0006
DO 10 D 1 NOM)
PRIN0007
DO $102 I=1$, NPOW
PRINOOO8
DO 100 NBOT $=1$, NCOL, 7
PRI NOOO9
NTOP $=$ BINO (NCOL, NBOT+6)
WRITE $(6,12 \hat{2})(\mathrm{A}(I, \mathrm{~J}), \mathrm{J}=\mathrm{NBOT}, \mathrm{NTOP})$
PRINOO 10
PRINO011
120 PORMAT (4X,7D18.10)
PRIN0012
100 CONTINUE
PRINOO 13
PETURN
PRIN0014
END
PRINOO15

```
SUBROUTINE PEINTA(A,NA,NCOL)
PRINTS A DP ROW VECTOR OF AN UNKNOWN NUMBZR OF COLUMNS
C NA=DIMENSION OF A IN CALLTNG PROGRAM
C
PRNAOOO 
PRNA0002
PRNA0003
    NCOL=NUMBEE OF COLUMNS ACTUALLY PRINTED PRNAO004
    DOUBLE PRECISION A
    DIME NSION A (NA)
    DO 100 MBOT=1,NCOL,7
PRNA0005
PRNA0006
    NTOP=MINO(NCOL,NBOT+6)
PRNA0007
    PRNAOOO8
    MRITE (6,120) (A(I), I=NBOT,NTOP)
    120 FORMAT (4X,7D18.10)
100 CONTINUE
RETJRN
PRNADO 10
*)
END ERNAO013
```

```
    SUBROUTINE PUNCH (IAMAX,NCVAR,PS,FLAG,CINV,CFLAG,IPUNCH)
    INTEGER FLAG
    DODBLE PRECISION CINV,PS
    DIMENSION CINV(30,30), UNITS (75),PS (75),NCVAR(30),FLAG(75)
    GRITE (7,100) IAMAX
    WRITE (7,100) (NCVAB(I), I= 1, IAMAX)
    DO 10 I= 1,75
    IF{DABS(PS(T)).LT. 1.OD-70) GO TO 10
    WRITE (7,105) I, PS(I), FLAG(I)
1 0 ~ C O N T I N U E ~
    IF (LPUNCH.EQ.O.AND.CFLAG.EQ.0) GO TO 25
    DO 15 I=1,IA MAX
    DO }15\textrm{J}=1,\textrm{I
    GRITE (7,110) I, J, CINV (I,T)
15 contt NUE
25 CONTINUE
100 FORMAT (15I5)
105 FOR!AT (I5, D15.8, I5)
110 FORMAT (2I5, D 25.16)
    RETUPN
    END
```

PU NC0001
PUNC0002
pu NCOCO3
pUNC0004
PUNCOOO5
punc 0006
PUNC0007
PU NCOOO8
puaco 009
pu NC0010
poncool1
pu NCOO12
PUNC0013
PU NCOO 14
puncool5
pUNC0016
pu NC0017
punco 18
pu NC0 019
PUNCO 020
pu NC0021

```
    SUBRODMINE RLOT (Y,NDIM,YMIN,YMAX,NHRITE,NGR,YNOM) PLOT0001
    DIMENSION Y NUM(600) PLOTOOO2
    DIMPNSION #(NDIM),A(119),Nz(10),CHAR (10)
    DATM BLANK,PLUS,CHAR(1),CHAR (2), CHAR (3), CHAR (4), CHAR (5), CHAR (6),
    1CHAR (7), CHAR (8), CHAR (9),CHAR (10)
    1/1H,1H+,1H*,1HB,1HC,1HD,1HF,1HF,1HG,1HI,1HJ,1HK/
    NPTS=NDTM/NGB
    YMNT = YMIN
    YMXT=YMAX
    DELT A= (YMAX-YMIN)/100.
    YMN=V MIN-9.*DEL TA
    DO 10 I= 1,119
10 A (I) = BLA NK
    IF(IMAX-YMIN) 11,11,15
11 GRITE (NWRITE,29)
    RETURN
15 WRITE (NGRITP,9) NPTS,DELTA
    MRTTE(NHRITE.19) YMNT, YMXT
    DO 60 I=1,NPTS
    IT (MOD(I,6)-1) 24,17,24
17 DO 20J=10,119,50
2. A (J) =PLUS
24 DO 30 J=1,NGR
    N=(Y (I+(J-1)*NPTS) -YMN)/DELTA+1.5
    IF (N.LT.1) N=1
    IF (N.GT. 119) N=119
    NO.(J) =N
30 A (M)=CHAR (J)
    WRITE(NWRITE,39) (A(J),J=1,119),YNUM (I)
    DO 40 J=1,NGR
    N=NZ (J)
40 A(N)=BLANK
    IF (MOD (I,6)-1) 60, 38,60
38 DO 50 J=10,119,50
50 A (J)=BLANK
60 CONTINUS
    PLOTOOO
    PLOT0004
    PLOT0005
    PLOT0006
    plOT0007
    PLOTDOO8
    PLOT0009
    PLOTOO10
    PLOT0011
    PLOT0012
    PLOT0013
    PLOT0014
    plOT0015
    plom0016
    PLOT0017
    PLOT0018
    PLOT0019
    ploT0020
    PLOTOO21
    PLOTOO22
    PLOTOO23
    pL OTOO24
    PLOT0025
    PLOTOO26
    PLOT0027
    PLOTOO28
    PLOT0029
    PLOT0030
    PLOTO031
    PLOT0032
    PLOT0033
    PLOT0034
    PLOT0035

9 FORYAT ('31X,' NO. OF POINTS ON ABSCISSA \(=15 / 32 X\), NO. OF INTERVA 1LS ON ORDINATE \(=118\), TNCREMENT \(=\) (E10. 3)
 1')
29 FORMAT (' YMAX AND YMIN SEECIEIED INCORRECTLY')
39 FORMAT(' '119A1,F5.1) RETURN

PLOTOO 37 PLOT0038 PLOTOO 39 PLOT0040 PLOT0041 PLOTO 042

END

Parameter List for \({ }^{1} \Sigma^{+}(2),{ }^{3} \Sigma^{+},{ }^{1} \Sigma^{-},{ }^{1},{ }^{3} \Pi\), and \({ }^{3} \Pi_{2}\) Hamiltonian
(Low Lying states of BaO )
\begin{tabular}{|c|c|c|}
\hline No. & Name & Physical Origin \\
\hline 1 & ElS & \({ }^{1}{ }^{+}{ }^{+}(1)\) energy \\
\hline 2 & E1P & \({ }^{1}\) II energy \\
\hline 3 & E3P & \({ }^{3} \mathrm{II}\) energy \\
\hline 4 & BRIS & \(1_{\Sigma}+(1)\) rotational constant \\
\hline 5 & BR1P & \({ }^{1}\) II rotational constant \\
\hline 6 & BR3P & \({ }^{3} \mathrm{II}\) rotational constant \\
\hline 7 & DR1S & \({ }^{1} \Sigma^{+}(1)\) centrifugal distortion \\
\hline 8 & DR1P & \(1_{\text {II }}\) centrifugal distortion \\
\hline 9 & DR3P & \({ }^{3}\) II centrifugal distortion \\
\hline 10 & A3P & \({ }^{3} \mathrm{II}\) spin-orbit \\
\hline 11 & AJ 3P & \({ }^{3} I I\) spin-orbit centrifugal distortion \\
\hline 12 & C3P & \({ }^{3} \mathrm{I}\) ) spin-spin \\
\hline 13 & GAM3P & \({ }^{3}\) II spin-rotation \\
\hline 14 & C3PD & \({ }^{3} \Pi\) parity dependent spin-spin \\
\hline 15 & QVP & \({ }^{3}\) II \(\Lambda\)-doubling \\
\hline 16 & PVP & \({ }^{3} \mathrm{II} \Lambda\)-doubling \\
\hline 17 & B10+ & \(1_{\text {II }} \sim{ }^{1} \Sigma^{+}(1)\) rotation electronic interaction \\
\hline 18 & AOl+ & \({ }^{3} \Pi \sim{ }^{1} \Sigma^{+}(1)\) spin-orbit interaction \\
\hline 19 & A11 & \({ }^{1} \Pi\) ~ \({ }^{3} \Pi\) spin-orbit interaction \\
\hline 20 & E1S- & \({ }^{1} \Sigma^{-}\)energy \\
\hline 21 & BRIS- & \({ }^{1} \Sigma^{-}\)rotational constant \\
\hline
\end{tabular}

Parameter List for \({ }^{1} \Sigma^{+}(2),{ }^{3} \Sigma^{+},{ }^{1} \Sigma^{-},{ }^{1},{ }^{3} \Pi\), and \({ }^{3} \Pi_{2}\)
Hamiltonian (Low Lying States of BaO) (cont.)
No. Name Physical Origin
41E3P 2424344
45B3P2D3P2
A3P 2
AOl+2
\({ }^{3} \mathrm{II}_{2}\) energy
\({ }^{3} \Pi_{2}\) rotational constant\({ }^{3} \Pi_{2}\) centrifugal distortion\({ }^{3} \Pi_{2}\) spin-orbit constant
\({ }^{1} \Sigma^{+}(1) \sim{ }^{3} \Pi_{2}\) spin-orbitinteraction
```

 SUBROUTINE NAMEIT(NAM,M) NAME0001
 Namett for 8 STATE hamIlloniAN. 1,3 SIGMA+, 1SIGMa-, 1.3 PI
 3PI (OMEGA=2)
 C BPI (OMEGA=2)
REAL*8 NAM(M)
C THESE PARAMETERS ARE FOR TRIPIETS PI, SINGLETS PI, AND SIGMA
REAL*8 NAMES(75) /3HE1S, 3HE 1P, 3HR3P,4HBR 1S,4HBR1P,4HBR3P,4HDR1S,
14HDR 1P,4HDR3P, 3HA3P,4HAJ3P,3HC3P,5HGAM3P,4HC3PD,3HQVP,3HPVP,
14HB10+,4HAD1+, 3HA11,4HE1S-,5HBE1S-,5HDR1S-,
13HH1S,3HH1P,4HH1S-,4HQ V1P,6HE3SGM+,6HB3SGM+,6HD3SGM+,6HC3SGM+.
26 HG3SGM+, 3HA 27,6HALPHAO,5HBETAO, 3HE2S,4H BR 2S,4HDR 2S,5H2B10+,5H2A01
1+,5HB1 O+J,4HE3P2,4HB3P2,4HD3P2,4 HA 3P 2,5HA0 1+2,
1 1HO,1HO, 1HO, 1HO, 1HO,1HO, 1HO, 1HO, 1HO, 1HO, 1HO, 1 %O, 1HO, 1HO,
11HO, 1HO,1HO,1HO,1HO,1HO,1HO,1%O,1HO,1HO,1HO,1HO,1HO,1HO,1H0,1HO/
DO 10 I=1,M
10 NAM(I) =NAMES(I)
RETHRN
END
NA ME0002
NAMEO003
NA MEOOO4
NAMEO005
NAME0006
NAMEO007
NAMEO008
NAMEOOO9
NA追EOO 10
NAME0011
NAME0012
NA ME0013
NABEO014
NAMEOO15
NAME0016
NAMEOO17
NAME0018

```
```

 SUBROUTT NE LTVEL (IE,NDATA) LEVEOOO1
 LEVEL FOR 1,3 SIGMA+, 1 SIGMA-, 1,3 PI AND 3 PI (OMEGA=2) LEVEOO02
 IMPLICIT REAL*8 (A-H,O-2)
 REAL*4 TP,TS,SNGL,FLOAT
 DOUBLT PRECTSION DBLE
 DIMENSION TP (9,2,150), TS (9,2,150)
 DIMENSION TE (9, 2, 150),GE (600,3),P(75),S(26),T(26),H(9,9)
 DIMENSION NQ(6),NUM (6,600),U(9,9)
 DIMENSION D(9).B(9)
 DIMENSION TEBM (150,9,2)
 COMMON P,GE,NUM
 COMMON/BTK2/TTRM,JMAX,M,MAXP,MAXM
 COMNON/BIK3/TP.TS
 MMM=M
 LEVPL FOR MAIN. M IS DIMENSION OF HAMILTONIAN.
 MAXD IS MAXIMUM PLUS PARITY RANK, MAXM IS MAXIMUM MINJS RANK.
 M1=J垤AX
 M5=R1+1
 TE(RANK, PARITY,J) ARE TRRM ENERGIES.. 1ST DIM OF TE AGREES 左TPH M,
 3ND GITE N1. 2ND INDEX, 1 IS PIUS AND 2 IS MINUS PARITY.
 DEFINE S AND T FOR TWO PAEITIES TO BE USED AS R IN MATRIX.
 CALI SETUP (P,S,1.0D0)
 CALI SETUP(P,T,-1.0DO)
 CALCULATE GN ERGY FOR AIL BANKS OF EACH J.
 DO 10 I=1,M5
 CJ=DBL,G(FLOAT (I-1))
 PLUS PARITY
 X=CJ*(CJ+1.ODO)
 CALL MATRIX (S,P,X,H)
 DO }55\textrm{K}=1,
 DO 5 L=1,9
 # ((K,L) =0.0DO
 55U(K,K)=1.0DO
 DIAGONATIZE ONLY NONZRRO PART OF H FOR PLUS PARITY.
 M2=MAXP
 CALL TRFDD2(M2,9,H,D,E,U)
 LEVE0003
 LEVEO004
 LEVEOO05
 L&VE0006
 LEVE0007
 LEVE0008
 LEVE0009
 LEVE0010
 LEVZ0011
 Leve0012
 LEVE0013
 LEVE0014
 LEVE0015
 LEVE0016
 LEVE0017
 LEVE0018
 LEVE0019
 LEVE0020
 LEVE0021
 LEVE0022
 LEVE0023
 LEVE0024
 LEV EOO25
 LEVE0026
 LEV S0027
 LEVE0028
 LEVE0029
 LEVE0030
 LEVE0031
 LEVE0032
 LEVE0033
 LEV E0034
 LEVPO035
 LEVEOO36
    ```
    CALL TQL2(M2,9,D,E,U,IERR2)
    IF (IERR 2.NE.0) GO TO 11
    GO TO 12
    11 WRITE (6,9) IERR2
```



```
    12 CONTINUS
        M=M2
        DO 6 L=1,M
    IF (IE.NE. 1) GO TO 6
    TP(M-L+1,1,I)=SNGL(U(2,L)**2)
    TS (M-L+1,1,I)=SNGL (U (1,I)**2 +U (6,L)** 2+U(7,L)**2)
    6 TE(M-L+1,1,I)=D(L)
    MINIJS pABITY
    CALL MATRTX(T, P,X,H)
    DO }77\textrm{L}=1.
    DO }7\textrm{K}=1.
    7U(L,K)=0.000
    77U(L,L)=1.000
    M3 =MAXM
    CALT TRED2 (M 3,9,H,D,E,U)
    CALL TQL2 (N3,9,D,E,U,IERR2)
    IF (IERR 2.NE.0) GO TO 13
    GO TO 14
    13 GRITE(6,9) I ERR2
    1 4 \text { CONTINUE}
    M=M3
    DO 8 L=1,M
    IF(IF.NE.1) GO TO 8
    TP (M-L+1,2,I)=SNGL (U (2,L)**2)
    TS (M-L+1,2,I)=SNGL (U(1,I)**2+U(6,I)**2+U(7,L)**2)
    TE (M-L+1,2,I)=D(L)
    CONTINUE
    SET UP TERM VALUES AND DIFFRRENZES TO COMPAR是 WITH INPUT DATA.
    ON LAST PASS, LEVEL IS CALIED ONLY WITH IE=1.
    IF (I怘.NE.1) GO TO 1001
    DO 100% N=1,M5
```

LEVEOO37
LEVEOO 38
Leve0039
LEVEOO40
LEVEOO4 1
Leve0042
LEVE0043
LEVEOO44
LEVEOO45
LEVE0046
LEVE0047
LEVEOO48
LEVEO 049
LEVE0050
LEVEOO51
LEVE0052
Leve0053
LEVE0054
LeVE0055
LEVEO056
Leve0057
LEVE0058
Leve0059
Leve0060
LeVEOg61
LEVEOO62
LEVE0063
LEVE0064
LEVEO065
LEVE0066
LEVE0067
LEVE0068
LEVEOO69
Leve0070
LEVE0 071
LEVE0072

```
            DO }1010\textrm{L}=1,\textrm{M}
                                    LEVRO073
    1010 TERM (N,L,1)=TE(L,1,N) LEVEOO74
    DO 1020 L=1.M3
    1020 TERM (N,L,2)=TE(L,2,N) LEVEO076
    1000 CONTINUE LEVEO077
    1001 CONTINUE
    M=MMM
    DO 50 N=1,NDATA LEVEOORO
    DO 40 L=1,6
40 NQ (I) =NUM (I,N)
C SECOND STATR TERM VAIUE SUBTRACTED FROM FIRST.
    IF (NQ(2).EQ.0) TOP=0.ODO
    IF (NQ (5). EQ.0) BOT=0.0DO
    IF (NQ (2).NE.0) TOP=TE (NQ(2),NQ(3),NQ (1) + 1)
    IF (NQ (5),NF,0) BOT=TE(NQ(5),NQ(6),NQ(4)+1)
52 GE(M,IE)=TOP-BOT
    RETUPN
    END
LEVE0077
LEVE0078
LEVE0079
EVE0081
LEVE0082
LEVE0083
I. EYE0084
LEVE0085
LEVEO086
LEVE0087
L EV E0088
LEVE0089
LEVS0090
```

```
    S UBR OUQINE SETUP(P,R,RARITY)
        SFTUP FOR 1,3 SIGMA+, 1SIGMA-, 1,3 PI, AND 3 PI(OMEGA=2)
    TIIS CALCULATES MATRIX ELEMENT PACTORS THAT ARE J INDEPENDANT
        DOUBLE PRECISION P,R,PARITY,DSQRT
    DIMENSION P(75),R(26)
    IF(PARTEY.IT.0) PAR=-1.0DO
    IF(EARITY.GT.0) PAR=1.0DO
    R(1)=DSQRT (2.ODO)
    R(2)=1.0DO-PAR
    R (3) =1.2DO+PAR
    P(4) =1.0DO-2.0D0*PAR
    R(5) =1.ODO+2.ODO*PAR
    R (5) =P(3)-P(10)-P(12) -P(13)
    R (7) =P (3)+2.0DO*P (12)-2.0D0*P(13)
    R(8)}=P(3)+P(10)-P(12)-P(13
    R(9)}=P(6)+P(11)-0.5D0*{P(13)-P(15)-0.5D0*P(16)
    P(1))=P(6)+P(11)-0.5D0* (P(13)-P(15)-9.5D0*P (16))
    R(11)=PAP
    R(12)=P(27)-P(30)-P(31)
    P(13) = P(27) +2.0*P (30)-2.0*P (31)
    R (14) =P (28)-P(31)/2.0
    F (15) =P(33)-P(34)
    REm\RN
    END
SETDOOO1
\(C\) TIIS CAICULATES MATRIX ELEMENT PACTORS THAT ARE J INDEPENDANT DOUBLE REECISION P,R,PARITY, DSQRT
DIMENSION P (75) R (26)
IF (EARITY. GT. O) \(P A R=1.0 D 0\)
\(R(1)=\operatorname{SORT}(2.0 D 0)\)
\(R(2)=1.000-P \Lambda R\)
\(\mathrm{R}(3)=1.2 \mathrm{D}_{3}^{2}+\mathrm{PAR}\)
\((4)=1.0 \mathrm{DO}-2.0 \mathrm{DO}\) ? PAR
(5) \(1.000+2\).ODO
\(R(7)=P(3)+2.000 * P(12)-2.000 * P(13)\)
\(R(8)=P(3)+P(10)-P(12)-P(13)\)
\(\mathrm{P}(1))=\mathrm{P}(6)+\mathrm{P}(11)-0.5 \mathrm{D} 0 *(\mathrm{P}(13)-\mathrm{P}(15)-9.5 \mathrm{D} * \mathrm{P}(16))\)
\(R(11)=P A P\)
\(P(13)=P(27)+2.0 * P(30)-2.0 * P(31)\)
\(\mathrm{B}(14)=\mathrm{P}(28)-\mathrm{P}(31) / 2.0\)
RETURN
END
```

SETU0002
SETTOOOO 3
SETUOOO4
SETUOOO5
SETUOOO6
SETU0007
SETGO 008
SETUOOO9
SETUOO10
SETU0011
SETUOO 12
SETUOO13
SETU0014
SETUOO15
SETUOO 16
SETO 0017
SETUOO18
SETUOO19
SETUOO20
SETUOO21
SETU0022
SETUOO23
SETUOO24
C
C

```
    SUBROUTTNE MATRIX (R,P,X,H)
C CALCULATES MATRIX ELEMENTS FOR 8 STATE HAMILTONIAN
C 1SIGMA+, 1SIGMA-, 1PI, 3PI, 3SIGMA +, 1SIGMA+, 3PI (OMEGA=2)
    DOUBLE PPECISION R, P,X,XA,XB,DSQRT,H, 21, Z2,Y,XJJ
    DIMENSION R(26),P(75),H(9,9)
    DO 1% I=1,9
    DO 10 J=1,9
10 H(I,J)=0.0D0
    H(1, 1)=0.1D0
    H (2,2)=0.2DO
    H (3,3)=0.3D0
    H(4,4)=0.4DO
    H (5,5)=0.500
    H(6,6)=0.6 D0
    H (7,7)=0.7D?
    H (8,8)=0.8D0
    H (9,9)=0.900
    XA=DSQRT (X)
    IF(X.LT. 1.ODO) GO TO 49
    IF(X.LT.2.5DO) GO TO 44
    XB=DSQRT (X-2.ODO)
    II (5,7) = DSQET (X-2.0) *P(34)
    H(7,5) =H(5,7)
    H (5,5) =R (8)+P(6)*(X-3.000) -P(9)*(X*X-4.0D0*X+5.0DO) +2.0DO* (X-3.0DO
1)*P(11)+0.5D0* (X-2.0D0)*P(15)
    H (3,5) =XA*XB*(2.0D0*P(9)-R(11)*0.5DO*P(15))
    H (4,5)=-R(1)*KB*(R (10)-2.0DO*(X-1.0D0)*P(9))
    H}(5,4)=H(4,5
    H (5,3)=H(3,5)
    IF (DABS (P(42)).LT.1.D-60) GO TO 44
    XJJ=(-1.+DSQRT(1.+4*X))/2.
    Y=P(44)/P(42)
    Z1=Y* (Y-4.)+4./3.+4.*X
    Z2=(1./(3.*Z1))*(Y* (Y-1.)-4./9.-2.* * )
    IF(P (44).IT.0.0) 30 T0 45
    H(8,8)=P(4 1) +P(42)*(X+DSQRT(Z1) -2.*Z2)-P(43)*(XJJ+3.14.)**4
```

MATROOO1

MATROOO1 MATR0002
MATROOO
MATR0004
MATRO005
MATE0006
MATRO007
MATRDOO8
MATR0009
Matroo 10
MA TR0011
MaTROO 12
MATROO13
MATROO14
MATR0015
MATR0016
MATROO17
Marro018
MATROO 19
MATROO20
MatRO021
MATROD22
MATROO23
MATROO24
Matro025
MATROO26
MATROO27
MATROO28
MATROO29
Mate0030
Matro 031
a ATR0032
MATROO33
MATRO034
matroo 35
MATE0036

GO TO 46
MATR0037
45 H $(3,8)=P(41)+P(42) *(X-D S Q R T(21)-2 . * 22)-P(43) *(X J J-0.5) * * 4$
$46 H(1,8)=R(3) *(P(42) * X J J / P(44)) * * 2 * P(45) / 2$.
H $(3,1)=甘(1,8)$
$44 \mathrm{H}(2,2)=\mathrm{P}(2)+\mathrm{P}(5) *(\mathrm{X}-1.000)-\mathrm{P}(8) *(\mathrm{X}-1.000) * * 2+\mathrm{X} *(\mathrm{R}(3) * \mathrm{P}(26))$
II $(2,2)=\mathrm{H}(2,2)+\mathrm{P}(24) *(\mathrm{X}-1.0 \mathrm{D} 0) * * 3$
$\mathrm{H}(4,4)=\mathrm{R}(7)+\mathrm{P}(6) *(\mathrm{X}+7.0 \mathrm{D} 0)-\mathrm{P}(9) *(\mathrm{X} * \mathrm{X}+6.0 \mathrm{D} 0 * \mathrm{X}-3.0 \mathrm{D} 0)+.5 \mathrm{DO} * \mathrm{R}(2) *$
1P (15)
$H(1,2)=-R(3) *(X A * P(17)+X A * X * P(40)) / R(1)$
$H(2,4)=-P(19)$
$H(3.4)=-(R(9)-2.0 D 0 *(X+1.0 D 0) * P(9)+R(4) *(.25 D 0 * P(16)+.5 D 0 * P(15))) *$
1XA*R(1)
$\mathrm{H}(2,1)=\mathrm{H}(1,2)$
$H(4,2)=\mathrm{H}(2,4)$
H $(4,3)=I I(3,4)$
$H(4,6)=R(2) * D S Q R T(X / 2.0) * P(34)$
$H(6,4)=H(4,6)$
$H(6,7)=-R(2) *(R(14)-2.0 *(X+1.0) * P(29)) * D S O R T(X)$
$H(7,6)=H(6,7)$
$H(7,7)=R(12)+P(28) * X-P(29) * X * 2-2.0 * R(2) * P(29) * X$
$\mathrm{G}(2,7)=\mathrm{P}(32)$
$\mathrm{H}(7,2)=\mathrm{H}(2,7)$
$H(3,7)=0.0-R(11) * D S Q R T(X) * P(34)$
$\mathrm{H}(7,3)=\mathrm{H}(3,7)$
$H(4,7)=\operatorname{DSQRT}(2.0 D 0) * B(15)$
$\mathrm{H}(7,4)=\mathrm{H}(4,7)$
$H(2,6)=-R(3) * A * P(38) / R(1)$
$H(6,2)=H(2,6)$
$49 H(1,1)=(P(1)+P(4) * X-P(7) * X * X) * R(3) / 2.0 D 0+(P(20)+P(21) * X-P(22) * X * X)$
1*R(2)/2.0D0
H $(1,1)=\mathrm{H}(1,1)+((P(23) * X * * 3) * B(3) / 2.0 \mathrm{D})+((P(25) * X * * 3) * \mathrm{P}(2) / 2.002)$
$H(3,3)=R(6)+P(6) *(X+1.0 D 0)-P(9) *(X * X+4.0 D 0 * X+1.0 D 0)-2.0 D 0 *$
$1(X+1.0 D 0) * P(11)+.5 D 0 * X * P(15)-R(11) * P(14)$
$H(1,3)=R(3) * R(1) * R(18) / 2.0 D 0$
$\mathrm{H}(3,1)=\mathrm{H}(1,3)$
$\mathrm{H}(6,6)=(\mathrm{F}(2) / 2.0) *(\mathrm{R}(13)+\mathrm{P}(28) *(X+2.0)-(X * 2+8.0 * X+4.0) * P(29))$

MATROO38
MATR0039
MATROO4O
MATR0041
Matron 42
MATE0043
MATR0044
MATROO45
MATR0046
MATROO47
MATR0048
MatrG049
MATR0050
MATROO51
MATRO052
MATR0053
MATROO54
MATR0055
MATRO 056
Matr0057
MATROO58
MATR0059
MATRO060
MATR0061
Matro062
MATR0063
MATR0064
MATRO 065
MATROO66
MATROO67
MATRO068
MATROO69
MATR0070
Hatro 071
MATR0072
$H(6,5)=甘(6,6)+(R(3) / 2.0) *(P(35)+P(36) * X-P(37) * X * X)$
MATR0073
$H(3,6)=R(2) * R(15)+R(3) * R(1) * P(39) / 2.0$
$H(6,3)=H(3,6)$
BETURN
MATED0074

END
MATRO075
MATRO076
MATRD077

Parameters List for BaO High Lying States (cont.)		
No.	Name.	Physical Origin
23	DP5	$1_{\Sigma}{ }^{+}(6)$ centrifugal distortion
24	XI5	l~6 homogeneous interaction
25	XI23	$2 \sim 3$ homogeneous interaction
26	ETA1	I~2 heterogeneous interaction
27	ETA2	1~3 heterogeneous interaction
28	XI24	$2 \sim 4$ homogeneous interaction

SUBPOUmINE NAMETT(NAM,M)
NAMEOOO1
NAMEIT FOR BAO* STATES
NAMEOOO2
REAL*R N M (M)
REAL $* 8$ NAMES (28)/1HE, 1HB, 1HD, $1 H \mathrm{H}, 2 \mathrm{HXI}, 2 \mathrm{HEP}, 2 \mathrm{HBP}, 2 \mathrm{HDP}, 3 \mathrm{HEP} 2,3 \mathrm{HBP} 2,3$
1HDP2, $3 \mathrm{HXI} 2,3 \mathrm{HEP} 3,3 \mathrm{HEP} 3,3 \mathrm{HDP} 3,3 \mathrm{HXI} 3,3 \mathrm{HEP} 4,3 \mathrm{HBP} 4,3 \mathrm{HDP} 4,3 \mathrm{HXI} 4,3 \mathrm{HEP} 5$, $23 H B P 5,3 \Pi D P 5,3 H X I 5,4 H X I 23,4 H P T A 1,4 H E T A 2,4 H X I 24 /$

DO $10 \mathrm{I}=29$, M
NAMEOOO3
NA MEOOO4
NAME0005
NA MEO006
$10 \mathrm{NAM}(I)=0.0 \mathrm{DO}$
NAM E0007

DO $20, I=1,28$
NA MEOOO8
$20 \operatorname{NAM}(J)=\operatorname{NaMES}(\mathrm{J})$
NAMEOOO9

RETIRN
NAMEOO 10
NAMEOO11
END
Name0012
MAYP IS MAXIMUM PLUS PARITY RANK, MAXM IS MAXIMUM MINUS EANK.
M1 $=\mathrm{J}$ MAX
$M 5=1+1$
TR (RANK, DARITY, J) ARE TERM FNERGIES.. 1ST DTM OF TE AGREES TITH M,
3ND HITH M1. 2ND INDEX, 1 IS PLUS AND 2 IS MINUS PARITX.
DETINE S AND T FOR THO PARITIES TO BY USED AS R IN MATRIX.
CALI, $\operatorname{SETUP}(P, S, 1.0)$
CALL $\operatorname{SETUP}(P, T,-1.0)$
CALI, $\operatorname{SETUP}(P, S, 1,0)$
CALL $\operatorname{SETUP}(P, T,-1,0)$
CALCULATE EN ERGY FOR ALL RANKS OF BACH J.
DO $12 I=1, M 5$
CJ=DBLE (FLOAT(I-1))
PLOS PARTTY
$\mathrm{X}=\mathrm{CJ} *(\mathrm{CJ}+1.0 \mathrm{DO})$
CALL MATRIX (S, P, X, H)
DO $55 \mathrm{~L}=1.9$
DO $5 \mathrm{~K}=1.9$
5 II $(\mathrm{L}, \mathrm{K})=0.0 \mathrm{D}_{2}$
$550(L, L)=1.000$
DIAGONALIZE ONLY NONZERO PART OF H FOR PLUS PARITY.
$\mathrm{M} 2=\mathrm{MAXP}$
CALL TRED2 (M2,9,H,D, $\mathrm{F}, \mathrm{U})$
LEVE0001
SUBROUTINE IEVED (IE, NDATA)
LEVE0002
IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, 0-7$)
REAL * 4 TP,TS,SNGL, FLOAT
DOUBLE PRECISION DBLE
DIMENSION TP $(9,2,150), \operatorname{TS}(9,2,150)$
DIMENS TON TE $(9,2,150), G E(600,3), P(75), S(26)$, T $(26), \quad H(9,9)$
DIMFNSTON D(9), E(9)
DIMENSION NQ $(6), \operatorname{NUM}(6,600), U(9,9)$
DIME NSION TERM $(150,9,2)$
COMMON $P, G E_{5}$ NUM
COMMON/BIK 2/ TERN, JMAX, H, MAXP, HAXM
COMMON/BLK $3 / T P$ TS
$M M M=M$
$4=1+1$
LEVEOOO3
LEVEOOO4
LEVEOOO5
LEVE0006
LEVEO007
LEVEOOO8
LEVED009
LEV E0010
LEVE0011
LEVE0012
LEVEOO13
LEVEOO14
LEVEOO15
LEVEOO 16
LEVEOO17
LeVEOO 18
LEVEOO19
LEVEOO20
LEVE0021
LeVEOO22
LEVE0023
LEVEOO24
LEVE0025
LEVEO026
LEVEOO27
LEVEO 028
LEVEOO29
LEVEO 030
LEVEOO 31
LEVEO032

```
    CALL TQL2(M2,9,D,E,U,IERR2) LEVEOO37
    IF (IERR2.NT.0) GO TO 11
    GO TO 12
    11 WRITE (6,9) IERR2
    9 FORMAT (' ERROR IN HAMILTONIAN DIAGONALTZATION, IERR=',I2)
    1 2 \mathrm { CONTINUE }
        M=M2
        DO 6 L=1,M
        IF (IF.NE. 1) GO TO 6
        qP(M-L+1,1,I)=SNGL(T (3,L)**2)
        TS (M-I +1,1,I) =SNGL(U (1,L)**2)
    6TE (M-L+1,1,I)=D(L)
MINUS PARITY
CALI, MATRIX(T,D,X,H)
DO }77\textrm{L}=1,
DO 7 K=1,9
    7 U(L,K)=0.0D0
    770(L,L)=1.000
M3=贸AXM
CALT, TEED2 (M3,9,H,D,E,U)
CALL TQL 2(M3,9,D,E,U,TERR2)
IF (IERR2.NE.0) GO TO 13
GO TO 14
    13 WRTTE (6,9) I URR2
    14 CONTINUE
M=M3
DO & L=1,M
IF (IE.NE.1) GO TO 8
TP (M-I+1,2,I)=SNGL (U (4,N)**2)
TS (M-L+1,2,I)=SNGL(U(1,I, ** 2+U(2,L)**2+U(3,L)**2*U(6,L)**2)
    8 TE (M-L+1,2,I)=D(L)
CONTINTE
SET UP TERM VALUES AND DIFFERENCES TO COMPARE WITH TNPUT DATA.
ON LAST PASS, LEVEL IS CALLED ONLY WITA IT=1.
IF (IE.NE.1) GO TO 1001
D0 1000 N=1,M5
LEVEO038
LEV E0039
LEVE0040
LEVEO041
LEVEO042
LEVEOO43
L EVEO044
LEVEOO45
LEVE0046
LEV20047
LEVEOO48
LEVEOO49
LEVEO050
LEVEO051
LEVEOO52
LEVEO053
LEVEO054
LEVEO055
LEVEO056
LEVEO057
LEVEO058
LEVEO059
LEVE0060
LEVE0061
L EY E0062
LE VEO063
LEVEO064
LEVEO065
L EV &0066
LEVEO067
LEVEO068
I.EVEO069
```

 DO }1010\textrm{L}=1,\textrm{M}
 1010 TERM(N,L,1)=TE{L,1,N)
 DO }1020\quad\textrm{I}=1,\textrm{M}
 1020 TERM (N,I,2)=TE(L,2,N)
 1003 cONTINUE
 1 0 0 1 ~ C O N T T N U E ~
 M=MMM
 DO 50 N=1,NDATA
 DO 40 I=1,6
 40 NQ (I,)=NOM (I,N)
C SECOND STATE term value subtracted from first.
IF (NQ (2).EQ.O) TO P=0.0DO
IF (NQ(5).EQ.0) BOT=0.0DO
IF (NQ (2).NE.0) TOP=TE (NO(2),NQ(3),NQ(1) +1)
IF (NQ (5),NE.O) BOT=TE (NQ (5),NQ (6),NQ (4) +1)
GE (N,IE)=TOP-BOT
RETURN
END

```

Leve0073
LEVE0074
LEVE0075
LEVE0076
LEVE0077
LEVE0078
LEVEOC79
LEVE0080
LEVE0081
LEVEO082
Leve0083
Leve0084
LEVE0085
L EVE0086
L.EVE0.087

LEVE0088
LEve0089
LEVE0090

SUBROUTINE SFTUP (P,R,PARITY) SWTUOOO1
STPTUP FOR BAO * STATES SETUOOO2
DOUBL PRECISION P (75), R (26)
\(\mathrm{R}(1)=(1 . O D O+\mathrm{PARI}\) TY \() / 2\).ODO
RETVRN
SETUGOO3
.
END
```

 SUBROUTINE MATRIX (F,P,X,H)
 MATE0001
MATRIX FOR BAO * STATES
DOUPLE PRECISION R(26),D(75),H(9,9),XI,X
DO 10) I= 1,9
DO 10 J=1,9
10 H(I,J)=0.000
XI=,1D D
DO 20T=1,?
H (I,I)=XI
20 XI=XI+.1DO
1H(1,1)=P(1)+X*(P(2)+X* (P(4)*X-P(3)))
H (1,2)=P(5) +P(26)*D SQR T (X)
H}(2,1)=H(1,2
H (2, 2) =P (6) +X*(P(7)-P(8)*X)
H (3, 3) =P (9) + X* (P (10) - P (1 1) * X)
H(4,4)=P(13)+X*(P(14)-P(15)*X)
E (1,3)=P(12) +P (27) * DSQRT (X)
H (3,1)=H (1,3)
H (1,4) =P (16)
H (4, 1) =[I (1,4)
H(5,5)=P(17)+X*(P(18)-P(19)*X)
H(1,5)=P(20)
H (5, 1) =H (1,5)
H}(6,6)=P(21)+X*(P(22)-P(23)*X
H(1,6)=P(24)
H}(6,1)=H(1,5
H(2,3)=P(25)
H (3,2) =H (2,3)
H (2,4) =P (28)
H (4,2)=H (2,4)
BETURN
FND

```
\begin{tabular}{|c|c|c|}
\hline No. & Name & Physical Origin \\
\hline 1 & ElS & \({ }^{2} \Sigma^{+}(1)\) energy \\
\hline 2 & B1S & \({ }^{2} \Sigma^{+}(1)\) rotational constant \\
\hline 3 & D1S & \({ }^{2} \Sigma^{+}(1)\) centrifugal distortion \\
\hline 4 & GAM1S & \({ }^{2}{ }^{+}\)(1) spin-rotation \\
\hline 5 & ETA12 & \[
\begin{aligned}
& { }^{2} \Sigma^{+}(1) \sim^{2} \Pi(1) \text { rotation-electronic } \\
& \text { interaction }
\end{aligned}
\] \\
\hline 6 & XI13 & \({ }_{\Sigma}{ }^{+}(1) \sim 2\) II (1) spin-orbit interaction \\
\hline 7 & C14 & \({ }^{2} \Sigma^{+}(1) \sim^{2} \Sigma^{+}(2)\) homogeneous interaction \\
\hline 8 & ETA15 & \({ }^{2} \Sigma^{+}(1) \sim^{2}\) II (2) rotation-electronic interaction \\
\hline 9 & XII6 & \({ }^{2} \Sigma^{+}(1) \sim^{2}\) II (2) spin-orbit interaction \\
\hline 10 & ElP & \({ }^{2}\) II (1) energy \\
\hline 11 & B1P & \({ }^{2} I I\) (1) rotational constant \\
\hline 12 & A1P & \({ }^{2}\) II (1) spin-orbit constant \\
\hline 13 & GAM1P & \({ }^{2}\) II (1) spin-rotation \\
\hline 14 & Q1P+ & \({ }^{2}\) II (1) \(\Lambda\)-doubling ( \(\Sigma^{+}\)) \\
\hline 15 & D1P & \({ }^{2} \Pi 1(1)\) centrifugal distortion \\
\hline 16 & AJVlP & ```
2II(1) spin-orbit centrifugal
    distortion
``` \\
\hline 17 & AVOlP & \({ }^{2}\) II (1) second order spin-orbit \\
\hline 18 & PlP+ & \({ }^{\text {II }}\) (1) \(\Lambda\)-doubling (\(\Sigma^{+}\)) \\
\hline 19 & ETA 24 & \({ }^{2} \Sigma^{+}(2) \sim^{2} \Pi(1)\) rotation-electronic interaction \\
\hline 20 & H1P & \({ }^{2}\) II (1) third order centrifugal distortion \\
\hline
\end{tabular}

Parameter List for Doublet Fitter (cont,)
\begin{tabular}{|c|c|c|}
\hline No. & Name & Physical Origin \\
\hline 21 & H2P & \({ }^{2}\) II (2) third order centrifugal distortion \\
\hline 22 & OlP & \({ }^{2}\) II (I) second order energy correction \\
\hline 23 & XI34 & \({ }^{2} \Sigma^{+}(2) \sim{ }^{2} \Pi 1(1)\) spin-orbit interaction \\
\hline 24 & H1S & \({ }^{2} \Sigma^{+}(1)\) third order centrifugal distortion \\
\hline 25 & H2S & \({ }^{2} \Sigma^{+}(2)\) third order centrifugal distortion \\
\hline 26 & E2S & \({ }^{2}{ }^{+}\)(2) energy \\
\hline 27 & B2S & \({ }^{2} \Sigma^{+}\)(2) rotational constant \\
\hline 28 & D2S & \({ }^{2}{ }^{+}(2)\) centrifugal distortion \\
\hline 29 & GAM2S & \({ }^{2}{ }^{+}\)(2) spin-rotation \\
\hline 30 & ETA45 & \[
\begin{aligned}
& { }^{2} \Sigma^{+}(2) \sim^{2} \pi(2) \text { rotation-electronic } \\
& \text { interaction }
\end{aligned}
\] \\
\hline 31 & XI 46 & \({ }^{2} \Sigma^{+}(2) \sim^{2} \Pi 1(2)\) spin-orbit interaction \\
\hline \(3]\) & A2P & \({ }^{2} \mathrm{II}(2)\) spin-orbit constant \\
\hline 33 & GAM2P & \({ }^{2}\) II (2) spin-rotation \\
\hline 34 & Q2P+ & \({ }^{2} \Pi\) (2) \(\Lambda\)-doubling (\(\Sigma^{+}\)) \\
\hline 35 & D2P & \({ }^{2} \Pi 1(2)\) centrifugal distortion \\
\hline 36 & AJV2P & \({ }^{2}\) II (2) spin-orbit centrifugal distortion \\
\hline 37 & AVO2P & \({ }^{2}\) II (2) second order spin-orbit \\
\hline 38 & P 2P + & \({ }^{2}\) II (2) \(\Lambda\)-doubling (\(\Sigma^{+}\)) \\
\hline 39 & O2P & \({ }^{2}\) II (2) second order energy correction \\
\hline
\end{tabular}

Parameter List for Doublet Fitter (cont.)
\begin{tabular}{|c|c|c|}
\hline No. & Name & Physical Origin \\
\hline 40 & E2P & \({ }^{2}\) II (2) energy \\
\hline 41 & B2P & \({ }^{2}\) II (2) rotational constant \\
\hline 42 & Q1P- & \({ }^{2} \Pi\) (1) \(\Lambda\)-doubling (\(\Sigma^{-}\)) \\
\hline 43 & PlP- & \({ }^{2} \mathrm{II}(1) \Lambda\)-doubling (\(\Sigma^{-}\)) \\
\hline 44 & Q2P- & \({ }^{2}\) II (2) \(\Lambda\)-doubling (\(\Sigma^{-}\)) \\
\hline 45 & P 2P & \({ }^{2} \Pi 1(2) \Lambda\)-doubling (\(\Sigma^{-}\)) \\
\hline 46 & Q1S & \({ }^{2}{ }^{+}(1)\) second-order rotational constant correction \\
\hline 47 & PlS & \({ }^{2} \Sigma^{+}\)(1) second-order spin-rotation correction \\
\hline 48 & OlS & \({ }^{2}{ }^{+}\)(1) second-order energy correction \\
\hline 49 & Q2S & \({ }^{2} \Sigma^{+}(2)\) second-order rotational constant correction \\
\hline 50 & P 2 S & \({ }^{2}{ }^{+}\)(2) second-order spin-rotation correction \\
\hline 51 & 02S & \({ }^{2}{ }^{+}(2)\) second-order energy correction \\
\hline 52 & GAMJ 1S & \({ }^{2} \Sigma^{+}(1)\) spin-rotation centrifugal distortion \\
\hline 53 & GAMJ 2S & \({ }^{2}{ }^{+}\)(2) spin-rotation centrifugal distortion \\
\hline 54 & ETA17 & \({ }^{2} \Sigma^{+}(1) \sim^{2} \Pi(3)\) rotation-electronic interaction \\
\hline 55 & XII8 & \({ }^{2} \Sigma^{+}(1) \sim^{2} \Pi\) (3) spin-orbit interaction \\
\hline 56 & E3P & \({ }^{2}\) II (3) energy \\
\hline 57 & B3P & \({ }^{2}\) II (3) rotational constant \\
\hline 58 & A3P & \({ }^{2} \Pi 1(3)\) spin-orbit constant \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline No. & Name & Physical Origin \\
\hline 59 & GAM 3P & \({ }^{2}\) II (3) spin-rotation constant \\
\hline 60 & Q3P+ & \({ }^{2}\) II (3) \(\Lambda\)-doubling (\(\Sigma^{+}\)) \\
\hline 61 & D3P & \({ }^{2}\) II (3) centrifugal distortion \\
\hline 62 & AJV3P & ```
2\Pi(3) spin-orbit centrifugal
 distortion
``` \\
\hline 63 & AVO3P & \({ }^{2}\) II (3) second-order spin-orbit \\
\hline 64 & Q3P- & \({ }^{2}\) II (3) \(\Lambda\)-doubling ( \(\Sigma^{-}\)) \\
\hline 65 & H3P & \({ }^{2}\) II(3) third order centrifugal distortion \\
\hline 66 & P3P+ & \({ }^{2}\) II (3) \(\Lambda\)-doubling ( \(\Sigma^{+}\)) \\
\hline 67 & P 3P- & \({ }^{2}\) II (3) \(\Lambda\)-doubling ( \(\Sigma^{-}\)) \\
\hline 68 & ETA48 & \({ }^{2} \Sigma^{+}(2) \sim^{2}\) II (3) rotation-electronic interaction \\
\hline 69 & O3P & \({ }^{2}\) II (3) second-order energy correction \\
\hline 70 & XI 48 & \({ }^{2} \Sigma^{+}(2) \sim^{2} \Pi\) (3) spin-orbit interaction \\
\hline
\end{tabular}
```

 SUBROUTINE NANEIT (NAM,M)
    ```
C THTS SUBROUTINE GOES TITH DOUBLET FITTER
        REAL* \(8 \mathrm{NAM}(\mathrm{M})\)
        REAL*8 NAMES (7C)/3HE1S, 3HB1S, 3HD 1S, 5HGAM 1S, 5HETA12,4HXI13,3HC14,5H
    1 ETA \(15,4 \mathrm{HXI} 16,3 \mathrm{HE} 1 \mathrm{P}, 3 \mathrm{HB} 1 \mathrm{P}, 3 \mathrm{HA} 1 \mathrm{P}, 5 \mathrm{HGA} 1 \mathrm{P}, 4 \mathrm{HQ} 1 \mathrm{P}+3 \mathrm{HD} 1 \mathrm{P}, 5 \mathrm{HAJV} 1 \mathrm{P}, 5 \mathrm{HAVO} 1\)
    \(2 \mathrm{P}, 4 \mathrm{HP} 1 \mathrm{D}+, 5 \mathrm{HE}\) TA \(24,3 \mathrm{HH} 1 \mathrm{P}, 3 \mathrm{HE} 2 \mathrm{P}, 3 \mathrm{HO} 1 \mathrm{P}, 4 \mathrm{HXI} 34,3 \mathrm{HH} 1 \mathrm{~S}, 3 \mathrm{HH} 2 \mathrm{~S}, 3 \mathrm{HE} 2 \mathrm{~S}, 3 \mathrm{HB} 2 \mathrm{~S}\),
    \(33 \mathrm{HD} 2 \mathrm{~S}, 5 \mathrm{HGAM} 2 \mathrm{~S}, 5 \mathrm{HETA} 45,4 \mathrm{HXI} 46,3 \mathrm{HA} 2 \mathrm{P}, 5 \mathrm{HGAM} 2 \mathrm{P}, 4 \mathrm{HQ} 2 \mathrm{P}+, 3 \mathrm{HD} 2 \mathrm{P}, 5 \mathrm{HAJV} 2 \mathrm{P}, 5 \mathrm{H}\)
    \(4 \mathrm{AVO} 2 \mathrm{P}, 4 \mathrm{HP} 2 \mathrm{P}+, 3 \mathrm{HO} 2 \mathrm{P}, 3 \mathrm{HP} 2 \mathrm{P}, 3 \mathrm{HB} 2 \mathrm{P}, 4 \mathrm{HQ} 1 \mathrm{P}-, 4 \mathrm{HP} 1 \mathrm{P}-, 4 \mathrm{HQ} 2 \mathrm{P}-, 4 \mathrm{HP} 2 \mathrm{P}-, 3 \mathrm{HQ} 1 \mathrm{~S}, 3\)
    \(5 \mathrm{HP} 1 \mathrm{~S}, 3 \mathrm{HO} 1 \mathrm{~S}, 3 \mathrm{HQ} 2 \mathrm{~S}, 3 \mathrm{HP} 2 \mathrm{~S}, 3 \mathrm{HO} 2 \mathrm{~S}, 6 \mathrm{HGAMJ1S}, 6 \mathrm{HGAMJ} 2 \mathrm{~S}, 5 \mathrm{HETA} 17,4 \mathrm{HXI} 18,3 \mathrm{HE} 3\)
    \(6 \mathrm{P}, 3 \mathrm{HB} 3 \mathrm{P}, 3 \mathrm{HA} 3 \mathrm{P}, 5 \mathrm{HGAM} 3 \mathrm{P}, 4 \mathrm{HQ} \mathrm{P}+\mathrm{F}, 3 \mathrm{HD} 3 \mathrm{P}, 5 \mathrm{HAJV} 3 \mathrm{P}, 5 \mathrm{HAV} 3 \mathrm{P}, 4 \mathrm{HQ} 3 \mathrm{P}-, 3 \mathrm{HH} 3 \mathrm{P}, 4 \mathrm{H}\)
    \(7 \mathrm{P} 3 \mathrm{P}+4 \mathrm{HP} 3 \mathrm{P}-5 \mathrm{ERTA48,3403P,4HXI49/}\)
    DO \(10 \quad \mathrm{I}=71\), M
10 NAM (I) \(=0.0 \mathrm{DO}\)
    DO \(20 \mathrm{~J}=1,70\)
2) NAM (J) = NAMES (J)
    RETURN
NAMEOOO2
NAMEOOO3
NAME0004
NAMEOOO5
NAMEO 006
NAME0007
NA ME0008
NAMEOOO9
NA MEOO 10
NAMEOO11
NA MEOO 12
NAMEOO13
NAMEOO14
NAME0015
    NAME00 16
    END
NA MLOO 17
```

 SHBROUTINE LEVEL (IE,NDATA) LEVEOOO1
 IMPLICIT REAL*8 (A-H,O-Z)
 REAL*4 STZE,TP,TS,SNGL,FLOAT
 DOUBLE PRECTSION DBI.E
 DTMPNSION TP (9,2,150),TS (9,2,150)
 DIMENSION TM (9,2,150),GE(600,3),P(75),S(26),T(26)
 H}(9,9
 DIMENSTON D(9),O(9)
 DIUE NSION NQ (6), NUM (6,50,0), U (9,9)
 DIMENSION TERM (150,9,2)
 COMMON P,GE,NUM
 C OMMON/BLK2/ TERM,JMAX,M1,MAXP,MAXM
 COMMON/ELK3/TP,TS
 THIS SUBROUTINE GOES WITH DOUBLET FITTER
LEUPL FOR MAIN. M IS DIMENSION OF HAMILTONIAN.
MAXP IS MAXIMOM FLUS PARITY RANK, MAXM IS MAXIMUM HINUS RANK.
TR(RANK, PARITY,J) ARE TERM ENERGIES.. 1ST DIM OF TE AGREES RITH M,
3Nn WITH M1. 2ND INDEX, 1 IS PLUS AND 2 IS MINUS PARITY.
DEFINES AND T FOB TWO PARITIES TO BE USED AS R IN MATRIX.
MMM=M
CALI SFTUP(P,S,1,0)
CALT, SEITP (D,T,-1.0)
CAL~ULATE ENERGY FOR ALL RANKS OF EACH J.
DO 10 I= 1.JMAX
X=FLOAT(I)
C
Q PARITY
CALL MATRIX (S, P,X,H)
DO 55 L=1,9
DO 5 K=1.9
5U(L,K)=0.0DO
55U(I,I,)=1.0DO
DIAGONAIIZE ONLY NONZERO PART OF H FOR PLUS PARTTY.
M2=MAXP
CALI, TRED2 (M2,9,H,D,E, J)
CALL TQT 2(M2,3,D,E,U,IERE2)
IF (IERR2.NE.0) GO TO }1
GO TO 12

```

LEVE0001
LEVEOOO2
LEVE0003
I.EVE0004

LEVE0005
LEVE0006
LEVE0007
LEVEC008
LeVE0009
LEVE00 10
LEVE0011
LEVEOO12
LEVEOO13
LEVE0014
LEVE0015
LEVE0016
LEVE0017
LEVEOO18
LEVE0019
LEVE0020
LEVEDO21
LEVEO 022
LEVE0023
LEVE0024
LeVE0025
LEVE0026
LEVE0027
LEVE0028
LEVE0029
LEVECO 30
LeVE0031
LEVEOO 32
LEVE0033
LEVE0034
LEVE0035
LEVE0036
```

 11 WRITE (6,9) IERR2
 9 FORMAT(' ERBOR IN HAMILTONIAN DIAGONALIZATION, IERR=',I2)
 1 2 \text { CONTINUE}
 M=M2
 DO 6 L=1,M
 TF (IE.NE. 1) GO TO 6
 TP(M-L+1,1,I)=SNGL (U (2,L)**2+U(7,L)**2+U(5,J)**2)
 TS (M-L+1,1,I) =SNGL(U (1,L)**2+U(4,L)**2)
 TE (M-L+1,1,I) = D(L)
 C F PARITY
CALJ. MATRIX(T,D,X,H)
DO }77\textrm{L}=1.
DO 7 K=1.9
7U(L,K)=0.0DO
77 0(L,L)=1.0DO
M3=MAXM
CALI, TRED2 (M3,9,H,D,E,U)
CALL TQL2(M3,G,D,E,U,IERR2)
IF (IERR 2.NE.0) GO TO 13
GO TO 14
13 WRITE(5,9) IERR2
1 4 CONPINUE
M=13
DO 8 L=1,M
IF(TE.NE.1) GO TO 8
IP (M-L+1,2,I)=SNGL(U (2,L) **2+U(7,L)**2+U(5,L)**2)
mS (M-L+1,2,I)=SNGL (U(1,I)**2+U(4,L)**2)
8 TF (M-L+1.2,I)=D(I)
10 CONTINUE
C SET UP TERM VALUES AND DIFFRRRNCES TO COMPARE MITH INPUm DATA.
C ON LAST PASS, LEVEL IS CALLED ONLY WITH IE=1.
IF (IE.NE.1) GO TO 1001
DO 10nO N=1,JMAX
DO }1010\textrm{L}=1,\textrm{M}
121~ TERM (N,L,1)=TE (L, 1,N)
DO 1020 L=1,M3

```

LEVEOO 37
Leve0038
LEVEO 039
LEVE0040
LEVE0041
LEVEOO42
LeVE0043
LEVE0044
LEVE0045
LeVEOO46
LEVE0047
LEVEOO48
LEVE0049
LEVEOO50
Leve0051
LEVE0052
LEVEC053
LEVE0054
LEVE0055
LEVEOO56
LEVEO 057
LEVEOO58
LEVEOO59
LEV EOO60
LEVE0061
LEVE0062
LEVE0063
LE VE0064
LEVE0065
LEVEOO66
LEVE0067
Leve0068
LEVEOO69 \(\omega\)
LEVEOOT0
LEVEN071
LEVE0072
```

1020 TERM (N,L,2)=TE(L,2,N) LEVEOO73
100n CONTINUE LEVEOO74
1 0 0 1 ~ C O N T I N U R ~ L E V E O O 7 5 ~
M=M隌
LEVE0076
DO 5n N=1,NDATA
DO 40 I= 1,6
40 NQ(L) = NUM (I,N
C SECOND STATB TERM YAIUE SUBTRACTED FROM FTRST.
IF (NQ(2).EQ.0) TOP=0.0DO
IF (NQ (5).EQ.0) BOT=0.ODO
IF (NQ (2).NE,0) TOP=TE(NQ(2),NQ(3),NQ(1))
IF (NQ (5),NE.0) BOT=TE (NQ (5),NQ(6),NQ(4))
GE (N,IE) =TOP-BOT
RETTRN
E ND
LEVOO
1001 CONTINUR LEVEOO75
$M=1 \mathrm{M}$
LEVE0076
NDATA
DO $4, \mathrm{~L}=1,6$
以上
LevE0078
LEVEO079
LEVEOO80
LEVE0081
LEVEOO8 2
LEVE0083
LEVEOO84
L EV 50085
LEVEOO 86
LEVE0087

```
```

C THIS SUBROTTINE GOES WTTH DOUBLET FITTER
DOUBLE PRECISION R,P,PAR
DIMENSTON P(75),R(26)
IE (PARITY.LT.0) PAR=-1.0DO
IF (PARITY.GT.0) PAR=1.0D0
C MINOS PABTTY IS F
C PLUS pARITY IS E
R (1) =P (1)-0.5D0*P(4)
R(2) =P(5)+P(5)
F(3)=P(9)+P(0,
R(4)=P(10)-2.0DO*P(11)+0.5D0*(P(12)-P(13))-0.5D0*P (14) +P (15)-2.0.00
1*P(16)+0.25D0*P(17)
R (5) =0.5D0*P (13)-P(11)-0.25DO*P(18)-2.0D0*P (15)-0.500*P (14)
R (6) =P (10)-0.5D0*P(12)-0.5D0*P(13)+P(22)+0.5D0*P(18)+0.25D0*P(17)+
1P(15)
R(7) =P(11)-P(16)-P(15)
R (8) =P (23) +P (19)
R(9)}=P(26)-0.5D0*P(29
B(10) = P(31) +P(30)
R(11)=P(40)-2.0DO*P(41)+0.5D2*(P(32)-P(33)-P(34))+P(35)-2.0D0*P(36
1) +0.25D0*p(37)
R(12)=P(41)+0.5D0*P(34)-P(35)+P(36)
R(13)}=0.5D0*P(33)-P(41)-0.25D0*P(38)-0.5D0*P(34)-2.0D0*P(35
P(14)=P(40)-0.5D0*P(32)-0.5D0*P(33)+P(39)+0.5D0*P(38)+P(35)+0.25*P
1(37)
R(15)=P(11)+0.500*P(14)-P(15)+P(16)
R(15) =P(41)-P(35)-P(36)
R(17)=1.CDO+PAR
R(13)=P(56)-2.0D0*P(57)+0.5D0*(P(58)-P(59))-0.5D0*P(60)+P(61)-2.0D
10*P(62)+0.25 D0*P(63)
R(19)}=\textrm{P}(57)+0.500*\textrm{p}(60)-\textrm{P}(61)+\textrm{P}(62
P(20)=0.5D0*P(59)-P(57)-0.25D0*P(66)-2.0D0*P(61)-0.5D0*P(60)
R (21)=P(56)-0.500*P(58)-0.500*P(59)+P(69)+0.500*P(56)+P(61)+0.25 D0
1*P(63)
R (22)}=P(57)-P(62)-P(61
BETURN

```
SETU0001
STUE002
SETU0003
SETUOOO4
SETU0005
SETU0006
SETUOOO7
SETU0008
SETUOOO9
SETUOO10
SETU0011
SETUOO12
SETUOO13
SETU0014
SETUOO 15
SETU0016
SETUOO 17
SETHOO18
SETUOO 19
SETUOO20
SETUOO21
SETUQO22
SETUQG22
SETUOO23
SETUOO23
SETUOO 24
SETUOO25
SETUOO26
SETUOO27
SETU0028
SETUO 029
SETUOO 30
SETU0031
SETUOO32
SETGOO 33
SETUOO34

SETUOO 35
SETUOO36

SUBROUTINE MATRTX (R, \(P, X, H)\)
MATROOO1
C THIS SUBROUTINE GOES GITH DOUBLET FTTTER
C This routine freats two 2SIG+ States and two 2pi states
MATRO002
C 1 IS INDEX FOR FIRST 2SIG+
C 2 IS INDEX FOR FIRST 2 PI \(3 / 2\)
C 3 IS INDEX FOR FIRST 2PI1/2
C 4 IS INDEX FOR SECOND 2SIG +
C 5 IS INDEX FOR SECOND 2RI3/2
C 6 IS INDEX FOR SECOND 2 PI \(1 / 2\)
DOUBLE PRECTSION R(26), \(P(75), X, H(9,9), X A, X B, X C, D S Q R T, X D, X E, X F\)
\(\mathrm{PAR}_{\mathrm{AR}}=\mathrm{R}(17)-1.0 \mathrm{DO}\)
\(X A=X *(X-1.000)\)
\(X B=(X-(P A R * 1.009)) * X\)
\(X B=X B * * 2\)
\(\mathrm{XC}=(\mathrm{X} * * 2-2.0 \mathrm{DO})\)
\(\mathrm{XD}=(\mathrm{X} * * 2-1.2 \mathrm{D} 0)\)
\(X E=1.0 D 0-P A R * X\)
\(X P=1.0 D_{1}+P A R * X\)
DO \(10 \mathrm{I}=1\), 9
DO \(10 \mathrm{~J}=1,9\)
\(10 \mathrm{H}(\mathrm{I}, \mathrm{J})=0.0 \mathrm{DO}\)
\(H(1,1)=0.1 D 0\)
\(H(2,2)=0.2 D 0\)
\(\mathrm{CH}(3,3)=0.3 \mathrm{DO}\)
H \((4,4)=0.4 \mathrm{D} 2\)
\(\mathrm{H}(5,5)=0.5 \mathrm{DO}\)
H \((6,6)=2.600\)
\(H(7,7)=0.7 \mathrm{DO}\)
\(H(8,8)=0.8 D 0\)
\(H(9.9)=0.9\) D0
IF (X.IT. 1.5D0) GO TO 49
\(H(1,2)=0.0-P(5) * D S Q R T(X D)\)
\(\mathrm{H}(2,1)=I I(1,2)\)
\(H(1,5)=0.0-P(8) * D S Q P T(X D)\)
\(H(5,1)=G(1,5)\)
H \((2,2)=R(4)+R(15) *(X * 2)-P(15) *(X C * 2)\)

MA TRO 003
MATK0004
MATR0005
MATR0006
MATR0007
MATROOO 8
MATROOO9
MATR0010
MATROO 11
MATROO12
MATROO13
MATR0014
MATROO 15
MATRO 016
MATROO17
Matr0018
MATR0019
MATROO 20
Matr0021
MATRDO22
MATRO 023
MATROO24
MATROO25
MATRO 026
MATROO27
MATRT0028
MATROO29
Matro030
MATRD031
MATRO032
a ATROOS3
MATR0034
MATROO 35
Matron36
```

 H (2,2)=H (2,2) +0.5D0*P(42)*XD
 H(2,2)=H (2,2) +P(20)*(XC**3+3.*X**4-7,*X**2+4.)
 H (2,3) =DSQRT (XD) * (R(5) + (0.5DO*PAR*P (14)*X) +2.0D0*P (15)*(X**2))
 H(2,3)=H(2,3)-D (20)*(DSQRT (XD)* (3.0*X**4-5.0*X**2+3.0))
 H (2,3)=H(2,3)-0.25DC*P(43)*DSQRT (XD) -0.5D0*P (42) * *F*DSQRT (XD)
 H (3,2)=H (2,3)
 H (2,4) =2.0-P (19) *D SQET (XD)
 H (4, 2) =H (2,4)
 H (4,5) =0.0-P (30) *DSQRT (XD)
 H (5,4) =H (4,5)
 H (5,5) =R (11)+R(12)*(X**2)-P(35)*(XC**2)
 II (5,5) =H (5,5) +0.5D0*P (44)*XD
 H}(5,5)=H(5,5)+P(21)*(XC**3+3.*X**4-7.****2+4.
 H (5,6) =DSQRT (XD)*(R(13) + (0.5DO*PAR*P (34)*X) + 2.0DO*P(35)* (X**2))
 H(5,6)=H(5,6)-((0.25D0*P(45)+0.5D0*P(44)*XF)*DSQRT (XD))
 H (5,6) =H (5,6)-R(21)*(DSQRT (XD)*(3.0* X**4-5.0*X**2+3.0))
 H (6,5)=H(5,6)
 H (1,7)=0.0-P (54) *D SQRT (XD)
 H}(7,1)=H(1,7
 H (7,7) =R (18) +R (19) *X**2-P(61) *XC**2
 H}(7,7)=H(7,7)+0.500*P(64)*X
 H(7,7)=H(7,7)+P(65)*(XC**3+3.*X**4-7.*X**2+4.)
 H (7,8) =DSQRT (XD)*(R(20) +PAR*P(60)*X+2.ODO*P(51)*X**2)
 H(7,8)=H(7,8)-0.25D0*P(67)*DSQRT (XD) -0.5DD*P(64)*XF*DSQRT (XD)
 H(7,8)=H (7,3)-P(65)*(DSQRT (XD)*(3.0DO*X**4-5.0DO*X**2+3.0D0))
 H(8,7)=H(7,8)
 H(4,7)=0.0-P(68)*DSQRT (XD)
 H(7,4)=H(4,7)
 49 H(1,1)=R(1)+P(2)*DSQRT(XB)-P(3)*XB+(PAR*0.5DO*P (4)*X)
H(1,1)=H (1,1) +0.5DO*P(46)*(XD+XE**2)+0.5D0*P (47)*XE+P(48)
H(1,1)=H (1,1)+P(24)*(DSQRT(XB))**3
H (1,1) =H (1,1)-0.5DO*P (52)* (X-0.5D0)* (X+0.5D0)*XE
H(1,3)=R (2)-PAR*P (5)*X
IT(3,1)=H (1,3)
H(1,4)=P (7)
H (4, 1) =P(7)

```

MATR0037
MATR0038
MA TR0039
4 ATROO 40
MATR0041
Matr0042
MATROO43
MATROO44
MATRC045
MATR0046
MATROO47
MATROO48
MATROO49
MATR0050
MATROO51
MATR0052
MATROO5 3
MATR0054
MATROO55
HATROO56
MATRO057
MATROO58
MATROO59
MATHOO60
MATROO61
MATR0062
MATRO063
MATR0064
MATRO065
MATR0066
Matro 067
MATK0068
MATRO069
MATR0070
```

$H(1,6)=R(3)-P A R * P(8) * X$
$\mathrm{H}(6,1)=\mathrm{H}(1,6)$
$H(3,3)=R(6)+R(7) *(X * 2)-(P A R * 0.5 D 0 * P(18) * X)+0.5 D 0 * P(14) *(X E * * 2)-P($
115) * (X**4)
$\mathrm{E}(3,3)=\mathrm{H}(3,3)+0.500 * \mathrm{P}(42) *(\mathrm{XF**2)}+0.5 \mathrm{DO} * \mathrm{P}(43) * \mathrm{XF}$
H $(3,3)=H(3,3)+P(20) *(X * 6+3, * X * * 4-5 . * X * 2+2$. $)$
H $(3,4)=$ R $(8)-$ PAR*P $(19) * X$
$H(4,3)=I f(3,4)$
$H(4,4)=\mathrm{R}(9)+\mathrm{P}(27) * \mathrm{DSQRT}(\mathrm{XB})-\mathrm{P}(28) * \mathrm{XB}+\mathrm{PAR} * 0.5 \mathrm{DO} * \mathrm{P}(29) * \mathrm{X}$
$H(4,4)=H(4,4)+0.5 D 0 * P(49) *(X D+X E * * 2)+0.5 D 0 * P(50) * X E+P(51)$
$H(4,4)=11(4,4)+P(25) *(D S Q \&(X B)) * * 3$
$H(4,4)=H(4,4)-0.5 D 0 * P(53) *(X-0.5 D 0) *(X+0.5 D 0) * X E$
I $(4,6)=R(10)-P A R * P(30) * X$
$H(5,4)=H(4,6)$
$H(6,6)=R(14)+B(16) *(X * 2)-P A R * 0.5 D 0 * P(38) * X+0.5 D 0 * P(34) *(X B * 2)-P($
135) * (X * * \boldsymbol{N}_{4})
$H(6,6)=H(6,6)+0.5 D 0 * P(44) *(X F * * 2)+0.5 D 0 * P(45) * X F$
H $(6,6)=\mathrm{H}(6,6)+\mathrm{P}(21) *(X * *+3 . * X * * 4-5 . * X * 2+2$.
$H(8,8)=R(21)+X * 2 * R(22)-P A E * 0.5 D 0 * P(56) * X+0.5 D 0 * P(60) * Z E * 2-P(61) *$
1X**4
$H(8,8)=H(8,8)+0.5 D 0 * P(64) * X P * * 2+0.5 D 0 * P(67) * X F$
$\mathrm{H}(8,8)=\mathrm{H}(8,8)+\mathrm{P}(65) *(\mathrm{X} * * 6+3 . * \mathrm{X} * * 4-5 . * \mathrm{X} * * 2+2$)
$H(4,8)=P(70)+P(68) * X E$
$H(8,4)=H(4,8)$
$H(1,8)=P(55)+P(54) * X E$
$\mathrm{H}(\mathrm{C}, 1)=\mathrm{H}(1,8)$
RETURN
END

```
\(\operatorname{MaTR} 0073\)
MATR0074
MATR0075
MATRO076
MATR0077
Math0078
MATRO079
MATR0080
MATR0081
Matr0082
MATROO83
MATROO84
иат ROO85
Matro 086
Matr0087
MATR0088
Mate0089
NATR0090
MATROO91
MATR0092
Matro 093
MATROO94
MATR0095
MATR0096
MATRO097
MATROO98
MATR0099
Matro 100
bac \(415 \mathrm{~V}=0\) data from lagerquism et al，modr and oody
initial parametrab
\begin{tabular}{|c|c|c|}
\hline \(\square 19\) & ว． \(16722189 \mathrm{D}+15\) & こM \\
\hline ¹P & 9．17515009D＋95 & CM \\
\hline F．3P & 0． 17 998000D＋05 & Cm \\
\hline BP 15 & 2．25783030D＋29 & CM \\
\hline ER1P & \(0.22370000 \mathrm{~L}+00\) & cm \\
\hline BE 3 P & 3． 2237 Cกาค \(\mathrm{D}+\mathrm{C}\) ก & cm \\
\hline DR1S & 0． \(27344698 \mathrm{D}-06\) & CM \\
\hline DR 1P & 3．8400 \(0009 \mathrm{~d}-02\) & MC \\
\hline DP3P & \(0.8400000 \cap \mathrm{D}-02\) & 4 C \\
\hline A39 & －0．12クา00005＋03 & C． \\
\hline A．73P & ）．？ & MC \\
\hline C3P & 0.0 & 4 C \\
\hline GAM 3 ？ & 0.0 & MC \\
\hline C3PD & १．） & MC \\
\hline QVP & 1.0 & M 6 \\
\hline PVP & \(\cdots{ }^{1}\) & \({ }^{4} \mathrm{C}\) \\
\hline B10＋ & 0.5017 9000n－01 & CM \\
\hline \(\mathrm{A}^{\text {n }} 1+\) & \(-0.72886000 \mathrm{D}+01\) & cm \\
\hline A11 & －n．19norn）\({ }^{\text {a }} \mathrm{D}+\) ？ 3 & こM \\
\hline P1S－ & 0.9 & \({ }^{4} \mathrm{C}\) \\
\hline EP 15－ & 0.0 & MC \\
\hline DR15－ & 1.0 & \({ }^{1} \mathrm{C}\) \\
\hline H 15 & 0.0 & me \\
\hline H1P & 3.3 & 9 C \\
\hline H15－ & 0.0 & प C \\
\hline Q 19 & 0.0 & Mc \\
\hline F3SG y + & 0.0 & \({ }^{\prime} \mathrm{C}\) \\
\hline B35GY＋ & 0.0 & MC \\
\hline D3564＋ & 3．？ & M C \\
\hline C 3SG Y＋ & 0.0 & M \\
\hline 63SGY＋ & n．0 & M \({ }^{\text {c }}\) \\
\hline A 27 & 7． 9 & у 6 \\
\hline alph 40 & 0.0 & mC \\
\hline BFTA 3 & 0.0 & Y C \\
\hline F29 & 0.0 & MC \\
\hline Bri2S & ？．？ & MC \\
\hline DR2S & 2． 0 & MC \\
\hline 2B1？＋ & ว．？ & yc \\
\hline 2A01＋ & 0.0 & \({ }^{4} \mathrm{C}\) \\
\hline B10＋J & 0.0 & ¢ C \\
\hline E3P？ & n．？ & MC \\
\hline B782 & ๆ． 1 & y C \\
\hline D3P2 & 0.0 & MC \\
\hline A3P2 & 1.7 & Mc \\
\hline A \(01+2\) & 0.0 & 4 C \\
\hline 0 & 0.0 & Mc \\
\hline ก & १．9 & Mc \\
\hline 0 & 0.0 & ac \\
\hline 0 & 0.0 & MC \\
\hline 0 & 0.\()\) & \(M^{\text {c }}\) \\
\hline 0 & 0.0 & \(y \mathrm{c}\) \\
\hline 0 & 0.0 & MC \\
\hline 0 & ？．＾ & \({ }^{M} \mathrm{C}\) \\
\hline 0 & 0.7 & 4 C \\
\hline 0 & C． 0 & MC \\
\hline
\end{tabular}


THE LSQ FIT
```

 *ariance of the PIT 0.1454497D+02
 COSINE: 2.7244585E+00 LAMBDA: 0.100E-01
 VARB: 0.7661504D-01 STEP: 0.1000000E+01
 apter lSQ pass 1 the fittedvaides arf
 llll
 VARIANCE OF the ftT 0.7661504D-0
 COSINE: 0.8458719E+90 LAMBDA: 0.1005-02
 AFTfR lS? pass 2 tHF FIttED valugs arf
 l lll (1)
 VARI NNCF OF THE FIT 0.7396077D-01
 COSINE: }.4967288E+\Gamman LAMBDA: 0.100E-03
VARB: 0.7396072D-C1 STEP: 0.1000000E+01
CONVERG ENCE/VARIA NCE

```

OUtput from last lse pass
\begin{tabular}{|c|c|c|c|c|}
\hline nomber & NAME & FINAL value & Stand ard deviation & \\
\hline \multirow[t]{3}{*}{1} & E1S & 0．16722373 +05 & 0．26828－02 & C． \\
\hline & E1P & 0． \(17515003 \mathrm{D}+05\) & & CM \\
\hline & E3P & \(0.17388000 \mathrm{D}+05\) & & CM \\
\hline \multirow[t]{3}{*}{2} & ER1S & \(0.25783692 \mathrm{D}+00\) & 0．1492 E－05 & CM \\
\hline & BR1P & 3．223700200＋00 & & c．M \\
\hline & BR3P & \(0.22370000 \mathrm{D}+00\) & & CM \\
\hline \multirow[t]{47}{*}{3} & DR 15 & 0．27435127D－06 & ว．1653E－ 99 & CM \\
\hline & DR． 1 P & \(0.84000000 \mathrm{D}-02\) & & nc \\
\hline & DR3P & \(0.84002000 \mathrm{D}-02\) & & MC \\
\hline & \({ }_{\text {A }}{ }^{\text {P }}\) & \(-2.10090030 \mathrm{~d}+03\) & & CM \\
\hline & AJ 3P & 0.0 & & \％\({ }^{\text {c }}\) \\
\hline & c3p & 0.0 & & MC \\
\hline & GAM3P & 0.7 & & \({ }^{4} \mathrm{C}\) \\
\hline & C3PD & 0.0 & & MC \\
\hline & Q P P & 0.0 & & MC \\
\hline & pve & 0.0 & & MC \\
\hline & 81）＋ & 0．5C170nフod－01 & & CM \\
\hline & An1＋ & －0．72886000D＋01 & & CM \\
\hline & A11 & －0．10000000D＋ 03 & & c． \\
\hline & E1s－ & 0.0 & & MC \\
\hline & ER 15 － & 0.7 & & MC \\
\hline & DR1S－ & 2.0 & & MC \\
\hline & H1s & 0.0 & & MC \\
\hline & H1P & 0.0 & & yc \\
\hline & H1S－ & 0.0 & & MC \\
\hline & Q \({ }^{19}\) & 0.0 & & MC \\
\hline & E3SGM＋ & 0.0 & & MC \\
\hline & P35GM＋ & 0.9 & & \(y \mathrm{c}\) \\
\hline & D3SGM＋ & 2．＾ & & Mc \\
\hline & C3sGm＋ & 0.0 & & MC \\
\hline & G3scm + & 0.0 & & 1 C \\
\hline & A27 & 0.0 & & MC \\
\hline & \({ }^{\text {at．Phas }}\) & 0.0 & & MC \\
\hline & betao & ว．＾ & & 1 C \\
\hline & E2S & 0.7 & & MC \\
\hline & BR2S & n．n & & MC \\
\hline & DR2S & 0.0 & & MC \\
\hline & \(2 \mathrm{~B} 10+\) & 0.0 & & MC \\
\hline & 2A01＋ & 0.7 & & MC \\
\hline & E10＋J & 0.0 & & MC \\
\hline & E3P2 & 7.2 & & MC \\
\hline & в3P2 & 0.0 & & MC \\
\hline & 万382 & 0.0 & & 9 C \\
\hline & A3P2 & 0.0 & & \(x \mathrm{C}\) \\
\hline & A0 \(1+2\) & 万．n & & MC \\
\hline & c & \(2 . n\) & & MC \\
\hline & c & 0.0 & & MC \\
\hline & 0 & 0.0 & & MC \\
\hline & c & 0.9 & & MC \\
\hline & c & 0.0 & & MC \\
\hline & 0 & ग．0 & & MC \\
\hline & & 0.0 & & YC \\
\hline & 0 & 0.0 & & MC \\
\hline
\end{tabular}
covariancr matrix
\(0.6467131330 \mathrm{D}+04-0.2597771196 \mathrm{D}+01-0.2175968152 \mathrm{D}-03\) \(-0.2597771196 \mathrm{D}+01 \quad 0.2001581854 \mathrm{D}-02 \quad 0.2101545344 \mathrm{D}-06\) \(-0.2175962152 \mathrm{D}-03 \quad 0.21\) 11545344D-06 \(0.2456921758 \mathrm{D}-10\)
fibments are arrangen matrix parameter numbfrs
0. \(1007907079 \mathrm{D}+01-0.7220352147 \mathrm{D}+00-0.5458848372 \mathrm{D}+00\) \(\begin{array}{lll}-0.7220352147 \mathrm{D}+\mathrm{CO} & 0.100000000 \mathrm{D}+01 & 0.9476694543 \mathrm{D}+00 \\ -0.545 \mathrm{P} P 48372 \mathrm{D}+00 & 0.9476694543 \mathrm{D}+00 & 0.100 \mathrm{C} 020000 \mathrm{D}+01\end{array}\)

\[
\begin{array}{lll}
1 & 0.2475378 \mathrm{E}-11 & 0.1573334 \mathrm{E}+01 \\
2 & 0.4029179 \mathrm{E}+00 & 0.6347582 \mathrm{E}+00 \\
3 & 0.2572328 \mathrm{E}+01 & 0.1603848 \mathrm{E}+01
\end{array}
\]
scalz pactor
\(0.6270822 \mathrm{D}-32\) \(0.295 \mathrm{~F} 149 \mathrm{D}+02\) \(0.2204760 \mathrm{D}+06\)
figevirctors of scale curvature miprix
PIGEVVFCTORS OF SCALED CURVATURE MATRIX
COLIMNS ARE IND COMBJNATIONS IN THE ORDY: OF EIGENVALUES ABOVE
\begin{tabular}{lrrr} 
F1S & \(0.21 ? ?\) & 0.8227 & -0.5314 \\
BR1S & -0.7615 & -0.2092 & -0.6134 \\
DR1S & -0.6158 & 0.5286 & 0.5842
\end{tabular}
\(\begin{array}{llll}-0.7615 & -0.2092 & -0.6134 \\ -0.6158 & 0.5286 & 0.584\end{array}\)

NUMBER OF LSQ PASSES = 2
fit to expertmental points
transitton betheen Levels 1 and 2



-0.00024
-0.00950
-0.0931
-0.01629
0.00399
-0.01106
-1.01101
0.00256
-0.00691
-0.0297
-0.01818
-0.01887
-0.01118
-0.01605
-0.02019
0.01188
0.09766
0.00963
-0.00870
-0.01781
-0.02419
-0.01831
-0.00764
-0.00764
-0.00977
0.03053
-0.00718
0.01767
0.01864
0.01932
0.00030
0.09217
0.00754
-0.00299
-0.00780
-0.00526
-0.01274
0.02939
0.00680
0.00312
0.00303
0.05200
0.05200
0.05200
0.05200
0.05200
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.07800
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.0500
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
0.05000
obsfeved-calculated


\(-\varepsilon \subseteq \subseteq=\)

term pnergies plus parity
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 0.0 & 17488． 36241 & 16722.23431 & 0.00002 & 0.00001 & 0.00001 & \\
\hline &  & PI．つのつ STG＊＊＊＊ & pi．0 SIG． & PI．\(\cap\) SIG． 3 & PI＊＊＊SIG． 000 & PI \\
\hline \multirow[t]{2}{*}{1.} & 17570．23601 & 17489．81024 & 17333.60837 & 16722.74995 & 0.00002 & \\
\hline & pI． 767 sIG .900 & PI．000SIG． 200 & PI－233SIG．060 & PJ．0つうSIG＊＊＊＊ & PI． 3 SIG．0 & PI \\
\hline \multirow[t]{2}{*}{2.0} & 17571.18228 & 17489.70591 & 17334．50788 & 172 ¢я． 66406 & 16723.78124 & \\
\hline & PI． 767 SIG． 900 & PI．000SIG． 000 & PI．233sIG． 000 & PI．\({ }^{\text {donSIG．} 000}\) & I． 000 SI & \\
\hline \multirow[t]{2}{*}{3.0} & 17572.52667 & 17491.04939 & 17335．85713 & 17289.99570 & 16725.3 & \\
\hline & PI． 767 SIS． 090 & PI． \(00 n \mathrm{SI}\) g． 000 & PI．233s IG． 000 & PI．j00SIG．000． & PI．000SIG＊＊＊＊ & PI \\
\hline \multirow[t]{2}{*}{4.3} & 17574.31915 & 17492.84067 & 17337．65698 & 17291.77118 & 16727. & \\
\hline & PI． 7675 ST 9.000 & PI． 000 SIG． 200 & PI． \(2335 \mathrm{stg} .00{ }^{\text {n }}\) & PI． 200 SIG．000 & PI． 000 SIG＊＊＊＊ & PI \\
\hline \multirow[t]{2}{*}{5.0} & 17576.55971 & 17495.07972 & 17339．90471 & 17293.99650 & 16729.96879 & \\
\hline & PI．767sig． 000 & pr．000sig．0jo & pi．232SIG． 000 & PI．000SIG． 000 & PI．000SIG＊ & PI \\
\hline \multirow[t]{2}{*}{6.0} & 17579.24831 & 17497.76650 & 17342.60298 & 17296.65362 & 16733.06244 & \\
\hline & PT．767919．070 & PI． 3 OnsIG．7n0 & PI． \(232 \mathrm{SIG}{ }^{\wedge} \mathrm{C}\) ¢ & PI．\({ }^{\text {a }}\)（7）SIG． 270 & PI． 000 SIG＊ & PI \\
\hline \multirow[t]{2}{*}{7.9} & 17582．38，490 & 17500.70398 & 17345.75094 & 17299.76052 & 16736.67161 & \\
\hline & PI． 76751 S .070 & PI．\({ }^{\text {nnn SIG．}} 17\) & PI． 232516.003 & PJ．07nsIG． 200 & 1.70 & \\
\hline \multirow[t]{2}{*}{8.3} & 17585.96944 & 17504.48310 & 17349.34823 & 17303.31115 & 10740.79 & \\
\hline & PI． 767 SIG． 0002 & PI．00nsig． 000 & PI．232SJG． 000 & PI．900SIG．000 & PI． 000 SI G & \\
\hline \multirow[t]{2}{*}{9.7} & 17590.09188 & 17508.51292 & 17353.39509 & 17307.3054 & 16745.43 & \\
\hline & PI．767SIG． 070 & PI．001SIG． 000 & PI． 232 SIG .000 & PI．001SIG．000 & PI． 000 SIG & \\
\hline \multirow[t]{2}{*}{\(10 . \sim\)} & 17594．48215 & 17512.99717 & 17357． 89135 & 17311.74343 & 15750.591 & \\
\hline & pr．767StG． 000 & PI．0．91SIg． 0.90 & PI． 232 SIG .000 & PI． 00151 G .000 & PI． 300 SIG & \\
\hline \multirow[t]{2}{*}{11.0} & 17599.41019 & 17517.91478 & 17362.83693 & 17316.62499 & 16756.26233 & \\
\hline & PI．767SIG．010 & PT．001SIG．000 & PI．232SIG． 900 & PI． 00 1SIG． 000 & Pr．000SIG & \\
\hline \multirow[t]{2}{*}{12.0} & 17504.78593 & 17523.28688 & 17368．23174 & 17321.95008 & 16762.44822 & \\
\hline & Pr．767sig．0nn & PI．\({ }^{\text {a }}\)（SIG．\({ }^{\text {Pn }}\) & PI．232SIG． 000 & PI． 30151 SIG .000 & I． \(000 \mathrm{SIG}{ }^{\text {a }}\) & \\
\hline \multirow[t]{2}{*}{13.0} & 17610．6C927 & 17529.10630 & 17374．07568 & 17327.71863 & 16769.14 & \\
\hline & PI．766 SIG．000 &  & PI．231sIg．02n & ¢T． 201 SIG ．ว2 & P1．000SI & \\
\hline \multirow[t]{2}{*}{14.0} & 17616.98014 & 17535.37293 & 17380．36866 & \(17333.9305^{\circ}\) & 16776． 36530 & \\
\hline & Pr． 766 SIG． 090 & PI．001sIG． 000 & PI． 231 SIG .000 & PI．001SIG．000 & PI．009SIG＊＊＊＊ & \\
\hline \multirow[t]{2}{*}{15.9} & 17623.59844 & 17542.78669 & 17387． 11055 & 17340.58585 & 16784.0963 & \\
\hline & PI． 76651 SIG .000 & PI．D01stc．0no & PI．231SIG． 000 & PI．001SIG．000 & PI． 000 SIG & \\
\hline \multirow[t]{2}{*}{16.0} & \(1763^{\wedge} .76476\) & 17549.24747 & 17394.30124 & 17347.68436 & 16792．34219 & \\
\hline & PI． 76 STIG． 200 & PI． 002315.030 & PI．231SIG． 000 & PI． 702 SIG .000 & PI．000SIG＊＊＊＊ & \\
\hline \multirow[t]{2}{*}{17.0} & 17638.37691 & 17556.85517 & 17431.94061 & 17355.22602 & 16801．10222 & \\
\hline & PT． 766 SI 9.090 & PI． 002 SIG． 190 & PT．231SIG． 200 & PI．002SIG．0n0 & PI． \(00051 \mathrm{~S}^{*}\) & \\
\hline \multirow[t]{2}{*}{18.0} & 17646.43686 & 17564.90968 & 17410.02851 & 17363.21775 & 16819.37808 & \\
\hline & PI．766SIG． 710 & PI． 02 SIG．\({ }^{\text {POO }}\) & PI．230SIG． 200 & pI． 002 SIg .000 & PI．000SIG＊＊＊ & \\
\hline \multirow[t]{2}{*}{19.9} & 17654．94379 & 17573.41086 & 17418.56482 & 17371.63843 & 16820.16787 & \\
\hline & er．765sig．on） &  & PI． 230 SIG．\({ }^{170}\) & PI．nn2SIG． 000 & 1．000SIG＊＊＊＊ & \\
\hline \multirow[t]{2}{*}{20.0} & 17663．99758 & 17582．35859 & 17427.54937 & 17390.50997 & 16830.47204 & \\
\hline & PI．765stg． 000 & pr．nn3srg．non & pr． 2305 sg .007 & PI． 702 SIG． 700 & PI．00）SIG＊＊＊＊ & PI \\
\hline \multirow[t]{2}{*}{21.0} & 17673.298 C9 & 17591．75274 & 17436．98200 & 17389.82226 & 16941．2904P & \\
\hline & PI． 765 sig． 000 & pI． 003 sIG .00 & Pr． 230 SIG． 000 & PI． 003 SIG .000 & PI． 000 SIG＊＊＊＊ & \\
\hline \multirow[t]{2}{*}{22.8} & 17683.14518 & 17601.59316 & 17446．86257 & 17399.57918 & 16852.62304 & \\
\hline & PI．765SIG． 100 & PI．003sIG． 70 & PI． 2295 IG .000 & PI． 003 SIG． 000 & PI． 000 SIG＊＊＊＊ & \\
\hline \multirow[t]{2}{*}{\(23 . n\)} & 17693.43870 & 17611.87977 & 17457．19088 & 17409.77661 & 16864.46959 & \\
\hline & PI． 764 Sİ． 700 & PI． 003 stg .000 & PI ． 229 Sig． 000 & PI．003SIG．000 & PI．000SIG＊＊＊＊ & \\
\hline \multirow[t]{2}{*}{24.0} & 17704.17849 & 17622.51272 & 17467．96677 & 17420.41742 & 16 ¢76．82995 & \\
\hline & PI． 764515.090 & PI． 004 stg .00 C & PI．229SIG． 200 & PI． 203 SIG． 000 & PI．000SIG＊＊＊＊ & PI \\
\hline \multirow[t]{2}{*}{25.0} & 17715.36439 & 17633.79754 & 17479．19004 & 17431.50049 & 16889.70393 & \\
\hline & pr． \(764 \mathrm{SIG.70)}\) & pr．co4sig．jna & pr．228SIG． 000 & PI．004SIG． 000 & I．000SIG＊＊ & PI \\
\hline \multirow[t]{2}{*}{26.0} & 17726.97624 & 17645.41450 & 17490.86050 & 17443.02566 & 16903.09153 & \\
\hline & PT． 764 SI （\％．90） & PI． \(224 \mathrm{SIG.0n} 0\) & PI．228SIG． 302 & ot． 004 SIG． 000 & PI．000SIG＊＊＊＊ & \\
\hline \multirow[t]{2}{*}{27．）} & 17739.17395 & 17657．49392 & 17502.97795 & 17454.99280 & 16916.99240 & \\
\hline & pi． 763 SIG． 000 & PI． 705 SIG .700 & PI． 22 PS IG． 000 & 9I．004SLG． 060 & PI． 000 SIG＊＊＊＊ & \\
\hline \multirow[t]{2}{*}{28.0} & 17751.59705 & 17669.99962 & 17515.54217 & 17467.40175 & 16931.40642 & \\
\hline & PI．763Sig． 000 & PI．005sig． 000 & PI．227SIG． 000 & PI． 004 SIG． 000 & PI．000SIG＊＊＊＊ & \\
\hline 29.7 & 17764.56565 & 17682．95841 & 17528.55296 & 17480.25236 & 16946.33341 & \\
\hline
\end{tabular}

PI. 763 SIG. 200 PI. 005 SIG. 000 PI. \(227 S I G .000\) PI. \(005 S I G .010\) PI. 000 SIG**** 17777.97944 17696.36310 17542.718.18 17493.54447 16G61.77318* PT.762SIG. 000 PI.036SIG.000 PI.227SIG.000 PI.005SIG. 000 PI. 000 SIG**** PI

 \(17820.8999717739 .24445 \quad 17595.05711 \quad 17536.06902\) 17011.16713
 17836.78247
PI.761SIG.200 17754.42662 \begin{tabular}{cc} 
PI.761SIG. 1700 \\
17851.71909 & PI.0D7SIG. 17770.050 \\
\hline
\end{tabular}

 PL. 76 STIG. 1700 PI. 008 SIG. 200 PI. 7 EOSTG. 203 PI \(17901.29126 \quad 17819.59099\)
 PI.759Stu.nno PI. 17 SIG.015 17936.55546 17854.R3113
 PI. 758 SIG. 000 PI.011sIG. 200
 17992.7705417911 .72781 PI.758SIG.)J0 PI.012SIG.00 18012.39278 17930.61667

 PT. 75 isis.00n PI.n13GIG. 220
 PT. 755 SIG. 100 OT 18713.46028 \(18117.11956 \quad 18\) n 35.2717 r
 PI. 754 SJG. 70 PI. 016 SIG.0nO
\(18162.79158 \quad 18080.21289\)
 1P185. 23657 PI.?16SIG.0nn PT. 753 SIG.090 PI 18103.3417 SIG. 105
 \(\begin{array}{cc}\text { Pr. } 753 \mathrm{STG} \text { COO PI. } \\ 18232.84257 & 18150.91529\end{array}\) PI. 752 SIG. 070 PI.019SIG. 07 18257.37293 PI.O19SIG.070 PI. 752SIG.000 PI. 181 SISIG.0no PI. 751 STG. 500 PT. 18220.23983 19397.53648 18725.55786 PI. 75051 g .070 PI .020 SIG.DOC PI 18251.31255 PI, 750 SIG I 170 PI. 221 TIG .70 18359.51797 18277.50352
 PT. \(749515.07 n\) PI. 222 SIG. 2 n

 18358.590n6

PI. 225 S IG. 1000
17615.98239
17615.98239

\[
\begin{array}{ll}
50 & \mathrm{PI} .07 \\
24 & 170 \\
000 & \mathrm{PI} .0 \\
853 & 170
\end{array}
\] .000SIG**** 17582.55853 PI.0005IG**** 17065.16855
PT.007SIG.000 PI.
\[
\begin{array}{ccc}
17632.11243 & 17582.55853 & 17 \\
\text { PI } 2245 \mathrm{SG} .000 & \mathrm{PI} .007 \mathrm{SIG} .000 & \mathrm{RII} \\
17643.68703 & 17598.93599 & 17
\end{array}
\] 200 17C84.19184
 PI. 224 SIG. 000 PI. 00 SSIG. 0.00 PI. 000 SIG**** 17683.16881 17633.01357 17123.77120
 PI.223SIG.06) 17650.7072417144 .32676 17719.42541 17668.94.320 PI. 17165.39255 I. 2225 IG. 000 PI.009SIG. 000 PI. 000 SIG**** PI.222. 21851 17757.45439

 17791 IGG. 200 PI. 010 SIG .090 PI. \(000 \mathrm{SIG} \mathrm{G}^{* *+*}\)
 17817.8154817766 .10355 PI.000SIG****


 \(\begin{array}{ccc}\text { PI.219SIG.000 PI.011SIG.000 PI.000 SIG**** } \\ \text { 17882. } 14952 & 17829.71474 & 17352.25346\end{array}\) I 219 SIG .001 PI.011SIG. 000 PI .000 SIG**t* 17904.4756n 18175.79262 PI.000S1 17377.89839
 17927.24160
I. 218519 17874.30709

PI.J12SIG. 000 PI 000 SIG**r* 17897.25782 17430.7096C
 PI.2175IG. DCC
17974.09217
\[
0 \text { P. } 1
\]
\[
\begin{aligned}
& \text { PI. } 013 \text { SIG. CO2 PI.0n0SIG**** } \\
& 17944.4668517485 .54760 \\
& \text { PI. } 013 \text { SIG.000 PI.000SIG**** }
\end{aligned}
\]
 \(18222.69825 \quad 17968.72450 \quad 17513.72464\) 1816SIG. 000 PI. 014 SIG. 000 PI. 000 SIG**** PI
 \begin{tabular}{cc} 
I.216SIG. 000 & PI. 014 SIG.000 PI.000SIG**** PI \\
18073.05666 & 18018.54438 \\
\hline
\end{tabular} \(18073.05666 \quad 18018.54438 \quad 17571.59598\) \(18098.89198 \quad 18044.10592 \quad 17601.28894\) -215SIG.000 PI.J15SIG. 000 PI. 000 SIG**** PI 18125.16413 18870.10140 17631.48624
 17725.10029

PI. 747 SIG. 070 PI. 224 SIG. 000 PI. 213 SIG. 000 PI.016SIG. 000 PI.000SIG**** PI \(18468.71163 \quad 18386.62228 \quad 18234.61259 \quad 18178.41526 \quad 17757.31101\)



 18555.17081 18473.02169 19321.26428 \(18264.18848 \quad 17856.95544\)
 PI. 744 SIG. 000 PI.n27SIG. 000 PI. 210 SIG. 000 PI. 018 SIG. 009 PI. 002 SIG**** PI
 PI. 744 SIG. 070 PI. 728 SIG. 000 PI. 210 SIG. 000 PI. 018 SSIG. 000 PI. 000 SIG**** PI \(18645.52877 \quad 18563.31739 \quad 18411.81524 \quad 18353.83920 \quad 17961.10918\)
 PI. 742 SIG. 000 PI. 030 STG. 200 PI. 209 SIG. 000 PI. 019 SIG. 000 PI. 000 SIG**** \(\begin{array}{llllll}18707.92729 & 18625.67293 & 18474.34237 & 18415.75487 & 18633.04418\end{array}\) 19720 \(18.18506 .25240 \quad 18447.3559318069 .76015\)



 PT. 739 .

 \(18905.14479318823 .0576718672 .24658 \quad 18611.77530 \quad 18260.80370\)



 19 ก0の.98113 18927.52911 19776.97920 18715.54094 18381.38331
 PI. 734 STG. 000 PI. 03 SSIG. 000 PI. 204 SIG. 000 PI. 223 SIG. 000 PI. 00 SIG**** \(\begin{array}{lllllll}19781.91874 & 18994.3^{n} 753 & 18848.93185 & 18786.84057 & 18464.24154\end{array}\) PI. 733 SIG. 000 PI. 04 CSIG. 900 PI. 2035 IG. 000 PI. 023 SIG.000 PI.000SIG**** 1918. \(37 \cap 54\) 19035. 月3435 18885. 54575
 PI.732SIG.000 PI.042sig.000 PI. 203 SIG. 00 \(19197.74736 \quad 19110.16041 \quad 18960.04580\)
 PI. 730 SIG. 000 PI. 044 SIG.000 PI. 2025 IG. 097 19268.81796 \(19186.17926 \quad 19036.23826\) \(19307.48698 \quad 19224.8220419074 .96764\) PI. 729 SIG. 020 PI. 246 SIG. 021 PI. 2015 IG. 0 CO \(19346.57769 \quad 19263.88628 \quad 19114.11832\)
 \(1942 \mathrm{~F} .02175 \quad 19343.2 .7672 \quad 19193.68127\) PI.025SIG. 200 PI. 000 SIG. 999 PI

 PI. \(724.14526 \quad 19424.34576 \quad 19274.92150 \quad 19209.13730 \quad 19955.09890\) \(\begin{array}{ccc}19548.33525 & 19465.57822 & 19316.16926\end{array}\)


PI. 723 SIG. 000 PI. 053 SIG. 001 PI. 198 SIG. 000 PI. 027 SIG. 000 PI. 000 SIG. 999 PI \(19631.9685419549 .08589 \quad 19399.91661 \quad 19333.1974319099 .22251\)



term enfrgies minis parity
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 17488 & ก.00002 & \(0.020 \sim 1\) & 2. & & 1. \\
\hline & PI. 0 SIG. 0 & PI. 0 SIC. \({ }^{\text {d }}\) & PI. 0 SIE.0 & *SIG. 0 & PI. 0 & IG \\
\hline & 17570.28600 & 17488.6715 & 17333.60837 & 0.00302 & & 0.0 \\
\hline & pI.767sig.? & PI. \({ }^{\text {nn }}\) & PI. 23351 Sc . & 1 & & \\
\hline & 17571.18226 & 174 & 17334.5078 & 17288.66406 & & 0.0 \\
\hline & pr.767sig. \(n\) & pJ. \(\mathrm{man}^{\text {SIG. }}\) & pl. \(233 \mathrm{SIG.0}\) & I. \(\mathrm{m}^{\text {nnsig.n }}\) & & \\
\hline & 17572.52664 & 17490.910 & 17335.957 & 17289.90570 & & 0.0 \\
\hline & PI. 767 sig .0 & PI.nOnSIG.? & PI. 2335 IG .? & PT.000s & & \\
\hline & 17574.3191 & 17492.7017 & 17337.65607 & 17291.771 & & 0.0 \\
\hline & PI. 767 ctg.? & PI.000sig.? & PI.233SIG. & PI. P dosig. & & \\
\hline & 17576.55965 & 17494.9437 & 17339.9n4 & 17293.9975 & & 0. \\
\hline & ¢T.767SIG. 0 & PI. 00 Sİg. & PI.2325IG. & I.000SIG.0 & & \\
\hline & 17579.24822 & 17497.62737 & 17342.60296 & 17296.65362 & & 3. \\
\hline & pr. 76751 s .0 & PI. 000 Sig. 0 & I. 2325 IG.0 & J.000SIG. 0 & & \\
\hline & 17582. 38478 & 17500.7617 & 17345.750 & 17299.76052 & & 0.0 \\
\hline & pi.767sIg. 0 & PI. 00 SSig. & PI.232SIG. 0 & ?T.D00STG.0 & & \\
\hline & 17595.96929 & 17504.3436 & 17349.3482 & 17303.31115 & & 0.0 \\
\hline & PI.7675IG.? & PI. \({ }^{\text {c.e.sig. }}\) S & PI. 232 SIG .? & PI. \(203 \mathrm{SIC}\). & & \\
\hline & 17590.00169 & 17509.37321 & 17353.3950 & 17307.30547 & & 0. \\
\hline & Pt. 767 stg. 0 & PI.091sIG.0 & pr. 232 SIG .3 & PI. \(201 \mathrm{SIG}\). ) & & \\
\hline & 17594.4819 & 17512.8502 f & 17357.89131 & 17311.74343 & & 0.0 \\
\hline & PI.7F7SIG.) & Pr.001sig. 0 & pl.232SIG.? & PI.001SIG.0 & & \\
\hline & 17599.47991 & 17517.7747 & 17362.83688 & 17316.6?499 & & 0.0 \\
\hline & PI. 7 ¢ 7 Stg. 0 & PI.n01sig.? & I. 232 SIG .0 & 1.001sis.0 & & \\
\hline & \(176 \times 4.7855\) & 17523.1465 & 17368. 2316 & 17321.95008 & & . \\
\hline & pi.767sig.? & PI. \(001 \mathrm{SJG}\). . & PI.232SIG. 0 & PI.001sIg.0 & & - \\
\hline & 17610.60887 & 17528.9657 & 17374.075 & 17327.71863 & & '). 0 \\
\hline & PI.766SIG. \({ }^{\text {c }}\) & PI.001sİ.? & PI.231SI9.0 & ¢1.001519.0 & & 51 \\
\hline & 17616.87968 & 17535.7321 & 17380.3685 & 17333.93058 & & 0.0 \\
\hline & PI.76bsig. 3 & PI. \({ }^{1} 1\) SIG.? & pr.231SIG.0 & PI. 001 SIG .0 & & \\
\hline & 17623.59791 & 17541.74556 & 17387.1104 & 17340.59585 & & 3.0 \\
\hline & PI. 766 SIG. 0 & PI. \({ }^{\text {P }}\) 1SIG.? & PI. 2315 SIG . & PI. \(201 \mathrm{SIG.0}\) & & \\
\hline & 17630.76347 & 17549.10692 & 17394.30113 & 17347.68436 & & 0.0 \\
\hline & PI. 766 SIG .0 & PI. 002 SIG .0 & PI.231sig.0 & PI. 002 SIG.0 & & SI \\
\hline & 17638.37624 & 17556.71337 & 17401.94048 & 17355.22632 & & 0.0 \\
\hline & PI.766STG. 0 & PI. 102 SIG .3 & Pr.231SIG.0 & PI.002SIG.0 & PI. 0 & SI \\
\hline & 17646.4361 & 17564.7675 & 17410.62837 & 17363.21074 & & 0.0 \\
\hline & 9I. 766 SI 5.0 & PI.022SIG.? & PI. 23 nsig.0 & 1.002sIG.0 & & SI \\
\hline & 17654.94295 & 17573.2682 & 17418.56466 & 17371.63843 & & \\
\hline & PI.765stg.) & PI. 002 SIG .0 & Pr.230SIG. & PI.002SIG.0 & & \\
\hline & 17563.89666 & 17582.2156 & 17427.54919 & 17383.57897 & & 0.0 \\
\hline & PI.765sIG. \({ }^{\text {d }}\) & PI.n03SIG.n & PI. 230 SIG. 0 & pi. 002 SIg. 0 & & SI \\
\hline & 17673.29707 & 17591.6093 & 17436.9819 & 17389.82226 & & 0.0 \\
\hline & pI.765sig.? & PI.? 3 Stg.? & PI. 230 SIG.? & PI.^n3SIG.) & & SI \\
\hline & 17683.14406 & 17601.4492 & 17446.96236 & 17399.579 .17 & & \\
\hline & PI. 765 SIG. 0 & PI. 003 sIG .? & PI. 229 SIG.0 & pt. \(203 \mathrm{sIg} . \mathrm{n}\) & & SI \\
\hline & 17693.43748 & 17611.73534 & 17457.19065 & 17409.77660 & & \\
\hline & PI. \(7649 \mathrm{LG}\). ) & PI.003SIG.0 & PI. 229519.7 & PI. 003 SIG .0 & & SIG \\
\hline & \(177 \times 4.17716\) & 17622.46735 & 17467.96652 & 17420.41742 & & 0.0 \\
\hline & PI.764sic. 9 & PI.0n4stg.0 & PI. \(229 \mathrm{SIG.0}\) & PI.003SIG.0 & PI. 0 & SI \\
\hline & 17715.36295 & 17633.64515 & 17479. 13977 & 17431.57748 & & ก.0 \\
\hline & PI. 764 SIG. 0 & PI. 004 SIG.0 & PI.229SIG. & PI. 004 SIG. & PT. 0 & \\
\hline & 17726.99468 & 17645.26855 & 17490.85021 & 17443.02565 & & 0.9 \\
\hline & PI.764SIg. & Pt. & pr & PI & & \\
\hline
\end{tabular}
27.9
29.0
29.0
37.7
\(31 . n\)
33.0
34.0
35.0
\(37 . n\)
8.9

PI.763SIG 17751.59524 PI. 76351 G .0
17764.56379 PI. 763 GIG .0 17777.97736 PT.762SIG. 0 PI. 762 SIG.) 17806.13944 PI.762SIG. 0 17820.83743
PI. 761516.9 PI. 761515 F .9 PI. 761 SIG. 0 17851.71623 PI. 7 F1sig.
17867.79656
 PI. 760 SIG. 3 17901.28787 PT. 7 7605IF.
17918.69835 17918.69835
PI.759SIG.?
17935.55169
 PI. 759 aIG. 0 17954.04762 PI. 758 SIG. 0 17973.58587
PI. 759 SIG. 0 PI. 75 SLG. 0
17992.76615 PI. 757 SIG. 0 18012.38817 PI .757 SIG .0
18 C 32.45163 18 n 32.4516
PI .7575 IG .0 1 ค) 52.95624 PI.75jSIG.?
18073.97167 19073.93167 PI. 756 SIG. 0
18095 PI. 755 SIG. 18117.11375 P1.755SIG. 9
18139.37974 18139.37974
PI. 754 SIG. 0 18162.085 ? 4 PI.754STG. 0 18185.72992 PT. 7535 TG .7 PI. 753 STG. 0 PI. 783 SIG .0
18232.83539 PT. 75251 SI ? 18257.79545 PI. 751517 . 0 PI.751sIG.0 PI 751 SIG.
18307.52837 PI. 750 SIG .0 18333.30047 PI.75n5IG.n PI.740sig.n
17657.33740 PI. \(705 \mathrm{SIG} . ?\) \(1766^{\circ} .95150\) PI.
17682.8106 PI. \(105 \mathrm{Stg} . ?\) 17696.21477 PI. 1706 SIG.?
17712.76339 17711.9633
PI. 006 SIG. 0 PI.006SIG.0
17724.35655 PT. 707 SIG. 0 17739.09394 PL.^ク7 17754.27535 PI. 1777545 StG .7 17769.90054 PI. 108 SIG. 0 17785.96928 PI. 00 SSIG. 0
17872.48132 PI.0ク95tG.0 17819.43541 PI. 1709 SIG. 0 17836.83430 PI.01r SIG.7 PI. 110 SIG.? 17872.95740 PI.7115IG.7 17891.68206 PI. 011 STG.
17910.84842 PI. 012 STG. 0 17930.45619
PI. 012 gI .0 PI. 172 FIG .0 PI. 113 STG.0 17970.99474
 176.91-22491 PI. 014 STG. 0
\(18 n 13.29526\) PI. 014 SIG. 0 \(18 \wedge 35.1 \times 545\) PI. 015 SIG.? \(18^{\wedge} 57.35516\)
PI. 116 STG.) PI. 18080.04404 PI. \(\cap 16\) SIG. 0 18103.17176 PI. 1817 SIG.? 1812 F .7379 F
PT. \(718 \mathrm{SIG} . ?\) PI. 718 18LG.?
18150.742 .2 PI. 1 18GIG. 0 18175.184 .36
PI. 119 STG. PI. 1919 STG. 0 PI. 1819 SIG. 7 182.25.38028 PI.n20sig.) 18251.13336 PI. \(215 T G .7\)
18277.32266 PI.n22SIG.า
17502.97763 Pr. \(228 \mathrm{SIG} .{ }^{n}\) 17515.54183
PI. \(2275 \mathrm{IG}^{n}\) PI 2275 IG.
17529.55259 PI. 2275 IG .0 17542.00969 PI 22275 IG. 0 PI.226SIG.0 PI.226SIG.0
17570.26195 PI. 226 SIG .0 17585. 05664
PI. 226 SIG. PI. 226 SIG. 0 PI. 225 SIG .0 17615.98196 PI. 225 SIG .0 \(\begin{array}{r}17632.11186 \\ \hline\end{array}\) PI. 2245 IG.7 PJ. 224 SIG. 0 \(17665.7 C 528\) PI 224 SIG. 17683. 1 ¢. 814 PJ. 2235 SIG .0
17701.07470 PI. \(223 \mathrm{SIG} . \wedge\) 17719.42467 PI. 2225 SIG .0
17738.21772 17738. 21772 PI 17757.45357 PI.222SIG.) 17777. 13187 PI.221sIG.?
17797.2523 17797. 25230 17817.81452 PJ. 220sIG. 17939.ค182 PI.220SIG.?
17860.26299 PI. 219.2 IG. 0
17882.14853 17882. 14853 PI-210SIG.0
17904.4744 f 17904.4744 f
PI. 218 SIG .0 I. 21 PSIG. 0
17927.24041 PT. 218 SIG .3 17950.44600 PI. 218 SIG. \({ }^{1}\) PI. 2175 IG.C PI. \(217 \mathrm{SIG.C}\)
17999.17461 PI.217sIG.0 18022.69683 PI.216SIG.0
18047.65714 18047.65714 I. \(216 \mathrm{SJG.n}\) PI. 215 SIG .0 18098.89337 PT. 215 SIG. 0 PI. 214 SIG .
17454.99279 PI. 704 SI 5.0 17467.40175
PT. 704 SIG PT. 704 SIG.
17480.2 F 236 PI. 005 SIG. 0 17493.54446 PI. 005 SIG. \({ }^{7} 17507.27789\) 17507.27789
PI.005SIG. 0 PI. 17521.45246 2I.006SIG.0 17536.06800 PI. 006 SIG.
17551.12432
 PI. 17566.62122 91.007 SIG .0 17582.55851 PI. 007 SIG.? PI.007SIG.0
17615.7538 PI.008SIG. 0 17633.01054 PI.008SIG.0
17650.70721 PI.OnBSIG.) 1766 . 84317 17.009SIG.? 17687.41816
PI.009SIG PI.009SIG.0
17706.43194 PI.J09SIG.1) 17725.88427 PI. \(010 \mathrm{SIG-D}\)
17745.77497 17745.77497
OT. 10 SIG.0 T.J10SIG.0
17766.10349 PI. 01 STG. \()\) 17796.96996 PI. 711 SIG.\()\)
\(17809.0735^{\circ}\) PI.011SIG-0
17329.71467 I. 011 SIG. 0 17851.79255 PI. \(01251 \mathrm{G.0}\)
17874.30711 PI. \(\boldsymbol{j} 12\) SIG. 0 17897.25774 \({ }^{\text {PI. }}{ }^{173 \text { SIG.? }}\) DT.? 13 SIG.? PT 17944.46675 PI.013SIG.0 17968.724 .39 17993.4170 PI.014SIG.0. PI. 014 SIG. 0
18118.54425 DI. 314 SIG. 0 18044.10579 TJ. 215 sIG .0 PI.) 1 15SIG. \({ }^{\text {P }}\)

\footnotetext{


PI. 0 SIG**** PI
 PI. 0 SIG**** PI PI. 0 SIG**** P PI. \(0 \begin{gathered}0.0 \\ 0.0\end{gathered}\)
 PI.O SIG**** PI PI. \(0 \begin{aligned} & 0.0 \\ & \text { SIG**** PI }\end{aligned}\) \(\begin{array}{ll}\text { PI. } 0 & \begin{array}{l}0.0 \\ \text { SIG**** P } \\ 0.7\end{array}\end{array}\) PI. \(0 \stackrel{0}{5}{ }^{\text {SIG**** }} \mathrm{P}\) PI. \(0 \mathrm{SIG}_{0.0}^{\text {ST** }} \mathrm{PI}\)

 PI. \(0 \stackrel{0.0}{\mathrm{SIG}^{* * * *} \mathrm{P}}\) PI. \(0 \begin{aligned} & 0.0 \\ & \text { SIG**** PI }\end{aligned}\) PI. 0 SIG 0.0
SIG**** \(\begin{array}{ll}\text { PI. } 0 & \text { SIG } \\ \text { PI. } 0\end{array}\) PI. 0 SIG**** PI
PI. 0 O 0 SIG**** PI

 \({ }^{\text {PI. } 0}{ }_{0.0}^{\text {SIG**** }^{\text {SIG }}}\) PI. 0 SIG**** PI P1. 0 SIG**** PI
 \(\begin{array}{ll}\text { PI. } 0 & 0.0 \\ \text { SIG*** P } \\ 0.0\end{array}\) \(\begin{array}{ll}\text { PI. } 0 & 0.0 \\ \text { SIG } \\ 0.0 \\ \text { PI** }\end{array}\) PI. 0 SIG
PI. \(0 \begin{gathered}0.0 \\ \text { SIG* }\end{gathered}\) PI. \(0 \underset{n \rightarrow 0}{\text { SIG**** PI }}\) PI. 0 SIG**** PI
 P1. \(0.0 \mathrm{SIG}^{2}\) PI. \(0 \int_{0.0}^{\text {SIG**** PI }}\) PI. 0 SIG*** PI
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline . 0 & 9 & 19303.94779 & 18151.87097 & 18096.53029 & \multicolumn{3}{|c|}{0.0} \\
\hline & PI. 749 SIG .0 & PI.0)2.stg.) & PI. \(214 \mathrm{SIG.0}\) & pr. 115 sig .0 & PI. 0 & SIG**** PI & PI \\
\hline \multirow[t]{2}{*}{61.0} & 18413.23459 & 18331.10834 & 18179.01547 & 18123.39252 & & \multicolumn{2}{|l|}{0.0} \\
\hline & PT. 7 It SIG. 0 & PI.023SIG.? & PI.2135IG. 0 & PI. 016 SIG. 0 & pI & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{0.0 -}} \\
\hline \multirow[t]{2}{*}{62.1} & 1844C.75~56 & 18358.50397 & 18206.59551 & 18150.58757 & & & \\
\hline & PI. 747 SIG .0 & PI. \(724 \mathrm{SIG.0}\) & PI.213SIG.0 & PT. 116 SIG.0 & PI & SIG**** PI & PI \\
\hline \multirow[t]{2}{*}{63.0} & 18468.70145 & 18385.43474 & 18234.61064 & 18178.41507 & & \multicolumn{2}{|l|}{2.0} \\
\hline & PJ. 747 ST ¢.? & PI. 224 s.g.? & PT. \(212 \mathrm{SIG}\). ) & PI. 17 SIG. 0 & PI & SIG**** PI & PI \\
\hline \multirow[t]{2}{*}{64.7} & 18497.08686 & 18414.79835 & 18263.06043 & 18206.57461 & & \multicolumn{2}{|l|}{ก.0} \\
\hline & PI.746SIG. 0 & PI. 225 SIf.n & PI. 2125 SG .0 & PI.017SIG. 0 & PI. & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0.0}} \\
\hline \multirow[t]{2}{*}{65.0} & 19525.90634 & 18443.5963 & 18291.9444 & 18235.16581 & & & \\
\hline & PI. 745 SIG .0 & PT. 226 sig. 0 & PI. 211 SIG. \({ }^{\text {d }}\) & PT. \(17 \mathrm{SIG} . ?\) & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{0.0}} \\
\hline \multirow[t]{2}{*}{66.0} & 18555.15946 & 19.472.92760 & 18321.2621C & 19264.19925 & & & \\
\hline & PI. 745 SIG .0 & PI.027SIG.0 & PI.2115IG.0 & PI. \(118 \mathrm{SIG}\). ) & PI & SIG & PI \\
\hline \multirow[t]{2}{*}{67.0} & 18584.84578 & 18502.49185 & 18351.01305 & 18293.64154 & & \multicolumn{2}{|l|}{0.0} \\
\hline & PI. 7445 SG .0 & PI.028stig.? & PI. 210 IG 1.0 & PI. 018 SIG .0 & PI. 0 & SIG & PI \\
\hline \multirow[t]{2}{*}{68.7} & 18614.96482 & 18532.58839 & 18381. 19677 & 18323.52524 & & \multicolumn{2}{|l|}{0.0} \\
\hline & PI. 743 SIG. 0 & PT. \(028 \mathrm{SIG.0}\) & PI. 2105 IG .0 & Pt.01esig.0 & PI. 0 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0.0}} \\
\hline \multirow[t]{2}{*}{69.0} & 18545.51615 & 18563.11686 & 18411.81279 & 18353.83893 & & & \\
\hline & PI. 743 SIG. 0 & PI. \(029 \mathrm{st} \mathrm{c.0}\) & PI. 210 SIG. 0 & PI. \({ }^{\text {P19SIG.) }}\) & PI. 0 & & PI \\
\hline \multirow[t]{2}{*}{70.0} & 18676.49929 & 18594.07679 & 18442.86061 & 18384.58218 & & \multicolumn{2}{|l|}{0.0} \\
\hline & PI.742SIG.? & PI. 030 SIG.? & PI.209SIG.? & PI. 019 SIG .0 & PI & SIG**** PI & PI \\
\hline \multirow[t]{2}{*}{71.0} & 19707.91377 & 18625.46770 & 18474.33974 & 18415.75456 & & \multicolumn{2}{|l|}{0.0} \\
\hline & PI.741SIG.? & PI.?31sIG.r & PI. 209 SIG.? & PI. \({ }^{\text {d }}\) 19SIG.? & PI. & SIG**** PI & PI \\
\hline \multirow[t]{2}{*}{72.0} & 18734.75910 & 1P657.2P912 & 18506.24966 & 18447.35561 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 0.0 \\
& \text { SIG**** PI }
\end{aligned}
\]}} \\
\hline & PI. 741 STG.? & PI. 32 StG .? & PI. \(2085 \mathrm{SIG.0}\) & PI. 22 SIG. 0 & PI. 0 & & \\
\hline \multirow[t]{2}{*}{73.0} & 18772.73481 & 18689.54055 & 18539.59 ¢ & 19479.39489 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0.0 \({ }_{\text {SIG**** }}\)}} \\
\hline & PI. 740 SIG .0 & PI. \(325 \mathrm{SIG}\). ? & PI.208SIG. 3 & PT.020SIG.0 & pI. & & \\
\hline \multirow[t]{2}{*}{74.8} & 18804.74040 & 18722.22151 & 18571. 35988 & 18511.84191 & & \multicolumn{2}{|l|}{0.0} \\
\hline & PI. 739 SIG. 0 & PI.033sig.) & PI. 207 Stg .0 & PI. 020 SIG. 0 & PI. 0 & SIG**** & PI \\
\hline \multirow[t]{2}{*}{\(75 . n\)} & 18837.87536 & 18755.33149 & 18604. 55913 & 18544.72624 & & \multicolumn{2}{|l|}{0.0} \\
\hline & PI. 738 SIG .9 & PI. \(034 \mathrm{STG}\). ? & PI. \(207 \mathrm{SIG.0}\) & PJ.021sIg.0 & PI. 0 & SIG**** & PI \\
\hline \multirow[t]{2}{*}{76.0} & 18871.43920 & 18788.86999 & 18638. 1871 & 18578.03738 & & \multicolumn{2}{|l|}{0.0} \\
\hline & PT. 73 8STG.) & Pr.035sig. 0 & PI.206SIG.? & PI.021SIG. 0 & PI & SIG**** & PI \\
\hline \multirow[t]{2}{*}{77.0} & 189「5.43139 & 18822.83648 & 18672.24329 & 18611.77486 & & \multicolumn{2}{|l|}{0.0} \\
\hline & PT. 737 SIG.) & PI. \({ }^{36} \mathbf{3}\) SIG.n & PI. 206516.0 & PI. 2215 SIG 0 & & \multicolumn{2}{|l|}{\multirow{3}{*}{0.0}} \\
\hline \multirow[t]{2}{*}{78.0} & 18939.85142 & 18857.23046 & 18706. 72711 & 18645.93819 & & & \\
\hline & PI. 736 SIG.) & PI. 375 StG.n & pI. 235 SIGG 0 & PI.022SIG. 0 & PI & & P1 \\
\hline \multirow[t]{2}{*}{79.0} & 18974.69876 & 19892.05139 & 18741.63304 & 18680.52688 & & \multicolumn{2}{|l|}{2.0} \\
\hline & PT. 735 SIG.? & PI. \({ }^{\text {3 }} 38\) SIG. & PI. \(205 \mathrm{SIG}\). ) & PI. n 22 SIG.) & PI.O & SIG**** & PI \\
\hline \multirow[t]{2}{*}{80.9} & 19009.972 98 & 18027.29972 & 18776.97552 & 14715.54341 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0.0}} \\
\hline & PI. 735 SIG .0 & PI. 039 SIG .0 & PI. \(204 \mathrm{SIG.0}\) & PT.022SIG.) & P1. 0 & & \\
\hline \multirow[t]{2}{*}{81.0} & 19.345 .67322 & 18962.77194 & 18812.73900 & 18750.97329 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0.0 \({ }_{\text {SIG**** }}\)}} \\
\hline & PL. 734515.0 & PI. \(04 n \mathrm{nctg}\). & PI. \(204 \mathrm{SIG.0}\) & PI. 023 SIG. 0 & PI. 0 & & \\
\hline \multirow[t]{2}{*}{82.0} & 19.781 .79926 & 18999.77049 & 18848.92789 & 18786.83999 & & \multicolumn{2}{|l|}{0.0} \\
\hline & PI.733SIG.0 & PJ.040Stg. 0 & PI. 204 SIG .0 & ?I. 223 SIG. \({ }^{\text {g }}\) & PI & SIG**** PI & PI \\
\hline \multirow[t]{2}{*}{83.0} & 19118. \(35 \times 43\) & 19935.59381 & 18885. 54164 & 18823.12499 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0.9 -}} \\
\hline & PT. 732 SIG. 0 & PJ. 041 SIG.0 & PI-203SIG.9 & PI. \({ }^{\text {23SIG. }} 0\) & PI & & \\
\hline \multirow[t]{2}{*}{84.0} & 19155. 32616 & 19072.54134 & 18922. 57967 & 18859.83275 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0.0}} \\
\hline & PI.732SIG.) & PI. \(042 \mathrm{STG.0}\) & PI. \(203 \mathrm{SIG}\). ? & Pr.024SIG.0 & PI. 0 & & PI \\
\hline \multirow[t]{2}{*}{85.0} & 19192.72591 & 19109.91251 & 18960.04138 & 18896.96275 & & \multicolumn{2}{|l|}{0.0} \\
\hline & Pr.731sIG.? & PI.343SIG.9 & pr. 202SIG. \({ }^{\text {a }}\) & PJ. \(24 \mathrm{SIG}\). & PI. 0 & SIG**** P & PI \\
\hline \multirow[t]{2}{*}{¢6.7} & 19230.54908 & 19147.77675 & \(18997.9261^{\circ}\) & 19934.51444 & & \multicolumn{2}{|l|}{0.0} \\
\hline & Pr. 730 SI g. 0 & PI. 044 SIG .0 & pr. 202 SIG .0 & EI. \({ }^{2} 4 \mathrm{StG} .0\) & P1. & SIG**** PI & PI \\
\hline \multirow[t]{2}{*}{87.0} & 19?68.79509 & 19185.92348 & 19036.23349 & 18972.49726 & & \multicolumn{2}{|l|}{0.0} \\
\hline & PI. 729 SIG. 0 & PI.045Stg.) & PI.201SIG. 0 & PI. 024 SIG. 0 & PI. 0 & SIG**** PI & \\
\hline \multirow[t]{2}{*}{\(88 . \sim\)} & 19327.46337 & 19724.56211 & 19074.96269 & 19.)10.88065 & & \multicolumn{2}{|l|}{0.0} \\
\hline & PI. 722 SIG.\()\) & PI. \(046 \mathrm{SIG}\). ) & pr.201S IG.0 & PI.025SIG.) & pr. 0 & SIG**** PI & PI \\
\hline \multirow[t]{2}{*}{89.5} & 19346.55331 & 19263.62214 & 19114.11317 & \(19 \wedge 49.694^{\text {¢ }}\) & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{\text {n }}\) SIG**** PI}} \\
\hline & PI. 727 SIG.? & PI. 047 StG.) & PI.200sIG. 0 & pI.025SIG. 0 & PI. 0 & & \\
\hline \multirow[t]{2}{*}{90.0} & 19386.06431 & 19303.10267 & 19153.68432 & 19088.92689 & & \multicolumn{2}{|l|}{0.0 - \({ }^{\text {S }}\)} \\
\hline & PI.727sic. \({ }^{\text {d }}\) & PI. \(748 \mathrm{sTG.0}\) & PI. 200 SIG.? & PI. \({ }^{\text {2 } 25 S I G . ? ~}\) & PI. C & SIG**** PI & PI \\
\hline \multirow[t]{2}{*}{91.0} & 10475.90577 & 19343.00339 & 19193.67551 & 19128.57359 & & \multicolumn{2}{|l|}{0.0} \\
\hline & PI.725SIG.? & PI. 349 SIG.n & PI. 22esig.^ & PI. 226 SIG.) & pr.0 & SIG**** PI & \\
\hline \multirow[t]{2}{*}{2.0} & 10466.34706 & \(19383.3235^{\circ}\) & \(19234.0 \times 611\) & 19168.64955 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
0.0
\]
SIG**** PI}} \\
\hline & pr. 725 s & 0 S & I. & & & & \\
\hline
\end{tabular}

\footnotetext{
93. \(19597.11757 \quad 19424.76263\)

PI.7245IG.0 PI. \(2515424.26263 \quad 19274.9154\) \(\begin{array}{cc}\text { PI.724SIG.0 PI.251stG.) } \\ \text { 19548.39667 } & 19465.21991\end{array}\)
\(\begin{array}{cc}\text { PI. } 723 \text { SIG. } & \text { PI. } 752 \text { SIG. } \\ 19589.91371 & 19576.79478\end{array}\)
PI.199SIG.0
19316.16300
PI. 198 SIG .0
\(19209.1361 \%\)
OI. 1926 SIG.0 \(\quad\) PI. \(0 \begin{aligned} & 0.0 \\ & \text { SIG**** PI }\end{aligned}\)
PI. 752 SJG. 0
19576.79478
PI.198SIG.0
19250.04091
19250.0409

PT .026 SIG.0
19291.36208
PI. \(0 \begin{aligned} & 0.0 \\ & \text { SIG**** PI } \\ & 0.0\end{aligned}\) 19589.91371
PT 722 SIG.
1 PI. 722 SIG.0 PT.721SIs.0 19548.78659 \(\begin{array}{cc}\text { PT.721SIS.0 } \\ \text { 10674. } 1057909 & 19591.1947\end{array}\) PI.72^5IG. \({ }^{n}\) PI. \({ }^{\circ} 55\) SIG. \({ }^{n}\)
 pI. 720 SIG. 0 PI. 156 SIG.? PT. 1985 SIG .0 19399.90983 PI.027SIG.0 \(\begin{array}{ll}19442.40782 & 19375.25137\end{array}\)

I. 0 STG**** PI

I. \(0 \int_{0.0}^{\text {SIG**** PI }}\)
I. 0 SIG**** Pr O. 0

75 IG. 0
}

Appendix 3:
Reprinted from J. Mol. Spectrosc. 58, 394-413 (1975).

\title{
Observed and Calculated Interactions between Valence States of the NO Molecule
}

\author{
Robert W. Field \({ }^{1}\) and Richard A. Gottscho \\ Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
}

\author{
AND \\ E. Miescher \\ Institute of Physics, University of Basel, Basel, Switzerland
}

\begin{abstract}
No perturbation between two valence states of NO has ever been identified, although many valence-Rydberg and several Rydberg-Rydberg perturbations have been extensively studied. The first valence-valence crossing to be experimentally documented for NO is reported here and occurs between the \({ }^{16} \mathrm{~N}^{18} \mathrm{O} B{ }^{2} \Pi(v=18)\) and \(B^{\prime 2} \Delta(v=1)\) levels. No level shifts larger than the detection limit of \(0.1 \mathrm{~cm}^{-1}\) are observed at the crossings near \(J=6.5\) \(\left[B^{2} \Pi\left(F_{1}\right) \sim B^{\prime 2} \Delta\left(F_{2}\right)\right]\) and \(J=12.5\left[B^{2} \Pi\left(F_{1}\right) \sim B^{\prime 2} \Delta\left(F_{1}\right)\right]\); two crossings involving higher rotational levels could not be examined. Semi-empirical calculations of spin-orbit and Coriolis perturbation matrix elements indicate that although the electronic part of the \(B{ }^{2} \Pi \sim B^{\prime 2} \Delta\) interaction is large, a small vibrational factor renders the \({ }^{15} \mathrm{~N}^{18} \mathrm{O} B(v=18)-B^{\prime}(v=1)\) perturbation unobservable. Semi-empirical estimates are given for all perturbation matrix elements of the operators \(\sum_{i} \hat{a}_{\imath} l_{2} \cdot s_{i}\) and \(B\left(L_{ \pm} S_{\mp}-J_{ \pm} L_{\mp}\right)\) which connect states belonging to the configurations \((\sigma 2 p)^{2}(\pi 2 p)^{4}\left(\pi^{*} 2 p\right),(\sigma 2 p)(\pi 2 p)^{4}\left(\pi^{*} 2 p\right)^{2}\), and \((\sigma 2 p)^{2}(\pi 2 p)^{3}\left(\pi^{*} 2 p\right)^{2}\).
\end{abstract}

\section*{I. INTRODUCTION}

The excited states of the NO molecule have been extensively studied (1). Although numerous perturbations (configuration mixing) exist between Rydberg ( \(R\) ) and valence (NR) states, classification into \(n l \lambda\) R-states and into NR-states of \(\Sigma^{+}, \Sigma^{-}, \Pi\), and \(\Delta\) symmetry has been possible by various deperturbation techniques. Configurationally mixed (observed) vibronic levels appear in the absorption spectrum as violet-degraded R-bands and red-degraded NR-bands. When two bands cross or approach each other, their structure usually appears strongly perturbed. Homogeneous R \(\sim\) NR interactions of the type \(n p \pi,{ }^{2} \Pi \sim B^{2} \Pi\) and \(n d \delta,{ }^{2} \Delta \sim B^{\prime}{ }^{2} \Delta\) have been evaluated in detail (2, 3). Band crossings of the type \(\mathrm{R} \sim \mathrm{R}\) and \(\mathrm{NR} \sim \mathrm{NR}\), however, are rare because the bands are degraded in the same direction. Nevertheless, \(3 d \sigma \sim 5 s \sigma\) and \(3 p \sigma \sim 3 s \sigma \mathrm{R} \sim \mathrm{R}\) crossings have been observed and small perturbations noticed (4). To date not one NR \(\sim\) NR crossing has been reported for NO. Perturbations between two valence states are well known in many other molecules. The absence of observed NR \(\sim\) NR

\footnotetext{
\({ }^{1}\) Alfred P. Sloan Fellow.
}
perturbations in NO is not due to vanishing perturbation matrix elements (spin-orbit and Coriolis matrix elements in NO should be comparable in magnitude to those in CO or \(\mathrm{NO}^{+}\)), rather to the complexity of the NO spectrum and the accidental nesting of NR potential energy curves.
When the absorption spectra of four different isotopic species of NO are examined, only one example of an observable NR \(\sim\) NR crossing can be found. The nearly degenerate vibrational levels are \({ }^{15} \mathrm{~N}^{18} \mathrm{O} B^{2} \Pi(v=18)\) and \(B^{\prime 2} \Delta(v=1)\). The corresponding overlapping \(B^{2} \Pi-X^{2} \Pi(18,0)\) and \(B^{\prime 2} \Delta-X^{2} \Pi(1,0)\) bands occur near 163.5 nm and are reproduced in Fig. 1.
The observed \({ }^{15} \mathrm{~N}^{18} O B^{2} \Pi(v=18) \sim B^{\prime 2} \Delta(v=1)\) crossing is described in Section II. No level shifts due to perturbations are detected. In order to explain this null result and to determine whether it has any bearing on other possible NR \(\sim\) NR interactions in NO, semi-empirical estimates are given in Section III of all spin-orbit and Coriolis matrix elements which connect states belonging to the three lowest-energy valence electronic configurations of NO. It is shown that the electronic part of the \(B^{2} \Pi \sim B^{\prime 2} \Delta\) matrix element is not small, thus the undetectability of the \({ }^{15} \mathrm{~N}^{18} \mathrm{O} B(v=18) \sim B^{\prime}\) \((v=1)\) perturbation must be due to a small vibrational factor. In Section IV the vibrational factor is, in fact, shown to be small. A strong \(R \sim\) NR interaction between \(C^{2} \Pi(v=4)\) and \(B^{2} \Pi(v=18)\) is shown to have only a minor effect on the \(B \sim B^{\prime}\) matrix element. A perturbation matrix element above the \(0.1 \mathrm{~cm}^{-1}\) detection threshold is predicted for the \(B\left(F_{2}\right) \sim B^{\prime}\left(F_{1}\right)\) crossing near \(J=30.5\); however, lines corresponding to rotational levels above \(J^{\prime}=14.5\) do not appear in the available low-temperature absorption spectra.

\section*{II. THE CROSSING BANDS \(B{ }^{2} \Pi-X^{2} \Pi(18,0) \sim B^{\prime 2} \Delta-X{ }^{2} \Pi(1,0)\) of \({ }^{15} \mathrm{~N}^{18} \mathrm{O}\)}

The absorption spectrum of \({ }^{15} \mathrm{~N}^{18} \mathrm{O}\left(98.3 \%{ }^{15} \mathrm{~N}, 95.5 \%{ }^{18} \mathrm{O}\right)\) was photographed several years ago at the 10.5 m vacuum spectrograph of the National Research Council of Canada, Ottawa. The NO gas was maintained at \(-180^{\circ} \mathrm{C}\). Room-temperature spectra are useless for analysis because of the abundance of unresolved rotational lines. Analysis of the low-temperature bands is striaghtforward and results in the total energy curves shown in Fig. 2. Two crossings between the \(B^{2} \Pi(v=18)\) and \(B^{\prime 2} \Delta(v=1)\) curves fall in the observable range of \(J\) : the \(F_{1}\) component of the regular \(B^{2} \Pi\) level crosses the \(F_{2}\) component of the inverted \(B^{\prime 2} \Delta\) level near \(J=6.5\); the second crossing is between \(F_{1}\) of \(B^{2} \Pi\) and \(F_{1}\) of \(B^{\prime 2} \Delta\) very close to \(J=12.5\). The arrows in Fig. 1 mark the rotational lines closest to the crossing points in the \(R\) and \(P\) branches of the \(B-X\) and \(B^{\prime}-X\) bands. Plotted in Fig. 3 are the measured differences between lines of the relevant branches near the crossing points:
\[
\begin{aligned}
& \text { Curve I: } \\
& \text { Curve II: }
\end{aligned} \quad \text { Mean of }\left\{\begin{array}{l}
B^{2} \Pi P_{11}(J+1)-B^{\prime 2} \Delta P_{21}(J+1) ; \\
B^{2} \Pi R_{11}(J-1)-B^{\prime 2} \Delta R_{11}(J-1), \\
B^{2} \Pi P_{11}(J+1)-B^{\prime 2} \Delta P_{11}(J+1) .
\end{array}\right.
\]

These curves show that at both crossings no level shift due to perturbations exists which is larger than the experimental accuracy of \(0.1 \mathrm{~cm}^{-1}\). This null effect will be discussed in Section IV.


Fig. 1. Crossing bands \(B^{\prime 2} \Delta-X{ }^{2} \Pi_{3}(1,0)\) and \(B{ }^{2} \Pi-X{ }^{2} \Pi_{\frac{1}{2}}(18,0)\) in the absorption spectrum of cold \({ }^{15} \mathrm{~N}^{18} \mathrm{O}\) gas.


Fig. 2. Total energies of the levels \(B^{\prime 2} \Delta(v=1), B^{2} \Pi(v=18)\), and \(C^{2} \Pi(v=4)\) of \({ }^{15} \mathrm{~N}^{18} \mathrm{O}\). Energy refers to the level \(X^{2} \Pi_{\frac{1}{1}}\left(J=\frac{1}{2}, v=0\right)\).

A rotational constant is easily calculated for the \(B^{\prime 2} \Delta(v=1)\) level. \(B_{1}\left({ }^{15} \mathrm{~N}^{18} \mathrm{O}\right)\) \(=1.185 \mathrm{~cm}^{-1}\) is obtained which is isotopically consistent with \(B_{1}\left({ }^{14} \mathrm{~N}^{16} \mathrm{O}\right)=1.302 \mathrm{~cm}^{-1}\) determined previously (3). However, a rotational constant for the \(B^{2} \Pi(v=18)\) level does not, in the traditional usage, exist. This point requires clarification in view of the discussion of vibrational overlap integrals in Section IV. The observed level which we label " \(B{ }^{2} \Pi(v=18)\) " is not a pure NR-level and \(v=18\) is not a good vibrational quantum number. The observed level is a mixture of \(B^{2} \Pi(v=18)\) with \({ }^{2} \Pi\) R-levels, primarily the nearby \(3 p \pi, C^{2} \Pi(v=4)\) level. The observed \(C^{2} \Pi(v=4)\) level with its complementary admixture of \(B{ }^{2} \Pi(v=18)\) is plotted in the upper part of Fig. 2. The total energy curves for \(B^{2} \Pi(v=18)\) and \(C^{2} \Pi(v=4)\) are not straight, but are markedly bent away from each other as \(J\) increases. The mean of the slopes of the \(B^{2} \Pi\) curves decreases from 1.10 to \(0.95 \mathrm{~cm}^{-1}\) within the observed \(J\) range and is much larger than the calculated deperturbed value of \(B_{18}\left({ }^{(15} \mathrm{N}^{18} \mathrm{O}\right)=0.82 \mathrm{~cm}^{-1}\) (2). The total energy curves for the \(C^{2} \Pi(v=4)\) level show a slope which increases with \(J\) and a doublet spin-splitting ( \(15 \mathrm{~cm}^{-1}\) for \(N=2\) ) far too large for the \(3 p \pi\) Rydberg configuration. In


Fig. 3. Differences in energy near the two \(\Delta J=0\) crossing points for the curves in Fig. 2.

Section IV a \(B^{2} \Pi(v=18) \sim C^{2} \Pi(v=4)\) mixing coefficient is estimated from the difference between observed and deperturbed values of the rotational constants for the \(B\) and \(C\) states. (An identical mixing coefficient is also obtained from the \(B\) and \(C\) state spin-orbit splittings). That this mixing coefficient is slightly \(J\)-dependent is evident from the changing slopes in Fig. 2. Nevertheless, it should suffice to remark that each observed \(B^{2} \Pi(v=18)\) rotational level corresponds to a rovibronic wavefunction which is composed predominantly of two additive parts, \(B^{2} \Pi(v=18)\) and \(C^{2} \Pi(v=4)\), for which the vibrational and electronic wavefunctions are well defined.
The NO \(C{ }^{2} \Pi(v=4) \sim B^{2} \Pi(v=18)\) interaction is by itself a remarkable example of a homogeneous perturbation in a band spectrum \((2,5)\). Figure 4 shows this perturbation for four NO isotopes. With increasing mass, the NR-band \(B-X(18,0)\) moves gradually to lower energy across the \(C-X(4,0) \mathrm{R}\)-band and eventually reaches the \(B^{\prime}-X(1,0)\) NR-band in the \({ }^{15} \mathrm{~N}^{18} \mathrm{O}\) spectrum, where it raises the problem treated in this paper.

\section*{III. SPIN-ORBIT AND CORIOLIS MATRIX ELEMENTS}

Semi-empirical estimates of spin-orbit and Coriolis matrix elements are made in two steps, the first being considerably more rigorous than the second. First, relative magnitudes of matrix elements between many-electron functions are obtained by reducing intra- and interconfigurational matrix elements to products between trivially calculable numerical factors and one-electron orbital integrals. In the present work, more than 100 nonzero matrix elements between the NO valence states listed in Table I are expressed in terms of only six orbital integrals. Second, these orbital integrals are estimated from observed matrix elements. When experimental observations are not sufficient to determine all of the relevant orbital integrals, some rather drastic approximations (such as pure precession) must be made. Nevertheless, reliable upper bounds for all matrix elements and factor of two estimates for matrix elements expressed in terms of nonzero pure precession orbital integrals are expected.

The simplified microscopic form of the spin-orbit operator commonly used for semiempirical calculations \((6,7)\) is
\[
\begin{align*}
H^{\mathrm{so}} & =\sum_{i} \hat{a}_{i} l_{i} \cdot s_{i},  \tag{1}\\
\hat{a}_{i} & =\sum_{K} \frac{Z_{K}}{r_{K i}{ }^{3}}, \tag{2}
\end{align*}
\]
where \(l_{\imath}=\) orbital angular momentum of electron \(i, s_{i}=\) spin angular momentum of electron \(i, Z_{K}=\) effective charge on nucleus \(K, r_{K i}=\) distance between electron \(i\) and nucleus \(K\). Spin-other-orbit interactions between electrons which are both in partially filled orbitals are neglected. Coriolis operators can also be expressed in terms of one- and two-electron operators (6):
\[
\begin{align*}
-B\left(J_{+} L_{-}+J_{-} L_{+}\right) & =-\left(\frac{\hbar}{4 \pi c \mu r^{2}}\right)\left[J_{+}\left(\sum_{i} l_{i-}\right)+J_{-}\left(\sum_{i} l_{i+}\right)\right]  \tag{3}\\
B\left(L_{+} S_{-}+L S_{+}\right) & =\left(\frac{\hbar}{4 \pi c \mu r^{2}}\right)\left[\left(\sum_{i} l_{i+}\right) \cdot\left(\sum_{j} s_{j_{-}}\right)+\left(\sum_{i} l_{i-}\right) \cdot\left(\sum_{j} s_{j_{+}}\right)\right] . \tag{4}
\end{align*}
\]

\section*{Table I}

Configurations Giving Rise To Low-Lying Valence States of NO

\section*{Configuration}
\[
\begin{aligned}
& \operatorname{KK}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{\star} 2 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{p})^{2}(\pi 2 \mathrm{p})^{4}\left(\pi^{\star} 2 \mathrm{p}\right) \\
& \mathrm{KK}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{p})(\pi 2 \mathrm{p})^{4}\left(\pi^{*} 2 \mathrm{p}\right)^{2} \\
& \operatorname{KK}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{\star} 2 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{p})^{2}(\pi 2 \mathrm{p})^{3}\left(\pi^{\star} 2 \mathrm{p}\right)^{2}
\end{aligned}
\]

Derived States
\[
\begin{gathered}
\mathrm{x}^{2} \Pi \\
\mathrm{G}^{2} \Sigma^{-}, \mathrm{I}^{2} \Sigma^{+}, \mathrm{b}^{4} \Sigma^{-}, \mathrm{B}^{\prime 2} \Delta \\
\mathrm{~B}^{2} \Pi, \mathrm{~L}^{2} \Pi, \mathrm{P}^{2} \Pi, \mathrm{a}^{4} \Pi, \mathrm{~L}^{\prime}{ }^{2} \Phi
\end{gathered}
\]

Evaluation of matrix elements of these one- and two-electron operators is facilitated by representing electronic states as antisymmetrized products of one-electron molecular orbitals (Slater determinants). The configurations giving rise to the ground state and low-lying valence states of NO are listed in Table I. Determinantal wavefunctions which have the proper values of \(\Lambda\) and \(\Sigma\) and which transform properly under \(\sigma_{v}\) are constructed for each state.

In order to maintain a consistent phase convention, a standard order is defined:
\[
\left(1^{+} 1^{-}-1^{+}-1^{-} 0^{+} 0^{-} 1^{+*} 1^{-*}-1^{+*}-1^{-*}\right)
\]


FIg. 4. Interacting \(R \sim N R\) pair of doublet bands in the absorption spectra of four different NO isotopes. The NR- and R-levels \(B^{2} \Pi(v=18)\) and \(C^{2} \Pi(v=4)\), are labeled, respectively, \(B 18\) and \(C 4\). Isotopic masses of N and O appear to the right of the corresponding spectrum. \(B 18 \rightarrow C 4\) means that low rotational levels are NR, high rotational levels are \(R\), and vice versa for \(C 4 \rightarrow B 18\). The \({ }^{14} \mathrm{~N}^{16} \mathrm{O}\) spectrum was obtained with the 3 m NRC instrument (2), the others with the 10.5 m NRC instrument (17).
where numerals denote the value of \(\lambda\) (projection of one-electron orbital angular momentum, \(l\), on internuclear axis), \(\pm\) denotes \(\sigma= \pm \frac{1}{2}\) (projection of one-electron spin angular momentum, \(s\), on internuclear axis), and an asterisk denotes antibonding character. Each state is represented by the main diagonal of a Slater determinant. Linear combinations of Slater determinants which exhibit proper reflection symmetry are constructed for the \(G^{2} \Sigma^{-}\)and \(I^{2} \Sigma^{+}\)states. In the calculation of observable properties of real states, it is necessary to use wavefunctions which not only exhibit the same symmetry as that state but for which the electrostatic Hamiltonian is diagonal (8). When more than one eigenfunction of the same symmetry and electronic configuration exist, mixing of basis functions by the interelectronic repulsion operator, \(1 / r_{i j}\), must be taken into account. In calculating the lifetime of the \(a^{4} \Pi\) state of NO, Lin (9) did not construct wavefunctions for the \(A^{2} \Sigma^{+}\)state which exhibit the proper reflection symmetry (10) and also failed to use an eigenfunction of the electrostatic Hamiltonian for the \(B^{2} \Pi\) state. Walker (11), \({ }^{2}\) in calculating reduced matrix elements of the spin-orbit and Coriolis operators for the \((\pi)\left(\pi^{*}\right)^{2}\) configuration [which is analogous to \((\pi)^{3}\left(\pi^{*}\right)^{2}\) ] uses \({ }^{1} \Sigma^{+},{ }^{3} \Sigma^{-},{ }^{1} \Delta\left(\pi^{*}\right)^{2}\) parentage wavefunctions to represent the three \({ }^{2} I I\) states; these parentage \({ }^{2} \Pi\) functions are not eigenfunctions of the electrostatic \((\pi)^{3}\left(\pi^{*}\right)^{2}{ }^{2} \Pi\) Hamiltonian. Eigenstates calculated for NO by Lefebvre-Brion and Moser (12) have been used here for the three real \({ }^{2} \Pi\) states : \(B^{2} \Pi\), \(L^{2} \Pi\), and \(P^{2} \Pi\).

Since parity is a good quantum number, wavefunctions are written in a parity basis. The proper parity linear combinations are derived with the use of the operator:
\[
\begin{equation*}
\sigma_{v}|\Lambda S \Sigma\rangle|\Omega J\rangle=(-1)^{J+S-2 \Omega+\tilde{\sigma}}|-\Lambda S-\Sigma\rangle|-\Omega J\rangle, \tag{5}
\end{equation*}
\]
where \(\tilde{\sigma}=1\) for \(\Sigma^{-}\)states, \(\tilde{\sigma}=0\) for all other states (13). \(|\Lambda S \Sigma\rangle\) is represented by a Slater determinant; the form of \(|\Omega J\rangle\) is not explicitly considered. The reflection operator is written as a product of one-electron operators when operating on \(|\Lambda S \Sigma\rangle\) :
\[
\begin{equation*}
\sigma_{v}=\prod_{i} \sigma_{v i}, \tag{6a}
\end{equation*}
\]
where
\[
\begin{equation*}
\sigma_{v i}|\lambda s \sigma\rangle=(-1)^{\lambda+s-\sigma}|-\lambda s-\sigma\rangle . \tag{6b}
\end{equation*}
\]

Determinantal wavefunctions in the parity basis for states arising from configurations in Table I are listed in Table II.

Matrix elements of the spin-orbit operator between Slater determinants vanish if the two determinants differ by more than one spin-orbital (14). Nonzero matrix elements are reduced to matrix elements between single molecular orbitals. Matrix elements of \(\hat{a}\) and \(\hat{a} l_{ \pm}\)are not evaluated explicitly but are left as parameters to be determined from experimental data and are assumed to be independent of internuclear distance. The oneelectron orbital angular momentum, \(l\), is not a good quantum number, so that matrix elements of \(l_{ \pm}\)are also left as unevaluated parameters. The adequacy of this \(r\)-independent, equivalent-orbital single configuration, one-electron treatment is discussed in Ref. (15).

\footnotetext{
\({ }^{2}\) Two typographical errors have been discovered in Ref. (11, Table IV) : Under "One electron outside closed shells" the first \(\sigma \pi^{2}\left({ }^{2} \Sigma^{-}\right)\)should read \(\sigma \pi^{2}\left({ }^{4} \Sigma^{-}\right)\)and under "Three electrons outside closed shells" the diagonal matrix element of \(\pi^{2} \pi\left({ }^{4} I I\right)\) should read \(\sqrt{10} / 3 A^{\prime}\).
}

Nonzero matrix elements of spin-orbit and Coriolis operators are listed in Table III, expressed in terms of six one-electron orbital integrals:
\[
\begin{aligned}
& a_{1}=\langle\pi 2 p| \hat{a}|\pi 2 p\rangle, \\
& a_{2}=\left\langle\pi^{*} 2 p\right| \hat{a}\left|\pi^{*} 2 p\right\rangle, \\
& a_{3}=\langle\pi 2 p| \hat{a} l_{+}|\sigma 2 p\rangle, \\
& a_{4}=\left\langle\pi^{*} 2 p\right| \hat{a} l_{+}|\sigma 2 p\rangle, \\
& b_{1}=\langle\pi 2 p| l_{+}|\sigma 2 p\rangle, \\
& b_{2}=\left\langle\pi^{*} 2 p\right| l_{+}|\sigma 2 p\rangle .
\end{aligned}
\]

Only two of these six parameters can be directly evaluated from observed matrix elements:
\[
\begin{equation*}
\left\langle X^{2} \Pi_{2} \pm\right| H^{\text {So }}\left|X^{2} \Pi_{2}{ }^{ \pm}\right\rangle=-\frac{1}{2} a_{2}=-\frac{1}{2} A\left(X^{2} \Pi\right), \tag{7a}
\end{equation*}
\]
where \(A\left(X^{2} \Pi\right)=124 \mathrm{~cm}^{-1}(16)\),
\[
\begin{equation*}
\left\langle\left. B^{2} \Pi_{\frac{3}{3}} \pm H^{\mathrm{so}} \right\rvert\, B^{2} \Pi_{3}^{ \pm}\right\rangle=0.312 a_{1}-0.144 a_{2}=\frac{1}{2} A\left(B^{2} \Pi\right), \tag{7b}
\end{equation*}
\]
where \(A\left(B^{2} \Pi\right)=31 \mathrm{~cm}^{-1}\) (17). Thus,
\[
\begin{align*}
& a_{1}=107 \mathrm{~cm}^{-1}  \tag{8a}\\
& a_{2}=124 \mathrm{~cm}^{-1} \tag{8b}
\end{align*}
\]

Many-electron matrix elements calculated using the diagonal orbital integrals \(a_{1}\) and \(a_{2}\) are expected to be accurate to within a factor of 2 . Comparison with observed spin-orbit splittings is given in Table IV.

In order to estimate the four remaining nondiagonal orbital integrals, a pure precession approach is adopted. In the pure precession limit, \(l\) is assigned an integral value (in this case \(l=1\), assuming that \(\pi 2 p, \pi^{*} 2 p\), and \(\sigma 2 p\) molecular orbitals are comprised predominantly of \(2 p\) atomic orbitals) and the LCAO coefficients of bonding and antibonding orbitals differ only in phase so that
\[
\begin{aligned}
\langle\pi 2 p| l_{+}|\sigma 2 p\rangle & =\left\langle\pi^{*} 2 p\right| l_{+}\left|\sigma^{*} 2 p\right\rangle=0, \\
\left\langle\pi^{*} 2 p\right| l_{+}|\sigma 2 p\rangle & =\langle\pi 2 p| l_{+}\left|\sigma^{*} 2 p\right\rangle=\sqrt{2} .
\end{aligned}
\]

Thus
\[
\begin{align*}
& a_{3}=0, \\
& a_{4}=\sqrt{2} a_{2}=175 \mathrm{~cm}^{-1},  \tag{8c}\\
& b_{1}=0, \\
& b_{2}=\sqrt{2} . \tag{8d}
\end{align*}
\]

In a real molecule, corresponding orbitals from two configurations are not identical, orbital overlap integrals will be \(\leq 1\), and equations (8c) and ( 8 d ) will be good estimates and upper bounds for \(a_{4}\) and \(b_{2}\). In a real molecule, \(|\pi 2 p\rangle\) and \(\left|\pi^{*} 2 p\right\rangle\) differ by more than the phases of their atomic orbital coefficients, \(l_{+}|\sigma 2 p\rangle\) will not be orthogonal to \(|\pi 2 p\rangle\), and \(a_{3}\) and \(b_{1}\) will be nonzero:
\[
\begin{align*}
0<a_{3}<a_{4} & \simeq \sqrt{2} a_{2},  \tag{8e}\\
0<\left|b_{1}\right|<b_{2} & \simeq \sqrt{2} . \tag{8f}
\end{align*}
\]

Table II
Determinantal Wavefunctions for Electronic States of NO
\[
\begin{aligned}
& \left|\mathrm{X}^{2} \Pi_{3 / 2}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\left\{\left|\Lambda=1, \mathrm{~S}=1 / 2, \Sigma=1 / 2>\left|\Omega=3 / 2, \mathrm{~J}>\mp(-1)^{\mathrm{J}-3 / 2}\right| \Lambda=-1, \mathrm{~S}=1 / 2, \Sigma=-1 / 2>\right| \Omega=-3 / 2, \mathrm{~J}>\right\} \\
& \left|\mathrm{x}^{2} \Pi_{1 / 2}^{ \pm}\right\rangle=\frac{1}{\sqrt{ } 2}\left\{\left|\Lambda=1, \mathrm{~S}=1 / 2, \Sigma=-1 / 2> \pm(-1)^{\mathrm{J}-1 / 2}\right| \Lambda=-1, \mathrm{~S}=1 / 2, \Sigma=1 / 2>\right\}^{\mathrm{a}}
\end{aligned}
\]
\[
\begin{aligned}
& \left\lvert\, L^{\prime}{ }^{2}{ }_{\Phi} \stackrel{ \pm}{5 / 2}>=\frac{1}{\sqrt{2}}\left\{\left|\Lambda=3, S=1 / 2, \Sigma=-1 / 2> \pm(-1)^{J-5 / 2}\right| \Lambda=-3, S=1 / 2, \Sigma=1 / 2>\right\}\right. \\
& \left|\mathrm{B}^{\prime 2} \Delta_{-5 / 2}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\left\{\left|\Lambda=2, \mathrm{~S}=1 / 2, \Sigma=1 / 2> \pm(-1)^{\mathrm{J}-5 / 2}\right| \Lambda=-2, \mathrm{~S}=1 / 2, \Sigma=-1 / 2>\right\} \\
& \left\lvert\, \mathrm{B}^{\prime 2} \Delta_{3 / 2}^{ \pm}>=\frac{1}{\sqrt{2}}\left\{\left|\Lambda=2, S=1 / 2, \sum=-1 / 2\right\rangle_{+}^{\left.-(-1)^{J-3 / 2} \mid \Lambda=-2, S=1 / 2, \Sigma=1 / 2>\right\}, ~}\right.\right. \\
& \left|a^{4} \Pi_{5 / 2}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\left\{\left|\Lambda=1, S=3 / 2, \Sigma=3 / 2>_{+}^{-}(-1)^{J-5 / 2}\right| \Lambda=-1, S=3 / 2, \Sigma=-3 / 2>\right\} \\
& \left|a^{4} \Pi_{3 / 2}^{ \pm}\right\rangle=\frac{1}{\sqrt{6}}\{|a>+| b\rangle+\mid c> \pm(-1)^{J-3 / 2}(|a->+|b->+| c->)\}^{b} \\
& \left|a^{4} \Pi_{1 / 2}^{ \pm}\right\rangle=\frac{1}{\sqrt{6}}\{|e>+| f\rangle+|g\rangle \pm(-1)^{J-1 / 2}(|e->+|f->+| g->)\} \\
& \left|a^{4} \Pi_{-1 / 2}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\left\{\left|\Lambda=1, S=3 / 2, \Sigma=-3 / 2> \pm(-1)^{\mathrm{J}+1 / 2}\right| \Lambda=-1, S=3 / 2, \Sigma=3 / 2>\right\} \\
& \left\lvert\, \mathrm{B}^{2} \Pi_{3 / 2}^{ \pm}>=\frac{1}{\sqrt{2}}\{-0.558|\mathrm{a}>+0.408| \mathrm{b}>+0.149|\mathrm{c}>-0.707| \mathrm{d}\rangle\right. \\
& \left. \pm(-1)^{J-3 / 2}(-0.558|a->+0.408| b->+0.149|c->-0.707| d->)\right\}^{C} \\
& \left.\left|\mathrm{~B}^{2} \mathrm{\Pi}_{1 / 2}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\{0.558|\mathrm{e}>-0.150| \mathrm{f}\rangle-0.409|\mathrm{~g}>-0.707| \mathrm{h}\right\rangle \\
& \left. \pm(-1)^{\mathrm{J}-1 / 2}(0.558|\mathrm{e}->-0.150| \mathrm{f}->-0.409|\mathrm{~g}->-0.707| \mathrm{h}->)\right\}^{\mathrm{C}} \\
& \left|\mathrm{~L}^{2} \Pi_{3 / 2}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\{-0.149|\mathrm{a}>+0.708| \mathrm{b}>-0.558|\mathrm{c}>+0.408| \mathrm{d}> \\
& \left. \pm(-1)^{J-3 / 2}(-0.149|a->+0.708| b->-0.558|c->+0.408| d->)\right\}^{c} \\
& \left|\mathrm{~L}^{2} \mathrm{\Pi}_{1 / 2}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\{0.149|\mathrm{e}\rangle+0.558|\mathrm{f}\rangle-0.708|\mathrm{~g}\rangle+0.408|\mathrm{~h}\rangle \\
& \left. \pm(-1)^{\mathrm{J}-1 / 2}(0.149|e->+0.558| f->-0.708|\varepsilon->+0.408| \mathrm{h}->)\right\}^{\mathrm{C}}
\end{aligned}
\]
\({ }^{a}\) Except for \(\left|X^{2} \Pi_{3}{ }^{ \pm}\right\rangle\), the \(|\Omega J\rangle\) part of the wavefunction has been suppressed for conciseness.
\({ }^{b}\) Slater determinants are symbolized by \(|\Lambda S \Sigma\rangle\) when only one Slater determinant can be constructed with the specified values of \(\Lambda, S, \Sigma\). Otherwise, letters are used as labels.
\({ }^{c}\) The \(B^{2} I I, L^{2} \Pi\), and \(P^{2} \amalg\) wavefunctions are taken from Ref. (12) after correcting two typographical errors [H. Lefebvre-Brion, private communication: replace the orbital part of the \(\phi_{2}\) and \(\phi_{2}{ }^{\prime}\) functions by \(\left(\omega \pi^{+}\right)^{2}\left(v \pi^{+}\right)\left(\omega \pi^{-}\right)\left(v \pi^{-}\right)\)and replace \(\psi\left(P^{2} \Pi\right)\) by \(\left.=(1 / \sqrt{3}) \phi_{1}-\left(\frac{2}{3}\right)^{\frac{1}{2}} \phi_{2}\right]\). The \({ }^{2} \Pi\) functions of Ref. (12) are \(\phi_{1}=-|d\rangle, \phi_{2}=1 / \sqrt{2}(|a\rangle-|c\rangle), \phi_{2}{ }^{\prime}=1 / \sqrt{6}(|a\rangle+|c\rangle-2|\mathrm{~b}\rangle)\).

Table II. Continued.
\[
\begin{aligned}
& \left|\mathrm{P}^{2} \Pi_{3 / 2}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\{-0.577|\mathrm{a}\rangle+0.577|\mathrm{c}\rangle+0.577|\mathrm{~d}\rangle \\
& \left. \pm(-1)^{J-3 / 2}(-0.577|a->+0.577| c->+0.577 \mid d->)\right\}^{c} \\
& \left|\mathrm{P}^{2} \Pi_{1 / 2}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\{0.577|\mathrm{e}>-0.577| \mathrm{f}\rangle+0.577|\mathrm{~h}\rangle \\
& \left. \pm(-1)^{\mathrm{J}-1 / 2}(0.577|e->-0.577| \mathrm{f}->+0.577 \mid \mathrm{h}->)\right\} \mathrm{c} \\
& \left|b^{4} \Sigma_{3 / 2}^{- \pm}\right\rangle=\frac{1}{\sqrt{2}}\left\{|\Lambda=0, S=3 / 2, \Sigma=3 / 2\rangle \mp(-1)^{\mathrm{J}-3 / 2} \mid \Lambda=0, S=3 / 2, \Sigma=-3 / 2>\right\} \\
& \left|b^{4} \Sigma_{1 / 2}^{- \pm}\right\rangle=\frac{1}{\sqrt{6}}\{|i>+| j\rangle+|k\rangle \pm(-1)^{J-1 / 2}(|i->+|j->+| k->)\} \\
& \left|G^{2} \Sigma_{1 / 2}^{- \pm}\right\rangle=\frac{1}{2 \sqrt{3}}\left\{2|i>-|j>-| k\rangle \pm(-1)^{J-1 / 2}(2|i->-|j->-| k->)\}\right. \\
& \left.\left|I^{2} \Sigma_{1 / 2}^{+ \pm}\right\rangle=\frac{1}{2}\{|j>-| k\rangle \pm(-1)^{J-1 / 2}(|j->-| k->)\right\}
\end{aligned}
\]
where,
\begin{tabular}{|c|c|}
\hline \(\left.\sigma_{v}\left|\Lambda=1, S=1 / 2, \Sigma=1 / 2>=\sigma_{v}\right| 1^{+} 1^{-}-1^{+}{ }_{-1} 1^{-} 0^{+} 0_{0}^{-} 1^{+*}\right\rangle=(-1)\) & | \(\Lambda=-1, \mathrm{~S}=1 / 2, \Sigma=-1 / 2>\) \\
\hline \(\sigma_{v} \mid \Lambda=1, S=1 / 2, \Sigma=-1 / 2>=\sigma_{v}\) & \(\mid \Lambda=-1, S=1 / 2, \Sigma=1 / 2>\) \\
\hline \(\Lambda=3, S=1 / 2, \Sigma=1 / 2>=\sigma_{v}\left|1^{+} 1^{-}-1^{+} 0^{+} 0^{-} 1^{+*} 1^{-*}\right\rangle=(-1)\) & \(\Lambda=-3, S=1 / 2, \Sigma=-1 / 2>\) \\
\hline \(\sigma_{v}|\Lambda=3, S=1 / 2, \Sigma=-1 / 2\rangle=\sigma_{v}\left|1^{+} 1^{-}-1^{-} 0^{+} 0^{-} 1^{+*} 1^{-*}\right\rangle=\) & \(\Lambda=-3, S=1 / 2, \Sigma=1 / 2>\) \\
\hline
\end{tabular}


\(\sigma_{v}|c\rangle=\quad \sigma_{v}\left|1^{+} 1^{-}-1^{+} 0^{+} 0_{0}^{-} 1^{+*}-1^{-*}\right\rangle=\mid c \rightarrow\)
\(\sigma_{v}^{v}|d\rangle=\sigma_{v}\left|1^{+}-1^{+}-1^{-} 0^{+} 0_{0}^{-} 1^{+*} 1_{1}^{-*}\right\rangle=|d \rightarrow\rangle\)
\(\sigma_{v}|e\rangle=\quad \sigma_{v}\left|1^{+} 1^{-}-1^{+} 0^{+} 0_{0}^{-} 1^{-*}-1^{-*}\right\rangle=\mid e->\)
\(\sigma_{v}|f\rangle=\sigma_{v}\left|1^{+} 1^{-}-1^{-} 0^{+}{ }^{-}{ }^{-} 1^{-*}-1^{+*}\right\rangle=|f-\rangle\)
\(\sigma_{v}|g\rangle=\quad \sigma_{v}\left|1^{+} 1^{-}-1^{-} 0^{+} 0^{-} 1^{+*}-1^{-*}\right\rangle=|g|\)
\(\sigma_{v}|\mathrm{~h}\rangle=(-1) \sigma_{v}\left|1^{-}-1^{+}-1^{-} 0^{+} 0^{-} 1^{+*} 1_{1}^{-*}\right\rangle=\mid \mathrm{h} \rightarrow\)
\(\sigma_{v}|i\rangle=(-1) \sigma_{v}\left|1^{+} 1^{-}-1^{+}-1^{-} 0^{-} 1^{+*}-1^{+*}\right\rangle=\mid i->\)
\(\sigma_{v}|j\rangle=(-1) \sigma_{v}\left|1^{+} 1^{-}-1^{+}-1^{-} 0^{+} 1^{-*}-1^{+*}\right\rangle=\mid j \rightarrow\)
\(\sigma_{\mathrm{v}}|\mathrm{k}\rangle=\quad \sigma_{\mathrm{v}}\left|1^{+} 1^{-}-1^{+}-1^{-} 0^{+} 1^{+*}-1^{-*}\right\rangle=\mid k->\)

Nonzero Matrix Elements of Spin-Orbit and Coriolis Operators \({ }^{a, b}\)
\[
\begin{aligned}
& \left\langle\mathrm{v}, \mathrm{X}^{2} \mathrm{II}_{3 / 2}^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{X}^{2} \mathrm{JI}_{3 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=\frac{1}{2} \mathrm{a}_{2} \delta_{\mathrm{vv}}{ }^{\mathrm{c}} \\
& \left\langle\mathrm{v}, \mathrm{X}^{2} \Pi_{1 / 2}^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{X}^{2} \mathrm{Ii}_{1 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-\frac{1}{2} \mathrm{a}_{2} \delta_{\mathrm{vv}^{\prime}}{ }^{\mathrm{c}} \\
& \left\langle v, \quad X^{2} \Pi_{3 / 2}^{ \pm}\right| H^{S O}\left|b^{4} \Sigma_{3 / 2}^{-}, v^{\prime}\right\rangle=\frac{1}{2} a_{4}\left\langle v \mid v^{\prime}\right\rangle^{d} \\
& \left\langle v, X^{2} \pi_{1 / 2}^{ \pm}\right| H^{S O}\left|b^{4} \Sigma_{1 / 2}^{- \pm}, \quad v^{\prime}\right\rangle=\frac{\sqrt{3}}{6} a_{4}\left\langle v \mid v^{\prime}\right\rangle \\
& \left\langle v, x^{2} \Pi_{1 / 2}^{ \pm}\right| H^{S 0}+B\left(L_{+} S_{-}+L_{-} S_{+}-J_{+} L_{-}-J_{-} L_{+}\right)\left|G^{2} \Sigma_{1 / 2}^{- \pm}, v^{\prime}\right\rangle= \\
& -\frac{\sqrt{6}}{12} a_{4}\left\langle v \mid v^{\prime}\right\rangle-\frac{\sqrt{6}}{2} B_{v v^{\prime}}, b_{2}\left[1 \pm(-1)^{J-1 / 2} \sqrt{J(J+1)+1 / 4}\right] \\
& \left\langle\mathrm{v}, \mathrm{X}^{2} \Pi_{1 / 2}^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}+\mathrm{B}\left(\mathrm{~L}_{+} \mathrm{S}_{-}+\mathrm{L}_{-} \mathrm{S}_{+}-\mathrm{J}_{+} \mathrm{L}_{-}-\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{I}^{2} \Sigma_{1 / 2}^{+ \pm}, \mathrm{v}^{\prime}\right\rangle= \\
& \frac{\sqrt{2}}{4} a_{4}\left\langle v \mid v^{\prime}\right\rangle-\frac{\sqrt{2}}{2} B_{v v^{\prime}}, b_{2}\left[1 \mp(-1)^{J-1 / 2} \sqrt{J(J+1)+1 / 4}\right] \\
& \left\langle v, \quad X^{2} \pi_{3 / 2}^{ \pm}\right| H^{S O}+B\left(L_{+} S_{-}+L_{-} S_{+}\right)\left|B^{\prime}{ }^{2} \Delta_{3 / 2}{ }^{ \pm}, v^{\prime}\right\rangle=-\frac{1}{2} a_{4}\left\langle v \mid v^{\prime}\right\rangle \quad B_{v v^{\prime}} b_{2} \\
& \left\langle v, X^{2} \Pi_{3 / 2}^{ \pm}\right|-B\left(J_{+} L_{-}+J_{-} L_{+}\right)\left|G^{2} \Sigma_{I / 2}^{- \pm}, v^{\prime}\right\rangle=\frac{\sqrt{6}}{2} \sqrt{J(J+1)-3 / 4} B_{v v^{\prime}}, b_{2} \\
& \left\langle\mathrm{v}, \mathrm{X}^{2} \mathrm{I}_{3 / 2}^{ \pm}\right|-\mathrm{B}\left(\mathrm{~J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{I}^{2} \Sigma_{I / 2}^{+ \pm}, \mathrm{v}^{\prime}\right\rangle=\frac{\sqrt{2}}{2} \sqrt{J(J+1)-3 / 4} \mathrm{~B}_{\mathrm{vv}}, \mathrm{~B}_{2} \\
& \left.<\mathrm{v}, \mathrm{X}^{2} \Pi_{3 / 2}^{ \pm}\left|-\mathrm{B}\left(\mathrm{~J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right)\right| \mathrm{B}^{\prime 2}{ }_{\Delta_{5}} \pm{ }^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-\sqrt{\mathrm{J}(\mathrm{~J}+1)-15 / 4} \mathrm{~B}_{\mathrm{vv}}, \mathrm{~b}_{2} \\
& \left\langle v, X^{2} \Pi_{1 / 2}^{ \pm}\right|-B\left(J_{+} L_{-}+J_{-} L_{+}\right)\left|B^{\prime 2} \Delta_{3 / 2}^{ \pm}, v^{\prime}\right\rangle=-\sqrt{J(J+1)-3 / 4^{\prime}} B_{v v^{\prime}}, b_{2} \\
& \left\langle v, b^{4} \Sigma_{1 / 2}^{- \pm}\right| H^{S O}\left|I^{2} \Sigma_{1 / 2}^{+ \pm}, v^{i}\right\rangle=-\frac{\sqrt{6}}{3} a_{2}\left\langle v \mid v^{\prime}\right\rangle \\
& \left\langle v, b^{4} \Sigma_{3 / 2}^{- \pm}\right| H^{S O}+B\left(L_{+} S_{-}+L_{-} S_{+}\right)\left|a^{4} \Pi_{3 / 2}^{ \pm}, v^{\prime}\right\rangle=-\frac{\sqrt{3}}{6} a_{3}\left\langle v \mid v^{\prime}\right\rangle+\sqrt{3} B_{v v^{\prime}} b_{1}
\end{aligned}
\]
\({ }^{a}\) This table includes every nonzero matrix element of \(H^{\prime}=H^{\text {so }}+B\left(L_{+} S_{-}+L_{-} S_{+}-J_{+} L_{-}-J_{-} L_{+}\right)\) between all case " \(a\) " basis functions listed in Table II.
\({ }^{b}\) To facilitate the calculation of matrix elements involving analogous \({ }^{2} \Pi\) states in other molecules, a table of matrix elements involving the Slater determinants which comprise the \({ }^{2} \Pi\) states has been prepared and is available from the authors upon request.
\({ }^{c}\) Lefebvre-Brion and Moser (12) report semi-empirical calculations of spin-orbit constants for the \(X^{2} \Pi, B^{2} \Pi, L^{2} \Pi\), and \(P^{2} \Pi\) states of NO. Calculation (A) of (12) is nearly identical to the method used here. In (12), the matrix element \(\left\langle\phi_{2}\right| H^{\text {SO }}\left|\phi_{2}{ }^{\prime}\right\rangle=1 /(12)^{\frac{1}{2}}\left(a_{1}-a_{2}\right)\) is arbitrarily set equal to zero. Consequently the spin-orbit constants for \(B{ }^{2} \amalg\) and \(L^{2} \Pi\) are defined slightly differently: \(A\left(B{ }^{2} \Pi\right)=\frac{1}{3} a_{1}\) (12) vs \(\left(0.624 a_{1}-0.288 a_{2}\right)\) and \(A\left(L^{2} \Pi\right)=-\frac{1}{3} a_{1}-\frac{2}{3} a_{2}(12)\) vs \(\left(-0.624 a_{1}-0.380 a_{2}\right)\).

Table III. Continued.
\[
\begin{aligned}
& \left\langle\mathrm{v}, \mathrm{~b}^{4} \Sigma_{1 / 2}^{- \pm}\right| \mathrm{H}^{\mathrm{SO}}+\mathrm{B}\left(\mathrm{~L}_{+} \mathrm{S}_{-}+\mathrm{L}_{-} \mathrm{S}_{+}-\mathrm{J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{a}^{4} \mathrm{n}_{1 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle= \\
& -\frac{1}{3} a_{3}\left\langle v \mid v^{\prime}\right\rangle+B_{v v^{\prime}} b_{1}\left[2 \mp(-1)^{J-1 / 2} / J J(J+1)+1 / 4\right] \\
& \left\langle v, b^{4} \Sigma_{3 / 2}^{- \pm}\right|-B\left(J_{+} L_{-}+J_{-} L_{+}\right)\left|a^{4} \Pi_{5} \stackrel{ \pm}{2}, v^{\prime}\right\rangle=-\sqrt{J(J+1)-15 / 4} B_{v v^{\prime}}{ }^{\prime} b_{1} \\
& \left\langle v, b^{4} \Sigma_{1 / 2}^{- \pm}\right|-B\left(J_{+} L_{-}+J_{-} L_{+}\right)\left|a^{4} \Pi_{3 / 2}^{ \pm}, v^{\prime}\right\rangle=-\sqrt{J(J+1)-3 / 4} B_{v v}{ }^{\prime} b_{1} \\
& \left\langle v, b^{4} \Sigma_{1 / 2}^{- \pm}\right| H^{S 0}+B\left(L_{+} S_{-}+L_{-} S_{+}\right)\left|a^{4} \Pi_{-1 / 2}{ }^{ \pm}, v^{\prime}\right\rangle= \pm(-1)^{J+1 / 2} \sqrt{3}\left(\frac{1}{6} a_{3}\left\langle v \mid v^{\prime}\right\rangle+\frac{2}{3} B_{v v} \cdot b_{1}\right) \\
& \left\langle v, b^{4} \Sigma_{3 / 2}^{- \pm}\right|-B\left(J_{+} L_{-}+J_{-} L_{+}\right)\left|a^{4} \Pi_{-1 / 2} \stackrel{ \pm}{ }, v^{\prime}\right\rangle=-(-1)^{\mathrm{J}+1 / 2} \sqrt{J(J+1)-3 / 4} B_{v v}, b_{1} \\
& \left\langle v, \mathrm{~b}^{4} \Sigma_{3 / 2}^{- \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~B}^{2} \Pi_{3 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=0.279 a_{3}\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{~b}^{4} \Sigma_{1 / 2}^{- \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~B}^{2} \pi_{1 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=0.161 \mathrm{a}_{3}\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle v, b^{4} \Sigma_{3 / 2}^{- \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~L}^{2} \Pi_{3 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=0.0745 \mathrm{a}_{3}\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{~b}^{4} \Sigma_{1 / 2}^{- \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~L}^{2} \mathrm{I}_{1 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=0.0433 \mathrm{a}_{3}\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{~b}^{4} \Sigma_{3 / 2}^{- \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{P}^{2} \pi_{3 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=0.288 \mathrm{a}_{3}\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{~b}^{4} \Sigma_{1 / 2}^{- \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{P}^{2} \Pi_{1 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=0.166 \mathrm{a}_{3}\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{G}^{2} \Sigma_{1 / 2}^{- \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{I}^{2} \Sigma_{1 / 2}^{+ \pm}, \mathrm{v}^{\prime}\right\rangle=\frac{\sqrt{3}}{3} \mathrm{a}_{2} \quad\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{G}^{2} \Sigma_{1 / 2}^{- \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{a}^{4} \Pi_{1 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=\frac{\sqrt{2}}{6} \mathrm{a}_{3} \quad\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{G}^{2} \Sigma_{1 / 2}^{- \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{a}^{4} \Pi_{-1 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle= \pm(-1)^{\mathrm{J}+1 / 2} \frac{\sqrt{6}}{6} \mathrm{a}_{3}\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{G}^{2} \Sigma_{1 / 2}^{- \pm}\right| \mathrm{H}^{\mathrm{SO}}+\mathrm{B}\left(\mathrm{~L}_{+} \mathrm{S}_{-}+\mathrm{L}_{-} \mathrm{S}_{+}-\mathrm{J}_{+} \mathrm{L}_{-}-\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{B}^{2} \mathrm{H}_{1 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle= \\
& -0.118 \mathrm{a}_{3}\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle-0.684 \mathrm{~B}_{\mathrm{vv}}{ }^{\prime} \mathrm{b}_{1}\left[\mathrm{~L} \pm(-1)^{\mathrm{J}-1 / 2} \sqrt{\mathrm{~J}(\mathrm{~J}+1)+1 / 4}\right] \\
& \left\langle v, G^{2} \Sigma_{1 / 2}^{- \pm}\right|-B\left(J_{+} L_{-}+J_{-} L_{+}\right)\left|B{ }^{2} \Pi_{3 / 2}^{ \pm}, v^{\prime}\right\rangle=0.684 \sqrt{J(J+1)-3 / 4} B_{v V}, b_{1}
\end{aligned}
\]
\({ }^{d}\) Lefebvre-Brion and Guerin (10) estimate this matrix element to be \(70 \mathrm{~cm}^{-1}\). Using a value \(a_{4}=175\) \(\mathrm{cm}^{-1}\), we obtain a value of \(87 \mathrm{~cm}^{-1}\). A similar estimate of this matrix element for the isovalent molecule SiF has been given by R. W. Martin and A. J. Merer [Can. J. Phys. 51, 634 (1973)].

Table III. Continued.
\[
\begin{aligned}
& \left.<\mathrm{v}, \mathrm{G}^{2} \Sigma_{1 / 2}^{- \pm}\left|\mathrm{H}^{\mathrm{SO}}+\mathrm{B}\left(\mathrm{~L}_{+} \mathrm{S}_{-}+\mathrm{L}_{-} \mathrm{S}_{+}-\mathrm{J}_{+} \mathrm{L}_{-}-\mathrm{J}_{-} \mathrm{L}_{+}\right)\right| \mathrm{L}^{2} \mathrm{II}_{1 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle= \\
& -0.0306 a_{3}\left\langle v \mid v^{\prime}\right\rangle-0.183 B_{v_{v}} b_{1}\left[1 \pm(-1)^{J-1 / 2} \sqrt{J(J+1)+1 / 4}\right] \\
& \left\langle v, G^{2} \Sigma_{1 / 2}^{- \pm}\right|-B\left(\mathrm{~J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{L}^{2} \mathrm{\Pi}_{3 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=0.183 \sqrt{\mathrm{~J}(\mathrm{~J}+1)-3 / 4} \mathrm{~B}_{\mathrm{vv}}{ }^{\prime} \mathrm{b}_{1} \\
& \left\langle\mathrm{v}, \mathrm{G}^{2} \Sigma_{1 / 2}^{- \pm}\right| \mathrm{H}^{\mathrm{SO}}+\mathrm{B}\left(\mathrm{~L}_{+} \mathrm{S}_{-}+\mathrm{L}_{-} \mathrm{S}_{+}-\mathrm{J}_{+} \mathrm{L}_{-}-\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{P}^{2}{ }_{\mathrm{I}_{1 / 2}}^{ \pm}, \mathrm{v}^{\prime}\right\rangle= \\
& -0.118 a_{3}\left\langle\left. v\right|_{\left.v^{\prime}\right\rangle}-0.707 \mathrm{~B}_{\mathrm{vv}^{\prime} \mathrm{b}_{1}\left[1 \pm(-1)^{\mathrm{J}-1 / 2} \sqrt{\mathrm{~J}(\mathrm{~J}+1)+1 / 4}\right]}\right. \\
& \left\langle v, G^{2} \Sigma_{1 / 2}^{- \pm}\right|-B\left(J_{+} L_{-}+J_{-} L_{+}\right)\left|P^{2} \Pi_{3 / 2}^{ \pm}, v^{\prime}\right\rangle=0.707 \sqrt{J(J+1)-3 / 4} B_{v v}{ }^{\prime} b_{1} \\
& \left\langle v, \mathrm{I}^{2} \Sigma_{1 / 2}^{+ \pm}\right| \mathrm{H}^{\mathrm{SO}}+\mathrm{B}\left(\mathrm{~L}_{+} \mathrm{S}_{-}+\mathrm{L}_{-} \mathrm{S}_{+}-\mathrm{J}_{+} \mathrm{L}_{-}-\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{B}^{2} \Pi_{1 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle= \\
& -0.0916 \mathrm{a}_{3}\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle+0.183 \mathrm{~B}_{\mathrm{vv}}{ }^{\prime} \mathrm{b}_{1}\left[1 \mp(-1)^{\mathrm{J}-1 / 2} \sqrt{\mathrm{~J}(\mathrm{~J}+1)+1 / 4}\right] \\
& \left.\left\langle\mathrm{v}, \mathrm{I}^{2} \Sigma_{-1 / 2}^{+ \pm}\right|-\mathrm{B}\left(\mathrm{~J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right) \mid \text {B }^{2} \Pi_{3 / 2}{ }^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-0.183 \sqrt{\mathrm{~J}(\mathrm{~J}+1)-3 / 4} \mathrm{~B}_{\mathrm{vv}}{ }^{\prime} \mathrm{b}_{1} \\
& \left.<\mathrm{v}, \mathrm{I}^{2} \Sigma_{1 / 2}^{+ \pm}\left|\mathrm{H}^{\mathrm{SO}}+\mathrm{B}\left(\mathbf{L}_{+} \mathrm{S}_{-}+\mathrm{L}_{-} \mathrm{S}_{+}-\mathrm{J}_{+} \mathrm{L}_{-}-\mathrm{J}_{-} \mathrm{L}_{+}\right)\right| \mathrm{L}^{2}{ }^{2}{ }_{1 / 2}{ }^{ \pm}, \mathrm{v}^{\prime}\right\rangle= \\
& -0.448 a_{3}\left\langle v \mid v^{\prime}\right\rangle+0.895 \mathrm{~B}_{v v^{\prime}} \mathrm{b}_{1}\left[1 \mp(-1)^{J-1 / 2} \sqrt{J(J+1)+1 / 4}\right] \\
& \left\langle\mathrm{v}, \mathrm{I}^{2} \Sigma_{1 / 2}^{+ \pm}\right|-\mathrm{B}\left(\mathrm{~J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{L}^{2}{ }_{\Pi} \underset{3 / 2}{ \pm}, \mathrm{v}^{\prime}\right\rangle=-0.895 \sqrt{\mathrm{~J}(\mathrm{~J}+1)-3 / 4} \mathrm{~B}_{\mathrm{vv}}{ }^{\prime} \mathrm{b}_{1} \\
& \left\langle\mathrm{v}, \mathrm{I}^{2} \Sigma_{1 / 2}^{+ \pm}\right| \mathrm{H}^{\mathrm{SO}}+\mathrm{B}\left(\mathrm{~L}_{+} \mathrm{S}_{-}+\mathrm{L}_{-} \mathrm{S}_{+}-\mathrm{J}_{+} \mathrm{L}_{-}-\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{P}^{2}{ }_{\mathrm{H}_{1 / 2}}^{ \pm}, \mathrm{v}^{\prime}\right\rangle= \\
& 0.204 \mathrm{a}_{3}\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle-0.408 \mathrm{~B}_{\mathrm{vv}} \mathrm{~b}_{1}\left[1 \mp(-1)^{\mathrm{J}-1 / 2} \sqrt{\mathrm{~J}(\mathrm{~J}+1)+1 / 4}\right] \\
& \left\langle\mathrm{v}, \mathrm{I}^{2} \Sigma_{1 / 2}^{+ \pm}\right|-\mathrm{B}\left(\mathrm{~J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{P}^{2} \mathrm{M}_{3 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=0.408 \sqrt{\mathrm{~J}(\mathrm{~J}+1)-3 / 4} \mathrm{~B}_{\mathrm{vv}}{ }^{\prime} \mathrm{b}_{1} \\
& \left\langle v, a^{4} \pi \underset{5 / 2}{ \pm}\right| H^{S O}\left|a^{4} \pi \underset{5 / 2}{ \pm}, v^{\prime}\right\rangle=-\frac{1}{2} a_{1}{ }^{0}{ }_{v v^{\prime}} \\
& \left.<\mathrm{v}, \mathrm{a}^{4} \Pi \frac{ \pm}{3 / 2}\left|\mathrm{H}^{\mathrm{SO}}\right| \mathrm{a}^{4} \Pi \underset{3 / 2}{ \pm}, \mathrm{v}^{\prime}\right\rangle=-\frac{1}{6} \mathrm{a}_{1}{ }^{5} \mathrm{vv}^{\prime} \\
& \left\langle v, a^{4} \Pi \underset{1 / 2}{ \pm}\right| H^{S O}\left|a^{4} \Pi \underset{I / 2}{ \pm}, v^{\prime}\right\rangle=\frac{1}{6} a_{1} \delta_{v v^{\prime}} \\
& \left\langle v, a^{4} \Pi_{-1 / 2}^{ \pm}\right| \mathrm{H}^{S O}\left|a^{4} \Pi_{-1 / 2}^{ \pm}, v^{\prime}\right\rangle=\frac{1}{2} a_{1} \delta_{v v^{\prime}}
\end{aligned}
\]

Table III. Continued.
\[
\begin{aligned}
& \left\langle\mathrm{v}, \mathrm{a}^{4} \mathrm{\Pi}_{3 / 2} \stackrel{ \pm}{ }\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~B}{ }^{2} \mathrm{\Pi}_{3 / 2} \stackrel{ \pm}{2}, \mathrm{v}^{\prime}\right\rangle=\left\langle\mathrm{v}, \mathrm{a}^{4} \Pi_{1 / 2} \stackrel{ \pm}{ }\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~B}^{2} \Pi_{1 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-\left(0.322 \mathrm{a}_{1}+0.149 \mathrm{a}_{2}\right)\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{a}^{4} \Pi_{3 / 2}{ }^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~L}{ }^{2} \Pi_{3 / 2} \stackrel{ \pm}{2}, \mathrm{v}^{\prime}\right\rangle=\left\langle\mathrm{v}, \mathrm{a}^{4} \mathrm{\Pi}_{1 / 2}{ }^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~L}^{2} \mathrm{\Pi}_{1 / 2} \frac{ \pm}{}, \mathrm{v}^{\prime}\right\rangle=-\left(0.0863 \mathrm{a}_{1}+0.730 \mathrm{a}_{2}\right)\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{a}^{4} \Pi_{3 / 2}{ }^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{P}{ }^{2} \Pi_{3 / 2} \stackrel{ \pm}{ }, \mathrm{v}^{\prime}\right\rangle=\left\langle\mathrm{v}, \mathrm{a}^{4} \Pi_{1 / 2} \stackrel{ \pm}{ }\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{P}^{2} \Pi_{1 / 2}, \mathrm{v}^{\prime}\right\rangle=-\left(0.333 \mathrm{a}_{1}-0.333 \mathrm{a}_{2}\right)\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{~B}^{2} \Pi_{3 / 2}{ }^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~B}{ }^{2} \Pi_{3 / 2}{ }^{ \pm}, \mathrm{v}^{\prime}\right\rangle=\left(0.312 \mathrm{a}_{\mathrm{L}}-0.144 \mathrm{a}_{2}\right) \delta_{\mathrm{Vv}}{ }^{\mathrm{C}} \\
& \left.<\mathrm{v}, \mathrm{~B}^{2} \Pi_{1 / 2}{ }^{ \pm}\left|\mathrm{H}^{\mathrm{SO}}\right| \mathrm{B}{ }^{2} \Pi_{1 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-\left(0.312 \mathrm{a}_{1}-0.144 \mathrm{a}_{2}\right) \delta_{\mathrm{vv}}{ }^{\mathrm{C}} \\
& \left\langle\mathrm{v}, \mathrm{~B}^{2} \Pi_{3 / 2}{ }_{3}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~L}{ }^{2} \Pi_{3 / 2}{ }^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-\left(0.206 \mathrm{a}_{1}+0.372 \mathrm{a}_{2}\right)\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{~B}^{2} \Pi_{1 / 2}{ }_{1}^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~L}{ }^{2}{ }_{\Pi_{1 / 2}}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=\left(0.206 \mathrm{a}_{1}+0.372 \mathrm{a}_{2}\right)\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{~B}^{2} \Pi_{3 / 2}{ }^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{P}^{2} \mathrm{\Pi}_{3 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-\left(0.0860 \mathrm{a}_{1}-0.0860 \mathrm{a}_{2}\right)\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{~B}^{2} \Pi_{1 / 2}{ }_{1}^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{P}^{2}{ }_{\Pi_{1 / 2}}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=\left(0.0860 \mathrm{a}_{1}-0.0860 \mathrm{a}_{2}\right)\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{~B}^{2} \Pi_{3 / 2}^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}+\mathrm{B}\left(\mathrm{~L}_{+} \mathrm{S}_{-}+\mathrm{L}_{-} \mathrm{S}_{+}\right)\left|\mathrm{B}^{\prime 2} \Delta_{3 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=0.354 \mathrm{a}_{3}\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle+0.707 \mathrm{~B}_{\mathrm{vv}} \mathrm{~b}_{1} \\
& \left.<\mathrm{v}, \mathrm{~B}^{2} \Pi_{3 / 2}^{ \pm}\left|-\mathrm{B}\left(\mathrm{~J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right)\right| \mathrm{B}^{\prime}{ }^{2} \Delta_{5}{ }^{ \pm}, \mathrm{v}^{\prime}\right\rangle=0.707 \sqrt{\mathrm{~J}(\mathrm{~J}+1)-15 / 4} \mathrm{~B}_{\mathrm{vv}}{ }^{\prime} \mathrm{b}_{1} \\
& \left.<\mathrm{v}, \mathrm{~B}^{2} \Pi_{1 / 2}^{ \pm}\left|-\mathrm{B}\left(\mathrm{~J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right)\right| \mathrm{B}^{\prime}{ }^{2} \Delta_{3}{ }_{3}{ }^{ \pm}, \mathrm{v}^{\prime}\right\rangle=0.707 \sqrt{\mathrm{~J}(\mathrm{~J}+1)-3 / 4}{ }_{\mathrm{wvv}}{ }^{, \mathrm{b}_{1}} \\
& \left\langle\mathrm{v}, \mathrm{~L}^{2} \Pi_{3 / 2}{ }^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~L}^{2} \mathrm{\Pi}_{3 / 2}{ }_{2}, \mathrm{v}^{\prime}\right\rangle=-\left(0.312 \mathrm{a}_{1}+0.190 \mathrm{a}_{2}\right) \delta_{\mathrm{vv}^{\prime}}{ }^{\mathrm{C}} \\
& \left\langle\mathrm{v}, \mathrm{~L}^{2} \Pi_{1 / 2}{ }_{1 / 2}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~L}^{2} \Pi_{1 / 2}{ }^{ \pm}, \mathrm{v}^{\prime}\right\rangle=\left(0.312 \mathrm{a}_{1}+0.190 \mathrm{a}_{2}\right) \delta_{\mathrm{vv}}{ }^{\mathrm{c}} \\
& \left\langle\mathrm{v}, \mathrm{~L}^{2} \mathrm{\Pi}_{3 / 2} \stackrel{ \pm}{2}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{P}^{2} \mathrm{\Pi}_{3} \stackrel{ \pm}{2}, \mathrm{v}^{\mathrm{\prime}}\right\rangle=\left(0.322 \mathrm{a}_{1}-0.322 \mathrm{a}_{2}\right)\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle \\
& \left\langle\mathrm{v}, \mathrm{~L}^{2}{ }_{\Pi_{1}} \stackrel{ \pm}{2}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{P}^{2}{ }_{\Pi_{1} / 2}{ }^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-\left(0.322 \mathrm{a}_{1}-0.322 \mathrm{a}_{2}\right)\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle
\end{aligned}
\]

Table III. Continued.
\[
\begin{aligned}
& \left\langle v, L^{2} \Pi_{3 / 2}^{ \pm}\right| H^{S O}+B\left(L_{+} S_{-}+L_{-} S_{+}\right)\left|B^{\prime 2} \Delta_{3 / 2}^{ \pm}, v^{\prime}\right\rangle=-0.204 a_{3}\left\langle v \mid v^{\prime}\right\rangle-0.408 B_{v v}, b_{1} \\
& \left\langle\mathrm{v}, \mathrm{~L}^{2} \mathrm{\Pi}_{3 / 2}^{ \pm}\right|-\mathrm{B}\left(\mathrm{~J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{B}^{\prime 2}{\Delta_{5}}^{ \pm} \mathrm{I}^{\prime}, \mathrm{v}^{\prime}\right\rangle=-0.408 \sqrt{\mathrm{~J}(\mathrm{~J}+1)-15 / 4} \mathrm{~B}_{\mathrm{vv}}{ }^{\prime \mathrm{b}_{1}} \\
& \left\langle\mathrm{v}, \mathrm{~L}^{2} \mathrm{I}_{1 / 2}^{ \pm}\right|-\mathrm{B}\left(\mathrm{~J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{B}^{\prime 2} \Delta_{3 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-0.408 \sqrt{\mathrm{~J}(\mathrm{~J}+1)-3 / 4} \mathrm{~B}_{\mathrm{vv}}, \mathrm{~b}_{1} \\
& \left\langle\mathrm{v}, \mathrm{P}^{2} \Pi_{3 / 2}^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{P}^{2} \Pi_{3 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=\left(0.166 \mathrm{a}_{1}+0.333 \mathrm{a}_{2}\right) \delta_{v v^{\prime}}{ }^{\mathrm{c}} \\
& \left\langle\mathrm{v}, \mathrm{P}^{2} \Pi_{1 / 2}^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{P}^{2} \Pi_{1 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-\left(0.166 \mathrm{a}_{1}+0.333 \mathrm{a}_{2}\right) \delta_{\mathrm{vv}^{\prime}}{ }^{\mathrm{c}} \\
& \left\langle\mathrm{v}, \mathrm{P}^{2} \mathrm{II}_{3 / 2}^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}+\mathrm{B}\left(\mathrm{~L}_{+} \mathrm{S}_{-}+\mathrm{L}_{-} \mathrm{S}_{+}\right)\left|\mathrm{B}^{\prime 2}{\Delta_{3 / 2}}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-0.288 \mathrm{a}_{3}\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle-0.577 \mathrm{~B}_{\mathrm{vv}}{ }^{\prime} \mathrm{b}_{1} \\
& \left\langle\mathrm{v}, \mathrm{P}^{2} \Pi_{3 / 2}^{ \pm}\right|-\mathrm{B}\left(\mathrm{~J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{B}^{\prime 2}{\Delta_{5}}^{ \pm} \mathrm{I}_{2}, \mathrm{v}^{\prime}\right\rangle=-0.577 \sqrt{\mathrm{~J}(\mathrm{~J}+1)-15 / 4} \mathrm{~B}_{\mathrm{vv}}, \mathrm{~b}_{1} \\
& \left\langle v, P^{2} \Pi_{1 / 2}^{ \pm}\right|-B\left(J_{+} L_{-}+J_{-} L_{+}\right)\left|B^{\prime 2} \Delta_{3 / 2}^{ \pm}, v^{\prime}\right\rangle=-0.577 \sqrt{J(J+1)-3 / 4} \cdot B_{v v}{ }^{\prime b}{ }_{1} \\
& \left\langle\mathrm{~V}, \mathrm{~B}^{\prime 2}{ }_{\Delta_{5}} \pm{ }^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}+\mathrm{B}\left(\mathrm{~L}_{+} \mathrm{S}_{-}+\mathrm{L}_{-} \mathrm{S}_{+}\right)\left|\mathrm{L}^{\prime 2} \Phi_{5 / 2}{ }^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-\frac{1}{2} \mathrm{a}_{3}\left\langle\mathrm{v} \mid \mathrm{v}^{\prime}\right\rangle-\mathrm{B}_{\mathrm{vv}}, \mathrm{~b}_{1} \\
& \left\langle v, B^{\prime}{ }^{2} \Delta_{5 / 2} \pm\right|-B\left(J_{+} L_{-}+J_{-} L_{+}\right)\left|L^{\prime}{ }^{2} \Phi_{7 / 2} \pm v^{\prime}\right\rangle=-\sqrt{J(J+1)-35 / 4} B_{v v},{ }^{\prime} b_{1} \\
& \left\langle\mathrm{v}, \mathrm{~B}^{\prime 2} \Delta_{3 / 2} \pm\right|-\mathrm{B}\left(\mathrm{~J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right)\left|\mathrm{L}^{\prime 2} \Phi_{5 / 2}{ }^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-\sqrt{\mathrm{J}(\mathrm{~J}+1)-15 / 4} \mathrm{~B}_{\mathrm{vv}}{ }^{\prime}{ }^{\prime} \mathrm{b}_{1} \\
& \left\langle\mathrm{~V}, \mathrm{~L}^{\prime 2}{ }_{\Phi_{7 / 2}}^{ \pm} \mid \mathrm{H}^{\mathrm{SO}}{\mid \mathrm{L}^{\prime}}^{2}{ }_{\Phi}{ }_{7 / 2}^{ \pm}, \mathrm{v}^{\prime}\right\rangle=-\frac{1}{2} \mathrm{a}_{1} \delta_{\mathrm{vv}}{ }^{\prime} \\
& \left\langle\mathrm{V}, \mathrm{~L}^{\prime}{ }^{2} \Phi_{5 / 2}{ }^{ \pm}\right| \mathrm{H}^{\mathrm{SO}}\left|\mathrm{~L}^{\prime 2}{ }_{5}{ }_{5 / 2},^{ \pm}, \mathrm{v}^{\prime}\right\rangle=\frac{1}{2} \mathrm{a}_{1} \varepsilon_{\mathrm{Vv}}{ }^{\prime}
\end{aligned}
\]
\[
\begin{array}{ll}
\text { where } & a_{4} \equiv\left\langle \pm 1^{*}\right| \hat{a} \ell_{ \pm}|0\rangle=\langle 0| \hat{a} \ell_{-}\left| \pm 1^{*}\right\rangle \\
a_{1} \equiv\langle \pm 1| \hat{a}| \pm 1\rangle & b_{1} \equiv\langle \pm 1| \ell_{ \pm}|0\rangle=\langle 0| \ell_{-}| \pm 1\rangle \\
a_{2} \equiv\left\langle \pm 1^{*}\right| \hat{a}\left| \pm 1^{*}\right\rangle & \left.b_{2} \equiv\left\langle \pm 1^{*}\right| \ell_{ \pm}|0\rangle=\left.\langle 0| \ell_{-}\right|_{+1} ^{*}\right\rangle \\
a_{3} \equiv\langle \pm 1| \hat{a} \ell_{ \pm}|0\rangle=\langle 0| \hat{a} \ell_{-}| \pm 1\rangle &
\end{array}
\]

Table IV
Spin-Orbit Coupling Constants (in \(\mathrm{cm}^{-1}\) )
A (estimated) \({ }^{\mathbf{a}}\)
A (observed)
\begin{tabular}{lcc}
\(\mathrm{B}^{2} \Delta\) & 0 & \(-2.2^{\mathrm{b}}\) \\
\(\mathrm{a}^{4} \Pi\) & \(-36 \mathrm{~cm}^{-1}\) & \(-20 \mathrm{~cm}^{-1 \mathrm{c}}\) \\
\(\mathrm{L}^{2} \Pi\) & \(-114 \mathrm{~cm}^{-1}\) & \(-80 \mathrm{~cm}^{-1 ~ d}\)
\end{tabular}
a) Estimated using the semi-empirical equations (7a), (7b), (8) and matrix
elements from Table III.
b) Reference [3]. Mulliken [18] has attributed this spin-orbit splitting
to a spin-other-orbit interaction. Lefebvre-Brion and Bessis have
calculated a value of \(-3.6 \mathrm{~cm}^{-1}\) by considering spin-other-orbit
interactions [19].
c) This value comes from incompletely resolved spectra reported by Ogawa
[20].
d) Reference [17].

Short of a full ab initio calculation, nothing more than the above nonrigorous but quite conservative upper bounds for \(a_{3}\) and \(b_{1}\) can be stated. H. Lefebvre-Brion (private communication) has computed ab initio values
\[
\begin{array}{ll}
a_{3}=50 \mathrm{~cm}^{-1}, & a_{4}=152 \mathrm{~cm}^{-1}, \\
b_{1}=-0.1 \mathrm{~cm}^{-1}, & b_{2}=1.5,
\end{array}
\]
using orbitals from NO \(X^{2} \Pi\) ( \(R=1.9694\) a.u.) by the method described in Ref. (15).

\section*{IV. THE \(B^{\prime 2} \Delta(v=1) \sim B^{2} M(v=18)\) INTERACTION IN \({ }^{15} \mathrm{~N}^{18} \mathrm{O}\)}

Matrix elements listed in Table III have been derived within a single configuration approximation and in a Hund's case " \(a\) " basis. In order to use these matrix elements to calculate the perturbation interaction energy at the \(B^{\prime 2} \Delta \sim B^{2} \Pi\) crossing points, two additional effects must be considered: configuration interaction [the strong Rydberg-non-Rydberg \(C^{2} \Pi(v=4) \sim B^{2} \Pi(v=18)\) perturbation] and spin-uncoupling (intermediate case " \(a\) "-" \(b\) " coupling).

An estimate of configuration mixing between \(B^{2} \Pi(v=18)\) and \(C^{2} \Pi(v=4)\) of \({ }^{15} \mathrm{~N}^{18} \mathrm{O}\) is achieved by comparing constants for the diabatic (deperturbed) \({ }^{3} B(18)\) and
\({ }^{3}\) Diabatic constants may be obtained either by deperturbation \((2,17)\) or by extrapolation from vibrational levels which are relatively free of perturbations.
\(C(4)\) levels against constants for the observed levels. Similar configuration-mxing coefficients are obtained from both rotational and spin-orbit constants. Mean values of these constants, \(B_{18}\) and \(A_{18}\), for the observed \(B^{2} I I(v=18)\) level are
\[
B_{18}=1.012 \mathrm{~cm}^{-1}, \quad A_{18}=46 \mathrm{~cm}^{-1},
\]
while the constants for the diabatic NR-B \({ }^{2} \Pi(v=18)\) and R-C \({ }^{2} \Pi(v=4)\) levels are
\[
\begin{align*}
B_{\mathrm{NR}} & =0.82 \mathrm{~cm}^{-1} \\
A_{\mathrm{NR}} & =60 \mathrm{~cm}^{-1}
\end{align*} \quad \begin{array}{ll}
(2), \\
B_{\mathrm{R}} & =1.70 \mathrm{~cm}^{-1}  \tag{2}\\
A_{\mathrm{R}} & =2.5 \mathrm{~cm}^{-1} \tag{23}
\end{array}
\]

Constants with subscripts \(18, \mathrm{NR}\), and R correspond, respectively, to the vibronic functions \(\Psi_{18}\) (adiabatic), \(\Psi_{N R}\) (diabatic), and \(\Psi_{R}\) (diabatic). \(\Psi_{18}\), the vibronic function to which the observed \(B^{2} \Pi(v=18)\) level belongs, cannot be expressed as the product of a configuration-mixed electronic part with a complex and poorly determined vibrational part; rather, it may 'be expressed as the sum of two vibronic parts for which the vibrational factors are simply the vibrational eigenfunctions obtained from diabatic potential energy curves:
\[
\begin{equation*}
\Psi_{18}=c_{\mathrm{NR}} \Psi_{\mathrm{NR}}+c_{\mathrm{R}} \Psi_{\mathrm{R}} \tag{9}
\end{equation*}
\]
where
\[
\begin{equation*}
\left|c_{\mathrm{N} R}\right|^{2}+\left|c_{\mathrm{R}}\right|^{2}=1 \tag{10}
\end{equation*}
\]

Contributions to \(\Psi_{18}\) from R-levels other than \(C^{2} \Pi(v=4)\) are neglected. The observed constants, \(B_{18}\) and \(A_{18}\), will depend on the mixing coefficients, \(c_{\mathrm{NR}}\) and \(c_{\mathrm{R}}\) :
\[
\begin{align*}
& B_{18}=\left|c_{\mathrm{NR}}\right|^{2} B_{\mathrm{NR}}+\left|c_{\mathrm{R}}\right|^{2} B_{\mathrm{R}},  \tag{11a}\\
& A_{18}=\left|c_{\mathrm{NR}}\right|^{2} A_{\mathrm{NR}}+\left|c_{\mathrm{R}}\right|^{2} A_{\mathrm{R}} . \tag{11b}
\end{align*}
\]

Thus
\[
\left|c_{N R}\right|=0.88, \quad\left|c_{R}\right|=0.48 .^{5}
\]

Assuming that \(B^{\prime 2} \Delta(v=1)\) is not significantly mixed with any other states, the \(B^{\prime 2} \Delta(v=1) \sim B^{2} \Pi(v=18)\) matrix element is
\[
\begin{align*}
\left\langle v=1, B^{\prime 2} \Delta\right| H^{\prime}\left|\Psi_{18}\right\rangle=c_{\mathrm{NR}}\left\langle v=1, B^{\prime}\right| H^{\prime} \mid B, v^{\prime} & =18\rangle \\
& +c_{\mathrm{R}}\left\langle v=1, B^{\prime}\right| H^{\prime}\left|C, v^{\prime}=4\right\rangle, \tag{12}
\end{align*}
\]
where
\[
H^{\prime}=H^{\mathrm{so}}+B\left(L_{+} S_{-}+L S_{+}-J_{+} L_{-}-J_{-} L_{+}\right) .
\]

\footnotetext{
\({ }^{4}\) Taken from (17, Fig. 5) after reexpressing \(A(v)\) as a function of the mass reduced quantum number \(\eta \equiv\left(v+\frac{1}{2}\right) \mu^{-\frac{3}{3}}(22)\).
\({ }^{5}\) These mixing coefficients are calculated using Eqs. (10) and (11a) or (10) and (11b). The perturbation matrix element, \(H_{\mathrm{R} \sim \mathrm{NR}}\), between \(C^{2} \Pi(v=4)\) and \(B^{2} \Pi(v=18)\) and the zero-order energy separation, \(C \equiv E\left(C^{2} I I\right)-E\left(B^{2} \Pi\right.\) II), may be determined from the mixing coefficients and the observed energy difference at \(J=1.5\) of \(218 \mathrm{~cm}^{-1}\) between the average energies of the \(C(4)\) and \(B(18)\) levels: \(H_{\mathrm{R} \sim \mathrm{NR}}\) \(=92 \mathrm{~cm}^{-1}, C=118 \mathrm{~cm}^{-1}\). Matrix elements for the \(B(18) \sim C(4)\) interaction in the other NO isotopes are 49,70 , and \(80 \mathrm{~cm}^{-1}\), respectively, for \({ }^{14} \mathrm{~N}^{16} \mathrm{O},{ }^{15} \mathrm{~N}^{16} \mathrm{O}\), and \({ }^{14} \mathrm{~N}^{18} \mathrm{O}\) (17). Since the vibrational overlap between \(B(18)\) and \(C(4)\) for \({ }^{16} \mathrm{~N}^{18} \mathrm{O}\) is 0.125 [calculated from diabatic RKR potential energy curves constructed using the constants from Ref. (25)], the electronic factor of the perturbation matrix element is \(\sim 740 \mathrm{~cm}^{-1}\), in fair agreement with the ab initio value from Felenbok and Lefebvre-Brion (24) but significantly smaller than the value obtained by Bartholdi et al. (25).
}

The second term in Eq. (12) vanishes because the \(\Delta \Lambda= \pm 1\) part of \(H^{\prime}\) is a one-electron operator and the diabatic \(C^{2} \Pi\) and \(B^{\prime 2} \Delta\) states arise from configurations which differ by more than one spin-orbital. \({ }^{6}\) The effect of the \(B \sim C\) interaction on the possible \(B \sim B^{\prime}\) perturbation is simply one of dilution; \(B^{2} \Pi\) character is removed from the \(B^{2} \Pi(v=18)\) level and replaced by \(C^{2} \Pi\) character which cannot interact with \(B^{\prime 2} \Delta\).
It now remains to evaluate the interaction matrix element
\[
\begin{equation*}
\left\langle v=1, J, F_{i}, B^{\prime 2} \Delta\right| H^{\prime}\left|\Psi_{18}, J, F_{\jmath}\right\rangle=c_{\mathrm{NR}}\left\langle v=1, J, F_{i}, B^{\prime}\right| H^{\prime}\left|B, J, F_{\jmath}, v=18\right\rangle \tag{13}
\end{equation*}
\]
for intermediate Hund's case " \(a\) "-" \(b\) " \({ }^{2} \Delta\) and \({ }^{2} \Pi\) functions at the four \(J\) values where crossings occur between the \(B^{\prime 2} \Delta\left(F_{i}\right)\) and \(B^{2} \Pi\left(F_{j}\right)\) spin components. Using a transformation similar to that given by Kovacs (26, Eqs. (2.1.3-5) and (2.1.3-6)), intermediate case functions are constructed in the case " \(a\) " basis at the following crossings.
\[
\begin{align*}
& J=6.5, B^{\prime 2} \Delta\left(F_{2}\right) \sim B^{2} \Pi\left(F_{1}\right) \\
& \left|B^{\prime 2}{ }^{2},^{2} F_{2}\right\rangle=0.87\left|B^{\prime 2} \Delta_{3}\right\rangle-0.49\left|B^{\prime 2} \Delta_{\frac{5}{3}}\right\rangle,  \tag{14a}\\
& \left|B^{2} \Pi, F_{1}\right\rangle=0.99\left|B^{2} \Pi_{3}^{3}\right\rangle+0.16\left|B^{2} \Pi_{3}^{3}\right\rangle .  \tag{14b}\\
& J=12.5, B^{\prime 2} \Delta\left(F_{1}\right) \sim B^{2} \Pi\left(F_{1}\right) \\
& \left|B^{\prime 2} \Delta, F_{1}\right\rangle=0.59\left|B^{\prime 2} \Delta_{\frac{3}{3}}\right\rangle+0.81\left|B^{\prime 2} \Delta_{\frac{1}{3}}\right\rangle .  \tag{15a}\\
& \left|B^{2} I I, F_{1}\right\rangle=0.96\left|B^{2} \Pi_{\frac{1}{3}}\right\rangle+0.27\left|B^{2} \Pi_{3}\right\rangle .  \tag{15b}\\
& J=17.5, B^{\prime 2} \Delta\left(F_{2}\right) \sim B^{2} \Pi\left(F_{2}\right) \\
& \left|B^{\prime 2} \Delta, F_{2}\right\rangle=0.78\left|B^{\prime 2} \Delta_{\frac{3}{3}}\right\rangle-0.62\left|B^{\prime 2} \Delta_{\frac{3}{3}}\right\rangle,  \tag{16a}\\
& \left|B^{2} \Pi, F_{2}\right\rangle=-0.34\left|B^{2} \Pi_{3}\right\rangle+0.94\left|B^{2} \Pi_{3}\right\rangle .  \tag{16b}\\
& J=30.5, B^{\prime 2} \Delta\left(F_{1}\right) \sim B^{2} \Pi\left(F_{2}\right) \\
& \left|B^{\prime 2} \Delta, F_{1}\right\rangle=0.66\left|B^{\prime 2} \Delta_{\frac{3}{3}}\right\rangle+0.75\left|B^{\prime 2} \Delta_{\frac{5}{3}}\right\rangle,  \tag{17a}\\
& \left|B^{2} \Pi, F_{2}\right\rangle=-0.46\left|B^{2} \Pi_{\hat{2}}\right\rangle+0.89\left|B^{2} \Pi_{\frac{3}{3}}\right\rangle . \tag{17b}
\end{align*}
\]

Crossings at \(J=17.5\) and \(J=30.5\) are predicted by extrapolation of Fig. 2, but could not be observed in absorption spectra available for this work. Using the case " \(a\) " matrix elements listed in Table III, upper bounds for the electronic perturbation parameters,
\[
a_{3}=175 \mathrm{~cm}^{-1}, \quad b_{1}=1.41,
\]
and vibrational matrix elements (calculated from RKR potential energy curves constructed using spectroscopic constants for the \(B^{\prime 2} \Delta\) and \(B^{2} I I\) states given in Refs. (3, 25)),
\[
\begin{aligned}
\left\langle v=18 \mid v^{\prime}=1\right\rangle & =-7.9 \times 10^{-3}, \\
B_{v v^{\prime}}=\langle v=18| B\left|v^{\prime}=1\right\rangle & =-1.3 \times 10^{-2} \mathrm{~cm}^{-1},
\end{aligned}
\]
\({ }^{6} C^{2}\) II belongs to the \(K K(\sigma 2 s)^{2}\left(\sigma^{*} 2 s\right)(\sigma 2 p)^{2}(\pi 2 p)^{4}(3 p \pi)\) configuration. The vibrational overlap between \(C^{2}\) III \((v=4)\) and \(B^{\prime 2} \Delta(v=1)\) is -0.160 ; thus the second term of Eq. (12) is \((0.48)(-0.160)\) \(\times\left\langle B^{\prime}{ }^{2} \Delta\right| H^{\prime}\left|C{ }^{2} I \Pi\right\rangle\). It is unlikely that the configurationally forbidden \(B^{\prime} \sim C\) electronic factor could be larger than \(1 \mathrm{~cm}^{-1}\); thus the \(C(4) \sim B^{\prime}(1)\) matrix element should be smaller than \(0.1 \mathrm{~cm}^{-1}\).
interactions between \(B^{2} I I\) and \(B^{\prime 2} \Delta\) are estimated:
\[
\begin{array}{ll}
J=6.5, & c_{\mathrm{NR}}\left\langle v=18, F_{1}, B^{2} \Pi\right| H^{\prime}\left|B^{\prime 2} \Delta, F_{2}, v=1\right\rangle \leq-0.12 \mathrm{~cm}^{-1}, \\
J=12.5, & c_{\mathrm{NR}}\left\langle v=18, F_{1}, B^{2} \Pi\right| H^{\prime}\left|B^{\prime 2} \Delta, F_{1}, v=1\right\rangle \leq-0.19 \mathrm{~cm}^{-1}, \\
J=17.5, & c_{\mathrm{NR}}\left\langle v=18, F_{2}, B^{2} \Pi\right| H^{\prime}\left|B^{\prime 2} \Delta, F_{2}, v=1\right\rangle \leq-0.15 \mathrm{~cm}^{-1}, \\
J=30.5, & c_{\mathrm{NR}}\left\langle v=18, F_{2}, B^{2} \Pi\right| H^{\prime}\left|B^{\prime 2} \Delta, F_{1}, v=1\right\rangle \leq-0.39 \mathrm{~cm}^{-1} . \tag{17c}
\end{array}
\]

The matrix elements at the observed perturbation-free \(J=6.5\) and 12.5 crossings are predicted to be below the detection threshold, but a level shift might be just detectable at the not yet observed \(J=30.5\) crossing.

The variation in the magnitude of the calculated matrix elements arises from spin uncoupling combined with competition between \(\Delta \Omega=0\) spin-orbit and \(\Delta \Omega= \pm 1\) Coriolis matrix elements. At the \(J=17.5\) crossing the spin-orbit and Coriolis contributions to Eq. (16c) partially cancel ; at the \(J=6.5,12.5\), and 30.5 crossings, the contributions to Eqs. (14c), (15c), and (17c) add. \({ }^{7}\) This interference between two kinds of perturbation is real and not due to an arbitrary phase choice.

It should be noted that Eqs. (14c) and (15c) represent upper bounds to the \(J=6.5\) and 12.5 matrix elements since the spin-orbit and Coriolis contributions add and are overestimated by pure precession arguments. In addition, in order for a level shift of \(0.1 \mathrm{~cm}^{-1}\) to be observed at \(J=6.5\) and \(J=12.5\), the matrix elements (14c) and (15c) would have to be larger than \(\pm 0.27\) and \(\pm 0.18 \mathrm{~cm}^{-1}\), respectively. \({ }^{8}\)

\section*{V. CONCLUSION}

NR \(\sim\) NR perturbations \(B^{2} \Pi(v=18) \sim B^{\prime 2} \Delta(v=1)\) in \({ }^{15} \mathrm{~N}^{18} \mathrm{O}\) are shown to be neither observable nor expected at two \(B \sim B^{\prime}\) crossing points. The absence of observed \(\mathrm{NR} \sim \mathrm{NR}\) perturbations in NO in general and at the observed \(B \sim B^{\prime}\) crossings in particular does not imply that valence states of NO cannot perturb each other. The specific interaction examined here is undetectable because the \(B \sim B^{\prime}\) vibrational integrals \(\left\langle v \mid v^{\prime}\right\rangle\) and \(\langle v| B\left|v^{\prime}\right\rangle\) are both quite small. A strong \(B^{2} \Pi(v=18) \sim C^{2} \Pi(v=4)\) interaction is shown to have only a slight diminishing effect on the possible \(B^{2} \Pi(v=18)\) \(\sim B^{\prime 2} \Delta(v=1)\) interaction.

Although local rotational perturbations between valence states of NO have not been observed, interactions between states which are energetically far apart and do not exhibit crossings undoubtedly exist. These interactions will contribute to the \(\Lambda\)-doubling of the \(X^{2} \Pi, B{ }^{2} \Pi, L^{2} \Pi, P^{2} \Pi\), and \(a^{4} \Pi\) states and to the spin-splitting of \(G^{2} \Sigma^{-}, I^{2} \Sigma^{+}\), and \(b^{4} \Sigma^{-}\)states. The matrix elements listed in Table III and the electronic perturbation parameters defined in equations (8a)-(8f) should facilitate calculation of NR \(\sim N R\) contributions to these second-order interactions.

\footnotetext{
\({ }^{7}\) The \(\left\langle{ }^{2} \Pi_{1}\right| H^{\text {So }}\left|{ }^{2} \Delta_{3}\right\rangle\) spin-orbit contributions to Eqs. (14c)-(17c) are \(-0.060,-0.069,-0.32\), and \(-0.25 \mathrm{~cm}^{-1}\). The Coriolis contributions include effects of three case " \(a\) " matrix elements: \(\left.\left.\left.\left\langle{ }^{2} \Pi_{3}\right| B L_{-} S_{+}\right|^{2} \Delta_{1}\right\rangle,\left\langle{ }^{2} \Pi_{3}\right|-\left.B L_{-} J_{+}\right|^{2} \Delta_{\frac{1}{4}}\right\rangle\), and \(\left.\left\langle^{2} \Pi_{3}\right|-\left.B L J_{+}\right|^{2} \Delta_{3}\right\rangle\).
\({ }^{8}\) Note added in proof. Reexamination of plates of the NO absorption spectrum has led to discovery of another NR \(\sim\) NR crossing. This crossing, \({ }^{14} \mathrm{~N}^{16} \mathrm{O} B^{2} \amalg(v=19) \sim G^{2} \Sigma^{-}(v=0)\) between \(J=12.5\) and 13.5 , also displays undetectably small level shifts. Although the electronic part of the \(B \sim G\) perturbation matrix element is shown in Table III to be nonzero, calculated vibrational factors are even smaller than for the \({ }^{15} \mathrm{~N}^{18} \mathrm{O} B(v=18) \sim B^{\prime}(v=1)\) crossing. Detectable level shifts at the \(B \sim G\) crossing are neither observed nor predicted.
}

\section*{ACKNOWLEDGMENTS}

We are grateful to Dr. A. E. Douglas and F. Alberti of the National Research Council of Canada (Ottawa) for the NO spectra and to M. E. Liard for measurement of the spectra. Discussions with Professors J. L. Kinsey and R. J. Silbey have been of considerable value. We are particularly indebted to Dr. H. Lefebvre-Brion for helpful criticism and for providing us with ab initio perturbation matrix elements.

Received: June 6, 1975

\section*{REFERENCES}
1. E. Miescher and K. P. Huber, "Spectroscopy" (D. A. Ramsay, Ed.), MTP International Review of Science, Ser. 2, Vol. 3, Butterworths, London, 1975.
2. A. Lagerqvist and E. Miescher, Helv. Phys. Acta 31, 221 (1958).
3. Сh. Jungen, Can. J. Phys. 44, 3197 (1966).
4. E. Miescher, Can. J. Phys. 49, 2350 (1971).
5. K. Dressler and E. Miescher, Astrophys. J. 141, 1266 (1965).
6. R. W. Field, B. G. Wicke, J. D. Simmons, and S. G. Tilford; J. Mol. Spectrosc. 44, 383 (1972).
7. K. Kayama and J. C. Baird, J. Chem. Phys. 46, 2604 (1967).
8. J. Raftery, P. R. Scott, and W. G. Richards; J. Phys. B 5, 1293 (1972).
9. S. H. Lin, J. Chem. Phys. 46, 279 (1967).
10. H. Lefebvre-Brion and F. Guerin, J. Chem. Phys. 49, 1446 (1968).
11. T. E. H. Walker, Mol. Phys. 23, 489 (1972).
12. H. Lefebvre-Brion and C. M. Moser, J. Chem. Phys. 44, 2951 (1966).
13. Jon T. Hougen, Nat. Bur. Stand. US Monogr. 115, June 1970.
14. E. U. Condon and G. H. Shortley, "The Theory of Atomic Spectra," Cambridge University Press, Cambridge, 1951.
15. J. A. Hall, J. Schamps, J. M. Robbe, and H. Lefebvre-Brion, J. Chem. Phys. 59, 3271 (1973); T. E. H. Walker and W. G. Richards, J. Chem. Phys. 52, 1311 (1970).
16. M. D. Olman, M. D. McNelis, and C. D. Hanse, J. Mol. Spectrosc. 14, 62 (1964).
17. A. Lagerqvist and E. Miescher, Can. J. Phys. 44, 1525 (1966).
18. R. S. Mulliken, Rev. Mod. Phys. 4, 1 (1932).
19. H. Lefebvre-Brion and N. Bessis, Can. J. Phys. 47, 2727 (1969).
20. M. Ogawa, Sci. Light Tokyo 3, 39 (1954).
21. G. Herzberg, "Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules," Van Nostrand Reinhold, New York, 1950.
22. K. R. Way and W. C. Stwalley, J. Chem. Phys. 59, 5298 (1973).
23. F. Ackerman and E. Miescher, Chem. Phys. Lett. 2, 351 (1968).
24. P. Felenbok and H. Lefebvre-Brion, Can. J. Phys. 44, 1677 (1966).
25. E. Bartholdi, M. Leoni, and K. Dressler, J. Appl. Math Phys. 22, 797 (1971).
26. I. Kovacs, "Rotational Structure in the Spectra of Diatomic Molecules," American Elsevier, New York, 1969.

\section*{Appendix 4:}

Reprinted from J, Mo1. Spectrosc. 70 , 420-431 (1978),

\title{
Ab Initio and Semiempirical Estimates of PN Valence State Interactions
}

\author{
Richard A. Gottscho and Robert W. Field \\ Department of Chemistry, Massachusetts Institute of Technology, Cambrrdge, Massachusetts 02139
}

AND

\section*{H. Lefebvre-Brion}

Centre de Mécanique Ondulatoire Appliquée, 23 rue du Maroc 75019, Paris, France and Laboratoire de Photophysique Moléculaire, Bâtiment 213 Université Paris-Sud 91405, Orsay, France

\begin{abstract}
Hartree-Fock wavefunctions for the valence states of PN arising from the lowest energy open shell configurations, \(2 \pi^{4} 7 \sigma 3 \pi\) and \(2 \pi^{3} 7 \sigma^{2} 3 \pi\), are generated and used in ab initio calculations of diagonal spin-orbit, off-diagonal spin-orbit, and rotation-electronic matrix elements. These results are compared with those from two semiempirical methods, one based on atomic orbital populations and the other dependent solely on atomic spin-orbit splittings. The latter method is found to be surprisingly successful in predicting the \({ }^{3} \Delta\) spin-orbit constant for a series of isovalent molecules. Semiempirical estimates of the \({ }^{3} \Delta\) and \({ }^{3} \Pi\) spin-orbit constants of AsN are given. The Hartree-Fock values of the \(a\) and \(b\) perturbation parameters are found to be \(50 \mathrm{~cm}^{-1}\) and 0.60 (unitless), respectively. A previously reported perturbation in the \(A^{1} \Pi-X^{1} \Sigma^{+}\) band system is shown to arise from a \({ }^{3} \Sigma^{-} \sim^{1} \Pi\) spin-orbit interaction.
\end{abstract}

\section*{I. INTRODUCTION}

This paper reports the results of \(a b\) initio and semiempirical estimates of spin-orbit and rotation-electronic matrix elements for the PN molecule and may be viewed as a continuation of previous studies of the isovalent species \(\mathrm{CO}, \mathrm{SiO}, \mathrm{CS}, \mathrm{SiS}\), and \(\mathrm{NO}^{+}\) (1-12).

The purpose of this work is twofold: to provide initial estimates of \(A_{\Pi}, A_{\Delta}\), and perturbation parameters for PN; and to develop semiempirical methods for extrapolation, within an isovalent group, to heavier molecules, such as AsN, for which ab initio calculations are either unreliable or prohibitively costly. Initial estimates of spin-orbit, spin-spin, and perturbation parameters are valuable in utilizing the fragmentary information provided by perturbations in order to assign and characterize perturbing states.

In light of these ab initio results we have reexamined the lines of the PN \(A^{1} \Pi^{-} X^{1} \Sigma^{+}\) band system reported by Curry et al. (13) who observed perturbations in \(A^{1} \Pi\left(v^{\prime}=1\right)\). We show below (Sect. VE) that the perturbing state symmetry is \({ }^{3} \boldsymbol{\Sigma}^{-}\).

TABLE I
Configurations of the Lowest Valence States of PN
\begin{tabular}{llr}
\((1 \sigma-6 \sigma)^{2} 1 \pi^{4} 2 \pi^{4} 7 \sigma^{2}\) & \(X^{1} \Sigma^{+}\) & I \\
\((1 \sigma-6 \sigma)^{2} 1 \pi^{4} 2 \pi^{4} 7 \sigma 3 \pi\) & \({ }^{3} \Pi, A^{1} \Pi\) & II \\
\((1 \sigma-6 \sigma)^{2} 1 \pi^{4} 2 \pi^{3} 7 \sigma^{2} 3 \pi\) & \({ }^{3} \Delta,{ }^{3} \Sigma^{+},{ }^{3} \Sigma^{-},{ }^{1} \Sigma^{-}\), III \\
& \({ }^{1} \Delta,{ }^{1} \Sigma^{+}\)
\end{tabular}

\section*{II THEORY}

The lowest energy valence states of PN arising from the \(7 \sigma 2 \pi^{4} 3 \pi\) and \(7 \sigma^{2} 2 \pi^{3} 3 \pi\) configurations are given in Table I. Matrix elements between these states may be reduced to matrix elements of one-electron operators between one-electron molecular orbitals (2, 3, 14, 15).
The one-electron spin-orbit operator may be written as:
\[
\begin{equation*}
H^{\mathrm{so}}=\sum_{i} \hat{a}_{i} l_{\imath} \cdot s_{i}, \tag{1}
\end{equation*}
\]
where
\[
\hat{a}_{\imath}=\sum_{K}\left(\alpha^{2} / 2\right) \zeta_{K} / r_{\imath K}{ }^{3},
\]
\(\zeta_{K}\) is the effective charge on nucleus \(K, r_{i K}\) is the distance between nucleus \(K\) and electron \(i, l_{2}\) is the orbital angular momentum of electron \(i\), and \(s_{i}\) is the spin angular momentum of electron \(i . \alpha^{2} / 2\) is a factor equal to \(5.84 \mathrm{~cm}^{-1}\) if the unit length is the atomic unit \((14,16)\). Selection rules for this operator are:
\[
\Delta \Lambda=0, \pm 1, \quad \Delta \Sigma=-\Delta \Lambda, \quad \Delta \Omega=0, \quad \text { and } \quad \Delta S=0, \pm 1
\]
or in terms of one-electron quantum numbers : \(\Delta \lambda=0, \pm 1, \Delta \sigma=-\Delta \lambda\), and \(\Delta s=0\).
The one-electron rotation-electronic operator may be written as:
\[
\begin{equation*}
\boldsymbol{H}^{\mathrm{RE}}=B\left(\sum_{i} l_{\imath \pm}\right)\left(\sum s_{\supset \mp}\right)-B J_{ \pm}\left(\sum_{i} l_{\imath \mp}\right), \tag{2}
\end{equation*}
\]
where \(B=h /\left(8 \pi^{2} c \mu R^{2}\right), l_{\imath \pm}, s_{i \pm}\), and \(J_{\mp}\) are the orbital, spin, and total angular momenta raising and lowering operators, respectively, \(\mu\) is the molecular reduced mass, \(R\) is the internuclear distance, and all other constants have their conventional meanings. Selection rules are : \(\Delta \Lambda=-\Delta \Sigma= \pm 1\) (or \(\Delta \Lambda= \pm 1, \Delta \Sigma=0\) ), \(\Delta S=0\), and \(\Delta \Omega=0, \pm 1\).

The matrix elements of the configuration \(I I^{1} \Pi\) state with all states of configuration III may be written in terms of two parameters ( \(2,3,14,16\) ):
\[
\begin{align*}
a & \equiv\langle 2 \pi| a l_{+}|7 \sigma\rangle,  \tag{3}\\
b & \equiv\langle 2 \pi| l_{+}|7 \sigma\rangle
\end{align*}
\]

These elements are derived in Ref. (2) and are listed here in Table II. It is implicit in Table II that \(a\) and \(b\) are independent of the vibrational coordinate \(R\). The matrix elements are factored into a product of vibrational, rotational, and electronic terms in the spirit of the Born-Oppenheimer approximation. The validity of this approximation is discussed in Ref. (3).

TABLE II
Perturbation Matrix Elements Involving PN A \({ }^{1} \Pi^{a}\)
\[
\begin{aligned}
& \left.\left.\left\langle{ }^{1} \Pi, J, v\right| H^{\mathrm{SO}}\right|^{3} \Sigma_{1}{ }^{+}, J, v^{\prime}\right\rangle^{e, f}=\frac{1}{4} a\left\langle v \mid v^{\prime}\right\rangle^{\mathrm{b}} \\
& \left.\left.\left\langle{ }^{1} \mathrm{I}, J, v\right| H^{\mathrm{So}}\right|^{3} \Sigma_{1_{1}}{ }^{-}, J, v^{\prime}\right\rangle^{\mathrm{e}, \mathrm{f}}=-\frac{1}{4} a\left\langle v \mid v^{\prime}\right\rangle \\
& \left.\left.\left\langle{ }^{1} I I, J, v\right| H^{\mathrm{SO}}\right|^{3} \Delta, J, v^{\prime}\right\rangle^{e, f}=-\frac{1}{8}{ }^{\frac{1}{b}} a\left\langle v \mid v^{\prime}\right\rangle \\
& \left.{ }^{1} \Pi I I, J, v\left|H^{\mathrm{RE}}\right|^{1} \Sigma^{-}, J, v^{\prime}\right\rangle^{f}=-B_{v v^{\prime}} b x^{\mathbf{d} \mathrm{b}} \\
& \left.{ }^{1} I I I, J, v\left|H^{\mathrm{RE}}\right|^{1} \Delta, J, v^{\prime}\right\rangle^{e, f}=B_{v v^{\prime}} b(x-2)^{\frac{1}{2}}
\end{aligned}
\]
where \(x=J(J+1), a=\langle 2 \pi| \hat{a} l_{+}|7 \sigma\rangle\), and \(b=\langle 2 \pi| l_{+}|7 \sigma\rangle\).
\({ }^{\text {a }}\) Matrix elements are taken from Ref. (2).
\({ }^{\mathrm{b}} H^{\mathrm{SO}}\) and \(H^{\mathrm{RE}}\) are defined in the text.
In calculating ab initio values for the \(a\) and \(b\) parameters, it is not necessary to assume that they are \(R\) independent if wavefunctions are calculated as a function of internuclear distance. As pointed out in Ref. (3) these parameters are in fact \(R\) dependent and may be expressed as a function of the \(R\) centroid between the two interacting vibronic levels, where
\[
\begin{equation*}
R_{\text {centroid }}=\langle v| R\left|v^{\prime}\right\rangle /\left\langle v \mid v^{\prime}\right\rangle . \tag{4}
\end{equation*}
\]

Schamps (17) has shown that for pairs of near-degenerate interacting levels, \(R\) centroid is dependent only on \(v^{\prime}-v\) and approximately equal to the internuclear distance for which the potential energy curves of the two interacting states intersect.

\section*{III. METHOD}

Hartree-Fock wavefunctions for the states of configurations I, II, and III in Table I were calculated as a function of internuclear distance using the program ALCHEMY written by Bagus, McLean, Yoshimine, and Liu. The atomic basis set of Slater-type orbitals, taken in part from Clementi and Roetti (18) is specified in Table III.

These wavefunctions were then used as input in a second program written by Hall (3) in calculating the \(a\) and \(b\) perturbation parameters, the \({ }^{3} \Pi\) and \({ }^{3} \Delta\) diagonal spin-orbit

TABLE III
Atomic Basis Set Used for Calculation of PN Ground and Valence States
\begin{tabular}{|c|c|c|c|}
\hline Number & Orbital & Center & Exponent \\
\hline 1 & 1 s & P & 16.14890 \\
\hline 2 & 1 s & P & 23.28360 \\
\hline 3 & 2 s & P & 5.60322 \\
\hline 4 & 2 s & P & 14.52140 \\
\hline 5 & 3 s & P & 2.39990 \\
\hline 6 & 3 s & P & 1.48370 \\
\hline 7 & 3 s & P & 4.69535 \\
\hline 8 & 2p & P & 6.51465 \\
\hline 9 & 2p & P & 12.37150 \\
\hline 10 & 3 p & P & 2.02705 \\
\hline 11 & 3 p & P & 1.19796 \\
\hline l'c & 3 p & P & 4.87455 \\
\hline 13 & 3d \(\sigma\) & P & 2.42260 \\
\hline 14 & \(3 \mathrm{~d} \pi\) & P & 1.70459 \\
\hline 15 & 1 s & N & 10.34240 \\
\hline 16 & Is & N & 5.68298 \\
\hline 17 & 2 s & \(N\) & 2.43875 \\
\hline 18 & 2 s & N & 1.45349 \\
\hline 19 & 3 s & N & 7.04041 \\
\hline 20 & 2p & N & 6.21698 \\
\hline 21 & 2p & \(N\) & 2.56988 \\
\hline 22 & 2p & \(N\) & 1.28261 \\
\hline 23 & \(3 \mathrm{~d} \sigma\) & \(N\) & 1.90668 \\
\hline 24 & \(3 \mathrm{~d} \pi\) & \(N\) & 2.04556 \\
\hline
\end{tabular}

TABLE IV
Atomic \(p\) Orbital Coefficients \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Molecular Orbital & \multicolumn{4}{|c|}{\(7 \sigma\)} & \multicolumn{4}{|c|}{\(2 \pi\)} & \multicolumn{4}{|c|}{\(3 \pi\)} \\
\hline \[
\underset{\text { Atomic }}{\text { Orbitals }} \text { b }
\] & 10 & 11 & 21 & 22 & 10 & 11 & 21 & 22 & 10 & 11 & 21 & 22 \\
\hline \multicolumn{13}{|l|}{State} \\
\hline \({ }^{1} / \mathrm{I}\) & & & & & \[
\begin{aligned}
& .296 \\
& .294
\end{aligned}
\] & \[
\begin{aligned}
& .148 \\
& .202
\end{aligned}
\] & \[
\begin{aligned}
& .328 \\
& .310
\end{aligned}
\] & \[
\begin{aligned}
& .476 \\
& .483
\end{aligned}
\] & \[
\begin{aligned}
& -0.423 \\
& -0.449
\end{aligned}
\] & \[
\begin{aligned}
& -0.631 \\
& -0.566
\end{aligned}
\] & \[
\begin{aligned}
& 0.165 \\
& 0.191
\end{aligned}
\] & \[
\begin{aligned}
& 0.473 \\
& 0.471
\end{aligned}
\] \\
\hline \({ }^{3} \mathrm{I}\) & & & & & & & & & \[
\begin{aligned}
& -.412 \\
& -.431
\end{aligned}
\] & \[
\begin{aligned}
& -.613 \\
& -.552
\end{aligned}
\] & \[
\begin{aligned}
& .210 \\
& .236
\end{aligned}
\] & \[
\begin{aligned}
& .477 \\
& .468
\end{aligned}
\] \\
\hline \({ }^{3} \Sigma^{+}\) & \[
\begin{gathered}
0 \\
.389
\end{gathered}
\] & \[
\begin{gathered}
0 \\
.109
\end{gathered}
\] & \[
\begin{array}{r}
.187 \\
-.296
\end{array}
\] & \[
\begin{array}{r}
.178 \\
-.474
\end{array}
\] & & & & & & & & \\
\hline \({ }^{3} \Sigma^{-}\) & \[
\begin{aligned}
& .106 \\
& .398
\end{aligned}
\] & \[
\begin{gathered}
0 \\
.117
\end{gathered}
\] & \[
\begin{array}{r}
.170 \\
-.296
\end{array}
\] & \[
\begin{array}{|c}
.155 \\
-.470
\end{array}
\] & & & & & & . & & \\
\hline \({ }^{3} \Delta\) & \(\stackrel{0}{39}\) & \(\stackrel{0}{112}\) & .180
-.296 & \[
\begin{array}{r}
.168 \\
-.472
\end{array}
\] & . 322 & \(\overline{.246}\) & \(\overline{.296}\) & \(\overline{.443}\) & \(\overline{.416}\) & \(\overline{.557}\) & \(\overline{-.247}\) & \(-. .496\) \\
\hline
\end{tabular}
\({ }^{a}\) Only the larqest p-orbital coefficients are given. The upper coefficients are for \(R=2.818 \mathrm{a} . \mathrm{u}\). and the lower are for 3.1 a.u.
\({ }^{\mathrm{b}}\) The numbers refer to the atomic p orbital basis functions given in Table III.
constants, and the \({ }^{1} \Pi^{-3} \Pi\) spin-orbit interaction energy as a function of internuclear distance.

\section*{IV. RESULTS}

\section*{A. Hartree-Fock Wavefunctions}

In considering spin-orbit interactions, it is sufficient to examine the atomic \(p\) orbital character in the valence molecular orbitals. The \(P 3 p\) and \(N 2 p\) orbital characters in the \(2 \pi, 3 \pi\), and \(7 \sigma\) molecular orbitals are given in Table IV for \(R=2.82\) and 3.10 a.u. These coefficients are useful in interpreting the magnitudes of calculated spin-orbit interaction energies (see Sect. V below). The states within a given configuration have very similar atomic composition and will, therefore, have similar potential energy curves. In general the \(N 2 p\) and \(P 3 p\) orbitals are equally important in the make-up of the \({ }^{1} \Pi\) and \({ }^{3} \Pi\) states and these coefficients change little from \(R=2.82\) to 3.10 a.u. However, for the configuration III states the \(P 3 p\) orbital character is larger than \(N 2 p\) for small internuclear distances but near the potential minima both \(N 2 p\) and \(P 3 p\) are equally important.

\section*{B. Hartree-Fock Energies}

HF energies as a function of internuclear distance are given for the states of configurations I, II, and III in Table V. The \(X^{1} \Sigma^{+}\)equilibrium distance is seen to be approximately 2.82 a.u. which is consistent with the results of McLean and Yoshimine (19) and the experimental value of \(2.81732 \mathrm{a} . \mathrm{u}\). (20). The total \(X^{1} \Sigma^{+}\)energy calculated here is lower than the theoretical value reported by Boyd (21) and nearly equal to but slightly higher than the value reported by McLean and Yoshimine (19).

Using the calculated energies given in Table V, Morse potential energy functions (Fig. 1) were generated for the configuration II and III states and yield the spectroscopic

TABLE V
Hartree-Fock Energies (in a.u.) for Valence States of PN
\begin{tabular}{llccc}
\hline\(R(\) a.u. ) & 2.65 & 2.818 & 3.10 & 3.30 \\
\(X^{1} \Sigma^{+}\) & -395.17877 & -395.18061 & -395.13990 & -395.09414 \\
\({ }^{3} \Pi\) & -395.03257 & -395.04789 & -395.03293 & - \\
\(\mathrm{A}^{1} \mathrm{II}\) & -395.00107 & -395.01475 & -394.99811 & - \\
\({ }^{3} \Delta\) & - & -395.06714 & -395.07440 & -395.05900 \\
\({ }^{3} \Sigma^{+}\) & - & -395.09472 & -395.10283 & -395.08780 \\
\({ }^{3} \Sigma^{-}\) & - & -395.04120 & -395.04742 & -395.03154 \\
\({ }^{1} \Sigma^{-}\) & - & -395.04120 & -395.04742 & -395.03154 \\
\({ }^{1} \Delta\) & - & -395.029853 & -395.033256 & -395.015962 \\
\hline
\end{tabular}
constants given in Table VI. From Fig. 1 the \({ }^{3} \Pi\) and \({ }^{1} \Pi\) minima are estimated to lie near 2.82 a.u. compared with the experimental \(A^{1} \Pi R_{\mathrm{e}}\) of 2.9147 a.u. (13). \(T_{\mathrm{e}}\) for \(A^{1} \Pi\) from Table V is \(36402 \mathrm{~cm}^{-1}\) compared with the experimental value of \(39805.66 \mathrm{~cm}^{-1}\) (13). From Fig. 1, \(R_{\mathrm{e}}\) for the configuration III states is 3.00 a.u. As in the isovalent species \(\mathrm{CO}, \mathrm{CS}, \mathrm{SiO}, \mathrm{SiS}\), and \(\mathrm{NO}^{+}(1-12)\) these states are more weakly bound than the configuration II states.

\section*{C. Ab Initio Matrix Elements}

Figures 2, 3, and 4 illustrate the \(R\) dependence of the \(a\) and \(b\) parameters and the \({ }^{3} \Pi\) and \({ }^{3} \Delta\) spin-orbit constants ( \(A_{\text {II }}\) and \(A_{\Delta}\), respectively). For example, at \(R=2.82\) a.u.,


Frg. 1. Morse potential energy functions for the lowest valence states of PN generated from HartreeFock energies.

TABLE VI
Spectroscopic Constants for PN Valence States \({ }^{\mathrm{a} \cdot \mathrm{b}}\)
\begin{tabular}{lllccccc}
\hline & \(T_{e}\left(\mathrm{~cm}^{-1}\right)\) & \(\omega_{e}\left(\mathrm{~cm}^{-1}\right)\) & \(\omega_{e} x_{e}\left(\mathrm{~cm}^{-1}\right)\) & \(B_{e}\left(\mathrm{~cm}^{-1}\right)\) & \(\alpha_{e}\left(\mathrm{~cm}^{-1}\right)\) & \(r_{e}(\AA)\) & \(D_{e}\left(\mathrm{~cm}^{-1}\right)\) \\
\({ }^{1} \Pi 1\) & 36402 & 1380 & 21 & 0.785 & 0.01 & 1.492 & 23050 \\
& \((39805.66)\) & \((1103.09)\) & \((7.222)\) & \((0.7307)\) & \((0.00663)\) & \((1.5424)\) & \((41500)\) \\
\({ }^{1} \Delta\) & 31804 & 1190 & 5.7 & 0.692 & 0.004 & 1.587 & 62500 \\
\({ }^{3} \Pi\) & 29129 & 1390 & 34 & 0.785 & 0.01 & 1.492 & 14300 \\
\({ }^{3} \Sigma^{-},{ }^{1} \Sigma^{-}\) & 28696 & 1190 & 5.7 & 0.692 & 0.004 & 1.587 & 62500 \\
\({ }^{3} \Delta\) & 22774 & 1190 & 5.7 & 0.692 & 0.004 & 1.587 & 62500 \\
\({ }^{3} \Sigma^{+}\) & 16534 & 1190 & 5.7 & 0.692 & 0.004 & 1.587 & 62500 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Experimental values from Ref. (13) are given in parentheses.
bMorse potential constants. Within the accuracy of our calculations, the configuration III states have identical potential energy curves.
\(a=44 \mathrm{~cm}^{-1}\) determined from the \({ }^{1} \Pi^{-3} \Sigma^{+}\)matrix element and \(b=0.64\) determined from the \({ }^{1} \Pi \Pi^{-1} \Delta\) matrix element (see Table II). The \({ }^{3} \Pi \sim{ }^{1} \Pi\) interaction energy ranges from \(-85 \mathrm{~cm}^{-1}\) at \(R=2.65\) a.u. to \(-94 \mathrm{~cm}^{-1}\) at \(3.10 \mathrm{a} . \mathrm{u}\). and is seen to be nearly equal in magnitude to the \({ }^{3} \Pi\) spin-orbit constant as expected (14, p. 435).

\section*{V. DISCUSSION}

\section*{A. Hartree-Fock Calculations}

Although the Hartree-Fock calculations yield accurate ( \(\pm 5 \%\) ) equilibrium internuclear distances when compared with experiment, the \(A^{1} \Pi T_{\mathrm{e}}\) value is significantly low. HF functions are expected ( 9 ) to yield accurate ( \(\pm \sim 20 \%\) ) values for diagonal and


Fig. 2. \(R\) dependence of the \(a\) spin-orbit perturbation parameter, where \(a \equiv\langle 2 \pi| \hat{a} l_{+}|\eta \sigma\rangle\).


Fig. 3. \(R\) dependence of the \(b\) rotation-electronic perturbation parameter, where \(b \equiv\langle 2 \pi| l_{+}|7 \sigma\rangle\).
nondiagonal spin-orbit and rotation-electronic interaction energies. Although configuration interaction (CI) wavefunctions should improve the agreement between calculated and experimental energies and provide more accurate estimates of spin-orbit and rotation electronic energies (9), the single configuration approximation is expected to


Fig. 4. \(R\) dependence of \({ }^{3} \Pi\) and \({ }^{3} \Delta\) spin-orbit constants ( \(A_{\text {II }}\) and \(A_{\Delta}\), respectively).
be valid for the configuration III states. \(A_{\Delta}\) calculated here, in particular, should be within \(\pm 10 \%\) of the true value.

\section*{B. Comparison with Isovalent Molecules}

As stated and illustrated in Ref. (5), a wealth of information concerning the lowest valence states of 10 valence electron molecules exists. In Ref. (5), a comparison of configurationally averaged properties for most of these molecules was presented. In Table VII we have extended the work of Ref. (5) to include \(P_{2}\) and PN which are contrasted with SiO.
The energies of the configuration II states may be approximately represented in terms of three interelectronic integrals and a configurational energy as defined by Recknagel (22):
\[
\begin{array}{ll}
{ }^{3} \Sigma^{+} & E\left(\pi^{3} \pi^{\prime}\right)-a, \\
{ }^{3} \Delta & E\left(\pi^{3} \pi^{\prime}\right), \\
{ }^{3} \Sigma^{-}, \Sigma^{1}-E\left(\pi^{3} \pi^{\prime}\right)+a, \\
{ }^{1} \Delta & E\left(\pi^{3} \pi^{\prime}\right)+2 b, \\
{ }^{1} \Sigma^{+} & E\left(\pi^{3} \pi^{\prime}\right)-a+4 c,
\end{array}
\]

TABLE VII
Isovalent Comparison of Configurationally Averaged Properties
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathrm{P}_{2}{ }^{\text {a }}\) & PN \({ }^{\text {b }}\) & Si0 \({ }^{\text {c, }} \mathrm{d}\) \\
\hline \(\mathrm{E}\left(\pi^{3} \pi^{-}\right) \times 10^{-3} \mathrm{~cm}^{-1}\) & 24 & 23 & 36 \\
\hline a \(\times 10^{-3} \mathrm{~cm}^{-1}\) & 4.8 & 6.1 & 2.4 \\
\hline b \(\times 10^{-3} \mathrm{~cm}^{-1}\) & 3.1 & 4.6 & 1.3 \\
\hline c \(\times 10^{-3} \mathrm{~cm}^{-1}\) & 2.8 & - & 4.4 \\
\hline \(r_{\mathrm{e}}\left(\pi^{3} \pi^{-}\right) / r_{e}(x)\) & 1.04 & 1.04 & 1.14 \\
\hline \(\omega_{e}\left(\sigma \pi^{4} \pi^{\prime}\right) / \omega_{e}(x)\) & 0.81 & 0.82 & . 060 \\
\hline \(\mathrm{E}\left(\sigma \pi^{4} \pi^{-}\right) \times 10^{-3} \mathrm{~cm}^{-1}\) & 31 & 33 & 38 \\
\hline \(\mathrm{E}\left({ }^{1} \Pi\right)-\mathrm{E}(3 \Pi) \times 10^{-3} \mathrm{~cm}^{-1}\) & 6.3 & 7.3 & 8.9 \\
\hline \(r_{e}\left(\sigma \pi^{4} \pi^{-}\right) / r_{e}(x)\) & 1.09 & 1.07 & 1.05 \\
\hline \(\omega_{e}\left(\sigma \pi^{4} \pi^{-}\right) / \omega_{e}(x)\) & 0.76 & 0.89 & 0.74 \\
\hline
\end{tabular}
\({ }^{\mathrm{a}} \mathrm{A} 11\) values taken from J. Brion, Radical \(P_{2}\) : Etude des transitions \(\mathrm{C}^{1} \Sigma_{u_{-}}^{+}-\mathrm{X}^{1} \Sigma_{{ }_{2}}^{+}\) \(A^{2} \Pi_{g}-X^{1} \Sigma_{g}^{+}, B^{1} \Pi_{u}-A^{1} \Pi_{g}\) et de la transition \(C^{3} \Pi{ }_{u}-b^{3} \Pi\). Etude et interprétation des perturbations observées dans les états \(C^{1} \Sigma_{u}^{+}\)et \({ }^{3} \Pi_{u}\) - Thesis, University of Reims, France (1977).
\({ }^{\mathrm{b}}\) This work except for the \(r_{e}\left(\pi^{3} \pi^{\wedge}\right) / r_{e}(x)\) and \(\omega_{e}\left(\pi^{3} \pi^{\nu}\right) / \omega_{e}(x)\) ratios which were taken from Ref. (13).
\({ }^{\mathrm{C}}\) Values for \(\mathrm{b}^{3} \Pi\) and \(a^{3} \Sigma^{+}\)from G. Hager, R. Harris, and S.G. Hadley, J. Chem. Phys. 63, 2810 (1975).
\({ }^{\mathrm{d}}\) Ref. (5).
where for PN \(\pi\) and \(\pi^{\prime}\) stand for \(2 \pi\) and \(3 \pi\), respectively. Similarly the configuration II \({ }^{1} \Pi\) and \({ }^{3} \Pi\) states may be written in terms of one interelectronic integral and a configurational energy, \(E\left(\sigma \pi^{\prime}\right)\). As discussed in Ref. (5), an increase in spatial separation of the \(\pi\) and \(\pi^{\prime}\) orbitals leads to a reduction of the \(a, b\), and \(c\) integrals. An increase in the spatial separation of these orbitals may arise from an increase in the molecular polarity so that the \(\pi\left(\pi^{\prime}\right)\) orbital is localized on the more electronegative (electropositive) atom or from an increase in atomic size. These effects are nicely illustrated in the \(\mathrm{P}_{2}, \mathrm{PN}, \mathrm{SiO}\) sequence shown in Table VI. PN and \(P_{2}\) are essentially nonpolar so that the relative sizes of P to N dictate the magnitudes of \(a, b\), and \(c\) which are all larger for PN than for \(\mathrm{P}_{2} . \mathrm{SiO}\), on the other hand, is significantly more polar than \(\mathrm{P}_{2}\) or PN and the values of \(a, b\), and \(c\) for SiO are smallest. Localization of \(\sigma\) and \(\pi^{\prime}\) orbitals increases with increasing ionicity (5) so that \(E\left({ }^{1} \Pi\right)-E\left({ }^{3} \Pi\right)\) increases from \(\mathrm{P}_{2} \rightarrow \mathrm{PN} \rightarrow \mathrm{SiO}\).

\section*{C. Semiempirical Calculations}

Knowledge of the molecular and atomic HF wavefunctions and atomic spin-orbit energies provide estimates for \(A_{\Pi}\) and \(A_{\Delta}\) without recourse to full ab initio calculations. The first method which we employ (called method I) is essentially that described by Ishiguro and Kobori (23). We illustrate method I by computing \(A_{\Delta}(5,15)\) :
\[
\begin{equation*}
A_{\Delta}=\frac{1}{4}[\langle 3 \pi| \hat{a}|3 \pi\rangle-\langle 2 \pi| \hat{a}|2 \pi\rangle] \equiv \frac{1}{4}[a(3 \pi)-a(2 \pi)] . \tag{5}
\end{equation*}
\]

We make the approximation
\[
\begin{equation*}
a(2 \pi)=|\langle P 3 p \mid 2 \pi\rangle|^{2} \zeta_{P}(3 p)+|\langle N 2 p \mid 2 \pi\rangle|^{2} \zeta_{N}(2 p), \tag{6}
\end{equation*}
\]
where \(|\langle P 3 p \mid 2 \pi\rangle|^{2}\) is the phosphorus \(3 p\) atomic character in the PN \(2 \pi\) molecular orbital and \(\zeta_{P}(3 p)\) and \(\zeta_{N}(2 p)\) are calculated atomic spin-orbit parameters (24). Overlap between \(P 3 p\) and \(N 2 p\) is neglected. \({ }^{1}\) We obtain \(A_{\Delta} \sim 31 \mathrm{~cm}^{-1}\) which is to be compared with the ab initio value at \(R=3.10\) a.u. of \(15 \mathrm{~cm}^{-1}\). Similarly, \(A_{\mathrm{I}}=a(3 \pi) \sim 100\) \(\mathrm{cm}^{-1}\) at \(R=2.818\) a.u. is semiempirically estimated and compared with the ab initio value of \(88 \mathrm{~cm}^{-1}\). It should be noted that \(\zeta_{N}(2 p)\) is irrelevant in the calculation of \(A_{\Delta}\) because the \(N 2 p\) character in \(3 \pi\) and \(2 \pi\) is nearly equal (see Tables II and IV).
Field et al. \((4,5)\) have proposed an alternative semiempirical method (method II) for the calculation of \(A\) which may be viewed as a special case of method I. An upper bound is placed on the difference \(|a(3 \pi)-a(2 \pi)|\) from known experimental atomic \(\zeta(n p)\) parameters. We restate their arguments here for comparison. The \(3 \pi(2 \pi)\) orbital is considered to be localized on the more electropositive (electronegative) atom since it is less (more) stable. Thus, if the more electropositive atom has the smaller \(\zeta(n p)\) the \(\Delta\) state will be inverted and vice versa. For inverted states then, an upper bound for \(A_{\Delta}\) is given by
\[
\begin{equation*}
0>A>\frac{1}{4}\left(\zeta_{A}(n p)-\zeta_{B}(n p)\right) \tag{7a}
\end{equation*}
\]
and for regular states \(A\) is given by
\[
\begin{equation*}
0<A<\frac{1}{4} \zeta_{A^{+}}(n p)-\zeta_{B^{-}}(n p) \tag{7b}
\end{equation*}
\]

\footnotetext{
\({ }^{1}\) Because each atomic orbital is written in terms of more than one function (e.g., there are three \(3 p\) phosphorous basis functions given in Table III) overlaps between these functions must be considered. These are calculated using the formula given in (25).
}
where \(A\left(A^{+}\right)\)is the more electropositive atom (ion) (4,5). The ionic \(\zeta(n p)\) parameters are used for the regular \({ }^{3} \Delta\) states to magnify the difference between the \(\zeta\) 's and provide an upper bound for \(A_{\Delta}\). Negative(positive) ions exhibit smaller(larger) spin-orbit matrix elements than neutrals because there is less (more) interaction between the electrons and the nucleus. Except for the use of ionic \(\zeta\) 's this method is simply a limiting case of method I, where
\[
\begin{equation*}
|\langle P 3 p \mid 2 \pi\rangle|^{2} \quad \text { and } \quad|\langle N 2 p \mid 3 \pi\rangle|^{2} \rightarrow 0 \tag{8}
\end{equation*}
\]
and
\[
|\langle P 3 p \mid 3 \pi\rangle|^{2} \quad \text { and } \quad|\langle N 2 p \mid 2 \pi\rangle|^{2} \rightarrow 1 .
\]

The recommended value for \(A_{\Delta}\) is one-half the upper bound given in Eq. (7) \((4,5)\) so that PN \(A_{\Delta} \sim 20 \mathrm{~cm}^{-1}\). In that method II requires no knowledge of atomic or nuclear wavefunctions it is superior to method I for the calculation of \(A_{\Delta}\). The agreement between method II and experiment is seen to be very good for \(\mathrm{SiO}, \mathrm{CS}\), and \(\mathrm{CO}(4,5)\). This is due to a cancellation of errors in the subtraction of \(a(2 \pi)\) from \(a(3 \pi)\) in Eq. (5). On the other hand, no such cancellation occurs in the method II estimation of \(A_{\text {II }}\) which is proportional to \(a(3 \pi)\). We expect method II to be less reliable for \(A_{\text {II }}\) than \(A_{\Delta}\).

\section*{D. Semiempirical Predictions}

If we make the drastic assumption that the atomic orbital coefficients for AsN, and PN are identical, estimates for \(A_{\mathrm{I}}\) and \(A_{\Delta}\) may be made for AsN without recourse to additional ab initio calculations by replacing the appropriate \(\zeta\) parameters in Eq. (6) (23). Method I yields for AsN, \(A_{\Delta} \sim 190 \mathrm{~cm}^{-1}\), and \(A_{\text {II }} \sim 670 \mathrm{~cm}^{-1}\). Method II gives, from Eq. (7), \(0<A_{\Delta}<410 \mathrm{~cm}^{-1}\) or \(A_{\Delta} \sim 205 \mathrm{~cm}^{-1}\) for AsN.

\section*{E. Perturbations in the PN \(A^{1} \Pi-X^{1} \Sigma^{+}\)Band System}

From the Morse curves generated above (see Fig. 1), vibrational overlaps between \(A^{1} \Pi\) and all possible perturbers have been calculated. Since \(a\) is calculated to be \(\sim 50\) \(\mathrm{cm}^{-1}\), a vibrational overlap \(>0.002\) would be necessary to produce a readily detectable level shift of \(0.1 \mathrm{~cm}^{-1}\). We conclude from these overlap calculations that \({ }^{1} I I \sim{ }^{3} \Sigma^{+}\) perturbations will be definitely unobservable for \(A^{1} \Pi v=0-20\); however, \(A^{1} \Pi \sim{ }^{3} \Sigma^{-}\), \({ }^{1} \Sigma^{-}\), and \({ }^{1} \Delta\) perturbations may not be ruled out for the lowest vibrational levels of \(A^{1} \Pi\). \({ }^{1} \Sigma^{-}\)and \({ }^{1} \Delta\) perturbations will be weaker than \({ }^{3} \Sigma^{-}\)perturbations at \(J\) values \(<82\) (see Table II, Figs. 1 and 2) so that the observation of \(A^{1} \Pi \sim{ }^{3} \Sigma^{-}\)perturbations is most likely for low \(v, J A^{1} \Pi\) levels.

In fact, Curry et al. (13) have observed perturbations in the PN ( 1,0 ), (1, 2), and \((1,3) A^{1} \Pi-X^{1} \Sigma^{+}\)bands. Figure 5 illustrates the level shifts observed in \(A^{1} \Pi v^{\prime}=1\); plotted are the observed minus calculated transitions as a function of \(J^{\prime}\) for both \(e\) and \(f\) parity. The latter were generated using the constants from Ref. (13). The perturbations are obvious but there appears to be a problem with the \(e\) parity data derived from the \(P\) and \(R\) branches. Neglecting the two \(e\) parity data points for \(J^{\prime}=46\) and 47 which do not fit on a smooth curve through the other points, the perturbation seems to culminate around \(J^{\prime}=45-46\) for the \(e\) parity levels and around \(J^{\prime}=52-53\) for the \(f\) parity levels. This is precisely the pattern expected for \({ }^{1} \Pi \sim{ }^{3} \Sigma^{-}\)interactions. From our calculated vibrational overlaps we expect a minimum overlap between \(A^{1} \Pi\) and


Fig. 5. Observed minus calculated \(A^{1} \Pi^{-} X^{1} \Sigma^{+}\)transitions as a function of \(J^{\prime}\). \(\bullet\) denotes \(f\) parity upper levels taken from the \((1,0),(1,2)\), and \((1,3) Q\)-branch lines of Ref. ( 21 ). \(\times\) denotes \(e\) parity levels taken from the \(P\) and \(R\) branches. Two perturbations are observed culminating at \(J^{\prime}{ }_{0} \sim 45.5\) and \(J^{\prime}{ }_{0} \sim 52.5\) for the \(e\) and \(f\) levels, respectively.
\({ }^{3} \Sigma^{-}\)in this region to be \(\sim 0.05\). Therefore, the minimum vibronic interaction matrix element observable is \(\sim 0.6 \mathrm{~cm}^{-1}\) (See Table II and Fig. 2). From the maximum level shift in the \(f\) parity levels, \({ }^{2}\) an experimental lower bound for the vibronic spin-orbit matrix element is found to be \(\sim 2.8 \mathrm{~cm}^{-1}\).

Other \({ }^{1} \Pi \sim{ }^{3} \Sigma^{-}\)perturbations should be present and observable. It is hoped that this work will stimulate their eventual characterization.

\section*{ACKNOWLEDGMENTS}

We gratefully acknowledge the assistance of J. Schamps and J. M. Robbe in performing the PN \(a b\) initio perturbation parameter calculations. We also thank Drs. Bagus, McLean, Yoshimine, and Liu for making their program ALCHEMY available to us. This work was supported in part by NATO Grant No. 1177.

Received: December 28, 1977

\section*{REFERENCES}
1. R. W. Field, S. G. Tilford, R. A. Howard, and J. D. Simmons, J. Mol. Spectrosc. 44, 347-382 (1972).
2. R. W. Field, B. G. Wicke, J. D. Simmons, and S. G. Tilford, J. Mol. Spectrosc. 44, 383-399 (1972).
3. J. A. Hall, J. Schamps, J. M. Robbe, and H. Lefebvre-Brion, J. Chem. Phys. 59, 3271-3283 (1973).
4. R. W. Field, A. Lagerqvist, and I. Renhorn, J. Chem. Phys. 66, 868-869 (1977).
5. R. W. Field, A. Lagerqvist, and I. Renhorn, Physica Scripta 14, 298-319 (1977).
6. J. M. Robbe, J. Schamps, and H. Lefebvre-Brion, "Electronic Structure and Perturbations: Interpretation in the SiO Valence States," to be published.
7. R. W. Field, J. Mol. Spectrosc. 47, 194-203 (1973).
8. D. Cossart and T. Bergeman, J. Chem. Phys. 65, 5462-5468 (1976).
\({ }^{2}\) The \({ }^{3} \Sigma_{0}{ }^{-}\)and \({ }^{3} \Sigma_{1}{ }^{-} e\) levels are nearly equally mixed (Hund's case " \(b\) "), so the \({ }^{1} \Pi \sim{ }^{3} \Sigma^{-} f\) parity matrix element is correspondingly \(2^{\frac{1}{2}}\) larger than the \({ }^{1} \Pi \sim^{3} \Sigma^{-} e\) parity matrix element.
9. J. M. Robbe and J. Schamps, J. Chem. Phys. 65, 5420-5426 (1976).
10. B. Fémelat and W. E. Jones, J. Mol. Spectrosc. 49, 388-400 (1974).
11. S. Harris, R. Barrow, R. W. Field, and R. A. Gottscho, "The \(D^{1} \Pi-X^{1} \Sigma^{+}\)Band System of SiS," to be published.
12. J. M. Robbe, J. Schamps, and R. A. Gottscho, "The Valence States of SiS," to be published.
13. J. Curry, L. Herzberg, and G. Herzberg, Z. Phys. 86, 348-366 (1933).
14. H. Lefebvre-Brion, Perturbations in the spectra of diatomic molecules in "Atoms, Molecules, and Lasers," pp. 411-448, International Atomic Energy Agency Vienna, 1974.
15. J. Schamps, Thesis, L’Université des Sciences et des Techniques de Lille, 1973.
16. R. W. Field, R. A. Gottscho, and E. Miescher, J. Mol. Spectrosc. 58, 394-413 (1975).
17. J. Schamps, J. Quant. Spectrosc. Radiat. Transfer 17, 685-694 (1977).
18. E. Clementi and C. Roetti, Atomic Data Nucl. Data Tables 14, 177-478 (1974).
19. A. D. McLean and M. Yoshimine, "Tables of Linear Molecule Wave Functions," Supplement to IBM J. Res. Developm, Vol. 12, p. 2061968.
20. F. C. Wyse, E. L. Manson, and W. Gordy, J. Chem. Phys. 57, 1106-1108 (1972).
21. D. B. Boyd, J. Chem. Phys. 52, 4845-4852 (1970).
22. A. Recknagel, Z. Phys. 87, 375-398 (1934).
23. E. Ishiguro and M. Kobori, J. Phys. Soc. Japan 22, 263-270 (1967).
24. C. Froese-Fischer, "Tables of Hartree-Fock Results," Thesis, U. of British Columbia, Vancouver, 1968.
25. H. Lefebvre-Brion and C. M. Moser, J. Chem. Phys. 44, 2951-2954 (1966).

\section*{Appendix 5}

Reprinted from J. Chem. Phys. 68, 4110-4122 (1978).

\title{
OODR spectroscopy of BaO. II. New observations of \(\boldsymbol{a}^{3}{ }_{\Pi}\) and \(A^{\prime 1} \Pi\) and re-examination of the Parkinson band system
}

\author{
Richard A. Gottscho, J. Brooke Koffend, and Robert W. Field \({ }^{\text {a) }}\) \\ Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 \\ John R. Lombardi
}

Department of Chemistry, City College of New York, New York, New York 10031
(Received 28 September 1977)

\begin{abstract}
One and two dye lasers have been used in an optical-optical double resonance (OODR) study of the excited \(B^{1} \Pi\) and \(C^{1} \Sigma^{+}\)states as well as the low-lying, long-lived \(A^{\prime 1} \Pi\) and \(a^{3} \Pi_{1}\) electronic states of \(\mathrm{BaO} . C^{1} \Sigma^{+}(v=0)\) is shown to be the upper level in the \(v^{\prime}=0\) progression of the Parkinson band system. Intensity anomalies in \(C^{1} \Sigma^{+}-X^{1} \Sigma^{+}\)emission, due to an interference effect between parallel and perpendicular transition amplitudes, have proved to be a sensitive indication of \(\Delta \Omega= \pm 1\) perturbations. Emission from \(C^{1} \Sigma^{+}\), which is populated by absorption of two photons via a real intermediate \(A^{1} \Sigma^{+}\) vibronic level, into \(A^{\prime 1} \Pi(v=0,1\), and 2\()\) and \(a^{3} \Pi_{1}(v=0,1\), and 2\()\) has been observed. A scheme is presented by which the relative populations of the \(A^{\prime 1} \Pi\) and \(a^{3} \Pi\) "reservoir states" could be monitored.
\end{abstract}

\section*{I. INTRODUCTION}

This paper is the second in a series reporting an investigation of the electronic spectrum of BaO by the technique of optical-optical double resonance (OODR) spectroscopy. The results reported here were obtained using one and two cw dye lasers to excite BaO molecules in two steps from \(X^{1} \Sigma^{+}\)to \(A^{1} \Sigma^{+}\)and then to \(C^{1} \Sigma^{+}\) or \(B^{1} \Pi\). The main difference from the first BaO OODR investigation, \({ }^{1}\) hereafter referred to as OODR \(I\), is that tunable lasers are used for both excitation steps,
\[
\begin{aligned}
& v^{\prime}, J^{\prime}-v^{\prime \prime}, J^{\prime \prime} \\
& v^{*}, J^{*}-v^{\prime}, J^{\prime}
\end{aligned}
\]
and that states other than \(X^{1} \Sigma^{+}\)are observed as the terminal level in
\[
v^{*}, J^{*} \rightarrow v, J
\]

OODR photoluminescence. \({ }^{2}\)
Results reported here may be divided into four categories: new spectroscopic observations on the BaO \(a^{3} \Pi(v=0-2), A^{\prime 1} \Pi(v=0-2)\) and mutually perturbing \(C^{1} \Sigma^{+}\left(v^{*}=0\right)\) and \(B^{1} \Pi\left(v^{*}=\right.\) ? ) levels; an excitation spectroscopic scheme for monitoring populations in the long-lived "reservoir levels" \(a^{3} \Pi\) and \(A^{\prime 1} \Pi\); a quantum mechanical interference effect which manifests itself in anomalous relative intensities of \(P\) and \(R\) transitions originating from a common \(v^{*}, J^{*}\) level and which is a sensitive probe for \(\Delta \Omega= \pm 1\) perturbations; applications of new OODR techniques including OODR with two tunable lasers, OODR detected as a decrease in fluorescence from the intermediate \(v^{\prime}, J^{\prime}\) levels, \({ }^{3}\) and accidental double coincidence OODR spectroscopy using only one (tunable) laser. A detailed analysis, including deperturbed constants, of all spectral data pertaining to the mutually interacting \(A^{1} \Sigma^{+}, a^{3} \Pi\), and \(A^{\prime 1} \Pi\) states is deferred to OODR III. \({ }^{4}\) The high energy BaO states, \(B^{i} \Pi, C^{1} \Sigma^{+}\), other \({ }^{1} \Sigma^{+}\)states (observed in OODR \(I^{1}\) and

\footnotetext{
\({ }^{\text {a) }}\) Alfred P. Sloan Fellow.
}
by Pruett and Torres-Filho \({ }^{5}\) ), and various perturbers will be more fully discussed in OODR IV. \({ }^{6}\)

This research was stimulated in part by the observation in OODR I of a large number of \(v^{*}\) levels all of apparent \({ }^{1} \Sigma^{+}\)symmetry. In an attempt to solve the riddles of the numerous \({ }^{*}{ }^{1} \Sigma^{+}\)levels and the missing non\({ }^{1} \Sigma^{+}\)states and to locate the as yet unobserved, low-lying \({ }^{3} \Sigma^{+}\)state, OODR experiments employing two tunable lasers were initiated. As might be expected, two new questions arose. How was it possible for a single red dye laser to excite strong blue and ultraviolet fluores cence? What could explain the intensity behavior of the \(R, P\) doublets in the long \(v^{*}, J^{*} \rightarrow X^{1} \Sigma^{+} v^{\prime \prime}, J^{\prime \prime}=J^{*} \pm 1\) fluorescence progression? Sometimes the \(P\) line would be stronger than \(R\) and then vice versa in the adjacent doublet. In fact, the two longest wavelength doublets were actually singlets!

The anti-Stokes fluorescence is explained by accidental coincidences of the frequencies of rotational transitions in the \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}(0,1)\) band with rotationally linked transitions in the \(C^{1} \Sigma^{+}-A^{1} \Sigma^{+}(0,0)\) band. Four strong coincidences were found corresponding to the four possible excitation schemes: \(R R, R P, P R\), and \(P P\). The \(C^{1} \Sigma^{+}\left(v^{*}=0\right)\) level is the upper level of the \(v^{\prime}=0\) progression of the Parkinson band system of \(\mathrm{BaO} .^{7}\) The \(R, P\) intensity anomalies are the result of \(C^{1} \Sigma^{+}\) \(\sim B^{1} \Pi\) perturbations and are a quantum mechanical interference effect between parallel ( \(\Delta \Omega=0\) ) and perpendicular \((\Delta \Omega= \pm 1)\) transition amplitudes. Two-laser OODR experiments permit a complete characterization of the \(C\left(v^{*}=0\right) \sim B\) perturbation.

The one-laser OODR fluorescence in the red region was very complex and probably could not have been assigned if more than one \(v^{*}, J^{*}\) level had been simultaneously excited. An unexpected dividend was observation of \(C^{1} \Sigma^{+}-A^{\prime 1} \Pi\) and \(C^{1} \Sigma^{+}-a^{3} \Pi_{1} P, Q, R\) fluorescence triplets. The \(C-a(\Omega=1)\) fluorescence intensity was primarily borrowed from the \(C-A^{\prime}\) transition by the known \({ }^{8}\) strong \({ }^{1} \Pi \sim{ }^{3} \Pi_{1} \Delta v=0\) spin-orbit interaction. The \(C-A^{\prime}\)
and \(C-a\) bands are important because they provide a method for monitoring populations of the metastable \(A^{\prime 1} \Pi\) and \(a^{3} \Pi\) states.

There have been many reports in the recent literature concerning the reactions of \(\mathrm{Ca}, \mathrm{Sr}\), and Ba atoms with various oxidants ( \(\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{NO}_{2}, \mathrm{O}_{2}\), and \(\mathrm{O}_{3}\) ). \({ }^{9-26}\) Particular attention has been focused on the \(a^{3} \Pi\) and \(A^{\prime 1} \Pi\) states. Although \(\mathrm{BaO} a^{3} \Pi\) has been shown to be a precursor \({ }^{27}\) to high quantum yield radiation from \(A^{1} \Sigma^{+}\) in reactions such as
\[
\begin{equation*}
\mathrm{Ba}+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{BaO}^{\prime \prime}+\mathrm{N}_{2} \tag{1}
\end{equation*}
\]
how \(a^{3} \Pi\) is populated remains a question which has stirred some controversy. \({ }^{20,21}\) Several states exist which might act as energy reservoirs in Reaction (1): \(X^{1} \Sigma^{+}, a^{3} \Pi, A^{\prime 1} \Pi\), and \({ }^{3} \Sigma^{+}\). In order to answer such questions as whether or not high vibrational levels of \(X^{1} \Sigma^{+}\)are precursors to \(a^{3} \Pi\) it would je necessary to measure cross sections for intersystem crossing between these two states. This requires a method for monitoring the populations of both states and for selective popalation of one or the other. Modeling of the population flow among reservoir levels must entail a detailed understanding of \(a^{3} \Pi \sim X^{1} \Sigma^{+}, a^{3} \Pi^{\sim}{ }^{3} \Sigma^{+}\), and \(a^{3} \Pi \sim A^{1} \Sigma^{+}\)perturbations likely responsible for efficient transfer. \({ }^{28-31}\)

To date little information has been obtained for the low-lying \({ }^{3} \Pi\) and \({ }^{1} \Pi\) states of \(\mathrm{Ca}, \mathrm{Sr}\), and Ba monoxides. Although rotational and vibrational constants are known for these states of all three molecules from the analysis of \(A^{1} \Sigma^{+} \sim A^{\prime 1} \Pi\) and \(A^{1} \Sigma^{+} \sim a^{3} \Pi\) perturbations \(s^{8,32-34}\) and from direct experimental observations of the \({ }^{2} \Pi\) states, \({ }^{9,17,35-38}\) this work reports the first observation of \(\mathrm{BaO} a^{3} \Pi\) ( \(v\) \(=0,1\), and 2) and \(A^{\prime 1} \Pi(v=0)\) rotational levels which are not perturbed by \(A^{1} \Sigma^{+} .{ }^{39}\)

\section*{II. EXPERIMENTAL}

\section*{A. Apparatus}

The OODR experimental apparatus and procedure for producing BaO have been described elsewhere. \({ }^{1,13,40}\) Ba vapor was entrained in a flow of \(\mathrm{Ar}(99.998 \%\) purity) and mixed with \(\mathrm{CO}_{2}(99.8 \%\) purity), which reacted spontaneously, resulting in a very weak reddish flame. \(\mathrm{CO}_{2}\) was chosen as an oxidant instead of \(\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}, \mathrm{O}_{3}\), or \(\mathrm{O}_{2}\) so as to minimize the chemiluminescence. Operating pressures were usually 1-3 torr; the gas mixture was typically \(95 \% \mathrm{Ar}, 5 \% \mathrm{CO}_{2}\).

Folded cavity, rhodamine 6G, jet stream dye lasers with intracavity three stage birefringent filters \({ }^{41-43}\) provided radiation with spectral width (FWHM) of \(\sim 1\) \(\mathrm{cm}^{-1}\) throughout their tuning ranges from \(570-630 \mathrm{~nm}\). Conversion efficiencies when pumped with the 514.5 nm line of an \(\mathrm{Ar}^{+}\)laser were \(20 \%\); typical dye laser powers were \(0.5-1 \mathrm{~W}\). A \(1.0 \mathrm{~mm}, 97 \%\) reflecting, solid quartz etalon with a free spectral range of \(3.057 \mathrm{~cm}^{-1}\) was used to measure the laser frequency relative to atomic neon with a relative precision of \(0.2 \mathrm{~cm}^{-1}\) and absolute accuracy of \(1.0 \mathrm{~cm}^{-1}\).

Laser induced fluorescence was viewed perpendicular to the laser beam by focusing the fluorescence onto the


FIG. 1. Schematic representation of apparatus used to monitor OODR photolummescence as a function of wavelength and polarization. (a) Laser is polarized in \(Z\) direction. Using a polarord in front of monochromator slit, either \(X\) or \(Z\) linearly polarized light may be selected. (b) Laser polarized in \(Z\) direction, but the coordinate system has been rotated so that only \(X\) or \(Y\) fluorescence can be detected.
slit of a Spex 1704 X monochromator ( \(6 \AA / \mathrm{mm}\) reciprocal dispersion) for photoelectric work or onto the slit of a Spex 1802 spectrograph ( \(18 \AA / \mathrm{mm}\) reciprocal dispersion) for photographic work. A Hamamatsu R818 red sensitive photomultiplier tube operated at 600 V was used with the 1704X; Kodak type IIIF photographic plates were used with the 1802. \(C^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}\)uv emission was monitored using a Corning 7-37 uv passingvisible absorbing colored glass filter and a 480 nm cutoff interference filter with \(70 \%\) average transmission from 400.0 to 475.0 nm (Ditric Optics Inc.) placed in front of an RCA 1P28 photomultiplier tube at 600 V . Total uv fluorescence was detected perpendicular to both the laser beam and the optic axis of the monochromator. For both photoelectric and photographic work, Hg and Ne pen lamps were used as frequency standards.

\section*{B. Polarization experiments}

Two equivalent methods were used to monitor the polarization dependence of OODR transitions (see Fig. 1). The laser plane of polarization could be rotated using first a Fresnel rhomb which produced circularly polarized light and then a rotatable calcite polarizer to select linearly polarized light along any direction (with a loss of \(50 \%\) ). Alternatively, a polaroid sheet was placed in front of the monochromator slit passing only \(X\) or \(Z\) polarized light but not both (see Fig. 1). If we always consider the laser to be polarized in the \(Z\) direction (for simplicity in calculations below) and propagat-


FIG. 2. Portion of an OODR excitation spectrum and corresponding excitation scheme illustrating two means by which OODR transitions may be detected. The first laser excites \(A^{1} \Sigma^{+}\left(v^{\prime}=1, J^{\prime}=45\right)-X^{1} \Sigma^{+}\left(v^{\prime \prime}=0, J^{\prime \prime}=46\right)\). The upper trace is a recording of uv fluorescence; the lower trace is resolved \(A^{1} \Sigma^{+}\left(v^{\prime}=1, J^{\prime}=45\right) \rightarrow X^{1} \Sigma^{+}\left(v^{\prime \prime}=2, J^{\prime \prime}=44\right)\) fluorescence. Increases in the lower trace are caused by the second laser exciting \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}\)followed by \(A^{1} \Sigma^{+}\)emission whose frequency is coincidentally within the spectral width of the monochromator
ing in the \(X\) direction, then rotation of the plane of polarization of the laser corresponds to a \(90^{\circ}\) rotation about the \(X\) axis so that \(X+Y\) polarized light is detected as opposed to \(X+Z\) (see Fig. 1). \(X\) and \(Y\) polarized fluorescence are identical, \({ }^{44}\) so that \(X\)-only, \(Y\)-only, and \(X+Y\) unpolarized detection schemes should be equivalent. \(X\) or \(Y\) to \(Z\) intensity ratios, obtained either by rotating the laser or detector polarization, are found to be identical (see Secs. III. A and III. D) when the polarization dependence of the monochromator grating was considered.

\section*{C. OODR detection}

Several methods exist by which OODR transitions may be detected: (1) \(v^{*}, J^{*} \rightarrow v^{\prime \prime}, J^{\prime \prime}\) photoluminescence \({ }^{1}\); (2) \(v^{*}, J^{*} \rightarrow v^{\prime}, J^{\prime}\) photoluminescence \({ }^{45 \cdots 49}\); (3) decreases in fluorescence from the intermediate \(v^{\prime}, J^{\prime}\) levels \({ }^{3}\); and
(4) total OODR photoluminescence. Each of these methods of detection provides different types and quantities of spectroscopic information. The first two schemes employ broad band filters to pass only certain frequency emission (here we detect uv \(C^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}\)OODR photoluminescence, for example). The third method listed above is the most versatile in that it samples OODR transitions into not only radiating but also nonradiating \(v^{*}, J^{*}\) levels. In BaO , for example, a perturbed level with \(50 \% A^{1} \Sigma^{+}\)and \(50 \% a^{3} \Pi\) character [for example, \(J=45\) of \(A^{1} \Sigma^{+}(v=1) \sim a^{3} \Pi_{2}(v=0)\) ] could be populated from \(X^{1} \Sigma^{+}\)with the first photon; then, access to excited triplets as well as singlets should be equally probable, all other factors being equal. The singlets should radiate in the uv back down to \(X^{1} \Sigma^{+}\)while the triplets will usually not radiate in the uv; thus, montoring decreases in \(v^{\prime}, J^{\prime}\) fluorescence without concomitant increases in uv
fluorescence simplifies detection of OODR transitions into triplet states. An example of this type of detection scheme is illustrated in Fig. 2, where the first photon pumped \(A^{1} \Sigma^{+}\left(v^{\prime}=1, J^{\prime}=45\right)\) which has \(44.2 \% a^{3} \Pi\) character. \({ }^{4}\) No transitions to triplet states have yet been detected: every decrease in the pumped level fluorescence as the second laser is tuned is accompanied oy uv fluorescence. There are, however, differences in the visible to uv branching ratio. It is clear from Fig. 2 that although this fluorescence decrease (flop out) method is versatile it lacks the sensitivity of the fluorescence increase (flop in) methods. Detection of total OODR photoluminescence is versatile and especially useful in a system where the emission frequencies are unknown. Total OODR fluorescence can be distinguished from single resonance fluorescence excited by either laser by modulating both lasers at different frequencies and detecting all fluorescence (no filters) at the sum or difference frequencies using a phase sensitive detector.

\section*{III. RESULTS AND ANALYSIS}

In Table I we present a summary of the various emission systems observed in the single laser OODR experiments showing the fluorescence structure and how this information was used to sort out and assign all the spectral features. Below, we discuss each band system in detail.

\section*{A. \(C^{1} \Sigma^{+}-X^{1} \Sigma^{+}\)band system}

\section*{1. Single laser \(O O D R\) excitation spectrum}

Figure 3 shows a single laser excitation spectrum where ultraviolet fluorescence intensity is recorded as a function of laser frequency. A red degraded band with a head at \(16030.3 \mathrm{~cm}^{-1}\) is observed with four strong lines standing alone above many weaker transitions; fluorescence from only these four strong transitions is considered.

\section*{2. \(O O D R\) photoluminescence}

Figure 4 shows a portion of the ultraviolet emission spectrum from these levels extending from 320 nm to 480 nm and consisting primarily of \(P\) and \(R\) doublets characteristic of either \({ }^{1} \Sigma^{+} \rightarrow{ }^{1} \Sigma^{+}\)or \({ }^{1} \Pi \rightarrow{ }^{1} \Sigma^{+}\)emission. \({ }^{50}\) Seventeen doublets corresponding to emission into \(X^{1} \Sigma^{+}\)

TABLE I. Summary of emıssion observed.
\begin{tabular}{|c|c|c|}
\hline Band system & Structure & Information obtained \\
\hline \(C^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{*}\) & \(P R\) doublets in uv with large intensity anomalies & \begin{tabular}{l}
Isotopic assignment \(J^{*}\) \\
\(B^{1} \Pi \sim C^{1} \Sigma^{+}\)perturbation
\end{tabular} \\
\hline \(C^{1} \Sigma^{+} \rightarrow A^{1} \Sigma^{+}\) & \(P R\) doublets in visible & \(J^{*}\) \\
\hline \(A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}\) & Pairs of PR doublets & ```
J', v'
Assignment of intermediate
    state
``` \\
\hline \(C^{1} \Sigma^{+} \rightarrow a^{3} \Pi_{1}\) & \(P Q R\) triplets Intensity anomalies & Characterization of \(a^{3} \Pi_{1}\). \(C^{1} \Sigma^{+} \sim^{3} \Sigma_{0}^{-}\)perturbation. Alignment of \(C^{1} \Sigma^{+}\). \\
\hline \(C^{1} \Sigma^{+} \rightarrow A^{\prime 1} \Pi\) & \begin{tabular}{l}
\(P Q R\) triplets \\
Intensity anomalies
\end{tabular} & \[
\begin{aligned}
& \text { Characterization of } A^{1} \Pi \text {. } \\
& \text { Alignment of } C^{1} \Sigma^{+} \text {. } \\
& \text { Proof of } C^{1} \Sigma^{+} \text {symmetry. }
\end{aligned}
\] \\
\hline
\end{tabular}

FIG. 3. Single laser OODR excitation spectrum resulting from the absorption of two photons from \(X^{1} \Sigma^{+}\left(v^{\prime \prime}=1\right)\) via \(A^{1} \Sigma^{+}\left(v^{\prime}=0\right)\) to \(C^{1} \Sigma^{+}\left(v^{*}=0\right)\). The four strongest transitions are labelled according to \(J^{*}, J^{\prime}\), and \(J^{\prime \prime}\). The lower trace is a series of interference fringes from a \(97 \%\) reflecting, \(3.057 \mathrm{~cm}^{-1}\) free spectral range external cavity etalon used for frequency calibration.
(\(v^{\prime \prime}=1\) to \(v^{\prime \prime}=17\)) are observed for each of the four excited \(J^{*}\) levels. Three features should be noted: (1) there is a broad Franck-Condon maximum between \(v^{\prime \prime}\) \(=8\) and 10 ; (2) emission into \(v^{\prime \prime}=0\) is not observed because of a small Franck-Condon factor; and (3) the relative intensities of \(P\) and \(R\) lines vary from doublet to doublet and generally deviate from expected \(1: 1\) ratios. \({ }^{50}\) The appearance of only a single Franck-Condon maximum suggests that \(v^{*}=0\). \(J^{*}\) is determined from the frequency difference between \(P\) and \(R\) lines and known ground state rotational constants \({ }^{1}\) :
\[
\begin{equation*}
\Delta P R=\left(4 B_{v}^{\prime \prime}-6 D_{v}^{\prime \prime}\right)\left(J^{*}+1 / 2\right)-8 D_{v}^{\prime \prime}\left(J^{*}+1 / 2\right)^{3} \tag{2}
\end{equation*}
\]
where \(B_{v}^{\prime \prime}\) and \(D_{v}^{\prime \prime}\) have their usual meanings. \({ }^{50} \Delta P R\) was determined to \(\pm 0.3 \mathrm{~cm}^{-1}\) from photographic plates of * \(\rightarrow X^{1} \Sigma^{+}\)emission.

From examination of fluorescence at and near the

TABLE II. Single laser OODR excitation schemes.
\begin{tabular}{llcc}
\hline \hline & & \multicolumn{2}{c}{ Branch } \\
\hline & & \(A^{1} \Sigma^{+}\left(v^{\prime}=0\right)\) & \(C^{1} \Sigma^{+}\left(v^{*}=0\right)\) \\
\(J^{*}\) & \(\tilde{\nu}_{\text {1aser }}\left(\mathrm{cm}^{-1}\right)\) & \(-X^{1} \Sigma^{+}\left(v^{\prime \prime}=1\right)\) & \(-A^{1} \Sigma^{+}\left(v^{\prime}=0\right)\) \\
18 & \(16029.6 \pm 0.5\) & \(P(18)\) & \(R(17)\) \\
27 & 15995.6 & \(P(29)\) & \(P(28)\) \\
34 & 16016.8 & \(R(32)\) & \(R(33)\) \\
48 & 15957.5 & \(R(48)\) & \(P(49)\) \\
\hline \hline
\end{tabular}
laser frequency, it is possible to assign an excitation scheme for each double resonance transition. Measurement of the laser frequency and observation of \(A^{1} \Sigma^{+}\left(v^{\prime}\right.\) \(=0) \rightarrow X^{1} \Sigma^{+}\left(v^{\prime \prime}\right)\) emission (see below) indicates that the first photon excites the \(A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}(0,1)\) band; \(A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}\)fluorescence consists of \(P\) and \(R\) transitions with the \(R\) branch always at higher energy. Examination of \(A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}(0,1)\) fluorescence therefore determines whether the laser is exciting a \(P\) or an \(R\) branch. Similarly, from \({ }^{*} \rightarrow A^{1} \Sigma^{+}\)emission (see below) in the same frequency region, the second step can be determined to be either a \(P\) or an \(R\) transition. Table II summarizes the excitation schemes for each of the four transitions.

It should be noted here that there are five naturally abundant isotopes of \(\mathrm{Ba}:{ }^{138} \mathrm{Ba}(71.66 \%),{ }^{137} \mathrm{Ba}(11.32 \%)\), \({ }^{136} \mathrm{Ba}(7.81 \%),{ }^{135} \mathrm{Ba}(6.59 \%)\), and \({ }^{134} \mathrm{Ba}(2.42 \%)\). In order to correctly assign \(J^{*}\) it is necessary to determine which isotopic species is observed since \(B_{v}^{\prime \prime}\) and \(D_{v}^{\prime \prime}\) are isotopically dependent. \({ }^{50}\) This was done by examining \(* \rightarrow X^{1} \Sigma^{+}\)emission into two different ground state vibrational levels, \(v_{1}^{\prime \prime}=12\) and \(v_{2}^{\prime \prime}=6\). The separation between \(P\) or \(R\) lines in these two bands depends only on ground state rotational and vibrational constants \({ }^{50}\)
\[
\begin{align*}
\Delta \nu_{\mathrm{v} 1 \mathrm{~b}}= & \omega_{e}\left(v_{2}^{\prime \prime}-v_{1}^{\prime \prime}\right)-\omega_{e} x_{e}\left[v_{2}^{\prime \prime}\left(v_{2}^{\prime \prime}+1\right)-v_{1}^{\prime \prime}\left(v_{1}^{\prime \prime}+1\right)\right] \\
& -\alpha_{e} J^{\prime \prime}\left(J^{\prime \prime}+1\right)\left(v_{\mathrm{a}}^{\prime \prime}-v_{1}^{\prime \prime}\right), \tag{3}
\end{align*}
\]
where \(\omega_{e}, \omega_{e} x_{e}\), and \(\alpha_{e}\) have their usual meanings. The isotopic dependence of these constants is well known \({ }^{50}\) :
\[
\begin{align*}
& \omega_{e}^{i}=\rho \omega_{e}, \\
& \omega_{e} x_{e}^{i}=\rho^{2} \omega_{e} x_{e}, \\
& \alpha_{e}^{i}=\rho^{3} \alpha_{e}, \tag{4}
\end{align*}
\]

FIG. 4. (a) A portion of the resolved \(C^{1} \Sigma^{*}\left(v^{*}=0, J^{*}=18\right)\) \(\rightarrow X^{1} \Sigma^{+}\left(v^{\prime \prime}, J^{\prime \prime}=17\right.\) or 19) ultraviolet photoluminescence spectrum consisting of \(P\) and \(R\) doublets and exhibiting anomalous \(P: R\) intensity ratios. (b) Same as (a) except \(C^{1} \Sigma^{*}\left(v^{*}=0, J^{*}=48\right)\) \(\rightarrow X^{1} \Sigma^{+}\left(v^{\prime \prime}, J^{\prime \prime}=47\right.\) or 49). Note the reversal of intensities for \(v^{\prime \prime}=13\) and 14 due to the \(B \sim C\) perturbation.

TABLE III. The nonvanishing direction cosine matrix elements \(\left\langle\Omega^{\prime} J^{\prime} M^{\prime}\right| \alpha_{R s}|\Omega J M\rangle\), where \(R\) \(=X, Y\), or \(Z\) and \(s=x, y\), or \(z\) are given by the product of three factors: \(f\left(J^{\prime} ; J\right) g_{s}\left(J^{\prime}, \Omega^{\prime} ; J, \Omega\right)\) \(\times h_{R}\left(J^{\prime}, M^{\prime} ; J, M\right)\). The factors \(f, g_{s}, h_{R}\) for a given matrix element are taken from different rows of the same column of this table. The choice of columns depends on the value of \(J^{\prime}-J\). The choice of rows depends on \(R\) and \(s\). In all cases, the first factor \(f\) is taken from row one; the second factor \(g_{s}\) is chosen from rows two or three; and the third factor \(h_{R}\) is chosen from rows four or five. a
\begin{tabular}{llll}
\hline \hline Factor & \(J^{\prime}=J+1\) & \(J^{\prime}=J\) & \(J^{\prime}=J-1\) \\
\hline\(f\left(J^{\prime} ; J\right)\) & \(\left\{4(J+1)[(2 J+1)(2 J+3)]^{1 / 2)\}-1}\right.\) & {\([4 J J(J+1)]^{-1}\)} & \(\left\{4 J[(2 J+1)(2 J-1)]^{1 / 2}\right\}-1\) \\
\(g_{z}\left(J^{\prime}, \Omega ; J, \Omega\right)\) & \(2[(J+\Omega+1)(J-\Omega+1)]^{1 / 2}\) & \(2 \Omega\) & \(2[(J+\Omega)(J-\Omega)]^{1 / 2}\) \\
\(g_{x}\left(J^{\prime}, \Omega \pm 1 ; J, \Omega\right)\) or & & & \\
\(\quad \pm i g_{y}\left(J^{\prime}, \Omega \pm 1 ; J, \Omega\right)\) & \(\mp[(J \pm \Omega+1)(J \pm \Omega+2)]^{1 / 2}\) & {\([(J \pm \Omega)(J \pm \Omega+1)]^{1 / 2}\)} & \(\pm[(J \mp \Omega)(J \mp \Omega-1)]^{1 / 2}\) \\
\(h_{Z}\left(J^{\prime}, M ; J, M\right)\) & \(2[(J+M+1)(J-M+1)]^{1 / 2}\) & \(2 M\) & \(2[(J+M)(J-M)]^{1 / 2}\) \\
\(h_{X}\left(J^{\prime}, M \pm 1 ; J, M\right)\) or & & & \\
\(\pm 2 h_{Y}\left(J^{\prime}, M \pm 1 ; J, M\right)\) & \(\mp[(J \pm M+1)(J \pm M+2)]^{1 / 2}\) & {\([(J \pm M)(J \pm M+1)]^{1 / 2}\)} & \(\pm[(J \mp M)(J \mp M-1)]^{1 / 2}\) \\
\hline \hline
\end{tabular}
\({ }^{2}\) This table was taken directly from Ref. 56 and was originally published in Ref. 57. Capital (lower case) letters refer to space (molecule) fixed coordmates.
where \(\rho=\left(\mu / \mu^{1}\right)^{1 / 2}\), and \(\mu\) is the molecular reduced mass. Thus \(\Delta \nu_{\text {vib }}\) may be calculated for all isotopes and compared with experiment. For example, for \(J^{\prime \prime}=26\),
\[
\begin{array}{ll}
\Delta \nu_{\text {vib }}^{\text {calc }}=3773.85 \mathrm{~cm}^{-1} & \text { for }{ }^{138} \mathrm{Ba}^{16} \mathrm{O}, \\
\Delta \nu_{\mathrm{y} 1 \mathrm{~b}}^{\text {calc }}=3775.23 \mathrm{~cm}^{-1} & \text { for }{ }^{137} \mathrm{Ba}^{16} \mathrm{O},
\end{array}
\]
and
\[
\Delta \nu_{\mathrm{vib}}^{\text {mas }}=3773.8 \pm 0.3 \mathrm{~cm}^{-1}
\]

In this fashion we were able to determine that only \({ }^{138} \mathrm{Ba}^{16} \mathrm{O}\) was observed in each of the four transitions.
Once \(J^{*}\) is known, energies relative to \(v^{\prime \prime}=0\) and \(J^{\prime \prime}\) \(=0\) are easily obtained \({ }^{51}\) :
\[
\begin{equation*}
E\left(v^{*}, J^{*}\right)=E\left(A^{1} \Sigma^{*}, J^{\prime}, v^{\prime}=0\right)+E_{\text {iaser }}, \tag{5}
\end{equation*}
\]
where \(E\left(A^{1} \Sigma^{+}, J^{\prime}, v^{\prime}=0\right)\) was calculated from \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}\) transition energies given in Ref. 32 and \(X^{1} \Sigma^{+}\)ground state constants in OODR I. \({ }^{1}\) In order to obtain further information from these energies a physical model must be employed which is consistent with all of the data described above.

\section*{3. Intensity anomalies}

As seen in Fig. 4, intensity anomalies are observed in \(*-X^{1} \Sigma^{+} P\) and \(R\) branch emission. The magnitude and sign of these anomalies depend on \(J^{*}\) as well as \(v^{\prime \prime}\) as shown in Fig. 4; and, at times, branches even disappear. Upon rotation of the laser plane of polarization or use of a polaroid in front of the monochromator slit as described above in Sec. II, no change in the relative intensity of \(P\) to \(R\) emission could be detected within experimental error. The vibrational and rotational dependence of these anomalies is overwhelmingly suggestive of a perturbation; in other words, the * state is a mixture of two Born-Oppenheimer basis states since \(X^{1} \Sigma^{+}\left(v^{\prime \prime}=1\right.\) to \(\left.v^{\prime \prime}=17\right)\) are known to be completely free of perturbations. \({ }^{1,8}\) Similar interferences due to Coriolis interaction in polyatomic molecules \({ }^{52}\) and rotationelectronic interaction in diatomic molecules \({ }^{53,54}\) have been observed previously. In fact, interference between transition amplitudes associated with a mixture of two Born-Oppenheimer states has led to the annihilation of
normally fully allowed bands as well as branches in the NO molecule. \({ }^{55}\)

We represent the * state as a linear combination of \({ }^{1} \Sigma^{+}\)and \({ }^{1} \Pi\) basis states:
\[
\begin{equation*}
\left.\left.\left.\left.\right|^{*}\right\rangle=\left.c\right|^{1} \Sigma^{*}\right\rangle+\left.\left(1-c^{2}\right)^{1 / 2}\right|^{1} \Pi\right\rangle, \tag{6}
\end{equation*}
\]
where \(c\) is a mixing coefficient. The transition intensity is proportional to the electric dipole, \(\mu\), matrix element squared:
\[
\begin{equation*}
\left.I^{\sim}\left|\left\langle *, J^{*}, v^{*}\right| \mu\right| X^{1} \Sigma^{+}, v^{\prime \prime}, J^{\prime \prime}\right\rangle\left.\right|^{2} . \tag{7}
\end{equation*}
\]

Explicitly treating \(\left\langle *, J^{*}, v^{*}\right|\) as a mixed state one obtains
\(I \sim|c|^{2}\left|\mu_{S X}\right|^{2}+\left|\left(1-c^{2}\right)\right|\left|\mu_{\mathrm{IX}}\right|^{2}+c^{\prime}\left(1-c^{2}\right)^{1 / 2} \mu_{\mathrm{EX}}^{\prime} \mu_{\mathrm{IX}}\),
where a prime denotes a complex conjugate and \(\mu_{\Lambda X}\) \(=\left\langle *, \Lambda, J^{*}\right| \mu\left|X^{1} \Sigma^{+}, v^{\prime \prime}, J^{\prime \prime}\right\rangle\). The last term in Eq. (8) is responsible for interference between \(P\) and \(R\) branches. In order to explain the observed vibrational and rotational dependence of these anomalies we factor the matrix elements of \(\mu\) in the spirit of the Born-Oppenheimer approximation:
\[
\begin{align*}
& \mu_{\Sigma X} \sim\left\langle v_{\Sigma} \mid v_{X}\right\rangle \alpha\left(J^{*}, J^{\prime \prime}, \Delta \Omega=0\right) R_{e}^{\Sigma X}, \\
& \mu_{\Pi X} \sim\left\langle v_{\text {I }} \mid v_{X}\right\rangle \alpha\left(J^{*}, J^{\prime \prime}, \Delta \Omega=1\right) R_{e}^{\Pi X}, \tag{9}
\end{align*}
\]
where \(\left\langle v_{\Lambda} \mid v_{X}\right\rangle\) is a vibrational overlap, \(\alpha\) is a direction cosine matrix element, \(R_{\theta}^{\Lambda X}\) is an electronic transition moment integral, and \(\Omega\) is the projection of \(J\) onto the internuclear axis. It is seen from Eq. (9) that both \(R_{e}^{\Lambda X}\) and \(\left\langle v_{\Lambda} \mid v_{X}\right\rangle\) must be nonzero for both \(\Lambda=\Sigma\) and \(\Pi\) in order to account for the observed intensity anomalies. The interference effect varies in magnitude and sign from band to band because of the independent variation of \(\left\langle v_{\mathrm{\Sigma}} \mid v_{X}\right\rangle\) and \(\left\langle v_{\Pi} \mid v_{X}\right\rangle\) with \(v_{X}\). Only \({ }^{1} \Sigma^{+}\)and \({ }^{1} \Pi\) states may have nonzero electronic transition moments with \(X^{1} \Sigma^{+}\). An examination of \(\alpha\) (see Table III) shows that only matrix elements for \(\Delta \Omega= \pm 1\) have opposite signs for \(P\) and \(R\) transitions so that * is a muxture of at least one \({ }^{1} \Sigma^{+}\)and one \({ }^{1}\) II state.

Intensity anomalies in a particular band should become more severe as the two perturbing states become
degenerate and \(c^{2}-0.5\). As seen in Fig. 4, these anomalies get larger as \(J^{*}\) increases. From second order perturbation theory,
\[
\begin{equation*}
c\left(J^{*}\right) \sim \frac{H\left(J^{*}\right)}{\Delta E\left(J^{*}\right)}, \tag{10}
\end{equation*}
\]
where \(H\left(J^{*}\right)\) is the interaction matrix element between the two states and \(\Delta E\left(J^{*}\right)\) is the energy difference as a function of \(J^{*}\). Thus when the two states cross, \(\Delta E\) changes sign, \(c\) changes sign and the sense of the \(P R\) interference changes. This crossover is observed between \(J^{*}=34\) and 48 assuming that both transitions into \(J^{*}=34\) and 48 observed are either main or extra lines. If the transition into \(J^{*}=34\) is a main line and the transition into \(J^{*}=48\) is an extra line (or vice versa) a change in sign of the \(P R\) interference would be observed when the crossover is not between \(J^{*}=34\) and 48. A more systematic investigation of this region is therefore required.

\section*{4. Two laser OODR excitation spectra}

In order to verify the above analysis and unambiguously determine the \(J\) value of the \({ }^{1} \Sigma^{+} \sim^{1} \Pi\) crossing, we have used two dye lasers to systematically probe the * state in the region of \(J^{*}=34\) to 48 . In these experiments, the \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}(0,0)\) band was excited with the first laser which was amplitude modulated at 200 Hz . The second laser then excited \(*-A^{1} \Sigma^{+}(0,0)\) and uv fluorescence was detected using a phase sensitive detector in order to eliminate interference from single laser OODR effects. \({ }^{58}\) Not only main but also extra lines were observed between \(J^{*}=34\) and 48 . Figure 5 shows a two

FIG. 5. Two laser OODR excitation spectrum. First laser excites \(A^{1} \Sigma^{+}\left(v^{\prime}=0, J^{\prime}=43\right)-X^{1} \Sigma^{+}\left(v^{\prime \prime}=0, J^{\prime \prime}=44\right)\). The second laser is scanned excitung both main (m) and extra (e) \(P\) and \(R\) branches in the \(C^{1} \Sigma^{+}-A^{1} \Sigma^{+}(0,0)\) band as \(C^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}\) ultraviolet photoluminescence is recorded.

TABLE IV. \(B^{1} \Pi(v)-C^{1} \Sigma^{+}\left(v^{*}=0\right)\) Hamiltonian matrix \({ }^{2}\) and fitted parameters.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(H_{11}=E_{\Sigma}+B_{\Sigma} J(J+1)-D_{\Sigma}[J(J+1)]^{2}\)} \\
\hline \multicolumn{2}{|l|}{\(H_{22}=E_{\Pi}+B_{\Pi}[J(J+1)-1]-D_{\text {I }}[J(J+1)-1]^{2}\)} \\
\hline \multicolumn{2}{|l|}{\(H_{12}=H_{21}=\beta[2 J J(J+1)]^{1 / 2 \mathrm{~b}}\)} \\
\hline Parameter & Fitted Value (\(\left.\mathrm{cm}^{-1}\right)^{\mathrm{c}}\) \\
\hline \(E_{\Sigma}\) & 33084.0 (10) \({ }^{\text {d }}\) \\
\hline \(B_{E}\) & 0.23846 (30) \\
\hline \(D_{\Sigma}\) & \(2.8 \times 10^{-78}\) \\
\hline \(E_{\text {II }}\) & 33105.1 (10) \({ }^{\text {d }}\) \\
\hline \(B_{\text {п }}\) & 0.2266 (6) \\
\hline \(D_{\text {II }}\) & \(2.8 \times 10^{-78}\) \\
\hline \(\beta\) & 0.1001 (15) \\
\hline \multicolumn{2}{|l|}{\({ }^{2}\) Only the \(e\)-parity \({ }^{64}\) matrix is considered here.} \\
\hline \multicolumn{2}{|l|}{\({ }^{\mathrm{b}} \beta=b\left\langle v_{\Pi}\right| B\left|v_{\Sigma}\right\rangle\), where \(b\) and \(\left\langle v_{\Pi}\right| B\left|v_{\Sigma}\right\rangle\) are defmed in Ref. 8.} \\
\hline \multicolumn{2}{|l|}{\({ }^{\text {c }}\) Uncertainties in the last figure of one standard deviation are listed in parentheses.} \\
\hline \multicolumn{2}{|l|}{\({ }^{\text {d }}\) Energy relative to the \(X^{1} \Sigma^{+}\)potential minimum.} \\
\hline \multicolumn{2}{|l|}{\({ }^{\theta}\) Arbitrarily held constant at the \(D_{e}\) value for \(A^{1} \Sigma^{+} .{ }^{32}\)} \\
\hline
\end{tabular}
laser OODR excitation spectrum exhibiting main and extra \(P\) and \(R\) branch lines \({ }^{59,60}\) and indicating that the crossing is near \(J^{*}=42\). The \(J^{*}=34\) and 48 levels observed in the single laser OODR spectrum are composed of mostly the same basis state, \(C^{1} \Sigma^{+}\left(v^{*}=0\right)\).

\section*{5. Theoretical interpretation and comparison with the Parkinson band system}

We are now able to return to the energy levels measured and employ a model involving two states which we shall designate \(C^{1} \Sigma^{+}\)and \(B^{1} \Pi^{61}\) in obtaining rotational constants for these two vibrational levels. Using a weighted, nonlinear, least squares program \({ }^{62,63}\) (originally written by R. Stern with modifications by T. Bergeman and A. Kotlar) to fit these eigenvalues to a diagonalized Hamiltonian matrix given in Table IV, we obtained the rotational constants and perturbation matrix element which are also given in Table IV. Using constants from Table IV for \(C^{1} \Sigma^{+}\left(v^{*}=0\right)\) and those of OODR \(I^{1}\) for \(X^{1} \Sigma^{+}\)we have calculated the positions of \(C^{1} \Sigma^{+}-\) \(X^{1} \Sigma^{+}\)bandheads given in Table V. These bandheads are found to be in excellent agreement with those reported previously by Parkinson, \({ }^{7}\) who attributed these transitions to the \(v^{\prime}=0\) progression of the \(B\left({ }^{1} \Pi\right)-X^{1} \Sigma^{+}\)system. Parkinson chose the assignment of \({ }^{1} \Pi\) for the upper state because of "the complex rotational structure." \({ }^{7}\) We have seen that the rotational structure for this state is complex because of \({ }^{1} \Sigma^{+} \sim^{1} \Pi\) perturbations, but in fact the state is best characterized as \({ }^{1} \Sigma^{+}\); therefore, we adopt the notation of \(C^{1} \Sigma^{+}\)for this system and retain the notation \(B^{1}\) II for the perturbing state.

\section*{6. Explanation of single laser OODR effect}

In the single laser OODR experiment, \(C^{1} \Sigma^{+}\)can be populated only when \(\nu_{A-x}\left(J^{\prime}-J^{\prime \prime}\right)=\nu_{C-A}\left(J^{*}-J^{\prime}\right)\) and

TABLE V. \(C^{1} \Sigma^{+}\left(v^{*}=0\right)-X^{1} \Sigma^{+}\left(v^{\prime \prime}\right)\) band-
heads.
\begin{tabular}{cll}
\hline \hline\(v^{\prime \prime}\) & \(\tilde{\nu}_{\text {head }}\left(\mathrm{cm}^{-1}\right)\) & \(\lambda_{\text {head }}^{\text {air }}(\AA)\) \\
\hline 0 & 32751 & \(3052.5(0)^{2}\) \\
1 & 32085 & \(3115.8(1)\) \\
2 & 31423 & \(3181.4(3)\) \\
3 & 30766 & \(3249.5(5)\) \\
4 & 30113 & \(3319.9(7)\) \\
5 & 29463 & \(3393.0(8)\) \\
6 & 28818 & \(3469.0(9)\) \\
7 & 28178 & \(3547.9(10)\) \\
8 & 27541 & \(3629.9(10)\) \\
9 & 26909 & \(3715.1(10)\) \\
10 & 26281 & \(3803.9(9)\) \\
11 & 25658 & \(3896.4(8)\) \\
12 & 25038 & \(3992.7(7)\) \\
13 & 24424 & \(4093.2(5)\) \\
14 & 23814 & \(4198.1(3)\) \\
15 & 23208 & \(4307.7(2)\) \\
16 & 22607 & \(4422.2(1)\) \\
17 & 22010 & \(4542.0(1)\) \\
18 & 21418 & \(4667.6(0)\) \\
\hline \hline
\end{tabular}
\({ }^{\text {a Relative intensities uncorrected for instru- }}\) ment response are given in parentheses. Zero intensity transitions were not observed in this work.
\(J^{*}=J^{\prime} \pm 1=J^{\prime \prime} \pm 2\) or \(J^{\prime \prime}\). Figures 6 and 7 illustrate how \(C^{1} \Sigma^{+}-A^{1} \Sigma^{+}\)and \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}\)transitions come into and go out of resonance. From Fig. 7 it is seen that there are only four coincidences possible corresponding to the excitation schemes given in Table II. This is not a general conclusion concerning \({ }^{1} \Sigma^{+}-{ }^{1} \Sigma^{+}\)double coincidence spectra; depending on \(B^{*}, B^{\prime}, B^{\prime \prime}\), and the vibronic energies of the three states it may be possible to have less than four coincidences. Two mechanisms may be responsible for the weaker transitions in the single laser OODR excitation spectrum (see Fig. 3) resulting in the formation of a bandhead \({ }^{65}\) : (1) rotational relaxation in the relatively long-lived \(A^{1} \Sigma^{+}\)state (\(\tau_{\text {rad }}\) \(=3.56 \times 10^{-7} \mathrm{sec}\) for \(\left.v^{\prime}=0\right)^{66}\); or (2) two photon transitions via a virtual intermediate state enhanced by near

TABLE VI. \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}\)bands observed in single laser OODR experiments.
\(\left.\begin{array}{lllll}\hline \hline \text { Band } & \tilde{\nu}_{\text {head }}\left(\mathrm{cm}^{-1}\right)^{\mathrm{a}} & \lambda_{\text {head }}^{\text {air }}(\AA)^{\mathrm{a}}\end{array} \begin{array}{l}\text { Relative } \\ \text { nntensity }^{\mathrm{b}}\end{array} \quad \begin{array}{l}\text { Source of } \\ \text { fluorescence }\end{array}\right]\)
\({ }^{\text {a }}\) Taken from Ref. 67.
\({ }^{c}\) Laser band.
\({ }^{\mathrm{b}}\) Intensities relative to laser band.
resonance transitions. Two observations indicate that the latter mechanism is relatively unimportant:
(1) The weaker transitions decrease in intensity faster than the four strong double coincidence lines with decreasing Ar carrier gas pressure; and
(2) Fluorescence from one of these weaker transitions has been observed and partially assigned to excitation via a specific \(A^{1} \Sigma^{+}\left(v^{\prime}=0\right)\) rotational level.

\section*{B. \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}\)band system}

For each of the four single laser OODR transitions discussed above, \(12 A^{1} \Sigma^{+}-X^{1} \Sigma^{+}\)bands were observed (see Table VI). The strongest emission arose from \(v^{\prime}\) \(=0\), which was directly populated by absorption of the first photon. Quartets of rotational lines were observed in every \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}\)band in addition to many weaker transitions from collisionally populated levels resulting in the formation of bandheads.

Line quartets arose in two distinct ways: (1) simultaneous excitation of two different \(A^{1} \Sigma^{+}\left(v^{\prime}=0\right)\) rotation-

FIG. 6. OODR coincidence spectrum illustrating how the \(C^{1} \Sigma^{+}-A^{1} \Sigma^{+}(0,0)\) and \(A^{1} \Sigma^{+}-\) \(X^{1} \Sigma^{+}(0,1)\) bands come into and go out of resonance. When \(J^{*}=J^{\prime} \pm 1=J^{\prime \prime} \pm 2\) or \(J^{\prime \prime}\) and \(\nu_{C-A}=\nu_{A-X}\) withm the laser spectral width an OODR transition occurs.

FIG. 7. Differences between \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}(0,1)\) and \(C^{1} \Sigma^{+}\)\(A^{1} \Sigma^{*}(0,0)\) transition frequencies are plotted as a function of \(J^{\prime \prime}\) for each of four possible excitation schemes: \(P R, P P\), \(P R\), and \(R P\). Four zeroes are calculated corresponding to the four strong coincidences in Fig. 3. Effects of a \(C^{1} \Sigma^{+}\) \(\sim B^{1} \Pi\) perturbation can be seen in the shifting of the \(R P\) coincidence from the zero interaction calculated value of \(J^{\prime \prime}\) \(=53\) to the observed value of \(J^{\prime \prime}=48\).
al levels; and (2) \(P\) and \(R\) cascade fluorescence from \(C^{1} \Sigma^{+}\left(v^{*}=0, J^{*}\right)\) into \(A^{1} \Sigma^{+}\left(v^{\prime}, J^{\prime}=J^{*} \pm 1\right)\) levels. Quartets from the former consisted of two \(P R\) doublets with different intensities and \(P R\) spacings because the \(J^{\prime}\) levels populated were very different: for \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}\) \((0,1)\), transitions into two levels differing in \(J^{\prime}\) by 10 occurred within the laser spectral width. Cascade quartets consisted of two \(P R\) doublets with nearly the same intensities and \(P R\) spacings since they resulted from \(A^{1} \Sigma^{+}\left(v^{\prime}\right)\) rotational levels differing in \(J^{\prime}\) by two and populated from the same initial \(C^{1} \Sigma^{+}\left(v^{*}, J^{*}\right)\) state. Cascade fluorescence from \(A^{1} \Sigma^{+}\left(v^{\prime}=0\right)\) was too weak to be detected in the presence of laser induced \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}\) (\(v^{\prime}=0, v^{\prime \prime}\)) fluorescence.

\section*{C. \(C^{1} \Sigma^{+}-A^{1} \Sigma^{+}\)band system}

Emission into \(A^{1} \Sigma^{+}\left(v^{\prime}=0,1,2\right.\), and 3) was observed and consisted of \(P\) and \(R\) doublets resulting in the cascade fluorescence discussed above and summarized in Table VI. Contrary to the situation for \(C^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}\) emission, no intensity anomalies were observed in these bands presumably because of small \(R_{e}^{B A}\) and/or small \(\left\langle v_{B} \mid v_{A}\right\rangle\) factors; this observation is consistent with the lack of \(Q\) branches in the two laser OODR excitation spectra. \({ }^{59}\)

TABLE VII. Experimental and calculated intensity ratios for the \(C^{1} \Sigma^{+} \rightarrow a^{3} \Pi_{1}(0,0)\) band.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(J^{*}\) excritation \({ }^{2}\) scheme} & \multicolumn{4}{|c|}{Intensity ratios} \\
\hline & \multicolumn{2}{|l|}{\(X+Z\) detection \({ }^{\text {b }}\)} & \multicolumn{2}{|l|}{\(X+Y\) Detection \({ }^{\text {b }}\)} \\
\hline & \(P /(P+R)\) & \(Q /(P+R)\) & \(P /(P+R)\) & \(Q /(P+R)\) \\
\hline 18 PR & \(0.67(0.53)^{\text {c }}\) & 0.93 (0.63) & 0.62 (0.50) & 1.44 (1.70) \\
\hline 27 PP & 0.59 (0.53) & 0.71 (0.68) & 0.59 (0.50) & 1.29 (1.55) \\
\hline \(34 R R\) & 0.67 (0.53) & 0.67 (0.63) & 0.71 (0.50) & 1.21 (1.60) \\
\hline 48 RP & 0.67 (0.53) & 0.80 (0.63) & 0.71 (0.50) & 1.21 (1.55) \\
\hline asee Table III \({ }^{\text {b }}\) See Fig. 1. & & Values in p see text and & entheses ar Table VIII) & calculated \\
\hline
\end{tabular}
D. \(C^{1} \Sigma^{+}-A^{\prime 1} \Pi\) and \(C^{1} \Sigma^{+}-a{ }^{3} \Pi_{1}\) band systems

\section*{1. Experimental observations}

For each of the four \(J^{*}\) levels populated in the single laser OODR experiment, a progression consisting of three approximately equally spaced bands \({ }^{68}\) with an average spacing of \(438 \mathrm{~cm}^{-1}\) was observed from 655 nm to 700 nm ; the bands decreased in intensity with increasing wavelength. Each band consisted of three nearly equally spaced \(P, Q\), and \(R\) branch lines the relative intensities of which differed significantly from expected \(P /(P+R)=0.5\) and \(Q /(P+R)=1\) ratios (see Fig. 8). Although these ratios varied only slightly with the lower vibrational level and \(J^{*}\), dramatic changes were observed in the \(Q /(P+R)\) ratio as a function of detection geometry (see Fig. 1 and Table VII). The \(P /(P+R)\) intensity ratio was on the average 0.65 (see Table VII) and changed insignificantly with detection geometry; the \(Q\)

FIG. 8. \(C^{1} \Sigma^{+}\left(v^{*}=0, J^{*}=18\right) \rightarrow A^{\prime 1} \Pi(v=0)\) emission consisting of \(P, Q\), and \(R\) branches whose relative intensities deviate markedly from the expected \({ }^{50} 1: 2: 1\) ratio. \(X\) and \(Z\) polarized fluorescence is recorded with the laser polarized in the \(Z\) direction.
branch intensity was anomalously weak relative to \(P\) and \(R\) for \(X+Z\) detection but anomalously stroag for \(X+Y\) detection.

A second progression identical in structure to the above emission although 2.5 times weaker (after correcting for instrumental response) was observed an average of \(235 \mathrm{~cm}^{-1}\) to higher frequency. Splittings between bands and \(P, Q\), and \(R\) branch lines differed slightly from the above emission; however, the same relative intensities and anomalies were observed.

Energies for the lower states of these transitions were calculated directly from \(E\left(v^{*}=0, J^{*}\right)\) calculated above and the \(C^{1} \Sigma^{+} \rightarrow v, J\) transition energy.

\section*{2. Expectations from previous work}

In addition to \(X^{1} \Sigma^{+}\)and \(A^{1} \Sigma^{+}\)three low-lying bound states of BaO might be considered in interpreting emission spectra from \(C^{1} \Sigma^{+}\left(v^{*}=0\right): a^{3} \Pi, A^{\prime 1} \Pi\), and \({ }^{3} \Sigma^{+} .{ }^{8}\) \(a^{3} \Pi\) and \(A^{\prime 1} \Pi\) energies relative to \(X^{1} \Sigma^{+}\)as well as rotational and vibrational constants have been determined from deperturbation of \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}\)spectra \({ }^{4,8}\) and, for \(A^{\prime 1} \Pi\), from the experimental work of Hsu et al. \({ }^{10}\) and Zare et al. \({ }^{35}\) Thus, the energies for these states are readily calculated as a function of \(v\) and \(J\). From Ref. 8 we calculate \(E\left(a^{3} \Pi_{1}, v=0\right)-E\left(A^{\prime 1} \Pi, v=0\right)=236 \mathrm{~cm}^{-1}\) and \(E\left(a^{3} \Pi_{1}, v=1\right)-E\left(a^{3} \Pi_{1}, v=0\right)=443.5 \mathrm{~cm}^{-1}\) and note that vibrational and rotational constants for \(A^{\prime 1} \Pi\) and \(a^{3} \Pi_{1}\) are nearly identical. \({ }^{8,35}\) There are, to date, no observations of the \({ }^{3} \Sigma^{+}\)state.

Emission into \(A^{\prime 1} \Pi\) must be accompanied by emission into \(a^{3} \Pi_{1}\). Spin-orbit interaction between \(A^{\prime 1} \Pi\) and \(a^{3} \Pi_{1}\) results in an approximately \(J\) independent mixing such that \(A^{\prime 1} \Pi\) has an average \(23 \% a^{3} \Pi_{1}\) character and vice versa. \({ }^{4,8}\) If the emitting state has oscillator strength to only \(A^{\prime 1} \Pi\) or \(a^{3} \Pi_{1}\) but not to both, then the relative intensities of the two band systems must be consistent with the mixed nature of these two states: if only \(C^{1} \Sigma^{+} \rightarrow A^{\prime 1} \Pi\) emission is allowed then emission into \(a^{3} \Pi_{1}\) will be 3.3 times weaker than emission into \(A^{\prime 1} \Pi\). Although spin-uncoupling \({ }^{89}\) results in a \(J\)-dependent mixture of Hund's case \(a{ }^{3} \Pi_{0},{ }^{3} \Pi_{1}\), and \({ }^{3} \Pi_{2}\) basis states, for \(v=0\) and \(J=50\) the percentage \(A^{\prime 1} \Pi\) in \(a^{3} \Pi_{2}\) and \(a^{3} \Pi_{0}\) is \(2 \%\); therefore, emission into these other spin components would be 12 times weaker than emission into \(a^{3} \Pi_{1}\) for an allowed transition into only \(A^{\prime 1} \Pi\).

\section*{3. Comparison between predictions and observations}

The agreement between predicted \(A^{\prime}{ }^{1} \Pi\) and \(a^{3} \Pi_{1}\) vibrational spacings and the \(a^{3} \Pi_{1}-A^{\prime 1} \Pi\) splittings with the observation above is highly suggestive that the lower states of these transitions are \(a^{3} \Pi_{1}\) and \(A^{\prime 1} \Pi\), with \(a^{3} \Pi_{1}\) 2.5 times weaker and \(235 \mathrm{~cm}^{-1}\) to higher frequency. \(A\) further comparison between calculated and observed energies for the lower states of these transitions yields a rms difference between observed and calculated energies of \(0.5 \mathrm{~cm}^{-1}\). On this basis we assign the lower levels of these transitions to \(a^{3} \Pi_{1}(v=0,1\), and 2) and \(A^{\prime 1} \Pi(v=0,1\), and 2\()\).

Although the agreement between theoretical and experimental energies is very good, significant discrep-
ancies between expected and observed intensities exist: (1) emission into \(a^{3} \Pi_{1}\) is \(30 \%\) stronger than expected for an allowed transition into only \(A^{\prime 1} \Pi\); (2) \(P\) branch emission is always stronger than expected relative to \(R\) branch emission; and (3) \(Q\) branch intensity, relative to \(P\) and \(R\), is strongly dependent on detection geometry.

It is apparent from the first of these discrepancies that \(C^{1} \Sigma^{+}\)must have an admixture of triplet character and, therefore, a finite transition probability into \(a^{3} \Pi_{1}\). Since exhaustive searches for emissio: into \(a^{3} \Pi_{0}\) and \(a^{3} \Pi_{2}\) proved fruitless, it is concluded that this triplet state must be \({ }^{3} \Sigma_{0}^{-}\)(\(F_{1}\) and \(F_{3}\) levels) which can both perturb \(C^{1} \Sigma^{+}\)and preferentially radiate into \(a^{3} \Pi_{1} .{ }^{50} \quad \mathrm{~A}^{3} \Pi_{1}\) perturber which might also interact with \(C^{1} \Sigma^{+}\)via \(B^{1} \Pi\) may be eliminated because \(C^{1} \Sigma^{+} \rightarrow a^{3} \Pi_{1} Q\) branch intensities are in proportion to \(P\) and \(R\) branch intensities. \({ }^{3} \Pi_{1}\) \(\rightarrow{ }^{3} \Pi_{1} Q\) branches are weak and decrease rapidly in intensity as \(J\) increases \({ }^{50}\) so that \(C^{1} \Sigma^{+} \rightarrow a^{3} \Pi_{1} Q\) branches would be weak compared with \(P\) and \(R\) branches.
The fact that the \(P\) branches are always stronger than the \(R\) branches is suggestive of interference between \(\Delta \Omega=0\) (parallel) and \(\Delta \Omega= \pm 1\) (perpendicular) transition moments in the \(C^{1} \Sigma^{+} \rightarrow A^{\prime 1} \Pi\) or \(a^{3} \Pi_{1}\) emission. We already know of two participating \(\Delta \Omega=1\) transition moments: \({ }^{1} \Sigma_{0}^{+} \rightarrow{ }^{1} \Pi_{1}\) and \({ }^{3} \Sigma_{0}^{-} \rightarrow{ }^{3} \Pi_{1}\). Thus, either an \(\Omega=1\) state or an \(\Omega=0\) state could be mixed with the upper or lower levels, respectively. Although a \(B^{1} \Pi-A^{\prime 1} \Pi\) transition moment is a logical choice for causing this interference, from Table VII no change in the \(P /(P+R)\) ratio is seen between \(J^{*}=34\) and 48 as would be expected (see Sec. II.A). It is concluded, therefore, that the \(B-A^{\prime}\) transition moment is negligibly small. Admixture of \(A^{1} \Sigma^{+}\)into \(A^{\prime 1} \Pi\) or \(a^{3} \Pi_{1}\) is known to be negligible for the values of \(v\) and \(J\) observed here from deperturbation of the \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}\)band system. \({ }^{37}\) Moreover, any \(P R\) interference in \(C^{1} \Sigma^{+} \rightarrow a^{3} \Pi_{1}\) or \(A^{\prime 1} \Pi\) emission due to mixing between \(A^{1} \Sigma^{+}, a^{3} \Pi_{1}\), and \(A^{\prime 1} \Pi\) would necessarily also appear in a complementary fashion in \(C^{1} \Sigma^{+} \rightarrow A^{1} \Sigma^{+}\) emission for which no anomalies have been observed (see Sec. III. C). We are forced therefore to include yet another perturbing state: \({ }^{3} \Pi_{1}\) or \({ }^{1} \Pi\) in \(C^{1} \Sigma^{+}\)or \({ }^{3} \Sigma^{+}\) in \(a^{3} \Pi_{1}\) and \(A^{\prime 1} \Pi\). It is not surprising that so many states need be considered in interpreting emission from a highly excited electronic state but it is dissatisfying that no simple picture can be presented. It should be noted that effects of these perturbing states have not yet been observed in the form of \(C^{1} \Sigma^{+}, a^{3} \Pi\), or \(A^{\prime 1} \Pi\) level shifts. This is indicative of the sensitivity of intensity anomalies in signaling the presence of perturbations.

\section*{4. Polarization effects}

It is straightforward albeit tedious to calculate \(P, Q\), and \(R\) branch intensities as a function of detection geometry, excitation scheme, and \(J^{*}\) for the \(C^{1} \Sigma^{+} \rightarrow A^{\prime 1} \Pi\) and \(a^{3} \Pi_{1}\) emission observed. We employ the following as sumptions: (1) \(A^{1} \Sigma^{+}\)and \(C^{1} \Sigma^{+} \Delta J=0, \Delta M \neq 0\) collisional transitions are neglected; (2) upper and lower state perturbations are ignored; and (3) optical pumping \({ }^{70,71}\) of \(X^{1} \Sigma^{+}\)and \(A^{1} \Sigma^{+}\)is not considered. First, the \(C^{1} \Sigma^{+}\) population distribution \(P\left(J^{*}, M^{*}\right)\) as a function of \(J^{*}, M^{*}\),

TABLE VIII. \(J^{*}, M^{*}\) population distributions and calculated \(C^{1} \Sigma^{+} \rightarrow A^{\prime 1} \Pi\left(^{3} \Sigma_{0}^{-} \rightarrow a^{3} \Pi_{1}\right)\) relative intensities. \({ }^{\text {a,b }}\)
\begin{tabular}{ll}
\hline \hline \begin{tabular}{ll}
Excitation \\
scheme
\end{tabular} & \(P(J, M)^{\mathrm{d}}\) \\
\hline\(P\left(J^{\prime \prime}\right) R\left(J^{\prime}\right)\) & \(\frac{\left(J^{2}-M^{2}\right)^{2}}{\left(4 J^{2}-1\right)^{2}}\) \\
\(P\left(J^{\prime \prime}\right) P\left(J^{\prime}\right)\) & \(\frac{(J+M+2)(J-M+2)(J+M+1)(J-M+1)}{(2 J+3)^{2}(2 J+1)(2 J+5)}\) \\
\(R\left(J^{\prime \prime}\right) R\left(J^{\prime}\right)\) & \(\frac{(J+M-1)(J-M-1)\left(J^{2}-M^{2}\right)}{(2 J-1)^{2}(2 J-3)(2 J+1)}\) \\
\(R\left(J^{\prime \prime}\right) P\left(J^{\prime}\right)\) & {\(\left[\frac{(J+M+1)(J-M+1)}{(2 J+1)(2 J+3)}\right]^{2}\)} \\
\(I_{X}^{Q}(J)^{\mathrm{d}, \mathrm{e}=}=\sum_{M=-J}^{J}\left[\frac{\left(J^{2}+J-M^{2}\right)}{16 J(J+1)} P(J, M)\right], I_{Z}^{Q}(J)^{\mathrm{d}, \mathrm{e}}=\sum_{M=-J}^{J} \frac{M^{2} P(J, M)}{4 J(J+1)}\) \\
\hline \hline
\end{tabular}
aAll \(J^{\prime \prime}\) populations were considered to be equal for the purpose of these calculations since only relative intensities of \(P, Q\), and \(R\) branches are considered for one \(J\) level. To obtain a more accurate distribution useful in comparing intensities from one \(J\) level to another, \(P(J, M)\) must be multiplied by a Boltzmann factor.
\({ }^{\mathrm{b}}\) Results of these calculations are presented in Table VII. \({ }^{c}\) See Table II.
\({ }^{\mathrm{d}}\) Asterisks indicative of the OODR populated level have been suppressed for conciseness.
\({ }^{e}\) Simılar expressions for \(P\) and \(R\) branch fluorescence may be obtained by using Table III.
and excitation scheme must be calculated. This is simply a product of two squared lirection cosine matrix elements (see Table III), one for each transition in the OODR excitation of \(C^{1} \Sigma^{+}\); since the laser is always taken to be polarized in the \(Z\) direction only \(\Delta M=0\) transitions need je considered. \(C^{1} \Sigma^{+} \rightarrow A^{\prime 1} \Pi\) or \(a^{3} \Pi_{1}\) \(P, Q\), and \(R\) branch intensity polarized in the \(X, Y\), or \(Z\) direction is then a summation over \(M^{*}\) of the product of \(P\left(J^{*}, M^{*}\right)\) with the square of the appropriate direction cosine matrix element. In Table VIII we list \(P\left(J^{*}, M^{*}\right)\) for each excitation scheme in Table II and give as an example \(Q\) branch intensities. Table VII shows the agreement between the results of these calculations and experiment. Levels with different \(\left|M^{*}\right|\) are predicted to be populated unequally resulting in the production of an aligned state \({ }^{70}\) and a spatial dependence of the \(Q\) / \((P+R)\) ratio. In every case the experimental \(Q /(P+R)\)

TABLE IX. \(C^{1} \Sigma^{+}(v=0)-a^{3} \Pi(v)\) bandheads. \({ }^{2}\)
\begin{tabular}{llll|lll}
\hline \hline & \multicolumn{4}{c}{\(\tilde{\nu}_{\text {head }}\left(\mathrm{cm}^{-1}\right)\)} & \multicolumn{3}{c}{\({ }^{2} \lambda_{\text {head }}^{\text {adr }}(\AA)\)} \\
\(\nu\) & \({ }^{3} \Pi_{0}\) & \({ }^{3} \Pi_{1}\) & \({ }^{3} \Pi_{2}\) & \(\Pi_{0}\) & \({ }^{3} \Pi_{1}\) & \({ }^{3} \Pi_{2}\) \\
\hline 0 & 15269 & 15414 & 15463 & \(65474(0)^{\mathrm{b}}\) & \(6485.8(10)\) & \(6465.3(0)\) \\
1 & 14826 & 14971 & 15020 & \(6743.0(0)\) & \(6677.8(4)\) & \(6656.0(0)\) \\
2 & 14387 & 14532 & 14581 & \(6948.8(0)\) & \(6879.5(1)\) & \(6856.3(0)\) \\
3 & 13954 & 14099 & 14148 & \(5165.0(0)\) & \(7090.7(0)\) & \(7066.2(0)\) \\
\hline \hline
\end{tabular}
\({ }^{2}\) Data used for \(a^{3} \Pi\) taken from Ref. 8. The \(A^{\prime 1} \Pi \sim a^{3} \Pi_{1}\) induced asymmetry in the \(a^{3} \Pi\) spin-orbit splitting has been taken into account in calculating these bandheads. \({ }^{8}\)
\({ }^{b}\) Relative intensities are given in parentheses. Zero intensity transitions were not observed in this work.

TABLE X. \(C^{1} \Sigma^{+}\left(v^{*}=0\right)-A^{\prime} \Pi(v)\) bandheads. \({ }^{\text {a }}\)
\begin{tabular}{lll}
\hline \hline\(v\) & \(\tilde{v}_{\text {head }}\left(\mathrm{cm}^{-1}\right)\) & \(\lambda_{\text {head }}^{\text {air }}(\AA)\) \\
\hline 0 & 15178 & \(6586.7(10)^{\mathrm{b}}\) \\
1 & 14735 & \(6784.8(4)\) \\
2 & 14296 & \(6992.9(1)\) \\
3 & 13863 & \(7211.6(0)\) \\
\hline \hline
\end{tabular}
\({ }^{\text {a }}\) Data used for \(A^{\prime 1} \Pi\) taken from Ref. 8. \({ }^{\mathrm{b}}\) Relative intensities are given in parentheses. Zero intensity transitions were not observed in this work.
ratios are nearer to unity than the calculated values, indicating a partial equalization of the \(M^{*}\) level populations. This is reasonable if one remembers the assumptions made in these calculations. Ground state levels are depleted at a rate approximately inversely proportional to \(\left|M^{\prime \prime}\right|\) (see Table III). This, of course, is the same mechanism by which an aligned upper state is produced; however, if relaxation into these levels is comparable or less than the induced absorption rate, a steady state situation exists where the ground state is said to be optically pumped \({ }^{70,71}\) and the upper state alignment will be diminished relative to the situation without optical pumping. In addition, any relaxation among \(M^{\prime}\) or \(M^{*}\) levels will tend to create a \(P\left(J^{*}, M^{*}\right)\) which is independent of \(M^{*}\).

Neglect of upper and lower state perturbations can only result in discrepancies between observed and calculated \(P /(P+R)\) ratios which we have already discussed.

In short, we make the following observations. Anomalously intense \(C^{1} \Sigma^{+} \rightarrow a^{3} \Pi_{1}\) with no \(C^{1} \Sigma^{+} \rightarrow a^{3} \Pi_{0}\) or \(a^{3} \Pi_{2}\) emission suggests an admixture of \({ }^{3} \Sigma_{0}^{-}\)character into \(C^{1} \Sigma^{+} . P R\) intensity anomalies sensitively indicate the presence of at least one more \(\Pi\) perturbation in the upper level or one more \(\Sigma\) perturbation in the lower levels. Finally, the fluorescence polarization tells us that OODR pumping produces an aligned upper state.

\section*{IV. CONCLUSION}

The importance of using a narrow bandwidth (\(\Delta \nu \sim 1\) \(\mathrm{cm}^{-1}\)) laser in a two photon process cannot be overstated. A narrow frequency source allowed population of a single \(C^{1} \Sigma^{+} J^{*}\) level which greatly simplified the emission spectrum permitting detection of the low-lying \(a^{3} \Pi\) and \(A^{\prime 1} \Pi\) states.

It must be admitted that the single laser OODR experiments rely upon fortuitous coincidences; however, these coincidences can be and should be expected in other molecules with a large density of excited vibronic levels in the proper energy range. In fact, similar transitions have been observed in \(\mathrm{CaCl} .^{72}\) Polyatomic molecules should almost invariably exhibit similar phenomena. The single laser experiments are experimentally simpler but two laser OODR spectra are less ambiguous, simpler to interpret, and allow a systematic interrogation of a highly excited electronic state.

FIG. 9. Known electronic states of BaO illustrating the limits of laser induced fluorescence and absorption observed in this work. For example, the single headed arrows indicate fluorescence was observed from \(C^{1} \Sigma^{+}\left(v^{*}=0\right)\) and \(B^{1} \Pi\left(v^{*}=\right.\) ?) to \(X^{1} \Sigma^{*}\left(v^{\prime \prime}=1\right.\) to 17), the double headed arrows indicate that the \(A^{1} \Sigma^{+}-\) \(X^{1} \Sigma^{+}(0,0)\) and \((0,1)\) bands were laser excited as well as observed in fluorescence. Bandhead positions in air wavelengths are given on each arrow. The number written on a vibrational level is the rotational constant for that level.

This paper reports the first rotational analysis of the \(C^{1} \Sigma^{+}\)and \(B^{1} \Pi\) electronic states, participants in the Parkinson \({ }^{7}\) band system of BaO. Results of OODR interrogations of higher \(C^{1} \Sigma^{+}\)and \(B^{1} \Pi\) vibrational levels as well as new data on \(A^{\prime 1} \Pi\) and \(a^{3} \Pi\) will be presented subsequently. \({ }^{4,6}\)

The \(C^{1} \Sigma^{+}-a^{3} \Pi\) and \(C^{1} \Sigma^{+}-A^{\prime 1} \Pi\) band systems could be used to probe the populations of these reservoir states. To aid such investigations, positions of strongest \(C-a\) and \(C-A^{\prime}\) bandheads observed here are given in Tables IX and \(X\).

Figure 9 summarizes the experimental work discussed here and the relative energies of all known electronic states of BaO .

Major and as yet elusive goals of BaO OODR spectroscopy are locating the missing \({ }^{3} \Sigma^{+}\)state and characterizing the \(X^{1} \Sigma^{+} \sim a^{3} \Pi\) and \(a^{3} \Pi \sim^{3} \Sigma^{+}\)perturbations. The failure to observe \({ }^{3} \Sigma^{+}\)perturbations in \(a^{3} \Pi\) and
\(A^{\prime 1} \Pi\) implies that the \({ }^{3} \Sigma^{+}\)state lies above \(A^{1} \Sigma^{+}\), in agreement with a prediction by Michels. \({ }^{73}\)

\section*{ACKNOWLEDGMENTS}

We gratefully acknowledge the experimental aid of J. Manni, P. Brucat, and M. Dulnck. Discussions with I. M. Mills and J. C. Lehmann were particularly fruitful in our analysis of \(P\) and \(R\) branch intensity anomalies. We thank J. G. Pruett, A. Torres-Filho, D. Cossart, M. Horani, J. Rostas, D. J. Eckstrom, J. R. Barker, J.G. Hawley, J.P. Reilly, and D. L. Huestis for conveying results prior to publication. We are especially indebted to J.G. Pruett for insights into the \(C^{1} \Sigma^{+}\)vibrational numbering, interpretation of the single laser OODR bandhead, and a critical reading of this manuscript. We are also grateful to A. Lagerqvist for inspiring Fig. 9.

This research was conducted using equipment pro-
vided jy the M.I.T. Chemistry Department, The Research Corporation, and the National Science Foundation, and individual support was provided ly the following grants: National Science Foundation 7505959-CHE (RAG), Air Force Office of Scientific Research 76-3056 (RAG, JBK, and RWF), and the petroleum Research Fund 8408-AC5, 6 (JRL).
\({ }^{1}\) R. W. Field, G. A. Capelle, and M. A. Revellı, J. Chem. Phys. 63, 3228 (1975).
\({ }^{2}\) Quantum numbers with a double prime, single prime, asterisk, or no prime refer, respectively, to initial level (here \(X^{1} \Sigma^{\dagger}\)), intermediate level (here \(A^{1} \Sigma^{*}\)), two step excited level (\(B^{1} \Pi\) or \(C^{1} \Sigma^{+}\)), and final level populated by spontaneous fluorescence.
\({ }^{3}\) M. E. Kaminsky, R. T. Hawkins, F. V. Kowalskı, and A. L. Schawlow, Phys. Rev. Lett. 36, 671 (1976). These authors referred to OODR as modulated-population spectroscopy (MPS) type 2.
\({ }^{4}\) J. B. Koffend, R. A. Gottscho, and R. W. Field, (to be published).
\({ }^{5}\) J. G. Pruett and A. Torres-Filho, Symp. Mol. Spectrosc., 32nd, Columbus, OH, June 1977 (1977).
\({ }^{6}\) J. G. Pruett and R. A. Gottscho (to be published).
\({ }^{7}\) W. H. Parkinson, Proc. Phys. Soc. 78, 705 (1961).
\({ }^{8}\) R. W. Field, J. Chem. Phys. 60, 2400 (1974).
\({ }^{9}\) R. H. Obenauf, C. J. Hsu, and H. B. Palmer, J. Chem. Phys. 57, 5607 (1972).
\({ }^{10}\) C. J. Hsu, W. D. Krugh, H. B. Palmer, R. H. Obenauf, and C. F. Aten, J. Mol. Spectrosc. 53, 273 (1974).
\({ }^{11}\) H. B. Palmer, W. D. Krugh, and C. J. Hsu, Symp. Combust., 15th, Tokyo, Japan, 1974 (1975), p. 951.
\({ }^{12}\) C. J. Hsu, W. D. Krugh, and H. B. Palmer, J. Chem. Phys. 80, 5118 (1974).
\({ }^{13}\) C. R. Jones and H. P. Broida, J. Chem. Phys. 60, 4369 (1974).
\({ }^{14}\) R. W. Field, C. R. Jones, and H. P. Broida, J. Chem. Phys. 60, 4377 (1974).
\({ }^{15}\) D. J. Eckstrom, S. A. Edelstem, and S. W. Benson, J. Chem. Phys. 60, 2930 (1974); D. J. Eckstrom, S. A. Edelstein, D. L. Huestis, B. E. Perry, and S. W. Benson, J. Chem. Phys. 63, 3828 (1975).
\({ }^{16}\) D. J. Eckstrom, J. R. Barker, J. G. Hawley, and J. P. Reilly, Appl. Opt. 16, 2102 (1977); D. J. Eckstrom and D. L. Huestis, J. Chem. Phys. (to be publıshed).
\({ }^{17}\) F. Engleke, R. K. Sander, and R. N. Zare, J. Chem. Phys. 65, 1146 (1976).
\({ }^{18}\) J. B. West and H. M. Poland, J. Chem. Phys. 66, 2139 (1977).
\({ }^{19}\) D. J. Wren and M. Menzinger, Chem. Phys. Lett. 25, 378 (1974); D. J. Wren and M. Menzinger, J. Chem. Phys. 63, 4557 (1975).
\({ }^{20}\) D. Husain and J. R. Wiesenfield, J. Chem. Phys. 62, 2010 (1975).
\({ }^{21}\) R. W. Field, C. R. Jones, and H. P. Broida, J. Chem. Phys. 62, 2012 (1975).
\({ }^{22}\) B. G. Wicke, M. A. Revelli, and D. O. Harris, J. Chem. Phys. 69, 3120 (1975).
\({ }^{23}\) M. A. Revelli, B. G. Wicke, and D. O. Harris, Chem. Phys. Lett. 39, 454 (1976).
\({ }^{24}\) R. W. Field, in Molecular Spectroscopy: Modem Research, Volume II, edited by K. N. Rao (Academic, New York, 1976), p. 261.
\({ }^{25}\) D. J. Benard, W. D. Slafer, and J. Hecht, J. Chem. Phys. 66, 1012 (1977); D. J. Benard and W. D. Slafer, J. Chem. Phys. 66, 1017 (1977).
\({ }^{26}\) W. Felder, R. K. Gould, and A. Fontijn, J. Chem. Phys. 66, 3256 (1977).
\({ }^{27}\) As pointed out in Ref. 10, any discussion of \(a^{3} \Pi\) as a precursor to radiation from \(A^{1} \Sigma^{+}\)must also umply the same role for \(A^{\prime 1} \Pi\) since these states are strongly mixed owing to spinorbit interaction.
\({ }^{28}\) T. G. Slanger and G. Black, J. Chem. Phys. 63, 969 (1975).
\({ }^{29}\) M. Lavolहe and A. Tramer, Symp. Mol. Struct. Spectrosc., 32nd, Columbus, OH , June, 1977 (1977).
\({ }^{30}\) H. E. Radford and H. P. Brolda, J. Chem. Phys. 38, 644 (1963); K. M. Evenson and H. P. Brolda, J. Chem. Phys. 44, 1637 (1966).
\({ }^{31}\) W. M. Gelbart and K. F. Freed, Chem. Phys. Lett. 18, 470 (1973).
\({ }^{32}\) A. Lagerqvist, E. Lind, and R. F. Barrow, Proc. Phys. Soc. London Sect. A 69, 1132 (1950).
\({ }^{33}\) M. Hultin and A. Lagerqvist, Ark. Fys. 2, 471 (1950).
\({ }^{34}\) G. Almkvist and A. Lagerqvist, Ark. Fys. 2, 233 (1950).
\({ }^{35}\) J. G. Pruett and R. N. Zare, J. Chem. Phys. 62, 2050 (1975).
\({ }^{36}\) J. C. Wyss and H. P. Broida, J. Mol. Spectrosc. 59, 235 (1976).
\({ }^{37}\) R. W. Field, G. A. Capelle, and C. R. Jones, J. Mol. Spectrosc. 84, 156 (1975).
\({ }^{38}\) G. A. Capelle, H. P. Broida, and R. W. Field, J. Chem. Phys. 62, 3131 (1975).
\({ }^{39} \mathrm{CaO} a{ }^{3} \Pi\) has also been observed in single resonance experıments. R. A. Gottscho and R. W. Field (unpublished).
\({ }^{40}\) J. B. West, R. S. Bradford, Jr., J. D. Eversole, and C. R. Jones, Rev. Sci. Instrum. 46, 164 (1975).
\({ }^{41}\) D. Jennings and R. Barger, National Bureau of Standards, Boulder, CO.
\({ }^{42}\) A. L. Bloom, J. Opt. Soc. 64, 447 (1974).
\({ }^{43}\) H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. S. Shank, IEEE J. Quant. Electron. QE-8, 373 (1972).
\({ }^{44}\) In the absence of an external field we are free to choose a quantization direction coincident with the direction of laser polarization so that no coherent superposition state (a linear combination of different \(M\) levels) is created. Each \(M\) level has a random phase with respect to every other level and no interference between \(X\) and \(Y\) polarized fluorescence exists. R. N. Zare, Acc. Chem. Res. 4, 361 (1974); P. A. Franken, Phys. Rev. 121, 508 (1969).
\({ }^{45}\) D. L. Rousseau and P. F. Williams, Phys. Rev. Lett. 38, 1368 (1974).
\({ }^{46}\) R. H. Barnes, C. E. Moeller, J. F. Kırcher, and C. M. Verber, Appl. Phys. Lett. 24, 610 (1974).
\({ }^{47}\) M. D. Danyluk and G. W. King, Chem. Phys. Lett. 48, 1 (1976).
\({ }^{48}\) M. D. Danyluk and G. W. King, Chem. Phys. Lett. 44, 440 (1976).
\({ }^{49}\) M. D. Danyluk and G. W. King, Chem. Phys. 22, 59 (1977).
\({ }^{50} \mathrm{G}\). Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950).
\({ }^{51}\) Alternatively, * rotational energies could have been determined from \(E\left(J^{*}\right)=2 E_{1 \text { aser }}+E\left(X^{1} \Sigma^{+}, v^{\prime \prime}, J^{\prime \prime}\right)\); however, this introduces a larger uncertainty due to the \(1 \mathrm{~cm}^{-1}\) laser spectral width.
\({ }^{52}\) I. M. Mills, Chim. Pure Appl. 11, 325 (1965); I. M. Mills, W. L. Smith, and J. L. Duncan, J. Mol. Spectrosc. 16, 349 (1965); C. diLauro and I. M. Mills, J. Mol. Spećtrosc. 21, 386 (1966).
\({ }^{53}\) D. Cossart, M. Horanı, and J. Rostas, J. Mol. Spectrosc. 647, 283 (1977).
\({ }^{54}\) T. C. James, J. Mol. Spectrosc. 40, 545 (1971).
\({ }^{55}\) A. Lagerqvist and E. Miescher, Can. J. Phys. 44, 1525 (1966). \({ }^{56}\) J. T. Hougen, Natl. Bur. Stand. U. S. Monogr. 116 (1970).
\({ }^{57}\) C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, New York, 1955).
\({ }^{58}\) Single laser OODR is inherently more sensitive than two laser OODR since the overlap of the "two beams" is perfect
in the former; the collisional satellites shown in Fig. 3 obscure the two laser OODR signal.
\({ }^{59}\) The lack of \(Q\) branches in the \(B^{1} \Pi-A^{1} \Sigma^{+}\)two laser OODR excitation spectrum can be explained in two ways: (1) \(R_{e}^{B A}\) and/or (2) \(\left\langle v_{B} \mid v_{A}\right\rangle\) may be negligible so that only the \(\Sigma\) character of a level is sampled and therefore, only \(e\) levels \({ }^{64}\) are observed. Q branch transitions would populate \(f\) levels which do not exist for a \({ }^{1} \Sigma^{+}\)state.
\({ }^{60}\) Examination of photoluminescence from these extra lines revealed the same spectra (albeit weaker) as the main lines. \({ }^{61}\) Although \(B^{1} \Pi(v)\) lies above \(C^{1} \Sigma^{*}\left(v^{*}=0\right)\), see Table IV, it is unlikely that the \(B^{1} \Pi\) vibrational level perturbing \(C^{1} \Sigma^{+}\left(v^{*}=0\right)\) is also \(v=0\).
\({ }^{62}\) W. E. Wentworth, J. Chem. Ed. 42, 96 (1965).
\({ }^{63}\) D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
\({ }^{64}\) J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay,
J. Rostas, and R. N. Zare, J. Mol. Spectrosc. 55, 500 (1975).
\({ }^{65}\) Because both \(C^{1} \Sigma^{+}-A^{1} \Sigma^{+}\)and \(A^{1} \Sigma^{+}-X^{1} \Sigma^{+}\)band systems are red degraded and the \(C-A\) head is to the red of \(A-X\), a head is formed in the single laser OODR excitation spectrum which is equivalent to the \(C^{1} \Sigma^{+}-A^{1} \Sigma^{+}\)bandhead.
\({ }^{66}\) S. E. Johnson, J. Chem. Phys. 56, 149 (1972).
\({ }^{67}\) P. C. Mahanti, Proc. Phys. Soc. London 48, 51 (1934).
\({ }^{68}\) Spacings between rotational lines of different bands depend on \(J\) and \(v\).
\({ }^{69}\) Spin uncoupling results from the interaction of different \({ }^{3} \Pi\) spin components via the operator \(B J_{ \pm} S_{\mp}\).
\({ }^{70}\) R. E. Drullinger and R. N. Zare, J. Chem. Phys. 51, 5532 (1969).
\({ }^{71}\) J. C. Lehmann, Comments At. Mol. Phys. 4, 129 (1973). \({ }^{72}\) P. Domaille and D. Harris (private communication).
\({ }^{73} \mathrm{H}\). Michels (private communication).

\section*{Appendix 6}

The Lowest Energy Excited Electronic State of BaO
j. Chem. Phys. (in press).

The only known triplet state of BaO has been \(\mathrm{a}^{3} \Pi\), which was characterized by analysis of \(a^{3} \Pi \sim A^{1} \Sigma^{+}\)perturbations appearing in the \(A^{1} \Sigma^{+}-X^{1}{ }_{\Sigma}{ }^{+}\)band system. \({ }^{1,2}\) However, the \(z \sigma^{2} y \sigma x \sigma w \pi^{4}\) electronic orbital configuration which yields \(A^{l} \Sigma^{+}\)also gives rise to a \({ }_{\Sigma}^{\Sigma_{\Sigma}^{+}}\)state which, in the single configuration approximation and in accordance with Hund's rules, \({ }^{3,4}\) is expected to lie below \(A^{1}{ }^{+}{ }^{+}\).

This communication reports observation of optical-optical double resonance (OODR) induced \(C^{1} \Sigma^{+} \rightarrow 3_{\Sigma}{ }^{+}\)photoluminescence. Analysis of these emission spectra, which include \({ }^{3} \Sigma^{+} \simeq A^{1} l_{I I}\) spin-orbit perturbations,indicates that this \({ }^{3} \Sigma^{+}\)state is the lowest energy excited state of BaO. In accordance with these observations, the lowest triplet states of BaO are renamed \(a^{3} \Sigma^{+}\)and \(b^{3}\) II (formerly known as \(a^{3}\) II).

Emission into \(b^{3} \Pi(v=0\) to 11\(), A^{1} l_{\Pi}(v=0\) to 10\(), A^{1} \Sigma^{+}(v=0\) to 9\()\), and \(X^{1} \Sigma^{+}(v=0\) to 24\()\) is also observed. A more complete manuscript which will include transition line frequencies as well as a detailed description of the least squares, deperturbation analysis procedure is in preparation. \({ }^{5}\)

The advantages of OODR over traditional
and single laser spectroscopy have been amply demonstrated. \({ }^{6-11}\) Recently, \({ }^{11} 00 \mathrm{DR}\) induced \(\mathrm{BaO} \mathrm{C}^{1}{ }^{+}{ }^{+} \rightarrow \mathrm{b}^{3} \Pi\), \(A^{1} 1^{1}\) I emission was observed using broadband (\(\Delta \nu_{\text {FWHM }} \sim 1 \mathrm{~cm}^{-1}\)) lasers to pump \(A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}\)and then probe \(\mathrm{Cl}^{1}{ }^{+}+\mathrm{Al}^{1} \Sigma^{+} ;\)no \(\mathrm{Cl}^{1}{ }^{+} \rightarrow \mathrm{a}^{3}{ }^{+}{ }^{+}\)emission was detectable. This emission is now observed as a direct consequence of using narrow line width
\(\left(\Delta \nu_{\text {FWHM }} \sim 1 \mathrm{MHz}\right)\), frequency stabilized lasers (Coherent Radiation Model CR599, 50 mW single mode power; Exciton rhodamine 590 dye).

The instantaneous spectrum of a broadband dye laser consists of a frequency comb corresponding to longitudinal cavity modes. Because of mode competition as well as thermal and mechanical fluctuations, these modes lase erratically and drift in frequency. With such lasers, OODR results only when there is a fortuitous coincidence of modes from the two lasers each capable of exciting identical velocity groups and connected rovibronic transitions. A 50 -fold increase in \(\mathrm{C}^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}\)UV fluorescence intensity as well as \(\mathrm{Cl}^{1}{ }^{+} \rightarrow \mathrm{a}^{3} \Sigma^{+}\)emission resulting from more efficient pumping is obtained with single mode, stabilized lasers.

Ba0 was prepared by resistively melting Ba metal (Alfa 99.999\% purity), entraining it in Ar (Airco, 99.998\% purity), and reacting with \(\mathrm{CO}_{2}\) (Airco, \(99.8 \%\) purity). Typical steady state pressures were 1.0 torr \(\mathrm{Ar}, 5 \times 10^{-2}\) torr \(\mathrm{CO}_{2}\) and \(1 \times 10^{-4}\) torr Ba . Only \({ }^{138} \mathrm{Ba}^{16} 0\) was selected by the pump laser. The experimental details are described more completely elsewhere. \(8,12,13\)

OODR induced fluorescence was detected perpendicular to the laser propagation direction by focussing the fluorescence image onto the slit of a Spex 1802 monochromator (1200 grooves /mm, blazed at \(1.2 \mu\)) equipped with an RCA 31034A photomultiplier tube operated at-1400VDC and cooled to \(-20.0^{\circ} \mathrm{C}\) mounted on the exit slit.

Five \(\mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{a}^{3} \Sigma^{+}\)bands were observed in fluorescence; two \(\mathrm{a}^{3} \Sigma^{+}\)vibrational levels were detected only via perturbations in \(C^{1} \Sigma^{+} \rightarrow A^{1} l_{I I}\) emission spectra. Calculated \(C^{1} \Sigma^{+}-a^{3} \Sigma^{+}\)bandheads \({ }^{14}\) and measured \(a^{3} \Sigma^{+}\)
vibrational energies and rotational constants derived from bands observed are given in Table I. Table II compares \(a^{3} \Sigma^{+}\)and \(A^{1} \Sigma^{+}\) equilibrium vibrational and rotational constants. \({ }^{2,17}\)

Assignment of the bands listed in Table I and illustrated in Fig. 1 as \(C^{1} \Sigma^{+} \rightarrow \mathrm{a}^{3} \Sigma^{+}\)emission was based on three factors: 1) the pattern of emission is that corresponding to a \({ }^{\Sigma_{\Sigma}}{ }^{+} \rightarrow{ }^{3} \Sigma^{+}\). transition \({ }^{15}\) (see Fig. 1); assignment to none of the previously known lower states \(\left(X_{\Sigma} \Sigma^{+}, A^{1} \Sigma^{+}, b^{3} \Pi\right.\), or \(A^{1}{ }^{1} \Pi\)) could account for the observed fluorescence structure or frequencies \({ }^{5,16}\); and 3) the pattern of perturbations in \(\mathrm{C}^{1} \Sigma^{+}-\mathrm{A}^{11_{I I}}\) and \(\mathrm{C}^{1}{ }^{+}{ }^{+}-\mathrm{a}^{3}{ }^{+}{ }^{+}\)spectra are identically those expected for \({ }^{3}{ }^{+}{ }^{+}{ }^{1}\) III spin-orbit interactions. \({ }^{5,18}\) Rotational assignments were made from known pump and probe transitions. \({ }^{2,8,16}\) Vibrational assignments were made by matching observed with calculated vibrational variations of \(\mathrm{a}^{3} \Sigma^{+} \sim \mathrm{A}^{1} \mathrm{l}_{I}\) interaction matrix elements. \({ }^{1,19-22}\) Vibronic matrix elements are factored into rotational, vibrational, and electronic factors :
\[
\begin{equation*}
\left\langle A^{\prime} 1_{I I}, v^{\prime}\right| H^{S O}\left|v, a^{3} \Sigma^{+}\right\rangle=H_{e l}^{S 0}\left\langle v^{\prime} \mid v\right\rangle \tag{1}
\end{equation*}
\]
where \(\mathrm{H}^{\mathrm{SO}}\) is the spin-orbit operator, \(\mathrm{H}_{\mathrm{e}}^{\mathrm{SO}}\) is a constant electronic factor, and \(\left\langle v \mid V^{\prime}\right\rangle\) is a calculated vibrational overlap integral. \(a^{3} \Sigma^{+} \sim A^{\prime}{ }^{1} \Pi\) vibrational overlaps were calculated for a family of \(\mathbf{a}^{3} \Sigma^{+}\)potential energy curves (each having vibrational energies and rotational constants identical with those in Table II). The \(a^{3} \Sigma^{+}\)potential energy function resulting in a constant \(\mathrm{H}_{\mathrm{el}}^{\mathrm{SO}}\) was adopted (Table III) and yields the equilibrium constants of Table II. The validity of this method is discussed in Refs. 20 and 22.

Table I: \(\mathrm{C}^{1}{ }^{+}-\mathrm{a}^{3} \Sigma^{+}\)Bandheads \({ }^{\mathrm{a}}\) and \(\mathrm{a}^{3} \Sigma^{+}\)Vibrational Constants
\begin{tabular}{|c|c|c|c|c|}
\hline Band & \multicolumn{2}{|c|}{Head} & \(E^{\mathrm{b}}\left(\mathrm{a}^{3} \Sigma^{+}\right)\) & \(B\left(a^{3} \Sigma^{+}\right)\) \\
\hline \(\left(v_{C}, v_{a}\right)\) & \(v\left(\mathrm{~cm}^{-1}\right)\) & \(\lambda_{\text {air }}(\AA)\) & & \\
\hline \((3,6)\) & 14813 & \(6749.0{ }^{\prime}\) & \(19245.4(06)^{\text {c }}\) & 0.2505 (04) \\
\hline \((3,7)\) & 14362 & 6960.7 & 19696.1 (06) & 0.2487 (04) \\
\hline \((3,8)\) & 13916 & 7184.2 & 20143.5 (12) & 0.2479 (10) \\
\hline \((2,11)\) & 12166 & 8217.1 & 21461.5 (06) & 0.2425 (04) \\
\hline \((2,12)\) & 11735 & 8519.2 & 21893.4 (06) & 0.2414 (04) \\
\hline
\end{tabular}

CUncertainties in the last digit corresponding to one standard deviation are given in parentheses.

\section*{Table II: \(\mathrm{BaO}^{3}{ }^{3}{ }^{+}\)and \(\mathrm{A}_{\Sigma}{ }^{+}\)Spectroscopic Constants}
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathrm{a}^{3}{ }^{+}\) & & \(\mathrm{A}^{1} \Sigma^{+}\) \\
\hline \(\mathrm{T}_{\mathrm{e}}\) & 16558. & \((10)^{\mathrm{a}}\) & \(16807.20^{\text {b }}\) \\
\hline - \({ }^{\text {e }}\) & 477.0 & (20) & \(499.7{ }^{\text {b }}\) \\
\hline \({ }^{\omega}{ }^{\text {x }}\) e & 1.88 & (12) & \(1.64{ }^{\text {b }}\) \\
\hline \(\mathrm{B}_{\mathrm{e}}\) & 0.2602 & (08) & \(0.25832^{\text {c }}\) \\
\hline \(\alpha_{\text {e }}\) & 0.00152 & & \(0.001070^{\text {c }}\) \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Uncertainties of one standard deviation in the last digit are enclosed in parentheses.
\({ }^{\mathrm{b}}\) From Ref. 2.
\({ }^{\mathrm{C}}\) From Ref. 15.

\section*{Figure 1:}
\(C^{1}{ }^{+}{ }^{+}-a^{3}{ }_{\Sigma}{ }^{+}(2,12)\) emission spectrum and schematic energy level diagram for \(\mathrm{J}=16\). The splittings between levels for given N result from spin-spin and second order spin-orbit interactions; a discuss un of these is deferred to Ref. 5. See Ref. 15 for definitions of spectroscopic notation.

Table III. \(A^{1} \Pi \pi \sim a^{3} \Sigma^{+}\)Spin-Orbit Perturbations \({ }^{a}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(A^{\prime} 1 \pi(v)\)} & \multirow[b]{2}{*}{\(a^{3} \Sigma^{+}(v)\)} & \multirow[b]{2}{*}{\(\left|\mathrm{H}^{\mathrm{SO}}\right|^{\text {b }}\)} & \multicolumn{4}{|c|}{\[
\mathrm{H}_{\mathrm{el}}^{\mathrm{SO}}
\]} \\
\hline & & & \(a=1\) & \(a=2\) & \(a=3\) & \(a=4\) \\
\hline 0 & a & 42 (06) & 83 (12) & 76 (11) & 84 (12) & 106 (15) \\
\hline 1 & \(a+1\) & 25 (10) & 306 (122) & 105 (42) & 58 (23) & 52 (21) \\
\hline 4 & \(a+4\) & 21 (02) & 143 (14) & 63 (06) & 88 (08) & 1750 (170) \\
\hline 5 & \(a+5\) & 21 (02) & 414 (39) & 87 (08) & 66 (08) & 133 (13) \\
\hline 6 & \(a+6\) & 9 (03) & 45 (15) & 94 (31) & 30 (10) & 33 (11) \\
\hline \multirow[t]{3}{*}{7} & a + 7 & 2.2 (10) & 8 (4) & 39 (18) & 10 (05) & 7 (03) \\
\hline & & \(\left\langle\mathrm{Hel}^{\mathrm{SO}}{ }^{\text {c }}\right.\) & 29 (52) & 71 (14) & 42 (33) & 19 (106) \\
\hline & & & reject & adopt & alternate & reject \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a Uncertainties in }}\) the last digit of one standard deviation are given in parentheses.
\(\left.{ }^{b}\left|H^{S O}\right| \equiv\left|\left\langle A^{1} 1_{\Pi}, v^{\prime}\right| H^{S 0}\right| v, a^{3} \Sigma^{+}\right\rangle \mid\)
}
\({ }^{\text {W Weighted average }}\)

The BaO \(A^{1} \Sigma^{+}-\mathrm{a}^{3}{ }^{+}{ }^{+}\)vibrationless (\(v=0\)) energy splitting (\(249 \mathrm{~cm}^{-1}\)) is comparable to the deperturbed \(A^{1}{ }^{1} I I-b^{3} I I\) splitting (\(\left.151 \mathrm{~cm}^{-1}\right)^{1}\) as expected when the single configuration approximation is valid and the \(y \sigma, w \pi\) orbitals are comprised mostly of \(02 p\) and \(x \sigma\) is mostly comprised of Ba 6 s . 1,3

Acknowledgements

The experimental assistance of Dr. Roger Bacis -and Mr. Paul Weiss are gratefully acknowledged. Many thanks go to Mr. Warren Weintraub for his expert instruction on the use of the CR599 dye laser. I am especially indebted to Professor Robert Field for originally suggesting this experiment as well as for many enlightening discussions. This research was supported by grants from the National Science Foundation (CHE-7505959 and CHE-7519410).
1. R.W. Field, J. Chem. Phys. 60, 2400 (1974).
2. A. Lagerqvist, E. Lind, and R.F. Barrow; Proc. Phys. Soc. A 63, 1132 (1950).
3. J. Raftery, P.R. Scott, W.G. Richards; J. Phys. B 5, 1293 (1972).
4. F. Hund, Z. Phys. 33, 345 (1925).
5. R.A. Gottscho, J.B. Koffend, and R.W. Field, "The Low-Lying States of \(\mathrm{BaO} 0^{\prime \prime}\) (in preparation).
6. R.H. Barnes, C.E. Moeller, J.F. Kircher, and C.M. Verber, Appl. Phys. Lett. 24, 610 (1974).
7. D.L. Rousseau and P.F. Williams, Phys. Rev. Lett. 33, 1368 (1974).
8. R.W. Field, G.A. Capelle, and M.A. Revelli; J. Chem. Phys. 63, 3228 (1975).
9. M.D. Danyluk and G.W. King, Chem. Phys. Lett. 43, 1 (1976); Chem. Phys. Lett. 44, 440 (1976); Chem. Phys. 22, 59 (1977).
10. M.E. Kaminsky, R.T. Hawkins, F.V. Kowalski, and A.L. Schawlow, Phys. Rev. Lett. 36, 67 (1976).
11. R.A. Gottscho, J.B. Koffend, R.W. Field, and J.R. Lombardi; J. Chem. Phys. 68, 4110 (1978).
12. C.R. Jones and H.P. Broida, J. Chem. Phys. 60, 4369 (1974).
13. J.B. West, R.S. Bradford, Jr., J.D. Eversole, and C.R. Jones; Rev. Sci. Instrum. \({ }^{46}\), 164 (1975).
14. Bandheads are not observed since emission comes from a single \(C^{1} \Sigma+\) rovibronic level for each pump and probe laser frequency. There is no evidence of \(C^{1} \Sigma^{+}\)relaxation.
15. G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecues. (Van Nostrand, Reinhold Co., New York, 1950).
16. R.A. Gottscho, P.S. Weiss, J.G. Pruett, "The High Energy States of \(\mathrm{BaO}{ }^{\prime \prime}\), (in preparation).
17. R.W. Field, A.D. English, T. Tanaka, D.O. Harris, and_D.A. Jennings; J. Chem. Phys. 59, 2191 (1973).
18. I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules, (American Elsevier, New York, 1969).

19a. R.W. Field, S. \(\therefore\) Tilford, R.A. Howard, and J.D. Simmons; J. Mol. Spectrosc. 44, 347-382 (1972).

19b. R.W. Field, B.G. Wicke, J.D. Simmons, and S.G. Tilford, J. Mol. Spectrosc. 44, 383-399 (1972).
20. J.A. Hall, J. Schamps, J.M. Robbe, and H. Lefebvre-Brion; J. Chem. Phys. 59, 3271-3283 (1973).

21a. D. Cossart and T. Bergeman, J. Chem. Phys. 65, 5462 (1976).
21b. J.M. Robbe and J. Schamps, J. Chem. Phys. 65, 5420 (1976).
22. J. Schamps, J. Quant. Spectrosc. Radiat. Transfer 17, 685 (1977).

\section*{Appendix 7}

Reprinted from Chem. Phys. Lett. 60, 65-68 (1978).

\title{
ASSIGNMENT OF EXTRA LINES IN A PERTURBED BAND SPECTRUM USING POWER BROADENED LINE WIDTHS
}

Richard A. GOTTSCHO and Robert W. FIELD
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Received 4 August 1978

Sub-Doppler optical-optical double resonance (OODR) spectroscopy using two tuneable, 1 MHz width, dye lasers is shown to enehance detection, assignment, and frequency measurement of extra lines in perturbed band spectra. Perturbations of the \(\mathrm{BaOC}{ }^{1} \Sigma^{+}(v=3, J=50\)) level are recognized by the appearance of narrow (\(\Delta v \approx 60 \mathrm{MHz}\)) extra lines.

The regular patterns exhibited by band spectra are often interrupted by missing, shifted, and extra lines. These anomalies are collectively labelled as perturbations and result from the interaction of two or more Born-Oppenheımer basis functions. This interaction is characterized by mixing of basis functions and repulsion of unperturbed energy levels.

Transitions involving levels which have borrowed oscillator strength via the perturbation mechanism are called extra lines. Though perturbation induced shifts of main lines (allowed transitions in the absence of perturbation) provide information about the perturbing state structure, assignment of extra lines is a more direct and precise means by which the constants of the perturber and the value of the perturbation matrix element may be determined.

Detection of extra lines is often hampered by their inherent weakness and by overlapping with other transitions. Described below is a sub-Doppler opticaloptical double resonance (OODR) experiment by which extra lines may be easily recognized by the narrowness of their power broadened widths despite their weak intensities and in the presence of overlapping transitions.

The essential experimental details have been described by several authors [1-5]. Two copropagating, single mode, frequency stabilized (\(\Delta \nu_{\text {fwhm }} \approx 1 \mathrm{MHz}\), Coherent Radiation model 599-21) rhodamine 6G dye lasers are used to sequentially pump the \(\mathrm{BaO} \mathrm{A}^{1} \Sigma^{+} \leftarrow\)
\(\mathrm{X}^{1} \Sigma^{+}\)and then probe the \(\mathrm{C}^{1} \Sigma^{+} \leftarrow \mathrm{A}^{1} \Sigma^{+}\)band systems (fig. 1) [6-9]. BaO is produced in an \(\mathrm{Ar}+\mathrm{Ba}+\) \(\mathrm{CO}_{2} \rightarrow \mathrm{BaO}+\mathrm{CO}+\mathrm{Ar}\) flame. This system is described

Fig. 1. Energy level diagram illustrating OODR excitation scheme \(\left(v^{*}, J^{*} \leftarrow v^{\prime}, J^{\prime} \leftarrow v^{\prime \prime}, J^{\prime \prime}\right) . C^{1} \Sigma^{+}\left(v^{*}, J^{*}\right) \rightarrow \mathrm{X}^{1} \Sigma^{+}(v, J)\) UV emission is detected as the probe laser is scanned. \(\mathrm{A}-\mathrm{X}(1,0)\) and \(\mathrm{C}-\mathrm{A}(3,1)\) bandheads (air wavelengths in nm) are indicated for the pump and probe transitions. For \(\mathrm{C}^{1} \Sigma^{+}\) the energy level structure for \(v^{*}=3, J^{*}=50\) is expanded and drawn to scale illustrating the five perturbing energy levels detected.

Fig. 2. OODR excitation spectrum \(A^{1} \Sigma^{+} \leftarrow X^{1} \Sigma^{+}(1,0) R(50)\) is pumped, \(C^{1} \Sigma^{+} \leftarrow A^{1} \Sigma^{+}(3,1)\) is probed while \(C^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}\) UV fluorescence is recorded. Shown are the \(\mathrm{C} \leftarrow \mathrm{A} \mathrm{P}(51)\) man line and two of the four extra lines, each peak is expanded to further illustrate line width variations. The unassigned collisional satellite marked with an arrow is equally intense as the \(P_{4}\) (51) extra line.
elsewhere [10]. As the probe laser is scanned, \(\mathrm{C}^{1} \Sigma^{+} \rightarrow\) \(\mathrm{X}^{1} \Sigma^{+}\)ultraviolet fluorescence intensity is recorded to produce an OODR excitation spectrum. A single \(\mathrm{A}^{1} \Sigma^{+}\)rovibronic level is prepared possessing only a narrow velocity distribution along the laser propagation direction. This non-Boltzmann velocity distribution is sampled by the probe laser \([11-13]\) and dis-
played as the OODR line shape (fig. 2)
Both lasers are focussed with a 30.5 cm focal length lens so that the intensity in the observation region is approximately \(10^{8} \mathrm{~W} / \mathrm{m}^{2}\). The observed main line widths are \(123 \pm 3 \mathrm{MHz}\) at 1 torr Ar ; extra line widths range from 46 to 93 MHz (see table 1).

The OODR line shapes are a function of the laser

Table 1
Transition frequencies, term values, relative intensities, and line widths for \(J=50\) main and extra lines in the \(\mathrm{C}^{1} \Sigma^{+}-\mathrm{A}^{1} \Sigma^{+}(3,1)\) band of BaO . Pressure \(\approx 1\) torr Ar , laser intensity \(\approx 10^{8} \mathrm{~W} / \mathrm{m}^{2}\). Uncertainties in parentheses are one standard deviation estimates
\begin{tabular}{llllll}
\hline Transition a) \begin{tabular}{l}
Transition \\
frequency b) \\
\(\left(\mathrm{cm}^{-1}\right)\)
\end{tabular} & \begin{tabular}{l}
Upper level \\
term value b) \\
\(\left(\mathrm{cm}^{-1}\right)\)
\end{tabular} & \begin{tabular}{l}
\(\Delta \nu_{\text {fivhm }}\) \\
\((\mathrm{MHz})\)
\end{tabular} & \(\left(I_{j} / I_{3}\right)^{1 / 2}\) & \(W \mathrm{~d})\) \\
\hline \(\mathrm{P}_{5}(51)\) & \(16735.989(6)\) & \(34631.20(2)\) & \(\delta \mathrm{c})\) & \(\delta\) & \\
\(\mathrm{R}_{5}(49)\) & \(16787.436(3)\) & \(34631.20(2)\) & \(52(6)\) & \(0.037(7)\) & \(0.14(5)\) \\
\(\mathrm{P}_{4}(51)\) & \(16738.485(3)\) & \(34633.70(2)\) & \(47(6)\) & \(0.071(7)\) & \(0.09(4)\) \\
\(\mathrm{R}_{4}(49)\) & \(16789.933(3)\) & \(34633.70(2)\) & \(46(6)\) & \(0.035(7)\) & \(0.07(3)\) \\
\(\mathrm{P}_{\mathbf{3}}(51)\) & \(16743.448(3)\) & \(34638.66(2)\) & \(121(3)\) & 1.0 & 1.0 \\
\(\mathrm{R}_{\mathbf{3}}(49)\) & \(16794.898(3)\) & \(34638.66(2)\) & \(125(3)\) & 1.0 & 1.0 \\
\(\mathrm{P}_{\mathbf{2}}(51)\) & \(16753.500(3)\) & \(34648.72(2)\) & \(93(3)\) & \(0.520(30)\) & \(0.65(10)\) \\
\(\mathbf{R}_{2}(49)\) & \(16804.947(3)\) & \(34648.71(2)\) & \(91(3)\) & \(0.490(25)\) & \(060(9)\) \\
\(\mathrm{P}_{\mathbf{1}}(51)\) & \(16754.467(3)\) & \(34649.68(2)\) & \(54(6)\) & \(0.200(10)\) & \(0.17(3)\) \\
\(\mathbf{R}_{\mathbf{1}}(49)\) & \(1.6805 .937(6)\) & \(34649.70(2)\) & \(\delta\) & \(\delta\) & \(\delta\) \\
\hline
\end{tabular}
a) Transitions are labelled as \(\mathrm{P}_{j}(J+1)\) and \(\mathrm{R}_{j}(J-1)\) where \(J\) is the \(\mathrm{C}^{1} \Sigma^{+}(v=3)\) rotational quantum number and \(/\) is a relative energy index. \(j=3\) corresponds to main line transitions which were assigned as such on the basis of their intensities and widths.
b) See ref. [8]. Term values are relative to \({ }^{138} \mathrm{Ba}^{16} \mathrm{OX}^{1} \Sigma^{+}\left(v^{\prime \prime}=0, J^{\prime \prime}=0\right)\) and are less precise than the corresponding transition frequencies owing to less precise measurements of the intermediate \(A^{1} \Sigma^{+}\)levels [6]. The difference between main and exira term values is nonetheless precise to \(\pm 0.004 \mathrm{~cm}^{-1}\).
c) \(\delta\) denotes a blended line from which accurate intensity and width measurements could not be made.
d) See text for definition. \(W\) is determined from linewidths after correcting for residual broadening and should be identical to the intensity ratio in the preceding column.
line width, the \(\mathrm{A}^{1} \Sigma^{+}\)and \(\mathrm{C}^{1} \Sigma^{+}\)spontaneous radiation lifetimes, collisions of BaO with Ar [14], laser power, interference between two-photon (Ramantype) excitation via a virtual level and step-wise (resulting in population of \(\mathrm{A}^{1} \Sigma^{+}\)) transition probabilities \([15,16]\). Here, the radiative lifetimes of intermediate, perturbed, and perturbing states are long compared with the light induced (Rabi) oscillation period:
\(\tau_{\mathrm{rad}} \gg h / \mu E\).
Thus the observed line shapes are dominated by saturation broadening and interference between twophoton and step-wise transition amplitudes [15,16]. The latter effect is only weakly power dependent [15] and is neglected. Pressure broadening, natural lifetime broadening, and finite laser width result in a power independent width of \(\approx 40 \mathrm{MHz}\) at 1 torr Ar.

As defined above, extra lines are partially forbidden transitions and, therefore, exhibit narrower line widths than their main line counterparts when stimulated by an intense, resonant, electromagnetic field (providing eq. (1) is satısfied) \({ }^{\ddagger}\). In this fashion sub-Doppler OODR provides a sensitive and unambiguous means by which extra lines can be identified as such.

Experimentally, two lines of equal intensity but with different widths will not be detected with equal sensitivity: the narrower, taller line is more easily observed. In the OODR excitation spectrum there are many lines. In addition to the direct man and extra transitions, lines result from collisional relaxation in the intermediate state [14]. These collisional satellite lines are significantly broader (from 0.2 to 1 GHz) than the direct transitions owing to partial velocity randomization upon relaxation [14]. Comparing a weak extra line \((\Delta v \approx 60 \mathrm{MHz}\), see table 1) with a collisional satellite (\(\Delta \nu \approx 300 \mathrm{MHz}\)) of equal integrated intensity, the extra line is necessanly five times higher and is thus more readily detected and imme-

\footnotetext{
\({ }^{4}\) Kamınsky et al. [5] report broader lines at a perturbation in \(\mathrm{Na}_{2} \mathrm{~A}^{1} \Sigma_{\mathrm{u}}^{+}\left(v^{\prime}=22, J^{\prime}=14\right)\) in a similar sub-Doppler experiment the perturbed line width observed was 500 MHz while other comparable line widths ranged from 60 to 150 MHz . This is clearly a case where eq. (1) is not satisfied for the perturbing state which is most hikely predissociated and short-lived so that the observed width in this case is a measure of the accidental predissociation lifetime \(\tau \approx 4.5 \times 10^{-10} \mathrm{~s}\).
}
diately recognized as an extra line (see fig. 2).
Theoretically, extra line widths and intensities may be understood in terms of the perturbation induced mixing of basis functions. If the upper state is perturbed but the lower state is not,
\(\left|U_{j}\right\rangle=\sum_{i=1}^{m} c_{i j}\left|x_{l}\right\rangle\),
\(\left\langle U_{j}\right| \mu|L\rangle=\sum_{i=1}^{m} c_{i j}\left\langle\chi_{i}\right| \mu|L\rangle\),
where \(\left|U_{j}\right\rangle\) is the \(j\) th upper eigenstate written as a linear combination of \(m\left|\chi_{l}\right\rangle\) basis functions as prescribed by the \(c_{i j}\) mixing coefficients. \(|L\rangle\) is the lower eigenstate. If all \(\left\langle\chi_{l}\right| \mu|L\rangle=0\) except for \(i=3(i=3\) is chosen for reasons given in table 1),
\(\left\langle U_{j}\right| \mu|L\rangle=c_{3_{j}}\left\langle\chi_{3}\right| \mu|L\rangle\).
\(\left|\chi_{3}\right\rangle\) is the perturbed (main) basis state; all other \(\left|x_{i \neq 3}\right\rangle\) 's are perturbing (extra) states. The \(j\) th extra to main power broadened line width ratio is simply given by:
\(\Delta \nu_{j}^{\mathrm{p}} / \Delta \nu_{3}^{\mathrm{p}}=\left|c_{3}\right| / / c_{33} \mid\).
Similarly, the ratio of the integrated line intensities, proportional to \(\left.\left|\left\langle U_{j}\right| \mu\right| L\right\rangle\left.\right|^{2}\) is given by:
\(I_{j} / I_{3}=\left(\left|\left|c_{3_{j}}\right| /\left|c_{33}\right|\right)^{2}=\left(\Delta \nu_{j}^{\mathrm{p}} / \Delta \nu_{3}^{\mathrm{p}}\right)^{2}\right.\).
Perturbations in \(\mathrm{BaO} \mathrm{C}^{1} \Sigma^{+}(v=3)\) are considered. Four extra lines are observed at \(J^{\prime}=50\) in both \(\mathrm{P}(\Delta J=\) \(-1)\) and \(\mathrm{R}(\Delta J=+1)\) branches for excitation into the \(\mathrm{C}^{1} \Sigma^{+}(v=3)\) level. Each extra line observed in the P branch is verified by finding the corresponding line in the R branch with comparable intensity and width and identical term energy (see table 1). At least three different perturbing vibronic levels are needed to account for the positions and intensities of main and extra lines [8]. Fig. 2 illustrates the variation in intensities and widths of P branch main and extra transitions; table 1 summarizes the observations.

Because of the residual \(\approx 40 \mathrm{MHz}\) pressure and Doppler width, the simple relationship between line width and intensity ratios [eq. (5)] is not valid for weak, narrow extra lines. The observed line widths are approximated by:
\[
\begin{equation*}
\Delta \nu_{j}=c_{3 j} \Delta \nu_{3}^{\mathrm{p}} / c_{33}+\Delta \nu^{\mathrm{r}}, \tag{6}
\end{equation*}
\]
where \(\Delta v_{j}\) is the total observed line width for transitions into the \(j\) th eigenstate and \(\Delta \nu^{\mathrm{r}}\) is the residual line width which is assumed constant for all basis states.

To compare line width and line intensity ratios, it is necessary to correct for residual power-independent broadening. \(\Delta \nu^{\mathrm{r}}\) could be subtracted from both \(\Delta \nu_{j}\) and \(\Delta \nu_{3}\); however, when \(\Delta \nu_{j} \approx \Delta \nu^{r}\) the error associated with their difference is approximately twice the magnitude of this difference. A more precise measure of the mixing coefficient ratio is obtained from the empirical quantity \(W\) :
\(W \equiv 1-\left(\Delta \nu_{3}-\Delta \nu_{j}\right) /\left(\Delta \nu_{3}-\Delta \nu^{r}\right)\),
where \(W \approx\left(I_{j} / I_{3}\right)^{1 / 2} \approx\left|c_{3 j} / c_{33}\right| . W\) and \(\left(I_{j} / I_{3}\right)^{1 / 2}\)
(table 1) agree within the relatively large experimental errors. As the ratio of \(c_{3 j}\) to \(c_{33}\) approaches zero, the perturbation mixing and resultant extra line intensity become weak. However, extra lines are nonetheless sensitively detected because of their unusual narrowness and height. As the \(c_{3 j}\) to \(c_{33}\) ratio approaches unity, main and extra lines become indistingurshable.

If any of the \(\left\langle\chi_{J \neq 3}\right| \mu|L\rangle\) matrix elements assumed zero in eq. (3) are non-negligible, the relationship between mixing coefficients and intensities becomes more complicated: quantum mechanical interference between the different transition moments can be expected.

Because of large experimental errors associated with measuring widths and intensities, these quantities provide little precise quantitative information about perturbation mixing coefficients. This is of no consequence, however, because mixing coefficients are best determined from level shifts. Extra and main line transition frequencies to only \(0.1 \mathrm{~cm}^{-1}\) are sufficient to more accurately determine interaction matrix elements and mixing coefficients than linewidth or radiative lifetime measurements; the lines reported in table 1 are measured with precision of \(3 \times 10^{-3}\) \(\mathrm{cm}^{-1}\). The sub-Doppler width of OODR extra lines
not only facilitates their detection and assignment but also enlances the precision of subsequent frequency measurements.

The experimental assistance of Dr. Roger Bacis and the expert instruction on the use of the CR599-21 dye laser by Mr. Warren Weintraub are gratefully acknowledged. This work was supported in part by grants from the National Science Foundation (CHE7505959) and the Air Force Office of Scientific Reseàrch (AFOSR-76-3056).

\section*{References}
[1] M.D. Danyluk and G.W. King, Chem. Phys. Letters 43 (1976) \(1 ; 44\) (1976) 440; Chem. Phys. 22 (1977) 59.
[2] D.L. Rousseau and P.F. Willams, Phys. Rev. Letters 33 (1974) 1368.
[3] R.H. Barnes, C.E. Moeller, J.F. Kırcher and C.M. Verber. Appl. Phys. Letters 24 (1974) 610.
[4] R.W. Field, G.A. Capelle and M.A. Revelli, J. Chem. Phys. 63 (1975) 3228.
[5] M.E. Kaminsky, R.T. Hawkıns, F.V. Kowalskı and A.L. Schawlow, Phys. Rev. Letters 36 (1976) 671.
[6] A. Lagerqvist, E. Lind and R.F. Barrow, Proc. Phys. Soc (London) A63 (1950) 1132.
[7] R.A. Gottscho, J.B. Koffend, R.W. Field and J.R. Lombardi, J. Chem. Phys. 68 (1978), to be published
[8] R.A. Gottscho and J.G. Pruett, in preparation.
[9] J.G. Pruett and A. Torres-Filho, 32nd Symposium on Molecular Spectroscopy, Columbus, Ohio, 1977 (1977)
[10] J.B. West, R.S. Bradford Jr., J.D. Eversole and C.R. Jones, Rev. Scl. Instr. 46 (1975) 164.
[11] W.D. Phillhps and D. Pritchard, Phys. Rev. Letters 33 (1974) 1254.
[12] J.L. Kinsey, J. Chem. Phys. 66 (1977) 2560.
[13] S.M. Freund, J.W.C. Johns, A.R.W. McKellar and T. Oh. J. Chem. Phys. 59 (1973) 3445.
[14] R.A. Gottscho, R.W. Field and R. Bacis, to be published
[15] I.M. Beterov, Yu.A. Matyugın and V.P. Chebotaev, Zh. Eksperım. i Teor. Fiz. 64 (1973) 1495 [English transl Soviet Phys. JETP 37 (1973) 756].
[16] M.S. Feld, Fundamental and Applied Laser Physics, Procecdings of the Esfahan Symposium, August 29 September 5, 1971, eds. M.S. Feld, A. Javan and N. Kurnit (Wiley, New York, 1973) p. 369.```

[^0]: \dagger^{\dagger} An alternative to band by band fitting is to fit all bands simultaneously. Athénour has developed an algorithm for this global fit approach which does not used a prohibitive amount of computer storage. 33

[^1]: ${ }^{\dagger}$ Alternatively, beam splitter 5 in Fig. 3.2 could be eliminated and the lasers crossed via lens 2; the same S/N results.

[^2]: FIGURE 3.5

[^3]: ${ }^{\dagger}$ In addition to perturbations resulting from lower level interactions (Section III.B.)

[^4]: $\mathrm{a}_{\text {See }}$ footnote a in Table 3.5

[^5]: †Calculated from the head position given in Table 3.1 and assuming the head-origin separation to be negligible

[^6]: ${ }^{\dagger}$ Only three states may homogeneously perturb $\mathrm{C}^{1} \Sigma^{+}$in first order: ${ }^{1} \Sigma^{+},{ }^{3} \Pi_{0}$, and ${ }^{3} \Sigma^{-}$. It is conceivable that c could have ${ }^{1} \Sigma^{+}$character but somewhat surprising that it would have no oscillator strength to the $A^{1} \Sigma^{+}$or $\mathrm{X}^{1} \Sigma^{+}$states; moreover; ${ }^{1} \Sigma^{+} \sim^{1} \Sigma^{+}$mixing cannot explain $C^{1} \Sigma^{+} \rightarrow a^{3} \Sigma^{+}$and $b^{3} \Pi_{0}$ emission. Similarly, $3^{3} \Sigma^{-}{ }^{1} \Sigma^{+}$mixing cannot account for this emission intensity since ${ }^{3} \Sigma^{-} \sim^{3} \Sigma^{+}$electric dipole transitions are forbidden 32 . In addition ${ }^{3} \Sigma^{-} \sim{ }^{1} \Sigma^{+}$perturbations should exhibit two crossings for each pair of interacting vibrational levels (for a near Hund's case 'b' ${ }^{3} \Sigma^{-}$state) 37 whereas the data do not provide conclusive evidence of multiple crossings: in $\mathrm{v}^{*}=2$, the $1 \sim 3$ and 1 ~ 4 interactions could correspond to the two e parity 36 components of ${ }^{3} \Sigma^{-}$but the $1 \sim 3$ interaction is ~ 5 times stronger than the $1 \sim 4$ interaction, contrary to expectations. 37 Evidence for such a multiple crossing is not observed in $\mathrm{v}^{*}=1$ (Fig. 3.7) $\cdot 3_{3}^{3} \pi_{0} \sim^{1} \Sigma^{+}$ mixing accounts for all observations: ${ }^{3} \Pi_{0} \rightarrow b^{3} \Pi_{0}{ }_{0}$ and $a^{3} \Sigma^{+}$emission is allowed and only one homogeneous interaction is expected for a Hund's case 'a' ${ }^{3}$ I state. It is plausible, therefore, that the c state has ${ }^{3}$ II o symmetry.

[^7]: $\mathrm{a}_{\text {See }}$ footnote a, Table 3.10

[^8]: ${ }^{+}{ }_{\nu 0}$

[^9]: ${ }^{\dagger} J^{\prime}$ is $C^{1} \Sigma^{+}$rotational quantum number.

[^10]: ${ }^{\dagger} J^{\prime}$ is $C^{1} \sum^{+}$rotational quantum number.
 *Blended or otherwise degraded line. See text for discussion of precision.

[^11]: †t is possible to determine this by examining emission from both J^{*} and $J^{*}+2$ where the term values for all three of the ${ }^{3} \Sigma^{+}$sub-levels for $N=J^{*}+1$ can be unambiguously measured and assigned: P-form emission from J^{*} populates the $J=J^{*}$ (f parity) and $J=J^{*}+1$ (e parity) sub-levels of the $N=J *+1{ }^{3} \Sigma^{+}$level; R-form emission from $J^{*}+2$ populates the $J=J^{*}+1$ (e parity) and $J=J^{*}+2$ (f parity) sub-levels of the same $N=J^{*}+1$ level.

[^12]: $\dagger_{\text {The weights }}$ are $1 / \delta_{i}^{2}$ where δ_{i} is the experimental error associated with the ith datum.

[^13]: $\mathrm{a}_{1}, \mathrm{~F}_{2}$, and F_{3} refer to levels with $\mathrm{J}=\mathrm{N}+1, \mathrm{~N}$, and $\mathrm{N}-1$, respectively. ${ }^{32}$
 *Blended or otherwise degraded line. See text for discussion of precision.

[^14]: ${ }^{\dagger}$ Four lines from Ref. 8 could not be fit and were excluded: $R(77)$ in $A^{1} \Sigma^{+}-X^{1} \Sigma^{+}(1,1)$ was $0.7 \mathrm{~cm}^{-1}$ too low, R_{e} (61) and $\mathrm{Pe}_{\mathrm{e}}(63)$ (extra lines) in $(3,0)$ were both $0.4 \mathrm{~cm}^{-1}$ too low, and $R(96)$ in $(4,0)$ was $0.6 \mathrm{~cm}^{-1}$ too high.

[^15]: a_{J} value at which unperturbed levels would be degenerate.
 ${ }^{\mathrm{b}}$ Defined in Table 3.25. Uncertainties in parentheses are lo estimates.
 $C_{A^{1} \Sigma^{+}}-\mathrm{X}^{1} \Sigma^{+}$transitions from Ref. 8 and MODR data from Ref. 19 were used.

[^16]: ${ }^{a_{\text {See }}}$ footnote a in Table 3.26 .
 $\mathrm{b}_{\text {See }}$ footnote b in Table 3.26 .
 ${ }^{c_{\text {See }}}$ footnote c in Table 3.26 .
 $d_{\text {An }}$ additional interaction parameter, which is multiplied by $x^{3 / 2}$ (see Table 3.25), was determined to be $-9.3 \pm 0.3 \times 10^{-6} \mathrm{~cm}^{-1}$.

[^17]: $\mathrm{a}_{\text {See }}$ footnote a in Table 3.26 .
 $\mathrm{b}_{\text {See }}$ footnote b in Table 3.26 .
 ${ }^{C_{J}}{ }$ values in parentheses are extrapolated values.

[^18]: ${ }^{+} \gamma_{a_{b}{ }^{3} I}^{m a y} \sim a^{3} \Sigma^{+}$rotation-electronic interactions.

[^19]: ${ }^{\dagger} G\left(v_{A}{ }^{\prime}\right)$ values from Ref. 11 are given uncertainties twice those quoted, for band heads, rather than origins, were measured. In addition it is necessary to adjust these energies to the deperturbed values by subtracting the difference between v_{0} from Ref. 11 and the deperturbed v_{0} determined here. The difference of $80 \mathrm{~cm}^{-1}$ results from repulsion of A^{11} II by $b^{3} \Pi_{1}$.

[^20]: ${ }^{\dagger}$ The $\mathrm{a}^{3} \Sigma^{+} \sim \mathrm{b}^{3} \Pi \mathrm{a}_{+}$and b parameters are not considered since they are poorly determined for only two pairs of interacting levels.

[^21]: ${ }^{\dagger}$ All wavelengths quoted in this chapter are in air at room temperature.

[^22]: †All energies in this chapter are referenced to $\mathrm{X}^{1} \Sigma^{+} \mathrm{v} "=\mathrm{J}=0$.

[^23]: $\dagger_{\text {This }}$ unconventional choice of $+\hat{x}$ for the laser propagation direction results from the choice of \hat{z} for pump laser polarization which simplifies subsequent calculations in this chapter and in Chapter 6.

[^24]: ${ }^{\dagger}$ Reaction is used here in a general sense and need not imply chemical rearrangement.

[^25]: \dagger The maximum rotational energy change observed, $\mathrm{J}=15 \rightarrow$ $J=30$, is ~ 0.5 kT .

[^26]: ${ }^{\dagger}$ If the energy dependence of ψ is neglected, selecting molecules with $v_{1 x} \neq 0$ provides the same information as $v_{1 x}=0$ selection.

[^27]: ${ }^{\dagger}$ If laser frequency is tuned smoothly, the Fabry-Perot transmission intensity is proportional to laser power.

[^28]: † Using M.I.T. Information Processing Center library routines LSMARQ and LSMERR.

[^29]: ${ }^{\dagger}$ MIT IPC library routine FOURT.

[^30]: ${ }^{\dagger}$ A 1σ error of 3 MHz in $\left\langle\left\langle\delta \nu_{1}\right\rangle\right\rangle_{0}$ is estimated from the spread of red and blue average shifts in Table 5.1 and gives the uncertainties quoted in Eq. 5.31.

[^31]: ${ }^{a_{\text {See }}}$ Table 5.2 footnote a.
 ${ }^{\mathrm{b}} \mathrm{C}^{1} \Sigma^{+} \rightarrow \mathrm{X}^{1}{ }^{+}{ }^{+} \mathrm{P}$ and R branch fluorescence was not resolved.
 ${ }^{C}$ Valid for P or R branch pumping.

[^32]: ${ }^{\dagger}$ Because of blending in the bandhead, populations for $J=5,6$, and 7 , necessary to determine the $T(\Delta J)$ in Table 5.6 for $J_{0}=0$ (see Sec. II.C.2), were interpolated.

[^33]: ${ }^{a}$ Defined by Eq. 5.24. See text for discussion of error estimates.
 $\mathrm{b}_{\text {Population }}$ ratios from Table 5.4 are given in parentheses.

[^34]: ${ }^{\dagger} \mathrm{BaO} \sim \mathrm{BaO}$ and $\mathrm{BaO} \sim \mathrm{Ba}$ collisions are neglected since no variation in intensity ratios was observed with oven current.

[^35]: ${ }^{\dagger}$ The Brewster angle window 18 ordinarily used to permit entry into the reactor with minimal reflection losses is replaced in these experiments by a flat, normal incidence, window in order to minimize depolarization of the lasers at this point.

[^36]: \dagger See Chapter 5 for conversion of rate constants from torr ${ }^{-1} \mathrm{sec}^{-1}$ to $\mathrm{cm}^{3} \mathrm{sec}^{-1}$ to cross sections in \AA^{2}.

[^37]: ${ }^{\mathrm{a}}$ Extra lines may be recognized by left superscripts denoting change in N .

