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ON THE SECONDARY MOTION INDUCED BY OSCILLATIONS IN A SHEAR FLOW

SECTION 1 INTRODUCTION

One of the most basic and challenging problems in fluld

mechanics is to obtain an understanding of the various physi-

cal mechanisms involved during the transition from laminar to

turbulent flow, It could be called the missing link between

the two regimes of fluid motion, This problem has been sub-

ject to a great deal of theoretical and experimental rssearch.

sspeclally over the last decade, and considerable progress

has been made to bridge the gap. However, there remains a

vast amount of work still to be done before our knowledge of

the tran ition phenomenon 1s complete. One may anticipate

that the final answer will include many simultaneous effects.

In order to study the breakdown or laminar flow 1t is

necesaerv to follow the growtn of a disturbance superposed on

the hasic flow. If this disturbance is of very small ampli-

tude the equations can be linearized and one can develop the

so called linear theory of hydrodynamic stability. T ©

theory has been investigated in great detail and a survew cf

the subject is given in the monograph by Lin [1]. There can

be no doubt that the initial trend of a small disturbance

will be adeouately described by the results of the linearized



theory. Indeed there 1s now ample experimental evidence to

support this fact [2|. However as the oscillation grows the

non linear terms In the equations become important, and must

be included in the investigation.

It has long been recognized that the inclusion of the

non linear terms adds two important new features to the pro-

blem. Firstly there 1s the effect of the Reynolds stresses

in producing a redistribution of momentum and so a distortion

of the original velocity profile, and secondly the excitation

of higher harmonics of the original oscillation. For finite

amplitude oscillations the modification of the basic flow

through the action of the Reynolds stresses can be quite

appreciable, and this will in turn modify the rate of ex-

traction of energy from the mean flow to the disturbance, and

so the rate of growth of the disturbance. Meksyn and Stuart

El have calculated these modifications for tne case of flow

between parallel plates, and also gave some calculations

showing that the production of higher harmonics plays a less

important role. Their results show that an increase in the

amplitude of the os~i1llation produces a lower eritical Rey-

nolds number, More recently Stuart [4] has given a somewhat

simpler analysis based on energy methods and has obtained

good agreement with experiment for the case of flow between

rotating circular cylinders. Both these discussions consider

only two dimensional disturbances and for the case of channel



flow the modified flow profile does not show a higher veloci-

ty gradient near the wall which might be anticipated for a

"more turbulent flow." The importance of the critical layer

region as the "weak spot" of instability hus been Stressed

by Lin [5]. He has shown that for disturbances in a paral-

lel flow all the harmonic components of the oscillation

simultaneously become important around the critical layer,

before the amplitude of the fundamental is large enough to

cause any significant distortion of the mean flow.

Tha gearch for a suitable mechanism to describe the

onsat of turbulence has aroused much interest. Several very

plausible theories have been proposed and all possess some

element of truth, although no single one appears to be the

complete answer. Landaul's concept [6] of successive instabi-

lities seems intuitively very reasonable, and enables one to

picture the appearance of additional modes of oscillation

corresponding to a sequence of critical Reynolds numbers.

Gortler and Witting [7] have proposed a theory, in line with

Lendau's conjecture, based on tne curvature of the stream-

lines causing a periodic vortex structure. There is experi-

mental evidence to support the existence of secondary vor-

tices although there has not been any definite confirmation

of the phase relationships involved.

" horseshoe vortex structure as the fundamental ele-

ment of transition has been proposed by Theordorson [8], who



also suggested that two dimensional disturbances are unimpor-

tant during transition. This latter conjecture is strongly

supported by the recent experiments of Schubauer, Klebanoff,

and Tidstrom, which we shall briefly discuss below [9] [10].

The presence of longitudinal vortices during transition

has been reported by many experimenters, These can be ob-

served using dye and china clay techniques [11] [12].

Mention must be made of the relative importance of two

and three dimensional disturbances. This 1s a current issue

that has attracted much attention. On the basis otf linea-

rized theory, Squire's result [13], namely that three dimen-

sional disturbances are equivalent to two dimensional ones

at a lower Reynolds number is applicaebie, and so to estimate

the onset of instabllity one need only consider two dimen-

sional disturbances, However, no such result can be expected

to hold for oscillations of finite amplitude. Indeed one

would strongly suspect that as turbulence is an essentially

three dimensional phenomenon there must be a stage during

development when the three dimensional disturbences tend to

dominate. Two dimensional theory cannot be expected to

suffices This simple observation suggests the obvious negse

81ty of a theoretical investigation of three dimensional

effects.

Recent experiments also point strongly to the desirabi-

lity of such an investigation. Notable among the vast array



of experiments probing the phenomena of transition is the

work of Schubauer, Klebanoif, and Tiastrom, at the National

Bureau of Standards. Most of their work has concerned boun-

dary layer transition on a flat plate. Perhaps the most

startling and significant fact revealed by these experiments

is the almost periodic spanwlse variation of intensity with

peaks and valleys occupying fixed positions forming streets

of high and low intensity. This periodic spanwise variation

causes a warping of the velocity profile, the turbulence

appearing to originate at these peaks and to spread Into the

valleys. More recently further experimental work on this

spanwise variation has been done and we shail have occasion

to refer to it at a later stage.

This brief introduction points to tne multitude of ef-

fects observed and predicted during trensition. If 1t serves

no other purpose at least it does pose the question as to

whether there 1s any advantage in a theoretical approach

which does not include all the non linear terms. The complete

solution of the non linear equations should automatically

include all of theses effects. A detailed theoretical con-

sideration of all the non linear terms has been advocated by

von Kedrmsn, and it is in this spirit that we have undertaken

the present preliminary investication.

Our task 1s now quite clear. We require to examine

finite amplitude disturbances paying special attention to



the three dimensional oscillations. It is to be stressed

that this will be done by setting up a systematic perturbsa=

tion from the linear theory, and tnat &amp; purely formal mathe-

matical approach 1s adopted, independent of empirical results.

It 1s difficult to give a detailed explanation of our

conclusions before the actual calculations have been made.

Therefore, at this stage only brief comment will be made on

the interpretation of the results, A detailed description

is given in Section V.

The quantity found to be of prime Importance 1s the

mean secondary vorticity in the downstream direction. One

term in this vorticity has a periodic spanwise variation and

produces a redistribution of momentum in planes perpendicular

to the direction of flow. It 1s this momentum exchange that

1s responsible for an alternate steepening and flattening of

the weloclty profile, causing a warping or crumbling effect

on the basic flow. Explicit formulas are obtained for the

rate of growth of t he second order mean motion. Superposed

on these secondary vortices there is tne vorticity of the

primary oscillation itself. This is perioaic in the down-

stream direction and so the two effects combined should pro-

duce alternately partial reinforcement and cancellation over

sach wave length.

The results obtalned are applicable to a general paral-

lel flow; but for illustrative purposes we have restricted



the detailed calculations to the case of a shear profile.

It 1s to be noted that although our interests are chiefly

with three dimensional disturbances we do not discount two

dimensional effects. The effects calculated by Meksyn and

Stuart are in fact included in our analysis. It is believed,

however, that in most situations tne spanwise profile dis-

tortion will be the more important mechanism during transi-

tion,



SECTION IT MATHEMATICAL FORMULATION

We now proceed to give the mathematical formulation on

which the subsequent calculations will be based. As mentioned

in Section I, the calculation of the second order vorticity

will play a key role in this development. To this purpose it

sould suffice to use the vorticity equation, namely,

OW: ys JW; dui LL dw;— + UU = = Ww, JUL =

ot ox Tox; Ro (2.1)

This will be given at the end of this section. But in order

to calculate the second order velocities 1t is convenient to

proceed directly from the equations of motion, together with

the continuity equation. That is,

du
0 Xk O,

OU; Ju: 3 &gt;.Yt 4+ Uy Ce — op 1. J Ut .
Jt ? 2% ox TR at

(2.2)

(9.3)

where we have supposed the fluid to be incompressible and all

juantitles are expressed in dimensionless torm.

We consider a basic flow U =U,ly), and wish to

trace the growth of a wave of small amplitude propagating in



the x direction and having a zz variation in its ampli

tude, that is standing waves in the spanwlse direction.

This is not the most general infinitesimal oscillation, as

a purely two dimensional component could be superposed. In

the present investigation this two dimensional component of

the primary oscillation is neglected and we consider only

the three dimensional effects. Some justification is de-

sirable in taking this apparently drastic step, and also it

is pertinent to add some qualitative remarks as to wnat the

additional characteristics would be if the two dimensional

component were not neglected. From a theoretical viewpoint

an investigation of purely three dimensional oscillations

will yield the effects that originate only with these dis-

turbances. Of course in the practical situation these ef-

fects must be present to some degree for undoubtedly there

will always be some spanwise irregularity in the amplitude

of the oscillation, The question then arises as to which

component will be dominant as transition is approached. We

believe that the three dimensional wave is the more Impor-

tant one. There 1s strong experimental support for this

conjecture. Schubauer and Klebanorf in their experimental

reports say that transition never occurs without first being

preceded by a strong warping of the wave, Near the point of

breakdown of the linear theory and the onset of finite ame

plitude effects a typical ratio for the amplitudes of the



y &gt;A

two and three dimensional waves would appear to be about z

What modifications are to be expected if the two dimen-

sional component of the primary oscillation is not neglected?

Firstly there will be the purely two dimensional effects,

namely a spanwise independent distortion of tne basic flow

and the generation of higher narmonics, exactly as calculated

by Stuart. Also present will be second oraer interactions

of the two and three dimensional osciilations. The latter

will produce two components, the first being of high fre-

quency and the second of a quasi steaay nature. These inter

action effects can be expected to be more important than the

purely two dimensional ones; but neither should be comparable

to the dominating three dimensional disturbances,

Let a and 3 be dimensionless wave numbers associated

wit the x and z directions, these being the downstream

and spanwise directions respectively. Limiting curselves to

i primary oscillation having a sinusoidal spanwise variestion

of amplitude, we may assume the velocity components and the

pressure to be of the form,

Vv oe, \, 2 t) —_— v ( J, zt) + 2. [v0 a - oy. &amp; ors 2

SF)
2 [U (4.0) + Uh ne (2.4)



Fg

V(x,uzt) = V (y,zt) + &gt; [ype VY 2 cos chz

oe : ¢ {rox"2 Viste Noe | 2.5)

wixy,z, t= wiyzt) + 7[Wp WE sinh, (2.6

oo? ,

plxy,zl= plyyz, tl + 2 [Fh De + Pye" aschz. @.7

An asterisk has been used to denote a complex conjugate.

and the term of zeroth order in P (xu,zf) is taken to be

the prescribed external pressure p,(x). Bars denote mean

values taken with respect to x. Superscripts relate to the

order cf thes harmonic involved and subscripts to the orders

of magnitude of the various quuntities, Therefore if q i=

taken as a scale reprec~ntative of the amplitude of the dis-

turbance, we have,

Vuk) = of orb) + du g0) +

)

UV (y0= oa U Ag. Y NG |"RE .

1.9!

2.9)



1 +
Tam

If the terms of order @ and higher are neglected

we have the usual linear theory. As thls analysis is of an

exploratory nature we shall neglect terms of order a’ and

higher. In a complete investigation it would be necrrcaary

to include all the higher order terms, This would enable us

to trace the growth of a disturbance tnrough to fully de-

veloped turbulence. However, the analysis would be greatly

complicated by the inclusion of these higher order terms

and we shall therefore be content to work to this approxi-

mation,

Having set this limitation it is now desirable to drop

the superscripts and revert to a less cunbersoms notation,

Anticipating the z dependence, we write,

0(4,2Y) = uly) + a{Ug y, Neos 262 ryt) + Ofa*), (2.10)

v(y,z2t) =

Wlyzt) =

 (Vly)eosdfz +volyt)) +O"), @.u)

of \Walyf)sin2fz + Wely;t) +04, @.2)

P \xy,z,Y) = Po) + | aly eos + ply) + Ota"), 2.13)



vy) = aylyf) + O(a?)

v'gt = avy) + Ofa?),

wyt) = 0 W \ (yt) + 0(a?)

uf) = ap(yt) +0,

J (4,0) — dV,(yt) +0 (a¥),

Flytl= a valyt) +0",

N48) = @w,lyt) + Ow"),

Pgtl= ap, (yt) + 0(a%),

J (4,t) ol2 ly t) + 0 @*)

Vlyb) = a \ 2 ly.b) 4 0 (a*)

(2,14)

91%)

(2.16)

2,17)

92 18)

(2. 10)

2.20)

9.91)

9 29)

2.23)
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[f the assumed forms for uv, Vv, w,p are now substl-

tuted into the equations (2.2) and (2.3) we obtain sets of

partial differential equations for the determination of the

various functions. In a given physical situation there

would also be corresponding sets of initial and boundary

sonditions. The substitution is perfectly straight forward.

but tedious, and is therefore omitted. The results yleld,

J = dp, LLdo,
dv Rody? (2.2)

0,+2weVa3
oY, NIRV o) A : Wi Y, =Ng lu a +2 (wo HW) le,
N ‘ fy _uyt J * » wri ‘

2h ily, uve) * 4a 0) + Bw v) — 3 + Fk,
\(9 9c

Ie ri wat wiu) ty el wig) yp — 2s. % (Eh,



Vo =

nO

 hd rds le) (wt onto) = 10
R ap’

in gf

N . ’, * * _ AY ws a) b LovNe ilu ot) wif (vat) [vont] 2 R 5

OWe
Jt

L dW
R dy"

0,Aw,4+OV,
TNU,Le

s( 7

; LE. Ju,OV, + (&amp;(UgV, + VN, duo = “hr ¢ f }Xt dy

Mae

2 HUN,

OW, \
5 +x U, W,

= 0p LL

2rl.

 fo liRr 4h) W



»

| J)24 2+ d5W+ 4 0 ecu,Ric

9, +Tietv tory? :
 Uy +i! vido, 4 ly dn = ~Jiocp + LI

ot 2 i dy + p] oy tq Bo, WwW, / xP, lif) v, .

OV, : . V, a) ! t 2

5 + Qian, A + ju + 4h, 5 Ri)
(1.98

aw :
St. £ iecUyw, + tru Waad FAV, OW, A ? org = Und bgRoy h-hh),

0,oeU,ioe

J Loc — In ;u + diet, ad + pugs - dow, =k lr )U,
\ (9.90)

t 2 —— R 2” py N, .



The set of equations (2.27) are the familiar ones of

the linear theory, and the sets (2.28) snd (2.29) are those

determining the induced second harmonics, one of these being

purely two dimensional, The sets of equations (2.25) and

(2426) decide the way in which the non linear terms will

distort the original velocity profile. The velocity com-

ponents U,,Vy, Wy involved in (2.26) result in a purely

two dimensional distortion; but are induced by the threes

dimensional primary oscillation. This is a slightly more

general effect than that considered by Stuart. His analysis

would correspond essentially to the case 5-0. Our interest

centres on the three dimensional distortions determined by

the functions U, Va, Wa, in the set (l.25). These

modifications to the velocity profile will be sinusoidal in

Z and 1t might be anticipated that they will cause &amp; span-

wise periodic steepening and flattening of the original

velocity profile. It 1s this three dimensional “erumbling

effect” that we now investigate.

For this purpose it is convenient to use the mean

rorticity components  (€ aS) where .

2 - 2) 2d 23 dT )&amp; XT

x 5) [3-3 , 98 _ os, w-E) (9.30)
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Thus we have,

-—

£ —=&gt;

Mh =

a’ |. inh: +E) + Oa),

a’ Mh,sin2lz ' hy) ¥ 0 (a*) s (2.31)

S = ly,i + Q (Scos2h ¥ 3) + 0fay.

where on re’ wh 2 so equations (2.10) (2.11) and (2.12),

cE = 2% + 28. : Mo =-24u. ; Sa = - : (2.32)

bEo = 5b 4
Vo- 4. 5, =0My= (2.33)

« 2quation governing £ 13 determined

by eliminating p, from the set (1.25). We find.

iL, + BA [wy x wn oly &amp; AB) vr FTW,

= a \B-hlE (2.34)



This last equation (and two similar ones) can, 8s we re-

marked earlier, be obtained from the vorticity equation

(2.1) on taking averages in X. In fact a very much more

general form can be obtained without approximation, or

assumption on the spanwise dependence of the oscillation.

If u',v' wW', are the components of the oscillation 1t

Is ee? - yr" "fed that,

t\— [= Th 2 7\ — _

loE Bm plJEa
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SECTICN III CALCULATION OF DISTORTION EFFECTS AT

HIGH REYNOLDS NUMBERS

For flows at high Reynolds numbers the velcelty field

will conform to the inviscid equations as a first approxi=-

mation, except within the critical layer reglon, where

viscous corrections would be needed. A discussion of the

subtleties involved in this limiting process can be found

In Chepter 8 of Reference [lL]. Indeed the inviscid limit

is justifiable for the case of amplified disturbances and

for neutral disturbances as a limiting case. If the com=-

plex wave velocity is &lt; = c. ric: , then C. represents

the wave speed, and ¢.20 implies amplified, neutral,

or damped disturbances respectively It 1s convenient to

Introduce the amplitude functions for the primary oscilla-

tions; these are denoted by a circumflex. Thus,

u, (yt) = Sy) eet and similarly for v, W,, and Pi.
In studying the growth or decay of an oscillation we

are interested in the case when cc. 1s close to zero.

For the case of large Reynolds numbers we can find quite

simple explicit formulas for the rates of growth of the

second order velocity modifications. For this purpose it

1s convenient to rewrite equations (2.25) and (2.34).

Dropping the viscous terms we have,

A3 «28 w, = 3.1)



21

£.2 Av.4+ (3.2)

38, § eat
 + Lye 0, 12.3)

ou,= ude Ng = O 2,4)

where, fq =f: Arenal + Lp Ay. 25)

A)

and| A = ; (ddr Ard + 4 NT + Wo), 3. .

Irteqeafing (3,3) we have,

J n 2 ct ph

5. = Yaple ==) Cl),
ACC!

(3.7)



2

The form of the solution is so written that the limiting

case Cc. —=&gt;0 can be readily discussed, Clearly the

arbitrary function of integration gives the initial value

of E. which we may teke as zero for the purposes at hand.

We note in passing that a more general result would be

obtained if use were made of equation (2.35).

Using this result for E. the time dependence of the

velocity components can easily be found. The results are,

A 2k t) a 2eccik
00 = 8 J) [E71 ~2 l= , (29)2 (Qe) occ;

A etc;

No. = Vely) 2)
' y ’

A excl”
Ne = Waly) e —- g

Docc:

A Qucct

f= — Ka) |

€ —ce W =

3.0)

(3.10)

(3.1)

(3.12)



a

and, dw, L280 = =X— a = ay).

du
(3.13)

These equations clearly show that the second order

meen velocities (which are sinusoidal in z=) grow exponen-

tially in time, or in the case o1 neutral primary oscilla-

tions as powers of 1. Similar growth rates can be found

for the purely two dimensional distortions. The most ine

teresting feature of this analysis is that it snows that

the non linearity induces a second order mean vorticity

having a component £. in the downstream direction, It is

this mechanism which produces a spanwise periodic momentum

exchange and causes a periodic warping of the original

velocity profile.

In the case of neutral disturbances, which can be

properly treated in the limit as c¢, &gt;0 , we also get

a bulld up in the second order velocity and vorticity

components. Using, lim 2er | = and that
€20 \7 9 cc.

lim (&amp;_ | - 2eccit) +2
€i=0 (2c)? - 2

 3 sth - “apne.

J

Jo = — do, q t - r | va Lyt
No = Way) t ) le = - A) T -

we have for a neutral

Vo. =;
(yy



2)

Therefore, even for neutral disturbances the secondary

flow will build up and eventually dominate.

The above results can be applied to a quite general

parallel flow problem. A knowledge of the solutions based

on linearized theory 1s sufficient to obtain results for

the rate of distortion of the basic flow. It 1s convenient

to 11st these mean second order quantities for future

reference,

LA A xcl

voestfe = |- dod Enel] § (C1 adhI Que f 2c.

A Qc: | 94= AE — | Cos ,* sli | Qecc:

3.15)
Wg Stn 22 = [a Et) inthe2c

Cosithe=|Rothe9c:

Je now perform these calculations for the shear nrofile

U4)=tanhy. Such a calculation will shed considerable

light on the mechanism involved,
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SECTION IV APPLICATION TO THE CASE OF A SHEAR PROFILE

In thi3 section detailed calculations are given for

the cese of the shear profile Uw) = tanh y . Such a shear

flow can readily be approximated exnerimentally by mixing

two parallel streams, and so the theoretical predictions

should be cepable of direct confirmation. At the time of

performing these calculations no experimental results, for

a shear flow with special attention to spanwise variations.

appear to be avallable. Such experiments would be highly

desirable.

If the equations (2.27) for the primary oscillation

are rewritten in terms of amplitude functions, we have, on

neglecting the viscous terms,

. a

LY, + &amp; + AW, = O

A ~ CA

rue) G+ i i = —lerp,

Lx[Us -c) v, = — dp

dy

L&lt;{us -g )W, — ho,

(4.1)

(4.2)

{A

4 Me)



and 80 y €Li1mMinaTiL or

2

old AMG — ~=A), do1VeN, =0., (L.5)

hh
a

For Usly) =Tanhy we have a polnt oi. { ticxion at y=0,

and there is a neutral oscillation [ll] given by,

A

, = sechy 5 ote A= | 5 c =0 (4 fe|

In fact one can set up a&amp; regular perturbation in Cc, about

this solution, using the method of variation of constants

[1]. As our interest centres on the case c. small, we

shall content ourselves with the first term of thls pepr-

turvatlion.

1 complete solution or the iinear system corresponding
2

to the neutral oscillation with c=0, «x*f3'=1, 1s,

J, = | fcosechy — sechy fanh ) (4.7)
A

N, = sechu, yy {

A
W, = Beosech Y, 4.9,

; LX cech\ = sec .

7 4 Ly 0)



Jm

Tsing these solutions in equations (3.5) and (3.6) we find,

Kaly) = bd 1-8) coshy 47),
sinh 2y

(Lk.11)

nN

Yo) =0, (L412)

\z these equations have been obtained for an inviscid fluid.

and for large Reynolds numbers (which 1s the case under

sonsideration), they will be reliable solutions outside the

critical layer. The singularitles induced in J, , W,, and

2, at 4y=0, are artificlal ones in the sense that they

would not be present in any real fluid. On a closer exami-

nation the singularities are seen to urlise from the cross

wave component of the oscillation, and 1t can be remedied

by including the viscous terms, as we shall describe below.

Corresponding to the neutral oscillation J, = sechy,

the two dimensional component of this oscillation 1s given

by lec 0, + A, = sechy tanh y , However the eross

wave component 1s &amp; = Ab + iorwW, = LB sechy coth 4,
and has a pole at “4 = 0, The complete Tifferential

equation for p is obtained by taking a suitable combil-

nation from the set (2.27). It is,

jp: —{ioR fanhy + i] 8 =ARsech y, (h.13)



=1
a

Formally putting R infinite we have the inviscid

solution,

b = — 4 sects cothy.  hei,

It is well known that the critical layer has a thickness

of order (+R)? and it is within this region that the

solution @ will be modified by a boundary layer type

correction.

{ formal method of dealing with a homogeneous second

order differential equatlon, involving a large parameter

whose coefficient has a turning point, has been given by

Langer [15]. The extension to the non homogeneous prob-

lem is very simples We sketcn the method as it applies
2

to the problem at hand. For convenience we write x =;
A |

and first consider the general solution (§, of the homo-

ceneous equation:

i - [tanh r | 3, =. (14.15)

9

Let, wy) = | [Tamhy dy = took Foing =fur Trang [1 6

240 =x = (30), t.17)



- se
”

where

Qu = go" (101°

v4) = Qu) he),

oh + zh =0

4.19)

Le, 19)

4.20)

I\

A straightforward substitution then shows that ly satisfies

the equation,

o — [Xtarhy + q| Y = 0, (421)

= being regular and non zero in a neighborhood of y=0.

Equation (lj«21) 1s considered the approximating differential

equation for (4.15), and correct to order es we may

write 3 y= W
The solutions of equation (4.20) are the modified

Hankel functions of order one-third, h,) and h.@),

“here,

nd

x 0)

he = (32H Hy (22),

ne) =(52) Hla),

(t.22)

 Ly. 23)



Therefore as Gy) is a known function of vy , we can write

the general solution of equation (4.15) as,

3.1) =(Rhe +Rh0)Qu), [LQ4)

where 0, and ' are arbltrary constants,

Returning now to the non homogeneous problem the

solution Bu) 1s required to be zero at y=0, and to

approach the inviscid solution for «Ry lerge. An

application of the method of variation of constants

readily shows that this solution is,

By) = - BR Qigjseciy Liz),(&lt;R)} J Ue.25)

where L(z) is the Lommel function defined by,

N-

L (2) _ J (hip hy) - hb) bh) dt 4.20)

W (ha. hye]

W ha), ha) being the Wronskian of the functions

h tz) and Wh,lz). In the usual normalization for the Hankel

functions,

Whe) h.@) = = xi (3); (+27)



The Lommel function L ©) behaves like Z for

|=) large and sati-fies tne differential equation,

iL zl =] 14.48,

The method of obtaining the precise correction using

the Lommel function has been included for two reasons.

Firstly its use would be required in an exact treatment of

the problem, and secondly the form of the viscous modifica-

tion near y=0 1s apparent. Indeed, to obtain the most

important results of the subsequent analysis 1t is neces-

sary to consider only the form of the modified quantities.

Subscripts m will be used to denote quantities with the

viscous correction included. Clearly from equation (4.25)

the modified solution for Xo) will be of the form,

hme) = hay Ap), where y= Ep, (4.29)

and ¢&amp; 1s considered as a small parameter of order («RJ

Here lw), calculated on tne basis of an inviscid fluid,

has a pole of order three at y=0, and behaves like

eo ail for large |y| (see equation (4.11)). ho) 1s of
the nature of a boundary layer correction which is required

to have the following properties, Jn) is to be a regular

even monotone function of 4,, to have a zero of order at

least four at /4 =0 , and to tend to unity in a strong



sxponential manner as ‘Kh »&gt;c0. For the present, these are

the only properties assumed for ln).
We now calculate the second order velocitles induced

A

by the vorticity distribution SO defined above,

The differential equations to determine VmlY) , Wan 4)

are obtained from (3,12) and (3.13). These are,

ON 9 ApL nm =0Lot Aw

i r 4 Vm = ~%

(+30)

(4.31)

Therefore by elimination we have,

and

Ho pi, 249.af fo = 2%

Np = = An"TTY

(4.32)

(4.33)

Ye require the solution of (Le32), for y&gt;0, sub ject

to the conditions that Yon (0) =0, ana \,, ly) 0 a5

4 =) 00 Vm 9) and Wald) are detinea for Y &lt;0 as odd and



 »n ow
~

hk

even functions resr2cilvely, namely,

ly) = =m) 3 Waly) = Waly)
A

(4.3L)

It is to be noted in passing tnat the solution of (4.32)

with X.=0 gives two dimensional potential type solutions.

The solution of (4.32), satisfying the conditions at

infinity, can be written down in explicit rorm by the

method of variation of constants, We have,

\ YA

ld _ 0s, Kell) sinh 28 (y-L) dF,

Wake
1

A _28y 3a
Wimly) = — Ae - Yemlt) cosh{Bly-t) ar.

(4.35)

 4.36)

where both integrals spre ¢’

For Vv. ©) =0 . A 1s determined as,

1437)

and 5) A — A) Wn) .39)



A n

Using this value for the constant A Vm 4) and WW,()

can be rewritten in an alternative form, convenient for

small values of Y, namely,

a) = | DBsDd{sth(30

JA 00 A ft,
Wal = - | XH cosh 2B £) ir + il \_(0)&amp;" iH) ohh. (ke 40)

Approximate values for the constents A and Wm(0)

can be obtained in the following way.

X,&amp;) can be exnanded as a Laurent Serfos

nad L the form,

A

\ Go alH) - ky re
where for the case at nand.

1, = 141-287).

UL)

(He, 42)

Putting TT = = , and y = Bd : we huve from

squation (L¢37),

A QD

| - | : fof) |r) sinh) ir, (4. 43)



Ht

-,

and so,

h - kof L eyde + le). (be Le kt)

[n a similar way,

Nao] = is L, hr dy - a £00). (4.48)

Also from equation (4.29) using the sane transformation,

lly) = | £ Ye) hos Bn) _ [ekg shefn.
’ (Le, 4%)

and thus,

\ Wy

hg) = breed | =x) bo — had E Ndr + OU. (1
¢ J), T°? § J)

\ oo

Thus for 7“ large

Umly) —&gt; ~ haf \% de + 0). (1. 4g)
Therefore Vet) tends to a constant value of order

;  os we gpproech the outer edge of the critical laver.

On commons wins equations (L.bli) and (L.kB) it is seen that

it “&gt; this term that induces tno external potential moticn,

 2s
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This analysis shows very clearly the importance of the

critical layer, Although viscous forces are negligible

outside the small region y= ((¢§), Wwe see that they are

Indeed responsible for inducing a potential component to

the secondary motion, which 1s dominant far away from the

critical layer. This two dimensional potential flow in

the y-=z plane may be described as being due to a

source distribution at the critical layer of strength

a2) = «a, cos 24z per unit length. Here go=—a,

and H is given by equation (Lo.llt). This source distri

bution is of 0(4), and determines the direction of

the circulation at infinity.

For the purposes of calculation we have taken

OF |-e™ This 1s used in place of the exact viscous

correction, as given previously in terms of the Lommel

function. The previous analysis shows that the only pcs-

sible discrepancy that can arise from this assumption is

in the numericel values within the critical layer. No

qualitative disagreement can result, With this choice of

lin) , an integration by parts shows that,
nd 2

1nd

 Ll -eTdr=£1),

| L{1-e"dr = Tl).

(4, +4)

(4.50)



On using these results we have from equations (L.42),(L4.43)

and (L.h4lk),

N- 380-280 + 0, (4,51)

Nl) = - $8124 FOU), tsa

and so the final ex~—-~gions for the second order velo-

nities become,

A 2 A

Up, = - sech'y Ven ,

i fet
4

| 24 Beasklt-A85NahlyNi,(es

4.53)

i= Th | dllHleastt-BY — WF eodhfly dF, 59
Sin



These are convenient forms for Y large. Equations

(l4e29) and (lL.4O) are more suitable for y= Of).

It 1s to be noted that the Xx component of the secon-

dary vorticity -— X , Will change sign if A&gt; 7.

(and so xls gy )e We confine our attention to the case

A 2 3 : corresponding to fairly slow spanwise variations

of amplitude. This case seems more likely to fit the

prectical situation. If Va &gt;3 and the secondary vor-

ticity changes sign as Y increases, the physical picture

would have to be modified. It 1s to be remembered that

% is half the ratio of the wavelengths in the z and x

iirections respectively.

The numerical calculations have been performed for

the typlcal case A =3 . &amp; has been taken as £ corres-

ponding to K = o(10%) . A smaller 5 would merely confine

the rapid variations to a closer band near y=0, and Induce

a larger potential component for the externalflow. The

choice B=4 1s also convenient in that for vy &gt; £,

where we may take i) |, the integrals can be evaluated

by elementary methods. We have, (for y &gt;¢g

nls) == AE? «cog +n + Jy og anh, (4:50)

 ut = Re +4 cmey Qe) 3 - Seg gta], (es



Numerical integration methods with steps of Y = 0},

were used to calculate Vir ano Wor near y=0. The

resulting amplitude functions Un Um | and Won are shown

in Fig. 1, for Y &gt; 0. Om and VY, are odd,and Wo, is

an even function of 4 = It is to be remembered that the

actual second order velocities also have a periodic =

dependence and an exponential dependence on time (see

equation (3.15)).

Some clarification of the physical situation is ob-

tained by finding the projections in the yY-z plane of

the streamlines for the secondary flow. These are found

from,

ML
cosife Non 5103 4

| 2

On using equation (Le3J) we  Nn

(1.58)

Am= = feWzd=,

nnd so the st: 8 can ne ul”

[ 5nd = constany

ned rom the egusae Lion

I)

For the case A = % , £ = %, these streamlines are

shown in Figs 2. The actual streamlines will be, of

course, in the form of distecrted spirals.



He

Lastly we shall require the projections on the y-2

plene of the streamlines of tne primary oscillation. For

this purpose it is necessary to inciude &amp; viscous modifi-

¢ation for Noy) ] On assuming W,, = Beosechy gh) |

and recalculating x using equation (3,5) it is found

that taking q (#) = | — = gives good agreement

with X.. over the whole range or yy.

¥ith Wi. — §cosechy (| _ , the stream-

lines for the primary osci.

Oy
Jcosh z

"Jetion are found by solving,

JZ
A 3

Wi, sinfz
 Lr, 61)

Integrating we find,

iY 42 ctl litSin f= = sinfiz, A (4.62)

= Lwhere Z=12, wnen uy =0. For the case B=%,1=%,

these streamlines are shown in Fig. 3.
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SECTION V PHYSICAL INTERPRETATION OF THE RESULTS

In Sections II, III and IV, calculations have been

mede for the secondary velocities induced by oscillations

of finite amplitude. It 1s ciear that this mechanism in

which the secondary vorticity produces a spanwise redis-

Eribution of momentum will apply to non linear oscillations

in any parallel flow, although the phase relationships may

differ from case to case. Therefore in this discussion we

shall restrict ourselves to an interpretation in the case

of the shear profile for which detalied resuits were ob-

tained in Section IV.

For the x independent secondary flow we have velocity

romponents given by, (see (3.15)).

Uns dfz = 0my) cos fz (| Jeet) ,
(2 c2)*

iw ofz = ly cosy |e )ec:

Wasind fiz = w_ Wy) sind z [=orc: J

(5,1)

(5,9)

5.3)



Also the x component of vorticity 1s given by,

6 sill 2 = Nonty) sin £= ) (5)

A A A

Tere Ung), Vag), Rmly),
even function of Y.

The signs of Vmcos fz v Vm c0s2hz, and Wen S002.

in the cell Y &gt; 0, Oc z « z, (where Son sin 2/4 2

is negative) are indicated by tne tellowing:

\ z2=0, Uatts 102 &gt;0; Vm cos dbz &lt;0 Wm sf 2 = 0.

rz x, Omtsthz 20; Vtoshz=0;  Wsindbz20formally.! For largey.

ft2-1, umeoslfz &lt;0; meoslfz &gt; 0; wend} 2 =0.

Therefore in this region we do have a consistent

physical picture, with a large scale eadying motion as

indicated by the streamlines in Fig, 2. The nett effect



of the secondary flow is to induce a two dimensional cellu-

lar structure on the motion (Fig. 4), with momentum being

fed in toward the viscous region at Zz=0, v¥ ’ £2, oy

(where the amplitude of the oscillation is maximum), and

sxtracted at t he intermediate spanwise positions

= + IT 3c (where the amplitude of the

oscillation is zero). This large scale exchange process

produces an alternate excess and defect of XX momentum

at these points, In turn, it is responsible for a span-

wise alternate bulging and thinning of the origlnal

velocity profile, From Fig, 2 it can be seen that this

affect should be most vronounced at the outer edges of

the critical layer. The flow profile gradually becomes

more and more warped until it eventually crumbles com=-

pletely into turbulence.

This picture is somewhat modifled by the effects due

tothe primary oscillation which is perlodic in ¥ and

has a spanwise periodicity RY (twice that of the
/o

secondary flow), The y and =z components are in phase

end produce the streamline pattern indicated in Fig, 3,

the sign of the vorticity reversing itself every half

wavelength in the downstream direction. This x-vorticlity

of the primary oscillation is sn even function of vy and

is of maximum effect at values of yxy where the amplitude

of the downstream component of the oscillation is zero.

This vortex structure is indicated in Fig. 5.



 k

The steady vortex structure of the secondary flow

will therefore be modiflea by tne periodic switching on

and off of the primary oscillation. BSuperposing these

two mechanisms there results an alternate partial re-

inforcement and cancellation of the two motions, each

half wavelength as we move downstream. This superposi-

tion is shown diagrammatically *\ Fie, &amp;. where for

filustrative purposes 1t has been supposed that the re-

Inforcement and cancellation is complete. Initially at

the onset of instability the effects of the primary os-

cillation will dominate; but eventuallr a

lity becomes more violent the secondary flow, having a

~ the instabl-

faster growthrate, should triumph.

It #3 now possible to summarize the most lmportant

f-atures ¢? the mechanism discussed with reference to

the shear n»«file. ~° me proceeds downstream taking

observations over r~me snanwise period of the primary

oscillation (sav Yo z=+ ), the theory

would predict the f + aine _.fTfects to be prominent.

(1) A eradvr” buleing of the profile at 2z =O and

rgy(3

and * thinning of the nrofile at z= 15

-rance of two systems of four vorticesrr
2 wd id

inten:

cated ‘nn Vip, 6: thein effect belnz strongest

“nr onre each half wavelength, as indi-

when the ¥X component of the primary oscillation

has zero amplitude,



(111) When this vortex structure is most apparent

(twice each wavelength) it should be accompanied

by an increased rate of bulging of the profile

at =z =0, alternately above and below the point

of inflexion,

(iv) The points where there is an excess of

momentum, such as 2z=(0, should show up more

sharply than the points, such as z = # iI,

where there is a defect.

(v) The maximum effect of this el*+~rnate bulging

and thinning should be most prominent just oute

side the critical layer.

(vi) Turbulence would be expected to first appear

at the points of maximum bulging.

(vi-— ' Although the vortex structure should be

strongest at the outer edges of tne critical

layer, the large scale eddies should be detec-

teble well away from this region.



SECTION VI CONCLUDING REMARKS

[n this thesis we have used formal mathematical

methods to investigate finite amplitude oscillations

juring the breakdown of laminar flow. It is to be em-

phasized that the results have evolved from a straight-

forward perturbation of the linear theory and that no

physical assumptions have been necessary. While we do

not discount ordinary two dimensional distortions, it

1s felt that in many situations the formation of

secondary vortices and the assoclated crumbling of the

profile will be more strongly evident. Certainly this

mechanism rust be present to some degree during transi-

tion. In recent experimental literature there is re-

peated reference to the formation of this secondary

vortex structure,

During completion of this work Dr. G.B. Schubauer

and Mr. P.S. Klebanoff, in a private communication,

have very kindly forwarded the results of some recent

experiments on a Blasius profile, performed at the

National Bureau of Standards. Despite the vast diffe-

rence between the case of shesr flow and boundary layer

instability, there is a very distinct qualitative agree-

ment with the present theory. One marked difference is

that the direction of the secondary vortices is reversed.

This discrepancy in the pnase relations is believed to



be due to the very different nature of the problem. An

application of the present thecry to the case of boundary

layer transition 1s plenned in the near future.

Two further experimental papers have heen brought

to the attention of the suthor during the preperation of

this thesis [16° T- —

The greet Importance . © non linear effects during

transition makes it &amp; problem clearly warranting detailed

study. The complexity of the situation makes 1t all the

more desirable that any theoretical approach should be a

systematic one. It is believed that the present Investi-

ration is a step in this direction.
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