PACKET RADIO SIMULATION AND PROTOCOLS
by
Daniel R. Helman
S.B., S.M., Massachusetts Institute of Technology

(1980)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS OF THE DEGREE OF

DOCTOR OF PHILOSOPHY
IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1986

Signature of Author e
Department of Electrical Engineering and Computer Science
June 24, 1986

Certified by , BT R

Robert G. Gallager
Thesis Supervisor

Accepted by

Arthur C. Smith
Graduate Officer

PACKET RADIO SIMULATION AND PROTOCOLS

by

Daniel R. Helman

Subritted to the Department of Electrical Engineering and
Computer Science on June 25, 1986 in partial fulfillment
of the requirements for the degree of Doctor of Philosophy
in Electrical Engineering and Computer Science

ABSTRACT

A system for simulating packet data networks is presented.

The system is designed to compare the performance of competing
comnunication algorithms. 1Ita architecture features two
levelas of multiprocessing. First, the network nodes consist
of multiple, homogeneous processors with no master processor.
Second, the nodes are interconnected via a unique high
bandwidth digital switch. The awitch is capable of forming
both wire and radio (i.e. multiaccess) connections.

Simulation experiments are programmed using a special
communication oriented programming language and operating
system. Programs execute cooperatively in each node, without
a master processor.

Together the hardware and software can emulate the
characteristics (baud rate, error rate, contention, etc.) of
a broad range of wire and radio networks. Packet radio
protocols are discussed. A new protocol with superior
performance is proposed.

Thesis Supervisor: Professor Robert G. Gallager

Keyworda: Simulation, Packet Radio, Multiprocessing,
Distributed Processing

ACKNOWLEDGEMENTS

Many people have contributed directly and indirectly to the (CLUMPS)
project. I would like to thank my thesis supervisor, Professor Robert
Gallager, for his tremendous help when I needed it and independence when I
wanted it. The four other students on the project, Mark Tubinis, Shahrukh
Merchant, Alberto Sentieri-Filho and Georgios Nikolaou, all made
significant contributions. The NIL group at IBM in Yorktown, especially
John Pershing, taught us the right way to think about computer languages
(although sometimes I wished they hadn’t).

Several government and corporate sponsers helped us with grants and
equipment. Many thanks go to the NSF (contract ECS5-8310698) o
for supporting me as a research assistant, and
to IBM for fellowship support. We are also very grateful to IBM, Motorola

and Pro-Log for their generous equipment donations.

Most of all, though, I am indebted to all of the above people, and
especially my wife, Carol, for their extreme patience during a two year

project that took four and a half years.

Table of Contents

Chapter 1 INTRODUCTION

1.1 Network Communication Model
1.2 Radio Communication Model

Chapter 2 (CLUMPS)

2.1 Goals
2.2 Structure

2.2.1 Model Limitations
2.2.2 Hardware Strategy and Alternatives
2.2.3 Software Strategy and Alternatives

Chapter 3 HARDWARE
3.1 Nodes
.1 Branches

1.1
1.2 Global Bus
1.3 Shared Memory

3
3.
3

Chapter 4 SOFTWARE
4.1 Network Implementation Language
4.1.1 Official Language Specification
.1 Objects

1.1
1.2 Operative Statements
1.3 Control Statements

4.1
4.1.
4.1

4.1.2 Language Modifications
4.2 NIL Implementation

4.2.1 Intermediate Language (IL)
Object Code
Descriptors

1
.2
.3 Data and Addressing
.4 Operations

4.2.2 Compiler

29
30
34
36
37
42
42
43
47
47
49

30

4.2.2.1 Assignment (=)
4.2.2.2 REPEAT

4.2.2.3 SELECT

4.2.2.4 Exception Handling

4.2.3 Assembler
4.2.4 Interpreter

4.2.4.1 REMAP
4.2.4.2 Lazy Memory Allocation

Chapter S5 OPERATING SYSTEM
5.1 Communication Facility

S5.1.1 NIL interface

5.1.1.1 TIME

5.1.1.2 READ, LOG

5.1.1.3 Communication Interface
5.1.1.4 COMSTATE

5.1.2 User interface
5.2 Communication Implementation

5.2.1 Packet Buffering
3 E

2. rror Handling

Chapter 6 PACKET RADIO

6.1 Structure of an Experiment

6.1.1 Network Configuration
6.1.2 Data Link Layer

6.1.3 Network Layer

6.1.4 Transport Layer

6.1.5 Higher Layers

6.1.6 Measurement

6.2 Radio Simulation Example
2.1 Data Link Layer

2.2 Network Layer (Routing)
.2.3 Higher Layers

2.4 Network Operation

6.3 Proposed New Protocols

Chapter 7 CONCLUSIONS

7.1 Alternatives
7.2 Improvements

33
54
5SS
37

58
60

(L))

63

63

65

65
66
67
68

68

639

69
70

71

71

71

72
73
73
73
74

74
76
76
77
77
78
80

80
82

7.2.1 Communication
7.2.2 NIL
7.2.3 Operating Systenm

Appendix A Hardware Reference Manual

Introduction

Structure

Memory Map

Processing Unit (Branch)
Global Interface

Global Functions

Appendix B Software Reference Manual

B.1 NIL Syntax
B.2 Intermediate Language Syntax
B.3 Intermediate Language Opcodes

Appendix C Operating Manual

C
C
C
C

1
2
3
4

Global Database
Compiler
Assembler
Monitor

Appendix D Sample NIL program

[l @il w i o B o o B o i)

©ONOUBE N

Shared Data Types
Operating System
Main User Process
Scheduler

Sender

Receiver

ARQ

Router

83
83
86

87

87
87
88
88
89
30

91

91
98
S9

104

104
105
105
108

109

109
110
115
117
118
118
119
121

Chapter 1

INTRODUCTION

Most complex systems are not completely amenable to analysis, and thus
simulation becomes a necessary design tool. Digital data communication
networks fit into this category. We will develop a system capable of
aimulating a wide variety of these networks. Our primary interest,
however, is using it to explore packet radio network protocols. Although
our final goal is to create improved protocols, we will concentrate here

on the simulation system and its design.

First we develop models for packet communication (both wire and
radio). The models clearly define the networks to be simulated. One
problem is that any model will either depart from actual systems or lump
different systems together and treat them as identical. These
limitations, trade-offs and eimplifications inherent in the models are

discussed.

The syste; we have designed to perform simulations has been called
(CLUMPS) for Communication Language Multiprocessor System. It is a
collection of special purpose hardware and software designed to mimic a
wide variety of communication networks. It consists of a number of
network nodes (in one to one correspondence with the network being
simulated) and a special computer language. The hardware provides
flexibility of interconnection and link characteristica. The aoftware
provides flexibility of protocols, packet generation and measurerent. An
important feature is that the software can be written independently of the

hardware configuration.

(CLUMPS) was designed for low cost as well as faithful enulation of the

models. The design uses many identical processor boards, each with a

simple 8-bit microprocessor. Where practical, software is substituted for
hardware. Our underlying concept is that we can simulate any network by
copying its structure, but we may have to scale down its transmission
rates. For example, to simulate Ethernet([l1] with this hardware would
require data rates much less than 10 megabits/sec, but if every speed
parameter is scaled accordingly the simulation can still be very

accurate.

A modular programming language called Network Implementation
Language(2) is chosen for writing simulation experiments. It has features
such as queues and message passing that are designed to simplify
programming of communication tasks. Its modularity and multitasking
capabilities allow the experimenter to combine standard protocol piecea

from libraries with experimental ones.

We discuss the limitations of this design, and alternatives. The
hardware and software are described in detail. The most unique feature of
the syatem is that node interconnection is accomplished with a digital
switch that is capable of arbitrary multiaccess connections. Another
unique feature is the architecture of the network nodes in which there is
no controlling processor. Rather, they have multiple, homogenous

processors which cooperate on the computation and communication tasks.

Finally, some problems of packet radio communication are introduced.
We discuss protocols for radio communication at the data link layer. A

new protocol is proposed for testing on the (CLUMPS) systen.

1. R. M. Metcalfe and D. R. Boggs, "Ethernet: Distributed Packet Switching
for Local Computer Networks,™ Communications of the ACM, vol. 19, pg.
395, July 1976 ’

2. Draft NIL Reference Manual, RC 9732, IBM T. J. Watson Research Center,
Yorktown Heighta, NY, Dec. 1982

1.1 Network Communication Model

Since we cannot simulate complete communication networks in ALL their
complexity, we design models that have the networks’ key parameters. The
models are simply described with only a few parameters. Our system can

then simulate the model exactly.

A data network consists of two elementa: nodes and links. The nodes
are computers that generate, forward, and digest messages to/from other
nodes. The links are communication channels which connect two or more
nodes. Each channel is capable of carrying one message at any given tinme,

independent of all others.

Wire networks are commonly represented as undirected graphs, since
nodes are usually connected by two channels, one in each direction, with
similar characteristics. In our system all links are bidirectional. Each
link is defined by three physical parametera: bit rate, error rate, and
delay. Bit rate is the number of bits per second that can be sent. Error
rate is the percentage of bits that are received in error. Actually this
number would be better characterized by a time varying distribution of
errors, since some links have the property of errors coming in groups, and
often the quality of a connection will change over time. Delay is the

time between when a bit is sent, and when it is received.

Often networks are modelled at a higher level, assuming a low level
protocol that causes data received in error to be retransmitted until it
is correctly received. In this case there is no error rate, but the delay
is variable, with a distribution based on the low level parameters and

protocol.

1.2 Radioc Communication Model

Radio networks add anocther level of complexity. They provide broadcast
links that can connect many nodes at once. Each node converses with
whomever is physically close enough to be in range. The set of nodes that
are in range can be different for every node on the broadcast link. The

nodes in range of another node are called its neighborsa.

In reality a radio may be equipped with a very sensitive receiver, but
a weak transmitter, or vice-versa, making some connections 7
unidirectional. This is undesirable, however, due to the need to
acknowledge correctly received transmissions. If one’s transmitter were
more (or less) capable than one’s neighbor’s, it would mean the link would

be one-way, and could not be used for acknowledgement messages.

Communication over broadcast links is different from wire links in
three ways. First, we cannot direct a transaission at a particular
receiver; all transmisaions go to every receiver within ranée. Sometimes
we will deal with several frequencies which are modelled as distinct
broadcast links operating concurrently. If all frequencies have the same
range, the result could also be modelled by time multiplexing a single

frequency.

Second, if two or more of a given node’s neighbors transmit at the same
time, the packets will overlap and the given node will be unable to
receive either. This is called a collision. For all radios in range, a
collision (or noisy reception) results in the knowledge that an error
occurred, but not any other information. This information is obtained

when the channel goes idle, and the previous reception can be checked.

Third, during transmission, a radio’s receiver is so swamped by its
transmitter that it will not receive anything else on that frequency. 1In
other words no reception is possible during transmission. This eliminates

achemes to back off if there is a collision during transmission, such as

- 10 -

in Ethernet.

To illustrate these concepts, suppose five nodes all equipped with
identical single frequency radio transceivers are arranged in a line such

that each node has only one or two neighbors:

If B and D transmit at the same time C will know that a collision
occurred, but A will receive B’s message, and E will receive D’s message.

However, A and D can safely transmit at the same time.

As with wire networks, radio links can be characterized by bit rate,
error rate and delay. The error rate pertaina to errora caused by a noiay
channel, not from collisions. Delay comes from the distance between the
transmitter and receiver. This means that there can be a different delay

for each pair of nodes connected to a broadcast link.

Collisions can come from one of two sources. First, two nodes in range
of each other could simultaneously decide to transmit. These will be
called direct collisions. Second, two nodes, not in range of each other,
could decide to send meassagea to the same receiver. Theae are indirect
collisiona. Most packe£ radio systems eliminate direct collisions with a
method called carrier asensing. Nodea wait until none of their neighbors

are transmitting before they start to tranasmit.

A key parameter in a carrier sense system is the delay from the time
that a node makes the decision to begin transmission to the time when a
receiving node detects the start of that transmission. During this period
conflicting nodes may both decide to start a tranamission. Obviously, the
longer this delay, the greater is the problem of direct conflict. Notice
that thia delay includea the node to node tranamiaasion delay, aas well aa
some internal processing delay. It will typically be much smaller than
the length of time it takes to transmit a packet. For example, two nodes
20 miles apart communicating at S0 Kbit/sec suffer a transmission delay of

leas than one byte.

Indirect collisions, however, are a more serious problem, for which

-11_

there is no aimple solution. Receivers are vulnerable to an indirect
collision during the entire reception, not jJust for a short period at the
beginning. If the protocol being used requires the receiver to
immediately acknowledge a successful reception, then indirect collisions

can be caused by the tranasmitter’s neighbors as well as the receiver’s.

To summarize, the model of a radio network consists of an undirected
graph, where the nodes correspond to radios, and the links connect a radio
with all others in range. A radio is either transmitting, receiving or
idle. If a node is transmitting none of its neighbora are idle. When a
node goes from receiving to idle it either receives a valid message, or
knows that an error occurred. Errors can be due to noise or colliasions.

Bit rate, error rate, and a limited form of delay are model parameters.

Although (CLUMPS) can emulate more general packet radio systems, all
protocols discussed here will use carrier sensing, that is, will only
start to transmit from the idle state. This means that all state

transitions occur between idle and some other state.

-12-

Chapter 2

(CLUMPS)

2.1 Goals

The CLUMPS (Communication LangUage MultiProcessor Syatem) project was

started to create a system for testing packet communication protocols with

high accuracy and low cost. The goals were as follows:

1.

The system should be flexible enough to simulate many types of

networks, including packet radio.

The system should be as faithful to the communication model as
possible. Links should be independent. Computation overhead should
be low. Performance should be based on communication parameters and

choice of protocol only.

The cost per node should be about 81000, and the system should be

capable of at least 32 nodes.

Experiments should be programmed in a high-level language to make it
eaay to make changea and try different ideaa. The language should
be modular, so that features of a protocol that are not critical to
the current experiment (e.g. routing) can be drawn from a library
without recoding. This will also make the system easier to use for

someone who is interested in simulation results, not method.

- 13 -

2.2 Structure

(CLUMPS) was designed with multiple computer nodes and communication
links, to run in real time and to simulate protocols by actually using
them to pass packets around a network. The nodes have up to eight
bidirectional communication lines, each with its own controlling
processor. This was done to insure independence of the nodes, to increase
the modularity of the system, and to experiment with multiprocessing. A
node’s processors exchange information within the node via a shared
memory. The serial communication lines use standard asynchronous
protocol, with baud rates up to 76.8 Kbits/sec. Links are connected
together to form a network through a digital switch. The switch allows
any network configuration to be selected under software control, including

radio-type connections. See figure 1.

The most unusual aspect of the design is the absence of a master
processor in each node. All programs are executed in a distributed
fashion by the eight homogeneous communication processors. Progranms
reside in the shared memory, and consist of mrany tasks that are shared by
the processors. At any given time a processor can be executing one of
these tasks in addition to its duties in servicing its communication

line.

2.2.1 Model Limitations

While the system comes very close to implementing the communication
models discussed in the previous section, it does fall short in a few

areas, the most significant of which is delay.

Delay is difficult to simulate exactly. One problem is that the delay
added by the hardware and software in processing a packet is impossible to
access. In the radic environment delay should be dependent on the

physical distance between the transmitter and receiver. This is not

- 14 -

SRANERRRNRRRNeNS

RN

EANSANNSNAANNRNNNN
FANNANARNUNRANAANN

7

EANSINNRNRANANNANNS

Node N

NN

7z

PSSR N

AR

RN AN

EANSIRMANRRNN
NN AN NN

ENNUNNANRAARAANNNNY

RN

Node 3

NN NN

ARRIRNRRNNNRNENY

D NNNANNNNANSNANNA

ARy

SRR

PN

SRR
RN

Node 2

NN

SRR

AR

SRRRRNERRARRRRNY

RRRIRRIRRRNRRNRN

7

AN

PR RN

7z

Node. 1

ENNURNNANAANNRAAN

RN

shared
memory

processor &
communication

- 15 -

data

l vvvv#viL vyvvavL L AAAAAAAZ 4 \\ \AAAAAAA 4

Switch

\\

Host

|

switch
commands

The (CLUMPS) System

Figure 1

physically possible in (CLUMPS) because all signals travel equivalent
paths through the switch. Forcing the receiver’s software to put in
artificial delays depending on the transmitter starts to defeat the real

time aspect of the simulation.

Delay is simulated in wire networks by having the transmitter wait a
specified amount of time between getting the next packet ready, and
actually transmitting it. Rather than exactly simulate delay in radio
networks we will provide a delay mechanism in the transmitter as in the
wire network case. Using this kind of delay is as if all nodes were

physically the same distance from each other.

This method is good enough because we are not usually concerned about
delay in packet radio networks. Delay only affectsa direct collisions, not
indirect ones. When the delay is much less than the total packet
transmission time, as it typically is, carrier sensing will eliminate
almoat all direct collisions. The most aignificant type of collision is
therefore the indirect collision, whidh is not related to delay.

2.2.2 Hardware Strategy and Alternatives

Other simulation machine designs are possiblel3], but for practical
purposes there are certain features they must have if we linmit ourselves
to an actual network, as opposed to a large simulation program running on
a minicomputer. Keeping in mind the project’s goala we can draw the

following conclusions about its composition.
- Interconnection

Clearly, since we are studying the effect of different control
algorithms on communication networks, we need a network that is put

together in the same way as the one being studied. Bus or ring local

3. For example see: IEEE, Computer, vol. 15 no. 10, October 1982, Theme:
“Distributed System Testbeds". Many other references and a discussion of
different architectures can be found in: M. A. Tubinis, Implementation of
a Data Communications Node Utilizing a Novel Multiprocessing Architecture,
S.M. Thesis, MIT, 1983,

- 16_

area networks are not feasible for modelling point to point
connectiona. Similarly, point to point is not adequate for modelling
radio-type connectionas without enormous software help. The only
solution seema to be a digital switch that can be configured to

provide both kinds of connections.
Architecture

At first we considered a simple single processor architecture.
Each node would have one processor with memory and many serial
ports. This architecture has the advantage of low cost, and ease of
programming, since commercial compilers could be used. The problem
is that the processor would be overworked to handle any reasonable
amount of communication traffic. Either a lot of time would be spent
polling the serial ports, or in interrupt handling. Worst, the lines
would not be independent, since heavy traffic on one would affect the

proceasor’s ability to cope with the others.

Another possibility was two processors: the communication
processor, and the computation processor, talking via a shared
memory. This has some of the same problems, i.e. the maximunm
communication rate per line is one eighth of what the communication
processor can handle. Another disadvantage is that programming of
two processors with different functions is more difficult than
programming one processor with both functions. The main advantage is
that computation speed is independent of low level communication
overhead. The programming problem could possibly be solved by
putting all of the communication processor’s code in ROM, and letting
the user only program the computation processor. See the last
chapter for a reevaluation of this architecture in a more favorable

light.

If one communication processor is good, then more must be better.
The communication performance of the above scheme could be improved
with more communication processors that are each responsible for
fewer lines. This is a good strategy if there is more than one

designer on the project, and if the tasks of the communication

- 17 -

subsyatem can be rigidly defined. 1In an experimental aystem it would
be nicer to have a lot of the low level communication tasks under

user control.

The system we chose was like the above, but without a master
processor, just communication processors. This has the maximun
communication throughput, since each line has its own processor. All
communication lines are guaranteed to be independent. It is also the
nost modular to design and manufacture. Programming is aimplified
since all processors are programmed alike. We can also experiment
with true distributed processing. Processor time is not wasted,
since all time not spent on the communication tasks is used for

computation.

The final aystem then, has a number of identical processors with
their own communication interface and a small amount of memory.
There is also one large memory that all proceasora can share. This
memory needs to be big to be able to handle a large number of

communication buffers.

2.2.3 Software Strategy and Alternatives

The project’s goals and the nature of the chosen hardware in turn give

us some software goals.

- High Level, Modular Language

As stated in the system goals, we want the experiments that use
the system to be written in a high level language tailored for
communication. The language should have common communication
routines as either built-in functions or callable modules. It should
be easy to tweak an experimental system to compare algoritha

variants.

The language chosen for this job is called Network Implementation
Language (NIL). Besides the above qualities it has several nice

features for commrunication software. Queues and tables are standard

- 18 -

data types. Many processes can be run concurrently, and they can
exchange data both asynchronously (putting it on a queue) and

synchronously (waiting for a reply).

The multiprocessing nature of NIL is especially useful with our
nultiple processor hardware. Each physical processor can work in
parallel on different processes. Since most communication systenms
can naturally be broken down in several parallel tasks, using NIL
will improve the overall pProcessing time compared to a single thread

language.

Communication Efficiency

Communication is the major part of what the nodes will be spending
their time on. Since we are only interested in packet communication,
- the function of the low level routines can be well defined. Usually
we are not interested in the methods that nodes use to compute CRC
checks, to partition incoming data into packets, etc. The
implication is that these routines should be written in assembly
language, and should be stored in ROM that is local to each
processor. The necessary flexibility (e.g. in baud rate, error
rate, and mode of operation) will be provided by the parameters that

these routines can be passed during initialization.

Code Size Efficiency

The nodes in (CLUMPS) were designed to be inexpensive, hence they
use 8 bit processors, and only have about 64K of memory. Since we
want to keep as much of that memory available for communication
buffers as possible, and since most of the time critical code (for
handling the communication hardware) is already in ROM, we can trade
off processing speed against code size. The best way to do this is
to have common routines or an interpreter, (which amounts to much the
same thing), in ROM, and compile the user’s experimental program into
ROM calls. The extra step of dispatching each instruction of the
program slows things down, but much more function can be packed into

a given space than with assembly language.

- 19 -

We have chosen to take this procedure to an extreme, and to create
an intermediate interpretive language specifically for NIL. All of
the major NIL functions and concepts have direct counterparts in the
intermediate language, so that the compilation step does not
introduce any awkwardness. Each processor has an interpreter in ROM

to execute the intermediate language processes.

Our solutions are not the only possible ones that could meet the software
goala. Other languages besides NIL could have been chosen. We pickéd NIL
because it had the right mix of communication and multiprocessing
features, we had good access to the developers, and it was a new language
that we could adjust without having to adhere to strictly established

standards.

Another strong possibility was to do an interpreted languagel(4] like
Forth. This kind of language gives the user a basic set of primitives,
and incorporates user written routines into the language as new keywords
that can be used in subsequent routines. It very naturally adapts itself
to a split ROM/RAM environment, and generates very compact code. The main
difficulties are that it is not immediately clear how to adapt to multiple
processors, and execution speed can be somewhat compromised. I still am

not certain that this method is a worse choice.

4. R. G. Loeliger, Threaded Interpretive Lanquages, Byte Books, 1981

- 20 -

Chapter 3

HARDWARE

3.1 Nodes

The computing elements (nodes) in a (CLUMPS) system are inexpensive
(*$1000), microprocessor based machines with a large communication
capacity (up to eight 76.8 Kbit/sec lines). Each node is a
multiprocessor. See figure 2. It has three basic parts: processing units
(branches), bus, and shared resources. A more detailed description of the

architecture including memory maps is given in Appendix A.

3.1.1 Branches

A branch conaiata of a microproceasor, memory, a serial interface, a
timer, and an interface to the global bus. All branches are identical. A
node can have up to eight branches. The mnicroprocessor (a 6809) uses
memory-mapped I/0. Of the 64K address space about 10K is local access
memory or peripherals on the processor’s branch board. These are called
"local™ locations. The rest of the memory space is located on the shared

nemory board, and is referenced through the global bus.

These "global" references, while transparent to the processor, compete
- with global references of other branches for access (see the following
section). The local resources of other branches cannot be accessed.
Because of bus contention, global references are two to three times slower
than local onea. This ias of little consequence aince the processor’s

nachine language instructions and stack are kept locally.

-21_

apoN (SdINNTD) V g 2inbi4

soul] UuollBIIUNWLWOY [elIas

Ayunono
ldnusiuljesaye
oomtoau.__ snge Q_ QUOZ.
R4 HOOID) BulL [EBH:
WVH M2 PNqly Jiede.
"00id 6089 Lowsy Mpy9e
L € 2 ! :o:om‘_m ; Aowapy
youeig youeig youeig youeig | ! 3 @ \— m —-— m

- 22 -

(eueidyoeq piepueis a1S) sng [eqo|Y)

Besides the processor and global interface, the branch contains 8K of
ROM, 2K of RAM, and a serial interface. The ROM contains all the
processor’s instructions: the interpreter, serial interface interrupt
routines, and the operating system core. The RAM is used for the
processor’s stack, packet buffers, and a few variables used by the
interpreter. A timer is used in conjunction with the serial interface to

provide programmable baud rates, and interrupts at packet boundaries.

3.1.2 Global Bus

The global bus connects the individual branches to the shared
resources. 3Since only one processor can connect to the shared resources
at a time, the bus contains an arbiter to serialize its use. All
processing units have equal priority, the arbiter ensuring that no branch
gets two bus accesses while another is waiting. For an analysis of the

arbitration scheme used and other alternatives see [S].

The bus interface itself was kept as simple as possible to allow
flexibility in adapting future kinds of equipment. It has a 16 bit
address bus, 8 bit data bus, and one read/write line. Each branch has its
own pair of request and acknowledge handshake lines. When a processor
accesses a global memory location, it is halted and its request goes
active. When the arbiter assigns it a slot and causes its acknowledge to
go active the branch removes the request, puts its address on the bus,
asserts read or write, and in the case of write puts its data on the bus
as well. When the shared memory has completed the cycle it signals the
branch by removing acknowledge. The branch restarts the processor,
removes itself from the global bus, and in the case of a read latches the
data. The simplicity of the interface is a result of the asynchronous
nature of bus cycles. Branch boards do not need to be synchronized with
each other or with the shared memory. This increases the systen

reliability as well as its flexibility.

5. Shahrukh Merchant, The Design and Performance Analysis of an Arbiter

for a Multi-Processor Shared-Memory System, MIT NS thesis, Sept. 1984

- 23 -

3.1.3 Shared Memory

The shared resources (sometimes called global memory) consist of a
large memory and a number of memory mapped special functions. The menory
is used to hold the intermediate language routines, communication buffers,

statistical results and other data used by the experiment.

The other major resource on the global memory is a 48 bit counter
clocked every 400ns, which is used as a real time clock. This allows the
branches to have a consistent timing reference. Also among the shared
resources are locations for reading the node and branch id numbers, and
locations that cause systen interrupt or reset. These are used to recover

from failures, or to reinitialize the system for new experiments.

3.2 Switch

The ability to simulate arbitrary networks comes from the specially
designed digital switch that connects the computer nodes together. The
switch can make radio-type connections, i.e. combining many nodes’
outputs to form an individual node’s input, as described in the previous
section on modelling. Wire networks are a subset of radio networks where
a particular channel exclusively connects two nodes. The switch is
designed to handle up to 64 bidirectional communications lines, each at a

rate of up to 76.8 Kbits/sec.

The switch is unusual in that it does its space-division steps via
table lookup, not multiplexors. The entire set of 64 inputs is switched
to the 64 outputs in eight time division cycles. See the switch block
diagram (figure 3). Each cycle takes eight inputs, and creates 64 outputs,
by table lookup in a 256x64 bit memory. The results of the eight cycles
are combined in a 64 bit accumulator. This performs a logical OR of the
64 lines. After eight cycles the results are stored in a 64 bit latch,

and the accumulator cleared. Since each cycle uses its own table, the

-24_

Figure 3:
Digital Switch Data Flow

64 Inputs
IIIlIIIII

‘._
3'

SAEIEtat T aae
T FL L FLFLFLF]

‘ 5 [
< g

Hv+

Address

2K x 64 RAM

Data Out

Accumulator

Output Latch

A AAAAAAMMAMAAAMAAAAAAAAAMAMMAMAAAAAAAAA AL

64 Outputs

~-25-

total memory size is 2K x 64 or 16K bytes. There are also some buffers so

that a microprocessor can read and write the Remory.

The advantage of this scheme is that it is very fast (eight times
faster than TDM), it can combine lines in radio fashion, and it uses very
few parts (less than a pure TDM for less than 512 lines). Increasing the
number of lines that the switch can handle only adds an extra slice for
those lines, and increases the memory size for the others. An increase in
memory size can often be accomplished at a very low cost. The
disadvantage is that to change a connection one must alter 128 bytes of
memory (on the average). This is not a problem when simulating wire
networks, but it may be in very large radio networks with mobile
communications. Our switch requires about 2 milliseconds to make a
connection. The fact that a connection is not made instantaneously is

probably a good model of actual radio networks.

The above discussion uses figures from the design that we
implemented(6]. They represent good trade-offs in speed versus cost for
current technology. Other applications of the basic idea (switching using

table lookup) are possible.

3.3 Host

The host is an external computer used for creating and compiling
experimental programs, the operator’s interface, and permanent storage of
programs and data. All of the programs that run on it are written in C,
as portably as possible, so that the actual choice of machine is not
critical. In our case we are using IBM PCs. The host connects to a

node’s serial port using a standard RS232 interface.

6. Stephen LeBlanc, 6.100 Lab Report (not published), June 1984

- 26 -

Chapter 4

SOFTWARE

The (CLUMPS) network was not designed for software development, but to
be a simulation peripheral. (CLUMPS) augments the host for the purpose of
communication network simulation; it is not a complete computer systen.

The user’s programs are developed and compiled on the host.

The language chosen for writing the simulation programs is called
Network Implementation Language (NIL), and was developed by IBMI[71. This
is a high-level language, with similarities to Pagcal and Ada, but with
special features designed for communication work. This language has data
structures commonly used in communication systems such as queues,
messages, and tables. It has nultitasking and well defined interfaces, to
facilitate layered communication system design. It does not burden the
user with implementation details such as the exact representation of data

in memory.

A NIL program is semantically well defined, as all operations have
specific outcomes regardless of the data involved. As a simple example,
in many languages addition is actually performed modulo the processor’s
word size. Thia means that a program that adds 30,000 to 30,000 may come
up with 60,000 on a 32 bit machine, and -5,536 on a 16 bit machine. The
aame program in NIL will encounter a DEPLETION exception on the 16 bit
machine, indicating that reaources were not available to perform the
desired action. Exceptions can be handled by the user program, or

reported to the operating systenm.

7. Draft NIL Reference Manual, RC 9732, IBM T. J. Watson Research Center,
Yorktown Heights, NY, Dec. 1982

- 27 -

There are two shortcomings of having such rigid semantics at the lowest
level. First, implementations are not likely to be very efficient because
a test for illegal conditions is necessary after every arithmetic
operation. This is not a big problem in our case, since by using an
interpreter, the extra overhead is comparatively small. The second
problem is that semantics of real numbers and their operations are
difficult to define, and in fact NIL does not currently support real

numbers.

Our implementation is designed with a combined compiler/interpreter and
an intermediate language similar to Pascal’s P-code[81. The compiler in
the host creates intermediate language object code, which is loaded into
the nodes’ shared memory for execution. Each branch contains an
intermediate language interpreter in ROM. NIL is a multiprocessing
language. A list of active processes is kept in shared memory. When a
branch’s interpreter is free it finds the next process on the active list

and executes it. Processes are not fixed to a particular processor.

In addition to the user’s processes, a running system also has an
operating system. The operating system is a collection of low level
routines that allow the user’s program to execute multiple tasks, exchange
packets with other nodes, and report results to and receive data from the

host. The 0S also performs services such as system initialization.

Some of the operating system is in the processors’ ROM, and some is
loaded when the system is started. The ROM based part operates
concurrently with the interpreter when dealing with the communication
port, and separately for larger tasks, such as allocating buffers. Since
it is written in assembly language, it is not meant to be changed by the
user, and care was taken to ensure that its communication facilities are

general enough to satisfy a broad range of simulation needs.

8. Philip Nelson, "A Comparison of PASCAL Intermediate Languages", SIGPLAN
Notices, Vol. 14, No. 8, Aug. 1979, pg. 208

- 28 -

4.1 Network Implementation Languaqge

4.1.1 Official Language Specification

Most of the information presented here on the "official" NIL

specification can be found in more detail in the NIL Reference Manuall(7].

It is only repeated here to familiarize the reader with the features of

NIL, and to motivate the changes made to the language for the (CLUMPS)

project. A number of the goals and features of NIL (such as portability

and security) are not relevant to this project (which is a

special-purpose, single-user system) and will not be discussed.

The three features of NIL of most interest to us are:

1.

Nil programs are close to the functional design level, and do not
include specifics of the memory structure of data, which is left up
to the compiler. This means that users can concentrate on the

functionality of their algorithms, not on the details.

Modules are separately compilable and interact ONLY through
explicitly defined interfaces. Common problems of misusing programs
written by others are eliminated. Debugging is easier since modules
cannot inadvertently affect other ones. There are no global

variables, so that libraries of independent routines can be built.

NIL uses a process model with both synchronous and asynchronous
actions. Communication systems normally are performing several
functions at once, and with up to eight processors, the (CLUMPS)
hardware is set up for multiple processes. The NIL model is simple

and complete.

- 29 -

On the surface, NIL is similar to Pascal(9), with its type and variable
declarations and block structure. However instead of variables
representing a certain memory structure, variables are abstract objects
which do not specify any particular implementation. Fér example, the
concept of a NIL table, which is an aggregate of arbitrary information, is
a generalization of Pascal’s array, which is only a fixed, rectangular
block of memory. Arrays are just one possible implementation of tables,
others could be linked lists or hash tables. It is also possible for
different implementations to coexist, with a particular one chosen by the

compiler based on the apecific situation.

4.1.1.1 Objects

Before describing the data types that NIL provides it may be helpful to
explain the syntax of type and variable declarations. This should

eliminate any confusion over the examples that will follow.

As in Pascal, variables in NIL can either be given built-in types, or
have user defined types. Types are defined with the IS keyword, and
variables are defined with a colon (:). Types are defined first, then
variables are declared after the DECLARE keyword. For example the
following declares the integer i: (Throughout the text we will highlight
NIL keywords by capitalizing them; this is not required.)

DECLARE
i: INTEGER;

The same thihg could have been accomplished with a user defined type:

itype IS INTEGER;
DECLARE '
i: itype;

9. K. Jensen and N. Wirth, Pascal User Manual and Report, Springer-Verlag,
1976

- 30 -

In NIL the built-in types are called type families. This emphasizes the
fact that some of them are merely ways of building structures, and are not
specific types until they are used. For example, the MESSAGE type family
is used to group variables of different types, much like the record type
in Pascal. For example, we can group an integer and a character string as

follows:

nl IS MESSAGE
(i: INTEGER;
s: CHAR STRING);

In this example ml is a particular type, but MESSAGE is its type family.

NIL defines the following object type families: integer, boolean,
enumeration, string, table, row, tableset, variant, message, call message,
send interface, call interface, catalog, and component. Integers and
booleans are standard, except that the maximum size of integers is not
defined.‘ If ever a program tries to exceed the maximum size, an exception
is raised since NIL does NOT perform modulo arithmetic. Exceptions are
recoverable. Enumeration variables are defined to take on one of a fixed
list of values. The type color = (red, blue or green) is an example.
Another is the Pascal standard type char which has 256 possible values.

Strings are lists of either enumerations or booleans.

Send and call interfaces are the objects used to transfer data from one
nodule to another. Call interfaces operate like subroutine calls in most
other languages. One module sends a call message to another, waits while
the information is processed, and then continues after the results have
been returned. This is called synchronous communication, because the two
program modules work on the data in a apecific sequence, rather than in
parallel. The call interface consists of two variables, one owned by the
calling module, and the other owned by the called module. The calling
module has a callport, which is really just a pointer connecting it to the
other module. The called module has an acceptport which is a queue in
which calls can accumulate. Many callports can be connected to a single
acceptport (just as many routines can call a common subroutine in most

languages).

- 31 -

Send interfaces are asynchronous. One module sends information to
another, does not wait, and does not receive a reply. The interface
consists of a sendport connected to a receiveport. As in the synchronous
case many sendports can be connected to the same receiveport. The
receiveport queues up the messages sent to it, until the module that owns

it uses then.

When discussing the NIL communication mechanism we often use the term
primary to refer to both acceptports and receiveports, and the tern
secondary to refer to callports and sendports. This is because
acceptports and receiveports are the complicated part; they are queues
that can receive messages from multiple sources, and hold them for their

owner. A secondary is just a pointer to one of these queues.

A catalog is used to keep a list of primaries together with their names
(character strings). It is really a specialized form of table. When the
sending half of an interface wants to connect itself to a receiver, it
gets the reference from a catalog in which the receiver has already
published its name. The connection is made at run time, so that

information can be exchanged between separate modules without linking.

Messages are similar to records in Pascal, and variants are like
variant records. These are simply collections of objects with a fixed
structure. For example, a message type consiating of a group of two

boolean strings and an integer would be declared as:

group IS MESSAGE
- (81 : BOOLEAN STRING:
82 : BOOLEAN STRING;
i : INTEGER);

Messages can be used to group data to be sent to other processes over a
send or call interface. Messages used for this purpose are declared as
nessages or call messages respectively. They are given a different type
family to emphasize the subroutine call and return use of the call

nessage.

- 32 -

Components are very simple objects which represent a running module.
They allow processes that generate subprocesses to maintain control over
them. When a new module is quwned, its parent receives an initialized
component. Only two other operations are possible on a component:
canceling it (which involves stopping any processes in it and freeing up
their resources), and checking to see if all processes in the component
have finished. Processes can interact with their subprocesses by passing

them parameters when they are initialized.

There are only two ways to accumulate data into an aggregate, strings
and tables(10]. A table is a collection of records, each of which has the
same structure. A group of related tables is called a tableset.
Tablesets, tables and rows are based on a relational database model (11].
The specification for a table lists the types of all of the fields of its
records, and a few extra attributes that tell the compiler how the table
should be organized. For more information on tables and our original

implementation of them see (12].

Information in tables are accessed by objects called ROWs. 1In essence
a ROW variable names one of the table’s records. Rows are implemented as
pointers, so they can refer to different records at different times. Rows
are the handles used to manipulate the data in.tables. It is important
not to confuse a ROW variable with the actual data record it is pointing
to. We call the data itself a tuple. While a table can have an arbitrary
number of tuples, each ROW variable associated gith that table is

explicitly declared.

10. Actually primaries (queues) can also be thought of as data aggregates,
but we choose not to because of their special use in communication.

11. Jeffrey D. Ullman, Principles of Database Systems, Computer Science

Press, 1980

12. George Nikolaou, Table Implementation for the Network Implementation
Language (NIL) Compiler, MIT BS thesis, Feb. 1984

- 33 -

4.1.1.2 Operative Statements

NIL has the standard operations on booleans, integers, enumerations and
strings. Expreassions can also be created using built in functions such as
LENGTH, ORD, SUCC, etc. NIL supports two kinds of assignment statement:
copy and move. Copy assignment gives the variable on the left hand side
of the statement a value, and doesn’t affect any other variableas. Move ia
used to transfer data to one variable, and remove it from the original

variable.

Moving data can be much faster than copying it. For example, string
variables are usually implemented as pointers to a memory block. Move
would just manipulate pointers, while copy would have to allocate another
block and copy all of the data. Move is supported for all type families,
while copy is only valid for the boolean, enumeration, integer, string,

callport, sendport, catalog and row type families.

The DISCARD operation can also be used with all type families. It
simply throws away a variable’s value, and returns its resources to the
system. Its opposite is ALLOCATE which is used to create resources for
the atructured types (messages, variants, and rows). Simple types do not

need to be allocated, i.e. their resources are static.

The objects related to communication, messages, ports, and catalogs are
operated on by the ACCEPT, CALL, CONNECT, FORWARD, PUBLISH, RECEIVE,
RETURN, SEND and UNPUBLISH statements. PUBLISH puts a reference to a port
into a catalog under a character string name. UNPUBLISH removes a
‘reference from a catalog. CONNECT uses a catalog and a string to

initialize a callport or sendport.

Asynchronous communication is accomplished via SEND and RECEIVE. After
a sendport is CONNECTed to a receiveport, SEND is used to put a message

onto the receiveport’s queue. RECEIVE is used to take it off the queue,

The corresponding instructions for synchronous communication are CALL

and ACCEPT. A CALL puts a call message in an acceptport’s queue, and

-34-

causes the calling process to wait. The called routine later does an
ACCEPT to get the call message, processes it, and performs a RETURN to
send it back to the caller. The caller then continues execution. The
called routine can use FORWARD to pass the call message on to another
process’ acceptport. When the message is later RETURNed it goes directly
back to the caller. This allows the construction of processes that route
and schedule calls, or ones that pipeline the processing so that calls are

executed in multiple steps.

A very useful operation in handling communication problems is changing
data from one format to another. For example a machine that uses 8-bit
numbers may send information to one that more naturally uses 32 bits. NIL
lets the user aspecify an exact definition for the number of bits used by
each field in a message. This specification is Just used for external
communication to another computer. The REMAP command is used to translate
a8 message between internal and external form. It is very versatile and
can also translate between two different message formats. Almost all of
the work of decomposing a message containing layered protocols can be
quickly handled by REMAP.

CREATE is used to start up a new module given the module’s name (as a
character string), and some initializing parameters. The object code for
the named module is retrieved from the operating system, and started.
When the module is fully initialized, the parent routine resumes
execution, and its parameters are returned. The parent also gets a
component variable that controls the new module. If the component is
DISCARDed then all processes in the module will stop, and all of their
resources will be freed. Note that the compiled modules are kept by the

operating system in one global database.

Several operations deal with ROW variables. Tuples can be DETACHed
from the table and DISCARDed. New tuples can be ALLOCATEd and INSERTed
into the table. A ROW can be disassociated from a tuple with the LOSE

operation.

The FIND operation is used to associate a ROW with an individual tuple
based on that tuple’s key or position in the table. When a FIND is

- 395 -

performed, an access mode is specified to determine the level of access to
the tuple. Three access modes are possible: refer, read, and update.
Update is for read/write access, read for read only access, and refer
allows no access to the data, but prevents it from being deleted. The
reason for all of this is that several ROW variables can point to the same
tuple, and to ensure the data’s integrity it is necesgsary to arbitrate
between them. We want to guard against having two ROWs point to the same
tuple, throwing away one of them, and then using the other to look at data

that is no longer there.

4.1.1.3 Control Statenments

Control statements can alter the flow of program execution. We have
already discussed those statements that deal with other processes and
procedures (CALL, RETURN, CREATE). NIL is block structured like Pascal
and other modern languages. Like Pascal it has IF THEN ELSE, REPEAT (for
looping), and SELECT (like CASE) statements. Many of these standard
control statements have been extended to take advantage of NIL’s rich data
types. REPEAT has a version that can loop over selected records in a
TABLE. SELECT can cause a process to wait until one of a number of

external events take place.

NIL has an extensive exception handling mechanisnm. Every possible
exceptional condition, ranging from an addition overflow to a data type
nismatch in a procedure call, can be caught and handled by the user’s

program. The

DO
block

ON (exception)
handler

END DO

structure is used to define a block of code that will share a common
exception handler. Exception handlers can be nested. When an exceptional

condition occurs control is passed to the innermost ON statement that

- 36 -

handles that particular condition. 1If an exception occurs in an exception
handler itself control is similarly passed outward to the next appropriate
handler. If no handler exists for that type of exception the process is

terminated, and the exception is passed on to its parent.

This way of processing exceptions together with the extensive compile
time typestate checking of a NIL program goes a long way toward ensuring
that a program is semantically correct. If the program flows normally it
means that every statement had the exact result that the programmer had in
nind. No bad pointers can be used, no integer counters can overflow, and

SO on.

The one especially tricky exceptional case occurs when a process is
cancelled by its parent. NIL guarantees that the process wiil halt in
some finite time and all of its resources will be returned to the system.
A potential problem occurs when the cancelled process is currently calling
another process that will not be cancelled. Some of the calling process’s
resources (namely the CALL MESSAGE) are no longer under its control. The
caller cannot be cancelled until the call message is returned. The way
NIL handles this problem is that the FORCED exception is raised in the
called process, and is not cancelled until the offending call message is
returned. While the FORCED exception is active the process is not allowed

to loop, wait, or call any other process.

4.1.2 Language Modifications

(CLUMPS) special situation as a self-contained single user
Ricroprocessor based system warranted many changes and simplifications to
NIL. The biggest philosophical change was to relax the rigorous checking
done to insure that programs interface correctly, do not invade one
another’s data, and do not use uninitialized variables. These checks add
considerably to the complexity of the compiler, and in our system only
serve to save the user from himself, not from others. This type bf
checking can alao be done by a aseparate program (such as Unix’s lint
program which checks C programs), and thus such checking is not necessary

within the compiler. Other changes reflect a reduced scale, more

- 37 -

appropriate for a small system or are simply improvements over the

original language.

The VARIANT data type was eliminated. This type is used primarily to

distinguish between the presence and absence of data, as in the recursive

type:
list_type IS VARIANT { type definition }
(case (empty) : O { structure 1}
case (full) : (i : integer,
next : list_type));
DECLARE 1list : list_type; { variable definition }

This is how NIL could create linked lists and trees even though it does
not have explicit pointer types. 1In our version this type of structure
could be made from messages because of the lazy initialization scheme (see

section on implementation). The equivalent definition in (CLUMPS) NIL is:

list_type IS MESSAGE (i : integer, next : list_type);

DECLARE 1list : list_type;

A built-in function, EMPTY, is provided to tesat whether an object has been
initialized. In thia case one would test for the existence of more data
with the expreassion EMPTY(list.next). Lists are atill not as useful as
tables for storing groups of data, because there are no pointers in the
language. To move along a list one would have to constantly break it up

with MOVE statements. Using tables and rows is preferable.

We made several simplifications in the area of tables. First, ordered
tables were eliminated. This limits the ability to immediately find a row
given its position (e.g. finding row number 7) and to compare rows to see
which one is first. Either operation can bg accomplished by using a key
that is the position number. We still can step through a table by using
FIRST, LAST, BEFORE and AFTER constructs.

- 38 -

R ———

The biggest simplification was the elimination of ROW access modes.
These modes were used in NIL to ensure that multiple ROWs didn’t point to
the same tuple in a harmful way, and the compiler could always keep track
of what was going on. Since our interpreter makes sure that all ROW
operations are valid at the time they are executed, the compiler doesn’t
have to worry. Access modes were one of the most complicated parts of

NIL, and were only there to catch rare semantic errors.

Another significant simplification was not to allow tables and rows to
be top level objects; they must be contained in a tableset. NIL had a lo£
of problems resulting from tables and rows being independent objects.
Situations could occur where tables were passed to other routines while
they had open rows, or tables could be moved without closing associated
rows, etc. We eliminated all of these problenms by making tablesets
contain both tables and rows, and any transfers affect the entire
tableset. Tables cannot be individually éiscarded: one can only get rid
of the entire tableset. This prevents linked tables fron having

references to information that has been thrown away.

NIL was designed to allow process and function resources to be grouped
into catalog objects. Catalogs allow separately compiled programs to be
linked together at run time. They also let users hide their resources
from one another (by keeping them in different catalogs). Since (CLUMPS)
is a single user system, we simplified this to having just one global
catalog that is implicitly referenced during PUBLISH, UNPUBLISH, and
CONNECT operations. Programs can still be separately compiled, but there

is only one place that they can be listed.

The laat big change was eliminating procedures and functions, and
limiting modules to contain only a single process. This means that the
only kind of program module is a procesas. This is not as regtrictive as
it sounds at first. Processes can still be called using callports and
acceptports just as one would call a procedure or a function. The only
cases where this i1s not acceptable is when recursion is involved, or when
several processes are calling a subroutine at the same time. If they are
calling a process their calls would be handled sequentially, while if they

were calling a procedure the calls could be handled in parallel with more

- 39 -

efficiency. As explained below, the structure we have chosen can also

handle these cases.

In NIL, processes run in two phasea. The first is called the create
phase, which is used to initialize the process with parameters from its
parent. The second is called the main phase, during which it is a fully
functioning process. The sequence of actions by the operating systenm,

parent and child processes in starting up a new process is as follows:

Parent Executes CREATE, passing parameters in call message

Opsys Gets object code from host if necessary, starts child
process

Child Runs create phase with parent’s parameters (like a call)

Child Returns parameters (in call message), continues with

main phase

Parent Gets back parameters (possibly modified by child), gets
component variable pointing to child, continues with
next instruction

Notice that the create phase of a process acts very much like a ‘
subroutine. Parameters are passed to it, they can be modified, and they
are passed back. A process without a main phasé is just like a procedure,
while one without a create phase is a fully independent process. When a
process is not sufficient, and a subroutine is necessary (or desired for
efficiency), we can still use a process that does not have a main phase,

and access it with CREATE instead of CALL.

We also introduced a few minor changes and improvements to the
language. Rather than having a sophisticated compiler that decides when
different number sizes are necessary, we took a more traditional approach
and added the LONG data type for 32 bit numbers (INTEGER is for 16 bit
numbers). We also added the long() and integer() built in functions to
allow the programmer to decide the precision necessary inside of
expressions. The compiler will convert between sizes when necessary,

however.

The enumeration data type has been scrapped in favor of the CHARACTER

type. Like Pascal, conversion between integer and character is possible

_40-

with the ORD() and CHR() built in functiona. Stringas of integera and
longs were added to give more flexibility in the kinds of aggregates
possible without incurring the overhead of tables. The new ZEROSTRING
instruction allows the user to forn strings of zeros of a given length in
one step. The substring semantics was changed from a low and high index

to a low index and a length.

The RECEIVE instruction was changed so that it gives an exception
instead of waiting if the given queue is empty. Waiting can be done

separately by the WAIT instruction.

REMAP was changed to work with a character string and another object,

rather than two messages.

The SLEEP, COMCALL and COMSEND instructions were included to interface
with the operating system. SLEEP puts the current process on the end of
the process queue (essentially gives other processes a chance to run).
COMCALL and COMSEND are used to send communication messages to serial

ports.

The FORCED and CANCEL exceptions were eliminated. Now when a process
is.cancelled, it just stops immediately. The OVERFLOW exception was added
for arithmetic overflow errors. DEPLETION is now moatly used for memory
allocation failures. The new PARAMETER exception is used for situations
that are now caught by the interpreter, that would be caught by the

compiler in a full implementation.

A number of new built in variables have been included. RANDOM and
RANDOML return integer size and long random numbers respectively. TIME
returns the current time in 104.2 microsecond units (it is a long). The
time can also be set by an assignment statement. NODEID is the single
character node address. BRANCHES returns the number of communication
lines available to the user program, and PROCESSORS returns the total

number of processors in the node.

- 41 -

4.2 NIL Implementation

Our implementation of NIL splits the job of compilation into three
parts: the compiler, the assembler, and the interpreter (see Software
Strategy section above). The common thread of these three pieces is the
Intermediate Language. This language is used to represent the NIL program
in a form convenient for the interpreter. The concept is the same as
P-code to Pascal, but the language is very specific to NIL, and has many
nore opcodes. The compiler takes the NIL source, and converts it to
intermediate language source. This is then assembled into intermediate
language object code, which can be interpreted. Since the interrmediate
language source can have symbolic labels we use a one pass compiler, and a

very simple two pass assembler.

This sequence of events is distributed as follows: the compiler and
assembler run on the host to generate the intermediate language object
code from NIL source. Object code is loaded into the shared memory of all
the (CLUMPS) nodes by the operating system. Interpreters, located in RON
on all of the branches, are assigned processes. They execute these
processes by reading the object code from the shared Remory one
instruction at a time. A branch’s local memory is used for communication
buffera, atack space, and internal variables of the interpreter. Since
all of a process’s code and data are kept in shared memory, processes can

be moved from branch to branch with a minimum of overhead.

4.2.1 Intermediate Language (IL)

This language was designed with one goal in mind. It had to have a
compact representation 1n'ob3ect code. (CLUMPS) nodes have a limited
amount of shared memory (64K), and small programs are very important so
that there is space left for communication buffers. Small amounts of code
also reduce the amount of traffic on the shared memory bus, since the

processors will not be accessing code as often.

- 42 -

This goal was solved by having a language with a one for one statement
correspondence with NIL in most cases. The major exception is
expressions. IL statements are quite compact, consisting of a one byte
opcode followed by parameter descriptions. Expressions are calculated
using a stack maintained by the interpreter, which eliminates the need for
doing register allocation, and simplifies the use of temporary variables.
Expression evaluation is very similar to FORTH[13] and consists of one IL

statement for each operation, and one to load each operand.

The implementation was complicated by a decision not to store the
task’s stack in shared memory during a subroutine call or a task switch.
The other alternatives were to operate the stack out of shared memory, or
to allocate a apot in sharéd memory for the stack at the time of a task
awitch. The firast is very slow, since the stack is often used, and the
second involves a lot of allocating and deallocating of small amounts of
memory (which takes time) and is not guaranteed to succeed. The result is
that the compiler has to be careful to execute function calls before other
parts of an expression, and keep the results in temporary variables until
the expression is calculated. (This is discussed further in the compiler

section.)

4.2.1.1 Object Code

A procesa’s object code is a static block created by the assembler. It
is relocatable (i.e. all internal pointers are relative to the start of
the block) so that the same code can be copied to several nodes and run
directly. There are two parts to the object code: descriptors and code.
Descriptors tell the interpreter about the structure of the data used by
the proceaa. They are created from the NIL program’as data declarations.
The code includes standard statements and exception handlers. The
structure of an object code block is diagrammed in figure 4 as part of the

component data type.

13. Byte, vol. S, no. 8, Aug. 1980, Theme: FORTH

43

Legend:

Name

Nothing

Boolean
and Char

Integer

Long

String

Secondary

Primary

Figure 4:

Memory Structure of the Data Types

byte

word

XX = don't care

long

Descriptor
FO
F1
I F2 XX
F3 | xx XX XX
| F4 XX
string
data
time ™
stamp
F6 ts'tna.‘?np message
S— _> descri;?tor
primary
data

- 44 -

variable length block

primary
. data

XXXX

sem

valld

c+p

size

semaphore
flag: O=valid 1=invalid

no. of connections + publishes

no. of messages on Q

@ message data: first on Q

—f message data: last on Q

—> component data (waiting)

Figure 4 continued

Name Descriptor Data

Message
(incl. Cali] |
Message) !
message message ;
descriptor data — —’ message data: next on Q
length of whole block —— —> component data: caller

Data of
contained
objects

Descriptors
of contained
objects

Component | F7 | xx I
component '
data et component data: next one
unused
PC program counter
code
tuple < code pointer
data pointer
» component data: parent (waiting)
sem
code
name status
Ae——
code
block top level
message
data

executable
code
exception
table

9 top level
message
descriptor

aE w oems mm g

Figure 4 continued

Name Descriptor Data

Tableset

| |
\ 4
| FA XX XX XX

length of whole block XXXX

table and row table and
descriptors row data
Table :’a:slgr F8 | key st tuple data: first tuple
tuple descriptor —— —» tuple data: last tuple
F2 | xx # of tuples
F4 XX I
hash
data
hash buckets:
pointers to
tuples
Lufslgr F9 | key position of key field t‘;.uztlae _-> tuple data: next in order
length length of whole block - tuple data: previous
F3 hv | hashvaiue
XX NUM | number of connected rows
table table offset in tableset tuplg data: same hash
descriptors
! field
of fields data
Row
a%“s’ or et tUple descriptor lc’l‘:?’a ==t tuple data

- 46 -

4.2.1.2 Descriptors

NIL’s object oriented structure implies that all data must be
dynamically allocated. 1In our implementation the chores of allocating and
deallocating data are performed by the interpreter, not the progranmmer.
This insures a level of data integrity that would normally be missing or
provided by garbage collection or extra compiler checking. To perform
this service the interpreter must know the data’s structure, hence the

descriptors(14].

A side benefit of having the interpreter handle memory allocation is
that operations can be generic; there doesn’t need to be a version for
every data type. For example, there is a single store operation, not one

each for one, two and four byte variables.

Descriptors for the simple data types (boolean, character, integer,
long, string, secondary, prinmary, component and table) are coded by a byte
starting with an “F" (in hexadecimal). The compound data types (message,
row and tableset) have descriptors that are relative pointers to more
complex descriptor blocks. This is done when the size of the descriptor
is variable because it has contained fields. No descriptor is allowed to
be greater than 255 bytes long. A list of the data types and their

descriptors is given in figure 4.

4.2.1.3 Data and Addressing

The descriptors are static, like code. Data, on the other hand, is
allocated dynamically. The descriptors have been designed such that their

corresponding data takes up the same amount of space. For example, the

14. The idea for uaing descriptors in a NIL interpreter was originally
proposed by R.M. van de Weghe (and his professor A.J. van de Goor) in
DUNIL, Delft University Network Implementation Lanquage,
0351560-28(1982)24, Afdeling def Elektrotechniek, Technische Hogeschool
Delft, The Netherlands. Their version was too unwieldy for our use,
however.

-47-

descriptor for a character is just one byte long, while for an integer it
is two bytes long. When a message (or other dynamic data type) is
allocated, its data block will be the same length as its descriptor. The
data for the simple types (char, integer and secondary) is located
directly in the data block. For other types the data block contains
pointers to additional blocks that are allocated as needed. This data

structure is illustrated above along with the descriptors.

Since the code is relocatable, all pointers within it are relative to
the start of the code block. The data, however, uses absolute pointers to
get to its blocks. All data in a node is allocated using & common routine
that partitions shared memory. This routine uses a semaphore in shared

nemory to coordinate requests from more than one processor.

The reason that descriptor and data blocks are kept the same size at
the top level is so that a piece of data can be accessed with a single
offset. When applied to the current descriptor block this offset gets the
variable’s descriptor, and when applied to the corresponding data block it
locates the data. This means that a variable can be completely described

in as little as one byte, thus meeting our goal for compact code.

While top level variables can be addressed with a single offset, lower
level variables are addressed with a list of offsets. One offset is used
for each level of structure that has to be traversed to reach the
variable. The value used for an offset is the sum of the sizes of the
descriptors of the previous variables at that level, plus one. This means
that the offset does not determine the number of previous variables at a
level, but the total size (in bytes) of their descriptors. The first
variable has an offset of one, the second one plus the size of the first,

the third one plus the size of the first two, etc.

If the variable found by the first offset is a scalar, then it is the
one being addressed. If, on the other hand, it is structured, then its
data part has a pointer to another level, and another offset is used.

When it is necessary to address a structure instead of a field in a
structure an offset of zero is used. This tells the interpreter not to go

any deeper. For example, consider the following declaration:

-48_

DECLARE

i: INTEGER; {two bytes, offset 1)
c: CHAR; {one byte, offset 3}
n: MESSAGE {two bytes, offset 4 0}
(
b: BOOLEAN; (one byte, offset 4 1}
s: CHAR STRING; {two bytes, offset 4 2}
):
s: INTEGER STRING: {two bytes, offset 61

Remember that zero is a special offset, so that i and b start at offset

Each offset is described with a single byte. This means that each
level of structures can have up to 255 bytes of descriptors. Since
descriptors are about two bytes long on the average, we can have about 128
variables per level (in particular on the TOP level). This should be

plenty for a progranm.

4.2.1.4 Operations

The Intermediate Language’s opcodes can be broken into three major
categories: those involving the stack (used to calculate expressions),
those coming directly from NIL commands, and those special to the CLUMPS

operating system. All opcodes are one byte long.

The stack holds 2 byte words or pointers. Some operations consider the
top two stack elements to be a single 4 byte value. The stack is local to
a processor, making it more efficient for calculations than allocated
variables, which are stored in shared memory. All of these operations

deal with the top few items on the stack.

Except for some complex control structures such as FOR loops or SELECT
statements, NIL opcodes are in one to one correspondence with NIL

statements.

- 49 -

All operations are listed in Appendix B.

4.2.2 Compiler

To make the compiler as simple as possible we put some restrictions
(mostly syntactic) on NIL source code. The major ones are: regular
syntax({15], requiring all variables to be declared at the beginning of a
process, removing variant data types, and a simplified select control

structure.

To make it more flexible, the compiler was generated with a compiler
generating tool that makes a compiler from the NIL syntax (given in

Appendix B) and a library of code generation routines.

The first things in a program are the declarations. These are scanned
by the compiler, and a symbol table is generated. The compiler’s error
recovery mechanism is not very sophisticated, and a syntax error in the
niddle of a declaration usually causes the compiler to lose its place in
the syntax. The symbol table ié the compiler’s equivalent of the
descriptors used by the interpreter, but it also contains the names of
variables and types. Type declarations come before variable
declarations. When the declarations are finished forward type references
are resolved. If there are any unresolved types a search is made of the
global type library. Error Ressages are generated for any types that are
still undefined.

The other two sectiona of the program, the CREATE PHASE, and the MAIN
PHASE, contain the process’ code and are treated identically. A return of
the creation call message is automatically generated between the two

phases.

Any place where a variable’s value is needed an expression can be
used. Expressions can contain variables, function calls and built in

operators. The interpreter maintains an expression stack to hold the

15. K. L. Clark and D. F. Cowell, Programs, Machines, and Computation,
McGraw-Hill, 1976, pg. 147

- 50 -

intermediate results of operations. All of these calculations deal with
booleans, characters, integers, longs, or strings of these types.
Operations are performed in operator precedence order. Like Pascal, all

expressions are strongly typed.

The compiler’s expression handling mechanism is a bit more complicated
than most due to the decision not to save a process’ expres;ion stack
during function calls. This decision was made to streamline the process
swapping mechanism. It also obviates copying data from local memory
(where the expression stack lives) to shared memory (where a process lives
while it is waiting). The result is that when any function call takes
place the expression stack must have been clear first. This may seem
impossible given the fact that function calls may appear anywhere in an
expression, but the fact that functions put their return value in a call
message, instead of passing it on a stack as in most languages, gives us
the solution. All function calls in an expression will be evaluated
before the expression, and then the entire expression can be calculated at

once. For example, given the following statement:
i = 3#7 + £(k);

nost languages would compile it into the following:

load j); load 7; mult; load k; call f; add: store i;

but for us it would be:

load k; store temp_call_message.k; call f(temp_call_message);
load j; load 7; mult; load temp_call_message.result; add:
store i;

The additional store and load of the call message are required because
we don’t know beforehand what processor the f process is running on, so
parameters must be transferred through shared memory, and not the
processor’s local atack. The rule is that the compiler can’t generate any
code for an expression until it is ready to generate the code that uses up
the expression. This way the stack is only in use for short periods of

uninterruptible calculation.

- 95 -

To implement this, the compiler parses the expression without
generating any code. When a function call is encountered, code for it is
generated immediately, and a reference to the result is remembered in
place of the function call. Finally, at the end of the expression, code
for the expression is generated. This means that nothing is put on the
stack until ALL of the data to calculate the expression is ready.
Immediately following the expression a store instruction is generated to

remove the result from the stack.

The parameters for function calls are moved into call messages that are
temporarily allocated by the compiler. The call message is used from the
time the function code is generated to the time the function’s result is

used. For example,
i= £(x) + £(y) + £(2);

requires three call messages because the functions’ results are not

used until they ALL have been calculated. On the other hand,
i = £C£(£(x)));
only needs one call message that can be reused for all three calls.

Most NIL operations have an equivalent IL opcode. The process of
compiling them just involves sending out the opcode followed by the"
offsets describing the operands. These instructions are: ACCEPT, CALL,
COMPLETE (compiled as WAIT), CONNECT, CREATE, DELETE, DISCARD, FORWARD,
MOVE, PUBLISH, RECEIVE, REMAP, RETURN, SEND, and UNPUBLISH. A few like
CALL can have expressions for parameters. These expressions are just
moved into temporary variaBles, and then the statement is generated using

the temporaries instead of the expressions.

Of the control instructions IF and LEAVE are quite straight forward to

compile. They are done with the branch and conditional branch opcodes.
LOSEing a row is the same as DISCARDing it.

The ALLOCATE statement in (CLUMPS) NIL is not needed for messages due

to the lazy allocation scheme (see interpreter implementation below). For

- 52 -

rows, there is an allocation opcode for every case, detailed above in the
IL section. Similarly all variants of the FIND statement have opcodes

except for FIND .. WHERE. To compile:
FIND row WHERE(boolean_expression);

we use:

LOSE row;
A: FIND row AFTER row;
IF NOT boolean_expression THEN GOTO A;

Notice that to FIND the first row we just LOSE the row and then find
the one after itself (i.e. the first row is after an empty one).

Similarly to find the last row we look for the row before an empty one.

The rest of the instructions require a bit more effort to compile, and

will be explained one at a tinme.

4.2.2.1 Assignment (=)

The aasignment operation copies the value of an expreasion to another
variable. This is different from MOVE which transfers data from one name
to another. After a MOVE the source is uninitialized. Assignment is only
valid for the types Boolean, Char, Integer, Long, Strings, Secondaries,
and Rows. Assignment is done by calculating the expression on the stack,

and then storing the result in the destination.

String assignment is more complicated than scalar assignment,
especially as indexed and substring assignment 1s possible. Strings are
represented on the stack as an address and a length. This allows
constants and indexed strings to be easily used, and single characters (or
integers) can be treated as strings. Operations that create a new string
out of one or two strings (such as concatenation) expect the source
strings’ addresses and lengths on the stack, and create a new string in a

temporary variable. The address and length of this temporary is left on

_53-

the stack so it can be used for the next calculation. For example the IL

for this NIL statement:

& =8 ! “abc" ! s(2:il;

is:

ldo 8 ;get add and length of s on stack
ldcs L1 rget add and length of "abc™ on stack
sconcat templ ;concatenate and store in templ
ldo templ ;get add, length of templ
ldo s ;get add, length of s on stack
1d2 ;get low index on stack
ldo i sget length of desired subatring
substr ;modify address, length by indices
sconcat templ sconcat past two results -> templ
‘move templ,s ;store result in s

L1: 3,"abc"

For example the following kinds of statements are valid, given c as a

character, s as a character string, and i,) as integers:

s="abc":
s=s(3;%]!c;

s=c;
s(101="abcd" [i];
sli;31=c!s[3;21;
s(2;2]1="abc";

When the astatement calls for assignment to a subatring as in gaiS51=’a’
or sli;=]="abc" the target string MUST be the same length as the string

expression. If so, no new memory is needed.

4.2.2.2 REPEAT

Most variations of the REPEAT statement are easy to compile with

branches and conditional branches. See [16] for details. Repeating over

16. Draft NIL Reference Manual, RC 9732, IBM T. J. Watson Research Center,
Yorktown Heights, NY, Dec. 1982, pg. 95

- 54 -

row objects is a bit more tricky. Given:

REPEAT FOR (row) WHERE (boolean_expression)
{loop statements}
END REPEAT

we compile:

LOSE row;
DO
A: FIND row AFTER row:
ON (NOT FOUND) goto B;
END DO;
IF NOT boolean_expreasion GOTO A;
{loop statements)
GOTO A;
B:

This is very similar to a repeated FIND..WHERE, except that when a row
finally can’t be found that meets the specification, the repeat loop is

terminated normally.

4.2.2.3 SELECT

The SELECT statement is used to transfer control to one of a group of
options. It is identical in function to Pascal’s CASE statement. Its

syntax is straightforward:

SELECT (expression)
WHEN (expreaaionl) atatementa
WHEN (expression2) statementa
OTHERWISE statementa

END SELECT

If the main expression matches the expression in a when clause, the

statements following that WHEN are executed. SELECT statements are

- 55 -

compiled into the equivalent IF THEN ELSE statements.

There is a version of the SELECT statement used to wait for external

events. For example:

SELECT WAIT
EVENT (objectl) statements
EVENT (object2) statements

END SELECT

The objects can be either components or primaries. The event being
waited for is the completion of a component, or the arrival of a message
at a primary. The given ayntax is a slight modification from the official
syntax. In the original each event had a guard, i.e. a boolean
expression that could be used to disable a particular event for a

particular execution of the SELECT WAIT statement.

If a SELECT WAIT statement has only a single EVENT then it is compiled
simply into:

WAIT objectl

statements

If it has more than one EVENT, it is compiled into a loop. For

example, if all object are primaries (queues):

REPEAT

IF LENGTH(objectl) > O THEN
" statements
LEAVE REPEAT

END IF

IF LENGTH(object2) > O THEN
statements
LEAVE REPEAT

END IF

- 56 -

SLEEP
END REPEAT

Note that LENGTH(object) > 0 is replaced by COMPLETE(object) if the
object is a component. This is much less efficient that the single EVENT
cage, but it avoids all of the problems associated with setting up and

disabling triggers on multiple objects.

4.2.2.4 Exception Handling

The DO...ON exception...END DO constructs are used to compile an
exception handler table that contains pointers to the appropriate error
handler for the indicated section of the program. A LEAVE DO is inserted
Just before the ON, so that normal program flow skips the exception

handler.

The exception handler table lista the innermost exception handler for
each range of code addressea. An entry is made in this table for each DO
statement and each ON statement, since these statements determine which

exception handler is currently in effect.

When an exception occurs, the value of the relative program counter is
used to search the exception handler table (see figure S). If its value is
between zero and RANGEl, the interpreter will try to find the handler for
the exception in HANDLER1. 1If its value is between RANGE1+1 and RANGE2,
the interpreter will try to find the handler in HANDLER2 and so on.

RANGEn must point to the last executable byte. If the handler does not
handle the'exception that occurred, its parent (i.e. the surrounding
exception handler) is examined. The compiler always creates an exception
handler that surrounds the entire program, handles all exceptions, and

Just stops execution.

The handlers themselves are mingled with the code, and consist of a
single byte describing the exception being handled, and a pointer to the
next enclosing handler. These three bytes are followed by the actual code

of the handler.

- 57 -

Figure 5: Exception Handlers

Exception table Object code
range pointer
1 handler
2 > code
_* RN]
3 —P exception
S —— next handler

N -

handler code

range = highest address covered by this handler
pointer = address of handler

4.2.3 Assembler

We use a very simple assenmbler for the intermediate language. The
input is just a list of expressions and symbol definitions. The first
pass just evaluates the synbol definitions and creates a symbol table.

Object code is generated during the second pass.

The assembler is implemented with the same compiler generator as the
compiler itself. The source syntax is given in Appendix C. During the
first pass the assembler assigns values to aymbola. This can be done with
an equate statement of the form: identifier EQU expression. The
expression should not contain any forward or circular references. Symbols
can also be defined like labels by following them with a colon, e.qg.
START:. This sets the symbol to the current value of the object code
counter. This counter is initialized to zero at the start, and increments

by one for every byte of object code produced.

Expressions can contain symbols, character or integer constants, the
period symbol (.) which represents the current value of the object code
counter, and the operators +,-,=,/,M0D,&,,X0R,>> (shift right), << (shift

left),” (not). Expressions can be arbitrarily parenthesized. All

- 58 -

operations are performed on 16 bit integers.

Object code is produced during the second pass. If an expression is
not part of an equate statement it is output as object code. If it is
followed by an at sign'(@) it is output as a two byte integer. Otherwise
only one byte is produced. Expressions can be separated by commas or
semicolons, but this is not necessary. Character string constants can
also be turned into object code. The intermediate language opcodes are
handled just like other synbbls, and are read in from an initialization

file before the first pass.

Figure 6 contains an example of how the compiler and assembler would

deal with a short process that finds the maximum of two integers.

Figure 6: Compiler/Assenbler Example

threeint IS CALL MESSAGE (i,j,result: INTEGER) RETURNS(cmp:COMPONENT)

rax: PROCESS (input: threeint)
CREATE PHASE
IF input.i > input.j THEN input.result=input.i
ELSE input.result=input.)
END IF
END PROCESS

The assembly language source for this program is:

V1 @, EXCEPTIONS @, {See component in figure 4 for
the layout of a code block}
ldo V1_input, V3_,,
ldo V1_input, V3_i,
1t {do the compariaon)
bz L2 @,
ldo V1_input, V3_i,
sto V1_input, V3_result,
bra L1 @’
L2: (else clausel
ldo V1_input, V3_,,
sto V1 _input, V3_result,
L1:
ret V1_input, 0, $0, (return the result}

59

stop

L3: $0, L3 @,

stop

EXCEPTIONS: {exception handler table)
L3 @, L3 @,

Vi: {the top-level variables}

sF9, 0, V1_-Vi @,
Vi_input = .-V1

V3 e,
vi_:

v3: {the atructure of the call message}
$F9, $3D, V3_-V3 @,
V3__RETURN = .-V3
sF2, O,
V3_cmp = .-V3
sF7, O,
V3_i = ,-V3
sF2, o,
V3_3 = .-V3
S$F2, O,
V3_result = .-V3
$F2, O,
V3_:

END

4.2.4 Interpreter

Each proceassor in a CLUMPS node executes its instructions directly from
a local ROM. The ROM routines perform three tasks: first, all
initialization of a CLUMPS node (communication, memory management,
self-test, catalog, task list); second, all the communication tasks for
that branch; and third, it shares responsibility for executing the node’s

operating system and NIL processes.

Most of the communication work (sending and receiving bytes) is handled
via interrupts. The rest (allocating buffers, changing parameters) is
accomplished during time yielded by the interpreter. Whenever the
interpreter starts an instruction with an empty stack it checks to see it

the communication process needs any time, and if so, jumps to it.

- 60 -

Any leftover time is spent on the inierpreter. A NIL program is just a
set of processes. Each process is represented by a memory structure
called a shared memory process control biock (SMPCB, diagrammed above
under component). This block contains pointers to other processes, the
code block, the process’s parent, the current program counter, and the top

level variables.

Processes can be in one of three states: running, waiting, or
sleeping. Since the number of processes can be greater than the number of
processors, active processes are kept on a queue until a processor becomes
available. These are "“sleeping". A processor will become available when
. the process it’s currently executing finishes, goes to sleep (either by
explicit call, or being swapped out after executing a fixed number of
instructions), or starts waiting. When a process is waiting for an event
(a call to return, a message to come in, or a subprocess to complete) it
is not kept on the active list, but is replaced there by the process that

causes the event to occur.

4.2.4.1 REMAP

The REMAP operation of NIL converts between objects (stored in their
internal form) and strings (stored as a two byte length followed by that
number of bytes). This allows objects to be transferred from one node to
another, even if they have a complicated structure. First the object
would be converted to a string, then the string is sent to another node

where it can be converted back to a object.

Primaries, secondaries, components and rows cannot be REMAPed. If an
object contains any of these they will be ignored. The interpreter
constructs a string from a object very simply: it examines all of the
items in the object in order, copying their value into the target string.
Contained objects are likewise enumerated as they occur. To remap from a
string to a object, the object’s descriptor is used as a-guide in parsing

the data.

61

4.2.4.2 Lazy Memory Allocation

Many of the changes and simplifications we have made to NIL are the
result of having an interpreter that can handle many of the memory
allocation problems previously solved by the compiler or the programmer.
The standard NIL compiler goes through a lot of trouble (see "Typestate
checking” in (161 pg. 2 and chapter 3) to ensure that the messages, rows,
etc. are allocated before they are used. If this checking were not done,
it would be poasible to use uninitialized pointers and cause bugs that are

very difficult to pinpoint.

Since (CLUMPS) NIL is interpreted, the interpreter can notice when one
is about to use an unallocated variable, and allocate it on the spot. It
can also notice that one is assigning to an allocated variable, and

discard the old data first.

The rest of what the interpreter does is self evident. It moves
through the intermediate language object code, executing one instruction
at a time. When a process it is executing finishes, waits, or goes to

sleep, it gets another from the active queue, and runs it.

62

Chapter S

OPERATING SYSTEM

"The Operating System" is the name given to all of the system software
that is not part of the NIL compiler/interpreter. Like the NIL software,
it has pieces all over the system: in the branch ROMs, in the host, and in
global memory. The primary function of the operating system is to connect
the user;s NIL processes with each other (across nodes), and with the
host. The operating system also performs some housekeeping such as aystenm

initialization and loading processes.

3.1 Communication Facility

At the heart of the operating system is the node to node communication
facility. This part of the operating system is a trade off between the
flexibility of a low level interface, and the simplicity and speed of a
hard coded high level interface. We wished the user to have the
flexibility to create his own retransmission scheme, but not be forced to

deal with byte level issues such as CRC calculation.

The first decision was to have a packet level interface. The
tranamitter designatea a link number and a character atring, and the
receiver gets it, or gets a notification of an erroneous attempt. All the
detail of headers, buffers, CRC checking, etc. is done by the operating
system. It is unlikely that the interpreted NIL code could keep up with a
byte level interface. NIL’s REMAP operation makes it especially easy to

deal with packets as character strings.

- 63 -

The user can set the line characteristics of baud rate, error rate,
delay and carrier sense delay (in the case of radio). The user is
responsible for having nodes at both ends of a link set the same baud rate

(which can range from 0 to 76.8 Kbit/sec).

The error rate is specified in errors/byte, but is calculated a packet
at a time. The packet length in bytes, L, is multiplied by the error rate
R, and this probability is used with a pseudorandom number generator to
determine if the packet will have an error or not. This is not the same

as the probability of error if all byte errors are independent:
Packet error prob = -1-(1-R)L

However this is very close to LR for most practical cases when LR is
small and it is easier to calculatell7]. Note that errors are generated
in the receiver, and not the transmitter, so that in the case of radio all
receivers will not necessarily encounter the same errors due to

pseudorandom noise.

The user can also aspecify a line delay, which is implemented by having
the receiver wait after receiving a packet. Delay is not particularly
useful in simulating radio networks, because it would appear the same to
all receivers, which is not realistic. (See the discussion above in the

section on Modelling.)

Since each link is bidirectional, it will be in one of four states:
transmitting or not, and receiving or not. These states can be tested at
any time by a program. While simulating radio communication, one often
wants to use a cérrier sense protocol. This just means that the line is
not allowed to go into the state of transmitting and receiving at the same

time. Carrier sense mode can be specified upon initialization, and it

17. Bit errors on most communication channels are not independent
[Tanenbaum, Computer Networks, “The Nature of Transmission Errors," pg.
1231, but occur in groups. If the error groups are smaller than the
packet size, but occur less frequently than packets, and independent of
each other, then this approximation is quite good if we divide the byte
error rate by the average group size.

- 64 -

prevents a packet from being sent while something is being received. Note
that the delay timing starts after the decision to transmit has been

made. . -

The last branch communication parameter is wire or radio mode. 1In
radio mode, reception is disabled during transmission. The transmission
period is considered the time from when the transmission dacision is made,

until after the inter-packet gap after the transmitted packet.

- The network consists of links used by the operating system and links
used by the experiment. The operating system links are used to
communicate with the host. They are configured into a spanning tree.
After power on or reset, the first message to come in over any link is
considered to be the operating system, and it is installed as a process
and run. The node that sent it is called the receiving node’s parent

(which may be the host).

In a node with n links (numbered 0 through n-1) the link to the parent
and all higher numbered links are considered to be the operating system
links. All lower numbered links are the experimental (i.e. wuser) links.
Since the operating system links form a spanning tree with the host at the

root, all messages for the host are simply sent to the parent node.

5.1.1 NIL interface

The operating system provides a number of services'aécessible to NIL
programs. Some, like the CONNECT and CREATE operations, are defined as
part of the NIL language itself. The services that are apecific to the
(CLUMPS) system are listed below.

5.1.1.1 TIME

The clock in (CLUMPS) consists of a 48 bit counter that increments
every 406.9 na. It can be used to measure the time between events. The
clocks on all of the nodes are synchronized by the operating system when
it is initialized. The built in variable time returns the middle 32 bits

of the clock as a long integer. This function counts every 104.2

- 65 -

nicroseconds, and rolls over after 124 hours. The time can be set with an
assignment statement. All communication packets are timestamped when they

are received. The clock routine is totally internal to the interpreter.

S.1.1.2 READ, LOG

Since (CLUMPS) nodes have no file storage, the operating system
provides file service using the host. This is a very simple system that
Just allows character strings to be stored and retrieved. There are two

functions: read and log.

Read takes a filename as a parameter and returns the contents of that
file (from the host) as a character string. Log takes a character string

and appends it to the host’s log file.

The file functions are not part of the interpreter, and must be linked
with a CONNECT statement before being used. The following example shows
the code needed to read a file called "fred" and write it into the log

file. (The NIL keywords are capitalized for emphasis.)

readmeas IS CALL MESSAGE ({These definitions are global,}
data,result: CHAR STRING); {so they doean’t have to be }
logmess IS MESSAGE ({declared every time. }

data: CHAR STRING);

DECLARE
read: readmess CALLPORT;
logp: logmess SENDPORT:
logm: logmess;
CONNECT read TO "read";
CONNECT logp TO "log":
CALL read("fred",logm.data);
SEND logm TO logp;

- 66 -

5.1.1.3 Communication Interface

Data and initialization messages are sent to the communication system
using the NIL instructions COMCALL and COMSEND. These correspond to the
standard CALL (synchronous) and SEND (asynchronous) instructions, but
instead of specifying a secondary for the messages to be sent to, they are
sent directly to the appropriate branch. Only communication messages can

be sent with these instructions.

Communication messages come in two types: cominitmess and commess. The
former is used to initialize a communication line, and the latter is used
to tranamit data over the line. A line is initialized with the following

parameters:

branch number Branch to initialize

baud rate Baud rate (see below)

error rate Errors per 2##24 bytes (for receiver)
delay delay in ticks (see below)

carrier sense delay in 16tha of a bit (see below)
receive Callport to get received messages
archive Callport to hold messages after xmit

The baud rate is specified in internal units that can be set by the NIL
function BAUDRATE() which takes the atandard rate in bits/second, and

returns the internal units. See section D.6 for an example.

The error rate is specified in errors per 2**24 bytes. The parameter
is an unsigned 16 bit number. This means that the largest error rate is
one per 256 bytes. Of course, the way this is calculated, with that error
rate a 237 byte long packet would always have an error. If the user wants
a more realistic pseudorandom error rate he can always set this one to

zero, and build his own into the lowest level of his software.

The delay is specified in the same units as the TIME variable. It is
the amount of time that the asystem waits before passing on received

messages to the user.

The carrier sense delay specifies one of three modes. If it is zero

then we are in full duplex wire mode. If it is negative then we are in

- 67 -

radio mode without carrier sensing (i.e. half duplex, transmitting takes
precedence over receiving). If it is positive it specifies the carrier

sense decision time in 16ths of a bit.

The receive callport should be connected to a queue where the user
wants the system to puts messages received from this line. The archive
port ia where the system returns data messages after they have been
transmitted, if COMSEND was used. If COMCALL was used they are returned

to the caller after transmission.

The message format that is used for communication data has the

following structure:

commess IS CALL MESSAGE

(flag: CHAR; {after operation: 0=0K, other=error}
branch: CHAR: {branch number (0-7)}
timestamp: LONG; {time at the end of the com operation}]

data: CHAR STRING):{the data)

S5.1.1.4 COMSTATE

At any given time a communication line can be transmitting or not, and
receiving or not. A program can test this with the COMSTATE(branch)
function call. It returns a number 0 through 3 based aon the state of the

given branch as follows: O-idle, l-receiving, 2-transmitting, 3-both.

5.1.2 User interface

The host is used as the operator’s terminal during simulation runs.

These runs are carried out in phases as follows:
1. The switch is set to the desired network topology.

2. A command is given to load the operating system into all of the

nodes.

3. The ayastem asks for the main user task which is sent to it
automatically. It can start other processes and run the

simulation.

- 68 -

A more detailed description of this process can be found in Appendix C.

5.2 Communication Implementation

One of the most challenging parts of the implementation was that of the
communication subsystem. It has to handle a variety of asynchronous
events. From the communication hardware can come interrupts for byte
reception, transmit buffer empty, receive error, and timeout. Bytes must
be accumulated into packeta which meana dealing with the (CLUMPS) memory
management routines, the clock routines, and compensating for errors on
multiaccess lines. Requests from processes for status and initialization

must be handled.

Our general strategy to deal with all of these issues was to divide the
communication tasks into two parts: the quick tasks that must be handled
immediately such as byte level reception, and the others that are not
guaranteed to take a fixed amount of time such as memory allocation. Thé
first group would be handled by interrupt routines that just deal with the
communication hardware and memory buffers: when something complicated
happens (such as a packet boundary) the main communication routine is
alerted. This routine alternates with the interpreter for use of a
branch’s microprocessor. Before the interpreter starts to process a new
statement it checks if the communication routine needs any time. If so,

communication gets priority.

5.2.1 Packet Buffering

One complicated issue is how and where to buffer packets as they
arrive. Remember that individual processors have only 2K bytes of local
nemory while the node has 64K bytes of shared memory. Some local memory
must be used for the interpreter’s stack and internal variabies. If
packets are buffered into local memory until they are complete then they
would have a maximum length of only 1K bytes. Packets in communication .

networks are typically 128 to 256 bytes, so a 1K limit isn’t severe.

- 69 -

The main problem with first buffering a packet in local memory is that
by the time a global memory block is allocated for the packet a new packet
nay be arriving and there would be no place to put it. Efficiency would
also be reduced by moving data twice: first into local memory; and later

into global memory.

Our approach to buffering will be that local memory is only used at the
beginning of a packet, while a global block is being allocated.
Thereafter data will be stored directly in global memory. Packets will be

preceded by their length so that the block can be allocated precisely,

5.2.2 Error Handling

Packet errors from the user’s point of view can come from three
sources: errors introduced by the channel’s simulated error rate, errors
due to packet collision on multiaccess channels, and "real” errors due to
a failure or noise in the (CLUMPS) system. All of these errors will be
reported in the same way by the operating system. If the systenm is
suspected of making “real" errors, it can be tested by setting the

simulated error rate to zero.

Packets are structured on the channel as follows:

packet xor inter
length -- data -- checksumr -- packet

(2 bytes) (1 byte gap

Packets are separated by a gap (idle channel) of about five bytes. All
bytes are sent with parity. An error is reported if the packet length is
wrong, a channel error occurs, a parity error occurs, the checksum is
wrong, or it is time for a induced error. In case of error, the data (if

any) is discarded.

Chapter 6

PACKET RADIO

The issues involved in setting up a complete software system for packet
radio experimentation, and proposed protocols are discussed in this
section. A simple sample protocol is presented to illustrate the software

implementation of a layered protocol.

6.1 Structure of an Experiment

What is needed is a base (or library) of software that implements a
simple data communication network. This base can then be extended to
examine different areas of concern. In addition to simulation specific
programs for system configuration, packet generation and performance
neasurement, we will want modules that implement simple protocols for the
data link, network and transport layers of the ISO standard model[18].
Some ssmple modules have been implemented as part of the example progranm
described in the next section, while others are merely discussed. Except
for a network configuration program (which would run on the host) each of
the areas discussed below would be implemented as one or more separate NIL

processes.

6.1.1 Network Configuration

The first atep of a simulation is to choose the network topology and

18. Andrew S. Tanenbaun, Computer Networks, Prentice-Hall, 1981, pg. 15

- 71 -

set it with the switch. While this is currently done by manually
programming the switch from a terminal, for larger networks it would be
simple enough to have the host set the switch from a configuration file.
This configuration could either be specified by hand, or created randomly

by a utility progran.

6.1.2 Data Link Layer

The data link layer is responsible for reliably transmitting data from
a node to a neighboring node. This is commonly accomplished by sending
data in blocks called frameal19] that are separated by apecial bit
sequences called flags. A protocol (termed ARQ for Automatic Repeat
reQuest) is then added to the frames to ensure the reliability of thisa
layer by retransmitting frames that are not properly received and

acknowledged.

Having an ARQ protocol implies a certain amount of addressing when
dealing with multiaccess channels since it is not practical to require an
acknowledgement from every radio transceiver in range of a broadcast
message. By considering the radio channel to be a collection of links
between pairs of nodes with the restriction that certain links cannot be
used simultaneously we can implement the standard ARQ protocols over these
links. These include go back n and selective repeat protocola(18 pg.
15513.

In (CLUMPS) the lowest half of this layer (framing and error detection)
is built into the operating system (see previous chapter). Inter-packet
gaps (idle time) are inserted during transmission to allow receivers to
frame packets. Packets are transmitted with byte parity and a checksum to
detect most errors. Note that this level does not provide any addressing

(i.e. radio connections will be broadcast only).

19. In this thesis we often use the term packet when we really mean

frame. The units of data exchanged at the data link layer are franmes,
while those at the network layer are packets. They are not necessarily
the same size. Since (CLUMPS) supports variable length frames it is often
natural to make them identical.

- 72 -

The ARQ protocol is left up to the user. This split relieves the users
from the byte oriented tedium of checksums, but leaves him free to

experiment with various ARQ methods.

6.1.3 Network Layer

The network layer enables packets to travel many hops to get from any
node in the network to any other. This layer is responsible for both how
a pqcket gets to its destination (routing) and when it gets there (flow
control). Network layer protocols are the most challenging because they
nust control a group of independent devices to form a coherent systenm.
Since most experimentation will be in this area, we just provide the

sample described in the next section.

6.1.4 Transport Layer

lThe transport layer is responsible for orderly, error free end to end
communication. Just as the data link layer’s ARQ protocol eliminates link
érrors, the transport layer handles node errors. It deals with out of
order packets, and lost or duplicated packets. One easy impiementation
would be to provide a go back n protocol between the source and
destination nodes. Protocols for this layer and higher ones can be shared

by wire and radio networks.

6.1.5 Higher Layers

These layers are generally application specific, so they are mostly
left up to the user. We do provide some packet generation routines that
blindly source and sink packets. Of course, the user is free not to use

these routines, and program his own higher levels.

The packet generation routines simulate computer traffic. This may be
the place where our simulation strays the furthest from actual network
conditionas. In the case of proposed networks our models of average and

worst case loads will be mostly guesswork.

- 73 -

A large variety of packet generation scenarios are possible. Packets
could be created independently from the congestion in the network, as in
most file transfer or mail applications; they coﬁld be created as a
response to received measgges as in transaction procesaing applications:
or some combination of the two as in remote terminal applications.
(CLUMPS) provides evenly distributed random numbers from which many
different interarrival time distributions and packet size distributions

can be synthesized.

6.1.6 Measurement

Delay can be measured by the packet generation layer. Delay can be
determined by placing the time in a packet when it is generated, and
subtracting it from the current time when it is received. Accurate
individual delays require all nodes to have synchronized clocks, but if
equal numbers of packets are sent between all node pairs then the total
delay is just the sum of the individual delays regardless of the initial

value of the clocks.

Other parameters are best left up to the user since different
experiments are looking for different things. The operating system does
provide information to the user on the time of packet reception and

transmission, and on the nature of reception errors.

6.2 Radio Simulation Example

The program described below serves to illustrate the pieces necessary
to run a packet radio simulation on (CLUMPS). The program itself is
listed in Appendix D. See figure 7 for an outline of the program’s
processes and how they interrelate. The program communication with two
kinds of packets: broadcast packets with routing information, and data

packets that are intended for a particular node.

_74..

Figure 7:
Packet Radio Simulation Example

USER

;

ROUTER ¢

]

ARQ DISTRIBUTE

ARQ| |ARQ| |ARQ

v ¥ ;

SENDER RECEIVER

v &

OPERATING SYSTEM and HARDWARE

- 75 -

6.2.1 Data Link Layer

At the bottom there are two routineas sender and receiver. Sender
accepts packets to be transmitted, and sends them with carrier sensing.
If the carrier is on, sender waits a random time and tries again. After a

successful transmission the packet is returned to the higher layer.

Receiver accepts packets from the airwaves, discards erroneous packets,
sends broadcast packets to the router, and sends data packets to the ARQ

process.

The ARQ level maintains a separate process for every logical link
(i.e. one for each neighbor) and one process to dispatch packets to the

others based on the address in the packet.

We use a simple stop and wait ARQ algorithm (a version of go back n).
This adds two control bytes to packets, and occasionally generates packets

with only control information.

6.2.2 Network Layer (Routing)

" The sample program does shortest hop routing. It is a subset the
original ARPANET routing algorithm([20] with the additional assumption that
there will not be any permanent node or link failureas. It creates a table
of destination node numbers, their corresponding intermediate node

numbers, and their distance in hops.

Broadcast messages are used to convey routing information to
neighbors. Every node periodically broadcasts the distance it is fronm all
other nodes. When a broadcast message is received, its data is compared
to our stored information to see if the neighbor who sent it is more than
one hop closer to any node than we are currently. If so, we alter our .

path to that node to go through the neighbor. If the routing table is

20. J.M. McQuillan and D.C. Walden, The ARPANET design decisions, Comput.
Networks, vol. 1, Aug. 1977

- 76 -

changed by this process we broadcast the new table to update our other
neighbors. This method ensures that eventually every node will know how
to get to every other node in the fewest number of hops. If there are

several paths of equal length only one will be used, however.

Using this module adds four bytes to a packet: immediate destination,
source, final destination, and original source. Packets received at a
given node without an immediate destinétion equal to that node’s ID or
zero (broadcast) are discarded. If the destination is the same as the
immediate destination, the packet is passed on to the higher protocol
layers. Otherwise the immediate destination is changed according to the
routing table, and the packet is queued for transmission. Note that this
layer steals the broadcast capability for its own use:; it is not available

to the user.

6.2.3 Higher Layers

The transport protocol is just another stop and wait, but without
retransmission since we assume that there will not be aﬁy node errors.
Each node sends a packet to every other node. When a packet is received
from a node another one is sent to that node. The simulation is halted

after eight packets are received from each other node.

6.2.4 Network Operation

Appendix C contains step-by-step instructions for running experiments

on (CLUMPS). The general procedure is as follows:

1. Reset: If network was previously initialized, the host senda reset
commands to all children, who reset their children, then

themselves.

2. Choose network: either randomly or from a user configuration file.
The configuration is currently entered from a separate terminal, but

this process can be automated.

3. Initialize node(s): A special initialization packet containing the

- 77 -

operating system is sent to the node connected to the host. Upon
receipt the operating system is started. It sends a copy of itself
through all of its operating syastem links. Therefore the operating

syatem ias propagated to all nodes in the network.

4. Send user program to all nodes: The operating system in each node
waits a few seconds for the system to initialize, then sends a
request to its parent for the user’s program. This request is
processed like all other file read requests. The user program is
installed in all nodes as a process, and run. It can then start
other processes, take control of the user links, and start the

experiment.

6.3 Proposed New Protocols

The communication routines described above are adequate to construct a
working model of a wire or radio communication scheme. Once they are
working we can experiment with other, innovative algorithma. 1In
particular we propose an improvement on the data link layer used with

radio networks.

As noted earlier, the major problem not solved by carrier sensing is
one of indirect collisions, i.e. two or more nonadjacent nodes
transmitting simultaneously to a common receiver. The simplest
improvement to deal with indirect collisions would be the addition of long
random waits between transmissions. Sufficiently long waiting periods
would improve the chances that all neighbors of one’s intended receiver
are quiet during transmission. Further improvement may be possible by

choosing waiting times according'to estimates of network congestion.

We also want to investigate a still more sophisticated scheme that uses
short reservation packets to allocate a larger portion of the system’s
space-time resource for the transmission of a data packet. It would work
as follows: When a node desires to transmit a data packet and is free to

tranamit, it sends a short request to the receiver. If the receiver

- 78 -~

receives the request and is free to acknowledge it, it replies with a
short "go ahead" message. The transmitter then sends the data. If
properly received, the receiver immediately sends an acknowledgement, or
another request. Any third node transmitting a request or hearing a
request, a "go ahead", or a collision is required to wait until the
transmission is over (or a maximum packet transmission time) before

becoming free to transmit again.

It can be shown that, by using the above scheme, data packets will be
subject to collisions only if reservation messages suffer direct
collisions. The proof is quite simple. If any data packet did suffer a
collision that means that the node (X)‘causing the collision didn’t
receive the go ahead message. X would not receive the go ahead message
only if it was transmitting, or if the go ahead message caused a
collision. In the latter case the collision forces X to wait and not
transmit. If X was transmitting then carrier sensing would prevent the
receiver from sending the go ahead message in the first place, unless the
go ahead message exactly overlapped the message that X was sending (i.e.
a direct collision). Note that the better carrier sensing works, the less

chance there is of direct collisions.

The hope is that collisions will be reduced, and throughput improved
due to the fact that reservation packets will be much shorter than data
packets, and hence less likely to collide. Questions to be answered by
simulation include whether the overhead of reservations isg jJuatified, and
how the transmission parameters (maximum packet size, waiting time between

failed requests, etc.) can best be chosen.

- 79 -

Chapter 7

CONCLUSIONS

(CLUMPS) is an attempt to simplify the process of designing and
optimizing communication'systems. Time will tell how succeasful it can
be. After a few years of work on its design and implementation the
natural question is what would be done differently if we started today?

Is the concept sound? Could there be improvements?

7.1 Alternatives

Throughout the thesis we have discussed alternatives to the detailed
design decisions that were made. 1In this section we examine the overall
system and see how the design might be radically different if we were

starting in 1986 rather than 1983.

Technically speaking, the goals and design philosophy described here -
are still very valid. The idea of doing real time, distributed simulation
of communication aystems is a good one. No other method can guarantee the

same accuracy and speed.

One thing that has changed a great deal since the prOJeci was started
is the economics of microcomputer systems. While the actual cost of a
(CLUMPS) node probably hasn’t changed much in the past few years (about
$1000 per node) the cost of a commercial microcomputer has plummeted due
to the great volumes involved. Doing a completely custonm design like
(CLUMPS) does not make sense today. A better alternative would be to use
personal computers outfitted with several serial communication lines as

the network nodes. The hardware cost would be about the same, but there

- 80 -

would be huge savings in development time both for hardware (only the
switch would have to be designed) and for software. Commercial operating
systems and compilers could be enhanced for our application, rather than

being written from scratch.

Another important aspect of system design, one that I have
unfortunately ignored, is management. There are two fundamental changes
that intelligent management alone would have required: vertical design and

standard software.

Vertical design means giving individuals as much autonomy and
responsibility as possible over an identifiable portion of the project.
The idea is to reduce the communication necessary between project menmbers,
and give them the greatest possible sense of accomplishment. This method
does not just affect how a project might be divided, but should be a
consideration on the design that is selected. For us that might have
neant having a design with a computation proceasor and a communication
processor, rather than many processors that do everything. Instead of.
having hardware people and software people that must interact on many
levels, we might have had one person responsible for the entire
communication subsystem hardware and software, and another couple on the
computation subsystem. In any case, these kinds of issues were not

considered during the design of (CLUMPS).

While using NIL as the system language was a good choice technically,
it was not really very practical managerially. It causeé us to have to
start entirely from scratch, adding much time to the project, time that
could have been spent experimenting with communication systems. A better
choice for an interpreted language would probably have been a Pascal
P-code, or Forth implementation. Either would need extensionas for
communication, but they would have allowed us to get something working
quickly, rather than waiting for the entire system to use a part of it.
Both Pascal and Forth implementations are widely available, and are well
known. I still am unsure of whether using NIL was the best overall

choice.

After adding these economic and managerial factors to the technical

81

ones, the system we might design today would lock quite different than
(CLUMPS). It would still be a network of computer nodes connected by a
digital switch. The nodes would be standard personal computers with
additional serial communication ports. These ports could either be
controlled by their own communication processor or they could share the
main processor, giving us a cost/performance trade-off. The nodes would
use their standard operating system and compilers with some additional

libraries of routines to interface to the communication facilities.

While both the communication capabilities and multitaasking capabilities
of this new system would not equal that of (CLUMPS) (due to fewer
processors and less specialized software), there would be great savings in
development time to get the system working. Training of future users
would also be much easier since they would be using standard systems and

languages.

7.2 Improvements

We are not starting from scratch however, and given that we have such a
powerful custom system are there any areas that could be improved? As
(CLUMPS) gets used for designing communication networks and protocols many

more possible enhancements will be become apparent.

What follows is a short list of suggestions that are either the result
of our experiences with the system or were not considered pressing enough
to implement in the first pass to get a working system. Often we suggest
ways to simplify NIL’s semantics and give the user more power. The funny
thing about engineering is that sometimes it’s easier to make something
complicated than to make it simple. Included in each suggestion is an
estimate of the amount of work involved to implement it. The categories
are! minor: less than a day, average: less than a week, and major: more

than two weeks.

- 82 -

7.2.1 Communication

- Allow user to specify buffer size like other communication parameters
(baudrate, etc.). This buffer would just be used for incoming
packets, and could be used to emulate systems with limited buffer
space. After deciding the best way to interface this with the

operating system it is a minor change.

- More accurete‘timing of inter-packet gaps. Currently the system uses
a free running counter to determine the gaps. If two counts go by
without a reception then the receiver knows it is between packets.
The transmitter waits at least four counts between packets. The
problem is that because bytes are not synchronized with the counts
there is a fair amount of uncertainty between the receiver’s
threshold and the transmitter’s idle time. This means that we have
set the gap longer than we might otherwise like to ensure that
succeeding packets are not accidentally merged. The gap is currently

about S bytes long.

The solution is either to go to a bit stuffing method and separate
packets with flags, to signal with a line break condition after the
last byte is transmitted, or to more accurately time byte receptions
and transmissions. Since our hardware is not suited for the first
golution, and the aecond aolution might confuae packet gapas with
transmission errors, the last solution has the most appeal. This an

average to major undertaking, and not a very urgent one.

7.2.2 NIL

- Add integer exponentiation and square root operations. This would
nake it easier to synthesize probability distributions from randonm
numbers. Each one is a minor change if good algorithma can be

found.

- Add floating point numbers. This would make some calculations easier

since the user wouldn’t have to worry about scaling. It would be a

- 83 -

major change, however, since it affects the compiler and many places
in the interpreter. There is also some question whether a reasonable
floating point package could be implemented in the 1.5K or so free

space left in the ROM.

Allow user programs to read the value of the last exception from a
special variable. This would allow an exception handler that could
report the exception that occurred regardless of what it was. This

is of minor to average difficulty.

Report exceptions causing processes to terminate to their parent.,
Currently the parent can’t tell whether its child finished normally

or due to an exception. Minor to average complexity.
Allow multiple calls with a single call message. For example:
A ->B ->C

If A,B and C are processes and A calls B then B should be able to
call C with the same call message. When C returna the call message
it should go to B, and when B returns it, it should go back to A.
This would allow a very natural progression of data down through the
various layers of a protocol and back up. Currently only one level
of calling is permitted, although the called process can FORWARD the
call message to another process, but then it is out of the loop and a

return sends it back to the original caller.

There may be some tricky implications here, such as what happens if
an intermediate process gets cancelled while it is waiting and others
are waiting on it? This is an average change, and a very worthwhile

one.

Call messages and messages should be combined into a single data
type. Messages are currently pretty useless since call messages can
alreddy be sent or called, while messages can only be sent. All of
the operations on messages should be retained, but there is no reason
to have two separate data types for essentially the same thing. This

is probeably only a minor change, just affecting the compiler, since

84

the interpreter already treats the two as the same. The reason that
this wasn’t implemented earlier was that it came from the original

language and we wanted to retain as much of it as possible.

There should be a third basic operation on messages besides send and
call. This would be asynchronous like a send (i.e. the sender would
not halt), but the data would eventually be returned like a call. We
could implement this in one of two ways. The message would just be
empty for a while (which could be tested with the EMPTY function) and
then it would magically reappear, or we could specify a queue that it

be returned to when the operation is performed.

It often happens that a process needs to call another function, but
it can still profitably do other things while the call is being
processed. This is not that important on a single processor nmachine,
but it could improve performance greatly on a multiprocessor such as
(CLUMPS). One solution might be just to aplit up a procesa into two
processes, but often this isn’t possible if both parts need the same
data. This would probably be a major change since the semantics need

to be investigated, but it should be worth doing.

Optimize expressions with a single constant. Things like adding
zero, multiplying by a power of two, or comparing to zero are
currently not optimized by the compiler the way they could be. This
only affects one routine in the compiler and would be a minor

change.

Combine queues and pointers to queues into a single object type,
allowing any process pointing to a queue to remove messages from it.
This is a simple but potentially dangerous change. It mostly needs

éome thinking, but the implementation would be minor.

Allow objects other than queues to be shared between processea. In
particular, tablea ashould be shareable. Again a major change, but

probably very useful. This would need a lot more thought.

Add constants to the NIL compiler such as in Pascal. This is an

average change.

- 85 -

7.2.3 Operating Systen

- Have the operating ayatem run a clock aynchronization algoriﬁhm when
it first starts up. This would be fairly simple to do by having each
node ask its parent for the time a few times, subtracting the
estimated the transaction response time, and averaging the results.

This would be an average modification.

- As discussed in the previous chapter, set up the monitor program to
control the switch. Generating the random topologies could be

complicated, but just interfacing with the switch is minor.

- 86 -

Appendix A

Hardware Reference Manual

A.l Introduction

This appendix defines (CLUMPS) hardware-software interface. It defines
the hardware’s structure (but not implementation) and how it will behave.
Since (CLUMPS) is a memory mapped machine, most. of this document describes
the special functions available to its processors at certain memory

locations.

A.2 Structure

(CLUMPS) is a multiprocessor machine. It has three basic parts:
processing units, global bus, and shared resources. A processing unit
consists of a microprocessor, memory, a serial interface, a timer, and an
interface to the global bus. All processing units (also called branches)

are identically constructed. A machine can have up to eight branches.

The global bus connects the individual branches to the shared
resources. Since only one processor can connect to the shared resources
at a time, the bus contains an arbiter to serialize the use of the global
bus. All processing units have equal priority, the arbiter ensuring that

no branch gets two bus accesses while another is walting.

The shared resources (sometimes called global memory) consist of a
large memory and a number of memory mapped special functions, which are

detailed in a later section.

- 87 -

A.3 Memory Map

Each of the processors has a 64K address space which is divided among
individual and shared‘(local and global) resources. The local resources
are the branch’s memory, serial port and timer. These are accessible ONLY
by that branch’s processor, and NOT via the global bus. The shared

resources are accessible to every processor and the host.

Major breakdowns of the memory map are:

Addresses (hex) Description
0000-007F local functions
0080-009F global functions
OOAO-D7FF global memory
D80O-FFFF local memory

A.4 Processing Unit (Branch)

A branch contains the following major parts: 68409 microprocessor,
68B50 asynchronous serial interface, 8254 counter/timer, 68764 8Kx8 EPROM,
6116 2Kx8 static RAM, and global bus interface. They are all connected
together with a standard 6809 bus: 16 bit address bus, 8 bit bidirectional
data bus, R/(W) line, E and Q@ clocks. The 68409 is run with a 6 MHZ clock
crystal, so that the E and Q@ clocks run at 1.5 MHZ. The 8254 acts as
programmable square wave generator to provide different baud rates for the

68B30 and interrupts for the 68A09.

The 6809 has three interrupt lines: FIRQ, IRQ, and NMI. FIRQ is
attached to the 6850’s interrupt output. 1IRQ is triggered by an 8254

counter reaching zero. The rate of counting is determined by the current

- 88 -

serial port baud rate. NMI is common to all the branches, and is

generated by the global interrupt control (see section 5).

Since the processor has the ability to quickly address the lowest 256
bytes in the memory map, we have placed the peripherals there. 112 bytes

of local RAM is also mapped into this section for faat access.

The detailed local memory map:

Addresses (hex) Description

0000-006F local RAM (aliased with D800-D8EF)
0070-0076 even 6850 control/status register
0071-0077 odd 6850 data register

0078,0079 8254 counter 0

0074,007B 8254 counter 1

007C, 007D 8254 counter 2

007E,007F 8254 control word

D800-DFFF local RAM

EOOO-FFFF local EPROM

4.5 Global Interface

The interface between global memory and the branches is as simple as
possible. The common (tri-state) lines are a 16 bit address bus and an 8

bit data bus. The R/(W) is a common open collector line.

Each branch also has its own (REQ) and (ACK) lines. When a branch
wanta a global memory cycle it pulls its (REQ) line low. When the global
arbiter responds by sending the (ACK) low, the branch puts its address on
the addreaa bua, releases the (REQ), and if it wanta a write cycle 1t will
pull the R/(W) line low and put ita data on the data bus. When the (ACK)
goes high the branch disconnects itself from the global buses, and in the

case of a read, it latches the data from the data bus.

- 89 -

A.6 Global Functions

There are several special shared resources in addition to the memory.

There are two constant locations. One reads the machine’s id number
(0-255) which is set by a DIP switch. The other gives the branch’s id

number (0-7). Neither of these locations can be written.

A system reset occurs during power on, and when the reset location is
written. An NMI occurs when the NMI location is written. Note that the
reset and NMI locations overlap the global RAM. This is intentional; the
processor doing the reset or NMI can write its id number (or any other
byte) into the corresponding memory location concurrently with the reset
or NMI operation. These locations can subsequently be read to determine,

for example, the id number of the branch that executed the reset or NMI.

An 8254 timer is aleo located in the global area for use as a real time

clock.

The detailed global memory map:
Addresses (hex) Description
0000-007F global RAN
0080-0086 even Node ID (read only)
0081-0087 odd Branch ID (read only)
0088,0089 8254 counter O
008A,008B 8254 counter 1
008C, 008D 8254 counter 2
O08E, 00O8F 8254 control word
0090-0097 NMI on write
0098-00SF RESET on write
O0SO-FFFF global RAM

- 90 -

B.1 NIL Syntax

Appendix B

Software Reference Manual

The following is a syntax description of our modified version of NIL.

It is in a form compatible with our parser generator.

punctuation and capital letters preceded by # are terminals.

Capitalized words,

Lower case

words preceded by # are actions (compiler functions that will be called).

The right hand side of all statements starts with a terminal (or null) so

no lookahead is necessary during parsing.

comp_unit

proc_head
proc_head

semi
senmi

type_defs
type_defs

type_spec
type_spec
type_spec
type_apec
type_spec
type_spec
type_spec
type_spec
type_spec
type_apec
type_spec

type_desc
type_desc

#1 #procname : PROCESS proc_head semi #set_type type_defs
#set_declare proc_defn END proc_tail semi #cleanup

(#1 #firatid : #I #set_np #iddef)

= #emptycn

.
14

#1 #firstid IS type_spec semi type_defs

= BOOL string_spec #booldef

BOOLEAN string_spec #booldef

CALL MESSAGE #cmesadet (declaresa) return_spec #endcmaesadef
CHAR string_spec #chardef

CHARACTER string_apec #chardef

COMPONENT #compdef

INT string_spec #intdef

INTEGER string_spec #intdef

LONG string_spec #longdef

MESSAGE #mesadef (declares) #endfielddef

TABLESET #tsdef (tsdeclares) #endtadef

#1 type_descl #iddef
type_spec

- 91 -

type_descl
type_descl
type_descl
type_descl
type_descl

declares
declares

ids
ids

return_spec
return_spec

tadeclares
tsdeclares

tablerow0
tablerowO

tablerow
tablerow

row_def

key_spec
key_spec

tdeclares
tdeclares

tdeclare
tdeclare

string_spec
string_spec

proc_defn
proc_defn

proc_defnl
proc_defnl

proc_defn2
proc_defn2

proc_tail
proc_tail

id

identifier

= ACCEPTPORT #set_ap

CALLPORT #set_cp
RECEIVEPORT #set_rp
SENDPORT #set_sp

= #set_np

= #1 #firstid ids : type_desc semi declares

» #1 #uniqueid ids

= RETURNS (#I #firstid ! type_desc) #set_return
= #set_noreturn

= #I #firastid tablerowO semi tadeclares

. tablerow -

= ids ! row_def

= TABLE key_spec #tabledef (tdeclares) #endtabledef
= row_def

ROW IN #I #rowdef

= KEY (#I) #set_key
= #set_nokey

#1 #firstid ids : tdeclare semi tdeclares

= ROW IN #I #rowdef
= type_desc

= STRING #set_string
= #gset_nostring

= DECLARE declares #set_create proc_defnl
= CREATE PHASE #set _create block #set_main

= CREATE PHASE block #set_main proc_defn2
= MAIN PHASE #set_main block

MAIN PHASE block

= PROCESS
= #I

#1 #identify

id func

92

block

statements
statements
statements
statements
statements
statements
atatements
statements
statements
statements

statements
statements
statements
statements
statements
statements
statements
statements
statements
statements
statements
statements
statements
statements
statements
statements
statements

statements

statements

statements

statements

statements

statementsl
statemental

statementsl

index_assign
index_assign

nextstmt

find_spec
find_spec

#temppush statements #temppop

: statements

= #]1 statementsl nextstmt

ACCEPT id FROM identifier #receive nextstmt
ALLOCATE id key. stmt find_order #allocate nextstnt
CALL id (#procbeg proc_list_end #callend nextstmt
COMCALL identifier #pushO #communicate nextstmt
COMSEND identifier #pushl #communicate nextstat
COMPLETE identifier #wait nextstmt

= CONNECT id TO expression #connect nextstmt
= CREATE id (identifier) '

MODULE (expression) #create nextstmt

= DELETE id #delete nextstnmt
= DISCARD identifier #discard nextstmt

FIND id find_spec #findstmt nextstmt
FORWARD identifier TO identifier #send nextstmt
LEAVE leave_stmt #leave nextstnmt
LOSE id #discard nextstmt
MOVE identifier TO id #movestmt nextstmt
PUBLISH id AS expression #publish nextstmt
RECEIVE id FROM identifier #receive nextstmt
REMAP identifier AS id #remap nextstmt
RETURN identifier return_tail #returnstmt nextstmt
SEND identifier TO identifier #send nextstmt
SLEEP #sleep nextstmt
TIME = expression #settime nextstmt
UNPUBLISH id #unpublish nextstmt
WAIT id #wait nextstmt
Z2EROSTRING (id #chkstr , expression #chkint)

#zerostring nextstmt
IF #pushif #pushlabel expression #tempclear #ifthen

THEN block else END #poplabel IF nextstmt
DO #pushdo #pushlabel #dodo block ons

END #doend #poplabel DO nextstmrt
SELECT #pushselect #pushlabel select_body

END #poplabel SELECT nextstnmt
REPEAT #pushrepeat #pushlabel repeat_stmt

END #poplabel REPEAT nextstmt

#pushlabel cntrl_stmt #poplabel

[#identify #chkstr expression #indxsetup index_assign]
= expression #subaasign

#identify expression #assign

n

; index_limit #substring

= #indx

#tempclear statements

= WHERE #findwhere (expression) #chkbool

KEY (expression) #pushl

- 93 -

find_spec #= find_order #pushO

find_order = FIRST #pushl

find_order = LAST #push2 .

find_order = AFTER id #push3

find_order = BEFORE id #push4

find_order #= #pushO

key_stmt #= KEY (expression)

key_stnmt = #pushO

leave_stmt #= DO #pushdo

leave_stnt = EXCEPTION (except)

leave_stnt = IF #pushif

leave_satmt = REPEAT #pushrepeat

leave_stmt = SELECT #pushselect

leave_stnt #= #I

return_tail #= EXCEPTION (except)

return_tail = #pushoO

cntrl_stmt #= IF #pushif #pushlabel expression #tempclear #ifthen

THEN block else END #poplabel if_tail

cntrl_stmt #= DO #pushdo #pushlabel #dodo block ons
END #doend #poplabel do_tail

cntrl_stmt #= SELECT #pushselect #pushlabel select_body
END #poplabel select_tail

cntrl_stmt #= REPEAT #pushrepeat #pushlabel repeat_agtmt
END #poplabel repeat_tail

else #= ELSE #pushif #leave #ifend block

else #= #ifend

if_tail #= IF

if_tail = #I #cmplabel

do_tail #= DO

do_tail = #1 #cmplabel

select_tail #= SELECT

select_tail #= #I #cmplabel

repeat_tail #= REPEAT

repeat_tail = #I #cmplabel

ons #= ON #doon (except excepts) block ons

ons #=

excepts = , #doexcept #donotlastexcept except excepts

excepts #= #doexcept #dolastexcept

except #= ERROR #pushl

except = ALIASING #push2

except #= BOUNDARY #push3

- 94 -

except #= DEPLETION #push4

except #= DISCONNECTED #pushS

except #= DUPLICATE #push6

except #= FORMAT #push?7

except #= NOT FOUND #push8

except #= OVERFLOW #push9

except #= SELECT FAIL #pushl0

except #= SIZE #pushll

except #= TYPE MISMATCH #pushi2

except = PARAMETER #pushl3

except #= #N #fixexcept

select_body #= WAIT #repeat event_whens when_otherwise #repeatend

select_body = (expression) #select value_whens otherwise

select_body #= #true #select value_whens otherwise

value_whens #= WHEN (expression when_exprs) block
#pushselect #leave #whenend value_whens

value_whens #=

when_exprs #= , #selectexpr expression when_exprs

when_exprs #= #selectlastexpr

when_otherwise #= OTHERWISE block #pushselect #leave
when_otherwise #= #sleep

otherwise #= OTHERWISE #tempclear #otherwise block

otherwise #= #otherwise #pushlO #leave

event _whens #= WHEN (id) #selectevent #ifthen block
#pushselect #leave #ifend event_whens

event_whens #=

repeat_stmt #= WHILE #repeat (expression) #whilel block
#repeatend #outstack

repeat_stnmt #= UNTIL #untill (expression) #until2 block
#repeatend #outstack

repeat_stnt #= FOR for_iterator

repeat_stmt = #repeat block #repeatend

for_iterator #= (id = expression up_down expression)
#forl block #outstack

for_iterator #= id #forrowl #doon #push8 #doexcept

#dolastexcept #pushrepeat #leave #doend #poplabel

where #forrow2 block #repeatend

where #= WHERE (expression) #chkbool #tempclear

where = #true

up_down #= TO #pushO

up_down #= DOWNTO #pushl

index_expr #= [#chkstr expression #indxsetup index_end 1

index_expr #=

- 95 -

index_end #=

index_end

index_limit
index_limit

term
term
term =
ternm
term
term
term =
term
term
term =
term
term
term =
term =
term
term =
term
term
term
term
term
tern
term
term =
term
ternm
term =
term

op_multiplicative
op_multiplicative
op_multiplicative
op_multiplicative
op_multiplicative
op_multiplicative
op_multiplicative

nultiplicative

op_additive
op_additive =
op_additive
op_additive
op_additive

additive

: index_limit #substring
#indx #indxref

= # #endlim
= expression #indxsetup

it

= #C
#N
#L
#S index_expr
TRUE #true
FALSE #false

(expression) index_expr
expression) #length
#chkint) #nabs

LENGTH (
ABS (
ORD (
CHR (
INTEGER (
LONG (
COMPLETED

expression
expression
expression
expression
expression

)
)
)
)

(identifier
EMPTY (identifier) #empty

#ord

#chr
#convint
#convlong

) #completed

COMSTATE (expression) #conmstate

TIME #nti
NODEID #n
BRANCHES
PROCESSOR
RANDOM #r
RANDOML #

me
odeid
#branches

S #processors
andom

randoml

BAUDRATE (expression #baud)

+ tern

ternm
term
NOT term
identifie

-~

#ch
#ch
#ch
#ch
#ch
#ch

1}
N o

]

%ﬂ:%i‘t%&%
[

= + #chkint

#chkint
| #chkint
~ #chkint

multiplic

#chkint

#chkint #neg
#chkint #notint
#chkbool #notbool
r index_expr

#chkint
#chkint
#chkint
#chkint
#chkint
#chkint

kint
kint
kint
kint
kint
kint

term
term
term
term
term
ternm

#= term op_multiplicative

multiplicative #chkint #add
#chkint #sub
multiplicative #chkint #or
#chkint #xor

multiplicative

multiplicative

ative op_additive

- 96 -

#mul
#div
#nod
#and
#shl
#ahr

op_multiplicative
op_multiplicative
op_multiplicative
op_multiplicative
op_multiplicative
op_nmultiplicative

op_additive
op_additive
op_additive
op_additive

op_concatenation #= ! additive #tempclear #concatenate op_concatenation
op_concatenation #=

concatenation
op_relational
op_relational
op_relational
op_relational
op_less
op_less
op_less

op_great
op_great

relational
op_expression
op_expression
op_expression
op_expression
and_clause
and_clause
or_clause
or_clause

expression

func
func

proc_list_end
proc_list_end

procone
procone

procs
procs

#= #temppush additive op_concatenation #swap #tempmerge

#= < op_less
= > op_great
= = concatenation #equal op_relational
=
#= = concatenation #lessequal op_relational
= > concatenation #notequal op_relational
#= concatenation #less op_relational
#= = concatenation #greatequal op_relational
#= concatenation #great op_relational

#= concatenation op_relational

#= AND #chkbool and_clause op_expression
= OR #chkbool or_clause op_expression
= XOR #chkbool relational #chkbool #xor op_expression

#= THEN #tempélear #andthenl relational #chkbool #tempclear
#andthen2
#= relational #chkbool #and

#= ELSE #tempclear #orelsel relational #chkbool #tempclear
#orelse?

#= relational #chkbool #or

#= #temppush relational op_expression #swap #tempmerge

#= (#funcbeg proc_list_end #callend

#=) #noparn

#= expression procone

#=) #oneparn
#= #firstparm procs

#= , expression #procparm procs
#=) -

expression_list #= (#mark expression_list_end

expression_list_end #=)
expression_list_end #= expression expressions

expressions
expressions

#= , expression expressions
#=)

- 97 -

B.2 Intermediate Lanquage Syntax

The following is a syntax description of the Intermediate Language
source code used by the assembler. Like the NIL syntax in the previous

section it is compatible with our parser generator.

asm_unit #= first_pass second_pass
first_pass #= statements END
second_pass #= statements END

term #= #1I

term #= #C

term #= #N

term #= (expression }

term #= + term

term #= - tern

term #= = ternm

term #=

statements #= #1 id

statements = #5 seperate statements
statements = #C op_statement
statements = #N op_statement
statements = (expression) op_statement
statements = + term op_statement
statements = - term op_statement
statements = ~ term op_statement
statements = . op_statement
statements #=

id #= ! seperate statements
id #= EQU expression seperate statements
id = op_statement

op_statement #= op_multiplicative op_additive op_shift
generate seperate statements

generate #= @

generate #=

seperate #= 3

seperate #= ,

seperate #=

op_multiplicafive #= = term op_multiplicative

- 98 -

op_multi
op_multi
op_multi
op_multi

multipli

op_addit
op_addit
op_addit
op_addit
op_addit

additive
op_shift
op_shift
op_shift

expressi

plicative #= / term op_multiplicative
plicative #= MOD term op_multiplicative
plicative #= & term op_multiplicative
plicative #=

cative #= term op_multiplicative

ive #= + multiplicative op_additive
ive #= - multiplicative op_additive
ive #= | multiplicative op_additive
ive #= XOR multiplicative op_additive
ive #=

#= multiplicative op_additive

#= < < additive op_shift

#= > > additive op_shift

#=
on #= additive op_shift

B.3 Intermediate Language Opcodes

The £

recogniz

LEGEN

Capit
represen
code. M

of singl

ollowing is a list of the intermediate language instructions

ed by the assembler, and descriptions of their operation.
D:

alized symbols represent values on the stack. Lower case symbols
t parameters that follow the opcodes in the intermediate language
ost of these parameters are objects which are represented by lists

e byte offsets (see text).

Contents of the stack before and after execution of the operation.
By convention the top of the stack is always on the right in any
list of stack elements.

Optional parameter.

Address. 16 bits. Can be relative or absolute depending on context.

Integer. Has a value from -2»#15 to 2*»15-1.

Long. Value between -22#31 and 2==31-1.

String description. Consists of address and length. S1 is the same
as Al I1.

Boolean true (1) or false (0).

Value. Depends on context.

Access mode of a row (single byte constant). They are: O-nothing,
l-detached, 2-update, 3-read, 4-refer, S-marked.

99

Description

Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
rel

Get r
Get r
Dupli
Dupli
Excha
Excha
Excha
Dupli
Rotat
Undo

I1+1I2
I1-12
I1#12
I1/12
I1 MO
L1+L2
L1-L2
L1=L2
L1/L2

minus
minus
minus
minus
zero
one
two
three
four
byte constant (unsigned)
word constant

four on stack (integer)
three

two

one

string address and length given its
ative address

id of top of stack

id of top two stack elements

cate top of stack

cate long on top of stack

nge top two stack elements

nge top two longs

nge first and fourth stack elements
cate element next to top

e top three elements

rotate of top three elements

(with long result)

D I2

add 16 bit relative address constant.
byte 8 bit constant.
comp Component.
key Object used as key.
long 32 bit constant.
nes Message.
ob) Object (type based on context).
pri Primary.
row Row.
sec Secondary.
str String.
word 16 bit constant.
Stack Op Params
Constant
-> -4 1d_4
-> -3 1d_3
->» -2 1ld_2
-> -1 1d_1
-> 0 140
-> 1 1d1
-> 2 142
->» 3 1d3
-> 4 1d4
-> I1 ldcb byte
-> 11 ldcw word
-» S1 ldcs add
Stack Manipulation
I1 - drop
L1 -> dropl
I1 -> I1 I1 dup
L1 -> L1 L1 dupl
I1 12 -> 12 I1 swap
L1 L2 -> L2 L1 swapl
I1 L1 I2 -> I2 L1 I1 swap4
I1 I2 -> I1 I2 It over
I1 I2 I3 -> I2 I3 11 rot
I1 I2 I3 -> I3 I1 I2 unrot
Arithmetic
I1 I2 -> I3 add
I1 I2 -> I3 sub
I1 I2 -> L1 mul
I1 I2 -> I3 div
I1 12 -> I3 modulo
L1 L2 -> L3 addl
L1 L2 -> L3 subl
L1 L2 -> L3 mull
L1 L2 -> L3 divl
L1 L2 -> L3 modulol

L1 MO

D L2

- 100 -

I1 ->

L1 ->

I1 >

L1 ->

I1 ->

L1 ->

I1 I2 ->

I1 I2 >

I1 I2 ->

I1 ->

L1 >

I1 12 -

L1 L2 ->

I1 12 ->

L1 L2 ->

11 ->

I1 12 ->

L1 I1 ->

I1 I2 ->

L1 I1 ->

->

->

->

L1 ->
Memory

Al >

I1 A1 ->

Al >

Il A1l ->

Al ->

L1 Al ->

Al ->

I1 ->

a1l ->

Al ->

Al >

Al >

General Object

I2
L2
I2
L2
L1
I1
I3
I3
I3
12
L2
TF
TF
TF
TF
TF
I3
L2
I3
L2
Il
L1
L1

I1

I1

L1

A2
Al

I1

->

Vi ->

-2

->

->
String

51 52 ->

S1 52 -

S1 I1 ->

Vi

Al
TF

I1

Al

abs
absl
neg
negl
il
1li
and
or
exor
not
notl
1t
1tl
eq
eql
eqo
1sl
1sl1
lsr
lsrl
rand
randl
time
setti

1db
stb
ldw
stw
1dl
stl
relab
allbl
relbl

!
k
k

blklen

lock

unlock

ldo
sto
lda
emp
disc

length obj
move objl obj2
remap objl obj2

scopy

sconcat str

ob)
obj
obj
ob)
ob)

sindex

Absolute value

Absolute value long
Change sign

Change sign long

Convert integer to long
Convert long to integer
Bitwise logical and
Bitwise logical or
Bitwise exclusive or
Bitwise logical not
Bitwise logical not long
I1 less than I2

L1 less than L2

Il equal to I2

L1 equal to L2

I1 equal O (boolean not)
Logical shift Il left I2 times
Logical shift left long
Logical shift right
Logical shift right long
Random integer

Randonm long

time of day

set the time of day

Load byte at address Al (unsigned)
Store byte Il at address Al

Load word at address Al

Store word Il at address Al

Load long at address Al

Store long L1 at address Al

Change relative address to absolute
Allocate block of length 11

Discard block at Al

Length of given block

Lock the semaphore at Al (dangerous)
Unlock the semaphore at Al

Load object

Store object

Load pointer to data

Test if object is initialized

Return storage for the object

Load length of str, table, primary or sec
Tranafer data:! Objl=aource, ObjZ=dest
Create obj2 from objl’s data

Copy data from string 1 to string 2
Error if lengths are not the same

Concat string 1 and string 2 to form str

Return address of the Ilst byte of S1;

- 101 -

S1

S1
S1
S1
S1

Ii

52
52
52
82
I1

-> 82

TF
TF
TF
TF

substr

seq
altb
sltw
sltl
zerost

r str

Error if index is out of range
Calculate substring from string, low

index(I1) and length(I2): Error if

out of bounds
Compare two strings for equality
Compare two byte strings, S1 ¢ S2
Compare two word strings, S1 ¢ 52
Compare two long strings, S1 < S2
Create string of zeros of length Ii

Primary, Secondary, Message and Component

S1

S1

-2

-2

=>

TF

Table and Row

Flow of Control

TF ->
TF ->
Miscellaneous

pub
unpub
conl
con2
send
call

rec
ret
create

comple

comsen
comcal

alc
alca

alch
fnda
fndb

fndk
delete

bz

bnz
bra
bsr
rts
signal
wait
wait
sleep
stop

debug

pri satr
pri

str sec
pri sec
mes sec
mes sec

pri mes
mes byte
mes

te comp

d mes
l mes

Put primary in catalog with name S1

Take primary out of catalog

Look up str in catalog, attach sec

Use given primary to make connection

Add message to queue found by secondary

Add message to queue found by secondary,
then wait for return

Take message from queue, or error if empty

Return message to caller with given error

Calls Op Sys to start a new process

named S1, called with mes

Check if component object has completed,
putting true or false on stack

Send commess or cominitmess to port

Call port with commess or cominitmess

row/mess [keyl Allocate record or message
rowl [keyl row2 Allocate record after row?

after nothing means first

rowl [keyl row2 Allocate record before row2

rowl row?2

rowl row2

row key
row

add
add
add
add

byte
pri
comp

before nothing means last
Find record after row2
after nothing means first
Find record before row2
before nothing means last
Find record with key
Detach record and discard its data

Branch if top of stack is zero

Branch if top of stack not zero

Branch unconditional

Branch to subroutine

Return from subroutine

Effect the exception as if it occurred
Wait until primary receives message
Wait until components finishes

Swap process out to ready queue

Mark process as completed

Not implemented

- 102 -

nop

No operation

- 103 -

Appendix C

Operating Manual

This appendix gives operating instructions for all of the host based

system software:! global type database, compiler, assembler, and monitor.

C.1 Global Database

The program *“global" manipulates a database of NIL data types that will
be shared among your processes. It expects to find the data file
"global.sym" on your default disk. Before running global, make up a file
with the new data types you want to install. Then jJust type "“global™.

The commands it accepts are as follows:

A Display the contents of the database.

H Help information.

L Display all of the data type names currently in the
database.

P Directs future display output to the printer.

@ Quit.

R Display the definition of a given data type.

S Directs future display output to the screen.

W Write the contents of a file into the database. This is

the only command that actually changes the database.

All the others just report what is in it. If the file
you write contains a data type definition that is
already in the database then the old one will be
replaced by the new one. Other than by deleting the
file *“global.aym" this is the only way of getting rid of

- 104 -

an old definition.

C.2 Compiler

Thebcompiler expects your NIL source code in a file with the extension
".NIL". It also expects the file "global.sym" on the default disk drive.
This file must contain any shared data types used in the program currently
being compiled. The source code must contain only one process. The

compiler is run by entering:
compiler filename

It creates two files. One called "filename.LST" is a copy of the
source code together with any warning messages, error messages, and shared
data type definitions at the places that they occurred. The other file
has as its filename the name of the process in the NIL source code, and it
uses the extension ".INT". This file contains the intermediate code
result of the compilation. It can be printed out if one is curious as to

how the compiler works.

C.3 Assenmbler

The assembler takes the output of the compiler and converts the process
into the coded form that can be run by the (CLUMPS) interpreter. It is
run just like the compiler. It expects a file called "assemble.def" on
the default drive. This file contains definitions of all the opcode bytes
(it is automatically included during assembly). The assembler’s input

file should have the extension ".INT". To run it just enter:
assemble filename

It also creates two files: a listing file with the errors and the

included definitions, and the object code file with the extension ™.COB".

- 105 -

No intermediate code files that the assembler produces should have any

assembly errors.

The monitor program is used to control (CLUMPS) from the host. It
sends the operating system, user processes and other files to (CLUNPS),
and records and/or displays simulation results from (CLUMPS). Before
running the monitor (CLUMPS) must be powered on and both it and the switch

nust be reset. The procedure is as follows:

1. Turn power on to (CLUMPS), the PC (host), and the terminal used to

control the switch.
2. 1Initialize the switch with a command of the fornm:
INIT 8000 10

Where 8000 is the address of the switch memory (in hex), and 10 is

the number of lines in the switch (in hex).
3. Reset all the (CLUMPS) nodes with their hardware reset buttons.

4. Program the switch for the connections desired. The commands are in

the fornm:
C node-in node-out

Where C is the connect command (use D for disconnect), node-in is
the number of the communication line into the switch (in hex), and
node-out is the number of the communication line going out of the
switch (in hex). Remember that for bidirectional connections both

directions must be programmed separately.

5. Run the monitor program by entering “monitor".

- 106 -

The monitor expects all of the object code files it will need to be on

the default disk drive. At a minimum this neans the operating system file

"os.cob”, and the main user program "user.cob™. To run the monitor just

enter "monitor".

All monitor commands are control characters. This

prevents messing up a simulation run by accidentally pressing a key. The

commands are as follows:

;)

~C

“K

“L

*0

~Q

“R

~S

W

~X

Toggle raw mode. When in raw mode all received messages
are treated like log messages whether or not they have a
leading zero.

Quit. Asks if you want to leave the monitor. The
monitor can be stopped and resumed while (CLUMPS) is
reset without affecting the systen.

Compose a message at the keyboard to send to (CLUMPS).
First enter a string of message data. To include a
non-ascii character in the string enter a $ followed by
two hexadecimal digits. These three characters will be
turned into a single byte. Next enter the node id of
the destination in hex. This is turned into a single
byte which is concatenated onto the front of the data.
The whole message is then sent.

Toggle logging. When loggihg is on all log messages
received from (CLUMPS) are stored to disk. They are
placed in a file called "clumps.log". 1If such a file
exists when the monitor is invoked, then it is renamed
to “clumps.bak", and a new log file is created.

Send the operating system to (CLUMPS). This 1s the
usual first operation after the monitor is started.

Display the most recently received 8 messages. This is
mostly useful for debugging.

Reset (CLUMPS). Sends a message that causes all nodes
to go into their power on reset state. This is used to
end one gimulation and start another.

Freeze processing until another key is pressed. This is
used to halt the screen if messages are coming in to
quickly to read.

Send a file to (CLUMPS). This is like “K, but the data
comes from a file instead of the keyboard.

Toggle display mode. When display mode is on all
received messages will be displayed on the screen. They
will be truncated to reduce the screen clutter if they
are greater than 40 characters. The complete message is

- 107 -

always logged, however.

- 108 -

Appendix D

Sample NIL progranm

The program that follows illustrates a complete packet radio simulation
system (see section 3.2 for & description). The operating system NIL
program is included for completeness. The system consists of eight

different processes representing the various layers of protacol.

D.1 Shared Data Types

The following are data types common to all the processes.

arqgstart IS CALL MESSAGE (
id: CHAR;
port: ethermess CALLPORT;
) RETURNS (cmp: COMPONENT);
charmess is CALL MESSAGE(c:i:char) RETURNS(cmp:COMPONENT):
cominitmess IS CALL MESSAGE
(flag: CHAR;
branch: CHAR; { O to BRANCHES-1 }
baud: INTEGER; { if zero, not changed }
errate: INTEGER; (errors per 2#»24 bytes }
delay: INTEGER; { in clock ticks)
carriersense: INTEGER; (neg = radio, 0 = wire, pos = car sense delay
in 16ths of a bit time 1}
recp: commess CALLPORT;
arcp: commess CALLPORT; »;
commess IS CALL MESSAGE
(flag: CHAR;
branch: CHAR;
timestamp: LONG;
data: CHAR STRING:): ')
createmeass IS CALL MESSAGE() RETURNS(name:CHAR STRING):
ethermess IS CALL MESSAGE (data: CHAR STRING):
logmess IS MESSAGE(data:CHAR STRING);
procmess IS MESSAGE
(pcount: INTEGER; {(program counter}

- 109 -

pcode : INTEGER; (tuple containing codel
pdata : INTEGER; (top-level datal
parent: INTEGER; (owner who could be waiting on this process)
psem : CHAR; {semaphore}

status: CHAR; {state of process});
readmesa IS CALL MESSAGE(data,reault:CHAR STRING):
schedulemess is CALL MESSAGE(limit:LONG):;

D.2 Operating System

{5/21/86 DRH!}
{Main operating system nil process}
(Does log, read, createproc, discardproc and handles all os branches)
os: PROCESS
DECLARE
user: COMPONENT; (pointer to the main user progranm }
lp: logmess RECEIVEPORT;
lm: logmess;
rp: readmess ACCEPTPORT;
rm: readmess:
Cm: commess;
parentp,childp: commesa ACCEPTPORT;
pointer,i: INTEGER;
routes: CHAR STRING;
cim: cominitmess;
crp: createmess ACCEPTPORT; (creque }
crm. createmess;
dp: procmess RECEIVEPORT; (disque }
pm: procmess;
code: TABLESET
(t: TABLE KEY(name) (name,data: CHAR STRING):
r: ROW IN t;)
ltempilong;

CREATE PHASE
(SETUP THE GLOBAL RECEIVE BUFFER AREA)
zerostring(routes,32); (maximum of 32 nodes}
routes (0]l =CHR(branches); {send to parent when going to node 0}

(connect the os comm lines to parentp or childp)
CONNECT cim.recp TO parentp;
cim.branch=CHR(branches);

COMSEND cinm;

(get user process from parent)
cm.data=nodeid!"user.cob";
cn.branch=CHR(branches);
COMSEND cnm:;

- 110 -

REPEAT FOR (i=branches+1 TO processors-1)
{init the kids}
CONNECT cim.recp TO childp;
cim.branch=CHR(i):
COMSEND cim:
{send each one an operating system)
ALLOCATE cnm:
(!
ldcw $200@, (place where the os is}
lda V1_cm, V6_data,
stw
}
cm.branch=CHR(i);
COMSEND cnm;
END REPEAT:

PUBLISH lp AS "log";
PUBLISH rp AS "read":
PUBLISH crp AS “createproc”;
PUBLISH dp AS “discardproc*”:

{ store address of crp, dp in fixed global locations)
(!

ldo V1_crp,

ldcb $£0, (crequel
stw

ldo V1_dp,

ldcb $£2, (disque)
stw

}
(SET OUR CLOCK FROM PARENT?}
MAIN PHASE

- (Hopefully we have gotten a reply from our parent by now)
WAIT parentp;
RECEIVE cm FROM parentp;

{check that this is the packet we wanted)
IF cm.flag=CHR(0) AND THEN cm.datai0l=nodeid THEN

{start the given process and go for it}
ALLOCATE code.r KEY(“user.cob"):
code.r.data=cm.datall;=];
DISCARD cm;
ALLOCATE pm; (make a process for the user)}
{!
lda V1_pm, O,
ldw {store a pointer to this process in our component})
lda V1_user,
stw -
bsr STARTPROC@, (set pcount, pcode, put on process queue}

- 111 -

REPEAT
DO
SELECT WAIT
WHEN (parentp)

RECEIVE cm FROM parentp;

IF cm.flag<>CHR(0) THEN
{send the error message back to dad}
cm.data=CHR(255) tnodeid?cn.flag;
cm.branch=CHR(branches);
COMSEND cn; .

ELSE IF cm.datal[0]=CHR(255) THEN
{ parent is telling us to reset }
LEAVE REPEAT; (quit the main loop)

{convenient place to put the subroutines}

(! MAKEPROC:)
DISCARD crm.name;
ALLOCATE pm;
(!
(store the process in crm.name)
lda V1 _pm, O,
ldw
lda V1_crm, V8_name,
stw
{allocate the data)
ldo V1_code, V10_r, Vil _data,
drop
dup
ldw ({now have relative ptr to vl deacr}
add (now have absolute ptr to vl descr}
1d2
add (now have absolute ptr to length of v1})
ldw (now have length of v1}
allblk
sto V1 _pn, V9_pdata,
{move crm into the data as the initial message}
(the data is in a regular mhessage, not a call message)
1d0 ({clear out crm after moving it}
lda V1_crm, o0,
dup
ldw (now we have a ptr to crm}
ldo V1_pm, V9_pdata,
ld4,
add (now we have the data+4, i.e. the first variable)
stw (save crm in data+4)
stw (clear crm}

STARTPROC:
(set pcount to the start of the code}
ldo V1_code, V10_r, V11l_data,
drop
ld4,
add

- 112 -

sto Vi_pm, VS_pcount,
{set the pcode to the tuple)
move V1_code, V10_r, 0, V1_pm, V9_pcode,
ldcw $1808,
sto V1_pointer,
send V1_pm, O, V1 _pointer,
rts
}
ELSE IF cm.datalOl=nodeid THEN
{ this is a read or create reply to us }
IF EMPTY(rm) THEN
ALLOCATE code.r KEY(crm.name):
code.r.data=cm.datall;=]1;
DISCARD cn;
{setup pm from code.r}
{! bsr MAKEPROC® 1
ELSE
rm.result=cm.datal(l;*];
DISCARD cn;
RETURN rnm;
END IF
ELSE (read reply to one of our children, forward it)
cm.branch=routes [ORD(cm.datal0])];
COMSEND cm; '
END IF END IF END IF
WHEN (childp)
RECEIVE cm FROM childp:;
IF cm.f1lag<>CHR(0O) THEN
cm.data=CHR(255) tnodeid!cm.flag;
END IF;
IF cm.datal0]l<>CHR(O) AND cm.data(0]l<>CHR(255) THEN
{Update our routing tablel
(HANDLE REQUESTS FOR TIME?}
routes (ORD(cm.datal0l)]=cm.branch;
{We have a read request, first see if we have the data here}
DO
FIND code.r KEY(cm.datall;»1);
cm.data=cm.datal0] !code.r.data;
DISCARD code.r;
ON (not found)
{(if not, just pass the message along)
cm.branch=CHR(branches);
END DO
ELSE {send to parent)
cm.branch=CHR (branches) ;
END IF;
COMSEND cn;
WHEN (1p)
RECEIVE 1lm FROM lp;
cm.data=CHR(O)'im.data;
DISCARD 1m;
cm.branch=CHR(branches);
COMSEND cnm;
WHEN (dp)

- 113 -

RECEIVE pm FROM dp;

{set code.r from pm.pcodel

(! move V1 _pm, VS_pcode, V1_code, Vio_r, O, i

DISCARD pm;

DO
DELETE code.r:

ON (error)

DISCARD code.r;

END DO;

WHEN (rp)

IF EMPTY(rm) and EMPTY(crm) THEN (only do one at a time}
RECEIVE rm FROM rp;
cm.data=nodeid!rm.data; {(ask parent for the data)
cm.branch=CHR(branches) ;

COMSEND cm;

ELSE
SLEEP;

END IF

WHEN (crp)

IF EMPTY(rm) and EMPTY(crm) THEN (only do one at a time)

RECEIVE crm FROM crp;

DO
FIND code.r KEY(crm.nanme);:
{setup pm from code.r}
{! bsr MAKEPROC@ }

ON (not found)
{ask parent for the data)
cm.data=nodeid!crm.name:
cm.branch=CHR(branches);
COMSEND cn;

END DO

ELSE
SLEEP;

END IF

END SELECT
ON (error)
END DO
END REPEAT
END IF

{stop the user)
DISCARD usger:

{send reset message to the kids}

REPEAT FOR (i=branches+l TO processors-1)
cm.branch=CHR(i);
cm.data=CHR(255);
COMCALL cnm:

END REPEAT

(invalidate all user branches}
REPEAT FOR (i=0 TO branches-1)
(
ld1l

- 114 -

ldcw $101@, (valid is the byte after sen}
ldo V1_i,
1d4
lel
add
stb
}
END REPEAT;

{wait 3 seconds!
ltemp=time+30000;
REPEAT WHILE (ltemp>time) SLEEP; END REPEAT:

{reset the node}
(!

140

ldcb 598,

stb

)

END PROCESS

D.3 Main User Process

{ simple radio protocol, demonstrates layering, routing and flow control 1}
user: PROCESS)

DECLARE
en: ethermeas;
ep: ethermess ACCEPTPORT;
cc: charmesa; {dummy for starting up the procesasea}
cl,c2,c3,c4,cS: COMPONENT;
lm: logmess;
lp: logmess SENDPORT;
schedule: schedulemess CALLPORT;
router: ethermess CALLPORT;
counta: INTEGER STRING;
i,count: INTEGER;
c: CHAR:;

CREATE PHASE
PUBLISH ep AS "application®;
CREATE cl(cc) MODULE("schedule.cob™):
CREATE c2(cc) MODULE("sender.cob"):
CREATE c3(cc) MODULE("arqdistr.cob");
CREATE c4(cc) MODULE(“router.cob™);
CREATE cS(cec) MODULE(“receiver.cob");
CONNECT 1p TO "log";

- 115 -

CONNECT router TO "router";
CONNECT schedule TO *“schedule";

MAIN PHASE

DO
lm.data=nodeid!"starting*;
SEND 1lm TO 1p;
zerostring{(counts,S);
count=0;
CALL schedule(20000); { wait for other to get started }

REPEAT FOR (i=1 TO 3) { send initial messages }
IF i<>0RD(nodeid) THEN
counts (il =1;
zerostring(em.data,7);
em.datalll=nodeid;
em.datal4]1=CHR(1);
em.datalS]=nodeid;
emn.data(6]l=CHR(1);
SEND em TO router;
END IF;
END REPEAT;

REPEAT
WAIT ep;
RECEIVE em FROM ep; {(receive a messagel!
lm.data=em.data; {(report it to the screen}
SEND 1Im TO lp;
i=ORD(em.datalS]);
IF counts(il<8 THEN {send another one}
countsli)l=counts(il+1;
em.datalll=nodeid;
em.datal4]l=CHR(1i);
en.datal51=nodeid;
em.datal6]=CHR(counts(il);
SEND em TO router:
ELSE
count=count+1; (finished sending to a node!
IF count=2 THEN LEAVE REPEAT:; {all donel END IF;
END IF;
END REPEAT;

ln.data=nodeid!"ending”;
SEND 1m TO 1p:
REPEAT CALL schedule(10000000); END REPEAT;
ON (error)
END DO:
lm.data=nodeid!"demo error”;
SEND 1m TO 1lp;

END PROCESS

- 116 -

D.4 Scheduler

{ process to help others wait }
{ accepts call messages with number of ticks to wait }
{ returns the call messages after the given amount of time passes !
schedule: PROCESS
DECLARE
sn: schedulemess;
sp: schedulemess ACCEPTPORT:
ts: TABLESET (
t: TABLE (sm:schedulemess):;
rfirst,r: ROW IN t;):

CREATE PHASE
PUBLISH sp as '"schedule";
ALLOCATE ts.rfirst;
ts.rfirst.sm.limit=time+36000000;

MAIN PHASE
REPEAT
IF ts.rfirst.sm.limit<=time THEN
{return a call message if time}
RETURN ts.rfirst.sm;
DELETE ts.rfirst:
FIND ts.rfirst FIRST:
ELSE IF LENGTH(sp)<>0 THEN
{add a new call message to our table)
RECEIVE sm FROM sp;
sm.limit=gm.limit+time;
IF sm.limit<=ts.rfirst.sm.limit THEN
ALLOCATE ts.rfirst BEFORE ts.rfirst;:
MOVE sm TO ts.rfirst.snm;
ELSE
REPEAT FOR ts.r
IF ts.r.sm.limit>=sm.limit THEN LEAVE REPEAT; END IF;
END REPEAT;
ALLOCATE ts.r BEFORE ta.r:
MOVE sm TO ts.r.sm;
LOSE ts.r;
END IF;
ELSE SLEEP; {jusat wait if nothing to do}
END IF; END IF:
END REPEAT:

END PROCESS

- 117 -

D.S Sender

{send messages until no carrier sense errors}
sender: PROCESS

DECLARE
CRm: commess;
em: ethermess;
ep: ethermess ACCEPTPORT;
schedule: schedulemess CALLPORT;

CREATE PHASE
PUBLISH ep AS "sender";
CONNECT schedule TO "schedule™;

MAIN PHASE
REPEAT
WAIT ep;
RECEIVE em FROM ep;
MOVE em.data TO cm.data;
REPEAT UNTIL (cm.flag=CHR(Q))

CALL schedule(ABS(random) MOD 211); (wait a random time]

COMCALL cm;
END REPEAT;
MOVE cm.data TO em.data;
RETURN em;
END REPEAT;

END PROCESS

D.6 Receiver

{process received messages- toss the bad -ones,
data to ARQ}
receiver: PROCESS

DECLARE
cp: commess ACCEPTPORT;
Cm: COmmess;
" cim: cominitmess;
em: ethermess:
router: ethermeas CALLPORT;

- 118 -

send broadcast to router,

argp: ethermess CALLPORT:

CREATE PHASE
CONNECT cim.recp TO cp;
cim.baud=baudrate(9600);
cim.carriersense=20;
COMCALL cim;
CONNECT arqgp TO “arqdistrib";
CONNECT router TO "router";

MAIN PHASE
REPEAT
WAIT cp;
RECEIVE cm FROM cp;
MOVE cm.data TO em.data:
IF em.flag=CHR(0) THEN (good reception]
IF em.data({0]=CHR(QO) THEN SEND em TO router; {(broadcast)
ELSE IF em.datalOl=nodeid THEN SEND em TO argp; (for us)
END IF; END IF:
END IF;
END REPEAT;

END PROCESS

D.7 ARQ

{distribute packets to the proper ARQ process handling that link}
arqdistr: PROCESS

DECLARE
ep: ethermess ACCEPTPORT;
em: ethermess;
arqg: TABLESET (
t: TABLE key(id) (
id: CHAR;
port: ethermess CALLPORT:
cmp: COMPONENT):
r: ROW IN t; »:
arqs: argstart:
c: CHAR;

CREATE PHASE
PUBLISH ep AS "arqdistrib";

MAIN PHASE
REPEAT
WAIT ep;
RECEIVE em FROM ep;

- 119 -

c=em.datalll; {the source)
IF c=nodeid THEN c=em.data{Ql; END IF; (a send message}
DQ]
FIND arq.r KEY(c);
ON (not found) (start a new arq process for this link)
ALLOCATE arqg.r KEY(c):
arqgs.id=c;
CREATE arq.r.cmp(arqs) MODULE("arq.cob");
MOVE args.port TO arq.r.port;
END DO;
FORWARD em TO arq.r.port;
END REPEAT:

END PROCESS

{does the arq for one link (i.e. one node pair) }
arq: PROCESS(arqgs:arqgstart)

DECLARE
emn:. ethermess
ep: ethermess ACCEPTPORT;
router: ethermess CALLPORT;
sender: ethermess CALLPORT:
sendp: ethermess CALLPORT; (internal list of stuff to be sent)
sendlist: ethermess ACCEPTPORT;
current: ethermess; {(message we are waiting for an ack on!
ack: CHAR STRING:
his,oura: BOOLEAN;
timeout:! long;

CREATE PHASE
his=FALSE;
oura=FALSE;
ack=args.id!nodeid! (chr (0) !chr(0));
CONNECT arqgs.port TO ep;
CONNECT sendp TO sendlist;
CONNECT sender TO "“sender";
CONNECT router TO “router":

MAIN PHASE
REPEAT
IF length(ep)<>0 THEN
RECEIVE em FROM ep;
IF em.datalll=nodeid THEN {message to be sent)
SEND em TO sendp; (just queue it up)
ELSE (received message)
IF em.data(2]1=CHR(ours) THEN {ack] DISCARD current: END 1F;
IF em.datal3]J<>CHR(his) THEN {new reception)
his=NOT his;
SEND em TO router; {send to the higher level}
END IF;
IF empty(current) and length(sendlist)=0 THEN
IF length(em.data)>4 THEN

- 120 -

{nothing else to send, so send an ack!
en.data=ack;
SEND em TO sendp;
END IF;
END IF;
END IF;
ELSE
IF empty(current) THEN
IF length(sendlist)=0 THEN SLEEP (nothing to do!
ELSE {do sendlist}
RECEIVE current FROM sendlist;
ours= ours XOR length(current.data)>4;
current.datal2]=CHR(hisg);
- current.datal3]1=CHR(ours):
CALL sender(current); (make sure we get the message back]
timeout=time+3000+random&s$OFFF; (approx .25 to .75 secs)
END IF;
ELSE
IF time>=timeout THEN (have to try again}
current.datal2]=CHR(his);
current.data{31=CHR(ours);
CALL sender(current);
timeout=time+5000+random&$1FFF; (approx .5 to 1.5 secs)
ELSE SLEEP;
END IF;
END IF;
END IF;
END REPEAT;

END PROCESS

D.8& Router

(puts the immediate destination on messages, forwards them, broadcasts routes)
router: PROCESS

DECLARE
emn: ethermess;
ep: ethermess ACCEPTPORT;
argp: ethermess CALLPORT;
sender: ethermeas CALLPORT:
application: ethermess CALLPORT;
hops,node: CHAR STRING:
i,3): integer;
timeout: long;
c: CHAR:

CREATE PHASE

- 121 -

PUBLISH ep AS "router":;

CONNECT arqp TO "arqdistrib";:

CONNECT sender TO “sender";

CONNECT application TO "application";

MAIN PHASE
zerostring(hops,6); (format is just like a broadcast message}
zerostring(node,3);
REPEAT FOR (i=2 TO 5) hopsl[il=CHR(255); END REPEAT;
hops{ORD(nodeid)+11=0; {we are zero away from ourselves)
node[ORD(nodeid)] =nodeid;
timeout=time+10000;

REPEAT REPEAT
IF length(ep)<>0 THEN
RECEIVE em FROM ep:
IF em.datalll=nodeid THEN {send this message from us}
c=node[ORD(em.datal4l)]; (destination node}

IF c<>CHR(0O) THEN
em.datal0l=c;

SEND em TO arqgp; {send the message}
LEAVE REPEAT;

ELSE SEND em TO ep; (save it for later}

END IF;

ELSE (this message was received by us)
c=en.datalll; {immediate source}

IF em.datal[0]l1=CHR(0) THEN (a broadcast mesasage}
REPEAT FOR (i=2 TO 3)

J=ORD(em.datalil)+1; {number of hops to il
IF j<ORDthopsiil) THEN
hops(il=CHR(3);
nodeli-1]=c;
timeout=580000000;: {smallest number}
END IF;
END REPEAT;

ELSE {data message received}
hops[ORD(c)+11=1; (in case we don’t know this guy yet}
node{ORD(c)]=c;

IF em.data(41<>nodeid THEN (not for us!}
em.datalll=nodeid; {(now from us}
SEND em TO ep; (forward it)
ELSE {for us} SEND em TO application;:
END IF;
END IF;
LEAVE REPEAT;
END IF;
END IF;
IF time>=timeout THEN (send broadcast again}
em.data=hops;
SEND em TO sender;
timeout=time+20000;
END IF;
SLEEP; (give someone else a chancel
END REPEAT; END REPEAT:

- 122 -

END PROCESS

- 123 -

