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ABSTRACT

EQUIVALENT ANALOG AND DIGITAL MODELS

dong Chak Heili Lee

Submitted to the Department of Mechanical Engineering on May 20, 1961

in partial fulfillment of the requirements for the degree of Bachelor of

Science in Mechanical Engineering.

The conversion of a linear differential equation into an equivalent

difference equation which yields an exact sampled solution of the dif-

ferential equation is investigated. It is found that by matching the char-

acteristic roots of the difference equation with those of the differential

equations; and by suppressing the harmonic roots by modifying the exci-

tation, the difference equation will produce an exact sampled solution of

the corresponding differential equation. The procedures for such opera-

tion were developed for the first and second order equations and the cor-

responding results verified.

Thesis Supervisor: Prof. H. M. Paynter
Title: Associate Prof. of Mechanical Engineering
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INTRODUCTION

One of the most widely used methods of solving differential equa-

ions with the digital computer is by means of the integrater. Finite

intervals are chosen and the differential equation is integrated numeri-

cally, starting from the specified initial conditions to the points whose

values are required. The main disadvantage of this numerical tech-

nique is that it gives numerical values for nonlinear functions at a set

of discrete points instead of the analytic expressions defined over the

corresponding region. Moreover, since intervals are finite the solu-

‘ion obtained is only an approximation. Therefore, the accuracy of

he solution depends largely on the size of the intervals chosen.

The method of converting differential equations to difference equa-

ions developed here has two distinct advantages over the method men-

tioned above. First, it produces exact sampled solutions of the differ-

ential equation instead of approximations. Second, its accuracy is in-

dependent of the size of the sampling intervals (provided the sampling

frequency is not smaller than the frequency of the function) i.e., it is

independent of the sampling frequency. This represents labor and time

saved. For example, suppose it is required to compute the value of vy

at x = 5, given the boundary conditions at x= o. The conventional pro-

cedure is to take say, intervals of 0.01 and compute all the way from

£2 0tox =5, This amounts to 500 steps. However, in this method,

if the frequency of the wave is not greater than the sampling frequency.



say less than 5, then one can choose the sampling intervals to be 1 unit

apart x axis and obtain the solution in 5 steps instead of the conventional

500 or even 5, 000 steps.

Since the poles and zeros of a linear system completely determine

its characteristic response, it is possible to determine the coefficients

of the difference equation which gives the same characteristic roots as

that of the corresponding differential equation, that is to say, the poles

and zeros of the difference equation and differential equation match.

[f the harmonic roots generated in the difference equation is now sup-

pressed by scaling the excitation down to an optimum level such that it

has only enough energy to excite the fundamental roots and not the har-

monic roots, then the difference equation yields an exact sampled solu-

tion of the differential equation. In this thesis one is concerned mainly

with the translation of the analog model (i.e., differential equation) to

the digital model (i.e., difference equation).

The Concepts of. Z - Transforms and S- Transforms

[f the differential equation is Laplace Transformed and the result-

ng algebraic equation is in turn Z - Transformed, then a difference

equation results. The Z - transform is given by

Z- oS
Z = Z -Transform

S = Laplace Transform

Tz Sampling frequency

Also A= id (2)
where A = backward time difference difference-operator

|

vhere



This /Z- Transform is the familiar Z- Transform used in

Sample Data Control system analysis where a continuous input is repre-

sented at the output by trains of impulses whose amplitude correspond

0 the Amplitude of the input wave multiplied by a constant (or even a

variable). Since the effects of a sampler is to introduce high frequency

components, it is therefore desirable to suppress these harmonies to

avoid distortion.

In the mapping of the poles and zeros from the S-plane to the Z-

plane and back again, the same phenomena occur. Going from the S-

plane to the Z- plane is a single valued translation, but the translation

from Z-plane back to S-plane again is multi-valued. Thus harmonic

roots are produced. These harmonic roots need be suppressed, other-

wise the Z-Transformed equation (or difference equation) may not yield

an exact sampled solution of the differential equation. This can be done

by limiting the excitation to an appropriate fraction of its amplitude so

that there is only sufficient energy, so to speak, to excite the fundamen-

tal roots and not the harmonic roots. Take Eq(3) as an example.

v - ( 3 } 3 ) . X

2 &amp; )
Q°

Eq(3) can be factorized and rearranged into a form given by Eq(4)

gz (8 - S: (S-S3 ).x
(S-S,)(S-S,)

where: S,, S3 are zeros

S,, S4 are poles



T'o convert this operator into the difference operator, the poles and

zeros of Eq(4) are plotted onto the S-plane. Then these poles and

zeros are mapped into the Z-plane (this transformation is single valu-

ed). The poles and zeros in the Z-plane can now be represented by

Eq(5).

ye (2-2, {Z-23). x
(z- 2, %z- 2)

5)

This process is shown schematically in Fig. (1). However, when the

poles and zeros in the Z-plane are mapped back onto the S-plane, har-

monic roots are introduced because this transformation is multi-valued

as in Fig. (2). Consequently to produce an exact sampled solution of the

differential equation the harmonic roots must be suppressed, as shown

in Fig. (3). This suppression is done by multiplying the zeros by a scal-

ing factor, which is a function of the poles and zeros. Take for example,

the first order equation given by Eq(6).

1a TD

Direct mappingofpolesand zeros yields:

1 1

{+ TD A -e'T

However, this does not produce the required solution. It is found that the

scaling factor needed in this case is

(SS F.) = 1-7 7)

Then to complete the transformation one includes the scaling factor:

1 L x (S.F.). 1-e"
1+TD = Aer TA - et
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Fig. (1) Mapping of poles &amp; zeros from S-plane to Z-plane.
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Fig. (2) Inverse mapping of poles &amp; zeros from Z-plane back to
S-plane.
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Fig. (3) Suppression of
harmonic roots
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Fig. (4a) Pole configuration
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The waveform given by this operator is shown in Fig. (4).

DeterminationoftheScaling Factor

Proceeding similarly a table of transforms is constructed, and

since the differential equations dealt with here are linear, the principle

of superposition applies. Consequently all linear differential equations

can be synthesized by the superposition of operators whose zeros are at

he origin of the S-plane, e.g.

6T' D + 2 _.6.___ TD" + 2 1
TZD&gt; 2 ¢ TD + 1 TZD+4 28TD+1 TZD* +28TD + 1

T'he conversion of the S-operator to Z-operator involves mere

algebraic substitution. However, the main bulk of the effort and time

is concentrated on the determination of scaling factors which are different

for different poles and zeros configurations. There are as yet no laws or

rules for determining them. Consequently the only way is to use trial-and-

error methods and mathematical intuition. The correct scale factor found

can be verified in two ways:

l) Laplace Transform Method. The exact waveforms can be obtained by

Laplace Transform operation. If the waveform obtained by actually com-

puting the difference equation coincides, at every sampling point, with

the values given by Laplace Transform method, then for all practical

purposes the trial factor can be considered as the required scale factor.

2) Self-Consistent Method. If the trial factor gives exactly the same wave-

form. in amplitude and phase for all values of § and any arbitrary value



of sampling frequency T and the next value of sampling frequency

then the trial factor holds for all values of sampling frequency

(this is the proof by induction method). Consequently the solution is

invariant with respect to sampling frequency except that there are more,

or less sampling points according to whether T is increased or decreas-

=d. Therefore, even if the trial factor is not the right factor it can dif-

fer from the actual factor by only a constant multiplier, e.g., take the

case of 1/(T*D*+2 € TD +1), from table (1) it is found that the scal-

ing factor is eT 1/1? | If the Sampling frequency T is misplaced, e.g.

ngn2

when the sampling frequency is changed. For example, the difference

between e” and ¥' ris 9 times when the frequency varies from 1 to

3. Even the factor in the exponent can be verified by varying the

values of £ , especially for the value of Z -o where it represents a

nondecaying sinusoid. (for the 2d order equation). This too is very

sensitive to being misplaced, because any error would produce incor-

rect values of the sinusoidal envelope, however slight it may be.

PROCEDURE

Derivation of S and Z -planes conversion formulas

Once the backward difference operator is defined by 4 = ai the re-

lation between the S and Z -plane can be derived. The results can be re-

presented in either cartesian or polar co-ordinates. The results given

oy Eq(9) and Eq(10) are expressed in Cartesian Co-ordinates. that given



by Eq(11), Eq(12), Eq(13), and Eq!14) are expressed in polar co-ordi-

nates. The S and Z-plane are shown in Fig. (5).

The Integrator

The derivation and properties of the integrator in difference form

is found in Appendix F.

[Linear Differential Equations

[n this section the transformation of the first and second order

differential equations (with either zeros at infinity or zeros at originor

hoth) into their corresponding digital analog, i.e., difference equations.

are developed. The results are summarized in Table (1) and Table (2).

Z-PLANE S-PLANE

2Tie

Fig. (5) the Z-plane &amp; S-plane
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S-plane in Cartesian Co-ordinates

Z = aT

+

Tr
diy = g~TE +i) -e (cos TW - i sin TW)

X = ev cos TW

-T0 i

v= =C sin TW

. -aTC
wr - [=] -p2

(9)

(10)

- = tan Tag

S-plane in polar co-ordinates

7 15

. e cos TW - i sin TW)

r= e~17

5 = -TW

also In Z --TH

(11)

(12)

- T (0 +iw)

-lnr + i(0F 2KkT)

-To =zInr

“TW - Ww -861 okT

 Tr
W -

1 2

6- 2KT

(13)

(14)
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The first order differential Equations

{ - a) One zero at origin of S-plane: —5 where sampling frequency

equals unity. First, the poles and zeros of the operator are plotted onto

the S-plane, then these are mapped onto the Z-plane or A -plane.

Finally as a check, the poles and zeros of the Z-plane are mapped back

onto the S-plane again. This process is illustrated in Fig. (9).

S-PLANE
y
A Z-PLANE

i. Y

Sm ANE

Fig. (9) the poles &amp; zeros
of D

1 4+ DD

harmonic
suppression
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From the poles and zeros in the Z-plane one deduces:

y- 4-1Gs . X 20)

However, on computing and plotting the function one discovers that it

is only 1/e of the true solution. Therefore, a scaling factor is needed.

his gives:

y = 4-1
A -e . €.X (21)

Che correct and incorrect solution are shown in Fig. (10)

N

. Eq.(20) correct solution

Eq(21) incorrect solution

Fig. (10)
Graph Of Eq.(20)

£ Eq(21)

3
-

0) One zero at origin of S-plane: _TD
1+ TD

where the sampling fre-

Juency T is equal to any integer.

The foregoing analysis in section (1-a) applies only to the case where

the sampling frequency equals unity. However, in actual practice, inter-

mediate sampling points are needed for more accurate representation.

Fortunately sampling points for a given interval may be increased by in-

creasing the sampling frequency T. Proceeding in similar manner one



a

arrives at the solution given by relation (22)

TD A-1 er
————————————— —— =SE
l + TD A -ellr

Y129

where eT = scaling factor

The waveform is shown in Fig. (11) which is exactly the same as that

shown in Fig. (10) except that the sampling points are increased, (in

his case they are doubled because T = 2).

0

Bd

Graph Of Eq. (22) T=2

Fig, (11)

2) One zero at infinity: _1
14 TD

Proceeding in similar fashion the operator is transformed into

the difference form. The scaling factor has been found, by trial-and-

srror, to be (1 - e Ay.

1
1 + TD  an (1

J 99)



The waveform for this operator for T = 2Z is shown in Fig. (12).

#2

0

 |

Graph Of Eq. (25)
Fig. (12)

3) Verification: The above first order differential equations can be veri-

fied by using Laplace transforms.

Y = 1 x
14+ D

| 1)

Faking the Laplace Transforms

1
oVY+ y = &gt;

1
ys —

p(p+ 1)
1 1

y= — = —

D p+1

; = u(t) - et 2.5)

The curve of Eq(25) is shown in Fig. (12).

Similarly:

~~ D

y= 173% op % 23)



Ek

Faking Laplace Transforms

1
Py y=P 3 -

1
y = ——

p+1

va —s

oy 2,7}

vhich is the curve shown in Fig. (10).

Second Order Differential Equation

Ll) With one zero at origin and one ~av0 at infinity of S-plane: TD/(T* D’

+2 L TD +1)

To plot the poles and zeros, the denominator of the expression has

0 be factorized by means of the quadratic formula.

._. -b tT (bp? - 4ac)”2
’ 2a

3

- )

Substituting in the corresponding values of the coefficients in the denomi-

nator of the operator by letting

q -

&gt; =2CT

»
,

hen, D =-287 T 4 oT - 4T?) ”
IT4

“Lox (£-1)%
ie mT

(for © 7 1)

 + ja-g)n
= T

(49)

"2,0

(for § &lt; 1)
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1

Substituting for these values of D back to the operator,

TD

FIT|PT EE)
(for&gt;1)

IEEy WE D-(-r-j[I-¥FT Il (% HE)
(30a

The poles and zeros of Eq(30a) are plotted in Fig. (13) for¥ &lt; 1.
al 1

—

S5-PLANE

Z-PLANE

Fig. (13)

Poles and zeros

configuration of
TD

TZD*+28TD + 1

v= PLANE

Suppression of harmonic roots



The poles and zeros in the Z-plane can now be represented by:

 oo w-vy
4 -eh [cos 1-%* 4 isin/1 £4 a I-¢2  jsin/ 1-57)T T wv

4-1
A2-2e¥1 cos / 1 ~  a ©

8/T
(31)

for (€&lt; 1)

However, it has been found by actual computation that the difference

operator in Eq(31) will not yield the correct. solution. Consequently a

scaling factor is needed. This can be found by trial-and-error and mathe-

matical intuition to be: ( - eb YT )/ el67? and the translation is complete -

TD A-1 Zell fo'67*
T!D*+2¢ TD+1 A*-(2e¥7cos[1-g*")pe?

T

(for T&lt; 1)
(34)

} 4-1 . -e¥hr1 fer?

A - (2e%7 cosh [3-1 )a+e?¥T T [e
T (33)

(for &gt; 1)

TD
R le (2a). Take —g—7—rF——rExample (2a). Take trys7Tp1

T= 2 = 0.25
, (4 - 1)(- RY, T)/(e/67* ) x.

A- (2e%7 cos [1-22 ')p ter
mT

-(A-1)( .567)
A2-2A+1.284

where

(A-24+1.284) y= (.567 - .567TA )x

Yuet Yr +284), = 567K, - .567X,_,

{.284), = - y._,+2)._+ .56TX, ~- .567X.., (34)

The actual numerical computation of Eq(34) is shown in Appendix B

and the waveform is plotted in Fig. (14).
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Verification by Laplace Transforms

yD x
D2+2¢ D +1

(73)vo

Taking the Laplace Transform of Eq(35)

p2 y+ 2%py+y= LP: 1
p

y = oF2 . PS———,—

re:

—

(P+2 + (1-52)

F'rom the Laplace Transform Tables

y= 1 eT. sin (JT E71)
(1-39)

3).

Substituting in the numerical value of { = .25, T = 2.

y= (1.035)e”"2*Y sin (. 966t)

I'he waveform of this equation coincides exactly with the values of the

sampled waveform shown in Fig. (14); this proves that the conversion

is correctly done and also the solution is exact. That is. its accuracy

is only limited by the number of decimal places the digital computor

can carry.



-y

from | aplace Transformfrom |difference equatlon

)

0)

FIG. (14)

Zu
: TD

Sampled Solution Of FT0%2 CTD + 1
where T=2 ¥€=25



from Laplace Tra Storm)from | difference equations

)

)

: TD
0) A———————————————————————FIG_ (14a) Sampled Solution Of FT D%2CTD+]

where T=] ¥=:25
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2) With double zeros at origin of S-plane: T? D* /(T2D*+ 2 STD + 1)

Following the same scheme as in Part 1) and determining the

scaling factor by trial-and-error one arrives at

rl2 + 5¥TD+L 71-27= of -24 +1)e?®/T cos -Z2_¢ + e$/r
(35)

forC¢1

ap (A% -i 2A +esr A T— + e28/

orC&gt;1

However, it is fortunate that the scaling factor turns out to be unity.

T? D*
Example (2b) Take —__—_~___whereT=2;=0.25.
- T?D*+2% TD +1

A%-24 +1
A*- 2A em cos [1-¢ 4 eB

A- 24+ 1
A*- 24 + 1.284

(A* - 24 41.284)y = (A* -2A +1)x

Ver = 2 T1.284y =x, -2Xy., + Xk

1.284 yy, = - ye, Y2y_ +X%X,, -2X_, + x, (33)

,

(35)

The actual numerical computation of Eq(38) is shown in Appendix A,

and the sampled solution is seen to coincide exactly with that given by

[Laplace Transform method, as shown in Fig. (15).

3) With two zeros at infinitv in S-plane: 1/T2 D*+2 CTD +1

The scaling factor for this operator has been found to be (e ri ).

Following the same method of derivation as in the foregoing examples one

arrives at



-

4

or T*
ee am
TE D?4 2% TD +1 A* - 246% cos/1 21 4 e297 (39)

forf&lt; 1
i

oor T?2
A? - 2A e*/1coshJE 17 ee? (40)

for § &gt; 1

Example (2c) Take TTTLTDFT with T = 2, § = .25
1Sr —

e T* K
4* - 2Ae%7 cos [1-g2 4 e*%/"

(41)

. 2835 na

AZ- 2A+1,284

(A* - 24+ 1.284)y = .2835x.

wz ~ 2Yw- + 1.284y, = 0.2835x,

L.284y, = = Yur 2 Vert 0.2835x (4.2)

The actual numerical computation of EQ(42) is shown in Appendix C.

The algebraic equation for the above waveform is found from Laplace Trans-

fer to be

-$t —

y=zult)- _€ (sinf 1-42 t+
1 -

where¢=tan='JT=2%
he

Substitute for numerical values: [ = .25.

y= ult) - (1.035)&gt;(sin(1.035)t+1.31)  1)



’
™,
’

The sampled wave form obtained from the difference equation and that

obtained by Eq(44) are seen to coincide, as in Fig. (16).

RESULTS

The results of the foregoing transformation of S to Z-operators

are summarized in tabular form. Table (1) is a summary of transla-

tion of S-operators to Z-operators. Table (2) is a summary of trans-

lation of Z -operators back to S-operators.

[t can be seen that apart from the representation given in the tables

it is not possible to represent the Sto Z or Z to S translations by purely

algebraic relations because the scaling factor admits of no generalization.

Apart from the zeros, the poles can be generalized to high order just by

combining lower order equations. However, some recommendations on

suggesting methods of generalizing the results of the first order and

second order differential equations to higher order differential equations

are found in the last section of the conclusion.

Since all these operators have either zeros at infinity and/or zeros

at the origin of S-plane, the solution of operators with zeros anywhere in

he S-plane other than the origin and infinity is found in the section on ap-

vlications.

Perhaps one of the methods of proving qualitatively that the results

are valid is by attempting to prove that as the sampling frequency T ap-

proaches 00 , the coefficients of the difference equation approache that of

‘he differential equation. An example of this proof on one of the second

order results is found in Appendix EF.
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TABLES OF S&lt;—&gt;Z TRANSFORMATIONS
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 TABLE(1) SUMMARY OF S—Z TRANSFORMATIONS
S-PLANE | Z-PLANE | SCALING FACTOR

Integrator |

4
D

4
7-4

First Order Eq
/

TD +]

ID
TD+1

] 1-e”

A- er

A-1 ef
N-em

1-0 T

Second Order Ea

TD2, S28T1D + ]

 mm

TD*28T1D +1

= TD
2,D2TD+ 7

eur

er 1/T* _

A%-20e*cosh®-1)%4 Fr
 (4-1) FT VT
A*-2Ne*cosIE)%+p21

_(A-1)(- UT £5
2 TIA Ea atk

A*-20e cosh E112 er
AR24+1
A*-2 Ne™icos (1-8) 35m

L20+1
AZ 2 AeicoshlEZ1VR2%

rT?
~1&lt;3&lt;1)

(1&lt;3&lt;m)

(~o&lt;b&lt;-1)
_e*ryr over
-1&lt;%&lt; 7)

(1&lt;3&lt; ow)
(-00 &lt;5 &lt;-7)

(-1&lt;5&lt;7)

(1&lt; 3% &lt; m)

Fap&lt;B&lt;-1)





TABLE (2) SUMMARY OF Z—S TRANSFORMATIONS

S-PLANE |
+ scaling factor

Integrator

4
1-4

Z-PLANE

f

[)

First Order Eq.

nN

A-x

(4-1T)n
A-x

_ni-x)
1+(1/ln x )D

_(n/x )D
1+ (1/ln x )D

Second Order Eq.

on
2

A -pA+q
n/(q%1/T%)

I’D* +2(T?(cos or)+1)

I&lt; 2
I&lt; —Zgn&lt;1

n/(q%41/T%) I&lt; Sap&lt;©
TD*+2(T*(cosh 57) + 1ATD +1

yo-p .
A+ -

(A-2A+1)n
A=pA+q

(n/(g*% /T €%7))TD I&lt; Sm &lt;1
TD*+2 (TXcos =) +1 )4TD +1

5 ints AIT e TTD —° ~2(T(cosh™SBer)+ 1)4TD+1 -
yy n ort g/t 1) TD +1 a ’

D* 2c+2(T(cos52s)+)" ’a=) t)&lt;TD +1 7ox =

I&lt; 2 &lt; 60)

T*D*2(T*(cosh™ Lez) +1)2TD +1
NB Use only positive root of a.

nT*D?*





 2

APPLICATION

Solution of Linear Differential Equations

The method of superposition can be applied to linear differential

equations. It follows that the results found in table (1) can be superposed,

since these are all linear. An example will illustrate the use of table (1).

Take Eq(45), which is a second order linear differential equation rearrang-

ed in an explicit form, namely:

go IT D#5£TDt2
T2 D*+2¢ TD+1

Zk

I'he opérator in the above form can be broken down into the basic forms

found in table (1), that is

T* D’+5§TD+2 _ T* D* 45%, TD +2,
T2 D*+2£TD+1 ~~ T2 D*+23TD+1  T? D%2¢TD+1 T?*D%2§TD+1

(46)
T=2

Suppose that § = .25. Then one can make use of the results of Appendix A,

B, and C. Let the sampled value of y bey, , y, , Ya in Appendix A, Ap-

pendix B, Appendix C, respectively. Then by superposition the sampled

solution of Eq(45) is given by:

Tk 3 Ce Ji
Lm]

y : y+ 50y,.+ 2¥,

47)

(48)

The solution of Equation (48) is found in Appendix D, and the result-

ant waveform is plotted in Fig. (17). As a matter of interest the small

saddle or kink found at the 10th sampling point in the curve has been veri-

fied by Laplace Transform to exist.



"7

For the convenience of using the transforms the values of

2

Sh cosL128 and eT cosh fE-1 vs. z with T as parameter are

plotted in graph (1). Also the values of ys. € with T as parameter

are plotted on graph (2).

CONCLUSION

From the results of the foregoing analysis one is lead to the con-

clusion that the initial assumption of the fact that the poles and zeros of

a linear system uniquely determines its characteristics is justified. It

also serves to prove that if the poles and zeros of one complex plane

were mapped onto another complex plane and that if means were devised

so that there is a one to one correspondence (e.g., by suppression of

1armonics and multivalued roots) between the two planes then the charac-

-eristics of the linear system can be described uniquely by the poles and

zeros in that other complex plane. In this thesis, the two planes in ques-

‘ion are the S-plane and the Z-plane. By far the most significant factor

hat makes possible the translation of a differential equation to a corres-

oonding difference equation which yields exact sampled solution of the form-

ar is the Z -Transform.

One of the usefulnesses of Laplace Transform is that it converts a

linear differential equation into an algebraic equation to facilitate the solu-

tioning Consequently one is lead to speculate on the fact that if a nonlinear

differential equation can be translated into an algebraic equation by some

new type of transforms then it would not be too difficult to translate this fur-
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ther into a difference equation. This amounts to the exact sampled

solution of a nonlinear differential equation on a digital computer, thus

extending the versatility and usefulness of the digital computer. But

before the problem of nonlinear differential equations is solved ele-

gantly one can dwell on a more immediate and practical application of

the foregoing approach. This is the Fourier Transform. Just as one

works on the Laplace Transform with the Z-Transform it seems pos-

sible to devise analogous method to work on the Fourier Transform equa-

tions to translate it into a form suitable for digital computation. This

would result in a useful method of solving a large class of physical prob-

lems using the digital computer.

However, the solutioning of the linear differential equations con-

sidered in this thesis is by no means complete because only the first and

second order linear differential equations are considered. Consequently

further research on third and higher order linear differential equations is

needed. Perhaps it would be informative to suggest some recommendations

on the approach to solving the higher order equations.

By multiplying together, say, two second order equations one obtains

a fourth order equation. Since the roots are known from the second order

equations the poles and zeros can be plotted on the complex plane. It can

oe verified that the poles and zeros transformed in this way is correct.

2xcept the scaling factor. However the product of the second order scale

factors may or may not be the scale factor required by the fourth order
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equation. One of the ways to decide this is to compute the values of

the fourth order difference equation and check these against the re-

sults produced by Laplace Transforms. From the results of the first

and second order equations it is obvious that the multiplying together

of two first order scale factors in no way suggests or resembles the

scale factor of the second order equation. Again one may argue that

since first order equations are different from all other higher order

squations in that it has no complex roots, it seems more reasonable

to start the scale factor generalization process from the second order

aquations instead of those of the first.

From the results of table (1) it can be seen that for the case of

second order equations with double zeros at the origin the scale factor

is unity. Consequently the scaling factor for higher order equations

with numerically the same number of poles at the origin as the degree

of the equation is most probably unity also, e.g.,

T* D* oo _(4-248+41) . 1
(T*D*+2385TD+ 1)(T? D*+2 TTD +1) (A? -2e%7cosh / 2-1 + e28/T )

T

(for? J 1)

The analytical proof in Appendix E of the fact that as the sampling

frequency T approaches infinity, the coefficientsofthedifference equa-

ion approaches that of the differential equation. This suggests that if

he scaling factor is correct then this property is valid. Similarly by

taking a higher order difference equation (without scaling factor) and re-

ducing it into the form suitable for proving the equivalence, the factor
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which is needed to make the equivalence complete is thus the scaling

factor. This is tedious mathematically, but it seems to be a more logi-

cal way of attacking the problem than by the method of trial-and-error

even though it may take more time and effort than the latter.
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APPENDIX A

Numerical Computation of Equation (38)

~Yu-2 + 2Yu-1 + X r-2 = 2X Ke Xn

1.284
38)

(N. B. S| — Xk - 2X got t+ X ka

S2 = 2¥,y ~ Yk2 )

fk) 1.000 1.000 1.000 1.000 1.000 1.000 1,000 1.000
-2xfk-1) 0.000 -2.000 -2,000 -2.000 -2.000 -2.000 -2.000 -2. 000
4k -2) 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
o 1.000 -1.000 0.000 0.000 0.000 0.000 0.000 0.000
23k -1) 0.000 1.558 0.870 0.142 -0.454 -0.816-0.918 -0, 974
~Y-2 0.000 0.000 -0.779 -0.434 -0.071 -0,227 -0,408 0.485
Sa 0.000 1.558 0.091 -0.292 -0.525 -0,589 -0.510 -0. 336
S.+S,=S5 1.000 0.558 0.091 -0.292 -0.525 -0,589 -0.510 ~-0. 336
fk)= S/1.284 0.779 0.434 0.071 0.071 -0.227 -0.408 -0.458 -0.410

fi) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-2x{k-1) -2.000 -2,000 -2.000 -2,000 -2.000 -2,000 -2,000 -2,000
fk -2) 1.000 1,000 1,000 1,000 1.000 1,000 1,000 1,000
Si 0.000 0.000 0.000 0,000 0.000 0.000 0,000 0.000
2yfk -1) -0.524 -0.197 -0.102 0.312 0.406 0.389 0.290 0.150
“Yu-2 0.397 0.262 0.098 -0.051 -0.156 -0.203 -0.194 -0.145
Sa, -0.127 0,065 0.200 0,261 0,250 0.186 0.096 0.005
S,;+S.= S -0.127 0.065 0.200 0.261 0,250 0.186 0.096 0,005
yk)= S/1.284 -6.098 0.051 0.156 0.203 0.194 0.145 0.075 0.004

dk) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-2xfk~1) -2.000 -2.000 -2.000 -2,000 -. 2000 -2. 000 -2, 000 -2. 000
ok -2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S, 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2k -1) 0.008 -0.104 -0.156 -0.162 -0.131 -0.079 -0.022 0.026
-yfic- 2) 10.075 -0,004 0,052 0.078 0.081 0.065 0.039 0.011
Sa_ -0.067-20.108 -0.104 -0.084 -0.051 -0,014 0.017 0.037
S,+S,= § -0.067 -0.108 -0,104 -0.084 -0.051 -0.014 0.017 0.037
 = S/1.284 -0.052 -0.078 -0.081 -0.065 -0,039 -0.011 0.013 0.029

«fK) 1.000 1.000 1.000 1.000 1.000 1.000
-2xf¢) = -2.000 -2.000 -2.000 -2.000 -2.000 -2.000

xk -2) 1.000 1.000 1.000 1.000 1.000 1.000
23fk ~1) 0.058 0.070 0.064 0.045 0.020 -0.005
-yfic-2) -0.013 -0.029 -0.035 -0.032 -0.023 -0.010
Sa 0.045 0.041 0.029 0.013 -0.003 -0.015
Sit S,= S 0.045 0.041 0.029 0.013 -0.003 -0.015
sk)= S/1.284 0.035 0.032 0.023 0.010 -0.002 -0.011

The values of ylklare plotted in graphical form in Fig. (15)
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APPENDIX B

Numerical Computation of Equation (34)

V - Yk-2 + 2Yu-1 + . 567Tx - o967x yy
1.284

0.567% « 0.567 0.567 0.567 0.567 0.567 0.567 0.567 0.567
-0.567xu-+ 0.000 -0.567 -0.567 -0,567 -0.567 -0.567 -0.567 -0.567
2 ut 0.000 0.883 1.375 1.450 1.190 0.723 0.200 -0.546
“Yk-2 0.000 0.000 -0.442 -0,687 -0.726 -0,594 -0.361 0.125
S 0.567 0.883 0.933 0.763 0.464 0,129 -0,161 -0.421
yw =5/1.2840.442 0.687 0.726 0,594 0.361 0.100 -0.125 -0, 328

0.567xk 0.567 0.567 0.567 0.567 0.567 0.567 0.567 0.567
-0.567x4. -0.567 -0.567 -0.567 -0.567 -0.567 -0.567 -0,567 -0,567
2Yu-1 -0.655 -0.595 -0,.416 -0.195 0.020 0.176 0.258 0.265
-Y-2 0.273 0.328 0.297 0.208 0.093 -0.010 -0.088 ~0.129
S -0.382 -0.267 -0.119 0,013 0.113 0.166 0.170 0.136
yk =S/1.284-0.297 -0.208-0.093 0.010 0.088 0.129 0.133 0.106

0.56Txyk 0.567 0.567 0.567 0.567 0.567 0.567 0.567 0.567
~0.567x, -0.567 -0.567 -0.567 -0,567 -0.567 -0.567 -0,567 -0.567
2Vk-1 0.212 0.124 1.028 -0.052 -0.104 -0.122 0,109 -0.074
“Yw-2 -0.133 -0.108 -0.062 -0,014 0.026 -0.052 0,05% -0.055
5 0.079 0.018 -0.034 0.066 -0,078 -0.070 -0.048 -0.019
ye =S5/1.284 0.062 0,014 -0.026 -0.052 -0.061 -0,055 -0.037 -0.015

0.567Tx Kk 0.567 0.567 0.567 0.567 0.567 0.567 0.567
-0.567xg~; 0.567 -0,567 -0,567 -0,567 -0.567 -0.567 -0.567
2Yu-1 -0.030 0.010 0.039 0.053 0.053 0.041 0.022
“Yw-2 0.037 0,015 -0.005 -0,019 -0.026 -0,026 -0.026
S 0.001 0.025 0.034 0.034 0.026 0.014 -0.004
y.=S/1.284 0,015 0.019 0.026 0.026 0.020 0.011 -0.003

The values of y, are plotted in Fig. (14)
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Numerical Computation of Equation (42)

- ~Yk-2 + 2 Yu + 0.2835xk
- 1.284

7 149)

"23}

0.2835x 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284
2k-1 0.000 0.442 1.130 1.860 2,460 2.830 2.930 2,800
S. 0.284 0.726 1.414 2,144 2.744 3.114 3.214 3.084
“Yk-2 0.000 0.000 -0.221 -0.565 -0.930 -1,230 -1.412 -1,470
Sz 8S -Yx-2 0.284 0.726 1.193 1.579 1,814 1.884 1.802 1.614
yx =S/1.284 0.221 0.565 0.930 1.230 1.412 1.470 1.400 1.278

0. 2835x, 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284
2m 2.550 2.230 1.820 1.540 1.340 1.330 1.470 1.700
S, 2.834 2.514 2.104 1.824 1.624 1.614 1.754 1.984
“Vio -1.400 1.278 +1,116 -0.962 -0.770 -0. 672 -0. 665 -0, 732
S=Si- yea 1.434 1.236 0.988 0.862 0,854 0.942 1.089 1.252
y« = S/1.284 1.116 0.962 0.770 0.672 0.665 0,732 0.850 0.975

0.2835xk 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284
21 1.950 2,155 2,280 2,320 2,280 2,190 2.080 1.985
S. 2.234 2.439 2.5864 2.604 2.564 2.474 2.364 2.269
~Y-2 -0,.850 -0,975 -1,078--11140-#1,157 1,140 -1.090 -1,040
Sz Si -Yea 1.384 1.464 1.486 1.464 1,407 1.334 1.274 1.229
y, =S/1.284 1.078 1,140 1.157 1.140 1.090 1.040 0.993 0.957

0.2835x, 0.284 0.284 0.284 0.284 0.284 0.284
2Yk-1 1.915 1.875 1.870 1.892 1,930 1,975
S, 2.199 2.159 2.154 2.176 2.214 2.259
~Yk-2 -0.993 -0,957 -0,938 -0,936 -0,946 -0. 965
S = Si,-yw-2 1.206 1.202 1.216 1.240 1.268 1,294
VY. = S5/1.284 0.938 0.936 0.946 0.965 0.987 1.008

The values of y, are plotted in graphical form in Fig. (16)
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APPENDIX D

Numerical Computation of Eq(48)

7 =y, + 50y.+2y {48)

where y, - values of yx in Appendix A.
y, = values of y, in Appendix B.

y3= values of yx in Appendix C.
L = 0. 25.

(N, B. in the following computation s, = y,+58y, , yu = 8,+2y3)

yy 0.779 -0.434 0.071 -0.227 -0.408 -0.458 -0.397 -0.262 -0,098
56y, 0.553 0.859 0.907 0.743 0.451 0.125 -0.156 -0.410 -0.381
S, 1.332 1.293 0.978 0.516 0.043 -0.333 -0.553 -0.672 -0.478
2ys 0.442 1.130 1.860 2.460 2.824 2.940 2.800 2.556 2.232
7c 1.774 2.423 2.838 2.976 2.867 2.607 2.247 1.884 1.753

Y, 0.051 0.156 0.203 0.194 0.145 0.075 0.004 -0.052 -0.078
58y,-0.260 -0.116 0.013 0.110 0.161 0.166 0.133 0.078 0.018
Sy -0.219 0.040 0.190 0.304 0.306 0.241 0.137.-0.026 -0.060

2ys 1.924 1.540 1.344 1.330 1.464 1.700 1.950 2.156 2,280
Ye 1.705 1.580 1.534 1.634 1.770 1.941 2.081 2.130 2,220

Vi -0.081 -0.065 -0.039 -0.011 0.113 0.029 0.035 0.032 0.023
5%y. -0.032 -0.065 -0.076 -0.069 -0.046 -0.019 0.006 0.024 0.032
S, =-0.113 -0.130 -0.115 -0.080 -0.067 0.010 0.041 0.056 0.055
2ys 2.314 2.280 2,180 2.080 2.080 1.986 1.914 1.876 1.892
ve =~ 2.201 2.150 2.065 2.000 1.919 1.924 1.917 1.928 1.947

7 0.010 -0.002 -0.011
58y. 0.032 0.025 0.014
Sy 0.042 0.023 0.003
2ys 1.930 1.974 2,016
Vi 1.972 1.997 2.019

The values of y. are plotted in graphical form in Fig. (17).
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APPENDIX E

Convergence of coefficient of differential and difference equation

to the same limit as T - - 00,

Require to prove: that as T —» oo the coefficients of the difference equa-

tion approaches that of the coefficients of the differential equation. Take

A- 24+ 1
4S an example 47-24%cos J1-32 Ferm . for { &lt;1,

Proof:

It is required to prove that:

lim  A%-24+1 : T* D*
[+00 A -24e%7 cos [1-2° eit © im T?*D*+2¢TD +1

1-%°+ T —&gt;o (Al)
1

Notice that on the R.H.S., as T —00 the unit term is small com-

pared with infinity and would drop off thus upsetting the proof. Conse-

quently one attempt to prove that both the R. H.S. and L.H.S. approaches

the same limit as T —&gt;00 and thus constitutes an indirect proof.

Since e**T a 14 28+ 2812+...

eT - 14 8/1 +8272 +..

cos] 1-8-1 + 1-7 A
5 2 T= Co

Therefore A*-2A+ 1 : s- A= 24+1
A% - 20greed A - 204514 1 - 27) + (1 +%A)

mm oT

12
ol}

. afriF L S/T gfT L-2) +142 § T+ 2%"-1



LL

lim,  A-24+1

Tg A -2Af141-2* | »/T,3/T (454 t1+28/T4 22°2T= 2T LTTE

A 2A+1
A*- 2A (1+5/T)+1+28/T
A -24+1 :

 22+ 1+28]T -(28/T)A

AlsoD = (1-4)

(A2)

Therefore Tp zr T&gt; (1 -4)
T2 D*+28TD+1 T? (1 -A)V428T (1 -4)+1

“ T2 (1 - 24+4)
T T2(1- 2444") +2¢T - 28TA+ 1

~ T*(1L-24+4% Co

TOT? -2TA+T*A* + 20T - 20TA +1

o A*-24A+1

AZ-2A+1+28]T - 2(3/T)a +1/T*

hm AeA. A-24v1
T—&gt;c0 A-24+1+28- 20A+ 1 A*-2A%1+ 25% + 2 A

T T T?2 T T

(A3)

Since Eq(A2) and Eq(A3) approach each other in the lim, the L.H, S. and

R.H.S. of Eq(Al) approaches a definite limit as T —» 00 .
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APPENDIX F

Some properties of the integrator

Consider the integrator which is represented in the form of dif-

ference equation, namely:

Yv«. = Yu-2= Uw 15)

|) Take the case of u =, so that the difference equation becomes:

Yu =~ Jr-2 = Xx (158)

Vw

Suppose one excite the equation with a step function from 0 to . Then

&gt;ne obtains:

Y K-2

Yu
0 n

|
-

¢)

Zz 4.
—— =

+)
a -

which gives the output shown in Fig. (6)

x

Fig. (6)
Graph Of Eq.(22)

TI

N

2) Consider the case of the averaging filter where

1

A

Xk # Xwt then the excitation becomes:

01/21 -
4



which when substituted into Eq(15) gives Eq(17):

Yu = Yk-a = Unk (17)

Xu-t + X k-2
where u,=—— R232

Proceed with the computation in similar manner:

Yk-2

Yu

by 01/21 .

0 0 01/2 1(11/2)
0 1/2,1,1172,2(2 1/2)

The waveform is shown in Fig. (7) which

Fig (7)
Graph Of Eq (17)

y

shows that the solution is now exact.

3) The most comprehensive way of representing the integrator is by the

Sink D integrator. The derivation is as follows:

SinkD= D

40 -0
-e

+

e%e® - e”)
20-0
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but d-e 1-44”

2e”° - 24

also Dy =x

(18)

sinh Dy = x

ising the results of Eq(18),

(1-47Ay =24-x

also let AX = Xe + Xk

‘hen yu = Yu, = 2 —rat Xu

Yh =~ Yu-23Z Xpga + Xoo (19)

Eq(19) can be shown to be an exact integrator by the following

computation:

Xx-l

X Ke

0

0 )

ju.r 0 0 0 1 2

y, 0 1 2 3 4

This is shown in Fig. (8)

Fig. (8)

Graph Of Eq. (19)

n
1



15

APPENDIX G

Bibliography

Methods of Applied Mathematics, by Francis B. Hildebrand
McGraw Hill.

) Control System Synthesis, by John G. Truxal, McGraw Hill.




