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ABSTRACT 
 
This thesis describes how to build machines (Engineering) that answer questions about: (a) 
Evolution & Evolvability and (b) Expression. 
 
In the first part of this thesis, I present a framework for understanding and engineering biological 
sequences, and solving sequence→function problems by building ‘Complete Fitness 
Landscapes’ in sequence space. This framework for measuring, modelling and designing 
biological sequences is built around the idea of learning an ‘oracle’ (typically a deep neural 
network model that takes a sequence as input and predicts its corresponding function) to traverse 
these ‘Complete Fitness Landscapes’. Here we develop a (promoter sequence)→(gene 
expression) oracle and use it with our framework to design sequences that demonstrate 
expression beyond the range of naturally observed sequences. We also show how our framework 
can be used to detect signatures of selection on a sequence, and to characterize robustness and 
evolvability.  
 
The second part of this thesis describes two frameworks for inferring from single-cell and spatial 
gene expression measurements: ATLAS (A Tool for Learning from Atlas-scale Single-cell 
datasets) and insi2vec (a framework for inferring from spatial multi-omic and imaging 
measurements).  
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Introduction 

The goals of the work described in this thesis were to (i) find important questions, (ii) build 

machines for answering such questions and (iii) construct frameworks for discovering new 

knowledge. Each of these remain works in progress.  

 

Discovering new knowledge (iii) is almost certainly the most challenging of these goals. This may 

be because new knowledge seems to emerge spontaneously, almost as a by-product of working on 

finding important questions and answering them. Reliably conjuring new knowledge likely 

requires that we build general purpose machines for answering questions. 

 

The significance of finding (and choosing) important questions (i) cannot be overstated. 

Fortunately, in science, there is a way of doing this reproducibly. If a scientist reads sufficient 

scientific literature in their areas of interest, the important questions will often become abundantly 

clear to them. A useful test for a scientist to assess whether a question is ‘important’, is to ask 

whether the ‘importance’ of these questions becomes immediately clear to everyone else they 

communicate these questions to. E.g.: 

- Can we predict evolution?  

- Can we predict gene expression?  

- Could we discover emergent phenomena from genomes of populations?  

- Could we understand evolutionary history?  

- Can we predict future evolvability?  

- Could we discover principles that, when inductively applied over (evolutionary) time and 

(sequence) space answer, these questions? 



   
 

  

 

When working on such audacious grand questions, it can be useful to think of them as 

‘homework problems’. This helps convince the scientist that an answer exists, which reflexively 

helps the process of finding answers and discovering new knowledge. More generally, ‘working 

backwards from the homework assignments in existing literature and review papers’ can be a 

useful starting point for thinking about scientific questions. 

 

Once the questions are defined, the work of building machines for answering them (ii) begins. 

Neural networks are the closest humans have come, to building a general purpose technology for 

answering questions. I don’t think it is a coincidence (or simply a result of the time period the work 

presented here was carried out in) that neural networks, which are universal function 

approximators, ended up becoming pivotal to the work presented in this thesis. Apart from the 

critical role neural network models played in the design→build→test→learn cycles described 

here, they were also instrumental in their role as ‘foundation models’ for tasks downstream of this 

cycle. Much of the work presented here involved the formulation of questions in a way that allowed 

these machines to learn how to answer the questions posed to them (machine learning). Machine 

learning thus became a critical tool in the process of finding new knowledge (research). 

 

This thesis describes our research on building machines (Engineering) to answer questions about: 

(a) Evolution & Evolvability and (b) Expression.  

 

 



   
 

  

EVOLUTION & EVOLVABILITY 

In the first part of this thesis, I discuss a framework for thinking about sequence→function 

problems in terms of ‘Complete Fitness Landscapes’ in sequence space. This framework for 

measuring, modelling and designing biological sequences is built around the idea of learning an 

‘oracle’ (typically a deep neural network model that takes a sequence as input and predicts its 

corresponding function) to traverse these ‘Complete Fitness Landscapes’. Here we develop a 

(promoter sequence)→(gene expression) oracle and use it with our framework to design sequences 

that demonstrated expression beyond the range of naturally observed sequences. We also show 

how our framework can be used to detect signatures of selection on a sequence, and to characterize 

robustness and evolvability.  

Non-coding regulatory DNA sequences regulate the expression of protein coding sequences of a 

gene. Changes in regulatory DNA play a major role in the evolution of gene expression1. Mutations 

in cis-regulatory elements (CREs) can affect their interactions with transcription factors (TFs), 

change the timing, location, and level of gene expression, and impact organismal phenotype and 

fitness2,3. While TFs evolve slowly because they each regulate many target genes, CREs evolve 

much faster and are thought to drive substantial phenotypic variation7. Thus, understanding how 

cis-regulatory sequence variation affects gene expression, phenotype and organismal fitness is 

fundamental to our understanding of regulatory evolution2.  

A fitness function maps genotypes (which vary through mutations) to their corresponding 

organismal fitness values (where selection operates)8. A complete fitness landscape9 is defined by 

a fitness function that maps each sequence in a sequence space to its associated fitness, coupled 

with an approach for visualizing the sequence space. Partial fitness landscapes have been 

characterized empirically4,5,10, often defining fitness as the maximum growth rate of single-cell 



   
 

  

organisms4,11. Many recent empirical fitness landscape studies of proteins12, adeno-associated 

viruses13, catalytic RNAs14, promoters15, and TF binding sites16 have favored molecular activities 

as fitness proxies because they are less susceptible to experimental biases and measurement 

noise17. In particular, the molecular activity of a promoter sequence as reflected in the expression 

of the regulated gene has been used to build a ‘promoter fitness landscape’18. However, despite 

advances in high-throughput measurements, empirical fitness landscape studies often sample 

sequences in the local neighborhood of natural ones and thus remain limited to a tiny subset of the 

complete sequence space whose size grows exponentially with sequence length (4L for DNA or 

RNA, where L is the length of sequence)4–6.  

Understanding the relationship between promoter sequence, expression phenotype, and fitness 

would allow us to answer fundamental questions6 in evolution and gene regulation, and provide 

an invaluable bioengineering tool6,19. A model that accurately approximates the relationship 

between sequence and expression can serve as an “oracle” in evolutionary studies to conduct and 

interpret in-silico experiments20–23, predict which regulatory mutations affect expression and 

fitness (when coupled with expression-to-fitness curves11), design or evolve new sequences with 

desired characteristics, determine how quickly selection achieves an expression optimum, identify 

signatures of selective pressures on extant regulatory sequences, visualize fitness landscapes and 

characterize mutational robustness and evolvability2,4–6,24,25.  

In the first part of this this thesis, we address these long-standing problems by developing a 

framework for studying regulatory evolution and fitness landscapes based on Saccharomyces 

cerevisiae promoter sequence-to-expression models.    

 

 



   
 

  

EXPRESSION 

The second part of this thesis focusses on approaches for inferring from single-cell and spatial 

gene expression measurements. Single-cell RNA-sequencing measurements (scRNA-seq)26 output 

a ‘feature vector’ for each cell corresponding the cell’s gene expression profile (referred to as its 

transcriptome). We first describe an approach, that we call ATLAS (A Tool for Learning from 

Atlas-scale Single-cell datasets), for inferring from large datasets of scRNA-seq measurements 

(referred to as scRNA-seq atlases). ATLAS allows us to integrate vast scRNA-seq datasets, 

decipher gene expression programs, predict and prioritize drug targets. ATLAS can also spatially 

map cell types and predict spatial gene expression patterns. We demonstrate the applications of 

ATLAS in the context of COVID-1927. 

 

ATLAS: The Coronavirus Disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led 

to significant global morbidity and mortality28. With no standard cures or vaccines available yet 

to contain and prevent the disease, there is an emergent need to understand COVID-19 onset, 

progression and the underlying disease mechanisms at the molecular level to enable discovery of 

pathways and targets for treatments. COVID-19 starts with the infection or entry of SARS-CoV-

2 into human cells, primarily in the upper respiratory system. Subsequent replication and spread 

of the virus to other human cells, mounts inflammation and immune responses leading to the 

widespread clinical pathologies including pneumonia in moderate cases, and acute respiratory 

distress and death in severe cases. A key to understanding disease mechanisms in turn lies in 

identifying molecular changes in virus infected cells observed in COVID-19 patients. The 

genetic code in each of these cells is organized into (over 20000) units called genes, which are 

converted into functional gene products like proteins through a process referred to as gene 



   
 

  

expression. Gene expression is regulated by gene regulatory networks that involve complex, non-

linear and combinatorial interactions between genes29. Human phenotypes, such as "healthy" or 

"diseased" states, are induced by the expression of these genes in relevant virus-infected and 

bystander responsive cells. Single-cell RNA-sequencing (scRNA-seq) is an experimental 

technology that allows us to measure gene expression in such individual cells isolated from 

tissues. The output of every scRNA-seq experiment is a high-dimensional, sparse gene 

expression vector for each isolated cell whose dimensions correspond to the expression levels of 

genes within the cell. Machine learning methods are then applied to the output of scRNA-seq 

experiments for dimensionality reduction30, unsupervised clustering31 and gene expression 

program inference32. The construction of single-cell atlases involves multiple scRNA-seq 

experiments run on tissues isolated from a diverse set of individuals, who are dispersed along a 

continuum of phenotypes. These experiments are conducted under varying experimental 

conditions and run on a wide range of technological platforms in different laboratories. This 

introduces complex, non-linear variability in measurements made across these experimental 

domains and hinders our ability to make effective comparisons between measurements made 

across domains (e.g. comparing differences in gene expression programs between healthy and 

diseased individuals). These domain-specific effects are an impediment to the process of making 

fundamental biological discoveries and to translational applications such as the identification of 

targets for therapeutic interventions to treat diseases like COVID-19. Extensive previous work 

on the identification of drug targets has focused on convolutional and graph neural networks for 

modeling protein structures33 and molecular interactions34-35 between drugs and their putative 

targets. But, a critical upstream step in drug development is the identification of these biological 



   
 

  

targets. Single-cell atlases have the potential to transform the process of identification of genes 

involved in the modulation of disease phenotype. 

 

There is currently no principled, generalizable approach for identifying drug targets by inferring 

gene expression programs from single-cell atlases to treat human diseases. To address this, one 

would need to adequately address the two-fold challenge in single-cell atlas analysis described 

above : (i) the combinatorial and non-linear effects of gene expression on phenotypes and (ii) the 

variability in measurements across experimental domains. 

 

The task of remedying the variability in scRNA-seq measurements across experimental domains 

is a type of domain adaptation36 problem where the objective is to learn domain-invariant feature 

representations of scRNA-seq data. Domain-invariant feature representations are central to a large 

body of work on domain adaptation37-41. In the context of scRNA-seq, domain adaptation is 

referred to as data-integration and is defined as the process of generating an internally- consistent 

version of the data42 across these measurement domains. Existing methods carry out this scRNA-

seq data-integration task by either operating directly on the full gene expression vectors43-44 or 

operating on representations derived from them like nearest-neighbor graphs45-47 and learned low-

dimensional embeddings48-51. These methods employ a broad range of statistical and machine 

learning techniques including panoramic stitching52, canonical correlation analysis53, non-negative 

matrix factorization54 and perturbation modeling49. Consequently, comprehensive metrics55 have 

been developed for evaluating the efficacy of these domain integration methods in ameliorating 

domain-specific effects while conserving biological information. Benchmarking studies42,56 for the 

domain integration task using these metrics demonstrate the need and room for vast improvements. 



   
 

  

Additionally, the domain-invariant representations learned by many of these methods46,54,57-58 

cannot be mapped back to the input gene expression vectors which significantly restricts the 

applicability of such representations to biologically meaningful tasks. 

 

On the other hand, an autoencoder (AE)59-60 has the ability to learn feature representations that can 

be mapped back to the input space using a pair of functions: an encoder for transforming the input 

into this representation and a decoder for reconstructing the input from this representation. AEs 

can learn domain-invariant representations by minimizing the domain discrepancy between 

features learned by the encoder using a domain regularizer or by encouraging domain confusion 

using an adversarial objective41,61. Maximum Mean Discrepancy (MMD)62, a widely used 

regularizer for aligning the first two moments of a distribution, has recently been applied to the 

scRNA-seq data- integration problem49-51. However, scRNA-seq data63 and their latent 

representations learned by an AE follow non-Normal distributions. First and second order moment 

matching methods do not suffice for minimizing the domain discrepancy in many real-world 

unsupervised domain adaptation problems and so methods for matching higher-order statistics 

have been proposed64-66 for the task of transferring labels from a labelled source domain to an 

unlabelled target domain. However, an approach for incorporating higher order moment-matching 

regularizers to the multi-target domain adaptation67 task in general, and the scRNA-seq data 

integration problem, in particular is lacking. 

 

We hypothesize that domain-invariant feature representations of scRNA-seq data can help address 

the pressing need for identification of human disease drug targets when used in tandem with 



   
 

  

modern feature importance methods to account for the combinatorial and non-linear effects of 

gene-expression on phenotype. This forms the basis of ATLAS. 

 

insi2vec: scRNA-seq captures cell-intrinsic information but the process of making these 

measurements, which involves the dissociation of tissues, leads to a loss of spatial and cell-

extrinsic contextual information. Spatial transcriptomic measurements overcome these 

limitations, but come with their own sets of trade-offs68. We present insi2vec69, a framework for 

inferring from single-cell and spatial multi-omics, to address these challenges. insi2vec, consists 

of: (i) a spatio-transcriptomic definition of cell identity using cell intrinsic and cell extrinsic 

features, and (ii) methods for predicting spatial gene expression patterns from (ii-a) single-cell 

RNA-sequencing measurements and (ii-b) histology. We demonstrate the applications of 

insi2vec to cancer and brain research. 
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SUMMARY 

Mutations in non-coding regulatory DNA sequences can alter gene expression, organismal 

phenotype, and fitness1–3. Constructing complete fitness landscapes, mapping DNA sequences to 

fitness, is a long-standing goal in biology, but has remained elusive because it is challenging to 

generalize reliably to vast sequence spaces4–6,8-17. Here, we construct sequence-to-expression 

models that capture fitness landscapes and use them to decipher principles of regulatory evolution7. 

Using millions of randomly-sampled promoter DNA sequences18 and their measured expression 

levels in the yeast Saccharomyces cerevisiae, we learn deep neural network models that generalize 

with excellent prediction performance, and enable sequence design for expression engineering19. 

Using our models, we study expression divergence under genetic drift and strong-selection weak-

mutation regimes20-23 to find that regulatory evolution is rapid and subject to diminishing returns 

epistasis, that conflicting expression objectives in different environments constrain expression 

adaptation, and that stabilizing selection on gene expression leads to the moderation of regulatory 

complexity. We present an approach for using our models to detect signatures of selection on 

expression from natural variation in regulatory sequences and use it to discover an instance of 

convergent regulatory evolution. We assess mutational robustness, finding that regulatory 

mutation effect sizes follow a power law, characterize regulatory evolvability, visualize promoter 

fitness landscapes, discover evolvability archetypes and highlight the mutational robustness of 

natural regulatory sequence populations24-25. Our work provides a general framework for 

addressing fundamental questions in regulatory evolution. 

 

 

 



   
 

  

RESULTS 

Models predict expression from sequence 

We begin by building models that predict gene expression given an 80 bp promoter DNA sequence. 

To train these models, we measure the expression driven by promoter sequences using an approach 

we previously described26, where 80 bp of DNA are embedded within a promoter construct and 

the associated expression is assayed in the S. cerevisiae (Methods). We clone promoter sequences 

into an episomal low copy number YFP expression vector, transform them into yeast, culture the 

yeast in the desired media, sort the yeast into 18 expression bins, and sequence the promoters 

present from the yeast in each bin to estimate expression (Methods and Supplementary 

Information). To avoid biases5 towards extant sequences, we measured the expression of 80 bp 

random DNA sequences, where each base is randomly sampled from the four bases. For training 

data, we measured each of >30 million sequences in complex media (YPD, Methods) and >20 

million sequences in defined media (SD-Ura, synthetic defined lacking uracil). Using the resulting 

pairs of sequences and measured YFP expression levels, we trained convolutional neural network 

models (“convolutional models”) that predict expression from sequence in each medium 

(Methods).  

 

To show that the learned convolutional models generalize to new sequences, we predicted the 

expression for several sets of test sequences not seen during model training, and compared them 

to their experimentally measured levels (Methods). For these test sequences, we quantified 

expression in independent experiments using the same experimental approach and in the same 

media. Our convolutional models had excellent prediction performance on native yeast promoter 



   
 

  

test sequences (Pearson’s r = 0.960, P < 5*10-324, n=61,150; Fig. 1b), and on multiple other test 

sets in both complex and defined media (Extended Data Fig. 1). 

These results represent a ~45% decrease in error compared to the performance of biochemical 

models we previouly26 trained on the same data (complex media; native yeast promoter test 

sequences; Supplementary Notes and Methods). Other published genomic model architectures 

adapted to and trained using our data also had excellent performance (Supplementary Fig. 4a), 

highlighting the predictive power of deep neural network models trained using our large-scale 

data. Finally, the expression measurements were highly correlated for the same sequences between 

the two media (Pearson’s r = 0.978, Extended Data Fig. 2a) and models trained on defined 

medium predicted expression in complex medium well (Pearson’s r = 0.966, Extended Data Fig. 

2b). However, for some sequences we expect differences between growth conditions (below).  

 

Models enable expression engineering 

We leveraged the high predictive performance of our convolutional models for a synthetic biology 

application of gene expression engineering, by using model predictions as a ‘fitness function’ for 

genetic algorithms (GA) to design sequences with extreme expression values. We initialized the 

GA with a population of 100,000 randomly-generated samples from the sequence space, and 

simulated 10 generations to maximize (or minimize) the expression output from the convolutional 

model (Methods). We then synthesized the 500 sequences with the top predicted maximum (or 

minimum) expression levels and tested them experimentally. The GA-designed sequences drove, 

on average, more extreme expression than >99% of native sequences (99.6% for high expressing; 

99.3% for low), with ~20% of designed sequences yielding more extreme expression than any 



   
 

  

native sequence tested (23.5% for high; 18.4% for low) (Fig. 1c). Thus, our sequence-to-

expression model can be used for gene expression engineering. 

 

Expression diverges under genetic drift 

We next assessed the evolutionary malleability of expression under different evolutionary 

scenarios: random genetic drift, stabilizing selection, and directional selection for extreme 

expression levels (Fig. 2). In each case, we first simulated the scenario, using our convolutional 

model to predict the expression for each sequence, and then tested the model’s evolved sequences 

experimentally, where possible (Methods). 

 

We first simulated random genetic drift of regulatory sequences, with no selection on expression 

levels. We randomly introduced a single mutation in each random starting sequence, repeated this 

process for multiple consecutive generations, and used our convolutional model to predict the 

difference in expression between the mutated sequences in each trajectory relative to the 

corresponding starting sequence (Fig. 2a-c). Expression levels diverged as the number of 

mutations increased, with 32 mutations in the 80 bp region resulting in nearly as different 

expression from the original sequence as two unrelated sequences (Fig. 2b). We validated our 

results experimentally by synthesizing sequences with zero to three random mutations and 

measuring their expression in our assay (Methods). The experimental measurements closely 

matched our predictions in both complex (Fig. 2c) and defined (Extended Data Fig. 1e) media, 

both in expression change (Pearson’s r: 0.869 and 0.847, respectively; Extended Data Fig. 1h,i) 

and level (Pearson’s r: 0.973 and 0.963 respectively; Extended Data Fig. 1l,m).  

 



   
 

  

Stabilizing selection tempers complexity 

Although gene regulatory networks often appear to be highly interconnected26,27, the sources of 

this regulatory complexity and how it changes with the turnover of regulatory mechanisms28 

remain unclear. We used our model to study the evolution of regulatory complexity in the context 

of stabilizing selection, which favors the maintenance of existing expression levels. We first 

quantified regulatory complexity, defined as 1 minus the Gini coefficient (a measure of inequality 

of continuous values within a population) of TF regulatory interaction strengths. For this, we used 

an interpretable biochemical model we previously developed26 (Methods) because it has 

parameters that explicitly correspond to TFs, and we can directly query their contributions to 

model predictions. Next, starting with native sequences whose regulatory complexity is either 

extremely high (many TFs with similar contributions to expression) or low (few TFs contribute 

disproportionately to expression) and spanning a range of expression levels, we introduced single 

mutations into each starting native sequence for each of 32 consecutive generations, identified the 

sequences that conserved the original expression level using the convolutional model, and selected 

one of them at random for the next generation. We then assessed the regulatory complexity of the 

evolved sequences. 

 

As random mutations accumulated, the regulatory complexity of sequences starting at both 

complexity extremes shifted towards moderate complexities (Fig. 2d, rightmost blue and orange), 

closer to the averages for both random and native sequences (Fig. 2d, greys). This suggests that 

stabilizing selection on expression leads to a moderation of regulatory complexity, resulting from 

gradual drift in the roles of the different regulators, such as an increase in complexity due to a 

decrease in the relative contribution of one predominant TF (e.g. Abf1p for AIF1), or a decrease 



   
 

  

in complexity through smaller changes in a much larger number of sites (e.g. YDR476C; 

Supplementary Fig. 8). The overall distribution of regulatory complexity of native yeast 

promoters is similar to that of random sequences (Fig. 2d, grey boxes), suggesting that there is 

little selection on the regulatory complexity of native sequences in a single environment.  

 

Strong selection rapidly finds extrema 

To study the impact of directional selection on expression, we simulated the strong-selection weak-

mutation (SSWM) regime29 (Fig. 2e, Methods), where each mutation is either beneficial or 

deleterious (strong selection, with mutations surviving drift and fixing in an asexual population), 

and mutation rates are low enough to only consider single base substitutions during adaptive walks 

(weak mutation). Starting with a set of native promoter sequences, at each iteration (generation), 

for a given starting sequence of length L, we considered all of its 3L single-base mutational 

neighbors, used our convolutional model to predict their expression, and took the sequence with 

the largest increase (or separately, decrease) in expression at each iteration (generation) as the 

starting sequence for the next generation (Fig. 2e, Methods).  

 

Sequences that started with diverse initial expression levels rapidly evolved to high (or separately, 

low) expression, with the vast majority evolving close to saturating extreme levels within 3-4 

mutations in both the complex (Fig. 2f) and defined (Extended Data Fig. 1f) media. Sequences 

took diverse paths to evolve either high or low expression (Supplementary Fig. 7). We validated 

these trajectories experimentally for select series of sequences (Fig. 2g, Extended Data Fig. 1g), 

measuring the expression driven by synthesized sequences from several generations along 



   
 

  

simulated mutational trajectories for complex media (10,322 sequences from 877 trajectories) and 

defined media (6,304 sequences from 637 trajectories). We observed extreme expression within 

3-4 mutational steps, with high agreement between measured and predicted expression change 

(Extended Data Fig. 1j,k; Pearson’s r: 0.977 and 0.948, respectively) and expression levels 

(Extended Data Fig. 1n,o; Pearson’s r: 0.980 and 0.963) along the trajectories in both complex 

and defined media. Thus, cis-regulatory sequence evolution is rapid and subject to diminishing 

returns epistasis30. 

 

Opposing objectives constrain adaptation 

In contrast to the rapid evolution towards expression extremes, we found that evolution to satisfy 

two opposing expression requirements (one in each growth media) was more constrained. A 

concrete example is the expression of the URA3 gene: organismal fitness increases with increased 

URA3 expression in defined media lacking uracil, because Ura3p is required for uracil 

biosynthesis, but fitness decreases with increased URA3 expression in complex media containing 

5-FOA due to Ura3p-mediated conversion of 5-FOA to toxic 5-fluorouracil (Extended Data Fig. 

2c). To study this regime31, we started with a set of native promoter sequences (and separately, a 

set of random sequences) and used the convolutional model to simulate SSWM trajectories 

(Methods) that maximize the difference in expression between the two media (defined and 

complex). While the difference in expression increased with each generation (Extended Data Fig. 

2d,e), the vast majority of sequences achieved neither the maximal nor the minimal expression in 

either condition after 10 generations (Fig. 2h, Extended Data Fig. 2f), for both native and random 

starting sequences. The evolved sequences became enriched for motifs for TFs involved in nutrient 

sensing and metabolism, compared to the starting sequences (Extended Data Fig. 2g), suggesting 



   
 

  

that the model is taking advantage of subtle differential activity of certain regulators between the 

two conditions to evolve condition specificity. Thus, while evolving a sequence to achieve a single 

expression optimum requires very few mutations, encoding multiple opposing objectives in the 

same sequence is more difficult, limiting expression adaptation. 

 

Transformers enable inference at scale 

We next turned to the evolution and evolvability of regulatory sequences in extant strains and 

species. This required us to predict expression for billions of sequences and, although our 

convolutional model had excellent predictive power, our implementation was limited in its 

scalability and incompatible with the Tensor Processing Units (TPUs), available to us for larger-

scale computational tasks (Methods). To enable large-scale expression prediction, we developed 

“transformer” models that used transformer encoders32 with other building blocks attempting to 

implicitly capture known aspects of regulation33 (Methods, Supplementary Fig. 12). The 

transformer models had ~20x fewer parameters than the convolutional models (Methods, 

Supplementary Information), predicted expression as well as the convolutional models 

(Extended Data Fig. 3), and better captured the propensity for expression to plateau under SSWM 

(Supplementary Fig. 19). The convolutional and transformer models had highly correlated 

predictions in both media (Supplementary Fig. 4e-h, Pearson’s r=0.967-0.985), and yielded 

equivalent conclusions from the analyses of genetic drift, directional selection and conflicting 

objectives (Extended Data Fig. 3, Supplementary Fig. 17-18).  

 



   
 

  

The Expression Conservation Coefficient 

We applied our sequence-to-expression transformer model to detect evidence of selective 

pressures on natural regulatory sequences, inspired by the way in which the ratio of non-

synonymous (“non-neutral”) to synonymous (“neutral”) substitutions (dN/dS) in protein coding 

sequences is used estimate the strength and mode of natural selection34. By analogy2,35, for 

regulatory sequences2, we used the transformer model to quantitatively assess the impact of 

naturally occurring regulatory genetic variation on expression, compared to that expected with 

random mutations, and summarized this with an Expression Conservation Coefficient (ECC) 

(Methods). To compute the ECC, we compared, for each gene’s promoter, the standard deviation 

of the expression distribution predicted by the transformer model for a set of naturally varying 

orthologous promoters (B) to the standard deviation of the expression distribution predicted for a 

matched set of random variation introduced to that promoter (C; related to the mutational 

variance36; Fig. 3a). We define the ECC for a gene as log(c/B), such that a positive ECC indicates 

stabilizing selection on expression (lower variance in native sequences than expected by chance), 

a negative ECC indicates diversifying (disruptive) selection or local adaptation (greater variance 

in native sequences), and values near 0 suggest neutral drift.  

 

We calculated the ECC for 5,569 S. cerevisiae genes using the natural variation observed across 

over 4.73 million orthologous promoter sequences from the 1,011 S. cerevisiae isolates37 in the -

160 to -80 regions (with respect to the Transcription Start Site (TSS)), a critical location for TF 

binding38 and determinant of promoter activity26 (Fig. 3a,b, Supplementary Table 1), using our 

transformer model to predict the expression for each sequence. To assess the robustness of the 

ECC values, we recomputed the ECC using multiple published sequence-to-expression model 



   
 

  

architectures that we adapted and trained using our data and found that models with similarly high 

predictive power resulted in similar ECC values (Supplementary Fig. 4b-d, 5g).  

 

Over 70% of promoters had positive ECCs, suggesting stabilizing selection (and conserved 

expression) (binomial test P < 10-215) (Fig. 3b), consistent with previous reports based on direct 

measurements of gene expression39. Genes with high ECCs were enriched in highly-conserved 

core cellular processes (e.g., RNA and protein metabolism) (Fig. 3b, Supplementary Table 2), 

and those with low ECCs were most enriched in processes related to carboxylic acid and alcohol 

metabolism (Fig. 3b, Supplementary Table 2), potentially reflecting adaptation of fermentation 

genes to the diverse environments of these isolates37.  

 

The ECC discovers convergent evolution 

A striking example of predicted positive selection is the promoter of CDC36 (NOT2; ECC= -2.138, 

Fig. 3b), which has common natural alleles with either low or high (predicted) expression across 

the isolates (Fig. 3c). Analysis of CDC36 promoter sequences (Methods) suggests that low-

expression evolved at least twice independently, resulting in two distinct variants with reduced 

expression (Fig. 3c, allele 1 and 2). Interrogation with the biochemical model26 to identify factors 

impacting these expression differences (Extended Data Fig. 4a) suggested that both low-

expression alleles are explained by disruption of the same binding site for Upc2p, an ergosterol 

sensing TF (Fig. 3c). To validate this, we restored the putative Upc2p binding site in a strain (WE), 

where it is otherwise disrupted, and measured expression levels by qPCR and growth upon 

changing carbon source (Methods). Restoration of the Upc2p binding site increased actual 



   
 

  

expression, confirming the model’s prediction (Pearson's r=0.96, p=0.039, n=4; Fig. 3d). We 

hypothesized that these variants could alter the rate of transcriptional reprogramming when 

changing environments via Cdc36p-regulated mRNA turnover40. Indeed, restoration of the Upc2 

binding site reduced the strains’ lag time to growth when switching carbon sources (Fig. 3d, right; 

Methods), and they grew to a higher culture density (Supplementary Fig. 10). Thus, convergent 

evolution of the CDC36 promoter, discovered using the ECC, independently produced two alleles 

that result in similar perturbations to TF binding, expression, and growth. 

 

ECC vs. cross-species RNAseq and fitness 

ECC values were consistent with expression conservation as measured for yeast orthologs across 

clades at short (Saccharomyces), medium (Ascomycota), or long (mammals) evolutionary scales 

(Extended Data Fig. 4b). In Saccharomyces, 1:1 orthologs with conserved expression levels 

across species (as measured by RNA-seq41) had significantly higher ECC (computed from the 

1,011 yeast isolates) than genes whose expression was not conserved (two-sided Wilcoxon rank-

sum P = 3.1*10-4, Extended Data Fig. 4b, bottom left, Methods). Next, we performed RNA-seq 

across 11 Ascomycota yeast species (Methods), finding that 1:1 orthologs with conserved 

expression across Ascomycota had significantly higher ECC values (Extended Data Fig. 4b, 

bottom center, P = 1.16*10-6). Finally, the 1:1 orthologs of genes with high ECC values in the 

1,011 S. cerevisiae isolates also had more conserved expression within mammals42 (Extended 

Data Fig. 4b, bottom right, P = 1.07*10-4, Methods). Thus, while 1:1 yeast-mammal orthologs 

are likely critical to an organism’s fitness, only a subset of these may be under stabilizing selection 

on expression, and this subset tends to be under such selection in both yeasts and mammals. Thus, 



   
 

  

the ECC quantifies stabilizing selection on expression in yeast and may predict stabilizing 

selection on orthologs’ expression in other species. 

 

Genes with higher ECCs also had a stronger effect on fitness in S. cerevisiae upon changing their 

expression level. We interrogated the total variation of previously measured expression-to-fitness 

curves11 to calculate a ‘fitness responsivity’ score that captures the dependence of fitness on 

expression (Extended Data Fig. 5, Methods). Fitness responsivity was significantly positively 

correlated with the ECC (Supplementary Fig. 2e, P = 0.003, Spearman ρ = 0.326). Fitness 

responsivity was not associated with regulatory sequence divergence per se across the promoter 

sequence (as estimated by mean Hamming distance among orthologous promoters, Methods, 

Supplementary Fig. 2d, P = 0.46, Spearman ρ = 0.083). Thus, while stabilizing selection on gene 

expression (as captured by the ECC) can shape the types of mutations that accumulate in the 

population, it may have little effect on the overall rate at which mutations accumulate in promoter 

regions within populations, which has been previously used to test for evidence of selection. 

 

Stabilizing selection shapes robustness 

While a gene’s ECC (computed from the natural genetic variation in regulatory DNA) represents 

the imprint of its evolutionary history, its mutational robustness (assessed directly from the gene’s 

promoter sequence) should describe how future mutations would affect its expression43. Across all 

native yeast promoters, the magnitude of expression changes predicted by the transformer model 

due to single base-pair mutations follows a power law with an exponent of 2.252 (standard error 

of fit σ = +/- 0.002, P = 2.4*10-263), such that a small number of mutations have an outsized effect 



   
 

  

on expression (~10% of mutations account for ~50% of the changes in expression, Extended Data 

Fig. 4d). In individual genes, the distribution can vary substantially (below).  

 

For a given promoter sequence, we defined the mutational robustness of a sequence length L, as 

the percent of its 3L single nucleotide mutational neighbors predicted by the transformer model to 

result in a negligible change in expression (Extended Data Fig. 4c, Methods), following previous 

definitions of mutational robustness25,43. The mutational robustness of a gene’s promoter sequence 

was positively correlated with the gene’s fitness responsivity (Supplementary Fig. 2f, Spearman 

ρ = 0.476, P = 8.18*10-6), suggesting that fitness-responsive genes have evolved more mutationally 

robust regulatory sequences. Mutational robustness, which, unlike the ECC, is computed for single 

sequences without a set of variants across a population, was also correlated to the ECC 

(Supplementary Fig. 2g, Spearman ρ = 0.515, P = 9.99*10-7). Similarly, the promoter sequences 

of yeast genes with conserved expression across Saccharomyces strains41, Ascomycota species, or 

mammals42 had higher mutational robustness (P = 8.4*10-3, 6.5*10-5, and 0.00377, respectively, 

two-sided Wilcoxon rank-sum test).  

Thus, genes whose expression levels are under stabilizing selection have regulatory sequences that 

tend to be more robust to the impact of mutations, which may reflect their history and constrain 

their future.  

 

Fitness landscapes in evolvability space 

Mutational robustness enables the exploration of novel genotypes that could subsequently facilitate 

adaptation and thus promote evolvability, the ability of a system to generate heritable phenotypic 



   
 

  

variation25. To characterize regulatory evolvability, we extended our description of mutational 

robustness by representing each sequence using a sorted vector of expression changes (predicted 

by the transformer model) that are accessible through single nucleotide mutations (Fig. 4a, left, 

Methods). This ‘evolvability vector’ captures the capacity for changes in genotype to alter 

expression phenotype, in line with previous definitions of evolvability25.  

 

We next asked whether regulatory evolvability vectors fell into distinct classes by identifying 

evolvability ‘archetypes’. Archetypes44 represent the extremes of canonical patterns, such that the 

evolvability vector of each individual sequence can be represented by its similarity to each of 

several archetypes representing these extremes. Applying this paradigm, we used our transformer 

model to compute evolvability vectors for a new random sample of a million sequences and then 

learned a two-dimensional representation of these evolvability vectors (referred to as the 

‘evolvability space’) using an autoencoder45 (Fig. 4a, right, Methods). This archetypal 

evolvability space, that is bounded by a simplex whose vertices represent evolvability archetypes 

(Fig. 4a, right, Methods) and where the evolvability vector of each sequence is a single point, 

allows us to effectively visualize arbitrarily large sequence spaces in two dimensions.  

 

Three archetypes captured most of the variation in evolvability vectors (Extended Data Fig. 6a,b; 

Methods), corresponding to local expression minimum (Aminima), local expression maximum 

(Amaxima), and malleable expression (Amalleable) (Fig. 4b). Aminima and Amaxima correspond to 

sequences where most 3L mutational neighbors do not change expression, and the ones that do, 

increase it (for Aminima) or decrease it (for Amaxima). Conversely, for Amalleable sequences, most 3L 

mutational neighbors change expression and are equally likely to decrease or increase it (Fig. 4b). 



   
 

  

In addition to these three archetypes, mutationally robust sequences were present as a central cleft 

in the evolvability space (Fig. 4b,c; “robust”). The evolvability space also distinguishes native 

regulatory sequences by their associated expression level (Fig. 4d), with intermediate expression 

more likely to be near the malleable archetype (Amalleable) and depleted near the robustness cleft 

(Fig. 4d, Supplementary Information).  

 

The location of sequences in evolvability space reflects the selective pressures operating on the 

sequence. Sequences under strong stabilizing selection on gene expression tend to be located far 

away from the malleable archetype: there is a strong negative correlation between malleable 

archetype proximity and mutational robustness (Extended Data Fig. 6c,e; Spearman's ρ = -0.746, 

P = 1.97*10-15), the ECC (Extended Data Fig. 6d,f,g; ρ = -0.596, P = 5.4*10-9), fitness 

responsivity (Extended Data Fig. 6h; ρ = -0.413, P = 1.4*10-4), and expression conservation 

across species as measured by RNA-seq (Saccharomyces: P = 0.000251, Ascomycota: P = 

0.00002, Mammals: P = 0.00114; two-sided Wilcoxon rank-sum test).  

 

To visualize promoter fitness landscapes in two dimensions we combined our sequence-to-

expression transformer model with previously measured expression-to-fitness curves11, and 

integrated them with the two-dimensional archetypal evolvability space (Fig. 4e, Extended Data 

Fig. 7, Methods). Unlike prior visualizations of fitness landscapes, which group sequences by 

their sequence similarity, here, sequences are arranged by the similarity in their evolvability. This 

approach effectively visualizes arbitrarily large sequence spaces in two-dimensions, as well as 

groups sequences by their evolutionary properties. This addresses the challenges otherwise posed 

by sequence similarity-based landscapes since highly similar regulatory sequences can have 



   
 

  

different functional properties (e.g., due to a loss of a TF binding site), while very different 

sequences can be functionally similar (e.g., due to shared TF binding sites). When organismal 

fitness is available for a particular gene and overlaid on the landscape (Fig. 4e, Extended Data 

Fig. 7), the resulting patterns depend on both the condition-specific sequence-to-expression 

function (e.g., governing color (fitness) through predicted expression, and embedded position, 

through evolvability) and the gene- and condition-specific expression-to-fitness functions.  

 

Finally, we studied how natural yeast sequences explored evolutionary space, by placing the 

evolvability vectors of each of set of orthologous promoters of the 1,011 sequenced S. cerevisiae 

isolates37 in the archetypal evolvability space. When a gene’s promoter from one strain is near the 

malleable archetype, its orthologs in the other strains tended to broadly distribute in the 

evolvability space (Extended Data Fig. 6i), but avoid the robustness cleft (e.g., the DBP7 

promoter from strain S288C; Fig. 4f). Conversely, when a promoter is near the robustness cleft 

(e.g., the UTH1 promoter from S288C), so are its orthologs (Fig. 4g, Extended Data Fig. 6i). 

Using in silico mutagenesis to interpret our model, we found that the DBP7 promoter is particularly 

malleable partly as a result of an intermediate affinity Rap1p binding site, where the most impactful 

mutations increased or decreased the Rap1p affinity for this site, impacting expression (Extended 

Data Fig. 8a). By contrast, the UTH1 promoter requires many sequential mutations, each of which 

has minimal impact individually, to reduce expression appreciably (Extended Data Fig. 8b). This 

could reflect the ways in which stabilizing selection constrains evolvability: promoters that are not 

under strong stabilizing selection explore expression space more freely and can quickly adapt to a 

new expression optimum, since the population likely already contains multiple alleles that achieve 



   
 

  

diverse expression levels (e.g. Fig. 4f). Interestingly, many of the native sequences in S. cerevisiae 

are near the robustness cleft (Fig. 4h). 

Thus, the evolvability vector, which can be computed using our model directly for any sequence 

(without any population genetics data), encodes information about a sequence’s evolutionary 

history and potential futures.  

 

DISCUSSION 

Here, we presented a framework that addresses fundamental questions in the evolution and 

evolvability of regulatory sequences2,25. Our models, developed using a combination of large scale 

random sequence libraries, sensitive reporter assays and deep learning (Methods), are useful as 

“oracles” for model-guided biological sequence design19, and answering important questions in 

the study of fitness landscapes4–6, evolutionary malleability of expression and its variation across 

strains and species2, mutational robustness43, and evolvability25. The framework presented here 

will help advance synthetic biology, cell and gene therapy, and metabolic engineering in addition 

to the study of evolution. 

 

Previous studies suggested that evolution favors more complex regulatory solutions46, but we 

showed that if stabilizing selection acts only on expression, regulatory complexity extremes 

gradually move towards the moderate complexity levels observed in native and random sequences 

(Fig. 2d). This supports a model where most extant regulatory sequences evolved by sampling 

constraint-satisfying solutions in proportion to their frequency in the sequence space, without 

specific consideration of the solution’s complexity. 

 



   
 

  

In our study, evolving condition-specificity in a promoter sequence was much slower than simply 

modifying the expression level. Some yeast genes achieve condition-specificity by including 

multiple binding sites for condition-responsive TFs. For instance, the GAL1-10 Upstream 

Activating Sequence contains multiple binding sites for the galactose-responsive Gal4, which are 

conserved across millions of years, suggesting an ancient origin47. Because the size of the 

regulatory region restricts the number of TF binding site locations, including more TFs and more 

regulatory sequences per gene (e.g. enhancers) may be required for more complex regulatory 

programs observed in higher eukaryotes48.  

 

 

The dN/dS ratio has been used extensively to characterize the evolutionary rates of protein coding 

genes34, and we developed an analogous2,35 coefficient, the ECC, for detecting evidence of 

selection on expression from natural variation across multiple orthologous regulatory sequences 

in strains of one species. The ECC complements and extends existing measures of expression 

conservation, since it integrates across the regulatory sequence and is not limited to specific TFs 

or binding motifs, does not require additional experiments to test the functions of mutations for 

each regulatory region, and does not rely on detecting non-uniformity in mutation distributions.  

 

Complementing the ECC, mutational robustness as calculated with our model is predictive of 

selective pressures on individual sequences (Supplementary Fig. 2f-g). While we find that strong 

constraint on the function of regulatory sequences can shape them to be robust to future mutations, 

it is unlikely that robustness itself is the selected trait, since increased robustness to future 

mutations is likely to be of little marginal benefit43. Instead, this may reflect a secondary benefit 



   
 

  

of having evolved decreased expression noise49,50, or another as-yet-unknown mechanism. It may 

also reflect the fact that the sequences of some ancestral promoters may be similar to the mutational 

neighbors of extant sequences, and, if selective constraints on expression have remained stable, 

these ancestral and extant sequences likely have similar expression levels.  

 

Based on our model-derived evolvability vectors, sequences spanned an evolvability spectrum 

from robust to malleable (Fig. 4c-d,f-h), and for native regulatory sequences, the magnitudes of 

accessible mutation effects follows a power law. Evolvability vectors also help visualize fitness 

landscapes4 (Fig. 4e, Extended Data Fig. 7) and future work can further improve our 

understanding of their topography4,5. 

 

Our sequence-to-expression models are currently limited by regulatory region and species. For 

example, sequence mutations that affect other regulatory mechanisms (e.g., genomic context, 

mRNA processing and degradation, regulation by RNA-binding proteins, translational efficiency) 

can compensate for those that affect transcription. While our models emulated the biological 

process of our experimental system, as demonstrated by their excellent predictive power, future 

interpretability studies will shed further light on molecular mechanisms. Finally, for multicellular 

organisms, selection acts simultaneously on expression levels in many different cell types and 

environments. As models of gene regulation are created for other species, environments, and 

regulatory regions, our framework will help provide further insights into regulatory evolution.  
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FIGURES  

 
Fig. 1 | The evolution, evolvability, and engineering of gene regulatory DNA.  
a, Project overview. b, Prediction of expression from sequence using the model. b, Predicted (x 
axis) and experimentally measured (y axis) expression in complex media (YPD) for native yeast 
promoter sequences. Pearson’s r and associated two-tailed p-values are shown; dashed line: line 
of best fit. c, Engineering extreme expression values beyond the range of native sequences using 
a genetic algorithm (GA) and the sequence-to-expression model. Normalized kernel density 
estimates of the distributions of measured expression levels for native yeast promoter sequences 
(grey), and sequences designed (by the GA) to have high (red) or low (blue) expression.  



   
 

  

Fig. 2 | The evolutionary malleability of gene expression.  
a-c, Expression divergence under genetic drift. a. Simulation procedure. b, Predicted expression 
divergence. Distribution of the change in predicted expression (y axis) for random starting 
sequences (n=5,720) at each mutational step (x axis) for simulated trajectories. Silver bar: 
expression differences between unrelated sequences. c, Experimental validation. Distribution of 
measured (light grey) and predicted (dark gray) changes in expression in complex media (y axis) 
for synthesized randomly-designed sequences (n=2,983) at each mutational step (x axis). d, 
Stabilizing selection on gene expression leads to moderation of regulatory complexity extremes. 
Regulatory complexity (y axis) of sequences from sequential mutational steps (x axis) under 
stabilizing selection to maintain the starting expression levels, where the regulatory interactions 
of starting sequences are complex (blue; n=192) or simple (orange, n=172). Right bars: 
regulatory complexity for native (dark gray) and random (light gray) sequences. e-g, Sequences 
under strong-selection weak-mutation (SSWM) can rapidly evolve to expression optima. e. 
Simulation procedure. f, Predicted expression evolution. Distribution of predicted expression 
levels (y axis) in complex media at each mutational step (x axis) for trajectories favoring high 
(red) or low (blue) expression, starting with native promoter sequences (n=5,720). g, 
Experimental validation. Measured expression distribution in complex media (y axis) for the 
synthesized sequences (n=10,322 sequences; 877 trajectories) at each mutational step (x axis), 
favoring high (red) or low (blue) expression. Axis scales differ due to variation in measurement 
procedure (Supplementary Information). h, Competing expression objectives constrain 
expression adaptation. Distribution of predicted expression (y axis) in complex (blue) and 
defined (red) media at each mutational step (x axis) for a starting set of native promoter 
sequences (n=5,720) optimizing for high expression in defined (red) and simultaneous low 
expression in complex (blue) media. (b-d,f-h) Midline: median; boxes: interquartile range; 
whiskers: 5th and 95th percentile range. 
 
  



   
 

  

Fig. 3 | The Expression Conservation Coefficient (ECC) detects signatures of stabilizing 
selection on gene expression using natural genetic variation in regulatory DNA. a, ECC 
calculation from 1,011 S. cerevisiae genomes37. b, ECC distribution for S. cerevisiae genes. 
Frequency distribution of ECC values (x axis). Dashed line separates regions corresponding to 
disruptive/positive selection (left) and stabilizing selection (right). GO terms enriched by the 
ECC ranking are shown. Arrowhead: ECC value for the CDC36 promoter sequence. c, 
Convergent regulatory evolution in the CDC36 promoter. Predicted expression (x axis, left bar 
plot) and associated number of strains (x axis, right bar plot) of all alleles among the analyzed 
CDC36 promoter sequence within 1,011 yeast isolates, along with an alignment of their Upc2p 
binding site sequences (left; Upc2p binding motif below). Red vertical lines: two independently 
evolved low-expressing alleles. Grey vertical boxes: key positions in the Upc2p motif with single 
nucleotide polymorphisms. d, Validation of CDC36 promoter allele expression and organismal 
phenotype. Strains (y axis) with different Upc2p binding site alleles for both model-predicted 
CDC36 expression (left; predicted on -170:-90 region to capture entire Upc2p binding site), 
measured CDC36 expression (middle), and lag phase duration (right). Points: biological 
replicates (n=3); bars/vertical lines: means. Bar color: strain background. Student’s t-test p-
values, unpaired, equal variance, one-sided (expression, WE WT vs. C23 p=0.044, C07 
p=6.69*10-3) or two-sided (lag phase, WE WT vs. C23 p=1.34*10-4, C07 p=2*10-4); *p<0.05; 
**p<0.01; ***p<0.001.  
 
  



   
 

  

Fig. 4 | The evolvability vector captures fitness landscapes.  
a, Characterizing regulatory evolvability by computing an evolvability vector. Left and middle: 
Generating evolvability vectors for a sequence. Right: training an autoencoder with evolvability 
vectors to generate a 2D representation to visualize sequences in archetypal evolvability space. 
b, Evolvability archetypes discovered by the autoencoder. Left: Evolvability vectors of the rank 
ordered (x axis) predicted change in expression (y axis) for native sequences closest to each of 
the malleable (green), maxima (red) or minima (blue) archetypes and the ‘robustness cleft’ 
(black). Right: all native yeast (S. cerevisiae S288C) promoter sequences (grey points) projected 
onto the archetypal evolvability space by their evolvability vectors. Evolvability archetypes 
(colored circles) and their closest native sequences (s1-s4 as on left) are marked. c,d, Evolvability 
space captures mutational robustness and expression levels. Evolvability vectors (points) of all 
native yeast promoter sequences projected onto the evolvability space (archetypes are large 
colored circles, as in b) and colored by mutational robustness (c) or predicted expression levels 
(d). e, ABF1 promoter fitness landscape. Evolvability vectors of promoter sequences projected 
onto the evolvability space and colored by computed fitness (color, Methods). f,g, Malleable 
promoter sequences dynamically traverse the evolvability space. Evolvability vector projections 
of native sequences (points) from all 1,011 S. cerevisiae isolates. Red points: natural promoter 
sequence variants for DBP7, the promoter closest to the malleable archetype (f) and for UTH1, 
the promoter closest to the robustness cleft (g). h, The robustness of native promoter sequences. 
Density (color) of all native yeast promoter sequences when their evolvability vectors are 
projected onto the evolvability space.   



   
 

  

METHODS 

Experimental measurement of sequence-expression pairs using a Sort-seq strategy 

We experimentally measured expression using a Sort-seq2,3,51–59 strategy called the Gigantic 

Parallel Reporter Assay (GPRA) we previously described26 (Supplementary Fig. 1). Briefly, for 

each set of expression measurements mentioned, random or designed single stranded 

oligonucleotides were ordered from IDT (random; Supplementary Table 3) or Twist Biosciences 

(designed; sequences on GEO; accession GSE163045), cloned into the promoter of a Yellow 

Fluorescent Protein (YFP) gene within a CEN plasmid (Addgene: 127546) as previously 

described26 and transformed into yeast (strain Y8205 for the training dataset of random sequences, 

and strain S288C::ura3 for all the rest of the sequences measured). The library is maintained in 

yeast as an episomal low copy number plasmid. It was previously reported that the expression 

measurements are highly correlated with expression levels as measured using integrated reporters 

(R2=0.97)54. Yeast were grown in continuous log phase, diluting as necessary to maintain an OD 

between 0.05 and 0.6 for 8-10 generations up until the time of harvest. Cells were harvested, 

washed once in ice cold PBS, and kept on ice in PBS until sorting. Cells were sorted into 18 

uniformly-sized expression bins covering the majority of the expression distribution. Post sort, 

cells were re-grown in SD-Ura until saturation, plasmids isolated, and sequencing libraries created 

sequenced with a 150 cycle NextSeq kit. For libraries with random 80 bp sequences, sequences 

were consolidated as previously described26. Reads from other (defined, non-random) libraries 

were aligned to the pre-defined sequences using Bowtie260, including only reads that perfectly 

matched a designed sequence. For each sequence, the expression level was the average of the 

expression bins in which it was observed, weighted by the number of times it was observed in each 

bin. These expression measurements were carried out separately in defined media lacking uracil 



   
 

  

(SD-Ura (Sunrise Science, #1703-500)) and complex media (YPD: yeast extract, peptone, 

dextrose).  

 

Architecture of the convolutional model 

A deep neural network model20,21,23,61–69 with convolutional layers was constructed and used for 

designing sequences with high and low expression (Fig. 1c), and running evolutionary simulations 

under stabilizing selection, genetic drift, and SSWM (Fig. 2) for each condition. These designed 

sequences, whose expression was experimentally quantified (e.g. Fig. 1c and 2d,g), were designed 

using models with the following architecture:  

 

Input. The input is the DNA sequence (𝑠)  represented in one-hot encoding. Input Shape: 

(1, 110, 4) 

Convolution Block  

- For the forward and reverse strand, separately,  

o Strand-specific convolution layer 1. Kernel Shape: (1, 30, 4, 256) 

o Strand-specific convolution layer 2. Kernel Shape: (30, 1, 256, 256) 

- Concatenation of features from the forward and reverse strand 

- Convolution layer 3. Kernel Shape: (30, 1, 512, 256)  

- Convolution layer 4. Kernel Shape: (30, 1, 256, 256)  

- A bias term and a ReLU activation was added to each convolution layer in this block. 

Fully Connected Layers 

- Fully connected layer 1. Kernel Shape: (110*256, 256).  



   
 

  

- Fully connected layer 2. Kernel Shape: (256, 256) 

- A bias term and a ReLU activation were added to each layer in this block. 

Output. Linear combination of the 256 features extracted as a result of all the previous operations 

on the sequence (𝑠) to generate the predicted expression (𝑒). 

 

Every fully connected layer was L2 regularized with a 0.0001 weight and had a dropout probability 

of 0.2.  

 

Training of the convolutional model 

For training, 20,616,659 random sequences for the defined medium and 30,722,376 random 

sequences for the complex medium (each to train a separate model) were used, along with their 

experimentally measured expression as described above. A mini-batch size of 1,024 was used for 

training and a mean squared error loss was optimized using the Adam optimizer70 with an initial 

learning rate of 0.0005. The model was trained for 5 epochs. Model architecture was written in 

TensorFlow71 1.14 using Python 3.6.7. The convolutional model used TensorFlow graphs and 

sessions in its implementation and was thus incompatible with the Tensor Processing Units 

(TPUs)72. These convolutional models (for both media) were used for all the predictions in Fig. 1 

and 2 and Extended Data Fig. 1, 2.  

 

The models were tested by predicting expression on sequences that the model had never seen 

before (Supplementary Fig. 21) that were measured in separate experiments, where the library 

was lower complexity (fewer sequences) than the experiments that generated the training data, 



   
 

  

such that the expression associated with each sequence was measured with high accuracy (~100 

yeast cells per sequence on average). The test libraries included random, native (i.e. present in the 

yeast genome), and designed sequences.  

 

Training and evaluation were carried out on 4 Tesla M60 GPUs. All code for training and using 

the convolutional model is available here: 

https://github.com/1edv/evolution/tree/master/manuscript_code/model/gpu_only_model. 

 

Architecture of the transformer model 

A transformer model23,32,73 was developed to run inference faster than the convolutional model, as 

needed for the evolutionary analyses in Fig. 3 and 4. The transformer model had ~20x fewer 

parameters (~1.3 million, compared to the ~24 million parameters of the convolutional model) and 

was able to leverage Tensor Processing Units (TPUs) for computation. Transformer models are 

used in all the analyses in Fig. 3 and 4 and Extended Data Fig. 3-4, and 6-8. Benchmarking 

analyses and ablation analyses for the transformer model are available in the Supplementary 

Information. 

 

The deep transformer model has the following architecture (Supplementary Fig. 12): 

Input. The input is the DNA sequence (𝑠) represented in one-hot encoding. Input Shape: (110 , 4) 

Convolution Block. The convolution block is constructed in the following order (Supplementary 

Fig. 12b): 

https://github.com/1edv/evolution/tree/master/manuscript_code/model/gpu_only_model


   
 

  

- Revere Complement Aware 1D Convolution. The forward and reverse strand are operated 

on separately with a convolutional kernel to generate strand specific sequence- 

environment interaction features. Kernel Shape: (30, 4, 256). 

- Batch Normalization 

- Rectified Linear Unit (ReLU) 

- Concatenation of Features from the forward and reverse strand 

- 2D Convolution: Convolve over the combined features from both the strands to capture 

interactions between strands. Kernel Shape: (2, 30, 4, 256)  

- Batch Normalization 

- ReLU 

- 1D Convolution. Kernel Shape: (30, 64, 64)  

- Batch Normalization 

- ReLU 

Transformer Encoder Blocks. Two transformer encoder blocks32,74,75 are constructed in the 

following order (Supplementary Fig. 12c): 

- Multi-Head Attention: 8 heads, capturing relations between features from different 

positions of (𝑠) to compute a representation for the features extracted from the convolution 

block from (𝑠).  

- Residual Connection 

- Layer Normalization 

- Feed Forward Layer with 8 units 

- Residual connection 

- Layer Normalization  



   
 

  

Bidirectional LSTM layer. A bidirectional LSTM layer to capture the long-range interactions 

between different regions of the sequence with 8 units and 0.05 dropout probability. 

Fully Connected Layers (Supplementary Fig. 12d). Two Fully connected layers with 64 Hidden 

Units, each consisting of ReLU and Dropout (0.05 dropout probability). 

Output. Linear Combination of 64 features extracted as a result of all the previous operations on 

the sequence (𝑠) to generate the predicted expression (𝑒). 

 

Training of the transformer model 

20,616,659 random sequences (defined medium) and 30,722,376 random sequences (complex 

medium), along with their experimentally measured expression, were used to train separate models 

for each media. Model architecture was written in TensorFlow71 1.14 using Python 3.6.7 with 

multiple open source libraries (citations, where relevant, are included in code for them). A mini-

batch size of 1,024 was used for training and a mean squared error loss was optimized using a 

RMSProp optimizer76 with a learning rate of 0.001. The stopping criterion monitored was the ‘r-

squared’ value and the model was allowed to train for 10 epochs without improvement before 

stopping training. Training was carried out on a Google Cloud Tensor Processing Unit (TPU)72 

v3-8. Evaluation was carried out on 4 Tesla M60 GPUs. The model architecture visualization was 

generated using Netron 4.5.1. All processed data and models are publicly available on Zenodo at 

https://zenodo.org/record/4436477 and all code is available on GitHub at 

https://github.com/1edv/evolution/tree/master/manuscript_code/model/tpu_model. Transformer 

models are used in all the analyses in Fig. 3 and 4 and Extended Data Fig. 3-4, and 6-8.  

 

https://zenodo.org/record/4436477
https://github.com/1edv/evolution/tree/master/manuscript_code/model/tpu_model


   
 

  

The models were tested by predicting expression on test sequences that the model had never seen 

before (Supplementary Fig. 21) that were measured in separate experiments, which included 

random, native (i.e. present in the yeast genome), and designed sequences. To obtain expression 

measurements for each tested sequence that are more accurate than those from the high-complexity 

training data experiment, library complexity was limited such that each test promoter sequence is 

observed in ~100 yeast cells (Methods, Supplementary Information). 

 

Gene expression engineering using a genetic algorithm for sequence design 

To design77–80 new sequences with desired expression, a genetic algorithm (GA) was implemented 

with the distributed evolutionary algorithms in python (DEAP) package81. The mutation 

probability and the two-point crossover probability were set to 0.1 and the selection tournament 

size was 3. The initial population size was 100,000 and the GA was run for 10 generations. The 

convolutional model was used as the basis for the objective function for GA, which was maximized 

for high expression and minimized for low expression (maximizing negative predicted 

expression). The top 500 sequences were synthesized (by Twist Biosciences) and expression was 

measured experimentally using our reporter assay, as described above. 

 

Characterizing random genetic drift  

Simulation of random genetic drift (Fig. 2a) was initialized with a set of 5,720 random sequences, 

in generation 0. For each sequence in this starting set, a new single sequence was randomly picked 

from its 3L mutational neighborhood (the set of all sequences at a Hamming distance of 1 from a 

sequence of length L) and the difference in expression between the new sequence and the starting 



   
 

  

sequence was calculated using the convolutional model (Fig. 2b). This was done for each starting 

sequence to get generation 1. Each subsequent generation n was produced by picking a single 

sequence randomly from the 3L mutational neighborhood of each sequence in the preceding 

generation n-1. The simulation was carried out for 40 generations. Simulations were also 

subsequently repeated with the transformer model (Extended Data Fig. 3f), yielding concordant 

results.  

 

For experimental validation, 1,000 random starting sequences were synthesized, introducing 

between one to three random mutations to these sequences. The expression levels of starting and 

mutated sequences were measured in both complex and defined media experimentally using our 

reporter assay. For 990 of these 1,000 starting sequences, experimental measurements were 

available for all three mutational distances. Additionally, 20 (median) separate single mutations 

were introduced to each of 196 native sequences, the sequences were synthesized, and their 

associated expression was measured similarly for both of these media; these were also included in 

the boxes for one mutational step in Fig. 2c and Extended Data Fig. 1e. 

 

Characterizing the regulatory complexity of a sequence 

To estimate the regulatory complexity82,83 of a sequence, the Gini coefficient of the regulatory 

interaction strengths for each TF was calculated. A new biochemical model was first trained with 

our defined media data to complement the existing one trained on complex media, using our 

published model architecture of TF binding and position-aware activity26 and the training 

procedure previously described26 (Supplementary Notes). The regulatory interaction strength was 



   
 

  

then individually calculated for each regulator by setting the concentration parameter for that TF 

(individually) to 0 in the learned model, and the biochemical model was used to quantify the 

resulting change in expression, as previously described26. The resulting vector of interaction 

strengths was used to calculate a Gini coefficient for each sequence, separately for the complex 

and defined media models. The Gini coefficient is a measure of inequality of continuous values 

within a population, most commonly applied to wealth or income, and ranges from 0 (all members 

of the population have equal wealth) to 1 (the wealth of a population is held by a single individual). 

Regulatory complexity for a sequence is then 1-Gini, such that 1 indicates that all TFs contribute 

equally to the regulation of the gene and 0 indicates that a single TF is solely responsible for its 

regulation. As starting points for our trajectories, 200 native promoter sequences (from -160 to -

80, relative to the TSS) were chosen with relatively high regulatory complexity and another 200 

were chosen with relatively low regulatory complexity, spanning the range of predicted expression 

levels, as starting points for our trajectories. 

 

Trajectories for stabilizing selection on gene expression were designed using the convolutional 

model (Fig. 2d). Here, all sequences were required to maintain a predicted expression level within 

0.5 of the original expression levels at all steps along the trajectory. There was no explicit 

constraint on regulatory complexity in this simulation of stabilizing selection. In order to ensure 

that expression was unchanged, expression levels were measured experimentally for sequences 

along a trajectory at growing mutational steps from the initial sequence (2, 4, 8, 16, 32 mutations). 

Any trajectories for which an expression measurement was missing for any experimentally tested 

sequence were excluded from all analyses, retaining 172 trajectories with initial low regulatory 

complexity and 192 trajectories with initial high regulatory complexity. Testing whether observed 



   
 

  

trends in regulatory complexity were affected by the degree to which expression was either 

predicted (by the convolutional model for 1-32 mutations) or observed (by the experiment at 2, 4, 

8, 16, or 32 mutations) to be conserved, showed that the trends were robust to the degree of 

expression conservation (Supplementary Fig. 11).  

 

Characterizing directional trajectories under SSWM 

Simulations of trajectories under a Strong Selection-Weak Mutation (SSWM)84–86 regime were 

initialized with a set of native yeast promoter sequences (defined here as the subset from -160 to -

80 relative to the TSS for all the genes in the yeast reference genome for which we had a good 

TSS estimate (Supplementary Table 3 in 26) as the starting generation 0. For each sequence in 

generation n, the sequence from its 3L mutational neighborhood that had the maximal (or 

separately, minimal) predicted expression using the convolutional model was picked to get 

generation n+1. The simulation was carried out for 10 rounds separately in the complex (Fig. 2f) 

and defined (Extended Data Fig. 1f) media. The simulations were subsequently repeated using 

the transformer model (Extended Data Fig. 3i-j). 

 

For experimental validation, a subset of sequences from several generations were synthesized 

along mutational trajectories simulated by the convolutional model for complex media (10,322 

sequences from 877 trajectories, 805 of which had every sequence along the trajectory successfully 

measured) and one for defined media (6,304 sequences from 637 trajectories, 591 of which had 

every sequence along the trajectory successfully measured) and their expression was measured in 



   
 

  

the corresponding media experimentally using our reporter assay (Fig. 2g, Extended Data Fig. 

1g). 

 

Measuring the URA3 expression-to-fitness relationship 

Two complementary environments were studied with opposite selective pressures on the 

expression of URA3 (encoding an enzyme responsible for uracil synthesis): defined media, where 

organismal fitness increases with gene expression (up to saturation) and complex media + 5-FOA, 

where fitness decreases with Ura3p expression.  

Convolutional models trained on defined and complex media were used to choose a set of 11 

sequences that span a broad range of predicted expression levels in the two media when cloned 

into a YFP expression vector26. The relationship between expression of URA3 and organismal 

fitness in yeast was estimated from experimental measurements with these 11 sequences, by 

cloning promoter sequence in front of YFP to measure expression level and in front of URA3 to 

measure fitness. Unless otherwise noted, yeast were grown at 30C, in an orbital shaker incubator 

at 225 RPM. Each vector was transformed into yeast (S288C::ura3), and three independent 

transformants were selected per vector to serve as biological replicates. For measuring expression, 

yeast were grown overnight in either YPD+NAT (yeast extract, peptone, dextrose, with 75µg/ml 

nourseothricin) or SD-Ura (synthetic defined media, lacking uracil; Sunrise Science 1703-500), 

and then re-inoculated in the morning and allowed to grow for 6 hours prior to measuring 

expression by flow cytometry for each replicate as the log ratio of YFP to the constant background 

RFP, including only cells obtaining the top 50% of RFP expression. Fitness was obtained by 

measuring the growth rate of each yeast strain in either SD-Ura or YPD+NAT+5-FOA (0.25 mg/ml 

5-FOA). Yeast were grown continuously in triplicate in log phase, with linear shaking at 30C in 



   
 

  

a Synergy H1 plate reader (Biotek), by diluting each well to maintain OD<0.7, with OD measured 

at 15 minute intervals. Growth rate was defined for each replicate as the median of the 

instantaneous smoothed growth rates over 5 measurements in log phase, considering only time 

points where 0.05<OD<0.5. Each promoter’s expression and growth rate were summarized as the 

mean of the three replicates. 

 

Characterizing trajectories under conflicting expression objectives in different environments 

Simulations of sequence evolution in two complementary environments with opposite selective 

pressures (defined media and complex media)  were initialized with a set of native yeast promoter 

sequences (present at -160 to -80 relative to the TSS) as the starting generation 0, with the objective 

function defined as the difference in predicted expression between defined and complex media 

(Fig. 2h, Extended Data Fig. 2d-g) using convolutional models trained in the respective media. 

The difference in expression between the two conditions was maximized at each iteration, which 

assumes that the cells are exposed to both environments before the mutations can reach fixation, 

an example of evolution in rapidly fluctuating environments31. For simplicity, it is assumed that 

fitness is directly proportional to higher expression in one condition and to lower expression in the 

other, such that mutations will be considered favorable even if they decrease fitness in one 

condition so long as they increase it in the other condition by a greater amount.  

One simulation aimed to maximize the expression difference (defined minus complex), and the 

other to minimize it (maximizing complex minus defined). For each sequence in generation n, the 

sequence from its 3L mutational neighborhood that had the maximum (or separately, minimum) 

value for the objective function based on the convolutional model prediction is picked for 



   
 

  

generation n+1, to a total of 10 generations. The simulations were subsequently repeated using the 

transformer model yielding similar results (Supplementary Fig. 17b-f). 

  

Motifs  that were enriched in the sequences of generation 10 compared to the starting sequences 

were identified de novo using DREME87, and each of the top 5 consensus motifs were used as 

queries to search the YeTFaSCo database88, reporting the closest match, or one of multiple similar 

matches.  

 

Finding orthologous promoters in the 1,011 S. cerevisiae genomes dataset 

To identify orthologs of S288C promoters in the whole genome sequences of the 1,011 yeast 

strains37, BLAT89 was used to identify regions of ≥80% identity with each -160 to -80 region 

(relative to the TSS) annotated in the reference S288C genome sequence (R64)90. Any strains with 

more than one such match, where the match contained insertions or deletions, or had incomplete 

matches, were excluded on a gene-by-gene basis. Genes with more than 1.2 matches with ≥80% 

identity per genome, on average, were excluded altogether.  

 

Computing the expression conservation coefficient (ECC) 

To calculate the ECC (a regulatory analog2,35,91,92 of dN/dS34,93,94), for each yeast gene promoter, 

the transformer model was used to predict an expression value for each orthologous promoter in 

the 1,011 yeast genomes (above), defining an expression distribution with a standard deviation σB. 

Next, a set of sequences with random mutations was generated from each gene’s consensus 

promoter sequence (defined as the most abundant base at each position across the strains), such 



   
 

  

that the number of sequences at each Hamming distance from the consensus promoter sequence 

was the same for the natural and simulated sets. Here, mutations introduced to create random 

variation sampled each base with equal probability; using observed mutation rates yielded similar 

results (Supplementary Information). The same transformer model to predict the expression of 

the simulated sequences, and calculate its standard deviation σC. The nominal ECC is log(σC/σB). 

Because the variance on simulated sequences is better estimated than in natural orthologs (whose 

sequences may be more constrained), a constant correction factor is subtracted, calculated by 

creating a second simulated set of randomly mutated sequences whose diversity is limited to the 

same extent as in the natural set, by creating only one random mutation for every unique sequence 

in the set of native orthologs. Finally, the expression for this second set of sequences is predicted 

by the transformer model, and its standard deviation (σC’) is used to calculate a null ECC for each 

gene (log(σC/σC’)); the median of these null ECCs over all the genes is used as the constant 

correction factor C = median∀genes,𝑖 (log2(
𝜎𝐶𝑖
𝜎𝐶′𝑖

)). (An extensive description of the correction 

factor is provided in the “ECC calculation details and considerations” section of the 

Supplementary Information.) 

The corrected ECC for gene g is then: 

𝐸𝐶𝐶𝑔 =  log2 ( 
𝜎𝐶𝑔

𝜎𝐵𝑔

) − C 

The computed ECC values for all yeast genes, available in Supplementary Table 1, were used to 

identify cases or presumed stabilizing selection (selection favoring a fixed non-extreme value of a 

trait), diversifying (disruptive) selection (selection favoring more than one extreme values of a 

trait; as opposed to a single fixed intermediate value), and directional (positive) selection (selection 

favoring a single extreme value of a trait over all other possible values of the trait). Re-computing 



   
 

  

the ECC values for all yeast genes using the S288C reference sequences instead of the consensus 

sequence for the promoters of each gene yielded very similar results. 

 

In addition to each ECC value, a Z-score and p-values for the confidence that the observed ECC 

values differ from neutrality were also calculated. For each gene’s true ECC, a set of matched 

random ECC values were calculated, where the denominator is a set of sequences matched for 

Hamming distance distribution and the total number of unique sequences. The null ECC mean and 

standard deviation were calculated from 1,111 such simulations, and used to calculate a Z-score 

for how extreme the actual ECC would be under this null distribution. This Z-score acts as a signed 

p-value (negative representing divergent expression and positive representing conservation), from 

which p-values (using the ‘scipy.stats.norm.sf’ function on the absolute value of the Z-score in 

Scipy95 and multiplying the function’s output by 2 to get a two-sided p-value) (Supplementary 

Table 1). 

 

Inferring expression conservation across Saccharomyces species using RNA-seq data and 

comparing with ECC values  

Published RPKM values for orthologs of S. cerevisiae genes in closely related Saccharomyces 

species41 were obtained from the Gene Expression Omnibus (GEO) (accession GSE83120). Only 

genes for which expression was quantified in all species were used in subsequent analysis. RPKM 

values were 𝑙𝑜𝑔2 scaled after adding a pseudo count of 2, and the variance in expression of each 

gene across the species was calculated. Genes were ranked by their gene expression variance, and 

the 2% of genes with the lowest variance were considered as having conserved gene expression 

levels (‘expression conserved’), while the 2% with the highest variance were considered 



   
 

  

‘expression not-conserved’. The significance of the differences was robust to the choice of these 

thresholds (Supplementary Information). To compare to ECC values, the p-value of a two-sided 

Wilcoxon rank-sum test was estimated comparing the ECC values for genes in the ‘expression 

conserved’ and ‘expression not-conserved’ categories (implemented using the 

scipy.stats.ranksums SciPy95 function). To control for the dependence between expression mean 

and variance, the analysis was repeated using the coefficient of variation (P = 1.05*10-4) and the 

coefficient of dispersion (P = 2.42*10-4) instead of variance, yielding similar results. 

 

 

Experimental protocol for RNA-seq measurements from 11 Ascomycota species 

RNA-seq was performed on samples from the following 11 Ascomycota yeast species: 

Saccharomyces cerevisiae, Saccharomyces bayanus, Naumovozyma (Saccharomyces) castellii, 

Candida glabrata, Kluyveromyces lactis, Kluyveromyces waltii, Candida albicans, Yarrowia 

lipolytica, Schizosaccharomyces japonicus, Schizosaccharomyces octosporus, and 

Schizosaccharomyces pombe. Each of the 11 species was grown in BMW medium, chosen to 

minimize cross-species growth differences, as previously described96. N. castellii was grown at 

25℃ while the other species were grown at 30℃. RNeasy Midi or Mini Kits (Qiagen, Valencia, 

CA) were used to isolate total RNA from log-phase cells by mechanical lysis using the 

manufacturer instructions as previously described96. dUTP strand-specific RNA-seq libraries were 

constructed as previously described97 with the following modifications. (1) The polyA+-selected 

RNA was fragmented in a 40µl reaction containing 1x Fragmentation Buffer (Affymetrix) by 

heating at 80℃ for 4 minutes followed by cleanup via ethanol precipitation for all libraries (except 

Y. lipolytica, S. pombe, S. japonicus, and S. octosporus; for these species, the conditions described 



   
 

  

previously were used97), followed by cleanup via 1.8x RNAClean XP beads (Beckman Coulter 

Genomics). (2) For C. glabrata, K. lactis, S. bayanus, S. pombe, S. japonicus, and S. octosporus 

libraries, the adapter ligation was performed overnight at 16℃. For the rest, this was done at 16℃ 

for 2 hours as described previously97. (3) Normalization was carried out based on the cDNA input 

and pooling of selected Illumina barcoded-adaptor-ligated cDNA products followed by gel size 

selection occurred as follows: range of 275 to 575 bp for pooled C. albicans, K. waltii, and N. 

castellii libraries, and 375 to 575 bp for C. glabrata, K. lactis, and S. bayanus libraries. For the 

other libraries, no pooling was performed before gel size-selection – range of 310 to 510 bp for Y. 

lipolytica and 350 to 550 bp for S. pombe, S. japonicus, and S. octosporus. (4) The final PCR 

product was purified by 1.8x AMPure XP beads (Beckman Coulter Genomics) followed by a 

second gel size-selection for the range of 300 to 575 bp for C. albicans, K. waltii, and S. castellii 

libraries, but no second gel size-selection was performed for the other libraries. The pooled final 

library was sequenced on one to four lanes of HiSeq2000 (Illumina) with 68 base (Y. lipolytica 

had 76 base) paired-end reads and 8 base index reads. 

 

Transcript assembly, mapping and expression calculation for the 11 Ascomycota species 

RNA-seq 

For each of the 11 Ascomycota yeast species above, reads were assembled using Trinity98(version 

‘trinityrnaseq_r2012-05-18’) and the assembled transcripts were mapped onto the assemblies to 

the respective genomes using GMAP99. The Jaccard coefficient was used to join adjacent 

assemblies given enough connecting reads (using the Trinity default of 0.35 for the Jaccard cutoff). 

Finally, upon mapping all assembled transcripts, the Jaccard coefficient was used to clip 

assemblies which did not have enough support over a certain region. For each of the species, 



   
 

  

assembled transcripts were mapped to the genome sequence100 using BLAT89. Estimated 

expression values were calculated for each transcript using RSEM101 (defined in RSEM as the 

estimate of the number of fragments that are derived from a given isoform or gene, or the 

expectation of the number of alignable and unfiltered fragments that are derived from an isoform 

or gene given the maximum likelihood abundances). Only reads mapping to the sense mRNA 

strand were considered. Orthology between genes in different species was used as previously 

described100. 

 

Inferring expression conservation across Ascomycota species using our RNA-seq data and 

comparing with ECC values  

Estimated expression values from the 11 Ascomycota species RNA-seq data were used after 

removing all genes with NA values in expression for more than three species. Estimated expression 

values were 𝑙𝑜𝑔2 scaled after adding a pseudo count of 1, and the variance in expression for each 

gene across the species was calculated. Genes were ordered by their variance in expression across 

the reported fungal species. Here, the 10% of genes with the lowest expression variance were 

considered to have ‘conserved’ expression, and the 10% with highest expression variance were 

considered to have expression ‘not conserved’. To compare to ECC values, the p-value of a two-

sided Wilcoxon rank-sum test was estimated comparing the ECC values for genes in the 

‘conserved’ and ‘not conserved’ categories (implemented using the scipy.stats.ranksums SciPy95 

function). Similar results were obtained when repeating the analysis using the coefficient of 

variation (P = 4.22*10-5) and the coefficient of dispersion (P = 8.05*10-5) instead of variance. 

 



   
 

  

Inferring expression conservation across mammalian species using RNA-seq data and 

comparing with ECC values  

Ensembl Biomart102 was used to find one to one orthologs of S. cerevisiae genes in humans (of 

'Human homology type' ‘ortholog_one2one’; all 'ortholog_one2many' and ‘many2many’ 

orthologs were excluded). For these human orthologs of yeast genes, the previously reported 

‘evolutionary variance’ values across mammalian species from the original publication42 (based 

on an Ornstein Uhlenbeck (OU model)42) were directly used. Here, the 25% of genes with the 

lowest ‘evolutionary variance’ were considered to have conserved expression and the top 25% 

were considered to be not conserved (the same thresholds used in the original study42). This was 

done separately for each profiled tissue (brain, heart, kidney, liver, lung and skeletal muscle). 

Subsequently, a human ortholog for a yeast gene was considered to have conserved (or non-

conserved) expression if it was found to have conserved (or non-conserved) expression in at least 

one of the profiled tissues. Genes with conflicting expression conservation classes across tissues 

were excluded from the analysis. To compare to ECC values, the p-value of a two-sided Wilcoxon 

rank-sum test was estimated comparing the ECC values for genes in the “conserved” and “not 

conserved” categories (implemented using the scipy.stats.ranksums SciPy95 function).  

 

Quantifying sequence dissimilarity using mean Hamming distance 

For each group of orthologous yeast gene promoters (with ungapped alignments), the mean of 

Hamming distances between each pair of orthologous promoters across the 1,011 isolates was 

calculated. 

 

Generation of CDC36 promoter strains by allele swapping 



   
 

  

Strains with a restored Upc2p binding site in the CDC36 promoter region were obtained using a 

previously described CRISPR-Cas9 method103 . Guide RNAs (gRNAs) were designed using the 

Benchling online tool (https://www.benchling.com/) and cloned in a pGZ110 derived plasmid104, 

using standard “Golden Gate Assembly”105. Plasmids carrying the gRNA and Cas9 gene were then 

co-transformed with a synthetic DNA fragment (ssODN) composed of a 100 bp sequence with 

perfect complementarity to the background promoter sequence (WE) but for the centrally-located 

targeted alleles that overlap the Upc2p binding site. Allele swapping was confirmed by Sanger 

sequencing (Macrogen, South Korea). Sequences were analyzed using the SGRP (Saccharomyces 

Genome Resequencing Project) BLAST server 

(http://www.moseslab.csb.utoronto.ca/sgrp/blast_new/) and MUSCLE tool in Geneious v10.1. All 

primers and ssODNs used are listed in Supplementary Table 2. 

 

RNA extraction and qPCR of CDC36 

Gene expression analysis was performed by qPCR from cultures growth in SD medium 

supplemented with uracil (0.02% p/v). Samples were grown until exponential phase (OD 0.6-0.8), 

collected by centrifugation and treated with 10 units of Zymolyase 20T (50mg/ml) for 30 min at 

37°C. RNA was extracted using E.Z.N.A Total RNA kit I (OMEGA) according to manufacturers’ 

instructions. Genomic DNA traces were then removed by treating samples with DNase I 

(Promega). RNA concentrations were estimated using a Qubit system and verified by 1.5% agarose 

gel. RNA extractions were performed in three biological replicates. 

 

http://www.moseslab.csb.utoronto.ca/sgrp/blast_new/


   
 

  

cDNA was synthesized using 200 units of M-MLV Reverse transcriptase (Promega), 0.5 µg of 

Oligo (dT)15 primer and 1 µg of RNA in a final volume of 25 µL according to manufacturers’ 

instructions. qPCR reactions were carried out using Brilliant II SYBR® Green QPCR Master Mix 

(Agilent Technologies) in a final volume of 10 µL, containing 0.2 µM of each primer and 1 µL of 

the cDNA previously synthesized. qPCR reactions were carried out in three technical replicates 

per biological replicate using an Eco Real-Time PCR system (Illumina, Inc.) under the following 

conditions: 95°C for 15 min and 40 cycles at 95°C for 10 s and 58°C for 30 s. Primers used are 

listed in Supplementary Table 2. The relative expression of CDC36 was quantified using the 2(-

ΔΔCt) approach106, and normalized with two housekeeping genes as previously described107, using 

the median Ct of the three technical replicates for each sample. The housekeeping genes ACT1 and 

RPN2 were used as previously described108.  

 

Growth curves of CDC36 mutant and wild type alleles 

Growth curves incorporating carbon source switching from glucose to galactose were generated 

as previously described109. Pre-cultures were grown in YNB containing 5% glucose medium at 

30ºC for 24 h. Cultures were then diluted to an initial OD600nm of 0.1 in fresh YNB 5% glucose 

medium for an extra overnight growth. The next day, cultures were used to inoculate a 96-well 

plate with a final volume of 200μL YNB with 5% galactose with an initial OD600nm of 0.1. In 

parallel, a control plate containing YNB with 5% glucose was similarly inoculated. All 

experiments were performed in triplicate. OD600nm was monitored every 30 min using a Tecan 

Sunrise absorbance microplate reader (Tecan Group Ltd.). The kinetic parameters of lag phase, 

growth efficiency (ΔOD600 nm) and maximum specific growth rate (µmax) were determined as 

previously described110, fitting the curves with the Gompertz function using R version 3.3.2. All 



   
 

  

growth parameters are expressed as the ratio of growth within YNB+galactose to YNB+glucose 

to control for phenotypic variation that results from something other than the carbon source switch. 

 

Fitness responsivity  

The empirically-determined relationships between the expression levels to organismal fitness for 

each of 80 genes 11 were re-analyzed. Published expression-to-fitness curves in glucose media for 

each of 80 genes were obtained from the Supplementary Data of the original publication11. For 

each of these curves, the total variation (Extended Data Fig. 5) was calculated by partitioning the 

expression range into 36 regular intervals (as reported in the ‘impulse fit’ of the expression-to-

fitness curves in the original publication11) and summing the absolute difference in fitness at the 

endpoints of each partition as follows ∑|𝐹𝐺𝐸𝑁𝐸(𝑒𝑖+1) − 𝐹𝐺𝐸𝑁𝐸(𝑒𝑖)|, for each gene’s expression-

to-fitness function, 𝐹𝐺𝐸𝑁𝐸(𝑒). The same qualitative relationship between a gene’s ECC and fitness 

responsivity as reported in other studies111–113 was observed, including LCB2 (ECC 2.15 and high 

fitness responsivity112) and MLS1 (ECC -1.32 and extremely low fitness responsivity113). 

 

Mutational robustness 

For every sequence, mutational robustness was defined as the fraction of sequences in its 3L 

mutational neighborhood that altered the expression by an amount less than 𝜖, where 𝜖 is set at 

two times the standard deviation of expression variance across all genes with an ECC >0 (here, 

𝜖 = 0.1616; ECC calculated using the 1,011 S. cerevisiae genomes, Extended Data Fig. 4c). 

Using different values for 𝜖 yielded very similar results. 

 



   
 

  

The evolvability vector 

To derive the evolvability vector for a given sequence, expression changes associated with single 

base changes in every possible position were sorted to obtain a monotonically increasing vector of 

length 3L for each sequence of length L (here, L=80; 3L=240; Fig. 4a, left, Methods). Formally, 

to compute an evolvability vector for a sequence 𝑠0, for each sequence 𝑠𝑖 in the 3L mutational 

neighborhood of 𝑠0, the difference between the predicted expression of 𝑠𝑖 and that of 𝑠0 : 𝑑𝑖 =

𝑓(𝑠𝑖) −  𝑓(𝑠0) was calculated, where 𝑓(𝑠) represents the predicted expression of the transformer 

model. The evolvability vector is defined as the vector D ({𝑑1, 𝑑2, … , 𝑑3𝐿}), sorted such that 𝑑𝑖 ≥

𝑑𝑖−1 , ∀𝑖 (i.e. 𝑑𝑖 values are in ascending order).  

 

Power law distribution analysis 

The list of the absolute values of the evolvability vectors for all native sequences was used to 

define the distribution of the magnitude of the expression effect of mutations. The powerlaw114 

Python package was used to determine whether the data fit a power law distribution. The ‘Fit’ 

function with an ‘xmin’ parameter of 0.5 was used to determine the exponent and the 

‘distribution_compare’ function was used to determine the p-value for the fit (Extended Data Fig. 

4d, Supplementary Fig. 2h). 

 

Characterizing the archetypal evolvability space  

The evolvability vectors for a new random sample of a million sequences were used as input to an 

autoencoder with an archetypal regularization constraint45 on the embedding layer. The 

autoencoder was trained using the AANet implementation made available with the publication45 



   
 

  

with no noise added to the archetypal layer during training, a linear activation on the output layer, 

an equal weight of 1 on each of the loss terms (the mean squared error loss term along with the 

non-negativity and convexity constraints), a learning rate of 0.001, and a minibatch size of 4,096. 

The autoencoder accepts an evolvability vector (of length 240 for an 80bp sequence) as input to 

the first encoder layer, where each node in the input layer is connected to each node in the encoder 

layer (fully connected layer). Every layer in the autoencoder was fully connected. The encoder 

architecture used was [1024, 512, 256, 128, 64], where each entry corresponds to the number of 

nodes in the corresponding hidden layer and the decoder architecture was the encoder’s mirror 

image. The output layer was the same shape as input layer and each node in the last decoder layer 

was connected to each node in the output layer. To select the optimal number of archetypes, the 

autoencoder was first trained for a 1,000 minibatches separately for 1 to 9 archetypes. Following 

the recommended approach45 for picking the optimal number of archetypes, we used an elbow plot 

of mean squared error on the evolvability vectors (here, using native sequences) vs. the number of 

archetypes in the autoencoder (Extended Data Fig. 6a).  

 

The autoencoder was then trained from scratch with 3 archetypes, using the full training data and 

parameters for 250,000 batches. Since this autoencoder aims to reconstruct the original 

evolvability vector for each sequence by learning feature representations after passing them 

through an information bottleneck, its reconstruction accuracy was first verified on the set of native 

yeast promoter sequences (Extended Data Fig. 6b, Pearson’s r = 0.992). To visualize the 

evolvability vectors corresponding to sequences in 2 dimensions (2D), the evolvability vectors 

corresponding to the three archetypes were first generated by decoding their archetypal latent space 

coordinates ((1,0,0), (0,1,0) and (0,0,1)) through the decoder, and MDS was performed on the 



   
 

  

decoded evolvability vectors of the archetypes. Then, as previously described45, the encoded 

evolvability vector of each new sequence was projected into the 2D MDS space by representing it 

as a mixture of the archetypes and interpolating them between the MDS coordinates of each 

archetype. For every sequence, the following equivalent representations can now be computed: (i) 

its evolvability vector, (ii) an archetypal triplet quantifying the similarity of its encoded (latent 

space) evolvability vector to the three archetypes and (iii) a two-dimensional multidimensional 

scaling (MDS) coordinate45 for visualizing the evolvability vectors. The representation of the 

evolvability vector for each sequence in this archetypal space is now bounded by a simplex (whose 

vertices correspond to the 3 evolvability archetypes). For each native and natural yeast promoter 

sequence from the sequence space, the archetypal triplet and MDS coordinates were inferred using 

its evolvability vector with this trained autoencoder. The MDS coordinates for the archetypes and 

the native yeast promoter sequences were used to generate the visualizations of the sequence space 

shown. This archetypal characterization of evolvability vectors allows the encoding and 

visualization of sequences by their evolvability in the context of a fitness landscape. 

 

Visualizing promoter fitness landscapes 

1000 random sequences were sampled and projected onto the MDS coordinate system for 

visualizing the sequence space described above. The expression level of each sequence was 

calculated using our model, and expression values were scaled so that the minimum was 0 and 

maximum was 1. Previously quantified expression-to-fitness relationships11 to compute fitness 

(fraction of wildtype growth rate) by using cubic spline interpolation (implemented using the 

scipy.interpolate.CubicSpline SciPy95 function) on the expression level after scaling the measured 

expression-to-fitness curves to have an expression range of 0 to 1. These fitness values were then 



   
 

  

used to generate the contour plots (implemented using the matplotlib.pyplot.tricontourf function; 

Fig. 4e, Extended Data Fig. 7) that visualize the fitness landscape in that gene’s promoter 

sequence space. 

 

  



   
 

  

Extended Data Figures Legends 

Extended Data Fig. 1: The convolutional sequence-to-expression model generalizes reliably 
and helps characterize sequence trajectories under different evolutionary regimes. (a-d) 
Prediction of expression from sequence in complex (YPD) (a-b) and defined (SD-Uracil) (c-d) 
media. Predicted (x axis) and experimentally measured (y axis) expression for (a,c) random test 
sequences (sampled separately from and not overlapping with the training data) and (b,d) native 
yeast promoter sequences containing random single base mutations. Top left: Pearson’s r and 
associated two-tailed p-value. Compression of predictions in the lower left results from binning 
differences during cell sorting in different experiments (Supplementary Notes). e, Experimental 
validation of trajectories from simulations of random genetic drift. Distribution of measured 
(light grey) and predicted (dark gray) changes in expression in the defined media (SD-Uracil) (y 



   
 

  

axis) for the synthesized randomly-designed sequences (n=2,986) at each mutational step (x 
axis). Midline: median; boxes: interquartile range; whiskers: 5th and 95th percentile range. f, g, 
Simulation and validation of expression trajectories under SSWM in defined media (SD-Uracil). 
f, Distribution of predicted expression levels (y axis) in defined media at each evolutionary time 
step (x axis) for sequences under SSWM favoring high (red) or low (blue) expression, starting 
with native promoter sequences (n=5,720). Midline: median; boxes: interquartile range; 
whiskers: 5th and 95th percentile range. g, Experimentally-measured expression distribution in 
defined media (y axis) for the synthesized sequences (n=6,304 sequences; 637 trajectories) at 
each mutational step (x axis) from predicted mutational trajectories under SSWM, favoring high 
(red) or low (blue) expression. Midline: median; boxes: interquartile range; whiskers: 5th and 95th 
percentile range. h-o, Experimental validation of predicted expression for sequences from the 
random genetic drift and SSWM simulations. Experimentally measured (y axis) and predicted (x 
axis) expression level (l-o) or expression change from the starting sequence (h-k) in complex 
(h,j,l,n) or defined (i,k,m,o) media using sequences from the random genetic drift (Fig. 2c and 
(e); h,i,l,m here) and SSWM (Fig. 2g and (g); j,k,n,o here) validation experiments. Top left: 
Pearson’s r and associated two-tailed p-values. 
  



   
 

  

Extended Data Fig. 2 | Characterization of sequence trajectories under strong competing 
selection pressures using the convolutional model. a,b, Expression is highly correlated 
between defined and complex media. Measured (a) and predicted (b) expression in defined (x 
axis) and complex (y axis) media for a set of test sequences measured in both media. Top left: 
Pearson’s r and associated two-tailed p-values. c, Opposing relationships between organismal 
fitness and URA3 expression in two environments. Measured expression (x axis, using a YFP 
reporter) and fitness (y axis; when used as the promoter sequence for the URA3 gene) for yeast 
with each of 11 promoters predicted to span a wide range of expression levels in complex media 
with 5-FOA (red), where higher expression of URA3 is toxic due to URA3-mediated conversion 
of 5-FOA to 5-fluorouracil, and in defined media lacking uracil (blue), where URA3 is required 
for uracil synthesis. Error bars: Standard error of the mean (n=3 replicate experiments). d-f, 
Competing expression objectives are slow to reach saturation. d,e, Difference in predicted 
expression (y axis) at each evolutionary time step (x axis) under selection to maximize (red) or 



   
 

  

minimize (blue) the difference between expression in defined and complex media, starting with 
either native sequences (d, as Fig. 2h, n=5,720) or random sequences (e, n=10,000). f, 
Distribution of predicted expression (y axis) in complex (blue) and defined (red) media at each 
evolutionary time step (x axis) for a starting set of random sequences (n=10,000). Midline: 
median; boxes: interquartile range; whiskers: 5th and 95th percentile range. g, Motifs enriched 
within sequences evolved for competing objectives in different environments. Top five most 
enriched motifs, found using DREME87 (Methods) within sequences computationally evolved 
from a starting set of random sequences to either maximize (left) or minimize (right) the 
difference in expression between defined and complex media, along with DREME E-values, the 
corresponding rank of the same motif when using native sequences as a starting point, the likely 
cognate TF and that TF’s known motif. 



   
 

  

Extended Data Fig. 3 | The transformer sequence-to-expression model generalizes reliably 
and helps characterize sequence trajectories under different evolutionary regimes. a-d, 
Prediction of expression from sequence in the complex (a-b) and defined (c-d) media. Predicted 



   
 

  

(x axis) and experimentally measured (y axis) expression for (a,c) random test sequences 
(sampled separately from and not overlapping with the training data) and (b,d) native yeast 
promoter sequences containing random single base mutations. Top left: Pearson’s r and 
associated two-tailed p-value. Compression of predictions in the lower left results from binning 
differences during cell sorting in different experiments (Supplementary Notes). e, Predicted (x 
axis) and experimentally measured (y axis) expression in complex media (YPD) for all native 
yeast promoter sequences. Pearson’s r and associated two-tailed p-values are shown. f, Predicted 
expression divergence under random genetic drift. Distribution of the change in predicted 
expression (y axis) for random starting sequences (n=5,720) at each mutational step (x axis) for 
trajectories simulated under random genetic drift. Silver bar: differences in expression between 
unrelated sequences. g,h, Comparison of the distribution of measured (light grey) and 
transformer model predicted (dark gray) changes in expression (y axis) in complex media (g, 
n=2,983) and defined media (h, n=2,986) for synthesized randomly-designed sequences at each 
mutational step (x axis). i,j Predicted expression evolution under SSWM. Distribution of 
predicted expression levels (y axis) in complex media (i, n=10,322) and defined media (j, 
n=6,304) at each mutational step (x axis) for sequence trajectories under SSWM favoring high 
(red) or low (blue) expression, starting with 5,720 native promoter sequences. (f-j) Midline: 
median; boxes: interquartile range; whiskers: 5th and 95th percentile range. k-r, Comparison of 
model predicted expression for sequences synthesized previously for the random genetic drift 
and SSWM analyses. Experimentally measured (y axis) and transformer model predicted (x axis) 
expression level (o-r) or expression change from the starting sequence (k-n) in complex 
(k,m,o,q) or defined (l,n,p,r) media using sequences from the random genetic drift (Fig. 2c and 
(Extended Data Fig. 1e); k,l,o,p here) and SSWM (Fig. 2g and (Extended Data Fig. 1g); 
m,n,q,r here) validation experiments. Top left: Pearson’s r and associated two-tailed p-values. 
  



   
 

  

 

Extended Data Fig. 4 | Signatures of stabilizing selection on gene expression detected from 
regulatory DNA across natural populations. a, Expression-altering alleles in the CDC36 
promoter are attributed primarily to altered UPC2 binding. TF interaction strength26 (expression 
attributable to each TF) difference between the high and low alleles (each point is a TF) for each 
of two low expression alleles (allele 1: x axis; allele 2: y axis). Each low-expressing allele is 
compared to the high-expression allele with the most similar sequence (across all promoter 
sequences analyzed from the 1,011 strains; 𝑒𝑇𝐹,𝐴ℎ𝑖𝑔ℎ − 𝑒𝑇𝐹,𝐴𝑙𝑜𝑤). b, Distribution of ECC (y axis, 
calculated from 1,011 S. cerevisiae genomes, top left) for S. cerevisiae genes whose orthologs 
have divergent (blue) or conserved (purple) expression (within Saccharomyces (left, n=4,191), 
Ascomycota (middle, n=4,910), or mammals (right, n=199) (as determined by cross species 
RNA-seq, top right). p-values: two-sided Wilcoxon rank-sum test. Midline: median; boxes: 
interquartile range; whiskers: 5th and 95th percentile range. c, Determination of expression 
change threshold for defining a "tolerated mutation" to compute mutational robustness. We used 
all genes with an ECC consistent with stabilizing selection (ECC>0; left), calculated the variance 
in predicted expression across the 1011 yeast strains for each gene, and chose the tolerable 
mutation threshold, 𝜖, as two standard deviations of the distribution of the variance (right). ~73% 
of genes with ECC>0 had an expression variation lower than 𝜖. d, Distribution of the effects of 
mutations (magnitude) on expression for all native regulatory sequences follows a power law 
with an exponent of 2.252. Shaded regions are equal in area.  



   
 

  

 

Extended Data Fig. 5 | Fitness responsivity of a gene as the total variation of its expression-
to-fitness relationship 𝑭𝑮𝑬𝑵𝑬 curves. Expression (x axis) and fitness (y axis) levels for different 
promoter variants for each select gene fit from experimental measurements by Keren et al11. 
Fitness responsivity calculated as the total variation in each curve is noted above each panel. 
  



   
 

  

Extended Data Fig. 6 | Analysis of regulatory evolvability reveals sequence-encoded 
signatures of expression conservation from solitary sequences. a, Selection of optimal 
number of archetypes. Mean-square-reconstruction error (y axis) for reconstructing the 
evolvability vectors from the embeddings learned by the autoencoder for an increasing number 
of archetypes (x axis). Red circle: optimal number of archetypes selected as prescribed45 by the 
“elbow method”. b, The archetypal embeddings learned by the autoencoder accurately capture 
evolvability vectors. Original (y axis) and reconstructed (x axis) expression changes (the values 
in the evolvability vectors) for each native sequence (none seen by the autoencoder in training). 
Top left: Pearson’s r and associated two-tailed p-values. c-f, Evolvability space captures 
regulatory sequences’ evolutionary properties. Proximity to the malleable archetype (Amalleable) (x 
axis) and mutational robustness (c,e y axis) or ECC (d,f y axis) for all yeast genes (e,f) or the 
gene for which fitness responsivity was quantified (c,d). Top right: Spearman’s 𝜌 and associated 
two-sided p-value. “L”-shape of relationship in e results from the robust cleft, Amaxima, and 



   
 

  

Aminima all being distal to Amalleable (left side of plot). g, All native (S288C reference) promoter 
sequences (points) projected onto the archetypal evolvability space learned from random 
sequences; colored by their ECC. Large colored circles: evolvability archetypes. h, The 
proximity to the malleable archetype (x axis) and fitness responsivity (y axis) for the 80 genes 
with measured fitness responsivity. Top right: Spearman’s 𝜌 and associated two-tailed p-values. 
Light blue error band: 95% confidence interval. i, All native (S288C reference) promoter 
sequences (points) projected on the evolvability space learned from random sequences; colored 
by their mean pairwise distance in the archetypal evolvability space between all promoter alleles 
across the 1,011 yeast isolates for that gene (ortholog evolvability dispersion). Large colored 
circles: evolvability archetypes.  
  



   
 

  

 

Extended Data Fig. 7 | Visualizing promoter fitness landscapes in sequence space. 
Visualizing the fitness landscapes for the promoters of HXT3 (a), ADH1 (b), GCN4 (c), RPL3 
(d), FBA1 (e), TUB3 (f), URA3 (in defined media) (g), URA3 (in complex media + 5FOA) (h). 
1000 promoter sequences represented by their evolvability vectors projected onto the 2D 
archetypal evolvability space and colored by their associated fitness as reflected by their 
predicted growth rate relative to wildtype (color, Methods), estimated by first mapping 
sequences to expression with our model and then expression to fitness as measured and estimated 
previously11. 
  



   
 

  

Extended Data Fig. 8 | In silico mutagenesis (ISM) of malleable and robust promoters. 
SSWM trajectories for (a) DBP7, a malleable promoter, and (b) UTH1, a robust promoter. Each 



   
 

  

subplot shows the in silico mutagenesis effects for how expression level (color) changes when 
mutating each position (x axis) to each of the four bases (y axis) of each sequence (subplots) in 
the trajectories. The DNA sequence is indicated above each wildtype subplot (indicated with 
“WT” at left). Arrows indicate the mutations selected at each step, which always correspond to 
the mutation of maximal effect; increasing expression goes up the figure from wildtype and 
decreasing expression goes down. Part of the malleability of the DBP7 promoter results from an 
intermediate-affinity Rap1p binding site (gray bar). The first mutations in increasing- and 
decreasing-expression trajectories either increase or decrease (respectively) the affinity of this 
site. The UTH1 promoter changes gradually in expression and evolves proximal repressor 
binding sites to dampen expression (gray bars). 
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Supplementary Information 

Gigantic Parallel Reporter Assay (GPRA) experimental details 

Expression measurements were performed as described in (de Boer et al., 2020) (Supplementary Fig. 1). 

Briefly, a library of ~200,000,000 random 80 bp promoters was cloned in front of a YFP reporter construct 

within the -160:-80 region of a synthetic promoter scaffold. The promoter scaffold used throughput this 

study included a distal poly-T tract (5 or more Ts), and a proximal poly-A tract (5 or more As) surrounding 

the random 80 mers; these features are common in yeast promoters. Furthermore, the scaffold sequences 

were designed to exclude strong binding sites for TFs. The dual reporter plasmid used is available from 

AddGene (AddGene:127546) and was derived from the plasmid used by (Sharon et al., 2012). This plasmid 

contains URA3, which we use as a selectable marker, a constitutive RFP (with which to control for extrinsic 

noise), and the YFP under variable control. Random 80 mers (and designed 80 mer libraries) were cloned 

into an XhoI site using Gibson assembly. The resulting libraries were transformed into S. cerevisiae strains 

lacking URA3 using the lithium acetate method (De Boer, 2017), selecting on SD-Ura media, and ensuring 

that at least 100,000,000 transformants were achieved for the random high-complexity libraries and >100x 

coverage for designed libraries. Because this is a low copy number CEN plasmid that is segregated like a 

chromosome during cell division, if a yeast cell is transformed with two different promoters, subsequent 

cell divisions will ensure with a very high probability that the two plasmids end up in different descendant 

cells. For random libraries, the strain Y8205 was used, but later experiments including the designed libraries 

were performed in S288C::ura3, which is less auxotrophic. Accordingly, all cases except that in random 

test dataset (complex media), the models were trained on sequences assayed in one strain of yeast and tested 

on sequences assayed in another, likely leading to underestimation of the model’s performance due to bona 

fide differences between the strains. 

 

Yeast were grown continuously in SD-Ura over the course of two days, and kept in log phase for ~10 

generations to allow for reporters to reach equilibrium prior to sorting, diluting the media by 1:4 three times 

during this period as necessary to keep cells in log phase (OD below 0.8). All cultures were grown in a 

shaker incubator, at 30C and approximately 250 RPM. Yeast were harvested by centrifugation, washed 

once in ice-cold PBS, resuspended in ice-cold PBS, and kept on ice prior to and during sorting. Sorting was 

performed with a Moflo Astrios (Beckman Coulter) sorting in three sets of 6 bins (all equal width and 

adjacent) each over the course of ~8 hours, dividing the time equally for the three sets. Cells were sorted 

by the log ratio of RFP to YFP signal (using mCherry and GFP absorption/emission), which controls for 

extrinsic sources of variation that affect both reporters (e.g., cell size, plasmid copy number). Once sorted, 



   
 

  

cells were kept on ice. Sorted samples were centrifuged to pellet sorted cells, the PBS/sheath fluid aspirated, 

leaving ~0.5 mL remaining, then the cells resuspended in 1 mL SD-Ura, transferred to a 50mL conical tube 

containing 9mL media, and the sorting tube washed once with SD-Ura, and transferred to the same conical 

tube. This produced 18 50 mL tubes each containing ~10 mL of SD-Ura and sorted yeast cells; one per 

sorting bin. These were allowed to grow for 2-3 days, until all samples reached saturation. Plasmids were 

isolated using Qiagen spin miniprep kits, as adapted for yeast according to the manufacturer's website 

(https://www.qiagen.com/ca/resources/resourcedetail?id=5b59b6b3-f11d-4215-b3f7-

995a95875fc0&lang=en). Nextera adaptors and multiplexing indices were added by PCR, indexed samples 

were mixed in proportion to the number of cells sorted per bin, and the resulting libraries sequenced paired-

end, 76 bp each, using an Illumina Nextseq 500 and 150 cycle kits so that complete coverage of the promoter 

could be achieved, including overlap in the center.  

 

The sorting bins differed slightly each time FACS was performed for a promoter library. This resulted from 

the inability of the cell sorter (MoFlo Astrios) to accurately preserve bin configurations on different days 

and between calibrations. Consequently, the 18 bins were re-assigned for each experiment, and/or laser 

intensities were adjusted, such that the distribution of RFP:YFP ratios were correctly positioned within the 

bins. Sorting bins were defined to be uniform in width (expression range) and included the vast majority 

(>98%) of the distribution and the entirety of the high end of expression, but leaving out the bottom tail of 

expression. The bottom end of expression tended to be dominated by noise and outliers with abnormally 

low YFP:RFP ratios. However, the sensitivity at the low end of expression increased in our experiments 

over time, such that model predictions (in particular for the complex media model) were squished at the 

low end (e.g. Extended Data Fig. 1, 3 lower left corners). 

 

The paired reads representing both sides of the promoter sequence were aligned using the overlapping 

sequence in the middle, constrained to have 40 (+/-15) bp of overlap, and discarding any reads that failed 

to align well within these constraints. This was not required for the designed libraries. Promoters were 

aligned to themselves using Bowtie2 (Langmead et al., 2009) to identify clusters of related sequences, 

merging these clusters and taking the sequence with the most reads as the “true” promoter sequence for 

each cluster. The designed library reads were aligned to the promoter sequences we ordered using Bowtie2, 

and only perfect matches were considered in further analysis. Mean expression level for each promoter (as 

in the processed files) was taken as the average of the bins, weighted by the number of times the promoter 

was observed in each bin. For the designed libraries (that included all the high-quality test data 

experiments), we calculated expression for all promoters for which any reads were seen, but used only those 

https://www.qiagen.com/ca/resources/resourcedetail?id=5b59b6b3-f11d-4215-b3f7-995a95875fc0&lang=en
https://www.qiagen.com/ca/resources/resourcedetail?id=5b59b6b3-f11d-4215-b3f7-995a95875fc0&lang=en


   
 

  

for which we saw at least 100 reads for the analyses described to reduce the amount of measurement error 

present in the data. For high-complexity random libraries, all promoters were used. 

Biochemical models 

The biochemical models were created and used as described previously (de Boer et al., 2020). Code is 

available on GitHub (https://github.com/de-Boer-Lab/CRM2.0). Briefly, the models are trained using the 

“makeThermodynamicEnhancosomeModel.py” program within the https://github.com/de-Boer-

Lab/CRM2.0/blob/master/usefulScripts/makeProgressiveBiochemicalModels.bat script (using the “110 -

eb” parameters which describe the sequence length (110) and the expected binding TF model (-eb)). 

Training happens in 5 stages, with each subsequent stage restoring the parameters learned in the previous 

step before continuing training, and optimizing the noted new parameters as well as all others that were 

previously learned: (1) potentiation and activity parameters are learned, after having initialized the motifs 

to known motifs for each TF, and TF concentrations initialized to the min Kd possible with each motif 

(corresponding to 50% occupancy of a perfect binding site); (2) concentration parameters are optimized; 

(3) motif models are optimized; (4) TF binding/activity limits are introduced and optimized; and (5) 

position-specific activities are introduced and optimized.  

Each training round is performed with a full epoch of the training data (5 epochs total). Inference is 

performed using the “predictThermodynamicEnhancosomeModel.py” program. In order to get regulatory 

strength for a TF, the “-dotf” parameter was used, and inference run again. This parameter sets the 

concentration parameter of the indicated TF to 0, and then predicts expression. An example for how to use 

these parameters and programs to calculate regulatory complexity is included here: https://github.com/de-

Boer-Lab/CRM2.0/tree/master/usefulScripts. For all analyses, the biochemical models using position-

specific activities were used with the exception of the biochemical model-derived ECC, where the non-

positional model was used, because the position-specific activity parameters we had previously found are 

partly dependent on the surrounding sequence context (de Boer et al., 2020). The decrease in % error (100% 

x (1-r2)), that is, the fraction of variance unexplained relative to the biochemical model is around ~45% 

((0.962 - 0.9262) / (1- 0.9262) (positional biochemical model) for the Native test data. The biochemical 

models were used in sections where we required model interpretability (Fig. 2d), but the deep learning 

models were used elsewhere, since the biochemical models are slower than the deep learning models to run 

inference on and have lower predictive performance on the test data. 

https://github.com/de-Boer-Lab/CRM2.0
https://github.com/de-Boer-Lab/CRM2.0/blob/master/usefulScripts/makeProgressiveBiochemicalModels.bat
https://github.com/de-Boer-Lab/CRM2.0/blob/master/usefulScripts/makeProgressiveBiochemicalModels.bat
https://github.com/de-Boer-Lab/CRM2.0/tree/master/usefulScripts
https://github.com/de-Boer-Lab/CRM2.0/tree/master/usefulScripts


   
 

  

ECC calculation details and considerations 

The ECC depends on both simulated and natural variation in promoter sequences. The natural variation in 

promoters is not independently sampled, since promoters from closely related strains often have identical 

sequences. Consequently, even when there are 1,011 orthologous promoters for each gene in the 1,011 

whole yeast genomes dataset, there will typically be many fewer unique promoter sequences. Meanwhile, 

each sequence in the simulated variation is sampled independently (to increase robustness of the estimation 

of the null expectation), so, here, there are often 1,011 unique promoter sequences. The simulated variation 

was generated by placing random mutations within the gene’s promoter consensus (the most abundant base 

at each position in the orthologous set), while preserving the Hamming distance distribution observed in 

the natural sequences (Methods). Despite these sets each having the same Hamming distance distribution 

relative to the consensus, the standard deviation (SD) calculated from N independently sampled sequences 

(as in the simulation) is biased towards being greater than that for N dependently sampled sequences (as in 

evolution), resulting in the raw ECC values being biased in favor of “conservation” as a result of a statistical 

bias rather than due to selection.  

 

To demonstrate that this bias is not evolutionary in nature we calculated a “mock” ECC where both the 

numerator and denominator represent simulated variation. In the mock ECC, the sequences in the numerator 

are sampled independently and match the Hamming distance distribution of the natural variation (as in the 

standard ECC), but the denominator (normally the natural variation) is sampled in a way that matches both 

the Hamming distance distribution and the number of unique sequences at each Hamming distance (relative 

to the natural variation). Despite both sets of sequences being randomly sampled and having matched 

Hamming distance distributions, the mock ECC is slightly positively biased (Supplementary Fig. 2a), 

highlighting the need for a correction factor. Consequently, we used the median of these mock ECCs 

(log2(
𝜎𝐶𝑖
𝜎𝐶′𝑖

)) as the correction factor. 

 

While it is theoretically better to have gene-specific correction factors, these are much more 

computationally intensive to calculate and provide little benefit in practice. To generate gene-specific 

correction factors, we need to make many instances of simulated variation for each gene, estimate the gene-

specific bias, and use it to correct the observed ECC. Doing this with 1,111 simulations for each gene 

showed that there was little difference in the resulting ECC values, compared to a global correction factor 

(Supplementary Fig. 2b). Given the computational intensity of this approach (which, after optimization, 

still takes several days to run) and low practical utility, we favored the approach with a global correction 

factor. We do provide the gene-specific corrected ECCs in Supplementary Table 1. 



   
 

  

 

The substitution rate in the genome is not uniform, but we use a uniform substitution rate when calculating 

the ECC. To test for the impact of this choice, we re-calculated the ECC using the substitution rates 

observed in the 1,011 yeast genomes promoters and found that the ECCs were largely concordant 

(Supplementary Fig. 2c). Since the mutations we observe in promoters are themselves biased (having 

survived selection), both approaches yield similar ECC values, and it is much easier to use a uniform base 

substitution rate, we use the uniform substitution rate ECC throughout the study.   

 

Finally, we note that our approach for computing the ECC assumes that the relative effects of mutations 

within a sequence are similar regardless of the surrounding sequence context. 

Comparison of ECC to RNA-seq expression 

We examined the robustness of our finding that ECC distributions differ significantly between genes with 

conserved and divergent expression (by RNA-seq) to the threshold we chose to define expression 

conservation. To this end, we performed the Wilcoxon rank sum test analysis across a range of thresholds 

for each dataset. Both the Saccharomyces and Ascomycota results were significant (P<0.05) at all 

thresholds, and much more significant (p<10-5) at a threshold of 10% and above (Supplementary Fig. 3a-

c).  

 

For mammals, we used the threshold of 25% applied in the original publication (Chen et al., 2019). In 

addition, we performed the Wilcoxon rank sum test analysis across a range of thresholds and found that the 

results were similarly significant for the full range of thresholds bar one (5%, the lowest threshold; 

Supplementary Fig. 3d). The null hypothesis could not be rejected at the 5% threshold, given the smaller 

number of yeast gene one-to-one orthologs in mammals in both the expression conservation classes.  

 

In principle, the ECC can be calculated across orthologous regulatory sequences from many different 

species (as opposed to individuals within a species, as we did here), but we advise caution if doing so. The 

ECC assumes that the function relating sequence to gene expression is the same across the orthologous 

sequences being compared. Since regulatory sequences evolve much faster than the regulators 

themselves(Weirauch and Hughes, 2010), this assumption is likely a reasonable approximation within a 

species, but as evolutionary distances increase, regulators will diverge, gradually eroding this assumption. 

An alternative is to use gene orthology to infer the extent of expression conservation in one species using 



   
 

  

ECCs calculated in another species (Extended Data Fig. 4b). However, such relations would extend only 

to well-mapped orthologs.  

 

Benchmarking of sequence-to-expression models 

We examined different neural network architectures for their ability to predict expression when trained on 

our data. We compared our transformer model to three model architectures from existing literature 

(Agarwal et al., 2020) on gene expression prediction models: DeepAtt (Li et al., 2020), DeepSEA 

(Zhou and Troyanskaya, 2015), and DanQ (Quang and Xie, 2016). (We focus here on comparison 

to the transformer model, as the convolutional model was not used for some of the compared tasks, 

such as calculation of the ECC. However, equivalent comparisons can be made with the convolutional 

using the code shared) Although these models differ from our own and from each other, we adopted each 

of the model architectures for our application to the best of our ability using the source code 

(https://github.com/jiawei6636/Bioinfor-DeepATT) from each original publication (the adopted model 

architecture implementation can be found on our GitHub repo at:  

https://github.com/1edv/evolution/tree/master/manuscript_code/model/benchmarking_models) for the 

purpose of this benchmarking analysis. The precise details of the benchmarking architectures can be found 

in the code, and are described below. Note, that the input and output layers (which are the same for each 

model) are omitted from the lists below. 

 

1) DeepATT :  

- Convolution (filters=256, kernel_size=30) 

- MaxPool (pool_size = 3, strides = 3) 

- Dropout (0.2 probability) 

- BiDirectional LSTM (16 units) 

- MultiHeadAttention 

- Dropout (0.2 probability) 

- Dense (16 units) 

- Dense (16 units) 

 

2) DeepSEA :  

- Convolution (filters=320, kernel_size=8) 

- MaxPool (pool_size = 3, strides = 3) 

https://github.com/jiawei6636/Bioinfor-DeepATT
https://github.com/1edv/evolution/tree/master/manuscript_code/model/benchmarking_models


   
 

  

- Dropout (0.2 probability) 

- Convolution ( filters=480, kernel_size=8) 

- MaxPool (pool_size = 3, strides = 3) 

- Dropout (0.5 probability ) 

- Dense (64 units) 

- Dense (64 units) 

 

3) DanQ :  

- Convolution (filters=320, kernel_size=26) 

- MaxPool (pool_size = 3, strides = 3) 

- Dropout (0.2 probability) 

- BiDirectional LSTM (320 units) 

- Dropout (0.5 probability) 

- Dense (64 units) 

- Dense (64 units) 

 

Next, we trained each of these adapted models using the same training data (in complex media) as the 

original convolutional and transformer model, and tested each of the model’s predictive power on a set of 

high-quality native DNA sequences measured in our system. We found that our transformer model 

outperformed the other three architectures on these data (Supplementary Fig. 4a), as expected given that 

these other approaches were designed for other purposes. 

 

We also used each of these models to calculate the ECC, finding that the resulting ECC values are highly 

correlated to the ECCs predicted by the transformer model (Supplementary Fig. 4b-d). This shows that 

our framework leads to equivalent biological conclusions when used with model architectures that have 

overall comparable predictive performance. 

 

To rule out the possibility that the transformer model’s increased performance results from learning of 

technical biases, we compared the transformer model’s ECC to an ECC calculated using the interpretable 

biochemical model (de Boer et al., 2020), also trained using GPRA data, which, with a single convolutional 

layer and many fewer parameters, is presumably less able to capture technical biases. Here too, we found 

that the ECCs are highly similar between the two models (Supplementary Fig. 5g). Finally, we found that 

the ECC values computed using the transformer model are better at predicting expression conservation as 

measured by RNA-seq across the range of possible thresholds considered (Supplementary Fig. 5h). 



   
 

  

 

Ablation analysis of the sequence-to-expression transformer model 

The transformer model was motivated by several intuitions aimed to help it leverage known aspects of cis-

regulation(Weirauch et al., 2013; Brodsky et al., 2020), but which may or may not be explicitly captured. 

The first convolutional block with three layers, was motivated by the idea to identify sites that are important 

for computing the expression target, and could be analogous to a TF scanning the length of the sequence 

for binding sites. The first layer was aimed towards an abstract representation of first order TF-sequence 

interactions by operating with convolutional kernels on the sequence in the forward and reverse strands 

separately to generate strand-specific features (each individual kernel in the first layer can be thought of as 

possibly learning the motif of one TF, or a combined representation of the motifs)(Alipanahi et al., 2015; 

Zhou and Troyanskaya, 2015; Shrikumar, Greenside and Kundaje, 2017; Quang and Xie, 2019) and we 

designed the width of the first convolutional layer (30 bp) to be sufficient to capture the largest TF motifs 

known in yeast(de Boer and Hughes, 2012); the second was aimed towards capturing interactions between 

strands, by using a 2D convolution (implemented using the tf.keras.layers.Conv2D layer, and convolving 

along the sequence dimension) on the combined features from the individual strands; and the third layer 

was aimed towards capturing higher order interactions, such as TF-TF cooperativity. We zero-pad the 

convolution blocks to allow the convolutional filters to detect motif instances near the edges of the input 

sequence. The second block was motivated by an analogy to combining the biochemical activities of 

multiple bound TFs and accounting for their positional activities. Its transformer-encoder with a multi-head 

self-attention module(Vaswani et al., 2017) could capture relations between features extracted by the 

convolutional block at different positions in the sequence, by attending to them simultaneously using a 

scaled dot product attention function. This could be analogous to the model learning ‘where to look’ within 

the sequence. Then, a bidirectional Long Short-Term Memory (LSTM) layer in this block was motivated 

by the idea of capturing long range interactions between the sequence regions. Finally, a multi-layer 

perceptron block was motivated by the idea of capturing cellular operations that occur after TFs are 

recruited to the promoter sequence, by pooling all the features extracted from the sequence through the 

previous layers and learning a scaling function that transforms these abstract feature representations of 

biomolecular interactions into an expression estimate. While these were our motivations in architecting the 

model, because our focus was predictive ability and not interpretability of regulatory mechanisms, we do 

not know if the model in fact captured these relations in this way. 

In order to determine whether any of the transformer model’s layers were superfluous, we conducted an 

ablation study. For each ablation experiment, we initialized a new model from scratch after removing the 



   
 

  

ablated layer individually from the original transformer model architecture, while retaining every other 

component of the original transformer model. Then, we trained this new model using the same training data 

(in complex media) as the original transformer model, and tested the resulting models on the high-quality 

random DNA test data. We found that each layer has non-trivial individual contributions to our predictions, 

with the full model performing better than any of the ablated models (Supplementary Fig. 6).  

 
 

Expression distribution at the robustness cleft and the malleable archetype 

While our observation that sequences with intermediate expression levels are move likely to be near the 

malleable archetype (Amalleable) and depleted near the robustness cleft (Fig. 4d), could in theory result from 

a saturation artifact of our reporter construct, our ratiometric sorting strategy allowed us to detect saturation 

and none was observed. Instead, the robustness cleft could reflect sequences at the stable extremes of one 

or more activation steps of gene expression (e.g. near 100% or 0% nucleosome occupied), while the 

malleable archetype could reflect instability around the inflection points.   

 

 

 

 

 

 

 



   
 

  

Supplementary Figures 

 
Supplementary Fig. 1 | GPRA experiment overview. Yeast are transformed with a library of random 80 bp sequences driving 

YFP expression, the cells recovered and selected for successful transformants, and grown in the target media in log phase. Yeast 

are then sorted by the ratio of YFP to RFP into 18 different uniform expression bins. Yeast are then recovered in selection media 

(SD-Ura), plasmids isolated, sequencing libraries created, and the promoters in each expression bin sequenced with high-

throughput sequencing. 



   
 

  

   
Supplementary Fig. 2 | a, Comparison of raw ECC distributions for natural variation (red) and matched simulated variation 

(green, “mock ECC”). Both are biased towards having an ECC above 0. b, Comparison of ECCs with global correction (x axis) 

and gene-specific correction factors (y axis). c, ECC with uniform substitutions (y axis) is highly correlated to the ECC computed 

using the observed substitution rate (x axis). d, e, Fitness responsivity is not associated with simple sequence diversity, but is 

associated with ECC. Fitness responsivity (y axes) and mean Hamming distance (d, x axis) or ECC (e, x axis) for each of 80 

genes (points). f, g, Genes whose expression changes have stronger effects on organismal fitness have mutationally robust 

regulatory sequences. Mutational robustness (x axes) and fitness responsivity (f, y axis) or ECC (g; y axis) for each of 80 genes 

(points) for which the expression-to-fitness curves were quantified (Keren et al., 2016). (b-g) Spearman’s 𝜌 and associated two-

tailed p-values are shown. The light blue error bands represent the respective 95% confidence intervals. h, Mutational effects 



   
 

  

follow a power law distribution. Probability density (y axis) and expression effect of mutation (magnitude) (x axis) plotted on 

log-log axes (solid line) alongside the goodness of fit (dash line) of the power law distribution.  

  



   
 

  

 

 
Supplementary Fig. 3 | a,b, Expression variance (by RNA-seq) for Saccharomyces (a) and Ascomycota (b). Green boxes: genes 

called as divergent; orange: genes called as conserved by the thresholds in this study (as in Extended Data Fig. 4b). c, 

Sensitivity of ECC enrichment significance (Wilcoxon rank sum test -log10(P-values); y axis) to “conserved” vs. ”divergent” 

thresholds (x axis) for Ascomycota (light gray) and Saccharomyces (dark gray). P=0.05: dashed line. d, Sensitivity of ECC 



   
 

  

enrichment significance (Wilcoxon rank sum test, “Mammalian p-value”) to “conserved” vs. “divergent” thresholds (“Threshold 

(%)”) in mammals. The columns display the number of genes determined to be in each class at each threshold. 



   
 

  

 
Supplementary Fig. 4 | a, Benchmarking of performance against existing neural network architectures. Pearson correlation 

coefficient between model predictions and test data (x axis) for four model (y axis). All models were trained on the same training 

dataset, and tested on the same set of native promoter test sequences in complex media. While all approaches performed 

reasonably well, the transformer model architecture used in this paper out-performed the others on the native test sequence 

dataset. b-d, Comparison of ECC calculated with our model (y axis) and with (b) DeepAtt, (c) DeepSEA and (d) DanQ (x axis). 

In each case, the ECC predictions are highly correlated between each approach and our model. (Outliers not shown for the panel 

(c) to maintain scaling and visibility; Pearson’s r was computed using all of the data including outliers.). e-h, The convolutional 

and transformer models have highly correlated predictions. Predicted expression from the convolutional (x axis) and transformer 

(y axis) models in complex (e-f) and defined (g-h) media for random (e-g) and native (f-h) test datasets. (b-h) Pearson’s 𝑟 and 

associated two-tailed p-values are shown. 
  



   
 

  

 

                   
Supplementary Fig. 5 | Comparison of the biochemical and transformer models. Measured and predicted expression in 

complex media for (a-c) random test data as, and (d-f) native test data. (a,b,d,e) Measured (y-axes) and predicted (x-axes) 

expression, for (a,d) biochemical and (b,e) transformer models. (c,f) transformer (x-axes) and biochemical (y-axes) model 

predictions. (a-f) Pearson’s 𝑟 and associated two-tailed p-values are shown. g,h, The transformer model outperforms the 

biochemical model in differentiating expression conservation status. g, Comparison of ECCs calculated for each gene (points) for 

the transformer model (x axis) versus the biochemical model (y axis). Spearman’s 𝜌 and associated two-tailed p-values are 

shown. h, Significance (y axis) of rank sum statistics for how well ECCs calculated with each method separates conserved versus 

not conserved genes across Saccharomyces (dark brown) and Ascomycota (light brown).  
 

  



   
 

  

 

 
Supplementary Fig. 6 | Each layer individually contributes to model performance. Performance (x axis, Pearson’s r between the 

model predictions and random test data) of the transformer model variants (y axis) with each layer individually ablated, and the 

full transformer model (bottom). The full transformer model outperforms all other versions with any model component ablated. 

The two-tailed p-value corresponding to each performance metric shown is < 5*10-234. 



   
 

  

               

Supplementary Fig. 7 | Sequences took diverse paths to evolve extreme expression. a-b, The number (y axis) of mutations 

across each promoter position (x axis; -160 to -80 region) for trajectories under the SSWM regime starting with native promoter 

sequences when (a) maximizing or (b) minimizing expression in defined media using the convolutional model. Some of the 

observed bias to TSS-proximal mutations may be related to prior observations of proximal repressor activity bias(de Boer et al., 

2020). c,d, The number (y axis) of mutations of each type (x axis) for trajectories under the SSWM regime starting with native 



   
 

  

promoter sequences when (c) maximizing or (d) minimizing expression in defined media. Colors represent the mutational step 

(1-10).  
  



   
 

  

 

 
 

 

 

 
Supplementary Fig. 8 | a,b, Examples of regulatory complexity changes under stabilizing selection. TF regulatory interaction 

strengths for original (x axes) and evolved (y axes) sequences after 32 neutral (expression maintaining) mutations for each TF 

(points) for -160:-80 promoter regions for (a) YDR476C, whose regulatory complexity was high and decreased (from 0.3 to 0.25), 

and (b) AIF1, whose complexity was low (dominated by the TF Abf1p) and increased (from 0.14 to 0.21). Both have 

approximately the same predicted expression levels (13.7 and 14.3 respectively).   

  



   
 

  

 

 
Supplementary Fig. 9 | Predicted expression divergence under random genetic drift. Distribution of the change in predicted 

expression (y axis) for native yeast promoter sequences (n=5,720) at each mutational step (x axis) for trajectories simulated under 

random mutational drift using the transformer model. Silver bar: differences in expression between unrelated sequences. Expression 

decreases with increasing mutation number because the average expression of the starting set of native sequences is greater than 

for random DNA, and so including random mutations are more likely to decrease expression than increase it. Midline: median; 

boxes: interquartile range; whiskers: 5th and 95th percentiles.  

  



   
 

  

 

 

 
Supplementary Fig. 10 | Growth phenotypes of CDC36 promoter mutant strains. Maximum growth (y axis, top), duration of lag 

phase (y axis, middle) and saturation of growth (y axis, bottom) for two WT strains and two engineered strains (x axis). Bars: 

means, dots: replicate measurements. P-values: Student’s t-test; two-sided, unpaired, equal variance. n=3 replicates/strain. 



   
 

  

Supplementary Figure 11: Robustness of moderation of regulatory complexity to the degree of stabilizing selection. 
(a,d,g,j,m) Distributions of regulatory complexity (y-axes) for sets of sequences with initial high (light blue) and low (orange) 



   
 

  

regulatory complexity, and evolved sequences at different mutation steps, with native and random sequences shown for reference 
(dark and light gray respectively). Here, n is the number of trajectories included. All evolved sequences were designed to mimic 
stabilizing selection by requiring that expression changes by no more than 0.5 expression units relative to the original using the 
GPU model. Also shown are the measured (y-axes) and model predicted (x-axes) expression levels for the convolutional 
(b,e,h,k,n) and transformer (c,f,i,l,o) models. Results are shown for all complete experimental trajectories (a-c), or when 
including only trajectories where no evolved sequences had measured or transformer model-predicted expression that differed 
from the measured expression of the original sequence by more than 3 (d-f), 2 (g-i), 1.5 (j-l) or 1 (m-o) expression units. All data 
are for complex media (YPD). (a,d,g,j,m) Midline: median; boxes: interquartile range; whiskers: 5th and 95th percentile range. 
(b,c,e,f,h,i,k,l,n,o) Pearson’s 𝑟 and associated two-tailed p-values are shown. 
 
 
  



   
 

  

 
Supplementary Fig. 12 | The deep transformer neural network architecture for the sequence-to-expression model. a, 
Model architecture with three blocks (horizontal lines) and multiple layers (boxes). b-d. Expanded architecture (Methods) for the 
convolutional (b), transformer encoder (c) and multi-layer perceptron (d) blocks in our transformer model. 



   
 

  

 
Supplementary Fig. 13 | Comparison between predictions and measurements of expression at each mutational step in 
complex media. Transformer model predicted (x-axes) and measured (y-axes) expression for each mutational step (plots) for 
trajectories in Fig. 2g (n=10,322 sequences, divided amongst plots). The Pearson’s correlation coefficient (PCC) associated with 
each panel is also shown. The two-tailed p-value corresponding to the performance metric shown in each panel is < 5*10-234. 



   
 

  

 
Supplementary Fig. 14 | Comparison between predictions and measurements of expression at each mutational step in 
complex media. Convolutional model predicted (x-axes) and measured (y-axes) expression for each mutational step (plots) for 
trajectories in Fig. 2g  (n=10,322 sequences, divided amongst plots). The Pearson’s correlation coefficient (PCC) associated with 
each panel is also shown. The two-tailed p-value corresponding to the performance metric shown in each panel is < 5*10-234. 
 
 



   
 

  

 
Supplementary Fig. 15 | Comparison between predictions and measurements of expression at each mutational step in 
defined media. Transformer model predicted (x-axes) and measured (y-axes) expression for each mutational step (plots) for 
trajectories in Extended Data Fig. 1g  (n=6,304 sequences, divided amongst plots). The Pearson’s correlation coefficient (PCC) 
associated with each panel is also shown. Due to limitations in the number of sequences we could test per experiment, we only 
tested the decreasing expression defined media trajectory to 5 mutations. The two-tailed p-value corresponding to the 
performance metric shown in each panel is < 5*10-234.  



   
 

  

 
Supplementary Fig. 16 | Comparison between predictions and measurements of expression at each mutational step in 
defined media. Convolutional model predicted (x-axes) and measured (y-axes) expression for each mutational step (plots) for 
trajectories in Extended Data Fig. 1g (n=6,304 sequences, divided amongst plots). The Pearson’s correlation coefficient (PCC) 
associated with each panel is also shown. Due to limitations in the number of sequences we could test per experiment, we only 
tested the decreasing expression defined media trajectory to 5 mutations. The two-tailed p-value corresponding to the 
performance metric shown in each panel is < 5*10-234.  



   
 

  

 
Supplementary Data Fig. 17 | Characterization of sequence trajectories under strong competing selection pressures using 
the transformer model. a-d, Competing expression objectives are slow to reach saturation. a,b, Difference in predicted 
expression (y axis) at each evolutionary time step (x axis) under selection to maximize (red) or minimize (blue) the difference 
between expression in defined and complex media, starting with either native sequences (a, n=5,720 trajectories) or random 
sequences (b, n=10,000 trajectories). c-d, Distribution of predicted expression (y axis) in complex (blue) and defined (red) media 
at each evolutionary time step (x axis) for a starting set of native sequences (c, n=5,720 trajectories) and random sequences (d, 
n=10,000 trajectories). Midline: median; boxes: interquartile range; whiskers: 5th and 95th percentile range. e Motifs enriched 
within sequences evolved for competing objectives in different environments. Top five most enriched motifs, found using 
DREME(Bailey, 2011) (Methods) within sequences computationally evolved from a starting set of random sequences to either 
maximize (left) or minimize (right) the difference in expression between defined and complex media, along with DREME E-
values, the corresponding rank of the same motif when using native sequences as a starting point, the likely cognate TF and that 
TF’s known motif. 
  



   
 

  

 
Supplementary Fig. 18 | Sequences took diverse paths to evolve extreme expression in simulations with the transformer 

model. a-b, The number (y axis) of mutations across each promoter position (x axis; -160 to -80 region) for trajectories under the 

SSWM regime starting with native promoter sequences when (a) maximizing or (b) minimizing expression in defined media using 

the transformer model. c,d, The number (y axis) of mutations of each type (x axis) for trajectories under the SSWM regime starting 

with native promoter sequences when (c) maximizing or (d) minimizing expression in defined media. Colors represent the 

mutational step (1-10). 

 



   
 

  

         
Supplementary Fig. 19 | The transformer model captures expression plateau better than the convolutional model when 

simulating trajectories under SSWM for 32 mutational steps. Distribution of predicted expression levels (y axis) in complex 

media at each mutational step (x axis) for sequence trajectories under SSWM favoring high (red) or low (blue) expression, 

starting with native promoter sequences using the convolutional (a, n=5,720 trajectories) or transformer (b, n=5,720 trajectories) 

models. The transformer model predicts an expression level  plateau (like the measured expression in Fig. 2g), while the 

convolutional model predictions do not plateau at higher mutational distances. Midline: median; boxes: interquartile range; 

whiskers: 5th and 95th percentile range. 



   
 

  

 

 
Supplementary Fig. 20 | Summary statistic scatterplot for trajectories under SSWM. Mean measured expression (y axis) and 

mean predicted expression (x axis) at each step in the mutational trajectories for native sequences under SSWM for the 

convolutional (a,b) and transformer (c,d) model in the complex (b,d) and defined (a,c) media, as in Supplementary Fig. 19. The 

Pearson’s correlation coefficient (PCC) and the corresponding two-tailed p-value are shown. 

  



   
 

  

 
Supplementary Fig. 21 | Sequence differences between training and test data. The distribution of the Hamming distance 

between each sequence in the (a) random or (b) native test sets and the closest sequence in in the random training set.  

  



   
 

  

Supplementary Tables 

Supplementary Tables 

Supplementary Table 1 | The Expression Conservation Coefficient (ECC), mutational 

robustness, evolvability vector archetypal coordinates, predicted expression, ECC using gene-

specific correction factors, and ECC non-neutrality p-values corresponding to all native promoter 

sequences.  

 

Supplementary Table 2 | The GO terms enriched by the ECC ranking. One-sided p-values were 

computed using minimum hypergeometric statistics, taking into account multiple testing as 

previously described(Eden et al., 2009). 

 

Supplementary Tables 1 and 2 are provided as an Excel file.  



   
 

  

Supplementary Table 3 | Primers used in this study. The list of single stranded 

oligonucleotides used. This table can be found in the Supplementary Information document. 

Name Sequence (5’-3’) Orientation Description Reference 

pCDC36_DBVPG6765_

WT_fw ATCCATACACAAGACTCATAGAA Fw WE gRNA 

This study 

pCDC36_DBVPG6765_

WT_rv AACTTCTATGAGTCTTGTGTATG Rv WE gRNA 

This study 

D6765_to_Y12_ssODN 

TTCCATCTCTATATAACAAAGTAT

TTCTTTATTTTCTAATAGTTCCTTT

CTACGAGTCTTGTGTATGTTTATA

AAGAGTGAGCTCTTTTGTTATGAA

GT Duplex 

ssODN SA 

allele 

This study 

pCDC36_seq_F TCACACGTAGACGACTTGCCA Fw Sequencing This study 

pCDC36_seq_R2 CCTTGTAGTTTTTGCATATCTAGT Rv Sequencing This study 

Seq_3_Fw ACTTGCCACATCCTGGTGTT Fw Sequencing This study 

Seq_3_Rv ATGTTTCTGCCCACGGTGAT Rv Sequencing This study 

CDC36_Fw CATGACCTTAGGAGCGGACT Fw qPCR This study 

CDC36_Rv TCCACTTCGCTTCTGGATGT Rv qPCR This study 

ACT1_Fw TTGGCCGGTAGAGATTTGAC Fw qPCR Teste et al. 

ACT1_Rv CCCAAAACAGAAGGATGGAA Rv qPCR Teste et al. 



   
 

  

RPN2_Fw 

GCGGATACAGGCACATTGGATAC

C Fw qPCR 

Teste et al. 

RPN2_Rv 

TGTTGCTACCTTCTCTACCTCCTT

ACC Rv qPCR 

Teste et al. 

pT-pA_GibsRI GAACTGCATTTTTTTCACATCNNN

NNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNGGTTACGGCTGT

TTCTTAA 

Fw Random 

promoter 

oligo for use 

in pTpA 

promoter 

context 

de Boer et 

al 

R-pT_GibsDS TTAAGAAACAGCCGTAACC Rv For double-

stranding 

pT-

pA_GibsRI 

de Boer et 

al 

Nextera_i5LN5_GpT TCGTCGGCAGCGTCAGATGTGTA

TAAGAGACAGNNNNNTGCATTTT

TTTCACATC 

Fw Nextera 

adaptor 

addition, 

with 5 

random 

bases to help 

clustering 

de Boer et 

al 

Nextera_i7R_GpA GTCTCGTGGGCTCGGAGATGTGT

ATAAGAGACAGAACAGCCGTAAC

C 

Rv Nextera 

adaptor 

addition 

de Boer et 

al 

 

  



   
 

  

Supplementary Table 4 | Strains. The list of yeast strains used.  

Strain Genotype Reference 

Y8205 MATalpha, can1delta ::STE2pr-Sp_his5 

lyp1delta ::STE3pr-LEU2 his3delta1 

leu2delta0 ura3delta0 

Charles Boone Lab – 

strain verified by 

auxotrophy 

S288C::ura3 MATα SUC2 gal2 mal2 mel flo1 flo8-1 

hap1 ho bio1 bio6 ura3delta0 

de Boer et al. 2020 – 

strain verified by PCR of 

URA3 

DBVPG6765 

(WE) 

MATalpha, ho::NatMX, ura3::KanMX Cubillos, Louis & Liti 

(DOI: 10.1111/j.1567-

1364.2009.00583.x) 

Y12 (SA) MATalpha, ho::NatMX, ura3::KanMX Cubillos, Louis & Liti 

WE C7 DBVPG6765 derivate with SA Upc2 

binding site 

This study – pCDC36 

genotype verified by 

Sanger sequencing 

WE C23 DBVPG6765 derivate with SA Upc2 

binding site 

This study  – pCDC36 

genotype verified by 

Sanger sequencing 
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ATLAS (A Tool for Learning from Atlas-scale Single-cell measurements) 

 
 
 
 

This chapter describes ‘A Tool for Learning from Atlas-scale Single-cell 

measurements’(ATLAS).  

 

 

An early version of ATLAS appeared in: 

Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nature 

Medicine 27, 546–559 (Muus, C. et al. 2021). Contribution: Co-first author. 

 

 

Spatial mapping of cell types using ATLAS, was first presented in: 

Reference-based cell type matching of spatial transcriptomics data. bioRxiv 2022. (Zhang et al). 

Contribution: Co-author. 

 

 

The manuscript that follows in this chapter, describes how ATLAS can be used to predict and 

prioritize drug targets from single cell atlases. Contribution: First author. 
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Summary

The ongoing COVID-19 pandemic caused by the SARS-CoV-2 virus has sparked
an urgent need for better understanding of its pathogenesis and identification of
new drug targets to stem both viral infection and tissue-, organ- and body-level
responses. Viral infection and host response begin at the single-cell level: the virus
infects only specific cell types, while additional cell types respond to the intra-
cellular signals triggered by infection. Integrative analyses of single-cell atlases
can help identify both the specific cells involved and their therapeutically targetable
programs. However, the complex and non-linear variability between measurements
made across domains such as individuals, conditions, technological platforms and
laboratories makes inference from these atlases challenging. Here, we introduce a
novel framework for inference from atlas-scale scRNA-seq datasets. First, we learn
biologically informative, domain-invariant feature representations for scRNAseq
expression data by aligning domain distributions in a latent space through moment
matching using a regularized autoencoder, correcting for undesirable variability
across measurement domains. Then, we use these domain-invariant representations
to identify gene programs with non-linear and combinatorial effects on phenotype
using feature importance measures. We apply our framework to single cell atlases
from autopsies and bronchoalveolar lavage samples from COVID-19 patients along
with atlases from healthy individuals in the Human Cell Atlas to infer expression
programs in SARS-CoV-2 target cells. We then predict and prioritize putative
drug targets validated from independently published, drug repurposing and protein-
protein interaction studies. This framework extends to both discrete (e.g. diseased
vs healthy) and continuous (e.g. copy number variant scores) labels for scRNA-seq
datasets and has broad applicability across a range of human diseases.

1 Contributions

We introduce a novel framework for predicting and prioritizing putative human disease drug targets
from single-cell atlases that we call ATLAS (A Tool for Learning from Atlas-scale Single-cell
datasets), with two primary contributions :



1. ATLASa : We propose a method for solving the scRNA-seq data-integration problem by
using a higher order moment-matching regularizer with an AE to learn domain-invariant
feature representations for scRNA-seq data.

• We validate our approach on synthetic and real datasets and benchmark our performance
against existing methods to demonstrate the quality of our learned representations.

• We use these representations to identify and annotate cell types in a newly generated
single-cell atlas from COVID-19 lung autopsies and a recently published lung atlas
from healthy individuals [1].

2. ATLASb : We describe a simple approach for inferring gene expression programs from
single-cell atlases using feature importance methods on models trained on our domain-
invariant features that accounts for non-linear and combinatorial interactions between genes
and their effects on phenotype.

• We apply this approach to a recently published dataset of bronchoalveolar lavage
fluid samples from COVID-19 patients [2] to infer cell-type specific gene expression
programs

• We identify drug targets, including ones that we were able to validate using independent
experimental studies of SARS-CoV-2 protein-protein interaction (PPI) [3] and drug-
repurposing [4]. We also demonstrate how to use our approach to prioritize putative
drug target lists.

2 Approach

Our proposed method for learning domain-invariant features, ATLASa, is outlined in Figure 1a. We
formulate this problem as a multi-target domain adaptation problem. The model architecture is that
of an autoencoder comprised of an encoder f and a decoder g that are parametrized as a neural
network with parameters ✓. The autoencoder has m streams with shared parameters as shown and
each steam corresponds to an experimental domain.

Input : The model expects gene expression vectors for cells as the input. This input is supplied to the
arm corresponding to the domain the cell is sampled from.
Output : The model outputs two domain invariant representations for each input x. The first output
is f✓(x), the latent feature representation learned by the encoder and, the second output is g✓(f✓(x)),
a domain-invariant reconstruction of the input by the AE. We refer to this reconstruction in (ii) as the
’corrected’ gene expression vector from here on out.

We minimize the pairwise domain discrepancy between an arbitrarily chosen reference domain and
the rest by adapting the Central Moment Discrepancy (CMD) [5, 6] regularizer for matching the
higher order central moments using order-wise moment differences for the latent feature space learned
by f . The CMD regularizer is appropriate for this atlas-scale scRNA-seq data-integration problem
because of its scalablity (CMD computation is linear in the number of samples), minimal parameter
sensitivity[5] and its ability to match non-Normal distributions.

2.1 Problem Formulation

Let D = {Dj}mj=1 denote the set of scRNA-seq measurement domains. Dj = {xj
i}ni=1, where each

xj
i refers to a single-cell gene expression vector measured in domain Dj . We first arbitrarily choose a

reference domain Dr 2 D. Then, for training, we sample mini-batches of size nb from each domain
Xj = { xj

i 2 Dj | |Xj | = nb }. The objective function L is a linear combination of the reference
domain reconstruction loss and the pairwise CMD domain discrepancy losses for each non-reference
domain w.r.t the reference domain.

L = Le
Dr

+ �d

X

Dj2D\Dr

Lc
Dj

(1)

Le
Dr

(✓) =
1

nb

X

x2Xr

|| x� g✓(f✓(x)) ||2 (2)

2



Lc
Dj

(✓) =
1

|b� a| ||E(f✓(Xj))�E(f✓(Xr))||2+
KX

k=2

1

|b� a|k ||Ck(f✓(Xj))�Ck(f✓(Xr))||2 (3)

where || · || denotes the Euclidean norm, E(X) = 1
|X|

P
x2X x is the empirical expectation vector,

the parameter K is the bound on the order of the central moment terms, Ck(X) = E((x�E(X))k is
the vector of all kth order sample central moments, Le

Dr
denotes the reference domain reconstructions

loss and Lc
Dj

(✓) denotes the domain discrepancy loss term for every other domain.

The objective function is minimized w.r.t. ✓ using gradient based optimization methods.

2.2 Datasets and Implementation Details

We use a letter code to refer to each dataset used in this manuscript. Complete details about accession
(in the case of experimentally measured datasets) and simulations (in the case of synthetic datasets)
will be made available with the Supplementary Materials. We used the following single-cell atlas
datasets :

• COVIDA : A single-cell atlas of lung cells isolated from autopsy samples [citation TBD].

• COVIDB : A single-cell atlas of bronchoalveolar immune cells in COVID-19 patients [2].

• LUNG : A single-cell atlas of lung cells isolated from healthy individuals [1].

• SPLATTER2, SPLATTER4 and SPLATTER6 : Synthetic single-cell atlases that we gener-
ated for evaluation using a widely used scRNA-seq simulation library[7].

• SCIBSIM : A synthetic single-cell atlas used for benchmarking integration methods in [8].

• NASAL : A single-cell atlas generated from human surgical chronic rhinosinusitis tissue[9]

In addition to these single-cell atlases, we also used also used a dataset of SARS-CoV-2 protein-
protein interactions (PPI) [3] and a drug-repurposing (REP) [4] study along with DRUGBANK [10],
a comprehensive database of FDA approved and experimental drugs.

Details about the implementation, hyper-parameter considerations and dependencies can be found in
the Supplementary Methods.
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Figure 1: ATLASa learns domain-invariant, biologically meaningful representations of single-
cell data. (a) A schematic outline of the ATLASa scRNA-seq data-integration method. Results of
ATLASa applied to three simulated datasets (b, c, d) shown as 2-D UMAP visualizations. Each
dot represents a cell, colored by domain of origin (left) or cell type (right). The top panels show
the original simulated data UMAP visualizations without the ATLASa integration. The bottom
panels show the same data with ATLASa integration. ATLASa integrated data shows clear separation
of biologically relevant cell types when evaluated against the ground truth cell types used for
the simulation, while displaying domain-invariance in the face of the original domain distribution
discrepancy.
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3 Results

3.1 Performance Evaluation and Benchmarking

First, we qualitatively evaluate the performance of our scRNA-seq data-integration method ATLASa
using three synthetic single-cell atlases (SPLATTER2, SPLATTER4, SPLATTER6). Each of these
atlases were simulated to have pre-determined domain and cell type labels for each cell in the
simulation to serve as ground truth in order to assess whether ATLASa learned domain-invariant
representations f✓(x) and whether these still retained biological information. We ran ATLASa on each
of these simulated atlases to learn domain-invariant representations for each cell and visualized them
using a 2-dimensional UMAP [11] projection with and without using their learned representations
using ATLASa. Figures 1b, c, d clearly show that the representations learned by ATLASa preserve
biological information, as demonstrated by their ability to separate out biologically relevant cell-types
in an unsupervised manner.

Table 1: Summary of performance on (domain-invariance, biological information preservation)
metrics of an array of integration methods, including our ATLASa method. Entries take the form
(KBET, ILASW). Both metrics are set up such that they range from 0 to 1 and higher values reflect
better performance.

Dataset
Integration ATLASa scVI Scanorama Harmony None

NASAL (.632, .691) (.343, .616) (.390, .559) (.568, .673) (.556, .676)
SCIBSIM (.999, .597) (.916, .573) (.997, .546) (.735, .537) (.743, .551)
COVIDB (.283, .627) (.219, .557) (.379, .494) (.200, .553) (.350, .568)
SPLATTER6 (.969, .524) (.233, .555) (.140, .518) (.936, .527) (.362, .514)

AVERAGE (.721, .610) (.428, .575) (.476, .529) (.466, .569) (.646, .580)

Next, we quantitatively establish the efficacy of ATLASa, our proposed data-integration method,
through a comprehensive benchmarking analysis against an array of established data-integration
methods: single-cell Variational Inference (scVI) [?], Scanorama [12], and Harmony [13] (we refer
the reader to the Supplement for further description of these methods and a comprehensive report of
the benchmarking analysis). Since there may exist a trade-off between learning domain-invariant
representations and preserving biologically meaningful information, our benchmarking analysis
used two complementary metrics: (i) the k-Nearest-Neighbors Batch Effect Test (KBET) [14], a
specially designed scRNA-seq data-integration assessment metric for evaluating the representations
learned by the methods on their domain-invariance , and (ii) the Isolated Label Average Silhouette
Width (ILASW) score [8], a metric designed for evaluating the preservation of biologically relevant
information. We set up both metrics such that they lie in the range in from 0 to 1 and such that higher
values on each are indicative of better performance and we refer the reader to the Supplementary
Material for a complete description of these details.

Table 2: Summary of runtimes (in seconds) for
ATLASa’s data integration method vs. scVI.

Dataset
Integration ATLASa scVI

NASAL 62.443 1023.624
SCIBSIM 70.817 1105.963
COVIDB 428.046 2917.076
SPLATTER6 110.230 1808.429

AVERAGE 167.884 1713.773

We ran our analysis on four datasets: two syn-
thetic (SCIBSIM, SPLATTER6) and two biolog-
ical (NASAL, COVIDB) (see Datasets and Sup-
plementary Methods for further information).
We found that on 3 out of 4 datasets, ATLAS’s
data integration method outperformed the other
methods on the domain-invariance metric (see
Table 1). Furthermore, on 3 out of 4 datasets in-
cluding the COVIDB dataset, ATLAS’s data in-
tegration method outperformed the others on the
biological-information preservation metric. Im-
portantly, ATLAS also had the highest average
metric score on both of these complementary
tasks (see Table 1).

Next, we benchmark the runtime of our method. At the time of benchmarking, out of all the methods
considered, only scVI and ATLASa have GPU implementations. We compared their runtimes on
each of the four datasets (see Table 2). Compared to scVI, ATLASa is over ten times faster on
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average (in addition to being more effective on the domain-invariance and biological-information
preservation tasks on all and all but one datasets, respectively, as shown in Table 1). One of the
reasons for the runtime performance is the fact that CMD does not require computationally expensive
kernel computations.

However, all of these metrics computed for various benchmarking tasks are just proxies for demon-
strating potential utility of these approaches on real-life problems. Now, we turn our attention to a
very real-life problem : COVID-19.

3.2 Identification and Annotation of Cell Types in a new COVID-19 Patient Single-Cell Atlas
using Domain-Invariant representations from ATLASa

We use ATLASa to integrate two single cell atlases collected at opposite ends of the phenotype
continuum: (i) A healthy human lung single cell atlas [1] spanning 17 experimental domains and
60,872 cells and (ii) A new lung cell atlas created from autopsies of COVID-19 patients ([citation
pending]) representing 15 experimental domains and 27,519 cells. We then use the f✓(x) learned
by ATLASa to identify and annotate cell types from these tissues to better understand COVID-19
biology using unsupervised clustering [Supplementary Materials]. We annotated the atlases using our
results post-hoc using literature derived markers (Figure 2d) to define a shared taxonomy of 19 cell
classes as shown in Figure 2c. The shared taxonomy we report includes Epithelial (AT1, AT2, Basal,
Ciliated and Club cells), Stromal (Endothelial, Lymphatic, Mesenchymal) and Immune (Macrophages,
Monocytes, Mast, T and B) cells. Further, Figure 2b demonstrates the domain-invariance of the
learned representations from a diverse set of individuals displaying a broad range of phenotypes.
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Figure 2: ATLASa identifies cell types in a new COVID-19 single-cell atlas. Demonstration of
ATLASa for jointly analyzing two atlases. (a) Lung samples from (i) healthy and (ii) COVID-19
autopsy cohorts serve as input to ATLASa. Each lung sample represents an experimental domain.
2-D UMAP representations of the ATLAS integrated cells (dots) colored by domain of origin (b)
and putative cell type (c). (d) Dotplot representation of marker genes used to annotate cell types.
The size of the dot represents the proportion of cells expressing the marker gene (columns) and the
color represents the average normalized gene expression in each cell type (rows). Normalized gene
expression values are capped at 3.

3.3 Gene Expression Program Inference for COVID-19 from Healthy and Diseased Tissue
Atlases

Genes can affect phenotypes in non-linear and combinatorial ways. Understanding these gene-
expression programs (GEPs) that drive phenotypes of interest P can help elucidate the molecular
mechanisms and pathways corresponding to disease states and facilitate drug target identification.
Previous attempts at inferring GEPs for COVID19 relied heavily on distinguishing ACE2+TMPRSS2+
cells (double positives , DPs) and compared these cells to ACE2-TMPRSS2- cells (double negatives,
DNs) [15]. However these approaches were limited in their ability to identify GEPs relevant for drug
target identification because of a lack of availability of single-cell atlases from COVID-19 patients.
We use COVIDB, a recently published atlas of BALF samples from COVID-19 [2], to describe and
demonstrate a simple approach (that we call ATLASb) for GEP inference from single-cell atlases.

ATLASb takes the ‘corrected’ gene expression vectors g✓(f✓(x)) for each cell x produced by ATLASa
as input to train a simple multi-layer perceptron (MLP) model F to predict phenotype P from
g✓(f✓(x)) such that F (g✓(f✓(x))) = P . Since the dimensions of the input of F correspond to a
domain-invariant representations of gene expression vectors, we can now employ feature importance
measures like SHAP values [16] and DeepLIFT [17] to identify gene expression programs driving
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Figure 3: (a) Identifying GEPs using feature importance measures with MLPs. Gene programs
inferred from the COVIDB dataset. KEGG gene set enrichment of severe (b) Macrophage and (c)
T-cell expression programs. X-axis represents the enrichment test log p-values after adjustment for
multiple hypothesis testing. Y-axis represents the enriched gene sets.

the phenotype of interest. This simple framework can allow us to identify genes that have non-linear
and combinatorial effects on phenotypes because of the use of an MLP as the model F .

For the COVIDB dataset, we used a gradient-based approximation of SHAP values [16] with ATLASb
to identify cell type specific GEPs over three different labeling regimes as phenotypes : severity,
whether a cell is from a healthy patient or one with a severe case of COVID-19, DP, whether a cell
has non-zero ACE2 and TMPRSS2 expression levels or zero for both, and viral, whether a cell has
been infected by the virus or is simply a non-infected bystander [Supplementary Methods].

The GEPs allowed us to identify shared and cell type specific gene expression features ( Figure 3c,
d). Overall, expression programs in all immune cells were characterized by enrichment for classic
inflammatory molecules including IL6, members of the TNF family and complement component 3
(C3). The severity expression programs in macrophages were strongly enriched in cytokines and
chemokines indicative of a pro-inflammatory “cytokine storm-like” state consistent with what has
previously been reported [2]. On the other hand, the viral expression programs of macrophages
included interferon regulatory genes IRF8, IRF4 consistent with response to viral entry. Cell-
type specific severity programs in epithelial cells include genes known to mediate viral infection
(CEACAM5, CLDN4, CLDN1), and multi-functional cytokines including IL10 and CD40 signaling
previously reported in inflamed airway cells [18]. Interestingly, TMPRSS2 emerged as a highly
discriminant gene, supporting its suggested role[19] as an accessory protease in mediating viral entry.

Taken together, this strong validation of our gene expression programs corroborated by multiple
independent publications demonstrates the efficacy of our proposed ATLAS framework and its
potential for driving biological discovery.

3.4 Predicting and Prioritizing Putative Drug Targets for COVID-19

Finally, since we had all the pieces in place to do so, we sought to evaluate whether our hypothesis
that "domain-invariant feature representations of scRNA-seq data can help address the pressing need
for identification of human disease drug targets when used in tandem with modern feature importance
methods to account for the combinatorial and non-linear effects of gene-expression on phenotype"
holds true in the context of COVID-19. We identified two independent validation datasets from
a growing body of work on drug-screens and protein-protein interaction studies for COVID-19 :
a dataset of SARS-CoV-2 protein-protein interactions (PPI) [3] and another from a SARS-CoV-2
drug-repurposing (REP) [4] study. We found multiple overlapping genes between our gene expression
programs and the lists of drug targets identified in both of these independent experimental studies
shown in Figure 4a. We also show in Figure 4a that our results hold across cell types suggesting that
the putative drugs may potentially have mechanisms of action that could make them work across cell
types. Figure 4a also shows a subset of its overlapping genes with Drugbank[10], a comprehensive
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database of FDA approved and experimental drugs which may suggest novel putative targets with
known drug-target interaction that were identified from scRNA-seq data using ATLAS and may
have been missed by PPI studies potentially because of their indirect mechanism of action. Further
inspection of Figure 4a shows that besides having the known contender IL6 which serves as further
validation of our approach, the target lists also contain other putative hits including the complement
component C3, and the inflammation-induced mediator of tissue tolerance GDF15 [20]. Other
interesting drug targets include CDK6, which has not been previously reported in the context of
SARS-CoV-2 but it has been reported as an interactor for viral cyclins[21].

These results suggest that our hypothesis may hold true.

Figure 4: (a) Network plot showing a subset of the drug targets discovered by ATLAS and their
source of independent experimental validation : DRUGBANK [10] (a comprehensive list of FDA
approved and experimental drug targets) intersections shown in yellow, COVID-19 REP (a large scale
SARS-CoV-2 drug repurposing study) intersections in orange and the COVID-19 PPI (protein-protein
interactions) intersections in red. (b) Prioritizing putative drug targets identified in the COVID-19
REP publication by ranking them using their feature SHAP importance values for predicting disease
phenotypes.

For the development of effective therapeutics for COVID-19, putative drug targets must be prioritized
in concert with the cellular context and function. Cell-type specific gene expression programs from
COVID-19 data afford one window into both cellular localization and putative functional context
for such prioritization. We show how one can prioritize the drug targets identified by the REP study
(Figure 4b) by layering on the information from the COVIDB single-cell atlase using the same simple
ATLASb framework desribed above. Among the top hits from this prioritization approach were
Cathepsins CTSS, CTSB, CTSL, lysosomal genes essential for the cellular entry of coronaviruses
[22], and previously proposed as targets for SARS-CoV[23]. Recently, amantadine was identified
as an inhibitor of CTSL, and proposed [24] as a potential therapeutic for COVID-19 as well. Taken
together, these independent sources from literature suggest that our approach for prioritizing putative
COVID-19 drug targets may provide useful information for further follow-up with experimental
studies.
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1 Introduction to the Supplementary Materials

In this document, we elaborate on the details omitted from the main text of the manuscript. Addi-
tionally, we will provide further clarification on the methods and results. Source code for ATLAS
and all the analyses reported in this manuscript can be found in the files attached in the zipped folder
(with the specific references to the files below). The datasets used are made available on a Google
Bucket (with the exception of COVIDA, which is currently not publicly available). We begin by
briefly summarizing our primary results :

In the main text, we introduced ATLAS: A Tool for Learning from Atlas-scale Single-cell datasets.
ATLAS is a two part framework consisting of ATLASa and ATLASb. We used ATLASa to learn
domain-invariant representations of scRNA-seq datasets and demonstrated the method’s effectiveness
qualitatively (in the main text’s Figure 1) and quantitatively (in the main text’s Table 1 and Table
2) using real and simulated datasets. Then, we demonstrated ATLASa’s applicability to COVID-19
by using it to identify cell types from single-cell atlases constructed from autopsies of COVID-19
patients by integrating them with atlases from healthy control lung samples from [1]. Next, we
developed ATLASb, an approach for inferring gene-expression programs driving a phenotype (like
disease state) using scRNA-seq atlases. Using ATLASb in tandem with ATLASa on a recently
published COVID-19 single-cell atlas, we identified gene expression programs and drug targets, both
of which we validated using multiple independent published studies.

https://console.cloud.google.com/storage/browser/atlas_datasets/
https://console.cloud.google.com/storage/browser/atlas_datasets/


2 Definitions

In this section, we define the terms we used throughout the main text and the supplement :

� COVID-19 : Coronavirus Disease 2019
� SARS-CoV-2 : Severe Acute Respiratory Syndrome Coronavirus 2
� Gene : A sequence of DNA characters called nucleotides that codes for the synthesis of

gene products like proteins.
� Protein : A gene product that is a polymer made from amino acids that often has a defined

structure and function.
� Phenotype : A set of observable traits of an organism that is a function of an organism’s

gene expression profile and its environment.
� Single-Cell Sequencing : A set of technologies developed for making measurements from

individual cells.
� Single-cell RNA Sequencing (scRNA-seq) : A technology that quantifies the gene expres-

sion from individual cells by measuring the amount of messenger RNA produced by all the
genes in the cell.

� Drug Targets : A molecule in the body (often a protein, which is the product of the
expression of a gene) that is strongly associated with a disease phenotype and that may be
perturbed by a drug to produce a therapeutic effect.

� Gene Expression Program (GEP) : In this context, the set of genes that drive the corre-
sponding phenotype of interest.

� KEGG term : KEGG (Kyoto Encyclopedia of Genes and Genomes) [2] is a widely used
database for interpreting genomic data. KEGG terms refer to the molecular functions of
individual genes and sets of genes (e.g. : a GEP).

� FDA : The Food and Drug Administration, a United States federal executive department
responsible for the process of approving drugs.

3 Datasets

Here, we elaborate on the dataset descriptions provided in the main text. All simulations and published
experimental datasets we used are made available as .h5ad AnnData objects[3] that can be found at
https://console.cloud.google.com/storage/browser/atlas_datasets/. The name of
each available dataset in the list below may be clicked-on for a direct download link to a pre-processed
version of each dataset with the non-preprocessed, raw counts in the AnnData.layers[’counts’]
field :

• SPLATTER6, SPLATTER4, SPLATTER2 | Synthetic single-cell atlases that we generated for
evaluation using a widely used scRNA-seq simulation tool Splatter [4]. SPLATTER6 (shown in
Figure 1b in the main text), SPLATTER4 (shown in Figure 1c in the main text), and SPLATTER2
(shown in Figure 1d in the main text) consisted of 23148, 19318, and 15441 cells, respectively,
each with 9987, 9983, and 9974 genes, respectively. The datasets were simulated to have come
from six, six and eight experimental domains, respectively and to have twelve, three, and four
celltypes, respectively. The AnnData.obs.Batch field contains the domain label for each cell (in
each of these three datasets) and similarly the AnnData.obs.Group field contains the cell type
label for each cell.

• NASAL | A single-cell atlas generated from human surgical chronic rhinosinusitis tissue[5]. It
consists of 7087 cells, each with 33694 measured genes. The AnnData.obs.donor field contains
the domain label for each cell and the AnnData.obs.ann_level_4 field contains the cell type
label for each cell.

• SCIBSIM | A synthetic single-cell atlas used for benchmarking integration methods based on
simulations from [6] (their manuscript contains further details on how they simulated this dataset).

2

https://console.cloud.google.com/storage/browser/atlas_datasets/
https://storage.cloud.google.com/atlas_datasets/splatter6_baseline_uncorrected_preprocessed.h5ad
https://storage.cloud.google.com/atlas_datasets/splatter4_baseline_uncorrected_preprocessed.h5ad
https://storage.cloud.google.com/atlas_datasets/splatter2_baseline_uncorrected_preprocessed.h5ad
https://storage.cloud.google.com/atlas_datasets/nasal_baseline_uncorrected_preprocessed.h5ad
https://storage.cloud.google.com/atlas_datasets/scibsim_baseline_uncorrected_preprocessed.h5ad


It contains 20100 cells, each with 10000 genes. The AnnData.obs.Batch field contains the
domain label for each cell and the obs.Group field contains the cell type labels for each cell.

• COVIDB | A recently published single-cell atlas of bronchoalveolar immune cells in COVID-19
patients [7]. It consists of 63103 cells, each with 33538 genes. The AnnData.obs.sample_new
field contains the domain label for each cell and the AnnData.obs.celltype field denotes the
cell type (out of the ten celltypes reported in the publication) that each cell belongs to.

• Datasets used in Figure 3 : We used two single-cell atlases for Figure 3. The first (COVIDA)
is from an ongoing effort to generate atlases from lung autopsies of COVID-19 patients and the
second (LUNG) is an atlas generated from lung samples isolated from healthy indviduals.

– COVIDA - A single-cell atlas of lung cells isolated from autopsy samples [citation TBD]. It
consists of 34523 cells, each with 28560 genes. We will make a data download link available
for this dataset when the full dataset and the associated citation becomes publicly available.
We will also update this section of the supplement with a final citation (currently pending)
when it is possible to appropriately attribute everyone who generated this growing single-cell
atlas.

– LUNG - A single-cell atlas of lung cells isolated from healthy individuals [1]. It consists
of 60993 cells, each with 26485 genes. This dataset is available at https://hlca.ds.
czbiohub.org/.

4 Implementation, Preprocessing and Hyperparameters

Implementation

All code used is made available along with the Supplementary Materials in the ATLAS-master folder.
The README.md file in this folder describes how to create an environment for using ATLAS with all
the dependencies installed. A description of each file follows :

• tables_12main.ipynb : Notebook to produce corrected AnnData objects and perfor-
mance metrics for ATLASa and a suite of other data-integration methods (from Table 1 and
Table 2 of the main manuscript).

• program_analysis.ipynb : Notebook to produce cell-type specific gene programs for a
variety of feature-importance and phenotype labeling regimes used in the analysis including
Tables 1, 2 and 3 shown in this Supplement.

• tables_123456supp_figures_4supp.ipynb : Notebook to produce Tables 4, 5 and 6
in this Supplement and to find the intersections for the Venn Diagram in this Supplement’s
Figure 4.

• figures_12main_123supp.ipynb : Notebook to reproduce hyperparameter experiments,
pre vs post ATLASa-correction UMAPs, and dot-plot associated with Figures 1 and 2 in the
main text and Figures 1, 2, and 3 in this Supplement.

• figures_34main.ipynb : Notebook to produce the GEP bar-plots and drug-target network
plot from Figures 3 and 4 in the main text of the manuscript.

• correct_aux.py : Backend of the ATLASa data-integration method and associated helper
functions.

• analysis_aux.py : Backend of the ATLASb feature-importance drug-target-prediction
method and associated helper functions.

• atlas.py : Programmer friendly API for ATLAS use on other scrRNA-seq atlases and
disease labels (currently under development, to be officially released soon).

The ATLASa and ATLASb model implementations used Tensorflow [8] and Keras [9]. The training
and evaluation were carried out on a NVIDIA Tesla M60 GPU. A machine with consistent hardware
configurations was used for all the benchmarking experiments. All single-cell RNA-sequencing
datasets were converted to .h5ad AnnData objects[3] before preprocessing as described below. The
primary language of all the implementation was Python, with the exception of the simulated scRNA-
seq datasets that used R to interface with Splatter [4]. The network plot in Figure 4 was generated using
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networkx and the KEGG term enrichment was performed using the scanpy.queries.enrich

function in Scanpy [10].

Preprocessing

For use as input with ATLASa, we started with raw count matrices from each atlas dataset above
whenever thosse were available. Then, we normalized the counts such that the sum of expression
values across genes for each cell was 104. Then we log scaled the data after adding 1 to each entry in
the gene expression matrix. When raw counts weren’t available, we directly used the dataset with
the transcripts per million (TPM) units made available with the published dataset. After this step,
for all the datasets, we then normalized again to a target sum of 1, zero-centered and scaled the data
to have mean 0 and unit variance, and clipped off the scaled values to restrict them to a maximum
value of 10. We used the same preprocessing steps for all the external data-integration methods we
benchmarked our method against with the exception of the methods that required raw, un-processed
counts to be presented as input (scVI, in particular). The domain from which the largest number of
cells originated was arbitrarily chosen as the Reference Domain Dr for training the model. When
working with large-scale datasets, ATLASa can use the projection of the gene expression data along
its first hundred orthonormal principal component vectors before the first layer of the AE and then use
the corresponding inverse transform at the end of the output layer of the AE for speed and scalability.
This option was used whenever the hp_dict[’use_rep’] value was set to ’X_pca’ in the code.

For use as input to ATLASb, we directly used the corrected gene expression vectors output by
ATLASa for each cell as described in the main text. We note that the simple approach suggested
in ATLASb is independent of preprocessing. Any form of the gene expression data may be used to
train a classifier from gene expression matrices to predict phenotypes and this classifier may then
be examined using variable importance measures to identify GEPs and drug targets as described
in the main text. Here, the dimensions of the input correspond to the genes measured in the
cell. To speed up ATLASb, one can use a subset of the genes that are highly variable (defined
using the scanpy.pp.highly_variable_genes function) and/or the subset on the genes that
are upregulated in expression (defined as the genes that have a higher mean expression in one
phenotype class than another) in addition to differentially expressed genes (identified using the
scanpy.tl.rank_genes_groups function). Finally, for the COVIDB dataset, the publication
reported some ambient contamination (more details can be found in their Data exclusions section of
their original publication [7]) and so we addressed that by adapting a procedure previously used in
[11] for filtering out putative ambient RNA contaminants. This procedure gave us a list of contaminant
genes for each cell type that we subsequently excluded from all further analysis using ATLASb on
the COVIDB dataset.

Hyperparameters

The model architecture consists of an autoencoder (AE) with multiple streams, each corresponding to
a domain as described in Section 3 of the main text. The encoder consists of three fully-connected
layers with [1024, 512, 258] neurons respectively. The decoder consists of two fully connected
layers, the first of which has 512 neurons and the second one has the same dimensions as the input.
Each fully connected layer (except the last one) is followed by a Parametric ReLu Activation layer
[12] and each connection has a 0.1 probability of dropout. The reconstruction loss term on the
cells from the reference domain is computed using the mean_squared_error function. For every
other domain, the domain discrepancy term w.r.t. the reference domain is computed using the cmd
function adapted from [13]. The objective function is constructed as described in the main text and is
optimized using the Adam Optimizer [14]. The model was trained for 10 epochs with a mini-batch
size of 32. The code corresponding to this section can be found in the get_corrected_adata

function from the correct_aux.py file shared with the Supplementary Materials. The hp_dict

variable for each dataset described in the code specifies the exact hyperparameters used for each
experiment.

The hyperparameter �d, the weight of the sum of the distribution moment matching terms for each
domain, was chosen after a series of experiments on the SPLATTER datasets. We started with a low
value for �d and increased the value by an order of magnitude until it broke the model at �d = 1
(evident from the lack of separation between the ground truth cell types in the simulation for �d = 1
in Figures 1, 2 and 3 in this supplement). The range considered was [1e-4,1e-3,1e-2,1e-1,1
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Figure 1: A range of �d values for SPLATTER6 with ATLASa
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Figure 2: A range of �d values for SPLATTER4 with ATLASa

and all values of �d < 1 performed very well on the domain-invariant representation learning task as
shown in this Supplement’s Figure 1, Figure 2 and Figure 3 by the separation of cell types across
domains. The first row in each of these figures shows the cells colored by their experimental domain
of origin and the second row shows cells colored by their biological cell type pre-defined in the
simulation. Each column corresponds to a unique value of �d. We picked the middle of this range
�d = 1e-2 for all the subsequently analyzed COVID-19 relevant datasets whose results are presented
in the manuscript. The uncorrected version of the data can be found in the top row of the main text
Figures 1b, c and d. The bottom row of the main text Figures 1b, c and d were generated from scratch
after the hyperparameter exploration using �d = 1e-2.

Finally, the hyperparameter K , the bound on the order of the moment central moment terms, is
chosen as K = 3 based on the hyperparameter sensitivity experiments in [13] showing that their
results weren’t sensitive to the choice of K for K � 3. The value of K = 3 remained unchanged for
all the results shown throughout.
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Figure 3: A range of �d values for SPLATTER2 with ATLASa

5 Performance Evaluation and Benchmarking

In this section, we elaborate on the benchmarking procedure for quantitatively establishing the
efficacy of our ATLASa method for learning domain-invariant representations. First, we provide a
summary of the external published data-integration methods that we compared our method against
(all hyper-parameters for external published data-integration methods were influenced by a recent
benchmarking paper [15]) :

• single-cell Variational Inference (scVI) [16]: a correction method that employs a variational
autoencoder (VAE) [17] with a Bayesian hierarchical model to embed a gene expression
vector, represented by a negative binomial distribution conditioned on batch-labels and
measurement-specific variables, to a lower dimensional latent space. scVI was shown
to be particularly effective on non-synthetic datasets with intricate effects from domain-
misalignment [15]. scVI requires raw-counts, free of any pre-processing, as inputs, which
we ensured to be accessible by storing such counts with every dataset. We used scVI Version
0.5.0. Regarding hyper-parameter choices, we trained a negative-binomial based VAE, with
two hidden layers in the encoder and decoder, with dimensions 128 and 30, with learning rate
.001, for a number of epochs max(400, 8000000÷ number-of-cells), on a single NVIDIA
Tesla M60 GPU. Their corrected embedding existed in a 30-dimensional latent space.

• Scanorama: Scanorama [18] is a panorama-sketching inspired integration technique that
treats experimental data from different domains as different, smaller "snapshots" of a larger
atlas-panorama. It takes these snapshots, aligns different cell types from all different pairs
of samples, and "sketches" these snapshots together into a single embeded scRNA-seq
"panorama" hyperplane. Scanorama was too shown to be, like scVI, particularly effective
on non-synthetic datasets with intricate effects from domain-misalignment [15]. We utilized
Version 1.4 of Scanorama with default hyper-parameters.

• Harmony: Harmony [19] is an iterative correction method that takes the principal compo-
nents of each of the sampled atlases and produces a corrected embedding. Until convergence,
Harmony first creates cell clusters of maximum batch-label diversity and then fits an appro-
priate linear mixture model according to different batches. Harmony was found perform
better on synthetic than real biological atlases by [15]. We utilized Version 1.0 of Harmony
with default hyper-parameters.

In comparing against these, ATLASa was trained with hyperparameters as defined by the hp_dict
dictionary in the tables_12main.ipynb. The same values for the hyperparameters as specified in
the dictionary were used for all the benchmarking analyses.
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Now, we elaborate on the metrics we used in the benchmarking section to quantitatively measure
the efficacy of ATLASa. All metrics have been adapted to take on values between 0 and 1, with
higher values being indicative of better performance for easier interpretation. Furthermore, all
metrics were considered on a ’corrected’ embedding of the data output by each method (’corrected’
refers to the domain-invariant representation of the data learned by each method in this context).
We used two metrics, one that evaluated the learned representations on their domain-invariance
and their effectiveness is correcting for domain-specific effects and the other metric evaluated the
representations on the degree of conservation of biological information :

• K-Nearest-Neighbors Batch Effect Test: kBET [20], is a standard metric for measuring the
biases introduced by the fact that the datasets are collected across a vast array of experimental
domains. It is used to determine the similarity between the domain-label distribution of
cells’ nearest neighbors and that of the global atlas. In the original publication, kBET takes
on a value between 0 to 1 such that a high kBET value is indicative of more drastic batching
effects (in the original publication, higher values were worse). A robust data integration
method would thus yield an atlas with a low KBET value. The method first divides the cells
into sub-datasets according to cell-type. Then, a kBET value is calculated for each cell type.
This is done by running using python’s rpy2 library and rpy2.robjects to call the kBET
function from R’s kBET package. Subsequently, the mean kBET value is found across these
cell types. To yield the metric we report as specified above, we subtract said mean from 1
to arrive at a final value for our reported metric and refer to it as kBET in the text. This is
metric is also used in [6] for evaluating performance on the same task.

• Isolated Label ASW: ILASW, developed by [15], determines how well an integration method
accommodates celltypes/labels that are isolated: those not found in every sample. For each
isolated label, we first assign, to each datapoint, a binary indicator label with respect to
the isolated label. We find the Average Silhouette Width [21], a measure of cluster quality
ranging from -1 (intersecting and poorly formed) to 1 (discrete and well formed) with respect
to this indicator label using sklearn.metrics’s sillhouette_score API and scale it with
(1 + ASW ) ÷ 2 to take a value in-between 0 and 1. We lastly take the mean of this over
all isolated label names. This describes how well sample-isolated information is retained
post-integration. This is metric is also used in [6] for evaluating performance on the same
task.

6 Gene Expression Program Inference for COVID-19 from Healthy and
Diseased Tissue Atlases

In constructing Gene Expression Programs for our COVID-19 atlases, we considered three different
phenotype labelling regimes:

• Severity: whether a cell is from a healthy patient or one with a severe case of COVID-19.
• Double Positive (DP): whether a cell has non-zero ACE2 and TMPRSS2 expression levels

or zero for both.
• Virality: whether a cell has been infected by the virus or is simply a non-infected bystander.

Moreover, we considered multiple different approaches for assigning feature importance measures to
construct the gene-expression programs. In all of these approaches, we partitioned the cells according
to their cell type. Then, we made a 75:25 train/test split and trained a classifier to predict a phenotype
label within each cell type. The top five hundred most important genes were used as the ranked list
of genes to define the GEP driving the corresponding phenotype. The classification approaches and
corresponding variable importance measures we used were :

• Multi-Layer Perceptron (MLP) with SHAP Values: Training a simple multi-layer perceptron
as a classifier. The MLP transformed an input gene expression vector to a 1000 dimensional
feature vector using a fully-connected layer, followed be another layer with 100 nodes,
followed by the output layer. The classifer was trained using stochastic gradient descent,
with the number of epochs ranging between 10 and 16 and batch size between 32 and 256
depending on the training-atlas size (see analysis_aux.py for further details). We then
used the shap package from [22] to derive SHAP value inspired feature importances (see
below for a brief explanation of SHAP values and their application in this context).
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– We considered both shap.DeepExplainer (Deep Shap) and
shap.GradientExplainer (Grad Shap) (see below again for further explana-
tion).

– In initializing these explainers, we considered two background datasets: a random
sample of 1000 training features (which, according to [22], provides a highly accurate
estimate of true SHAP values) and the whole dataset. Similarly, for computing the
SHAP values themselves, we considered two similar settings: computation using a
random sample of 1000 test features or alternatively, using the entire test set. In each
setting, we computed the appropriate SHAP values and, following [22], found feature
importance by ranking features according to the largest average absolute value of the
corresponding entry over the computed SHAP values.

– We found that using the GradientExplainer (Grad Shap), with the background dataset
as the whole train-atlas, and computing SHAP values from the whole test-atlas, gave
optimal results (as measured by correspondence with independent publications as
described in the main text). We thus, used this feature-importance scheme going
forwards for this classification approach. The results used in the main text used
Grad Shap with these settings due to it’s efficiency and large observed (REP, PPI,
DRUGBANK) intersection sizes on a per-cell-type basis. For Deep Shap, while we used
the entire test-atlas to produce SHAP values, we were limited by their implementation
to using a 1000-sample of train-atlas gene-expression vectors as a background dataset
for the shap.DeepExplainer object.

• Random Forest: Using sklearn’s [23] RandomForestClassifier to classify cells. We set all
hyper-parameters to default settings. We computed the Mean Decrease in Impurity for the
Random Forest classifier. We used these values from the feature_importances_ attribute
of the classifier in order to determine importances and used them to identify the GEPs.

• Gradient Boosted Decision Trees: Using sklearn’s [23] GradientBoostingClassifier
to classify cells. We set all hyper-parameters to default settings. We again used the
feature_importances_ attribute of the classifier in order to determine importances and
used them to identify the GEPs.

SHAP values and the use of shap with ATLASb

This section contains a brief overview of SHAP (SHapley Additive exPlanations) values [22] and
how they are computed in the context of ATLAS. We first consider a machine learning model
M : Rn ! R and a "background" dataset B; additionally, let eM = Ex2BM(x). Given a gene
expression vector g 2 Rn, the corresponding SHAP value of g, S(g) 2 Rn, is one such that

(
nP

i=1
(S(g))i) + eM = M(g). S(g) lets us know how much each feature in g contributed to the value

of M(g) being different from eM . Thus, a SHAP value gives us a way to see how important each
feature is.

To determine feature importances with the MLP classifier used in ATLASb, we leveraged the shap
package of Lundberg and Lee [22]. shap features an array of model explainers, each with its own
Explainer.shap_values method that takes in a list of m gene expression vectors and returns the
corresponding SHAP values for each. Each of these explainers takes a model and background dataset
as inputs and uses these to in their own computations of SHAP values. We considered two Explainers
with our MLP classifier :

• shap.DeepExplainer, which approximates SHAP values for neural nets via an extension
of DeepLIFT [24].

• shap.GradientExplainer, which uses a combination of Integrated Gradients [25], SHAP
values, and SmoothGrad [26] as a measure of feature importance.

To evaluate how similar the results from the various classification and feature importance approaches
are, we used the full list of all enriched terms returned by the scanpy.queries.enrich func-
tion when queried on the corresponding GEPs from each of the three methods. Then we com-
pared their similarity using the Szymkiewicz–Simpson coefficient, also known as the overlap
coefficient in Tables 1, 2 and 3 below for each feature-importance method used in each class of
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phenotype labelling regime. The overlap coefficient for two sets X,Y is given by |X\Y |
min(|X|,|Y |) .

The Tables 1, 2 and 3 show the overlap coefficient of the GEPs found by other methods when com-
pared to the Grad Shap importance method (for each phenotype labeling scheme and for each cell-type
in the labeling scheme). Entries take on values between 0 and 1, with higher values indicating greater
similarity between programs.

Tables 4, 5 and 6 describe the size of the intersection between the drug targets found by each of the
feature-importance methods used and the (REP,PPI,DRUGBANK) datasets. The entries in the table
are shown here as a tuple of (REP intersection size, PPI intersection size, DRUGBANK intersection
size).

Finally, Figure 4 contains a Venn diagram showing that the results from all the feature-importance
regimes used with ATLASb are remarkably similar lending further credence to the approach and
indicating that the drug targets identified may deserve further follow up experiments.

Table 1: Severity

Importance

Cell Type B NK Mast Macrophages pDC Epithelial mDC T Plasma

Grad Shap 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Deep Shap 0.55 0.57 0.77 0.53 0.66 0.67 0.71 0.77 0.89
RF 0.74 0.78 0.54 0.64 0.64 0.61 0.67 0.78 0.70
GBT 0.63 0.85 0.63 0.68 0.54 0.63 0.66 0.71 0.74

Table 2: Virality Table 3: DP

Importance

Cell Type T Macrophages Plasma NK Epithelial Neutrophil ... Epithelial

Grad Shap 1.00 1.00 1.00 1.00 1.00 1.00 ... 1.00
Deep Shap 0.52 0.57 0.73 0.66 0.72 0.71 ... 0.81
RF 0.53 0.63 0.58 0.69 0.66 0.83 ... 0.58
GBT 0.66 0.40 0.39 0.62 0.58 0.65 ... 0.65

Table 4: Severity

Importance

Cell Type B NK Mast Macrophages pDC Epithelial mDC T Plasma

Grad Shap (4, 1, 41) (4, 0, 41) (2, 5, 31) (4, 2, 34) (3, 4, 31) (2, 4, 26) (6, 3, 41) (1, 4, 37) (1, 2, 30)
Deep Shap (2, 4, 38) (4, 1, 42) (5, 0, 35) (7, 3, 43) (2, 5, 34) (4, 3, 38) (1, 5, 30) (4, 4, 31) (2, 3, 27)
RF (4, 3, 27) (2, 4, 35) (2, 3, 40) (0, 2, 22) (5, 2, 31) (2, 1, 30) (2, 3, 26) (1, 5, 33) (1, 2, 21)
GBT (1, 2, 27) (1, 2, 23) (2, 4, 22) (3, 0, 31) (3, 3, 27) (0, 1, 34) (2, 4, 31) (3, 1, 35) (2, 2, 32)

Table 5: Virality Table 6: DP

Importance

Cell Type T Macrophages Plasma NK Epithelial Neutrophil ... Epithelial

Grad Shap (3, 3, 38) (4, 4, 38) (4, 3, 42) (3, 0, 24) (4, 2, 40) (5, 0, 34) ... (3, 2, 33)
Deep Shap (4, 3, 38) (3, 0, 24) (4, 2, 37) (6, 1, 31) (5, 3, 35) (4, 4, 38) ... (3, 1, 31)
RF (3, 3, 31) (3, 5, 32) (3, 4, 38) (3, 1, 34) (2, 3, 33) (3, 0, 24) ... (3, 1, 28)
GBT (1, 1, 32) (3, 0, 24) (1, 3, 36) (2, 4, 28) (4, 1, 37) (2, 0, 24) ... (2, 1, 25)
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Figure 4: The union, over all phenotype labeling schemes, of drug targets found for all four
importance regimes that intersect with those found by the REP study (an independent experimental
study on drug re-purposing for COVID-19). We note that all classification/feature-importance
methods give a extremely similar results, implying that ATLASb isn’t particularly sensitive to the
feature importance method used and that the results are robust to that choice.

7 Errata and Clarifications

In this section we list typos and errors we spotted in our paper submission between the Paper
Submission Deadline and the Supplementary Material Submission Deadline. We apologize for these
errors and will make the necessary corrections (along with other errors we identify later in addition
to suggested changes by reviewers) in the camera ready version of the paper.

• The legends for Figure 2b in the main text (the first UMAP plot from the left) should
say ’Domain’ instead of ’Batch’. This error was because ’Batch’ and ’Domain’ are used
interchangeably in the scRNA-seq field, however we use ’Domain’ throughout the text so as
to not confuse it with ’mini-batch’ used to train the model using stochastic gradient descent.

• In the main text, Figures 2a, 2b, 2c, 2d and 3c were not labelled with an appropriately "abcd"
panel letter reference. We apologize for this error.

• We apologize for not defining KEGG terms in the main text.
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Discussion 

 
The thesis described our progress towards building ‘foundation models’ for life science. 

In the first part of this thesis, I described a framework for thinking about sequence→function 

questions. The sequence→function relationship is fascinating. Over the (relatively shorter) time 

scales that humans tend to think about, sequence→function appears to be the direction of causal 

flow. However, there is also evidence that the inverse relationship may form a causal loop1-2. I 

like to call this phenomenon ‘mutation-selection entanglement’. There may be more to find here. 

 

Designing a biological sequence with a desired function is fundamental to genome medicine, and 

over the next decade (and beyond), an enormous class of therapeutic programs and target 



   
 

  

discovery strategies will involve the design of (and inference from) biological sequences. A 

summary of our insights from working towards this goal: 

 

(i) Robustness and Evolvability.  Not only can we engineer sequences to have the desirable 

function (like expression levels), we have a framework for engineering them to be 

robust/evolvable. We think this can be a huge advantage in therapeutics (eg: for addressing the 

short-lived nature of existing sequence-based therapies) and in synthetic biology. As Bianco et 

al., write in their generous News and Views article3 about our work: "...the potential for 

bioengineering and cellular engineering is enormous. In fact, testing for evolvability can open 

the door to more stable industrial bioengineering pipelines, as just one example. Mutational 

robustness shapes the fitness landscape so that fitness peaks are tall but wide instead of narrow, 

indicating that a broader set of mutations is now buffered and can be tolerated without 

significant loss of fitness. Selecting for a robust system opens the door, in my opinion, to more 

efficient production pipelines."  

 

(ii) Modeling. The accuracy of our sequence→function model was enabled by our unique 

outlook on modeling the sequence→function relationship: We aren't building a model for simply 

representing the sequence space. On the contrary, we are modeling the interactions of a sequence 

with its environment that lead to the function we focus on (e.g.: how a promoter sequence 

interacts with its environment to generate expression). This is a fundamentally different way of 

looking at model building, compared to approaches that involve the use of large language model 

analogs for biological sequence representations where the goal is to model distributions within 

the sequence space itself. In contrast, our goal isn’t just to learn a probability distribution in the 



   
 

  

sequence space, without a principled consideration of how these sequences interact with their 

environment and lead to their function.  

 

(iii) Measurement. Our approach towards model building is only possible because of the scale 

and quality of experimental data we have been able to generate. The experimental approaches in 

our work focus on the measurement of function corresponding to large random samples from the 

sequence space: in sharp contrast to approaches that focus on mutating/perturbing existing 

biological systems. For learning accurate sequence→function models, local neighborhoods of 

existing natural sequences are suboptimal; and our approach of training on de-novo random 

samples of the sequence space performs significantly better. Additionally, random sequences are 

exponentially cheaper to synthesize at massive scales (compared to defined sequences), enabling 

high throughput experimental generation of large-scale labelled sequence-function pair datasets. 

 

(iv) Generalizability. As long as one operates within the constraints of a system where precise, 

large-scale sequence→function measurements for random samples from the sequence space are 

possible, our framework is generalizable across an enormous class of sequence design problems 

that involve DNA/RNA/peptides. As Bianco et al write in their article3 about our work, 

"...Basically, the model learns the space of possible solutions and it is capable of generalizing to 

a new set of solutions. This is of paramount importance because expression engineering is a 

fundamental part of industrial bioengineering, especially metabolic engineering. But it is even 

more important because it allows for uncovering the whole complexity of the organism fitness 

landscape, which can now be computationally revealed on call.".  



   
 

  

Moreover, as Wagner et al note in their kind Nature News & Views story4 about our paper, 

"…And, notably, like other applications of deep learning used in the past few years in biology, 

such as the development of a tool to predict protein folding [Alphafold], it will enable scientists 

to answer a broader spectrum of questions than any one group of authors could possibly 

address." 

 

In this thesis, I also describe the Expression Conservation Coefficient (ECC), which helps detect 

selection pressures from population genetics data. Existing approaches for identifying signatures 

of selection on regulatory regions rely on disparate assumptions and data types, and thus (to the 

best of our knowledge) there currently do not exist appropriate per-gene selection measurements 

against which we can directly compare the ECC. Below, we contrast the existing body of work in 

this area, with ECC: 

 

TF binding (or motif) centric approaches. One pioneering approach5 uses mutations within motif-

predicted TF binding sites to identify signals of conservation (in Drosophila), but without regard 

for how different TFs impact expression or how TFs interact (this was not possible at the time). 

This approach was applied to TF(s)-enhancer(s) pairs where the TF was known to play an 

important role in regulation of the enhancer(s). A similar, more recent study6 created affinity 

models based on ChIP-seq data for each TF (in human) and used these models to infer selection 

from the predicted perturbation of binding. It is unclear how one would generalize such approaches 

to integrate across all TFs and all regulatory regions, and how their results would compare to the 

ECC, because each TF would provide a different answer. Earlier approaches7-8 did not always have 

TF binding data, but used motifs as surrogates. Nevertheless, the approaches were similar in 



   
 

  

principle, in that all of them focus on motifs or TFs but do not integrate across the regulatory 

sequence. This is a key difference from the ECC because, as we have shown in previously9, and 

others have predicted10, strong scoring motifs only account for a portion of a gene’s regulation. 

 

Reporter based approaches. Other methods11 use the measured effects of mutations within 

regulatory regions assayed in a reporter assay (in human). Consequently, these can only be applied 

to regulatory regions for which mutation effects have been experimentally determined, which is 

not available for the vast majority of sequences one would encounter.  

 

Mutation counting based approaches. Methods that are based on counting mutations within a 

regulatory region (or inter-species comparisons of regulatory sequence) often require a background 

set of sequences that are assumed to be neutral against which to compare12-15. However, in a 

genome as compact as S. cerevisiae’s, it is not clear if there are sufficient locations that are non-

functional. Furthermore, these methods assume that the mutation rate is uniform across the 

genome, which is unlikely to be the case. Finally, we did show that sequence divergence within 

promoter sequences (i.e., the numerator in such methods) does not correlate with other measures 

of selection (Extended Data Fig. 4c), arguing that such methods would not fare well in a 

comparison with the ECC. 

 

In the second part of this thesis, I proposed frameworks for thinking about gene expression. 

Expression lends itself beautifully to the study of genotype→phenotype→fitness. If there is a 

phenotype that is better suited to this line of scientific inquiry than gene expression, I haven’t 



   
 

  

found it yet!  This part of the thesis focused on applications of these frameworks to cancer, brain 

and COVID-19 research. 

 

With ATLAS, we introduced a novel framework for predicting and prioritizing putative human 

disease drug targets from single-cell gene expression measurements. As with all hypothesis 

generating machine learning methods, one must be extremely careful when interpreting these 

results and treating them as definitive. For instance, the COVID-19 REP dataset that we used for 

one of the validations shown above was generated using Vero E6 cells, which are monkey 

kidney epithelial cell lines. These in-vitro results may not necessarily translate to complex real 

world biological systems. Even though our intersections with drug targets found from other 

independent sources is a promising and interesting result, these results must be looked at with 

extreme caution and require comprehensive further validation using experimental assays and 

multi-stage rigorous clinical trials before entering the clinic. It is encouraging, though, that our 

results align with observations made from completely independent ways of analyzing COVID-19 

in the context of putative drug targets from scRNA-seq, PPI and drug re-purposing studies. 

Protein and RNA levels are often known to be uncorrelated in biological systems, and the fact 

that our results hold across these domains is quite promising. We would also like to emphasize 

that while the results from our approach, like from any hypothesis generating approach, may 

provide very interesting and promising putative drug targets, it is imperative that these be 

validated experimentally and put through rigorous rounds of evaluation. This is an essential step 

to before any of these results may be considered for real world applications. 

 



   
 

  

We expect utility of feature importance metrics, such as SHAP values, for non-linear and black-

box models, in order to identify and characterize complex biological phenomena, to broadly impact 

the life sciences. We hope that the early demonstration of results using these simple models and 

variable importance metrics here spurs exponential developments in better approaches for studying 

a wide range of diseases and biological phenomena. As single cell data is being generated at an 

ever-faster pace, traditional methods face massive challenges with this unprecedented scale of 

data. ATLAS has thus been developed with an emphasis on scalability and efficiency.  

 

In summary, I see neural networks’ (and more generally, machine learning’s) important role in 

the design→build→test→learn cycle as a starting point. There are innumerable intriguing open 

questions, downstream of (and orthogonal to) this cycle. Inductive application of principles over 

(evolutionary) time and (sequence) space, as introduced here16, will lead us to interesting 

answers to some of these questions. 

 

 

 

 

 

 

 

 

 

Thank you for reading! 



   
 

  

References 
1. Monroe, J.G., Srikant, T., Carbonell-Bejerano, P. et al. Mutation bias reflects natural 

selection in Arabidopsis thaliana. Nature 602, 101–105 (2022).  
2. Burgess, D.J. Tuning mutagenesis by functional outcome. Nat Rev Genet 23, 135 (2022).  
3. Bianco, S. Artificial Intelligence: Bioengineers' Ultimate Best Friend. GEN 

Biotechnology. Apr 2022. 140-141.  
4. Wagner. A. AI predicts the effectiveness and evolution of gene promoter sequences. Nature 

News and Views. March 2022. 
5. Moses, Alan M. 2009. “Statistical Tests for Natural Selection on Regulatory Regions Based 

on the Strength of Transcription Factor Binding Sites.” BMC Evolutionary Biology 9 
(December): 286. 

6. Liu, Jialin, and Marc Robinson-Rechavi. 2020. “Robust Inference of Positive Selection on 
Regulatory Sequences in the Human Brain.” Science Advances 6 (48).  

7. Gasch, Audrey P., Alan M. Moses, Derek Y. Chiang, Hunter B. Fraser, Mark Berardini, 
and Michael B. Eisen. 2004. “Conservation and Evolution of Cis-Regulatory Systems in 
Ascomycete Fungi.” PLoS Biology 2 (12): e398. 

8. Habib, Naomi, Ilan Wapinski, Hanah Margalit, Aviv Regev, and Nir Friedman. 2012. “A 
Functional Selection Model Explains Evolutionary Robustness despite Plasticity in 
Regulatory Networks.” Molecular Systems Biology 8: 619. 

9. Boer, Carl G. de, Eeshit Dhaval Vaishnav, Ronen Sadeh, Esteban Luis Abeyta, Nir 
Friedman, and Aviv Regev. 2020. “Deciphering Eukaryotic Gene-Regulatory Logic with 
100 Million Random Promoters.” Nature Biotechnology 38 (1): 56–65. 

10. Tanay, Amos. 2006. “Extensive Low-Affinity Transcriptional Interactions in the Yeast 
Genome.” Genome Research 16 (8): 962–72. 

11. Smith, Justin D., Kimberly F. McManus, and Hunter B. Fraser. 2013. “A Novel Test for 
Selection on Cis-Regulatory Elements Reveals Positive and Negative Selection Acting on 
Mammalian Transcriptional Enhancers.” Molecular Biology and Evolution 30 (11): 2509–
18. 

12. Haygood, Ralph, Olivier Fedrigo, Brian Hanson, Ken-Daigoro Yokoyama, and Gregory A. 
Wray. 2007. “Promoter Regions of Many Neural- and Nutrition-Related Genes Have 
Experienced Positive Selection during Human Evolution.” Nature Genetics 39 (9): 1140–
44. 

13. McDonald, J. H., and M. Kreitman. 1991. “Adaptive Protein Evolution at the Adh Locus 
in Drosophila.” Nature 351 (6328): 652–54. 

14. Andolfatto, Peter. 2005. “Adaptive Evolution of Non-Coding DNA in Drosophila.” Nature 
437 (7062): 1149–52. 

15. Hahn, Matthew W. 2007. “Detecting Natural Selection on Cis-Regulatory DNA.” Genetica 
129 (1): 7–18. 

16. Vaishnav, E.D., de Boer, C.G., Molinet, J. et al. The evolution, evolvability and 
engineering of gene regulatory DNA. Nature 603, 455–463 (2022). 



Evolution, Evolvability, Expression and Engineering 
by 

Eeshit Dhaval Vaishnav 
Bachelor of Technology, Indian Institute of Technology Kanpur 

Submitted to the Department of Biology in Partial Fulfillment                                                        
of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY 
at the  

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
SEPTEMBER 2022 

© 2022 MIT. All rights reserved. 

Signature of the Author: __________________________________________________________ 
August 31, 2022 

Certified by: ___________________________________________________________________ Prof. Aviv Regev 
Professor of Biology 

Thesis Supervisor 

Accepted by: __________________________________________________________________ 
Prof. Mary Gehring 

Member, Whitehead Institute 
Director, Biology Graduate Committee 

1



Summary of Work 

PUBLICATIONS 

- Nature: [1] (First (and a corresponding) author) (Nature cover), [2] (Nature cover), [3], [4]

- Nature Medicine: [5] (co-first author)

- Nature Biotechnology: [6]

- Nature Communications: [7]

- Cell: [8]

- bioRxiv: [9]

[1] The evolution, evolvability and engineering of gene regulatory DNA

[2] A multimodal cell census and atlas of the mammalian primary motor cortex

[3] A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex

[4] The human body at cellular resolution: the NIH Human Biomolecular Atlas Program

[5] Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics

[6] Deciphering eukaryotic gene-regulatory logic with 100 million random promoters

[7] Actomyosin meshwork mechanosensing enables tissue shape to orient cell force

[8] A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia

[9] Reference-based cell type matching of spatial transcriptomics data

Google Scholar: https://scholar.google.com/citations?user=brVs5bAAAAAJ&hl=en

PATENT 

insi2vec, A framework for inferring from single-cell and spatial multi-omics (U.S. Patent 
Application No. 17/553,691): Methods and systems for determining gene expression profiles and 
cell identities from multi-omic imaging data 

2

https://www.nature.com/nature/volumes/603/issues/7901
https://www.nature.com/nature/volumes/598/issues/7879
https://doi.org/10.1038/s41586-022-04506-6
https://doi.org/10.1038/s41586-021-03950-0
https://doi.org/10.1038/s41586-021-03500-8
https://doi.org/10.1038/s41586-019-1629-x
https://doi.org/10.1038/s41591-020-01227-z
https://doi.org/10.1038/s41587-019-0315-8
https://doi.org/10.1038/ncomms15014
https://doi.org/10.1016/j.cell.2019.04.040
https://doi.org/10.1101/2022.03.28.486139
https://scholar.google.com/citations?user=brVs5bAAAAAJ&hl=en
https://patents.google.com/patent/US20220180975A1/en
https://patents.google.com/patent/US20220180975A1/en


   
 

  

Acknowledgements 
 
I would like to express my most sincere gratitude to Prof. Aviv Regev (who is the best PhD 
advisor on the planet), MIT and the Broad Institute for the unbounded opportunities. I would also 
like to thank them, and my collaborators, thesis committee, colleagues, friends and family for 
their unwavering support and kindness. The work presented here would be impossible without all 
of their contributions. 

 
 
 
 
  

3



   
 

  

Evolution, Evolvability, Expression and Engineering 
by 

Eeshit Dhaval Vaishnav 
 

Submitted on August 31, 2022 in Partial Fulfilment of the Requirements for the Degree of 
Doctor of Philosophy at the Massachusetts Institute of Technology 

 
ABSTRACT 
 
This thesis describes how to build machines (Engineering) that answer questions about: (a) 
Evolution & Evolvability and (b) Expression. 
 
In the first part of this thesis, I present a framework for understanding and engineering biological 
sequences, and solving sequence→function problems by building ‘Complete Fitness 
Landscapes’ in sequence space. This framework for measuring, modelling and designing 
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Introduction 

The goals of the work described in this thesis were to (i) find important questions, (ii) build 

machines for answering such questions and (iii) construct frameworks for discovering new 

knowledge. Each of these remain works in progress.  

 

Discovering new knowledge (iii) is almost certainly the most challenging of these goals. This may 

be because new knowledge seems to emerge spontaneously, almost as a by-product of working on 

finding important questions and answering them. Reliably conjuring new knowledge likely 

requires that we build general purpose machines for answering questions. 

 

The significance of finding (and choosing) important questions (i) cannot be overstated. 

Fortunately, in science, there is a way of doing this reproducibly. If a scientist reads sufficient 

scientific literature in their areas of interest, the important questions will often become abundantly 

clear to them. A useful test for a scientist to assess whether a question is ‘important’, is to ask 

whether the ‘importance’ of these questions becomes immediately clear to everyone else they 

communicate these questions to. E.g.: 

- Can we predict evolution?  

- Can we predict gene expression?  

- Could we discover emergent phenomena from genomes of populations?  

- Could we understand evolutionary history?  

- Can we predict future evolvability?  

- Could we discover principles that, when inductively applied over (evolutionary) time and 

(sequence) space answer, these questions? 

6



   
 

  

 

When working on such audacious grand questions, it can be useful to think of them as 

‘homework problems’. This helps convince the scientist that an answer exists, which reflexively 

helps the process of finding answers and discovering new knowledge. More generally, ‘working 

backwards from the homework assignments in existing literature and review papers’ can be a 

useful starting point for thinking about scientific questions. 

 

Once the questions are defined, the work of building machines for answering them (ii) begins. 

Neural networks are the closest humans have come, to building a general purpose technology for 

answering questions. I don’t think it is a coincidence (or simply a result of the time period the work 

presented here was carried out in) that neural networks, which are universal function 

approximators, ended up becoming pivotal to the work presented in this thesis. Apart from the 

critical role neural network models played in the design→build→test→learn cycles described 

here, they were also instrumental in their role as ‘foundation models’ for tasks downstream of this 

cycle. Much of the work presented here involved the formulation of questions in a way that allowed 

these machines to learn how to answer the questions posed to them (machine learning). Machine 

learning thus became a critical tool in the process of finding new knowledge (research). 

 

This thesis describes our research on building machines (Engineering) to answer questions about: 

(a) Evolution & Evolvability and (b) Expression.  
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EVOLUTION & EVOLVABILITY 

In the first part of this thesis, I discuss a framework for thinking about sequence→function 

problems in terms of ‘Complete Fitness Landscapes’ in sequence space. This framework for 

measuring, modelling and designing biological sequences is built around the idea of learning an 

‘oracle’ (typically a deep neural network model that takes a sequence as input and predicts its 

corresponding function) to traverse these ‘Complete Fitness Landscapes’. Here we develop a 

(promoter sequence)→(gene expression) oracle and use it with our framework to design sequences 

that demonstrated expression beyond the range of naturally observed sequences. We also show 

how our framework can be used to detect signatures of selection on a sequence, and to characterize 

robustness and evolvability.  

Non-coding regulatory DNA sequences regulate the expression of protein coding sequences of a 

gene. Changes in regulatory DNA play a major role in the evolution of gene expression1. Mutations 

in cis-regulatory elements (CREs) can affect their interactions with transcription factors (TFs), 

change the timing, location, and level of gene expression, and impact organismal phenotype and 

fitness2,3. While TFs evolve slowly because they each regulate many target genes, CREs evolve 

much faster and are thought to drive substantial phenotypic variation7. Thus, understanding how 

cis-regulatory sequence variation affects gene expression, phenotype and organismal fitness is 

fundamental to our understanding of regulatory evolution2.  

A fitness function maps genotypes (which vary through mutations) to their corresponding 

organismal fitness values (where selection operates)8. A complete fitness landscape9 is defined by 

a fitness function that maps each sequence in a sequence space to its associated fitness, coupled 

with an approach for visualizing the sequence space. Partial fitness landscapes have been 

characterized empirically4,5,10, often defining fitness as the maximum growth rate of single-cell 
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organisms4,11. Many recent empirical fitness landscape studies of proteins12, adeno-associated 

viruses13, catalytic RNAs14, promoters15, and TF binding sites16 have favored molecular activities 

as fitness proxies because they are less susceptible to experimental biases and measurement 

noise17. In particular, the molecular activity of a promoter sequence as reflected in the expression 

of the regulated gene has been used to build a ‘promoter fitness landscape’18. However, despite 

advances in high-throughput measurements, empirical fitness landscape studies often sample 

sequences in the local neighborhood of natural ones and thus remain limited to a tiny subset of the 

complete sequence space whose size grows exponentially with sequence length (4L for DNA or 

RNA, where L is the length of sequence)4–6.  

Understanding the relationship between promoter sequence, expression phenotype, and fitness 

would allow us to answer fundamental questions6 in evolution and gene regulation, and provide 

an invaluable bioengineering tool6,19. A model that accurately approximates the relationship 

between sequence and expression can serve as an “oracle” in evolutionary studies to conduct and 

interpret in-silico experiments20–23, predict which regulatory mutations affect expression and 

fitness (when coupled with expression-to-fitness curves11), design or evolve new sequences with 

desired characteristics, determine how quickly selection achieves an expression optimum, identify 

signatures of selective pressures on extant regulatory sequences, visualize fitness landscapes and 

characterize mutational robustness and evolvability2,4–6,24,25.  

In the first part of this this thesis, we address these long-standing problems by developing a 

framework for studying regulatory evolution and fitness landscapes based on Saccharomyces 

cerevisiae promoter sequence-to-expression models.    
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EXPRESSION 

The second part of this thesis focusses on approaches for inferring from single-cell and spatial 

gene expression measurements. Single-cell RNA-sequencing measurements (scRNA-seq)26 output 

a ‘feature vector’ for each cell corresponding the cell’s gene expression profile (referred to as its 

transcriptome). We first describe an approach, that we call ATLAS (A Tool for Learning from 

Atlas-scale Single-cell datasets), for inferring from large datasets of scRNA-seq measurements 

(referred to as scRNA-seq atlases). ATLAS allows us to integrate vast scRNA-seq datasets, 

decipher gene expression programs, predict and prioritize drug targets. ATLAS can also spatially 

map cell types and predict spatial gene expression patterns. We demonstrate the applications of 

ATLAS in the context of COVID-1927. 

 

ATLAS: The Coronavirus Disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led 

to significant global morbidity and mortality28. With no standard cures or vaccines available yet 

to contain and prevent the disease, there is an emergent need to understand COVID-19 onset, 

progression and the underlying disease mechanisms at the molecular level to enable discovery of 

pathways and targets for treatments. COVID-19 starts with the infection or entry of SARS-CoV-

2 into human cells, primarily in the upper respiratory system. Subsequent replication and spread 

of the virus to other human cells, mounts inflammation and immune responses leading to the 

widespread clinical pathologies including pneumonia in moderate cases, and acute respiratory 

distress and death in severe cases. A key to understanding disease mechanisms in turn lies in 

identifying molecular changes in virus infected cells observed in COVID-19 patients. The 

genetic code in each of these cells is organized into (over 20000) units called genes, which are 

converted into functional gene products like proteins through a process referred to as gene 
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expression. Gene expression is regulated by gene regulatory networks that involve complex, non-

linear and combinatorial interactions between genes29. Human phenotypes, such as "healthy" or 

"diseased" states, are induced by the expression of these genes in relevant virus-infected and 

bystander responsive cells. Single-cell RNA-sequencing (scRNA-seq) is an experimental 

technology that allows us to measure gene expression in such individual cells isolated from 

tissues. The output of every scRNA-seq experiment is a high-dimensional, sparse gene 

expression vector for each isolated cell whose dimensions correspond to the expression levels of 

genes within the cell. Machine learning methods are then applied to the output of scRNA-seq 

experiments for dimensionality reduction30, unsupervised clustering31 and gene expression 

program inference32. The construction of single-cell atlases involves multiple scRNA-seq 

experiments run on tissues isolated from a diverse set of individuals, who are dispersed along a 

continuum of phenotypes. These experiments are conducted under varying experimental 

conditions and run on a wide range of technological platforms in different laboratories. This 

introduces complex, non-linear variability in measurements made across these experimental 

domains and hinders our ability to make effective comparisons between measurements made 

across domains (e.g. comparing differences in gene expression programs between healthy and 

diseased individuals). These domain-specific effects are an impediment to the process of making 

fundamental biological discoveries and to translational applications such as the identification of 

targets for therapeutic interventions to treat diseases like COVID-19. Extensive previous work 

on the identification of drug targets has focused on convolutional and graph neural networks for 

modeling protein structures33 and molecular interactions34-35 between drugs and their putative 

targets. But, a critical upstream step in drug development is the identification of these biological 
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targets. Single-cell atlases have the potential to transform the process of identification of genes 

involved in the modulation of disease phenotype. 

 

There is currently no principled, generalizable approach for identifying drug targets by inferring 

gene expression programs from single-cell atlases to treat human diseases. To address this, one 

would need to adequately address the two-fold challenge in single-cell atlas analysis described 

above : (i) the combinatorial and non-linear effects of gene expression on phenotypes and (ii) the 

variability in measurements across experimental domains. 

 

The task of remedying the variability in scRNA-seq measurements across experimental domains 

is a type of domain adaptation36 problem where the objective is to learn domain-invariant feature 

representations of scRNA-seq data. Domain-invariant feature representations are central to a large 

body of work on domain adaptation37-41. In the context of scRNA-seq, domain adaptation is 

referred to as data-integration and is defined as the process of generating an internally- consistent 

version of the data42 across these measurement domains. Existing methods carry out this scRNA-

seq data-integration task by either operating directly on the full gene expression vectors43-44 or 

operating on representations derived from them like nearest-neighbor graphs45-47 and learned low-

dimensional embeddings48-51. These methods employ a broad range of statistical and machine 

learning techniques including panoramic stitching52, canonical correlation analysis53, non-negative 

matrix factorization54 and perturbation modeling49. Consequently, comprehensive metrics55 have 

been developed for evaluating the efficacy of these domain integration methods in ameliorating 

domain-specific effects while conserving biological information. Benchmarking studies42,56 for the 

domain integration task using these metrics demonstrate the need and room for vast improvements. 
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Additionally, the domain-invariant representations learned by many of these methods46,54,57-58 

cannot be mapped back to the input gene expression vectors which significantly restricts the 

applicability of such representations to biologically meaningful tasks. 

 

On the other hand, an autoencoder (AE)59-60 has the ability to learn feature representations that can 

be mapped back to the input space using a pair of functions: an encoder for transforming the input 

into this representation and a decoder for reconstructing the input from this representation. AEs 

can learn domain-invariant representations by minimizing the domain discrepancy between 

features learned by the encoder using a domain regularizer or by encouraging domain confusion 

using an adversarial objective41,61. Maximum Mean Discrepancy (MMD)62, a widely used 

regularizer for aligning the first two moments of a distribution, has recently been applied to the 

scRNA-seq data- integration problem49-51. However, scRNA-seq data63 and their latent 

representations learned by an AE follow non-Normal distributions. First and second order moment 

matching methods do not suffice for minimizing the domain discrepancy in many real-world 

unsupervised domain adaptation problems and so methods for matching higher-order statistics 

have been proposed64-66 for the task of transferring labels from a labelled source domain to an 

unlabelled target domain. However, an approach for incorporating higher order moment-matching 

regularizers to the multi-target domain adaptation67 task in general, and the scRNA-seq data 

integration problem, in particular is lacking. 

 

We hypothesize that domain-invariant feature representations of scRNA-seq data can help address 

the pressing need for identification of human disease drug targets when used in tandem with 
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modern feature importance methods to account for the combinatorial and non-linear effects of 

gene-expression on phenotype. This forms the basis of ATLAS. 

 

insi2vec: scRNA-seq captures cell-intrinsic information but the process of making these 

measurements, which involves the dissociation of tissues, leads to a loss of spatial and cell-

extrinsic contextual information. Spatial transcriptomic measurements overcome these 

limitations, but come with their own sets of trade-offs68. We present insi2vec69, a framework for 

inferring from single-cell and spatial multi-omics, to address these challenges. insi2vec, consists 

of: (i) a spatio-transcriptomic definition of cell identity using cell intrinsic and cell extrinsic 

features, and (ii) methods for predicting spatial gene expression patterns from (ii-a) single-cell 

RNA-sequencing measurements and (ii-b) histology. We demonstrate the applications of 

insi2vec to cancer and brain research. 

 

 

14



   
 

  

References 
1. Wittkopp, P. J. & Kalay, G. Cis-regulatory elements: molecular mechanisms and evolutionary 

processes underlying divergence. Nat. Rev. Genet. 13, 59–69 (2011). 
2. Hill, M. S., Vande Zande, P. & Wittkopp, P. J. Molecular and evolutionary processes 

generating variation in gene expression. Nature Reviews Genetics 1–13 (2020). 
3. Fuqua, T. et al. Dense and pleiotropic regulatory information in a developmental enhancer. 

Nature 1–5 (2020). 
4. de Visser, J. A. G. M. & Krug, J. Empirical fitness landscapes and the predictability of 

evolution. Nat. Rev. Genet. 15, 480–490 (2014). 
5. Kondrashov, D. A. & Kondrashov, F. A. Topological features of rugged fitness landscapes in 

sequence space. Trends in Genetics 31, 24–33 (2015). 
6. de Visser, J. A. G. M., Elena, S. F., Fragata, I. & Matuszewski, S. The utility of fitness 

landscapes and big data for predicting evolution. Heredity (Edinb) 121, 401–405 (2018). 
7. Weirauch, M. T. & Hughes, T. R. Conserved expression without conserved regulatory 

sequence: the more things change, the more they stay the same. Trends Genet. 26, 66–74 
(2010). 

8. Orr, H. A. The genetic theory of adaptation: a brief history. Nature Reviews Genetics 6, 119–
127 (2005). 

9. Weinreich, D. M., Lan, Y., Wylie, C. S. & Heckendorn, R. B. Should evolutionary geneticists 
worry about higher-order epistasis? Current Opinion in Genetics & Development 23, 700–707 
(2013). 

10. Venkataram, S. et al. Development of a Comprehensive Genotype-to-Fitness Map of 
Adaptation-Driving Mutations in Yeast. Cell 166, 1585-1596.e22 (2016). 

11. Keren, L. et al. Massively Parallel Interrogation of the Effects of Gene Expression Levels on 
Fitness. Cell 166, 1282-1294.e18 (2016). 

12. Sarkisyan, K. S. et al. Local fitness landscape of the green fluorescent protein. Nature 533, 
397–401 (2016). 

13. Ogden, P. J., Kelsic, E. D., Sinai, S. & Church, G. M. Comprehensive AAV capsid fitness 
landscape reveals a viral gene and enables machine-guided design. Science 366, 1139–1143 
(2019). 

14. Pitt, J. N. & Ferré-D’Amaré, A. R. Rapid construction of empirical RNA fitness landscapes. 
Science 330, 376–379 (2010). 

15. Shultzaberger, R. K., Malashock, D. S., Kirsch, J. F. & Eisen, M. B. The Fitness Landscapes 
of cis-Acting Binding Sites in Different Promoter and Environmental Contexts. PLOS Genetics 
6, e1001042 (2010). 

16. Mustonen, V., Kinney, J., Callan, C. G. & Lässig, M. Energy-dependent fitness: a quantitative 
model for the evolution of yeast transcription factor binding sites. Proc. Natl. Acad. Sci. U.S.A. 
105, 12376–12381 (2008). 

17. Hartl, D. L. What Can We Learn From Fitness Landscapes? Curr Opin Microbiol 0, 51–57 
(2014). 

15



   
 

  

18. Otwinowski, J. & Nemenman, I. Genotype to phenotype mapping and the fitness landscape of 
the E. coli lac promoter. PLoS ONE 8, e61570 (2013). 

19. Sinai, S. & Kelsic, E. D. A primer on model-guided exploration of fitness landscapes for 
biological sequence design. arXiv:2010.10614 [cs, q-bio] (2020). 

20. Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning-
based sequence model. Nature Methods 12, 931–934 (2015). 

21. Avsec, Ž. et al. Base-resolution models of transcription-factor binding reveal soft motif syntax. 
Nat. Genet. 53, 354–366 (2021). 

22. Shrikumar, A., Greenside, P. & Kundaje, A. Learning Important Features Through Propagating 
Activation Differences. arXiv [cs.CV] (2017). 

23. Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range 
interactions. Nat. Methods 18, 1196–1203 (2021). 

24. Fragata, I., Blanckaert, A., Louro, M. A. D., Liberles, D. A. & Bank, C. Evolution in the light 
of fitness landscape theory. Trends in Ecology & Evolution 34, 69–82 (2019). 

25. Payne, J. L. & Wagner, A. The causes of evolvability and their evolution. Nature Reviews 
Genetics 20, 24–38 (2019).  

26. Tanay, A., Regev, A. Scaling single-cell genomics from phenomenology to mechanism. 
Nature 541, 331–338 (2017). 

27. Muus, C., Luecken, M.D., Eraslan, G. et al. Single-cell meta-analysis of SARS-CoV-2 entry 
genes across tissues and demographics. Nat Med 27, 546–559 (2021). 

28. Mortality analyses. https://coronavirus.jhu.edu/data/mortality. Accessed: 2020-6-4. 
29. Ido Amit, Manuel Garber, Nicolas Chevrier, Ana Paula Leite, Yoni Donner, Thomas 

Eisenhaure, Mitchell Guttman, Jennifer K Grenier, Weibo Li, Or Zuk, Lisa A Schubert, Brian 
Birditt, Tal Shay, Alon Goren, Xiaolan Zhang, Zachary Smith, Raquel Deering, Rebecca C 
McDonald, Moran Cabili, Bradley E Bernstein, John L Rinn, Alex Meissner, David E Root, 
Nir Hacohen, and Aviv Regev. Unbiased reconstruction of a mammalian transcriptional 
network mediating pathogen responses. Science, 326(5950):257–263, October 2009. 

30. Pierson, E., Yau, C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene 
expression analysis. Genome Biol 16, 241 (2015).  

31. Wang, B., Zhu, J., Pierson, E. et al. Visualization and analysis of single-cell RNA-seq data by 
kernel-based similarity learning. Nat Methods 14, 414–416 (2017).  

32. Dylan Kotliar, Adrian Veres, M Aurel Nagy, Shervin Tabrizi, Eran Hodis, Douglas A Melton, 
and Pardis C Sabeti. Identifying gene expression programs of cell-type identity and cellular 
activity with single-cell RNA-Seq. Elife, 8, July 2019. 

33. Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, 
Chongli Qin, Augustin Žídek, Alexander W R Nelson, Alex Bridgland, Hugo Penedones, Stig 
Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli, David T Jones, David Silver, 
Koray Kavukcuoglu, and Demis Hassabis. Improved protein structure prediction using 
potentials from deep learning. Nature, 577(7792):706–710, January 2020. 

16

https://coronavirus.jhu.edu/data/mortality


   
 

  

34. Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh 
S Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: A benchmark for molecular machine 
learning. March 2017. 

35. Joseph Gomes, Bharath Ramsundar, Evan N Feinberg, and Vijay S Pande. Atomic 
convolutional networks for predicting Protein-Ligand binding affinity. March 2017. 

36. Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer 
Wortman Vaughan. A theory of learning from different domains. Mach. Learn., 79(1):151– 
175, May 2010. 

37. Judy Hoffman, Erik Rodner, Jeff Donahue, Trevor Darrell, and Kate Saenko. Efficient learning 
of domain-invariant image representations. January 2013. 

38. Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via 
invariant feature representation. In International Conference on Machine Learning, pages 10–
18, February 2013. 

39. Han Zhao, Remi Tachet des Combes, Kun Zhang, and Geoffrey J Gordon. On learning 
invariant representation for domain adaptation. January 2019. 

40. Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for Large-Scale 
sentiment classification: A deep learning approach. January 2011. 

41. Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, 
François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of 
neural networks. J. Mach. Learn. Res., 17(1):2096–2030, January 2016. 

42. M D Luecken, M Büttner, K Chaichoompu, A Danese, M Interlandi, M F Mueller, D C Strobl, 
L Zappia, M Dugas, M Colomé-Tatché, and F J Theis. Benchmarking atlas-level data 
integration in single-cell genomics. May 2020. 

43. W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects in microarray 
expression data using empirical bayes methods. Biostatistics, 8(1):118–127, January 2007. 

44. Uri Shaham, Kelly P Stanton, Jun Zhao, Huamin Li, Khadir Raddassi, Ruth Montgomery, and 
Yuval Kluger. Removal of batch effects using distribution-matching residual networks. 
Bioinformatics, 33(16):2539–2546, August 2017. 

45. Krzysztof Polan´ski, Matthew D Young, Zhichao Miao, Kerstin B Meyer, Sarah A Teichmann, 
and Jong-Eun Park. BBKNN: fast batch alignment of single cell transcriptomes. 
Bioinformatics, 36(3):964–965, 08 2019. 

46. Nikolas Barkas, Viktor Petukhov, Daria Nikolaeva, Yaroslav Lozinsky, Samuel Demharter, 
Konstantin Khodosevich, and Peter V Kharchenko. Joint analysis of heterogeneous single-cell 
RNA-seq dataset collections. Nat. Methods, 16(8):695–698, August 2019. 

47. Laleh Haghverdi, Aaron T L Lun, Michael D Morgan, and John C Marioni. Batch effects in 
single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. 
Biotechnol., 36(5):421–427, June 2018. 

48. Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep gener- 
ative modeling for single-cell transcriptomics. Nat. Methods, 15(12):1053–1058, December 
2018. 

17



   
 

  

49. Mohammad Lotfollahi, Mohsen Naghipourfar, Fabian Theis, and F. Wolf. Conditional out-of- 
sample generation for unpaired data using trvae. arXiv, 10 2019. 

50. Valentine Svensson, Adam Gayoso, Nir Yosef, and Lior Pachter. Interpretable factor models 
of single-cell RNA-seq via variational autoencoders. Bioinformatics, March 2020. 

51. Matthew Amodio, David van Dijk, Krishnan Srinivasan, William S Chen, Hussein Mohsen, 
Kevin R Moon, Allison Campbell, Yujiao Zhao, Xiaomei Wang, Manjunatha Venkataswamy, 
Anita Desai, V Ravi, Priti Kumar, Ruth Montgomery, Guy Wolf, and Smita Krishnaswamy. 
Exploring single-cell data with deep multitasking neural networks. Nat. Methods, 
16(11):1139– 1145, November 2019. 

52. Bonnie Berger Brian Hie, Bryan Bryson. Efficient integration of heterogeneous single-cell 
transcriptomes using scanorama. Naure Biotechnology, 37(June):685–691, 2019. 

53. Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexi, 
William M Mauck, 3rd, Yuhan Hao, Marlon Stoeckius, Peter Smibert, and Rahul Satija. Com- 
prehensive integration of Single-Cell data. Cell, 177(7):1888–1902.e21, June 2019. 

54. Joshua D Welch, Velina Kozareva, Ashley Ferreira, Charles Vanderburg, Carly Martin, and 
Evan Z Macosko. Single-Cell multi-omic integration compares and contrasts features of brain 
cell identity. Cell, 177(7):1873–1887.e17, June 2019. 

55. Maren Büttner, Zhichao Miao, F Alexander Wolf, Sarah A Teichmann, and Fabian J Theis. A 
test metric for assessing single-cell RNA-seq batch correction. Nat. Methods, 16(1):43–49, 
January 2019. 

56. Ruben Chazarra-Gil, Stijn van Dongen, Vladimir Yu Kiselev, and Martin Hemberg. Flexible 
comparison of batch correction methods for single-cell RNA-seq using BatchBench. May 
2020. 

57. Krzysztof Polan´ski, Matthew D Young, Zhichao Miao, Kerstin B Meyer, Sarah A Teichmann, 
and Jong-Eun Park. BBKNN: fast batch alignment of single cell transcriptomes. 
Bioinformatics, 36(3):964–965, February 2020. 

58. Korsunsky, I., Millard, N., Fan, J. et al. Fast, sensitive and accurate integration of single-cell 
data with Harmony. Nat Methods 16, 1289–1296 (2019). 

59. Geoffrey E Hinton and Richard S Zemel. Autoencoders, minimum description length and 
helmholtz free energy. In J D Cowan, G Tesauro, and J Alspector, editors, Advances in Neural 
Information Processing Systems 6, pages 3–10. Morgan-Kaufmann, 1994. 

60. Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: a review and 
new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828, August 2013. 

61. Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative 
domain adaptation. February 2017. 

62. Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander 
Smola. A kernel two-sample test. J. Mach. Learn. Res., 13(Mar):723–773, 2012. 

63. Valentine Svensson. Droplet scRNA-seq is not zero-inflated. Nat. Biotechnol., 38(2):147–150, 
February 2020. 

18



   
 

  

64. Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and Susanne 
Saminger-Platz. Central moment discrepancy (CMD) for Domain-Invariant representation 
learning. February 2017. 

65. Werner Zellinger, Bernhard A Moser, Thomas Grubinger, Edwin Lughofer, Thomas 
Natschläger, and Susanne Saminger-Platz. Robust unsupervised domain adaptation for neural 
networks via moment alignment. Inf. Sci., 483:174–191, May 2019. 

66. Chao Chen, Zhihang Fu, Zhihong Chen, Sheng Jin, Zhaowei Cheng, Xinyu Jin, and Xian-
Sheng Hua. HoMM: Higher-order moment matching for unsupervised domain adaptation. 
December 2019. 

67. Behnam Gholami, Pritish Sahu, Ognjen Rudovic, Konstantinos Bousmalis, and Vladimir 
Pavlovic. Unsupervised Multi-Target domain adaptation: An information theoretic approach. 
October 2018. 

68. Rao, A., Barkley, D., França, G.S. et al. Exploring tissue architecture using spatial 
transcriptomics. Nature 596, 211–220 (2021). 

69. Methods and systems for determining gene expression profiles and cell identities from multi-
omic imaging data. U.S. Patent No. US20220180975A1, 2022. 

 
  

19



   
 

  

 

20



   
 

  

 
 
 
 

 

 

 

Part A:  

Evolution & Evolvability 
  

21



   
 

  

 
 

Paper: https://doi.org/10.1038/s41586-022-04506-6  

Code: https://github.com/1edv/evolution  

Data: https://bit.ly/EvolutionZenodo  

App: https://1edv.github.io/evolution/  

Nature Cover: https://www.nature.com/nature/volumes/603/issues/7901  

Contribution: First (and a corresponding) author 

22

https://doi.org/10.1038/s41586-022-04506-6
https://github.com/1edv/evolution
https://bit.ly/EvolutionZenodo
https://1edv.github.io/evolution/
https://www.nature.com/nature/volumes/603/issues/7901


   
 

  

The evolution, evolvability, and engineering of gene regulatory DNA 

 

Eeshit Dhaval Vaishnav1,2,11§, Carl G. de Boer3,8,11§, Jennifer Molinet4,5, Moran Yassour6,7,8, Lin 

Fan2, Xian Adiconis8,9, Dawn A. Thompson2, Joshua Z. Levin8,9, Francisco A. Cubillos4,5, & Aviv 

Regev8,10,12§ 

1Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

2Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 

3School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada 

4Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, 9170022, 

Chile. 

5ANID – Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio). Santiago, 

7500574, Chile. 

6Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel 

7The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, 

Jerusalem 91904, Israel 

8Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 

9Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 

10Howard Hughes Medical Institute and Koch Institute of Integrative Cancer Research, Department of Biology, 

Massachusetts Institute of Technology, Cambridge, MA 02140 USA  

11These authors contributed equally 

12Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA 

§Correspondence should be addressed to: edv@mit.edu, carl.deboer@ubc.ca, aviv.regev.sc@gmail.com  

  

23

mailto:edv@mit.edu
mailto:carl.deboer@ubc.ca
mailto:aregev@broadinstitute.org


   
 

  

SUMMARY 

Mutations in non-coding regulatory DNA sequences can alter gene expression, organismal 

phenotype, and fitness1–3. Constructing complete fitness landscapes, mapping DNA sequences to 

fitness, is a long-standing goal in biology, but has remained elusive because it is challenging to 

generalize reliably to vast sequence spaces4–6,8-17. Here, we construct sequence-to-expression 

models that capture fitness landscapes and use them to decipher principles of regulatory evolution7. 

Using millions of randomly-sampled promoter DNA sequences18 and their measured expression 

levels in the yeast Saccharomyces cerevisiae, we learn deep neural network models that generalize 

with excellent prediction performance, and enable sequence design for expression engineering19. 

Using our models, we study expression divergence under genetic drift and strong-selection weak-

mutation regimes20-23 to find that regulatory evolution is rapid and subject to diminishing returns 

epistasis, that conflicting expression objectives in different environments constrain expression 

adaptation, and that stabilizing selection on gene expression leads to the moderation of regulatory 

complexity. We present an approach for using our models to detect signatures of selection on 

expression from natural variation in regulatory sequences and use it to discover an instance of 

convergent regulatory evolution. We assess mutational robustness, finding that regulatory 

mutation effect sizes follow a power law, characterize regulatory evolvability, visualize promoter 

fitness landscapes, discover evolvability archetypes and highlight the mutational robustness of 

natural regulatory sequence populations24-25. Our work provides a general framework for 

addressing fundamental questions in regulatory evolution. 
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RESULTS 

Models predict expression from sequence 

We begin by building models that predict gene expression given an 80 bp promoter DNA sequence. 

To train these models, we measure the expression driven by promoter sequences using an approach 

we previously described26, where 80 bp of DNA are embedded within a promoter construct and 

the associated expression is assayed in the S. cerevisiae (Methods). We clone promoter sequences 

into an episomal low copy number YFP expression vector, transform them into yeast, culture the 

yeast in the desired media, sort the yeast into 18 expression bins, and sequence the promoters 

present from the yeast in each bin to estimate expression (Methods and Supplementary 

Information). To avoid biases5 towards extant sequences, we measured the expression of 80 bp 

random DNA sequences, where each base is randomly sampled from the four bases. For training 

data, we measured each of >30 million sequences in complex media (YPD, Methods) and >20 

million sequences in defined media (SD-Ura, synthetic defined lacking uracil). Using the resulting 

pairs of sequences and measured YFP expression levels, we trained convolutional neural network 

models (“convolutional models”) that predict expression from sequence in each medium 

(Methods).  

 

To show that the learned convolutional models generalize to new sequences, we predicted the 

expression for several sets of test sequences not seen during model training, and compared them 

to their experimentally measured levels (Methods). For these test sequences, we quantified 

expression in independent experiments using the same experimental approach and in the same 

media. Our convolutional models had excellent prediction performance on native yeast promoter 
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test sequences (Pearson’s r = 0.960, P < 5*10-324, n=61,150; Fig. 1b), and on multiple other test 

sets in both complex and defined media (Extended Data Fig. 1). 

These results represent a ~45% decrease in error compared to the performance of biochemical 

models we previouly26 trained on the same data (complex media; native yeast promoter test 

sequences; Supplementary Notes and Methods). Other published genomic model architectures 

adapted to and trained using our data also had excellent performance (Supplementary Fig. 4a), 

highlighting the predictive power of deep neural network models trained using our large-scale 

data. Finally, the expression measurements were highly correlated for the same sequences between 

the two media (Pearson’s r = 0.978, Extended Data Fig. 2a) and models trained on defined 

medium predicted expression in complex medium well (Pearson’s r = 0.966, Extended Data Fig. 

2b). However, for some sequences we expect differences between growth conditions (below).  

 

Models enable expression engineering 

We leveraged the high predictive performance of our convolutional models for a synthetic biology 

application of gene expression engineering, by using model predictions as a ‘fitness function’ for 

genetic algorithms (GA) to design sequences with extreme expression values. We initialized the 

GA with a population of 100,000 randomly-generated samples from the sequence space, and 

simulated 10 generations to maximize (or minimize) the expression output from the convolutional 

model (Methods). We then synthesized the 500 sequences with the top predicted maximum (or 

minimum) expression levels and tested them experimentally. The GA-designed sequences drove, 

on average, more extreme expression than >99% of native sequences (99.6% for high expressing; 

99.3% for low), with ~20% of designed sequences yielding more extreme expression than any 
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native sequence tested (23.5% for high; 18.4% for low) (Fig. 1c). Thus, our sequence-to-

expression model can be used for gene expression engineering. 

 

Expression diverges under genetic drift 

We next assessed the evolutionary malleability of expression under different evolutionary 

scenarios: random genetic drift, stabilizing selection, and directional selection for extreme 

expression levels (Fig. 2). In each case, we first simulated the scenario, using our convolutional 

model to predict the expression for each sequence, and then tested the model’s evolved sequences 

experimentally, where possible (Methods). 

 

We first simulated random genetic drift of regulatory sequences, with no selection on expression 

levels. We randomly introduced a single mutation in each random starting sequence, repeated this 

process for multiple consecutive generations, and used our convolutional model to predict the 

difference in expression between the mutated sequences in each trajectory relative to the 

corresponding starting sequence (Fig. 2a-c). Expression levels diverged as the number of 

mutations increased, with 32 mutations in the 80 bp region resulting in nearly as different 

expression from the original sequence as two unrelated sequences (Fig. 2b). We validated our 

results experimentally by synthesizing sequences with zero to three random mutations and 

measuring their expression in our assay (Methods). The experimental measurements closely 

matched our predictions in both complex (Fig. 2c) and defined (Extended Data Fig. 1e) media, 

both in expression change (Pearson’s r: 0.869 and 0.847, respectively; Extended Data Fig. 1h,i) 

and level (Pearson’s r: 0.973 and 0.963 respectively; Extended Data Fig. 1l,m).  
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Stabilizing selection tempers complexity 

Although gene regulatory networks often appear to be highly interconnected26,27, the sources of 

this regulatory complexity and how it changes with the turnover of regulatory mechanisms28 

remain unclear. We used our model to study the evolution of regulatory complexity in the context 

of stabilizing selection, which favors the maintenance of existing expression levels. We first 

quantified regulatory complexity, defined as 1 minus the Gini coefficient (a measure of inequality 

of continuous values within a population) of TF regulatory interaction strengths. For this, we used 

an interpretable biochemical model we previously developed26 (Methods) because it has 

parameters that explicitly correspond to TFs, and we can directly query their contributions to 

model predictions. Next, starting with native sequences whose regulatory complexity is either 

extremely high (many TFs with similar contributions to expression) or low (few TFs contribute 

disproportionately to expression) and spanning a range of expression levels, we introduced single 

mutations into each starting native sequence for each of 32 consecutive generations, identified the 

sequences that conserved the original expression level using the convolutional model, and selected 

one of them at random for the next generation. We then assessed the regulatory complexity of the 

evolved sequences. 

 

As random mutations accumulated, the regulatory complexity of sequences starting at both 

complexity extremes shifted towards moderate complexities (Fig. 2d, rightmost blue and orange), 

closer to the averages for both random and native sequences (Fig. 2d, greys). This suggests that 

stabilizing selection on expression leads to a moderation of regulatory complexity, resulting from 

gradual drift in the roles of the different regulators, such as an increase in complexity due to a 

decrease in the relative contribution of one predominant TF (e.g. Abf1p for AIF1), or a decrease 
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in complexity through smaller changes in a much larger number of sites (e.g. YDR476C; 

Supplementary Fig. 8). The overall distribution of regulatory complexity of native yeast 

promoters is similar to that of random sequences (Fig. 2d, grey boxes), suggesting that there is 

little selection on the regulatory complexity of native sequences in a single environment.  

 

Strong selection rapidly finds extrema 

To study the impact of directional selection on expression, we simulated the strong-selection weak-

mutation (SSWM) regime29 (Fig. 2e, Methods), where each mutation is either beneficial or 

deleterious (strong selection, with mutations surviving drift and fixing in an asexual population), 

and mutation rates are low enough to only consider single base substitutions during adaptive walks 

(weak mutation). Starting with a set of native promoter sequences, at each iteration (generation), 

for a given starting sequence of length L, we considered all of its 3L single-base mutational 

neighbors, used our convolutional model to predict their expression, and took the sequence with 

the largest increase (or separately, decrease) in expression at each iteration (generation) as the 

starting sequence for the next generation (Fig. 2e, Methods).  

 

Sequences that started with diverse initial expression levels rapidly evolved to high (or separately, 

low) expression, with the vast majority evolving close to saturating extreme levels within 3-4 

mutations in both the complex (Fig. 2f) and defined (Extended Data Fig. 1f) media. Sequences 

took diverse paths to evolve either high or low expression (Supplementary Fig. 7). We validated 

these trajectories experimentally for select series of sequences (Fig. 2g, Extended Data Fig. 1g), 

measuring the expression driven by synthesized sequences from several generations along 

29



   
 

  

simulated mutational trajectories for complex media (10,322 sequences from 877 trajectories) and 

defined media (6,304 sequences from 637 trajectories). We observed extreme expression within 

3-4 mutational steps, with high agreement between measured and predicted expression change 

(Extended Data Fig. 1j,k; Pearson’s r: 0.977 and 0.948, respectively) and expression levels 

(Extended Data Fig. 1n,o; Pearson’s r: 0.980 and 0.963) along the trajectories in both complex 

and defined media. Thus, cis-regulatory sequence evolution is rapid and subject to diminishing 

returns epistasis30. 

 

Opposing objectives constrain adaptation 

In contrast to the rapid evolution towards expression extremes, we found that evolution to satisfy 

two opposing expression requirements (one in each growth media) was more constrained. A 

concrete example is the expression of the URA3 gene: organismal fitness increases with increased 

URA3 expression in defined media lacking uracil, because Ura3p is required for uracil 

biosynthesis, but fitness decreases with increased URA3 expression in complex media containing 

5-FOA due to Ura3p-mediated conversion of 5-FOA to toxic 5-fluorouracil (Extended Data Fig. 

2c). To study this regime31, we started with a set of native promoter sequences (and separately, a 

set of random sequences) and used the convolutional model to simulate SSWM trajectories 

(Methods) that maximize the difference in expression between the two media (defined and 

complex). While the difference in expression increased with each generation (Extended Data Fig. 

2d,e), the vast majority of sequences achieved neither the maximal nor the minimal expression in 

either condition after 10 generations (Fig. 2h, Extended Data Fig. 2f), for both native and random 

starting sequences. The evolved sequences became enriched for motifs for TFs involved in nutrient 

sensing and metabolism, compared to the starting sequences (Extended Data Fig. 2g), suggesting 
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that the model is taking advantage of subtle differential activity of certain regulators between the 

two conditions to evolve condition specificity. Thus, while evolving a sequence to achieve a single 

expression optimum requires very few mutations, encoding multiple opposing objectives in the 

same sequence is more difficult, limiting expression adaptation. 

 

Transformers enable inference at scale 

We next turned to the evolution and evolvability of regulatory sequences in extant strains and 

species. This required us to predict expression for billions of sequences and, although our 

convolutional model had excellent predictive power, our implementation was limited in its 

scalability and incompatible with the Tensor Processing Units (TPUs), available to us for larger-

scale computational tasks (Methods). To enable large-scale expression prediction, we developed 

“transformer” models that used transformer encoders32 with other building blocks attempting to 

implicitly capture known aspects of regulation33 (Methods, Supplementary Fig. 12). The 

transformer models had ~20x fewer parameters than the convolutional models (Methods, 

Supplementary Information), predicted expression as well as the convolutional models 

(Extended Data Fig. 3), and better captured the propensity for expression to plateau under SSWM 

(Supplementary Fig. 19). The convolutional and transformer models had highly correlated 

predictions in both media (Supplementary Fig. 4e-h, Pearson’s r=0.967-0.985), and yielded 

equivalent conclusions from the analyses of genetic drift, directional selection and conflicting 

objectives (Extended Data Fig. 3, Supplementary Fig. 17-18).  
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The Expression Conservation Coefficient 

We applied our sequence-to-expression transformer model to detect evidence of selective 

pressures on natural regulatory sequences, inspired by the way in which the ratio of non-

synonymous (“non-neutral”) to synonymous (“neutral”) substitutions (dN/dS) in protein coding 

sequences is used estimate the strength and mode of natural selection34. By analogy2,35, for 

regulatory sequences2, we used the transformer model to quantitatively assess the impact of 

naturally occurring regulatory genetic variation on expression, compared to that expected with 

random mutations, and summarized this with an Expression Conservation Coefficient (ECC) 

(Methods). To compute the ECC, we compared, for each gene’s promoter, the standard deviation 

of the expression distribution predicted by the transformer model for a set of naturally varying 

orthologous promoters (B) to the standard deviation of the expression distribution predicted for a 

matched set of random variation introduced to that promoter (C; related to the mutational 

variance36; Fig. 3a). We define the ECC for a gene as log(c/B), such that a positive ECC indicates 

stabilizing selection on expression (lower variance in native sequences than expected by chance), 

a negative ECC indicates diversifying (disruptive) selection or local adaptation (greater variance 

in native sequences), and values near 0 suggest neutral drift.  

 

We calculated the ECC for 5,569 S. cerevisiae genes using the natural variation observed across 

over 4.73 million orthologous promoter sequences from the 1,011 S. cerevisiae isolates37 in the -

160 to -80 regions (with respect to the Transcription Start Site (TSS)), a critical location for TF 

binding38 and determinant of promoter activity26 (Fig. 3a,b, Supplementary Table 1), using our 

transformer model to predict the expression for each sequence. To assess the robustness of the 

ECC values, we recomputed the ECC using multiple published sequence-to-expression model 
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architectures that we adapted and trained using our data and found that models with similarly high 

predictive power resulted in similar ECC values (Supplementary Fig. 4b-d, 5g).  

 

Over 70% of promoters had positive ECCs, suggesting stabilizing selection (and conserved 

expression) (binomial test P < 10-215) (Fig. 3b), consistent with previous reports based on direct 

measurements of gene expression39. Genes with high ECCs were enriched in highly-conserved 

core cellular processes (e.g., RNA and protein metabolism) (Fig. 3b, Supplementary Table 2), 

and those with low ECCs were most enriched in processes related to carboxylic acid and alcohol 

metabolism (Fig. 3b, Supplementary Table 2), potentially reflecting adaptation of fermentation 

genes to the diverse environments of these isolates37.  

 

The ECC discovers convergent evolution 

A striking example of predicted positive selection is the promoter of CDC36 (NOT2; ECC= -2.138, 

Fig. 3b), which has common natural alleles with either low or high (predicted) expression across 

the isolates (Fig. 3c). Analysis of CDC36 promoter sequences (Methods) suggests that low-

expression evolved at least twice independently, resulting in two distinct variants with reduced 

expression (Fig. 3c, allele 1 and 2). Interrogation with the biochemical model26 to identify factors 

impacting these expression differences (Extended Data Fig. 4a) suggested that both low-

expression alleles are explained by disruption of the same binding site for Upc2p, an ergosterol 

sensing TF (Fig. 3c). To validate this, we restored the putative Upc2p binding site in a strain (WE), 

where it is otherwise disrupted, and measured expression levels by qPCR and growth upon 

changing carbon source (Methods). Restoration of the Upc2p binding site increased actual 
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expression, confirming the model’s prediction (Pearson's r=0.96, p=0.039, n=4; Fig. 3d). We 

hypothesized that these variants could alter the rate of transcriptional reprogramming when 

changing environments via Cdc36p-regulated mRNA turnover40. Indeed, restoration of the Upc2 

binding site reduced the strains’ lag time to growth when switching carbon sources (Fig. 3d, right; 

Methods), and they grew to a higher culture density (Supplementary Fig. 10). Thus, convergent 

evolution of the CDC36 promoter, discovered using the ECC, independently produced two alleles 

that result in similar perturbations to TF binding, expression, and growth. 

 

ECC vs. cross-species RNAseq and fitness 

ECC values were consistent with expression conservation as measured for yeast orthologs across 

clades at short (Saccharomyces), medium (Ascomycota), or long (mammals) evolutionary scales 

(Extended Data Fig. 4b). In Saccharomyces, 1:1 orthologs with conserved expression levels 

across species (as measured by RNA-seq41) had significantly higher ECC (computed from the 

1,011 yeast isolates) than genes whose expression was not conserved (two-sided Wilcoxon rank-

sum P = 3.1*10-4, Extended Data Fig. 4b, bottom left, Methods). Next, we performed RNA-seq 

across 11 Ascomycota yeast species (Methods), finding that 1:1 orthologs with conserved 

expression across Ascomycota had significantly higher ECC values (Extended Data Fig. 4b, 

bottom center, P = 1.16*10-6). Finally, the 1:1 orthologs of genes with high ECC values in the 

1,011 S. cerevisiae isolates also had more conserved expression within mammals42 (Extended 

Data Fig. 4b, bottom right, P = 1.07*10-4, Methods). Thus, while 1:1 yeast-mammal orthologs 

are likely critical to an organism’s fitness, only a subset of these may be under stabilizing selection 

on expression, and this subset tends to be under such selection in both yeasts and mammals. Thus, 
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the ECC quantifies stabilizing selection on expression in yeast and may predict stabilizing 

selection on orthologs’ expression in other species. 

 

Genes with higher ECCs also had a stronger effect on fitness in S. cerevisiae upon changing their 

expression level. We interrogated the total variation of previously measured expression-to-fitness 

curves11 to calculate a ‘fitness responsivity’ score that captures the dependence of fitness on 

expression (Extended Data Fig. 5, Methods). Fitness responsivity was significantly positively 

correlated with the ECC (Supplementary Fig. 2e, P = 0.003, Spearman ρ = 0.326). Fitness 

responsivity was not associated with regulatory sequence divergence per se across the promoter 

sequence (as estimated by mean Hamming distance among orthologous promoters, Methods, 

Supplementary Fig. 2d, P = 0.46, Spearman ρ = 0.083). Thus, while stabilizing selection on gene 

expression (as captured by the ECC) can shape the types of mutations that accumulate in the 

population, it may have little effect on the overall rate at which mutations accumulate in promoter 

regions within populations, which has been previously used to test for evidence of selection. 

 

Stabilizing selection shapes robustness 

While a gene’s ECC (computed from the natural genetic variation in regulatory DNA) represents 

the imprint of its evolutionary history, its mutational robustness (assessed directly from the gene’s 

promoter sequence) should describe how future mutations would affect its expression43. Across all 

native yeast promoters, the magnitude of expression changes predicted by the transformer model 

due to single base-pair mutations follows a power law with an exponent of 2.252 (standard error 

of fit σ = +/- 0.002, P = 2.4*10-263), such that a small number of mutations have an outsized effect 

35



   
 

  

on expression (~10% of mutations account for ~50% of the changes in expression, Extended Data 

Fig. 4d). In individual genes, the distribution can vary substantially (below).  

 

For a given promoter sequence, we defined the mutational robustness of a sequence length L, as 

the percent of its 3L single nucleotide mutational neighbors predicted by the transformer model to 

result in a negligible change in expression (Extended Data Fig. 4c, Methods), following previous 

definitions of mutational robustness25,43. The mutational robustness of a gene’s promoter sequence 

was positively correlated with the gene’s fitness responsivity (Supplementary Fig. 2f, Spearman 

ρ = 0.476, P = 8.18*10-6), suggesting that fitness-responsive genes have evolved more mutationally 

robust regulatory sequences. Mutational robustness, which, unlike the ECC, is computed for single 

sequences without a set of variants across a population, was also correlated to the ECC 

(Supplementary Fig. 2g, Spearman ρ = 0.515, P = 9.99*10-7). Similarly, the promoter sequences 

of yeast genes with conserved expression across Saccharomyces strains41, Ascomycota species, or 

mammals42 had higher mutational robustness (P = 8.4*10-3, 6.5*10-5, and 0.00377, respectively, 

two-sided Wilcoxon rank-sum test).  

Thus, genes whose expression levels are under stabilizing selection have regulatory sequences that 

tend to be more robust to the impact of mutations, which may reflect their history and constrain 

their future.  

 

Fitness landscapes in evolvability space 

Mutational robustness enables the exploration of novel genotypes that could subsequently facilitate 

adaptation and thus promote evolvability, the ability of a system to generate heritable phenotypic 
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variation25. To characterize regulatory evolvability, we extended our description of mutational 

robustness by representing each sequence using a sorted vector of expression changes (predicted 

by the transformer model) that are accessible through single nucleotide mutations (Fig. 4a, left, 

Methods). This ‘evolvability vector’ captures the capacity for changes in genotype to alter 

expression phenotype, in line with previous definitions of evolvability25.  

 

We next asked whether regulatory evolvability vectors fell into distinct classes by identifying 

evolvability ‘archetypes’. Archetypes44 represent the extremes of canonical patterns, such that the 

evolvability vector of each individual sequence can be represented by its similarity to each of 

several archetypes representing these extremes. Applying this paradigm, we used our transformer 

model to compute evolvability vectors for a new random sample of a million sequences and then 

learned a two-dimensional representation of these evolvability vectors (referred to as the 

‘evolvability space’) using an autoencoder45 (Fig. 4a, right, Methods). This archetypal 

evolvability space, that is bounded by a simplex whose vertices represent evolvability archetypes 

(Fig. 4a, right, Methods) and where the evolvability vector of each sequence is a single point, 

allows us to effectively visualize arbitrarily large sequence spaces in two dimensions.  

 

Three archetypes captured most of the variation in evolvability vectors (Extended Data Fig. 6a,b; 

Methods), corresponding to local expression minimum (Aminima), local expression maximum 

(Amaxima), and malleable expression (Amalleable) (Fig. 4b). Aminima and Amaxima correspond to 

sequences where most 3L mutational neighbors do not change expression, and the ones that do, 

increase it (for Aminima) or decrease it (for Amaxima). Conversely, for Amalleable sequences, most 3L 

mutational neighbors change expression and are equally likely to decrease or increase it (Fig. 4b). 
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In addition to these three archetypes, mutationally robust sequences were present as a central cleft 

in the evolvability space (Fig. 4b,c; “robust”). The evolvability space also distinguishes native 

regulatory sequences by their associated expression level (Fig. 4d), with intermediate expression 

more likely to be near the malleable archetype (Amalleable) and depleted near the robustness cleft 

(Fig. 4d, Supplementary Information).  

 

The location of sequences in evolvability space reflects the selective pressures operating on the 

sequence. Sequences under strong stabilizing selection on gene expression tend to be located far 

away from the malleable archetype: there is a strong negative correlation between malleable 

archetype proximity and mutational robustness (Extended Data Fig. 6c,e; Spearman's ρ = -0.746, 

P = 1.97*10-15), the ECC (Extended Data Fig. 6d,f,g; ρ = -0.596, P = 5.4*10-9), fitness 

responsivity (Extended Data Fig. 6h; ρ = -0.413, P = 1.4*10-4), and expression conservation 

across species as measured by RNA-seq (Saccharomyces: P = 0.000251, Ascomycota: P = 

0.00002, Mammals: P = 0.00114; two-sided Wilcoxon rank-sum test).  

 

To visualize promoter fitness landscapes in two dimensions we combined our sequence-to-

expression transformer model with previously measured expression-to-fitness curves11, and 

integrated them with the two-dimensional archetypal evolvability space (Fig. 4e, Extended Data 

Fig. 7, Methods). Unlike prior visualizations of fitness landscapes, which group sequences by 

their sequence similarity, here, sequences are arranged by the similarity in their evolvability. This 

approach effectively visualizes arbitrarily large sequence spaces in two-dimensions, as well as 

groups sequences by their evolutionary properties. This addresses the challenges otherwise posed 

by sequence similarity-based landscapes since highly similar regulatory sequences can have 
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different functional properties (e.g., due to a loss of a TF binding site), while very different 

sequences can be functionally similar (e.g., due to shared TF binding sites). When organismal 

fitness is available for a particular gene and overlaid on the landscape (Fig. 4e, Extended Data 

Fig. 7), the resulting patterns depend on both the condition-specific sequence-to-expression 

function (e.g., governing color (fitness) through predicted expression, and embedded position, 

through evolvability) and the gene- and condition-specific expression-to-fitness functions.  

 

Finally, we studied how natural yeast sequences explored evolutionary space, by placing the 

evolvability vectors of each of set of orthologous promoters of the 1,011 sequenced S. cerevisiae 

isolates37 in the archetypal evolvability space. When a gene’s promoter from one strain is near the 

malleable archetype, its orthologs in the other strains tended to broadly distribute in the 

evolvability space (Extended Data Fig. 6i), but avoid the robustness cleft (e.g., the DBP7 

promoter from strain S288C; Fig. 4f). Conversely, when a promoter is near the robustness cleft 

(e.g., the UTH1 promoter from S288C), so are its orthologs (Fig. 4g, Extended Data Fig. 6i). 

Using in silico mutagenesis to interpret our model, we found that the DBP7 promoter is particularly 

malleable partly as a result of an intermediate affinity Rap1p binding site, where the most impactful 

mutations increased or decreased the Rap1p affinity for this site, impacting expression (Extended 

Data Fig. 8a). By contrast, the UTH1 promoter requires many sequential mutations, each of which 

has minimal impact individually, to reduce expression appreciably (Extended Data Fig. 8b). This 

could reflect the ways in which stabilizing selection constrains evolvability: promoters that are not 

under strong stabilizing selection explore expression space more freely and can quickly adapt to a 

new expression optimum, since the population likely already contains multiple alleles that achieve 
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diverse expression levels (e.g. Fig. 4f). Interestingly, many of the native sequences in S. cerevisiae 

are near the robustness cleft (Fig. 4h). 

Thus, the evolvability vector, which can be computed using our model directly for any sequence 

(without any population genetics data), encodes information about a sequence’s evolutionary 

history and potential futures.  

 

DISCUSSION 

Here, we presented a framework that addresses fundamental questions in the evolution and 

evolvability of regulatory sequences2,25. Our models, developed using a combination of large scale 

random sequence libraries, sensitive reporter assays and deep learning (Methods), are useful as 

“oracles” for model-guided biological sequence design19, and answering important questions in 

the study of fitness landscapes4–6, evolutionary malleability of expression and its variation across 

strains and species2, mutational robustness43, and evolvability25. The framework presented here 

will help advance synthetic biology, cell and gene therapy, and metabolic engineering in addition 

to the study of evolution. 

 

Previous studies suggested that evolution favors more complex regulatory solutions46, but we 

showed that if stabilizing selection acts only on expression, regulatory complexity extremes 

gradually move towards the moderate complexity levels observed in native and random sequences 

(Fig. 2d). This supports a model where most extant regulatory sequences evolved by sampling 

constraint-satisfying solutions in proportion to their frequency in the sequence space, without 

specific consideration of the solution’s complexity. 
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In our study, evolving condition-specificity in a promoter sequence was much slower than simply 

modifying the expression level. Some yeast genes achieve condition-specificity by including 

multiple binding sites for condition-responsive TFs. For instance, the GAL1-10 Upstream 

Activating Sequence contains multiple binding sites for the galactose-responsive Gal4, which are 

conserved across millions of years, suggesting an ancient origin47. Because the size of the 

regulatory region restricts the number of TF binding site locations, including more TFs and more 

regulatory sequences per gene (e.g. enhancers) may be required for more complex regulatory 

programs observed in higher eukaryotes48.  

 

 

The dN/dS ratio has been used extensively to characterize the evolutionary rates of protein coding 

genes34, and we developed an analogous2,35 coefficient, the ECC, for detecting evidence of 

selection on expression from natural variation across multiple orthologous regulatory sequences 

in strains of one species. The ECC complements and extends existing measures of expression 

conservation, since it integrates across the regulatory sequence and is not limited to specific TFs 

or binding motifs, does not require additional experiments to test the functions of mutations for 

each regulatory region, and does not rely on detecting non-uniformity in mutation distributions.  

 

Complementing the ECC, mutational robustness as calculated with our model is predictive of 

selective pressures on individual sequences (Supplementary Fig. 2f-g). While we find that strong 

constraint on the function of regulatory sequences can shape them to be robust to future mutations, 

it is unlikely that robustness itself is the selected trait, since increased robustness to future 

mutations is likely to be of little marginal benefit43. Instead, this may reflect a secondary benefit 
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of having evolved decreased expression noise49,50, or another as-yet-unknown mechanism. It may 

also reflect the fact that the sequences of some ancestral promoters may be similar to the mutational 

neighbors of extant sequences, and, if selective constraints on expression have remained stable, 

these ancestral and extant sequences likely have similar expression levels.  

 

Based on our model-derived evolvability vectors, sequences spanned an evolvability spectrum 

from robust to malleable (Fig. 4c-d,f-h), and for native regulatory sequences, the magnitudes of 

accessible mutation effects follows a power law. Evolvability vectors also help visualize fitness 

landscapes4 (Fig. 4e, Extended Data Fig. 7) and future work can further improve our 

understanding of their topography4,5. 

 

Our sequence-to-expression models are currently limited by regulatory region and species. For 

example, sequence mutations that affect other regulatory mechanisms (e.g., genomic context, 

mRNA processing and degradation, regulation by RNA-binding proteins, translational efficiency) 

can compensate for those that affect transcription. While our models emulated the biological 

process of our experimental system, as demonstrated by their excellent predictive power, future 

interpretability studies will shed further light on molecular mechanisms. Finally, for multicellular 

organisms, selection acts simultaneously on expression levels in many different cell types and 

environments. As models of gene regulation are created for other species, environments, and 

regulatory regions, our framework will help provide further insights into regulatory evolution.  
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FIGURES  

 
Fig. 1 | The evolution, evolvability, and engineering of gene regulatory DNA.  
a, Project overview. b, Prediction of expression from sequence using the model. b, Predicted (x 
axis) and experimentally measured (y axis) expression in complex media (YPD) for native yeast 
promoter sequences. Pearson’s r and associated two-tailed p-values are shown; dashed line: line 
of best fit. c, Engineering extreme expression values beyond the range of native sequences using 
a genetic algorithm (GA) and the sequence-to-expression model. Normalized kernel density 
estimates of the distributions of measured expression levels for native yeast promoter sequences 
(grey), and sequences designed (by the GA) to have high (red) or low (blue) expression.  
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Fig. 2 | The evolutionary malleability of gene expression.  
a-c, Expression divergence under genetic drift. a. Simulation procedure. b, Predicted expression 
divergence. Distribution of the change in predicted expression (y axis) for random starting 
sequences (n=5,720) at each mutational step (x axis) for simulated trajectories. Silver bar: 
expression differences between unrelated sequences. c, Experimental validation. Distribution of 
measured (light grey) and predicted (dark gray) changes in expression in complex media (y axis) 
for synthesized randomly-designed sequences (n=2,983) at each mutational step (x axis). d, 
Stabilizing selection on gene expression leads to moderation of regulatory complexity extremes. 
Regulatory complexity (y axis) of sequences from sequential mutational steps (x axis) under 
stabilizing selection to maintain the starting expression levels, where the regulatory interactions 
of starting sequences are complex (blue; n=192) or simple (orange, n=172). Right bars: 
regulatory complexity for native (dark gray) and random (light gray) sequences. e-g, Sequences 
under strong-selection weak-mutation (SSWM) can rapidly evolve to expression optima. e. 
Simulation procedure. f, Predicted expression evolution. Distribution of predicted expression 
levels (y axis) in complex media at each mutational step (x axis) for trajectories favoring high 
(red) or low (blue) expression, starting with native promoter sequences (n=5,720). g, 
Experimental validation. Measured expression distribution in complex media (y axis) for the 
synthesized sequences (n=10,322 sequences; 877 trajectories) at each mutational step (x axis), 
favoring high (red) or low (blue) expression. Axis scales differ due to variation in measurement 
procedure (Supplementary Information). h, Competing expression objectives constrain 
expression adaptation. Distribution of predicted expression (y axis) in complex (blue) and 
defined (red) media at each mutational step (x axis) for a starting set of native promoter 
sequences (n=5,720) optimizing for high expression in defined (red) and simultaneous low 
expression in complex (blue) media. (b-d,f-h) Midline: median; boxes: interquartile range; 
whiskers: 5th and 95th percentile range. 
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Fig. 3 | The Expression Conservation Coefficient (ECC) detects signatures of stabilizing 
selection on gene expression using natural genetic variation in regulatory DNA. a, ECC 
calculation from 1,011 S. cerevisiae genomes37. b, ECC distribution for S. cerevisiae genes. 
Frequency distribution of ECC values (x axis). Dashed line separates regions corresponding to 
disruptive/positive selection (left) and stabilizing selection (right). GO terms enriched by the 
ECC ranking are shown. Arrowhead: ECC value for the CDC36 promoter sequence. c, 
Convergent regulatory evolution in the CDC36 promoter. Predicted expression (x axis, left bar 
plot) and associated number of strains (x axis, right bar plot) of all alleles among the analyzed 
CDC36 promoter sequence within 1,011 yeast isolates, along with an alignment of their Upc2p 
binding site sequences (left; Upc2p binding motif below). Red vertical lines: two independently 
evolved low-expressing alleles. Grey vertical boxes: key positions in the Upc2p motif with single 
nucleotide polymorphisms. d, Validation of CDC36 promoter allele expression and organismal 
phenotype. Strains (y axis) with different Upc2p binding site alleles for both model-predicted 
CDC36 expression (left; predicted on -170:-90 region to capture entire Upc2p binding site), 
measured CDC36 expression (middle), and lag phase duration (right). Points: biological 
replicates (n=3); bars/vertical lines: means. Bar color: strain background. Student’s t-test p-
values, unpaired, equal variance, one-sided (expression, WE WT vs. C23 p=0.044, C07 
p=6.69*10-3) or two-sided (lag phase, WE WT vs. C23 p=1.34*10-4, C07 p=2*10-4); *p<0.05; 
**p<0.01; ***p<0.001.  
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Fig. 4 | The evolvability vector captures fitness landscapes.  
a, Characterizing regulatory evolvability by computing an evolvability vector. Left and middle: 
Generating evolvability vectors for a sequence. Right: training an autoencoder with evolvability 
vectors to generate a 2D representation to visualize sequences in archetypal evolvability space. 
b, Evolvability archetypes discovered by the autoencoder. Left: Evolvability vectors of the rank 
ordered (x axis) predicted change in expression (y axis) for native sequences closest to each of 
the malleable (green), maxima (red) or minima (blue) archetypes and the ‘robustness cleft’ 
(black). Right: all native yeast (S. cerevisiae S288C) promoter sequences (grey points) projected 
onto the archetypal evolvability space by their evolvability vectors. Evolvability archetypes 
(colored circles) and their closest native sequences (s1-s4 as on left) are marked. c,d, Evolvability 
space captures mutational robustness and expression levels. Evolvability vectors (points) of all 
native yeast promoter sequences projected onto the evolvability space (archetypes are large 
colored circles, as in b) and colored by mutational robustness (c) or predicted expression levels 
(d). e, ABF1 promoter fitness landscape. Evolvability vectors of promoter sequences projected 
onto the evolvability space and colored by computed fitness (color, Methods). f,g, Malleable 
promoter sequences dynamically traverse the evolvability space. Evolvability vector projections 
of native sequences (points) from all 1,011 S. cerevisiae isolates. Red points: natural promoter 
sequence variants for DBP7, the promoter closest to the malleable archetype (f) and for UTH1, 
the promoter closest to the robustness cleft (g). h, The robustness of native promoter sequences. 
Density (color) of all native yeast promoter sequences when their evolvability vectors are 
projected onto the evolvability space.   

48



   
 

  

METHODS 

Experimental measurement of sequence-expression pairs using a Sort-seq strategy 

We experimentally measured expression using a Sort-seq2,3,51–59 strategy called the Gigantic 

Parallel Reporter Assay (GPRA) we previously described26 (Supplementary Fig. 1). Briefly, for 

each set of expression measurements mentioned, random or designed single stranded 

oligonucleotides were ordered from IDT (random; Supplementary Table 3) or Twist Biosciences 

(designed; sequences on GEO; accession GSE163045), cloned into the promoter of a Yellow 

Fluorescent Protein (YFP) gene within a CEN plasmid (Addgene: 127546) as previously 

described26 and transformed into yeast (strain Y8205 for the training dataset of random sequences, 

and strain S288C::ura3 for all the rest of the sequences measured). The library is maintained in 

yeast as an episomal low copy number plasmid. It was previously reported that the expression 

measurements are highly correlated with expression levels as measured using integrated reporters 

(R2=0.97)54. Yeast were grown in continuous log phase, diluting as necessary to maintain an OD 

between 0.05 and 0.6 for 8-10 generations up until the time of harvest. Cells were harvested, 

washed once in ice cold PBS, and kept on ice in PBS until sorting. Cells were sorted into 18 

uniformly-sized expression bins covering the majority of the expression distribution. Post sort, 

cells were re-grown in SD-Ura until saturation, plasmids isolated, and sequencing libraries created 

sequenced with a 150 cycle NextSeq kit. For libraries with random 80 bp sequences, sequences 

were consolidated as previously described26. Reads from other (defined, non-random) libraries 

were aligned to the pre-defined sequences using Bowtie260, including only reads that perfectly 

matched a designed sequence. For each sequence, the expression level was the average of the 

expression bins in which it was observed, weighted by the number of times it was observed in each 

bin. These expression measurements were carried out separately in defined media lacking uracil 
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(SD-Ura (Sunrise Science, #1703-500)) and complex media (YPD: yeast extract, peptone, 

dextrose).  

 

Architecture of the convolutional model 

A deep neural network model20,21,23,61–69 with convolutional layers was constructed and used for 

designing sequences with high and low expression (Fig. 1c), and running evolutionary simulations 

under stabilizing selection, genetic drift, and SSWM (Fig. 2) for each condition. These designed 

sequences, whose expression was experimentally quantified (e.g. Fig. 1c and 2d,g), were designed 

using models with the following architecture:  

 

Input. The input is the DNA sequence (𝑠)  represented in one-hot encoding. Input Shape: 

(1, 110, 4) 

Convolution Block  

- For the forward and reverse strand, separately,  

o Strand-specific convolution layer 1. Kernel Shape: (1, 30, 4, 256) 

o Strand-specific convolution layer 2. Kernel Shape: (30, 1, 256, 256) 

- Concatenation of features from the forward and reverse strand 

- Convolution layer 3. Kernel Shape: (30, 1, 512, 256)  

- Convolution layer 4. Kernel Shape: (30, 1, 256, 256)  

- A bias term and a ReLU activation was added to each convolution layer in this block. 

Fully Connected Layers 

- Fully connected layer 1. Kernel Shape: (110*256, 256).  
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- Fully connected layer 2. Kernel Shape: (256, 256) 

- A bias term and a ReLU activation were added to each layer in this block. 

Output. Linear combination of the 256 features extracted as a result of all the previous operations 

on the sequence (𝑠) to generate the predicted expression (𝑒). 

 

Every fully connected layer was L2 regularized with a 0.0001 weight and had a dropout probability 

of 0.2.  

 

Training of the convolutional model 

For training, 20,616,659 random sequences for the defined medium and 30,722,376 random 

sequences for the complex medium (each to train a separate model) were used, along with their 

experimentally measured expression as described above. A mini-batch size of 1,024 was used for 

training and a mean squared error loss was optimized using the Adam optimizer70 with an initial 

learning rate of 0.0005. The model was trained for 5 epochs. Model architecture was written in 

TensorFlow71 1.14 using Python 3.6.7. The convolutional model used TensorFlow graphs and 

sessions in its implementation and was thus incompatible with the Tensor Processing Units 

(TPUs)72. These convolutional models (for both media) were used for all the predictions in Fig. 1 

and 2 and Extended Data Fig. 1, 2.  

 

The models were tested by predicting expression on sequences that the model had never seen 

before (Supplementary Fig. 21) that were measured in separate experiments, where the library 

was lower complexity (fewer sequences) than the experiments that generated the training data, 
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such that the expression associated with each sequence was measured with high accuracy (~100 

yeast cells per sequence on average). The test libraries included random, native (i.e. present in the 

yeast genome), and designed sequences.  

 

Training and evaluation were carried out on 4 Tesla M60 GPUs. All code for training and using 

the convolutional model is available here: 

https://github.com/1edv/evolution/tree/master/manuscript_code/model/gpu_only_model. 

 

Architecture of the transformer model 

A transformer model23,32,73 was developed to run inference faster than the convolutional model, as 

needed for the evolutionary analyses in Fig. 3 and 4. The transformer model had ~20x fewer 

parameters (~1.3 million, compared to the ~24 million parameters of the convolutional model) and 

was able to leverage Tensor Processing Units (TPUs) for computation. Transformer models are 

used in all the analyses in Fig. 3 and 4 and Extended Data Fig. 3-4, and 6-8. Benchmarking 

analyses and ablation analyses for the transformer model are available in the Supplementary 

Information. 

 

The deep transformer model has the following architecture (Supplementary Fig. 12): 

Input. The input is the DNA sequence (𝑠) represented in one-hot encoding. Input Shape: (110 , 4) 

Convolution Block. The convolution block is constructed in the following order (Supplementary 

Fig. 12b): 
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- Revere Complement Aware 1D Convolution. The forward and reverse strand are operated 

on separately with a convolutional kernel to generate strand specific sequence- 

environment interaction features. Kernel Shape: (30, 4, 256). 

- Batch Normalization 

- Rectified Linear Unit (ReLU) 

- Concatenation of Features from the forward and reverse strand 

- 2D Convolution: Convolve over the combined features from both the strands to capture 

interactions between strands. Kernel Shape: (2, 30, 4, 256)  

- Batch Normalization 

- ReLU 

- 1D Convolution. Kernel Shape: (30, 64, 64)  

- Batch Normalization 

- ReLU 

Transformer Encoder Blocks. Two transformer encoder blocks32,74,75 are constructed in the 

following order (Supplementary Fig. 12c): 

- Multi-Head Attention: 8 heads, capturing relations between features from different 

positions of (𝑠) to compute a representation for the features extracted from the convolution 

block from (𝑠).  

- Residual Connection 

- Layer Normalization 

- Feed Forward Layer with 8 units 

- Residual connection 

- Layer Normalization  
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Bidirectional LSTM layer. A bidirectional LSTM layer to capture the long-range interactions 

between different regions of the sequence with 8 units and 0.05 dropout probability. 

Fully Connected Layers (Supplementary Fig. 12d). Two Fully connected layers with 64 Hidden 

Units, each consisting of ReLU and Dropout (0.05 dropout probability). 

Output. Linear Combination of 64 features extracted as a result of all the previous operations on 

the sequence (𝑠) to generate the predicted expression (𝑒). 

 

Training of the transformer model 

20,616,659 random sequences (defined medium) and 30,722,376 random sequences (complex 

medium), along with their experimentally measured expression, were used to train separate models 

for each media. Model architecture was written in TensorFlow71 1.14 using Python 3.6.7 with 

multiple open source libraries (citations, where relevant, are included in code for them). A mini-

batch size of 1,024 was used for training and a mean squared error loss was optimized using a 

RMSProp optimizer76 with a learning rate of 0.001. The stopping criterion monitored was the ‘r-

squared’ value and the model was allowed to train for 10 epochs without improvement before 

stopping training. Training was carried out on a Google Cloud Tensor Processing Unit (TPU)72 

v3-8. Evaluation was carried out on 4 Tesla M60 GPUs. The model architecture visualization was 

generated using Netron 4.5.1. All processed data and models are publicly available on Zenodo at 

https://zenodo.org/record/4436477 and all code is available on GitHub at 

https://github.com/1edv/evolution/tree/master/manuscript_code/model/tpu_model. Transformer 

models are used in all the analyses in Fig. 3 and 4 and Extended Data Fig. 3-4, and 6-8.  
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The models were tested by predicting expression on test sequences that the model had never seen 

before (Supplementary Fig. 21) that were measured in separate experiments, which included 

random, native (i.e. present in the yeast genome), and designed sequences. To obtain expression 

measurements for each tested sequence that are more accurate than those from the high-complexity 

training data experiment, library complexity was limited such that each test promoter sequence is 

observed in ~100 yeast cells (Methods, Supplementary Information). 

 

Gene expression engineering using a genetic algorithm for sequence design 

To design77–80 new sequences with desired expression, a genetic algorithm (GA) was implemented 

with the distributed evolutionary algorithms in python (DEAP) package81. The mutation 

probability and the two-point crossover probability were set to 0.1 and the selection tournament 

size was 3. The initial population size was 100,000 and the GA was run for 10 generations. The 

convolutional model was used as the basis for the objective function for GA, which was maximized 

for high expression and minimized for low expression (maximizing negative predicted 

expression). The top 500 sequences were synthesized (by Twist Biosciences) and expression was 

measured experimentally using our reporter assay, as described above. 

 

Characterizing random genetic drift  

Simulation of random genetic drift (Fig. 2a) was initialized with a set of 5,720 random sequences, 

in generation 0. For each sequence in this starting set, a new single sequence was randomly picked 

from its 3L mutational neighborhood (the set of all sequences at a Hamming distance of 1 from a 

sequence of length L) and the difference in expression between the new sequence and the starting 
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sequence was calculated using the convolutional model (Fig. 2b). This was done for each starting 

sequence to get generation 1. Each subsequent generation n was produced by picking a single 

sequence randomly from the 3L mutational neighborhood of each sequence in the preceding 

generation n-1. The simulation was carried out for 40 generations. Simulations were also 

subsequently repeated with the transformer model (Extended Data Fig. 3f), yielding concordant 

results.  

 

For experimental validation, 1,000 random starting sequences were synthesized, introducing 

between one to three random mutations to these sequences. The expression levels of starting and 

mutated sequences were measured in both complex and defined media experimentally using our 

reporter assay. For 990 of these 1,000 starting sequences, experimental measurements were 

available for all three mutational distances. Additionally, 20 (median) separate single mutations 

were introduced to each of 196 native sequences, the sequences were synthesized, and their 

associated expression was measured similarly for both of these media; these were also included in 

the boxes for one mutational step in Fig. 2c and Extended Data Fig. 1e. 

 

Characterizing the regulatory complexity of a sequence 

To estimate the regulatory complexity82,83 of a sequence, the Gini coefficient of the regulatory 

interaction strengths for each TF was calculated. A new biochemical model was first trained with 

our defined media data to complement the existing one trained on complex media, using our 

published model architecture of TF binding and position-aware activity26 and the training 

procedure previously described26 (Supplementary Notes). The regulatory interaction strength was 
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then individually calculated for each regulator by setting the concentration parameter for that TF 

(individually) to 0 in the learned model, and the biochemical model was used to quantify the 

resulting change in expression, as previously described26. The resulting vector of interaction 

strengths was used to calculate a Gini coefficient for each sequence, separately for the complex 

and defined media models. The Gini coefficient is a measure of inequality of continuous values 

within a population, most commonly applied to wealth or income, and ranges from 0 (all members 

of the population have equal wealth) to 1 (the wealth of a population is held by a single individual). 

Regulatory complexity for a sequence is then 1-Gini, such that 1 indicates that all TFs contribute 

equally to the regulation of the gene and 0 indicates that a single TF is solely responsible for its 

regulation. As starting points for our trajectories, 200 native promoter sequences (from -160 to -

80, relative to the TSS) were chosen with relatively high regulatory complexity and another 200 

were chosen with relatively low regulatory complexity, spanning the range of predicted expression 

levels, as starting points for our trajectories. 

 

Trajectories for stabilizing selection on gene expression were designed using the convolutional 

model (Fig. 2d). Here, all sequences were required to maintain a predicted expression level within 

0.5 of the original expression levels at all steps along the trajectory. There was no explicit 

constraint on regulatory complexity in this simulation of stabilizing selection. In order to ensure 

that expression was unchanged, expression levels were measured experimentally for sequences 

along a trajectory at growing mutational steps from the initial sequence (2, 4, 8, 16, 32 mutations). 

Any trajectories for which an expression measurement was missing for any experimentally tested 

sequence were excluded from all analyses, retaining 172 trajectories with initial low regulatory 

complexity and 192 trajectories with initial high regulatory complexity. Testing whether observed 
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trends in regulatory complexity were affected by the degree to which expression was either 

predicted (by the convolutional model for 1-32 mutations) or observed (by the experiment at 2, 4, 

8, 16, or 32 mutations) to be conserved, showed that the trends were robust to the degree of 

expression conservation (Supplementary Fig. 11).  

 

Characterizing directional trajectories under SSWM 

Simulations of trajectories under a Strong Selection-Weak Mutation (SSWM)84–86 regime were 

initialized with a set of native yeast promoter sequences (defined here as the subset from -160 to -

80 relative to the TSS for all the genes in the yeast reference genome for which we had a good 

TSS estimate (Supplementary Table 3 in 26) as the starting generation 0. For each sequence in 

generation n, the sequence from its 3L mutational neighborhood that had the maximal (or 

separately, minimal) predicted expression using the convolutional model was picked to get 

generation n+1. The simulation was carried out for 10 rounds separately in the complex (Fig. 2f) 

and defined (Extended Data Fig. 1f) media. The simulations were subsequently repeated using 

the transformer model (Extended Data Fig. 3i-j). 

 

For experimental validation, a subset of sequences from several generations were synthesized 

along mutational trajectories simulated by the convolutional model for complex media (10,322 

sequences from 877 trajectories, 805 of which had every sequence along the trajectory successfully 

measured) and one for defined media (6,304 sequences from 637 trajectories, 591 of which had 

every sequence along the trajectory successfully measured) and their expression was measured in 
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the corresponding media experimentally using our reporter assay (Fig. 2g, Extended Data Fig. 

1g). 

 

Measuring the URA3 expression-to-fitness relationship 

Two complementary environments were studied with opposite selective pressures on the 

expression of URA3 (encoding an enzyme responsible for uracil synthesis): defined media, where 

organismal fitness increases with gene expression (up to saturation) and complex media + 5-FOA, 

where fitness decreases with Ura3p expression.  

Convolutional models trained on defined and complex media were used to choose a set of 11 

sequences that span a broad range of predicted expression levels in the two media when cloned 

into a YFP expression vector26. The relationship between expression of URA3 and organismal 

fitness in yeast was estimated from experimental measurements with these 11 sequences, by 

cloning promoter sequence in front of YFP to measure expression level and in front of URA3 to 

measure fitness. Unless otherwise noted, yeast were grown at 30C, in an orbital shaker incubator 

at 225 RPM. Each vector was transformed into yeast (S288C::ura3), and three independent 

transformants were selected per vector to serve as biological replicates. For measuring expression, 

yeast were grown overnight in either YPD+NAT (yeast extract, peptone, dextrose, with 75µg/ml 

nourseothricin) or SD-Ura (synthetic defined media, lacking uracil; Sunrise Science 1703-500), 

and then re-inoculated in the morning and allowed to grow for 6 hours prior to measuring 

expression by flow cytometry for each replicate as the log ratio of YFP to the constant background 

RFP, including only cells obtaining the top 50% of RFP expression. Fitness was obtained by 

measuring the growth rate of each yeast strain in either SD-Ura or YPD+NAT+5-FOA (0.25 mg/ml 

5-FOA). Yeast were grown continuously in triplicate in log phase, with linear shaking at 30C in 
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a Synergy H1 plate reader (Biotek), by diluting each well to maintain OD<0.7, with OD measured 

at 15 minute intervals. Growth rate was defined for each replicate as the median of the 

instantaneous smoothed growth rates over 5 measurements in log phase, considering only time 

points where 0.05<OD<0.5. Each promoter’s expression and growth rate were summarized as the 

mean of the three replicates. 

 

Characterizing trajectories under conflicting expression objectives in different environments 

Simulations of sequence evolution in two complementary environments with opposite selective 

pressures (defined media and complex media)  were initialized with a set of native yeast promoter 

sequences (present at -160 to -80 relative to the TSS) as the starting generation 0, with the objective 

function defined as the difference in predicted expression between defined and complex media 

(Fig. 2h, Extended Data Fig. 2d-g) using convolutional models trained in the respective media. 

The difference in expression between the two conditions was maximized at each iteration, which 

assumes that the cells are exposed to both environments before the mutations can reach fixation, 

an example of evolution in rapidly fluctuating environments31. For simplicity, it is assumed that 

fitness is directly proportional to higher expression in one condition and to lower expression in the 

other, such that mutations will be considered favorable even if they decrease fitness in one 

condition so long as they increase it in the other condition by a greater amount.  

One simulation aimed to maximize the expression difference (defined minus complex), and the 

other to minimize it (maximizing complex minus defined). For each sequence in generation n, the 

sequence from its 3L mutational neighborhood that had the maximum (or separately, minimum) 

value for the objective function based on the convolutional model prediction is picked for 
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generation n+1, to a total of 10 generations. The simulations were subsequently repeated using the 

transformer model yielding similar results (Supplementary Fig. 17b-f). 

  

Motifs  that were enriched in the sequences of generation 10 compared to the starting sequences 

were identified de novo using DREME87, and each of the top 5 consensus motifs were used as 

queries to search the YeTFaSCo database88, reporting the closest match, or one of multiple similar 

matches.  

 

Finding orthologous promoters in the 1,011 S. cerevisiae genomes dataset 

To identify orthologs of S288C promoters in the whole genome sequences of the 1,011 yeast 

strains37, BLAT89 was used to identify regions of ≥80% identity with each -160 to -80 region 

(relative to the TSS) annotated in the reference S288C genome sequence (R64)90. Any strains with 

more than one such match, where the match contained insertions or deletions, or had incomplete 

matches, were excluded on a gene-by-gene basis. Genes with more than 1.2 matches with ≥80% 

identity per genome, on average, were excluded altogether.  

 

Computing the expression conservation coefficient (ECC) 

To calculate the ECC (a regulatory analog2,35,91,92 of dN/dS34,93,94), for each yeast gene promoter, 

the transformer model was used to predict an expression value for each orthologous promoter in 

the 1,011 yeast genomes (above), defining an expression distribution with a standard deviation σB. 

Next, a set of sequences with random mutations was generated from each gene’s consensus 

promoter sequence (defined as the most abundant base at each position across the strains), such 
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that the number of sequences at each Hamming distance from the consensus promoter sequence 

was the same for the natural and simulated sets. Here, mutations introduced to create random 

variation sampled each base with equal probability; using observed mutation rates yielded similar 

results (Supplementary Information). The same transformer model to predict the expression of 

the simulated sequences, and calculate its standard deviation σC. The nominal ECC is log(σC/σB). 

Because the variance on simulated sequences is better estimated than in natural orthologs (whose 

sequences may be more constrained), a constant correction factor is subtracted, calculated by 

creating a second simulated set of randomly mutated sequences whose diversity is limited to the 

same extent as in the natural set, by creating only one random mutation for every unique sequence 

in the set of native orthologs. Finally, the expression for this second set of sequences is predicted 

by the transformer model, and its standard deviation (σC’) is used to calculate a null ECC for each 

gene (log(σC/σC’)); the median of these null ECCs over all the genes is used as the constant 

correction factor C = median∀genes,𝑖 (log2(
𝜎𝐶𝑖
𝜎𝐶′𝑖

)). (An extensive description of the correction 

factor is provided in the “ECC calculation details and considerations” section of the 

Supplementary Information.) 

The corrected ECC for gene g is then: 

𝐸𝐶𝐶𝑔 =  log2 ( 
𝜎𝐶𝑔

𝜎𝐵𝑔

) − C 

The computed ECC values for all yeast genes, available in Supplementary Table 1, were used to 

identify cases or presumed stabilizing selection (selection favoring a fixed non-extreme value of a 

trait), diversifying (disruptive) selection (selection favoring more than one extreme values of a 

trait; as opposed to a single fixed intermediate value), and directional (positive) selection (selection 

favoring a single extreme value of a trait over all other possible values of the trait). Re-computing 
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the ECC values for all yeast genes using the S288C reference sequences instead of the consensus 

sequence for the promoters of each gene yielded very similar results. 

 

In addition to each ECC value, a Z-score and p-values for the confidence that the observed ECC 

values differ from neutrality were also calculated. For each gene’s true ECC, a set of matched 

random ECC values were calculated, where the denominator is a set of sequences matched for 

Hamming distance distribution and the total number of unique sequences. The null ECC mean and 

standard deviation were calculated from 1,111 such simulations, and used to calculate a Z-score 

for how extreme the actual ECC would be under this null distribution. This Z-score acts as a signed 

p-value (negative representing divergent expression and positive representing conservation), from 

which p-values (using the ‘scipy.stats.norm.sf’ function on the absolute value of the Z-score in 

Scipy95 and multiplying the function’s output by 2 to get a two-sided p-value) (Supplementary 

Table 1). 

 

Inferring expression conservation across Saccharomyces species using RNA-seq data and 

comparing with ECC values  

Published RPKM values for orthologs of S. cerevisiae genes in closely related Saccharomyces 

species41 were obtained from the Gene Expression Omnibus (GEO) (accession GSE83120). Only 

genes for which expression was quantified in all species were used in subsequent analysis. RPKM 

values were 𝑙𝑜𝑔2 scaled after adding a pseudo count of 2, and the variance in expression of each 

gene across the species was calculated. Genes were ranked by their gene expression variance, and 

the 2% of genes with the lowest variance were considered as having conserved gene expression 

levels (‘expression conserved’), while the 2% with the highest variance were considered 
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‘expression not-conserved’. The significance of the differences was robust to the choice of these 

thresholds (Supplementary Information). To compare to ECC values, the p-value of a two-sided 

Wilcoxon rank-sum test was estimated comparing the ECC values for genes in the ‘expression 

conserved’ and ‘expression not-conserved’ categories (implemented using the 

scipy.stats.ranksums SciPy95 function). To control for the dependence between expression mean 

and variance, the analysis was repeated using the coefficient of variation (P = 1.05*10-4) and the 

coefficient of dispersion (P = 2.42*10-4) instead of variance, yielding similar results. 

 

 

Experimental protocol for RNA-seq measurements from 11 Ascomycota species 

RNA-seq was performed on samples from the following 11 Ascomycota yeast species: 

Saccharomyces cerevisiae, Saccharomyces bayanus, Naumovozyma (Saccharomyces) castellii, 

Candida glabrata, Kluyveromyces lactis, Kluyveromyces waltii, Candida albicans, Yarrowia 

lipolytica, Schizosaccharomyces japonicus, Schizosaccharomyces octosporus, and 

Schizosaccharomyces pombe. Each of the 11 species was grown in BMW medium, chosen to 

minimize cross-species growth differences, as previously described96. N. castellii was grown at 

25℃ while the other species were grown at 30℃. RNeasy Midi or Mini Kits (Qiagen, Valencia, 

CA) were used to isolate total RNA from log-phase cells by mechanical lysis using the 

manufacturer instructions as previously described96. dUTP strand-specific RNA-seq libraries were 

constructed as previously described97 with the following modifications. (1) The polyA+-selected 

RNA was fragmented in a 40µl reaction containing 1x Fragmentation Buffer (Affymetrix) by 

heating at 80℃ for 4 minutes followed by cleanup via ethanol precipitation for all libraries (except 

Y. lipolytica, S. pombe, S. japonicus, and S. octosporus; for these species, the conditions described 
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previously were used97), followed by cleanup via 1.8x RNAClean XP beads (Beckman Coulter 

Genomics). (2) For C. glabrata, K. lactis, S. bayanus, S. pombe, S. japonicus, and S. octosporus 

libraries, the adapter ligation was performed overnight at 16℃. For the rest, this was done at 16℃ 

for 2 hours as described previously97. (3) Normalization was carried out based on the cDNA input 

and pooling of selected Illumina barcoded-adaptor-ligated cDNA products followed by gel size 

selection occurred as follows: range of 275 to 575 bp for pooled C. albicans, K. waltii, and N. 

castellii libraries, and 375 to 575 bp for C. glabrata, K. lactis, and S. bayanus libraries. For the 

other libraries, no pooling was performed before gel size-selection – range of 310 to 510 bp for Y. 

lipolytica and 350 to 550 bp for S. pombe, S. japonicus, and S. octosporus. (4) The final PCR 

product was purified by 1.8x AMPure XP beads (Beckman Coulter Genomics) followed by a 

second gel size-selection for the range of 300 to 575 bp for C. albicans, K. waltii, and S. castellii 

libraries, but no second gel size-selection was performed for the other libraries. The pooled final 

library was sequenced on one to four lanes of HiSeq2000 (Illumina) with 68 base (Y. lipolytica 

had 76 base) paired-end reads and 8 base index reads. 

 

Transcript assembly, mapping and expression calculation for the 11 Ascomycota species 

RNA-seq 

For each of the 11 Ascomycota yeast species above, reads were assembled using Trinity98(version 

‘trinityrnaseq_r2012-05-18’) and the assembled transcripts were mapped onto the assemblies to 

the respective genomes using GMAP99. The Jaccard coefficient was used to join adjacent 

assemblies given enough connecting reads (using the Trinity default of 0.35 for the Jaccard cutoff). 

Finally, upon mapping all assembled transcripts, the Jaccard coefficient was used to clip 

assemblies which did not have enough support over a certain region. For each of the species, 
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assembled transcripts were mapped to the genome sequence100 using BLAT89. Estimated 

expression values were calculated for each transcript using RSEM101 (defined in RSEM as the 

estimate of the number of fragments that are derived from a given isoform or gene, or the 

expectation of the number of alignable and unfiltered fragments that are derived from an isoform 

or gene given the maximum likelihood abundances). Only reads mapping to the sense mRNA 

strand were considered. Orthology between genes in different species was used as previously 

described100. 

 

Inferring expression conservation across Ascomycota species using our RNA-seq data and 

comparing with ECC values  

Estimated expression values from the 11 Ascomycota species RNA-seq data were used after 

removing all genes with NA values in expression for more than three species. Estimated expression 

values were 𝑙𝑜𝑔2 scaled after adding a pseudo count of 1, and the variance in expression for each 

gene across the species was calculated. Genes were ordered by their variance in expression across 

the reported fungal species. Here, the 10% of genes with the lowest expression variance were 

considered to have ‘conserved’ expression, and the 10% with highest expression variance were 

considered to have expression ‘not conserved’. To compare to ECC values, the p-value of a two-

sided Wilcoxon rank-sum test was estimated comparing the ECC values for genes in the 

‘conserved’ and ‘not conserved’ categories (implemented using the scipy.stats.ranksums SciPy95 

function). Similar results were obtained when repeating the analysis using the coefficient of 

variation (P = 4.22*10-5) and the coefficient of dispersion (P = 8.05*10-5) instead of variance. 
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Inferring expression conservation across mammalian species using RNA-seq data and 

comparing with ECC values  

Ensembl Biomart102 was used to find one to one orthologs of S. cerevisiae genes in humans (of 

'Human homology type' ‘ortholog_one2one’; all 'ortholog_one2many' and ‘many2many’ 

orthologs were excluded). For these human orthologs of yeast genes, the previously reported 

‘evolutionary variance’ values across mammalian species from the original publication42 (based 

on an Ornstein Uhlenbeck (OU model)42) were directly used. Here, the 25% of genes with the 

lowest ‘evolutionary variance’ were considered to have conserved expression and the top 25% 

were considered to be not conserved (the same thresholds used in the original study42). This was 

done separately for each profiled tissue (brain, heart, kidney, liver, lung and skeletal muscle). 

Subsequently, a human ortholog for a yeast gene was considered to have conserved (or non-

conserved) expression if it was found to have conserved (or non-conserved) expression in at least 

one of the profiled tissues. Genes with conflicting expression conservation classes across tissues 

were excluded from the analysis. To compare to ECC values, the p-value of a two-sided Wilcoxon 

rank-sum test was estimated comparing the ECC values for genes in the “conserved” and “not 

conserved” categories (implemented using the scipy.stats.ranksums SciPy95 function).  

 

Quantifying sequence dissimilarity using mean Hamming distance 

For each group of orthologous yeast gene promoters (with ungapped alignments), the mean of 

Hamming distances between each pair of orthologous promoters across the 1,011 isolates was 

calculated. 

 

Generation of CDC36 promoter strains by allele swapping 
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Strains with a restored Upc2p binding site in the CDC36 promoter region were obtained using a 

previously described CRISPR-Cas9 method103 . Guide RNAs (gRNAs) were designed using the 

Benchling online tool (https://www.benchling.com/) and cloned in a pGZ110 derived plasmid104, 

using standard “Golden Gate Assembly”105. Plasmids carrying the gRNA and Cas9 gene were then 

co-transformed with a synthetic DNA fragment (ssODN) composed of a 100 bp sequence with 

perfect complementarity to the background promoter sequence (WE) but for the centrally-located 

targeted alleles that overlap the Upc2p binding site. Allele swapping was confirmed by Sanger 

sequencing (Macrogen, South Korea). Sequences were analyzed using the SGRP (Saccharomyces 

Genome Resequencing Project) BLAST server 

(http://www.moseslab.csb.utoronto.ca/sgrp/blast_new/) and MUSCLE tool in Geneious v10.1. All 

primers and ssODNs used are listed in Supplementary Table 2. 

 

RNA extraction and qPCR of CDC36 

Gene expression analysis was performed by qPCR from cultures growth in SD medium 

supplemented with uracil (0.02% p/v). Samples were grown until exponential phase (OD 0.6-0.8), 

collected by centrifugation and treated with 10 units of Zymolyase 20T (50mg/ml) for 30 min at 

37°C. RNA was extracted using E.Z.N.A Total RNA kit I (OMEGA) according to manufacturers’ 

instructions. Genomic DNA traces were then removed by treating samples with DNase I 

(Promega). RNA concentrations were estimated using a Qubit system and verified by 1.5% agarose 

gel. RNA extractions were performed in three biological replicates. 
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cDNA was synthesized using 200 units of M-MLV Reverse transcriptase (Promega), 0.5 µg of 

Oligo (dT)15 primer and 1 µg of RNA in a final volume of 25 µL according to manufacturers’ 

instructions. qPCR reactions were carried out using Brilliant II SYBR® Green QPCR Master Mix 

(Agilent Technologies) in a final volume of 10 µL, containing 0.2 µM of each primer and 1 µL of 

the cDNA previously synthesized. qPCR reactions were carried out in three technical replicates 

per biological replicate using an Eco Real-Time PCR system (Illumina, Inc.) under the following 

conditions: 95°C for 15 min and 40 cycles at 95°C for 10 s and 58°C for 30 s. Primers used are 

listed in Supplementary Table 2. The relative expression of CDC36 was quantified using the 2(-

ΔΔCt) approach106, and normalized with two housekeeping genes as previously described107, using 

the median Ct of the three technical replicates for each sample. The housekeeping genes ACT1 and 

RPN2 were used as previously described108.  

 

Growth curves of CDC36 mutant and wild type alleles 

Growth curves incorporating carbon source switching from glucose to galactose were generated 

as previously described109. Pre-cultures were grown in YNB containing 5% glucose medium at 

30ºC for 24 h. Cultures were then diluted to an initial OD600nm of 0.1 in fresh YNB 5% glucose 

medium for an extra overnight growth. The next day, cultures were used to inoculate a 96-well 

plate with a final volume of 200μL YNB with 5% galactose with an initial OD600nm of 0.1. In 

parallel, a control plate containing YNB with 5% glucose was similarly inoculated. All 

experiments were performed in triplicate. OD600nm was monitored every 30 min using a Tecan 

Sunrise absorbance microplate reader (Tecan Group Ltd.). The kinetic parameters of lag phase, 

growth efficiency (ΔOD600 nm) and maximum specific growth rate (µmax) were determined as 

previously described110, fitting the curves with the Gompertz function using R version 3.3.2. All 
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growth parameters are expressed as the ratio of growth within YNB+galactose to YNB+glucose 

to control for phenotypic variation that results from something other than the carbon source switch. 

 

Fitness responsivity  

The empirically-determined relationships between the expression levels to organismal fitness for 

each of 80 genes 11 were re-analyzed. Published expression-to-fitness curves in glucose media for 

each of 80 genes were obtained from the Supplementary Data of the original publication11. For 

each of these curves, the total variation (Extended Data Fig. 5) was calculated by partitioning the 

expression range into 36 regular intervals (as reported in the ‘impulse fit’ of the expression-to-

fitness curves in the original publication11) and summing the absolute difference in fitness at the 

endpoints of each partition as follows ∑|𝐹𝐺𝐸𝑁𝐸(𝑒𝑖+1) − 𝐹𝐺𝐸𝑁𝐸(𝑒𝑖)|, for each gene’s expression-

to-fitness function, 𝐹𝐺𝐸𝑁𝐸(𝑒). The same qualitative relationship between a gene’s ECC and fitness 

responsivity as reported in other studies111–113 was observed, including LCB2 (ECC 2.15 and high 

fitness responsivity112) and MLS1 (ECC -1.32 and extremely low fitness responsivity113). 

 

Mutational robustness 

For every sequence, mutational robustness was defined as the fraction of sequences in its 3L 

mutational neighborhood that altered the expression by an amount less than 𝜖, where 𝜖 is set at 

two times the standard deviation of expression variance across all genes with an ECC >0 (here, 

𝜖 = 0.1616; ECC calculated using the 1,011 S. cerevisiae genomes, Extended Data Fig. 4c). 

Using different values for 𝜖 yielded very similar results. 
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The evolvability vector 

To derive the evolvability vector for a given sequence, expression changes associated with single 

base changes in every possible position were sorted to obtain a monotonically increasing vector of 

length 3L for each sequence of length L (here, L=80; 3L=240; Fig. 4a, left, Methods). Formally, 

to compute an evolvability vector for a sequence 𝑠0, for each sequence 𝑠𝑖 in the 3L mutational 

neighborhood of 𝑠0, the difference between the predicted expression of 𝑠𝑖 and that of 𝑠0 : 𝑑𝑖 =

𝑓(𝑠𝑖) −  𝑓(𝑠0) was calculated, where 𝑓(𝑠) represents the predicted expression of the transformer 

model. The evolvability vector is defined as the vector D ({𝑑1, 𝑑2, … , 𝑑3𝐿}), sorted such that 𝑑𝑖 ≥

𝑑𝑖−1 , ∀𝑖 (i.e. 𝑑𝑖 values are in ascending order).  

 

Power law distribution analysis 

The list of the absolute values of the evolvability vectors for all native sequences was used to 

define the distribution of the magnitude of the expression effect of mutations. The powerlaw114 

Python package was used to determine whether the data fit a power law distribution. The ‘Fit’ 

function with an ‘xmin’ parameter of 0.5 was used to determine the exponent and the 

‘distribution_compare’ function was used to determine the p-value for the fit (Extended Data Fig. 

4d, Supplementary Fig. 2h). 

 

Characterizing the archetypal evolvability space  

The evolvability vectors for a new random sample of a million sequences were used as input to an 

autoencoder with an archetypal regularization constraint45 on the embedding layer. The 

autoencoder was trained using the AANet implementation made available with the publication45 
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with no noise added to the archetypal layer during training, a linear activation on the output layer, 

an equal weight of 1 on each of the loss terms (the mean squared error loss term along with the 

non-negativity and convexity constraints), a learning rate of 0.001, and a minibatch size of 4,096. 

The autoencoder accepts an evolvability vector (of length 240 for an 80bp sequence) as input to 

the first encoder layer, where each node in the input layer is connected to each node in the encoder 

layer (fully connected layer). Every layer in the autoencoder was fully connected. The encoder 

architecture used was [1024, 512, 256, 128, 64], where each entry corresponds to the number of 

nodes in the corresponding hidden layer and the decoder architecture was the encoder’s mirror 

image. The output layer was the same shape as input layer and each node in the last decoder layer 

was connected to each node in the output layer. To select the optimal number of archetypes, the 

autoencoder was first trained for a 1,000 minibatches separately for 1 to 9 archetypes. Following 

the recommended approach45 for picking the optimal number of archetypes, we used an elbow plot 

of mean squared error on the evolvability vectors (here, using native sequences) vs. the number of 

archetypes in the autoencoder (Extended Data Fig. 6a).  

 

The autoencoder was then trained from scratch with 3 archetypes, using the full training data and 

parameters for 250,000 batches. Since this autoencoder aims to reconstruct the original 

evolvability vector for each sequence by learning feature representations after passing them 

through an information bottleneck, its reconstruction accuracy was first verified on the set of native 

yeast promoter sequences (Extended Data Fig. 6b, Pearson’s r = 0.992). To visualize the 

evolvability vectors corresponding to sequences in 2 dimensions (2D), the evolvability vectors 

corresponding to the three archetypes were first generated by decoding their archetypal latent space 

coordinates ((1,0,0), (0,1,0) and (0,0,1)) through the decoder, and MDS was performed on the 
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decoded evolvability vectors of the archetypes. Then, as previously described45, the encoded 

evolvability vector of each new sequence was projected into the 2D MDS space by representing it 

as a mixture of the archetypes and interpolating them between the MDS coordinates of each 

archetype. For every sequence, the following equivalent representations can now be computed: (i) 

its evolvability vector, (ii) an archetypal triplet quantifying the similarity of its encoded (latent 

space) evolvability vector to the three archetypes and (iii) a two-dimensional multidimensional 

scaling (MDS) coordinate45 for visualizing the evolvability vectors. The representation of the 

evolvability vector for each sequence in this archetypal space is now bounded by a simplex (whose 

vertices correspond to the 3 evolvability archetypes). For each native and natural yeast promoter 

sequence from the sequence space, the archetypal triplet and MDS coordinates were inferred using 

its evolvability vector with this trained autoencoder. The MDS coordinates for the archetypes and 

the native yeast promoter sequences were used to generate the visualizations of the sequence space 

shown. This archetypal characterization of evolvability vectors allows the encoding and 

visualization of sequences by their evolvability in the context of a fitness landscape. 

 

Visualizing promoter fitness landscapes 

1000 random sequences were sampled and projected onto the MDS coordinate system for 

visualizing the sequence space described above. The expression level of each sequence was 

calculated using our model, and expression values were scaled so that the minimum was 0 and 

maximum was 1. Previously quantified expression-to-fitness relationships11 to compute fitness 

(fraction of wildtype growth rate) by using cubic spline interpolation (implemented using the 

scipy.interpolate.CubicSpline SciPy95 function) on the expression level after scaling the measured 

expression-to-fitness curves to have an expression range of 0 to 1. These fitness values were then 
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used to generate the contour plots (implemented using the matplotlib.pyplot.tricontourf function; 

Fig. 4e, Extended Data Fig. 7) that visualize the fitness landscape in that gene’s promoter 

sequence space. 
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Extended Data Figures Legends 

Extended Data Fig. 1: The convolutional sequence-to-expression model generalizes reliably 
and helps characterize sequence trajectories under different evolutionary regimes. (a-d) 
Prediction of expression from sequence in complex (YPD) (a-b) and defined (SD-Uracil) (c-d) 
media. Predicted (x axis) and experimentally measured (y axis) expression for (a,c) random test 
sequences (sampled separately from and not overlapping with the training data) and (b,d) native 
yeast promoter sequences containing random single base mutations. Top left: Pearson’s r and 
associated two-tailed p-value. Compression of predictions in the lower left results from binning 
differences during cell sorting in different experiments (Supplementary Notes). e, Experimental 
validation of trajectories from simulations of random genetic drift. Distribution of measured 
(light grey) and predicted (dark gray) changes in expression in the defined media (SD-Uracil) (y 
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axis) for the synthesized randomly-designed sequences (n=2,986) at each mutational step (x 
axis). Midline: median; boxes: interquartile range; whiskers: 5th and 95th percentile range. f, g, 
Simulation and validation of expression trajectories under SSWM in defined media (SD-Uracil). 
f, Distribution of predicted expression levels (y axis) in defined media at each evolutionary time 
step (x axis) for sequences under SSWM favoring high (red) or low (blue) expression, starting 
with native promoter sequences (n=5,720). Midline: median; boxes: interquartile range; 
whiskers: 5th and 95th percentile range. g, Experimentally-measured expression distribution in 
defined media (y axis) for the synthesized sequences (n=6,304 sequences; 637 trajectories) at 
each mutational step (x axis) from predicted mutational trajectories under SSWM, favoring high 
(red) or low (blue) expression. Midline: median; boxes: interquartile range; whiskers: 5th and 95th 
percentile range. h-o, Experimental validation of predicted expression for sequences from the 
random genetic drift and SSWM simulations. Experimentally measured (y axis) and predicted (x 
axis) expression level (l-o) or expression change from the starting sequence (h-k) in complex 
(h,j,l,n) or defined (i,k,m,o) media using sequences from the random genetic drift (Fig. 2c and 
(e); h,i,l,m here) and SSWM (Fig. 2g and (g); j,k,n,o here) validation experiments. Top left: 
Pearson’s r and associated two-tailed p-values. 
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Extended Data Fig. 2 | Characterization of sequence trajectories under strong competing 
selection pressures using the convolutional model. a,b, Expression is highly correlated 
between defined and complex media. Measured (a) and predicted (b) expression in defined (x 
axis) and complex (y axis) media for a set of test sequences measured in both media. Top left: 
Pearson’s r and associated two-tailed p-values. c, Opposing relationships between organismal 
fitness and URA3 expression in two environments. Measured expression (x axis, using a YFP 
reporter) and fitness (y axis; when used as the promoter sequence for the URA3 gene) for yeast 
with each of 11 promoters predicted to span a wide range of expression levels in complex media 
with 5-FOA (red), where higher expression of URA3 is toxic due to URA3-mediated conversion 
of 5-FOA to 5-fluorouracil, and in defined media lacking uracil (blue), where URA3 is required 
for uracil synthesis. Error bars: Standard error of the mean (n=3 replicate experiments). d-f, 
Competing expression objectives are slow to reach saturation. d,e, Difference in predicted 
expression (y axis) at each evolutionary time step (x axis) under selection to maximize (red) or 
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minimize (blue) the difference between expression in defined and complex media, starting with 
either native sequences (d, as Fig. 2h, n=5,720) or random sequences (e, n=10,000). f, 
Distribution of predicted expression (y axis) in complex (blue) and defined (red) media at each 
evolutionary time step (x axis) for a starting set of random sequences (n=10,000). Midline: 
median; boxes: interquartile range; whiskers: 5th and 95th percentile range. g, Motifs enriched 
within sequences evolved for competing objectives in different environments. Top five most 
enriched motifs, found using DREME87 (Methods) within sequences computationally evolved 
from a starting set of random sequences to either maximize (left) or minimize (right) the 
difference in expression between defined and complex media, along with DREME E-values, the 
corresponding rank of the same motif when using native sequences as a starting point, the likely 
cognate TF and that TF’s known motif. 
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Extended Data Fig. 3 | The transformer sequence-to-expression model generalizes reliably 
and helps characterize sequence trajectories under different evolutionary regimes. a-d, 
Prediction of expression from sequence in the complex (a-b) and defined (c-d) media. Predicted 

79



   
 

  

(x axis) and experimentally measured (y axis) expression for (a,c) random test sequences 
(sampled separately from and not overlapping with the training data) and (b,d) native yeast 
promoter sequences containing random single base mutations. Top left: Pearson’s r and 
associated two-tailed p-value. Compression of predictions in the lower left results from binning 
differences during cell sorting in different experiments (Supplementary Notes). e, Predicted (x 
axis) and experimentally measured (y axis) expression in complex media (YPD) for all native 
yeast promoter sequences. Pearson’s r and associated two-tailed p-values are shown. f, Predicted 
expression divergence under random genetic drift. Distribution of the change in predicted 
expression (y axis) for random starting sequences (n=5,720) at each mutational step (x axis) for 
trajectories simulated under random genetic drift. Silver bar: differences in expression between 
unrelated sequences. g,h, Comparison of the distribution of measured (light grey) and 
transformer model predicted (dark gray) changes in expression (y axis) in complex media (g, 
n=2,983) and defined media (h, n=2,986) for synthesized randomly-designed sequences at each 
mutational step (x axis). i,j Predicted expression evolution under SSWM. Distribution of 
predicted expression levels (y axis) in complex media (i, n=10,322) and defined media (j, 
n=6,304) at each mutational step (x axis) for sequence trajectories under SSWM favoring high 
(red) or low (blue) expression, starting with 5,720 native promoter sequences. (f-j) Midline: 
median; boxes: interquartile range; whiskers: 5th and 95th percentile range. k-r, Comparison of 
model predicted expression for sequences synthesized previously for the random genetic drift 
and SSWM analyses. Experimentally measured (y axis) and transformer model predicted (x axis) 
expression level (o-r) or expression change from the starting sequence (k-n) in complex 
(k,m,o,q) or defined (l,n,p,r) media using sequences from the random genetic drift (Fig. 2c and 
(Extended Data Fig. 1e); k,l,o,p here) and SSWM (Fig. 2g and (Extended Data Fig. 1g); 
m,n,q,r here) validation experiments. Top left: Pearson’s r and associated two-tailed p-values. 
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Extended Data Fig. 4 | Signatures of stabilizing selection on gene expression detected from 
regulatory DNA across natural populations. a, Expression-altering alleles in the CDC36 
promoter are attributed primarily to altered UPC2 binding. TF interaction strength26 (expression 
attributable to each TF) difference between the high and low alleles (each point is a TF) for each 
of two low expression alleles (allele 1: x axis; allele 2: y axis). Each low-expressing allele is 
compared to the high-expression allele with the most similar sequence (across all promoter 
sequences analyzed from the 1,011 strains; 𝑒𝑇𝐹,𝐴ℎ𝑖𝑔ℎ − 𝑒𝑇𝐹,𝐴𝑙𝑜𝑤). b, Distribution of ECC (y axis, 
calculated from 1,011 S. cerevisiae genomes, top left) for S. cerevisiae genes whose orthologs 
have divergent (blue) or conserved (purple) expression (within Saccharomyces (left, n=4,191), 
Ascomycota (middle, n=4,910), or mammals (right, n=199) (as determined by cross species 
RNA-seq, top right). p-values: two-sided Wilcoxon rank-sum test. Midline: median; boxes: 
interquartile range; whiskers: 5th and 95th percentile range. c, Determination of expression 
change threshold for defining a "tolerated mutation" to compute mutational robustness. We used 
all genes with an ECC consistent with stabilizing selection (ECC>0; left), calculated the variance 
in predicted expression across the 1011 yeast strains for each gene, and chose the tolerable 
mutation threshold, 𝜖, as two standard deviations of the distribution of the variance (right). ~73% 
of genes with ECC>0 had an expression variation lower than 𝜖. d, Distribution of the effects of 
mutations (magnitude) on expression for all native regulatory sequences follows a power law 
with an exponent of 2.252. Shaded regions are equal in area.  
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Extended Data Fig. 5 | Fitness responsivity of a gene as the total variation of its expression-
to-fitness relationship 𝑭𝑮𝑬𝑵𝑬 curves. Expression (x axis) and fitness (y axis) levels for different 
promoter variants for each select gene fit from experimental measurements by Keren et al11. 
Fitness responsivity calculated as the total variation in each curve is noted above each panel. 
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Extended Data Fig. 6 | Analysis of regulatory evolvability reveals sequence-encoded 
signatures of expression conservation from solitary sequences. a, Selection of optimal 
number of archetypes. Mean-square-reconstruction error (y axis) for reconstructing the 
evolvability vectors from the embeddings learned by the autoencoder for an increasing number 
of archetypes (x axis). Red circle: optimal number of archetypes selected as prescribed45 by the 
“elbow method”. b, The archetypal embeddings learned by the autoencoder accurately capture 
evolvability vectors. Original (y axis) and reconstructed (x axis) expression changes (the values 
in the evolvability vectors) for each native sequence (none seen by the autoencoder in training). 
Top left: Pearson’s r and associated two-tailed p-values. c-f, Evolvability space captures 
regulatory sequences’ evolutionary properties. Proximity to the malleable archetype (Amalleable) (x 
axis) and mutational robustness (c,e y axis) or ECC (d,f y axis) for all yeast genes (e,f) or the 
gene for which fitness responsivity was quantified (c,d). Top right: Spearman’s 𝜌 and associated 
two-sided p-value. “L”-shape of relationship in e results from the robust cleft, Amaxima, and 
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Aminima all being distal to Amalleable (left side of plot). g, All native (S288C reference) promoter 
sequences (points) projected onto the archetypal evolvability space learned from random 
sequences; colored by their ECC. Large colored circles: evolvability archetypes. h, The 
proximity to the malleable archetype (x axis) and fitness responsivity (y axis) for the 80 genes 
with measured fitness responsivity. Top right: Spearman’s 𝜌 and associated two-tailed p-values. 
Light blue error band: 95% confidence interval. i, All native (S288C reference) promoter 
sequences (points) projected on the evolvability space learned from random sequences; colored 
by their mean pairwise distance in the archetypal evolvability space between all promoter alleles 
across the 1,011 yeast isolates for that gene (ortholog evolvability dispersion). Large colored 
circles: evolvability archetypes.  
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Extended Data Fig. 7 | Visualizing promoter fitness landscapes in sequence space. 
Visualizing the fitness landscapes for the promoters of HXT3 (a), ADH1 (b), GCN4 (c), RPL3 
(d), FBA1 (e), TUB3 (f), URA3 (in defined media) (g), URA3 (in complex media + 5FOA) (h). 
1000 promoter sequences represented by their evolvability vectors projected onto the 2D 
archetypal evolvability space and colored by their associated fitness as reflected by their 
predicted growth rate relative to wildtype (color, Methods), estimated by first mapping 
sequences to expression with our model and then expression to fitness as measured and estimated 
previously11. 
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Extended Data Fig. 8 | In silico mutagenesis (ISM) of malleable and robust promoters. 
SSWM trajectories for (a) DBP7, a malleable promoter, and (b) UTH1, a robust promoter. Each 
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subplot shows the in silico mutagenesis effects for how expression level (color) changes when 
mutating each position (x axis) to each of the four bases (y axis) of each sequence (subplots) in 
the trajectories. The DNA sequence is indicated above each wildtype subplot (indicated with 
“WT” at left). Arrows indicate the mutations selected at each step, which always correspond to 
the mutation of maximal effect; increasing expression goes up the figure from wildtype and 
decreasing expression goes down. Part of the malleability of the DBP7 promoter results from an 
intermediate-affinity Rap1p binding site (gray bar). The first mutations in increasing- and 
decreasing-expression trajectories either increase or decrease (respectively) the affinity of this 
site. The UTH1 promoter changes gradually in expression and evolves proximal repressor 
binding sites to dampen expression (gray bars). 
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Supplementary Information 

Gigantic Parallel Reporter Assay (GPRA) experimental details 

Expression measurements were performed as described in (de Boer et al., 2020) (Supplementary Fig. 1). 

Briefly, a library of ~200,000,000 random 80 bp promoters was cloned in front of a YFP reporter construct 

within the -160:-80 region of a synthetic promoter scaffold. The promoter scaffold used throughput this 

study included a distal poly-T tract (5 or more Ts), and a proximal poly-A tract (5 or more As) surrounding 

the random 80 mers; these features are common in yeast promoters. Furthermore, the scaffold sequences 

were designed to exclude strong binding sites for TFs. The dual reporter plasmid used is available from 

AddGene (AddGene:127546) and was derived from the plasmid used by (Sharon et al., 2012). This plasmid 

contains URA3, which we use as a selectable marker, a constitutive RFP (with which to control for extrinsic 

noise), and the YFP under variable control. Random 80 mers (and designed 80 mer libraries) were cloned 

into an XhoI site using Gibson assembly. The resulting libraries were transformed into S. cerevisiae strains 

lacking URA3 using the lithium acetate method (De Boer, 2017), selecting on SD-Ura media, and ensuring 

that at least 100,000,000 transformants were achieved for the random high-complexity libraries and >100x 

coverage for designed libraries. Because this is a low copy number CEN plasmid that is segregated like a 

chromosome during cell division, if a yeast cell is transformed with two different promoters, subsequent 

cell divisions will ensure with a very high probability that the two plasmids end up in different descendant 

cells. For random libraries, the strain Y8205 was used, but later experiments including the designed libraries 

were performed in S288C::ura3, which is less auxotrophic. Accordingly, all cases except that in random 

test dataset (complex media), the models were trained on sequences assayed in one strain of yeast and tested 

on sequences assayed in another, likely leading to underestimation of the model’s performance due to bona 

fide differences between the strains. 

 

Yeast were grown continuously in SD-Ura over the course of two days, and kept in log phase for ~10 

generations to allow for reporters to reach equilibrium prior to sorting, diluting the media by 1:4 three times 

during this period as necessary to keep cells in log phase (OD below 0.8). All cultures were grown in a 

shaker incubator, at 30C and approximately 250 RPM. Yeast were harvested by centrifugation, washed 

once in ice-cold PBS, resuspended in ice-cold PBS, and kept on ice prior to and during sorting. Sorting was 

performed with a Moflo Astrios (Beckman Coulter) sorting in three sets of 6 bins (all equal width and 

adjacent) each over the course of ~8 hours, dividing the time equally for the three sets. Cells were sorted 

by the log ratio of RFP to YFP signal (using mCherry and GFP absorption/emission), which controls for 

extrinsic sources of variation that affect both reporters (e.g., cell size, plasmid copy number). Once sorted, 
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cells were kept on ice. Sorted samples were centrifuged to pellet sorted cells, the PBS/sheath fluid aspirated, 

leaving ~0.5 mL remaining, then the cells resuspended in 1 mL SD-Ura, transferred to a 50mL conical tube 

containing 9mL media, and the sorting tube washed once with SD-Ura, and transferred to the same conical 

tube. This produced 18 50 mL tubes each containing ~10 mL of SD-Ura and sorted yeast cells; one per 

sorting bin. These were allowed to grow for 2-3 days, until all samples reached saturation. Plasmids were 

isolated using Qiagen spin miniprep kits, as adapted for yeast according to the manufacturer's website 

(https://www.qiagen.com/ca/resources/resourcedetail?id=5b59b6b3-f11d-4215-b3f7-

995a95875fc0&lang=en). Nextera adaptors and multiplexing indices were added by PCR, indexed samples 

were mixed in proportion to the number of cells sorted per bin, and the resulting libraries sequenced paired-

end, 76 bp each, using an Illumina Nextseq 500 and 150 cycle kits so that complete coverage of the promoter 

could be achieved, including overlap in the center.  

 

The sorting bins differed slightly each time FACS was performed for a promoter library. This resulted from 

the inability of the cell sorter (MoFlo Astrios) to accurately preserve bin configurations on different days 

and between calibrations. Consequently, the 18 bins were re-assigned for each experiment, and/or laser 

intensities were adjusted, such that the distribution of RFP:YFP ratios were correctly positioned within the 

bins. Sorting bins were defined to be uniform in width (expression range) and included the vast majority 

(>98%) of the distribution and the entirety of the high end of expression, but leaving out the bottom tail of 

expression. The bottom end of expression tended to be dominated by noise and outliers with abnormally 

low YFP:RFP ratios. However, the sensitivity at the low end of expression increased in our experiments 

over time, such that model predictions (in particular for the complex media model) were squished at the 

low end (e.g. Extended Data Fig. 1, 3 lower left corners). 

 

The paired reads representing both sides of the promoter sequence were aligned using the overlapping 

sequence in the middle, constrained to have 40 (+/-15) bp of overlap, and discarding any reads that failed 

to align well within these constraints. This was not required for the designed libraries. Promoters were 

aligned to themselves using Bowtie2 (Langmead et al., 2009) to identify clusters of related sequences, 

merging these clusters and taking the sequence with the most reads as the “true” promoter sequence for 

each cluster. The designed library reads were aligned to the promoter sequences we ordered using Bowtie2, 

and only perfect matches were considered in further analysis. Mean expression level for each promoter (as 

in the processed files) was taken as the average of the bins, weighted by the number of times the promoter 

was observed in each bin. For the designed libraries (that included all the high-quality test data 

experiments), we calculated expression for all promoters for which any reads were seen, but used only those 
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for which we saw at least 100 reads for the analyses described to reduce the amount of measurement error 

present in the data. For high-complexity random libraries, all promoters were used. 

Biochemical models 

The biochemical models were created and used as described previously (de Boer et al., 2020). Code is 

available on GitHub (https://github.com/de-Boer-Lab/CRM2.0). Briefly, the models are trained using the 

“makeThermodynamicEnhancosomeModel.py” program within the https://github.com/de-Boer-

Lab/CRM2.0/blob/master/usefulScripts/makeProgressiveBiochemicalModels.bat script (using the “110 -

eb” parameters which describe the sequence length (110) and the expected binding TF model (-eb)). 

Training happens in 5 stages, with each subsequent stage restoring the parameters learned in the previous 

step before continuing training, and optimizing the noted new parameters as well as all others that were 

previously learned: (1) potentiation and activity parameters are learned, after having initialized the motifs 

to known motifs for each TF, and TF concentrations initialized to the min Kd possible with each motif 

(corresponding to 50% occupancy of a perfect binding site); (2) concentration parameters are optimized; 

(3) motif models are optimized; (4) TF binding/activity limits are introduced and optimized; and (5) 

position-specific activities are introduced and optimized.  

Each training round is performed with a full epoch of the training data (5 epochs total). Inference is 

performed using the “predictThermodynamicEnhancosomeModel.py” program. In order to get regulatory 

strength for a TF, the “-dotf” parameter was used, and inference run again. This parameter sets the 

concentration parameter of the indicated TF to 0, and then predicts expression. An example for how to use 

these parameters and programs to calculate regulatory complexity is included here: https://github.com/de-

Boer-Lab/CRM2.0/tree/master/usefulScripts. For all analyses, the biochemical models using position-

specific activities were used with the exception of the biochemical model-derived ECC, where the non-

positional model was used, because the position-specific activity parameters we had previously found are 

partly dependent on the surrounding sequence context (de Boer et al., 2020). The decrease in % error (100% 

x (1-r2)), that is, the fraction of variance unexplained relative to the biochemical model is around ~45% 

((0.962 - 0.9262) / (1- 0.9262) (positional biochemical model) for the Native test data. The biochemical 

models were used in sections where we required model interpretability (Fig. 2d), but the deep learning 

models were used elsewhere, since the biochemical models are slower than the deep learning models to run 

inference on and have lower predictive performance on the test data. 
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ECC calculation details and considerations 

The ECC depends on both simulated and natural variation in promoter sequences. The natural variation in 

promoters is not independently sampled, since promoters from closely related strains often have identical 

sequences. Consequently, even when there are 1,011 orthologous promoters for each gene in the 1,011 

whole yeast genomes dataset, there will typically be many fewer unique promoter sequences. Meanwhile, 

each sequence in the simulated variation is sampled independently (to increase robustness of the estimation 

of the null expectation), so, here, there are often 1,011 unique promoter sequences. The simulated variation 

was generated by placing random mutations within the gene’s promoter consensus (the most abundant base 

at each position in the orthologous set), while preserving the Hamming distance distribution observed in 

the natural sequences (Methods). Despite these sets each having the same Hamming distance distribution 

relative to the consensus, the standard deviation (SD) calculated from N independently sampled sequences 

(as in the simulation) is biased towards being greater than that for N dependently sampled sequences (as in 

evolution), resulting in the raw ECC values being biased in favor of “conservation” as a result of a statistical 

bias rather than due to selection.  

 

To demonstrate that this bias is not evolutionary in nature we calculated a “mock” ECC where both the 

numerator and denominator represent simulated variation. In the mock ECC, the sequences in the numerator 

are sampled independently and match the Hamming distance distribution of the natural variation (as in the 

standard ECC), but the denominator (normally the natural variation) is sampled in a way that matches both 

the Hamming distance distribution and the number of unique sequences at each Hamming distance (relative 

to the natural variation). Despite both sets of sequences being randomly sampled and having matched 

Hamming distance distributions, the mock ECC is slightly positively biased (Supplementary Fig. 2a), 

highlighting the need for a correction factor. Consequently, we used the median of these mock ECCs 

(log2(
𝜎𝐶𝑖
𝜎𝐶′𝑖

)) as the correction factor. 

 

While it is theoretically better to have gene-specific correction factors, these are much more 

computationally intensive to calculate and provide little benefit in practice. To generate gene-specific 

correction factors, we need to make many instances of simulated variation for each gene, estimate the gene-

specific bias, and use it to correct the observed ECC. Doing this with 1,111 simulations for each gene 

showed that there was little difference in the resulting ECC values, compared to a global correction factor 

(Supplementary Fig. 2b). Given the computational intensity of this approach (which, after optimization, 

still takes several days to run) and low practical utility, we favored the approach with a global correction 

factor. We do provide the gene-specific corrected ECCs in Supplementary Table 1. 
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The substitution rate in the genome is not uniform, but we use a uniform substitution rate when calculating 

the ECC. To test for the impact of this choice, we re-calculated the ECC using the substitution rates 

observed in the 1,011 yeast genomes promoters and found that the ECCs were largely concordant 

(Supplementary Fig. 2c). Since the mutations we observe in promoters are themselves biased (having 

survived selection), both approaches yield similar ECC values, and it is much easier to use a uniform base 

substitution rate, we use the uniform substitution rate ECC throughout the study.   

 

Finally, we note that our approach for computing the ECC assumes that the relative effects of mutations 

within a sequence are similar regardless of the surrounding sequence context. 

Comparison of ECC to RNA-seq expression 

We examined the robustness of our finding that ECC distributions differ significantly between genes with 

conserved and divergent expression (by RNA-seq) to the threshold we chose to define expression 

conservation. To this end, we performed the Wilcoxon rank sum test analysis across a range of thresholds 

for each dataset. Both the Saccharomyces and Ascomycota results were significant (P<0.05) at all 

thresholds, and much more significant (p<10-5) at a threshold of 10% and above (Supplementary Fig. 3a-

c).  

 

For mammals, we used the threshold of 25% applied in the original publication (Chen et al., 2019). In 

addition, we performed the Wilcoxon rank sum test analysis across a range of thresholds and found that the 

results were similarly significant for the full range of thresholds bar one (5%, the lowest threshold; 

Supplementary Fig. 3d). The null hypothesis could not be rejected at the 5% threshold, given the smaller 

number of yeast gene one-to-one orthologs in mammals in both the expression conservation classes.  

 

In principle, the ECC can be calculated across orthologous regulatory sequences from many different 

species (as opposed to individuals within a species, as we did here), but we advise caution if doing so. The 

ECC assumes that the function relating sequence to gene expression is the same across the orthologous 

sequences being compared. Since regulatory sequences evolve much faster than the regulators 

themselves(Weirauch and Hughes, 2010), this assumption is likely a reasonable approximation within a 

species, but as evolutionary distances increase, regulators will diverge, gradually eroding this assumption. 

An alternative is to use gene orthology to infer the extent of expression conservation in one species using 
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ECCs calculated in another species (Extended Data Fig. 4b). However, such relations would extend only 

to well-mapped orthologs.  

 

Benchmarking of sequence-to-expression models 

We examined different neural network architectures for their ability to predict expression when trained on 

our data. We compared our transformer model to three model architectures from existing literature 

(Agarwal et al., 2020) on gene expression prediction models: DeepAtt (Li et al., 2020), DeepSEA 

(Zhou and Troyanskaya, 2015), and DanQ (Quang and Xie, 2016). (We focus here on comparison 

to the transformer model, as the convolutional model was not used for some of the compared tasks, 

such as calculation of the ECC. However, equivalent comparisons can be made with the convolutional 

using the code shared) Although these models differ from our own and from each other, we adopted each 

of the model architectures for our application to the best of our ability using the source code 

(https://github.com/jiawei6636/Bioinfor-DeepATT) from each original publication (the adopted model 

architecture implementation can be found on our GitHub repo at:  

https://github.com/1edv/evolution/tree/master/manuscript_code/model/benchmarking_models) for the 

purpose of this benchmarking analysis. The precise details of the benchmarking architectures can be found 

in the code, and are described below. Note, that the input and output layers (which are the same for each 

model) are omitted from the lists below. 

 

1) DeepATT :  

- Convolution (filters=256, kernel_size=30) 

- MaxPool (pool_size = 3, strides = 3) 

- Dropout (0.2 probability) 

- BiDirectional LSTM (16 units) 

- MultiHeadAttention 

- Dropout (0.2 probability) 

- Dense (16 units) 

- Dense (16 units) 

 

2) DeepSEA :  

- Convolution (filters=320, kernel_size=8) 

- MaxPool (pool_size = 3, strides = 3) 
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- Dropout (0.2 probability) 

- Convolution ( filters=480, kernel_size=8) 

- MaxPool (pool_size = 3, strides = 3) 

- Dropout (0.5 probability ) 

- Dense (64 units) 

- Dense (64 units) 

 

3) DanQ :  

- Convolution (filters=320, kernel_size=26) 

- MaxPool (pool_size = 3, strides = 3) 

- Dropout (0.2 probability) 

- BiDirectional LSTM (320 units) 

- Dropout (0.5 probability) 

- Dense (64 units) 

- Dense (64 units) 

 

Next, we trained each of these adapted models using the same training data (in complex media) as the 

original convolutional and transformer model, and tested each of the model’s predictive power on a set of 

high-quality native DNA sequences measured in our system. We found that our transformer model 

outperformed the other three architectures on these data (Supplementary Fig. 4a), as expected given that 

these other approaches were designed for other purposes. 

 

We also used each of these models to calculate the ECC, finding that the resulting ECC values are highly 

correlated to the ECCs predicted by the transformer model (Supplementary Fig. 4b-d). This shows that 

our framework leads to equivalent biological conclusions when used with model architectures that have 

overall comparable predictive performance. 

 

To rule out the possibility that the transformer model’s increased performance results from learning of 

technical biases, we compared the transformer model’s ECC to an ECC calculated using the interpretable 

biochemical model (de Boer et al., 2020), also trained using GPRA data, which, with a single convolutional 

layer and many fewer parameters, is presumably less able to capture technical biases. Here too, we found 

that the ECCs are highly similar between the two models (Supplementary Fig. 5g). Finally, we found that 

the ECC values computed using the transformer model are better at predicting expression conservation as 

measured by RNA-seq across the range of possible thresholds considered (Supplementary Fig. 5h). 
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Ablation analysis of the sequence-to-expression transformer model 

The transformer model was motivated by several intuitions aimed to help it leverage known aspects of cis-

regulation(Weirauch et al., 2013; Brodsky et al., 2020), but which may or may not be explicitly captured. 

The first convolutional block with three layers, was motivated by the idea to identify sites that are important 

for computing the expression target, and could be analogous to a TF scanning the length of the sequence 

for binding sites. The first layer was aimed towards an abstract representation of first order TF-sequence 

interactions by operating with convolutional kernels on the sequence in the forward and reverse strands 

separately to generate strand-specific features (each individual kernel in the first layer can be thought of as 

possibly learning the motif of one TF, or a combined representation of the motifs)(Alipanahi et al., 2015; 

Zhou and Troyanskaya, 2015; Shrikumar, Greenside and Kundaje, 2017; Quang and Xie, 2019) and we 

designed the width of the first convolutional layer (30 bp) to be sufficient to capture the largest TF motifs 

known in yeast(de Boer and Hughes, 2012); the second was aimed towards capturing interactions between 

strands, by using a 2D convolution (implemented using the tf.keras.layers.Conv2D layer, and convolving 

along the sequence dimension) on the combined features from the individual strands; and the third layer 

was aimed towards capturing higher order interactions, such as TF-TF cooperativity. We zero-pad the 

convolution blocks to allow the convolutional filters to detect motif instances near the edges of the input 

sequence. The second block was motivated by an analogy to combining the biochemical activities of 

multiple bound TFs and accounting for their positional activities. Its transformer-encoder with a multi-head 

self-attention module(Vaswani et al., 2017) could capture relations between features extracted by the 

convolutional block at different positions in the sequence, by attending to them simultaneously using a 

scaled dot product attention function. This could be analogous to the model learning ‘where to look’ within 

the sequence. Then, a bidirectional Long Short-Term Memory (LSTM) layer in this block was motivated 

by the idea of capturing long range interactions between the sequence regions. Finally, a multi-layer 

perceptron block was motivated by the idea of capturing cellular operations that occur after TFs are 

recruited to the promoter sequence, by pooling all the features extracted from the sequence through the 

previous layers and learning a scaling function that transforms these abstract feature representations of 

biomolecular interactions into an expression estimate. While these were our motivations in architecting the 

model, because our focus was predictive ability and not interpretability of regulatory mechanisms, we do 

not know if the model in fact captured these relations in this way. 

In order to determine whether any of the transformer model’s layers were superfluous, we conducted an 

ablation study. For each ablation experiment, we initialized a new model from scratch after removing the 
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ablated layer individually from the original transformer model architecture, while retaining every other 

component of the original transformer model. Then, we trained this new model using the same training data 

(in complex media) as the original transformer model, and tested the resulting models on the high-quality 

random DNA test data. We found that each layer has non-trivial individual contributions to our predictions, 

with the full model performing better than any of the ablated models (Supplementary Fig. 6).  

 
 

Expression distribution at the robustness cleft and the malleable archetype 

While our observation that sequences with intermediate expression levels are move likely to be near the 

malleable archetype (Amalleable) and depleted near the robustness cleft (Fig. 4d), could in theory result from 

a saturation artifact of our reporter construct, our ratiometric sorting strategy allowed us to detect saturation 

and none was observed. Instead, the robustness cleft could reflect sequences at the stable extremes of one 

or more activation steps of gene expression (e.g. near 100% or 0% nucleosome occupied), while the 

malleable archetype could reflect instability around the inflection points.   
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Supplementary Figures 

 
Supplementary Fig. 1 | GPRA experiment overview. Yeast are transformed with a library of random 80 bp sequences driving 

YFP expression, the cells recovered and selected for successful transformants, and grown in the target media in log phase. Yeast 

are then sorted by the ratio of YFP to RFP into 18 different uniform expression bins. Yeast are then recovered in selection media 

(SD-Ura), plasmids isolated, sequencing libraries created, and the promoters in each expression bin sequenced with high-

throughput sequencing. 

104



   
 

  

   
Supplementary Fig. 2 | a, Comparison of raw ECC distributions for natural variation (red) and matched simulated variation 

(green, “mock ECC”). Both are biased towards having an ECC above 0. b, Comparison of ECCs with global correction (x axis) 

and gene-specific correction factors (y axis). c, ECC with uniform substitutions (y axis) is highly correlated to the ECC computed 

using the observed substitution rate (x axis). d, e, Fitness responsivity is not associated with simple sequence diversity, but is 

associated with ECC. Fitness responsivity (y axes) and mean Hamming distance (d, x axis) or ECC (e, x axis) for each of 80 

genes (points). f, g, Genes whose expression changes have stronger effects on organismal fitness have mutationally robust 

regulatory sequences. Mutational robustness (x axes) and fitness responsivity (f, y axis) or ECC (g; y axis) for each of 80 genes 

(points) for which the expression-to-fitness curves were quantified (Keren et al., 2016). (b-g) Spearman’s 𝜌 and associated two-

tailed p-values are shown. The light blue error bands represent the respective 95% confidence intervals. h, Mutational effects 
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follow a power law distribution. Probability density (y axis) and expression effect of mutation (magnitude) (x axis) plotted on 

log-log axes (solid line) alongside the goodness of fit (dash line) of the power law distribution.  
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Supplementary Fig. 3 | a,b, Expression variance (by RNA-seq) for Saccharomyces (a) and Ascomycota (b). Green boxes: genes 

called as divergent; orange: genes called as conserved by the thresholds in this study (as in Extended Data Fig. 4b). c, 

Sensitivity of ECC enrichment significance (Wilcoxon rank sum test -log10(P-values); y axis) to “conserved” vs. ”divergent” 

thresholds (x axis) for Ascomycota (light gray) and Saccharomyces (dark gray). P=0.05: dashed line. d, Sensitivity of ECC 
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enrichment significance (Wilcoxon rank sum test, “Mammalian p-value”) to “conserved” vs. “divergent” thresholds (“Threshold 

(%)”) in mammals. The columns display the number of genes determined to be in each class at each threshold. 
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Supplementary Fig. 4 | a, Benchmarking of performance against existing neural network architectures. Pearson correlation 

coefficient between model predictions and test data (x axis) for four model (y axis). All models were trained on the same training 

dataset, and tested on the same set of native promoter test sequences in complex media. While all approaches performed 

reasonably well, the transformer model architecture used in this paper out-performed the others on the native test sequence 

dataset. b-d, Comparison of ECC calculated with our model (y axis) and with (b) DeepAtt, (c) DeepSEA and (d) DanQ (x axis). 

In each case, the ECC predictions are highly correlated between each approach and our model. (Outliers not shown for the panel 

(c) to maintain scaling and visibility; Pearson’s r was computed using all of the data including outliers.). e-h, The convolutional 

and transformer models have highly correlated predictions. Predicted expression from the convolutional (x axis) and transformer 

(y axis) models in complex (e-f) and defined (g-h) media for random (e-g) and native (f-h) test datasets. (b-h) Pearson’s 𝑟 and 

associated two-tailed p-values are shown. 
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Supplementary Fig. 5 | Comparison of the biochemical and transformer models. Measured and predicted expression in 

complex media for (a-c) random test data as, and (d-f) native test data. (a,b,d,e) Measured (y-axes) and predicted (x-axes) 

expression, for (a,d) biochemical and (b,e) transformer models. (c,f) transformer (x-axes) and biochemical (y-axes) model 

predictions. (a-f) Pearson’s 𝑟 and associated two-tailed p-values are shown. g,h, The transformer model outperforms the 

biochemical model in differentiating expression conservation status. g, Comparison of ECCs calculated for each gene (points) for 

the transformer model (x axis) versus the biochemical model (y axis). Spearman’s 𝜌 and associated two-tailed p-values are 

shown. h, Significance (y axis) of rank sum statistics for how well ECCs calculated with each method separates conserved versus 

not conserved genes across Saccharomyces (dark brown) and Ascomycota (light brown).  
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Supplementary Fig. 6 | Each layer individually contributes to model performance. Performance (x axis, Pearson’s r between the 

model predictions and random test data) of the transformer model variants (y axis) with each layer individually ablated, and the 

full transformer model (bottom). The full transformer model outperforms all other versions with any model component ablated. 

The two-tailed p-value corresponding to each performance metric shown is < 5*10-234. 
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Supplementary Fig. 7 | Sequences took diverse paths to evolve extreme expression. a-b, The number (y axis) of mutations 

across each promoter position (x axis; -160 to -80 region) for trajectories under the SSWM regime starting with native promoter 

sequences when (a) maximizing or (b) minimizing expression in defined media using the convolutional model. Some of the 

observed bias to TSS-proximal mutations may be related to prior observations of proximal repressor activity bias(de Boer et al., 

2020). c,d, The number (y axis) of mutations of each type (x axis) for trajectories under the SSWM regime starting with native 
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promoter sequences when (c) maximizing or (d) minimizing expression in defined media. Colors represent the mutational step 

(1-10).  
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Supplementary Fig. 8 | a,b, Examples of regulatory complexity changes under stabilizing selection. TF regulatory interaction 

strengths for original (x axes) and evolved (y axes) sequences after 32 neutral (expression maintaining) mutations for each TF 

(points) for -160:-80 promoter regions for (a) YDR476C, whose regulatory complexity was high and decreased (from 0.3 to 0.25), 

and (b) AIF1, whose complexity was low (dominated by the TF Abf1p) and increased (from 0.14 to 0.21). Both have 

approximately the same predicted expression levels (13.7 and 14.3 respectively).   
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Supplementary Fig. 9 | Predicted expression divergence under random genetic drift. Distribution of the change in predicted 

expression (y axis) for native yeast promoter sequences (n=5,720) at each mutational step (x axis) for trajectories simulated under 

random mutational drift using the transformer model. Silver bar: differences in expression between unrelated sequences. Expression 

decreases with increasing mutation number because the average expression of the starting set of native sequences is greater than 

for random DNA, and so including random mutations are more likely to decrease expression than increase it. Midline: median; 

boxes: interquartile range; whiskers: 5th and 95th percentiles.  

  

115



   
 

  

 

 

 
Supplementary Fig. 10 | Growth phenotypes of CDC36 promoter mutant strains. Maximum growth (y axis, top), duration of lag 

phase (y axis, middle) and saturation of growth (y axis, bottom) for two WT strains and two engineered strains (x axis). Bars: 

means, dots: replicate measurements. P-values: Student’s t-test; two-sided, unpaired, equal variance. n=3 replicates/strain. 
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Supplementary Figure 11: Robustness of moderation of regulatory complexity to the degree of stabilizing selection. 
(a,d,g,j,m) Distributions of regulatory complexity (y-axes) for sets of sequences with initial high (light blue) and low (orange) 
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regulatory complexity, and evolved sequences at different mutation steps, with native and random sequences shown for reference 
(dark and light gray respectively). Here, n is the number of trajectories included. All evolved sequences were designed to mimic 
stabilizing selection by requiring that expression changes by no more than 0.5 expression units relative to the original using the 
GPU model. Also shown are the measured (y-axes) and model predicted (x-axes) expression levels for the convolutional 
(b,e,h,k,n) and transformer (c,f,i,l,o) models. Results are shown for all complete experimental trajectories (a-c), or when 
including only trajectories where no evolved sequences had measured or transformer model-predicted expression that differed 
from the measured expression of the original sequence by more than 3 (d-f), 2 (g-i), 1.5 (j-l) or 1 (m-o) expression units. All data 
are for complex media (YPD). (a,d,g,j,m) Midline: median; boxes: interquartile range; whiskers: 5th and 95th percentile range. 
(b,c,e,f,h,i,k,l,n,o) Pearson’s 𝑟 and associated two-tailed p-values are shown. 
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Supplementary Fig. 12 | The deep transformer neural network architecture for the sequence-to-expression model. a, 
Model architecture with three blocks (horizontal lines) and multiple layers (boxes). b-d. Expanded architecture (Methods) for the 
convolutional (b), transformer encoder (c) and multi-layer perceptron (d) blocks in our transformer model. 
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Supplementary Fig. 13 | Comparison between predictions and measurements of expression at each mutational step in 
complex media. Transformer model predicted (x-axes) and measured (y-axes) expression for each mutational step (plots) for 
trajectories in Fig. 2g (n=10,322 sequences, divided amongst plots). The Pearson’s correlation coefficient (PCC) associated with 
each panel is also shown. The two-tailed p-value corresponding to the performance metric shown in each panel is < 5*10-234. 
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Supplementary Fig. 14 | Comparison between predictions and measurements of expression at each mutational step in 
complex media. Convolutional model predicted (x-axes) and measured (y-axes) expression for each mutational step (plots) for 
trajectories in Fig. 2g  (n=10,322 sequences, divided amongst plots). The Pearson’s correlation coefficient (PCC) associated with 
each panel is also shown. The two-tailed p-value corresponding to the performance metric shown in each panel is < 5*10-234. 
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Supplementary Fig. 15 | Comparison between predictions and measurements of expression at each mutational step in 
defined media. Transformer model predicted (x-axes) and measured (y-axes) expression for each mutational step (plots) for 
trajectories in Extended Data Fig. 1g  (n=6,304 sequences, divided amongst plots). The Pearson’s correlation coefficient (PCC) 
associated with each panel is also shown. Due to limitations in the number of sequences we could test per experiment, we only 
tested the decreasing expression defined media trajectory to 5 mutations. The two-tailed p-value corresponding to the 
performance metric shown in each panel is < 5*10-234.  
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Supplementary Fig. 16 | Comparison between predictions and measurements of expression at each mutational step in 
defined media. Convolutional model predicted (x-axes) and measured (y-axes) expression for each mutational step (plots) for 
trajectories in Extended Data Fig. 1g (n=6,304 sequences, divided amongst plots). The Pearson’s correlation coefficient (PCC) 
associated with each panel is also shown. Due to limitations in the number of sequences we could test per experiment, we only 
tested the decreasing expression defined media trajectory to 5 mutations. The two-tailed p-value corresponding to the 
performance metric shown in each panel is < 5*10-234.  
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Supplementary Data Fig. 17 | Characterization of sequence trajectories under strong competing selection pressures using 
the transformer model. a-d, Competing expression objectives are slow to reach saturation. a,b, Difference in predicted 
expression (y axis) at each evolutionary time step (x axis) under selection to maximize (red) or minimize (blue) the difference 
between expression in defined and complex media, starting with either native sequences (a, n=5,720 trajectories) or random 
sequences (b, n=10,000 trajectories). c-d, Distribution of predicted expression (y axis) in complex (blue) and defined (red) media 
at each evolutionary time step (x axis) for a starting set of native sequences (c, n=5,720 trajectories) and random sequences (d, 
n=10,000 trajectories). Midline: median; boxes: interquartile range; whiskers: 5th and 95th percentile range. e Motifs enriched 
within sequences evolved for competing objectives in different environments. Top five most enriched motifs, found using 
DREME(Bailey, 2011) (Methods) within sequences computationally evolved from a starting set of random sequences to either 
maximize (left) or minimize (right) the difference in expression between defined and complex media, along with DREME E-
values, the corresponding rank of the same motif when using native sequences as a starting point, the likely cognate TF and that 
TF’s known motif. 
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Supplementary Fig. 18 | Sequences took diverse paths to evolve extreme expression in simulations with the transformer 

model. a-b, The number (y axis) of mutations across each promoter position (x axis; -160 to -80 region) for trajectories under the 

SSWM regime starting with native promoter sequences when (a) maximizing or (b) minimizing expression in defined media using 

the transformer model. c,d, The number (y axis) of mutations of each type (x axis) for trajectories under the SSWM regime starting 

with native promoter sequences when (c) maximizing or (d) minimizing expression in defined media. Colors represent the 

mutational step (1-10). 
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Supplementary Fig. 19 | The transformer model captures expression plateau better than the convolutional model when 

simulating trajectories under SSWM for 32 mutational steps. Distribution of predicted expression levels (y axis) in complex 

media at each mutational step (x axis) for sequence trajectories under SSWM favoring high (red) or low (blue) expression, 

starting with native promoter sequences using the convolutional (a, n=5,720 trajectories) or transformer (b, n=5,720 trajectories) 

models. The transformer model predicts an expression level  plateau (like the measured expression in Fig. 2g), while the 

convolutional model predictions do not plateau at higher mutational distances. Midline: median; boxes: interquartile range; 

whiskers: 5th and 95th percentile range. 

126



   
 

  

 

 
Supplementary Fig. 20 | Summary statistic scatterplot for trajectories under SSWM. Mean measured expression (y axis) and 

mean predicted expression (x axis) at each step in the mutational trajectories for native sequences under SSWM for the 

convolutional (a,b) and transformer (c,d) model in the complex (b,d) and defined (a,c) media, as in Supplementary Fig. 19. The 

Pearson’s correlation coefficient (PCC) and the corresponding two-tailed p-value are shown. 
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Supplementary Fig. 21 | Sequence differences between training and test data. The distribution of the Hamming distance 

between each sequence in the (a) random or (b) native test sets and the closest sequence in in the random training set.  
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Supplementary Tables 

Supplementary Tables 

Supplementary Table 1 | The Expression Conservation Coefficient (ECC), mutational 

robustness, evolvability vector archetypal coordinates, predicted expression, ECC using gene-

specific correction factors, and ECC non-neutrality p-values corresponding to all native promoter 

sequences.  

 

Supplementary Table 2 | The GO terms enriched by the ECC ranking. One-sided p-values were 

computed using minimum hypergeometric statistics, taking into account multiple testing as 

previously described(Eden et al., 2009). 

 

Supplementary Tables 1 and 2 are provided as an Excel file.  
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Supplementary Table 3 | Primers used in this study. The list of single stranded 

oligonucleotides used. This table can be found in the Supplementary Information document. 

Name Sequence (5’-3’) Orientation Description Reference 

pCDC36_DBVPG6765_

WT_fw ATCCATACACAAGACTCATAGAA Fw WE gRNA 

This study 

pCDC36_DBVPG6765_

WT_rv AACTTCTATGAGTCTTGTGTATG Rv WE gRNA 

This study 

D6765_to_Y12_ssODN 

TTCCATCTCTATATAACAAAGTAT

TTCTTTATTTTCTAATAGTTCCTTT

CTACGAGTCTTGTGTATGTTTATA

AAGAGTGAGCTCTTTTGTTATGAA

GT Duplex 

ssODN SA 

allele 

This study 

pCDC36_seq_F TCACACGTAGACGACTTGCCA Fw Sequencing This study 

pCDC36_seq_R2 CCTTGTAGTTTTTGCATATCTAGT Rv Sequencing This study 

Seq_3_Fw ACTTGCCACATCCTGGTGTT Fw Sequencing This study 

Seq_3_Rv ATGTTTCTGCCCACGGTGAT Rv Sequencing This study 

CDC36_Fw CATGACCTTAGGAGCGGACT Fw qPCR This study 

CDC36_Rv TCCACTTCGCTTCTGGATGT Rv qPCR This study 

ACT1_Fw TTGGCCGGTAGAGATTTGAC Fw qPCR Teste et al. 

ACT1_Rv CCCAAAACAGAAGGATGGAA Rv qPCR Teste et al. 
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RPN2_Fw 

GCGGATACAGGCACATTGGATAC

C Fw qPCR 

Teste et al. 

RPN2_Rv 

TGTTGCTACCTTCTCTACCTCCTT

ACC Rv qPCR 

Teste et al. 

pT-pA_GibsRI GAACTGCATTTTTTTCACATCNNN

NNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNGGTTACGGCTGT

TTCTTAA 

Fw Random 

promoter 

oligo for use 

in pTpA 

promoter 

context 

de Boer et 

al 

R-pT_GibsDS TTAAGAAACAGCCGTAACC Rv For double-

stranding 

pT-

pA_GibsRI 

de Boer et 

al 

Nextera_i5LN5_GpT TCGTCGGCAGCGTCAGATGTGTA

TAAGAGACAGNNNNNTGCATTTT

TTTCACATC 

Fw Nextera 

adaptor 

addition, 
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Supplementary Table 4 | Strains. The list of yeast strains used.  

Strain Genotype Reference 

Y8205 MATalpha, can1delta ::STE2pr-Sp_his5 

lyp1delta ::STE3pr-LEU2 his3delta1 

leu2delta0 ura3delta0 

Charles Boone Lab – 

strain verified by 

auxotrophy 

S288C::ura3 MATα SUC2 gal2 mal2 mel flo1 flo8-1 

hap1 ho bio1 bio6 ura3delta0 

de Boer et al. 2020 – 

strain verified by PCR of 

URA3 

DBVPG6765 

(WE) 

MATalpha, ho::NatMX, ura3::KanMX Cubillos, Louis & Liti 

(DOI: 10.1111/j.1567-

1364.2009.00583.x) 

Y12 (SA) MATalpha, ho::NatMX, ura3::KanMX Cubillos, Louis & Liti 

WE C7 DBVPG6765 derivate with SA Upc2 

binding site 

This study – pCDC36 

genotype verified by 

Sanger sequencing 

WE C23 DBVPG6765 derivate with SA Upc2 

binding site 

This study  – pCDC36 

genotype verified by 

Sanger sequencing 
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ATLAS (A Tool for Learning from Atlas-scale Single-cell measurements) 

 
 
 
 

This chapter describes ‘A Tool for Learning from Atlas-scale Single-cell 

measurements’(ATLAS).  

 

 

An early version of ATLAS appeared in: 

Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nature 

Medicine 27, 546–559 (Muus, C. et al. 2021). Contribution: Co-first author. 

 

 

Spatial mapping of cell types using ATLAS, was first presented in: 

Reference-based cell type matching of spatial transcriptomics data. bioRxiv 2022. (Zhang et al). 

Contribution: Co-author. 

 

 

The manuscript that follows in this chapter, describes how ATLAS can be used to predict and 

prioritize drug targets from single cell atlases. Contribution: First author. 
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Summary

The ongoing COVID-19 pandemic caused by the SARS-CoV-2 virus has sparked
an urgent need for better understanding of its pathogenesis and identification of
new drug targets to stem both viral infection and tissue-, organ- and body-level
responses. Viral infection and host response begin at the single-cell level: the virus
infects only specific cell types, while additional cell types respond to the intra-
cellular signals triggered by infection. Integrative analyses of single-cell atlases
can help identify both the specific cells involved and their therapeutically targetable
programs. However, the complex and non-linear variability between measurements
made across domains such as individuals, conditions, technological platforms and
laboratories makes inference from these atlases challenging. Here, we introduce a
novel framework for inference from atlas-scale scRNA-seq datasets. First, we learn
biologically informative, domain-invariant feature representations for scRNAseq
expression data by aligning domain distributions in a latent space through moment
matching using a regularized autoencoder, correcting for undesirable variability
across measurement domains. Then, we use these domain-invariant representations
to identify gene programs with non-linear and combinatorial effects on phenotype
using feature importance measures. We apply our framework to single cell atlases
from autopsies and bronchoalveolar lavage samples from COVID-19 patients along
with atlases from healthy individuals in the Human Cell Atlas to infer expression
programs in SARS-CoV-2 target cells. We then predict and prioritize putative
drug targets validated from independently published, drug repurposing and protein-
protein interaction studies. This framework extends to both discrete (e.g. diseased
vs healthy) and continuous (e.g. copy number variant scores) labels for scRNA-seq
datasets and has broad applicability across a range of human diseases.

1 Contributions

We introduce a novel framework for predicting and prioritizing putative human disease drug targets
from single-cell atlases that we call ATLAS (A Tool for Learning from Atlas-scale Single-cell
datasets), with two primary contributions :
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1. ATLASa : We propose a method for solving the scRNA-seq data-integration problem by
using a higher order moment-matching regularizer with an AE to learn domain-invariant
feature representations for scRNA-seq data.

• We validate our approach on synthetic and real datasets and benchmark our performance
against existing methods to demonstrate the quality of our learned representations.

• We use these representations to identify and annotate cell types in a newly generated
single-cell atlas from COVID-19 lung autopsies and a recently published lung atlas
from healthy individuals [1].

2. ATLASb : We describe a simple approach for inferring gene expression programs from
single-cell atlases using feature importance methods on models trained on our domain-
invariant features that accounts for non-linear and combinatorial interactions between genes
and their effects on phenotype.

• We apply this approach to a recently published dataset of bronchoalveolar lavage
fluid samples from COVID-19 patients [2] to infer cell-type specific gene expression
programs

• We identify drug targets, including ones that we were able to validate using independent
experimental studies of SARS-CoV-2 protein-protein interaction (PPI) [3] and drug-
repurposing [4]. We also demonstrate how to use our approach to prioritize putative
drug target lists.

2 Approach

Our proposed method for learning domain-invariant features, ATLASa, is outlined in Figure 1a. We
formulate this problem as a multi-target domain adaptation problem. The model architecture is that
of an autoencoder comprised of an encoder f and a decoder g that are parametrized as a neural
network with parameters ✓. The autoencoder has m streams with shared parameters as shown and
each steam corresponds to an experimental domain.

Input : The model expects gene expression vectors for cells as the input. This input is supplied to the
arm corresponding to the domain the cell is sampled from.
Output : The model outputs two domain invariant representations for each input x. The first output
is f✓(x), the latent feature representation learned by the encoder and, the second output is g✓(f✓(x)),
a domain-invariant reconstruction of the input by the AE. We refer to this reconstruction in (ii) as the
’corrected’ gene expression vector from here on out.

We minimize the pairwise domain discrepancy between an arbitrarily chosen reference domain and
the rest by adapting the Central Moment Discrepancy (CMD) [5, 6] regularizer for matching the
higher order central moments using order-wise moment differences for the latent feature space learned
by f . The CMD regularizer is appropriate for this atlas-scale scRNA-seq data-integration problem
because of its scalablity (CMD computation is linear in the number of samples), minimal parameter
sensitivity[5] and its ability to match non-Normal distributions.

2.1 Problem Formulation

Let D = {Dj}mj=1 denote the set of scRNA-seq measurement domains. Dj = {xj
i}ni=1, where each

xj
i refers to a single-cell gene expression vector measured in domain Dj . We first arbitrarily choose a

reference domain Dr 2 D. Then, for training, we sample mini-batches of size nb from each domain
Xj = { xj

i 2 Dj | |Xj | = nb }. The objective function L is a linear combination of the reference
domain reconstruction loss and the pairwise CMD domain discrepancy losses for each non-reference
domain w.r.t the reference domain.

L = Le
Dr

+ �d

X

Dj2D\Dr

Lc
Dj

(1)

Le
Dr

(✓) =
1

nb

X

x2Xr

|| x� g✓(f✓(x)) ||2 (2)
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Lc
Dj

(✓) =
1

|b� a| ||E(f✓(Xj))�E(f✓(Xr))||2+
KX

k=2

1

|b� a|k ||Ck(f✓(Xj))�Ck(f✓(Xr))||2 (3)

where || · || denotes the Euclidean norm, E(X) = 1
|X|

P
x2X x is the empirical expectation vector,

the parameter K is the bound on the order of the central moment terms, Ck(X) = E((x�E(X))k is
the vector of all kth order sample central moments, Le

Dr
denotes the reference domain reconstructions

loss and Lc
Dj

(✓) denotes the domain discrepancy loss term for every other domain.

The objective function is minimized w.r.t. ✓ using gradient based optimization methods.

2.2 Datasets and Implementation Details

We use a letter code to refer to each dataset used in this manuscript. Complete details about accession
(in the case of experimentally measured datasets) and simulations (in the case of synthetic datasets)
will be made available with the Supplementary Materials. We used the following single-cell atlas
datasets :

• COVIDA : A single-cell atlas of lung cells isolated from autopsy samples [citation TBD].

• COVIDB : A single-cell atlas of bronchoalveolar immune cells in COVID-19 patients [2].

• LUNG : A single-cell atlas of lung cells isolated from healthy individuals [1].

• SPLATTER2, SPLATTER4 and SPLATTER6 : Synthetic single-cell atlases that we gener-
ated for evaluation using a widely used scRNA-seq simulation library[7].

• SCIBSIM : A synthetic single-cell atlas used for benchmarking integration methods in [8].

• NASAL : A single-cell atlas generated from human surgical chronic rhinosinusitis tissue[9]

In addition to these single-cell atlases, we also used also used a dataset of SARS-CoV-2 protein-
protein interactions (PPI) [3] and a drug-repurposing (REP) [4] study along with DRUGBANK [10],
a comprehensive database of FDA approved and experimental drugs.

Details about the implementation, hyper-parameter considerations and dependencies can be found in
the Supplementary Methods.
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Figure 1: ATLASa learns domain-invariant, biologically meaningful representations of single-
cell data. (a) A schematic outline of the ATLASa scRNA-seq data-integration method. Results of
ATLASa applied to three simulated datasets (b, c, d) shown as 2-D UMAP visualizations. Each
dot represents a cell, colored by domain of origin (left) or cell type (right). The top panels show
the original simulated data UMAP visualizations without the ATLASa integration. The bottom
panels show the same data with ATLASa integration. ATLASa integrated data shows clear separation
of biologically relevant cell types when evaluated against the ground truth cell types used for
the simulation, while displaying domain-invariance in the face of the original domain distribution
discrepancy.
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3 Results

3.1 Performance Evaluation and Benchmarking

First, we qualitatively evaluate the performance of our scRNA-seq data-integration method ATLASa
using three synthetic single-cell atlases (SPLATTER2, SPLATTER4, SPLATTER6). Each of these
atlases were simulated to have pre-determined domain and cell type labels for each cell in the
simulation to serve as ground truth in order to assess whether ATLASa learned domain-invariant
representations f✓(x) and whether these still retained biological information. We ran ATLASa on each
of these simulated atlases to learn domain-invariant representations for each cell and visualized them
using a 2-dimensional UMAP [11] projection with and without using their learned representations
using ATLASa. Figures 1b, c, d clearly show that the representations learned by ATLASa preserve
biological information, as demonstrated by their ability to separate out biologically relevant cell-types
in an unsupervised manner.

Table 1: Summary of performance on (domain-invariance, biological information preservation)
metrics of an array of integration methods, including our ATLASa method. Entries take the form
(KBET, ILASW). Both metrics are set up such that they range from 0 to 1 and higher values reflect
better performance.

Dataset
Integration ATLASa scVI Scanorama Harmony None

NASAL (.632, .691) (.343, .616) (.390, .559) (.568, .673) (.556, .676)
SCIBSIM (.999, .597) (.916, .573) (.997, .546) (.735, .537) (.743, .551)
COVIDB (.283, .627) (.219, .557) (.379, .494) (.200, .553) (.350, .568)
SPLATTER6 (.969, .524) (.233, .555) (.140, .518) (.936, .527) (.362, .514)

AVERAGE (.721, .610) (.428, .575) (.476, .529) (.466, .569) (.646, .580)

Next, we quantitatively establish the efficacy of ATLASa, our proposed data-integration method,
through a comprehensive benchmarking analysis against an array of established data-integration
methods: single-cell Variational Inference (scVI) [?], Scanorama [12], and Harmony [13] (we refer
the reader to the Supplement for further description of these methods and a comprehensive report of
the benchmarking analysis). Since there may exist a trade-off between learning domain-invariant
representations and preserving biologically meaningful information, our benchmarking analysis
used two complementary metrics: (i) the k-Nearest-Neighbors Batch Effect Test (KBET) [14], a
specially designed scRNA-seq data-integration assessment metric for evaluating the representations
learned by the methods on their domain-invariance , and (ii) the Isolated Label Average Silhouette
Width (ILASW) score [8], a metric designed for evaluating the preservation of biologically relevant
information. We set up both metrics such that they lie in the range in from 0 to 1 and such that higher
values on each are indicative of better performance and we refer the reader to the Supplementary
Material for a complete description of these details.

Table 2: Summary of runtimes (in seconds) for
ATLASa’s data integration method vs. scVI.

Dataset
Integration ATLASa scVI

NASAL 62.443 1023.624
SCIBSIM 70.817 1105.963
COVIDB 428.046 2917.076
SPLATTER6 110.230 1808.429

AVERAGE 167.884 1713.773

We ran our analysis on four datasets: two syn-
thetic (SCIBSIM, SPLATTER6) and two biolog-
ical (NASAL, COVIDB) (see Datasets and Sup-
plementary Methods for further information).
We found that on 3 out of 4 datasets, ATLAS’s
data integration method outperformed the other
methods on the domain-invariance metric (see
Table 1). Furthermore, on 3 out of 4 datasets in-
cluding the COVIDB dataset, ATLAS’s data in-
tegration method outperformed the others on the
biological-information preservation metric. Im-
portantly, ATLAS also had the highest average
metric score on both of these complementary
tasks (see Table 1).

Next, we benchmark the runtime of our method. At the time of benchmarking, out of all the methods
considered, only scVI and ATLASa have GPU implementations. We compared their runtimes on
each of the four datasets (see Table 2). Compared to scVI, ATLASa is over ten times faster on
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average (in addition to being more effective on the domain-invariance and biological-information
preservation tasks on all and all but one datasets, respectively, as shown in Table 1). One of the
reasons for the runtime performance is the fact that CMD does not require computationally expensive
kernel computations.

However, all of these metrics computed for various benchmarking tasks are just proxies for demon-
strating potential utility of these approaches on real-life problems. Now, we turn our attention to a
very real-life problem : COVID-19.

3.2 Identification and Annotation of Cell Types in a new COVID-19 Patient Single-Cell Atlas
using Domain-Invariant representations from ATLASa

We use ATLASa to integrate two single cell atlases collected at opposite ends of the phenotype
continuum: (i) A healthy human lung single cell atlas [1] spanning 17 experimental domains and
60,872 cells and (ii) A new lung cell atlas created from autopsies of COVID-19 patients ([citation
pending]) representing 15 experimental domains and 27,519 cells. We then use the f✓(x) learned
by ATLASa to identify and annotate cell types from these tissues to better understand COVID-19
biology using unsupervised clustering [Supplementary Materials]. We annotated the atlases using our
results post-hoc using literature derived markers (Figure 2d) to define a shared taxonomy of 19 cell
classes as shown in Figure 2c. The shared taxonomy we report includes Epithelial (AT1, AT2, Basal,
Ciliated and Club cells), Stromal (Endothelial, Lymphatic, Mesenchymal) and Immune (Macrophages,
Monocytes, Mast, T and B) cells. Further, Figure 2b demonstrates the domain-invariance of the
learned representations from a diverse set of individuals displaying a broad range of phenotypes.
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Figure 2: ATLASa identifies cell types in a new COVID-19 single-cell atlas. Demonstration of
ATLASa for jointly analyzing two atlases. (a) Lung samples from (i) healthy and (ii) COVID-19
autopsy cohorts serve as input to ATLASa. Each lung sample represents an experimental domain.
2-D UMAP representations of the ATLAS integrated cells (dots) colored by domain of origin (b)
and putative cell type (c). (d) Dotplot representation of marker genes used to annotate cell types.
The size of the dot represents the proportion of cells expressing the marker gene (columns) and the
color represents the average normalized gene expression in each cell type (rows). Normalized gene
expression values are capped at 3.

3.3 Gene Expression Program Inference for COVID-19 from Healthy and Diseased Tissue
Atlases

Genes can affect phenotypes in non-linear and combinatorial ways. Understanding these gene-
expression programs (GEPs) that drive phenotypes of interest P can help elucidate the molecular
mechanisms and pathways corresponding to disease states and facilitate drug target identification.
Previous attempts at inferring GEPs for COVID19 relied heavily on distinguishing ACE2+TMPRSS2+
cells (double positives , DPs) and compared these cells to ACE2-TMPRSS2- cells (double negatives,
DNs) [15]. However these approaches were limited in their ability to identify GEPs relevant for drug
target identification because of a lack of availability of single-cell atlases from COVID-19 patients.
We use COVIDB, a recently published atlas of BALF samples from COVID-19 [2], to describe and
demonstrate a simple approach (that we call ATLASb) for GEP inference from single-cell atlases.

ATLASb takes the ‘corrected’ gene expression vectors g✓(f✓(x)) for each cell x produced by ATLASa
as input to train a simple multi-layer perceptron (MLP) model F to predict phenotype P from
g✓(f✓(x)) such that F (g✓(f✓(x))) = P . Since the dimensions of the input of F correspond to a
domain-invariant representations of gene expression vectors, we can now employ feature importance
measures like SHAP values [16] and DeepLIFT [17] to identify gene expression programs driving
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Figure 3: (a) Identifying GEPs using feature importance measures with MLPs. Gene programs
inferred from the COVIDB dataset. KEGG gene set enrichment of severe (b) Macrophage and (c)
T-cell expression programs. X-axis represents the enrichment test log p-values after adjustment for
multiple hypothesis testing. Y-axis represents the enriched gene sets.

the phenotype of interest. This simple framework can allow us to identify genes that have non-linear
and combinatorial effects on phenotypes because of the use of an MLP as the model F .

For the COVIDB dataset, we used a gradient-based approximation of SHAP values [16] with ATLASb
to identify cell type specific GEPs over three different labeling regimes as phenotypes : severity,
whether a cell is from a healthy patient or one with a severe case of COVID-19, DP, whether a cell
has non-zero ACE2 and TMPRSS2 expression levels or zero for both, and viral, whether a cell has
been infected by the virus or is simply a non-infected bystander [Supplementary Methods].

The GEPs allowed us to identify shared and cell type specific gene expression features ( Figure 3c,
d). Overall, expression programs in all immune cells were characterized by enrichment for classic
inflammatory molecules including IL6, members of the TNF family and complement component 3
(C3). The severity expression programs in macrophages were strongly enriched in cytokines and
chemokines indicative of a pro-inflammatory “cytokine storm-like” state consistent with what has
previously been reported [2]. On the other hand, the viral expression programs of macrophages
included interferon regulatory genes IRF8, IRF4 consistent with response to viral entry. Cell-
type specific severity programs in epithelial cells include genes known to mediate viral infection
(CEACAM5, CLDN4, CLDN1), and multi-functional cytokines including IL10 and CD40 signaling
previously reported in inflamed airway cells [18]. Interestingly, TMPRSS2 emerged as a highly
discriminant gene, supporting its suggested role[19] as an accessory protease in mediating viral entry.

Taken together, this strong validation of our gene expression programs corroborated by multiple
independent publications demonstrates the efficacy of our proposed ATLAS framework and its
potential for driving biological discovery.

3.4 Predicting and Prioritizing Putative Drug Targets for COVID-19

Finally, since we had all the pieces in place to do so, we sought to evaluate whether our hypothesis
that "domain-invariant feature representations of scRNA-seq data can help address the pressing need
for identification of human disease drug targets when used in tandem with modern feature importance
methods to account for the combinatorial and non-linear effects of gene-expression on phenotype"
holds true in the context of COVID-19. We identified two independent validation datasets from
a growing body of work on drug-screens and protein-protein interaction studies for COVID-19 :
a dataset of SARS-CoV-2 protein-protein interactions (PPI) [3] and another from a SARS-CoV-2
drug-repurposing (REP) [4] study. We found multiple overlapping genes between our gene expression
programs and the lists of drug targets identified in both of these independent experimental studies
shown in Figure 4a. We also show in Figure 4a that our results hold across cell types suggesting that
the putative drugs may potentially have mechanisms of action that could make them work across cell
types. Figure 4a also shows a subset of its overlapping genes with Drugbank[10], a comprehensive
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database of FDA approved and experimental drugs which may suggest novel putative targets with
known drug-target interaction that were identified from scRNA-seq data using ATLAS and may
have been missed by PPI studies potentially because of their indirect mechanism of action. Further
inspection of Figure 4a shows that besides having the known contender IL6 which serves as further
validation of our approach, the target lists also contain other putative hits including the complement
component C3, and the inflammation-induced mediator of tissue tolerance GDF15 [20]. Other
interesting drug targets include CDK6, which has not been previously reported in the context of
SARS-CoV-2 but it has been reported as an interactor for viral cyclins[21].

These results suggest that our hypothesis may hold true.

Figure 4: (a) Network plot showing a subset of the drug targets discovered by ATLAS and their
source of independent experimental validation : DRUGBANK [10] (a comprehensive list of FDA
approved and experimental drug targets) intersections shown in yellow, COVID-19 REP (a large scale
SARS-CoV-2 drug repurposing study) intersections in orange and the COVID-19 PPI (protein-protein
interactions) intersections in red. (b) Prioritizing putative drug targets identified in the COVID-19
REP publication by ranking them using their feature SHAP importance values for predicting disease
phenotypes.

For the development of effective therapeutics for COVID-19, putative drug targets must be prioritized
in concert with the cellular context and function. Cell-type specific gene expression programs from
COVID-19 data afford one window into both cellular localization and putative functional context
for such prioritization. We show how one can prioritize the drug targets identified by the REP study
(Figure 4b) by layering on the information from the COVIDB single-cell atlase using the same simple
ATLASb framework desribed above. Among the top hits from this prioritization approach were
Cathepsins CTSS, CTSB, CTSL, lysosomal genes essential for the cellular entry of coronaviruses
[22], and previously proposed as targets for SARS-CoV[23]. Recently, amantadine was identified
as an inhibitor of CTSL, and proposed [24] as a potential therapeutic for COVID-19 as well. Taken
together, these independent sources from literature suggest that our approach for prioritizing putative
COVID-19 drug targets may provide useful information for further follow-up with experimental
studies.
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1 Introduction to the Supplementary Materials

In this document, we elaborate on the details omitted from the main text of the manuscript. Addi-
tionally, we will provide further clarification on the methods and results. Source code for ATLAS
and all the analyses reported in this manuscript can be found in the files attached in the zipped folder
(with the specific references to the files below). The datasets used are made available on a Google
Bucket (with the exception of COVIDA, which is currently not publicly available). We begin by
briefly summarizing our primary results :

In the main text, we introduced ATLAS: A Tool for Learning from Atlas-scale Single-cell datasets.
ATLAS is a two part framework consisting of ATLASa and ATLASb. We used ATLASa to learn
domain-invariant representations of scRNA-seq datasets and demonstrated the method’s effectiveness
qualitatively (in the main text’s Figure 1) and quantitatively (in the main text’s Table 1 and Table
2) using real and simulated datasets. Then, we demonstrated ATLASa’s applicability to COVID-19
by using it to identify cell types from single-cell atlases constructed from autopsies of COVID-19
patients by integrating them with atlases from healthy control lung samples from [1]. Next, we
developed ATLASb, an approach for inferring gene-expression programs driving a phenotype (like
disease state) using scRNA-seq atlases. Using ATLASb in tandem with ATLASa on a recently
published COVID-19 single-cell atlas, we identified gene expression programs and drug targets, both
of which we validated using multiple independent published studies.
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2 Definitions

In this section, we define the terms we used throughout the main text and the supplement :

� COVID-19 : Coronavirus Disease 2019
� SARS-CoV-2 : Severe Acute Respiratory Syndrome Coronavirus 2
� Gene : A sequence of DNA characters called nucleotides that codes for the synthesis of

gene products like proteins.
� Protein : A gene product that is a polymer made from amino acids that often has a defined

structure and function.
� Phenotype : A set of observable traits of an organism that is a function of an organism’s

gene expression profile and its environment.
� Single-Cell Sequencing : A set of technologies developed for making measurements from

individual cells.
� Single-cell RNA Sequencing (scRNA-seq) : A technology that quantifies the gene expres-

sion from individual cells by measuring the amount of messenger RNA produced by all the
genes in the cell.

� Drug Targets : A molecule in the body (often a protein, which is the product of the
expression of a gene) that is strongly associated with a disease phenotype and that may be
perturbed by a drug to produce a therapeutic effect.

� Gene Expression Program (GEP) : In this context, the set of genes that drive the corre-
sponding phenotype of interest.

� KEGG term : KEGG (Kyoto Encyclopedia of Genes and Genomes) [2] is a widely used
database for interpreting genomic data. KEGG terms refer to the molecular functions of
individual genes and sets of genes (e.g. : a GEP).

� FDA : The Food and Drug Administration, a United States federal executive department
responsible for the process of approving drugs.

3 Datasets

Here, we elaborate on the dataset descriptions provided in the main text. All simulations and published
experimental datasets we used are made available as .h5ad AnnData objects[3] that can be found at
https://console.cloud.google.com/storage/browser/atlas_datasets/. The name of
each available dataset in the list below may be clicked-on for a direct download link to a pre-processed
version of each dataset with the non-preprocessed, raw counts in the AnnData.layers[’counts’]
field :

• SPLATTER6, SPLATTER4, SPLATTER2 | Synthetic single-cell atlases that we generated for
evaluation using a widely used scRNA-seq simulation tool Splatter [4]. SPLATTER6 (shown in
Figure 1b in the main text), SPLATTER4 (shown in Figure 1c in the main text), and SPLATTER2
(shown in Figure 1d in the main text) consisted of 23148, 19318, and 15441 cells, respectively,
each with 9987, 9983, and 9974 genes, respectively. The datasets were simulated to have come
from six, six and eight experimental domains, respectively and to have twelve, three, and four
celltypes, respectively. The AnnData.obs.Batch field contains the domain label for each cell (in
each of these three datasets) and similarly the AnnData.obs.Group field contains the cell type
label for each cell.

• NASAL | A single-cell atlas generated from human surgical chronic rhinosinusitis tissue[5]. It
consists of 7087 cells, each with 33694 measured genes. The AnnData.obs.donor field contains
the domain label for each cell and the AnnData.obs.ann_level_4 field contains the cell type
label for each cell.

• SCIBSIM | A synthetic single-cell atlas used for benchmarking integration methods based on
simulations from [6] (their manuscript contains further details on how they simulated this dataset).
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It contains 20100 cells, each with 10000 genes. The AnnData.obs.Batch field contains the
domain label for each cell and the obs.Group field contains the cell type labels for each cell.

• COVIDB | A recently published single-cell atlas of bronchoalveolar immune cells in COVID-19
patients [7]. It consists of 63103 cells, each with 33538 genes. The AnnData.obs.sample_new
field contains the domain label for each cell and the AnnData.obs.celltype field denotes the
cell type (out of the ten celltypes reported in the publication) that each cell belongs to.

• Datasets used in Figure 3 : We used two single-cell atlases for Figure 3. The first (COVIDA)
is from an ongoing effort to generate atlases from lung autopsies of COVID-19 patients and the
second (LUNG) is an atlas generated from lung samples isolated from healthy indviduals.

– COVIDA - A single-cell atlas of lung cells isolated from autopsy samples [citation TBD]. It
consists of 34523 cells, each with 28560 genes. We will make a data download link available
for this dataset when the full dataset and the associated citation becomes publicly available.
We will also update this section of the supplement with a final citation (currently pending)
when it is possible to appropriately attribute everyone who generated this growing single-cell
atlas.

– LUNG - A single-cell atlas of lung cells isolated from healthy individuals [1]. It consists
of 60993 cells, each with 26485 genes. This dataset is available at https://hlca.ds.
czbiohub.org/.

4 Implementation, Preprocessing and Hyperparameters

Implementation

All code used is made available along with the Supplementary Materials in the ATLAS-master folder.
The README.md file in this folder describes how to create an environment for using ATLAS with all
the dependencies installed. A description of each file follows :

• tables_12main.ipynb : Notebook to produce corrected AnnData objects and perfor-
mance metrics for ATLASa and a suite of other data-integration methods (from Table 1 and
Table 2 of the main manuscript).

• program_analysis.ipynb : Notebook to produce cell-type specific gene programs for a
variety of feature-importance and phenotype labeling regimes used in the analysis including
Tables 1, 2 and 3 shown in this Supplement.

• tables_123456supp_figures_4supp.ipynb : Notebook to produce Tables 4, 5 and 6
in this Supplement and to find the intersections for the Venn Diagram in this Supplement’s
Figure 4.

• figures_12main_123supp.ipynb : Notebook to reproduce hyperparameter experiments,
pre vs post ATLASa-correction UMAPs, and dot-plot associated with Figures 1 and 2 in the
main text and Figures 1, 2, and 3 in this Supplement.

• figures_34main.ipynb : Notebook to produce the GEP bar-plots and drug-target network
plot from Figures 3 and 4 in the main text of the manuscript.

• correct_aux.py : Backend of the ATLASa data-integration method and associated helper
functions.

• analysis_aux.py : Backend of the ATLASb feature-importance drug-target-prediction
method and associated helper functions.

• atlas.py : Programmer friendly API for ATLAS use on other scrRNA-seq atlases and
disease labels (currently under development, to be officially released soon).

The ATLASa and ATLASb model implementations used Tensorflow [8] and Keras [9]. The training
and evaluation were carried out on a NVIDIA Tesla M60 GPU. A machine with consistent hardware
configurations was used for all the benchmarking experiments. All single-cell RNA-sequencing
datasets were converted to .h5ad AnnData objects[3] before preprocessing as described below. The
primary language of all the implementation was Python, with the exception of the simulated scRNA-
seq datasets that used R to interface with Splatter [4]. The network plot in Figure 4 was generated using
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networkx and the KEGG term enrichment was performed using the scanpy.queries.enrich

function in Scanpy [10].

Preprocessing

For use as input with ATLASa, we started with raw count matrices from each atlas dataset above
whenever thosse were available. Then, we normalized the counts such that the sum of expression
values across genes for each cell was 104. Then we log scaled the data after adding 1 to each entry in
the gene expression matrix. When raw counts weren’t available, we directly used the dataset with
the transcripts per million (TPM) units made available with the published dataset. After this step,
for all the datasets, we then normalized again to a target sum of 1, zero-centered and scaled the data
to have mean 0 and unit variance, and clipped off the scaled values to restrict them to a maximum
value of 10. We used the same preprocessing steps for all the external data-integration methods we
benchmarked our method against with the exception of the methods that required raw, un-processed
counts to be presented as input (scVI, in particular). The domain from which the largest number of
cells originated was arbitrarily chosen as the Reference Domain Dr for training the model. When
working with large-scale datasets, ATLASa can use the projection of the gene expression data along
its first hundred orthonormal principal component vectors before the first layer of the AE and then use
the corresponding inverse transform at the end of the output layer of the AE for speed and scalability.
This option was used whenever the hp_dict[’use_rep’] value was set to ’X_pca’ in the code.

For use as input to ATLASb, we directly used the corrected gene expression vectors output by
ATLASa for each cell as described in the main text. We note that the simple approach suggested
in ATLASb is independent of preprocessing. Any form of the gene expression data may be used to
train a classifier from gene expression matrices to predict phenotypes and this classifier may then
be examined using variable importance measures to identify GEPs and drug targets as described
in the main text. Here, the dimensions of the input correspond to the genes measured in the
cell. To speed up ATLASb, one can use a subset of the genes that are highly variable (defined
using the scanpy.pp.highly_variable_genes function) and/or the subset on the genes that
are upregulated in expression (defined as the genes that have a higher mean expression in one
phenotype class than another) in addition to differentially expressed genes (identified using the
scanpy.tl.rank_genes_groups function). Finally, for the COVIDB dataset, the publication
reported some ambient contamination (more details can be found in their Data exclusions section of
their original publication [7]) and so we addressed that by adapting a procedure previously used in
[11] for filtering out putative ambient RNA contaminants. This procedure gave us a list of contaminant
genes for each cell type that we subsequently excluded from all further analysis using ATLASb on
the COVIDB dataset.

Hyperparameters

The model architecture consists of an autoencoder (AE) with multiple streams, each corresponding to
a domain as described in Section 3 of the main text. The encoder consists of three fully-connected
layers with [1024, 512, 258] neurons respectively. The decoder consists of two fully connected
layers, the first of which has 512 neurons and the second one has the same dimensions as the input.
Each fully connected layer (except the last one) is followed by a Parametric ReLu Activation layer
[12] and each connection has a 0.1 probability of dropout. The reconstruction loss term on the
cells from the reference domain is computed using the mean_squared_error function. For every
other domain, the domain discrepancy term w.r.t. the reference domain is computed using the cmd
function adapted from [13]. The objective function is constructed as described in the main text and is
optimized using the Adam Optimizer [14]. The model was trained for 10 epochs with a mini-batch
size of 32. The code corresponding to this section can be found in the get_corrected_adata

function from the correct_aux.py file shared with the Supplementary Materials. The hp_dict

variable for each dataset described in the code specifies the exact hyperparameters used for each
experiment.

The hyperparameter �d, the weight of the sum of the distribution moment matching terms for each
domain, was chosen after a series of experiments on the SPLATTER datasets. We started with a low
value for �d and increased the value by an order of magnitude until it broke the model at �d = 1
(evident from the lack of separation between the ground truth cell types in the simulation for �d = 1
in Figures 1, 2 and 3 in this supplement). The range considered was [1e-4,1e-3,1e-2,1e-1,1
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Figure 1: A range of �d values for SPLATTER6 with ATLASa
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Figure 2: A range of �d values for SPLATTER4 with ATLASa

and all values of �d < 1 performed very well on the domain-invariant representation learning task as
shown in this Supplement’s Figure 1, Figure 2 and Figure 3 by the separation of cell types across
domains. The first row in each of these figures shows the cells colored by their experimental domain
of origin and the second row shows cells colored by their biological cell type pre-defined in the
simulation. Each column corresponds to a unique value of �d. We picked the middle of this range
�d = 1e-2 for all the subsequently analyzed COVID-19 relevant datasets whose results are presented
in the manuscript. The uncorrected version of the data can be found in the top row of the main text
Figures 1b, c and d. The bottom row of the main text Figures 1b, c and d were generated from scratch
after the hyperparameter exploration using �d = 1e-2.

Finally, the hyperparameter K , the bound on the order of the moment central moment terms, is
chosen as K = 3 based on the hyperparameter sensitivity experiments in [13] showing that their
results weren’t sensitive to the choice of K for K � 3. The value of K = 3 remained unchanged for
all the results shown throughout.
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Figure 3: A range of �d values for SPLATTER2 with ATLASa

5 Performance Evaluation and Benchmarking

In this section, we elaborate on the benchmarking procedure for quantitatively establishing the
efficacy of our ATLASa method for learning domain-invariant representations. First, we provide a
summary of the external published data-integration methods that we compared our method against
(all hyper-parameters for external published data-integration methods were influenced by a recent
benchmarking paper [15]) :

• single-cell Variational Inference (scVI) [16]: a correction method that employs a variational
autoencoder (VAE) [17] with a Bayesian hierarchical model to embed a gene expression
vector, represented by a negative binomial distribution conditioned on batch-labels and
measurement-specific variables, to a lower dimensional latent space. scVI was shown
to be particularly effective on non-synthetic datasets with intricate effects from domain-
misalignment [15]. scVI requires raw-counts, free of any pre-processing, as inputs, which
we ensured to be accessible by storing such counts with every dataset. We used scVI Version
0.5.0. Regarding hyper-parameter choices, we trained a negative-binomial based VAE, with
two hidden layers in the encoder and decoder, with dimensions 128 and 30, with learning rate
.001, for a number of epochs max(400, 8000000÷ number-of-cells), on a single NVIDIA
Tesla M60 GPU. Their corrected embedding existed in a 30-dimensional latent space.

• Scanorama: Scanorama [18] is a panorama-sketching inspired integration technique that
treats experimental data from different domains as different, smaller "snapshots" of a larger
atlas-panorama. It takes these snapshots, aligns different cell types from all different pairs
of samples, and "sketches" these snapshots together into a single embeded scRNA-seq
"panorama" hyperplane. Scanorama was too shown to be, like scVI, particularly effective
on non-synthetic datasets with intricate effects from domain-misalignment [15]. We utilized
Version 1.4 of Scanorama with default hyper-parameters.

• Harmony: Harmony [19] is an iterative correction method that takes the principal compo-
nents of each of the sampled atlases and produces a corrected embedding. Until convergence,
Harmony first creates cell clusters of maximum batch-label diversity and then fits an appro-
priate linear mixture model according to different batches. Harmony was found perform
better on synthetic than real biological atlases by [15]. We utilized Version 1.0 of Harmony
with default hyper-parameters.

In comparing against these, ATLASa was trained with hyperparameters as defined by the hp_dict
dictionary in the tables_12main.ipynb. The same values for the hyperparameters as specified in
the dictionary were used for all the benchmarking analyses.
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Now, we elaborate on the metrics we used in the benchmarking section to quantitatively measure
the efficacy of ATLASa. All metrics have been adapted to take on values between 0 and 1, with
higher values being indicative of better performance for easier interpretation. Furthermore, all
metrics were considered on a ’corrected’ embedding of the data output by each method (’corrected’
refers to the domain-invariant representation of the data learned by each method in this context).
We used two metrics, one that evaluated the learned representations on their domain-invariance
and their effectiveness is correcting for domain-specific effects and the other metric evaluated the
representations on the degree of conservation of biological information :

• K-Nearest-Neighbors Batch Effect Test: kBET [20], is a standard metric for measuring the
biases introduced by the fact that the datasets are collected across a vast array of experimental
domains. It is used to determine the similarity between the domain-label distribution of
cells’ nearest neighbors and that of the global atlas. In the original publication, kBET takes
on a value between 0 to 1 such that a high kBET value is indicative of more drastic batching
effects (in the original publication, higher values were worse). A robust data integration
method would thus yield an atlas with a low KBET value. The method first divides the cells
into sub-datasets according to cell-type. Then, a kBET value is calculated for each cell type.
This is done by running using python’s rpy2 library and rpy2.robjects to call the kBET
function from R’s kBET package. Subsequently, the mean kBET value is found across these
cell types. To yield the metric we report as specified above, we subtract said mean from 1
to arrive at a final value for our reported metric and refer to it as kBET in the text. This is
metric is also used in [6] for evaluating performance on the same task.

• Isolated Label ASW: ILASW, developed by [15], determines how well an integration method
accommodates celltypes/labels that are isolated: those not found in every sample. For each
isolated label, we first assign, to each datapoint, a binary indicator label with respect to
the isolated label. We find the Average Silhouette Width [21], a measure of cluster quality
ranging from -1 (intersecting and poorly formed) to 1 (discrete and well formed) with respect
to this indicator label using sklearn.metrics’s sillhouette_score API and scale it with
(1 + ASW ) ÷ 2 to take a value in-between 0 and 1. We lastly take the mean of this over
all isolated label names. This describes how well sample-isolated information is retained
post-integration. This is metric is also used in [6] for evaluating performance on the same
task.

6 Gene Expression Program Inference for COVID-19 from Healthy and
Diseased Tissue Atlases

In constructing Gene Expression Programs for our COVID-19 atlases, we considered three different
phenotype labelling regimes:

• Severity: whether a cell is from a healthy patient or one with a severe case of COVID-19.
• Double Positive (DP): whether a cell has non-zero ACE2 and TMPRSS2 expression levels

or zero for both.
• Virality: whether a cell has been infected by the virus or is simply a non-infected bystander.

Moreover, we considered multiple different approaches for assigning feature importance measures to
construct the gene-expression programs. In all of these approaches, we partitioned the cells according
to their cell type. Then, we made a 75:25 train/test split and trained a classifier to predict a phenotype
label within each cell type. The top five hundred most important genes were used as the ranked list
of genes to define the GEP driving the corresponding phenotype. The classification approaches and
corresponding variable importance measures we used were :

• Multi-Layer Perceptron (MLP) with SHAP Values: Training a simple multi-layer perceptron
as a classifier. The MLP transformed an input gene expression vector to a 1000 dimensional
feature vector using a fully-connected layer, followed be another layer with 100 nodes,
followed by the output layer. The classifer was trained using stochastic gradient descent,
with the number of epochs ranging between 10 and 16 and batch size between 32 and 256
depending on the training-atlas size (see analysis_aux.py for further details). We then
used the shap package from [22] to derive SHAP value inspired feature importances (see
below for a brief explanation of SHAP values and their application in this context).

7
154



– We considered both shap.DeepExplainer (Deep Shap) and
shap.GradientExplainer (Grad Shap) (see below again for further explana-
tion).

– In initializing these explainers, we considered two background datasets: a random
sample of 1000 training features (which, according to [22], provides a highly accurate
estimate of true SHAP values) and the whole dataset. Similarly, for computing the
SHAP values themselves, we considered two similar settings: computation using a
random sample of 1000 test features or alternatively, using the entire test set. In each
setting, we computed the appropriate SHAP values and, following [22], found feature
importance by ranking features according to the largest average absolute value of the
corresponding entry over the computed SHAP values.

– We found that using the GradientExplainer (Grad Shap), with the background dataset
as the whole train-atlas, and computing SHAP values from the whole test-atlas, gave
optimal results (as measured by correspondence with independent publications as
described in the main text). We thus, used this feature-importance scheme going
forwards for this classification approach. The results used in the main text used
Grad Shap with these settings due to it’s efficiency and large observed (REP, PPI,
DRUGBANK) intersection sizes on a per-cell-type basis. For Deep Shap, while we used
the entire test-atlas to produce SHAP values, we were limited by their implementation
to using a 1000-sample of train-atlas gene-expression vectors as a background dataset
for the shap.DeepExplainer object.

• Random Forest: Using sklearn’s [23] RandomForestClassifier to classify cells. We set all
hyper-parameters to default settings. We computed the Mean Decrease in Impurity for the
Random Forest classifier. We used these values from the feature_importances_ attribute
of the classifier in order to determine importances and used them to identify the GEPs.

• Gradient Boosted Decision Trees: Using sklearn’s [23] GradientBoostingClassifier
to classify cells. We set all hyper-parameters to default settings. We again used the
feature_importances_ attribute of the classifier in order to determine importances and
used them to identify the GEPs.

SHAP values and the use of shap with ATLASb

This section contains a brief overview of SHAP (SHapley Additive exPlanations) values [22] and
how they are computed in the context of ATLAS. We first consider a machine learning model
M : Rn ! R and a "background" dataset B; additionally, let eM = Ex2BM(x). Given a gene
expression vector g 2 Rn, the corresponding SHAP value of g, S(g) 2 Rn, is one such that

(
nP

i=1
(S(g))i) + eM = M(g). S(g) lets us know how much each feature in g contributed to the value

of M(g) being different from eM . Thus, a SHAP value gives us a way to see how important each
feature is.

To determine feature importances with the MLP classifier used in ATLASb, we leveraged the shap
package of Lundberg and Lee [22]. shap features an array of model explainers, each with its own
Explainer.shap_values method that takes in a list of m gene expression vectors and returns the
corresponding SHAP values for each. Each of these explainers takes a model and background dataset
as inputs and uses these to in their own computations of SHAP values. We considered two Explainers
with our MLP classifier :

• shap.DeepExplainer, which approximates SHAP values for neural nets via an extension
of DeepLIFT [24].

• shap.GradientExplainer, which uses a combination of Integrated Gradients [25], SHAP
values, and SmoothGrad [26] as a measure of feature importance.

To evaluate how similar the results from the various classification and feature importance approaches
are, we used the full list of all enriched terms returned by the scanpy.queries.enrich func-
tion when queried on the corresponding GEPs from each of the three methods. Then we com-
pared their similarity using the Szymkiewicz–Simpson coefficient, also known as the overlap
coefficient in Tables 1, 2 and 3 below for each feature-importance method used in each class of
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phenotype labelling regime. The overlap coefficient for two sets X,Y is given by |X\Y |
min(|X|,|Y |) .

The Tables 1, 2 and 3 show the overlap coefficient of the GEPs found by other methods when com-
pared to the Grad Shap importance method (for each phenotype labeling scheme and for each cell-type
in the labeling scheme). Entries take on values between 0 and 1, with higher values indicating greater
similarity between programs.

Tables 4, 5 and 6 describe the size of the intersection between the drug targets found by each of the
feature-importance methods used and the (REP,PPI,DRUGBANK) datasets. The entries in the table
are shown here as a tuple of (REP intersection size, PPI intersection size, DRUGBANK intersection
size).

Finally, Figure 4 contains a Venn diagram showing that the results from all the feature-importance
regimes used with ATLASb are remarkably similar lending further credence to the approach and
indicating that the drug targets identified may deserve further follow up experiments.

Table 1: Severity

Importance

Cell Type B NK Mast Macrophages pDC Epithelial mDC T Plasma

Grad Shap 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Deep Shap 0.55 0.57 0.77 0.53 0.66 0.67 0.71 0.77 0.89
RF 0.74 0.78 0.54 0.64 0.64 0.61 0.67 0.78 0.70
GBT 0.63 0.85 0.63 0.68 0.54 0.63 0.66 0.71 0.74

Table 2: Virality Table 3: DP

Importance

Cell Type T Macrophages Plasma NK Epithelial Neutrophil ... Epithelial

Grad Shap 1.00 1.00 1.00 1.00 1.00 1.00 ... 1.00
Deep Shap 0.52 0.57 0.73 0.66 0.72 0.71 ... 0.81
RF 0.53 0.63 0.58 0.69 0.66 0.83 ... 0.58
GBT 0.66 0.40 0.39 0.62 0.58 0.65 ... 0.65

Table 4: Severity

Importance

Cell Type B NK Mast Macrophages pDC Epithelial mDC T Plasma

Grad Shap (4, 1, 41) (4, 0, 41) (2, 5, 31) (4, 2, 34) (3, 4, 31) (2, 4, 26) (6, 3, 41) (1, 4, 37) (1, 2, 30)
Deep Shap (2, 4, 38) (4, 1, 42) (5, 0, 35) (7, 3, 43) (2, 5, 34) (4, 3, 38) (1, 5, 30) (4, 4, 31) (2, 3, 27)
RF (4, 3, 27) (2, 4, 35) (2, 3, 40) (0, 2, 22) (5, 2, 31) (2, 1, 30) (2, 3, 26) (1, 5, 33) (1, 2, 21)
GBT (1, 2, 27) (1, 2, 23) (2, 4, 22) (3, 0, 31) (3, 3, 27) (0, 1, 34) (2, 4, 31) (3, 1, 35) (2, 2, 32)

Table 5: Virality Table 6: DP

Importance

Cell Type T Macrophages Plasma NK Epithelial Neutrophil ... Epithelial

Grad Shap (3, 3, 38) (4, 4, 38) (4, 3, 42) (3, 0, 24) (4, 2, 40) (5, 0, 34) ... (3, 2, 33)
Deep Shap (4, 3, 38) (3, 0, 24) (4, 2, 37) (6, 1, 31) (5, 3, 35) (4, 4, 38) ... (3, 1, 31)
RF (3, 3, 31) (3, 5, 32) (3, 4, 38) (3, 1, 34) (2, 3, 33) (3, 0, 24) ... (3, 1, 28)
GBT (1, 1, 32) (3, 0, 24) (1, 3, 36) (2, 4, 28) (4, 1, 37) (2, 0, 24) ... (2, 1, 25)
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Figure 4: The union, over all phenotype labeling schemes, of drug targets found for all four
importance regimes that intersect with those found by the REP study (an independent experimental
study on drug re-purposing for COVID-19). We note that all classification/feature-importance
methods give a extremely similar results, implying that ATLASb isn’t particularly sensitive to the
feature importance method used and that the results are robust to that choice.

7 Errata and Clarifications

In this section we list typos and errors we spotted in our paper submission between the Paper
Submission Deadline and the Supplementary Material Submission Deadline. We apologize for these
errors and will make the necessary corrections (along with other errors we identify later in addition
to suggested changes by reviewers) in the camera ready version of the paper.

• The legends for Figure 2b in the main text (the first UMAP plot from the left) should
say ’Domain’ instead of ’Batch’. This error was because ’Batch’ and ’Domain’ are used
interchangeably in the scRNA-seq field, however we use ’Domain’ throughout the text so as
to not confuse it with ’mini-batch’ used to train the model using stochastic gradient descent.

• In the main text, Figures 2a, 2b, 2c, 2d and 3c were not labelled with an appropriately "abcd"
panel letter reference. We apologize for this error.

• We apologize for not defining KEGG terms in the main text.
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Insi2vec: A framework for inferring from single-cell and spatial multi-omics 

 
 
 

 
This patent application describes insi2vec, A framework for inferring from single-cell and spatial 

multi-omics (U.S. Patent Application No. 17/553,691): Methods and systems for determining 

gene expression profiles and cell identities from multi-omic imaging data. Contribution: Co-

inventor, with Prof. Aviv Regev. 

 

 

The patent application for insi2vec, describes: (i) a spatio-transcriptomic definition of cell 

identity using cell intrinsic and cell extrinsic features, and methods for predicting spatial gene 

expression patterns from (ii) single-cell RNA-sequencing measurements and (iii) histology. 

 

 

The patent application can be accessed at: 

https://patents.google.com/patent/US20220180975A1/en.  
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Discussion 

 
The thesis described our progress towards building ‘foundation models’ for life science. 

In the first part of this thesis, I described a framework for thinking about sequence→function 

questions. The sequence→function relationship is fascinating. Over the (relatively shorter) time 

scales that humans tend to think about, sequence→function appears to be the direction of causal 

flow. However, there is also evidence that the inverse relationship may form a causal loop1-2. I 

like to call this phenomenon ‘mutation-selection entanglement’. There may be more to find here. 

 

Designing a biological sequence with a desired function is fundamental to genome medicine, and 

over the next decade (and beyond), an enormous class of therapeutic programs and target 
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discovery strategies will involve the design of (and inference from) biological sequences. A 

summary of our insights from working towards this goal: 

 

(i) Robustness and Evolvability.  Not only can we engineer sequences to have the desirable 

function (like expression levels), we have a framework for engineering them to be 

robust/evolvable. We think this can be a huge advantage in therapeutics (eg: for addressing the 

short-lived nature of existing sequence-based therapies) and in synthetic biology. As Bianco et 

al., write in their generous News and Views article3 about our work: "...the potential for 

bioengineering and cellular engineering is enormous. In fact, testing for evolvability can open 

the door to more stable industrial bioengineering pipelines, as just one example. Mutational 

robustness shapes the fitness landscape so that fitness peaks are tall but wide instead of narrow, 

indicating that a broader set of mutations is now buffered and can be tolerated without 

significant loss of fitness. Selecting for a robust system opens the door, in my opinion, to more 

efficient production pipelines."  

 

(ii) Modeling. The accuracy of our sequence→function model was enabled by our unique 

outlook on modeling the sequence→function relationship: We aren't building a model for simply 

representing the sequence space. On the contrary, we are modeling the interactions of a sequence 

with its environment that lead to the function we focus on (e.g.: how a promoter sequence 

interacts with its environment to generate expression). This is a fundamentally different way of 

looking at model building, compared to approaches that involve the use of large language model 

analogs for biological sequence representations where the goal is to model distributions within 

the sequence space itself. In contrast, our goal isn’t just to learn a probability distribution in the 
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sequence space, without a principled consideration of how these sequences interact with their 

environment and lead to their function.  

 

(iii) Measurement. Our approach towards model building is only possible because of the scale 

and quality of experimental data we have been able to generate. The experimental approaches in 

our work focus on the measurement of function corresponding to large random samples from the 

sequence space: in sharp contrast to approaches that focus on mutating/perturbing existing 

biological systems. For learning accurate sequence→function models, local neighborhoods of 

existing natural sequences are suboptimal; and our approach of training on de-novo random 

samples of the sequence space performs significantly better. Additionally, random sequences are 

exponentially cheaper to synthesize at massive scales (compared to defined sequences), enabling 

high throughput experimental generation of large-scale labelled sequence-function pair datasets. 

 

(iv) Generalizability. As long as one operates within the constraints of a system where precise, 

large-scale sequence→function measurements for random samples from the sequence space are 

possible, our framework is generalizable across an enormous class of sequence design problems 

that involve DNA/RNA/peptides. As Bianco et al write in their article3 about our work, 

"...Basically, the model learns the space of possible solutions and it is capable of generalizing to 

a new set of solutions. This is of paramount importance because expression engineering is a 

fundamental part of industrial bioengineering, especially metabolic engineering. But it is even 

more important because it allows for uncovering the whole complexity of the organism fitness 

landscape, which can now be computationally revealed on call.".  
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Moreover, as Wagner et al note in their kind Nature News & Views story4 about our paper, 

"…And, notably, like other applications of deep learning used in the past few years in biology, 

such as the development of a tool to predict protein folding [Alphafold], it will enable scientists 

to answer a broader spectrum of questions than any one group of authors could possibly 

address." 

 

In this thesis, I also describe the Expression Conservation Coefficient (ECC), which helps detect 

selection pressures from population genetics data. Existing approaches for identifying signatures 

of selection on regulatory regions rely on disparate assumptions and data types, and thus (to the 

best of our knowledge) there currently do not exist appropriate per-gene selection measurements 

against which we can directly compare the ECC. Below, we contrast the existing body of work in 

this area, with ECC: 

 

TF binding (or motif) centric approaches. One pioneering approach5 uses mutations within motif-

predicted TF binding sites to identify signals of conservation (in Drosophila), but without regard 

for how different TFs impact expression or how TFs interact (this was not possible at the time). 

This approach was applied to TF(s)-enhancer(s) pairs where the TF was known to play an 

important role in regulation of the enhancer(s). A similar, more recent study6 created affinity 

models based on ChIP-seq data for each TF (in human) and used these models to infer selection 

from the predicted perturbation of binding. It is unclear how one would generalize such approaches 

to integrate across all TFs and all regulatory regions, and how their results would compare to the 

ECC, because each TF would provide a different answer. Earlier approaches7-8 did not always have 

TF binding data, but used motifs as surrogates. Nevertheless, the approaches were similar in 
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principle, in that all of them focus on motifs or TFs but do not integrate across the regulatory 

sequence. This is a key difference from the ECC because, as we have shown in previously9, and 

others have predicted10, strong scoring motifs only account for a portion of a gene’s regulation. 

 

Reporter based approaches. Other methods11 use the measured effects of mutations within 

regulatory regions assayed in a reporter assay (in human). Consequently, these can only be applied 

to regulatory regions for which mutation effects have been experimentally determined, which is 

not available for the vast majority of sequences one would encounter.  

 

Mutation counting based approaches. Methods that are based on counting mutations within a 

regulatory region (or inter-species comparisons of regulatory sequence) often require a background 

set of sequences that are assumed to be neutral against which to compare12-15. However, in a 

genome as compact as S. cerevisiae’s, it is not clear if there are sufficient locations that are non-

functional. Furthermore, these methods assume that the mutation rate is uniform across the 

genome, which is unlikely to be the case. Finally, we did show that sequence divergence within 

promoter sequences (i.e., the numerator in such methods) does not correlate with other measures 

of selection (Extended Data Fig. 4c), arguing that such methods would not fare well in a 

comparison with the ECC. 

 

In the second part of this thesis, I proposed frameworks for thinking about gene expression. 

Expression lends itself beautifully to the study of genotype→phenotype→fitness. If there is a 

phenotype that is better suited to this line of scientific inquiry than gene expression, I haven’t 
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found it yet!  This part of the thesis focused on applications of these frameworks to cancer, brain 

and COVID-19 research. 

 

With ATLAS, we introduced a novel framework for predicting and prioritizing putative human 

disease drug targets from single-cell gene expression measurements. As with all hypothesis 

generating machine learning methods, one must be extremely careful when interpreting these 

results and treating them as definitive. For instance, the COVID-19 REP dataset that we used for 

one of the validations shown above was generated using Vero E6 cells, which are monkey 

kidney epithelial cell lines. These in-vitro results may not necessarily translate to complex real 

world biological systems. Even though our intersections with drug targets found from other 

independent sources is a promising and interesting result, these results must be looked at with 

extreme caution and require comprehensive further validation using experimental assays and 

multi-stage rigorous clinical trials before entering the clinic. It is encouraging, though, that our 

results align with observations made from completely independent ways of analyzing COVID-19 

in the context of putative drug targets from scRNA-seq, PPI and drug re-purposing studies. 

Protein and RNA levels are often known to be uncorrelated in biological systems, and the fact 

that our results hold across these domains is quite promising. We would also like to emphasize 

that while the results from our approach, like from any hypothesis generating approach, may 

provide very interesting and promising putative drug targets, it is imperative that these be 

validated experimentally and put through rigorous rounds of evaluation. This is an essential step 

to before any of these results may be considered for real world applications. 
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We expect utility of feature importance metrics, such as SHAP values, for non-linear and black-

box models, in order to identify and characterize complex biological phenomena, to broadly impact 

the life sciences. We hope that the early demonstration of results using these simple models and 

variable importance metrics here spurs exponential developments in better approaches for studying 

a wide range of diseases and biological phenomena. As single cell data is being generated at an 

ever-faster pace, traditional methods face massive challenges with this unprecedented scale of 

data. ATLAS has thus been developed with an emphasis on scalability and efficiency.  

 

In summary, I see neural networks’ (and more generally, machine learning’s) important role in 

the design→build→test→learn cycle as a starting point. There are innumerable intriguing open 

questions, downstream of (and orthogonal to) this cycle. Inductive application of principles over 

(evolutionary) time and (sequence) space, as introduced here16, will lead us to interesting 

answers to some of these questions. 

 

 

 

 

 

 

 

 

 

Thank you for reading! 
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