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Abstract

The adoption of electronic health records (EHRs) presents an incredible opportunity
to improve medicine both at the point-of-care and through retrospective research.
Unfortunately, many pertinent variables are trapped in unstructured clinical note
text. Automated extraction is difficult since clinical notes are written in their own
jargon-heavy dialect, patient histories can contain hundreds of notes, and there is often
minimal labeled data. In this thesis, I tackle these barriers from three interconnected
angles: (i) the design of human-AI teams to speed up annotation workflows, (ii) the
development of label-efficient modeling methods, and (iii) a re-design of electronic
health records that incentivizes cleaner data at time of creation.
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Chapter 1

Introduction

1.1 Promise of Electronic Health Records

The widespread adoption of electronic health records (EHRs) has made it increasingly

feasible to use data from routine clinical practice to better understand the effectiveness

of treatments in real-world settings [246, 227, 78, 129]. Real-world evidence (RWE)

can help address a host of issues that cannot be fully studied in randomized controlled

trials (RCTs), such as generalizability of clinical practice across settings, heteregeneity

of outcomes across subpopulations, and postmarketing surveillance [78, 69, 76, 43].

Such observational studies leveraging RWE are particularly important in diseases

where the treatment landscapes have evolved rapidly [104, 109]. For example, in

renal cell carcinoma (RCC), ten new targeted drugs have been approved since 2006

[17]. In addition to its potential to transform retrospective research, the adoption of

EHRs could also transform medicine by providing clinicial decision support at the

point-of-care, enabling the discovery of new clinically meaningful phenotypes, and

streamlining largely manual workflows, e.g., clinical trial matching [118, 185, 60].

1.2 Challenges

Unfortunately, this promise is far from fully realized. Answering such questions

requires many variables—from side effects to the outcomes themselves—that cannot
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Figure 1-1: Diagram indicating sample variables needed to structure longitudinal
clinical data, and the difficulty of scaling.

be found within the structured data in electronic health records. Even when data is

seemingly present in structured form, it is often not accurate or well-maintained. For

example, medication lists are often not updated to reflect when a patient stops taking

a drug [34], and problem lists face similar issues [280]. Instead, they are trapped within

unstructured clinical notes; due to its flexibility, free text is preferred by clinicians

for efficient data entry. Clinical notes are an incredibly rich source of data about

a patient’s interactions with the healthcare system. They are lengthy, containing

detailed information about a patient’s state, their underlying conditions, and any

procedures performed.

As a result, in order to conduct the kinds of retrospective research studies previously

described, the status quo is to undergo a manual chart review process [12, 29]. In

chart review, clinical domain experts manually transform messy raw clinical notes

into a structured format that can then be ingested, e.g., by comparative effectiveness

studies. Necessary variables include disease status over time, intervention plan over

time, adverse events, and comorbidities, as shown in Figure 1-1. However, this can be

incredibly time-consuming, as patients can have on the order of hundreds of notes, and

this process needs to be conducted for large cohorts of patients to draw meaningful

clinical conclusions. This manual process is prohibitively slow, limiting the scope of

questions researchers can explore. Additionally, the lack of reliable structured data is

also harmful for clinicians at the point-of-care, who have to exert extra effort sifting
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“Pt progressed
on carbo ia for 
TNBC. Will dc”

Medication: carboplatin
Reason: triple-negative breast cancer
Route: intraarterial
Status: discontinued
Status reason: progression

Figure 1-2: Example of the messiness of raw clinical text, and its transformation to a
structured format.

through a patient’s written record, in order to understand the clinical context required

for patient care.

Therefore, the goal of the long-standing field of clinical information extraction is

to automate the transformation of unstructured clinical text to a useful structured

form [288]. Unfortunately, there are many challenges involved. First, clinical notes

often consist of overloaded terminology and frequent use of shorthand, which often

differs across medical specialties and institutions. As an example, Figure 1-2 shows

the complexity required to structure even just a short snippet of text.

As a result of the large amount of jargon in clinical text and the difficulty of

annotation, there is often only a minimal amount of labeled data available to act

as training data for natural language processing extraction models. This is further

compounded by the difficulty of sharing clinical text annotations across institutions,

due to the sensitivity of clinical text. Therefore, the large-scale annotation needed

for machine learning algorithms can be prohibitively expensive. Due to the lack of

sufficient training data, many existing approaches in clinical information extraction

have relied on hand-written rules, which are task-specific, time-consuming to construct,

and often brittle [65, 136]. Neither of these approaches—time-consuming annotation

or rule-based approaches—are built to scale and generalize across clinical use cases

(since rare medical concepts are generally insufficiently observed outside of large-

scale datasets) and settings (due to the diversity of language across departments and

institutions).

37



1.3 Contributions

In this thesis, I present machine learning and natural language processing solutions

to enable the generation of structured health data at scale. In the chapters that

follow, I address the aforementioned challenges by focusing on three broad themes:

joint human-AI teams, label-efficient machine learning, and smarter electronic health

records. I begin in Chapter 2 (originally published at MLHC 2020 as [4]) by analyzing

the failure modes of existing clinical concept extraction methods to motivate the

chapters that fellow:

Joint Human-AI Frameworks for Annotation: Manual chart review is incredibly

tedious and a common bottleneck in clinical research and clinical NLP timelines.

Consequently, I explore human-AI systems to optimize and streamline the efforts of

expert annotators.

• Chapter 3 (published as a part of [150] at CHI 2021) introduces PRAnCER, an

open-sourced tool for clinical entity annotation that enables the rapid annotation

of medical terms to large ontologies within clinical notes. The decision support

available in the tool can significantly speed up workflows and allow annotators

to focus their time and energy on harder examples instead.

• Chapter 4 (originally published at CHI 2021 as [150]) assesses the impact of

the decision support introduced in Chapter 3 on clinical annotators. While

decision support can accelerate tedious tasks, a key concern is whether users

overly trust or cede agency to automation. Through user studies, we find that 18

clinicians generally build intuition of when to rely on automation and when to

exercise their own judgement. However, when presented with fully pre-populated

suggestions, these expert users exhibit less agency. Our findings inform how

systems and algorithms should be designed to mitigate the observed issues.

• Chapter 5 (originally published at MLHC 2021 as [324]) extends the idea of

joint-human AI annotation to longitudinal notes and the structuring of clinical
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timelines. Natural language processing systems present an opportunity for

automating the temporal identification of clinical events, but algorithms still

have trouble accurately parsing the most complex patient cases. Chapter 5

presents a framework that automatically structures simple patient cases, but

iteratively requests and directs human input when required. The framework is

evaluated on identification of two event types in oncology.

Label-efficient algorithms: Ideally, we would reserve human effort and annotated

data for robust model evaluation, rather than data-hungry training algorithms. With

this in mind, I have developed novel machine learning methods requiring no labels

(zero-shot) or few labels (few-shot) during training.

• Chapter 6 (published at AISTATS 2022 as [6]) explores an “order-contrastive”

method for self-supervised pre-training on longitudinal data. We sample pairs

of time segments, switch the order for half of them, and train a model to predict

whether a given pair is in the correct order. Intuitively, the ordering task allows

the model to attend to the least time-reversible features (for example, features

that indicate progression of a chronic disease). We provide a principled intuition

and demonstrate the empirical effectiveness of the self-supervised objective on a

task identifying instances of cancer progression. These results indicate that pre-

training methods designed for particular classes of distributions and downstream

tasks can improve the performance of self-supervised learning.

• Chapter 7 (originally published at EMNLP 2022 as [5]) demonstrates that large

language models (LLMs), such as InstructGPT [199], perform well at zero- and

few-shot information extraction from clinical text despite not being trained

specifically for the clinical domain. We show how to leverage LLMs to tackle

a diverse set of NLP tasks which require more structured outputs, including

span identification, token-level sequence classification, and relation extraction,

and we introduce new datasets for benchmarking few-shot clinical information

extraction.
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Re-imagining electronic health records: Ultimately, it would be best if the

clinical documentation process were cleaner to begin with and captured the variables

we care about at the time of creation. However, augmenting the existing EHR with

structured fields is not a viable solution, due to the additional time burden. Therefore,

the last section of this thesis describes work augmenting EHR interfaces with machine

learning to streamline the clinical documentation process, all while yielding cleaner

data for researchers.

• Chapter 8 (originally published at MLHC 2020 as [90]) presents a system that

uses a patient-specific autocompletion mechanism to facilitate rapid creation

of semi-structured clinical documentation. We dynamically suggest relevant

clinical concepts in real-time as a doctor drafts a note by leveraging features

from both unstructured and structured medical data. To our knowledge, this

system was the first machine learning-based documentation utility for clinical

notes deployed in a live hospital setting.

• Chapter 9 (Originally published at UIST 2021 as [184]) rethinks navigation

within electronic health records by enabling rapid contextual access to the

patient’s medical record. Chapter 9 introduces MedKnowts, an integrated note-

taking editor and information retrieval system. Leveraging the semi-structured

data achieved in the previous chapter, MedKnowts unifies the documentation

and search process and provides concise synthesized concept-oriented slices of the

patient’s medical record. This enable easier parsing of long notes, auto-populated

text, and proactive information retrieval, easing the documentation burden.
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Chapter 2

Benchmarking Clinical Entity

Extraction

Acknowledgement of Co-authors I would like to thank Chloe O’Connell for

her lead on development of the annotation schema described in this chapter, Chloe

and Yasmin Fatemi for the annotation of the dataset described in this work, and

my undergraduate mentee Ariel Levy for her work on development of the annotation

platform described.

2.1 Introduction

In this chapter, I begin by benchmarking the quality of existing algorithms in clinical

entity extraction, to motivate the work that follows.

The strengths and weaknesses of clinical notes lie in the diversity of natural

language. For example, Cold can refer to the temperature, a temperament, the viral

infection, or Chronic Obstructive Lung Disease. By matter of preference, a doctor can

refer to a patient with a 101 ∘ F temperature as running a fever, being febrile,

or having pyrexia.

In order to transform text into a unified structured format useful for downstream

applications, EHR text mining often involves recognizing spans representing concepts

(named entity recognition) and mapping these spans to a common vocabulary (named
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“Afeb. On 
vanco, pip.

UO marginal”

Entity 
Recognition

Entity
Normalization

Afeb: Afebrile (C0277797)
Vanco:  Vancomycin (C0042313)
Pip: Piperacillin (C0031955)
UO: Urine output (C1287928)

“Afeb. On 
vanco, pip.

UO marginal”

Figure 2-1: Pipeline of extracting UMLS concepts from text. Typically, this is broken
down into two steps as shown: recognition (detecting relevant spans) and normalization
(mapping spans to a vocabulary).

entity normalization/linkage). We will refer to both steps together as clinical entity

extraction. An example of this two-step process is shown in Figure 2-1. Typically,

in medicine, concepts are mapped to terms in the Unified Medical Language System

(UMLS) or its subvocabularies, e.g., SNOMED CT [30, 194]. Each term is denoted

by a Concept Unique Identifier (CUI).

Due to its utility, clinical entity extraction is widely used as an initial step in

many machine learning for healthcare pipelines. For example, clinical entities can help

construct cohorts, identify adverse drug events, spot potential confounders, learn a

health knowledge graph, or match patients to relevant clinical trials [118, 228, 185,

60, 228]. They can also speed up manual, administrative tasks at hospitals, such as

medical coding for billing and revenue cycle management.

Despite the importance of clinical entity extraction for a range of tasks, it still

remains largely an open problem, and clinical research often has to resort to manual

chart review for high-fidelity data, which is tedious and difficult to scale. While there

has been a significant, concerted effort from the clinical natural language processing

(NLP) community to bridge this gap, performance falters due to (i) the lack of sufficient

annotated training data, (ii) the huge space of clinical entities to map to, and (iii)

known issues with medical vocabularies.

Contributions

In this chapter, we investigate, quantify performance of, and indicate areas of im-

provements for the current state of normalization by analyzing performance on the
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Medical Concept Normalization (MCN) Corpus [164]. The MCN corpus consists

of 100 discharge summaries and 10,000 annotated concept mentions. They focus

on a subset of CUIs in the UMLS: the SNOMED Clinical Terms, which consist

of over 400,000 common clinical concepts; and RxNorm, a comprehensive clinical

drug vocabulary [164, 194, 187]. On this corpus, we examine top systems for clin-

ical entity normalization from the 2019 National NLP Clinical Challenges (n2c2)

Shared Task as well as two widely used end-to-end open-source systems, cTAKES and

MetaMap [15, 236]. These analyses reveal great heterogeneity in performance across

various subsets of the data, for both normalization and end-to-end systems. This per-

formance underscores the need for future dataset creation and method development in

this space and highlights the need for a new evaluation framework. In their description

of the MCN corpus, Luo et al. [164] recounted how their corpus annotation effort was

hindered by several issues including imperfections of UMLS. Therefore, we additionally

develop a new annotation framework to address these and other identified issues. We

demonstrate how our new schema adjusts to these issues and allows for more flexible

evaluation of end-to-end systems. We conclude by proposing recommendations to

the clinical NLP community regarding a path forward for the creation of a reference

standard, in hopes of spurring progress in the field.

2.2 Related Work

In the general domain, datasets for named entity recognition and normalization are

huge, leading to the success of data-hungry algorithms. The Wiki-Disamb30 dataset,

for example, consists of 1.4 million texts [72]. Techniques also often pull in external

information: e.g., population priors, term-term co-occurrence, rich term metadata,

and knowledge graphs [112]. Recent successful methods include end-to-end systems

and DeepType, which uses a type classifier trained on 800 million tokens [216, 134].

However, these do not translate to the clinical domain because of the dearth of

rich annotated clinical text. While a dataset of the magnitude seen in the general

domain is infeasible in healthcare, one of our motivations for the creation of a larger
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dataset stems from successes in the general domain. Another drawback of the clinical

domain is the comparative lack of entity information. UMLS contains a Related

Concepts table with entity-entity relationships, including triples such as (‘Gematicin’,

‘is_a’, ‘antibiotic’). Unfortunately, these documented relationships are unreliable and

incomplete [102, 50, 2, 53]. As a result, the table cannot be cleanly used to leverage

entity-entity co-occurrences or other relationships, and more creative solutions are

required.

Due to the importance of clinical entity extraction, there exist several open-sourced

clinical entity extraction systems, such as cTAKES, MetaMap, and MedLEE [236, 15,

80]. These systems are very popular; over the past year, cTAKES has been mentioned

in over 300 papers, MetaMap in over 500, and MedLEE in over 150. Many of these

papers use these systems as a tool in their analysis. Unfortunately, past work has

benchmarked the performance of these open-source systems in limited settings to

middling results [219]; for example, Wu et al. [309] found that recall was below 0.5

for all systems on abbreviations specifically. However, due to the lack of a reference

dataset, such benchmark numbers don’t exist over a diverse set of terms.

Several challenges in the clinical NLP community have focused on addressing

entity recognition and/or normalization [47]. The 2010 i2b2/VA challenge released a

dataset of 871 discharge summaries for recognition (but not normalization) of problems,

tests, and treatments [277]. The 2012 i2b2 challenge released a similar dataset of 310

discharge summaries, that additionally annotated clinical departments, evidentials

(e.g., ‘complained of’), and occurrences (e.g., ‘transfer’, ‘admission’). State-of-the-art

for the clinical entity recognition task leverages contextual embeddings [249]. However,

performance there is inconsistent, e.g., with an F1 score of 85.1 for treatment span

detection, but only an F1 score of 66.3 for occurence detection.

Some clinical datasets also include span normalization. ShARe/Clef eHealth 2013

Task 1, SemEval-2014 Task 7, and SemEval-2015 Task 14 provide normalization to

CUIs, but only for disease/disorder concepts [66, 212, 264]. Recently, Luo et al. [164]

derived the Medical Concept Normalization Corpus (MCN) from the spans of 100

of the discharge summaries from the 2010 i2b2/VA challenge. They normalized over
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13,600 entity spans (problems, tests, and treatments) to terms from SNOMED and

RxNorm [164]. Track 3 of the 2019 National NLP Clinical Challenges (n2c2) Shared

Tasks and Workshop utilized the MCN corpus. The challenge yielded 108 submissions,

with a top submission accuracy of 85.2%.

In their paper, the creators of the MCN corpus detailed issues they faced in

normalizing terms [164]. For example, if a compound term was not available in their

vocabulary, the authors split the term into its constituents instead of labeling it as

CUI-less. Since there is no term for percutaneous drains, they instead split the

term into ‘percutaneous (C0522523)’ and ‘drains (C0180499).’ Since they used the

spans from the 2010 i2b2 challenge, they recounted that spans were inconsistently

annotated and were suboptimal for the normalization task. They also described

inherent issues in the SNOMED vocabulary, such as inconsistency, duplication, and

missing terms. These issues led them to have to make self-described arbitrary decisions

in normalization. In this chapter, we build on the findings of Luo et al. [164] to address

these issues in an annotation schema.

2.3 Current Performance of Entity Normalization

Systems

2.3.1 Data

To understand the current state of clinical entity normalization, we analyzed the

outcomes of Track 3 of the 2019 National NLP Clinical Challenges (n2c2) Shared Task,

run on the MCN dataset [164]. Participants had to provide a single corresponding

CUI for each provided span. In the MCN annotation process, if the original span

from i2b2 (e.g., high-grade fever) was split up, teams were presented with the split

spans (high-grade and fever), and not the original span. Teams trained on 50 tagged

discharge summaries with 50 held out for evaluation. There were 108 total submissions,

and here we analyze the outputs from the top 10 teams. Top teams used a variety of

techniques ranging from classical NLP and information retrieval techniques to modern
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neural approaches, like contextual embeddings. To place performance in context of

well-known systems, we compare to output from the Default Clinical Pipeline from

cTAKES version 4.0.0 and the 2018 release of MetaMap [236, 15].

2.3.2 Analysis Methodology

We evaluate performance of the top 10 performing systems on the test data using

3 metrics: (i) highest accuracy any system achieved, (ii) average accuracy, and (iii)

pooled accuracy. We define pooled accuracy as the percentage of spans that were

mapped to the correct CUI by any of the top 10 systems. In our analysis, we first

preprocessed the text spans to remove possessive pronouns tagged alongside the

concept (e.g., ‘her diabetes’ → ‘diabetes’). The training dataset consists of 6684

annotations and 2331 unique CUIs, but the 100 most common CUIs constitute 31.5%

of the annotations. Since the data set is heavily right-tailed, we evaluate performance

for rarer terms by focusing on the following subsets of data:

• All spans (All)

• Multi-word spans (Multi-word)

• Spans where the corresponding text is unseen in the training set (Unseen Text)

• Spans where the mapped CUI is unseen in the training set (Unseen CUI)

• Spans where the text isn’t a preferred name or synonym in UMLS (Not Direct

Match)

• Spans mapped to the 100 most common CUIs (Top 100 CUI)

• Spans where the text is more commonly mapped to a different CUI (Unpopular

CUI)

Unpopular CUI measures how well systems do on rarer CUIs, when there are other

plausible options. For instance, in the training set, pt appears 17 times: 15 times as

‘Prothrombin time (C0033707)’, once as ‘Physical therapy (C0949766)’, and once as

‘Posterior tibial pulse (C1720310).’ A system that always defaults to ‘Prothrombin

Time’ would have 88% accuracy but no disambiguation power.
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Table 2.1: Performance of the top 10 systems on the entity normalization task on the
MCN corpus. Accuracy is measured on different subsets of the test data and by the 3
metrics described in Evaluation Methodology
Test Subset # Examples Max Acc Average Acc Pooled Acc
All 6925 85.2% 81.1% 92.7%
Top 100 CUI 1891 95.3% 91.1% 98.1%
Multi-word 2755 81.9% 74.3% 91.3%
Unseen text 2910 69.5% 60.7% 86.0%
Unseen CUI 2067 69.3% 61.3% 81.9%
Not direct match 1682 64.4% 50.9% 84.0%
Unpopular CUI 114 7.0% 2.3% 14.0%

Additionally, we investigate how accurately different concept categories, as defined

by the UMLS Semantic Types, are normalized. We only consider the categories with

at least 50 instances in the test set.

Separately, we analyze the performance of cTAKES and MetaMap. These systems

were not trained for this specific task or dataset but are built to provide end-to-end

annotations, not just entity normalization. Therefore, to evaluate leniently, we deemed

a system correct if it output any span with the correct CUI that overlapped with the

test span. If the true span did not have a CUI, any output without the exact span

was treated as correct. We didn’t factor in any additional spans it might have tagged.

2.3.3 Analysis Results

While overall normalization accuracy is relatively high, it is much more brittle if we

look at performance on subsets of the dataset, as detailed in Table 2.1. In particular,

if a text span is more commonly mapped to a different CUI, it is very rare that

systems recovered the true underlying CUI. Examples everyone missed were for ‘Cold

Sensation (C0234192)’ and for the physiological process of ‘Diuresis (C0445398)’ where

all participants chose the term for ‘induced diuresis.’ Some fraction of errors came from

choosing a concept in the wrong type hierarchy, and many are essentially pedantic,

e.g., everyone mapped tube feeds to ‘tube feeding diet (C0311131)’ when the gold

label was ‘tube feeding of patient (C0041281).’

We find that performance is also variable across the UMLS Semantic Types. For some
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types, the maximum accuracy was nearly perfect: Pharmacologic Substance (93.9%),

Sign or Symptom (94.3%), Quantitative Concept (95.8%). Maximum accuracy was

significantly worse for Therapeutic of Preventive Procedures (77.5%), Medical Devices

(78.7%), and Body Substances (73.3%). A full table of these results is provided in

Appendix B.

MetaMap and cTAKES underperform compared to competition systems. Over

the entire test, accuracy was 59.0% for MetaMap, 47.1% for cTAKES, and 64.6% for

both pooled together. This is consistent with past findings in which MetaMap yielded

poor performance on the SemEval task for disorder/disease recognition [221]. The

poor performance of cTAKES can be partially explained by the fact that its Default

Clinical Pipeline is not trained to tag adjectives (e.g., severe, mild). However, both

systems are primarily disadvantaged by the fact that they are end-to-end systems.

For instance, competition participants were provided with the span breast on the

left side which mapped to the CUI for ‘left breast’. In contrast, the end-to-end

systems needed to first identify the span themselves, before normalizing them. They

only identified the span breast, and not the full span, and therefore tagged with the

less specific CUI for ‘breast.’

2.4 Annotation Framework

Our analysis clearly found that the performance of clinical normalization systems

leaves much room for improvement and that properties of existing corpora make

it difficult to evaluate end-to-end normalization. In real pipelines, recognition and

normalization are usually not decoupled, and as a result, it’s important to be able to

evaluate fairly in that setting. Therefore, our goal here was to develop an annotation

framework to overcome the limitations of past corpora to allow for a more robust,

flexible evaluation.
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2.4.1 Framework Development

The annotation framework was primarily developed by medical residents on our

team. We iterated from existing annotation guidelines by annotating notes (from

the i2b2/n2c2 dataset and the MIMIC-III Critical Care database from Johnson

et al. [120]), addressing inconsistencies and ambiguities that arose, and noting un-

annotated information of particular clinical relevance for downstream systems. Our

final framework was grounded both by past issues noted by Luo et al. [164] and our

own observations.

2.4.2 Amended Framework

We summarize the three largest changes made to existing annotation paradigms

changes in Table 2.2. Additionally, we further explain the motivations behind each of

the three significant framework shifts. We attach the full annotation framework in

Appendix C.

Table 2.2: The three significant changes in our annotation schema, in response to the
main limitations we found in current annotation frameworks.

Rule Justification Examples

Tag multiple
CUIs for a

single span if
they seem

equally valid

We no longer need
rules on which CUI
to pick. Such rules
can be arbitrary
and are hard to
make universal.

Sputum → Sputum specimen (C0444159)
Sputum (C0038056)

Stent→ Stent, device (C0038257)
Vascular stent (C0183521)

Tag
subconcepts if
they have a

medical
meaning

Concept boundaries are
subjective and UMLS is
inconsistent, but tagging

subconcepts removes ambiguity
and reintroduces consistency

(e.g., for Figure 3)

Severe Asthma Exacerbation:
Severe asthma exacerbation → C00038218

Severe → C0205082
Asthma → C0004096

Asthma exacerbation → C0349790

Tag all medical
concepts (e.g.,

anatomical
terms, normal

findings)

Problems, tests,
and treatments are
hard to delineate

and are insufficient
to understand

a patient’s trajectory.

NSR → Normal Sinus Rhythm (C0232202)
Rheum → Rheumatologist (C033489)

PEERL → Pupils Equal and
Reacting to Light (C1261138)
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Change 1: Tagging Multiple CUIS due to Term Redundancy

The UMLS vocabularies contain redundant terms. For example, there exist separate

terms for Post extubation acute respiratory failure requiring reintubation and Acute

respiratory failure requiring reintubation. However, if a patient requires reintubation,

they are by definition extubated. The MCN corpus approached this problem by

pre-selecting concepts in certain hierarchies to have priority over others. For example,

many measurements of substances exist in both ‘Finding’ and ‘Observable Entity’

forms, and the creators of MCN informed annotators to choose the former, if presented

with that choice. However, this could have suboptimal effects on model learning,

where, for example, representations for the ‘Observable Entity’ type are improperly

learned. Additionally, such rules are hard to codify over the full domain, so in other

cases, an adjudicator over the MCN corpus had to choose one CUI, when the two

annotators disagreed. In examining errors from the 2019 n2c2 Shared Task, we did

find that many “errors" arose from models essentially choosing synonyms. Therefore,

our framework allows annotators to choose more than one concept, where they find

relevant. This also allows for a more accurate evaluation, in addition to cleaner signal

during model training.

Change 2: Tagging Subspans due to CUI Inconsistencies

Inconsistencies in available UMLS terms complicate generate universal rules about

concept boundaries. In the example in Figure 2-2, we show the concept Severe asthma

exacerbation has a term in SNOMED whereas severe COPD exacerbation does not.

Additionally existing public clinical entity corpora only tag the CUI corresponding to

the longest span of text. Therefore, in the prior example, in one case, Severe asthma

exacerbation would be tagged, and in the other only COPD exacerbation would be

tagged. Then, if our model trained on COPD exacerbation, our model would likely only

tag asthma exacerbation. Under current paradigms, this would count as an incorrect

tag. As a result, in our framework, we additionally tag subspans corresponding to valid

medical subconcepts, as shown in Table 2.2. This change would increase the artificially
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Severe Asthma Exacerbation

C0205082

C00038218

C0349790

Severe COPD Exacerbation

C0205082

N/A 

C0340044

Figure 2-2: Examples of compound concepts represented inconsistently in SNOMED.
While there is a term for ‘Severe Asthma Exacerbation’, there is no term for ‘Severe
COPD Exacerbation.’ Existing datasets only tag the longest concept available in the
vocabulary, but this makes it difficult to annotate concepts consistently.

deflated performance numbers from end-to-end systems in our prior analysis, where

e.g., they were counted as incorrect for normalizing breast and not breast on the

left side. Further, prior work has shown that using subspans produced by cTAKES

(as opposed to only the longest spans) leads to superior predictive performance [88].

Change 3: Increasing Clinical Concept Coverage

Finally, we found that problems, tests, and treatments are insufficient to describe

clinically relevant information. Problems only cover abnormal findings, but normal

findings are necessary to place abnormal findings in context. Further, the definition of

a problem is dependent on the history of a patient and the degree of the finding. For

example, the s3 heart sound is normal in children or athletes, but can be pathologic

in older patients. We face similar issues in delineating treatments, when we may also

want to capture a lack of intervention. Consider a note that said Hypoxemia:. . . on

3-4L NC [nasal cannula] throughout the day yesterday, weaned to RA [room air] this

AM. RA [Room air] isn’t a treatment, but it is clinical terminology that is critical to

understanding that the patient’s oxygen requirement changed.

Finally, outside of issues delineating the three categories, there is other clinically

relevant information essential to a patient’s narrative, such as anatomical terms and

clinical abbreviations. For example, we may return to the example of pt which in

the MCN dataset could refer to prothrombin time, physical therapy, or posterior

tibial pulse. In addition, pt is a common abbreviation for patient, and since it is

not a problem, test, or treatment, it would never be seen in training; as a result, a
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downstream end-to-end system would likely face issues. As a result, we believe it is

important for datasets to cast a wider net in terms of the clinical terms they tag.

2.4.3 Comparison to MCN

To provide a point of comparison, we compared a note tagged with our schema versus

one tagged with the schema from i2b2/MCN. Under our framework, the annotator

identified 170 spans with 123 unique CUIs; in MCN, the note had 72 spans with 63

unique CUIs. The changes in our schema manifested in the following ways:

• Jaundiced was tagged both as ‘icterus (C0022346)’ and ‘yellow or jaundiced

color (C0474426).’

• The note contained place percutaneous drains to decompress his biliary

tree. The span in the MCN corpus was percutaneous drains, which was split

into ‘percutaneous (qualifier)’ and ‘drain (device).’ In addition to those, we

tagged place percutaneous drains as ‘percutaneous transhepatic insertion of

biliary drain (procedure).’

• Additional annotations included sections of the note (e.g., Review of Systems),

normal findings (e.g., stable condition), and medical descriptions (e.g.,

jaundiced).

2.5 Validation of Framework

Next, we “validate" our framework to show it can yield consistent annotations and

that it had the intended effects on evaluation when applied to real world systems.

2.5.1 Annotating under our Framework

Two annotators tagged portions of notes, using the MIMIC-III database, so the

resulting dataset could be open-sourced [120]. They tagged both the History of

Present Illness and Assessment and Plan sections of both physician notes and discharge
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Figure 2-3: Custom in-house annotation tool, an early prototype of PRAnCER
described in Chapter 3. Annotators highlight the span they want to tag in the middle
panel (pictured: cold), and the panel on the left automatically provides suggestions
for CUIs, which can be scrolled through and selected. If the suggestions provided are
insufficient, an annotator can use the UMLS browser and directly enter CUIs instead.
The right panel shows the labels that were already tagged and at which character
locations: the pencil allows for edits and the trash can for deletions.
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summaries, since these include the bulk of the narrative and the least auto-generated

text. 11 note sections were tagged in all. Annotation was conducted using an in-house

annotation tool, which is shown and described in detail in Figure 2-3.

2.5.2 Agreement Evaluation

We evaluate concordance between the two annotators by measuring span agreement,

and for the concordant spans, CUI agreement. A total of 1571 spans were tagged (1288

by Annotator 1, 1435 by Annotator 2). This corresponds to a Jaccard similarity of 0.73

for unadjudicated span selection. Existing clinical entity recognitions datasets have

not released agreement numbers for span selection, so we are unable to contextualize

this figure; they merely state that they use two annotators, followed by an adjudicator.

On concordant spans, annotators matched on at least one CUI 82.6% of the time

(sans adjudication). The MCN dataset reported 67.4% CUI concordance between

annotators pre-adjudication. This is not an apples-to-apples comparison, because by

additionally tagging shorter subspans of compound concepts, our system benefits from

a smaller proportion of compound concepts. However, we also consider this a strength,

since it allows compound concepts to be represented in multiple ways to account for

inconsistencies in UMLS.

2.5.3 Evaluation of Real World End-to-End Systems

Finally, we wanted to use the dataset we created to benchmark MetaMap v4.0.0

(rule-based) and the cTAKES Default Clinical Pipeline (hybrid rule and ML model),

since they are two common systems used in the machine learning and healthcare

community, and past comparisons have only focused on narrow concept types. We

examine recall on spans in our dataset, since tools like MetaMap also tag terms like

Date. We can see results of this analysis in Table 2.5.3. For the purpose of the analysis,

we considered a union of the annotations created by the annotators, ignoring those

spans which did not map to a CUI.

The precision/recall tradeoffs between the two systems are apparent. More inter-
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MetaMap cTAKES

Semantic Type # in
Data

% Spans
Correct

% CUIs
Correct

CUI
Precision

% Spans
Correct

% CUIs
Correct

CUI
Precision

All types 1271 64% 48% 75% 52% 46% 89%
Sign or Symptom 168 68% 62% 92% 83% 82% 99%
Disease or Syndrome 164 68% 52% 77% 64% 62% 97%
Finding 130 57% 43% 76% 41% 31% 74%
Pharmacologic
Substance 113 80% 75% 94% 86% 84% 98%

Organic Chemical 102 79% 77% 98% 88% 88% 100%
Body Part, Organ,
or Organ Component 84 40% 22% 55% 72% 66% 92%

Therapeutic or
Preventive Procedure 71 58% 30% 51% 38% 24% 63%

Pathologic Function 53 62% 49% 79% 83% 68% 82%
Diagnostic Procedure 43 70% 47% 67% 51% 44% 86%
Temporal Concept 41 54% 46% 86% 0% 0% N/A

Table 2.3: Performance of MetaMap and cTAKES on the whole dataset created under
our framework, and subdivided by the ten most common Semantic Types. % Spans
Correct indicates what percent of spans were correctly recognized by the model, %
CUIs correct indicate what percent of spans were correctly recognized with a correct
CUI, and CUI precision indicates the percent of correctly identified spans that were
normalized correctly.

estingly, we find huge discrepancies of accuracies among Semantic Types between the

systems. This highlights the utility of benchmarking across a diversity of terms that

reflect downstream usage.

Finally, we also examine the 174 spans that contained at least one subspan and

were not contained within any larger span. These are exactly the compound concepts

that are inconsistently included in medical vocabularies. Of these, cTAKES only

recovered the span in 74 cases. However, of the 100 cases with a missed span, in 54

of them, cTAKES did correctly match a CUI for one of the subspans. In existing

schemas where only the longest span is tagged, these 54 (31%) cases would have

all been counted as incorrect, which vastly misrepresents the true performance of

cTAKES. We don’t see as drastic a bump with MetaMap, since perhaps in contrast to

cTAKES, it is entirely rule-based.
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2.6 Discussion

We have shown that performance of entity normalization is far from robust, and

accuracy numbers are hugely bolstered by the existence of a few common, easier-

to-map terms. As we have shown, concentrating on certain subsets of the data can

lead to vastly different metrics. As a result, performance would be highly variable

for downstream applications depending on the entity of interest. This holds true

both for the normalization systems from the n2c2 Shared Task and for the widely

used MetaMap/cTAKES. Being able to compare systems with a reference dataset is

crucial for deciding how to set up a clinical machine learning pipeline. Our annotation

framework could be used to create that dataset, since it allows for more nuanced

evaluation.

In examining the discrepancies between our annotators, we notice they often

arose because of minute differences between concepts, e.g., ‘malabsorption’ versus

‘malabsorption syndrome.’ In these cases, note context is insufficient to pick up on

subtle differences in definition, which are also generally of little clinical consequence.

A system that retrieves either of these should be assessed as correct.

Perhaps most importantly our schema allows for a transition towards end-to-end

learning and evaluation. Let us consider an example created from our framework

where an annotator tagged dirty UA as ‘urine screening abnormal (Finding)’ and UA

as ‘urinalysis (Procedure).’ We can give partial credit to a system that only tags UA. In

contrast, under current schemas which only tag the longest concept span, normalizing

only to ’urinalysis’ would be considered incorrect. Not only does this discount the

model’s true performance, but it also adversely affects training. Further, in this case,

the subspan UA is of a different Semantic Type (Procedure) than the whole span

(Finding). If a researcher only wanted to extract procedures, under our framework,

they won’t lose out on those spans where procedures are a subspan of a larger concept.

Therefore, our schema allows for flexible training of a subset of concepts of interest.
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Limitations

Given that we tag spans in addition to subspans, our annotation framework does

greatly increase the number of terms that need to be tagged per document. However,

this extra effort is partially offset by the decreased cognitive load of deciding where a

span boundary is. Further, by providing suggestions upon highlighting a span, the

clinical annotation tool already greatly speeds up the time needed to annotate. Moving

forward, we are currently experimenting with having the tool auto-tag unambiguous

cases, which the user could simply choose to accept or reject. Since our analysis

of n2c2 shows that we can already extract certain terms (e.g., hypertension) and

Semantic Types with high confidence, this allows the annotator to focus only on

the most difficult 20-30% of cases. In manual examination of spans tagged only by

a single annotator, differences often arose due to annotation fatigue, rather than

misunderstanding of the framework. For example, an annotator would not tag a text

span they had previously tagged before in the note. This fatigue could be alleviated

by the addition of automatic suggestions.

However, with suggestions and auto-tagging, it is important to understand the

sources of bias we could introduce to our resulting dataset. An ongoing area of

research is assessing the extent to which the presence, ordering, and presentation

of suggestions and auto-tags may bias outcomes. Additionally, we hope to evaluate

user interface (UI) techniques to mitigate this bias. There is a need for larger an-

notated clinical datasets, and smart computational tooling can decrease the time,

effort, and cost needed to create them. To that end, we open-sourced our clin-

ical annotation tool, as well as the annotations generated by this chapter. See

https://github.com/clinicalml/mimic_annotations.

We do acknowledge that the annotation guidelines were developed and evaluated

using notes written in a critical care context, so that we could open-source the resulting

MIMIC data set. Future work remains to evaluate the schema in the context of other

clinical settings and note types.

More broadly, approximately concurrently with the writing of this chapter, several
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clinical entity recognition systems were released by Amazon, Google, and Microsoft 1.

As one data point, Guzman et al. [99] assessed the capability of Amazon Comprehend

Medical at medication attribute extraction and found it underperformed systems

from the i2b2 and n2c2 challenges. However, further work needs to be conducted to

continuously benchmark these newer systems as well.

Additionally, clinical concept recognition is only the first step towards parsing

the information in clinical notes. The community has long recognized that successful

reconstruction of a full patient narrative requires additional tasks, e.g., relation

extraction and temporal reasoning, and has constructed challenges around them

[263, 277]. Conducting a similar detailed breakdown on state-of-the-art systems for

those tasks is crucial to help us understand failure modes before deployment.

2.7 Conclusion

Medical notes offer us an incredibly rich view into patient narratives, but they have

remained a largely untapped resource for clinical and machine learning research.

Clinical studies often resort to manual chart review, which is time-consuming and

difficult to scale. While automated concept extraction systems provide a way to exploit

clinical text, as we have demonstrated in this chapter, they cannot yet be reliably

deployed.

Developing truly robust and accurate clinical entity recognition and normalization

algorithms will require both substantially more labeled training data and automated

evaluation metrics that account for the subtlety and ambiguity of the task. We present

a new annotation framework and a small-scale annotated dataset for evaluation of

end-to-end concept recognition and normalization. The time is ripe for the field

to invest in substantially larger labeled training sets to spur new machine learning

approaches for clinical entity recognition and normalization. Future work should

consider incorporating the new annotation framework as the basis for such a data set.

1https://aws.amazon.com/comprehend/medical/, https://cloud.google.com/healthcare-api/
docs/concepts/nlp, https://learn.microsoft.com/en-us/azure/cognitive-services/
language-service/text-analytics-for-health/overview?tabs=ner
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Chapter 3

Decision Support Tool for Clinical

Entity Annotation

Acknowledgement of Co-authors I would like to acknowledge my undergradu-

ate mentee Ariel Levy, who provided the software development for the bulk of the

annotation platform described in this chapter.

3.1 Introduction

In the previous chapter, I lay out the middling algorithmic performance of existing

clinical concept extraction systems and the need for a greater amount of labeled data,

both for training and evaluation. The relative lack of existing labeled data can be

attributed to the domain expertise required and the tediousness of the task, which

is exacerbated by the lack of tooling made for clinical concept annotation. Clinical

vocabularies can consist of hundreds of thousands to millions of concepts, and manually

searching for each concept identifier can lead to prohibitive slowdowns.

To address this gap, in this chapter, we introduce an open-sourced annotation

platform PRAnCER, built specifically for concept annotation. In addition to being

able to handle matching to large ontologies, PRAnCER provides two major forms

of automated decision support. The first are label recommendations, which map a

span that a user selects to a list of ten model-proposed concept labels. The user can
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choose to go with one of the recommendations or decide to search further. The second

form is fully pre-populated annotation suggestions, which suggest both the text span

itself and the corresponding label. These are appropriate for high-precision cases, in

which a text span can be easily mapped to a single label (e.g., ‘hypertension’). In

contrast, MS might refer to the title ‘Ms.’, mitral stenosis, or multiple sclerosis. Given

the uncertainty, we would not want to provide any pre-population.

3.2 Related Work

There are many ways to annotate, explore, and understand text corpora, but one

common preprocessing step is to identify the entities within a document; in the

general domain, these tend to be names, places, and organizations [33]. For example,

Jigsaw is a system for text exploration (e.g., articles, reviews); as a starting place,

it algorithmically pre-tags entities in documents, and then allows users to make

corrections to these annotations [91]. Historically, identifying clinical entities is

particularly tricky, since the language in doctors’ notes can essentially be considered

its own dialect, and there are many overloaded terms, e.g., MS. Deciding what counts

as a clinical entity (finding, disease, procedure, treatment, lab test) and what defines

an entity’s boundary is much more ambiguous than in the general domain; this is

because concepts are not just proper nouns and often overlap with one another.

Due to the importance of understanding concepts and entities in text, there are a

host of tools focused solely on entity annotation; however, these tools were created

for tasks with a more limited number of labels (on the order of <30-40) that can

all be simultaneously displayed. Many of these tools (WordFreak, GATE, BRAT,

WebAnno, Knowtator and YEDDA) do include system suggestions and pre-annotations

[178, 312, 260, 126, 315, 197].

There have been several open-sourced datasets consisting of our same clinical text

annotation task, or slight variants on it [4, 66, 164, 264, 212]. These datasets have

been created via annotation tools such as MAE without decision support for label

selection; annotators have to resort to external websites to search the label space
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1: Highlight carbo.

a)

c) d)

b)

Text 
Panel 2: Realize all 

recommendations 
are incorrect.

Selection Panel

Label Panel

3: Search for 
carboplatin.

4: Click to select label, 
which now appears below

5: Highlight ia.
6: Select the 1st

recommendation, 
since it is correct

7: Click the pre-
populated TNBC 
suggestion 

8 : Realize the pre-
selected label is correct, 
and accept in one click.

Figure 3-1: Our clinical annotation system in the midst of annotating our sample
sentence. Panel a) shows the text, label, and selection panels. In the above, Pt has
already been annotated; the user annotates carbo using the search feature in panels a)
and b), ia using the automatically surfaced label recommendations in panel c), and
TNBC using a pre-populated annotation suggestion in panel d).

[261, 194]. As a result of the tediousness of the task and lack of specialized tooling,

the datasets are small, with the largest being on the order of hundreds of notes.

3.3 System

Due to the complexities and idiosyncrasies of the clinical annotation task, we built

a custom annotation platform1. The platform is based on top of React, Typescript,

Node.js, and Flask. In this section, we first present a walkthrough of representative

usage of the platform, and then elaborate on the system behind automated decision

support.

1An up-to-date version of our platform can be found at clinicalml.github.io/prancer.
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Usage Walkthrough The platform consists of three main panels, shown in the top

left of Figure 3-1: a text panel, a label panel, and a selection panel. Users begin by

looking at the text displayed in the text panel; in Figure 3-1a), we see that the shaded

box around Pt indicates it has already been annotated, and the user highlights the next

clinical span, carbo. Upon highlighting, the selection panel shows that carbo has been

chosen, and the label panel shows a list of automatically generated recommendations.

The user notices that none of the provided options are correct, then in Figure 3-1b),

uses the search bar to explicitly search for carboplatin instead. A list of search results

appear, color-coded by concept type (e.g., pink for Problems, grey for Other); we

use the 11 concept types described in Patel et al. [203]. Our user would notice that

the first suggestion is correct and click on it, placing the label in the selection panel.

The user could continue searching for additional labels, or move on. In Figure 3-1c),

they highlight ia and the first displayed label is correct, so they can select it and

move forward. In Figure 3-1d), the user then comes to TNBC, which already has a pink

outlined box around it, indicating that the system has pre-populated an annotation

for TNBC. Upon clicking the box, the system displays what it has identified as the likely

correct label, which it auto-populates in the selection panel. The user then can choose

to accept this span and label combination in a single click on the green checkbox that

appears as a dropdown; alternately, the user could choose to modify the label via the

yellow pencil or to discard the result via the red ‘X’. At any time, the user can return

to edit any annotation by clicking on its surrounding box.

We adopted the multi-panel view to mimic other interactive writing/tagging

applications (e.g., Grammarly) where text spans are highlighted in situ to indicate

the presence of recommendations, which are then shown in a side panel [117]. In

earlier prototypes, we explored alternate design decisions. For example, we considered

displaying recommendations in-line via a drop-down menu and displaying existing

labels in-line; we found that the former idea obscured surrounding text that was useful

for ascertaining context, and the latter cluttered the screen with minimal benefit. We

also explored alternate recommendation confidence indicators and suggestion utilities

such as Recently Used, and our final interface was a synthesis of these ideas.
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Additional Feature Details In addition to the features explicitly walked through

above, there are a few more to accommodate the challenges of clinical text annotation.

Users can indicate in the selection panel if there is no matching concept, or only

an ambiguous match. Further, users do have the ability to select overlapping spans,

and when there are multiple annotations for a single word, users may toggle between

these annotations. If a user needs more descriptive information on a concept, they

can click the (i) button on any label in the label panel to surface the official medical

definition. Finally, a user can click on one of the colored boxes under the search bar

to filter recommendations or search results to one of the 11 concept types; these colors

correspond to those used in the search and in the annotation bounding boxes.

In the platform, any addition, deletion, or modification of manual or suggested

annotations is automatically saved in a JSON-serialized dataset. Saved features include

the character span numbers, the labels selected, the timestamp, and whether the

annotation was manual or suggested. For the purposes of our study, we also log all

interactions the user has with the platform.

Automated Decision Aid As mentioned in the walkthrough, we introduce two

major forms of automated decision aids in our platform. The first is via automated

label recommendations given a user-highlighted span (see ia in Figure 3-1c); the

second is via fully pre-populated annotation suggestions (see TNBC in Figure 3-1d).

We describe each modality and its motivation in greater depth below.

Automatic label recommendation could greatly decrease the amount of searching

users have to do. While there is a large label space (>400,000 concepts), there is also

a set of lower-hanging fruit. These are text spans that, once highlighted, are either

straightforward to label or narrow down to a set of labels. On their clinical text corpus,

Luo et al. showed that when provided with a correct text span, simple heuristic

methods can achieve 77% label accuracy; the highest accuracy yet achieved on their

data set is 85% [164]. Therefore, while existing algorithms are not sufficiently robust

to conduct automatic extraction in clinical workflows, given an identified span, they

are sufficiently advanced to narrow down to a set of useful recommendations in the vast
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Figure 3-2: Tutorial mode built into the platform to train users with rounds of iterative
feedback. Gold standard and chosen annotations are displayed side-by-side, with
feedback on all annotations provided below.

majority of cases, particularly for frequently occurring concepts. As a result, our system

surfaces recommendations automatically on the right label panel when a user highlights

a span, as seen in Figure 3-1(a, c). On the backend, the recommendation system is

built within a Python wrapper, allowing for easy extensibility to any modern machine

learning model as algorithms improve. In our studies, we use the recommendation

algorithm detailed in Agrawal et al., which draws on classical information retrieval

techniques from NLP [4].

Our platform can also incorporate fully pre-populated annotations, where both

the span and the label are provided. As described previously, the field of clinical NLP

has already created several systems that attempt to automatically extract concepts

end-to-end: both identification of spans and mapping those spans to labels. While

these are obviously imperfect, thus necessitating the need for clinical text annotation,

they can be used to recover at least half of concepts. Given that a note can easily

have hundreds of clinical concepts, these systems could relieve the burden on the

human user by potentially allowing them to focus their attention on more difficult

cases. In our platform, pre-populated annotations appear as outlined boxes around the

suggested span, as seen with TNBC in Figure 3-1. On the backend, the pre-populated

annotations are computed and rendered before the user begins their annotations.

Therefore, latency is not a concern, allowing any concept extraction system to be
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used to provide the pre-populated annotations. Possible existing concept extraction

systems include cTAKES, MetaMap, MedLEE, and scispaCy [15, 236, 79, 188].

Finally, due to the repetition of terms within a note, we additionally implemented

a feature that propagated concept annotations to repeat occurrences of the same entity.

For example, if a user marks carbo at the beginning of the note as carboplatin, all

future occurrences of carbo in that note will appear with a pre-populated annotation

for carboplatin, that users can again choose to accept, modify, or delete.

Tutorial Finally, we included a tutorial mode in our system, shown in Figure 3-2.

As input, the tutorial mode takes in a series of snippets and their gold standard

annotations. To begin, users annotate the first snippet using the standard interface

shown in Figure 3-1. After, they are brought to the tutorial screen shown in Figure 3-2.

It presents the gold standard annotations on the left, the user’s annotations on the

right, and below, it provides a score based on the number of spans correctly recovered

by the user, as well as the number of correct labels. Underneath, it iterates through all

the annotations, providing a description of the differences between the gold standard

and the user output, if any. Then, the user iterates through steps of annotation and

tutorial feedback until the mode is over. The tutorial serves two purposes: (i) to

familiarize users with the annotation task and the platform and (ii) to allow them to

form mental models of the accuracy of the automated features.

Flexible Usage While PRAnCER is equipped with features specific to the anno-

tation of UMLS concepts (e.g., the ability to query for additional meta-information

about any CUI), the ontology files can be swapped out to handle any ontology. For

example, I adapted PRAnCER for the work described in Singh et al. [252]. In that

work, PRAnCER was used to annotate 21 different measurements from 370 cardiac

magnetic resonance imaging reports. Clinician labeling time was estimated at 15

hours, which comes out to approximately 2.5 minutes per report. Using 270 reports as

training data and 100 for evaluation, the authors were able to achieve 0.957 AUC at

automated measurement extraction. Similarly, PRAnCER is being used in a diverse
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set of scenarios in ongoing work by others in the informatics community. It remains

future work to allow for further flexibility by adding functionality for annotation of

relations.
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Chapter 4

Assessing the Impact of Decision

Support

Acknowledgement of Co-authors I would like to acknowledge my undergraduate

mentee and co-first author Ariel Levy, who conducted the user studies and aided in

the design and analysis of this study.

4.1 Inroduction

In the previous chapter, I introduced an annotation platform that provides two major

forms of automated decision support: label recommendations and fully pre-populated

annotation suggestions. This introduction of automation can decrease the cognitive

load on human decision-makers, enabling them to focus their attention where it is most

needed. This is a wider phenomena, as decision tools have emerged across a variety

of disciplines including medicine [284], sports [198], and criminal justice [132]. Since

automated systems and humans often have complementary strengths, joint systems

can outperform either alone [284].

However, while such hybrid intelligence systems are very promising, it is important

to understand the dynamic between the human decision maker and the automated

system, a topic of longstanding study [147]. For optimal results, the human needs to

understand when to listen to the computer and when to exercise their own agency [21].
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If not, the human may develop a misplaced trust in the automation, which could have

the adverse effect of degrading their output, as has been demonstrated in prior work

[265]. Further, this trust may cause them to lose critical engagement with the task,

so they do not have the attention to intervene when necessary, as has been shown in

self-driving car examples [108]. However, this phenomenon has been less studied for

domain experts, who may be more confident in their own abilities and more skeptical

of automation [154].

In this work, we use PRAnCER to study whether for clinical experts, their expertise

mediates their interactions with automation. In particular, we investigate whether

domain experts display the misplaced trust and loss of agency that has been described

in other past work, and see whether they remain critically engaged in the task at hand

when using automation. Recommendations could keep users from searching further

when needed and decrease their accuracy, and the pre-filled suggestions allow us to

study whether they lose any autonomy in creating new annotations.

We run a two-stage user study on 18 clinicians from 9 different United States

medical institutions, in which we artificially vary the extent and accuracy of both of

the aforementioned decision aids. In contrast to previous work with discrete, often

synthetic tasks, our label space includes 400k+ concepts, allowing us to simulate when

models are only slightly off (missing the correct label, but presenting similar adjacent

labels), instead of scenarios where the model is entirely incorrect, reflective of real-

world error modes. In doing so, we are able to pinpoint specific impacts of automation

errors. We investigate how reliant users are on automation by examining how they

deal with poor recommendations and the agency they show in annotating additional

concepts. We analyze each annotator’s behavior and outcomes over approximately

eight hours of annotation each, allowing us to account for effects over long time scales,

such as tedium. Through this analysis, our paper makes three contributions:

• We find that domain experts (n=18) are sufficiently engaged to notice when

system label recommendations are inadequate. Due to the size of the label space,

we were able to measure how often they chose to search, an objective proxy for

trust in the recommendations. Our users have a strong intuition of when to
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explore further, but if this intuition is violated and a correct label isn’t present

when they might expect it to be, they accept substandard label choices for spans

they selected.

• When presented with fully pre-populated annotations, we find that our domain

experts are more hesitant to exercise agency. While they do change incorrect

labels, they are slightly more hesitant to intervene with incorrect spans, and

they demonstrate less initiative in the creation of additional spans. Moreover,

through exit surveys, we find that they thought they were being thorough and

do not note this shift in their own behavior.

• We analyze error patterns of our domain experts and find that trust in automation

correlates across suggested labels and spans. However, misplaced trust and loss

of agency do not correlate with each clinician’s prior demonstrated competency

at the task. We also find that human error patterns differ from algorithmic error

patterns, indicating the utility of combining the two.

Our results, compiled from over a hundred hours of logged interaction between

clinicians and decision support, strongly indicate that domain experts can fall sus-

ceptible to risks in human-AI teams. Our detailed characterization of users’ behavior

can help inform the design of user-facing systems for data collection as well as the

machine learning models that ingest that data.

4.2 Related Work

4.2.1 Mental Models and Model Trust

The idea that effective group work requires an accurate mental model of one’s

teammates—humans or AI—goes back decades [40, 95]. In interviews, clinicians

discussed their information desiderata when onboarding new AI decision support:

strengths, weaknesses, point-of-views [38]. These needs closely mirrored the infor-

mation they use to create mental models of their colleagues when seeking second
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opinions. It has been empirically shown that users with better mental models of their

AI teammates are more successful; in particular, knowledge of the error boundary

enables the user to know when to trust automation and when to override it [21, 85].

However, in cases where users do not properly learn when to trust automation, they

can become overly reliant on systems [147]. On image recognition tasks, Suresh et al.

found that people will trust an incorrect machine decision, even if they would have

made the correct decision on their own [265]. Similarly, a study of radiologists showed

that while decision aid helped lower-performing radiologists, it actually hindered the

performance of the best ones [211]. Further work has shown that users’ subjective

evaluations of their trust in and relationship to decision support systems does not

always align with actual outcomes, highlighting the importance of quantitative studies

[37].

Due to the importance of calibrating trust in decision aids, several recent studies

have analyzed how the presentation of model decisions modulates trust. They’ve

investigated factors including reported model confidence, model explanations, overall

model accuracy, and initial model accuracy [323, 316, 201, 195]. In these studies, users

choose to accept or reject the model’s output on discrete binary tasks and self-report

their level of trust in the model.

In this work, we study a more complex task which (i) has a large label space

(>400k), requiring reliance on computational aid and allowing us to measure trust by

how often users search, and (ii) requires users to select spans, additionally allowing

us to measure agency. Further, the time scale of our study is longer than past work,

allowing us to account for real-world effects such as tedium that would likely affect

reliance and agency. The primary goal of clinical text annotation is to create data

to better train machine learning models. However, if we provide an initial model as

decision support and users become overly reliant on that model, their output could

closely resemble the model’s, instead of the underlying truth. This would lead to

models being fed back their own outputs as inputs in future training; this could cause

a dangerous feedback loop in which our models become even more confident in their

own incorrect decisions [243]. Therefore, it is imperative to understand if our users
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will properly mediate model errors, or simply reflect them back.

4.2.2 User Agency

Some tasks like image classification have discrete inputs with clear objective outputs.

However, for other tasks that require initiative or creativity, there is also the worry

that humans will cede their agency to automated aid [106]. For example, in the

translation task, there are often multiple equally valid outputs. When translators

used an interface that displayed machine-suggested recommendations, they noted

that they ceded agency and would conform to the machine’s recommended phrasing,

even when it did not match their usual style [93]. Kulkarni et al. showed in an

experiment on sketching, exposure to examples increases conformity of users’ drawings

[141]. Similarly, using an ideation task, Siangliulue et al. investigated the effect of aid

(example ideas) on user creativity; users who were exposed at consistent intervals to

example ideas actually ended up generating fewer ideas than users with no aid at all

[250].

In our work, clinical text annotation does not just require mapping mentions to

concept labels, but it also requires deciding what terms are clinically relevant concepts

and need to be labeled. While automated methods can provide users with a subset of

these terms that need to be labeled, users could fall susceptible to similar patterns

of tunnel vision, where their attention and mindset become fixed on what has been

provided. On the other hand, a note contains over a hundred annotations, and a

well-designed suggestion system could decrease the burden on users, enabling them to

focus their attention where it is needed most, instead of replicating what is known.

4.3 Annotation

There have been multiple studies of the impact of pre-annotation on outcomes, though

the focus is often on efficiency gains [315, 81]. Past literature has also examined

effects of pre-annotation on performance, both in standard NLP and clinical settings,

but these have had mixed conclusions on the bias induced and the resulting time
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savings [156, 87, 73, 258]. These works were based on small numbers of annotators

(generally 𝑛 = 2− 4) and focused primarily on overall agreement of an annotator with

the gold standard and other annotators, rather than directly analyzing when they

accepted incorrect aid. Further, our work differs due to (i) the large label space we

are mapping to and suggesting over, which intensifies the dynamics around trust and

mental models, (ii) the wider task definition (e.g., compared to part-of-speech tagging

or identification of a few specific symptoms), and (iii) our purposeful introduction of

certain modes of errors.

4.4 Stage 1: Label Recommendations

In this first stage of the user study, we test the effect of presenting automatic label

recommendations once a user highlights a span of text. Recommendations could

decrease the burden of the user searching over the large label space, especially since

algorithms could present a correct label over 80% of the time [164]. However, there is

a concern that in the presence of recommendations, users will become overly trusting

and accept substandard labels instead of taking the initiative to search further. This

could lead to a feedback loop if the data created were used for updating the automation

model. Therefore, in this stage, we investigate whether our domain experts form

appropriate intuition of when to search further, or whether they become complacent

in the presence of recommendations.

4.4.1 Experimental Design

To ensure a consistent and sufficient clinical background, we required users to have

completed at least two years of medical school and to have experience with clinical

notes in United States healthcare settings. We recruited 18 clinicians via Twitter and

email lists. Our users (8 men, 10 women) consisted of 4 medical school graduates, 6

fourth years, and 8 third years; they came from 9 different medical institutions across

the United States. Users were compensated $20 per hour for their time, and each

spent between 4 and 5 hours total on this stage. All components of the study were
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conducted virtually and were ruled IRB exempt.

Our study had a multiple factor design, where we evaluated the performance of

users (i) across different recommendation modes and (ii) across different annotation

task difficulties that naturally arose in the task. First, users were assigned randomly to

one of three modes: the None mode, with no recommendations (5 users), the Standard

recommendation mode (6 users), or the Weakened recommendation mode (7 users); the

number of users per mode differed due to unanticipated changes in clinicians’ schedules.

To isolate the effect of recommendations, we did not include any pre-populated

annotations in this stage. The Standard mode presented the model recommendations

in all cases. The Weakened mode presented the same recommendations as the Standard

mode, but with the correct label removed in 25% of the nontrivial examples. Examples

were considered nontrivial if the text did not directly match a concept or any of its

synonyms in the medical vocabulary. In other words, we would only remove the correct

recommendation if there would be a better search query to find the concept; the

removal of a concept was done consistently for all instances of a term across this stage.

In all, a correct label was presented in one of the ten displayed recommendations 83%

of the time in the Standard mode and 73% in the Weakened mode. Across all modes,

we used the search provided by the Unified Medical Language System API [103].

To train users, we individually gave each of them a 30-minute presentation, detailing

the annotation rules they should follow, taken from [4]. Users were encouraged to

interject and ask for clarifications, as needed. Then, we had them annotate a sequence

of eight clinical snippets using the tutorial in Figure 3-2, while we were present. Each

user conducted the tutorial in their assigned study mode, so that they could be

introduced to the strengths and weaknesses of the automation in their mode. We

ensured the tutorial modes had approximately the same proportions of correct and

incorrect recommendations as the full notes to allow users to build appropriate mental

models.

Users then tagged 3 sections from de-identified clinical notes from the MIMIC-III

Critical Care Database [120]. The order of notes was randomized between users. Each

user annotated the first note of each stage live over Zoom, talking out loud, and then
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annotated their next two notes asynchronously, with screen recording. Following each

stage, users received a followup survey asking about their workflow, specifically their

confidence in and reliance on the automated decision aid features.

For evaluation, we compared to the gold standard released by Agrawal et al., which

contained 335 annotations over the sections used in this stage [4]. Since users are

allowed to select multiple labels, we treated an annotation as correct if any selected

label were among the gold-standard labels. Further, since there may be multiple

correct labels and the gold standard may not have contained them all, we manually

checked whether any additional user labels were correct, and if so, added them to our

gold standard. This process was conducted blind to the user and their mode. Further,

we excluded all spans where the label was considered ambiguous in the gold standard.

We analyze several dependent variables: users’ accuracy, the speed of clinical

annotation, and the actions taken in the platform (e.g., choosing to search). Accuracy

was evaluated via span recall, the proportion of annotations in the gold standard that

users annotated the span for, total recall, the proportion of annotations in the gold

standard that users got the correct span and correct label for, and label accuracy, the

percentage of time users chose a correct label for a set of spans. In our mixed effects

design, our other factor was annotation difficulty. In evaluating user accuracy, we

consider multiple subsets of annotations, including “Easy” examples (the examples

in which the correct label is provided in both recommendation modes), “Difficult”

examples (the examples in which the correct label is not provided in the Standard

mode), and “Weakened” examples (the examples in which a correct label is provided

in the Standard mode but not in Weakened.) We also examine performance across

clinical concept types.

4.4.2 Results

For our multi-factor design (user mode and annotation difficulty), we first conduct

an Aligned Rank Transform (ART) procedure [303]. We find that total recall is

significantly affected by mode (p<0.03), annotation difficulty (p<1e-16), and their

interactions (p<1e-4). Both factors and their interaction additionally significantly
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affect how often users search on the platform (p<1e-8 across all three). We now

deep-dive into pairwise comparisons and implications behind results.

Recommendations increase annotation efficiency and seem to decrease

tagging fatigue. Across all annotations, users in both recommendation modes are

able to find labels far quicker (median of 3 seconds) than users without recommen-

dations (median of 6 seconds) as displayed in Figure 4-1(b); the median time for

both recommendation modes is statistically significantly faster than users without

(p<0.05 across both, adjusted two-sided Mann-Whitney U test). When a correct

answer is provided in the ten displayed recommendations, users only require a median

of 2 seconds. On the set of "difficult" examples where users are provided only with

incorrect recommendations, they take a median of 10 seconds, the same as those

without recommendations take on the "difficult" set. Further, the users in Standard

mode create an average of 12% more annotations than those in None mode (375 vs

337), a statistically significant increase (p<0.02, two-sided Mann-Whitney U test).

Users in Weakened mode were in the middle of both, with an average of 353 (not

significantly different). We hypothesize that the decreased workload stemming from

recommendations led to a lower cognitive load for users, decreasing their tagging

fatigue and enabling them to create more annotations.

Recommendations generally improve recall, and domain experts step in

appropriately in spaces where algorithms fail.

As seen in Figure 4-1(a), users in the Standard mode had higher total recall over users

in the None and Weakened modes (80% vs. 76% and 76% at median, respectively). The

superiority of the Standard mode over the None mode is not statistically significant,

but results indicate that the presence of recommendations does not decrease recall,

a prior worry. On the set of difficult examples (where the recommendations do not

contain a correct label), users across all modes have approximately the same total

recall (a median of 52% for None, 49% for Standard, and 48% for Weakened). One

user noted in their survey that they “really appreciated the suggested labels, but ...
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these can institute bias due to availability”, the only user to mention such concerns.

This user also had the highest label accuracy on the set of “Difficult" terms which

may hint that active awareness of bias can help combat it.

We observe that human recall is much more consistent across different types of

clinical concepts; this stands in stark contrast to algorithmic methods. For example,

algorithmic accuracy of one existing extraction system is around 48% overall, but

only 24% for procedures [4]. Meanwhile, humans achieve about 70% accuracy on

procedures, compared to approximately 80% overall. This indicates that human errors

don’t follow the same error patterns as algorithms, and therefore are adding valuable

signal.

Users develop intuition of when the recommendations should surface a

correct answer, but label accuracy suffers when that intuition is disrupted.

Here, we investigate whether users recognize when a correct answer is present in the

provided recommendations, and when they need to search further. We break down

percentages by mode and example type in Table 4.1. On “easy" examples (those where

a correct answer was in the recommendations), users in both the Standard mode and

the Weakened mode only searched further 17% of the time and ultimately chose a

recommended label 96% of the time. However, on “difficult" examples, Standard users

searched further 85% of the time and Weakened users 82% of the time. Therefore, we

see that their search patterns are closely aligned, and they generally learn to search

further when necessary. This indicates that users had a strong sense of cases in which

the algorithm isn’t surfacing the correct answer.

However, we observe that performance breaks down if there is a "violation of

intuition", namely users expect a correct label to appear and it isn’t present due to

synthetic removal; again we only removed answers for a random subset of “nontrivial"

examples, where there was no direct match, and a better term could be found by

searching. As evidence, we examine the performance of users in the Weakened mode

on the “weakened" examples, nontrivial examples in which the correct labels were

randomly excluded from the recommendations. On these “weakened" examples, a set
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Mode /
Data Subset

“Easy"
Examples

“Difficult"
Examples

“Weakened"
Examples

Standard 17% 85% 15%
Weakened 17% 82% 73%

Table 4.1: The percentage of times users chose to initiate a search. Across modes,
searches are rarely initiated when the true label is provided in the recommendations
(“Easy"), and are often initiated when the true label isn’t provided (“Difficult"). When
a user expects a label to be provided but it is not (Weakened mode on “Weakened"
examples), users search less (73%) than they did when they didn’t expect the label to
show up (82%).

of examples in which they might have expected the recommendation algorithm to

surface the correct answer, they only conducted a further search 73% of the time, and

as a result, achieved significantly worse total recall (average of 53%) than the other

two modes (76%), as seen in Figure 4-1(a). They searched significantly less here than

on the "difficult" examples (p<0.05, two-sided Mann-Whitney U test). This difference

indicates that users were not solely searching further based on whether they thought

a label was missing, but also based on whether they thought the recommendation

algorithm should have been able to surface the correct label.

Therefore, on the examples where the Weakened users did not find a correct label

in the recommendations, but expected to find one, they were less motivated to search.

In these cases, they tended to accept substandard labels they perhaps wouldn’t have

otherwise. Common failure modes include assuming there must be no matching label

and (i) choosing that there is no label present (e.g., as a user did for Diastolic CHF),

or (ii) settling for a related but suboptimal label (e.g., ultrasonography for echo instead

of searching for echocardiogram). A Weakened user chose that there was no code for

4% of Weakened examples at median, and 6% on average.

This decreased search behavior leads to significantly worse results. A pairwise Mann-

Whitney U test shows that while total recall was not significantly different between

modes for “Easy" or “Difficult" examples, the “Weakened" mode was significantly

worse at the “Weakened" examples than the other two modes (p<0.02 for both); see

Figure 4-1(a).
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Figure 4-2: Flag indicators for suggestion confidence, displayed in the selection panel.
Low-confidence (left) is indicated by an exclamation point on a red background, and
high-confidence (right) is indicated by a star.

4.5 Stage 2: Annotation Suggestions

In this second stage of the user study, we study the effect of presenting a set of

automatically pre-populated annotation suggestions, as described in Figure 3-1, that

users can choose to accept, modify, or reject. Since there are existing systems that

could pre-annotate at least half of the data, it has been suggested that starting from

scratch might be an unnecessarily tedious exercise. However, there are fears users

might lose engagement in the task and as a result, accept annotations with incorrect

spans or incorrect labels, when models are imperfect. As a potential mitigation, we

explore whether informing users that provided labels are high or low-confidence will

make them more attentive when most necessary. An additional potential worry is

a loss of agency; unlike in vanilla classification tasks, the user has to select which

regions of the text to annotate. If the text comes partially pre-annotated, users might

be less likely to take the initiative to annotate further. Both of these concerns could

cause a feedback loop in which future models trained on this data become even more

confident in error modes.

4.5.1 Experimental Design

The same 18 clinicians participated in this stage of the study, and they spent ap-

proximately three hours each on this stage of the study. They were now re-assigned

randomly to one of four modes: the No suggestion mode (3 users), the Standard

suggestion mode (4 users), the Augmented suggested mode (5 users), and the Weakened

suggestion mode (5 users). All modes were provided with the automatic label recom-

mendations from the Standard mode in Stage 1; the back-end search was also updated
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to that same algorithm, since we are no longer directly testing recommendation versus

search.

The Standard suggestion mode displays suggestions for the examples where there

was an exact match between the example text and one of the synonyms in the medical

vocabulary (76% of the annotations in the gold standard). Of these suggestions, all

spans and 85% of the labels are correct. The Augmented mode shows the exact same

suggestions but includes a small flag on the label (see Figure 4-2), indicating whether

the algorithm has high-confidence or low-confidence in the label. Approximately

one-third of the suggested labels are considered low confidence; the high-confidence

labels are 90% correct, and the low-confidence labels are 70% correct. The Weakened

suggestion mode has the same setup as the Standard suggestion mode, but it also

includes an additional set of 21 suggestions over incorrect spans. To mimic real-life

algorithmic errors, these spans were taken from real incorrect span outputs of the

clinical extraction systems cTAKES and MetaMap [15, 236].

Since users already had some exposure to the tool and annotation schema, they

completed just four steps in the tutorial this stage, again receiving feedback iteratively

after each step. The tutorial sentences were designed to contain span and label errors

in the same proportion as the full study, so that users could understand the role of

automated decision aid. As in the previous stage, they again labeled three notes each,

which contained a total of 449 spans in the gold standard.

The evaluation is conducted as in the first stage, using the same metrics and

comparing to the same gold standard. In this case, we also analyze the subsets of anno-

tations across suggestion confidences and provided label and span accuracies. Where

appropriate, we also compare our users’ outcomes in Stage 2 to their corresponding

outcomes in Stage 1, to understand individual shifts in behavior.
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4.5.2 Results

Users were relatively accurate at assessing the correctness of the labels for

pre-populated suggestions. Accuracy differed widely across users, but was

not a function of skill.

When suggestion spans and labels were correct, users with suggestions accepted them

over 99% of the time. The median user without suggestions had a 89% span recall and

86% total recall on this set of annotations, confirming that users without suggestions

do miss some examples. When spans were correct and labels were incorrect, the median

user accepted suggestions 17% of the time without modifications, and there were no

observable difference between error rates between the modes (p=0.72, Kruskal-Wallis

test). Namely, the presence of incorrect spans in Weakened mode did not appear

to induce additional mistrust in the incorrect labels; users in the Weakened mode

accepted incorrect labels at a similar 20% median rate to users in Standard and

Augmented. Further, the presence of the confidence indicators in the Augmented mode

did not make any noticeable impact on user’s rate of modifying incorrectly suggested

labels or their accuracy on the low-confidence subset. This matched their own feedback

that "[the flags] didn’t really affect the likelihood I accepted the suggestion" and that

they do "not pay too much attention to the symbols."

Potentially due to the ease of accepting a pre-annotation in a single click, we

observed a large difference between users in terms of how often they accepted incorrect

label suggestions (a standard deviation of 0.14). While the vast majority of users

accepted between 10 and 20% of incorrect suggestions, one user only accepted 8%,

and another accepted 58%. The user who accepted 8% did not appear any better

at the task; they had below-average total recall for their mode in Stage 1. Similarly,

the user who accepted 58% did not appear less competent at the task; they achieved

above-average accuracy for their mode in Stage 1. This suggests that our domain

experts reacted differently to automation, but this reaction is not directly a function of

skill. From our user survey, we do note that users’ perceptions of annotation accuracy

do not necessarily reflect true underlying accuracy; for example, one user reported that
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they found the pre-annotated labels to be 95% correct, despite their only accepting

around 80%.

Though the majority of user errors were one-off, errors were not randomly dis-

tributed, and they indicated snap judgements based on concept name. For example,

for a patient with a persistent cough, our system provided the incorrect label of

persistence, defined as mental perseverance; this incorrect label was accepted by 10

users. For a patient suffering from apical ballooning, 6 users accepted the suggestion

of balloon dilatation. While by name alone, the concepts sound like plausible labels,

in both cases they were of the incorrect concept category (e.g., balloon dilatation is

categorized as a Procedure instead of a Problem). While this category information

is displayed to users, it seems they were not sufficiently engaged to utilize it. Our

platform further provides a button for surfacing a label’s definition, which was not

taken advantage of by these users for either of these examples.

Users were slightly less accurate at getting rid of incorrect spans than

incorrect labels.

On average, participants in the Weakened mode kept 33% of the 32 suggestions

provided with incorrect spans, though the most conscientious user kept only 16%.

Trust in incorrect spans was strongly correlated with trust in incorrect labels (𝜌=0.70,

Spearman). However, as before, it did not hold any significant correlation with users’

span accuracy in Stage 1 (𝜌=-0.29), indicating that trust may be independent of user’s

competence at the annotation task. For example, the user who only accepted 16%

of incorrect spans had below average accuracy for their mode in Stage 1. Some of

the provided incorrect spans included obviously incorrect selections such as medical

conditions. Exam which spanned two sentences (kept by 2/5 users), or of the

superior segment branch, which contained unnecessary prepositions (kept by 3/5

users). This indicates a decreased engagement. Other incorrect spans indicated

concrete concepts, but were not clinical in nature, e.g., sister, and are therefore

not supposed to be tagged. No users in any other mode chose to annotate any of

extraneous spans mentioned here.
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Stage 1 Nontrivial
Span Recall

Stage 2 Nontrivial
Span Recall

User Survey on the Process of
Adding New Annotations

User A 63% 37%
“I made sure to double check

if there were parts that
were not annotated."

User B 71% 56%
“I reviewed sections just in case
I missed some... but the marked

sections were fairly comprehensive."

User C 68% 58%
“Having pre-suggested parts actually
made it easier to scan the remaining

unmarked parts for words to annotate"

User D 63% 62%
“[Pre-annotations] definitely freed up

mental bandwidth to allow me to
spend more energy on the unmarked text."

Table 4.2: Differences for four representative users between nontrivial span recall on
Stage 1 (where they had no pre-annotations) and Stage 2 (where they did). Nontrivial
span recall calculates the proportion of spans that users took the initiative to annotate
that would not have been pre-annotated by our annotation suggestion algorithm.
While the drop between Stage 1 and Stage 2 recall indicates that users took less
initiative in practice, users believed they were more thorough in their exit surveys.

Users with pre-populated suggestions exercised less agency in creating new

annotations, but they noted the opposite in their exit surveys.

While users with pre-populated suggestions overall had slightly higher total recall

than users without, they initiated the creation of fewer additional annotations. If we

consider the subset of nontrivial annotations—annotations where suggestions were not

provided and are therefore the most important to annotate—users with suggestions

annotated fewer of these spans (median of 58%) than users without suggestions

(median of 74%). Most striking was when we contrasted users to their own nontrivial

recall from Stage 1; as a note, in Stage 1, there was no significant difference between

nontrivial recall between the modes (p>0.4, two-sided Kruskal-Wallis). While Stage 1

did not contain suggestions, for a direct comparison, we restrict to the set of nontrivial

annotations that would not have had suggestions, had we applied the same suggestion

algorithm. Users without suggestions increased on average 4% between the two stages,

indicating Stage 2 may have been slightly easier, but users with suggestions dropped

on average 12%. In an Aligned Rank transform test with factors of (i) stage and (ii)

whether users received pre-annotations, there was a statistically significant effect of
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stage (p<0.005) and of the interaction between stage and mode (p=0.01).

Only a single user had a higher nontrivial span recall in the presence of suggestions.

The difference was most pronounced in compound terms, where users without sugges-

tions had a median of 64% nontrivial span recall on compound terms, and users with

suggestions only had a median of 31%. For example, all users without suggestions

tagged RV thrombus (compared to 46% of users with suggestions) and decompensated

CHF (compared to 50% of users with suggestions).

Once again, this loss of agency was not correlated with users’ prior accuracy and,

qualitatively, users did not recognize it was happening. While a user’s nontrivial

recall results at Stage 1 and Stage 2 were highly correlated (Spearman’s 𝜌 = 0.76,

p<0.001), there was no correlation between their loss in agency (measured as difference

in nontrivial recalls between stages) and their prior performance (Spearman’s 𝜌 = 0.25.

p>0.3). When prompted in their exit surveys, all stated that they believed the pre-

annotations made it easier to tag the nontrivial spans. We display a few representative

responses in Table 4.2, alongside their drop in nontrivial span recall. Even users (e.g.,

User C, User D) who were confident that they had greater bandwidth and performed

better displayed a small drop in performance.

Users were faster on annotations that came with pre-populated suggestions,

but when labels were incorrect, they were slower than the users annotating

from scratch. There was also a correlation between faster speeds and more

errors.

Label time was calculated as the time between highlight and label choice (for annota-

tions without suggestions) and time between a suggestion click and label choice (for

annotations with suggestions). 76% of all annotation spans in the gold standard were

suggested to users as pre-annotations. Of these, 81% had both a correct span and

label. In the cases where both span and label were correct, users in suggestion modes

only needed to verify the label was correct, and they were on average 30% faster

at label selection than users not in suggestion modes (a median of 5 vs 7 seconds).

However, when labels are incorrect, users with suggestions were on average 5 seconds
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slower than users annotating from scratch; users also spent an average of 5 seconds

on suggestions over incorrect spans. On examples without pre-annotations, users

annotate at approximately the same speed as they had on comparative examples in

Stage 1. We find that in our context the efficiency gains are slim in our context and

depend greatly on their underlying accuracy.

While users lauded the efficiency gains, we find that users with very high efficiency

gains tended to be more inaccurate. In practice, some speedy users would quickly

accept pre-annotations in less than a second; video revealed that their primary tactic

was to first quickly deal with pre-annotations, and then go back and scan through

the remaining text. In contrast, the user with the second lowest rate of accepting

erroneous label suggestions was also one of the slowest, taking almost twice as long

as the median. In exit surveys, users believed the pre-annotations were great for

efficiency, noting that they were “much faster,” “more efficient,” and “cut down time

significantly.” Empirically, however, their utility is less clear-cut.

4.6 Discussion

The results of our study suggest implications for the appropriate amount of automa-

tion to include in our and similar platforms. We found that our domain experts

were relatively adept at dealing with incorrect labels: both searching for additional

labels when recommendations failed, and modifying incorrect labels in pre-populated

annotations. This would indicate that there is minimal downside to the inclusion of

label recommendations in the platform UI, regardless of whether it is presented in a

list format, or as a single prediction. In contrast, in Stage 2, users were slightly less

likely to get rid of incorrect spans in pre-populated annotations, even when spans were

clearly incorrect. This would indicate that the set of pre-populated annotations would

need to prioritize high precision (surfaced annotations correspond to true spans) over

high recall (most gold standard annotations are surfaced). Additionally, we found the

presence of pre-populated annotations redirected users’ attention and caused a loss of

agency, and such techniques should be employed with caution.
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Further, our study revealed some characteristics of our domain experts. First,

they did not realize they had ceded agency, and this underscores that they are not

fully cognizant of their interactions with automation. Therefore, their own qualitative

conclusions on how they operate in teams are generally insufficient; this aligns with

recent work from Buçinca and Lin et al. [37]. Second, we found that the negative

impacts of automation were user-specific and correlated across aid modalities. However,

these impacts were independent of a user’s competency at the task.

The optimal decision regarding how to integrate decision support into a system

may depend on the downstream use case. Counter to prior concerns, we found that

decision support increased users’ average recall. Therefore, if the output of a task is

being directly used for decision making, then the full inclusion of decision support

may be useful. However, if the output of a task is to be used for further model

training, there would be a possible fear of creating a feedback loop with pre-populated

annotations, since we found that users are less likely to annotate concepts that the

machine missed. When fed back into models, users’ output may erroneously confirm

the machine’s decision.

The clinical text annotation task involves a rich set of subtasks and decisions that

allowed us to probe questions of trust and agency in expert decision makers. However,

our findings do not necessarily extend to simpler settings. For example, due to our

large potential label space, it was implicitly clear to users that the model is presenting

only a subset of possibilities. In contrast, if a domain expert only has to make a

decision with a binary outcome (e.g., Does a pathology image indicate cancer? ), the

user may develop a different dynamic with decision support, since the problem is

more constrained. That being said, binary problems like image classification often

involve smaller implicit subtasks (e.g., Does this patch of the image display cancer? ).

As automated methods attempt to focus users’ attention on the subtasks they deem

most relevant, our findings on agency may still apply. On the flip side, there are far

more complex forms of clinical decision support (e.g.. AI-assisted documentation)

that require additional study, extending the initial foray of Li et al. [151].

Other limitations include the low-stakes setting of our study task. Since we did
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not deploy in a live setting, and there was no consequence for incorrect actions,

users may not have been as careful as they would have been under greater pressure.

Additionally, we found that presenting model confidence had little-to-no-impact, and

users admitted to not using the confidence flags. Other UI techniques might have

made these confidences more salient to users.

Several techniques could mitigate the shortcomings of human-AI teams from a

system design perspective, both for our task and more broadly. For example, we could

withold pre-annotated suggestions during the initial round of annotation; after, a

second annotator could incorporate any missing spans from pre-annotated suggestions.

This may dampen the effect of the observed loss of agency. We could also experiment

with pre-populated span suggestions without pre-selected labels, which could force

users to remain critically engaged. Another option would be to continually engage

the user with regular feedback; currently, they only receive direct feedback during the

tutorial phase. Possibilities include (i) purposefully planting a fraction of erroneous

recommendations and suggestions and alerting the user to when they’ve accepted one

and (ii) alerting the user when they skip over a span they should have annotated.

Additionally, the amount of training may affect outcomes, and we could investigate

whether more rounds of early tutorial feedback would lead users to better mentally

characterize the shortcomings of the decision support.

Further, we found that automation had widely varying impacts on users and ceded

agency tended to correlate across modalities. One simple option would be to filter

users with high misplaced trust in automation or to predict when user log data indicate

they may be running on autopilot. However, that is not always a realistic solution, and

our work further found that susceptibility was not correlated with competency or skill.

Therefore, another future direction would be to understand users’ susceptibilities by

their early results (e.g., in the tutorial) and then adjust the level of automated decision

aid provided accordingly. This could involve adapting notions of learning to defer

[165, 215, 127] or learning to complement [300] from the pure classification setting to

the label selection setting. Under these paradigms, the decision support itself could

be adjusted to the strengths of users, rather than being optimized in isolation.
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Instead of just attempting to fix the automation-induced noise at the point-

of-annotation, another path would be to design machine learning algorithms that

anticipate and adapt to the noisy data. Natarajan et al. showed that in the presence

of noise, binary machine learning classifiers can still be successfully trained, if the

patterns of noise are well-characterized and below random (e.g., there is an estimate

of what fraction of the time a specific outcome may be incorrect) [186]. In these cases,

models can be trained by re-weighting their objective function by a factor dependent

on the probability of user error. In our case, we would need to adapt such algorithms

to account for probabilities of users accepting incorrect spans or skipping certain

categories of annotations, for example. Given our observed empirical results, we posit

that machine learning methods designed to overcome the pitfalls of human-AI teams

are an important area of future study [218].

4.7 Conclusions

In this chapter, we studied the impact of decision aid on domain experts via empirical

lab studies on clinicians (n=18) over extended periods of use of PRAnCER. More

broadly, our platform enables efficient annotation of text documents and could help

scale data set creation in a domain where annotated data set sizes have been historically

small.

On the whole, we found that our domain experts remained appropriately skeptical

of label recommendations, and they formed an intuition for when further searching was

required. Similarly, they mostly recognized when pre-populated labels were incorrect.

As a result, the introduction of automatic label recommendations is unlikely to lead

to significant bias. Unfortunately, our domain experts do fall susceptible to handing

over agency to algorithms. Without them realizing it, the presence of pre-populated

suggestions leads them to lose critical engagement in the task and add fewer new

annotations than each had previously. Given that these new annotations are the ones

that provide us the most new signal for training models, we would be in danger of

models being hampered in their training process.
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As forms of automation like AI-assisted writing become incorporated into more and

more decision processes, it becomes paramount for us to understand how automation

affects expert decision makers. As we found with varied susceptibility among users,

issues of algorithmic trust and agency extend far past user confidence and expertise

to a more intrinsic behavior. As we do in this work, understanding, characterizing,

and quantifying that behavior in complex, real-world tasks is an important first

step. It informs the design of both user interfaces and machine learning systems

that can optimally combine the strengths of humans and AI and mitigate their joint

shortcomings.

89



90



Chapter 5

Human-AI Framework for Clinical

Timeline Creation

Acknowledgement of Co-authors I would like to acknowledge my undergraduate

mentee and co-first author Jason Zhao, who conducted the software development for

the framework described in this chapter.

5.1 Introduction

In this chapter, I move from token-level annotation to note-level annotation. We now

explore a joint human-AI framework for the annotation of temporal clinical events in

notes (e.g., date of metastatic recurrence), towards the creation of clinical timelines.

The annotation of clinically meaningful events often involves an arduous and expensive

process of manual abstraction by domain experts [12]. This manual chart review

process can be particularly time-consuming when studying chronic diseases (e.g.,

cancer), in which patients have lengthy clinical timelines to sift through and structure

[26]. While understudied, the extraction of temporal elements enables researchers

to ask key questions, such as whether treatments extend life span, and how disease

progression trajectories differ across subpopulations [19].

The field of clinical information extraction aims to circumvent the arduous manual

abstraction process via automatic systems that leverage natural language processing
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(NLP) and more recently, deep learning in particular [42, 287, 217]. While these

systems can improve efficiency, this efficiency often comes at the expense of reliability.

Due to the complexities in healthcare, such models remain imperfect, and their

deployment is therefore subject to skepticism [234]. On the other extreme, relying on

manual effort alone is often not a scalable option for running large real-world evidence

studies.

In high-risk settings such as healthcare, one solution to this trade-off is to comple-

ment machine learning models with expert human aid that can step in when models

fail [113]. In this chapter, we integrate humans into the loop by letting our extraction

model, if needed, iteratively query an expert; this process is shown in Figure 7-1. By

optimizing the queries solicited, we aim to reduce model errors while preserving most

of the time and cost savings that automated NLP systems provide.

In Figure 5-1, we show the outcome of running our system over three patients

who experience metastatic recurrence. The left two plots display two patients’ clinical

timelines; since pathology reports directly indicate a metastatic diagnosis, our system

felt sufficiently confident to directly extract date of metastatic recurrence. The

rightmost plot displays another patient’s timeline where the system first queried a

label to gain confidence.

Our framework for human-guided search helps regulate the efficiency-accuracy

tradeoff for event identification from sequences, and we introduce the metric Model-

derived Query Utility to choose the optimal query. Over a cohort of breast cancer

patients, we empirically show our system’s efficacy on identifying date of (i) metastatic

recurrence and (ii) the start of a therapy regimen, two tasks that are crucial to leverage

oncology real-world evidence.

5.2 Related Work

One classic way of controlling the accuracy-efficiency tradeoff is via rejection learning.

In rejection learning, a system learns a classification model ℎ and a rejection model 𝑟.

The rejection model 𝑟 may decide to either “reject" a data point 𝑥 and incur a cost 𝑐(𝑥)
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Patient 1:
No queries required

Extracted 
Date

“biopsy…liver 
positive for 

malignant cells”

Extracted 
Date

“path…metastatic 
carcinoma”

Patient 2:
No queries required Query

Is labeled
metastatic

Extracted 
Date

Patient 3: 
Before first 
query

Patient 3: 
After first 
query

“lesion…suspicious 
for metastasis”

“likely 
mets…recently 
diagnosed with 
metastatic…”

Figure 5-1: Plots of the model’s cumulative probability over time that a given patient
was metastatic. For patients 1 and 2 on the left, due to the sudden jump in cumulative
probability, the model feels sufficiently confident to directly extract the date without
eliciting any human input. For patient 3, on the right, before any queries are made,
there is more ambiguity as to the date of metastatic recurrence. However, after a
single query at the marked index, the model calculates a new posterior probability
and is now sufficiently confident to extract.

(which can be viewed as asking the human expert to make the prediction), or decide

to predict using ℎ and incur a cost corresponding to misclassification error. Learning

to defer [165, 83, 181] builds on the rejection learning framework by additionally

allowing the system to adapt to different types of experts, where the cost of “rejection"

also depends on the expert prediction 𝑚, i.e., 𝑐(𝑦, 𝑥,𝑚). Unlike learning to defer,

our formulation does not attempt to model different classes of experts, and instead

assumes that experts are oracles for the labels. In contrast to this prior work however,

we extend the notion by considering deferral specifically for just a single label in a

sequence.

While sequences have not been studied in the context of the rejection learning

framework, there have been sequence-based strategies in the active learning setting,

in which the algorithm chooses full sequences to be labeled as additional training

data [245]. Classic approaches include uncertainty-based methods, that measure

average or total label entropy, and disagreement-based methods; these approaches

have been primarily studied over entire sequences, and where the labeling budget

is based on the number of sequences, not factoring in variable time required per
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sequence. Tomanek and Hahn [270] looked at per-instance labeling, instead of full

sequences, for a token-labeling task; their method involved querying any record where

the marginal probability of its likeliest label was under a given threshold. However,

in our settings, labels in a patient timeline are highly correlated, so this solution

may not be optimal. Fang et al. [67] used a reinforcement learning approach for

sequence selection, but assumed a large amount of available labels for validation, often

impractical in healthcare settings. Furthermore, we note the underlying purpose of

selecting labels in active learning is different than in rejection learning. In active

learning, the goal is to find those sequences most informative for training a new model

for a downstream evaluation, which is not necessarily equivalent to identifying outliers

or incorrect sequences. Finally, our objective function is tailored to event identification,

as compared to generic sequences.

Practically, there is great utility in efficient extraction of clinical fields from free-text

notes. Clinical information extraction is an active subfield, mining diverse variables

from comorbidities to treatment exposures to adverse events [287]. Due to the clinical

importance of recognizing metastasis to oncology cohort creation, there have been

multiple studies showing that one can effectively extract metastatic status from a set

of aggregated patient notes [155, 28]. While such studies have been able to accurately

identify metastatic status at a patient-level, they have not focused on the timing of

metastatic recurrence, crucial clinically to assess outcomes using real-world evidence.

As a bridge towards temporal precision, Banerjee et al. [19] worked on identifying

whether metastatic recurrence was present within a given quarter, by aggregating notes

across 3-month time spans. Carrell et al. [42] worked on a broader task to identify

occurrences of any breast cancer recurrence (ipsilateral, regional, or metastatic), but

discussed how their error rates have implications for the potential introduction of

bias. Our second task, the extraction of timing of oral cancer therapy start, has been

explored with both rule-based and ML-forward implementations [285, 3]. However, in

both tasks, no research has studied how to improve extraction by adding a human-in-

the-loop. Here we work towards more-fine grained temporal accuracy and allow users

to set their own tolerance for permissible errors.
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5.3 Methods

In this section, we explain our human-guided search framework, consisting of the

event identification task, our event extraction model, and our algorithm Model-derived

Query Utility for choosing a query for a human-in-the-loop. Our framework iteratively

decides between using the extraction model directly and querying an expert.

5.3.1 Preliminaries

Our dataset is composed of 𝑛 sequences denoted by (𝑋1, · · · , 𝑋𝑛) where each sequence

𝑋𝑖 is a set of a variable number of records 𝑡𝑖: 𝑋𝑖 = (𝑋1
𝑖 , · · · , 𝑋

𝑡𝑖
𝑖 ). We associate with

each record 𝑋𝑗
𝑖 a timestamp which we store in the list 𝑇𝑖, i.e., record 𝑋𝑗

𝑖 occurs at

timetstamp 𝑇𝑖[𝑗]. Finally, denote 𝑦𝑖 to to be the index at which the event of interest

occurs for sequence 𝑖. From this dataset, we construct a set of latent sequence labels

𝑧𝑗𝑖 for 𝑗 ∈ {1, · · · , 𝑡𝑖}, where

𝑧𝑗𝑖 =

⎧⎪⎨⎪⎩0 if 𝑗 < 𝑦𝑖

1 if 𝑗 ≥ 𝑦𝑖

(5.1)

This framework is sufficient for modeling a variety of clinical temporal extraction

tasks. For example, in our first application, 𝑋𝑖 represents the sequence of notes for

patient 𝑖, 𝑦𝑖 represents the index of metastatic recurrence for that patient, 𝑇𝑖[𝑦𝑖]

represents the date of that recurrence, and 𝑧𝑗𝑖 = 0 for the clinical notes before a

patient’s recurrence, and 𝑧𝑗𝑖 = 1 for the clinical notes after.

5.3.2 Event Extraction Model

Given a sequence 𝑋𝑖 = (𝑋1
𝑖 , 𝑋

2
𝑖 , 𝑋

𝑡𝑖
𝑖 ), we would like to extract the event index

𝑦𝑖 ∈ {1, 2, · · · , 𝑡𝑖}. We tackle this task by training a model 𝑞𝜃 to directly fit the

distribution of 𝑦𝑖 given the sequence 𝑋𝑖. In other words, 𝑞𝜃 (𝑦𝑖 = 𝑗|𝑋) is the probability

density function for the model’s belief that the event occurs at index 𝑗. We parameterize
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𝑞𝜃 using an LSTM [111], a Recurrent Neural Network. Our extraction model takes as

input the embeddings for each note, 𝑋𝑖, and passes it through a 1-layer bidirectional

LSTM to obtain the hidden states ℎ𝑖 at every timestep. Finally, the ℎ𝑖 are passed

through a fully-connected layer followed by a softmax to obtain the model probabilities

𝑞𝜃 (𝑦𝑖 = 𝑗|𝑋) at every timestep 𝑖. Further details on embeddings are located in the

experiments.

We then define 𝑝𝜃
(︀
𝑧𝑗𝑖 = 1|𝑋

)︀
to be the cumulative probability function that the

event has occurred by index 𝑗 for sequence 𝑖, formally defined below:

𝑝𝜃
(︀
𝑧𝑗𝑖 = 1|𝑋𝑖

)︀
=

∑︁
0≤𝑟<=𝑗

𝑞𝜃 (𝑦𝑖 = 𝑟|𝑋𝑖) . (5.2)

The extraction model then estimates the event index, which we call 𝑦. We define

𝑦 to be the index at the median of the cumulative event distribution, namely the 𝑗

such that 𝑝𝜃(𝑧
𝑗
𝑖 = 1|𝑋) ≥ 0.5 and 𝑝𝜃(𝑧

𝑗−1
𝑖 = 1|𝑋) < 0.5. Recall that the timestamps

are stored in 𝑇𝑖, so that the estimated event timestamp is 𝑇𝑖[𝑦].

5.3.3 Human-guided extraction

We now introduce a human expert who we assume can accurately label each record

𝑋𝑗
𝑖 with its label 𝑧𝑗𝑖 to reduce ambiguity in our search space; the described process is

illustrated in Figure 7-1.

In the case with a single event of interest, the feedback received from the expert

can be sufficiently described by two variables: let 𝑎 be the largest labeled index with a

0 label, and let 𝑏 be the smallest labeled index with a 1 label. The index 𝑎 is initialized

at 0, and 𝑏 is initialized at 𝑡𝑖 + 1. We can now update our cumulative probability for

the event occurrence in terms of this additional input, namely:

𝑝𝜃
(︀
𝑧𝑗𝑖 = 1|𝑋𝑖, 𝑎, 𝑏

)︀
=

∑︀
𝑎≤𝑟≤𝑗 𝑞𝜃(𝑦𝑖 = 𝑟|𝑋)∑︀
𝑎≤𝑟≤𝑏 𝑞𝜃(𝑦𝑖 = 𝑟|𝑋)

. (5.3)

We define 𝑦𝑖(𝑎, 𝑏) to be the estimated index of the occurrence given the obtained

bounds 𝑎 and 𝑏. The objective of our system is to now iteratively select the query
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whose labeling would have the greatest effect on shifting this estimate, up until the

estimate is sufficiently stable. If a note 𝑗 is labeled, the bounds will update to some

(𝑎
′
, 𝑏

′
) —either (𝑎, 𝑗) or (𝑗, 𝑏) depending on the label of 𝑗—which has the potential

to change our estimate from Equation 5.3. Our system chooses the index, which if

labeled, would shift the estimate date by the largest number of days. We formalize

this notion as Model-derived Query Utility E[∆𝑗
𝑖 ], which is defined in terms of the

current estimate 𝑦𝑖(𝑎, 𝑏):

E[∆𝑗
𝑖 ] = 𝑝𝜃

(︀
𝑧𝑗𝑖 = 0|𝑋𝑖, 𝑎, 𝑏

)︀
· |𝑇𝑖 [𝑦𝑖(𝑎, 𝑏)]− 𝑇𝑖 [𝑦𝑖(𝑗, 𝑏)]|

+ 𝑝𝜃
(︀
𝑧𝑗𝑖 = 1|𝑋𝑖, 𝑎, 𝑏

)︀
· |𝑇𝑖 [𝑦𝑖(𝑎, 𝑏)]− 𝑇𝑖 [𝑦𝑖(𝑎, 𝑗)]| (5.4)

Given this metric, at each iteration, we select:

argmax
𝑗∈[𝑎,𝑏]

E[∆𝑗
𝑖 ] (5.5)

label the record at index 𝑗, and update [𝑎, 𝑏] to [𝑎
′
, 𝑏

′
] accordingly. We continue

iteratively until E[∆𝑗
𝑖 ] < 𝐿 for a hyperparameter 𝐿 that controls the accuracy-efficiency

tradeoff. We note that if E[∆𝑗
𝑖 ] < 𝐿 at the first iteration, no queries are conducted at

all.

We prove in Appendix B.2 that in a zero-information scenario with a uniform

distribution, this formulation collapses down to binary search, which has optimal time

complexity for search. This is a greedy approach, but we also devised a reinforcement

learning approach for learning a querying strategy, which we compare to in Section

5.5 and describe in Appendix B.3.

5.4 Data

5.4.1 Cohort

We considered a retrospective cohort of breast cancer patients who presented to

Memorial Sloan Kettering Cancer Center. All patient records were de-identified of
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PHI (e.g., names, dates), both within structured fields and unstructured clinical notes.

This research was reviewed and determined to be IRB-exempt.

Over this cohort of breast cancer patients, we evaluate our system on two clinically

important extraction tasks, each described in further detail below. All variables were

extracted from notes by non-clinician abstractors who specialized in breast cancer

clinical data collection. Quality control of labeled variables was ensured via scheduled

auditing reports by an overseeing management team.

5.4.2 Metastatic Recurrence

Our first task is identification of the date of metastatic recurrence, defined as spread

of the disease to distant organs or occurrence of unresectable locally advanced disease.

The date of metastatic recurrence was abstracted as the date of pathologic confirmation,

if available. When an initial metastatic biopsy was not performed, the date was

extracted based on radiologic recurrence instead.

Existing literature has shown that simply identifying whether a patient has expe-

rienced a metastatic recurrence (without time localization) is relatively solvable for

machine learning classifiers [155, 28]. Therefore, for our training and evaluation, we

restrict our cohort to only those patients who experienced metastatic recurrence.

In addition to a cohort of 476 patients where we have exact extracted date of

metastasis, we additionally have a group of 379 patients with labels with less temporal

specificity; the date of metastasis is approximated as the date of first line metastatic

therapy. While not used for evaluation, we use this approximate cohort to train the

extraction model. A consort diagram detailing the cohort creation process is available

in Appendix B.1.

5.4.3 Therapy Start

The second evaluation task we consider is date of therapy start. In particular, we

evaluate on three drugs taken orally: tamoxifen, letrozole, and palbociclib. Due to

their method of administration, such drugs appear less consistently in structured data
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(e.g., compared to intravenous chemotherapy), and therapy regimens may be shifted

from the original prescription time due to delays in insurance or pharmacy pickup.

For patients in our breast cohort, abstractors structured all drugs (oral and

intravenous) taken for their breast cancer treatment, including those drugs prescribed

for the patient’s course at another institution. Therefore, we restrict our cohort for

this task accordingly to those patient-drug pairs which are feasibly recoverable, given

that our data set does not include scanned records from outside practices and all dates

are de-identified within the notes themselves.

In our training cohort, we exclude examples in which the drug administration

preceded the first record at the institution or the drug was not mentioned in any

notes within one month of the noted start date. For our evaluation cohort, we further

excluded examples in which the drug was not mentioned anywhere on the abstracted

start date or in the two weeks following, and where there was no follow-up within 2

months; the purpose was to exclude patients who come in only for a second opinion

or primarily for surgery.

The literature has shown high accuracy at the binary task of determining whether

a patient has taken a certain drug [3]. Therefore, for this task, we assume we are given

a patient and a drug they took, and are asked to return the initial date of therapy

start. Training was conducted over 8,843 patient-drug pairs, validation over 1890,

and evaluation over 508 patient-drug pairs. Training and validation occurred over all

drugs, whereas evaluation took place over just the three aforementioned oral drugs. A

full consort diagram is present in Appendix B.1.

5.5 Experiments

In this section, we quantify the efficacy of our human-guided extraction framework on

real-world extraction tasks. Label queries were solicited synthetically from “experts",

i.e., we make the framework assumption that domain experts can accurately conduct

the extraction task and can return the true 𝑧𝑗𝑖 given 𝑋𝑗
𝑖 .
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5.5.1 Comparisons

First, we compare our human-guided extraction framework to model-only and human-

only baselines. Additionally, within our framework, we consider other objective

functions for selecting a query in addition to the Model-derived Query Utility method

described in 3.3. To our knowledge, there is not previous work that has tackled this

human-assisted sequential formulation, so besides the deferral of whole sequences,

these objectives are also novel. Each is described below:

• In Extraction Model Only, we deploy the extraction model with no human input

and estimate 𝑦𝑖 directly.

• In Vanilla Binary Search, we do not use the extraction model and estimate how

long it would take a human using binary search to pinpoint the timing of the

clinical event.

• In Whole Sequence Deferral, we choose the 𝑃% of notes with highest label

entropy [245] to undergo a full labeling (via binary search). As in the previous

example 𝑃 is tested over a variety of hyperparameter choices.

• With Policy Model, we follow the framework from Fang et al. [67]; we devise

our own parametrization and define the reward for a given query as the number

of days closer the estimate is after a query. We vary hyperparameter 𝐶, the

cost for querying an expert which is reflected in the reward function. We define

a policy model whose action space consists of querying for a label or directly

predicting. Full details of our implementation of this method can be found in

Appendix B.3.

• We additionally devised a new query method Model-Augmented Binary Search.

In it, the domain expert is iteratively queried at the first record 𝑗 for which the

cumulative probability of the event occurrence 𝑝𝜃(𝑧
𝑗
𝑖 ) is at least 0.5. The model

can terminate its search early if the left and right bounds for the timing of the

event drops below 𝐷 days, where 𝐷 is tuned as a hyperparameter.
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5.5.2 Metastatic Recurrence

Task Setup

Next, we evaluated our system on the metastasis extraction task. We first trained our

extraction model on a dataset of 693 patients, 379 with approximate labels of metastasis

(based on date of first metastatic therapy), and 323 with gold extracted dates. The

extraction model was first pre-trained on the gold patients, and then run on the full

training cohort. 50 additional gold labels were reserved for validation of the extraction

network, and 103 were used for testing the final system. For the reinforcement

learning comparison, we use 192 of the patients allocated for training/validation of

the extraction network for training and validation of the policy network instead.

Since documentation of some patients’ metastasis occurred outside this cancer

center, we conducted evaluation based on a shifted metastasis date—namely, the first

note in our available records in which the patient was confirmed metastatic, and the

closest possible we could get on our data set, given that dates in text have been

de-identified. For this task, we considered notes across clinical oncology, pathology,

and radiology. In our test set, patients had a median of 80 notes each.

Implementation Details

First, each record was encoded in a bag-of-words (BOW) fashion using n-grams

(1 ≤ 𝑛 ≤ 3) that occurred in at least 2% of notes. To generate a lower-dimensional

embedding, we trained a LASSO regression to predict the latent 𝑧 labels from individual

notes, and then included only the 238 features (8% of the original total) with a nonzero

weight in the LASSO regression in our final BOW embedding. These features included

“mets", “to bone", and (stage) “IV". We note that in our preliminary experiments,

we found that these BOW embeddings outperformed more complex note embeddings,

generated via word2vec or convolutional neural networks.

We use these reduced BOW embeddings per note as input to our extraction model

𝑞𝜃, in which the output dimension of the LSTM is size 64. We train our network

for 20 epochs using a batch size of 8. We use the Adam optimizer [130] with initial
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Figure 5-2: The above plot visualizes the trade-off between the average number of
queries per patient, and the percentage of patients whose estimated date of metastatic
recurrence fell within one month of the first metastatic note. At the bottom left, one
can see the accuracy if the extraction model was used alone, and on the top right, the
number of queries necessary if binary search was used to pinpoint each variable. We
can observe that employment of Model-derived Query Utility provides the optimal
trade-off, compared to the other methods.

learning rate 0.01 and train using 𝐿2 regularization with a coefficient of 0.001. These

hyperparameters were selected using the best-performing model on the validation set.

Results

The extraction model alone pinpoints the correct record indicating metastasis within

2 weeks 73% of the time, within a month 84% of the time, and within two months

88% of the time. If we examine the errors, they often arise when there is confusion in

the original diagnosis, e.g., a lung or breast metastasis that may be a second primary,

or from conflicting information in the original note, e.g., due to copy-forwarding. An

example of the latter can be seen in Figure 5-1, where a note said both that the patient

had “likely metastasis" and was “newly diagnosed metastatic", conflicting signals that

a human is better suited at parsing. A fully manual binary search approach requires

an average of 6.8 queries per patient.

Results on the metastasis task after adding a human-in-the-loop are in Figure 5-2;

for methods with hyperparameters that tune the efficiency-accuracy tradeoff, outcomes

are displayed over a variety of hyperparameters. The ideal case is to be in the top
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Figure 5-3: The left plot shows the distribution of number of queries solicited under
the Model-derived Query Utility algorithm at L=1, in which the correct date was
pinpointed within a month 98% of the time; 57% of patients required no queries at
all. The right plot shows the distribution of initial errors of the extraction model,
split into (i) the patients whose dates were directly extracted and (ii) the patients for
whom queries were requested. We note that there were minimal errors on the set not
queried.

left corner (full accuracy with no queries required). We can see in the plot that the

Model-derived Query Utility method is Pareto optimal on this dataset. Compared to

the other methods, approximately one fewer query is needed per patient on average to

achieve the same accuracy.

The left of Figure 5-3a) displays the distribution of required queries for the Model-

derived Query Utility method, with the hyperparameter 𝐿 = 1. Under this setting, 98%

of metastases are correctly localized within a month and 99% are correctly localized

within 2 months. For approximately 60% of patients, no queries are required at all,

and for approximately another 20% of patients, only a single query is needed. On the

right in Figure 5-3b), we can see the distribution of errors of the estimates 𝑦 from

the initial extraction model, before any querying. We split our distribution into the

60% of patients that were directly extracted and the 40% of patients that required

further querying. For the directly extracted patients, we notice that a large majority

have very close initial estimates; this is a desirable property, because our model can in

fact achieve good performance on these patients without any queries. On the other

hand, for patients which Model-derived Query Utility decided to undergo at least a
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single round of human-guided querying, initial predictions are far more erroneous,

sometimes having over a 100 day difference, validating the importance of having a

human-in-the-loop.

We examine cases in which our method required no queries while the comparison

baselines required 3 to 4 queries. In one such example, there was large spacing between

the radiologic evidence plus pathologic confirmation, and oncologist follow-up. The

extraction model waited until the oncologist follow-up to become fully confident. The

Model-derived Query Utility model was sufficiently confident that querying in this case

was unnecessary, but due to the larger time gap, the other methods queried regardless.

5.5.3 Therapy Start

Task Setup

We first trained the extraction model on the 8,843 patient-drug pairs from breast

cancer patients and validated on 1,890. For the RL policy model, we reduced the train

and validation set size for the extraction model by 3022 and 483 pairs respectively

to use in training and validating the policy network instead. The final system was

tested on the 508 pairs in the evaluation set. Since a patient could take multiple drugs

and therefore be in several pairs, train/validation/test sets were created to ensure no

patient overlap between sets.

For this task, we only considered notes from clinical oncology; since we restrict to

notes mentioning the drug, the patients in our evaluation cohort had only a median of

14 notes each. Evaluation is conducted on the basis of the ground truth abstracted

date, even if it does not correspond to a note.

Implementation Details

Due to the large signal-to-noise ratio in records, we preprocess records based on

whether they contain a mention of the drug; a mention of a drug is a string match of

the brand name, generic name, or a common abbreviation (e.g., “palbo" for palbociclib).

We tokenize into sentences and remove all sentences that do not mention the drug;
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Figure 5-4: Results for the medication extraction task. The plot above shows the
trade-off between the average number of queries per patient, and the percentage of
patients that fall within one month of the gold standard therapy start dates. Model-
augmented binary search and Model-derived Query Utility perform comparably and
provide the most consistent performance across hyperparameter choices.

notes with no mention of the drug were removed. Moreover, each mention of the target

drug was replaced by a universal CURR_DRUG_TOKEN, and mentions of other common

breast cancer medications were replaced by a universal OTHER_DRUG_TOKEN to allow

for generalizability of features across drugs.

Then, similar to the previous task, each preprocessed record was encoded in a bag-

of-words (BOW) fashion using n-grams (1 ≤ 𝑛 ≤ 3), and thresholded for a vocabulary

size of 650. Unlike the previous task, we omit the use of LASSO regression to generate

a lower-dimensional embedding, based on results of initial experimentation.

Analogous to the previous task, we parametrize 𝑞𝜃 using an identical architecture,

a bidirectional LSTM with output dimension 64, followed by a fully-connected layer.

We train our model for 5 epochs using the Adam optimizer and an initial learning rate

of 1e-3. We train using a batch size of 8, and we select the best model using early

stoppage by taking the best-performing model on the validation set.

Results

The extraction model alone gets the correct date within one month 74% of the time

and within two months 90% of the time. If we examine where errors are made,

105



ambiguity in the underlying extraction model often arises from conflicting reports

between prescriber’s plans and patients’ actions. For example, a note may indicate that

the patient is “starting the drug" whereas the next note includes that the patient has

“refused to switch treatment." In examining these cases, we do note poorer calibration

of our extraction model, where the model tends to be overconfident; in the previous

example, the cumulative probability was high once the doctor stated the patient’s

regimen had started, despite the downstream later evidence they had not yet begun.

We also ran a binary search baseline with no model input, which required an average

of 4.4 steps to finish at completion.

Results factoring in human input for start of oral therapy extraction are displayed

in Figure 5-4. On this dataset, Whole Sequence Deferral based on label entropy

performs by far the worst of all the methods here, nearing random performance. The

RL policy model does relatively well at selection of the highest yield queries, but

performance quickly tapers off. We find that our cumulative probability model-based

approaches, Model-derived Query Utility and Model-augmented Binary Search, strongly

outperformed other baselines and performed equivalently to one another. For example,

we can achieve 90% accuracy within a month (a 60% error reduction) with only 30%

of the queries a full search would require.

5.6 Discussion

Our results show that a small amount of human oversight is often sufficient to increase

the reliability of one’s model outputs, validating our human-guided framework for

event extraction. Using the Model-derived Query Utility method, with fewer than an

average of a single query per patient, dates of metastatic recurrence were correctly

recovered within 2 months for 98% of patients in the test set, compared to 88% with

the extraction model alone. This new accuracy is sufficiently high enough for most

clinical research, while the initial model accuracy alone may have incurred worries

about potential bias and noise trickling into the downstream applications. Moreover,

this approach only requires 13% of the annotation effort that a binary search approach
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would have required. This indicates that there is great promise in using a joint

extraction process with Model-derived Query Utility to manage the trade-off between

effort and accuracy.

Compared to metastasis, the wins are less stark for extraction of medication

therapy date. We partially attribute this to our pre-processing, which led to a shorter

timeline length. In our pre-processing, we had already filtered out any notes that do

not directly mention the drug, since (i) such notes are unlikely to contain the start

date, and (ii) they would violate the assumption that a domain expert could tell the

status of the drug regimen based on the note alone. However, such pre-filtering is not

necessarily typical in clinical abstraction settings, so true time savings over a manual

chart review may be larger than our results may indicate. We found that a further

detriment to the medication extraction model was a more miscalibrated extraction

model than the one for metastasis, in which the output probabilities did not fully

reflect the true probability of misclassification error. This skewed the query utility

downwards due to model overconfidence. Therefore, recalibration of extraction models

may be a useful intermediate step, using existing off-the-shelf techniques [97].

Future Work Our existing framework can directly extend to jointly extract multiple

events in a clinical timeline, assuming their relative ordering is known. For example,

one may want to track monotonic disease staging across time, e.g., when cancer

progresses from Stage 𝑛 to 𝑛+ 1. 𝑞𝜃 would transition to a multivariate model, and

E[∆𝑗
𝑖 ] could be redefined as the sum of the expected date shifts for each new stage.

Evaluation on such a dataset remains a direction for future study.

Another direction for future work is to increase the granularity of a note presented

to the human labeler, by showing or highlighting just a specific subportion of a note.

Due to practices like copy-forwarding, notes can become bloated; clinical oncology

notes contain a median of over five hundred tokens in our dataset. Therefore, there is

utility not just in localizing notes temporally, but also indicating which portion of the

note to focus on. A model could learn to imitate what experts looked at in practice or

learn to highlight in a fully unsupervised fashion. Other methods like summarization
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or presentation of a few salient points are also ripe for future study.

Finally, this chapter currently does not make use of structured data in the EHR, but

an interesting direction for further work would be to learn weak signals automatically

(e.g., once a patient has a certain ICD code, they almost certainly are metastatic).

Limitations As is always the case, we made modeling assumptions that while

generally reasonable, may be simplifications of the messiness of real world clinical data.

For example, our approach of labeling 𝑧𝑗𝑖 hinges on disease stage being monotonically

increasing; while metastatic breast cancer is uncurable, there are other diseases one

might want to label with non-monotonic disease staging. Additionally, there are many

events like cancer progression that can occur at multiple points in a patient’s timeline,

for which the modeling assumptions do not hold. In the following chapter, we suggest

a new method that fills this gap for disease progression.

Additionally, we assumed that at any given note, it would be possible to tell

whether or not an event of interest had already occurred. This is often a sound

conclusion, since oncology notes often contain a summary of the patient’s disease and

treatment course thus far, due to copy-forwarding and note bloat. In our drug start

date experiment, we only included those notes that specifically mention the drug, to

ensure this assumption upheld. However, that assumption may not necessarily hold

true across clinical specialties or note writing styles.

Another limitation is that our evaluation was run as a simulation of human-in-the-

loop interaction, but not as an actual user study. A real user study would allow us to

quantify the speed and the workflow of a labeler before and after use of our system.

Further, a user study may reveal real-world preferences that may inform tweaks to

the reward functions in our system. As a potential example, while manual chart

review often involves jumping through a patient’s timeline, it may be unnecessarily

cognitively complex in this setting. Instead, it may be useful to incur a penalty if

notes queried for labels are out-of-order.

Here we also presume the extraction of a single event type at a time. In reality,

styles and schemas differ, and important future work involves jointly optimizing
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for different events simultaneously—both mathematically and in terms of human

interaction. Further, this chapter relied on a fair amount of labeled data to kickstart

the joint human-AI annotation, and as the number of events increase, this may not

remain realistic. In the following chapter, we explore ways to make an initial model

more label-efficient.

5.7 Conclusions

We have introduced a framework for a human-in-the-loop system that regulates the

efficiency-accuracy trade-off for event identification in clinical timelines. We have

contributed a Model-derived Query Utility metric for query selection that consistently

performs as well or better than other metrics across hyperparameter settings on two

clinical event identification tasks: (i) metastatic recurrence and (ii) the start of an oral

therapy regimen, two tasks that are important to oncological research. Further, we are

the first to show that rejection learning can be used effectively on temporal, sequential

data, which saves valuable domain expert annotation time in the clinical setting. Our

framework can help enable institutions to leverage the real-world evidence in their

unstructured EHR notes at scale, enabling cohort creation and retrospective clinical

studies that would may otherwise have been prohibitively tedious or expensive to

conduct.
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Chapter 6

Self-supervision for Longitudinal

Clinical Text

Acknowledgement of Co-authors I would like to acknowledge my co-first author,

Hunter Lang, who provided the theoretical grounding (not fully included in this thesis)

for the self-supervised objective described in this chapter. Hunter was additionally

heavily involved in the experimental design of both the synthetic and real-world

experiments.

6.1 Introduction

Typically, limited labeled data is available for downstream clinical information extrac-

tion tasks of interest, and labels can be prohibitively expensive to obtain [29, 311].

Fortunately, given the large amount of unlabeled data, self-supervision is a promising

avenue. In self-supervision, models are first pre-trained to optimize an objective over

unlabeled data, with the goal of learning representations that capture important

semantic structure about the input data modality. For example, in masked language

modeling for text, the model is trained to predict the identity of randomly masked

tokens. Performing well at this objective should require a representation of sentence

syntax and semantics. Once pre-trained, self-supervised representations can be used

for downstream supervised tasks.
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However, despite the success of self-supervision across domains, the development

of new self-supervised objectives has been a largely heuristic endeavor. Why does pre-

training improve performance on downstream tasks? Whether this happens depends on

both the self-supervised objective and the downstream task itself. But the assumptions

linking the self-supervised objective to the downstream tasks of interest are rarely, if

ever, made explicit.

In this chapter, we design a self-supervised objective with a particular class of

data distributions and downstream tasks in mind. We aim to make explicit the type

of distributions and downstream tasks on which we expect this method to work. We

are interested primarily in the types of time-series that arise in longitudinal health

data for patients, particularly those with chronic conditions, e.g., cancer, autoimmune

disorders, and neurodegenerative diseases. These time-series include long sequences

of clinical notes, insurance claims data, biomarker measurements, or combinations

thereof. A key differentiating feature of these data is that a given trajectory can change

quickly. For example, a patient may develop a new symptom between subsequent

healthcare visits, or a certain biomarker value (e.g., blood pressure) may dramatically

increase.

Additionally, these changes largely tend to be irreversible with respect to time. For

example, once the word “metastasis” appears in a clinical note, nearly all subsequent

notes tend to comment on the state of that metastasis (so the word “metastasis”

appears in those notes as well). To train a good representation for certain downstream

problems (e.g., “what is the patient’s current disease state?”), the self-supervised

objective should attend to these changes, rather than suppress them.

These properties make such data distributions unsuitable for several existing self-

supervised objectives. For example, Franceschi et al. [75] train a model so that the

representation of each time segment is more similar to those of its subsegments than

the representation of a randomly chosen segment from another trajectory. Similar

techniques have been used to learn image representations from video: two subsequent

video frames are likely to contain the same objects [175, 92]. These approaches are all

similar to the idea of slow feature analysis [302] for extracting representations of an
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+ Model output: wrong

Sample random pair of windows
(window1, window2).1 Flip a coin to decide which way to 

order the windows (right or wrong).2 Train the model to detect when windows 
are given in the correct order.3

Figure 6-1: Depiction of the data-generation and learning process for order-contrastive
pre-training. For each trajectory, a pair of consecutive windows is sampled uniformly
at random, flipped with probability 0.5, and presented to the model. The model is
trained to predict whether the presented pair of windows is in the correct (+1) or
incorrect (−1) order.

input signal that change slowly over time. Representation learning techniques based

on the ideas of slow feature analysis are appropriate for some downstream tasks and

time-series data types, such as the ones studied in the works above, but not, we argue,

for data where the latent variable of interest (such as disease state) can have large

changes between subsequent time steps (e.g., between visits to a medical care center).

Motivated by the example of chronic diseases in healthcare, we focus on the setting

where time-irreversible features are highly useful for downstream classification, and

where these features may exhibit large changes between subsequent time steps.

In this chapter, we introduce a self-supervised objective called order-contrastive

pre-training (OCP). For each trajectory in the input data, we sample random pairs of

time segments, switch the order for half of them, and train a model to predict whether

a given pair is in the correct order (positives) or in the incorrect order (negatives).

This procedure is shown in Figure 6-1. OCP is very similar to an existing technique

known as permutation-contrastive learning, or PCL [116]. PCL was also designed

to take advantage of temporal dependence between features of the input signal to

learn useful representations. The key difference between these two objectives is in the

sampling of the negatives. Where the negatives in OCP are incorrectly-ordered window

pairs, the negatives in PCL are random window pairs from the same trajectory, and

could be in the correct order. In their simplest forms, the positive samples for the two

methods are identical: pairs of consecutive windows in the correct order.

Intuitively, the same time-irreversible features that are useful for the OCP and

PCL objectives should also be useful for downstream prediction tasks. To formalize
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and quantify this, we study a class of data distributions motivated by the preceding

discussion. When the representation belongs to a simple hypothesis class (effectively,

when the representation is a feature selector), we prove a finite-sample bound on the

downstream error of a representation learned using OCP. Although this setting is

much simpler than those that appear in similar work (it involves linear, rather than

nonlinear, representations of the input data), we show that this model still admits

interesting behavior. In particular, we give an example of a data distribution in this

setup where OCP and PCL provably learn different representations. Additionally, this

model indicates that even when two methods have the same performance with infinite

unlabeled data, there is an unlabeled-sample-complexity benefit to using a “clean”

distribution of negatives, which matches well with prior work on other contrastive

learning algorithms [52].

We supplement this motivating theoretical study with experiments on real-world

time-series data. Our results indicate that for the types of data and tasks discussed

above, both OCP and PCL representations can enjoy better downstream prediction

performance than those trained using existing self-supervised baselines. Moreover,

complementing our theoretical results, we show a real-world scenario where OCP

outperforms PCL in the low labeled-data regime despite the seemingly minor difference

between the two objectives. Given that OCP and PCL only differ slightly in their

negative sampling, these results give further theoretical and empirical evidence for the

importance of the negative sampling details in contrastive learning, complementing

several recent works [52, 224, 158].

6.2 Related work

Order pre-training. Others have found order-based self-supervision useful for

more complex time-series data, but without theoretical study. For example, learning

the order of frames within a video yields representations useful for downstream

activity classification [70, 174, 145, 291]. Most similar to our work, Hyvärinen and

Morioka [116] introduced permutation-contrastive learning (PCL) and proved nonlinear
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identifiability for representations learned using PCL in an ICA setting. That is, they

gave distributional conditions where PCL provably recovers the “correct” nonlinear

representation of the input given infinite unlabeled data. Our theoretical and empirical

results indicate that there can be nontrivial differences between OCP and PCL’s

downstream performance. Deeper understanding of what data distributions and

downstream tasks are “right” for PCL versus OCP (and for other contrastive sampling

methods) is an interesting direction for future theoretical study.

Pre-training for medical time-series. Several other pre-training objectives have

been explored on clinical time-series data. A contrastive learning setup similar to our

patient-contrastive baseline has shown promising results on electrocardiograph signals

[63, 131]. Banville et al. [22] studied a contrastive objective for electroencephalography

signals, in which windows of a signal are judged to be similar if they occur within

a certain time gap, and dissimilar if they are far away in time. Intuitively, this

objective is well-suited to data where the true representation “changes slowly” with

time, as with Franceschi et al. [75] (discussed in Section 6.1). Other objectives include

auto-encoding [74] and masked prediction over text and tabular data, to mixed results

[259, 115, 317, 168]. Multi-task pre-training supplies improvements, but unlike our

work, it relies on additional labeled data from closely-related downstream tasks [168].

Self-supervision theory. Like our work, Saunshi et al. [235], Liu et al. [158] and

Tosh et al. [271, 272] give downstream finite-sample error bounds for representations

learned using particular contrastive learning objectives. Our motivating theoretical

setting and proof techniques are simpler than the ones considered in these works, but

we show that our setup in Section 6.4 is (i) complex enough to allow for some of the

same nontrivial behavior observed by contrastive methods in practice (Sections 6.4.1,

6.5.1) and (ii) it has some practical applications (Section 6.5.2).

6.3 Order-pretraining algorithm

We suppose each data point 𝑋 is a time series, 𝑋 = (𝑋1, . . . , 𝑋𝜏 ), where 𝜏 is the

number of sample points and may vary with 𝑋. We also suppose the samples take
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values in some common set 𝒳 . Let a window 𝑤 be an element of {1, . . . , 𝜏}, and let

𝑋𝑤 be the corresponding element of 𝑋.1

Given a trajectory 𝑋, we use the following generative process to sample a data

point (𝑍, 𝑌 ) for our contrastive task. First, 𝑌 is chosen uniformly at random from

{−1, 1}. Next, random windows 𝑊 and 𝑊 ′ are chosen (in a manner explained below).

The segments 𝑋𝑊 and 𝑋𝑊 ′ corresponding to windows 𝑊,𝑊 ′ are combined into a

tuple 𝑍. The pair (𝑍, 𝑌 ) is then a sample for the contrastive task. A model ℎ, given

by a composition of a classifier 𝑐 ∈ 𝒞 and a representation 𝑔 ∈ 𝒢, is trained to predict

𝑌 from 𝑍:

minimize
ℎ=(𝑐,𝑔)

𝑅𝑜𝑟𝑑(ℎ) := E(𝑍,𝑌 )[ℎ(𝑍) ̸= 𝑌 ] (6.1)

Here ℎ(𝑍) = ℎ(𝑋𝑊 , 𝑋𝑊 ′
) = 𝑐(𝑔(𝑋𝑊 ), 𝑔(𝑋𝑊 ′

)). That is, ℎ first computes the

representation 𝑔 for each window, then uses a classifier 𝑐 to predict whether the tuple

𝑍 is in the correct order. The representation 𝑔 can then be re-used on a downstream

task. The remaining design choice is to specify the process for sampling windows.

Order-contrastive pre-training. A simple choice for sampling random windows

𝑊 , 𝑊 ′ is to sample a random pair (𝑊,𝑊 + 1) in the correct order when 𝑌 = 1, and

(𝑊 +1,𝑊 ) in the incorrect order when 𝑌 = −1. We refer to the optimization problem

(6.1) with this choice of sampling as order-contrastive pre-training (OCP). This can

easily be generalized to non-consecutive window pairs. The pretraining task (6.1) is

thus to contrast windows in the correct order with windows in the incorrect order.

Permutation-contrastive learning. Another simple choice is to again sample a

pair (𝑊,𝑊 + 1) in the correct order when 𝑌 = 1, but sample a random pair when

𝑌 = −1. This is the data generation process for permutation-contrastive learning

[116]. Note that the only differences between OCP and PCL are that in PCL, (i)

the negative samples (𝑌 = −1) need not be consecutive, and (ii) some are in the

correct order. The distributions of positive samples are identical. We refer to the

1For simplicity, we only consider windows of size 1. Our results straightforwardly generalize
to windows of arbitrary size ℓ, where 𝑤 = (𝑤1, . . . , 𝑤ℓ) is a subinterval of {1, . . . , 𝜏} and 𝑋𝑤 =
(𝑋𝑤1 , . . . , 𝑋𝑤ℓ).
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procedure (6.1) with this sampling as permutation-contrastive learning (PCL). This

exactly matches the contrastive sample distribution in Hyvärinen and Morioka [116,

equations (10)-(11)]. Here, the pretraining task is to contrast consecutive windows in

the correct order versus random window pairs.

Comparison. These two sampling methods seem very similar—they only differ

slightly in the distribution of negatives (i.e., conditioned on 𝑌 = −1). However, we

show theoretically and empirically in the following sections that they can learn very

different representations when used in (6.1), and they can have different unlabeled

sample complexities even if they eventually find the same representation. This gives

further evidence of the importance of negative sampling for contrastive learning

methods (see, e.g., Chuang et al. [52]). We give a finite-sample bound for the

downstream classification performance of a representation learned using OCP in a

simple setup motivated by time series data and predictive tasks in healthcare.

6.4 Finite-sample guarantee for time-irreversible fea-

tures

In this section, we study a class of distributions motivated by applications to time-

series data in healthcare. We assume for simplicity that each 𝑋 𝑡 ∈ 𝒳 = {0, 1}𝑑. We

identify a set of four assumptions for which we can prove a finite sample guarantee for

the set of feature selector representations 𝒢. Here we use ℱ to refer to the downstream

hypothesis class, and we overload 𝑌 to refer to the downstream label of interest.

Assumption 1. There exists a set 𝑆 of time-irreversible features. Formally, ∀𝑖 ∈ 𝑆,∀𝑡,

P[𝑋 𝑡
𝑖 = 1, 𝑋 𝑡+1

𝑖 = 0] = 0.

Assumption 2. When the features in 𝑆 are not changing, the other features are

time-reversible. More formally, for all 𝑡, and all 𝑣, 𝑣′ ∈ {0, 1}𝑑, if 𝑣𝑆 = 𝑣′𝑆, P[𝑋 𝑡 =

𝑣,𝑋 𝑡+1 = 𝑣′] = P[𝑋 𝑡 = 𝑣′, 𝑋 𝑡+1 = 𝑣].
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Assumption 3. There are no “redundant” features in 𝑆. For all 𝑈 such that 𝑆 ̸⊂ 𝑈 ,

there exists 𝑡 and 𝑣 ∈ {0, 1}𝑑, 𝑣′ ∈ {0, 1}𝑑, with 𝑣𝑈∩𝑆 = 𝑣′𝑈∩𝑆 and:

minP[𝑋 𝑡
𝑆 ⊊ 𝑋 𝑡+1

𝑆 , 𝑋 𝑡
𝑈 = 𝑣𝑈 , 𝑋

𝑡+1
𝑈 = 𝑣′𝑈 ];

P[𝑋 𝑡
𝑆 ⊊ 𝑋 𝑡+1

𝑆 , 𝑋 𝑡
𝑈 = 𝑣′𝑈 , 𝑋

𝑡+1
𝑈 = 𝑣𝑈 ]) > 0.

Assumption 4. The features 𝑆 are suitable for the downstream classification task

(here 𝑌 refers to the downstream label):

argmin
𝑓∈ℱ

P[𝑓(𝑋𝑆) ̸= 𝑌 ] = argmin
𝑓∈ℱ ,𝑔∈𝒢

P[(𝑓 ∘ 𝑔)(𝑋) ̸= 𝑌 ]

Intuitively, the first two assumptions guarantee that the feature-set 𝑆 is an optimal

choice of representation for the OCP pretraining objective (when 𝒢 is the class of

feature selector representations), and the third (more technical) assumption guarantees

that the optimum is unique (e.g., by preventing the possibility that pretraining leaves

out a feature in 𝑆 that is redundant for the ordering objective, but useful downstream).

The last assumption ensures that the features 𝑆 are suitable for the downstream

classification task on the population: the loss achievable by the best 𝑓 ∈ ℱ using 𝑋𝑆

as the representation is the same as the loss achievable by using the best (𝑓, 𝑔) pair.

When these assumptions are satisfied, we prove a finite-sample bound for a model

pretrained using OCP. The bound only depends on the VC-dimension of the downstream

hypothesis class, VC(ℱ), rather than on VC(ℱ × 𝒢).

Like some results in the nonlinear ICA literature (e.g., Hyvärinen and Morioka

[116]) our results only apply in the regime where there is enough unlabeled data to

identify the “correct” representation. It’s then immediate that only ℱ factors in to

the labeled-data dependence. However, our model also allows us to give upper bounds

on the amount of unlabeled data required to reach that regime. This allows us to

more rigorously study other aspects of contrastive pretraining, such the role of bias in

the negative distribution, which has been shown to affect the performance of other

contrastive learning algorithms [52].

We now give a simple example of a class of distributions satisfying these assump-
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tions, grounded in our running application of health time-series data. Despite its

simplicity, our findings suggest that this model allows for several interesting phenomena

that also occur in practice, which could make it useful for further study of contrastive

learning methods on time-series.

6.4.1 Extraction example

A common task in clinical informatics is to extract for each time 𝑡 the patient’s

structured disease stage, which enables downstream clinical research [124, 125]. Each

time point 𝑋 𝑡 could be an encoding of the clinical note from a patient’s visit at time

𝑡. Let 𝑌 𝑡 ∈ {0, 1} be the observed label for time point 𝑋 𝑡. The end goal is to train a

model 𝑓 over a representation 𝑔 to minimize the downstream risk:

minimize
(𝑓,𝑔)

𝑅(𝑓, 𝑔) := E(𝑋𝑇 ,𝑌 𝑇 )[𝑓(𝑔(𝑋
𝑇 )) ̸= 𝑌 𝑇 ].

Here we make a prediction for every time point, and the expectation is over the time

index 𝑇 as well as the trajectory (𝑋, 𝑌 ).

Model. For each 𝐴 ⊂ [𝑑], we denote by 𝑋 𝑡
𝐴 the random variable corresponding to

indices 𝐴 at time 𝑡. Suppose the set of feature indices [𝑑] is partitioned into three

types of features:

• A set 𝑆 ⊂ [𝑑] of time-irreversible features. We also assume that each 𝑖 ∈ 𝑆

has a nonzero probability of activating on its own, without the other features

in 𝑆. That is, for each 𝑖 ∈ 𝑆 there exists 𝑡 with P[𝑋 𝑡
𝑖 = 0, 𝑋 𝑡+1

𝑖 = 1, 𝑋 𝑡
𝑆∖{𝑖} =

𝑋 𝑡+1
𝑆∖{𝑖}] > 0. This ensures that assumption 3 is satisfied. Such features include

the onset/progression of chronic conditions and markers of aging [209]. For

example, appearance of the word “metastasis” in a clinical note.

• Noisy versions 𝑆 of 𝑆: for each 𝑗 ∈ 𝑆, there exists 𝑖 ∈ 𝑆 with P[𝑋 𝑡
𝑗 = 𝑋 𝑡

𝑖 ] =

(1− 𝜖𝑖), with 𝜖𝑖 > 0, for all 𝑡. Additionally, 𝑋 𝑡
𝑗 is conditionally independent of

the other variables (for all times) given its parent variable 𝑋 𝑡
𝑖 . For example,
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the presence of certain interactions with the health system—such as deciding to

attend physical therapy—may be a noisy reflection of the patient’s true disease

state, which is captured by 𝑋 𝑡
𝑆.

• Background, reversible features 𝐵: features such that for all 𝑡 and all 𝑣, 𝑣′ ∈

{0, 1}𝑑,

P
[︀
(𝑋 𝑡

𝐵, 𝑋
𝑡
[𝑑]∖𝐵) = (𝑣𝐵, 𝑣[𝑑]∖𝐵),

(𝑋 𝑡+1
𝐵 , 𝑋 𝑡+1

[𝑑]∖𝐵) = (𝑣′𝐵, 𝑣
′
[𝑑]∖𝐵)

]︁
=

P
[︀
(𝑋 𝑡

𝐵, 𝑋
𝑡
[𝑑]∖𝐵) = (𝑣′𝐵, 𝑣[𝑑]∖𝐵),

(𝑋 𝑡+1
𝐵 , 𝑋 𝑡+1

[𝑑]∖𝐵) = (𝑣𝐵, 𝑣
′
[𝑑]∖𝐵)

]︁
Consider, for example, common words such as “and”, “chart”, etc., in a clinical

note, whose presence or absence gives no order information.

Note that we do not make any independence assumptions between the features in this

example other than the ones mentioned above.

In this section we gave a simple example of a class of distributions, together with

an assumption linking the distribution to the downstream task (Assumption 4—the

time-irreversible features are the most useful ones for downstream classification) for

which we can prove that OCP gives a more parsimonious bound on the labeled sample

complexity. While the example in Section 6.4.1 seems straightforward, we show now

that it still admits interesting behavior. In particular, there are distributions that

satisfy Assumptions 1-3, but where PCL and OCP learn different representations.

PCL versus OCP: different infinite-data optima. There are examples of the

model from Section 6.4.1 where PCL and OCP learn provably different representations

even with infinite unlabeled samples, despite the minor difference in their sampling

schemes.2 Intuitively, the existence of a periodic feature (such as a procedure always

2The example we use includes nonstationary features, which violates the assumptions under which
PCL is proven in Hyvärinen and Morioka [116] to find the “right” representation, so this does not
contradict those results.
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performed at a particular time of day) is strongly predictive of whether two samples

are consecutive, but need not be predictive of whether a pair of consecutive samples are

in the correct order. Concretely, consider a feature 𝑋𝑖 such that 𝑋 𝑡+1
𝑖 = 1−𝑋 𝑡

𝑖 , and

𝑋1
𝑖 ∼ Ber(0.5). Inclusion of this feature doesn’t violate Assumptions 1-3—indeed, 𝑋𝑖

would qualify as a “background” feature under our model—so the theorem described

in [6] guarantees that OCP finds the correct representation. However, in PCL, every

non-consecutive sample is a negative. But only non-consecutive samples can have

𝑋 𝑡
𝑖 = 𝑋 𝑡′

𝑖 , so 𝑋 𝑡
𝑖 is helpful for the PCL objective. We treat this example more formally

in the full manuscript [6], but our synthetic results in Section 6.5 also show that a

background periodic feature can affect the PCL representation.

“Debiased” negatives. PCL has some negatives that are actually in the correct

order. Prior work on contrastive learning has called this “bias” in the negative distri-

bution [52]. What’s the role of this “bias?” Does it affect the learned representations?

Does it affect the amount of unlabeled data required to find a good representation? For

distributions satisfying assumptions 1-3 and when 𝒢 is the class of feature-selectors,

we answer these questions in the negative and positive, respectively.

In particular, consider the analogue of OCP that instead of always choosing

(𝑊 +1,𝑊 ) when 𝑌 = −1 (𝑌 as used in OCP, not the downstream label), instead just

chooses a random pair (𝑊,𝑊 ′) with |𝑊 −𝑊 ′| = 1 (i.e., a random consecutive pair).

We refer to this as OCP-biased, since some of the negatives are actually in the correct

order. However, the following theorem shows the estimator obtained by minimizing

this objective is not biased in a statistical sense:

Theorem 1 (informal). When assumptions 1-3 are satisfied, 𝑆 is also the unique

optimal representation for OCP-biased.

However, it does affect the bound on unlabeled sample complexity required to

obtain a good representation:

Proposition 1 (informal). The upper bound on the sample complexity required for

OCP-biased to identify 𝑆 is worse than the upper bound for OCP.
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While this proposition only compares upper bounds, our synthetic experiments

(see Figure 6-2) indicate that OCP is more sample-efficient than OCP-biased. We

prove these results in the full manuscript [5].

6.5 Experiments

6.5.1 Synthetic data
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Figure 6-2: Synthetic experiments admitting different behavior across pre-training
setups. (Top): PCL is unable to ever recover all four true features in 𝑆; (Bottom):
PCL recovers the true representation, but requires higher sample complexity than
OCP.

We demonstrate the importance of negative sampling over two synthetic datasets

from the model in Section 6.4. Each distribution contains |𝑆| = 4 alongside a number

of noisy features. We generate pre-training datasets of different sizes (50 to 16,000)

and sample pairs from each dataset according to OCP, PCL, and OCP-biased. We

then conduct a logistic regression with 𝐿0 penalty over the sample pairs and analyze
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how many variables in 𝑆 were correctly recovered. The top panel of Figure 6-2 shows a

distribution where PCL does not recover 𝑆 in the infinite data limit—this distribution

includes a periodic background feature in 𝐵 that is selected by PCL. The bottom

panel of Figure 6-2 shows a distribution where PCL is able to recover all of 𝑆, but

requires a larger sample complexity than OCP. In both cases, OCP and OCP-biased

find the same representation, but the former has better dependence on unlabeled data.

We provide the details and explanations for these experiments in Appendix C.1.

6.5.2 Real-world data

We show OCP yields significant improvements in the low-label regime on extraction

from clinical notes.

Progression dataset. We utilize a dataset of fully de-identified clinical notes from

Memorial Sloan Kettering Cancer Center. This research was reviewed by the MIT

Committee on the Use of Humans as Experimental Subjects and determined to be IRB-

exempt. The dataset contains data for 82,839 patients with cancer, with a median of

12 radiology notes each. Each radiology note focuses on one body area (e.g., chest CT

scan). In addition, we have a subset of 135 patients with progressive lung cancer with

1095 labeled radiology notes. Each note was labeled post-hoc by a dedicated thoracic

oncologist as ‘indicating progression’ (19%), ‘not indicating progression’ (79.5%), or

‘ambiguous’ (1.5%).

Experimental setup. We investigate extraction of these binary progression labels

from the Impression section of the note. The labeled data was split via 5-fold cross-

validation: each fold contained sets of sizes 64% (train), 16% (validation), and 20%

(test); for a given fold, no patient examples were ever split between sets. On each

fold, we used the test set to benchmark models trained using different amounts of the

labeled training data: from just 5 training patients ( 1
16

) to all of the training patients.

We excluded patients with downstream labels from pretraining. For contrastive pre-

training schemes, a pretraining window pair was sampled once per each unique body
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Fraction of training data
Available features 1 1/2 1/4 1/8 1/16
OCP subset 0.864 0.860 0.847 0.808 0.786
All features 0.856 0.851 0.818 0.723 0.726
Most common 0.767 0.767 0.728 0.687 0.658
Random subset 0.740 0.747 0.727 0.639 0.634

(a) Mean note-level AUC of regularized logistic regression over different
dataset sizes. Averaged over the 5 folds, performance was optimal for
each dataset size when restricted to the features with nonzero coefficients
recovered by OCP.

Selected
Terms

mass, increased, 
decreased, stable, 

change, new, 
suspicious

Excluded
Terms

discussed, 
imaging, left, mri, 

also, follow

(b) Example features that OCP selected (top) or
excluded (bottom) for downstream prediction.

Figure 6-3: Linear representation space experiment to validate assumptions of our
model apply to real-world data. Quantitatively, we find downstream wins from
restricting the model feature space to those found useful for the order-contrastive task.
Qualitatively, the features important for the order pre-training are the same we would
expect to be useful for the downstream extraction task.

area (e.g., chest, brain) that was scanned at least twice, capped at five locations per

patient. This resulted in ≈158,000 samples for pretraining.

Pre-training for feature selection. We first validate our modeling assumptions

from from Section 6.4 using a linear model. The goal of this section is to roughly

validate our assumptions and the setup of our theoretical model. We compare

downstream progression extraction performance of (i) a vanilla logistic regression

model and (ii) a logistic regression model only using the features selected by OCP.

We test on all five folds for five training dataset fractions.

For each experiment, our dataset is featurized using the unigrams and bigrams

that occur in at least 5% of the labeled training data set. They are vectorized using

the term frequency-inverse document frequency weighting scheme, via scikit-learn [205,
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Table 6.1: Performance of deep methods on cancer progression extraction. The first
row contains the mean AUC of OCP ± its std dev. The following rows contain the
mean AUC advantage of OCP over each comparison method, and the percentage of
time OCP outperforms that method, across the 3 seeds and 5 folds.

Fraction of training data
AUC diff. (OCP Win %) 1 1/2 1/4 1/8 1/16
OCP AUC 0.87 ± .03 0.86 ± .04 0.84 ± .04 0.82 ± .03 0.81 ± .03
OCP − BERT 0.08 (93%) 0.12 (100%) 0.12 (100%) 0.18 (100%) 0.22 (100%)
OCP − FT LM 0.03 (80%) 0.04 (82%) 0.04 (82%) 0.08 (93%) 0.10 (89%)
OCP − Pt-Contrastive 0.03 (86%) 0.03 (77%) 0.05 (91%) 0.09 (91%) 0.12 (97%)
OCP − PCL 0.00 (53%) 0.00 (46%) 0.03 (64%) 0.03 (76%) 0.06 (87%)

BSD 3-clause license]. We conduct feature selection as an optional intermediate step

preceding progression extraction. For OCP, we train a logistic regression model with

𝐿1 penalty over the 158,000 pre-training pairs of consecutive radiology notes. The

regularization constant was set such that there were 50 ± 5 features with nonzero

weights. In addition to OCP-derived features, we select the 50 most common features,

and 5 random subsets of 50 features to serve as a comparison.

We train scikit-learn logistic regression models for downstream progression extrac-

tion over each feature set; further details are in Appendix C.2. Results can be seen in

Figure 3a. Even with a simple bag-of-words representation, feature selection with OCP

outperforms directly training a tuned logistic regression model on the available labeled

data (“All features”), especially for small dataset sizes. A paired 𝑡-test finds that the

model with OCP-selected features is significantly better than the direct-downstream

model on a sixteenth of the data (𝑝 < 0.05). Note that selecting the most common

features or a random set of features does not compare, showing that OCP does not

improve performance by simply reducing the feature dimension in a redundant space.

We manually examined the OCP-selected features and their coefficients (Figure

6-3(b)). The features included (e.g., increased, decreased) strongly indicate disease

progression, while those discarded (e.g., discussed) largely seem to be noise. Of the

nonzero coefficients, 76% have a positive weight; this indicates that the pre-training

model focuses mostly on features that have been turned on to conduct the ordering

task, fitting with our motivating theoretical setting.
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Nonlinear representations. We now study the use of OCP for pre-training non-

linear representations. We compare performance of a BERT model pre-trained using

OCP to several other self-supervision methods. We investigate the BERT base model

and the BERT base model after it is pre-trained using: (i) FT LM : fine-tuned masked

language modeling over an equivalent number of impressions, (ii) Pt-Contrastive: a

patient-level contrastive objective (identical positive sampling to OCP and PCL, but

each negative is a random note of the same note type from a different patient, similar

to Diamant et al. [63]), (iii) PCL: contrastive pre-training with PCL sampling (each

negative is a random pair of notes of the same type from the same patient), (iv)

OCP : contrastive pre-training with OCP sampling (each negative is a pair of notes

of the same type in the incorrect order). All pre-training is conducted over three

seeds, and all three contrastive objectives were trained with the same number of pairs

(158,000). Implementation for language modeling and contrastive pre-training came

from Wolf et al. [305, Apache-2.0 License] with full details in Appendix C.2. After

model pre-training/fine-tuning, the self-supervised representation layers were frozen,

and a single 𝐿2-regularized linear layer was added on top. The goal of freezing was

to isolate the effect of pre-training to understand representation quality, due to the

instability of training BERT on small downstream tasks [322].

Results can be seen in Table 6.1. The top row shows that OCP has only a modest

drop in performance even when trained on the data from just 5 patients ( 1
16

). Since

correlations exist in AUC across the 5 folds, 3 seeds, and 5 dataset sizes, standard

statistical comparison testing is inappropriate. Instead, we present the mean increase

in AUC from OCP, as well as the percentage of the time OCP outperformed the

comparisons. Unsurprisingly, BERT alone (trained on non-clinical text) unsurprisingly

does not perform well out-of-the-box; fine-tuning with language modeling improves

performance, but still suffers in the low data regime. Among the contrastive objectives,

the cross-patient objective is the weakest, which may follow since its pre-training

task was the easiest (82% accuracy on validation). It could rely on features that

differed between patients, instead of being forced to focus on the temporal features

that differed within a patient’s timeline. PCL performs equivalently to OCP at large
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data sizes, but at the smaller data set sizes, it loses to OCP a large majority of the

time.

6.6 Limitations and Conclusion

We have shown both theoretically and empirically that order-contrastive pre-training is

an effective self-supervised method for certain types of time-series data and downstream

tasks. On real-world longitudinal health data, we find that representations from OCP

significantly outperform others, including the similar PCL, in the small data regime.

Concretely, being able to structure variables from longitudinal, label-scarce, data

in health records could enable us to evaluate large scale retrospective datasets and

potentially inform future clinical trials and patient care.

However, OCP is not always suitable. For example, cases of temporal leakage (e.g.,

the date in a note) can lead to weak OCP (and PCL) representations downstream,

since they provide a shortcut during pre-training. While dates are straightforward to

censor, more complex global nonstationarities irrelevant to downstream tasks would

present a challenge to these methods. We additionally wish to emphasize that not

all clinical tasks have time-irreversible expressions in the data (e.g., acute/temporary

conditions, such as pregnancy), so the motivating model assumptions (particularly

Assumption 4) should be considered before applying OCP.

Our theoretical setup and results in Section 6.4 also serve to highlight that con-

trastive pre-training methods can be very sensitive to the precise sampling details,

and provide a simple model for studying these details that is still complex enough to

capture some empirical phenomena. The comparison to PCL captures the importance

of sampling hard negative samples, as also found by Robinson et al. [223]. Our initial

experimentation found this as well, as distinguishing between consecutive notes during

pre-training was found to be more effective than distinguishing between further pairs

of notes. This suggests that obtaining broader theoretical guidelines for selecting a

contrastive distribution is an interesting direction for future work. Future work could

also involve augmenting the objective to other tasks that involve the metadata behind
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notes, such as predicting not just the ordering of the notes, but the time gap between

a pair of notes as well.
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Chapter 7

Large Language Models for Clinical

Information Extraction

Acknowledgement of Co-authors I would like to acknowledge co-PhD students

Stefan Hegselmann and Hunter Lang, who aided in many aspects of this chapter,

particularly the creation of annotated data, the implementation of baselines, and

running experiments.

7.1 Introduction

In this chapter, we explore the new paradigm of prompt-based learning as a workaround

for the minimal amount of labeled data available for clinical NLP training algorithms.

In prompt-based learning (also known as in-context learning), a pretrained language

model is adapted to different tasks via priming on natural language prompts—pieces of

text that are combined with an input and then fed to the language model to produce

an output for that task. This paradigm has been successful for few-shot and zero-shot

learning at many general-domain tasks [35, 160, 292, 233]. However, as previously

described, clinical text represents a significant distribution shift from the general

domain, and it was therefore unclear whether large language models (LLMs) would

have sufficient exposure to generalize to the clinical domain.

In this chapter, we benchmark how large language models (LLMs) such as GPT-3
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Figure 7-1: Illustration of our approach using a one-shot example (green) and guidance
(brown) to create a more structured LM output (blue). This significantly reduces the
necessary post-processing effort of a resolver (gray).
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Task Description Example Text Answer Data

Clinical
sense
disam-
biguation

Given a note
and an
abbreviation,
expand the
abbreviation
(classification)

[...] was sent to
IR for
thrombolysis.
Post IR,
ultrasound
showed that [...]

Interventional
radiology

41 acronyms from
18,164 notes from
CASI [176] and 8912
notes from MIMIC [1]

Biomedical
evidence
extraction

Given an
abstract, list
interventions
(multi-span
identification/-
generation)

[...]
paliperidone
extended- release
tablets and [...]
with risperidone
[...]

-paliperidone
extended-
release
tablets
-risperidone

187 abstracts
(token-level) and 20
newly annotated
abstracts (arm
identification) from
EBM-NLP [196]

Coreference
resolution

Given a note
and a pronoun,
identify the
antecedent
(span
identification)

[...] Did develop
some tremors,
however. These
were well
managed [...]

some tremors 105 newly annotated
examples from CASI
[176] with one
pronoun-antecedent
pair each

Medication
status
extraction

Given a note,
extract
medications and
their status,
e.g., active
(NER +
classification)

[...] have
recommended
Citrucel [...]
discontinue the
Colace. [...]

-Citrucel:
active
-Colace:
discontinued

105 newly annotated
examples from CASI
[176] with 340
medication-status
pairs

Medication
attribute
extraction

Given a note,
extract
medications and
5 attributes,
e.g., dosage,
reason (NER +
relation
extraction)

[...] she was
taking 325 mg
of aspirin per
day for three
years for a TIA.
[...]

aspirin:
{dose: 325
mg, freq: per
day,
duration:
three years,
reason: TIA}

105 newly annotated
examples from CASI
[176] with 313
medications and 533
attributes

Table 7.1: Overview of the five tasks studied in this chapter and the datasets that
were used.

models [35, 199] perform at clinical NLP tasks. This takes the form of four contri-

butions:

• We introduce three new annotated datasets for benchmarking few-shot clinical in-

formation extraction methods, as many shared clinical corpora [183, 107, 121] have

data use agreements that prevent their use with LLM APIs such as OpenAI’s. The

datasets were generated by re-annotating the dataset from Moon et al. [176] for new
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tasks.

• We show that GPT-3 models performs well in clinical NLP over a set of diverse tasks

(see Table 7.1), despite not being trained specifically for the domain. By replacing

the complex hand-curated domain knowledge with the natural-language output of

an LLM, the engineering effort required to solve a particular extraction task can be

greatly reduced.

• While LLMs have been primarily evaluated at classification and generation tasks,

our tasks involve a greater variety of expected output structures, such as relation

extraction (see last three rows of Table 7.1). We therefore introduce guided prompt

design to steer the LLM towards an easy-to-structure output and resolvers to map

from the LLM outputs to the structured label space; see Figure 7-1.

• As GPT-3 models are likely not trained on significant clinical text corpora (as they

are not freely available online), we analyze sources of clinical jargon and description

from which the models may have learned.

7.2 Related Work

7.2.1 Prompt-Based Learning

In prompt-based learning (also known as in-context learning), a pretrained language

model is adapted to different tasks via priming on natural language prompts—pieces of

text that are combined with an input and then fed to the language model to produce

an output for that task.

This paradigm has been successful for few-shot and zero-shot learning at many

general-domain tasks [35, 160, 292, 233]. More recently, large language models such as

T0 and InstructGPT have re-configured their training objectives to explicitly encourage

the model to perform well at following directions provided in prompts [233, 199].

While prompt-based learning can be extended straightforwardly to classification

tasks (e.g., multiple choice), more complex tasks require creativity in their implemen-

tation [173]. For example, coreference resolution is often re-framed as classification,
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asking which of two antecedents a pronoun refers to [233] or whether a candidate

antecedent is correct [314]. This approach requires a list of antecedent candidates,

which requires an additional component (e.g., a noun phrase generator) or many—

potentially expensive—queries. Span classification and named entity recognition have

been similarly reframed. For example, given a candidate entity X and full model

access, the entity type can be predicted via an argmax over the possible types Y

of the probability of statements like “X is a Y entity” [58]. Alternatively, if only a

single entity is being queried for a given input, prompting can be as simple as “What

is the location”[157]; however, clinical NLP often concerns itself with extraction of

multiple concepts. To extract multiple spans simultaneously, Li et al. [153] and Li

et al. [152] use techniques from machine reading comprehension, relying on access

to the underlying model and labeled data for training the extraction layer. While

InstructGPT [199] has ∼ 2% or ≤ 1𝑘 extraction examples in its training, the LLM

output is never converted to a structured form, and extraction examples are only

evaluated qualitatively for improvement over other models. That is, only results for

classification and generation tasks are quantified.

7.2.2 Pretrained LMs for Clinical NLP

Clinical text differs significantly from text typically utilized in general NLP, both in

syntax and vocabulary [307]. As a result, the clinical NLP subcommunity often trains

domain-specific models on clinical corpora following advances in language modeling

from the broader NLP community. For example, clinical neural word embeddings

were trained following word2vec [171, 310, 222]. More recently, following BERT,

many clinical and biomedical variations swiftly followed including ClinicalBERT,

SciBERT, BioBERT, and PubMedBERT [62, 13, 14, 146, 96]. However, in several

applications, researchers observed the performance gains to be marginal to none over

classical methods such as logistic regression [48, 137]. Additionally, previous work

has so far been unable to achieve competitive results on biomedical NLP tasks using

domain-agnostic LLMs like GPT-3 [177, 98].
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7.3 Methods

7.3.1 Predicting Structured Outputs with LLMs

In this work, we assume only query access to a large language model (i.e., no gradients,

no log probabilities).

Suppose we have a set of 𝑛 examples ({𝑥𝑖, 𝑎𝑖})𝑛𝑖=1, where 𝑥𝑖 is the input text

as a string, 𝑎𝑖 is (optional) side information as a string (e.g., which acronym to

disambiguate). The outputs 𝑦𝑖 ∈ O are unobserved (i.e., to be predicted). The output

space O is defined per task. For example, for a binary sequence labeling task, if we let

|𝑥𝑖| be the number of tokens in 𝑥𝑖, O is {0, 1}|𝑥𝑖|.

Prompt-based learning requires the specification of a prompt template to be

applied on the input. In this work, we handcraft our prompt templates using a set of

5 validation examples per task. Let 𝑝𝑗(𝑥, 𝑎) be the result of filling prompt template

𝑗 with inputs 𝑥 and 𝑎, and further let 𝑓(𝑝𝑗(𝑥, 𝑎)) ∈ Σ⋆ be the string output by an

LLM on input 𝑝𝑗(𝑥, 𝑎). The next step involves mapping the LLM generation from

Σ⋆ to the structured label space O. For example, in classification, the verbalizer

defines a mapping between the LLM output space Σ⋆ and the discrete set of labels

O = {1, . . . , 𝐿} using a dictionary of token/label pairs [239]. However, for our

structured tasks of interest, the label space O is more complex, and more complicated

functions are needed to map to an element of O. We define the resolver 𝑅 as a

function 𝑅(𝑥, 𝑎, 𝑓(𝑝1(𝑥, 𝑎))) that maps the combined input and LLM output to the

task-specific output space O. For example, suppose the output space O is a list of

strings. Then the resolver needs to turn each output 𝑓(𝑝𝑗(𝑥, 𝑎)) into a list (perhaps

by choosing spans of text from inside of 𝑓(𝑝𝑗(𝑥, 𝑎))). For example, for medication

extraction we might have:
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𝑥 = “switched Advil for Tylenol”, 𝑎 = “N/A”,

𝑝1(𝑥, 𝑎) = “Note: switched Advil for Tylenol.”

Task: List medications.”

𝑓(𝑝1(𝑥, 𝑎)) = “Tylenol and Advil”

𝑅(𝑥, 𝑎, 𝑓(𝑝1(𝑥, 𝑎))) = [“Tylenol”,“Advil”]

We refer to the output from the resolver as Resolved GPT-3, or GPT-3 + R, for

short. Throughout, when comparing resolvers, we place in parentheses the lines of

code (LOC) in the resolver, as a proxy for complexity (defined as human effort, not

runtime). The required complexity of the resolver depends largely on the cleanliness of

the prompt output, and by extension the prompt itself. We introduce guided prompt

design to simplify the resolver required for complex output. As seen in Figure 7-1,

this consists of (i) a one-shot example with an output in the desired structured format

(which could be incorrect content-wise), and (ii) guiding the model to use the same

format. Specific constructions are found in Sections 6 and 7.

7.3.2 Large Language Models Used

In this chapter, we instantiate the LLM generation function 𝑓 described in the previous

subsection with models available from the OpenAI API. Since OpenAI has used varying

and overlapping terminology in referring to these models 1, we establish here the

terminology used within this chapter. We use GPT-3 generically throughout, as an

umbrella term for a model within the GPT-3 series of large language models. GPT-3

is therefore used as a catch-all, and not used to describe any particular instantiation.

Within the paper, we use two different instantiations of GPT-3, and at the

beginning of each section, we are explicit about which specific model engine we use.

For the first task, we use the engine text-davinci-edit-001, which we also refer to as

1https://beta.openai.com/docs/models/gpt-3, https://beta.openai.com/docs/model-index-for-
researchers
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GPT-3 edit. To our knowledge, OpenAI has not revealed the exact training scheme

on which this engine is built. For all other tasks, we use the engine text-davinci-002,

which is part of the InstructGPT series of models. text-davinci-002 was trained

with supervised instruction fine-tuning of a large autoregressive language model (175

billion parameters), described partially in [199]. Of note, it was not trained with the

reinforcement learning paradigm described in that same paper.

7.3.3 Dataset Annotation

In the short-term, research on clinical extraction via prompting may rely on sending

data to external APIs. Since data use agreements on many existing annotated clinical

datasets prohibit such activity, there is a dearth of benchmarks for the community

to build on. The de-identified Clinical Acronym Sense Inventory (CASI) dataset is

therefore a valuable resource, as it is “publicly available to support the research of the

greater NLP and biomedical and health informatics community” [176]. CASI contains

snippets of clinical notes across specialties in four University of Minnesota-affiliated

hospitals. While CASI was originally annotated for acronym disambiguation, we

created three new annotated datasets from existing snippets of the CASI dataset.

Annotation was performed by two of the authors who have background in both clinical

NLP and medicine. For each task, a set of examples was jointly annotated to establish

an annotation schema, each annotator then independently labeled the same set of

105 examples using PRAnCER software [150], and the two sets were then merged via

joint manual adjudication.

In the following sections, we show how to build simple resolvers for five clinical

NLP tasks. We find that resolvers for guided prompts are much easier to write

than resolvers for un-guided prompts. The implicit structure imposed by the prompt

guidance means that resolvers for a guided prompt can be less than 10 LOC. On the

tasks below, we find that GPT-3 + R matches or exceeds strong few-shot, zero-shot,

and even supervised baselines.
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7.4 Clinical Sense Disambiguation

Overview. Clinical notes are rife with overloaded jargon and abbreviations. Pt

can mean patient, prothrombin time, physical therapy, or posterior tibial [289, 248].

This ambiguity impacts the utility of notes for patients, clinicians, and algorithms

[139, 179]. In this section, we first evaluate clinical sense disambiguation on the CASI

dataset directly and then transfer a model distilled via weak supervision to another

dataset.

Dataset 1. The Clinical Acronym Sense Inventory dataset consists of 500 text exam-

ples for each of 75 acronyms [176]. Due to noise in the dataset (e.g., duplications), it

is common to filter to a subset of the dataset; we follow the filtering from Adams et al.

[1], leading to a subset of 18,164 examples and 41 acronyms for evaluation. Similar

to other works, we treat the task as multiple-choice.

Dataset 2. We additionally use a reverse substitution dataset [1] generated over

the MIMIC-III Critical Care Database [121]. In reverse substitution, labeled data is

generated from unlabeled text by replacing expansions (e.g., physical therapy) with

their acronyms (PT ) and using the original expansion as the label. We evaluate on

their 8912 test examples over the same 41 acronyms as the CASI subset. Since we

cannot query GPT-3 on this dataset, we distill and transfer a model trained on the

outputs from Dataset 1.

Prompting + Resolver. We used GPT-3 edit (using engine text-davinci-edit-001 )

with greedy decoding (temperature = 0). For each example, we provided the full

clinical snippet and appended the single instruction Expand the abbreviation:{abbr}.

Since we did not provide the LLM with the answer choices, the form of the output

string could still differ slightly from all the candidate answers (e.g., editing “RA” to

“right atria” when “right atrium” was expected). In the resolver, we choose the answer

choice with the highest contiguous character overlap with the LLM generated output.

Model Distillation via Weak Supervision. Direct deployment of large language

models can be difficult due to model size and data privacy. To remedy these issues, we

follow several recent works [143, 256, 286] and show that we can instead view the LLM
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Algorithm CASI Acc. CASI Macro F1 MIMIC Accuracy MIMIC Macro F1

Random 0.31 0.23 0.32 0.28
Most Common 0.79 0.28 0.51 0.23
BERT (from Adams et al. [1]) 0.42 0.23 0.40 0.33
ELMo (from Adams et al. [1]) 0.55 0.38 0.58 0.53
LMC (from Adams et al. [1]) 0.71 0.51 0.74 0.69

GPT-3 edit + R: 0-shot 0.86 0.69 * *
GPT-3 edit + R: 0-shot + distillation 0.90 0.76 0.78 0.69

Table 7.2: Clinical sense disambiguation. Accuracy and macro F1 for zero-shot
language modeling approaches on a subset of the Clinical Acronym Sense Inventory
(CASI) data set [176] and the MIMIC Reverse substitution dataset [1]. GPT-3 is
not run on MIMIC due to the data use agreement. To evaluate on MIMIC we distill
GPT-3 + R into a smaller model by treating the outputs as weak supervision and
following Lang et al. [144] “+ distillation”, then evaluate the smaller model on MIMIC
as well.

+ resolver system as a labeler rather than as a classifier, and that this can even boost

performance. In particular, we use outputs of this system on CASI as weak supervision

[e.g., 218] to train a smaller, task-specific model. Here we fine-tune PubMedBERT [96]

and follow Lang et al. [143]; details and hyperparameters are found in the appendix.

Baselines. We compare the performance of our approach to other zero-shot language

modeling methods: (i) Latent Meaning Cells (LMC), a deep latent variable model

from Adams et al. [1] which is pre-trained on millions of notes from MIMIC, (ii) ELMo

pre-trained on the same dataset [207], and (iii) Clinical BioBERT [13]. Numbers for

these three baselines are taken from Adams et al. [1]; for all three, they choose the

answer choice with the most similar representation to the contextual representation of

the acronym. We also show performance for random guessing and choosing the most

common answer choice per acronym (since the expansions of many acronyms follow a

long-tailed distribution).

Evaluation. Accuracy and macro F1 are calculated per acronym and averaged

over all acronyms (see left of Table 7.2). On CASI, GPT-3 edit + R alone already

clearly outperforms the LMC model on both metrics, and the addition of weak

supervision with PubMedBERT further boosts this performance. On the MIMIC

Reverse Substitution dataset, despite being transferred to a new domain, our weakly-

supervised PubMedBERT model performs similarly to LMC [1], which was pre-trained
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specifically on the MIMIC distribution. This indicates we can use GPT-3 edit + R to

label a public dataset, distill its labels into a smaller task-specific model, and then

transfer that model to a private dataset to obtain competitive performance. Since the

CASI dataset is publicly accessible, one possible caveat is that the dataset could have

been in the language model’s training data; to investigate further (see Section D.2.5),

we prompt the LLM on acronyms not in the original annotations.

7.5 Biomedical Evidence Extraction

Task Overview. Evidence-based medicine (EBM) involves synthesizing findings

from across clinical research studies, but the current rapid clip of research makes

it nearly impossible to keep up with all studies [231, 23]. Therefore, automated

approaches for parsing clinical abstracts could aid the adoption of EBM [282, 196].

Here, we focus on extracting interventions and controls (which we will refer to just as

Intervention), where the underlying goal is to identify the distinct arms of a clinical

trial [196]. Token-level classification is often used as a proxy for this goal, but distilling

identified spans into distinct interventions is non-trivial and often requires significant

domain knowledge. Prior work on the identification of the arms of clinical studies

has attempted to use coreference resolution [71] and to identify of pairs of spans with

redundant information [196].

Dataset. We assess intervention identification from the angles of (i) the token

classification proxy task and (ii) the underlying task of arm identification. For (i), we

use the token-level annotations provided in version 2 of the dataset from Nye et al.

[196] and evaluate on the 187 test abstracts provided. The average Cohen’s 𝜅 was

only 0.59 on this set. For (ii), the two annotators from Section 7.3.3 manually derived

a list of the intervention-control arms for 20 abstracts in the test set, with perfect

agreement.

Prompting + Resolvers. We use a single prompt with InstructGPT (engine text-

davinci-002 ) and greedy decoding. The resolver for the token-labeling task removes

noisy tokens (stop words) from the LLM output, maps remaining tokens in the output
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Algorithm
Token-level

F1
Abstract-level

Accuracy

PubMedBERT-CRF (sup) 0.69 0.35
LSTM-CRF (sup) 0.65 *

GPT-3 + R: 0-shot 0.61 0.85

Table 7.3: Biomedical Evidence Extraction. Test F1 scores on the binary token-
level sequence labeling problem for Intervention identification [196], and abstract-level
accuracy at study arm identification. The supervised baselines were trained on 4,800
abstracts.

to the original input and labels those as 1, and merges fractured spans. The full

process can be found in Appendix D.2.6. For the arm identification task, resolving

simply involved splitting the output string on new lines.

Comparison. We compare to supervised approaches that train on the 4800 labeled

training examples from Nye et al. [196]. PubMedBERT with an additional classification

layer (LSTM or CRF) achieves close to state-of-the-art performance on the full task

[96]. Since prior works report numbers combined over multiple classes, we re-run

training on only the Intervention label using PubMedBERT-CRF. We also include

the best supervised baseline from Nye et al. [196], an LSTM-CRF over word and

character-level embeddings.

Token-level results (Proxy Task). We first evaluate sequence labeling precision at

the token-level (F1 in Table 7.3). Resolved GPT-3 performs respectably compared

to supervised deep baselines, but underperforms on these token-level metrics. Many

error modes occur due to particularities of the schema, e.g., including extra details

(like dosing schedule or route of administration) and only including an acronym or its

expansion, but not both. A clarifying example can be found in Section D.2.6.

Arm Identification Results. To measure arm identification accuracy, we evaluated

whether the number of arms was accurate and manually checked whether the main

differentiator of each intervention arm was captured, similar to Ferracane et al. [71].

For the PubMedBERT baseline, in order to distill the identified spans to a list of arms,

we assume (i) oracle splitting of spans into arms (given a span describing multiple

arms, we can correctly split the span) and (ii) near-oracle coreference resolution (given
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multiple spans describing the same arm, we can correctly merge). Resolved GPT-3

successfully identified the correct number and content of the arms in 17 of the 20

examples. The three examples it missed were also missed by PubMedBERT. Assuming

oracle splitting and coreference (a nontrivial task), PubMedBERT would still have

issues with 10 further examples. Details of the evaluation and error modes are in

Section D.2.6.

7.6 Coreference Resolution

Task Overview. Coreference resolution involves grouping noun phrases that refer

to the same underlying entity (e.g., a person, a medical concept), and it is considered

particularly important for clinically accurate information retrieval and summarization

[325]. For example, when surfacing past medical history, it is critical to correctly parse

pronouns to understand whether the history describes the patient or a family member.

Dataset Description. In clinical NLP, coreference resolution has been largely

evaluated on the 2011 i2b2/VA challenge, which consists of thousands of coreference

chains [278]. Due to i2b2’s data use agreement, the two annotators annotated a new

dataset using CASI snippets, with 5 coreference pairs for prompt design and 100

pairs for evaluation [176]. We prioritized difficult examples by focusing on pronoun

coreference, where the input is a pronoun, the output its antecedent, and no tokens

overlap between the two. More details are in Section D.2.2.

Prompting and Resolvers. We used the 5 examples for prompt design with In-

structGPT (engine text-davinci-002 ) and greedy decoding (temperature = 0). We use

a guided 1-shot prompt, where we provide an example input and begin a formatted

response: “{pronoun} refers to”. For 1-shot, we experiment with both correct (the

true noun phrase) and incorrect answers (a random incorrect noun phrase preceding

the pronoun) in the example input to tease apart the effect of the example answer

versus the example formatting. To clarify that effect, we average over results from

5 different 1-shot examples. We also compare to an unguided zero-shot prompt, which

simply appends “What does {pronoun} ... refer to?" to the input. The zero-shot
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Algorithm Recall Precision

Toshniwal et al. [273, 274] 0.73 0.60

GPT-3 + R (50 LOC): 0-shot 0.78 0.58
GPT-3 + R (1 LOC): 1-shot (incorrect) 0.76.02 0.78.04

GPT-3 + R (1 LOC): 1-shot (correct) 0.75.04 0.77.04

Table 7.4: Coreference Resolution. Macro unigram recall and unigram precision of
methods on our newly annotated task using CASI [176]. The end-to-end baseline was
trained on three non-clinical coreference resolution datasets and transferred to this
new setting. 1-shot results are averaged over 5 prompts.

resolver involves mapping tokens back to the input due to potential paraphrases; the

one-shot resolver involves only the removal of a single quotation mark, making the

guided prompt easier to resolve. Section D.1.3 contains more detail on the prompts.

Comparison. We compare to deep end-to-end coreference resolution, as it has been

shown to perform well [148]. In particular, we compare to the longdoc model from

[273], which trained on multiple coreference datasets in order to generalize to new

settings.

Results.

We evaluated via macro unigram recall (% of label’s unigrams in the resolved output)

and unigram precision (% of unigrams in the resolved output in the label) (Table

7.4). We tokenized using Stanza [213] for these metrics. While the longdoc baseline

trained on thousands of non-clinical coreference examples performed considerably well

already, it is outperformed by Resolved GPT-3. We found the 1-shot example mostly

constrains the LLM output to quoting (rather than paraphrasing); without guidance,

the LLM may output e.g., “The antecedent is unclear." Further, the accuracy of the

1-shot example was irrelevant to the performance, an observation previously reported

in the classification setting, now seen for span extraction [172].

7.7 Medication Extraction

The recognition of clinical concept mentions (problems, treatments, etc.), their modi-

fiers (e.g., negation), and relations (e.g., dosage) is a fundamental building block in

142



Algorithm Recall Precision

ScispaCy [189] 0.73 0.67

GPT-3 + R (32 LOC) (0-Shot) 0.87 0.83
GPT-3 + R (8 LOC) (1-Shot) 0.90.01 0.92.01

Table 7.5: Medication extraction. Micro recall and precision for medication
extraction on our self-annotated dataset.

Algorithm Conditional
Accuracy

Conditional
Macro F1

T-Few (20-shot) 0.86 0.57

GPT-3 + R (32 LOC) (0-Shot) 0.85 0.69
GPT-3 + R (8 LOC) (1-shot) 0.89.01 0.62.04

GPT-3 + R (8 LOC) (1-shot)
+ added classes 0.88.02 0.71.03

GPT-3 + R (8 LOC) (1-shot)
with shuffled classes 0.88.01 0.66.03

Table 7.6: Medication status classification. Conditional accuracy and macro
F1-score for Identification of medication status active, discontinued, and neither.

clinical NLP [119]. Here we examine the extraction of medication concepts with two

different schemas.

7.7.1 Recognition + Status Classification

Here we extract a list of medications and label each with a status modifier: active,

discontinued, or neither (e.g., allergy, proposed medication).

Dataset description. We created new annotations for medication and status on top

of CASI Moon et al. [176]. The examples were enriched for changeover in treatment.

For 105 randomly selected snippets, the annotators extracted all medications mentioned

and classified its status with one of the 3 labels. Further details are in Appendix

D.2.3. Unlike in Section 7.7.2, all mentions corresponding to the same medication are

collapsed.

Prompting and Resolver. We again used 5 examples for prompt design with

InstructGPT (engine text-davinci-002 ) and greedy decoding. Our prompt asked the
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Subtask Algorithm Medication Dosage Route Frequency Reason Duration

Token-level PubMedBERT + CRF (Sup.) 0.82 0.92 0.77 0.76 0.35 0.57
GPT-3 + R: 1-shot 0.85 0.92 0.87 0.91 0.38 0.52

Phrase-level PubMedBERT + CRF (Sup.) 0.73 0.78 0.71 0.41 0.22 0.30
GPT-3 + R: 1-shot 0.75 0.82 0.81 0.87 0.21 0.25

Relation Extraction
PubMedBERT + CRF +
Shi and Lin [247] (Sup.) * 0.67 0.65 0.36 0.19 0.21

GPT-3 + R: 1-shot * 0.80 0.63 0.60 0.34 0.16

Table 7.7: Medication attribute extraction. F1 scores on our newly annotated
medication extraction dataset. The baselines are trained using supervised learning
on i2b2 [276], then transferred to the test domain. Relation Extraction additionally
requires the model to match modifiers (dosage, route, etc.) to the medication span.
Baseline end-to-end relation extraction performance suffers due to errors cascading
from the extraction step.

model to simultaneously output the list of medications and the status of each. We

evaluate the prompt in an unguided zero-shot manner and in a guided one-shot manner.

Further, to clarify the effect of the 1-shot example on modifier accuracy, we examine

how status classification performance changes if we (i) artificially augment the 1-shot

example so all three status classes are observed, and (ii) whether the statuses need to

be correct, or just present. We averaged over 5 different 1-shot inputs to clarify these

effects; each 1-shot example contained between 3 and 8 medications. We describe

the resolvers for the zero- and one-shot cases in detail in Section D.2.8; the former

involved several regular expressions, and the latter required only a few short lines.

Comparison. We used a rule-based method as a medication extraction baseline,

since historically they perform well [257]. To this end, we leveraged the Python library

ScispaCy with the en_core_sci_sm package for entity recognition [189, details in

Appendix D.2.8].2 For medication status classification, we compare to T-Few [159],

a few shot LLM method fine-tuned on a set of additional snippets we labeled from

the same distribution (20 snippets containing 60 medication statuses). This method

predicts the status, given the token indices for each medication.

Results. Table 7.5 shows micro recall and precision for medication extraction; we

count a prediction as correct if the predicted string exactly matches one. Overall,

2We do not use a supervised baseline trained on the i2b2 2009 challenge data (as in Section 7.7.2)
because their schema purposefully excluded medications in the Neither category.
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Resolved GPT-3 outperforms the ScispaCy linkage baseline consistently by a consider-

able margin. The addition of the 1-shot example greatly improves precision, since in

the 0-shot case, some GPT-3 outputs included extraneous extractions (e.g., a proce-

dure). Typical failure modes of the baseline include incorrect recognition of overloaded

abbreviations and missing vendor-specific drug names. Table 7.6 shows conditional

accuracy on medication status classification. For an apples-to-apples comparison, we

conditioned on the subset of medications found by all GPT-3 methods (241/340) and

evaluated T-few on that subset as well. We find that if the rarer Neither class wasn’t

demonstrated in the 1-shot example, it was unlikely to be output, depressing the

F1 score; including all classes in the 1-shot prompt appears more important than

necessarily having the correct labels.

7.7.2 Recognition + Relation Extraction

Dataset description. The annotators created a second new dataset for medication

extraction from the snippets from Moon et al. [176]. The annotators closely followed

the schema from the 2009 i2b2 medication challenge [276], with small deviations

explained in Appendix D.2.4. For 105 randomly selected snippets, the annotators

labeled mentions of medications, dosages, routes, frequencies, reasons, and durations,

if available, and their correspondences. We examine the task from three different

framings: a token-level annotation task, a phrase-level annotation task, and end-to-end

relation extraction. Let’s consider the example phrase “takes, Tylenol twice daily”.

For the token-level task, the desired output is a classification for each of the 4 present

tokens, namely [None, Med, Frequency, Frequency]. For the phrase-level task, our

goal is to annotate not just each token, but group together tokens that belong to the

same phrase. To do so, we use the BIO (Beginning, Inside, Ouside) schema; here, the

desired output would be [O, B-Med, B-Frequency, I-Frequency], since “twice daily”

should be treated as a single entity. Finally, for the end-to-end relation task, we want

to not only identify medications and their modifiers, but match each modifier to the

corresponding medication. Therefore, the desired output is Medication: "Tylenol",

Frequency: "twice daily".
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Prompting and Resolver. We again used 5 examples for prompt design with

InstructGPT (engine text-davinci-002 ) and greedy decoding (temperature = 0). We

use a different guided 1-shot prompt (containing 7 entities each) for each of the three

framings outlined above; these can be found in Appendix D.1. The resolvers for all

were short.

Comparison. For token and phrase-level classification, we used a PubMedBERT

model topped with a CRF layer. For end-to-end relation extraction, we first used the

token-level baseline to extract entity spans, then used the technique from Shi and

Lin [247] to classify whether each pair of entities was related. We then postprocessed

these pairwise outputs to match modifiers to their medications. For all the three

tasks, since we followed the 2009 i2b2 medication extraction annotation guidelines, we

fine-tuned the baselines with labeled data from i2b2 (10 fully annotated notes with

154 medication mentions, which we postprocess into smaller annotated chunks) and

directly evaluated them on our datasets. [276]. Appendix D.2.9 contains more detail

for the baselines and evaluation.

Results. Table 7.7 shows that the 1-shot GPT-3+R outperforms the i2b2-supervised

baseline across all task framings. The baseline end-to-end relation extraction perfor-

mance suffers due to cascading extraction errors, as the longest token in the medication

name had to be matched. GPT-3+R struggles with the duration and reason entities;

however, it has been previously found that there is often large disagreement (F1

estimated 0.2–0.5) in inter-annotator agreement for these two entities, since they tend

to be longer with ambiguous boundaries.

7.8 Analysis of Common Crawl Data

The experiments in the preceding sections indicate an ability of the GPT-3 series of

models to understand and parse clinical note text. However, given that there is a lack

of significant clinical note corpora available publicly online, this begs the question of

what training data these models used in order to learn clinical jargon. In this section,

we characterize the constituents of the data used to parse clinical contexts.
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Data

The original GPT-3 language model (that the instruct-based models were built on top

of) was trained autoregressively on a scrape of Common Crawl filtered for quality and

duplication (60% of training data) and curated corpora (e.g., Wikipedia) for the other

40% [35]. As we do not have access to this dataset, we instead turn to the 750GB C4

dataset as a proxy [214]. Compiled for training the T5 model, C4 stands for ”Colossal

Clean Crawled Corpus.” Like the GPT-3 dataset, C4 underwent filtering to restrict

to de-duplicated, higher-quality, non-offensive English language text. While C4 is

significantly smaller than the corpus used to train GPT-3, we believe it can provide

insights into the sources that constitute health data in the Common Crawl.

We leverage the C4 search provided by The Allen Institute for Artificial Intelligence3.

Given a set of query terms, the search provides up to 10,000 results from the C4

dataset; they do not specify how these results are ordered. To understand what sources

of clinical jargon might exist and how LLMs might have learned clinical associations,

we focus on extracting documents in which clinical short forms (e.g., “dc”, “pt”) occur

alongside their expanded long forms (e.g., “discontinue”, “prothrombin time”). The

clinical short forms alone are insufficient, as e.g., “dc” also commonly refers to the city,

the comic publisher, and the clothing brand. If searching for “dc”, only a tiny fraction

of the 10,000 might use the clinical context. On the flip side, only using the long form

may skew towards more formal settings (e.g. research articles and medical reference

materials) that do not transfer to the clinical text setting.

Therefore, the first step was compilation of a set of pairs of short forms and

corresponding long forms. 92 of these were taken from the filtered disambiguation

dataset described in Section 7.4. We excluded (i) those acronyms that included typos

in the short form (e.g., used “AB” instead of “AV”), (ii) non-clinical long forms (e.g.

“masters” for MS, or “United States” for US), or (iii) long forms that didn’t appear

at least once. While non-clinical long forms are important for the disambiguation

task, they do not shed insight on the distribution of clinical text. In addition, we

added ten common additional shortenings that are more clinically colloquial in nature
3https://c4-search.apps.allenai.org/
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and do not necessarily correspond to formal shortenings (e.g., “PT” is a formally used

shortening for “physical therapist”). These ten additional shortenings were: “carbo

(carboplatin)”, “vanco (vancomycin)”, “qid (four times daily)”, “qhs (at bedtime)”, “prn

(as needed)”, “cc (chief complaint)”, “ddx (differential diagnosis)”, “dx (diagnosis)”, “fx

(fracture)”, and “sq (subcuteaneous).” We refer to this subset as Colloquial in results.

For each pair, we scraped both the number of total search results and the contents

(URL + text snippet) of the first 100 results. After scraping, we de-duplicated entries,

on the basis of URL. Of particular note are two entries which had no search results.

One was the drug administration route “per rectum”; this can be fully explained by

the C4 filtering of potentially offensive terms, of which “rectum” is one. The other

was “retrograde tachycardia,” which a Google search reveals rarely occurs online (164

results). The post-processing resulted in a total of 8,611 scraped results over 100 pairs,

if we exclude the two pairs with no results.

Characterization of Sources

Next, we characterized the sources of the scraped results. To do so, we manually

examined and classified approximately 60 results from a variety of pairs to emerge with

10 categories: Patient Forum, Personal Blog, Research Article, News Article,

Clinician Forum, Patient Health Resource, Medical Encyclopedia/Dictionary,

Commercial Health, Non-Health, and Other Health. Existing website classification

software (e.g., Google Cloud Natural Language API) did not provide sufficient speci-

ficity to fully distinguish these categories, and therefore, we turned to a GPT-3 series

model, text-davinci-003 for zero-shot URL+ snippet classification. We used the

prompt below, restricting text snippets to their first 3000 characters to control costs.

Classify the URL and text below into one of the following categories: Patient

Forum, Personal Blog, Research Article, News Article, Clinician Forum,

Patient Health Resource, Medical Encyclopedia/Dictionary, Commercial

Health, Non-Health, or Other Health.

URL: <Insert URL>
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PT, physical therapy 10,000+

RA, rheumatoid arthritis 10,000+

PT, prothrombin time 2347

fx, fracture 1231

LE, lymphedema 667

RA, room air 457

PT, posterior tibial 315

CC, chief complaint 281

ddx, differential diagnosis 139

LE, leukocyte esterase 63

NAD, nothing abnormal detected 14

PR, per rectum 0

Table 7.8: Number of search results for a subset of the clinical text pairs, as ascertained
from the AI2 utility for searching Colossal Clean Crawled Corpus (C4).

Text: <Insert Text>

Classification:

Of the 8611 queries, completions from 8605 queries fell automatically into one of the

ten stated categories. Three inputs resulted in error outputs (which we excluded from

further analysis), two outputted “Clinical Forum” which we mapped to Clinician

Forum, and one outputted “Clinical Trial” which we mapped to Research Article.

A spot check of ten examples spanning the different classes, the GPT-3 completions

proved accurate. Further, we look at tokens within the URL, and find that the

distributions of terms across classes generally match expectation; details can be found

in Appendix D.4.

Results

Table 7.8 lists the number of search results for 12 of the clinical text pairs queried,

spanning a range from 0 to over 10,000. The scarcity of certain terms cements the

need to understand whether the test time data is adequately reflected in the training

data distribution.

Table 7.9 showcases the distribution of sources of clinical text pairs, split between

the CASI dataset (mostly acronyms, initialisms) and the common Colloquial set of

pairs described previously. While Research Articles form the plurality of sources

for both sets of pairs, it is interesting to note that they are a far less common

data source for the colloquial terms (median of 34% of mentions for CASI, 16% for

Colloquial). Going one step further, there are several colloquial terms that are found
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even more rarely in research articles—only 8% of fx (fracture) mentions and only 7%

of ddx (differential diagnosis) mentions. In contrast, texts from Clinician Forums

become much more valuable for this Colloquial data (median of 2% for CASI, 13% for

Colloquial). The final column indicates that ultimately, the distribution of source text

differs widely depending on the jargon itself.

Takeaways

Our analysis of the frequency of clinical mentions in the C4 dataset highlights a

disparity in mentions for different clinical conditions. For example, due to the content

filtering mechanisms in place, many genitourinary conditions would not be well

represented in the C4 data. Specifically, this indicates a need for more precise filtering

mechanisms to ensure a broad base of knowledge. More broadly, this indicates a need

for practitioners to probe what corpora comprise the datasets on which foundation

models are built, as upstream decisions can have large effects.

Our analysis of the distribution of health text sources indicate that a wide variety of

resources (e.g., research articles, patient and clinician forums, patient health resources)

are required in order to ensure proper coverage of clinical terminology, particularly

for the kind of colloquial language found in clinical text. Given the current security

concerns of sharing LLMs trained on patient notes, the findings in this section could

serve as a blueprint for sources of training data for open-sourced clinical language

models.

7.9 Conclusion

In this chapter, we introduced new annotated datasets to show that (i) large language

models have great promise at diverse clinical extraction tasks and (ii) we can guide

generations to map to complex output spaces with only light post-processing. We also

demonstrated how weak supervision over the system’s outputs can be used to train

smaller, task-specific models that are more deployable. Finally, we explored what data

sources in Common Crawl GPT-3 might be learning clinical jargon from.
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CASI

Median

Colloquial

Median

Maximum

Observed*

Research

Article
34% 16% 89% (LA, left atrial)

Patient Health

Resource
20% 15% 92% (MS, multiple sclerosis)

Commercial

Health
9% 14% 59% (US, ultrasound)

Medical

Encyclopedia/

Dictionary

4% 5% 60% (SA, sinuatrial)

Clinician

Forum
2% 13% 37% (dx, diagnosis)

Personal

Blog
1% 4% 24% (AMA, advanced maternal age)

News Article 2% 4% 16% (LE, lymphedema)

Patient Forum 0% 3% 37% (carbo, carboplatin)

Other Health 0% 1% 8% (DC, discharge)

Non-Health 3% 1% 69% (OP, operative)

Table 7.9: Distribution of the sources of data in which clinical text pairs are found,
as classified by text-davinci-003. CASI median refers to a set of 100 pairs derived
from the CASI dataset, and Colloquial Median refers to a set of 10 pairs of common,
manually created clinical text jargon. *For maximum observed, we exclude query
pairs with fewer than 15 results, to prevent signal from a noisy handful of examples.
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The scope of clinical NLP extends past what we studied here, and important

next steps involve experimenting with LLMs such as OPT [321] for which we can

run inference locally, enabling evaluation on existing benchmarks and fine-tuning.

Another important direction involves leveraging the outputs from several prompts

(e.g., 1-shot prompts with different examples) to learn to determine when GPT-3

is uncertain; this increased reliability will be vital given the high-stakes in clinical

information extraction. Taken as a whole, our work indicates a new paradigm for

clinical information extraction—one that can scale to the lofty goals of clinical NLP.

7.9.1 Limitations

While large language models show great promise at clinical information extraction,

there are clear limitations to their use. First, it is still difficult to guide a LLM to

match an exact schema—clinical annotation guidelines are often multiple pages. We

found that even when the Resolved GPT-3 outputs were impressive qualitatively,

they did not always match at the token-level. For example, in tagging durations, one

Resolved GPT-3 output was “X weeks” instead of “for X weeks”. While this particular

omission is trivial, it highlights the difficulty of communicating nuanced guidelines.

The reliance on prompt design is both a limitation and an area for future automation.

Second, we found a bias in GPT-3 towards outputting a non-trivial answer even

where none exists. For example, for medication extraction the prompt we ended up

using was, “Create a bulleted list of which medications are mentioned and whether

they are active, discontinued, or neither.” However, prior to this we had experimented

with two separate prompts: “Create a bulleted list of active medications, if any.” and

“Create a bulleted list of discontinued medications, if any.” If there was one active and

one discontinued medication, the respective LLM outputs would be correct. However,

if there were two active medications and none discontinued, the LLM primed with the

discontinuation prompt tended to try to find an output and usually resorted to listing

one or more active medications. Therefore, it is important to craft prompts or tasks

that avoid this pitfall. For example, this could be achieved via (i) chaining multiple

prompts, e.g., first asking if a certain entity type exists in the input, before asking for
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a list [153, 308] or (ii) using an output structure like the sequence tagging approach.

Finally, because of the data use restrictions on most existing clinical datasets,

which prohibit publicly sharing the data (e.g., to the GPT-3 APIs), all tasks except for

biomedical evidence extraction were derived from the publicly-available CASI dataset

[176]. While we show the promise of transferring to a new setting in Section 4, it

would be ideal to have been able to directly evaluate on multiple hospital systems at

multiple points throughout time. Clinical text in CASI was drawn from notes from

several hospitals and a diverse set of specialties, but is by no means representative of

all clinical text. For example, the CASI paper states that the notes were “primarily

verbally dictated and transcribed,” but this practice is not universal. Further, as is

unfortunately common in clinical NLP, we only tested in English, leaving testing the

ability of LLMs to operate in different languages to future work [191].

7.9.2 Ethical Considerations

The datasets introduced in this paper involved only new annotations on top of existing,

publicly available clinical text. Dataset annotation was conducted by two authors

of the original work described in this chapter, and therefore there are no associated

concerns, e.g., regarding compensation. As discussed in limitations, we believe these

new annotated datasets serve as a starting point for the evaluation of LLMs on clinical

text, but we concede that conclusions about specific performance cannot be ported

to other languages, hospital systems, or temporal settings (as clinical text is quite

subject to dataset shift).

If large language models were to be integrated into clinical extraction pipelines, as

presented in this paper, there are large potential benefits. Clinical text is being created

at a scale far too large for manual annotation, and as a result, cohorts for clinical

study are largely small and hand-curated. Automatic structuring of clinical variables

would help catalyze research that may be prohibitively expensive otherwise – allowing

for study of rarer or less funded diseases as well as the analysis of real-world evidence

for subpopulations that may not be observed in clinical trials. However, due to the

high-stakes setting, it is imperative that the performance of such a system is evaluated
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in the same environment it will be used in, and that the performance numbers are

stratified by cohorts of note (e.g., racial, socioeconomic, patient comorbidities, disease

stage, site of care, author’s clinical role and seniority); such variables were not available

in the data we used here.

In this chapter, we accessed the GPT-3 model using the OpenAI API alone.

However, we acknowledge that even the inference cost is still nontrivial (see Appendix

D.3). We presented in Section 4 a paradigm of using weak supervision to distill a

much smaller model, using pseudolabels learned from GPT-3, and we encourage such

work to mitigate the environmental impact of deployment.

We also want to highlight the inherent dangers of using large language models

in higher stakes settings than clinical information extraction. As misinformation

(particularly autogenerated misinformation) is on the rise, these models will be

increasingly trained on untrue material. Even a question as benign as “What treatments

were taken for the patient’s COVID-19” could yield a complicated response.

Finally, given the increased ease of clinical information extraction, we caution

against hasty data science that forgoes robust evaluation. While these models are

impressive in the few-shot setting, it is important to conduct thorough error analysis

to understand pitfalls and biases.
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Chapter 8

Introducing Autocomplete for Cleaner

Electronic Health Records

Acknowledgement of Co-authors I am the second author on this paper, following

first author and my Master’s supervisee Divya Gopinath. While Divya and I had

near-daily conversations about the work described in this chapter, she contributed

almost the whole of the software development as well as the bulk of the writing.

8.1 Introduction

Clinicians currently spend more time documenting information in electronic health

records (EHRs) than communicating with patients, and the timesink in using inefficient

EHRs is posited to be a leading cause of physician stress and burnout [41, 82].

Doctors prefer using natural language and free-text for documentation over restrictive

structured forms [128], but clinicians have adapted to time-intensive note-writing by

relying on overloaded acronyms and jargon [254].

Consequently, medical documentation is often noisy, ambiguous, and incomplete.

The lack of structure in notes further hinders understandability for patients, other

physicians, and machines [11, 84, 133]. The information within EHR notes remains

largely untapped and, at present, cannot be easily used for downstream medical care

or for machine learning models that rely on structured data.
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8.1.1 Contributions

We propose a method called contextual autocomplete, which quickly captures clinical

concepts at the point-of-care via learned suggestions. To do so, we build a hierarchical

language model for clinical concepts that can operate in the noisy domain of ED

notes. Our model is designed to be deployed in a live hospital environment, with

inputs constrained to the triage information and past medical notes available to a

doctor before a note is written. While these constraints make it infeasible to build a

generative language model, we generalize to the task of autocompletion, where we make

multiple suggestions for the next clinical concept to document and allow the clinician

to determine the correct choice. As all suggestions are mapped to standardized clinical

vocabularies, we can simultaneously impose structure on notes as they are being

written, disambiguate between concepts, and make documentation faster for clinicians

in real-world hospital settings.

We present contextual autocompletion as the cornerstone of an intelligent EHR in

Figure 8-1. The contextual autocompletion tool reduces the amount of text a clinician

has to type by suggesting relevant terms using a learned context. Tagged terms

uniquely identify clinical concepts and can be linked with relevant information from

the medical record. Moreover, these terms can facilitate widespread improvements in

documentation and reduce overall cognitive load on doctors. Once a term is tagged,

it can be automatically inserted in multiple locations within the clinical note to

limit the amount of redundant information a clinician types. For example, a tagged

condition in an earlier part of a note can be automatically appended to the Past

Medical History section that appears later on, as in the right panel of Figure 8-1.

This mitigates the “death by a thousand clicks" phenomenon that EHRs suffer from

[242]. In addition, live-tagging clinical concepts can provide immediate rewards to

physicians in the form of decision support (as described in the following chapter);

the captured structured data can then be used to build smarter EHR interfaces

that enable contextual information retrieval about disease history and lab trends,

without ever leaving the note interface. Finally, tagging clinical concepts with our
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Patient has a history of m|itral stenosis
ultiple sclerosis
yasthenia gravis

Patient has a history of ms

Patient has a history of mitral stenosis

As a physician types, our system 
suggests terms based on patient 
history: mitral stenosis, multiple 

sclerosis, ...

Autocompleted terms are inserted 
as structured concepts, rapidly 

creating clean clinical annotations.

Synonyms can expand to provide 
automatic concept disambiguation 
for patients and other specialists. 

1 Facilitate fast, semi-structured, and understandable 
clinical documentation. 

2 Enable contextual information retrieval 
and better clinical decision support. 

… abnormal glucose
Tagged concepts can be augmented 
with relevant information such as lab 

trends, drug-disease indications, 
snippets from prior medical records, 

etc. 
Last GLUCOSE result: 130

HPI: ... h/o dm, htn

PMH: dm, htn

Reduce redundancy in documentation 
by pre-filling forms and other sections 

with already-captured information 
(e.g. information in History of Present 
Illness sections can be added to Past 

Medical History).  

Figure 8-1: Semi-structuring notes with contextual autocompletion can enable exten-
sive changes to both documentation and clinical decision support.

system allows for the translation of acronyms and domain-specific language to common

names. By normalizing key clinical concepts from notes to a universal vocabulary

(the Unified Medical Language System, or UMLS), notes written using our system

are semi-structured and parseable. Building a tool that allows clinicians to document

terms on-the-fly not only decreases documentation burden, but also curates large-scale

prospective datasets of labeled clinical concepts (e.g., conditions, symptoms, labs, and

medications) in notes.

8.2 Background: The Current State of Clinical Work-

flows

When a patient enters the Emergency Department (ED), there are several phases of

documentation. First, a triage nurse records patient vitals and a short description

of the visit reason. This triage note is then summarized in a succinct phrase known

as the Chief Complaint. Doctors also maintain a clinical note which is updated

throughout the course of the visit and contains information about the patient’s history,

current presentation, pertinent labs and tests, and a final diagnosis and treatment

plan. This note is also a constantly-evolving document. It is edited before the doctor

sees the patient (to document patient history), while treating a patient (to document

relevant symptoms and tests), and after the patient is discharged (to document the

final diagnosis). The note is time-intensive to create, and as such, our work focuses
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on decreasing documentation burden within the doctor’s note.

Clinical staff also have access to the patient’s past EHR, which is a rich data

source. The bulk of information in EHRs lies within unstructured clinical notes in

the patient’s file, which contain detailed information about disease history and prior

clinical care. Yet these notes are long and difficult to quickly parse. In our dataset,

the median number of EHR notes per person is 34 with a median note length of 301

words. There have been attempts to mitigate this information overload by creating

semi-structured representations of a patient’s medical history such as the problem list,

which catalogs a patient’s prior conditions. However, these lists are poorly maintained

and inconsistent amongst practitioners [280].

Efforts to intelligently structure free-text within clinical notes have been limited.

One common technique is to pre-fill notes with templates that rely on structured

text [294]. For example, clinical notes usually begin with a summary of patient

demographics and the chief complaint like 26 y/o M complains of dyspnea. This

method works for routine cases and structured, repetitive phrases that occur in some

sections of notes, but fails to capture subtleties of documentation that reflect the

nuances of clinical reasoning and physician preference.

To date, the largest-scale attempt to ease clinical documentation burden with

machine learning is by Greenbaum et al. [94], who built an autocomplete model to

predict candidate chief complaints in the ED from a set of approximately 200 stan-

dardized options. The model—a multiclass SVM trained on triage information—was

used to structure 99% of chief complaints in a live setting. We build on the work in

Greenbaum et al. to provide contextual autocompletion functionality for an unstruc-

tured clinical note by architecting a model that incorporates both contemporaneous

clinical information (triage text, vital signs, and laboratory results) and past medical

history (EHR), and by building an interface that supports intuitive and on-the-fly

documentation of multiple tagged terms from a large set of clinical concepts.
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Disease/Condition Ontology Concepts

Type 2 Diabetes

Type 1 Diabetes

Gestational diabetes

… 

Model Relevancy Buckets

Hypertension

Diabetes

… 

UMLS CUIs

INSULIN-DEPENDENT DIABETES
Synonyms: type 1 dm, iddm, type i 
dm, insulin-dependent dm… 
UMLS CUI: C0011854

BRITTLE DIABETES
Synonyms: brittle dm, labile diabetes
UMLS CUI: C0011854

… 

Clinical Note Text

Patient has a history of 
untreated iddm and 

hypertension but is trying to 
diet… 

Figure 8-2: Data model for our ontology of conditions. Clinical notes are normalized
to UMLS, and sets of UMLS IDs (CUIs) are aggregated to create unique concepts in
our ontology. Ontology entries are then grouped together in coarser model relevancy
buckets.

8.3 Methods

8.3.1 Data Overview and Cohort Definitions

We use data from 273,000 anonymized visits to the Beth Israel Deaconess Medical

Center (BIDMC) ED over the last decade, representing around 140,000 unique patients.

For each visit, we have access to patient demographics, triage information (triage

assessment, vital signs, and chief complaint), clinical notes from both the doctor and

nurse assigned to the patient, and medications currently prescribed to the patient.

In addition, we have all prior EHR notes for patients who had previously been in

the BIDMC system (74% of visits). We do not restrict our analysis to any particular

subset of these visits.

8.3.2 Defining Labels for Autocompletion

The goal of autocompletion is to predict terms that the doctor would type into a note

given a clinical context. In order to create positive labels for this task, we must extract

documented clinical concepts from medical notes through named entity recognition

(NER) on the text. We then normalize these concepts to UMLS. An example of this

is shown in Figure 8-2.

First, we restrict ourselves to a subset of the UMLS ontology and exclude terms

that do not correspond to a concrete clinical concept (e.g., Health Care Activity).

The filtered terms are then inserted into a trie data structure, which we use to identify
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all UMLS concepts in time linear in the note length. We also apply a modified

NegEx-style negation detection algorithm as in Chapman et al. [45] to identify and

mark which of these extracted terms occurred within a negative context. We provide

additional details on our implementation of negative context detection in Appendix

E.1.2. After filtering out concepts that appear fewer than 50 times, we extract

8,678 remaining UMLS concepts from visit notes. We then group concepts into two

categories: conditions that a patient might have a history of, and symptoms that

occur in the present medical context. Ambiguous acronyms such as MS are resolved as

follows: if the term is almost always used to represent a singular concept within the

ED, we default to that CUI, and otherwise ignore it. Two clinicians then independently

verified these lists.

Concept disambiguation between closely linked conditions is difficult. As an

example, hyperlipidemia and increased LDL are distinct UMLS concepts that

encode similar semantic meanings, whose differences are not clinically meaningful in

the ED and may be unknowable to the physician. To improve sample efficiency, we

share weights between similar conditions by introducing a manually-curated hierarchy

of UMLS terms and rolling terms up to an appropriate level of specificity such that

every combined term carried the same medical meaning. A subset of this ontology for

conditions is shown in Figure 8-2. The complete revised ontology (consisting of 940

entries encompassing 8,451 unique UMLS CUIs) can be found in Section E.2.4 of the

Appendix.

Condition concepts also represent varying levels of granularity, which is necessary

in clinical text [266]– a doctor could use depression, severe depression, or chronic

depression to describe a patient, but these are distinct entries in our ontology.

Choosing between similar terms during documentation is currently a subjective

practice that depends on the clinical scenario and user-specific preference. We address

this by further rolling up our ontology into a coarser set of model relevancy buckets

which group terms corresponding to similar underlying medical concepts. We build

our models to have predictive power at the level of relevance buckets, and later

rank individual terms within a model relevancy bucket to suggest terms for a doctor
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to document. This injects a medical inductive bias that forces parameter sharing

between similar concepts, thereby allowing us to leverage closely-related groups of rare

conditions to learn a common predictor. A subset of the 227 model relevancy buckets

can be seen in Figure 8-2. We find our UMLS-based extraction is equally effective on

our text as out-of-the-box learned extraction models such as cTakes [238], scispaCy

[190], and DistilBERT [232], while remaining sufficiently fast for live deployment. We

elaborate on this in Section E.1.3 of the Appendix.

8.3.3 Developing Predictive Features for Autocompletion

In a typical language model, one attempts to predict the distribution 𝑝(𝑤𝑖|𝑐𝑖) of an

unknown word 𝑤𝑖 using a context 𝑐𝑖 which captures the semantic information necessary

to make such a prediction. For a generative model, 𝑐𝑖 usually consists of a complex

representation of 𝑤1:𝑖−1 (the words preceding 𝑤𝑖) and is often parameterized by a

deep neural network. These representations are state-of-the-art for clinical language

modelling [114, 306, 161]. In our framework, complex inference techniques are too

slow to surface live suggestions with low latency in a hospital setting, and we only

seek to predict clinical concepts rather than the general language a clinician types.

All features we use as part of our context must be available before a patient and

physician interact, as this allows us to surface live suggestions as the clinician creates

documentation. This limits the data we can incorporate into our autocompletion

models to unstructured textual data from the EHR, which is our glimpse into the

patient’s medical history; and triage-time information such as vitals, chief complaint,

and the triage assessment.

Featurizing Textual Data

Our greatest sources of knowledge about the patient prior to clinician interaction lies

in prior EHR notes and the triage assessment. To featurize prior EHR documents,

we run the NER and hierarchical roll-up algorithms from Section 8.3.2. The result of

this is a mapping from a clinical text 𝑇 to a set of UMLS-mapped clinical concepts
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mentioned in the text, as well as a coarser representation of the types of conditions

incorporated into the note. To encode triage assessments, we simply use a standard

term frequency-inverse document frequency (TF-IDF) encoder to capture a normalized

bag-of-words representation of the text.

Featurizing Triage Vitals

Triage vitals are already structured as they represent information that is inherently

quantitative, such as heart rate and blood pressure. We discuss specific strategies of

further preprocessing triage vitals with each model use-case below.

8.3.4 Autocompletion Models

We frame contextual autocompletion as a hierarchical, human-in-the-loop language

model that suggests clinical concepts to document as a physician is typing. We leverage

four pieces of data to form our context 𝑐𝑖 = [𝑤1:𝑖−1, 𝑇,ℋ, 𝑉 ]; namely, the text so far,

the triage assessment, past EHR notes, and the patient’s triage vitals. Calling an

inference step of our model each time a word is written or removed is prohibitive in

terms of latency, so we employ a rules-based approach to incorporate 𝑤1:𝑖−1 into our

prediction while learning how to use the nuanced information in 𝑇,ℋ, 𝑉 . Inference

thus only needs to be run once per patient. We first use 𝑤1:𝑖−1 to determine when the

clinician wants to enter a potential clinical concept, and if so, whether that concept is

a condition, symptom, lab, or medication. We then generate four term-wise rankings

for each concept type, and stack the suggested rankings for each of the concept types

to generate a total ranking. In practice, we filter these rankings to entries with any

synonyms that match the typed query a doctor has entered. The doctor can either

continue to type or select a term, which is then inserted into the note as a tagged

concept using the synonym that he/she intended– as an example, typing ht might give

hypertension as a suggestion because of its synonym htn, and if a doctor chooses to

autocomplete, we insert htn to preserve intended note vocabulary. We outline our

four concept-specific ranking models:
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1. Conditions: we learn a mapping from the triage text and the clinical concepts

mined from the EHR to a ranked list of relevant prior conditions that the doctor

might want to document. This autocompletion model is primarily used to write

the History of Present Illness (HPI) sections of notes, where physicians note

past medical history that is relevant to the current patient presentation. We

find that vitals have little to no predictive power in this model.

2. Symptoms: we learn a mapping from the triage text, chief complaint, and vitals

to a ranked list of relevant symptoms that the patient currently presents with.

We do not include information from the patient’s past medical record in our

predictions because a patient’s current presentation is only loosely related to

prior visits.

3. Labs: we simply list labs by their recorded frequency in ℋ, rather than learning

a mapping. The space of labs is much smaller than the space of symptoms

or conditions, so we find that a frequency-based ranking is nearly optimal in

practice.

4. Medications: As with labs, we rank by frequency for the same reasons.

Autocompleting Conditions

Documenting relevant patient history is often an arduous task for physicians in the

ED. Doctors typically read a patient’s triage assessment and then search through

a patient’s EHR on an ad-hoc basis to try and contextualize the current visit with

the patient’s background. In our dataset, there is a median of 65 distinct conditions

mentioned in a patient’s EHR, but on average, only 5 of these concepts are then

documented in the ED clinical note. In addition, around a quarter of the patients in

our dataset do not have any prior records on file; in these cases, doctors can guess

relevant conditions to inquire about based on the triage text and chief complaint alone.

This leads to key model desiderata: first, we must be able to recover an intelligent

ranking over concepts even in the absence of prior medical notes using triage infor-

mation alone. Second, we seek to learn a single multilabel ranking over all possible
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model relevancy buckets in order to produce a globally calibrated model. Our model

first learns a ranking over the coarse model relevancy buckets, and then recovers a

ranking over individual condition concepts to mention in the note. We use a shallow,

dual-branch neural network architecture to combine a context 𝑐𝑖 consisting of a TF-IDF

representation of the triage text 𝑇 and a feature vector indicating the binary presence

1[𝑏 ∈ ℋ] of each model relevancy bucket 𝑏 in prior EHR notes ℋ. Each arm of the

network is passed through a single dense layer with rectified linear unit activation, the

two outputs of the dense layers concatenated, and then the combined embedding is

passed into a final dense layer with sigmoid activation to provide a vector of estimates

of relevancy for each bucket. We recover a term-wise ranking by sorting each term

first by whether it appears in the EHR, then by the rank of its relevance bucket, and

finally by its empirical frequency of occurring in the data to resolve ties. In this way,

we create a single architecture that predicts 𝑃 (𝑏|𝑇,ℋ), or the probability of 𝑏 being

relevant given the triage information and prior history, for all 𝑏 simultaneously and

thereby suggest conditions to document for patients both with and without a prior

medical history. Training details for this architecture can be found in Section E.2.2.

We also compare against three baselines:

1. One vs. Rest Logistic Regression on Triage Text : We build a model based solely

on 𝑇 . For each model relevancy bucket 𝑏, we estimate the 𝑃 (𝑏|𝑇 ) via a logistic

regression model trained on a TF-IDF representation of 𝑇 to predict if any term

in 𝑏 was mentioned in the corresponding clinical note. We randomly select notes

without any mention of 𝑏 to generate negative samples. To make a prediction

for a given patient, we then rank relevance buckets 𝑏 by 𝑃 (𝑏|𝑇 ). To recover

a term-wise ranking, we sort each term first by the rank of its corresponding

relevance bucket and by its empirical frequency in clinical notes.

2. One vs. Rest Logistic Regression on Triage Text, EHR: As above, we train a

logistic regression model on 𝑇 for each model relevancy bucket 𝑏. However, when

predicting 𝑃 (𝑏|𝑇 ), we restrict ourselves to train on samples where 𝑏 is mentioned

in ℋ. That is, our model predicts the probability 𝑃 (𝑏|𝑇,1[𝑏 ∈ ℋ]). We assume
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𝑃 (𝑏|𝑇, 0) = 𝜖𝑏 for a small but nonzero 𝜖𝑏, or that if if a term does not appear in

a patient’s EHR, it is unlikely that it will be documented in the present note.

To recover 𝑃 (𝑏|𝑇 ), we multiply by an empirically computed prior probability

𝑃 (1[𝑏 ∈ ℋ]) of each bucket being mentioned in the EHR. We recover a term-wise

ranking using the same key as the previous method. The leak probability 𝜖𝑏

allows us to rank buckets that are not present in the EHR by their empirical

probabilities alone, giving us predictive power for patients without any prior

history.

3. Augmented One vs. Rest Logistic Regression on Triage Text, EHR: We exper-

iment with feature-engineering approaches to include signals from the EHR

in our model covariates. In particular, we augment the feature space with a

representation 𝐷 of how many days it has been since 𝑏 was mentioned in the

EHR, and compute 𝑃 (𝑏|𝑇,𝐷,1[𝑏 ∈ ℋ]) via logistic regression. In order to

force this input variable to conform to a normal distribution, we transform the

delay times by assuming mentions follow a Poisson process and concluding that

delay times should be exponentially distributed. We follow the same empirical

reweighting and term-wise ranking procedure as in the previous model.

Autocompleting Present Symptoms

Based on discussions with clinicians as well as qualitative analyses within our slice

of ED data, we find that the symptoms that a doctor asks a patient about and

subsequently records are primarily rule-based. A chief complaint of dyspnea at triage-

time, for example, might prompt the doctor to inquire about dyspnea (reaffirming

that it is still a concern), chest pain, coughing, etc. Consequently, the models we

develop for symptom autocompletion use only the chief complaint and triage vitals as

covariates. We perform ablation tests with all of our models to confirm that adding

in a bag-of-words representation of the triage text did not increase performance, and

develop four schemes to map chief complaints and vitals to a ranking over symptoms:

1. Empirical Conditioning on Chief Complaint: For a given chief complaint 𝑐, we
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empirically calculate 𝑃 (𝑠|𝑐) for each 𝑠 in the set of symptoms 𝑆, and rank each

symptom by this probability.

2. Empirical Conditioning on Chief Complaint, Vital: For a given chief complaint 𝑐

and a list of vitals 𝑉 , we calculate the single vital 𝑣 ∈ 𝑉 that is most abnormal.

Abnormality is defined as the percentile deviation from the population median

of the vital value. We then encode 𝑣 as a categorical variable 𝑏(𝑣) based on

medical guidelines about the given vital (for example, heart rate vitals are placed

into one of three buckets: LOW HR, NORMAL HR, and HIGH HR). Full details about

the bucketization procedure can be found in the Section E.1.4. Finally, we

empirically calculate 𝑃 (𝑠|𝑐, 𝑏(𝑣)) for each 𝑠 ∈ 𝑆, and rank each symptom by this

probability.

3. One vs. Rest Logistic Regression: For each symptom 𝑠 ∈ 𝑆, we train a logistic

regression model mapping the chief complaint and vital values to whether 𝑠

appears in the ED note corresponding to that visit. Then, we rank the output

probabilities for each symptom.

4. One vs. Rest Naive Bayes: For each symptom 𝑠 ∈ 𝑆, we train a Naive Bayes

classifier mapping the chief complaint and vital values to whether 𝑠 appears in

the ED note corresponding to that visit. Then, we rank the output probabilities

for each symptom.

In practice, we find that the second scheme performs best and we use this for deploy-

ment. Comparative performance for these models is detailed in Section 8.4.

Autocompleting Labs and Medications

Autocompleting labs and medications is different from symptoms and conditions in a

few marked ways. A patient’s medical record contains structured information about

prior lab tests and values, as well as medications and their dosages prescribed in

the past. This is in contrast to symptoms and conditions which are almost always

referenced in unstructured notes or free text. Concept disambiguation is less pertinent
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because there are structured representations of labs and medications, and there are

already semi-structured lists of labs and medications that exist in clinical records.

The primary value-add for physicians to tag a mention of a lab/medication in a note

is instead to enable immediate information retrieval. Tagging HCT, for example, can

prompt the visualization or insertion of a patient’s hematocrit trend. We thus add

lab and medication autocompletion to be thorough in our data collection, and use a

frequency-based autocompletion for both data types.

Determining Autocompletion Scope and Type

There are two components to displaying autocompletion suggestions: (1) the scope of

autocompletion, which determines when a clinician wants to document a concept; and

(2) the type of autocompletion, which determines a ranking over whether the clinician

wants to document a condition, symptom, lab, or medication. A potential approach

to this problem is to build a sequential model predicting whether the next word typed

will be a clinical concept and its corresponding type, but this requires significant

client-side infrastructure to curb model latency– Gmail’s Smart Compose system, for

example, which surfaces dynamic suggestions of words to type from a neural language

model, is only made possible via custom hardware and extensive system infrastructure

[49]. We discuss this further in Section 8.5. To build a system which can run live, we

instead adopt a rule-based approach.

We first define a default concept-type ranking per note section. For example, in HPI,

the majority of documented content pertains to historical conditions and some current

symptoms/medications, so the default ordering is CONDITION, SYMPTOM, MEDICATION,

LAB. In contrast, in a Physical Exam section, clinicians document symptoms more

than chronic conditions, so the default ordering is SYMPTOM, CONDITION, MEDICATION,

LAB. We then establish certain key phrases to act as autocompletion triggers if they

are likely followed by a clinical concept. We curate a list of common trigger phrases

(e.g., presents with, history of) and map them to the concept type that follows

them– presents with is mapped to SYMPTOM, and history of to CONDITION. Using

these, we create a NegEx-inspired algorithm to predict both autocompletion type and
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Figure 8-3: Screenshots of contextual autocompletion tool for each autocompletion
type. From left to right: (a) Conditions (b) Symptoms (c) Medications and (d) Labs.
Trigger words before the tagged term affect the scope and type of the autocompletion.
Clinical concepts with synonyms that match the typed text are listed with the synonym
in black text and the more general concept name in gray.

scope by greedily matching triggers in the text [45]. A full algorithm sketch of this

is included in the Section E.1.2, and screenshots of the scope and type prediction

algorithms at work are shown in Figure 8-3.

While we rely on autocompletion scope and type prediction algorithms to guess

where the user will insert a tagged term and the types of these terms, we support

fallback data capture methods for when our algorithms fail. We do so in two ways.

First, a user can start an autocomplete scope with a manual trigger. In addition, if

the user does not type the manual trigger, we use an Aho-Corasick keyword detection

algorithm to efficiently map exact string matches in the text with clinical concepts

to our ontology [8]. Any matches are displayed as potential tags which doctors

can manually confirm if desired. A screenshot depicting these backup data capture

strategies can be seen in Figure E-2 of the Appendix. We analyze how often these

mechanisms are exercised in practice below. Our rule-based algorithms have an average

end-to-end latency of ≈ 0.2 milliseconds to make a prediction, which is well below the

100ms threshold for a response to feel instantaneous [193]. In contrast, making an

API call to a shallow convolutional neural network for scope and type prediction takes

upwards of 250ms in the absence CPU throttling, network overload, etc.
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8.4 Results

A physician uses contextual autocompletion by naturally typing a note and either

automatically or retroactively completing clinical phrases that are then rendered as

tagged concepts. As in standard autocomplete, autocompleted concepts are filtered

to those that match the user’s typed prefix. We briefly describe the user experience

of the tool with a screenshot in Figure 8-3, and examine how it reduces clinical

documentation burden in practice.

8.4.1 Performance and Usability Metrics

Retrospective Evaluation on Clinical Notes

Before deploying our autocompletion models in a live setting, we evaluated the quality

of our suggested rankings via retrospective annotation of the clinical notes we had on

file. In particular, we measured performance broken down by concept type, as well as

the efficacy of our autocompletion scope and type detection algorithms. We use two

standard information retrieval metrics, the mean reciprocal rank (MRR) and mean

average precision (MAP) to gauge the quality of our rankings (definitions in Section

E.2.3). We compare the MRR of our contextual autocompletion tool rankings against

two naive baselines: spell-based autocompletion (ranking terms alphabetically) and

frequency-based autocompletion (ranking terms by frequency). Performance by MAP

is detailed in the Section E.2.3.

To generate our evaluation set, we extract medical concepts from 25,000 clinical

notes with the technique outlined in Section 8.3.3. Using the order in which concepts

were suggested, we first measure MRR assuming our scope and type detection was

perfect, broken down by the four concept types. Results are shown in Figure 8.1.

We see the largest gain in using a contextual model for conditions, because the

space of terms is large and the richness of the EHR greatly influences documentation.

Within the contextual models for predicting prior conditions, the dual-branched neural

network outperforms others primarily because it is predictive even for patients who

did not have any history on file at the hospital. On the other hand, when documenting
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symptoms, a model that ranks symptoms by their empirical frequency (conditioning

on the chief complaint and the most abnormal vital) performs best.

To quantify the ease of documentation using our autocompletion scope and type

detection algorithm, we also measure MRR when typing HPI sections of notes. We

focus on HPI notes as they contain a range of concept types (conditions, symptoms,

medications, etc.) and also were the only note section we could reliably segment

due to dataset limitations. On average, there are 6.8 documented clinical concepts

per HPI section. Of the extracted clinical concepts in HPI sections, 46% of terms

were autocompleted automatically without a manual trigger, and in 77% of those

cases, we guessed autocompletion type correctly as well. As a result, the MRR of

automatically-detected autocompleted terms is 0.35. Even in cases where the doctor is

forced to insert a manual trigger to autocomplete a term, we still greatly decrease the

documentation burden on doctors as shown in Figure 8.1. These manually-prompted

scenarios can be mitigated as a doctor learns and adapts to the autocompletion triggers

of the system, which we elaborate on in Section 8.5.

Documentation in the Wild: Live Evaluation

Because the primary goal of this tool is to improve documentation efficiency, we

also define the keystroke burden as the number of keystrokes the clinician needs to

type until he/she autocompletes and inserts a desired term. This usability metric

inherently encompasses the quality of our information retrieval in its calculation while

also incorporating real-world behavior—there may be a delay between a term being

suggested first and when a clinician actually autocompletes the term. We compare

keystroke burden between a contextual model and no autocompletion in Figure 8.2.

In our live evaluation, a single physician wrote 40 notes using our system over two

shifts. In practice, an average of 8.38 terms are tagged per note, and we reduce overall

keystroke burden for these clinical concepts by approximately 67%, with clear gains in

using our model irrespective of note section or concept type. 53% of the tagged clinical

concepts were autocompleted without a retroactive label. Moreover, 96% of these

terms were automatically prompted (as opposed to the user manunally prompting the
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(a) Comparison of MRR between contextual autocompletion models

Model Type MRR ↑

Conditions
One vs. Rest Logistic Regression on 𝑇 0.09 ±0.02

OvR LR on 𝑇 , EHR 0.15 ±0.02

Augmented OvR LR on 𝑇 , EHR 0.17 ±0.01

Dual-branched neural network 0.28
±0.01

Symptoms
Empirical Conditioning on Chief Complaint 0.39 ±0.01

Empirical Conditioning on Chief Complaint, Vi-
tal

0.42
±0.01

One vs. Rest Logistic Regression 0.16 ±0.01

One vs. Rest Naive Bayes 0.27 ±0.02

(b) Comparison of MRR across autocomplete types

Model Type Autocomplete Type

Spell Frequency Contextual

Conditions 0.01 ±0.001 0.08 ±0.01 0.28 ±0.01

Symptoms 0.05 ±0.001 0.27 ±0.01 0.42 ±0.01

Labs 0.01 ±0.001 0.40 ±0.01 N/A

Medications 0.02 ±0.001 0.02 ±0.001 N/A

Overall 0.01 ±0.001 0.19 ±0.03 0.29 ±0.05

Table 8.1: Retrospective Evaluation of MRR using Contextual Autocompletion. We
report average MRR (±95% confidence interval of the mean) for each of our learned
contextual autocomplete models, and compare our best models (dual-branched neu-
ral network for conditions, empirical conditioning on the chief complaint and most
abnormal vital for symptoms) to spell-based and frequency-based baselines, both for
specific concept types as well as overall using our scope and type prediction algorithms.
Calculated across 25,000 visits.

autocomplete), indicating our scope and type detection had high recall even when

doctors had not yet adapted to the system. For 77% of the terms tagged without a

retroactive label, we also predicted the clinical concept type correctly.
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Subset Autocompletion Type

None Contextual

Overall 11.85 ±1.94 4.32 ±0.43

By Note Section
History of Present Illness 12.36 ±2.16 4.57 ±0.87

Past Medical History 11.41 ±2.09 2.94 ±0.68

Medical Decision Making 10.27 ±3.18 4.08 ±0.49

By Concept Type
Conditions 13.08 ±1.72 4.34 ±1.49

Symptoms 8.5 ±2.18 4.53 ±1.00

Labs 10.33 ±5.76 2.06 ±0.88

Medications 9.27 ±1.97 4.27 ±1.34

Table 8.2: Live Evaluation of Contextual Autocompletion Models. Mean keystroke
burden for autocompleted concepts (± 95% CI from mean), measured across 40 notes
written live by a single physician over two shifts. Performance is also broken down by
note section, as well as concept type.

8.4.2 Autocompletion Sensitivity Analysis

Concept frequency influences the efficacy of our contextual autocompletion model

of conditions. The biggest wins in the model occur with the group of conditions in

the middle of the frequency distribution. Renal insufficiency, for example, is an

infrequent but not rare term that will almost certainly be documented in a note if

it appears in the patient’s history. The symptom contextual autocompletion model,

on the other hand, is generally agnostic to concept frequency because the space of

symptoms is much smaller and the distribution of symptoms is less skewed than that

of conditions.

In addition, the presence of prior medical history has significant impact on con-

textual autocompletion performance for conditions. As shown in Table 8.3, we see

greater reduction in documentation burden if the patient has prior EHR. However,

our contextual model and a frequency-based autocompletion model perform similarly

for concepts that are not mentioned in the EHR despite the person having some prior

medical history. This can largely be attributed to the inherent bias of our ranking

scheme, which preferentially orders terms mentioned in the EHR above those that are

not.
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Mean Keystrokes Saved per Condition Concept

Uncommon
Concepts

Median
Concepts

Common
Concepts

With no past EHR at hospital 0.63 ±0.42 0.81 ±0.50 0.47 ±0.20

With prior mention of concept in EHR 2.64 ±0.65 2.02 ±0.38 1.40 ±0.16

Table 8.3: Number of keystrokes saved by our contextual model compared to a
frequency-based baseline (±95% CI of the mean) for conditions. Performance was
stratified by concept frequency (by terciles) and by available medical history.

Concept Most Predictive Triage To-
kens

Most Predictive Model Rele-
vancy Buckets

Dementia dementia, abrasions, fell, home,
fall, neuro, son, ...

dementia, neurodegenerative dis-
eases

Bronchitis pna, pneumonia, cough, sob,
hemoptysis, sputum, ...

pneumonia, chronic lung disease

Prostate can-
cer

ca, mass, chemo, lymphoma,
melanoma, cll, tumor, ..

cancers, prostatectomy

CHF chf, chest, sob, cp, cough, syn-
cope, fall, ...

heart failure, heart attacks, hyper-
tension, afib

Diabetes bs, fsbs, glucose, iddm, sugars,
toe, finger, ...

diabetes, hyperlipidemia, diabetic
neuropathies, gastroparesis

Table 8.4: Predictive features for selected condition concepts, using a linear approxi-
mation to our contextual model for conditions. Inputs to the model are a TF-IDF
representation of the triage text as well as the presence of coarse-grained model
relevancy buckets in a patient’s prior medical record, as defined in Section 8.3.2.

8.4.3 Interpreting Contextual Autocompletion of Prior Condi-

tions

Because our contextual model for conditions learns a ranking from a representation of

the triage text and medical history, it is naturally more sensitive to changes in input

than our contextual model for symptoms. Here, we dig further into what drives model

predictions.
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Performance By Concept

Our multi-label model predicts the binary relevance of each model relevancy bucket.

To better interpret relevancy predictions on a per-bucket level, we approximate our

model for a specific relevancy bucket 𝑏 with a linear function of the inputs. This is

done by fitting a 𝐿1-regularized linear approximation between the features and the

logits generated by the model for bucket 𝑏 to surface highly-weighted features [162].

In Table 8.4, we provide examples of the top-weighted positive features in the linear

approximations to models for five selected concepts. Overall ranking performance by

MRR for these concepts is in Figure E-3 of the Appendix. Interestingly, while all of

the chosen concepts relied on medically meaningful tokens present in the triage text,

the linear models for diabetes and congestive heart failure both used the presence of

many model relevancy buckets, whereas the other three concepts only relied on a few.

This is likely because the model always relies on triage text but can give predictions

even in the absence of prior medical history, and as the linear approximation to our

model encourages sparsity, only highly predictive model relevancy buckets will be

chosen as features. A frequency-based baseline outperforms our learned model only

for extremely common conditions like hypertension and diabetes.

Qualitative Evaluation & Readability

We qualitatively evaluate rankings over conditions to better understand model decisions.

As can be seen in the selected examples in Figure 8-4, both the presence of EHR

notes as well as specific types of words mentioned in the triage note can have great

impact on the rankings, which are much more context-specific than frequency-based

rankings. Chronic conditions mentioned in a patient’s medical history are highly

ranked even if they are not directly related to the present medical context, because

they are likely to be documented regardless. For example, in Figure 8-4a, two patients

have identical triage text but different medical histories—consequently, hysterectomy

is highly ranked for one. Of course, the triage note still governs the overall theme

of the most highly ranked terms; in Figure 8-4b, two patients with identical medical
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Triage text:
Bumped heads with daughter and has pain behind R eye, pain in waves. No 

loc, no vision change

Terms mentioned in 
prior EHR notes:

None

Contextual Ranking

Eye pain
Migraines

Hypertension
Recurrent DVTs

Diabetes
...

Terms mentioned in prior EHR notes:
Hypertension, lung disease, aneurysms, 

tachycardia, rhinitis, hemorrhages, pneumonia, 
syncope, hysterectomy, arthroplasty, TB

Contextual Ranking

Migraines
Hysterectomy

Aneurysms
Eye pain

Hypertension
...

Frequency-based Ranking

Hypertension
Type 1 Diabetes
Type 2 Diabetes

Myocardial infarction
Depression

...

(a) Effect of patient history on contextual rank-
ings.

Triage text:
Bumped heads with daughter and 

has pain behind R eye, pain in waves

Contextual Ranking

Migraines
Hysterectomy

Aneurysms
Eye pain

Hypertension
...

Triage text:
pt has dyspnea since am and is 

wheezing, low resp rate

Contextual Ranking

Hypertension
Asthma 

Hypothyroidism
Chronic lung disease

Rhinitis
...

Terms mentioned in prior EHR notes:
Hypertension, lung disease, aneurysms, tachycardia, rhinitis, hemorrhages, 

pneumonia, syncope, hysterectomy, arthroplasty, TB

(b) Effect of triage note on contextual rankings.

Figure 8-4: Case Studies of Rankings over Conditions

histories but differing chief complaints have vastly different context-specific rankings.

8.5 Discussion

The contextual autocompletion tool we have outlined harnesses the power of machine

learning to encode information about medical contexts, and then uses this to suggest

terms to document to clinicians. Medical professionals who utilize this tool can not

only document terms more easily and save valuable time to interact directly with

patients, but also can create clean annotations of clinical text in a novel manner. These

annotations can be used to provide disambiguation between overloaded terms, clarify

associations between medical concepts, and generate large-scale EHR datasets for

future innovation. All of the medical ontologies built for this chapter map to UMLS,

making our contextual autocompletion tool translatable to other clinical centers with

minimal modification. The ablation tests we carried out show that using a few features

(primarily representations of medical histories) can result in performant predictive

models for documentation. This is a critical advantage of our system because EHR

data is often very sparse—patients can enter the ED with no prior medical history,

yet we can still glean information from the triage assessment to represent a patient

state. Our strategies also obviate the need for complex data imputation schemes.

Our system provides automatic and natural autocompletion of a clinical concept

when our scope detection algorithm is accurate, and users may need to resort to a
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manual trigger in other cases. This is not a major hindrance based on our evaluation

criteria, and we significantly reduce documentation burden even if the manual trigger

is used. However, we note that more complex model classes (e.g., recurrent neural

networks/sequential learning models) may be better at scope prediction, at the expense

of client-side latency. That being said, using manual triggers for autocompletion,

however, can also establish consistent system behavior for physicians, and create

notes that are concise. As an example, one clinical note in our dataset began with

the phrase patient has a history of abdominal pain which seems recurrent,

whereas our system would autocomplete to patient has a history of chronic

abdominal pain. While we we do not explore these schemes in this chapter, further

study of this trade-off can be found in section 5.2 of Gopinath [89].

We propose future directions to build on and continue this work. The first is to

better integrate key semantic modifiers into our tool. As an example, doctors often

document the absence of symptoms (e.g., no fever) to aid in a differential diagnosis.

While we can use rule-based approaches to retrospectively attach negation modifiers

to tagged medical concepts, future work should seek to fuse modifier capture with

the UI, which is explored in the following chapter. Clinicians might also type a term

that refers to someone other than the patient (e.g., family history of diabetes

in mother), and we should automatically learn that the concept diabetes refers to a

third-party rather than the patient.

In addition to facilitating semantic modifier capture, a next iteration should

dynamically update suggested terms to document using already-tagged terms in the

note. Tagging atrial fibrillation, for example, might indicate that there is a

high likelihood of the doctor typing an anticoagulant next. Using live data collected

from the deployed tool, we can use early drafts of a clinical note to influence the

medical context for later autocompletion suggestions. We can also clarify patterns of

redundant data entry by examining where the same underlying medical concept is

repeated in the note, with the eventual goal of learning and auto-inserting necessary

repetitious documentation. These dynamic updates introduce a significant latency on

the client-side UI to perform online inference as words are typed, so this may not be
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feasible for all systems and thus we did not consider it in this first iteration.

Finally, further work should be conducted to understand the possible bias induced

by terms that appear higher in the autocomplete ranking, if any. As autocompletion

of longer phrases becomes increasingly feasible, studying this in greater detail will be

paramount. New paradigms will be required to do wider AI-assisted documentation

safely, as we must consider veracity of suggested text, grounded support for that text,

and a potential loss of agency among clinicians, as observed previously in Chapter 4.

8.6 Conclusion

EHRs have introduced significant burden on physicians, and to adapt, doctors have

resorted to using overloaded jargon that then renders clinical notes unusable for

downstream clinical care. The lack of clean labels for unstructured text also inhibits

how we can utilize machine learning techniques to transform healthcare. There is

a real need to modernize and exploit the information hidden within notes without

interrupting the clinical workflow. While our contextual autocompletion tool can

reduce documentation burden and curate clean data for machine learning purposes, it

also opens the possibility of reforming clinical documentation practices to make notes

more understandable to humans and algorithms alike. Fundamentally, live-tagging

of medical concepts enables unprecedented changes to EHR design. By integrating

machine learning methodologies into documentation practices, we can usher in a new

era of EHRs that assist rather than impede physicians.
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Chapter 9

Integrating Automated Information

Retrieval into EHRs

Acknowledgement of Co-authors I am the third author on this paper, following

first author Luke Murray and my Master’s supervisee Divya Gopinath. Luke headed

development of the front-end and user interface components described in this work,

and Divya headed development of the information retrieval components described

here. As with Chapter 8, Divya and I spoke nearly daily about this work, and Luke

and I collaborated at a less frequent cadence. I was highly involved in the writing,

analysis, and evaluation presented in this chapter.

9.1 Introduction

In this chapter, we describe how the paradigm of prospective data capture can facilitate

automated information retrieval in EHRS. EHRS were adopted in the hope that they

would improve quality of care, save time, support collaboration and data sharing, and

prevent clinical errors [59, 24, 77, 241]. However current EHR platforms have largely

failed to achieve these goals. Studies of EHR adoption have shown both positive and

negative effects [167, 140], but clinicians now spend more time navigating EHRs than

physically communicating with patients and EHR usage is a leading cause of physician

burnout and stress [170, 251, 180].
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Despite being laborious to create, well-written clinical documentation is invaluable.

At their best, cogent clinical narratives can help clinicians understand a patient’s

case [204, 167], function as a powerful communication method between clinicians

[56], and serve as learning tools to improve future care practice [24]. But EHRs

rarely achieve this and arguably interfere with it. The issue lies in the fragmentation

among views in the EHR for the two processes underlying the clinical workflow: (i)

information retrieval and data exploration over a patient’s history and (ii) information

entry. Because structured and unstructured data can be hard to reconcile, EHRs often

store and display information in separate pages or windows, and physicians have to

synthesize the patient narrative by navigating across a variety of sources [229, 7]. This

creates increased cognitive burden to discover unstructured information, and studies

have shown that clinicians spend more time reading past notes than doing any other

activity in the EHR [39]. Further, the fragmented interfaces hinder comprehensibility

and necessitate frequent task-switching [326, 167, 56]. To avoid this context switching,

clinicians have developed coping mechanisms such as copying from previous notes or

using autofill techniques for naive pre-population of text [100, 166, 230]. Unfortunately,

indiscriminate use of these auxiliary functions causes documentation to become bloated,

making it difficult for clinicians to parse important clinical information, and potentially

even propagating errors [275, 230, 105, 295].

9.1.1 Contribution

In this chapter, we propose a novel documentation system for EHRs, MedKnowts, which

passively assists clinicians by seamlessly integrating an editor for clinical documentation

with a concept-oriented view [319] of the patient’s medical history. MedKnowts provides

contextual autocomplete (Fig. 9-1A) for clinical terms (e.g.,conditions, symptoms),

saving precious documentation time. The autocomplete works without a trigger

character—so it does not disrupt the prior documentation workflow—and displays

options for structured data entry (e.g., lab values) as the user types, removing the

need to memorize content importing phrases. When autocomplete is not used, we

employ keyword matching, which we call post recognitions, to automatically identify
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Figure 9-1: The MedKnowts interface containing sections of the clinical note on the
left, and an integrated sidebar on the right. The user is typing WBC and triggering
autocomplete (A). Detail text in the autocomplete is used to differentiate clinical
terms and provide additional context such as result counts. The card for the most
recent identified term, CK, is displayed in the preview pane (C) with values displayed
as a line chart, and abnormal values highlighted in red. The preview pane history can
be navigated using the backwards and forwards buttons at the top of (C). Below the
preview pane the doctor has pinned a card for oxycodone (D), which displays note
snippets relevant to oxycodone. A search bar at the top of the sidebar can be used
as an alternative method to add cards to the preview pane. A transcluded card for
cardiac conditions (B) shows labs, cardiology reports, and note snippets relevant to
congestive heart failure in a single interface.
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clinical terms as the clinician types. Both auto-completed and post-recognized terms

are transformed into structured interactive elements which we call chips. We leverage

this structure for live semantic highlighting that enables easier parsing of long notes

and for automatic population of repetitive text fields, easing documentation burden.

Therefore, MedKnowts retains some of the benefits of structured data entry, while still

allowing users the flexibility of natural language to describe the subtleties of complex

patient narratives.

Further, we use the structured data to automatically surface information cards

in an attached preview pane (Fig. 9-1C) as the doctor types. Proactively displayed

cards provide concise summaries of relevant medical history, reducing the context-

switching required to synthesize a note. Each card is a concept-oriented view [319] such

that information is grouped by underlying concept (e.g., the labs, medications, and

notes related to a condition) rather than by data modality (all medications at once).

Concept-oriented views have been shown to help physicians work faster and make

fewer errors [244]. In addition to the automatically surfaced cards, chips embedded

in the note and in cards serve as links to related cards, providing direct access to

the relevant medical history from the note context and other cards. Cards can be

surfaced in-line by hovering on a chip (Fig. 9-1B) or in the preview pane by clicking

on a chip. This provides an additional avenue for contextual information retrieval

without dividing attention between views. Finally, cards can be pinned to an attached

sidebar (Fig. 9-1D), which persists the card to a view shared by the clinical care team,

allowing for easier bookmarking, collaboration, and data sharing without directly

copying to contribute to note bloat.

We present the following contributions to enhance the EHR note taking experience:

• We provide passive and automatic methods to insert and disambiguate clinical

terms as the note is written and transform them into chips—interactive, struc-

tured elements which provide information scent about recognized vocabulary,

semantic highlighting, access to inline documentation, and contextual informa-

tion retrieval. We therefore retain benefits of structured data entry without

sacrificing the flexibility or ease of natural language.

182



• We augment the EHR note-taking interface with a shared sidebar to which

clinicians can pin cards. Each card presents a concept-oriented view for a

particular clinical term. The sidebar provides clinicians with a shared and

persistent space, integrated with the documentation interface, where they can

add and remove cards. It thereby situates, beside the semi-structured note, a

collaborative, customizable, and context-specific view of structured data in a

patient’s medical record.

• We proactively display a preview card of the most recently identified concept

which updates as the user types. The preview card provides a consistent passive

display of detailed information immediately relevant to the clinician’s current

decision making context, reducing the need for the physician to manually forage

for information.

• We present findings from a year long iterative prototyping and design process

and a one month evaluation with four medical notetakers.

We implemented these designs in a prototype system which we deployed live among

scribes in an Emergency Department (ED) at a Level I trauma center and tertiary,

academic, adults-only, teaching hospital. Our system was designed over the course of

a year, in collaboration with an emergency physician with over a decade of experience

designing and deploying EHRs, and with ongoing feedback from stakeholders including

scribes, medical students, and physicians. In practice, scribes found MedKnowts easy

to use with a quick learning curve and and indicated that they would use it frequently.

Further, they found the features of MedKnowts well-integrated, saving them time over

their previous workflows both for documentation and information retrieval.
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9.2 Related Work

9.2.1 Information Capture

Early EHRs were expected to transform clinical care by transitioning medical records

from manually-organized and paper-based to automatic and digitized [16]. Many early

EHRs were built around forms and structured data entry in order to capture structured

records, but few modern EHR systems retain these designs [226]. Structured data

entry is far more cumbersome and time consuming to input than unstructured text

[267, 226, 169]. Clinicians prefer recording information with unstructured narrative

[279, 220] because of the increased expressivity of free-text [297, 122]. However

even clinicians who want the flexibility and efficiency of free-text when documenting

information prefer structure and standards when revisiting old notes to parse the

patient’s medical history [226, 122]. MedKnowts lets clinicians seamlessly access

and capture structured patient information and clinical terms while writing free text

narrative. MedKnowts additionally synthesizes the existing patient medical record into

concept-oriented cards which provide the clinician with a standardized and structured

view of data extracted from a pre-existing EHR system.

Automatic Term Recognition

Most clinical recognition systems are designed for post-processing rather than real-time

analysis [237, 54]. They extract structured information from unstructured narrative

and free text after it has been authored [122, 226]. Systems such as Doccurate [262]

have been designed to validate, augment, and visualize post-processed labels but few

systems close the loop and enable clinicians to take advantage of identified structure

in the medical note during the process of documentation [226].

Of the few proposed EHR paradigms that do implement real-time entity recognition

during notewriting, they either fail to map to standard clinical ontologies [27], neglect

to use this structured data capture to support clinical decision-making [122], or do not

provide concept disambiguation (Fig. 9-4) which is crucial given the overloading of

medical terminology and limited accuracy of post-hoc clinical concept recognition [237,
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27, 122, 54]. Active Notes [298] inspires the design of several features in MedKnowts

such as tagging clinical concepts and displaying related information in an attached

sidebar. However Active Notes requires users to manually initiate data queries and

tag concepts with a hot key, and does not visually distinguish clinical vocabulary

until it is tagged, making it hard for clinicians to learn the recognized vocabulary. In

contrast MedKnowts is designed to passively and automatically assist users without

active participation. MedKnowts provides live semantic syntax highlighting for clinical

terms indicating concept type, negations, and potential ambiguities; and automatically

transforms autocompleted and post-recognized clinical terms into interactive chips

which can be used to resolve ambiguities, and view relevant patient information inline

as a tooltip or persisted in an integrated sidebar.

Structured Data Capture

Many modern EHRs support multiple modalities for inserting structured data into

the note [166]. Some tools support carry-forward techniques where data is copied or

paraphrased from previous notes [101]; others let clinicians insert structured values

into the note by clicking in the patient’s history or typing special characters to trigger

macros [299, 230]. Still others require the user to specify the template structure using

a complex interface of forms [18].

MedKnowts differs from previous carry-forward techniques [230] by autofilling using

information captured earlier in the note, rather than limiting autofill to information

that appears in the patient’s prior medical record. This is particularly pertinent to

documentation in an ED environment, since clinicians often have to repeat information

within the same note in order to meet regulatory and billing requirements, and previous

notes may not be applicable to the current visit, let alone exist.

MedKnowts supports structured data capture for clinical terms (conditions, symp-

toms, medications), lab results, and vital signs with a machine learning-driven auto-

complete interface based on Gopinath et al. [90]. The autocomplete interface displays

completions of clinical terms as the user types, which provides information scent for

the available clinical vocabulary. Structured data capture is a common feature in
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EHRs often referred to as dotphrases because the data is conventionally inserted with a

phrase that starts with a period (e.g., .meds) [230]. MedKnowts differs from previous

systems because the structured data insertions do not require a trigger character

or memory of content-importing phrases. Trigger characters were unpopular in our

deployments, since they require foresight to enter and knowledge of valid phrases.

Additionally, structured data templates, documented in Rule et al. [230], work

well in medical specialties such as ophthalmology, where many standard structured

measurements are taken before the patient sees the doctor. However, in clinical

settings such as the ED, the vast majority of structured data entry opportunities

are contextually dependent on information needs arising after the clinician begins

documentation. Thus, our more fluid workflow for structured data insertion within

narrative text is an important extension to Rule et al.’s structured templates.

9.2.2 Information Fragmentation in EHRs

Studies of EHR usage have shown that separation of documentation interfaces from

patient data cause clinicians to frequently task switch, creating cognitive overload

and increasing the likelihood of clinical errors [167, 202, 7]. Some previous EHR

systems attempt to resolve this by presenting the entire medical record next to the

documentation interface in complex interface of tabs, lists, and tables [122, 68]. These

interfaces are hard to parse, require manual navigation, and leave the complex work

of synthesizing data from across the medical record to the clinician [167]. Other

EHR systems, such as the one in use at the hospital in which we deployed, provide

dashboards summarizing high value information next to documentation [7, 208]. In

an ED these summary displays rarely include all the information clinicians need to

access throughout the course of a visit. Still other research systems allow users to

interactively filter a view of the patient’s medical record to display data relevant to a

particular concept [299, 241, 110]. These systems allow users to filter by one concept

at a time and do not persist the data for later reference.

MedKnowts lets clinicians access a curated subset of the medical record, displayed

as a collection of concept-oriented cards. Each card provides a succinct display of
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high value information curated for a single clinical concept. The card relevant to the

most recently recognized term is automatically displayed next to the note in a preview

pane, providing a passive stream of relevant information to the clinician. Previous

work has shown that clinicians are much less likely to perform manual actions to see

information [313]. Cards can also be manually pinned to the sidebar where they can

be seen by all users working on the note. Pinned cards act as a persistent and shared

collection of data which is particularly pertinent to a given patient’s context.

9.2.3 Problem-oriented Medical Records

In the early 1970s Weed proposed the notion of problem-oriented medical records

[290]. In the problem-oriented medical record, all information is organized around

patient problems. Problem-oriented medical records were designed to reflect the way

the physician thinks [268], but did not survive. A major reason for their failure is that

they require physicians to enter and maintain data organized around problems—often

requiring multiple steps to input a single piece of data, while competing chronologically-

oriented medical records offered unstructured text entry which was lightweight and

fast in comparison [267].

Problem-oriented medical records (POMR), problem-oriented views, and concept-

oriented views are very similar but have slight distinctions. Problem-oriented medical

records refers to original idea proposed by Weed [290] to organize medical records

around a problem list. Problem-oriented views (POV), introduced by Buchanan [36],

dynamically generate problem-oriented displays of information from a traditionally

organized medical record. POVs do not require the user to input information organized

around problems. POVs place the the burden of organizing information around

problems on the computer not the user. Concept-oriented views (COV) introduced by

Doré [64], are an extension of POVs to all concepts not just problems.
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9.2.4 Information Foraging Theory

Information foraging theory draws parallels between how humans hunt for information

and how animals hunt for food—in particular, it identifies that users rarely find

information in a completely linear process. Instead, useful information often appears

in patches for which the user must forage, using clues in the user interface referred to

as information scent [210].

Previous research into information foraging theory in EHRs highlights that the

value of clinical information is not intrinsic but rather dynamic and task-specific [86].

Information that is relevant and important for one patient during one visit may not be

relevant or important for another patient or in another clinical context. MedKnowts

presents a consistent stream of context-specific cards in a preview pane. Each card is

analogous to an information patch, and the user can quickly determine if the card

is worth foraging in and exploiting by reading the card title or scanning the card

content which is consistent across cards. If a card is useful, the user can exploit the

information patch by persistently pinning the card to their sidebar.

MedKnowts encodes information scent within the documentation interface by

providing semantic syntax highlighting for clinical terms in the form of chips. Terms

are colored based on their concept type, whether or not they are negated, and whether

or not they collide with other terms—these clue the user into how we have inserted

structure into the note and what downstream information benefits to expect. Small

visual indicators next to clinical terms, and detail text in the UI provide additional

information scent and inform clinicians about whether a card is likely to contain

information from the patient’s medical record. Users can easily navigate between

information patches. Users can navigate to cards by clicking or hovering on clinical

terms embedded within both cards and the note taking interface, or by searching for

a clinical term in the sidebar.
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9.3 Environment

9.3.1 Clinical Workflow

While MedKnowts was designed for use in a particular hospital’s ED, here we describe

a high-level clinical workflow that is generally common across EDs. During a typical

day in a hospital ED, clinicians may evaluate, treat, and document up to 35 patients.

The note is used for various purposes: as a tool for communication and collaboration

between present and future clinicians; as a document of the evidence-based decision

making process the clinician utilizes to construct a care plan; and as a record for legal

and reimbursement purposes [59, 44]. Before the clinician evaluates a patient, a triage

nurse first prioritizes a patient, taking vital signs, assigning a chief complaint, and

writing a brief triage note. The clinician then evaluates the patient and reviews the

patient’s prior medical record. As in almost all healthcare settings, time is limited and

must be balanced between bedside care and reviewing the patient medical record. The

main sections expected in the final documentation then closely mirror the underlying

clinical workflow after triage [44]:

History of Present Illness (HPI). The HPI serves as a chronological narrative of the

patient’s reason for the visit, including the presence, onset, severity, and duration of

symptoms. Additionally, it involves surfacing medical history that may be relevant for

contextualizing the patient’s condition. Unlike in specialties that provide longitudinal

care, emergency visits are episodic and unscheduled; emergency physicians are often

meeting a patient for the first time, forcing them to quickly synthesize a patient’s

medical background from various sources, including past medical records.

Review of Symptoms (ROS). The ROS contains an inventory of symptoms, documented

per body system (e.g., cardiovascular, gastrointestinal). Information from the HPI is

often repeated here.

Medical Decision Making (MDM). MDM is the complex process by which the clinician

reaches a diagnosis and treatment plan. Within the MDM section, physicians need to

enumerate the differential diagnosis, consider risks associated with various diagnostic

and treatment options, and settle on the labs, tests, medications, and scans that must
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be conducted as part of the workflow.

The sections above provide a comprehensive view of the patient’s visit by cor-

responding to the systematic and thorough process behind patient evaluation and

management. However, there is often overlapping information in the sections above

due to billing requirements [55], e.g., the ROS may include symptoms that were

already mentioned in the HPI, the MDM often contains elements of the past medical

history, leading to complaints of excessive, often repetitive data entry [138].

9.3.2 A Variety of Documentation Processes

The documentation process described here is based on observations at the ED in which

MedKnowts was deployed. Some aspects of this process, such as the use of scribes, may

not generalize to other EDs. There is marked inter- and intra-provider variation in the

processes to reach the final documentation based on individual clinician preferences,

resources, and schedules. Some clinicians write the majority of notes after their shift,

jotting details during to jog memory later. In addition to the final note, there exists an

additional Clinician Comment box which can be used for such intermediate thoughts,

and is often additionally used as scratch space between members of the care team

(e.g., an attending physician, a resident, a medical student) that are not part of the

medical record. Others choose to write the majority during the shift, only revisiting

the notes to make small edits and submit their notes to the official record.

On another dimension, alternatives to keyboard text entry include (i) the use

of voice dictation software and (ii) the employment of a scribe. Scribes shadow the

clinician, recording what they observe during patient encounters as well as discussions

with other clinicians, and drafts notes for each of the patients that the clinician is

seeing. These notes are then handed over to the clinician, who will edit and augment

to prepare the note for official recording in the patient’s medical record. Since a lot of

information communicated during the visit is irrelevant to the patient’s care, the scribe

acts as a filter that determines, documents, and relays clinically-relevant information.

Experienced scribes may even search and synthesize the patient’s past medical records

themselves. Because scribes were already writing notes at the ED MedKnowts was
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deployed in, they were the target subjects for our study. However in other hospitals

where clinicians act as their own scribes, the clinicians would be the target users. Voice

dictation software can be used as an alternative text entry method when scribes are

not available. But voice dictation does not fulfill other roles the scribe performs in the

clinical workflow. In this study, due to incompatibilities in the deployed commercial

dictation software, we specifically focused on scribe-physician workflow. However, we

note that interaction with dictation software is an infrastructural challenge and not a

fundamental obstacle to using our system.

9.3.3 Study Environment

The study described in this chapter was performed within a single Level I trauma

center and tertiary, academic, adults-only, teaching hospital which provides care for

55,000 patients per year. The existing deployed web-based EHR was custom developed

at the institution, but uses a commercially available documentation module. The study

was approved by our institutional review board with a waiver of informed consent.

MedKnowts was developed through prototypal deployments over the course of

a year, during which a clinician and the clinician’s scribes used the tool as their

predominant note system. We report on lessons learned from the iterative prototyping

process, as well as usage data collected from a one month long deployment at the end

of the year.

9.4 Design and Implementation

The overall goal of our system is to reduce the effort clinicians must invest in retrieving

information from the EHR, synthesizing that information into knowledge, and recording

it into patient notes. We do so via a combination of interacting features:

1. We use autocomplete as well as post recognition to recognize meaningful concepts

from a large, standard medical ontology. Autocomplete can save users keystrokes.

More importantly, these standard concepts provide an indication of the problem
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the clinician is addressing for the current patient and are inserted as structured

chips.

2. We use the recognized concepts to pre-populate other portions of the note that

require duplication of that information, relieving clinicians and scribes of that

burden.

3. We introduce a preview pane and persistent sidebar for delivery of standardized

cards of contextual information relevant to recognized concepts. When a concept

is recognized, the relevant card is automatically introduced in the preview pane,

proactively providing clinicians with information they are likely to need to

address the problem whose description they are currently typing in their note.

Cards also group and organize this information to help clinicians gain insight

about long-term trends and associations. Clinicians can additionally pin cards

to the sidebar to create a persistent shared collection of information pertinent

to the patient context.

4. We provide all these affordances with a passive and automatic design, which

does not require active participation from the user.

In this way, we can simultaneously decrease documentation burden on physicians

and use the captured clinical terms to aid physicians in information retrieval while

typing a note. We elaborate on these features below.

9.4.1 Autocomplete

The backbone of the structured data capture within MedKnowts is a contextual

autocomplete mechanism. We hypothesized autocomplete would enable structured

clinical data capture without disrupting the existing documentation workflow and

potentially even decrease keystroke burden on clinicians. Autocompleted terms could

then be used to facilitate information retrieval and clinical decision support, offering

longer term benefits.
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Figure 9-2: Autocomplete in the same context without filters and with filters. The
"/m" command is used to limit the clinical terms displayed to medications.

We bootstrapped our autocomplete with a subset of clinical terms pulled from the

SNOMED and UMLS medical ontologies [30, 194]. The ontologies contain abbrevia-

tions and synonyms for each term, allowing users to employ the language they are

most comfortable with.

In our initial prototypes we use a single character trigger / to start the auto-

complete, similar to dotphrases commonly found in EHRs [230]. When triggered,

the autocomplete displayed a dropdown filtered to terms whose prefix matched the

characters following the initial trigger. The clinician and scribes disliked the trigger

because it required foresight that they were entering structured data or typing a

recognizable concept and a priori knowledge of the set of recognized concepts. When

no suitable term existed, users had to manually delete the trigger character.

Therefore, our next iteration, outlined in Gopinath et al. [90], replaced the

character trigger with a collection of rule-based triggers based on particular phrases,

word boundaries, and punctuation. As an example within this paradigm, the phrase

“presents with" is likely followed by a symptom, so the algorithm will show the

autocomplete dropdown with symptoms listed first. User feedback indicated that

rule based ranking is insufficient—the autocomplete often failed to display desired

terms; and the boundary and punctuation triggers cause autocomplete to appear,

unnecessarily, distracting the user.

To improve on the rule-based approach, we replaced the rules with a one-dimensional

convolutional neural network model that predict when to trigger, and what type of
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clinical concept to prioritize, since a learned model can encode nuanced syntactical

relationships. It significantly outperforms the rule-based triggering approach described

in [90], achieving a precision of 43% versus 7%. Precision is defined as the fraction of

times the user wanted to type a clinical concept when the autocomplete was triggered.

In addition, after optimization, inference of this model requires an average autocom-

plete latency of about 18 milliseconds, which is close to the screen refresh rate and

therefore perceived as instantaneous to the user.

While the model based approach works well, users indicated a desire to manually

override the model—either forcing autocomplete to trigger or specifying the clinical

concept to rank first. In these cases, we resort to slash filters: /labs or /l can be

used to trigger an autocomplete context which is limited to labs. An empty slash

forces autocomplete to trigger with the default ranking. An example of why filtering

is useful can be seen in Figure 9-2. These filter shortcuts give users the fine-grained

ability to easily insert structured information at any place in the note.

9.4.2 Post Recognitions

During prototyping users disliked that MedKnowts only identified clinical concepts

entered with autocomplete. Unrecognized terms could appear because the user opted

not to use autocomplete or because the user pasted text into the note. This issue was

particularly noticeable when we used recognized terms to pre-populate later sections

of the note. Some scribes would spend time re-entering unrecognized terms using

autocomplete because they perceived the unrecognized term to be an error or wanted

to generate the correct text later in the note. To resolve these issues, we implemented a

version of the Aho-Corasick algorithm to automatically identify clinical terms from the

text that has already been typed [9]. We dub this tagging mechanism post recognition.
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Figure 9-3: Autocomplete inserts terms as highlighted immutable chips. They can be
deleted, moved around and copied like other text, but they cannot be modified.

9.4.3 Semantic Highlighting and Concept Disambiguation

As clinical jargon is notoriously overloaded, it is often the case that the same string

can describe multiple terms [255]. For example, Pt can refer to a patient, physical

therapy, or prothrombin time. While clinicians generally have the domain expertise to

disambiguate between similar terms, jargon can create confusion for patients, medical

trainees, and clinicians of a different specialty [283]. Therefore, MedKnowts needs to

be able to correctly disambiguate each written term to its underlying clinical concept in

the ontology in order for users to reap the benefits of contextual information retrieval

features that our system offers.

MedKnowts uses live syntax highlighting to provide visual information scent about

terms the system recognizes. MedKnowts supports six concept types: conditions,

labs, medications, symptoms, procedures, and vital signs. When the user accepts an

auto completion, the system inserts a chip—a highlighted block of text that can be

copied, moved around, or deleted like other text. Each chip is highlighted with a

color associated with its concept type; an example from each of the six concept types

MedKnowts supports can be seen in Figure 9-3.

Post recognized phrases are also replaced with chips. However, while auto-

completed phrases map to unique ontology items specified by the user’s selection,

post-recognized phrases can be ambiguous. In the case that a post recognition requires

disambiguation, the user can click on the chip to select from the relevant set of

candidate terms. Post recognitions are differentiated from autocomplete chips with

a dotted border. When possible, the border also indicates the concept type with
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Figure 9-4: Post recognitions are automatically recognized clinical terms. They are
rendered with a dotted border and can be disambiguated through a popup menu on
click. Negated post recognitions are rendered with an underline.

color: if multiple clinical terms match a post recognition but each clinical term is from

the same concept type, the color for that concept type is applied to the entire post

recognition. If clinical terms from multiple concept types match the post recognition

then we display the recognition with a grey background. An example can be seen in

figure 9-4.

Clinicians often reference clinical terms to indicate the absence of something, for

example "no fever". In our initial prototyping we used double click to toggle chips

between "positive" and "negated". When negated the chip is highlighted with an

underline, and the text is transformed—for example "fever" becomes "no fever".

Additionally, we provided autocompletions for each clinical term prefixed with "no"

so that users could insert negated chips with autocomplete, but clinicians found this

method of indicating negations brittle and disliked that lists of negated terms such as

"no A, B, or C" had to be written as "no A, no B, no C" to comply with MedKnowts’

simple negation implementation. To resolve these issues we implemented a modified

version of negex [46] to automatically identify and highlight negated chips based on

the surrounding text.

In the autocomplete dropdown ambiguity can arise when a string refers to multiple

terms. For example, potassium refers to multiple labs measured with various fluids,

so we display this disambiguating information as detail text in the dropdown, as seen

in Figure 9-2.
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Figure 9-5: An example of context-specific information retrieval. Autocomplete
insertion of lab results using a tree based menu with support for aggregation at
multiple time frames and specific values

9.4.4 Context-specific information retrieval

To further aid clinicians, we automatically retrieve and display context-specific infor-

mation from a patient’s medical record. As an example, when a medication, procedure,

or condition appears in the autocomplete dropdown, we use detail text–“in patient

medical record” to indicate whether it previously appeared in the patient’s medical

record. We provide similar information scent next to chips with a small grey circle

indicator.

This structured retrieval and display is particularly handy for documenting labs—

after receiving requests to automatically insert quantitative lab results using auto-

complete, we implemented a tree-based lab selection menu, displayed in figure 9-5.

This hierarchical menu can be used to insert structured data associated with an

autocomplete term. The user can select the name of the lab, a time frame based

aggregate, or individual statistics within a time frame. The time frame aggregate is

inserted as a string LAB_NAME (MIN_VALUE - MAX_VALUE) AVG_VALUE and individual

statistics are inserted as a string LAB_NAME STAT_NAME STAT_VALUE. We also added

the ability to insert vitals (pulse, heart rate, etc.) using the same methods, completing

our set of clinical concept types.
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Figure 9-6: An example of the review of systems section

9.4.5 Default Text

Medical notes are often pre-filled with boilerplate default text, but this text is often

overwritten because it does not incorporate enough patient-specific context. Med-

Knowts further reduces data entry by taking advantage of structured data capture

and using it to fill in later sections of the note. To this end, we created templates for

each of the sections of the notes based on clinician input. When the user clicks on

a blank note section the section is autopopulated with the template text, which is

constructed using a mix of structured information parsed from the patient’s medical

record as well as clinical terms previously captured in the note. As an example, the

Review of Systems (ROS) section (Fig. 9-6) is a boilerplate list of ten systems, and

for each system the clinician has to describe the presence or lack of symptoms related

to that system. MedKnowts automatically generates this ROS text for the clinician

from text entered in previous sections—when a symptom is documented in the note,

it is added to the appropriate line of the ROS template.

The addition of pre-populated text brought additional feedback from clinicians.

Clinical terms are often associated with clarifying modifiers and specifiers and it

is important to retain these modifiers and specifiers when copying forward clinical

terms. For example "left lower abdominal pain" is more informative in diagnosing

a condition than simply "abdominal pain". Expanding the ontology to include all

possible combinations of modifiers for each term is not feasible. Instead we use a
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simple greedy algorithm to attach modifiers as prefixes to clinical concepts. This

algorithm could be replaced with more advanced NLP methods but we chose to use

this lightweight approximation to satisfy run-time requirements. The use of algorithms

to detect negated and modified terms helps retain the nuance and meaning of the

original text when copied across sections.

9.4.6 Concept-Oriented Views

Although there are multiple documentation systems in use at the hospital for writing

ED notes, none of them are integrated with tools to view the patient’s prior medical

history. While some documentation systems provide limited views of a patient’s

information for the current hospital visit (e.g., recent labs or imaging), this does not

help a clinician with reviewing and synthesizing the medical history. In order to access

additional data, clinicians must still navigate through multiple different pages.

Some clinicians place two browser windows side by side and access data in one

window and their note in another, others flip between pages and use their short-

term memory to synthesize information. Both paradigms are error-prone—clinicians

evaluate multiple patients in a shift and can easily navigate to the wrong patient’s

data or mis-remember details of patients with similar presentations. In addition, when

interesting data such as a relevant note or lab trend is found by a clinician, there is no

way to bookmark it for later use. All the computers in the hospital implement session

timeouts to prevent the inadvertent sharing of patient information, so clinicians copy

potentially relevant data into their note to preserve it and the surrounding context is

lost.

MedKnowts reduces the need for clinicians to hunt for and retrieve data from

multiple sources by proactively fetching relevant data and surfacing it just-in-time. To

achieve this, we introduce the notion of a card for each clinical term in our ontology.

Cards unify diverse information fragments related to the term in a single, templated,

format. Each card has a header with the common name for the clinical term and

synonyms for the clinical term from our ontology:
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• Condition cards (e.g., diabetes)—display relevant medications from the patient’s

medical record, relevant vital signs, related procedures, and relevant snippets

from notes in the patient’s medical record.

• Labs and Vitals cards (e.g., creatinine, blood pressure)—display a box and

whisker chart of lab values.

• Procedures and Medications cards (e.g., hysterectomy, metformin)—contain a

list of relevant note snippets from the patient’s medical history.

Note snippets are surfaced if they contained a mention of the term or a closely

linked term and are ordered chronologically. The set of closely linked terms was

algorithmically mined and a sample was validated by a clinician. Based on feedback,

we excluded symptoms from our set of cards, as clinicians rarely needed medical

history to contextualize symptoms.

9.4.7 Surfacing Cards

In our early prototypes we displayed cards in an attached sidebar when clinicians

clicked on an associated chip within the note or another card. However this created

a two step process to see any card—first type the term with autocomplete and then

select the term to see the card. To reduce friction we automatically added a card to

the sidebar for any term inserted with autocomplete. However autocomplete is a poor

signal for whether a card is useful is in the long term. Cards added to the sidebar

are displayed in a scrolling vertical stack. Cards can be removed, but left alone, they

persist next to the note for the duration of the note authoring process, and useful

cards can be pushed out of view as more cards are added. Some clinicians found this

method of adding cards to the sidebar unintutive or confusing, and other clinicians

felt like they were seeing too much irrelevant information. Additionally this method

fails to surface post recognitions.

We eventually streamlined our approach to surfacing sidebar cards to a two-step

process. Any time a term is recognized before the user’s selection, we display the card
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for that term in a preview pane at the top of the sidebar. The preview pane displays

one card at a time, and the card is not shared between users. Clinicians can pin a

card displayed in the preview pane to move it to the sidebar. The cards pinned in the

sidebar are persistent and are shared between multiple users. In this way, the sidebar

becomes a collaborative record of the fragments from the patient’s medical history

that clinicians identify as being particularly important or relevant.

Cards are surfaced in the preview pane in one of three ways: first, they are

automatically displayed when an autocompleted or post-recognized term appears

before the user’s selection; second, they are manually surfaced by users clicking on a

chip within the note or another card; third, they are manually surfaced via a search

bar at the top of the sidebar. Post recognitions with naming collisions (e.g., pt) must

be disambiguated by the user before the associated card is surfaced.

9.4.8 Hand Designed vs. Automatically Generated Cards

Ideally, we could create individually designed and physician curated cards for all

possible clinical concepts. But we do not have the resources to take that approach.

Instead, during initial prototyping we created meta-cards for each clinical concept

(labs, conditions) which act as templates for all clinical terms within that clinical

concept. We describe the contents of the meta-card for each clinical concept in Section

9.4.6.

Automatically generated cards help solve a cold-start problem, as we hypothesized

that users would be unlikely to adopt the system if the majority of clinical terms

were associated with empty cards. But cards generated for a large number of clinical

terms are slow to iterate on. For example, clinicians asked for certain labs to be added

to cardiac cards. This type of change, if abstracted to all conditions, requires the

development of a dataset to relate labs and conditions. While possible, finding or

creating this type of dataset takes time. Conversely, adding lab values manually to

cardiac cards is light weight and easy to validate with users. In the long term hand

designed features could be replaced with generic models or datasets but in the short

term we can iterate faster by taking a manual approach.
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9.4.9 Card Design

Throughout the prototyping process clinicians consistently displayed strong preferences

about the content of cards. We hypothesized that showing synonyms within cards

would familiarize users with our ontology of terms. But clinicians found the inclusion

of synonyms condescending because they already knew that. We received a similar

response when we listed names of labs related to a condition on condition cards.

However, clinicians reacted positively when we listed the names of labs along with

their values since this is proactively fetching relevant information. Clinicians want

to see information relevant to their decision making and other information is seen as

noisy or unnecessary.

In addition, clinicians want information presented in the immediate format that

they require; as an example, if the most recent lab value is the only useful piece of

information, that is the only lab value that should be displayed. Conversely, some

lab values can only be properly interpreted in the context of other lab values. For

example, interpreting an elevated troponin values requires both prior troponin values

and prior creatinine values. In that case both lab values must be displayed. We

provided feedback forms on cards and accumulated various requests for data to be

displayed on particular cards. However implementing granular changes for generic

classes of cards is difficult..

To address this, in our second iteration of cards we chose to specifically focus on

two types of cards: lab cards, and cards related to cardiac conditions. In the long run

we expect that a set of a few thousand cards targeting individual clinical terms as

well as general classes of clinical information (such as cardiac function) could support

clinician’s needs. While it is beyond our capacity to create an exhaustive set of cards,

we can learn about and demonstrate the value of cards by creating a few for common

terms. If proven valuable, other cards could be created by a small engineering team

with clinical guidance, or even by clinicians themselves if given suitable authoring

tools.

We worked in collaboration with three physicians to design a card which presents
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Figure 9-7: An example card surfaced for Congestive Heart Failure, which contains
pertinent lab values, links to recent echocardiography reports, and recent notes that
mention the condition.
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information relevant to cardiac conditions. Our cardiac card includes labs and snippets

from cardiac tests (EKG and Echocardiogram) and other free-text notes. An example

of the cardiac card can be seen in Figure 9-7.

We augmented our lab card template to support multiple views of lab results. A

table view can be used to see individual result values. When applicable, contextual labs

that are useful for understanding the primary lab are added as columns to the table

display. A zoomable line chart displays lab values over time and a box and whisker

plot is used to display aggregate lab values over various time frames. Additionally we

provided support for contextual lab results in the table view. For example, Kidney

failure, which is measured by an elevated creatinine, leads to a build up of potassium,

causing elevated potassium levels, a life-threatening condition that must be treated

immediately. Whenever an abnormal potassium level is encountered, the next piece of

information that is needed is what the kidney function is. We proactively provide this

information by displaying creatinine levels directly on the potassium lab card.

9.4.10 Inline Display of Cards

Early on we realized it would be useful to access cards from within the note itself. We

added the ability to hover on a chip to see a preview of the card.

9.5 Evaluation

As described previously, MedKnowts was deployed in two major iterations—one year

of iterative prototyping and a one month evaluation. For approximately 7 months the

prototypal deployments were used as the primary documentation tool by 1 physician

(who is also a co-author) and 4 scribes across 1185 patients; the evaluation lasted 1

month and was used by the same physician and 4 scribes (2 scribes had participated

in the prototypal deployments) across 234 patients. Our prototypal deployment

ended after the hospital stopped using scribes in the wake of COVID-19; the second

deployment began soon after scribes returned to the hospital. We could not do a

comparative study against the baseline documentation system due to legal limitations
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User Patients Shifts Pins
P 150 12 58
S1 69 3 1
S2 50 4 0
S3 43 2 1
S4 33 3 15
Totals 75

Table 9.1: General usage data. Totals for Patients and Shifts are left out because the
scribes worked with the physician on the same patient/shift. Pins reflect the number
of cards each user pinned to the sidebar.

User Autocomplete Post Recognition
P 71 7
S1 35 0
S2 27 0
S3 6 0
S4 4 0
Totals 143 7

Table 9.2: How users inserted chips. Autocomplete indicates insertion via autocomplete
and post recognition is disambiguation of post recognitions.

disallowing modifying the commercial note taking tool in use at the hospital, but we

describe our evaluation below.

Prior to using the tool live in the ED, the scribes were introduced to the tool in

thirty minute training sessions. In each session, the tool and its available features

were explained to the scribe. After working in the ED the same co-author followed up

with the scribes to get their feedback. At the time of the follow up the scribes each

had used the tool for an average of 3 shifts (min 2, max 4) and completed an average

of 46.5 notes (min 33, max 69). In the study follow-up, scribes filled out a system

usability scale (SUS) [123] as seen in Figure 9-8, and answered questions from a script.

The final SUS scores were [77.5, 77.5, 85, 95] (avg. 83.75), the physician did

not fill out a SUS scale. A score in the high 70s to upper 80s is considered to be good

while a score above 90 is excellent [20]. These responses indicate that scribes found

the tool relatively intuitive and useful enough to use frequently.
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User Search Autocomplete Post Recognition Note Snippet
P 127 30 21 3
S1 4 4 25 0
S2 0 0 9 0
S3 0 1 7 0
S4 43 0 12 21
Totals 174 35 74 24

Table 9.3: How users added cards to the sidebar. Autocomplete means clicking on
an autocomplete chip, post recognition means clicking on a post recognition, search
means performing a search in the sidebar, and note snippet means clicking on a note
snippet in a card. Clicking on a note snippet displays a card containing the full note
text with the snippet highlighted.

1 2 3 4 5

Would use frequently

System was unecessarily complex

System was easy to use

Need technical support to use

Features well integrated

System has too much inconsistency

System has quick learning curve

System is cumbersome

Felt confident using the system

Needed to learn alot to use

1.0

2.0

Number of Ratings

Questionnaire Ratings

Figure 9-8: Scribes’ System Usability Scale scores with medians displayed as black
bars for each question

Feature usage, documented in Table 9.1, 9.2, and 9.3 as well as qualitative interviews

yielded several takeaways. In both the tables and the rest of the evaluation we refer

to the users as Physician (P) or Scribe 1-4 (S1-S4).

Most scribes described that autocomplete sped up their workflows but adoption of

autocomplete changed based on scribe experience. S1, the least experienced scribe in

the evaluation, noted that they liked autocomplete because they no longer needed to

conduct internet searches to find correct spellings and obtain an understanding of the

underlying concept space. S4, the most experienced scribe, found autocomplete less

useful due to familiarity with terms, but still found utility for longer terms.

As users acclimated to the tool’s functionality their usage changed. For example,
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S1 used autocomplete 8 times in their second shift and 27 times in their third shift.

The increase in usage in the third shift was due to the use of autocomplete to insert

lab values. It was unclear if the scribe had discovered this functionality on the third

shift or had become familiar enough with the tool to adopt more advanced features.

Some of the differences in feature usage across scribes may be attributed to

discoverability. For example S2 found the included references to other cards (card

transclusion) to be very helpful, especially for getting more familiar with unknown

terms, while S4 did not realize that they could hover on chips to see cards inline. S3

stated that card transclusion was helpful to quickly hover and get a sense of how

central the concept is to the patient’s history.

The lack of disambiguations for post recognitions may be due to the fact that post

recognized chips both behave and look very similar to chips inserted with autocomplete.

For example, if an ambiguous term is highlighted correctly and copied appropriately

in default text, the scribe may not have any need to disambiguate it. Both S3 and S4

were happy that the system recognized terms but were unaware that post-recognized

terms could be disambiguated.

Scribes appreciated the colored highlighting of embedded chips in the notes. They

found that it allowed them to quickly scan what had occurred so far. For example,

they could quickly skim through symptoms to orient themselves, and it was helpful

that negated symptom mentions were visualized differently. One scribe mentioned that

they could use the colors as an automatic visual aid to determine what components

had been completed in the Medical Decision Making section, and what was left to be

documented. This quick skim approach wasn’t necessary for certain concept types

(e.g., medications), but some scribes still found it useful for organization.

Scribes universally appreciated the default text that was auto-populated due to

the structured data capture from autocomplete and post recognitions. This was

most appreciated in Physical Exam and Review of Systems, despite imperfections in

the default text. One scribe (S3) said it “made them much more efficient" allowing

them to “get through charts faster." Another noted that the checkbox-based systems

employed in the hospital’s commercial EHR made it really easy to skip and miss an
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item, indicating the new system felt less error-prone due to its data entry.

At a high level, scribe experience correlated to the amount of synthesis of a

patient’s past history that was conducted, as advanced scribes had accrued more of

the requisite clinical knowledge and reasoning and could handle documentation and

synthesis simultaneously. S4 was the only scribe to examine past notes to try and find

relevant information to share with the clinician. S4 liked the note snippets stating

that "it saves me a lot of time compared to reviewing all of the patient’s prior notes

to simply be able to click...and have notes show up." In contrast S2 did not pay much

attention to cards or read note snippets because they were focusing on documenting

what the clinician was saying.

More experienced scribes were more likely to pin cards to the shared space. The

more advanced scribe, S4 described their job as filtering information for clinicians

based on relevancy and importance. Less advanced scribes perceived their role as

recording rather than synthesizing or finding information.

Scribes integrated cards into documentation and retrieval processes for multiple

concept types. For example, scribes mentioned using lab cards to compare a patient’s

current value to their baseline, clicking on a past procedure chip to pinpoint its date

from surfaced notes, and leveraging condition cards to determine the extent and

severity of a patient’s existing condition. This indicates such cards act as information

scent to guide scribes to important content. S4 described that they would use cards

to dig into particularly relevant medical history; for example, if a patient with chest

pain had past cardiac disease, the scribe would utilize the card to review “their

previous work-up, notes from cardiology, and any prior surgeries/procedures.” S3

noted particular utility in associated medications that were surfaced on condition

cards; it prompted them to document, and the concept-oriented view also served an

educational purpose of teaching them what was relevant, potentially aiding future

synthesis.

While multiple scribes noted it was less useful for medications and symptoms,

condition cards aided scribes in understanding the extent and trajectory of a patient’s

past condition. S4 noted that they "use it when... interested in more information
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about a patient’s medical history, especially in a complex patient or a patient that is

unable to provide a history due to acuity or altered mental status."

During the deployment MedKnowts proactively displayed 3614 cards to scribes

as they typed, with a range of frequencies. For example, 53 hypertension cards were

surfaced after typing "htn", while 144 terms were displayed only once each; these rarer

terms included "spine fracture" and "lumbar spinal stenosis". Some short phrases

that overlap with common language (e.g., as as atrial stenosis )were mistakenly

tagged as clinical terms, but future iterations of MedKnowts can recognize these and

omit them.

Experienced scribes tended to familiarize themselves with a patient’s medical history

prior to writing a note, and thus used the search bar to display cards prior to note-

writing rather than triggering them automatically during the course of documentation.

Future iterations of MedKnowts may want to support this workflow, since the existing

information capture is focused on displaying information as the physician types rather

than before the physician starts the note, which misses an opportunity to provide

information scent before documentation begins. Less experienced scribes were more

likely to click on chips within the note to see relevant cards. All scribes used chips to

manually view cards in the sidebar, and all but one (S4) used chips as the primary

tool for bringing up cards in the sidebar. The usage data reveals that users are willing

to adopt a wide variety of techniques for accessing documentation, but appear to have

significant preferences for one technique or the other.

9.6 Discussion

MedKnowts explores several interaction paradigms by enabling live automatic recogni-

tion of clinical terms within a medical note and displaying patient medical history in

concept-oriented cards. Our iterative design process for MedKnowts underscored the

need for EHR systems to embrace and augment, rather than replace existing clinical

workflows. Our features were well received when they synergized with existing docu-

mentation practices. Implementing changes in a clinical environment is challenging,
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and clinicians and scribes are more receptive to such changes when presented with

tools that are familiar and intuitive.

In future iterations of MedKnowts, we hope to expand on the possibilities enabled by

fine grained linking of chips, in both the note and card interfaces, to standard medical

ontologies. MedKnowts can leverage existing health knowledge graphs or outside

resources that clinicians use, aiding their decision-making during documentation.

Normalization to a standard ontology also allows notes to be translated to different

audiences; medical acronyms can be automatically unravelled to layman’s terms if a

patient wants to understand their note. Clinicians with specific language preferences

can also personalize note templates and autocomplete functionality with the vocabulary

choices that they prefer.

Our observations from user interviews and interaction data have additionally

presented new avenues for future work that could push forward these interaction

paradigms. Clinicians often chunk information together. When a clinician wants to

view a Hemoglobin lab, they are likely to search for CBC (Complete Blood Count),

a set of laboratory tests, since Hemoglobin is recorded as part of a CBC lab group.

MedKnowts could support such lab groups by adopting a wider clinical ontology, or

even allowing clinicians to merge or combine cards within the user interface, dragging

and dropping multiple lab cards together to create higher level lab groups. These

modifications do not have to be limited to labs. Clinicians could, for example, group

an insulin card with a diabetes card because the medication is directly treating the

condition.

Providing clinicians with the ability to mold their information displays could not

only help physicians synthesize medical records, but also create new possibilities for

crowdsourcing rich labeled datasets of clinical relationships. Clinician-curated content

would also be a potential solution for how to scale from a handful of manually curated

cards to thousands of cards, and even create cards that serve different roles for different

types of users (less granular for generalists like emergency physicians or primary care

physicians, more granular for specialists like oncologists or immunologists).

In the opposite direction, clinicians sometimes want to refer to a specific value
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or event when recording information. When the clinician writes "patient has high

glucose" it would be helpful if the system identified exactly which glucose lab was

high, autocompleting not just glucose as a clinical term, but a specific measurement.

By allowing clinicians to refer to granular as well as chunked information, we can get

closer to the ideal of presenting information to the clinician in a way that mirrors

their clinical thought process.

Cards could be improved by offering further custom views of the patient medical

record, and providing context-dependent defaults. For example, the existing lab cards

in MedKnowts display a table of result by default, but can display a line chart, and

box and whisker plot as well. For some labs the most recent value is the only value

that matters, and a table is appropriate, but for other labs, the trend over time is

what matters, and a line chart would be more useful. A clinician’s mental model of the

patient becomes more refined over a patient’s visit, resulting in different information

needs as the visit progresses. An area of future work would be to investigate how

to support this change. Contextual display of information in cards is challenging,

but would continue to shift some of the cognitive burden of synthesizing the patient

medical record onto the EHR.

We noted several occasions where usage differed based on clinical experience.

However, even advanced clinicians can be novice users of the tool — experience level

with MedKnowts is thus another dimension of the overall user experience. Ideally, a

user interface would be intuitive for the novice user and provide support to help them

grow into advanced users for the tool. Future work could expand on the logging we

have implemented here to see how a user’s usage of the tool changes over time, and

what strategies we could employ to improve adoption of more advanced features.

There is a practical burden in scaling cards. However, because we use standard

ontologies, we can leverage ongoing efforts to open-source physician-curated [244] and

machine learned [182] concept maps. Users may benefit from the ability to manually

author and customize default text templates and card contents but we hypothesize

that a relatively small set of cards could cover most referenced terms. Semanik et al.

[244] estimate that 150-200 concept maps could be used to cover the most commonly
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encountered conditions for a range of clinical specialties [244].

There is some risk that the automation provided by MedKnowts could lead to

errors. For example a post recognition may be incorrect, modifiers may be skipped or

added unnecessarily, and auto populated text could contain errors. Auto populated

text requires manual verification, but this is an existing step in physician workflows,

since the current system provides naive boilerplate text for modification. The risk of

incorrect tags is lower than comparable clinical recognition systems [54, 237] because

users are able to disambiguate terms and have information scent about the recognized

terms.

There is additional risk that adopting MedKnowts could impede usability. To that

end we have designed MedKnowts’ features to be opt-in, leaving existing workflow

unimpeded. Lastly we must consider if using MedKnowts could impact the responsible

practice of medicine. The literature considers the risks of passive clinical decision

support (CDS) like our concept-oriented cards to be minimal compared to active CDS

[244]. While cards provide synthesized evidence, the responsibility is on the clinician

to explore as needed, and data on cards links to the original source, e.g., note snippets

expand to the full note.

9.7 Conclusion

MedKnowts captures structured clinical terms embedded within a free-text narrative

and then links these terms to a concept-oriented, dynamic display of patient information

that appears alongside a medical note. Thus, MedKnowts provides clinicians with a

unified interface for writing a clinical note and exploring and navigating a patient’s

medical record. By integrating documentation and patient information MedKnowts

lowers the cognitive burden of synthesizing the medical record, and demonstrates the

possibilities of an EHR documentation system that can better serve clinicians.

We capture these clinical concepts via autocomplete and post recognition, and map

them to standardized ontologies. This allows us to connect captured concepts with

other medical databases and translate clinical terms for a variety of audiences. We
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provide patient information in a preview pane next to the note as the clinician types,

proactively displaying contextual information when needed. A persistent sidebar of

cards helps multiple clinicians develop a shared understanding of the patient and

highlights important information. We prove the feasibility of our approach in a

months-long deployment in an active ED, and demonstrate in our evaluation that

clinicians are receptive to this approach.

Ultimately, we believe that MedKnowts has the potential to make clinical documen-

tation truly work for clinicians by creating a live document that supports customized

information retrieval, note-taking, and collaboration while simultaneously improving

the final note that is shared with downstream doctors and patients.
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Chapter 10

Conclusion

The data in electronic health records have immense potential to transform medicine

both at the point-of-care and through retrospective research. However, structured

data alone can only tell a fraction of patients’ clinical narratives. As a result, a

longstanding bottleneck has been the need to undergo time-consuming workflows to

transform this data into the structured, usable form that is necessary to conduct

robust, interpretable machine learning for health research.

This dissertation explored new methods and paradigms to improve the scalability of

structuring data from clinical text. The work contained in the previous eight chapters

has spanned the pipeline of clinical natural language processing: (i) schema definition,

(ii) decision aid development, (iii) dataset creation, (iv) novel methods development,

(v) retrospective evaluation, and (vi) live deployment and user studies. However, much

work still remains to realize the goal of structured clinical data, both in translation

of the existing work presented here and in new methods development. Further,

it is important to acknowledge that many open problems in clinical information

extraction are not machine learning problems, but rather sociotechnical ones, e.g.,

EHR interoperability.

Many long-standing goals in the clinical NLP community have recently become

far more attainable due to the advances in the wider field. Over the course of the

creation of this thesis (2018 to 2023), there have been massive paradigm shifts in

natural language processing due to the introduction of (ever-larger) transformer models
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[62, 35, 199]. These large transformer models have exhibited what have been called

“emergent” behaviors, enabling them to conduct multiple steps of reasoning with far

less data than before [293]. In the past months alone, several works have found that

the current state of large language models can conduct medical reasoning, e.g., medical

licensing exams [32, 253]. Further, there are new opportunities open in exploring

novel workflows. Text is generated and ingested across all steps of clinical workflows:

from clinical notes to patient communications, patient instructions, handoffs, and

biomedical literature.

With the emergence of these models, we are at a crossroads for clinical NLP. The

introduction of LLMs decreases our dependence on clinical annotation, which was

often differentially available across institutions and diseases. This democratization of

clinical information extraction could be particularly transformative for traditionally

underfunded conditions. Additionally, LLMs have encountered a diverse set of clinical

text in training data that has been generated by different stakeholders. As a result,

they contain the ability to transfer to new settings. Moving forward, it will be

important to invest in shared clinical LLMs, federated learning to enable learning on

datasets across institutions, and the introduction of synthetically generated datasets

that could enable more open science.

However, at the same time, these new capabilities are in tension with the cost of

training and inference of large models: the financial cost, the environmental cost, and

the opportunity cost of other NLP research. It will become important to distinguish

when large models may be necessary versus when they merely are a one-time source of

weak labels. Further while text is ubiquitous in clinical workflows, it is only one lens

into patient state. Thoughtful understanding of existing workflows and development

of new benchmarks will be required to enable judicious application of large language

models that lead to clinical impact.

Despite the rapid changes in language models, the core ideas within this thesis

remain relevant. As models become more powerful, approaching AI from a human-

centered perspective only becomes more urgent. It will become imperative to design

systems that jointly optimize for the strengths of humans and machine learning (and
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understand failure models of this interaction). Further, as language models grow

larger, it becomes pertinent to interact with them in a grounded and principled

manner, to avoid hallucinations. Finally, AI-assisted writing and information retrieval

are increasingly feasible, making it important to understand the engineering and

integration considerations when modifying clinical documentation workflows.

Together with the increasing availability of data from new modalities (e.g., genomics

and wearables), we are at an inflection point for personalized medicine. Below I detail

a few directions for future work that could leverage clinical text to improve the

experiences of clinicians, researchers, and patients alike.

Clinical Researcher-driven Information Extraction

Structuring EHR data is central to many clinical research studies. While this disserta-

tion has proposed many methods to decrease the effort required, these methods require

a data scientist to iterate and deliver models, which can be slow and costly. Given

recent advances in language modeling, less technical expertise and labeled data could

be required to jumpstart the extraction of structured data, allowing researchers to

query and explore their own data. This direction requires the development of clinical

language models that can be used locally in the researcher’s environment, for data

privacy, and methods for updating these models that can account for changing clinical

practice (e.g., new medications).

However, ultimately, LLMs have been known to be sensitive to exact wording of

prompts. Given the high-stakes nature of healthcare, it is imperative however that

clinician’s intentions match up with the model’s interpretation, and that this is an

easy. Therefore, such research will require a human-centered focus to design systems

around how clinicians think and manifest their domain expertise. Given the current

high cost of chart review, I believe clinician-driven data science can catalyze the rate

of retrospective research, by allowing clinicians to more easily explore the patterns in

their data, engage in faster hypothesis generation, and augment their datasets with

discovered confounders.
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Improved EHR Interfaces

MedKnowts has only scratched the surface of how we can improve the clinician

experience in EHRs. Our existing system retrieves the relevant data corresponding

to specific clinical concepts that were typed in or queried; for example, if a clinician

were to autocomplete “diabetes,” we would automatically surface diabetes-pertinent

information, e.g. A1C lab trends, recent endocrinology notes. However, often times,

information needs are more fluid and require a greater degree of flexibility in the forms

of information retrieval. Clinicians would ideally be able to ask free-form questions of

the patient record (e.g., “Has the patient had any side effects with drug X?”). Medical

question answering from the patient record has been of long-standing interest, with the

release of several datasets [149, 200, 318]. Given the improvements in large language

models to instruction-based interfaces [199], it is a ripe time to explore this area

further. Particular modeling complexity comes from the fact that a patient’s disease

state is constantly evolving, so it is important to understand how to correctly conduct

information retrieval on a timeline of ordered documents, rather than a set.

An additional direction of note is AI-assisted note writing, particularly as it pertains

to retrieved material. If implemented, such changes could enable physicians to spend

less time with screens and more time with patients, improving patient satisfaction

and combating physician burnout. Current research in this area has largely focused

on AI-assisted writing that utilizes the clinician-patient conversation for source data

[135, 240], but a huge amount of time also goes into synthesizing the patient’s past

history, as described in Chapter 9. Technical challenges arise from the high-stakes

nature of healthcare documentation.

A failure mode of current language models is their occasional tendency to hallucinate

facts and provide answers for which there may be no evidence. Much of the existing

literature on AI-assisted writing has focused on creative writing tasks. As with other

technical writing, clinical documentation has additional requirements around veracity

and requires conditioning on specific patient contexts. Building AI-assisted writing

into EHRs will require new NLP methods and corresponding interfaces with the
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appropriate guardrails.

Particularly relevant here are the findings from Chapter 4, in which we found that

AI-assisted decision aid can decrease a clinician’s agency. While the autocomplete

functionality in Chapter 8 remained relatively limited in its scope, integration of the

functionality to autocomplete longer strings requires more careful thought [106]. For

example, researchers recently found that users with AI assistants wrote less secure code

[206]. As clinical documentation is often used as a scratchpad for medical reasoning

and decision-making, it is imperative to strike the balance between assistance to

prevent clinician burnout and assistance that biases the end user.

Translation to Patient-friendly Language

While this thesis focused on use cases of text for providers and researchers, clinical notes

can also be valuable for patients. Unfortunately, clinical text can already be difficult

even for clinicians of other specialties to read, not to mention patients. In a study of

discharge summaries, only a quarter of patients could adequately understand their

surgical summary, and 65% didn’t have the reading level required [51]. Additionally,

there is great opportunity in increasing patient comprehension of their medical data:

approximately a fifth of patients find errors in their own notes, when prompted [25],

and approximately a third of patients forget prescription information described to

them during appointments [269].

Translating notes to a patient-friendly language accessible to a wider population

could therefore be useful for reducing EHR errors and increasing patient adherence and

understanding. Existing efforts in the clinical domain have struggled on overloaded

terms, where translation would be the most helpful [296]. General translation methods

(e.g., English to French) are not directly applicable, since they often assume you have

access to text samples from the target language distribution. However, there do not

exist corpora of clinical notes in layperson language, and therefore one must draw

signal from other sources. Our LLM results on clinical disambiguation in Chapter

7 provide a proof-of-concept that such models may now be sufficiently powerful to

generate approximate translations, making this task ripe for revisitation.
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Appendix A

Additional Information for Chapter 2

A.1 Description of Annotation Tool Suggestions

Below, we describe the lightweight suggestion system that underlies our annotation

tool. Due to its simplicity, it can run seamlessly. First, we constructed two data

structures from UMLS tables, using only the terms from SNOMED and RxNorm.

• A lookup table. This is a dictionary mapping text to all of the CUIs that have

that text as a Preferred Name or Synonym.

• An inverted index. The inverted index was built as per classical information

retrieval. The ‘document’ for a CUI was a concatenation of stemmed versions of

all the words in that CUI’s Preferred Name or Synonym.

The suggestions then consist of:

• Any direct matches of the text span, found in the lookup. They are sorted by

the number of synonyms they have, which we use as a proxy for population

prevalence.

• The closest set of matches from the inverted index. Before searching, we remove

stop words from the highlighted text and stem the remainder of the words.

Among equally relevant matches, we again sort by number of synonyms as a

proxy for population prevalence.
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A.2 Performance of Systems by Semantic Type

Below we show the performance of the top 10 systems of the n2c2 Shared Task on the

test set, subdivided by the 20 most common Semantic Types. We note that a CUI

can have multiple Semantic Types, in which case it is included in several calculations.

Test Subset # of Examples Max Accuracy Avg Accuracy Pooled Accuracy

Disease or Syndrome 713 88.8% 85.7% 96.2%

Finding 674 78.8% 75.1% 86.4%

Pharmacologic Substance 667 93.9% 91.9% 97.2%

Laboratory Procedure 665 88.7% 85.8% 94.4%

Organic Chemical 624 95.5% 94.4% 98.1%

Therapeutic or

Preventative Procedure
565 77.5% 72.7% 89.4%

Sign or Symptom 456 94.3% 92.3% 96.9%

Diagnostic Procedure 411 90.3% 84.6% 95.4%

Qualitative Concept 311 94.9% 89.0% 96.8%

Health Care Activity 299 84.6% 81.6% 89.3%

Spatial Concept 241 92.5% 89.0% 95.4%

Pathologic Function 228 89.0% 85.8% 94.7%

Body Part, Organ,

or Organ Component
189 82.0% 65.2% 89.9%

Quantitative Concept 165 95.8% 92.8% 97.0%

Temporal Concept 122 85.2% 83.6% 91.8%

Medical Device 108 78.7% 70.0% 88.0%

Antibiotic 102 97.1% 95.6% 98.0%

Neoplastic Process 100 91.0% 84.8% 97.0%

Functional Concept 93 87.1% 77.0% 88.2%

Amino Acid, Peptide,

or Protein
71 91.5% 86.9% 91.5%
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A.3 Full Clinical Annotation Schema Guidelines

Overall Guidelines
Tag all words that seem like medical terms, i.e., they require medical knowledge to

understand or are frequently used in medicine.

Concepts and Actions (Nouns and Verbs)

• Tag all labs, e.g., "WBC count", "hematocrit", or "urinalysis".

• Tag all procedures, e.g., "EKG", "chest x-ray", "fingerstick", or "CT".

• Tag all treatments or interventions, e.g., "transfusion", "aspirin", "CABG", or

"surgery".

– Tag interventions even if they’re common non-medical concepts, e.g., "fluids"

or "tube".

– Tag normal English verbs that are used to describe an intervention, e.g.,

for “blood cultures were drawn” tag “drawn” as “sample obtained”.

– For drugs, tag the drug name and dosage route, but do not tag the dosage.

e.g., do tag “PO” but do not tag “15mg”.

• Tag all symptoms, e.g., "headache" or "nausea".

– Tag symptoms even if they are not medical terms, i.e., for “chest pain” tag

“chest”, “pain”, and “chest pain”.

• Tag all findings, e.g., "respiratory distress", "edema", "blood pressure", or "heart

rate".

• Tag all diagnoses, e.g., "COPD", "MI", or "osteoporosis".

• Tag all medical history elements, e.g., "trauma" or "smoking history".
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• Tag all healthcare terms, e.g., "PCP", "ED", "ambulance", "EMR", "OSH",

"cardiologist", "rheum" (or any other medical specialty), "follow-up", "review

of systems", "past medical history", "patient", "assessment", or "consult".

• Tag all illnesses or medical findings, e.g., "injury".

• Do not tag negation words, e.g., for “denies chest pain” do not tag “denies”.

Modifiers (Adjectives and Adverbs)

• Tag all words that modify a medical concept.

• Tag all medical modifiers, e.g., "acute", "pleuritic", or "friable".

• Tag all anatomical terms, any words that refer to body positioning, e.g., "orbital",

"right", or for “chest x-ray” tag “chest”.

• Tag all descriptions of findings or a patient’s state, e.g., "febrile" or "stable".

– Do not tag adjectives that describe something medical but do not have a

separate medical meaning from their English meaning, e.g., for “vital signs

normal” do not tag “normal”.

• Tag all descriptions of diseases or diagnoses that are considered medical terms or

have separate medical meanings, e.g., "acute", "chronic", "mild", "moderate",

"severe", "dynamic".

– For example, tag “sensitive” if it is in the context of antimicrobial sensitivity,

e.g., for “blood cultures grew E. Coli sensitive to x, y, z” tag “sensitive”

because it describes a medical concept of antimicrobial sensitivity.

– Do not tag a term if you search for it and there’s no tag available, e.g.,

"profuse".

– Do not tag the words "likely", "unlikely", or "possible".

References to Parts of the Note
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• Tag references to parts of notes even though they are English words, but do not

tag individual words that comprise them.

– For example, "HPI" (History of Present Illness), "PMH" (Past Medical

History),"A/P" (Assessment and Plan)

Span Splitting

• Tag sub-concepts if they have their own medical meaning, e.g., for “extraocular

movements intact” tag “extraocular”, “extraocular movements”, and “extraocular

movements intact”. However, in the case of "respiratory failure" the word "failure"

does not have any separate medical, anatomical, or physiological relevance so it

would not be tagged.

• Do not tag sub-concepts if they are contained within other concepts that express

the same meaning more fully written out, e.g., for “Crohn’s disease” tag “Crohn’s

disease” and “disease” but not “Crohn’s”.

• Do not tag sub-spans of very common administrative terms used to describe

portions of a note, e.g., for “history of present illness” do not tag “history”,

“present”, or “illness”.

Multiple Concept Matches

• Tag multiple CUIs when there are multiple that appear to be a good match in

context, e.g., for “fever” potentially tag “fever symptom (finding)” and “fever

(sign/symptom)”.

• Even if a term can have multiple taggable meanings, only tag the meaning in

context.

• If two terms match equally well, only tag the verbatim text, e.g., for “acute

kidney injury” only use tag “acute kidney injury” but not “kidney failure, acute”.
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No Concept Matches

• If there is no exact match in SNOMED, tag as “CUI-less” (and optionally any

close approximations)

– If both subconcepts in a compound concept are tagged, there is no need to

tag the compound concept as "CUI-less."

– Do not use “CUI-less” to tag terms that are only semantically off (the

concept "patients" for "patient").

• If there is an approximate match, feel free to tag as both "CUI-less" and those

close approximations, e.g., "presentation" for "presents with".

Special Considerations

• If a term repeats within the same note, tag the term every time it appears.

• Ignore typos and tag the term as its intended meaning.

• Tag common medical abbreviations, e.g., "h/o", "PMH", "ggt", or "p/w".

– Do not split abbreviations into different spans, even if they represent

different medical concepts, e.g., for “EOMI” do not tag “EO” and “EOM”

separately.

• For simplicity, tag lab tests with priority order level (aka finding) > measure-

ment (procedure) > substance, e.g., for “albumin level” tag with “albumin level

measurement” instead of “albumin”. While multiple may be equally valid, this

can be fixed in post-processing.

– If a phrase describes the results of a lab test, only tag the substance tested

itself and not the modifier, e.g., for “low albumin” tag “albumin” and do

not tag “low”.

– Similarly, do not tag the numeric value if given, e.g., for “INR 3.1” do not

tag “3.1”.
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– Do tag lab test results with modifiers if the resulting state has a name, e.g.,

for “elevated WBC count” tag the phrase as “leukocytosis”.

• Do not tag units of measurement.
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Appendix B

Additional Information for Chapter 5

B.1 Consort Diagrams

Below is the consort diagram for the metastatic extraction task.

Breast cancer patients assessed  
for eligibility (n=6,565)

Excluded for having experienced no 
metastatic recurrence (n=5,863)

Metastatic breast cancer 
patients (n=703)

With approximate 
labels (n=379)

With gold 
labels (n=323)

Allocated to train 
data set (n=379)

Allocated to:
Train data set (n=170)
Val data set (n=50)
Train data set (n=103)
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Below is the consort diagram for the oral therapy extraction task.

Breast cancer patient-
drug pairs (n=20797)

Excluded for occurring before the 
first note or having no note 
mention the drug within 30 days 
of the noted start time (n=8395)

Remaining patient-drug pairs 
(n=12402)

Training 
set
(n=8843)

Test set 
(n=1459)

Validation 
set (n=1890) Excluded for not mentioning 

drug within 2 weeks of start, 
or having no follow-up within 
2 months (n=951)

Test (n=508)
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B.2 Proof of Reduction to Binary Search

Theorem. The Model-derived Query Utility formulation collapses down to binary

search in a zero-information scenario (uniform time and probability distribution).

Proof. Without a loss of generality, we can say that the endpoints for any given

iteration are 0 and 𝑡, and that T[j]=j. By definition of the uniform distribution, the

marginal probability at any given point 𝑗 can be calculated by 𝑝(𝑦𝑗 = 1|0, 𝑡) = 𝑗/𝑡.

Then, since 𝑝(𝑦
𝑡
2 = 1|0, 𝑡) = 1/2, we have that 𝑦 = 𝑡

2
. Given our 𝑦, we do casework

to find the 𝑗 that corresponds to argmax𝑗 𝐸[∆𝑗]. We let 𝑧 be the latent labeling

corresponding to 𝑦.

Case 1: 𝑧𝑗 = 1

The case that 𝑧𝑗 = 1 occurs with probability 𝑗/𝑡, making (𝑎*, 𝑏*) = (0, 𝑗) and

𝑦[𝑎
*, 𝑏*] = 𝑗/2.

Case 2: 𝑧𝑗 = 0

The case that 𝑧𝑗 = 0 occurs with probability 1 − 𝑗/𝑡, making (𝑎*, 𝑏*) = (𝑗, 𝑡) and

𝑦[𝑎
*, 𝑏*] = (𝑡− 𝑗)/2.

Plugging in, 𝐸[∆𝑗] = (𝑗/𝑡)(𝑡/2 − 𝑗/2) + (1 − 𝑗/𝑡)(𝑗/2). This quadratic has its

maximum at 𝑗 = 𝑡/2, the halfway point of the interval. This indicates that the

point that maximizes Model-derived Query Utility over a uniform distribution is the

midpoint, equivalent to binary search.
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B.3 Reinforcement Learning Details

B.3.1 Decision-making agent

We view this formulation as a Markov Decision Process, where an agent views a state

𝑠 ∈ 𝒮 that encodes information about the past queries 𝑄 and the representations of

the extraction model, 𝑓 , conditional on the queries. The agent must choose an action

𝑎 ∈ 𝒜 that corresponds to either querying an index 𝑖, or making a final extraction.

The process terminates when the agent makes a prediction, or when the agent can

verifiably determine the true labelling of the sequence. After termination, a reward is

determined by the final accuracy of the extraction model, conditioned on the queried

information.

State

At every state, we retain a history of past queries 𝑄 = {𝑞1, · · · , 𝑞𝑚}. Our state 𝑠𝑖 is

composed of three components: a positional encoding of every index, the predicted

marginals 𝑝𝜃(𝑦𝑖|{𝑞1, · · · , 𝑞𝑚}), and the final-layer hidden states of the prediction

network at every index, ℎ𝑖.

Positional Encoding Following Vaswani et al. [281], we use a sinusoidal positional

encoding. Formally, for every index 𝑖, we define our positional embedding vector −→𝑝𝑖 of

length 64 as

−→𝑝𝑖 (𝑗) =

⎧⎪⎨⎪⎩sin(𝑟
𝑗
64 · 𝑖), for 𝑗 is even

cos(𝑟
𝑗−1
32 · 𝑖), for 𝑗 is odd

where 𝑗 represents the indices of −→𝑝𝑖 , spanning from 0 to 63.

Predicted Marginals Using the predicted probabilities of our model 𝑝𝜃(𝑦 = 𝑖|𝑋,𝑄)

at every index 𝑖, it is possible to induce marginals

𝑧𝑖 = 𝑝𝜃(𝑧𝑖 = 1|𝑋,𝑄) = 𝑝𝜃(𝑖 ≥ 𝑦|𝑋,𝑄) =
∑︁
𝑖≥𝑦

𝑝𝜃(𝑦 = 𝑖|𝑋,𝑄)
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Hidden States The third component of our state is the hidden states of the

extraction model at every index, ℎ𝑖. We concatenate all components to form our state,

𝑠𝑖 = [𝑝𝑖, 𝑧𝑖, 1− 𝑧𝑖, ℎ𝑖].

Action

Our action space is 𝒜 = {𝑞1, · · · , 𝑞𝑛, 𝑝}, where 𝑎 = 𝑞𝑖 indicates the act of querying the

oracle for the label of note 𝑖, and 𝑎 = 𝑝 indicates the act of making a final prediction.

Reward

As training signal for the policy model, we may use a scalar reward which represents

how well our extraction model performed after using all query information. However,

using a delayed reward at the end of each example makes learning difficult. Instead,

we advocate for reward shaping [192], where intermediate rewards are provided to

accelerate the learning process. Thus, we define the reward at a given state as

𝑅(𝑠𝑖−1, 𝑎) =

⎧⎪⎨⎪⎩𝐴𝑐𝑐(𝑦, 𝑓𝜃(𝑋|𝑞1, · · · , 𝑞𝑖)) + 𝐴𝑐𝑐(𝑦, 𝑓𝜃(𝑋|𝑞1, · · · , 𝑞𝑖−1))− 𝐶 if 𝑎 ̸= 𝑝

0 if 𝑎 = 𝑝

where 𝐶 is a hyperparameter for the cost of querying. In other words, the reward is

the incremental improvement of querying, offset by a query cost. When the query cost

outweighs improvement in accuracy, the model is incentivized to quit the process by

making a prediction. There are many possibilities for parametrizing 𝐴𝑐𝑐(𝑦, 𝑦), but

here we use 𝐴𝑐𝑐(𝑦, 𝑦) = |𝑦 − 𝑦|.

B.3.2 Reinforcement learning

We use a reinforcement learning approach to learn a good policy for our agent. Formally,

we define a policy network 𝜋𝛽(𝑠) = 𝑝𝛽(𝑎|𝑠), 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 that assigns probabilities to

actions, given the current state of the agent.

We aim to find a set of values for 𝛽 that maximizes the expected reward under
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the policy 𝜋𝛽. Thus, our objective is to maximize

𝐽(𝛽) = 𝐸(𝑠1,𝑎1,𝑠2,𝑎2,··· )[
∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡, 𝑎𝑡)]

where actions 𝑎𝑖 ∼ 𝜋𝛽(𝑠𝑖) are sampled from the policy and the next state 𝑠𝑖+1 ∼

𝑝(·|𝑠𝑖, 𝑎𝑖) is obtained via the MDP transition function. In this setting, 𝛾 is the discount

factor of the MDP.

We optimize 𝐽(𝛽) by applying the policy gradient theorem and the REINFORCE

algorithm [301]. First, we sample a trajectory under the current policy 𝜋𝛽 to obtain

{𝑠1, 𝑎1, 𝑠2, 𝑎2, · · · , 𝑠𝑇 , 𝑎𝑇}, where 𝑎𝑖 ∼ 𝜋𝛽(𝑠𝑖). In order to compute an estimate of

the gradient of our objective, we first compute the cumulative reward at every step,

𝑣𝑡 =
∑︀𝑇

𝑗=𝑡 𝛾
𝑡−𝑗𝑅𝑗. Our gradient then is

∇𝛽𝐽(𝛽) =
𝑇∑︁
𝑡=0

𝑣𝑡∇𝛽 ln 𝜋𝛽(𝑎𝑡|𝑠𝑡)

Policy Architecture

We parametrize our policy model using a 1-layer Transformer encoder block as in

[281], followed by a fully-connected layer. Because there are 𝑛+ 1 actions for an input

of length 𝑛, we concatenate a trainable bias to the output of the fully-connected layer

before passing it through a softmax function. In our experiments, we use a transformer

with a hidden dimension of 64 and 16 attention heads.

Training Scheme

We train for 20 epochs using batched gradient ascent over sampled trajectories. In

order to facilitate training, we use a warm-up scheme that linearly increases the

hyperparameter 𝐶 from 0 to its desired value every epoch. We train using the Adam

optimizer with initial learning rate 1e-3. All hyperparameters were selected using

cross-validation over the validation set.
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Appendix C

Additional Information for Chapter 6

C.1 Synthetic Experiments

C.1.1 Synthetic Distributions

In this section we describe the distributions for the synthetic experiments in Section

6.5.1. Both of these distributions are members of the class of distributions from

Section 6.4.1. We proved in the full manuscript [6] that all of these distributions

satisfy Assumptions 1-3, and that 𝑆 is the optimal representation for OCP on these

distributions.

Distribution 1 (Figure 2a)

Our first synthetic distribution includes trajectories 𝑋 of length 10 with 𝑑 = 8 features

that are generated as described below:

• The set 𝑆 consists of 4 time-irreversible features. Each feature in 𝑆 has a fixed

probability of activating (switching from ‘0’ to ‘1’) over the entire trajectory,

independent of the other features in 𝑆. Activation time was chosen uniformly

over the whole trajectory and independently per feature, and once activated,

features remained on. In our synthetic data, probabilities were 0.4 for the first

two features and 0.6 for the next two features.
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• The set 𝑆 consisted of noisy versions of the first three variables in 𝑆. 𝜖𝑖 was set

to 0.7 for all variables.

• The last feature 𝑋−1 was a background, reversible feature in 𝐵. It was a periodic

function, alternating between 0 and 1, with uniform initialization over {0, 1}.

Distribution 2 (Figure 2b)

Similarly, our second synthetic distribution includes trajectories 𝑋 of length 10 with

𝑑 = 7 features that are generated as described below:

• The set 𝑆 consists of 4 time-irreversible features, identical to before. Each

feature in 𝑆 has a fixed probability of activating (switching from ‘0’ to ’1’) over

the entire trajectory, independent of the other features in 𝑆. Activation time

was chosen uniformly over the whole trajectory and independently per feature,

and once activated, features remained on. In our synthetic data, probabilities

were 0.4 for the first two features and 0.6 for the next two features.

• The set 𝑆 consisted of noisy versions of the first two variables in 𝑆. 𝜖𝑖 was set

to 0.55 for all variables.

• The last feature 𝑋−1 was a background, reversible feature in 𝐵. 𝑋0
−1 was

sampled uniformly from {0, 1} and the rest of 𝑋−1 was set such that for all

𝑡 ≥ 1, P[𝑋 𝑡
−1 = 𝑋 𝑡−1

−1 ] = 0.3.

C.1.2 Experimental Setup

Synthetic Data Creation

In order to quantify how many unlabeled pre-training samples are required to recover

𝑆, we created data sets {𝑋𝑖}𝑚𝑖=1 with varying 𝑚, taking on values 50, 100, 200, 400,

600, 800, 1000, 2000, 4000, 8000, and 16,000. For each dataset size 𝑚, we generated

100 independently drawn sets, according to the distributions described previously.
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For each created set, a single pair was sampled from each trajectory according

to OCP, PCL, or OCP-biased sampling. I.e., an unlabeled dataset of 𝑚 trajectories

produced a pre-training dataset with 𝑚 pairs.

Selection of Optimal Representation

Now, for each of our pre-training datasets and each sampling scheme (OCP, PCL,

OCP-biased), we now determine what feature representation 𝑔 would be selected via

pre-training for each one.

In order to do so, we iterate over each possible 𝑔 ∈ 𝒢 where 𝒢 = {𝑈 ⊂ [𝑑] : |𝑈 | =

|𝑆| = 𝑑0}. After subselecting to the features in 𝑔, each pair of data points (𝑋 𝑡, 𝑋 𝑡′)

was featurized as input as [𝑋 𝑡;𝑋 𝑡′ ;𝑋 𝑡−𝑋 𝑡′ ; |𝑋 𝑡−𝑋 𝑡′ |]. The loss is then minimized via

the LogisticRegression implementation from scikit-learn with the ‘liblinear’ optimizer.

We then select the 𝑔 that minimizes the empirical pre-training loss and calculate the

overlap with the true features in 𝑆.

C.1.3 Explanation of Observed Behavior

Distribution 1

In Distribution 1, we see that OCP essentially always converges to the optimal

representation with 8,000 data points, and OCP-biased also coverges, albeit slower.

However, PCL is never able to break the barrier of 3 features, since it opts to choose

the periodic feature 𝑋−1 instead. This feature (which alternates between 0 and 1) is

highly discriminative for the PCL pre-training task, since |𝑋 𝑡
−1 −𝑋 𝑡+1

−1 | = 1 whenever

𝑌 = 1, and the same is true only half the time when 𝑌 = 0. Therefore, while it is

a background, reversible feature that may not be useful for a downstream task, it is

useful for the PCL task, and therefore PCL fails to find the optimal representation of

time-irreversible features. In contrast, for OCP, |𝑋 𝑡
−1 −𝑋 𝑡+1

−1 | = 1 is true across all

examples, and therefore would not be chosen as a discriminative feature.
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Distribution 2

In Distribution 2, we again see that all methods are able to identify the optimal

representation. However, OCP requires fewer pre-training samples in order to reach

the optimal representation. While not periodic as in Distribution 1, 𝑋−1 is again

weakly predictive of whether or not a window is consecutive. While 𝑋−1 is not as

strongly predictive as in Distribution 1, PCL still opts to select it in 𝑔 in the lower-data

regime. However, with sufficient data, PCL overcomes the “false” signal to opt for the

“correct” feature instead.
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C.2 Real-world Experiments

C.2.1 Pre-training for feature selection

Implementation Details

For the linear pre-training for feature selection experiment, we utilized the LogisticRe-

gression implementation from scikit-learn with the ‘liblinear’ optimizer and balanced

class reweighting [205]. Hyperparameter tuning was conducted on the validation set

independently for each feature subset, dataset size, and fold number. Hyperparameters

included regularization scheme (‘l1’ or ‘l2’) and regularization constant (10−3 to 106).

All performance reported is on the held-out test sets using the best hyperparameter

setting from the validation set.

Granular Experimental Results

Below, we present a more granular view on results including standard deviations,

focusing on the difference between direct downstream prediction and using order

contrastive pre-training to select features.

Fraction of training data
Features 1 1/2 1/4 1/8 1/16
OCP subset 0.864 ± .022 0.860 ± .026 0.847 ± .024 0.808 ± .023 0.786 ± .068
All features 0.856 ± .021 0.851 ± .021 0.818 ± .036 0.723 ± .057 0.726 ± .074
OCP - All 0.008 ± .014 0.008 ± .039 0.029 ± .035 0.082 ± .058 0.054 ± .050

Table C.1: AUC ± standard deviations (as calculated over five folds), comparing the
use of all features to just those selected by OCP. The final row displays the difference
in AUC between OCP-selected features and all features and the standard deviation of
that difference.

Average Precision Results

In addition to the note-level AUC, we also provide results via a different patient-level

precision metric; this provides another interpretable view on performance, since each

patient has multiple notes in the test set, and the labels are imbalanced. We define

Average Precision at 80% recall in the following manner. We first find the threshold
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at which 80% of positive labels (displays progression) would be recovered. Then

per patient, we calculate the precision of the retrieved notes, assuming use of that

threshold, which we then average over patients. If no notes are surfaced for a patient,

we set the precision to 1 if no positive note exists, and 0 otherwise.

We then assess performance using this precision-level metric. We follow the same

procedure as before, except that hyperparameter settings are now chosen on the basis

of this precision metric on the validation set, instead of AUC. In the table below,

we note the same trends are present with average precision as with AUC; namely,

there is essentially no difference when all training data can be used, but a much larger

difference when the model is restricted to only a fraction.

Table C.2: Average precision at 80% recall ± standard deviations (as calculated over
five folds), comparing the use of all features to just those selected by OCP. The final
row displays the difference in average precision between OCP-selected features and all
features.

Fraction of training data
Available features 1 1/2 1/4 1/8 1/16
OCP subset 0.54 ± 0.09 0.54 ± 0.07 0.51 ± 0.08 0.48 ± 0.09 0.42 ± 0.10
All features 0.54 ± 0.12 0.50 ± 0.12 0.49 ± 0.05 0.37 ± 0.07 0.37 ± 0.07
OCP - All 0 ± 0.08 0.05 ± 0.10 0.02 ± 0.08 0.10 ± 0.07 0.05 ± 0.05
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C.2.2 Nonlinear representations

Implementation Details

The masked language modeling was conducted using the BertForMaskedLM imple-

mentation from Wolf et al. [305] with a 15% masking rate and a learning rate of 5e-5.

The checkpoint used downstream was selected as the one in which the model had the

lowest validation loss on a held-out set of notes. The contrastive pre-training across all

3 objectives was conducted using the BertForNextSentencePrediction implementation

from Wolf et al. [305] with a learning rate of 1e-5 and weight decay of 0.01. For

each contrastive approach, the model checkpoint with the highest validation accuracy

on a held-out set of 3200 contrastive pairs was chosen for use downstream. The

𝐿2-regularized linear layer was implemented using scikit-learn, using class-balanced

reweighting and the ‘liblinear’ optimizer. As before, the regularization (1e-2 to 1e5)

was chosen for each seed, fold, model, and dataset size using the best performance on

the validation set.

Computational Burden

Each pre-training method was trained on a single NVIDIA GeForce GTX 1080 Ti

GPU with 12GB of memory. Convergence required about 6 hours for the masked

language modeling pre-training and 3-4 hours for each of the contrastive pre-training

methods. Since pre-training was conducted over 3 different seeds, it collectively

required about 54 GPU hours. The forward pass to extract frozen embeddings from

the different models across seeds and folds was minimal in time (less than 15 minutes).

All downstream experiments and hyperparameter tuning involved solely a linear layer

and were conducted on a CPU.

Granular Experimental Results

Below, we display more granular experimental results, splitting performance by seed.

We display both the mean and standard deviation AUC across the 5 folds at each

training data size. While there is some variation between seeds, we find that OCP
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consistently outperforms at smaller dataset sizes.

Table C.3: AUC average and standard deviation (as calculated over five folds) over
each of the three seeds trained per method.

Fraction of training data
AUC ± std dev 1 1/2 1/4 1/8 1/16
OCP Seed A 0.87 ± .04 0.86 ± .04 0.84 ± .03 0.82 ± .03 0.83 ± .04
OCP Seed B 0.86 ± .03 0.85 ± .04 0.84 ± .04 0.81 ± .02 0.82 ± .03
OCP Seed C 0.88 ± .02 0.86 ± .04 0.85 ± .03 0.81 ± .03 0.79 ± .02
BERT 0.79 ± .06 0.74 ± .06 0.72 ± .04 0.63 ± .05 0.60 ± .06
Fine-Tuned LM Seed A 0.87 ± .05 0.85 ± .06 0.85 ± .02 0.77 ± .06 0.75 ± .06
Fine-Tuned LM Seed B 0.84 ± .03 0.82 ± .04 0.79 ± .02 0.70 ± .07 0.67 ± .09
Fine-Tuned LM Seed C 0.83 ± .02 0.80 ± .01 0.77 ± .01 0.73 ± .06 0.71 ± .05
Pt-Contrastive Seed A 0.82 ± .04 0.79 ± .03 0.77 ± .04 0.69 1 ± .07 0.66 ± .10
Pt-Contrastive Seed B 0.85 ± .02 0.83 ± .04 0.78 ± .04 0.72 ± .03 0.69 ± .1
Pt-Contrastive Seed C 0.84 ± .05 0.85 ± .05 0.83 ± .03 0.77 ± .04 0.72 ± .06
PCL Seed A 0.88 ± .02 0.88 ± .03 0.85 ± .02 0.83 ± .04 0.78 ± .03
PCL Seed B 0.86 ± .01 0.85 ± .04 0.80 ± .06 0.77 ± .02 0.76 ± .04
PCL Seed C 0.86 ± .03 0.84 ± .03 0.80 ± .04 0.75 ± .04 0.71 ± .08
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Average Precision Results

Below we show results on the test set using the patient-level average precision metric

introduced in Appendix B.1. As before, hyperparameter settings are chosen based

on the model with best performance on the validation set, per this precision metric.

Again, we find that OCP is relatively consistent in performance even with minimal

training data, and outperforms other methods, particularly in the low data regime.

Table C.4: Performance in terms of average precision at 80% recall as calculated
across 5 folds and 3 seeds for fine-tuned methods. The first row contains the mean
average precision of OCP ± its standard deviation. The following rows contain the
mean precision advantage of OCP over each comparison method, and the percentage
of time OCP outperforms that method, computed over all seeds and folds.

Fraction of training data
Prec diff (OCP Win %) 1 1/2 1/4 1/8 1/16
OCP Prec 0.57 ± .08 0.58 ± .07 0.55 ± .06 0.50 ± .08 0.50 ± .09
OCP - BERT 0.16 (100%) 0.19 (100%) 0.19 (100%) 0.19 (100%) 0.22 (100%)
OCP - FT LM 0.09 (80%) 0.09 (80%) 0.09 (84%) 0.11 (87%) 0.13 (93%)
OCP - Pt-Contrastive 0.08 (73%) 0.09 (80%) 0.14 (100%) 0.15 (96%) 0.17 (98%)
OCP - PCL 0.02 (56%) 0.04 (69%) 0.07 (73%) 0.10 (84%) 0.13 (91%)

Qualitative Analysis

We now conduct a qualitative analysis to understand whether the OCP pre-trained

model is operating as expected, namely whether it is attending to those features we

would expect to be most crucial both in ordering and for downstream progression

extraction.

The BertForNextSentencePrediction model used for contrastive pre-training is

implemented such that sequence classification is based off of the representation of

the CLS classifier token. Therefore, we examine those tokens which are most highly

attended to by the CLS token in the last BERT layer, as a proxy signal for what the

model is attending to for its final classification representation. Over all examples in

the validation set, we find the average attention each token contributed in the final

layer. There are then 21 tokens with an average attention above a threshold of 0.1;

they include increased/increase/increasing, change, unchanged, no, stable, negative,
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persistent, and resolved. All such features elucidate disease stage, and therefore, it

seems qualitatively plausible that OCP learns useful downstream representations in

the nonlinear case. Other highly ranked features include the SEP token used to split

the contrastive pairs, as well as prior, which is a possible leaky feature that indicates

order information, but is not as useful for downstream analysis.
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Appendix D

Additional Information for Chapter 7

D.1 Prompts and Sample GPT-3 Outputs

We present examples for each task alongside their corresponding prompts to illustrate

different prompting strategies used for each task.
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D.1.1 Clinical Sense Disambiguation

For clinical sense disambiguation we used GPT-3 edit mode which edits the input text

rather than continuing it.

Example 1

GPT-3 edit input:
GENERAL: Patient is sedated on vent. HEENT: Normocephalic, atraumatic.
Pupils are sluggish but reactive and equal bilaterally. NECK: Supple. No
lymphadenopathy. No JVD. CARDIAC: Regular rate and rhythm. No murmurs.
LUNGS: CTA, intubated. ABDOMEN: Obese, nontender, positive bowel sounds.
EXTREMITIES: Positive pulses, positive edema. SKIN: Chronic changes
pretibial area bilaterally.

GPT-3 edit prompt:

Expand the abbreviation: CTA

GPT-3 edit output:
GENERAL: Patient is sedated on vent. HEENT: Normocephalic, atraumatic.
Pupils are sluggish but reactive and equal bilaterally. NECK: Supple. No
lymphadenopathy. No JVD. CARDIAC: Regular rate and rhythm. No murmurs.
LUNGS: Clear to auscultation, intubated. ABDOMEN: Obese, nontender,
positive bowel sounds. EXTREMITIES: Positive pulses, positive edema. SKIN:
Chronic changes pretibial area bilaterally.

Example 2

GPT-3 edit input:
2. Severe hypertension. 3. Severe mitral regurgitation. 4. Osteoporosis.
PROCEDURES: 1. Coronary angiography and hemodynamic evaluation with right
heart catheterization. Right heart catheterization shows right atrial
pressure of 1, right ventricular pressure of 47/11, PA pressure of 48/16,
with a pulmonary capillary wedge pressure of 29, with a large B-wave
confirmed with a wedge saturation of 95

GPT-3 edit prompt:

Expand the abbreviation: PA

GPT-3 edit output:
2. Severe hypertension. 3. Severe mitral regurgitation. 4. Osteoporosis.
PROCEDURES: 1. Coronary angiography and hemodynamic evaluation with right
heart catheterization. Right heart catheterization shows right atrial
pressure of 1, right ventricular pressure of 47/11, pulmonary artery
pressure of 48/16, with a pulmonary capillary wedge pressure of 29, with a
large B-wave confirmed with a wedge saturation of 95%.
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D.1.2 Biomedical Evidence Extraction

For biomedical evidence extraction we used GPT-3 Davinci. The generated output is

shown in blue.

Example 1

GPT-3 Davinci:
Assessment of acute bronchodilator effects from specific airway resistance
changes in stable COPD patients.
BACKGROUND In COPD patients, reversibility is currently evaluated from the
changes of forced expiratory volume at 1s (ΔFEV1) and forced vital capacity
(ΔFVC). By lowering peripheral airway smooth muscle tone, bronchodilators
should decrease dynamic hyperinflation, gas trapping, and possibly dyspnea
at rest. Hence, we hypothesize that specific airway resistance changes
(ΔsRAW) should better characterize the acute response to bronchodilators.
METHODS On two days, 60 COPD patients underwent dyspnea evaluation (VAS
score) and pulmonary function testing at baseline and one hour after
placebo or 300𝜇g indacaterol administration.
RESULTS Spirographic and ΔsRAW-based criteria identified as responders 24
and 45 patients, respectively. ΔsRAW correlated with changes of
intrathoracic gas volume (ΔITGV) (r=0.61; p<0.001), residual volume (ΔRV)
(r=0.60; p<0.001), ΔFVC (r=0.44; p=0.001), and ΔVAS (r=0.73; p<0.001),
while ΔFEV1 correlated only with ΔFVC (r=0.34; p=0.008). Significant
differences in terms of ΔITGV (p=0.002), ΔRV (p=0.023), and ΔVAS (p<0.001)
occurred only if patients were stratified according to ΔsRAW. [...]

Create a bulleted list of the arms in this trial.

- Placebo
- Indacaterol (300 𝜇g)
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Example 2

GPT-3 Davinci:
Serum biochemical characteristics of Beluga, Huso huso (L.), in response to
blood sampling after clove powder solution exposure.
In order to investigate the effect of anesthesia on serum parameters,
Beluga, Huso huso (L.) were blood-sampled immediately without anesthesia
(control) or subjected to following anesthesia procedure: 40, 120, and 240 s
exposure to 3,000, 700, and 500 mg l−1 clove solution, respectively. Blood
samples were collected after these periods, when fish were immobile and
reached stage 4 anesthesia. Results showed that cortisol and glucose levels
were significantly high in 700 and 500 but not 3,000 mg l−1 group compared
to control. Serum lactate levels were significantly high in 500 mg l−1 group
compared to control group. Lactate levels were not significantly differed
between control, 3,000, and 700 mg l−1 groups. There were no significant
differences in serum levels of cholesterol, total protein, lactate
dehydrogenase, aspartate aminotransferase, alanine aminotransferase, Na+,
Cl−, K+, and Ca2+. Results suggest that rapid anesthesia with higher dose
is better than slow anesthesia with lower dose for blood sampling in Beluga.

Create a bulleted list of the arms in this trial.

- Control

- 3,000 mg l−1 clove solution

- 700 mg l−1 clove solution

- 500 mg l−1 clove solution
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D.1.3 Coreference Resolution

Example 1: Zero-shot unguided

GPT-3 Davinci:

[...] Her current regimen for her MS is Rebif Monday, Wednesday, and Friday
and 1 gram of methylprednisolone p.o. every month. This had been working
previously; however, she feels that her symptoms return before her next
dose of methylprednisolone is due.

What does "This" in the sentence "This had been working previously; however,
she feels that her symptoms return before her next dose of
methylprednisolone is due." refer to?

The sentence is unclear, but it seems to be referring to the Rebif regimen.

Example 1: One-shot guided (incorrect)

[...] ASSESSMENT & PLAN: The patient has no physical evidence of
progression of disease. It is somewhat worrisome that her CEA is up, but
will be keep watching that [...]

What does "that" in the sentence "It is somewhat worrisome that her CEA is
up, but will be keep watching that to see if it is just within a normal
swing for her." refer to?

"that" refers to "progression of disease"

[...] Her current regimen for her MS is Rebif Monday, Wednesday, and Friday
and 1 gram of methylprednisolone p.o. every month. This had been working
previously; however, she feels that her symptoms return before her next
dose of methylprednisolone is due.

What does "This" in the sentence "This had been working previously; however,
she feels that her symptoms return before her next dose of
methylprednisolone is due." refer to?

"This" refers to "her current regimen for her MS"
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Example 1: One-shot guided (correct)

[...] ASSESSMENT & PLAN: The patient has no physical evidence of progression
of disease. It is somewhat worrisome that her CEA is up, but will be keep
watching that to see if it is just within a normal swing for her. [...]

What does "that" in the sentence "It is somewhat worrisome that her CEA is
up, but will be keep watching that to see if it is just within a normal
swing for her." refer to?

"that" refers to "her CEA"

[...] Her current regimen for her MS is Rebif Monday, Wednesday, and Friday
and 1 gram of methylprednisolone p.o. every month. This had been working
previously; however, she feels that her symptoms return before her next
dose of methylprednisolone is due.

What does "This" in the sentence "This had been working previously; however,
she feels that her symptoms return before her next dose of
methylprednisolone is due." refer to?

"This" refers to "her current regimen for her MS"
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D.1.4 Medication Status Extraction

Example 1: Zero-shot guided

[...] home dose of Kadian as this is her long-acting medication and DC the
continuous Dilaudid given IV. 5. Urinary tract infection with Klebsiella
and E. coli, both sensitive to Levaquin. Since this was diagnosed Foley has
been DC’d. For now would continue Levaquin and recheck urinalysis.

Create a bulleted list of which medications are mentioned and whether they
are active, discontinued, or neither.

-"Kadian" (active)
-"Dilaudid" (discontinued)
-"Levaquin" (active)

Example 1: One-shot guided (incorrect)

[...] start her on Ativan 1 mg p.o. q. 8 hours and use Ativan 1 mg IV q. 4
hours p.r.n. for agitation. I will also start her on Inderal LA 60 mg p.o.
q.d. for essential tremors. She does not want to take Celexa, and I will
put her back on Lexapro 2 mg p.o. q.d. I will discontinue Esmolol.

Create a bulleted list of which medications [...]

-"Ativan" (discontinued)
-"Inderal LA" (active)
-"Celexa" (neither)
-"Lexapro" (active)
-"Esmolol" (active)

[...] home dose of Kadian as this is her long-acting medication and DC the
continuous Dilaudid given IV. 5. Urinary tract infection with Klebsiella
and E. coli, both sensitive to Levaquin. Since this was diagnosed Foley has
been DC’d. For now would continue Levaquin and recheck urinalysis.

Create a bulleted list of which medications [...]

-"Kadian" (active)
-"Dilaudid" (discontinued)
-"Levaquin" (active)
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Example 1: One-shot guided (correct)

[...] start her on Ativan 1 mg p.o. q. 8 hours and use Ativan 1 mg IV q. 4
hours p.r.n. for agitation. I will also start her on Inderal LA 60 mg p.o.
q.d. for essential tremors. She does not want to take Celexa, and I will
put her back on Lexapro 2 mg p.o. q.d.

Create a bulleted list of which medications [...]

-"Ativan" (active)
-"Inderal LA" (active)
-"Lexapro" (active)
-"Celexa" (neither)

[...] home dose of Kadian as this is her long-acting medication and DC the
continuous Dilaudid given IV. 5. Urinary tract infection with Klebsiella
and E. coli, both sensitive to Levaquin. Since this was diagnosed Foley has
been DC’d. For now would continue Levaquin and recheck urinalysis.

Create a bulleted list of which medications [...]

-"Kadian" (discontinued)
-"Dilaudid" (discontinued)
-"Levaquin" (discontinued)
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D.1.5 Medication Attribute Extraction

Example 1: Token-level

<One-shot-example>

Label the tokens: medication, dosage, route, frequency, duration, reason,
or none. Ignore allergies.

<One-shot-labels>

Input: 8. Albuterol 2 puffs every 4-6 hours as needed. HOSPITAL COURSE:
This is an 80-year-old female who was hospitalized about 2 months ago for
chronic obstructive pulmonary disease exacerbation. At that time she was
put on prednisone and antibiotics and seemed to get better. However, she
was put on Augmentin ES and continued to have difficulty tasting food and
felt that food tasted very salty. She had no appetite and she has continued
to lose weight over the last 2 months.

Label the tokens: medication, dosage, route, frequency, duration, reason,
or none. Ignore allergies.

-"8": none
-".": none
-"Albuterol": medication
-"2": dosage
-"puffs": dosage
-"every": frequency
-"4-6": frequency
-"hours": frequency
-"as": none
-"needed": none
-".": none
-"HOSPITAL": none
-"COURSE": none
-"This": none
-"is": none
-"an": none
-"80-year-old": none
-"female": none
-"who": none
-"was": none
-"hospitalized": none
-"about": duration
-"2": duration
-"months": duration
-"ago": duration
-"for": reason
-"chronic": reason
-"obstructive": reason
[...]
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Example 1: Phrase-level

<One-shot-example>

Label the tokens: medication, dosage, route, frequency, duration, reason,
or none. Chunk the same entity together. Ignore allergies.

<One-shot-labels>

Input: 8. Albuterol 2 puffs every 4-6 hours as needed. HOSPITAL COURSE:
This is an 80-year-old female who was hospitalized about 2 months ago for
chronic obstructive pulmonary disease exacerbation. At that time she was
put on prednisone and antibiotics and seemed to get better. However, she
was put on Augmentin ES and continued to have difficulty tasting food and
felt that food tasted very salty. She had no appetite and she has continued
to lose weight over the last 2 months.

Label the tokens: medication, dosage, route, frequency, duration, reason,
or none. Chunk the same entity together. Ignore allergies.

-"8": none
-".": none
-"Albuterol": medication
-"2 puffs": dosage
-"every 4-6 hours": frequency
-"as needed": duration
-".": none
-"HOSPITAL COURSE": none
-"This": none
-"is": none
-"an": none
-"80-year-old": none
-"female": none
-"who": none
-"was": none
-"hospitalized": none
-"about": none
-"2 months": duration
-"ago": none
-"for": none
-"chronic": none
-"obstructive": none
-"pulmonary": none
-"disease": reason
-"exacerbation": none
-".": none
-"At": none
-"that": none
[...]
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Example 1: Relation Extraction

<One-shot-example>

Label medications, ignoring allergies. Include dosage, route, frequency,
duration, reason, if available.

<One-shot-labels>

Input: 8. Albuterol 2 puffs every 4-6 hours as needed. HOSPITAL COURSE:
This is an 80-year-old female who was hospitalized about 2 months ago for
chronic obstructive pulmonary disease exacerbation. At that time she was
put on prednisone and antibiotics and seemed to get better. However, she
was put on Augmentin ES and continued to have difficulty tasting food and
felt that food tasted very salty. She had no appetite and she has continued
to lose weight over the last 2 months.

Label medications, ignoring allergies. Include dosage, route, frequency,
duration, reason, if available.

-"medication: "Albuterol", dosage: "2 puffs", frequency: "every 4-6 hours",
duration: "as needed"
-medication: "prednisone", duration: "2 months"
-medication: "antibiotics", duration: "2 months"
-medication: "Augmentin ES", duration: "2 months"
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Figure D-1: Platform used for annotation of the three new labeled datasets, shown
for the coreference resolution annotation task.

D.2 Annotation Process

A screenshot of the annotation process can be seen in Figure 2.

D.2.1 Biomedical Evidence Extraction

For arm identification 20 out of 187 abstracts from the test set of Nye et al. [196]

were randomly selected. Both annotators separately identified the study arms in

each abstract. They included all characteristics of a arm that were necessary for

differentiation [71]. For example, we would not require the route of administration for

a drug (e.g., “oral" in oral X ) unless another arm contained the the same drug in a

different formal (e.g., X nasal spray). There was full consensus between annotators for

the identified numbers of arms. A single abstract was replaced due to its ambiguity.

D.2.2 Coreference Resolution

Annotators labeled 105 snippets from the CASI dataset with pronouns and their

corresponding noun phrase antecedent [176]. The antecedent was annotated as the

entire noun phrase (barring any dependent clauses); in cases where two antecedents

were available, both were labeled. For the purposes of evaluation, we chose the
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antecedent with the highest overlap to each model’s output. To ensure nontrivial

examples, the annotators excluded all examples of personal pronouns (e.g., “he”, “she”)

if another person (and possible antecedent) had not yet been mentioned in the snippet.

D.2.3 Medication Status Extraction

We wanted to create a dataset of challenging examples containing a changeover in

treatment. From a sample, only ∼5% of CASI snippets contained such examples. To

increase the density of these examples, speeding up annotation, clinical notes were

filtered with the following search terms: discont, adverse, side effect, switch, and

dosage, leading to 1445 snippets. We excluded snippets that were purely medication

lists, requiring at least some narrative part to be present. For 105 randomly selected

snippets, the annotators first extracted all medications. Guidelines excluded medi-

cation categories (e.g., “ACE-inhibitor”) if they referred to more specific drug names

mentioned elsewhere (even if partially cut off in the snippet). For instance, only the

antibiotic Levaquin was labeled in: “It is probably reasonable to treat with antibiotics

[...]. I would agree with Levaquin alone [...]”. Guidelines also excluded electrolytes

and intravenous fluids as well as route and dosage information. In a second step,

medication were assigned to one of three categories: active, discontinued, and neither.

Discontinued medications also contain medications that are temporarily on hold. The

category neither was assigned to all remaining medications (e.g., allergies, potential

medications).

D.2.4 Medication Attribute Extraction

For medication attribute extraction, we also labeled 105 examples from CASI [176].

Annotation guideline were adopted from the 2009 i2b2 medication extraction challenge

[276] with slight modifications. We allowed medication attributes to have multiple

spans. Also, we grouped together different names of the same drug (e.g., “Tylenol”

and “Tylenol PM”) for the purpose of relation extraction. After annotation of the data,

we create three versions of the dataset: token-level, phrase-level, and relation-level.
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For the first, we split all word in the example and assigned them their respective

label or none if they were not part of a label (see token-level example in D.1.5. For

phrase-level, we kept consecutive words with the same label grouped together as

phrases (see phrase-level example in D.1.5. The relation level just contained the

extracted medication and their attributes (see relation extraction example in D.1.5.

We note that medication lists were downsampled in the creation of the dataset, since

the 2009 i2b2 challenge had found performance on narrative text was far lower than

on medication lists.
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D.2.5 Clinical Sense Disambiguation

How do we know CASI is not in the LLM training set? Since the CASI dataset

is publicly accessible from the Internet and on Github, one potential pitfall is that the

dataset may have been in the language models’ training data. While this is also true

of other common NLP benchmarks, we attempted to confirm results were not merely

an artifact. To do so, we annotated 50 distinct acronyms that occurred in sentences in

the CASI dataset that were not included in the original annotations. While this set of

acronyms is easier (e.g., they many only have a single clinical expansion), this allows

us to check that GPT-3 is not simply pattern matching to potential past training

data. In the set of 50, we find GPT-3 edit correctly expanded 47 (94%). In 2 of these

cases, the acronym was in fact a typo (SMIV instead of SIMV, AVG instead of ABG),

and the correct expansion was given regardless. Of the 3 that were incorrect, one was

in fact incorrect, one was of unspecified meaning to the annotator, and one had 2/3 of

the words correct in the expansion. Resolver Details

Weak Supervision For weak supervision, we only consider the 97% of the dataset

where the overlap with an answer choice was at least 5 characters as candidates

for pseudolabels. Following prior work [143, 144], we additionally used a technique

called the cut statistic to select a high-quality subset of the weakly labeled data

to reduce the noise in the training process. We selected a subset of size 75% to

decrease noise while still choosing a large enough set to ensure all acronyms were seen

during training. We fine-tuned a PubMedBERT [96] model, a BERT variant that was

pretrained on biomedical abstracts and full-text articles from PubMed, using learning

rate 1e-5, weight decay 0.01, the AdamW optimizer [163], and batch size 4, using the

BERTForMultipleChoice functionality in HuggingFace Transformers [304].

D.2.6 Biomedical Evidence Extraction

Baseline Training Details We trained for 10,000 steps using the AdamW optimizer,

learning rate 2e-5, batch size 32, and weight decay 1e-6, inheriting these hyperparame-

ters from Zhang et al. [320]. These were the best-performing hyperparameters across
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the set reported in Zhang et al. [320, Table 10, “BERT-CRF”].

Resolver Details To evaluate on the original token-level labels we tokenize the GPT-

3 output and remove bullet points, numbers, stop words, and the words “treatment”,

“control”, and “group” which GPT-3 often appended for clarification (e.g., “- Placebo

(Control group)”). Then, any token in the input that is found in the remaining GPT-3

output is labeled with a 1, and others with a 0. Since our procedure may have

interrupted valid spans, we fill in any 0’s between 1’s as well as acronyms within

parentheses. These steps transform the LLM output strings 𝑙𝑖 to a binary labeling of

the full input.

Example of Token-level Error Modes As an example describing token-level

error modes of GPT-3, consider the output, the resolved output, and the gold label

for a study with two arms below.

GPT-3 output

- Inhaled fluticasone

- Placebo

Resolved GPT-3 output:

Inhaled fluticasone reduces [...] double-blind, placebo-controlled study [...] inhaled

fluticasone [...] or placebo. Large-scale [...] of inhaled steroid therapy on [...]

Gold-label (token-level):

Inhaled fluticasone reduces [...] double-blind, placebo-controlled study [...] inhaled

fluticasone [...] or placebo. Large-scale [...] of inhaled steroid therapy on [...]

GPT-3 correctly identifies both study arms. However, the resolved output, which

simply labels the token sequence of the identified arms in the original input, disagrees

with the gold labels for several tokens. For example, the output includes the route,

“inhaled”, which isn’t kept in the annotation schema, dinging precision. Further,
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the output excludes “placebo-controlled” (given “placebo” is included), dinging recall.

Therefore, despite qualitatively capturing the arms of this trial, there was a middling

F1-score of 0.70 for this example. This serves to underline why token-level metrics

can be misleading as to true performance towards the underlying goal.

Oracle Details We assumed oracle splitting and oracle coreference resolution in

order to distill the token-level labels to a list for the PubMedBERT baselines. As an

example of oracle splitting, PubMedBERT assigned a 1 to the span “40, 120, and 240

s exposure to 3,000, 700, and 500mg l1 clove solution;” this span in fact contains three

different arms, and we assume it can be perfectly split, since the required information

is theoretically present in the identified span. As an example of oracle coreference

resolution, consider this example with two arms: capecitabine and oxaliplatin plus

radiotherapy (Cap-Oxa-CRT) and concurrent capecitabine and radiotherapy (Cap-CRT).

The spans recognized by PubMedBERT include “adjuvant concurrent chemotherapy”,

“capecitabine-based concurrent chemotherapy”, “postoperative CRT of capecitabine

with or without oxaliplatin”, “concurrent capecitabine and radiotherapy (Cap-CRT)”

and “capecitabine and oxaliplatin plus radiotherapy (Cap-Oxa-CRT).” To be generous

to the baseline, we assumed those 5 spans could possibly be reduced to the two arms

with oracle coreference resolution. No oracle splitting or coreference resolution was

conducted for Resolved GPT-3.

Analysis of Error Modes for Arm Identification Resolved GPT-3 successfully

identified the correct number and content of the arms in 17 of the 20 examples. The

three examples it missed were also missed by PubMedBERT. In one case with two

arms, both methods included a procedure as a separate third arm; in reality, the

procedure occurred for both arms and was not the intervention itself. In the second

case, the prompt output did not elaborate on the treatment group sufficiently, and

in the final case, it fully misparsed. Assuming the oracle splitting and coreference,

PubMedBERT would still have issues with 10 further examples: two again included a

common procedure as a third arm, four were missing control arms, one was missing a
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treatment arm, two arms required further domain knowledge to consolidate (e.g., that

Ramipril is an ACE inhibitory therapy), and another required properly consolidating

a therapy with no overlapping tokens.

D.2.7 Coreference Resolution

Baseline Details We benchmark using a transformer-based model trained jointly

on three large coreference datasets [274] that can be found on the HuggingFace model

hub (shtoshni/longformer_coreference_joint).

Resolvers The resolver for the 0-shot unguided prompt was 50 LOC, or 973 tokens

in the Codex tokenizer. In contrast, the 1-shot guided prompt required only stripping

a final quotation mark, period, or space, which required 20 tokens per the Codex

tokenizer.

D.2.8 Medication + Status Extraction

Resolver details For an unguided prompt, to map the GPT-3 output string to a list

of medication strings, the first step is to break the output string up into substrings by

parsing the “bulleted list” output by GPT-3, which we do with regular expressions.

The output strings for this prompt followed several different formats, making this

step slightly more involved than in previous cases. The two basic formats were a

newline-separated list and a comma-separated list of medication names. The modifiers

were also expressed in different ways: some outputs were {Medication}: {Status}, while

others were {Medication} ({Status}). A few examples instead grouped the medications

by status, so the output was Active: {medication1}, {medication2}, Discontinued:

{medication3}. Examples of these outputs can be found in Appendix D.1.4. Despite

this variation, we output a list by simply replacing newlines with commas to reduce

to the comma-separated case, and then applying two regular expressions to extract

the medication names and modifiers from the list.

The previous steps turn the LLM output strings into lists of strings. The next step
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in the resolver is to denoise the individual strings in each list by first stripping dosage

and route information (e.g., “10 mg” or “patch”) and then performing input-consistency

checking by removing tokens that do not appear in the input. Finally, strings that,

after the prior denoising steps, only consist of stop words or primarily consist of

punctuation and whitespace, are removed from the prediction lists. This required

32 lines of code, and 946 tokens in a byte-pair encoding. In contrast, with a 1-shot

prompt, output could be simply split on the bullets, and the status extracted from

parentheses, requiring 8 lines of code and 165 tokens in a byte-pair encoding.

Medication Extraction Baseline For normalization, all entities were linked to

the UMLS via the default string overlap functionality of ScispaCy [31]. We filtered the

resulting UMLS concepts by their semantic types and only kept concepts of the types

Antibiotic, Clinical Drug, Pharmacologic Substance, and Vitamin. Finally, the baseline

predictions are run through the same denoising steps as the GPT-3 predictions to

ensure a fair comparison.

Status Classification: T-Few We use T-Few [159] for medication status classifica-

tion using 20 additional annotated examples as the few-shot training set. We used a

single prompt:
In the clinical note below, what is the status of the medication Albuterol?

Albuterol 2 puffs every 4-6 hours as needed. HOSPITAL COURSE: This is an
80-year-old female who was hospitalized about 2 months ago for chronic
obstructive pulmonary disease exacerbation. At that time she was put on
prednisone and antibiotics and seemed to get better. However, she was put
on Augmentin ES and continued to have difficulty tasting food and felt that
food tasted very salty. She had no appetite and she has continued to lose
weight over the last 2 months.

For the answer choices, we used Discontinued, Active, and Neither. We did not

use IA(3) pretraining, but otherwise directly followed the T-Few recipe (i.e., we used

the default values for all hyperparameters including batch size, learning rate, number

of steps, length normalization, etc.). We used the T0-11B model.
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D.2.9 Medication + Relation Extraction

Resolver The resolver for the first two tasks iterates over the lines in the GPT-3

output and grabs both the text span and the label; the text span is mapped to

tokenized space, and all labels not in the label space (e.g., “Instructions”) are mapped

to None. For phrase-level labeling, a single additional step is conducted to map

the labels to BIO format. For the relation extraction task, the resolver additionally

assumes all entities mentioned in a line correspond to the medication on that line.

Sequence Tagging baseline We model extraction and labeling of medication

+ modifier (dosage, frequency, route, duration, reason) as a sequence tagging task.

We use the B/I/O encoding for the label space, adding tags to the B and I labels

indicating the type of entity. For training data, we split the 10 notes from the 2009

i2b2 challenge into shorter contexts using an off-the-shelf sentence segmenter, and

merged split contexts of less than 30 tokens into the previous context. This results

in 176 training contexts for the PubMedBERT + CRF model. As with Biomedical

Evidence Extraction, we search for hyperparameters over the search space reported

in Zhang et al. [320, Table 10, “BERT-CRF”]. The final model is chosen based on

validation F1 score on a randomly selected validation set of 10% of the training data

(i.e., 18 contexts).

Relation Extraction Baseline We use the model from Shi and Lin [247] for

relation extraction on top of PubMedBERT. For training data, we again use the

2009 i2b2 challenge set, but since the goal is to associate modifiers with individual

medications, we split up the 10 long notes into rolling chunks around each medication

mention. For each ground-truth medication entity, we create a context including the

30 tokens before and after that entity. We extended these windows to be on an O label

so that entities are not split across contexts. We use a binary label space, since each

modifier type (dosage, route, etc.) determines the relation type: the relevant task is

to classify whether each pair of (medication, modifier) entities in a span is associated.

We create one positive sample for each truly related (medication, modifier) pair. For
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each context, we add a negative sample for each (medication, modifier) pair that is

not related. This results in 1416 examples (many of which have largely overlapping

context, but a different pair of entities) for training the relation extraction model.
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Task Cost per
Token

Tokens
per
Example

# of
Examples

# of
Settings

Approx.
Cost

Clinical
sense
disam-
biguation

$0 (free in
edit beta
mode)

100 105 1 $0

Biomedical
evidence
extraction

$0.00006 500 187 1 $6

Coreference
resolution

$0.00006 300 105 11 $21

Medication
status
extraction

$0.00006 300 105 16 $30

Medication
attribute
extraction

$0.00006 600 105 3 $12

Table D.1: Estimate of cost of running the experiments included in this chapter

D.3 Experimental Cost

At time of experimentation the cost of experiments included in this work were under

$100. A breakdown of the upper bound of API costs can be found in Table D.1 and is

based on OpenAI API pricing in spring 2022. All estimates of tokens/example are

rough upper bounds; some experimental settings were cheaper.
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Research Article 2992

Patient Health Resource 1975

Commercial Health 1317

Medical Encyclopedia/Dic-
tionary

499

Clinician Forum 404

Personal Blog 277

News Article 269

Patient Forum 179

Other Health 65

Non-Health 631

Table D.2: Number of search results in each category of the 8608 scraped documents,
as classified by text-davinci-003.

D.4 Website Category Classification

D.4.1 Accuracy

The distribution of website category counts out of 8608 can be found in Table D.2.

While not an exhaustive evaluation, we find that the website classifications from

text-davinci-003 generally match expectation. Details are below:

• The term “forum” appeared in 30% of the URLs for the Patient Forum class

and 22% for Clinician Forum; it otherwise peaked at 1.5% in the Other Health

category. The clinician forum URL often dealt with specific professional orga-

nizations (e.g., American College of Physicians), whereas patient forum URLs

often mentioned specific diseases.

• The term “blog” appeared in 32% of URLs for the Personal Blog class; it

otherwise peaked at 5% otherwise, in the Non-Health class). Additionally, terms

denoting blog servers (e.g., “blogspot” “wordpress”) were common as well as

words pertaining to family (e.g., “mom”).

• The term “journal” appeared in 10% of the URLs for the Research Article; it

otherwise peaked at 1% in the Personal Blog category. The Research Article

further captured 109/110 URLs containing “PubMed.”

• The term “news” appeared in 53% of the URLs for the News Article; it otherwise

peaked at 3% in the Non-Health category. We do note some fuzziness here in

boundaries, as e.g., some patient health resources contain news pages as well.
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• The term “WebMD” appeared in just 2% of URLS for Patient Health Resources,

though 91% of the “WebMD” mentions occurred in the class, confirming high

positive predictive value.

• The term “dict” appeared in 16% of the URLS for Medical Dictionary/Encyclopedia;

it otherwise peaked at 1.6% for Patient Health Resource.

• The term “product” appeared in 16% of the URLS for the Commercial Health

category; it otherwise peaked at 2% for Medical Dictionary/Encyclopedia.

• The Other health category was dominated in plurality by “Patents”, comprising

30% of URLs. The term did not appear more than 0.2% in any other category.

• The Non-health had no single dominating thread, as one could predict.

D.4.2 Examples

Example scraped data from the eight major classes can be found in Table D.3, alongside

the root source website. For patient privacy, exact links are not included but are

available upon request.
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Example
Source Example Quote

Research
Article

BioMed
Central

“Post-surgery chemotherapy
consisted of carboplatin (CARBO)”

Patient Health
Resource CancerGRACE

“the combination of carboplatin/
taxol (paclitaxel) with ... longer
survival than carbo/taxol alone”

Commercial
Health

Pharmacy
Website

“Exporter of Carboplatin Injection...
known as CARBO”

Medical
Encyclopedia/
Dictionary

Wikipedia

“Subcutaneous administration may be
abbreviated as SC, SQ, sub-cu,

sub-Q, SubQ, or subcut.”*
(No relevant carbo results in first 100)

Clinician
Forum OncLive “ the weekly CARBO [carboplatin]/

paclitaxel regimen is”
Personal
Blog Wordpress “the carboplatin part....

my first cycle of Carbo-Taxol”

News Article ESMO Oncology
News

“has approved pembrolizumab
...in combination with pemetrexed

and carboplatin (pem/carbo)”

Patient Forum Cancer Survivors
Network

“anyone have experience with Carboplatin?”
“carbo is easier than”

Table D.3: Examples for the eight major categories (excluding other/non-health) of
websites containing medical jargon. Examples shown for carbo/carboplatin, except
for the Medical Encyclopedia/Dictionary option.
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Appendix E

Additional Information for Chapter 8

E.1 Data Extraction and Featurization

E.1.1 Examples of Clinical Notes

Here, we show examples of a triage note, chief complaint, patient vitals, and a

clinician note. To preserve patient privacy, these examples are synthetic but mimic

the formatting and style of real data.

Triage Note

pt with ruq abd pain and nonproductive cough

Chief Complaint

ruq abd pain

Vitals

Blood Pressure: 140/90 mmHg

Heart Rate: 109 BPM

Pain: 8 (out of 10)

Sex: F

Age: 66

Respiratory Rate: 92%
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Temperature: 99 (deg. Fahrenheit)

Pulse Oxygen (Oxygen Saturation): 96

Clinical Note

HPI: 66 y/o F p/w ruq abd pain and nonproductive cough.

No fever, nausea, or chills.

History of chronic abdominal pain over last 4-5 years,

as well as htn and dmii.

PMH: htn, dmii, chronic abdominal pain, hysterectomy in 2004

MEDICATIONS: metoprolol tartrate, metformin

FAMILY HISTORY: Diabetes in mother,

father (deceased) hypertensive

SOCIAL HISTORY: no smoking, drinks socially

REVIEW OF SYSTEMS:

Constitutional - no fever, chills, nausea

Head / Eyes - no diplopia

ENT - no earache

Resp - nonproductive cough, mild

Cards - no chest pain

Abd - ruq abd pain

Flank - no dysuria

Skin - no rash

Ext - no back pain

Neuro - no headache

Psych - no depression
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PHYSICAL EXAM: Ruq abd pain, tender to touch,

with some bloating.

MDM:

66 y/o F p/w ruq abd pain and mild cough. She reports

she had a cold last week, so cough

is likely symptom of that.

Epigastric pain with mild bloating and minor

heartburn. Gave an antacid to relieve pain.

Glucose levels are elevated compared to baseline

(140 6 hours ago, 120 averaged over last six months).

Says she will work on controlling diet more.

DIAGNOSIS: epigastric pain/heartburn

E.1.2 The NegEx Algorithm

We use a version of the NegEx algorithm [45] in order to perform a rule-based negation

detection on clinical text. The algorithm greedily iterates through words in a piece of

text and assigns them to a negated context if they are preceded by predefined keyword

triggers. Pseudocode for the algorithm is shown in Figure E-1.

E.1.3 Trie-Based Extraction of UMLS Concepts

In order to confirm that our UMLS-mapped trie-based extraction of clinical concepts

was reasonably accurate and performant, we also consider a few alternate ways of

perform clinical NER on ED note text. We restrict our search to techniques that
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f u l l s t o p s = [ ’ . ’ , ’− ’ , ’ ; ’ ]
midstops = [ ’+’ , ’ but ’ , ’ and ’ , ’ pt ’ , ’ . ’ , ’ ; ’ , ’ except ’ ,

’ r epo r t s ’ , ’ a l e r t ’ , ’ complains ’ , ’ has ’ ,
’ s t a t e s ’ , ’ secondary ’ , ’ per ’ , ’ did ’ , ’ o ther ’ ,
’ p/w ’ , ’ p r e s en t s ’ , ’ p r e s en t ing ’ , ’ pre sented ’ , ’ : ’ ]

negwords = [ ’ no ’ , ’ not ’ , ’ d en i e s ’ , ’ without ’ , ’ non ’ , ’ l a ck ’ ]

def negat ion_detect ion ( words ) :
f l a g = 0
r e s = [ ]
for i , w in enumerate ( words ) :

neg_start_condit ion = ( f l a g == 1)
neg_stop_condition = (w in f u l l s t o p s + midstops + negwords ) or

( i > 0 and words [ i −1][ −1] in ( f u l l s t o p s + [ ’ \n ’ ] ) )
neg_end_of_list = ( i==(len ( words )−1) )
i f neg_start_condit ion and neg_stop_condition :

f l a g = 0
r e s += [ ( start_index , i −1)]

e l i f neg_start_condit ion and neg_end_of_list :
f l a g = 0
r e s += [ ( start_index , i ) ]

i f w in negwords :
f l a g = 1
start_index = i

return r e s

Figure E-1: Pseudocode of the rule-based negation detection algorithm.
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normalize to UMLS, as this is a key benefit of our system that makes it extendable.

First, we attempted to extract concepts directly from the raw text, without

normalizing to an ontology. We did this by extracting common unigrams and bigrams

and removing common stopwords (and, to). We manually went through the 1,000

most common terms to confirm they were reflected in our UMLS-mapped ontology of

conditions, and added a handful of terms that were missing: hld as a synonym for

hyperlipidemia, hep c as a synonym for hepatitic C, pna for pneumonia, etc. We note

that ontologies are always a work in progress and that our current system provides

doctors with the ability to submit ontology modifications that can then be reviewed.

We compare our trie-based extraction against three baselines:

• cTakes, or the Mayo clinical Text Analysis and Knowledge Extraction System,

which combines rule-based and simple machine learning techniques to extract

and normalize concepts to UMLS [238]. cTakes is an older system that often

misses clinical abbreviations [225]. We limit the cTakes vocabulary to UMLS

concepts in our ontology to provide a fair comparison.

• scispaCy, which is a Python biomedical text processing library built on top of

spaCy [190]. It contains neural entity extraction trained on biomedical corpora

using a bidirectional-LSTM with a conditional random field (CRF) layer as

proposed in [142]. scispaCy identifies clinical and biomedical terms on the text

first with its entity recognition model, and then retroactively maps this to UMLS

using a string match over synonyms.

• BERT-based clinical entity extraction models such as [10], which combine a

transformer architecture with CRFs and other layers that are good at entity

identification. These models are considered state-of-the-art in neural entity

extraction, but are fairly slow and cannot easily run on our servers, which we

discuss below. While we cannot easily compare to [10] due to the lack of labelled

data to train the deep model, we measure latency of running BERT on a sequence

of clinical notes as a proof-of-concept. We use DistilBERT as our base BERT

model because of its compactness [232], and train on a custom vocabulary which
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System Latency (seconds) Comments

Trie-based 0.8 Ours, poor disambiguation for the few over-
loaded concepts

cTakes 37 Provides virtually the same extraction as
the trie-based procedure, but with certain-
ty/polarity scores

scispaCy 19.5 Bulk of the time spent on mapping ex-
tracted terms to UMLS. Some acronyms
were not disambiguated, e.g., dm was ex-
tracted as both diabetes mellitus and
double miutes

DistilBERT 489 No extraction, just passing windowed snip-
pets of the text through a compact trans-
former

Table E.1: Comparing NER approaches on OMR notes both by latency and by
qualitative ability to extract concepts well. Latency is measured by time to process
100 randomly chosen OMR notes.

is smaller than that of the original BERT model [61].

While it is difficult to quantitatively compare these methods because we lack gold-

standard entity labels for our dataset, we find that the trie-based method is significantly

faster than our three other comparisons with little to no loss in recognition quality.

Note that all of the learned models also preclude us from making easy changes to

our ontology– it is difficult to retrain these models without sufficient labelled data

of a given clinical concept, which may not exist. On the other hand, our trie-based

approach is reasonably fast and trivial to extend. We find that it is suitable for our

purposes.

E.1.4 Bucketization of Triage Vitals

As described in Section 8.3.4, our best model for predicting a ranked list of relevant

symptoms to document relied on a categorical featurization of triage vitals. The model

simply uses the empiric frequencies of symptoms documented in a note, conditioned

on the chief complaint 𝑐 and a categorical representation 𝑏(𝑣) of the most abnormal

vital 𝑣. We used medical guidelines to determine cutoffs for each vital as follows:
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• Temperature: Temperatures above 100.4∘ are considered HIGH as they are medical-

grade fevers. Temperatures below 97∘ are considered LOW as they are hypothermic.

Otherwise, a temperature is considered NORMAL.

• Respiratory rate: A respiratory rate above 20 breaths per minute is considered

HIGH, as per [57]. A respiratory rate below 12 breaths per minute is considered

LOW. Otherwise, the respiratory rate is considered NORMAL.

• Blood oxygen level : A pulse oximeter reading below 95% is considered LOW as

per Mayo Clinic guidelines. Otherwise, the reading is considered NORMAL.

• Heart rate: A heart rate above 100 beats per minute (bpm) is considered

TACHYCARDIC. A heart rate below 60 is considered BRADYCARDIC. Otherwise, it is

considered NORMAL.

• Blood pressure: Based on guidelines set by the American Heart Association, a

systolic BP under 120 mmHg and a diastolic BP under 80 mmHg constitutes a

NORMAL BP. If the diastolic BP is under 80 mmHg but the systolic BP is between

120-130 mmHg, it is considered ELEVATED blood pressure. If the systolic BP is

under 140 mmHg and the diastolic blood pressure is under 90 mmHg, this is

characterized as STAGE 1 HYPERTENSION. Otherwise, if either reading is higher,

it is STAGE 2 HYPERTENSION.

• Age: Based on the age distribution of patients in the hospital, we bucketized

patients into six groups: CHILD (e.g., below 18), 18-33, 34-48, 48-64, 64-77,

and 78+.

E.2 Extended Autocomplete Performance

E.2.1 Autocompletion Scope and Type Detection

Here, we provide an algorithm sketch of our autocompletion scope and type detection

framework. The algorithm greedily uses keywords that act as autocompletion triggers,
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(a) Manual autocompletion trigger (b) Retroactive tagging

Figure E-2: Screenshots of our backup data capture strategies in the case that
autocompletion scope detection algorithms fail. (a) Users can insert a slash character
(/), which acts as a manual trigger to force autocompletion. (b) Users can retroactively
accept tags for candidate concepts that they typed but did not autocomplete.

and is run and updated as a physician types a clinical note. First, we initialize the

scope and type of our autocompletion to be null. Then, for each word 𝑤 in the text,

we update the scope accordingly:

• If 𝑤 is part of a autocompletion trigger phrase such as presents with, we

turn the autocompletion scope on and suggest terms to the user. We set the

autocompletion type based on the trigger (presents with maps to SYMPTOM.)

• If 𝑤 is a continuation token such as and, or, or ,, we maintain the current scope

and autocompletion type.

• If 𝑤 is part of a tagged concept 𝑐, we turn the autocompletion scope on, and set

the autocompletion type to the concept type of 𝑐.

• Otherwise, 𝑤 is treated as a stopword, in which case the autocompletion scope

is turned off.

With this framework, the autocompletion scope and type is greedily set using a simple

parsing algorithm that is rerun as the user types a new word.

E.2.2 Training Contextual Model for Conditions

Our contextual model to predict a ranking over conditions is a dual-branched network

that takes in two inputs:

1. A Term Frequency-Inverse Document Frequency (TF-IDF) representation of the

triage text using unigrams and bigrams. Vocabulary size is close to 22,000.
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2. The binary presence of different model relevancy buckets (as defined in Section

8.3.2) in the patient’s prior medical history. This is a length-227 binary vector.

These two inputs are both passed through two separate dense layers with ReLU

activation, concatenated and passed through another dense layer, and then finally

passed through element-wise sigmoid activations to generate probabilities per class. We

train this model with stochastic gradient descent using a cross entropy loss function.

E.2.3 Retrospective Autocompletion Performance using MRR,

MAP, and Keystroke Burden

From an information retrieval perspective, we can analyze the quality of our ranked

list of suggested clinical concepts by using two standard metrics: the mean reciprocal

rank (MRR) and mean average precision (MAP). Consider an ordered ranking 𝑅 =

{𝑟1, 𝑟2, 𝑟3, · · · } of suggested terms and a ground truth set of terms that the clinician

wants to documented denoted by 𝑇 = {𝑟𝜋(1), 𝑟𝜋(2), 𝑟𝜋(3), · · · }. We define the MRR of

these suggestions as

𝑀𝑅𝑅 =
1

|𝑇 |
∑︁

{𝑟𝑖∈𝑅|𝑟𝑖∈𝑇}

(max(1, 𝑖− |𝑇 |))−1

In other words, this measures the average excess rank of the suggested terms that

actually occur in the ground-truth terms the clinician wants to document. An MRR

of 1 indicates that 𝑘 desired terms were in the top 𝑘 suggestions. The MAP score, in

contrast, measures the average proportion of ground-truth terms that occur in the

top 𝑘 suggested terms as 𝑘 varies:

𝑀𝐴𝑃 =
1

|𝑇 |

|𝑇 |∑︁
𝑘=1

AveP(𝑘)

where AveP(𝑘) represents average precision of the top 𝑘 suggested terms. A MAP of 1

indicates perfect precision.

Below, we compare the various models we prototyped to predict each clinical
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Model Type Keystroke
Burden ↓

MAP ↑

Conditions
Frequency-based baseline 3.44 ±0.09 0.08 ±0.01

One vs. Rest Logistic Regression on triage text 𝑇 3.02 ±0.09 0.08 ±0.02

OvR LR on 𝑇 , EHR 2.81 ±0.08 0.15 ±0.02

Augmented OvR LR on 𝑇 , EHR 2.71 ±0.08 0.16 ±0.01

Dual-branched neural network 2.57 ±0.07 0.27 ±0.02

Symptoms
Empirical Conditioning on Chief Complaint 2.19±0.04 0.41 ±0.01

Empirical Conditioning on Chief Complaint, Vital 2.09 ±0.03 0.44 ±0.01

One vs. Rest Logistic Regression 2.74±0.02 0.16 ±0.01

One vs. Rest Naive Bayes 2.51 ±0.03 0.30 ±0.01

Labs (ranked by frequency) 0.092 ±0.03 0.39 ±0.01

Medications (ranked by frequency) 3.28 ±0.04 0.03 ±0.01

Overall with autocomplete scope/type detection 3.13 ±0.05 0.27 ±0.06

Table E.2: Retrospective Evaluation of Keystroke Burden and MAP using Contextual
Autocompletion. We report the mean keystroke burden/MAP for the contextual
autocomplete models we prototyped for each concept type, following the conventions
of Figure 8.1

concept type with MAP and keystroke burden. Results in terms of MRR are in Figure

8.1.

E.2.4 Ontologies and Code

The codebase for our analyses as well as our publicly-available ontologies for condi-

tions, symptoms, labs, and medications can be found here: https://github.com/

clinicalml/ContextualAutocomplete_MLHC2020.
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Figure E-3: Mean MRR for five conditions (± 95% CI from mean) using contextual
and frequency-based autocompletion. Concepts were chosen to get representative
samples of the data.
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