

MIT-LCS-TR-897

Improving Application-level Network Services

with Regions

Ji Li

May 2003

2

3

Improving Application-level Network Services With Regions

by
Ji Li

Submitted to the Department of Electrical Engineering and Computer Science

on May 20, 2003, in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science and Engineering

Abstract

The underlying premise of the Region Project is that the concept of a region should be a
new architecture capability in networking. A region is an entity that encapsulates and
implements scoping, grouping, subdividing, and crossing boundaries of sets of entities. It
is a powerful tool for managing the increasingly complex demands on the Internet and its
successors, and thus should be made into an explicit, first-class component of the network
architecture. Autonomous Systems and peer-to-peer networks can be viewed as two simple
forms of existing regions. In this work, we explore the utility of informing members in one
region of the membership of those same entities in different regions. Specifically, we
improve peer-to-peer networks with information derived from Autonomous Systems. This
thesis makes three notable contributions. Firstly, we provide a general peer-to-peer
simulation framework for different optimization schemes. Secondly, we achieve
performance improvements in the lookup, caching and replication of peer-to-peer system.
Finally, we enhance our overall understanding of regions through the simulation, as well as
their utilities to improve system performance.

Thesis Supervisor: Karen R. Sollins
Title: Principal Scientist

4

Acknowledgments

First, I would like to thank my advisor, Karen Sollins, for her expert guidance and advice

for both my research and my professional life.

Second, my research has benefited from the members of the Advanced Network

Architecture (ANA) research group at LCS. They have provided useful thoughts and

comments. Thank you all.

Third, I acknowledge Ben Leong, Dah-Yoh Lim and Chuang Hue Moh for valuable

discussions on the implementation.

This work was funded in part under NSF Grant ANIR-0137403, "Regions: A new

architectural capability in networking" and NSF Grant CCR-0122419, "The Center for Bits

and Atoms". It was also funded in part by a gift from the Cisco University Research

Program.

Lastly, I wish to dedicate this thesis to my family. They have been a constant source of

support and love. I hope I have made them proud.

5

Contents
1 INTRODUCTION... 7

1.1 BACKGROUND .. 7
1.2 AUTONOMOUS SYSTEMS.. 8
1.3 PEER-TO-PEER SYSTEM S ... 9
1.4 CONTRIBUTIONS...10

2 RELATED WORK..12

2.1 THE REGION PROJECT ..12
2.2 AUTONOMOUS SYSTEMS..13
2.3 PEER-TO-PEER SYSTEMS ...14

3 REGIONS...20

3.1 REGION DEFINITION...20
3.2 REGION MEMBERSHIP..22
3.3 ADDITIONAL CLIENT FUNCTIONS ..24
3.4 SUMMARY...25

4 DESIGN ..26

4.1 OVERVIEW ..26
4.2 AS REGIONS ...27
4.3 A PEER-TO-PEER REGION ..29
4.4 A LOOKUP SCHEME..31

4.4.1 Introduction ..31
4.4.6 Additional Functionality Enabled by Regions...42

4.5 A CACHING SCHEME ..43
4.6 A REPLICATION SCHEME ..45

4.6.1 Static Strategy ..46
4.6.2 Dynamic Strategy...47

4.7 SUMMARY...47

5 IMPLEMENTATION AND EVALUATION ...49

6

5.1 OVERVIEW ..49
5.2 IMPLEMENTATION...49

5.2.1 System Architecture ...49
5.2.2 The Physical Networks Layer ...50
5.2.3 The AS Regions Layer..51
5.2.4 A P2P Layer...52

5.3 EVALUATIONS ...53
5.3.1 Overview...53
5.3.2 Peer-to-Peer Routing Table Analysis ...54
5.3.3 Lookup Evaluation...57
5.3.4 Caching Evaluation ...61
5.3.5 Replication Evaluation..64

5.4 SUMMARY...65

6 CONCLUSIONS AND FUTURE WORK...75

6.1 CONCLUSIONS ..75
6.2 FUTURE WORK...76

7

Chapter 1

Introduction

The Internet, in reality, is more complex than a small collection of interconnected hosts or

LANs. The IP-level structure of the Internet is composed of a large number of constituent

networks, each of which differs in some or all of its transmission technologies, routing

protocols, administrative models, security policies, QoS capabilities, pricing mechanisms,

and other attributes. On top of this, a whole new structure of application-layer overlays and

content distribution networks, equally diverse in the sorts of ways mentioned above, is

rapidly evolving. A horizontal dissection of the current Internet structure reveals a loosely

coupled federation of entities that are separately defined, operated, and managed. These

entities are interconnected to varying degrees, and often differ drastically in their internal

requirements and implementations. We can think of each entity as existing in a “region” of

the network: each region has coherent internal technology and policies, and manages its

own interactions with other regions of the network according to a predefined set of rules

and policies.

1.1 Background

A region [1] is a partition of the network which models an externally defined or imposed

structure. The region captures the concept of an area of consistent control, state, or

8

knowledge. There can be many sorts of regions at the same time - regions of shared trust,

regions of physical proximity (the floor of a building or a community), regions of payment

for service (payment zones for stratified cost structures), and administrative regions are

examples. This general notion of a region is a powerful tool for managing the increasingly

complex demands on the Internet and its successors, and thus should be made into an

explicit, primary component of the network architecture. We propose, first, to separate the

concept of “region” from any specific use of the concept and offer it as an independent,

reusable abstraction because many uses of regions share a well-defined set of core ideas

and operations. Second, we propose to implement the region abstraction as a concrete

software entity, and hence to provide network protocol designers and implementers with a

logically structured, scalable, high-performance means of access to an important class of

functionality.

In this thesis, we develop the “region” abstraction and explore its utility as a general

mechanism in networking in the future. We will explore sharing knowledge of being in one

sort of region in order to improve performance with respect to another. We will focus on the

use of regions defined at the network layer as a vehicle for optimizing and improving

services defined at the application layer. Here the region defined at the lower level is

unaffected by the higher level, and its information enables more informed decisions and

operations at the higher level. A second order objective is to refine the definition and

development of the region abstraction itself, focusing on requirements, choices of

capabilities, abstract operations, and related issues.

1.2 Autonomous Systems

At present, there are already some entities we find it useful to conceive as “regions”

defined at the routing level, known as routing domains or Autonomous Systems (ASs). An

Autonomous System is a group of IP networks operated by one or more network operators

which has a single and clearly defined external routing policy. These regions contain useful

9

routing and policy information. If this information can be propagated to the

application-level systems, it will enable them to make more intelligent decisions, such as

more efficient routing, or adherence to one AS or some trusted ASs, when deciding on a

route through an overlay network.

1.3 Peer-to-Peer Systems

An area of interest in the research community today is building overlay networks. Overlay

networks are typically sets of hosts from the perspective of the packet-level Internet that

provide a network of infrastructural components for some applications. A peer-to-peer

system (P2P), as a type of overlay network, is composed of a set of symmetrical end hosts

or nodes: they act both as clients that utilize the services provided by other hosts, as well as

servers that provide these services.

Now consider the problem of some application level requests in peer-to-peer networks.

There may be a number of possible routes that such a request can take through the overlay

network. Routing decisions for these overlay networks are often made at the application

level. However, because no information about the underlying network is available to the

application-level systems , these decisions cannot be made based on the actual underlying

paths followed. For example, in structured peer-to-peer networks, querying is done by

traversing a sequence of end hosts based on the application-level routing table. The traffic

may go through a longer route than the optimal one, or even traverse the same links many

times before actually reaching the desired location. Choices at the application level imply

that when more than one option is possible, having lower level routing information can

improve the routing performance at the application level.

Caching is a common technique in operating systems, and has spread to distributed

systems. In a peer-to-peer system, caching mechanism can reduce lookup latency by

temporarily storing previous lookup results along the lookup path. However, caching on

every node along a lookup path requires significant storage. In this thesis, we use AS

10

information to reduce the storage of caching while maintaining comparable performance.

Availability is crucial to peer-to-peer systems. End hosts join and leave frequently, so

replication is necessary to ensure resource availability. Some peer-to-peer systems

replicate a node’s data at its logical neighbors. However, such a scheme may not work well

because the replica placement is random, with no knowledge of where the copies are. With

information provided by the lower-level network, we hope that peer-to-peer networks can

obtain explicit control and make flexible decisions on their replication schemes. Therefore,

we can not only improve resource availability but also reduce the latency to retrieve data

and balance the network traffic.

1.4 Contributions

In this thesis, we present the region concept and show how it applies to autonomous

systems and peer-to-peer networks. We also design several schemes to improve

peer-to-peer networks with the concept of regions. The contributions of this thesis follow

three major themes:

First, we develop a framework of a generic structured peer-to-peer system, in which

different routing optimization schemes are integrated, and the lower level region

information is provided to the peer-to-peer system via simple interfaces. This framework

provides flexibility for optimizations based on different kinds of information.

Second, we evaluate our idea by simulation. A Pastry/Tapestry-like peer-to-peer system

acts as the upper region, and the Autonomous Systems act as the lower regions. We

evaluate how AS regions improve the routing, caching, and replication in a peer-to-peer

system.

Finally, as a part of the Region Project, we use the experience from the simulation to refine

our abstraction of “regions” and extend this idea to a general case.

11

The rest of the thesis is organized as follows. In Chapter 2 we present related work on the

Region Project, Autonomous Systems, and peer-to-peer networks. In Chapter 3, we present

the concept of regions and how it is applied to two existing region examples: Autonomous

Systems and peer-to-peer systems. Building on this, Chapter 4 describes the design of a

lookup scheme, a caching scheme, and a replication scheme in peer-to-peer systems based

on information from AS regions, and the additional functionalities gained by this approach.

Chapter 5 presents the implementation and evaluates our schemes by simulation. Finally,

Chapter 6 concludes the thesis and discusses some future research in the Region Project.

12

Chapter 2

Related Work

In this chapter, we provide the necessary background about the Region Project. We also

present some related work on Autonomous Systems and peer-to-peer systems, especially

some structured peer-to-peer systems and their routing algorithms.

2.1 The Region Project

The related work of this project falls into several major categories, partitioning of

namespaces in order to handle scaling of name assignments and resolution including

boundaries defined in order to reflect changes in some activities, cross protocol layer

interaction, middleware infrastructure to support creation and execution of network-based

applications, etc.

One set of problems is grouping of objects in order to address scaling problems. In each of

these examples, the problem was to reduce the space to be searched in order to find

something. The sole function of the Domain Name System [2][3] is to provide a single

global hierarchy in which both name assignment and name resolution occur in order to find

hosts. CORBA [4] provides a much richer set of middleware activities, but in conjunction

with this provides a two level hierarchy for naming, by uniquely naming each ORB, and

delegating unique assignment with the ORB to the ORB itself. Here the objective was to

13

find a specific CORBA object. The Intentional Naming System [5] was designed to route

traffic to the named entity. It is an example of a different approach, in which names are

composed of attribute value pairs, but these are organized hierarchical. An entity

announces itself to any resolver, which in turns broadcasts the identity of the entity using a

spanning tree to the universe of resolvers. A request to the entity is resolved and forwarded

at each resolver between the requester and the entity itself. Although this work as it stands

does not scale, it provides an interesting point within the space of naming alternatives,

because it attempts to provide multi-layer functionality of both naming and routing.

Virtually any horizontal slice through the current Internet structure reveals a loosely

coupled federation of separately defined, operated and managed entities, interconnected to

varying degrees, and often differing drastically in internal requirements and

implementation. Examples can be found in routing and QoS provision. BGP [6] boundary

transitions reflect routing information exchanges between Autonomous Systems; we

discuss this in detail in Chapter 3. DiffServ clouds [7] reflect boundary points at which per

domain behavior may change. In each case the choices of what happens internally to a

region or a scoping entity are made independently of what is happening outside.

In terms of middleware support for the creation and support of distributed applications

there is an enormous collection of work, including CORBA [4], Microsoft’s Universal Plug

and Play [8], Sun’s combination of Jini [9] and Rio [10], etc. It is an area where a great deal

of work is occurring, so this is just a sampling of the activities.

2.2 Autonomous Systems

As mentioned in Chapter 1, there are Autonomous Systems in the Internet we find it useful

to conceive as “regions” defined at the routing level. An Autonomous System is a group of

IP networks operated by one or more network operators which has a single and clearly

defined external routing policy. The Border Gateway Protocol (BGP) is used to exchange

routing information between Autonomous Systems. There is an increasing interest in

14

Autonomous Systems research for various reasons, including troubleshooting operational

problems, and facilitating more realistic simulation, and evaluation of network protocols

and applications. However, today’s Internet is increasingly shaped and controlled by

commercial interests, and topology information is not directly accessible to researchers. To

make it even worse, it is hard to deploy new services and the Internet is regarded as

becoming ossified [11]. Under such circumstances, there have been several research areas

emerging. One the one hand, Internet measurement and modeling emerge as an important

area of network research [12] [13]. On the other hand, researchers are trying to build either

an easily accessible network testbed in the current Internet, such as Emulab [14], or a new

service-oriented network architecture, such as PlanetLab [11].

In this thesis , our key idea is to provide the underlying network information to the

application. Specifically, Autonomous Systems provide coarse-grained information of

network topology, network latency, etc. Although basing the distance estimations only on

the number of AS boundaries the route crosses may not be sufficient since Autonomous

Systems significantly vary in size, exploiting the AS-based map of the Internet is a way of

dealing with the problem of distance measurement. It is also likely to be more accurate than

the geographical distance [15].

2.3 Peer-to-Peer Systems

Peer-to-peer networks can be regarded as a form of regions in the application layer. There

have been peer-to-peer systems for various purposes: for distributed computing, such as

SETI@home [16], for collaboration, such as DOOM [17], used as platforms, such as JXTA

[18], and for data sharing, such as Napster [19] and Gnutella [20]. In the data-sharing

peer-to-peer systems there have been two generations of such peer-to-peer systems :

unstructured peer-to-peer systems and structured peer-to-peer systems. Structured P2P

systems are systems in which nodes organize themselves in an orderly fashion while

unstructured P2P systems are ones in which nodes organize themselves randomly. The

15

unstructured peer-to-peer networks include Napster [19], Gnutella [20], and Freenet [21],

etc. For the unstructured peer-to-peer systems, generally the discovery process is very

localized. For example, Napster has a central server that stores the index of all the files

within its community. To find a file, the user queries the central server and gets the IP

address of a machine that stores the file. Meanwhile, Gnutella’s lookup is localized to a

node’s locally discovered region, because it broadcasts a query within a certain number of

forwarding steps.

The structured peer-to-peer networks include Chord [22], CAN [23], Tapestry [24], Pastry

[25], Kademlia [26], Viceroy [27], and Expressway [28], etc. Most structured peer-to-peer

systems support a distributed-hash-table functionality, so they are also called DHT

(Distributed Hash Table) P2P systems. A key operation in these peer-to-peer systems is:

given a key, the system will determine the node responsible for storing the key’s value.

This is called lookup or routing in peer-to-peer systems. We will use the two terms

interchangeably when talking about peer-to-peer systems in this thesis. We will focus on

improving structured P2P system performance in various aspects.

Pastry [25] uses a 128-bit name space and each digit in an ID is in base 16. Each node has a

routing table with 32 rows and 16 columns. The entries in row n of the routing table refer to

nodes whose IDs share the first n digits with the present node’s ID. The (n+1)th digit of a

node’s ID in column m of row n equals m. The routing algorithm is based on address

prefixes, which can be viewed as a generalization of hypercube routing. At each step in a

lookup, a node forwards the message to a node whose ID shares with the destination ID a

prefix that is at least one digit longer than the shared prefix between the destination ID and

the present node’s ID. The average number of lookup hops is O(log16N), in which N is the

total number of nodes. To optimize routing performance, Pastry uses proximity neighbor

selection. Proximity neighbor selection constructs a topology-aware overlay network. The

key idea is to fill routing table entries with topologically closest nodes among all node

candidates. In Pastry, the upper rows of the routing table allow great flexibility in choosing

16

nodes as entries, while lower rows have exponentially fewer choices. This flexibility leads

to the success of this technique. We also make use of this feature in the thesis. In our work,

we use a generalized peer-to-peer structure similar to that of Pastry and Tapestry. But,

instead of using fine-grained metrics, we use coarse-grained information provided by

Autonomous Systems to improve the lookup performance and to reduce system overhead.

Tapestry [24] is similar to Pastry with minor differences. Tapestry has a similar routing

structure to Pastry. It also uses proximity routing to achieve locality. Furthermore, Tapestry

maintains two backup nodes for each entry in the routing table for sake of entry failure. It

also maintains back pointers that point to the nodes from which it is referred as a neighbor.

Chord [22] uses a circular 160-bit name space. Each node has a number of fingers pointing

to some other nodes. Chord forwards messages clockwise in the circular name space based

on numerical difference with the destination address. To optimize the lookup performance,

Chord uses proximity routing. Unlike proximity neighbor selection, the overlay is

constructed without regard for the physical network topology. When routing a message,

there are potentially multiple nodes in the routing table closer to the destination ID in the

name space. Chord selects either the one that is closest in the physical network or one that

represents a good compromise between progress in the name space and proximity among

the set of possible next hops. However, choosing the lowest delay hop greedily may lead to

an increase in the total number of hops taken in a lookup. Chord cannot use proximity

neighbor selection because their routing table entries refer to specific IDs in the name

space without the flexibility in Pastry and Tapestry. That is why we use a peer-to-peer

model generalized from Pastry and Tapestry.

Chord, Pastry, and Tapestry all use one-dimensional name spaces and maintain some

finger-like pointers to accelerate routing. CAN (Content-Addressable Network) [23] can

be regarded as a multi-dimensional version of a Chord-like system with more restriction on

fingers. In CAN, nodes are mapped into a d-dimensional coordinate space on top of zones

17

based on server density and load information. Each zone keeps information of its

immediate neighbors only. Because addresses are points inside the coordinate space, each

node simply routes to the neighbor that makes the most progress towards the destination

coordinate. Therefore, CAN maintains an O(d) routing table, smaller than all the three

above. The drawback is the longer average routing path, O(d·n1/d). To improve the lookup

performance, Ratnasamy et al. [29] introduces an idea of landmarks as the topology signals.

Landmarks provide some coordination for a node when it joins the system. The distance

from a node to those landmarks is represented as a distance vector. For example, when a

node joins a peer-to-peer network, it first determines its distance vector and finds the

ordering of bins with which it should be associated. Then it picks a random number within

the bin area. Such topology-based ID assignments violate the uniform distribution of node

IDs, which leads to load balancing problems, and neighboring nodes are likely to suffer

correlated failures.

Brocade [30], which exploits knowledge of the underlying network characteristics, added a

secondary overlay on top of the underlying peer-to-peer system. The secondary layer

builds a location layer between super nodes (landmarks), which are members of the

original peer-to-peer systems, and are situated near network access points with significant

processing power, such as gateways. The super node covers an area that contains a set of

local nodes and acts as their manager. In this way, Brocade introduces a hierarchy into

peer-to-peer systems. The super node does not manage local communication, so the local

communication could go out of the local network. Also, the super node serves as a

centralized server, which may become the bottleneck and thus not scale.

Besides the ring structure and d-dimensional structure, Kademlia [26] introduces a

binary-tree organization and XOR operation, Viceroy [27] introduces the butterfly structure.

Both have desirable properties in the routing algorithms.

Caching is widely used in operating systems. In a peer-to-peer system, the goal of caching

18

is to minimize peer access latencies, to maximize query throughput and to balance the

workload in the system. Caching reduces the lookup path length and therefore, the number

of messages exchanged between peers. Reducing such transmissions is important because

the communication latency between peers is a serious performance bottleneck facing P2P

systems. There are two kinds of caching in P2P systems based on what is cached. One we

call data caching. In data caching, data are copied in the requester and along the lookup

path. The other is to address caching. In this scheme, the ID and its corresponding IP

address are cached both at the requester and along the lookup path. Compared with data

caching, address caching requires much less space. Most current systems use such both of

them. In Freenet [21], when a file is found and propagated to the requesting node, the file is

cached locally in all the nodes in the return path. CFS [31] is a peer-to-peer read-only

storage system bas ed on the Chord protocol. It uses a caching scheme similar to Freenet

which leaves cached copies of data along the query path from client to where the data was

found. Because CFS finds data in fewer hops than Freenet, and multiple structured lookup

paths in CFS are more likely to overleap than those in Freenet, CFS can make better use of

a given quantity of cache space. PAST [32] is a large-scale peer-to-peer persistent storage

utility. In PAST, data that are routed through a node as part of a lookup are inserted into the

local disk cache if its size is less than a fraction of the node’s current cache size. Tapestry

uses hotspot monitoring to detect query hotspots and place a copy of data on the source

node of the most query traffic.

Replication is widely used in distributed systems. Replication puts multiple copies of data

in the system, thus improving fault tolerance, and sometimes reducing the latency between

the peers requesting and providing the data. Furthermore, the geographic distribution of

replicas helps to reduce local congestion on both the peers and the network. Peers tend to

be disconnected from the network at random, so replication also helps to cope with peers

leaving. In [33], Lv et al. analyzed the number of replicas needed corresponding to the

query rate in unstructured peer-to-peer networks, and find that for a fixed average number

19

of replicas per node, square-root replication distribution is theoretically optimal in terms of

minimizing the overall search traffic. Most structured peer-to-peer systems use replication

to cope with node failures [22][24][25][34]. They all place replicas in the nodes that

follows the present node in the ID space. Since each ID is assigned randomly, they hope to

distribute the replicas evenly in the peer-to-peer systems in this way. But none of those

schemes has any explicit control over the placement of the replicas since they have no

knowledge of the underlying networks.

20

Chapter 3

Regions

In this chapter, we introduce the definition of a region, its membership and operations, and

the additional functionality of a region, such as boundary crossings and notifications. We

also discuss how the region concept is applied to Autonomous Systems and peer-to-peer

systems.

3.1 Region Definition

There are a number of issues related to the region definition. Two aspects we consider here

are the invariants and the ability to distinguish a region from others.

One of the key aspects of a region is the set of invariants it represents or by which it is

defined. One could argue that a simple definition with respect to invariants would be to

declare that each region defines a single invariant. In conjunction with this, a key function

will be operations for intersection among regions. But a single variant ignores the fact that

the second central aspect of a region is a boundary, and, unless we provide some means of

defining a merged boundary for the intersection, we have lost a significant aspect of the

region abstraction. Hence, for the purposes of this work, we assume that a region can have

more than one invariant.

21

The second issue we consider here is that of distinguishing regions from each other. There

are many approaches taken to handling the question of distinguishing regions. An approach

to defining sets of entities is to decide that all entities that share a pre-defined set of

invariants are by definition in the same region. In this case, it is not difficult to specify

different regions, simply by specifying the appropriate set of invariants, but if the scope of

the universe is the whole Internet, then it is unlikely that one could ever have any

significant level of confidence that all or most of a region’s membership could be known at

one time and place. Furthermore, this approach assumes a global definition space for

invariants. This has two implications. First, there must be common agreement on invariant

representation, so that two statements of invariants that are not intended to be the same as

each other are distinctly represented. This implies global definition of invariants. Second,

no two regions will have the same set of invariants assigned to them. This would also

require global coordination. An alternative approach to this problem is that each region is

assigned a globally unique name or identifier in order to distinguish one from another.

There exist a number of global naming schemes at present with varying degrees of

scalability, user-friendliness, etc.

Autonomous Systems can be regarded as a form of existing regions. These regions define

their invariants as those destinations recognized by the routers as having the same BGP

gateways into the region, generally based on the subnet masks of the IP address. The BGP

configuration and the internal routing algorithm within an AS reflect the administrative

policy of an AS, but the policy is not explicitly visible or accessible to end hosts or other

ASs.

Each AS has a globally unique number, an Autonomous System number (ASN), associated

with it; this number is used in both the exchange of exterior routing information (between

neighboring Autonomous Systems), and as an identifier of the AS itself. ASNs are

assigned by ICANN [35]. The global control over AS numbers guarantees their uniqueness.

Exterior routing protocols such as the Border Gateway Protocol (BGP) defines how ASs

22

exchange routing information dynamically. Each AS has its own routing policy, reflected

by its BGP protocol.

Peer-to-peer systems are other existing regions considered in this thesis. An end host joins

a peer-to-peer system by cooperating with other members in the system to perform a

critical function. There are many different types of P2P systems, and one type of P2P

systems may have several instances running in the Internet at the same time Therefore, the

invariants of a peer-to-peer system are the type and the instance. In other words, a node

joins a P2P system by running a daemon for that system. If nodes join different types of

peer-to-peer systems, the daemons will be different. If nodes join different instances of a

peer-to-peer system, the daemons will be the same, but the ports will be different.

Therefore, the invariants can also be regarded as a pair of the daemon and the port. The

daemon contains a specific protocol of the peer-to-peer system, while the port number can

distinguish peer-to-peer systems with the same protocol. IANA assigns well-known ports

[36] while other ports are determined more locally as needed.

There is an important difference between Autonomous Systems and peer-to-peer networks:

they are in different layers of networks. One the one hand, ASs exist in the network layer

and P2P systems in the application layer. On the other hand, ASs are topologically

separated. That is, there is no overlap between ASs and any end host only belo ngs to one

AS. There are physical boundaries between ASs in the form of BGP routers. However,

different peer-to-peer systems can overlap in the physical layer by having one node in

multiple P2P systems at the same time as long as they do not conflict in resources.

3.2 Region Membership

The functions a region must support with respect to membership fall into two categories.

First, there is an issue of insertion in and deletion from a region and, second, there is an

issue of learning about and distinguishing among members. These two groups of functions

will be discussed separately.

23

There are two key issues with respect to an entity joining a region, the invariants and

introduction. The intention is that if the invariants were not true of the entity prior to

joining a region, they become true. The difficulty here is that this may be impossible or

unacceptable. So joining may be more than a simple decision to add an entity to a region.

Because invariants are not globally defined, membership in a region cannot be based on

invariants of the entities. Therefore, an introduction function is needed for inserting entities

into regions. In practice we may find two sorts of such introductions, those performed by a

human and those performed by members of the region itself.

One can consider a similar distinction for removal or deletion from a region, but possibly

with different conclusions. We assume that when an entity is assigned to a region, it

inherits the invariants defining the region, and hence we could reasonably postulate that if

the entity is explicitly and authoritatively assigned contradictory invariants, it is expelled

from the region. It is worth noting that, in order to make this statement, we must assume

that entities have a set of invariants, which can be modified. Further, if an entity was

introduced into a region by another entity already in the region, one can ask whether the

introduced entity will be expelled if its introducer is removed. Here, the intuition is that

such a rule does not make sense. We can conclude that in addition to an explicit removal

function, there may be a more implicit action.

As an existing form of regions, Autonomous Systems’ members are end hosts and routers.

An end host accepts the invariants of an AS automatically by joining the AS. Its

introduction is done by either joining an organization within an AS, or joining the AS

directly by choosing its Internet Service Provider (ISP). A host’s identifier is the IP address

either statically assigned or obtained dynamically with some protocol, such as DHCP. The

router requires more complex operations to join an AS. It needs manual configuration of its

routing table. An end host need not know the ASN of its AS, because ASN is only useful to

the routing information exchanges between ASs. To delete a member, one can just

24

disconnect the host and change the routing tables. But usually no change is needed in the

routing table because the routing is based on IP prefix, not complete IP addresses. ASs are

simple regions in that merging operations seldom happen. To merge two ASs, three things

must be made to be true. First, they must run the same routing protocol. Second, BGP

routing policies must be changed to be consistent. Third, the routing tables must be merged.

In a special case, if an AS is the provider of another AS, then the BGP routers of the

provider AS may not need to change its routing table if the IP scope of the client AS is

coincidentally included in that of the first one. This can be regarded as a kind of special

merge. But current ASs do not provide much functionality to end hosts. End hosts have no

idea of which AS it is in. The routers have much more AS information and functionality

than end hosts. Most routing changes in an AS require human intervention.

As for the peer-to-peer systems, their members are end hosts in the systems since it is an

overlay network. A host joins the network by obtaining an identifier through some hashing

function and looking for some nodes already in the system so as to set up its own routing

table and to introduce itself to the system. Hosts are equal to each other, and each host

provides the same functionality such as routing, storage, etc, based on particular systems.

To leave a peer-to-peer system, a node can gracefully leave by notifying other nodes or

leave without any notification. Current peer-to-peer systems do not provide the deleting

functions because nodes are equal to each other.

3.3 Additional Client Functions

There are two additional client functions: boundary crossing and notification. The explicit

notion of the boundary of a region provides an opportunity to enable a rich functionality

when activities touch or cross those boundaries. As stated earlier, a boundary is a logical

concept, not bound to a particular topological or physical space. There are two aspects to

the discussion about boundary management functions, the functions that take place when

an activity within a region reaches a boundary and the activity models themselves.

25

ASs are connected to each other via BGP routers, so ASs have explicit boundaries. Their

polic ies are embodied in the routing information exchanges in BGP routers. They decide

the routes exported to the neighboring ASs. The policies are usually determined by the

relationships between ASs.

Current Autonomous Systems do not have a notification mechanism. However, with the

development of the Internet, we believe that there may be some cases in which

notifications are useful. For example, some billing policies may require BGP routers to

notify some controllers to count the number of packets.

At present there is no interaction between P2P systems. We believe that as P2P systems

become more and more prevalent, they will find themselves competing for resources. A

significant shared resource is network bandwidth. Therefore, we expect that multiple

peer-to-peer systems need to exchange information in the future. In this case, they need

boundary crossing, possibly modifications if data formats are different, and notifications.

The boundaries between peer-to-peer systems are different from those of ASs: they are

logical boundaries. Each member could be a boundary node as long as it is allowed to

exchange information with other peer-to-peer systems. However, since boundary crossing

may require some complex functionality, it is possible that only some designated nodes can

act as boundary nodes. Such functionality needs further exploration in the future.

3.4 Summary

In this chapter we presented several features of the region concept, and discussed how

these features apply to Autonomous Systems and peer-to-peer systems. This helps us to

design schemes to improve P2P system performances in the next chapter.

26

Chapter 4

Design

4.1 Overview

The basic idea behind our design is to provide peer-to-peer (P2P) systems with the

underlying Autonomous Systems information so that they can improve their routing

performance and availability.

There are three layers in our system, as shown in Figure 4.1. The low layer is a physical

layer, which represents the underlying Internet. We will discuss it in detail in Chapter 5.

The middle layer is the AS Regions layer. An AS Region is a region that represents an

underlying Autonomous System. We propose this layer so as to make Autonomous

Systems information available to network applications. In real life, we can obtain routing

information from BGP tables. In this thesis , we only use the information, as opposed to

possibly affecting it or behavior at this level of abstraction. The high layer is a P2P region

layer. The high layer retrieves information from the

middle layer via the interfaces defined between them.

We will discuss these two layer in detail in section

4.2 and 4.3, respectively.

A P2P Region Layer

AS Regions Layer

Physical Network Layer

Figure 4.1 System Hierarchy

27

4.2 AS Regions

An AS Region is a region that represents an underlying routing domain and provides

topology information to the upper regions. Each AS region corresponds to an Autonomous

System. An Autonomous System is a group of networks and routers, subject to a common

authority and using the same intra-domain routing protocol. Its boundary is instantiated in

border gateways. The primary function of Autonomous Systems is to route packets through

itself or to the destination if it is in this AS. Routing within an AS is managed by an internal

routing protocol like OSPF or RIP, and routing between ASs is determined by the Border

Gateway Protocol (BGP). Each AS uses its ASN to run BGP. The relationship between

adjacent ASs are characterized as either provider-client or peering, depending on business

relationships. Figure 4.2 shows an example.

We classify the information into two kinds. One is static and coarse-grained information,

which is stable over a long time. Such information includes the ASN, the relationships

between ASs, the shortest paths between ASs, etc. We call such information

macro-information. The other is dynamic and fine-grained information, including latency

between two end hosts, bandwidth, etc. Such information varies over time. We call it

micro-information.

Macro-information can be provided to the upper layer with less overhead than

micro-information, because such information is usually unchanged for a long time, and

thus can be statically stored and easily retrieved. One objective of PlanetLab Project [37] is

to implement a layer to provide such information to network services. Micro-information

usually requires real-time measurements, which adds to the Internet traffic, but provides

more accurate information than macro-information.

Some basic but important information that AS regions can provide are the mapping from

an IP address to the ASN to which it belongs and the number of AS hops between two end

hosts. In today’s Internet, ASs are routing domains that implement different policies within

28

ISPs. Routing within an AS is usually efficient and the network is well managed. We

believe that most congestion and failures occur on the links between ASs. Therefore, ASNs

and the number of AS hops are a valuable criterion for network latency and other network

properties [38]. Thus, two end hosts in the same AS, in other words, with the same ASN,

usually experience small latency between them. Meanwhile, the latency between two end

hosts in different ASs is more like to be large, which can be represented by the number of

AS hops. With the length of AS paths, we can approximately compare latencies between

two pairs of nodes in different ASs. The ASN and the AS path information can be retrieved

by the cooperation between AS Regions.

In our work, the AS regions aggregate the underlying Internet routing information, and

provide this information to a P2P region. The AS regions cooperate with each other to

provide the information. At present the AS regions provide the following functions:

getASN (IP)

Given an IP address, the underlying AS regions return the ASN of the AS to which

this IP address belongs. When an AS region receives this query (from a node in this

AS region), it first checks if the IP address in this query is in its own AS. If so, it

returns its own ASN. Otherwise, it checks its routing information, for example,

something similar to BGP tables, to find out the ASN. In some rare cases, if it still

AS 3

AS 8

AS 342

AS 5

AS 65
AS 19

Figure 4.2: AS Regions

provider-client
provider-client provider-client

provider-client

peering peering

peering peering

29

does not find the ASN, it will forward the query to other AS regions, especially its

provider AS regions.

getASPath (source_IP, destination_IP)

Given two IP addresses, source_IP and destination_IP, the underlying AS regions

return an AS path between the source IP and the destination IP. Usually the node

with source_IP should be in an AS region where this function is called. The AS

region searches its routing information for the corresponding AS path. If it does not

succeed, it will ask its neighboring AS regions, especially its provider AS regions.

Other AS regions receiving this query will check their routing information and send

back the AS path if they find it.

getDistance (source_IP, destination_IP, metric)

Given two IP addresses, the underlying AS regions return distance between

source_IP and destination_IP based on the metrics specified in the third parameter.

If the metric is AS hops, it will return the number of AS hops between them. There

may be other metrics in the future. The AS region to which the source_IP belongs

implements this function by cooperating with other AS regions.

There are several advantages of using coarse-grained information. First, such information

is stable and static, and thus can be collected once and used many times later. Second, such

information collection can be done in an aggregate way, thus reducing the network traffic.

4.3 A Peer-to-Peer Region

Our model of a P2P system is a generalization of several structured P2P systems. First, in

all those systems, files are associated with a key (usually generated by hashing the file

name), and each node in the system is responsible for storing data corresponding to a

certain range of keys. Second, a primary operation is to look up a key and figure out the

30

node that stores the corresponding data. Third, each node is assigned an ID in a fixed-size

ID space. Fourth, nodes form an overlay network, and each node has the knowledge of a

number of other nodes for the purpose of lookup. To accelerate the lookup procedure, each

node usually knows more nodes among its logical neighbors, and fewer nodes that are far

away. Each node usually also maintains some other data structures like its logical

neighbors and physical neighbors. Fifth, the lookup is routed through the overlay network

to the destination by a series of query forwardings. Finally, each system has varying

degrees of additional mechanisms to provide increased or improved performance in some

way or other. Usually such mechanism is about which nodes should be known in one’s

routing table when there are multiple choices.

Data structures maintained by each node include a routing table and a leaf set. The routing

table is the most important data structure, and largely determines the lookup performance.

A leaf set is a set of nodes that are logical neighbors of the present node. By logical

neighbors, we refer to nodes that are logically closest to the present node in the name space.

With a leaf set for each node, we can guarantee the lookup correctness, because in the worst

case we can move one step closer to the destination in each step with leaf sets only.

As mentioned before, lookup is a primary functio n of P2P systems. The lookup function is

defined as: given an ID, the P2P system will find the IP address of this ID. A lookup

procedure is carried out in the following way: when a node receives a lookup query for an

ID, it checks a certain entry in its routing table, and forwards the query to a node in its

routing table which is closer to the destination than the present node. The node receiving

the query again checks its routing table and forwards the query to a node closer to the

destination. In each step the query gets closer to the destination. This procedure continues

until the destination node receives the query or the destination IP address is found in a

node’s routing table. Lookup is very important to the performance of a P2P system because

it is a primary operation. Furthermore, in some systems, data transmission follows the

lookup path, so the system performance is largely determined by the lookup efficiency. The

31

underlying Internet topology can help reduce the lookup latency. We will present how AS

regions improve the lookup performance in section 4.4.

Second, the idea of caching derives from operating systems, and now has spread to many

areas, such as content addressing networks. In P2P systems, we can cache previous lookups

for future use to reduce lookup latency. Our key concern in this area is how to reduce the

cost of caching while maintaining comparable performance. We propose to improve

caching efficiency based on AS information. This issue will be discussed in section 4.5.

Finally, P2P systems are very dynamic, in that nodes are expected to join and leave at will.

Therefore, replication is necessary in all peer-to-peer systems to make the data reasonably

available. The performance of data transmission can also be improved if we can find a

good replica placement scheme. Again, we propose to use AS information to design an

improved replication scheme. It is presented in section 4.6.

4.4 A Lookup Scheme

In this section, we will present our data structures of routing tables based on ASs. Then we

present a lookup scheme based on the data structures and analyze its performance.

4.4.1 Introduction

Structured P2P systems are the second generation of P2P systems. They are structured in

terms of the overlay organization. In this thesis, we focus on the routing structures of Pastry

and Tapestry, because they provide more flexibility, which is crucial to our optimization.

We first describe the general lookup idea in P2P systems. In the current Internet, end hosts

are connected to hubs or routers, routers are interconnected to some other routers in an AS,

and ASs are interconnected to some other ASs via BGP routers. CIDR [39] aggregates IP

addresses to reduce the number of routing entries. A routing procedure is composed of a

series of message forwarding operations, from one router to another, from one AS to

32

another (via BGP routers). In each hop, the message moves closer to the destination.

Conceptually, structured P2P lookup is similar to the Internet routing. However, a P2P

network is an overlay network without any dedicated router, and members are peering to

each other: each end host acts as both an end host and a router. Each host/node is assigned

a unique identifier in a distributed manner when joining the system. The lookup operations

are based on node identifiers. As mentioned before, each node knows the IDs and the

corresponding IP addresses of a number of nodes, which compose its routing table. The

distribution of nodes in a routing table is inversely proportional to their logical distance to

this node. That is, a node knows more about its logical neighbors, and less about nodes

logically faraway. Similar to the Internet routing, a P2P lookup is also composed of a series

of message forwardings. In each hop the message is forwarded to a node that is logically

closer to the destination. In many P2P systems it takes only a logarithmic number of steps

to reach the destination. Note that a significant difference between the Internet routing and

the P2P routing is that the latter is completely based on logical overlay topology, which has

nothing to do with the real Internet topology.

Figure 4.3 shows an example of a routing table, which is similar to that in Pastry and

Tapestry. In this example, a one-dimensional name space is drawn as a ring, from 00000 to

33333. Each node identifier consists of five digits, and each digit is base-4. Node 02311’s

routing table should contain a number of nodes satisfying the following property. First, the

name space is evenly divided into four parts, shown by two orthogonal bold dashed lines in

the figure. Thus, node IDs in the four quarters begin with 0, 1, 2, and 3, respectively. We

term the four quarters as quarter 0, 1, 2 and 3 based on common ID prefix in each quarter.

Node 02311 needs to know one existing node in each quarter. In this case, node 02311 finds

1****, 2****, and 3**** in quarter 1, 2, and 3, respectively, shown in this figure by three

arrows starting from 02311 and pointing to three nodes in quarter 1, 2, and 3. Node 1*****

refers to any node whose ID begins with 1. In its own quarter, node 02311 itself satisfies the

requirement. Second, quarter 0 (node 02311’s own quarter) is evenly divided into four parts.

33

We term the four sub-quarters as 00, 01, 02, and 03, based on common ID prefix, shown by

three thin dashed lines starting from the center point of the ring. Again, node 02311 needs

to know one node in each sub-quarter, if each sub-quarter contains at least one existing

node. The three nodes are pointed by three dashed arrows starting from node 02311, as

shown in the figure. Then sub-quarter 02 is evenly divided into four parts, and such

division continues until each division contains one node only. We can see that in this case,

the final division is to divide 02310, 02311, 02312, and 02313 into four separate parts, each

containing only one node.

Table 4.1 shows node 02311’s routing table. The four entries in the first row contain one

node in each of the four quarters after the first division. The second row contains four

nodes in each sub-quarter of quarter 0. “X” means that node 02311 itself can be put in those

entries. To generalize, suppose a name space is m bits, and each digit has b bits, so each ID

consists of m/b digits. Under such a name space, a routing table has m/b·2b entries. For

example, the Tapestry name space is 160 bits, and each digit is base-16 (4 bits), so its

routing table has 640 entries. A node in an entry (i, j) shares the first i digits with the present

node, and its (i+1)th digit is equal to j.

2****

3****

00000

10000

20000

02311

1****

30000

Figure 4.3: Nodes in 02311’s routing table.

X 1**** 2**** 3****

00*** 01*** X 03***
020** 021** 022** X
0230* X 0232* 0233*

02310 X 02312 02313

Table 4.1: Node 02311’s routing table.

34

After talking about the routing table, we describe how a lookup is performed with such a

routing table. The P2P lookup algorithm can be viewed as a generalization of hypercube

routing. A general routing algorithm is shown in Table 4.2. Figure 4.4 shows how node

02311 looks up the IP address of an ID 23211. First, node 02311 checks its routing table,

finds node 2****, which shares the longest prefix with the destination in the name space.

Node 02311 then forwards the lookup message to node 2****. Second, when receiving

with a lookup message with 23111, node 2**** checks its routing table and finds a node

with 23***, and forwards the message to node 23***. This procedure continues, as shown

in the figure. After 5 hops, the message finally reaches node 23211. Finally, node 23211

returns its IP address to node 02311, which completes the lookup. We can see that in each

hop the message is getting exponentially closer to the destination in the name space. Thus,

we can usually finish a lookup within an O(logbN) number of forwarding steps.

In real life, because P2P systems are constructed in a decentralized manner, a node does not

have complete knowledge of the whole P2P network, and a node may not construct an idea

routing table. In this case, next hop will be chosen from nodes that are closer to the

destination than the present node. This is shown in Lines 16-19 in Table 4.2.

02311

2****

23***

232**
2321*

23211

00000

10000

20000

Figure 4.4: A P2P lookup procedure.
Node 023111 looks up for the IP address of ID 23211.

I
I
I

--------J.-.,,..-'//1 --
_.,..,, //, 1

/ I I
// l I

/ I
/ I

I
I
I
I
I

35

4.4.2 An AS-based Lookup Scheme

Our goal is to provide a fast lookup with low overhead. Some P2P systems have tried to

match the overlay topology with the underlying topology, as in [28] and [40]. However, the

logical structure of P2P systems we are concerned with is one-dimension name space and

the lookup is completely based on IDs. The Internet topology is obviously not

one-dimensional, so it is hard to match such logical topology with the Internet. Fortunately,

we can still improve their performance in an ad hoc way. As shown in Table 4.1, 1****

refers to any node whose ID begins with 1, so there may be several candidates. If we fill

each entry with a candidate satisfying a certain criterion, the whole lookup can then be

optimized for this criterion. For example, to achieve a low latency, we should choose nodes

Table 4.2: A Classical Lookup algorithm

1) A: a node that receives a lookup message.
2) R: a routing table.
3) Rr

c: an entry in a routing table R at row r and column c.
4) Li: the i-th closest node ID in the leaf set L of node A.
5) Di: the value of the l’s digit in a node ID D.
6) SP(A, B): the length of the longest shared prefix between ID A and B, in digits.
7) DIS(A, B): the logical distance between ID A and B.
8) If (D∈ L) {
9) Look for a node T∈L, such that for any node T’∈L, DIS(D, T) = DIS(D, T’);
10) Forward D to node T;
11) Return;
12) }
13) r = SP(A, D);
14) if (Rr

Dr ≠ null) {
15) Forward the message to the node in Rr

Dr;
16) } else {
17) Look for a node T∈L U R such that for any node N in L∈R, DIS(T, D) =

DIS(N, D);
18) Forward to T;
19) }

36

with low latencies for each entry; to avoid passing an AS, we can choose nodes in other

ASs for each entry. Latency is the most common criterion for performance. To attain low

lookup latencies, an intuitive scheme is to keep all entries its a routing table local to the

present node so that each forwarding hop is short. The locality has two levels. The first

level is fine-grained locality, which includes several criteria such as latency, bandwidth, etc.

These criteria change over time, so they require real-time measurements, adding to the

Internet traffic. The second level is coarse-grained locality. Two nodes are considered local

to each other if they are in the same AS. For two nodes in different ASs, the shortest AS

path between them can be viewed as an indication of latency. Such AS-based information

can be obtained from AS regions with low overhead because each AS region maintains

such information, and such information is usually static.

In this thesis, we use AS information to reduce lookup latency. To find out whether two

nodes are in the same AS, a simple solution is to compare their ASNs. If two nodes have

the same ASN, then they are in the same AS and will probably have a small latency

between them. Otherwise, they will probably have a large latency, and we refine the

latency by the length of their AS path. Therefore, the ASN and the AS path become our

criteria of latency. Furthermore, we believe that it is valuable to distinguish between the

local AS and other ASs, because such distinction may be useful for security, policy, etc. We

can also choose nodes to maximize the number of different ASs covered by the interAS

table. This method can improve system robustness, because network failures often happen

at BGP links between ASs, and network partitions usually happens in units of AS. Other

more sophisticated methods can be used too, but we begin with the simplest. In the

following sections, we will use the following algorithm: when receiving a query, a node

always first checks its intraAS routing table; if no proper entry is available, then check its

interAS routing table instead. Pseudo code for the lookup algorithm is shown in Table 4.4.

In our scheme, each node has two routing tables. Both tables have the same structure as that

in Pastry and Tapestry. One routing table contains only nodes in the owner’s AS, namely an

37

intraAS routing table; the other contains only nodes in other ASs, namely an interAS

routing table. Such structures can not only achieve low-latency lookup, but also make

possible certain desirable policies. A routing table’s size is determined by the name space,

as mentioned before. Table 4.3 shows a node 02311’s two routing tables. In Table 4.3, the

name space is 10 bits, and each digit is 2 bits, so each table has 5 rows and 4 columns.

4.4.3 Performance Analysis

The lookup algorithm always moves closer to the destination in each step, so it is

guaranteed to end in finite time. As to the time complexity, it is easy to see that it is the

Table 4.4: Our Lookup algorithm

1) A: a node that receives a lookup message.
2) Rr

c: an entry in a routing table R at row r and column c.
3) intraR: an intraAS routing table.
4) interR: an interAS routing table.
5) Li: the i-th closest node ID in the leaf set L of node A.
6) Di: the value of the l’s digit in a node ID D.
7) SP(A, B): the length of the longest shared prefix between ID A and B, in digits.
8) DIS(A, B): the logical distance between ID A and B.
9) If (D∈L) {
10) Look for a node T∈L, such that for any node T’∈ L, DIS(D, T) = DIS(D, T’);
11) Forward D to node T;
12) Return;
13) }
14) r = SP(A, D);
15) if (intraRr

Dr ≠ null) {
16) Forward the message to the node in intraRr

Dr;
17) } if (interRr

Dr ? null) {
18) Forward the message to the node in interRr

Dr;
19) } else {
20) Look for a node T∈L U intraR U interR, such that for any node N in L∈

intraR U interR, DIS(T, D) = DIS(N, D);

21) Forward to T;
22) }

38

same as that of Pastry and Tapestry, O(logN), where N is the number of nodes in a P2P

region. The space complexity is about twice that of Pastry and Tapestry, O(M·2K), where M

is the number of digits in an ID, and K is the base of each digit (The name space is M·K

bits.).

4.4.4 Routing Table Setup

With such routing table structures, a joining procedure will be different from that in Pastry

and Tapestry. In a P2P system, assume a new node, say n, knows a node already in the

system, say m, and n wants to join the system. The joining procedure is similar a lookup

procedure: node n sends m a joining message containing its ID and its ASN. Node m then

performs a lookup query for node n’s ID as a way of helping n to join. Node m first checks

its intraAS routing table, and if a valid entry is found in the corresponding position, it will

forward the query to the node in that entry. Otherwise, it will check its interAS routing

table to find a node and forward the query to it. The procedure is described in Table 4.4.

This forwarding operation continues until the query reaches a node that is logically closest

X 1**** (2) 2**** (437) 3**** (84)

00*** (63) 01*** (981) X 03*** (195)

020** (17) 022** (86) X

0230* (4) X 0232* (5)
 X 02313 (63)

X 1**** 2**** 3****

00*** 01*** X 03***

020** 022** X

 X 0233*

 X 02312

1**** in (a) means that a node whose ID begins with 1 can fill that entry as long as it is in AS 3.
020** (17) in (b) means that a node beginning with 020 in an AS different from AS 3 can be
filled here; (17) means that the node in this entry is in AS 17. X means that this entry can be
filled by the owner’s ID, so it is not necessary to find a node to fill in it. For two entries with the
same position in the last line of both tables there can be at most one entry filled because each
node can only be in one AS. Blank entries means that the node has not found a proper node to
fill in.

Table 4.3: Node 02311 with two routing tables.

 (a) The intraAS routing table (AS 3) (b) The interAS routing table

39

to n.

Node n can then set up its routing tables with the routing tables from nodes along the

lookup path. Its interAS routing table is comparatively easy to set up. If a node in the

lookup path is in the same AS as node n, certain rows in its interAS routing table can be

directly copied to node n’s interAS routing table (to be explained below). If a node is in a

different AS, certain rows in its interAS routing table can be copied to node n, except that

those entries in the same AS as node n in the interAS routing table are copied into node n’s

intraAS routing table.

The intraAS routing table setup is more complicated. If most nodes in the lookup path are

in the same AS as node n, n can set up its intraAS routing table by copying rows in those

nodes’ intraAS routing tables. In some cases, node n may not find enough valid nodes for

its intraAS routing table. We solve this problem by doing extra search: if node n finds some

nodes in its AS during the first few lookup steps, it will ask one of the nodes to do another

lookup, so as to find more nodes in its own AS, because nodes already in the system

probably knows more about nodes in their own AS. This additional search result can be

used to fill n’s interAS routing table. It is possible that sometimes node n may not find any

nodes in its own AS during its joining procedure, either due to the small number of nodes in

its AS or because nodes in the joining lookup path do not know any nodes in that AS. In

this case, it can just join with an empty intraAS routing table, but can ask nodes in its

interAS routing table to store its ID in their interAS routing tables so that other nodes or

new nodes in that AS may find it later. It may also search exhaustively for nodes in its AS,

but this is generally too costly and thus not practical. After setting up its two routing tables,

node n will send a message to all nodes in its routing tables, and those nodes will add node

n to their routing tables in an appropriate position if applicable.

Figure 4.5 shows an example of a joining procedure. Assume that a node with ID 0231

wants to join a P2P system and it already knows node 3210, a node already in the system

40

and in the same AS. First, 0231 sends a joining message to node 3210. The joining message

is similar to a lookup query for 0231, except that the message type is different, so receivers

will do more than just message forwarding. 3210 receives this message and checks its

intraAS routing table. In this example, it finds node 0102 and forwards this message to it.

Meanwhile, 3210 sends back its first rows of both intraAS and interAS routing tables to

0231. Suppose node 0102 does not find a valid entry in the corresponding position of its

intraAS routing table; it checks its interAS routing table, finds 0211, and forwards the

message to node 0211. Meanwhile, 0102 also sends back its second rows of both intraAS

and interAS routing tables to 0231. Node 0211 receives this message, and checks its

interAS routing table first and then the intraAS routing table, because it is in a different AS

and cannot find a node in its intraAS routing table that is in the same AS as 0231. Luckily,

in this example it finds 0230 in its interAS routing table, which is in the same AS as 0231.

It then forwards the message to 0230. The third rows of 0211’s two routing tables cannot be

Node ID

intraAS

interAS

0231 3210 0102 0230 0211

lookup

a node

AS 1 AS 1 AS 1 AS 2 AS 1

Legends:

Figure 4.5: A node joining procedure.

Dashed arrows show a lookup path in the joining procedure. Legends are shown on the right
side. New node 0231 sets up its two routing tables by copying different rows from nodes in
the lookup path. The bars with different degree of gray in node 0231 show from which
nodes the rows are copied. Note that 0211 is in a different AS from 0231, so its third row in
its intraAS table cannot be used by 0231’s intraAS routing table. Instead, it is copied from
0230. (In this case, 0230 happens to be in the same AS as 0231.)

+---♦ --► • 4
~ .--+-----------

t---+-+-+---i/ ffl--✓'-,,,. □ m e a m
~ ~ ~ '------------' ~ □

41

used by 0231’s intraAS routing table, since they are in different ASs. However, if 0211

finds some nodes in its interAS routing table are in 0231’s AS, it will send such entries to

0231, too. Node 0230 will find that the corresponding entry, the fourth row and the second

column in this case, is empty, because 0231 has not joined the P2P system. 0230 knows it is

the end of the path because 0231 is within the scope of its leaf set and no one is closer to

0231 than itself. The previous node 0211 is in a different AS, so 0230 sends both the third

and fourth rows of its intraAS routing table to 0231.

On the other hand, in each hop node 0231 can be used to update entries in those nodes’

routing tables. If, for example, the corresponding entry in 0102 is empty, node 0231 can

then be put into that entry. Furthermore, 0231 can be propagated to all nodes in the row that

this entry is in and in the rows below. However, such propagation may be costly because it

is an O(N×M×R) operation in which N is the base of the ID digit, M is the number of digits

in each ID, and R is the depth of the propagation. There are several methods for reducing

the overhead: (1) 0231 is only propagated to nodes that are in its own AS in the first-level

routing table; (2) R is limited to 1 or 2; (3) loop detection can be used to prevent duplicated

updates.

4.4.5 Routing Table Update

In a P2P system, nodes join and leave the P2P systems at random. Meanwhile, a node may

not find enough nodes to meet its needs within a reasonable overhead due to its partial

knowledge of the system. Therefore, routing table updating becomes a crucial component

of a P2P system.

Dedicated updating is expensive, and our idea is to update routing tables by piggybacking

during lookups. During a lookup, besides a query message, two nodes of a hop can

exchange part of their routing table entries. They decide whether to exchange information

or not based on their conditions. If the two nodes are in the same AS, their intraAS and

interAS routing tables (respectively) can exchange information. If they are in different ASs,

42

then such exchange will be done between their interAS routing tables, and be less useful to

their intraAS routing tables, although they may find some nodes in their own ASs from the

other’s interAS routing table.

Figure 4.6 shows an example. We look up the IP address of ID 0231. Node 0231 is searched

in the path 3210, 0102, 0211, and 0230. Node 3210, 0102, and 0211 are in the same AS.

0231 is in a different AS from 0211, and 0231 is in a different AS from 0230. Node 3210

and 0102 can exchange the first row in both intraAS and interAS routing tables. Node 0102

and 0211 can exchange the first two rows in both routing tables. Node 0211 and 0230 can

exchange the first three rows of their interAS routing tables, etc. Thus, a lookup procedure

acts as a way of exchanging information.

4.4.6 Additional Functionality Enabled by Regions

Besides lookup performance, AS Regions enable more functionality, especially on security

and policies. For example, one possible scheme is to keep traffic within an AS as much as

possible. There are a variety of reasons for this scheme, such as cost, performance, or

Figure 4.6: A routing table update during a lookup.

The possible updates are shown by the solid left-right block arrows. The legend is shown
on the right side. The lookup procedure is shown by dashed single arrows. The block
arrows show the potential updating.

Node ID

intraAS

interAS

0231 3210 0102 0230 0211

lookup

update

a node

AS 1 AS 1 AS 1 AS 2 AS 3

,,...-► ,,...

--------'-~mf m , m ~ ,·~== / ______,,m □

m m m m m □
.. - .,..~

J

<====>

43

privacy. Since an AS is often a definition of a corporate boundary, a corporation may prefer

that the traffic of its applications remains within its own AS. An enhanced region reflects

not only the IP level boundaries of the corporation, but also information about how the

application overlay can stay within those boundaries. The power of the region abstraction

is that alternative regions can be defined by the use of invariants other than those arising

from ASs, in order to define new routing regimes.

Furthermore, two possible policies are enabled as follows. One is to avoid passing some

unsafe ASs. To implement this policy, a node just avoids using any node in its interAS

routing table which is in the unsafe ASs. This simple implementation has a defect:

Although in the P2P Region the lookup does not pass any unsafe AS, it cannot guarantee

that a lookup does not pass any unsafe ASs in the underlying AS regions. A possible

remedy is that a node always queries the AS region for an AS path between the current

node and the chosen node to see if the AS path between them passes by any unsafe AS

when looking up for the next hop. If so, choose another path.

The other is a more complex, in which again each AS reflects a corporate boundary, but

now rather than requiring that traffic stay within one boundary, a corporation may have a

set of priorities. The preferred option is to stay within itself. But if that is not possible, there

may be an ordered preferential list of alternatives. Such a set of regions may include the

elements of a variety of application overlay networks, for different applications or

application suites. A single set of region definitions may serve many applications, helping

to make routing choices for each using the same set of corporate criteria such as cost,

efficiency or privacy policies. Within each such AS there may be an application network

overlay router.

4.5 A Caching Scheme

Caching derives from operating systems. In operating systems, caching reduces memory

access latency based on two localities: temporal locality and spatial locality. Similarly, in

44

P2P systems caching mechanism serves to reduce lookup latency. Previous lookup results

can be used to reduce future lookup latencies. Temporal locality in P2P systems is that if an

ID is queried by a node, it may be queried again, either by this node or other nodes, in the

near future. The spatial locality has two meanings. One is that if an ID is queried by a node,

other IDs close to it in the name space may be queried either by this node or other nodes.

The second is that if a node queries an ID, other nearby nodes may query the same ID in the

near future. The cost of caching is additional operations and space requirements.

As mentioned before, there are data caching and address caching. Here we only talk about

address caching. Our idea is to cache the lookup result addresses only once in each AS

along a lookup path. The key is to reduce the caching space. Because the destination IP is

found at the last hop in a lookup, caching can only be done by reversing the lookup path. To

be more specific, we introduce two terms: an up node and a down node. We define these

terms by an example. Figure 4.7 shows two hops of a lookup path, in which node A

forwards a lookup message to node B, and then B forwards it to node C. In Figure 4.7, the

up node of node B is the node that sends a query to B. In this example, the up node of B is

node A. A down node of node B is the node to which B sends a query. In this example, the

down node of node B is node C. Each node in the middle of a lookup path has one up node

and one down node. The node at the beginning of a lookup has only a down node, while the

end node has only an up node.

During a lookup procedure, each node temporarily stores the lookup information including

its up node and the lookup ID. After the destination IP address for the lookup ID is found,

the node at the end of the lookup path sends a caching request to its up node. The cache

A B C

Hop 1 Hop 2

Figure 4.7: An example of an up node and a down node

---0---0

45

request includes the ID range on the node with the IP address. This is to make use of spatial

locality. When its up node receives the cache request, it will check if it is in the same AS as

its down node. If so, it will ignore this information. Otherwise, it will store this information.

In both cases, it will forward the caching request to its up node. The caching procedure

stops when the caching request reaches the beginning node in the lookup path. The

beginning node always caches the information. This caching path is to make use of

temporal locality. This procedure is shown in Figure 4.8.

With such a scheme, we treat all ASs, big or small, equally, by caching only once in each

AS in a lookup path. We hope that we can still get good performance with fewer cached

nodes. This scheme can also applies to data caching with minor modifications.

4.6 A Replication Scheme

Peer-to-peer systems are dynamic. Nodes frequently join and leave, sometimes without

notification. To guarantee resource availability and to improve robustness, replication is

necessary. P2P system performance depends not only on the lookup efficiency, but also on

the replication efficiency. Furthermore, an operation in a P2P system usually consists of a

Figure 4.8: The caching algorithm

The solid line shows the lookup path, and the dashed line shows the caching path. The
ovals represent the ASs. The small circles represent nodes and those that are black
represent nodes with caches of the lookup result.

source

destination

AS 1

AS 2

AS 3

AS 4

46

lookup and a data accessing. The second part, communication between a source and a

destination, is usually a long procedure with large traffic and overhead. That performance

can be greatly affected by the choice of a replica. For example, in a P2P system for data

sharing, the main overhead is the download procedure after a lookup. There has been much

work on server selection [41][42], and some of these approaches can be applied to

peer-to-peer systems [22][25]. Current structured P2P systems usually replicate data on

nodes that are logical neighbors of the present node. They try to achieve even replica

distribution in this way because IDs are randomly generated in the name space. This may

not be effective or enough because they rely solely on the randomness and have no control

over where the replicas go. In this section, we present a scheme with explicit replica

placement with the help of AS information.

4.6.1 Static Strategy

Our basic idea is to provide AS region information to P2P regions so as to make better

decisions on data transmission. When a piece of data is inserted into a P2P network, it

should be replicated somewhere, so the first issue is where replicas should be placed. AS

Regions represent the Internet topology, and their boundaries often become boundaries of

congestion and network partitions. Thus, it is reasonable to replicate in different ASs to

improve data availability. Since there are many ASs of different sizes, it is not practical or

necessary to place one replica in every AS. We replicate data only in some “important” ASs.

The definition of “important” ASs varies in different applications and policies. For

example, replicas can be placed in nearby ASs, such as peering ASs, parent ASs and

customer ASs. Replica placement also depends on how much information a node knows

about the underlying AS regions. The initial number of replicas can be a fixed number, and

the number of replicas can evolve based on popularity and dynamic replication algorithms

discussed in the next section.

The second issue is how to locate replicas. An intuitive idea is to make a lookup

47

automatically return the nearest replica. One shortcoming is that such automation excludes

the source’s freedom to choose replicas based on its own interests. In many P2P systems,

data are replicated on the owner’s logical neighbors. This method produces a natural and

automatic transfer when the owner fails, because subsequent lookups will automatically

find those neighbors. With AS Regions, we can have explicit control over where data are

replicated. We propose a scheme which deploys replicas on nodes in different ASs chosen

from a node’s interAS routing table. To choose replication nodes from the original node’s

interAS routing table, there are many alternatives. A simple scheme is to maximize the

number of different ASs where replicas are placed. Also, the relationship between the ASs

may be used. In this way, logical neighbors of the present node now store only a list of

replica pointers, instead of real data. In this way, a lookup will automatically return a

replica list, and it is the source node that decides which replica to access based on its own

preference. The preference criteria may be latency, bandwidth, security, etc. Figure 4.9

shows an example of our replication scheme.

4.6.2 Dynamic Strategy

In a dynamic scheme, replicas propagate or are removed based on frequency of access. If

many nodes in an AS frequently access some data, then the data can be replicated several

times in this AS. Meanwhile, with AS region information, we can improve this scheme by

restricting the number of replicas an AS can hold, because it is not necessary to have many

copies within one AS. Also, for some frequently accessed cached data, the P2P system can

change it into replicated data, etc. In addition, more sophisticated schemes can be designed

as needed for more complex policy requirements.

4.7 Summary

In this chapter, we described a generic P2P lookup algorithm, and proposed an improved

lookup algorithm based on AS regions. The key is to improve lookup efficiency with

coarse-grained information, which incurs less overhead than previous schemes.

48

We also designed a caching scheme to reduce the storage requirements of caching, and a

static replication scheme to achieve even data distribution. Both schemes try to achieve

informed control over caching and replication.

03

21

22

23 24

36

74
A P2P Region

AS Regions

Figure 4.9: The replication scheme

The upper part is a P2P region, one-dimensional name space. The lower part is AS
regions. Dashed lines show the mapping between logical nodes in the P2P region and
physical nodes in AS regions. The black node (21) is an original node. Grey nodes 03, 36,
and 74 store real data replicas. Node 22, 23, and 24 are node 21’s logical neighbors,
storing a replica list like (IP21, IP03, IP36, IP74).

AS 3

AS 342

AS 1

AS 45

AS 5
AS 9

0

' ' \
\
\

49

Chapter 5

Implementation and Evaluation

5.1 Overview

The goal of this thesis is to improve the performance of a peer-to-peer region with AS

regions. In this chapter, we present an implementation and an evaluation of how the region

architecture can meet this goal. Results show that AS regions provide coarse-grained

information to achieve similar performance to methods with fine-grained information, and

also make other peer-to-peer functions more efficient.

5.2 Implementation

5.2.1 System Architecture

As described in Chapter 4, our system is divided into three layers: a physical networks

layer, an AS Regions layer, and a P2P layer. The physical networks layer represents the

underlying Internet, composed of end hosts and routers interconnected to each other. The

AS Regions layer is composed of multiple AS regions. Each AS region consists of a

number of nodes and routers. The AS regions cooperate to retrieve the underlying Internet

information from the physical layer and provide such information to the P2P layer. The P2P

50

layer is a P2P region com
posed of several com

ponents: a P2P control m
odule, a lookup

m
odule, a caching m

odule, and a replication m
odule. The routing, caching, and replication

m
odules are im

plem
ented independently of the P2P control m

odule so that different

schem
es

can
be

easily
added.

T
he

system

architecture
is

show
n

in
Figure

5.1.

5.2.2 The Physical N
etw

orks L
ayer

The physical netw
orks layer represents the underlying physical netw

ork. In the current

Internet, there are m
ore than 10,000 A

Ss and about 35,000 connections betw
een the A

Ss.

For exam
ple, by 2002, Skitter [43] consists of 11,122 A

Ss and 35,752 peering sessions. In

our sim
ulation, the underlying netw

ork is generated by the B
R

IT
E

 T
opology G

enerator

[44]. The topologies w
e generate are tw

o-level netw
orks. The first level is the A

S level,

and the second is the router level (In the sim
ulation w

e use routers as P2P nodes, since

conceptually there is no difference.). B
R

IT
E

 also assigns latency and bandw
idth to each

Figure 5.1: System
 A

rchitecture

A
S R

egion

0

 A
 P2P R

egion

 A
S R

egions

Peer-to-peer
C

ontrol

L
ookup Schem

e

Interface

A Peer-to-peer system
 C

aching Schem
e

R
eplication Schem

e

Physical
N

etw
orks

Internet Topology

A
S R

egion

1

 …
…

A

S R
egion

n

I
11
11
II
I I

r- ~-1 I

I \
I I
I I
I I

i !DDll_
I I
I I
I I
-- -, '

I l
11
11
11

I
(

~~~- '--



 
 

51 

link. In this way, we generate the underlying networks.  

In the following sections, we use four topologies: td40w100w, td40w100g, td100w40w, 

td100w40g. The four topology names specify their topologies. In “td40w100g”, “td” 

means that the topology is generated in a top-down manner. That is, BRITE first generates 

an AS-level topology, with each node representing an AS, and then it generates topologies 

within each AS separately. “40w” means there are a total of 40 ASs, interconnected using 

the Waxman model [45]. The Waxman model refers to a generation model for a random 

topology using Waxman’s probability model for interconnecting the nodes of the topology, 

which is given by:  

P(u, v) = a·e–d/(ßL)  

where 0< a, ß <1, d is the Euclidean distance from node u to node v, and L is the maximum 

distance between any two nodes. “100g” means that each AS contains 100 nodes 

interconnected in a power law model. In the power law model, nodes are interconnected 

according to the incremental growth approach. When a node i joins the network, the 

probability that it connects to a node j already belonging to the network is given by: 

P(i, j) = dj / ∑ ∈Vk
d k 

where dj is the degree of the target node, V is the set of nodes that have joined the network 

and ∑ ∈Vk
d k is the sum of out-degrees of all nodes that previously joined the network. 

Basically in a power law model, nodes are interconnected into a tree. Table 5.1 summarizes 

all the four topologies we use in the simulation. 

5.2.3 The AS Regions Layer 

The AS regions aggregate the underlying Internet routing information, and provide it to the 

P2P region. The AS regions cooperate with each other to provide the information. As 

discussed in Chapter 4, our AS regions provide the following functions: getASN (IP); 



 
 

52 

getASPath (source_IP, destination_IP); getDistance (source_IP, destination_IP,  metrics). 

In the simulation, we make two assumptions on the AS regions. First, if two ASs are 

connected, then they are peering. Second, packet routing follows the shortest AS path. We 

can set up BGP tables for each AS under the two assumptions. Each AS region also knows 

all nodes in its own domain.  

5.2.4 A P2P Layer 

A P2P region consists of a number of P2P nodes. Each node has some core information 

including its IP address, its ID, its ASN, etc. It also maintains a number of data structures 

discussed in Chapter 4, including two routing tables and a leaf set. It can retrieve 

information from interfaces provided by AS regions. Different routing schemes, caching 

schemes and replication schemes can be easily implemented in a P2P region. 

In our examples, we use a name space of 18 bits, and each node ID consists of six base-8 

digits. Our name space, compared with those in Chord (160 bits), Tapestry (160 bits), and 

Pastry (128 bits), is very small. But this does not affect our simulation because all schemes 

are implemented in the same name space. Such name space also provides us a small routing 

table. Based on the analysis in section 4.4.1, a routing table in our simulation has only 48 

 

Table 5.1 Network topologies in the simulation 

Between ASs Within an AS Topologies 

#  ASs Model # Nodes Model 

Td40w100w 40 Waxman 100 Waxman 

Td40w100g 40 Waxman 100 Power Law 

Td100w40w 100 Waxman 40 Waxman 

Td100w40g 100 Waxman 40 Power Law 



 
 

53 

entries, while a Tapestry routing table has 640 entries. Note that with such a small routing 

table, we still have the similar number of lookup hops to that of a Pastry system with a 

128-bit name space and base-16 digits. We give an analysis in section 5.3.2. In our 

simulation, we assign node IDs in a centralized way, thus avoiding ID conflicts even with 

this small name space.  

To evaluate our work, we implement four lookup schemes namely Raw, AS, Latency and 

LatAS. A Raw scheme is a P2P system without any optimization. A node in a Raw scheme 

has a simple routing table, and sets up its routing table by randomly choosing nodes 

without any criterion. This is the basis of comparison.  

An AS scheme is the scheme designed in the Chapter 4. A node has two routing tables. An 

intraAS routing table is filled with nodes within the owner’s AS, and an interAS routing 

table is filled with nodes from other ASs, based on the lengths of AS paths between nodes 

and the owner. The lookup/routing is implemented by first checking the intraAS routing 

table. If valid entry cannot be found, it then checks the interAS routing table.   

A Latency scheme is a scheme similar to Pastry and Tapestry. For this scheme, each node 

has only one routing table filled with nodes based on latency.  

A LatAS scheme is a hybrid scheme that combines the AS and Latency schemes. Similarly 

to the AS scheme, a node in this scheme has two routing tables, but nodes in an intraAS 

routing table are chosen based on latency, instead of being randomly chosen.  

5.3 Evaluations 

5.3.1 Overview 

The goals of our work are to improve application-level performance and to generalize the 

region concept. In this section we present a performance evaluation of how well our 

schemes meet these goals, and show how regions can be useful to applications.  



 
 

54 

Our evaluation includes several parts. First, we analyze the occupancy of routing tables, 

which helps us to understand how P2P systems work and provides a way to estimate the 

average number of hops. Second, we study how underlying AS regions help to improve 

P2P lookup efficiency. Third, we design a caching scheme and test how it further reduces 

lookup latency. Finally, we make use of region information to achieve informed replica 

placement in P2P systems. Each scheme is tested on four topologies: td40w100w, 

td40w100g, td100w40w, td100w40g. We implemented our scheme in about 10,000 lines of 

Java codes, including about 2,000 codes for AS regions, 6000 lines of code for a P2P 

region, and 2,000 lines of evaluation code. 

5.3.2 Peer-to-Peer Routing Table Analysis 

Based on previous analyses in Pastry, and Tapestry, the average number of lookup hops is 

largely determined by the digit base and the number of nodes. On the other hand, a typical 

lookup begins with a node, say n, in the first row of a node’s routing table, then a node in 

the second row of node n’s routing table, and then the third, …, until the very node is found, 

usually in the last row with valid entries. Therefore, routing table occupancy is closely 

related to the average number of lookup hops. In light of the estimation of the routing table 

occupancy, we can estimate the average number of lookup hops.  

Because of the large name space, nodes usually have very large routing tables. For example, 

a Tapestry node has a routing table with 40 rows and 16 columns. That is, there are 640 

entries per table. Furthermore, each entry usually contains multiple nodes. In Tapestry, 

each entry contains three nodes. Therefore, each routing table can contain up to a 

maximum of 1920 nodes. Keeping those nodes’ state up to date requires a large amount of 

maintenance cost. In actual network, the network size is much smaller than the name space, 

so many entries are empty. In this section we will discuss the relationship between network 

size and the fraction of valid entries. 

In our simulation, we use a relatively small name space, compared with those in Pastry and 



 
 

55 

Tapestry. As mentioned before, in our system each ID consists of six base-8 digits, which 

means our name space supports at most 256K nodes. In each routing table, either an 

intraAS table or an interAS table, the number of rows is equal to the number of digits for an 

ID, and the number of columns is equal to the base of each digit. Therefore, our routing 

table has 6 rows and 8 columns, for a total of 48 entries. It is a relatively small routing table. 

Because the name space is small, we can achieve high node density in the name space with 

a relatively small number of nodes. With the maximum network size of 4000 nodes in the 

following evaluation, we occupy 1.56% of the name space. With the minimum network 

size of 500 nodes in the following evaluation, we use 0.195% of the name space. 

Meanwhile, Pastry uses 128 bits, so its name space is 2128 nodes, and to the best of my 

knowledge, the biggest simulation size attempted now was 100K nodes [25]. Hence the 

occupancy is only about 2.94×10-34% of the name space. A Pastry P2P system will need 

5.3×1036 nodes to reach an occupancy rate of 1.5625%. It is easy to see that due to the 

sparsity in the name space, many routing table entries are empty, especially entries near the 

bottom rows.  

Table 5.2, Figure 5.2, and Figure 5.4 show an average occupancy of routing tables in a 

500-node P2P system. This is a small network. 500 nodes are randomly chosen from 

td40w100w. Figure 5.4 shows the node distribution in each AS. It is obvious that the 

number of nodes for an interAS routing table is more than that for an intraAS routing table, 

so the interAS routing table has more node candidates for its entries. Figure 5.2 (a) and (b) 

show the occupancy of each entry in the two routing tables, respectively. We can see that 

the corresponding occupancy for the interAS routing table is much higher than that for the 

intraAS routing table because of the difference in the number of nodes that feeds the two 

tables. Entries in the same row have similar occupancies because they have the same 

restriction on the prefix length of node IDs. Table 5.2 summarizes the average occupancy 

of each row, which shows the trend of occupancy between each row more clearly. Note that 

even the smallest occupancy, in the bottom row of the intraAS table, is 12.5%, which is 



 
 

56 

quite high considering the small number of nodes. Actually the reason for this is because a 

special empty entry is always counted in each row. The special entry is an entry that 

matches the owner’s ID in each row. Each row has one such special entry. For example, a 

node 023112 can be put into positions (0, 0), (1, 2), (2, 3), (3, 1), (4, 1), and (5, 2) in its 

routing table because its ID matches these positions. Our routing table has 8 columns, so it 

is guaranteed that the minimum occupancy is 12.5%, which means all entries in this row 

are empty except a special one. If the special entry is not counted, the maximum occupancy 

will be 87.5%, instead of 100%.  

Table 5.3, Figure 5.3, and Figure 5.5 show the routing table occupancy of a 4000-node P2P 

system. We can see that the first three rows in interAS routing tables are all full. But the last 

three rows of the intraAS routing tables and the last two rows of the interAS routing tables 

are almost empty. Not surprisingly, routing table occupancy of the 4000-node P2P system 

is much higher than that of the 500-node P2P system.  

The occupancy of routing tables can be estimated using the number of nodes and the ID 

structure. For example, in our system, each ID consists of six base-8 digits, and the 

maximum network size is 4000. An entry in the first row has the least restriction: only the 

first digit is fixed. Therefore, supposing that nodes are evenly distributed in the name space, 

there will be about 500 (4000/8) node candidates for each entry in the first row. (Here we 

count the intraAS and interAS routing tables together.) Similarly, each entry in the second 

row has about 62 (500/8) candidate nodes, each entry in the third row has about 8 (62/8) 

nodes, each entry in the fourth row has about 1 (8/8) node, and so on. When there are at 

least 8 candidate nodes for an entry, the entry has a good chance of finding a node to fill in 

(in an ideal case). This explains why the first three rows are all 100% filled (shown in 

Figure 5.3 (b)). But when there is only 1 candidate node, an entry may not be able to find a 

node to fill in either because nodes are not absolutely evenly distributed in the name space 

or because nodes only have partial knowledge of the whole region. This is why the fourth 

row is only about half occupied and the last two rows are almost empty. The following 



 
 

57 

formula shows how to calculate the sum of approximate occupancy of the intraAS table 

and the interAS table: 

Oi = N/ci+1/2 + 12.5% 

where Oi is the average occupancy for row i, c is the number of columns, and N is the total 

number of nodes. It is verified by Table 5.3. 

The number of lookup hops is approximately equal to the average number of valid routing 

rows. For example, the first three rows in Table 5.3 are full, the fourth row is half empty, 

and the last two rows are almost empty, so the average number of lookup hops for a 

4000-node P2P network will be about 3.5, according to Tables 5.1 and 5.2. This value is 

similar to the number of lookup hops in a 128-bit Pastry with 60,000 nodes [46]. Therefore, 

our small name space with 4000 nodes will not affect our simulation just because of an 

atypical number of lookup hops.  

5.3.3 Lookup Evaluation 

In this evaluation, we compare the lookup efficiencies of different schemes. As we 

mentioned before, there are four lookup schemes: a Raw scheme, a Latency-based scheme, 

an AS-based scheme, and a hybrid LatAS scheme. We test lookup latencies in P2P regions 

with different sizes under four topologies in the four schemes. Figure 5.6 to Figure 5.9 

show the lookup performances of the four topologies. 

5.3.3.1 Lookup Latency Evaluation 

Figure 5.6 (a), Figure 5.7 (a), Figure 5.8 (a), and Figure 5.9 (a) show the lookup latencies of 

four schemes on four topologies. The X-axis shows the P2P network size. The size 

increases from 500 nodes to 4000 nodes. Nodes are randomly chosen from underlying 

network topologies. The Y-axis shows the lookup latency in seconds. The most significant 

result is that there is not much difference in lookup latencies between Latency scheme and  



 
 

58  

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

012345

0

1

2

3

4

5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7

012345

0

1

2

3

4

5

 

  (a) intraAS        (b) interAS 
Figure 5.3: Routing Table Occupancy of a 4000-node AS-based P2P network.  
A network topology used here is td40w100w. There are 40 ASs, and each AS has 100 nodes. 
ASs are connected in Waxman method, and nodes within each AS are connected in this way too.  
(a) shows the occupancy of intraAS routing tables. (b) shows the occupancy of interAS routing 
tables. 
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7

012345

0

1

2

3

4

5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7

012345

0

1

2

3

4

5

 
  (a) intraAS        (b) interAS 
Figure 5.2: Routing Table Occupancy of a 500-node AS-based p2p network.  
A network topology used here is td40w100w. There are 40 ASs, and each AS has 100 nodes. 
ASs are connected in Waxman method, and nodes within each AS are connected in this way too.  
(a) shows the occupancy of intraAS routing tables. (b) shows the occupancy of interAS routing 
tables. 
 
 
 
 
 

columns 

rows 

columns 

rows 

columns 

rows 

columns 

rows 

a 
■ 
a 
a 
a 
■ 

a 
■ 
a 
a 
a 
■ 

Jf ffffff I 
11 1111111 ! 
jll l I I I I I I I /I 
I .... .... ... .... .... .... ..... ./ 

a 
■ 
□ 
□ 
a 
■ 

a 
■ 
a 
a 
a 
■ 



 
 

59  

Table 5.2:  
Average occupancy in Figure 5.2 
 
Row  intraAS interAS 
0 80.6% 100% 
1 28.5% 100% 
2 15.2% 67.2% 
3 12.8% 21.5% 
4 12.6% 13.4% 
5 12.5% 12.7% 

0 10 20 30 40
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

P
er

ce
nt

ag
e

AS Number

 

0 10 20 30 40
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
er

ce
nt

ag
e

AS Number

  

Figure 5.4: Node 
distribution in the 
500-node p2p system. 
 

Figure 5.5: Node 
distribution in the 
4000-node p2p 
system. Because the 
underlying topology 
contains 40 
100-node ASs, each 
AS must count for 
2.5%  
 

Table 5.3:  
Average occupancy in Figure 5.3 
 

Row intraAS interAS 
0 100% 100% 
1 81.0% 100% 
2 27.8% 100% 
3 14.7% 66.3% 
4 12.7% 22.2% 
5 12.5% 13.9% 

I I I I 

I I I I 



 
 

60 

AS scheme for all four topologies. Optimal is latency of direct communication between 

source and destination, which is represented by the length of the shortest path between 

source and destination. The Raw scheme performs  the worst in all four schemes. Its latency 

is about three times the Optimal latency, and increases with the size of P2P systems. The 

Latency, AS, and LatAS schemes achieve similar lookup latencies, which are about twice 

the Optimal latency. More accurately, the Latency scheme works a little better than the AS 

scheme in three topologies: td100w40g, td40w100g, and td40w100w. The AS scheme  

works better than the Latency scheme in td100w40w. From the results, we can see that the 

fine-grained, more-overheaded Latency scheme works almost no better than our 

coarse-grained, less-overheaded AS scheme. The hybrid LatAS scheme does not gain extra 

advantages from the combination of a latency-based intraAS routing table and an 

AS-hop-based interAS routing table. All the three schemes scale well with P2P network 

size, maintaining a constant average latency as long as new nodes come from the same 

network scope. As to topologies, td100w40g achieves the largest lookup latency, 

td40w100g the second largest, td100w40w the third, and td40w100w achieves the smallest 

lookup latency. This is due to two facts. First, latency between ASs is usually larger than 

latencies between two nodes that are directly interconnected in the same AS. Therefore, the 

more ASs a network has, the larger latency two nodes will probably have. Second, 

topologies with a power law model have larger latency than those with a Waxman model, 

because in a power law model of BRITE nodes are interconnected to form a tree in which 

there is only one path between any pair of nodes.  

5.3.3.2 Lookup Node Hops Evaluation 

Figure 5.6 (b), Figure 5.7 (b), Figure 5.8 (b), and Figure 5.9 (b) show the average number 

of node hops in a lookup. The X-axis shows the P2P network size. The Y-axis shows the 

average number of lookup hops. All the schemes perform similarly, with the number of 

lookup hops increasing from 3 to 4 gradually as network size increases from 500 nodes 

from 4000 nodes. The number of lookup hops is entirely determined by P2P logical 



 
 

61 

structure, and has nothing to do with either the way to choose an entry or the physical 

network topologies. This causes the similarity between all schemes. Ideally, each lookup 

should go through the number of digits to find out the destination, but because a P2P 

network size is usually very small compared with the name space, a lookup spends fewer 

hops in real life. 

5.3.3.3 Lookup AS Hops Evaluation 

Figure 5.6 (c), Figure 5.7 (c), Figure 5.8 (c), and Figure 5.9 (c) show the average number of 

AS hops in a lookup. The X-axis shows the P2P network size. The Y-axis shows the 

average number of lookup hops. The Optimal in the figure refers to the length of AS path 

between source and destination. Our AS scheme and the LatAS scheme achieve better 

results than the Latency scheme. The average number of AS hops in a lookup of the AS 

scheme and the LatAS scheme is less than twice the Optimal value. The Latency scheme is 

about 15%-30% worse than the AS scheme. The average number of AS hops for networks 

formed from td100w40g and td100w40w is about 6, and that of td40w100g and td40w100g 

is about 4, which is not surprising because the first two topologies contain more ASs than 

the other two.  

In a nutshell, the AS scheme achieves similar performances in lookup latency and lookup 

hops to the Latency scheme, but better performance on the number of AS hops. Therefore, 

we conclude that AS regions can provide coarse-grained information to improve P2P 

regions with less overhead and network traffic without performance degradation.  

5.3.4 Caching Evaluation 

Our caching scheme is aimed to reduce the number of cached nodes while maintaining 

comparable lookup performance. In this scheme, only the lookup results, i.e., IP addresses, 

are cached. We term it IP caching. The real data is not cached. In this simulation, each node 

is assigned a 1000-entry buffer. Each entry is a (ID range, IP) pair. ID range is the range of 



 
 

62 

ID covered in a node, and IP is the IP address of the node. A cache of 1000 entries requires 

about 12K bytes, which is a small storage. Figure 5.10 shows how different IP caching 

schemes work with caching as the number of queries increases. The underlying topology is 

td100w40g. There are four schemes. The Raw scheme here is the Raw scheme mentioned 

in the last section plus caching on all nodes in a lookup path. The Latency1  scheme here is 

the Latency scheme mentioned in the last section plus caching on all nodes in a lookup path, 

i.e. the classic caching scheme. The AS scheme here is the AS scheme mentioned in the last 

section plus caching only once in each AS in a lookup path. The Latency2  scheme here is 

the Latency scheme mentioned in the last section plus caching on the same percentage of 

nodes in a lookup path as that in the AS scheme. The LatAS scheme here is the LatAS  

scheme mentioned in the last section plus caching only once in each AS in a lookup path. 

The performance evaluation is done by calculating the average value of each metrics every 

1000 queries.  

Figure 5.10 (a) shows lookup latencies under different IP caching schemes. The X-axis 

shows the number of queries executed. Each query is randomly generated. The Y-axis 

shows the average lookup latency decreasing with the number of queries. Optimal is 

latency of direct communication between source and destination without caching. From 

the figure we can see that the Raw scheme benefits most from caching. After 16,000 

queries, latency in the Raw scheme decreases from about 100 seconds at the beginning to 

about 27.8 seconds, almost the same as the Optimal latency, and then enters a stable state in 

which latency does not decrease greatly. Meanwhile, latency in all the other schemes 

decreases much less quickly. The Latency1 scheme, the AS scheme, and the LatAS scheme 

achieve similar latencies to that of the Raw scheme after about 70,000 queries, and 

continue to decrease, while latency of the Raw scheme remains stable. The Latency2  

scheme performs the worst. Its latency is always about 20% more than that of the Latency1 , 

AS and LatAS schemes. After 100,000 queries, the Latency1, AS, and LatAS schemes 

achieve the smallest latencies, and that of the Raw scheme is a little larger than theirs, but 



 
 

63 

still smaller than the Optimal latency. The Latency2  scheme shows the largest latency. 

Compared with latency without caching, the Latency1 , AS, and LatAS  schemes have their 

latencies decreased by more than 50%, the Latency2 scheme by 40%, and the Raw scheme 

by more than 70%.   

Figure 5.10 (b) shows how the number of lookup hops decreases with caching. The X-axis 

shows the number of queries executed, and the Y-axis shows how the average number of 

lookup hops decreases with the number of queries. A significant phenomenon is that the 

number of lookup hops in the Raw scheme decreases from 3.75 to about 1 after 16,000 

queries. After 16,000 queries, the number of hops of the Raw scheme remains almost 

constant at 1 hop, which means that each node finds the IP address of a lookup ID by asking 

only one other node. On the other hand, the number of lookup hops for all the other 

schemes decreases slowly. After 16,000 queries, the number of hops of the AS, Latency1 , 

and LatAS  schemes decreases only from 3.75 to about 3.1, and that of Latency2  scheme 

from 3.75 to 3.4. Even after 100,000 queries, the number of hops of the first three schemes 

is still 2.3, decreased by 39%, and that for the Latency2 scheme is about 2.6, decreased by 

30% only.  

Figure 5.10 (c) shows how the number of AS hops in a lookup decreases with IP caching. 

The X-axis shows the number of queries executed, and the Y-axis shows how the average 

number of AS hops in a lookup decreases with the number of queries. Similar to Figure 

5.10 (b), the number of AS hops of the Raw scheme drops dramatically within the first 

16,000 queries, reducing from 12 AS hops to 3.2 AS hops. After almost the same number 

of queries, the AS hops for the AS scheme and the LatAS scheme drop from 5.6 to about 3.2 

hops too, but that for the Latency1 scheme drops from 6.7 to 4.5 only and that for the 

Latency2  scheme drops from 6.7 to 5.4 only. After 16,000 queries, the Raw value begins to 

decrease very slowly, almost constantly, a little below the Optimal value. The values of the 

AS and LatAS  schemes continue to decrease quickly, although not as fast as before. The 

Latency1  scheme and the Latency2 schemes behave similarly to the AS scheme and the 



 
 

64 

LatAS scheme. After 45,000 queries, Latency1  attains 3.2 AS hops, similar to the Optimal 

value, while the Latency2 value is about 4.3. After 100,000 queries, the AS scheme attains 

1.5 AS hops, the LatAS scheme 1.6 AS hops, the Latency1  scheme 2.4, the Raw scheme 3.1, 

and the Latency2 scheme 3.4, while the Optimal value is 3.2.  

Finally, Figure 5.10 (d) shows the percentage of nodes that have IP addresses cached in 

them. The Raw scheme and the Latency1 cache results on all nodes in a lookup path, so 

their caching percentage is constantly 1. From this figure, we can see that at the beginning, 

the AS scheme and the LatAS  scheme have about 65% (the Latency2  scheme is the same  

since we force it to have the same percentage of caching nodes). The percentage decreases 

smoothly with the number of queries executed. After 100,000 queries, the AS scheme goes 

down to 40% and the LatAS scheme goes down to 45%. On average the AS scheme caches 

about 50% of nodes in a lookup path. 

From the above results, we draw several conclusions. First, latency, the number of lookup 

hops, and the number of lookup AS hops decrease the fastest in the Raw scheme, which has 

randomly distributed routing table entries. This implies that in a stable P2P system, lookup 

optimization may not be crucial to the system performance because IP caching can greatly 

reduce lookup latency. Second, the AS-based scheme attains performance in terms of 

latency and lookup hops similar to the latency-based scheme, and better performance on 

AS hops. Third, the AS-based scheme requires only half the storage of latency-based 

scheme. If the latency-based scheme caches lookup results on the same percentage of 

nodes as AS-based scheme, its performance is worse (in our simulation, 20% worse). 

5.3.5 Replication Evaluation 

A main advantage of the AS scheme is that it provides topology information for 

applications to make decisions. Our static scheme, as described  in Chapter 4, distributes 

data replicas evenly in ASs. This scheme does not reduce lookup latency because it can not 

automatically route a lookup query to the best replica. Instead, a lookup procedure will 



 
 

65 

return a list of replicas to the source, and it is the source who decides which replica to 

access based on its own preferred criterion. We compare lookup latency between an AS 

scheme without replication (the Raw scheme in this figure), an AS scheme with replication, 

a LatAS scheme with replication, and a Latency scheme with replication. Figure 5.11 shows 

data access latency of the four schemes. In Figure 5.11 (a), lookup latency is reduced by 

about 32% in all the three schemes, from about 28 seconds to about 17 seconds. Figures (b), 

(c) and (d) are similar to (a). With 4 replicas, lookup latency is reduced by 39% in 

td100w40g, 41% in td100w40w, 41% in td40w100g, 40% in td40w100w, so the effect of 

replication is almost the same on different topologies. However, our efforts to achieve 

explicit control over replica placement is counteracted by our AS-hops-based node 

selection for interAS routing tables, because data are mostly replicated in nearby ASs in 

this way, instead of distributing evenly in the underlying networks.   

An improvement is to have each node maintain a node set which contains nodes in ASs 

with different numbers of AS hops, or just to maximize the number of different ASNs. 

Then we can use these nodes to replicate data. However, this improvement incurs 

additional maintenance cost.  

5.4 Summary 

From the simulation, we find that AS regions can improve P2P performance in several 

aspects. The coarse-grained information, including ASNs and AS hops, can help a P2P 

region to attain performance similar to schemes with fine-grained metrics. There are 

several advantages of using coarse-grained information. First, such information is stable 

and static, thus can be collected once and used many times later. Second, such information 

collection can be done in an aggregate way, thus reducing network traffic.  

In our simulation, node leaving and failures are not considered yet. Node leaving and 

failures worsen the performance. In the lookup, node failures lead to a longer lookup path. 

In the caching, node failures lead to outdated caching content, which requires 



 
 

66 

modifications of lookup protocols to deal with such cases. In any case, node failures incur 

additional maintenance cost. However, node failures will not fundamentally change our 

results.  

In the caching simulation, we only consider address caching, instead of data caching. Both 

address caching and data caching have a outdated problem in case of node failures and 

leaving, and data caching has a consistency problem if data are writeable. A solution is to 

compare version numbers between the cached data and the data in the original node. AS 

regions can reduce the overhead by maintaining only one data copy in each AS.  

The current replication scheme is static. A more sophisticated one is to consider the data 

query frequency, and convert cached data into permanent replicas when the query 

frequency of a cached copy reaches a predefined threshold.  

In a nutshell, there are still several aspects that we have not considered in the current 

evaluation. We plan to explore those schemes in the future.  



 
 

67 

0 1000 2000 3000 4000
0

10

20

30

40

50

60

70

80

90

100

110
td100w40g

A
ve

ra
ge

 L
oo

ku
p 

La
te

nc
y

Number of Nodes

 Optimal
 Raw
 AS
 Latency
 LatAS

0 1000 2000 3000 4000
0

1

2

3

4

td100w40g

A
ve

ra
ge

 L
oo

ku
p 

H
op

s

Number of Nodes

 Raw
 AS
 Latency
 LatAS

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1

2

3

4

5

6

7

8

9

10

11

12

13

td100w40g

A
ve

ra
ge

 L
oo

ku
p 

A
S

 H
op

s

Number of Nodes

 Optimal
 Raw
 AS
 Latency
 LatAS

 

(a) Average Lookup Latency 

(b)Average Lookup Node 
Hops 
 

(c) Average Lookup AS Hops 

Figure 5.6: Average Lookup Performance on Topology td100w40g 

[] -
-
-



 
 

68 

 

0 1000 2000 3000 4000
0

1

2

3

4

td100w40w

A
ve

ra
ge

 L
oo

ku
p 

H
op

s

Number of Nodes

 Raw
 AS
 Latency
 LatAS

0 1000 2000 3000 4000
0

1

2

3

4

5

6

7

8

9

10

11

12

13

td100w40w

A
ve

ra
ge

 L
oo

ku
p 

A
S

 H
op

s

Number of Nodes

 Optimal
 Raw
 AS
 Latency
 LatAS

0 1000 2000 3000 4000
0

10

20

30

40

50

60

70
td100w40w

A
ve

ra
ge

 L
oo

ku
p 

La
te

nc
y

Number of Nodes

 Optimal
 Raw
 AS
 Latency
 LatAS

  
    
 

(a) Average Lookup Latency 

(b)Average Lookup Node 
Hops 

(c) Average Lookup AS Hops 

Figure 5.7: Average Lookup Performance on Topology td100w40w 

[] -
-
-

--------------□ .. -/ -•-
-•--·--•-

[] -
-
-
-

-------------a----■ 



 
 

69 

 

 

 

0 1000 2000 3000 4000
0

10

20

30

40

50

60

70

80

90

100

110

td40w100g

A
ve

ra
ge

 L
oo

ku
p 

La
te

nc
y

Number of Nodes

 Optimal
 Raw
 AS
 Latency
 LatAS

0 1000 2000 3000 4000
0

1

2

3

4

td40w100g

A
ve

ra
ge

 L
oo

ku
p 

H
op

s

Number of Nodes

 Raw
 AS
 Latency
 LatAS

0 1000 2000 3000 4000
0

1

2

3

4

5

6

7

8

9

10
td40w100g

A
ve

ra
ge

 L
oo

ku
p 

A
S

 H
op

s

Number of Nodes

 Optimal
 Raw
 AS
 Latency
 LatAS

 

(a) Average Lookup Latency 

(b)Average Lookup Node 
Hops 
 

(c) Average Lookup AS Hops 

Figure 5.8: Average Lookup Performance on Topology td40w100g 
 

[] -
-
-
-

[] -
-
-

[] -
-
-
-



 
 

70 

0 1000 2000 3000 4000
0

1

2

3

4

td40w100w
A

ve
ra

ge
 L

oo
ku

p 
H

op
s

Number of Nodes

 Raw
 AS
 Latency
 LatAS

0 1000 2000 3000 4000
0

1

2

3

4

5

6

7

8

9

10
td40w100w

A
ve

ra
ge

 L
oo

ku
p 

A
S

 H
op

s

Number of Nodes

 Optimal
 Raw
 AS
 Latency
 LatAS

0 1000 2000 3000 4000
0

5

10

15

20

25

30

35

40

45

50

55

60

td40w100w

A
ve

ra
ge

 L
oo

ku
p 

La
te

nc
y

Number of Nodes

 Optimal
 Raw
 AS
 Latency
 LatAS

 

(a) Average Lookup Latency 

(b)Average Lookup Hops 
 

(c) Average Lookup AS Hops 

Figure 5.9: Average Lookup Performance on Topology td40w100w 
 

[] -
-
-

[] -
-
-
-

-----------

[] -
-
-
-

i --: 



 
 

71 

0 20000 40000 60000 80000 100000
0

10

20

30

40

50

60

70

80

90

100

110
td100w40g, 4000 nodes

Lo
ok

up
 L

at
en

cy

Number of Queries

 Optimal
 Raw
 Latency1
 AS
 Latency2
 LatAS

 
(a) Lookup Latency 

0 20000 40000 60000 80000 100000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

td100w40g, 4000 nodes

Lo
ok

up
 H

op
s

Number of Queries

 Raw
 Latency1
 AS
 Latency2
 LatAS

 

(b) Lookup Hops 
 

Figure 5.10: Caching performance 

' 

-•-
_,,_ 
-•-
-◄-

~--~-----------------------------



 
 

72 

0 20000 40000 60000 80000 100000
0

2

4

6

8

10

12 td100w40g, 4000 nodes
Lo

ok
up

 A
S

 H
op

s

Number of Queries

 Optimal
 Raw
 Latency1
 AS
 Latency2
 LatAS

 
(c) Lookup AS Hops 

0 20000 40000 60000 80000 100000
0.00

0.25

0.50

0.75

1.00

td100w40g, 4000 nodes

C
ac

he
 P

er
ce

nt
ag

e 
al

on
g 

lo
ok

up
 p

at
hs

Number of Queries

 RawLat1
 AS
 LatAS

 
(d) Caching Percentage 

 
Figure 5.10: Caching performance 

-·-



 
 

73 

 

 

 

0 1000 2000 3000 4000
15

20

25

100w40g, #Replica = 4

La
te

nc
y 

of
 N

ea
re

st
 R

ep
lic

a

Network Size

 Raw
 AS
 Latency
 LatAS

 
(a) td100w40g 

0 1000 2000 3000 4000

10

15

100w40w, #Replica = 4

La
te

nc
y 

of
 N

ea
re

st
 R

ep
lic

a

Network Size

 Raw
 AS
 Latency
 LatAS

 
(b) td100w40w 

 
Figure 5.11: Replication performance with 4 replicas. 

[] -
-
-



 
 

74 

0 1000 2000 3000 4000
15

20

25

30

40w100g, #Replica = 4

La
te

nc
y 

of
 N

ea
re

st
 R

ep
lic

a

Network Size

 Raw
 AS
 Latency
 LatAS

 

(c) td40w100g 

0 1000 2000 3000 4000

10

15

40w100w, #Replica = 4

La
te

nc
y 

of
 N

ea
re

st
 R

ep
lic

a

Network Size

 Raw
 AS
 Latency
 LatAS

 
(d) td40w100w 

Figure 5.11: Replication performance with 4 replicas. 



 
 

75 

 

 

Chapter 6  

Conclusions and Future Work 
 

6.1 Conclusions 

In this thesis, we have shown that applying the region concept can improve 

application-level services with less overhead than doing the optimizations at the 

application level as in latency-based schemes. We choose two instances of existing entities, 

peer-to-peer networks and Autonomous Systems, as distinct sorts of regions. Using 

information about Autonomous System regions, we design several schemes to improve 

peer-to-peer performance in the lookup, caching, and replication. By applying these ideas 

to the application-level network services, we not only explore the utility of having regions 

but also further refine the definition of regions. 

In terms of the Region Project more broadly, we learn several things from this work. First, 

we need new capabilities so that the upper-layer regions can easily learn about invariants of 

the underlying regions. The current Internet is largely shaped by commercial interests and 

Autonomous Systems information is not directly or easily accessible to researchers. 

Therefore, we realize that two features are crucial to regions. One the one hand, a region 

should be open and extensible to entities in itself so that not only current applications can 



 
 

76 

retrieve necessary information from the underlying regions, but also new applications can 

easily retrieve new information. On the other hand, cooperation between regions should be 

simple and scalable so that regions can provide global, stable, and coarse-grained 

information of the underlying regions to the upper-layer regions with less overhead.  

Second, we need a good paradigm for boundary crossing.  In our work, we use boundary 

crossing in the caching scheme directly and in the lookup and replication schemes 

indirectly. In all these schemes, boundary crossing is detected by comparing two ASNs in 

the application layer. Such method is not flexible and restricted in functionality, and not 

well integrated with the underlying AS regions. We believe that a good boundary crossing 

behavior should be simple, efficient, non-intrusive but accessible. 

6.2 Future Work 

Although our simulation has shown good performance, the real internet topology is much 

more complicated than our generated topologies. To evaluate our schemes more accurately 

and comprehensively, we can either do the simulation on topologies generated from real 

Internet data, or deploy a real system on the Internet. There are several issues related to the 

second method. One is that we need to modify the Internet infrastructure so that 

Autonomous Systems information is accessible to application-level services. The other 

issue is that although there are network testbeds like PlanetLab  and Emulab, would they 

improve the quality of the evaluation results? One the one hand, the requirement of a large 

number of nodes in a peer-to-peer system is hard to satisfy in a testbed. On the other hand, 

it is still questionable whether such a testbed is a really representative topology.  

We hope that we can answer the above questions in the future and further advance the 

research in the Region Project. 



 
 

77 

 

 

Bibliography 
 

[1] Karen Sollins. Regions: A new architectural capability in networking. White paper, 

August 2001. 

[2] P. V. Mockapetris. Domain Names – concepts and facilities, RFC 1034, Internet 

Engineering Task Force, November, 1987. 

[3] P. V. Mockapetris. Domain Names – implementation and specification, RFC 1035, 

Internet Engineering Task Force, November, 1987. 

[4] Object Management Group. The Common Object Request Broker: Architecture and 

Specification, Rev. 2.4.2, Doc. Num. 01-02-33, February, 2001. 

[5] Adjie-Winoto, W., Schwartz, E., Balakrishnan, H. and Lilley, J., The design and 

implementation of an intentional naming system, 17th ACM Symposion on Operating 

Systems Principles (SOSP ’99), Operating Systems Review, 34(5), December, 1999, pp. 

186-201. 

[6] Y. Rekhter, T. Li. A Border Gateway Protocol 4 (BGP-4). RFC 1654, Internet 

Engineering Task Force, July. 1994. 

[7] Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for 

Differentiated Service. RFC 2475, IETF, December 1998. 

[8] Microsoft Corp., Universal Plug and Play Device Architecture, Version 1.0, June, 2000. 

Available as http://www.upnp/org/download/UPnPDA10_20000613.htm. 



 
 

78 

[9] Sun Microsystems, Jini ™  Technology Core Platform Specification, v. 1.1, Sun 

Microsystems, October, 2000. Available through http://www.sun.com/jini/specs/. 

[10] Sun Microsystems, Rio Architecture Overview, White paper from Sun Microsystems, March, 2001. 

Available as http://www.sun.com/jini/whitepapers/rio_architecture_overview.pdf. 

[11] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for Introducing 

Disruptive Technology into the Internet. Appears in the Proceedings of ACM HotNets-I 

Workshop, Princeton, New Jersey, USA, October 2002. 

[12] http://www.caida.org/ 

[13] L. Gao. On Inferring Automonous System Relationships in the Internet. IEEE Global 

Internet, Nov 2000. 

[14] Emulab. http://www.emulab.net/ 

[15] L. Subrmanian, S. Agarwal, J. Rexford, and R. H. Katz, Characterizing the Internet 

Hierarchy from Multiple Vantage Points, To appear in INFOCOM 2002, June 2002. 

[16] SETI@HOME 2001. setiathome.ssl.berkeley.edu 

[17] DOOM. http://games.activision.com/games/doom/ 

[18] JXTA. http://www.jxta.org.  

[19] Napster. http://www.napster.com.  

[20] Gnutella website. http://gnutella.wego.com. 

[21] Ian Clarke, Oskar Sandberg, Brandon Wiley, Theodore W. Hong. Freenet: A distributed 

anonymous information storage and retrieval system. In Proceedings of the Workshop on 

Design Issues in Anonymity and Unobservability (Berkeley, California, June 2000).  

http://freenet.sourceforge.net. 



 
 

79 

[22] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan, 

Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications, ACM 

SIGCOMM 2001, San Deigo, CA, August 2001, pp. 149-160. 

[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable 

content-addressable network. In Proceedings of SIGCOMM'2001. 

[24] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-tolerant 

wide-area location and routing. Technical Report UCB/CSD-01-1141, Computer Science 

Division, University of California, Berkeley, 2001. 5. 

[25] A. Rowstron, P. Druschel. Pastry: Scalable, Decentralized Object Location and 

Routing for Large-Scale Peer-to-Peer Systems. 18th IFIP/ACM Conference on Distributed 

Systems Platforms, Heidelberg (D), Nov. 2001. 

[26] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-peer Information 

System Based on the XOR Metric . In Proceedings of the 1st International Workshop on 

Peer-to-Peer Systems (IPTPS'02), March 7-8, 2002, MIT. 

[27] Dalia Malkhi, Moni Naor and David Ratajczak, Viceroy: A Scalable and Dynamic 

Emulation of the Butterfly, Proc. PODC, 2002. 

[28] Zhichen Xu and Zheng Zhang. Building Low-maintenance Expressways for 

peer-to-peer Systems. HP Lab Palo Alto, Mar. 2002. 

[29] Sylvia Ratnasamy, Mark Handley, Richard Karp, Scott Shenker. Topologically-Aware 

Overlay Construction and Server Selection. In Proceedings of Infocom 2002, New York. 

[30] Ben Y. Zhao, Yitao Duan, Ling Huangl. Brocade: Landmark Routing on Overlay 

Networks. . In First International Workshop on Peer-to-Peer Systems (IPTPS) 2002, 

Cambridge, MA. 

[31] F. Dabek. A Cooperative File System. Master's thesis, Massachusetts Institute of 



 
 

80 

Technology, September 2001. 

[32] A. Rowstron and P. Druschel. Storage Management and Caching in PAST, a 

Large-Scale, Persistent Peer-toPeer Storage Utility. SOSP, Oct 2001. 

[33] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured 

peer-to-peer networks. In ICS'02, New York, USA, June 2002. 

[34] J. Kangasharju, J. Roberts, and K. Ross. Object Replication Strategies in Content 

Distribution Networks. In Proceedings of Web Caching and Content Distribution 

Workshop (WCW'01), Boston, MA, June 2001. 

[35] http://www.icann.org/ 

[36] http://www.iana.org/ 

[37] http://www.planet-lab.org/ 

[38] K. Obraczka and F. Silvia. Network Latency Metrics for Server Proximity. In 

Proceedings of the IEEE Globecom, November 2000.  

[39] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless interdomain routing (CIDR): An 

address assignment and aggregation strategy. RFC 1519, September 1993.  

[40] M. Waldvogel and R. Rinaldi. Efficient Topology-Aware Overlay Network. HorNets 

2002. 

[41] P. Radoslavov, R. Govindan, and D. Estrin. Topology-Informed Internet Replica 

Placement. In Proceedings of the Web Caching and Content Distribution Workshop 

(WCW'01), Boston, MA, June 2001. 

[42] Tina Tyan. A Case Study of Server Selection. Master's thesis, Massachusetts Institute 

of Technology, September 2001. 



 
 

81 

[43] K.C. Claffy and D. McRobb. Measurement and Visualization of Internet Connectivity 

and Performance. URL = http://www.caida.org/Tools/Skitter. 

[44] BRITE. http://cs-www.bu.edu/brite/ 

[45] B. Waxman. Routing of Multipoint Connections. IEEE J. Select. Areas Commun., 

December 1988. 

[46] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploiting network proximity in 

peer-to-peer overlay networks, 2002. Technical report MSR-TR-2002-82. 

 
 


