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Abstract

The ubiquitous SSH package has demonstrated the impor-
tance of secure remote login and execution. This paper
presents a new system, REX, designed to provide remote
login and execution in the context of the SFS secure dis-
tributed file system. REX departs from traditional remote
login design and is built around two main mechanisms—
file descriptor passing and a user agent process.

File descriptor passing allows REX to be split into sev-
eral smaller pieces; privileged code can run as its own pro-
cess to provide enhanced security guarantees. REX also
emulates secure file descriptor passing over network con-
nections, allowing users to build extensions to REX outside
of the core REX software.

REX uses and extends SFS’s agent mechanism to pro-
vide a transparent distributed computing environment to
users. The agent stores private keys, server nicknames,
and other per-user configuration state; REX makes the SFS
agent available to programs that it executes on remote ma-
chines.

We have an implementation of REX and demonstrate
that its flexibility does not come at the cost of performance.
Initial REX connections are comparable to those of SSH
in speed, while subsequent connections are much faster
because REX exploits the SFS agent to cache connection
state to avoid costly public-key operations.

1 Introduction

Remote login and execution are network utilities that many
people need for their day-to-day computing. The concept
of remote login is simple—local input is fed to a program
on a remote machine, and the program’s output is sent back
to the local terminal. In practice, however, modern remote
login tools have become quite complex. Users expect such
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features as TCP port and X Window System forwarding,
facilities for copying files back and forth, cryptographic
user authentication, transfer of user credentials across ma-
chines, integration with network file systems, server public
key management, pseudo-terminals and more. Many of
these features have special requirements, resulting in com-
plicated, extensible remote login protocols to which people
add new message types for new functionality.

This paper argues that the wide variety of features peo-
ple need from remote login can actually be implemented
through two simple abstractions—file descriptor passing
and an extensible, general-purposeuser agent. We have
built a new remote login system called REX, part of the
SFS [16] computing environment, based upon these two
ideas.

First, REX harnesses and extends Unix’s ability to pass
file descriptors between processes over Unix-domain sock-
ets. File descriptor passing facilitates privilege separa-
tion by allowing, for example, decomposition of the REX
server into two components: a small trusted program,rexd
(the core remote login server), and a slightly larger pro-
gram,proxy (a per-user daemon process), which only au-
thenticated users can spawn and communicate with. The
latest versions of OpenSSH [17] have begun to move in this
direction and have introduced local file descriptor passing
to aid in pseudo-terminal support.

REX also emulates secure file descriptor passing be-
tween processes running on different machines. Inter-
machine file descriptor passing allows functions that are
typically built into other remote execution tools, such as
port forwarding, to be cleanly implemented outside of
REX by a pair of entirely separate programs. One module,
running on the server, listens for connections to a particu-
lar port (or even a Unix domain socket) and “passes” the
accepted file descriptor through REX to another module,
running on the client, which connects it to a local port (or
Unix domain socket).

The second mechanism that REX uses to achieve its
goals is an extensible, general-purpose user agent. REX
uses the SFS agent, which, like the SSH agent, is a process
that runs on behalf of the user. The SFS agent, however,
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holds all of a user’s personal state (i.e., his “computing en-
vironment”) and not just his private keys. The SFS agent
can also store public keys of servers, nicknames of com-
monly used servers, and various trust policies. The agent
maintains all of a user’s state behind a simple Remote Pro-
cedure Call (RPC) interface, and thus can be “forwarded”
to other hosts, providing users an identical environment
wherever they log in. REX also allows selective signing
for situations in which the user does not trust all of the re-
mote machines he logs into with access to his agent.

We have implemented the REX remote execution facil-
ity, and the source code is freely available. REX only adds
800 lines of trusted code (not counting general-purpose
crypto and RPC libraries) and provides an architecture for
implementing extensions as separate programs. REX cur-
rently offers modules that handle pseudo-terminal support,
TCP port forwarding, X11 forwarding with cookie authen-
tication, and Unix domain socket forwarding. REX in-
teroperates with SFS and the SFS agent to provide a se-
cure, global computing environment. The remote execu-
tion tool is fast because REX caches connection state to
avoid repeatedly executing the public-key cryptographic
operations involved in authentication. REX has been bun-
dled with the SFS distribution since release 0.6. The REX
server is enabled by default in the current release of SFS.

This paper describes REX. Section2 provides a brief
introduction to SFS. Section3 details REX’s design and
implementation, and Section4 gives an evaluation of the
implementation in terms of code size and performance. Fi-
nally, we conclude the paper with some related work, pri-
marily regarding remote execution (Section5).

2 Background

The goal of the SFS project is to secure the network com-
munications comprising people’s day to day computing.
SFS consists of a network file system, the REX remote exe-
cution facility, a per-useragentprocess, and an authentica-
tion daemon. These components are illustrated in Figure1.

Building any secure distributed system raises a number
of questions: How do clients and servers communicate se-
curely? How does a client know it is talking to the intended
server and not an impostor? How are users authenticated
to servers? What happens when cryptographic keys are
compromised? In fact, no single set of answers is best for
every situation. Thus, SFS attempts to tease the questions
apart in such a way that people can select and recombine
the solutions most suitable to their needs.

At the lowest level, SFS provides secure client-server
communication through the abstraction ofself-certifying
hostnames. A self-certifying hostname contains the hash
of a server’s public key (like a PGP [33] fingerprint).
Given such a hash, an SFS client uses well-known cryp-
tographic techniques to establish a secure channel to the
server, encrypting and authenticating all messages to pro-

tect them from network eavesdropping and tampering at-
tacks. (See Mazières et al. [16] for details.)

Unfortunately, self-certifying hostnames are not human-
readable; most users will never want to see or type them.
Moreover, someone who accesses the wrong name may be
tricked into accessing a malicious server with an attacker’s
public key. Thus, the problem of ensuring users reach the
right server boils down to making sure they access the right
self-certifying hostname.

SFS provides several techniques for users to obtain self-
certifying hostnames. The simplest is through a password.
If, for example, a user typesrex myserverand REX does
not knowmyserver’s public key, REX will prompt the user
for a password, use this password to authenticate the server
to the client, and then securely download the server’s self-
certifying hostname. SFS employs SRP [30] for such pass-
word authentication.

One of the roles of the SFS agent is to manage these self-
certifying hostnames and minimize the number of times
users have to type passwords. Each user typically runs a
single agent on his local machine, responsible for all local
and remote REX invocations and file system accesses. In
the above example, after obtaining a self-certifying host-
name formyserver, REX informs the agent of the map-
ping from the human-readable namemyserverto the cor-
responding self-certifying hostname. Subsequent invoca-
tions of REX can simply retrieve this mapping from the
agent, so the user does not need to enter a password.

In addition to static mappings, the SFS agent allows
arbitrary externalcertification programsto map human-
readable names to self-certifying hostnames automatically.
Whenever a user executesrexor makes a file system access
to an unknown human-readable server name, the user’s
agent proceeds to execute its certification programs to de-
termine the appropriate self-certifying name. The SFS
agent contains a number of features for advanced users,
including perl-style regular expression filters on programs.
In practice, however, simple shell scripts make useful cer-
tification programs. For example, a 12-line shell script can
implement theknown_hosts mechanism built into SSH.

Another important function of SFS agents is to perform
user authentication, convincing servers of the local user’s
identity. In this respect, SFS agents are similar to SSH [32]
agents. The default user authentication mechanism uses
public-key cryptography. The agent stores a copy of the
user’s private key, which it uses to sign authentication re-
quests; the authentication server verifies the signature with
a stored copy of the user’s public key. The agent and au-
thentication server are extensible and can support other
authentication mechanisms such as shared key cryptog-
raphy. User authentication is opaque to the file system
and REX; changing the authentication mechanism only re-
quires modification of the agent and authentication server.

One particularly important authentication mechanism is
password authentication with SRP. As mentioned above,
SRP authenticates servers to users, but it also simultane-
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Figure 1: The major components of the SFS system.

ously authenticates users to servers. Thus, in the typical
case that a user types a password, the password is used
for mutual authentication and the user can immediately
log into the server. Often the password additionally lets
the user automatically decrypt his own private key, so that
subsequent user authentication to any server in the same
administrative realm can proceed without a password.

Finally, SFS agents handleserver revocation, for cases
when a server’s private key has been compromised. Two
mechanisms exist: the agent can maintain a list of revoca-
tion certificates which are self-signed by the compromised
server key and the agent can maintain a list of fine-grain
rules describing servers (self-certifying hostnames) that he
does not want to access. A more detailed description of
revocation is available in previous papers on SFS [14, 16].

3 Design and Implementation

The SFS and REX components communicate using Sun
RPC [24], and the SFS libraries provide a secure transport
for RPCs that travel over the network. Combined with file
descriptor passing, RPC allows REX to be split into several
small programs that can communicate in a clearly-defined
way.

An RPC compiler generates the stubs that the programs
use from a high-level specification. One can study the con-
cise RPC specification file to understand the protocol. Fur-
thermore, the RPC compiler’s automatic stub generation
avoids exploitable programmer errors, such as buffer over-
runs, that are common in message parsing code. Mazières
[15] describes the RPC library that REX uses in more de-
tail.

3.1 File descriptor passing

File descriptors are numerical handles which name an
opened file, socket, device, or other file-like resource.
Most I/O in Unix is performed by reading from and writ-
ing to file descriptors. Unix also provides a facility for file
descriptor passing—sending a file descriptor to a different
process—through thesendmsgand recvmsgsystem calls
on Unix domain sockets [19, 26].

REX uses local file descriptor passing between dae-
mons, particularly on the server. This mechanism provides

a simple and convenient way for a privileged program to
perform a task on behalf of an unprivileged one and return
the result to it in the form of a file descriptor. For exam-
ple, once a user has been authenticated, the privileged (i.e.,
“root”) REX server daemon,rexd, hands off the connection
to a separate daemon,proxy, running as the user. The priv-
ilegedptyddaemon allocates pseudo-terminals and passes
them to ttyd which runs with the privileges of a normal
user. These privileged programs are small and only per-
form a single task to allow easy auditing.

REX also introduces the emulation of file descriptor
passing between machines. This mechanism allows many
extensions such as port forwarding and pseudo-terminal
allocation to be implemented outside of the core system,
thereby increasing extensibility. For example, oncettyd
receives a pseudo-terminal fromptyd, it passes one end of
it to the REX client over the network (see Section3.4).

3.2 Sessions

Figure2 shows how REX establishes a new connection be-
tween a client machine (left) and a server (right); this con-
nection is known as a REXsession. Boxes with a gray
background are SFS components that REX uses. Boxes
with a white background are part of REX, and boxes with
a filled upper-right corner are components which run with
superuser privileges.

The rex client1 is responsible for establishing the initial
connection torexd (Step 1).2 First, the two processes set
up a secure connection between their respective hosts using
public-key cryptography (the details of setting up a secure
SFS RPC connection are given by Mazières et al. [16]).
Then, therex client authenticates its user torexdusing the
sfsagent. The agent signs an authentication request which
it passes to the server through the secure connection.Rexd
passes the authentication request tosfsauthd, which veri-

1This paper will use REX (capital letters) to refer to the remote exe-
cution facility as a whole andrex (emphasized lowercase) to refer to the
client program that the user invokes to start a REX session.

2Since the SFS file server, authentication server, andrexdall listen on
the same TCP port, connection setup by default also goes through ansfssd
“meta-server.”sfssddemultiplexes incoming connections and hands them
off to the appropriate daemon using file descriptor passing. It can also be
configured to proxy connections for other hosts, based on the server name
requested by the client. This feature is useful for allowing remote login
to multiple machines behind a NAT gateway with a single IP address.
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Figure 2: Setting up a REX session

fies the signature and identifies the user (maps the user’s
public key to a local account).

Once the initial connection has been established,rexd,
which runs with the privileges of the superuser, spawns a
new process calledproxy, which runs with the privileges
of the local user identified above (Step 2).Rexduses file
descriptor passing to hand the secure connection toproxy,
which then assumes responsibility for the REX session
(Step 3).

3.3 Channels

Within a REX session, the REX client can create one or
morechannels. Each channel provides a bidirectional data
stream abstraction between two processes calledmodules.
The REX channel allows these two modules to commu-
nicate as if they were running on the same machine with
their standard file descriptors connected. If the client mod-
ule sees data on a file descriptor, REX encapsulates that
data as an RPC and sends it toproxy. Proxy unpacks the
RPC and passes the data to the appropriate server module.
The server module then sees the data on its corresponding
file descriptor.

REX channels also support file descriptor passing for an
arbitrary number of file descriptors. The server module, for
example, can listen for network connections on a particular
port. Upon accepting a new connection, the server module
can pass that connection (i.e., the file descriptor which here
is a socket) over the REX channel to the client module. The
REX channel will proxy reads and writes to and from each
end of this “remote socket pair.”

The client creates channels with a special RPC which
contains the name of the server module to run.Proxy re-
ceives the RPC and spawns the specified program. The
client can then spawn a local module for the REX channel
to connect up to the server module.

REX channels are implemented as C++ classes inside of
therexclient. Therexchannel base class provides the basic
channel functions, but the programmer can extend those
functions to address more specific needs. A derived class
represents the client side of a module pair. For convenience
and efficiency, some of these derived REX channel classes
handle the client end of the channel directly (inside of the
rexclient program itself); others spawn a separate program
to serve as the client module.

One of the simplest channels in REX—derived fromrex-
channel—is called anexecchannel. Figure3 shows theex-
ecchannel setup. Here,proxylaunches a program specified
by the user (Step 4), and the REX channel connects that
program’s three standard file descriptors to therex client’s
standard file descriptors (Step 5). In this case, therexclient
itself (specifically, theexecchannel C++ class) acts as the
client module. Theexecchannel is analogous to SSH’s
ability to run a remote command without TTY support.

3.4 Using channels to support TTYs

REX provides pseudo-terminal support to interactive login
sessions withttychannel (see Figure4). This channel uses
file descriptor passing to offer TTY support to programs.
The rex client tellsproxy to launch a module calledttyd,
which takes as an argument the name of the actual program
that the user wants to run. Typically, for remote login, the
argument tottyd is the user’s shell.

Ttyd runs as the regular, unprivileged user who wants
a TTY. The program has two tasks. First, it obtains a
TTY from a separate daemon running on the server called
ptyd. Ptyd runs with superuser privileges and is respon-
sible only for allocating new TTYs and recording TTY
usage in the systemutmp file. The two processes,ttyd
andptyd, communicate via RPC. Whenptyd receives a re-
quest for a TTY, it uses file descriptor passing to return
both the master and slave sides of the TTY.Ttyd con-
nects toptyd with suidconnect—SFS’s authenticated
IPC mechanism (described further in Section3.6). This
mechanismletsptydsecurely track and record which users
own which TTYs.3 After receiving the TTY file descrip-
tors, ttyd keeps its connection open toptyd. Thus, when
ttyd exits,ptyd detects the event with an end-of-file.Ptyd
then revokes (with therevokesystem call) any TTYs be-
longing to the terminatedttyd, cleans up device ownership
andutmp entries, and recycles the TTYs.

Once ttyd receives a newly allocated TTY, its second
task is to spawn the program given as its argument (e.g.,
the user’s shell). It connects the slave side of the TTY to
that program’s standard file descriptors. Then,ttyd sends

3Unlike traditional remote login daemons,ptyd, with its single
system-wide daemon architecture, could easily defend against TTY-
exhaustion attacks by malicious users. Currently, however, this feature
is not implemented.
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the file descriptor of the TTY’s master side back to therex
client via thettychannel. On the client machine,rex con-
nects the TTY’s master file descriptor to the local termi-
nal’s file descriptor (e.g., thexterm that therex client is
running in).

The ttychannel, rex, andttyd also implement terminal
device behavior that cannot be expressed through the Unix
domain socket abstraction. For example, typically when
a user resizes anxterm, the application on the slave side
of the pseudo-terminal receives aSIGWINCHsignal and
reads the new window size with theioctl system call.

In REX, when a user resizes anxtermon the client ma-
chine, the program running on the remote machine needs
to be notified. Therex client catches theSIGWINCHsig-
nal, reads the new terminal dimensions through anioctl,
and sends the new window size over thettychannel using
file descriptor 0. Upon receiving the window resize mes-
sage,ttyd updates the server side pseudo-terminal through
an ioctl.

3.5 Using channels to support arbitrary pro-
grams

REX has a generic channel interface that allows users to
connect two modules from therex client command-line
without adding any additional code. Thebinmodulechan-
nel connects the standard file descriptors of the server mod-
ule program to a user-specified client module program.
Unlike the two channels described above, therex client it-
self does not act as the client module. Thebinmodulechan-
nel allows REX users to easily build extensions such as
TCP port forwarding and even SSH agent forwarding.

TCP port forwarding. Port forwarding essentially
copies a port on one machine to another (see Figure5).
Connectionsto this copy are no different from direct con-
nections to the original port. For example, a person might

want to forward connections to port 8888 on a remote ma-
chineover a secure REX channel to his local Web server
listening on port 80. REX provides these functions through
binmodulechannel and three short, new programs:listen,
moduledand connect. Therex client invocation is sim-
ply rex -m ’moduled connect localhost:80’
’listen 8888’ host.

The listenmodule runs on the server and waits for con-
nections to port 8888; upon receiving a connection,lis-
ten passes the accepted file descriptor over thebinmod-
ulechannel. Themoduledmodule on the client is a wrap-
per program that reads a file descriptor from its standard
input and spawnsconnectwith the received file descriptor
asconnect’s standard input and output.Connectconnects
to port 80 on the local machine and copies data between
its standard input/output and the port. A client connecting
to port 8888 on the server machine will effectively be con-
nected to the Web server listening on port 80 of the client
machine.

SSH agent forwarding. REX’s file descriptor pass-
ing applies to Unix domain sockets as well as TCP sock-
ets. One useful example is forwarding an SSH agent dur-
ing a remote login session. A user does not need built-
in support for such an extension but can add it usingbin-
modulechannel. The rex client command syntax is simi-
lar to the port forwarding example:rex -m "moduled
connect $SSH_AUTH_SOCK" "listen -u /tmp/
ssh-agent-sock" host. 4 Here, the “-u” flag to the
listenmodule tells it to wait for connections on a Unix do-
main socket calledssh-agent-sock. Upon receiving a
connection from one of the SSH programs (e.g.,ssh, scp,
or ssh-add) listen passes the connection’s file descrip-
tor to the client. Themoduled/connectcombination con-
nects the file descriptor to the Unix domain socket named

4In practice, one would normally hide this socket in a protected direc-
tory.
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Figure 5: Setting up abinmodulechannel to forward a TCP port for Web proxying

by the environment variableSSH_AUTH_SOCKwhich is
where the real SSH agent is listening. In the remote login
session on the server, the user setsSSH_AUTH_SOCKto
be /tmp/ssh-agent-sock. When an SSH program
makes a request of the SSH agent, the request is forwarded
through the REX channel to the real agent running on the
client machine. We have written a shell-script wrapper that
hides these details of setting up SSH agent forwarding.

3.6 Using channels to forward the SFS agent

When first starting up, thesfsagentprogram connects to
the local file system daemon to register itself using au-
thenticated IPC. SFS’s mechanism for authenticated, intra-
machine IPC makes use of a 120-line setgid program,
suidconnect.Suidconnectconnects to a protected, named
Unix-domain socket, sends the user’s credentials to the
listening process, and then passes the connection back to
the invoking program. Thoughsuidconnectpredates REX,
REX’s file descriptor passing was sufficient to implement
SFS agent forwarding with no extra code on the server.
Simply runningsuidconnectthrough REX causes the nec-
essary file descriptor to be passed back over the network to
the agent on a different machine.

Once thesfsagentis available on the remote machine,
the user can access it using RPC. All of the user’s configu-
ration is stored in one place; requests are always forwarded
back to the agent, so the user does not see different behav-
ior on different machines. Because REX uses the same
agent as SFS, users see the same file systems during re-
mote login. SSH differs from this architecture in that an
SSH user’s environment might depend on the contents of
his .ssh directory on the remote machine.

3.7 Connection caching

REX provides fast remote execution through connection
caching. The initial REX connection to a remote machine
is set up using public-key cryptography. Once this connec-
tion is established, REX uses symmetric cryptography to
secure communication over the untrusted network. Sub-
sequent REX connections to the same machine can bypass

the public-key phase and immediately begin encrypting the
connectionusing symmetric cryptography.

For an interactive remote terminal session, the extra time
required for the public-key cryptography might go unno-
ticed, but for batched remote execution that might involve
tens or even hundreds of logins, the computation is observ-
able. Connection caching offers an added benefit; if the
user’s agent was forwarded, that forwarding can remain in
place even after the user logs out, allowing him to leave
programs running that require use of the hissfsagent. A
utility sfskeylets the user list and manage open connec-
tions.

REX eliminates the public-key operations on subsequent
logins by caching the connection. Thesfsagentand rexd
keep track of the connection on the client and server ma-
chines, respectively.Rex,sfsagent,rexd, andproxypartic-
ipate in the protocol described below to negotiate a new
session key for each new REX connection to that server.

Figure 6 shows how REX sets up a new cached con-
nection. Instead of connecting directly torexd, therex
client asks thesfsagentto connect on its behalf. The agent
uses public-key cryptography to establish a secure, authen-
ticated connection torexd. Rexdspawnsproxy as before
and passes off the connection to it. Thesfsagentmain-
tains a connection toproxyto preventproxyfrom exiting—
normallyproxywill exit once all of the client connections
have terminated. With connection caching,proxy remains
running until the user explicitly terminates his REX ses-
sion (using thesfskeycommand) or kills hissfsagent.

Once an initial connection has been established to a
server, therex client can make subsequent secure connec-
tions to that server as follows (see Figure7). First, rex
contacts thesfsagentand requests theMasterSessionKey
and a newSequenceNumberfor the connection (Step 1).
The MasterSessionKeywas established using public-key
cryptography during the initial connection made by thesf-
sagent. TheSequenceNumberis unique for each REX ses-
sion (connection).

The rex client uses theMasterSessionKeyand theSe-
quenceNumberto compute the values listed in Figure8.
SessionKey is the symmetric key that therex client uses to
encrypt its connection toproxy; it is computed as a SHA-1
hash [4] of theMasterSessionKey and theSequenceNum-
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ber. TheSequenceNumberprevents an adversary from re-
playing old REX sessions. The hash also makes it infeasi-
ble to derive differentSessionKeyvalues from each other.
The SessionIDis a hash of theSessionKey, and theMas-
terSessionIDis a hash of theSessionIDwhere theSequen-
ceNumberis 0.

Once therex client computes these values, it makes an
insecure connection torexd (Step 2). It sendsrexd theSe-
quenceNumber, the MasterSessionID, and theSessionID.
Session IDs can safely be sent over an unencrypted connec-
tion because adversaries cannot derive session keys from
them. Rexd looks up the appropriate cached connection
based on theMasterSessionID. Then,rexd computes the
SessionKeyand theSessionIDfor the new REX session
based on theSequenceNumberthat it just received and the
MasterSessionKeythat it knows from the initial connection
by thesfsagent. Rexdverifies that the newly computedSes-
sionIDmatches the one received from therexclient. If they
match,rexdpasses the connection toproxyalong with the
newSessionKey(Step 3). Finally,rexandproxyboth begin
securing (encryption and message authentication code) the
connection (Step 4).

After rex and proxy establish a secure REX session,
the rex client can create a new REX channel as described
above (Steps 5 and 6).Proxy (and possibly alsorex) will
spawn the appropriate modules which can now communi-
cate securely over the network. Subsequent connections
proceed in the same way, allowing REX to rapidly execute
processes on the server.

3.8 Agent forwarding and connection
caching

REX caches connections in thesfsagentbased solely on the
identity of the remote machine. When REX forwards the
sfsagent, these cached connections become available even
in the remote login session. The user can issue therex
command from any machine that has access to his agent
and benefit from the centrally located cache.

For example, if a user logs in from machineA (running
the agent) toB, and then fromB to C, REX forwards his
agent toB and toC. This sequence of logins produces two
cached connections: “toB” and “to C,” both of which are
stored in thesfsagenton A. Then, even though the user
has never previously logged in fromA to C directly, he can
do so securelywithout using public-key cryptography be-
cause the his local agent on machineA and therexdon ma-
chineC already share aMasterSessionKey. This technique
provides a more efficient implementation, particularly for
users that frequently move between a set of machines.

3.9 Selective signing

One particularly difficult issue with remote login is the
problem of accurately reflecting users’ trust in the various
machines they log into. For example, a user may use local

machineA to log into remote machineB, and then login
from that session onB back toA. Many utilities support
credential forwarding to allow password-free login fromB
back toA—but what if the user doesn’t trust machineB as
much as machineA? For this reason, other systems often
disable credential forwarding by default, but the result of
that is even worse. Users logging fromB back intoA will
simply type their passwords. This is both less convenient
and less secure, as an untrusted machineB will now not
only be able to log intoA, it will learn the user’s password!

To address this dilemma, REX and thesfsagentsupport
selective signing. During remote login, REX remembers
the machines to which it has forwarded the agent. In the
remote login session, when the user accesses an SFS file
system, for example, hissfsagentwill print out the name of
the machine originating the authentication request and the
machine to which the user is trying to authenticate. The
user’s agent knows about all active REX sessions and for-
warded agent connections, so the remote machine cannot
lie about its own identity. Moreover, signed authentica-
tion requests contain the name and public key of the server
being accessed, as well as the particular service being ac-
cessed (e.g., REX or file system). Thus, the agent always
knows exactly what it is authorizing.

With this information, the user can choose whether or
not to sign the request. Thus, users can decide case-by-case
whether to let their agents sign requests from a particular
machine, depending on the degree to which they trust that
machine. The modularity of the agent architecture even
allows users to plug-in arbitrary programs to ask their per-
mission. Some users might want a GUI dialog box to pop
up while others might simply prefer to respond to a text
prompt. More advanced users can even register programs
that automatically respond yes or no for certain groups of
hosts.

4 Evaluation

First, this section quantifies REX’s modular implementa-
tion in terms of code size. Second, we compare the perfor-
mance of REX with the OpenSSH [17] implementation of
SSH protocol version 2 [31]. The measurements demon-
strate that the modularity gained from file descriptor pass-
ing comes at little or no computational cost.

4.1 Code size

REX has a simple and modular design. Its wire protocol
specification is only 200 lines of Sun XDR code. REX
has two component programs that run with enhanced priv-
ileges.Rexdreceives incoming REX connections and adds
only 400 lines of trusted code to a system (not counting
the general-purpose RPC and crypto libraries from the SFS
toolkit [15]). Ptydallocates pseudo-terminals to users that
have successfully authenticated and is also 400 lines of
code.
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Proxy, which runs with the privileges of the authenti-
cated users is just over 700 lines of code and therex client
is 1,900 lines. Extensions to thesfsagentfor connection
caching constitute 600 lines of code.

Modules that extend REX’s functions are also small.
The listen, moduled, andconnectmodules which handle,
among other things, TCP port forwarding and X11 for-
warding are approximately 275, 50, and 400 lines of code,
respectively.Ttyd is under 200 lines.

If REX were to gain a sizeable user base, we could ex-
pect the code size to grow because of demands for features
and interoperability. The code growth, however, would
take place in untrusted pieces such asproxyor new exter-
nal modules. Because of the modularity, well-defined in-
terfaces, and the use of file descriptor passing, the trusted
components will remain small and manageable.

4.2 Performance

We measured the performance of REX and OpenSSH
3.0.2p1 [17] on two 1.3 Ghz Athlon machines running De-
bian Linux 3.0. A 100 Mbit, switched Ethernet with a
63 µsec round-trip time connected the client and server.
Each machine had a 100 Mbit Tulip Ethernet card. The
server had 512 Mbytes of memory. The client had
896 Mbytes of memory.

We configured both REX and SSH to use equivalently-
sized cryptographic keys. For authentication and forward
secrecy, SFS uses the Rabin-Williams cryptosystem [28]
with 1,024-bit keys. SSH uses RSA [21] with 1,024-bit
keys for authentication and Diffie-Hellman [3] with 768-
bit ephemeral keys for forward secrecy.

We configured SSH and SFS to use the ARC4 [8] cipher
for confidentiality. For integrity, SFS uses a SHA-1-based
message authentication code while SSH uses HMAC-
SHA-1 [4, 11].

4.2.1 Remote login

We compare the performance of establishing a remote lo-
gin using REX and SSH. We expect both SSH and REX to
perform similarly, except that REX should have a lower la-
tency for subsequent logins because of connection caching.

Protocol Latency
SSH 0.25 sec
REX (initial connection) 0.20 sec
REX (subsequent connection)0.04 sec

Table 1: Latency of SSH and REX logins

Table1 reports the average latency of 100 remote logins
in wall clock time. In each connection, we remotely log in
and are then immediately logged out. We set the shell of
the user to/bin/true . The user’s home directory is on
a local file system. For both REX and SSH we disable all
port forwarding.

The SSH measurements varied between 0.24 sec and
0.27 sec. The REX measurements varied between 0.19 sec
and 0.26 sec. The REX measurements with caching varied
between 0.04 sec and 0.05 sec.

The results demonstrate that an initial REX login per-
forms slightly faster than an SSH login. In both cases,
most of the cost is attributable to the computational cost
of modular exponentiations. The initial connection in
REX requires two concurrent 1,024-bit Rabin-Williams
decryptions—one on the client and one on the server—
followed by a 1,024-bit Rabin-Williams signature on the
client. (All three operations are Chinese remaindered.) An
SSH login performs one 768-bit Diffie-Hellman key ex-
change and two 1,024-bit RSA decryptions. REX’s op-
erations are less computationally expensive than SSH’s,
and thus, as expected, initial REX connections are slightly
faster. Cached REX connections require no public key
cryptography, and therefore take only 0.04 sec. If SSH
were to implement connection caching, presumably it
would also be able to achieve low subsequent connect la-
tencies.

4.2.2 Port forwarding throughput

Both SSH and REX can forward ports and X11 connec-
tions. To demonstrate that REX performs just as well as
SSH, we measure the throughput of a forwarded TCP port
with NetPipe [23]. NetPipe streams data using a variety of
block sizes to find peak throughput.

Protocol Throughput Latency
TCP 89.7 Mbit/sec 63 µsec
SSH 54.0 Mbit/sec 154µsec
REX 58.5 Mbit/sec 262µsec

Table 2: Throughput and round-trip latency of TCP port
forwarding

We first measure the throughput of an ordinary, inse-
cure TCP connection. Table2 shows that the maximum
TCP throughput is 89.7 Mbit/sec. Next, we measure the
throughput of a forwarded port over an established SSH
and REX connection. Table2 shows that REX has a
slightly better throughput than SSH.

We attribute the additional latency of ports forwarded
with REX to three RPCs necessary to pass a file descriptor
before port forwarding can begin. While latency of ports
forwarded with REX is greater than with SSH, the sub-
millisecond latency of REX is still very small in absolute
terms. Round-trip latency to a well-placed machine on the
Internet is an order of magnitude greater than the latency
of a port forwarded with REX. Thus, the extra security
and flexibility gained from modularization of file descrip-
tor passing do not come at significant cost.

[In the final version of this paper, we intend to show why
the latency does not have a noticeable effect on end-to-end
measurements such as rsync over SSH versus rsync over
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REX. We expect applications such as rsync, which last
much longer than the network round-trip times involved,
to overshadow this latency. For interactive applications,
users would not notice sub-millisecond delays.]

5 Related Work

Several tools exist for secure remote login. This section fo-
cuses primarily on the remote login protocol SSH. We also
describe other remote execution implementations. This
section concludes with a discussion of user agents and con-
nection caching.

5.1 SSH

SSH [32] is the de-facto standard for secure remote exe-
cution and login. SSH is decentralized—one only needs
local superuser privileges to run the SSH server daemon.
One does not need to obtain server certificates or otherwise
register with any sort of realm administrator before a per-
son can connect to the SSH server. SSH also offers several
modes of user authentication. For example, it has optional
support for Kerberos [25], allowing users password-free
login to servers plus ticket and AFS [7] token forwarding.

SSH was the main inspiration for REX, as we needed
an SSH-like tool that could work with SFS. Although we
could have extended SSH for this purpose, we built REX
from scratch for two reasons. First, as typically config-
ured, SSH servers read files in users’ home directories dur-
ing user authentication (e.g.,authorized_keys ). This
policy is incompatible with our goal of integrating remote
login with a secure file system, as the server would gen-
erally not have permission to read users’ files before those
users are authenticated.

The second benefit of building REX from scratch is that
by designing a new protocol we could exploit file descrip-
tor passing to simplify the implementation. The REX sys-
tem is split into separate programs that communicate using
RPC and file descriptor passing. Most of the programs that
make up REX have fewer than 1,000 lines of code (not
counting the general-purpose crypto and RPC libraries we
use). Many of the functions built into SSH are instead pro-
vided by small external utilities with REX. We could not
have taken this approach had we needed to maintain com-
patibility with SSH.

OpenSSH [17], a popular implementation of the SSH
protocol, has recently embraced privilege separation to re-
duce the number of places where programming errors can
cause catastrophic security vulnerabilities [20]. By reduc-
ing the amount of trusted code, a programming error is
less likely to yield escalated privileges (e.g., root) to an
attacker. Privilege separation builds upon the principle of
least privilege, which states that a program should enjoy
the least privilege necessary to complete its task [22].

We believe that many of the ideas in REX are applicable
to SSH and other remote login tools, and hope that SSH

and REX will increasingly resemble each other. For ex-
ample, as part of the privilege separation code in the latest
version of OpenSSH, the OpenSSH server internally uses
file descriptor passing to handle pseudo-terminals. Even
though file descriptor passing is part of the source code, it
is not part of the protocol. Generalizing the idea cleanly,
though, so that file descriptor passing could be used in
other places, would require modification to the SSH pro-
tocol, which we hope people will consider for future revi-
sions.

The main difference between REX and SSH is the use of
file descriptor passing to provide privilege separation and
to extend the program’s functions. REX also provides con-
nection caching to improve performance, selective signing
to help users who use machines is several administrative
domains, and SRP to allow users to both retrieve their pri-
vate key from the authentication server and to authenticate
the host to which they are connecting. SRP sidesteps the
need to deal to potential man-in-the-middle attacks.

5.2 Kerberos

Kerberos [25] is a centralized authentication system which
comes with remote login and execution utilities. It pro-
vides a unified way of naming, authenticating, and autho-
rizing principals. In Kerberos, however, users must be or-
ganized into realms. Joining an existing realm (i.e., set-
ting up a server) requires permission from and coordination
with that realm’s administrator. In part because Kerberos is
based on shared-secret cryptography, creating a new realm
is not a simple task and still requires administrative per-
mission to inter-operate with existing realms.

Kerberized remote login is based on this centralized ar-
chitecture and must use a trusted third party (the KDC) for
mutual client and server authentication. While REX and
SFS support third-party authentication, it is not required.
Clients and servers can authenticate each other in whatever
manner is desired.

The AFS [7] file system uses Kerberos to authenticate
users. The Kerberos remote login tools forward AFS to-
kens and authenticate users to the file system before log-
ging in the user. REX and the SFS agent provide similar
support for the SFS file system.

The GSS-API is a generic interface for client-server au-
thentication [13]. Because REX was directly designed for
interoperability with SFS, the GSS-API was not necessary.
REX’s design does not preclude the use of GSS-API in the
future, however.

5.3 Secure rlogin

Before SSH, researchers explored other options for secure
remote login [10, 27]. Kim et al. [10] implemented a
securerlogin environment using a security layer beneath
TCP. The system defended against vulnerabilities cre-
ated by host name-based authentication and source address
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spoofing. Securerlogin used a modular approach to pro-
vide a flexible security policy. Like REX, securerlogin
used small, well-defined module interfaces. REX uses a
secure TCP-based RPC layer implemented by SFS; secure
rlogin used a secure network layer between TCP and IP,
similar to IPSec [9].

5.4 Agents

While REX is not the first remote execution tool to em-
ploy user agents, it makes far more extensive use of its
agent than other systems. SSH, for example, has agents
capable of authenticating users to servers. For other tasks
such as server authentication, however, it relies on con-
figuration files (e.g.,known_hosts ) in users’ home di-
rectories. When users have different home directories on
different machines, they see inconsistent behavior for the
same command, depending on where it is run. By contrast,
encapsulating all state behind an RPC agent interface al-
lows a user’s configuration to be propagated from machine
to machine by simply forwarding an RPC connection.

Another significant difference between the REX and
SSH agents is that the SSH agent returns authentication re-
quests that are not cryptographically bound to the identity
of the server to which they are authorizing access. As a re-
sult, a remote SSH client could lie to the local agent about
what server it is trying to log into. This design makes it
impossible to implement selective signing in SSH agents.

Recently, the security architecture for the Plan 9 system
has been redesigned [2]. The new Plan 9 architecture has
an agent,factotum, which is similar to an SSH and SFS
agent, but is implemented as a file server.

The Taos operating system [12, 29] and the Echo file
system [1] also have a notion of an authentication agent.
Unlike SFS, their agents refer to a component of the oper-
ating system rather than a user-controlled process.

5.5 File descriptor passing

We note that an alternative to file descriptor passing would
be file namespace passing, as is done in Plan 9 [18]. Plan
9’s CPU command can replicate parts of the file names-
pace of one machine on another. When combined with
device file systems like/dev/fd , this mechanism effec-
tively subsumes file descriptor passing. Moreover, because
so much of plan 9’s functionality (including the windowing
system) is implemented as a file system, CPU allows most
types of remote resource to be accessed transparently. Un-
fortunately, Unix device and file system semantics are not
amenable to such an approach, which is one of the reason
tools like SSH have developed so many different ad hoc
mechanisms for handling different types of resource.

5.6 Connection caching

The idea of session resumption is available in other sys-
tems such as SSL [5]. Fsh [6], a wrapper around SSH that
attempts to reuse its encrypted channel to execute subse-
quent commands, demonstrates the interest in such a fea-
ture.

6 Conclusions

REX provides secure remote login and execution in the
tradition of rsh and SSH. REX departs from the design
of its predecessors by applying and extending two existing
ideas—file descriptor passing and a user agent.

Local file descriptor passing enables privileged code
separation. The current REX implementation requires
roughly 800 lines of code run with superuser privileges.
REX’s ability to emulate file descriptor passing over the
network allows users to build new features outside of the
core software. Many of the extra functions that are part
of SSH are written as separate modules in REX. File de-
scriptor passing simplifies REX’s design and is a powerful
primitive for building a remote execution facility.

The SFS user agent allows REX to provide a consistent
computing environment across machines. REX makes this
“secure computing environment” available on other ma-
chines by forwarding the agent to remote login sessions.
Remote and local programs then have access to the same
private keys, server nicknames, etc.

The REX architecture provides a convenient, extensible
interface to the user and developer without compromising
security or efficiency. Rather, REX provides enhanced se-
curity by reducing the amount of privileged code. The in-
creased extensibility comes at no extra cost. REX is as ef-
ficient as existing tools and can even do better by caching
connection state.

The current REX implementation demonstrates that
REX is viable. We hope that the new ideas upon which
REX is built will find wider applicability in other appli-
cations. REX is available as part of the SFS distribution
(http://www.fs.net/ ).
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