
Inferring Congestion Sharing and Path Characteristics
from Packet Interarrival Times

Dina Katabi
LCS
MIT

dina@lcs.mit.edu

Charles Blake
LCS
MIT

cb@mit.edu

ABSTRACT
This paperpresentsnew non-intrusive measurementtechniquesto
detectsharingof upstreamcongestionanddiscoverbottleneckrouter
link speeds. Our techniquesare completelypassive and require
only arrival timesof packetsandflow identifiers.Our techniquefor
detectingsharedcongestionis baseduponthe observation thatan
aggregatedarrival tracefrom flows thatsharea bottleneckhasvery
differentstatisticsfrom thosethatdonotshareabottleneck.In par-
ticular theentropy of the inter-arrival timesis muchlower for ag-
gregatedtraffic sharingabottleneck.Additionally thispaperidenti-
fiesmodestructurein theinter-arrival distribution thatenablesdis-
covery of thelink bandwidthsof multiple upstreamrouters.

Wevalidatetheseideaswith extensiveexperimentsonawide-scale
Internettestbedandwith multiple ratecontrollingrouters.We find
thatthemethodcandetectany bottlenecksharingamonghundreds
of flows. The classificationerrorsdecreaseexponentially in the
numberof tracedpackets. Further, the methodcopeswell with
heavy cross-traffic andtheerrorsdecreaseexponentiallyasthefrac-
tion of crosstraffic at the bottleneckdecreases.Unlike prior pro-
posals,our techniquedoesnot inject any new probetraffic, does
not requireany sendercooperation,and works with any type of
traffic (UDP, TCP, or multicast),andawidevarietyof queuingdis-
ciplines.Themethodis simpleandfastenoughto bereal-timefor
ratesbeyond10,000packetspersecond.

1. INTRODUCTION
In this report,1 we show that thepassive collectionof packet inter-
arrival timescanreveal substantialinformationaboutthe conges-
tion statealongupstreampaths. We addresstwo particularprob-
lems: single-flow bottleneckcapacitiesandmulti-flow bottleneck
sharing.Thenecessarymeasurementscanbecollectedcompletely
at endpoints. The appealof endpointmeasurementsis that they
requireno additional infrastructureand are accessibleto a large
populationof users.

End-to-endmeasurementscanbeactiveor passive. Activemethods
inject new traffic (e.g.,probes)into thenetwork to inducea certain
response,which is thenusedto infer a performancemetric while
passive methodsobserve traffic alreadypresent.Despitetheir use-
fulness,active methodshave somedrawbacks.Probesincreasethe
load on thenetwork by someadditionaltraffic which couldbeon
theorderof hundredsof kilobytesperexperiment[4, 10, 30, 23].�
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Moreover, theactivetraffic mayperturbthenetwork, biastheensu-
ing results,andcomplicatetheanalysis[26]. Our work focuseson
deducingasmuchaspossiblefrom passive measurementsalone.

First,wedevisemethodsthatenableanendreceiver to discover the
capacitiesof potentially multiple bottleneckstraversedby a flow
andtheir traversalorderfrom thearrival timesof thepacketsin the
flow. In particular, weshow thatthedistributionof thepacket inter-
arrival timesin aflow showsafew commonpatterns,whichwean-
alyzeandrelateto thebottlenecksalongthepath.Our resultscon-
firm thatthecommonpracticesfor estimatingthebottleneckband-
width usingtheminimuminter-arrivalsof two consecutive packets
in a flow [4, 10, 30] or the global modein the distribution of its
packet inter-arrivals[23] canmake significanterrors.Nonetheless,
we show how to adjusttheuseof the inter-arrival PDFsothat the
minimumcapacityalongthepathstill canbeextracted.Sincethis
methodreliessolely on processingof network-level traceswhich
are easily producibleat any receiver, it provides a general,non-
intrusive, andresourceefficient approachto learningInternetpath
characteristics.

Second,we developa novel passive techniquethatexploits the in-
formationembeddedin packet inter-arrival distributionsto detect
flows thatsharethesamebottleneck.

Detectingsharedbottlenecksusingend-to-endmeasurementsisuse-
ful for sharingcongestioninformation [12, 18], constructingthe
topology [28], and monitoringand debugging the network. Per-
forming this detectionusinga passive approachis highly desirable
becauseit is resourceefficient (i.e., it doesnotgenerateprobetraf-
fic) andis extremelygeneral(i.e., it makesno assumptionsabout
thetransportprotocolsor thequeuingdiscipline).

Our approachrelieson theobservation thatby clocking(i.e., pac-
ing) thepackets,a bottleneckimposessomestructureon theprob-
ability distributionof theinter-arrival timesof packetsthattraverse
it. This structureis lost whenpackets that do not sharea bottle-
neckget mixed together. The lossof structureshows up asmore
randomnessin the inter-arrivals of the aggregate. Using entropy
asourmeasureof randomness(thelackof structure),we developa
passive techniquethatenablesanendreceiveror apassiveobserver
to detectflows thatsharebottlenecksby minimizing theRènyi en-
tropy of thepacket inter-arrivals.2

The papershows that the developedpassive techniquecandetect
any bottlenecksharingamonghundredsof flows and is efficient
andpracticalfor useover theInternet.In particular, usingtheRON

�
Rènyi entropy is a generalizedform of Shannonentropy. Theex-

actdefinitionis in Section3.2



testbed[5], we show that our bottleneckdetectionmethodgives
correct resultsin extensive Internetexperimentsrun between17
differentInternetsites.

Themethodrequiresarelatively smallnumbersof packetsperflow.
In all cases,we find thaterrorsdecreaseexponentiallyin thenum-
ber of packets. The exact numberof per-flow packetsvariesbe-
tween10and100packetsdependingonthenumberof bottlenecks,
classifiedflows,andthetypeof errorsthatmatter. TCPconnections
in theInternetareoftenshort-lived.However, dependingontheap-
plication, thesourcefor a “flow” maybedefinedasanaggregate.
For example,if the focusis wide-areacongestionanalysis,it may
beacceptableto defineasourceto betheentireLAN of thesender.

Further, the techniqueis robust in the presenceof heavy cross-
traffic, thoughmorepacketsmayberequired.Themethodcanbe
appliedin real-time.On a commodityPCour implementationcan
classifysampleswith thousandsof packetsin lessthanasecond.

Thestructureof this paperis asfollows. In Section2 we describe
thepropertiesof inter-arrival distributionsfor singleflows anddis-
cussthecongestionandbandwidthimplications. In Section3 we
exhibit the propertiesof multi-flow inter-arrival distributionsand
describeour bottleneckdetectionalgorithm. In Section4 we eval-
uatethis algorithmin realisticexperimentalenvironments.Section
5 discussespossiblefutureavenuesandSection6 concludes.

2. INTERARRIV AL TIME STATISTICS
In this section,we studythe time betweenarrivals of consecutive
packetsin a TCPflow andplot its probabilitydistribution function
(PDF). Our objective is to relatethe characteristicsof the inter-
arrival PDF to thecongestioncharacteristicsof the pathtraversed
by the flow. In particular, we show how to interpretthe PDF to
discover thecapacitiesof potentiallytwo traversedbottlenecks,to
discerntheir relative location,to assesstheir degreeof congestion,
andto probethedistributionof traffic burstsizes.

Beforeproceedingto analyzethePDFof thepacket inter-arrivals,
weclarify threeterms.Weuse“Minimum capacitylink” to referto
the link thathastheminimumabsolutecapacityalonga path. We
use“Bottleneck” for a link/routerwherea flow experiencessignif-
icantqueuing.A bottleneckis a congestedlink; it is not necessar-
ily theminimumcapacitylink alonga path.Finally, the“Nominal
TransmissionTime(NTT)” of alink is thetimeit takesto transmita
1500bytepacket over thelink. For example,thenominaltransmis-
siontimeof aT1 is around8 msec,while thenominaltransmission
timeof a10MbpsEthernetis 1.2msec.(SeeTable1 for areference
on theNTT of variouslink technologies.)

2.1 MeasurementMethodology
We conductedour measurementsover the RON testbed[5]. Ta-
ble1 providesacompletelist of theRON nodestheir locationsand
theiraccesslinks. Notetheheterogeneityin themeasurementenvi-
ronment,which waschosento reflecttheheterogeneityof Internet
paths. Five machinesare locatedat US universities,threeareat
Europeanor AsianUniversities,threearebroadbandhomeInternet
hostsconnectedby Cableor DSL, oneis locatedat a US ISP and
five areat variousUS corporations.The lengthof the measured
pathsis between11 and30 hopsandtheminimumcapacityalong
a pathvariesbetween0.384Mbpsand100Mbps.

Each experimentinvolved a 5 minute TCP download from one

Name Description AccessLink BW NTT
MS Residence,CA DSL 0.384 31
Sightpath .COM in MA T1 1.544 8
Mazu .COM in MA T1 1.544 8
NC Residence,NC CableModem 2 31
M1MA Residence,MA CableModem 10 1.2
Aros ISPin UT FractionalT3 12 1.0
CCI .COM in UT Ethernet 100 .12
PDI .COM in CA Ethernet 3..100 N/A
CMU Pittsburg, PA Ethernet 10 1.2
Cornell Ithaca,NY Ethernet 100 .12
MIT Cambridge,MA Ethernet 100 .12
NYU Manhattan,NY Ethernet 100 .12
ACIRI ACIRI, CA Ethernet 10 1.2
Utah U. of Utah,SLC Ethernet 100 .12
NL Vrije U,Holland Ethernet 100 .12
Lulea Sweden Ethernet 100 .12
Korea Korea Ethernet 100 .12

Table1: The RON testbed.Bandwidths are in Mbps. NTTs are
in msec.The top block areordinary Inter net hosts.The bottom
block have additional Inter net2 connectivity.

RON nodeto another.3 TheRON machinesrun FreeBSD4.4 and
theTCPstackusesanMTU of 1500bytes.Thereceiver rantcp-
dump [2] to log microsecondprecisionarrival timesof thepackets
at the Ethernetcard. We computedthe time differencebetween
successive arrivals andhistogrammedthemto plot thePDFof the
packet inter-arrival in theflow. We repeatedtheseexperimentsto
coverperiodsof congestion(e.g.,peakhoursonweekdays)andpe-
riods of low traffic (e.g.,weekends). In all, we conductedover a
hundredexperimentsover severalmonths.

Below we presenta summaryresultof our findings.Theappendix
presentsmoregraphsthatshow thepersistenceof ourfindingsover
various Internetpathsthat differ in their link technologies,path
length,andwhetherthe endnodesareat universitiesor corpora-
tions.

2.2 PDFof PacketInter -Arri val in aTCP Flow
A few commonpatternsappearin the inter-arrival PDFsfor TCP
flows. Thesepatternsareillustratedin Figure1. In particular, note
themultiple spikesof variousheights,widths,locations,andspac-
ings.ThePDFmightshow asinglespikesuchasFigure1a,aspike
bumpsuchasFigure1b,a spike train suchasFigure1c,or a train
of spike bumpssuchasFigure1d. The roughlyequalspacingbe-
tweenthe spikesin a spike train andor a spike bump is the spike
gap. The roughly equalspacingbetweenthe bumpsin a train of
spike bumpsandis thebumpgap. In thefollowing subsections,we
show how to interpretthesePDFpatternsin termsof thecongestion
characteristicsalongthepaththepacketstook.

Below, weinterpretthepatternsin Figure1 andshow how aproper
understandingof the PDF allows one to discover bottlenecklink
bandwidthsfor multiple congestedrouters.

Single Spike: In this case,theflow traversesa bottleneckwith no
substantialcrosstraffic. As such,mostof thepacketsarrive back-
to-backat the receiver. The spike in the PDF correspondsto the�
While our experimentsuseTCP, thesemethodsonly rely upon

large,relatively constantsizepacket transmissions.
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(b)  Inter-arrival (msec) { 0.008 msec bins }
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(d)  Inter-arrival (msec) { 0.008 msec bins }

Mazu -> MIT

Figure 1: Common patterns in the PDF of inter-arrival times
in a single TCP flow. (a): a single spike; (b): a spike bump; (c):
a spike train; (d): a train of spike bumps.

NTT of the bottleneck. This situation is depicted in Figure 1a where
the bottleneck is a T1.

Spike Bump: In this case, the flow traverses a low bandwidth bot-
tleneck followed by a high bandwidth bottleneck. The two bot-
tlenecks might be separated by a number of uncongested hops.
We will show that the spike bump is centered at the NTT of the
low bandwidth upstream bottleneck. Further, the gap between the
spikes is the NTT of the high bandwidth downstream bottleneck.
Thus, a spike bump carries information about two traversed bottle-
necks.

We explain the spike bump using the example in Figure 1b. In this
experiment the flow traverses a a T1 bottleneck (the access link
at Sightpath), then a lightly congested 12 Mbps fractional T3 (the
access link at Aros). The packets leave the upstream bottleneck
spaced by its NTT (or some integer multiple of the NTT). In the
experiment in Figure 1b, most of the packets left the upstream T1
with an inter-arrival of 8 msec. When any of these packets hits
the congested downstream high bandwidth bottleneck, the packet
is queued.

There are then 8 msec until our next packet arrives at the down-
stream bottleneck. During this interval a number of cross traffic
packets arrives and is queued before our packet. After 8 msec, our
second packet arrives at the higher bandwidth queue. Thus, the
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(b) Intervening Burst Size (bytes)

Figure 2: (a): The cumulative distribution of packet sizes for
cross traffic at a congested OC3 link. (b): The probability dis-
tribution of cross traffic burst sizes for the same trace above.
Notice the spikes at multiples of 1500 bytes.

burst of cross traffic between any pair of packets in the traced flow
depends on the number of cross traffic packets arriving in 8 msec
at the downstream bottleneck. When all these bytes are transmitted
on the output link, our packets have now been re-spaced. The time
between the arrival of a pair of packets from the traced flow at the
receiver is the time taken to transmit the first packet in the traced
pair and the potential cross traffic burst at the downstream bottle-
neck. Depending on the size of the cross traffic burst, this time is
sometimes larger than 8 msec and sometimes smaller. That is why
the PDF shows a bump centered at 8 msec.

Next, we consider why the bump is composed of equally spaced
spikes. Close inspection of many collected PDFs (see the appendix
for more) reveals that the spikes are always separated by the NTT
of the high bandwidth bottleneck. Thus, the most common case
was always for a cross traffic burst at the downstream bottleneck to
be a multiple of 1500 bytes. This is somewhat surprising. Though
the traced TCP download used a 1500 byte MTU, the cross traf-
fic packets have various sizes and reflect the variability of packet
sizes in the Internet. (The appendix shows similar graphs in which
the downstream bottlenecks are the access links at big universities
where the cross traffic is fairly representative of cross traffic in the
Internet.) It therefore seems possible that though cross traffic has
various packet sizes, the most common cross traffic bursts are mul-
tiple of 1500 bytes.

To confirm that this is not a peculiarity of the RON sites, we studied
the distribution of the cross traffic burst size from traces collected
by NLANR [1] at various monitored links.4 Since we are inter-
ested in bursts of cross traffic at a bottleneck, we chose traces in
which the average traffic rate exceeds two thirds of the capacity of�
Trace file is from October 2001 and contains over 60,000 flows.

It is at http://pma.nlanr.net/Traces/Traces/daily/20011005/COS-
1002219707-1.tsh.gz
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themonitoredlink. Figure2a,shows thepacket sizeaccumulative
distribution for a typical trace.Thedistribution lookssimilar to the
onereportedby CAIDA [11]. In particular, it shows thatover 50%
of thepacketsarearound40bytes;10%of thepacketsareabout �
560bytes;and20%of thepacketsarearound1500bytes.

Figure 2b shows the crosstraffic burst distribution for the same
trace.To computetheburstsize,we randomlypickeda TCPflow
andrecordedthesizeof all traffic separatingeachpair of its pack-
ets. This is thereforepreciselythe traffic which, if subsequently
sentthrougha bottlenecklink, would beclockedandconvertedto
inter-arrival times. We repeatedthe procedureover a large num-
berof active TCPflows andplottedthePDFof theresultingcross
traffic bursts. The PDF revealsthe existenceof a strongmodeat
40 bytesandstrongmodesat integermultiplesof 1500bytes.The
first modeat40byteswouldmakethetracedpacketslook asif they
arrivedback-to-back.Theothermodeswould createinter-arrivals
spacedby oneand2 NTTs.5

Spike Train: This caseis similar to the singlespike caseexcept
that the traversedbottleneckis sharedwith a substantialamount
of crosstraffic. Consequently, it becomesmorelikely thata burst
of crosstraffic intervenesbetweenany pair of the tracedpackets.
Similarly to thespike bumpcase,thegapbetweenthespikesis the
NTT of thebottleneck,asillustratedin Figure2c. Notethoughthat
a spike train neednot alwayshave a decreasingspike length. In a
few of ourexperimentsit wasmorecommonfor thetracedpackets
to beseparatedby apacket of crosstraffic thanto beback-to-back.

A Train of Bumps: In this casetheflow first traversesa low band-
width upstreambottlenecksharedwith asubstantialamountof cross
traffic. As a resultthepacket inter-arrival at theoutputof this bot-
tleneckis a decreasingspike train asin Figure1b. Later, theflow
traversesalightly congestedhighbandwidthbottleneck.Thequeu-
ing at this latterbottlenecktransformseveryspike in thespike train
into a spike bumpcreatinga train of bumps.Thegapbetweenthe
spikesin a singlebumpis a theNTT of thehigh bandwidthdown-
streambottleneck,while thegapbetweenthebumpsis theNTT of
thelow bandwidthupstreambottleneck.For example,in Figure3d,
theupstreamcongestedlink is a T1 andthedown streamlink is a
12 Mbps fractionalT3. Packetsleave thecongestedT1 spacedby
multiplesof 8 msec,(i.e., thecrosstraffic burstsizeis either0 bytes
or 1500bytesor 3000bytes).However, whenthey reachthedown-
streamlink eachspike is transformedinto a spike bumpwith agap
of 1 msec(theNTT of a 12Mbpslink).

2.3 Capacity Inference
The Internetliteratureproposesa few approachesto discovering
theminimum capacityalonga path. The mostcommonapproach
is to usethe minimum inter-arrival of back-to-backpackets [10,
21, 4, 27]. Otherproposalssuggestthemostcommoninter-arrival
(i.e., the global modein the distribution of packet inter-arrivals).
[23]. Below, weshow thatbothapproachesmaygivewrongresults
even in situationswherethe bottleneckbandwidthcan be easily
determinedfrom a simpleexaminationof theinter-arrival PDF.

Figure 3 (Mazu � Aros) shows the inter-arrival PDF of a flow
�
A Spike bumpneednot besymmetric;Figure11 in theappendix

shows a non-symmetricspike bump. The non symmetrythereis
causedby severe congestionandhigh multiplexing at the down-
streamhigh bandwidthbottleneck. Hence,it wasmore likely to
spreada pair of tracedpacketsthanto squeezethem.
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Figure 3: The NTT of the minimum capacity link is the gap
betweenthe bumps. It shows the link is a T1. Inferring the
minimum capacitylink fr omtheminimum inter-arri val time or
the global modeof the PDF would have yieldedwrong results.
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wherethe senderis behinda T1 and the receiver is behinda 12
Mbps fractionalT3. The minimum capacityalongthe pathis the
T1 link with anNTT of 8 msec.Howevertheminimuminter-arrival
is 1.7 msec.As such,a minimumcapacityestimatorbasedon us-
ing theminimuminter-arrival would mistakenly concludethat the
bottleneckbandwidthin 7 Mbps,muchmorethanaT1 bandwidth.

The samefigure shows the global modeof the inter-arrival PDF
doesnot leada goodestimatorof theminimumcapacityalongthe
path.In particular, theglobalmodein thistracehappensat16msec,
which would yield a 0.77Mbpsminimumcapacitylink. However,
onecanseefrom thePDFthat theminimumcapacitylink is a T1
with an NTT of 8 msec. The 16 msecis the result of many of
the tracedpacketsbeingseparatedby exactly one1500bytecross
traffic packet.

Thus,ouranalysisof thepastfew sectionsshowshow to strengthen
previously proposedtechniquesby computingthebumpandspike
gapsandrelatingthemto thetraversedbottlenecks.

3. DETECTING SHARED BOTTLENECKS
In theprevioussection,wehavedevelopedanunderstandingof the
statisticsof packet inter-arrivalsin theInternet.In this section,we
look at applyingthis understandingto multiple flows with thegoal



Figure 5: Packets inter-arrivals in various clusters of flows in Figure 4. The thick lines represent packets. They are numbered
according to the sender. The dotted lines emphasize the alignment in time. The x-axis is time. (a) and (b) are the outputs of 


and
 �

respectively, and the correct clusters. (c) is the packet inter-arrivals as seen by the observer, which corresponds to putting all
sources in the same cluster. (d) is an example of an incorrect cluster, namely� 	�� , 	���� .

of detecting bottleneck sharing. Particularly, we demonstrate that
a passive observer watching the arrivals of packets at some link
can use the information embedded in the packet inter-arrivals to
cluster the flows into groups such that all flows in one group share
a common bottleneck.

Before describing our approach to passive bottleneck detection,
we note that detecting shared bottlenecks is a clustering problem,
where the clustered objects are flows. A correct clustering groups
flows that share a bottleneck into the same cluster and produces
one cluster per bottleneck. An incorrect clustering fails to group
flows that share the bottleneck or groups flows that do not share
a bottleneck into the same cluster. We also note that for the pur-
pose of detecting bottleneck sharing, a“flow” is a stream of traced
IP packets with the same source identifier. The source identifier
is defined by the user to fit the application of interest. It is usu-
ally defined as the source IP-address in the packets, because traced
packets with the same sender share the upstream part of their path.
However, when NAT boxes [16] are suspected, the user may define
the source identifier to be the source IP-address and port pair.

Finally, we note that when a flow traverses more than one bottle-
neck, bottleneck sharing is resolved based on the most dominant
bottleneck along the path. For example, consider two flows that
have the same receiver. Each of these flows experiences severe
queuing at its sender access link. However, occasionally, both flows
share a transient queue at the receiver access link. In this case, the
flows do not share the same point of congestion and the clustering
technique should not group them together.

3.1 Basic Idea
We use the simple topology in Figure 4 to describe the intuition un-
derlying our approach to discriminating the sharing of a bottleneck.
In this scenario, four sources send to the same receiver.

	�

and

	��
are behind the same bottleneck 


, and their total sending rate is
larger than the capacity of 


.
	��

and
	��

share the bottleneck �
and their total rate exceeds its capacity. The passive observer is co-
located with the receiver. It receives packets from all four sources
on the same link yet wants to group together the sources that share
the same bottleneck.

Figure 5 shows the packets’ inter-arrivals at different points in our
simple topology. Figures 5a and 5b show the inter-arrival of packets
at the output of 


and  �
respectively. Furthermore, they repre-

sent the inter-arrivals of packets in the correct clusters (� 	�
 , 	����
and � 	�� , 	���� ). Figure 5c shows the packet inter-arrivals at the re-
ceiver. It is the overlay of the output of 


and  �
. Note that 5c

does not show the constant inter-arrival observed in 5a and 5b. If
the receiver succeeds in clustering the flows that share the bottle-
neck, it ends up with two clusters in which the packet inter-arrival
is constant. If the receiver mistakenly groups the flows

	��
and

	��
together, the resulting incorrect cluster� 	�� , 	���� exhibits more ran-
dom packet inter-arrivals as illustrated in 5d.

Thus, the inter-arrival of interleaved packets from flows that do not
share a bottleneck is more random than the inter-arrival of inter-
leaved packets from flows that do share a bottleneck. We can fur-
ther confirm this intuition via the following experiment. We use an
MIT machine to download simultaneously a file from both MS and
Sightpath. The resulting two TCP flows experience bottlenecks at
the source access links, namely a T1 and a 0.38 Mbps DSL (very
little bandwidth compared to the 100 Mbps Ethernet to which the
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w

e
see

that
the

inter-arrivalP
D

F
’s

for
incorrectly

clustered
flow

s
has

substan-
tially

m
ore

random
ness.

A
quantitative

m
easure

ofthis
random

ness
should

therefore
discrim

inate
betw

een
com

binations
offlow

s
shar-

ing
bottlenecks

and
com

binations
notsharing

bottlenecks.

3.2
G

eneralized
E

ntropy
W

e
startw

ith
the

definition
ofS

hannon
entropy,

a
traditionalm

ea-
sure

ofthe
uncertainty

(i.e.,random
ness)in

a
random

variable.
T

he
S

hannon
entropy �������

of
a

discrete
random

variable �
that

takes
on

the
value� �

w
ith

probability!"� is
defined

as:

��������#
� !��$&%(' �!�

(1)

In
[20],

the
authors

propose
m

inim
izing

the
S

hannon
entropy

as
a

m
eans

for
discrim

inating
betw

een
bottleneck

sharing
and

non-
sharing

flow
s.

T
hey

provide
sim

ulation
results

that
show

the
va-

lidity
ofthe

approach
in

environm
ents

w
ith

low
to

m
oderate

cross-
traffic.

W
e

found
this

m
easure

to
do

a
reasonably

good
job

ofdis-
crim

inating
shared

from
non-shared

flow
aggregations.

H
ow

ever,
the

spiky
nature

of
the

inter-arrivaldistributions
causes

problem
s.

E
ven

for
correct

flow
com

binations,
m

any
new

sm
all

probability
spikes

can
arise

in
the

P
D

F
as

it
sim

ply
fills

out
w

ith
m

ore
data

points
from

the
larger,

com
bined

trace.
T

he
S

hannon
entropy

can
increase

in
this

circum
stance,even

though
the

sm
allspikes

are
ata

place
thatm

akes
them

a
continuation

ofexisting
P

D
F

structure.

To
overcom

e
this

difficulty
w

e
propose

the
use

of
R

ènyi
entropy

[29],a
generalization

ofthe
S

hannon
entropy,defined

as:

)+*������#


-,/.$0%�' �

� ! *�
(2)

T
he

param
eter .

specifies
the

order
of

the
R

ènyi
entropy.

In
the

lim
itas .�



the

R
ènyientropy

converges
to

the
S

hannon
entropy

(i.e.,$0102 *43� )+*�����5#6�������).
R

ènyientropy
shares

m
any

proper-
ties

w
ith

S
hannon

entropy.
B

oth
entropies

achieve
their

m
axim

um
for

uniform
distributions.

N
either

depends
upon

the
value

w
here

the
probability

occurs.
A

lso,for
both

entropies,the
entropy

oftw
o

independent
subsets

of
a

data
set

is
the

sum
of

the
individualen-

tropies.

T
he

effectofthe
R

ènyientropy
is

to
w

eighthigh
probability

values
m

ore
than

the
problem

atic
low

probability
incidentalnoise

caused
by

sm
all

sam
ple

effects.
T

his
is

because
raising

probabilities
on

�87�9 
�
to

high
pow

ers
(i.e.,

large .)
spreads

them
out,

lifting
peaks

and
depressing

tiny
values.

O
n

the
other

hand,
one

should
not

choose
very

large .
since

then
only

the
peaks

w
ould

m
atter.

W
e

chose .
by

assessing
the

end-to-end
classification

perform
ance

for
a

few
experim

ents.
W

e
found

of .# �
and .#;

:
to

yield
good

results.

3.3
P

racticalIssues
T

he
sim

ple
scenarios

in
F

igure
4

and
F

igure
5

are
useful

for
ex-

plaining
the

intuition
underlying

passive
detection

ofshared
bottle-

necks
using

entropy
m

inim
ization,

but
they

do
not

reveal
the

full
com

plexity
of

the
problem

.
In

this
section,

w
e

discuss
the

various
com

plications
thatarise

in
practice.

N
onetheless

w
e

show
thatthe

m
ain

idea
stillholds;

nam
ely,

thata
bottleneck

im
poses

d
e

te
cta

b
le

structure
on

the
inter-arrivals

ofpackets
thattraverse

it.
T

his
struc-

ture
is

lostw
hen

the
packets

getm
ixed

w
ith

other
packets

thathave
notcrossed

the
sam

e
bottleneck.

A
num

ber
of

issues
could

potentially
confound

the
passive

detec-
tion

ofshared
bottlenecks

w
ith

entropy
m

etrics.
F

irst,m
any

effects
add

random
ness

to
the

P
D

F
of

the
inter-arrivals

in
a

correct
clus-

ter,
e.g.

the
dynam

ics
of

T
C

P
congestion

control.
F

or
exam

ple,
w

hen
a

relatively
sm

allnum
ber

of
T

C
P

s
share

a
D

rop-Tailbottle-
neck,

the
bottleneck

link
m

ight
cycle

betw
een

periods
of

severe
congestion

w
ith

large
num

ber
of

drops
follow

ed
by

periods
ofun-

derutilization.
D

uring
the

periods
of

underutilization,
packets

do
notleave

the
bottleneck

equally
spaced.

H
ow

ever,these
periods

of
underutilization

are
shortor

absentw
hen

the
num

ber
ofcom

peting
flow

s
is

large.
M

ore
im

portantly,
the

duration
of

such
periods

at
a

bottleneck
is

relatively
short

com
pared

to
the

duration
of

the
peri-

ods
during

w
hich

the
bottleneck

clocks
the

packets.
C

onsequently,
the

structure
im

posed
on

the
packet

arrivaltim
es

by
the

bottleneck
clocking

should
dom

inate
any

random
ness

introduced
by

T
C

P
dy-

nam
ics.

T
his

is
supported

by
our

em
piricalfindings.

A
second

reason
for

random
ness

in
the

inter-arrivalof
packets

in
a

correct
cluster

is
the

fact
that

routers
dow

nstream
from

a
bottle-

neck
m

ight
build

transient
queues

w
ithout

being
congested.

F
or

low
er

capacity
routers

w
ith

very
occasionalqueues

the
num

ber
of

packets
and

inter-arrivals
affected

is
sm

all(since
these

routers
are

by
definition

notthe
bottleneck).

F
orhighercapacity

routers,single
spike

structure
m

ay
be

transform
ed

into
a

spike
bum

p
(or

a
spike

train
m

ay
be

transform
ed

into
a

train
of

bum
ps),

but
the

overall
entropy

rem
ains

quite
low

com
pared

to
aggregations

ofunclocked
flow

s
(see

F
igure

6).

A
nother

issue
that

com
plicates

passive
detection

of
shared

bottle-
necks

is
that

m
ost

of
the

traffic
at

the
output

of
a

bottleneck
m

ay
end

up
being

unobserved
by

the
receiver.

F
orexam

ple,in
F

igure
4,

ifthe
packets

sentby 	�

do

notcross
the

link
m

onitored
by

the
ob-

server
then

the
correctclustering

is
��� 	����,� 	��<	����(�.

In
this

case,
though

the
cluster� 	����

does
notexhibita

constantinter-arrival,the

M 

M 



observer
is

likely
to

discover
the

correct
clustering.

In
particular,

although
=

the
cluster� 	����

has
high

entropy,
any

attem
ptto

put
	��

in
the

sam
e

cluster
w

ith 	��
or 	��

(or
to

put 	��
and 	��

in
different

clusters)is
likely

to
furtherincrease

the
entropy

ofthe
clustering.

In
general,cross-traffic

plays
the

role
ofnoise

on
the

signalofinterest.
A

s
m

ore
of

the
output

traffic
at

bottlenecks
becom

es
cross-traffic,

the
inform

ation
em

bedded
in

the
inter-arrivalP

D
F

becom
es

m
ore

im
m

ersed
in

noise.
In

S
ection

4.2,w
e

investigate
the

robustness
of

the
algorithm

againstheavy
cross-traffic.

A
nother

potentialobstacle
com

es
from

the
factthatpackets

do
not

have
the

sam
e

length;consequently,the
tim

e
to

transm
itone

packet
over

the
bottleneck

is
notconstant.

In
practice,this

is
notan

issue.
To

see
w

hy,
recallthat

the
distribution

of
packets

inter-arrivals
in

the
single

T
C

P
flow

s
of

S
ection

2
show

ed
a

considerable
am

ount
of

structure
despite

the
fact

that
cross-traffic

packets
have

various
sizes.

3.4
Iterative

P
assive

Technique
for

D
etecting

S
hared

B
ottlenecks

To
develop

a
clustering

technique
based

on
entropy-m

inim
ization,

tw
o

design
issues

m
ustbe

resolved.

T
he

first
issue

is
choosing

the
function

that
should

be
m

inim
ized.

E
quation

2
show

s
how

to
com

pute
the

R
ènyientropy

of
the

inter-
arrivals

of
packets

in
a

cluster.
H

ow
ever,

it
does

not
indicate

how
to

com
bine

the
entropies

ofthe
various

clusters
into

a
quantity

that
w

e
can

m
inim

ize.
W

e
call

the
quantity

w
e

w
ant

to
m

inim
ize

the
‘costfunction’,w

hich
w

e
define

as
follow

s:

>@?�ACB#
DEGF �(H E ) *��! E�

(3)

w
hereH E

is
the

num
ber

of
packets

in
cluster

I, )+*
is

the
R

ènyi
entropy

of ! E
of

the
inter-arrivals

of
the

aggregate
flow

s
in
I,

and
J

is
the

num
ber

ofclusters.

W
eighting

the
entropy

by
the

num
ber

of
packets

in
the

cluster
is

im
portantbecause

itprevents
the

clustering
technique

from
reduc-

ing
the

cost
by

collapsing
all

of
the

flow
s

into
the

sam
e

cluster.
F

or
exam

ple,
there

m
ight

be
tw

o
correct

clusters
each

having
an

entropy
of

2
bits.

T
he

entropy
resulting

from
com

bing
all

flow
s

together
could

be
3

bits.
A

lthough,this
latter

entropy
is

larger
than

the
entropy

of
any

of
the

correct
clusters,

w
ithout

the
w

eighting
factor

the
algorithm

can
reduce

the
entropy

by
putting

allthe
flow

s
in

the
sam

e
cluster,

w
hich

w
ould

produce
an

incorrect
outcom

e.
In

general,
a

statistical
understanding

of
the

packet-w
eighting

of
entropy

in
a

global
cost

derives
from

the
subsam

ple
additivity

of
both

S
hannon

and
R

ènyientropy.
T

hatis,the
entropy

oftw
o

inde-
pendentsubsets

ofa
data

setis
the

sum
ofthe

individualentropies.
T

hus
the

entropy
ofa

w
hole

aggregated
sam

ple
ofpackets

is
sim

ply
the

entropy
of

the
parent

distribution
m

ultiplied
by

the
num

ber
of

packets.
T

his
notion

also
m

akes
itm

eaningfulto
sum

the
entropies

ofeach
clusterto

define
the

totalentropy
ofthe

entire
arrangem

ent.

T
he

second
issue

is
the

com
putationalcom

plexity
ofthe

optim
iza-

tion
problem

.
T

he
search

space
is

exponential
in

the
num

ber
of

flow
s.

In
particular,

there
are >LK�M�>ONw

ays
to

group P
flow

s
into

>
clusters

[15].
W

hen
the

num
ber

of
bottlenecks

is
unknow

n
the

search
space

is
even

larger.
A

brute
force

search
is

infeasible
for

all
buta

sm
allnum

ber
offlow

s
and

sim
ple

candidate
topologies.

T
he

optim
ization

surface
is

also
quite

rough.
E

.g,
changing

the
clus-

ter
of

a
flow

ofH
packets

can
change

up
to �H

inter-arrivaltim
es

in
both

its
old

and
new

clusters.
S

im
pler

distance-based
clustering

problem
s

are
already

N
P

-com
plete

com
plexity

[17,7].

To
reduce

the
com

putationalcom
plexity,w

e
use

an
iterative

proce-
dure

w
hich

starts
w

ith
an

initialrandom
clustering

and
iterates

by
m

oving
a

source
from

one
clusterto

another
to

obtain
an

increm
en-

talreduction
in

the
R

ènyientropy.
D

espite
thatthis

technique
is

not
guaranteed

to
find

the
globalm

inim
um

,our
em

piricalresults
show

thatitalm
ostalw

ays
yields

the
correctclustering,w

hich
is

after
all

the
end

goal.

T
he

optim
ization

strategy
is

as
follow

s:
1.

S
tartw

ith
each

flow
in

a
cluster

by
itself.

2.
P

ick
a

source 	�
in

round-robin
fashion.

3.
T

ry
m

oving 	�
from

its
cluster

to
every

other
cluster.

4.
A

cceptthe
m

ove
thatm

ostreduces
the

totalcost.
5.

R
epeatfrom

step
2

as
long

as
progress

can
be

m
ade.

F
inally,a

few
im

portantpoints
are

w
orth

noting.
F

irst,our
cluster-

ing
technique

is
designed

so
that

the
errors

decrease
as

the
num

-
ber

of
flow

s
increases.

In
particular,

it
is

conceptually
possible

to
cluster

the
flow

s
that

share
the

sam
e

bottleneck
based

on
som

e
sim

ilarity
m

etric
defined

over
a

pair
ofsources’inter-arrivalP

D
F

s.
H

ow
ever,

clustering
based

on
sim

ilarity
w

ould
cause

the
errors

to
accum

ulate
as

the
num

ber
of

flow
s

increases.
In

contrast,
since

our
algorithm

com
putes

the
entropy

of
entire

clusters
(rather

than
flow

s),the
m

ore
sources

there
are

the
m

ore
packets

w
e

getand
the

easier
itis

to
identify

the
structure

resulting
from

bottleneck
clock-

ing.
H

aving
the

error
decreases

w
ith

the
num

ber
offlow

s
is

an
im

-
portant

feature
given

that
the

com
plexity

of
the

problem
increases

w
ith

the
num

ber
of

flow
s.

F
urtherm

ore,
clustering

based
on

sim
-

ilarity
m

ay
not

distinguish
betw

een
tw

o
different

bottlenecks
that

have
the

sam
e

bandw
idth.

F
or

exam
ple,

It
m

ay
not

differentiate
betw

een
tw

o
flow

s
that

share
the

sam
e

T
1

link
and

tw
o

flow
s

that
cross

differentT
1

links.

A
second

advantage
of

the
entropy-based

technique
is

its
gener-

ality.
In

particular,
the

approach
does

not
m

ake
any

assum
ptions

about
the

bandw
idth

of
the

bottlenecks
nor

about
their

queuing
disciplines.

It
w

orks
w

hen
the

different
bottlenecks

have
exactly

the
sam

e
capacities.

It
also

w
orks

w
ith

D
rop-Tail,R

E
D

,and
other

w
ork-conserving

queue
disciplines.

4.
C

LU
S

T
E

R
IN

G
E

VA
LU

A
T

IO
N

W
e

used
extensive

Internetm
easurem

ents
to

evaluate
the

effective-
ness

of
the

passive
techniques

in
detecting

flow
s

that
crossed

the
sam

e
bottleneck.

A
lthough

sim
ulation-based

evaluation
is

an
op-

tion
it

does
not

reflect
the

variability
encountered

in
the

Internet.
B

y
evaluating

the
technique

in
the

environm
entitis

m
eantto

w
ork

in,w
e

ensure
thatitw

orks
w

ith
the

differentlink
technologies,real

cross
traffic

patterns,existing
router

policies,and
various

T
C

P
im

-
plem

entations.

4.1
M

easurem
entM

ethodology
T

he
basic

problem
in

evaluating
any

bottleneck
sharing

detection
technique

on
realInternet

traces
is

to
verify

that
the

output
of

the
algorithm

m
atches

bottleneck
sharing

in
the

netw
ork.

In
particular,

w
e

m
ustdesign

experim
ents

in
w

hich
w

e
are

confidentaboutw
hich

flow
s

share
bottlenecks.

W
e

address
this

problem
w

ith
tw

o
different

approaches
thatcreate

three
classes

ofsharing
topologies.

In
the

firstapproach,
w

e
exploitour

know
ledge

ofthe
topology

of

M 



theRON network to ensurethat theflows sharecongestionat spe-
cific bottlenecks.In particular, we know the capacitiesof access
links connectingcertainRON nodesto the Internet.Thus,we can
createexperimentsin whichthesendersareconnectedto 100Mbps
Ethernetsandthereceiver is behindaT1 link. By inspectingaggre-
gatethroughputachievedby senderswecanverify thattheflowsall
facedcongestionat theT1 link connectingthe receiver site to the
broaderInternet.

Similarly, we cancreateexperimentsin which eachof thesenders
is behindalow bandwidthlink suchasaT1, aDSL, or acablemo-
dem,while the receiver is connectedto a 100 Mbps Ethernetand
locatedata big universitywith goodconnectivity. By checkingthe
throughputof eachsenderagainstthecapacityof its accesslink, we
canensurethateachsenderhasfacedcongestionlocally. We can
furtherconfirmlocaloutboundcongestionby checkingthattheag-
gregatethroughputof thesendersis significantlylessthanthetyp-
ical bandwidthshareavailableon the receiver accesslinks. Thus,
ourknowledgeof thetopologyandconnectivity of theRON testbed
provide us with a non-intrusive way to constructexperimentsthat
have reasonablyunambiguousoutcomes.

Our secondapproachfor creatingexperimentswith controlledout-
comesrelies on the useof the Click router [22]. Click was de-
signedto allow flexible reconfiguration,packet re-writing,andtraf-
fic shaping.In particular, we useIP masqueradingandbandwidth
throttling to very closely emulatethe behavior of a pair of real
routerswith diminishedcapacity. The IP masqueradingre-writes
packetsso that TCP connectionscanbe transparentlyestablished
betweenarbitraryRON hostseventhoughtheroutesof packetsare
pinnedto go throughtheClick routersunderour control. This ar-
rangementensuresunambiguousbottlenecksharing.

Using the methodologydescribedabove, we conductedhundreds
differentInternetexperiments.Eachoneinvolvesanumberof TCP
sendersstreamingdatato the samereceiver. Using tcpdump,we
recordarrival timesatthereceiverandfeedthelog filesto ourclus-
teringprogram.

4.2 Clustering Accuracy
Thereis nostandardmethodfor evaluatingtheaccuracy of cluster-
ing algorithms[15].To evaluateour technique,we usethreeerror
metricsthatwe judgeusefulto thespecificapplicationof thebot-
tleneckdetectiontechnique.

Thefirst metric is theprobability of anyerror, which providesthe
mostconservative view of theaccuracy. For any particularbottle-
necksharingscenario,theprobabilityof any error is computedby
clusteringmultiple differentdatasetsandtakingthepercentageof
outcomesthatdonotcompletelymatchthecorrectanswer. Thedif-
ficulty with usingthis metricalonearisesfrom thefact thatnot all
clusteringerrorsareequivalent.For example,assumethatwe have
50flowsthatsharethesamebottleneck.A clusteringtechniquethat
puts49flows in thesameclusterandoneflow in a differentcluster
is definitelybetterthana techniquethatputseachof thefifty flows
in its own cluster. Yet, both outputswould be treatedthe sameif
we usetheprobabilityof any errorasourmetricof accuracy.

The secondmetric is the probability of creatingincorrectclusters
wheresomeof the flows do not sharethe samebottleneck. We
call this metrictheprobabilityof falsegrouping. This metricmea-
suresthe correctnessof the algorithm. For example, if the user

Send- Bottle- Configuration P[Any Pkts/
ers necks Error] flow
7 1 Sharedcong.at M1MA 2% 90
10 1 Sharedcong.at MS 0% 90
10 1 Sharedcong.at Sightpath 1% 65
10 1 Sharedcong.at Mazu 1% 60
11 1 Sharedcong.at Aros 0% 50
11 1 Sharedcong.at CMU 5% 90
6 6 Separatecong.;RecvatMIT 7% 25
6 6 Separatecong.;RecvatCCI 1% 30
6 6 Separatecong.;RecvatCornell 2% 35
6 6 Separatecong.;RecvatNYU 0% 10
12 2 Click Bottlenecks 0% 50
24 2 Click Bottlenecks 0% 60
48 2 Click Bottlenecks 1% � 100
88 2 Click Bottlenecks 0% � 100
102 2 Click Bottlenecks 2% � 100
170 2 Click Bottlenecks 2% � 100
88 2 Click; 50%crosstraffic 3% � 200
40 2 Click; 75%crosstraffic 1% � 800
25 2 Click; 85%crosstraffic 8% � 2000

Table2: Efficiency of the iterati ve technique.Summary results
showing that the techniqueeventually convergesto almost per-
fect accuracyeven for scenarioswith largenumber of senders
and fairly complexbottlenecksharing.

wantsto identify theflowsthattraversethesamebottleneckto share
their congestioninformation,thentheprobabilityof falsegrouping
would tell theuserhow likely thetechniqueis to produceincorrect
resultsthatwouldleadto thewrongsharingof congestioninforma-
tion. For any particularbottlenecksharingscenario,theprobability
of falsegroupingis computedby clusteringmultiple differentdata
setsandtakingthefractionof clustersthatcontainflowsthatdonot
sharea bottleneck.

The third metric is theprobability that thealgorithmmight fail in
groupingsomeflows that sharethe bottleneck,which we call the
probabilityof falseseparation. Thismetricmeasurestheefficiency
of thealgorithm.For example,considera userwho is interestedin
sharingcongestioninformationbetweenflows thatcrossthesame
bottleneck.Thenthebetterthetechniqueis in collapsingtheflows
that sharethe bottleneckinto the samecluster, the morethe user
can sharetheir congestionstateand the lessthe total numberof
statesmaintainedby the system. To find the probability of false
separationfor a particularbottlenecksharingscenario,we run the
clusteringtechniqueover multiple differentdatasets. The prob-
ability of falseseparationis thedifferencebetweenthenumberof
generatedclustersandthecorrectnumberof clustersdividedby the
numberof generatedclusters.

Table2 shows the efficiency of the iterative clusteringtechnique
in dealingwith large numbersof sourcesandfairly complex bot-
tlenecksharing.Thetablehasthreeblocks. Experimentsreported
in the first and secondblocks do not usethe Click router. The
crosstraffic in theseexperimentsis uncontrolled.Experimentsin
the third andfourth blocksarecontrolledusingtwo Click routers.
The probability of any error is computedover 100 differentsam-
ples.Thetableshows thatalthoughtheiterativetechniquedoesnot
try all possiblecombinationsof sourcesandbottlenecks,it always
convergesto almostperfectresult.Thisconvergencehappenseven
whenthenumberof sourcesis 170andthesearchspaceis on the
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(b)  Sample Size (packets/flow)

cmu shared
exp(-n/13) tail
nyu unshared
exp(-n/8) tail

Figure 7: Probability of any clustering error at all vs. sample
size for two simple topologies: every flow sharing and no flows
sharing. Note that preventing false grouping errors requires
very little data. Preventing false separation is harder, but not
onerous. Trend lines in the bottom graph show the exponential
convergence of error probabilities.

order of
� �GQGR M(�(N

. A key observation in Table 2 is that as cross traf-
fic increases or the clustering experiment becomes more complex
(i.e., more flows or more cross traffic) more packets per flow are
needed for correct clustering. Below, we examine these aspects in
more detail.

First, we address the number of packets per flow necessary for cor-
rect clustering. Figure 7a illustrates the probability of any error as
a function of the average number of packets from each flow. The
figure shows two representative graphs: The first graph, labeled
“CMU Shared”, is for the case where all senders share the same
bottleneck; the second graph, “labeled NYU Unshared”, is for the
case where each sender has a separate bottleneck. The probabil-
ity is computed over 500 different samples. The figure shows that
a few dozen packets are enough for correct clustering. Figure 7b
shows trend line on the log scale. It indicates that although the
absolute number of packets required for correct clustering differs
from one type of experiment to the next, the error probability dies
off exponentially.

Note that though the data plotted in Figure 7 is the probability
of any error, the nature of the two types of “natural” experiments
makes the them representative of our two other types of error met-
ric. The upper curve is the probability of any error for the case
where all flows share a bottleneck. In that case the only type of er-
ror is false separation. The lower curve, barely visible on the same
scale, is the probability of any error for the case where no flows
share bottlenecks. In that case the only type of possible error is
false grouping. The extremely fast convergence of false grouping
errors is a highly desirable property of our technique. This is be-
cause grouping senders that do not share the bottleneck together is
a more severe error than failing to recognize senders that share a
bottleneck.

Next, we consider the robustness of the technique against heavy
cross-traffic. The experiments in Table 2 were run during mid-
day. As such, they experienced natural cross traffic along their path.
Given that many of the sites involved in these experiments are large
universities with continuous Internet activity, we argue that the re-
sults in Table 2 are representative of the technique’s behavior under
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(a)  Observed Traffic Fraction (800 pkt/flow)
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(b)  Observed Traffic Fraction (800 pkt/flow)

P(Any Error)
Exp(-frac/2.5%)

P(False Separation)
Exp(-frac/2.5%)

P(False Grouping)
Exp(-frac/2.5%)

Figure 8: Error probabilities vs. observed traffic fraction. The
first graph shows the error rate rapidly vanishes when more
than 15% of the bottleneck traffic is observed. The second is a
log-scale graph which shows the trend is consistent with expo-
nential improvement in traffic fraction. (The scale on the x-axis
is reduced since the error reaches zero for larger fractions of
observed traffic)

common cross traffic situations.

To discover the behavior of both false grouping and false separation
under heavy cross traffic, we funnel a large number of TCP flows
from many senders through a pair of Click routers and back out to
a receiver across the Internet. We considered various cross-traffic
fractions by censoring various subsets of flows from our data set.
This effectively gives the algorithm exactly the data it would have
had if the censored flows had been diverted before reaching the
receiver. We ran the algorithm on many random censorings to get
reasonable failure rate estimates.

Figure 8a shows the clustering error as a function of the fraction
of the bottleneck link traffic seen at the observer. The probabilities
are computed by taking the average of 1000 different measurements
for sample sizes of on average 800 packets/flow. The graph shows
that the clustering technique provides perfect clustering as long as
at least 20% of traffic crossing the bottleneck can be observed. As
observed traffic drops below 20% of the total bottleneck traffic, the
technique begins to make minor false separation errors (i.e., occa-
sionally separating flows that share the same bottleneck but never
grouping flows that do not share the bottleneck). False grouping
errors do not become an issue until over 95% of the traffic goes un-
observed. The straight trend line on the semi-log plot in Figure 8b
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Figure 9: Samplesizeconvergencefor 25% cross-traffic. The
first graph shows how falsegrouping ratesare only marginally
worsethan when 100% of traffic can be observed. The second
graph showsthat substantialamountsof hidden traffic doesnot
destroy the exponentialconvergence.

shows that the probability of error decreasesexponentiallyas the
fractionof observedtraffic increases.

Figure9 showsthatthenumberof packetsperflow requiredfor cor-
rectclusteringwhen75%of thebottleneckedtraffic is crosstraffic.
Notethatthis numberdecreasesasthefractionof observedbottle-
necktraffic increases.Only a few hundredpacketsperflow arere-
quiredfor correctclassificationsevenwhen75%of thebottleneck
traffic is unobservedcrosstraffic.

A final noteis thatthesimplicity of thealgorithmlendsitself to effi-
cientsoftwareor hardwareimplementations.All theprogrammust
do is iterateover the aggregatedarrival time traceof a potential
flow combinationsandbin successivedifferences.While onemight
imaginean TU� JWVYX ECZ\[^] $0%�' JWVYX EGZ\[^] � algorithmbasedon sorting
the arrival timesof potentialcombinations,it is actuallypossible
to mergethearrivals in TU� J VYX EGZ\[^] $0%�' J`_ba0cCd � time sincethein-
dividual arrival lists canbe pre-sortedjust once. The histograms
canbekeptcompactandin fastmemoryandtheentropiescanbe
computedalmostentirely with lookup tablesfor logarithmssince
the rangeof bin countsis relatively small for reasonablesample
sizes.Our implementationcanclustersampleswith 1,000packets
in under10 msecon commodityPC hardware. This translatesto
over 10,000packets/sec.

Theprincipalscalingissuefor largenumbersof flows is thelarger
numberof total packets involved and the much larger numberof
combinationsthat mustbe tried. Even so,our algorithmsuccess-
fully classifiestraceswith tensof thousandsof packets and 170
flows in undera secondof CPUtime.

5. FUTURE WORK
This work lendsitself to extensionin severaldirections.Oneopen
issueis determiningcongestionsharingin a multiple bottleneck
scenario. Namely, sharingor not sharingis more than simply a
binary variable. Considertwo flows that sharecongestionat the
accesslink of their commonreceiver; yet, oneof themcrossesa
separateupstreambottleneck. In sucha scenario,somekind of
hierarchicalcongestionclassificationis desirable.

Anotherdirectionfor future work is a moredetailedinvestigation
of theshapeof theinter-arrival distributions. In particular, theen-
velopesformedby thetips of thespikesin Figure1 traceout very
regular curves. It would be informative to fit the spike train and
thespike bumpto well-known distributionsandanalysetheshape
of their tails. This mayleadto a betterunderstandingof thedistri-
bution of thecrosstraffic burst. Furthermore,finding goodmodels
for theinter-arrival distribution in a flow would improve theability
to clusterflows that sharethe bottlenecks.Particularly, if a cata-
log of commonshapesis developedthen it might be possibleto
embedthis in a clusteringalgorithmto improve recognitionof cor-
rectclusterings.In principle it shouldalsobepossibleto improve
recognitionof incorrectclusterings.As Figure6 shows,thenoisein
theinter-arrival PDFdueto unsynchronizedpacketsdoesnotoccur
just anywhere.

6. RELATED WORK
Much prior work hasstudiedlearningInternetpathcharacteristics
from endpointmeasurements[10,20, 4, 27, 28, 30, 12, 18, 13, 25,
8, 19, 24]. The objective of thesemeasurementscould be bot-
tleneckbandwidthdetection[4,28, 14, 13, 23], topology discov-
ery[28,12, 18], detectingthestateof congestionandtheavailable
bandwidth[9,12, 18, 25, 8, 19, 24], or simply understandingthe
network andthetraffic patterns[6].

For example,pathcharandcprobeareusefultools for discovering
the bandwidthavailablealonga path. However, they consumea
large amountof network resources.In particular, pathchargener-
atesat least10Kbytesof probetraffic perhopandcprobegenerates
5 Kbytesof probetraffic perhop[30]. Theaccuracy of thesetools
is acceptablefor low bandwidthlinks (lessthan10 Mb/s),yet they
becomesignificantlyinaccuratefor highbandwidthlinks [14].

ThePacketBunchMode(PBM) estimatestheraw bottleneckband-
width of aconnectionby lookingfor modalitiesin thetiming struc-
turesof groupsof back-to-backpackets.Althoughmorerobustthan
pathchar, it requiresinformationfrom boththesenderandreceiver
sides[27].

Traceroute[3]is a widely usedtool for learningthe intermediate
routersandthe latency alonga path. It requiresthat intermediate
routersreply to ICMP echomessages,a featurethatmight bedis-
ableddueto securityconcerns.

Theauthorsin [9] proposetheuseof multicastloss-correlationto
infer the lossratesover individual links alonga path. Their simu-
lation shows that theestimatortracksthechangesin the lossrate.
However, theproposedapproachsendsprobepacketsinto thenet-
work andrequirestheexistenceof a multicastservice.

The authorsof [28] uselosscorrelationamongthe receivers in a
multicastgroupto infer thelogical shapeof a multicasttree.Their
approachdoesnot inject probetraffic in thenetwork; however, its
relianceonlossinformationlimits its useto significantlylongmul-
ticast sessions.The authorsin [25] useloss pairs to infer some
characteristicsof input buffering behavior suchas RED parame-
ters. While this work usedactive probesthey note that their ap-
proachmightbeusedin a passive context.

Packet pair dispersionandbandwidthhistogramshave beenexam-
inedin [13] towardtheendof bandwidthestimation.Thefocusof
theanalysistherewasfixedbin-width bandwidthhistograms.We



foundhowever thatthereis alsomuchsignificantinformationto be
gleanede from theequalspacingsin inter-arrival timedistributions.

Recently, thereweretwo proposalsfor detectingwhetherpairs of
flows sharethe samebottleneck[12, 18]. Despitethe usefulness
of theseproposalsin simplecircumstances,they have a numberof
practicaldisadvantagesthat limit applicability. Sincethey gener-
ateprobetraffic, bothproposalsarenon-passive andrequiresender
cooperation.Additionally they make strongerqueuingdiscipline
assumptions.Also, theseproposalsdo not generalizetheir tech-
niquesto more than two flows while ours handlesmany. Thus,
theclusteringproblemthatwe addressin this paperis intrinsically
harderthantheproblemaddressedby theseproposals.

7. CONCLUSION
This paperdemonstrateseffective, efficient, androbust techniques
for inferringinterestingpropertiesof networksseenbypacketflows.
Theonly input datarequiredis a completelypassive collectionof
timestampsof packet arrivalsatendnodesor at intermediatemon-
itors.

We demonstratedthat correctinterpretationof inter-arrival PDFs
allows inferenceaboutthebandwidthanddegreeof multiplexing at
potentiallymultiple bottlenecklinks. In thespike bumpandspike
train caseswe relateinter-arrival distributionsto the distributions
of crosstraffic burst sizes. Finally we show how to correctly in-
fer bottleneckcapacityfrom the locationsandgapsof spikesand
bumpsin theinter-arrival PDF.

Higherorderstatisticsdefinedon thearrival timesof combinations
of flowsallow sensitivedetectionof bottlenecksharing.Wedemon-
stratethatthisdetectioncanbebothfastandreliablegivensmallto
moderateamountsof dataeven in the faceof substantialfractions
of unobservedcrosstraffic at thebottleneckroutersin question.

We validatedthesetechniqueswith extensive experimentson the
RON testbedandwith controlledexperimentsusinga pairof Click
routers.We foundthat themethodcandetectany bottleneckshar-
ing amonghundredsof flows. Nearperfectsharingdetectioneffi-
ciency requiredon theorderof 100packetsperflow. Theclassifi-
cationerrorsdecreaseexponentiallyin thenumberof tracedpack-
ets.Further, themethodcopeswell with heavy cross-traffic andthe
errorsdecreaseexponentiallyasthe fractionof crosstraffic at the
bottleneckdecreases.
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Figure12: Herewecompareour classificationperformanceus-
ing Shannonandfifth order Rènyientropy for 25% crosstraffic
with a pair of Click routers. The y-axis is a log scale.Note the
impr oved statistical efficiencyat small samplesizes.
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(a)  Inter-arrival (msec) { 0.008 msec bins }

A Mazu <-> CMU Experiment

CMU -> Mazu
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(b)  Inter-arrival (msec) { 0.008 msec bins }

Mazu -> CMU
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(e)  Inter-arrival (msec) { 0.008 msec bins }

A Sightpath <-> Aros Experiment

Aros -> Sightpath
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(f)  Inter-arrival (msec) { 0.008 msec bins }

Sightpath -> Aros
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(c)  Inter-arrival (msec) { 0.008 msec bins }

A CMU <-> CCI Experiment

CCI -> CMU
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(d)  Inter-arrival (msec) { 0.008 msec bins }

CMU -> CCI
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(g)  Inter-arrival (msec) { 0.008 msec bins }

An MIT <-> CMU Experiment

MIT -> CMU
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(h)  Inter-arrival (msec) { 0.008 msec bins }

CMU -> MIT

Figure 10: Several additional experiments. In each experiment, we choose a pair of RON nodes and send a TCP flow from the
first node to the second, record the arrival times and construct the inter-arrival PDF of the forward path. Then, we start a second
TCP flow from the second node to the first one, log the arrival times and construct the inter-arrival PDF of the reverse path. Using
the reverse path is a device to construct a comparison case where it is likely that a bottleneck whose bandwidth is the same as the
access link of the forward path. In all experiments the inter-arrival PDF of flows traversing a high bandwidth access link then a low
bandwidth access link shows a single spike at the NTT of the low bandwidth link. On the other hand, the inter-arrival PDF of flows
that first traverse a low bandwidth access link then a high bandwidth access link shows a bump of spikes whose local mode (tallest
spike in the bump) coincides with the NTT of the low bandwidth link and with gap that coincide with the NTT of the high bandwidth
link.
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Downstream Congestion

Aros-> MIT

Figure 11: Here we exhibit the effect of congestion at the downstream high bandwidth bottleneck.
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