
~

, .. en.,.••••

This b/a11k page was i11serted to preserve paginatio11.

Fair Cryptosystems

by

Silvio Micali

Laboratory for Computer Science
Massachusetts Institute of Technology

545 Technology Square, Cambridge, MA 02139

16 November 1993

(An earlier vers10n of this draft was presented at CRYPTO 92)

Abstract. There is a growing concern that the wide use of encryption may
be more dangerous than helpful to society. In particular, good encryption
schemes make court-authorized line-tapping, an effective tool for law
enforcement, impossible.

Addressing this concern, we show how to construct cryptosystems in a /air
way, that is, so as to allow a democratic country to strike the desired balance
between the needs of the Government and those of the Citizens. Fair
cryptosystems enjoy the following properties: (1) they cannot be misused by
criminal organizations and (2) they guarantee to the Citizens exactly the same
rights to privacy they currently have under the law.

We actually show how to transform any cryptosystem into a fair one. The
transformed systems preserve the security and efficiency of the original ones.
Thus one can still use whatever system he believes to be more secure, and
enjoy the additional properties of fairness. Moreover, for today's best known
cryptosystems, our transformation is particularly efficient and convenient.

Our solution compares favorably with the Clipper Chip, the encryption
proposal more recently put forward by the Clinton Administration for solving
similar problems. In particular, our solution

(a) allows citizens to choose whatever algorithms they prefer and all of
their secret keys,

(b) can be efficiently and securely implemented in software, and

(c) ensures that any court-authorized line-tapping ends at the prescribed
time.

2

Note For The Reader. Many people would agree that, for crimes such as
terrorism or kidnapping, court-authorized line-tapping is well justified. On
the other hand, many would also agree that encryption is an excellent way to
prevent illegal (or just frivolous) line-tapping. Unfortunately, encryption
will also help the perpetrators of hateful crimes to go unpunished, because
tapping their communication lines after a legitimate court order will not
enable anyone to understand the content of their encrypted conversations. Is
this a reasonable price to pay for the privilege of a greater privacy? "To tap or
not to tap" (using the title of Dorothy Denning's informative article on
cryptography and law enforcement [Del) is a difficult question.

Debating this question is not, however, the goal of this paper. Rather, this
paper offers a technical solution to the problem of making cryptography
compatible with law enforcement. Our goal is offering a new tool. Whether
such a tool should be used at all, or how, is up to Society. We believe, however,
that having options is good.

A second proposal for making encryption compatible with law enforcement
has been more recently put forward by the Clinton Administration. The
number of our options has thus increased, which is even better. Together with
having more options, however, goes the difficult task of identifying the "best
one" --or, at least, the one capable of generating the greater consensus.

Because privacy and law enforcement are of interest to most of society, and
because we would welcome an informed debate before making crucial policy
decisions in this area, we have made a sincere attempt to reach a broad
audience. We thus hope that the goals and the properties of our approach will
be understandable also by those Government officials and Citizens who do not
have any familiarity with cryptography. Indeed, to make our paper easier to
read, most of its mathematical details appear in a clearly marked technical
appendix.

Further, the basic technical ideas of our approach --which are quite simple to
begin with-- are presented at a very intuitive level, so as to be enjoyable for
the reader generally familiar with the field of cryptography, though not
necessarily expert in secure protocol design. The expert reader will have no
difficulty in filling in the formalization and the occasionally subtle details
that have been omitted in this draft. (We actually hope to have given her
sufficient indications to make her journey through this draft as short as
possible.)

3

Table of Contents

1. Introduction .. page 4

2. Public-Key Cryptosystems ... 5

3. Fair Public-Key Cryptosystems .. 6
3.1 The Basic Notion ... 6
3.2 A General Construction ... 7
3.3 Additional Important Issues ... 8

4. Questions and Answers About Fair PKCs ... 9

5. Making Fair the Diffie-Hellman Scheme .. 13

6. Variants of the Basic Notion of a Fair PKC .. 15
6.1 Time-Bounded Court-Authorized Eavesdropping 15

6.1.1 Multiple Public-Keys .. 16
6.1.2 Tamper-Proof Chips ... 16
6.1.3 Algorithmically-Chosen Session Keys 16

6.2 Relying on Fewer Shares .. 17
6.3 Making Trustees Oblivious .. 18

7. Clipper Chip and the Government's Key-Escrow System 18
7 .1 A Quick Review of the Government's Proposal.. 18
7 .2 Clipper Chip and Fair PK Cs: a Brief Comparison 19

8. An Announcement. .. 22

9. Final Remarks ... 22

Acknowledgements .. 23

References ... 23

A. TECHNICAL APPENDIX

Al. How to make Fair any PKC .. 25
A. 1 A Sketch For The Expert.. .. 25
A.2 A More Informative Discussion ... 25

A2. Making Fair the RSA Scheme .. 28

A3. An Effective Method for Time-Bounded Eavesdropping
Based on Algorithmically-Chosen Session Keys ... 31

A4. Additional Methods for Relying on Fewer Shares ... 33

AS. An Effective Method for Making Trustees Oblivious 35

4

1. Introduction

A wrong debate
Court-authorized line tapping is an effective method for bringing criminals to
justice. More importantly, in our opm10n, it prevents the further spread of
crime by deterring the use of ordinary communication networks for unlawful
purposes. Thus, there is a legitimate concern that wide-spread use of
cryptography may be a big boost for criminal and terrorist organizations.
Indeed, many bills propose that a proper governmental agency should be able,
under proper circumstances, to obtain the clear text of any communication
over a public network. At present, this requirement would translate into
coercing citizens into either (1) using weak cryptosystems --i.e.,
cryptosystems that the proper authorities (but also everybody else!) could
crack with a moderate effort-- or (2) surrendering, a priori, their secret key
to the authority. It is not surprising that such alternatives have legitimately
alarmed many citizens, generating the feeling that privacy should come
before national security and law enforcement.

It is our opinion that this debate is wrong. It is wrong because it is a "one-bit
debate," that is, it envisages either unconstrained privacy or no privacy at all.
Extreme positions are more likely to be unjust and, indeed, having to choose
only between the above alternatives is quite uncomfortable. Fortunately, we
are not bound to choose only among what is currently available. It is indeed
our goal to change the status quo and broaden our options.

A better alternative
In this paper we show how to build cryptosystems that are "fair," that is,
striking a better balance, in a democratic country, between the needs of
society and those of the individual. More precisely, we exhibit cryptosystems
that are:

l Unabusing --i.e., the privacy of the law-obeying user cannot be
compromised-- and

2 Unabusable --i.e., unlawful users will not enjoy any privacy.

Fair cryptosystems can be easily obtained in the conventional private-key
model and, more importantly both from a social and a mathematical point of
view, also in the more recent public-key model. Since we believe that the
latter model is the best of the two for a large nation (particularly, for a
democratic large nation), we focus our effort on the construction of fair
public-key cryptosystems. Fair conventional cryptosystems are instead the
main focus of the Clipper Chip. (A brief explanation of our preference for the
public-key model in this context, and a brief discussion of the Clipper Chip,
can be found in Section 9.)

Our construction of fair public-key cryptosystems is actually very general and
convenient. We in fact provide a simple methodology for transforming any
cryptosystem into a fair one, and our transformation preserves the original
security and efficiency of the underlying system. Thus one can "make fair"
his favorite cryptosystem without any particular loss.

5

2. Public-Key Cryptosystems

A conventional cryptosystem allows two users X and Y, who have beforehand
and securely agreed on a common secret key K to exchange private messages
over a public network. To send Y a private message M, user X computes from M
and K a string C (the ciphertext) and sends it to Y. Thanks to her knowledge of
this same K, Y easily retrieves M (the cleartext) from C. The message thus sent
is private in the sense that an adversary, though he may easily learn the
ciphertext C by tapping the communication line between X and Y, cannot,
since he does not know the secret key K, easily compute the cleartext M.

While there is plenty of need for private communication, securely agreeing
on a common secret key with anyone we wish to talk to in private may not be
easy. (For instance, if meeting in a secure physical location for the purpose of
agreeing on a common secret key is impractical, sending a secretly chosen
key over the telephone is certainly insecure.) In addition, it is not always
clear beforehand with whom one needs to exchange private messages. (For
instance, in most business applications, it is very hard to know a priori with
whom we will need to conduct private negotiations.)

In response to the common-secret-key-agreement problem, Diffie and
Hellman in [DiHe] put forward a new type of cryptosystem, the pub Ii c - key
cryptosystem (PKC for short). While in a conventional system each secret key
was used both for encrypting and decrypting, in a PKC the encryption and
decryption processes are governed by pairs of matching keys, which are
generated together so to satisfy the following three properties: letting (E,D) be
one such pair of matching encryption/decryption keys,

1 Any message can be encrypted using E.

2 Knowledge of D enables one to read any message encrypted with E; on
the contrary, without knowing D it is practically impossible to
understand messages encrypted with E.

3 Knowing E does not enable one to compute its corresponding decryption
key D.

PKCs thus dismiss the need for agreeing beforehand on a common secret key,
by using instead a bit of initial interaction and trust. Assume that a user X
generates a pair of matching encryption/decryption keys (Ex, D x), and that a
user Y wants for the first time to send him a private message and tells him so.
Then X sends Ex to Y over the phone; Y easily encrypts her message to X with
Ex because of Property 1; X easily decrypts it because of Property 2; and,
because of Properties 2 and 3, no one else can understand the message so
exchanged. In the above protocol, however, Y must trust the authenticity of X's
public encryption key Ex. (In fact, if an impostor Z substitutes X's public
encryption key with his own, Y will end up telling Z her private messages to
X.) Moreover, interaction (like in the case of electronic mail) is not always an
available commodity. For these reasons, most people prefere to use PK Cs in
conjunction with what essentially is a "social agreement" between users and a
key-management center. Each user X comes up with a pair of matching
encryption and decryption keys (Ex,Dx). After generating a (Ex,Dx) pair, the
user keeps Dx for himself and gives Ex to the key-management center. The

6

center 1s responsible (and is trusted!) for updating and publicizing a directory
of correct encryption keys, one for each user --i.e., a list of entries of the type
(X,Ex) which, for example, may be publicized in a "phone-book format" or via a
"411-like service." If, as in the latter example, this distribution occurs over a
public network, a digital authentication that Ex comes from the center must be
provided, for instance by using one of the existing digital signature schemes.
Clearly the users must trust the center, as an untrustworthy center may
enable a user Y to read the messages intended for user X by falsely claiming
that Ey is X's encryption key. Thus, in ultimate analysis, the security of a PKC
depends on the key-management center. Since setting up such a center on a
grand scale requires a great deal of effort by society, the precise protocols the
center must follow (and thus its properties) must be properly chosen.

Every advantage has a drawback, and public-key cryptography is no
exception. Here a main disadvantage is that any such system can be abused; for
example, by terrorists and criminal organizations who can now conduct their
illegal business with great secrecy and yet with extreme convenience. It is
thus our goal to develop a new technology that allows us to enjoy public-key
cryptography while protecting society from the problems arising from its
blind utilization.

3. Fair Public-Key Cryptosystems

3.1 The Basic Notion

Let S be a public-key cryptosystem. Informally speaking, and ignoring for
the time-being some additional and important issues (see Subsection 3.3), we
say that

S is a Fair Public-Key Cryptosystem --Fair PKC for short-- if it guarantees a
special agreed-upon party (and solely this party!) under the proper
circumstances envisaged by the law (and solely under these
circumstances!) to understand all messages encrypted using S, even
without the users' consent and/or knowledge.

That is, the philosophy behind a Fair PKC is improving the security of the
existing communication systems while keeping the legal procedures already
holding and accepted by the society. In particular, we wish to design Fair PKCs
so that the following proposition holds.

Proposition: Let C be a ciphertext exchanged by two users in a Fair PKC S.
Then, under the proper circumstances envisaged by the law, the proper
third party will either

1) find the clear text of C relative to S (whenever C was obtained by
encrypting a message according to S) or

2) obtain a (court-presentable) proof that the two users were not using S
for their secret communication.

Of course, if using any other type of public-key cryptosystem were to be made
illegal, Fair PKCs would be most effective in guaranteing both private
communication to law-obeying citizens and law enforcement. (In fact, if a
criminal uses a phone utilizing a Fair PKC to plan a crime, he can still be

7

brought to justice by court-authorized line tapping. If he, instead, illegally
uses another cryptosystem, the content of his conversations will never be
revealed even after a court authorization for tapping his lines, but, at least, he
will be convicted for something else: his use of an unlawful cryptosystem.)
Nonetheless, as we shall discuss in section 4, Fair PKCs are quite useful even
without such a law.

3.2 A General Construction

We shall now present, in a very general way, our prefered method for
constructing Fair PKCs. We shall see in section 5 that this very general
construction can be implemented in practice very efficiently for the best
known PKCs.

Below, for concreteness of presentation, we shall use the Government for the
special agreed-upon party, a court order for the circumstances contemplated
by the law for monitoring a user's messages, and the telephone system for the
underlying method of communication. We also assume the existence of a key­
distribution center as in an ordinary PKC.

In a Fair PKC there are a fixed number of predesignated trustees and an
arbitrary number of users. The trustees may be federal judges (as well as
different entities, such as the Government, Congress, the Judiciary, a civil
rights group, etc.) or computers controlled by them and especially set up for
this purpose. Even if efforts have been made to choose trustworthy trustees, a
Fair PKC does not blindly rely on their being honest. The trustees, together
with the individual users and the key-distribution center, play a crucial role
in deciding which encryption keys will be publicized in the system. Here is
how.

Also for concreteness of expos1t10n, assume that there are 5 trustees. Each user
independently chooses his own public and private keys according to a given
double-key system. Since the user himself has chosen both keys, he can be
sure of their "quality" and of the privacy of his decryption key. He then
breaks his private decryption key into five special "pieces" (i.e., he computes
from his secret decryption key 5 special strings/numbers) possessing the
following properties:

1) The private key can be reconstructed given knowledge of all five
special pieces;

2) The private key cannot be reconstructed if one only knows (any) 4, or
less, special pieces;

3) For i=l, ... ,5, the i-th special piece can be individually verified to be
correct.

Comment. Of course, given all 5 special pieces, one can verify that they are
correct by checking that they indeed yield the private decryption key. The
difficulty and power of property 3 consists of the fact that each special piece
can be verified to be correct (i.e., that together with the other 4 special pieces
yields the private key) individually; that is, without knowing the secret key at
all, and without knowing the value of any of the other special pieces! (How

8

these special pieces can be generated is explained in later sections. Below we
will show how they can be used.)

The user then privately (e.g., in encrypted form) gives trustee i his own
public key and the i-th piece of its associated private key. Each trustee
individually inspects his received piece, and, if it is correct, approves the
public key (e.g., signs it) and safely stores the piece relative to it. These
approvals are given to the key-management center, either directly by the
trustees, or (possibly in a single message) by the individual user who collects
them from the trustees. The center, which may or may not coincide with the
Government, itself approves (e.g., it itself signs) any public key approved by
all trustees. These center-approved keys are the public keys of the Fair PKC
and they are distributed and used for private communication as in an ordinary
PKC.

Since the special pieces of each decryption key are privately given to the
trustees, an adversary who taps a user's communication line possesses the
same information as in the underlying, ordinary PKC. Thus if this is secure, so
is the Fair PKC. Moreover, even if the adversary were one of the trustees
himself, or even a cooperating collection of any 4 out of five of the trustees,
due to property 2, he would still have the same information as in the
underlying ordinary PKC. Since the possibility that an adversary corrupts 5
out of 5 federal judges is remote, the security of the resulting Fair PKC is the
same as in the underlying, ordinary one.

When presented with a court order, and only in this case, the trustees will
reveal to the Government the pieces of a given decryption key in their
possession. This enables the Government to reconstruct the given key. Recall
that, by property 3, each trustee has already verified that he was given a
correct piece of the decryption key in question. Thus, the Government is
guaranteed that, in case of a court order, it will be given all correct pieces of
any given decryption key. By property 1, it follows that the Government will
be able to reconstruct any given decryption key if necessary.

3.3 Additional Important Issues

We consider the notion of a Fair PKC given so far bo be pretty basic because it
does not address some additional important issues. In particular, consider the
following desiderata.

Time Bounded Court-Authorized Line-Tapping.
In general, courts authorize line-tappings for a prescribed amount of time
only. But, in our abstract construction, once the Trustees reveal their pieces of
the secret key of party X to the Government, the Government's ability to
understand X's communications is "turned on" for ever. If we wish, as we do, to
improve on the status quo but keep our legal procedures, a mechanism must
be found to "tum off" this ability at the prescribed time. Not to overload our
basic construction of Fair cryptosystems, we postpone solving this important
problem until Section 8. By contrast, unfortunately, this important issue is
totally ignored by the key-escrow proposal of the Administration.

Relying on Fewer Shares.
Another important issue is the ability to rely on fewer shares in order to be
able to reconstruct a secret key. So far, in fact, we have been assuming a "all-

9

or-nothing" approach; that is, a secret key can be reconstructed given all of
its special pieces, and cannot be guessed at all given all of its pieces except one.
This assume that our Trustee system will al ways work perfectly. Indeed, if a
single Trustee, presented with a legitimate court order, does not contribute his
own piece of X's secret key --either because he has lost it, or because the
computer storing it has failed, or because of sabotage, or because he has been
corrupted,-- then it will totally impossible for the Government to tap X's lines.
This is a serious problem: any system that assumes too much reliability from
people or their computers is insecure. Unfortunately, this problem too is
ignored by the key-escrow proposal of the Administration. As we show in
Subsection 8.2, however, it is possible for Fair cryptosystems to have two
different thresholds ex and p, ex < p, such that a secret key is totally
impredictable from any ex or less pieces, but easily reconstructable from any P
or more pieces. (Though one might always prefer setting P=ex+l, in practice, as
we shall see in the appendix, having b<a may yield simpler algorithms for
dealing with fewer shares.)

4. Questions and Answers About Fair PKCs

Before addresing the substantive technical questions of how Fair PKCs can be
concretly constructed, let us consider some legitimate and broader questions.

Q Are Fair PKCs less secure?

A: No. Unless an adversary reads the private messages sent by the user to
the 5 trustees (which can be prevented by encryption) or corrupts 5 out
of 5 trustees --a rather unlikely event-- they provably provide just the
same security as the underlying, ordinary PKC. (Only the Government,
and in case of a court order, may have the cooperation of all 5 trustees.)

Q Are Fair PKCs less efficient?

A: No. Communication is exactly as efficient as in an ordinary PKC. The
only differences are (1) when a public-key is registered, and (2) when a
private key is, in a lawful manner, retrieved by the Government. Each
user validates his public key only once. Thus only once does he need to
give pieces of his private key to the trustees. Moreover, as we have seen
in section 4, this step can be implemented by sending 5 short messages,
one to each trustee. Second, the lawful reconstruction of a private key
by the Government is essentially instantaneous once the five special
pieces are obtained from the trustees. Collecting these five pieces
electronically is no more cumbersome than issuing or checking a court
order as it is needed in a lawful procedure. (As we shall see in Section 6,
private-key reconstruction may just consist of receiving 5 short
messages and one addition.)

Q In a totalitarian system, what confidence can we have in a Fair PKC?

A: Most probably, in a totalitarian system the trustees will be selected with
rather different criteria. It is thus conceivable that all of them
(whether individuals or organizations) may routinely conspire so as to
reconstruct all private keys, destroying all confidence in the privacy of
a Fair PKC. On the other hand, believing that ordinary PKCs may be the

10

way to guarantee individual privacy during a dictatorship is quite
naive. Outlawing any form of PKC will be among the first measures
taken by any dictator. Indeed, public use of cryptography is a gift of
democracy (and it is important that this gift cannot be turned against
it). In fact, Fair PKCs are close in spirit to Democracy itself, in that
power is not trusted to any chosen individual (read "trustee") but to a
multiplicity of delegated individuals.

Q Aren't Fair PKCs the same as ordinary PKCs in which users are obliged
to give the Government the private key corresponding to every public
key?

A: No. This deprives the individual of his right to privacy a priori and
without any just cause. Someone who has not committed (nor is
suspected to have committed) a crime should not be required to
surrender his right to private communication to anybody, not even to
the Government. And this is exactly what he would be obliged to do by
revealing his own private key at the time of registering his public one
with the key-management authority.

People consent that their right to privacy may be taken away under
special circumstances, but do not agree to lose it in an automatic
manner. Fair PKCs guarantee the users that they will keep exactly the
same rights they currently have in a phone network, and with greater
security. (In fact, due to technological advances --i.e., wireless
networks-- eavesdropping ordinary phone conversations will become
easier and easier for unauthorized parties.)

Q What is the difference between a Fair PKC and a PKC with a "hidden
trapdoor" chosen by the Government? l

A: There are three main differences:

1) A PKC with a hidden trapdoor is very dangerous: if an enemy finds it,
the security of the entire system is compromised.

By contrast, in a Fair PKC, each user chooses his key independently.
Thus even if a single user's key is compromised, this does not affect
other users at all.

2) Society may never consent to using a PKC with a hidden trapdoor,
since this is equivalent to asking the citizen to surrender their right to
privacy even before being suspected of any wrong doing! (On the other
hand, should a government maliciously ask its citizens to use a special
type of PKC concealing the presence of a master secret key, things may
get quite unpleasant if the existence of such a key is later discovered!)

3) PKCs with a hidden trapdoor may be weaker than ordinary PKCs,
since in the former case the public and private keys must be chosen in
a constrained way. In fact, enforcing the existence of a single master
secret key for all public keys in the system is a very severe constraint
in choosing the individual users' keys. Indeed, it is easy to speak of a

1 A hidden trapdoor can be thought as a system master secret key.

1 1

system with a single master key, but it is also quite conceivable that any
such cryptosystem may be easy to break.

By contrast, a Fair PKC, unless all trustees unlawfully collaborate, offers
the same security of the underlying PKC. Even if 4 out of 5 trustees are
compromised, the time that an adversary must invest for understanding
anything about a message encrypted in a Fair PKC provably equals the
time he needs to invest when the same message has been encrypted in
the underlying ordinary PKC.

Q Granted that Fair Cryptosystems protect Society and the individual. But
what is their advantage if criminals do not use them for their
communications?

A: We must distingush two settings: First, when the use of any PKC which is
not Fair is made illegal. Second, when all commercially available PKCs
are Fair (e.g., because thay are the only ones to be standardized), even
though non-Fair PKC are not illegal.

Setting 1 has a short answer: a criminal who uses a non-Fair PKC could
be brough to justice at least on this charge (recall that Al Capone was
convicted for tax evasion).

Let us now consider setting 2. First, note that this is the current setting:
anyone in the U.S.A. can use any cryptosystem he or she chooses
(though the market for encryption product has not yet reached its full
potential). Still, if Society ensures, via standardization, that all easily
available PKCs are Fair, there are big advantages to be gained.

1) Criminals will have difficulty in distributing their own keys.

In fact, they could not enjoy the convenience of a well-kept and well­
publicized public file; that is, they could not call up anyone they want
and have a secret conversation with her. They thus would need
alternative, cumbersome, and secretive methods to exchange their own
keys.

In other words, it is one thing that criminals go out of their way to avoid
being controlled by the Society in presence of a court order, and a very
different thing that the Society goes out of their way to provide
criminals with this capability by setting up an ordinary PKC on a grand
scale!

2) Besides
convenient
their keys.

difficulty in key distribution, criminals will have no
access to "alternative" cryptographic products which use

In fact, most products whose usefulness may be greatly enhanced by
public-key cryptography --such as "secure" phones, "secure" faxes,
etc.-- could become reasonably available, economic, reliable, and
compatible, only if mass produced; that is, only after intensive
engineering effort and big initial investments. Thus, if essentially only
the criminals were to use non-fair cryptography, industry would not
have sufficient interest m developing products incorporating such

12

technology. (Else, the "criminal market" should have grown so much
that we would have nothing more to worry about: civil society as we
know it would have already ceased to exist.) Also, big and reputable
companies would refrain anyway from manufacturing "questionable"
products. Finally, even if a company were willing to manufacture
products utilizing non-Fair PKCs, the list of its customers or any record
of its sales would be excellent tips for the Police.

3) In an ordinary PKC, the Government is in a difficult pos1t10n. Since it
cannot understand any conversation at all, it has no way to distinguish
even potential criminals from non-criminals (setting aside what
criminals are saying). In a Fair PKC, instead, the Government can at
least make this distinction. Assume that a Fair PKC is standardized, X is
one of its users, and a court order authorizes the Government to listen to
all messages addressed to X. If the Government is still unable to
understand these calls, it means that X really uses a different
cryptosystem, and thus intends not to be understood by the Government
even in case of a court order. This may be crucial information, and
information not available in an ordinary PKC.

4) If all commercially available cryptographic products (e.g., "secure"
phones) were based on Fair-PKCs, there would be several advantages.
True: a powerful criminal organization could succeed in having
designed and produced phones made secure by a non-Fair PKC. This
would, however, be less easy for isolated criminals; moreover, it would
be most inconvenient for two or three people to get hold of "alternative"
products just to discuss their FIRST crime.

5) In any case, punishing abuse is secondary with respect to enabling
legitimate use.

Q Fair PKCs may strike a good balance between the needs of the
Government and those of the citizens in a democratic country, but: is
there any use of Fair PKCs for "less democratic" settings?

A: Yes. Consider the case of a large organization (say, a private company)
where there is a need for privacy, there is an established "superior"
(say, a president), but not all employees can be trusted since there are
too many of them. The need for privacy requires the use of encryption.
Since not all employees can be trusted, using a single encryption key
for the whole company is unthinkable. So is using lots of single-key
cryptosystems, since this would generate enormous key-distribution
problems. Having each employee use his own double-key system is also
dangerous, since he might conspire against the company with great
secrecy, impunity, and convenience. Obliging every employee to
surrender his decryption key to the president is certainly more possible
than in the public sector, since a private company need not to be too
democratic an organization. But having all employees change their
keys every time that a new president is nominated may be quite
impractical.

Even in this context Fair PKCs may be of help. Again, key distribution
will not be a problem. Each employee will be in charge of choosing his
own keys, which makes the system more distributed and agile. While

13

enjoying the advantages of a more distributed procedure, the company
will retain an absolute control, since the president is guaranteed to be
able to decrypt every employee's communications when necessary.
There is no need to change keys when the president does, since the
trustees need not to be changed. The trustees' storage devices (keeping
their pieces of the employees keys) need not an overwhelming
surveillance, since only compromising all of them will give an
adversary any advantage.

Finally, Fair PK Cs can be used as better secret sharing, since one has the
guarantee that the secret will be reconstructed if all pieces (or the
majority of them, depending on the implementation) will be made
available.

5. Making Fair the Diffie-Hellman Scheme

Let us now explicitly exhibit a Fair PKC; actually, let us show how to make Fair
the popular Diffie-Hellman PKC. Though this section requires some knowledge
of number theory, it illustrates that Fair PKCs can be efficient and
algorithmically simple.

Recall that, a bit differently than in other systems, in Diffie-Hellman's scheme
each pair of users X and Y succeeds, without any interaction, in agreeing upon
a common, secret key Sx y to be used as a conventional single-key
cryptosystem. Here is how.

The Ordinary Diffie-Hellman PKC

There are a prime p and a generator (or high-order element) g common to all
users.
User X secretly selects a random integer Sx (for "secret") in the interval
[l,p-1] as his private key and publicly announces the integer Px=gSx mod pas
his public key. Another user, Y, will similarly select Sy as his private key and
announce Py=gSY mod p as his public key. The value of their common and
secret key is determined as Sxy=gSx.Sy mod p. User X computes Sxy by raising
Y's public key to his secret key mod p; user Y by raising X's public key to his
secret key mod p. In fact

Sx Sy= Sx.Sy=S

Notice that knowledge of a public key does not easily yield knowledge of its
corresponding secret key. In fact, while it is easy, given g, p, and a, to compute
b = ga mod p, no efficient algorithm is known for computing, given b and p, the
a such that ga =b mod p when g has high enough order. This is, in fact, the
famous discrete logarithm problem. This problem has been used as the basis of
security in many cryptosystems, and in the recently proposed U.S. standard for
digital signatures. Our goal, however, is not to establish the security of the
Diffie-Hellman scheme; it is proving that it can be transformed into a fair one.
Again, to keep things as simple as possible we imagine that there are 5 trustees
and that ALL of them should cooperate to reconstruct a secret key, that is, that
ALL shares are needed to reconstruct a secret key. Relaxing this condition
involves another idea and will be dealt with in section 5.

14

A Fair Diffie-Hellman Scheme
(All-Shares Case)

Instructions for the users
Each user X randomly chooses 5 integers Sxi , ... ,Sx5 in the interval [i ,p-i] and
lets Sx be their sum mod p. From here on, it will be understood that all
operations are modulo p. He then computes the numbers

ti =gSxi , ... ,t5=gSx5 and Px=gSx.

P x will be user X's public key and S x his private key. The ti's will be referred to
as the public pieces of Px, and the Sxi's as its private pieces. Notice that the
product of the public pieces equals the public key Px. In fact,

Let Tl, ... ,T5 be the five trustees. User X now gives Px and pieces ti and Sxi to
trustee Tl, t2 and Sx2 to TI, and so on. It is important that piece Sxi be privately
given to trustee Ti•

Instructions for the trustees
Upon receiving public and private pieces ti and Sxi, trustee Ti verifies
whether gSxi=ti. If so, it stores the pair (Px,Sxi), signs the pair (Px,ti), and
gives the signed pair to the key-management center. (Or to user X, who will
then give all of the signed public pieces at once to the key-management
center.)
Instructions for the key-management center
Upon receiving all the signed public pieces, ti ... t5, relative to a given public
key P x, the center verifies that the product of the public pieces indeed equals
P x. If so, it approves P x as a public key, and distributes it as in the original
scheme (e.g., signs it and gives it to user X.)

This ends the instructions relative to the keys of the Fair PKC. The encryption
and decryption instructions for any pair of users X and Y are exactly as in the
Diffie and Hellman scheme (i.e., with common, secret key Sxy). It should be
noticed that, like the ordinary Diffie-Hellman, the Fair Diffie-Hellman scheme
does not require any special hardware and is actually easy to implement in
software.

Why does this work?
First, the privacy of communication offered by the system is the same as in the
Diffie and Hellman scheme. In fact, the validation of a public key does not
compromise at all the corresponding private key. Each trustee Ti receives, as a
special piece, the discrete logarithm, Sxi, of a random number, ti. This
information is clearly irrelevant for computing the discrete logarithm of P x !
The same is actually true for any 4 of the trustees taken together, since any
four special pieces are independent of the private decryption key Sx. Also the
key-management center does not possess any information relevant to the
private key; that is, the discrete logarithm of P x. All it has are the public
pieces signed by the trustees. (The public pieces simply are 5 random
numbers whose product is P x. This type of information is irrelevant for
computing the discrete logarithm of Px; in fact, anyone could choose four
integers at random and set the fifth to be P x divided by the product of the first

15

four 1. As for a trustee's signature, this just represents the promise that
someone else has a secret piece. As a matter of fact, even the information in
the hands of the center together with any four of the trustees is irrelevant for
computing the private key Sx.) Thus, not only is the user guaranteed that the
validation procedure will not betray his private key, but he also knows that
this procedure has been properly followed because he himself has computed
his own keys and the pieces of his private one!

Second, if the key-management center validates the public key P x, then the
corresponding private key is guaranteed to be reconstructible by the
Government in case of a court order. In fact, the center receives all 5 public
pieces of P x, each signed by the proper trustee. These signatures testify that
trustee Ti possesses the discrete logarithm of public piece ti. Since the center
verifies that the product of the public pieces equals P x, it also knows that the
sum of the secret pieces in storage with the trustees equals the discrete
logarithm of Px; that is, user X's private key. Thus the center knows that, if a
court order is issued requesting the private key of X, by summing the values
received by the trustees, the Government is guaranteed to obtain the needed
private key.

Making Fair Other PKCs.
The reader who wishes to see how any PKC can be made Fair can read section
A 1 of our technical appendix. Like for all general transformations, also this
one will be quite inefficient. On the other hand, Section A2 shows that another
specific PKC, the popular RSA scheme, can be made Fair in a reasonably
efficient manner. This transformation, however, requires much more
knowledge of number theory, and does not possess the algorithmic simplicity
of our Fair Diffie-Hellman scheme. In particular, we wish to point out that the
Diffie-Hellman PKC is very convenient from a law-enforcement point of view
in that, if one reconstructs the secret key of a user, he will be able to decrypt
both the outgoing and the incoming encrypted messages relative to that user.
By contrast, in schemes such the RSA, only the incoming message traffic
becomes intelligible once a secret key becomes known. This drawback (from
the law-enforcement point of view) can be removed by adding some special
hand-shake protocols to the original schemes.

6. Variants of the Basic Notion of a Fair PKC

As we have said, several variants of the notion of a Fair PKC are both possible
and desirable. Three such variants are presented below in suffiecient detail,
while others are only briefly mentioned.

6.1 Time-Bounded Court-Authorized Eavesdropping

As mentioned in Subsection 3.3, we now wish to prevent that, having received
a court authorization to monitor the communications of a given user for a
given interval of time, the agent doing this monitoring (say, the Police) may
exceed its mandate and keep on tapping the suspected user's lines for a longer
period of time. We discuss various strategies to accomplish this goal.

1 The result would be integral because division is modulo p.

16

6.1.1 Multiple Public-Keys

A very simple way to ensure time-bounded court-authorized line tapping
consists of having each user choose a sufficient amount of matching public
and secret keys, say one per month. Each public key will then be publicized
specifying the month to which it refers. Someone who wants to send user X a
private message in March, will then encrypt it with X's public March key. If
this level of granularity is acceptable, the court may then ask the trustees to
reveal X's secret keys for a prescribed set of months.

The disadvantage of this approach is that it requires a rather large "total
public key," and it may be totally impractical if a fine granularity is desired.

6.1.2 Tamper-Proof Chips

Simple and effective methods to ensure time-bounded court-authorized
eavesdropping are possible by means of secure chips; these are special chips
whose content cannot be "read from the outside," or tampered with in any way
without destroying the entire chip with all its protected information. (Such
chips are central to the Clipper Chip proposal.)

One such method is the following. Assume that, to monitor the communications
of suspected users in response to a court order, the Police use secure chips -­
call them the Polchips-- possessing an internal and thus untamperable clock
as follows. Let there be a court order to tap user X's line from February to
April. Then, each trustee will send the Polchip a digitally signed message
consisting of his own share of user X's private key (encrypted so that only the
Polchip will understand it). The Polchip can now easily compute X's secret key.
Thus, if the Court sends to the Polchip a signed message consisting of, say,
"decode, X, February-April", since the Polchip has an internal clock(or some
other untamperable way to accurately keep track of time), it can easily
decrypt all messages relative to X for the prescribed time period. Then, it will
destroy X's secret key, and, in order to allow further line tapping, a new court
order will be required.

A main advantage of this approach is its simplicity; it does, however, require
some additional amount of trust. In fact, the citizens cannot check, but must
believe, that each Polchip is manufactured so as to work as specified above.

6.1.3 Algorithmically-Chosen Session Keys

In the multiple public-key method described above, each user selected and
properly shared with the Trustees a number of secret keys of a PKC equal to
the number of possible transmission "dates" (in the above example, each
possible month). Within each specified date, the same public-secret key pair
was used for directly encrypting and decrypting any message sent or received
by any user. Time-bounded Fair PKCs, however, can be more efficiently
achieved by using public keys only to encrypt session keys, and session keys
to encrypt real messages (by means of a conventional single-key system).
This is, in fact, the most common and efficient way to proceed.

Session keys are usually unique to each pair of users and date of transm1ss10n.
Indeed, if each minute or second is considered a different date, there may be a
different session key for every transmission between two users. In fact, the

17

date may just be any progressive number identifying the transmission, but not
necessarily related to physical time.

To achieve time-bounded court-authorized line tapping, we suggest to choose
session keys algorithmically (so that the Trustees can compute each desired
session key from information received when users enter the system), but
unpredictably (so that, though some session keys may become known --e.g.,
because of a given court order-- the other session keys remain unknown).

The particular mechanics to exploit this approach is quite important, because
not all schemes based on algorithmically selected session keys yield equally
convenient time-bounded Fair PKCs. 1 An effective method is described in
Section A3 of the technical appendix.

6.2 Relying on Fewer Shares

As mentioned in Subsection 3.3, we wish to prevent that, should a single piece
of a secret key be missing, a court-authorized line tapping becomes impossible.
Better said, we wish that the malicious collaboration of fewer than a
prescribed number of Trustees should not enable anyone to compute even a
single secret decryption key, while the honest collaboration of more than a
given number (possibly different from the previous one) of Trustees should
enable one to easily reconstruct a secret key.

To achieve these golas, the solution we present below increases a bit the
original number of Trustees (in our case, from 5 to 15), but has the great
advantage of being both conceptually and algorithmically very simple.
Solutions that do not increase the number of Trustees are discuscussed in
Section A4 of our technical appendix.

THE SHARE REPUCATION METHOD.
In this solution, each of the 5 trustees is replaced by a group of new trustees.
For instance, instead of a single trustee T1, there may be 3 trustees, T11 T2 1

T 3 1; each of these trustees will receive and check the same share of trustee T1.
Thus, it is going to be very unlikely that all 3 trustees will refuse to surrender
their copy of the first share. This scheme is a bit "trustee-wasteful" since it
requires 15 trustees while it is enough that an adversary corrupts 5 of them to
defeat the scheme. (However, one should appreciate that defeating the share­
replication scheme is not as easy as corrupting any 5 trustees out of 15, since it
must be true that a trustee is corrupted in each group.) The scheme has,
nonetheless, two strong advantages: (1) Scalability: denoting by n the number
of trustee groups, the computational effort of the scheme grows polynomially
in n, no matter what the group size is, and thus --if desired-- one can choose a
large value for n; (2) Repetitiveness: if there are n trustee groups of size k

1 For instance, a time-bounded FAIR PKC that required the Police to contact the Trustees
specifying the triplet (X,Y ,D) in order to understand X's communication to Y at time D
(belonging to the court-authorized time interval), might be deemed inpractical. A better scheme
may allow the Police to contact the Trustees only once, specifying only X, Y, and DI and D2,
in order to understand all the communications between X and Y at any date D in the time
interval (D1,D2). Since, however, there may be quite many users Y to which the suspected
user X talks to, also this scheme may be considered impractical.

1 8

each, one should only perform n "operations," in fact, each member of a
trustee group gets a "xerox copy" of the same computation.

In the final paper we shall demonstrate that both methods can be optimized,
but here let us instead move on to consider a far more important problem than
efficiency.

6.3 Making Trustees Oblivious

There is another issue worth discussing. Namely, a trustee requested by a court
order to surrender his share of a given secret key may alert the owner of that
key that his communications are going to be monitored.

A technical solution to this problem is presented in Section A5 of the appendix.
(The idea consist of having each Trustee give the shares in his possession to
the trusted center from the very beginning, but encrypted. In case of a court
order, however, the center has a way of obtaining from the Trustee the
decryption of the share of the suspected user without revealing to him which
this share is --and thus hiding the identity of the user.)

It should, however, be realized that, while solving a potential problem, this
technique may introduce new and different problems. For instance, if the
Trustees do not know which user's shares they are revealing, they cannot
have a serious chance to consider the evidence against that user, which,
presumably, contains the user's name. Thus, the danger exists that the
obliviousness of the Trustees may allow one to obtain illegally the secret key of
users against which no legitimate court order has been issued.

7. Clipper Chip and the Government's Key-Escrow System

7.1 A Quick Review of the Government's Proposal.

The Clipper Chip proposal is an attempt to tum conventional cryptosystems
into Fair ones. Under the new proposal, users encrypt messages by means of
secure chips (as defined in subsection 8.1.2). All these chips contain in their
protected boundary the same classified encryption algorithm, Skipjack, and
each chip possesses a unique identifier. To "initialize" chip x, two Trustees A
and B independently choose a secret number (call ax the secret choice of
Trustee A and bx that of Trustee B), and remember which secret choice they
have made relative to x. These two numbers are then given (somehow) to a
chip factory that computes their exclusive-or, ex, and stores it into the
protected memory of the chip. 1 This ends the initialization of chip x. Thus
after being initialized, each clipper chip possesses a secret key, whose value is
at this point only known to the chip itself, though shares of it are stored with
the two trustees. Since the chip is assumed to be tamper-proof, it can be
handled and sold without any further precautions after being initialized.
Assume now that user X has bought chip x, that user Y has bought an
analogous chip y, and that the two users have somehow exchanged a common
secret key Kxy. To privately send a message m to Y, X inputs m to chip x, which

1 Hopefully, this delicate step will be handled in a proper manner; else some party may be
enabled to learn or compute ex without any court authorization. The manner in which ax and bx
are generated is also crucial.

1 9

will then use Skipjack to (1) encrypt Kxy with key ex, and (2) encrypt message
m with key Kxy, and then send both ciphertexts to Y. In case of a court order
for monitoring X's conversations, the two trustees will retrieve their
respective secret numbers ax and bx, and reveal them to the Police, which will
then combine them so as to compute ex, decode the first ciphertext with ex so
as to compute Kxy, and finally decode the second ciphertext with Kxy so as to
compute m.

7.2 Clipper Chip and Fair PKCs: a Brief Comparison

Both Fair PKCs and Clipper Chip aim at making encryption compatible with law
enforcement. Both proposals envisage a group of trustees which are
collectively, though not individually, trusted. Both proposals advocate that
these trustees hold guaranteed pieces of the secret decryption key of every
user in the system. The main difference between the two systems is the way in
which the trustees enter in possession of their guaranteed pieces of a given
decryption key. In the Clipper Chip, this process is TOP-DOWN and centralized,
in Fair PKCs it is BOTTOM-UP and distributed. Indeed, in the Government
proposal, for each user (chip) U, each trustee Ti selects a secret piece SUi, and
the sum of these pieces, SU, is made the special secret key of U. (Thm each
trustee is guaranteed to have correct pieces of SU.) In a Fair PKC, each user U
chooses a public encryption key, PU, and a matching secret decryption key,
SU. He then computes a special set of pieces of his own SU, and gives piece i to
trustee Ti together with a proof that the piece is correct. (As we shall see, this
bottom-up approach gives Fair PKCs greater flexibility.) A second main
difference is that Clipper Chip recommends usage of a secret encryption
algorithm, Skipjack, contained in the protected chip, while Fair PKCs allow
use of any known public-key cryptosystem. In addition, Fair PKCs possess
other advantages, some of which can be transfered to the Clipper Chip project.
Let us now compare the two proposal on the following series of points.

1 CONTROL. Because f the top-down approach of the Government proposal,
a Clipper-Chip user does not choose all the keys on which her privacy
depends (nor does she choose her own encryption algorithm). By
contrast, in a Fair PKC, because of its bottom-up approach, the user
chooses all of her keys (and algorithms for that matter). Thus Fair PKC
technology is much more respectful of the user, a necessary condition
in my opinion for national acceptance of an encryption proposal.

2 COST. While Fair PKCs can be implemented either in (ordinary)
hardware or software, the Clipper Chip must be implemented with
protected hardware only, which would drive up the cost of any device
using encryption.

3 DURATION OF LINE TAPPING. Though courts authorize the tapping of a
given communication line only for a prescribed interval of time, once
the relevant secret key of a suspected user U has been reconstructed,
the Government proposal makes it very easy for the Police to exceed its
mandate and keep on tapping the suspected user's lines for a longer
period of time. By contrast, the Fair PKC proposal presents various
techniques to guarantee time-bounded court-authorized line tapping.
Some of these techniques can, however, be extended to work with the
Clipper Chip.

20

4 RELIABILITY. In the Government proposal, if the records of a single
Trustee arc destroyed (e.g., by a fire or earthquake), then court­
authorized line-tapping becomes impossible. By using Fair PKCs,
instead, one can ensure that, say, 3 out of 5 pieces are enough to
reconstruct a secret key (while any 2 or less are provably insufficient).
Some of these techniques, however, can be adapted to work with Clipper
Chip setting.

5 COMPATIBILITY. Assume that a Clipper Chip user U is both a citizen of
the U.S.A. and an employee of a large corporation. His using the Clipper
Chip guarantees the Government that, in case of a court-order, U's
encrypted messages can be decrypted. There may be cases, however,
(e.g., industrial espionage) in which also the corporation wishes to
monitor U's conversations, but these cases may not coincide with the
ones for which courts issue a line-tapping order. In these cases, asking
the public trustees to reveal their pieces of U's decryption key to the
corporation is unthinkable, since it violates their very mission. The
corporation is in trouble and quite powerless. Indeed, this is one of
Donn Parker's examples of "Business Information Anarchy."

By contrast, Fair PKCs guarantee an easy solution to this problem.
Indeed, user U, knowing his own decryption key SU, may spontaneously
(as long as he wishes to belong to the corporation) and easily break SU
again into a different set of pieces, and hand them (with a new proof of
authenticity) to the trustees of the corporation. Thus either set of
trustees can reconstruct U's secret decryption key, each for their own
good (but different) reasons. Indeed, it can be seen that Fair PKCs allow
an arbitrary "hierarchy of accountability," and solve, in particular, all
of the problems rightly raised in Parker's article. It is important to
notice that, unless an enemy has all the shares of one set of trustees,
having some of the shares of many sets is useless.

6 SECRET-KEY EXCHANGE. Two Clipper-Chip users may communicate in
private only if they have established a common secret key beforehand.
Clipper Chip, in fact, does not provide any help for two users who wish
to establish a common secret key. This requires citizens to bear the cost
of exchanging private keys at an interpersonal level. Efficiency
concerns --or mere common sense-- will induce a market-oriented
Government to provide businessmen with an ordinary public-key
cryptosystem, P, to be used in conjunction with Clipper Chips. 1

In this scenario, law enforcement is a hard task indeed. Assume, in fact,
that the following sentence appears on a national daily paper (or
becomes public knowledge somehow):

"Whenever you (user X) are sent by a user Y a session key Kxy
(encrypted with your public encryption key in P) and a ciphertext C, if
decrypting C with your Clipper Chip and session key Kxy does not yield a
meaningful plaintext message, then decrypt C with the DES-EDH
algorithm and key Kxy"

If the government decided not to provide any PKC, businessmen would most likely develop one at a
private level.

2 1

Then, in a single stroke, all the criminals in the Country who can get
hold of equipment running DES-EDE will be able to talk with each other
with extreme secrecy (since court-authorized line tapping is only
guaranteed for messages encrypted with Clipper Chip) and extreme
convenience (since they have been linked --Society's courtesy-- by an
expensive, country-wide, public-key cryptosystem).

In other words, Clipper Chip ensures that criminals cannot abuse of
widely-distributed cryptographic products, but allows the abuse of the
public infrastructure (e.g., the ordinary PKC) that makes effective these
products. This is a major mistake. It arises from an old and fatal
misconception: PRODUCTS are more valuable than INFRASTRUCTURE. In
my opinion, the opposite is true. For very determined criminals, getting
hold of "alternative" cryptographic products will be somewhat hard
(which makes Clipper Chip a mild instrument of crime-deterrence), but
not too hard and not too useful. More alarmingly, ALL potential
criminals will benefit to a great extent from a nation-wide directory of
public-encryption keys.

By contrast, Fair PKCs retain all the advantages of public-key
cryptosystems, but avoid its dangers. Setting up a public file in grand
style (e.g., providing a 411-like service that efficiently and reliably
delivers tens of millions of public encryption keys) will be very costly
to Society, and thus we must ensure that every encryption key
contained in it cannot be used so as to avoid court-authorized line
tapping. This is exactly what Fair PKCs achieve. And this is, in my
opinion, the best way to extend to the field of encryption the proper
system of "checks-and-balances" necessary in a democracy.

7 AMBIGUITY. Assume that, presented with a court order, the two trustees
A and B reveal to the Police their pieces, respectively ax and bx, of the
secret key of the chip, x, of a suspected user X. Further assume, however,
that after reconstructing this key the Police is still unable to obtain the
cleartext of the encrypted messages sent by X. The Police may interpret
this as a proof that X does not use his clipper chip to encrypt messages.
On the other side, user X may deny all this and say that, clearly, it is the
trustees who have revealed wrong pieces to the Police. Who is right?
Fair PKCs are not affected by such ambiguities: the trustees reveal
pieces that can be tested to be correct pieces of the secret key matching
a public key chosen by the user. Thus, no malicious user can deny he
encrypted messages with a different, not approved key. And this is a
useful property, whether or not using "alternative" cryptosystems is
made illegal.

8 INTERNATIONAL ISOLATION. Clipper Chip encrypts messages by means
of a classified algorithm, Skipjack, whose circuitry is contained in the
tamper-proof portion of Clipper Chip; as a consequence, a foreign
business man who wishes to talk to a U.S. Clipper-Chip user must also
buy a Clipper Chip, and thus accept that US trustees have pieces of his
relevant secret key. This is unlikely to happen. What is more likely,
however, is that the rest of the world will develop its own crypto­
standards, thus making it easier for them to negotiate contracts, hold
video-conferences, etc. at a distance and in private, leaving the U.S. cut
off from the benefits that cryptography offers to business.

22

By contrast, Fair PKCs (1) allow private communication between any two
people in the world, and (2) even without cooperation between different
governments, guarantee the government of each individual country
that each message sent to any of its citizens can be decoded under the
circumstances provided by the (local) law.

9. ANTI-INNOVATION. The Clipper Chip provides a pre-determined solution
to building a Fair cryptosystem. This per se is not negative, but
mandating or otherwise influencing industry to make "universal" this
single specific solution would be. Indeed, there would be little room, in
the tight bounds of the Clipper Chip proposal, for technology suppliers
to design the best algorithms and architectures to meet consumer needs.

By contrast, Fair PKCs do not impose any particular algorithm, but a
simple and clear constraint (verifiability of secret-key shares) that can
be satisfied by any algorithm, without any additional penalties, in a pre­
processing stage. This leaves still much room for invention and
creativity in designing secure communication networks, ultimately
leading to much more competitive, well-designed products.

8. An Announcement

Very recently, my colleague Tom Leighton and I have found a new type of
cryptosystem that provides both Fair private-key cryptography and fair
secret-key distribution [LM]. The method does not rely on public-key
cryptography nor number theory. It is extremely secure, practical and can be
effectively used with Clipper Chip if so wanted.

9. Final Remarks

Clipper Chip prevents that a diligently-designed encryption algorithm may
fall in the wrong hands, and thus its wide adoption cannot directly harm
national security. It may, however, harm both national security and law
enforcement indirectly, by causing an unregulated public-key cryptosystem
to handle the distribution of secret keys. Indeed, if the Government wants to
control crime, the key-distribution infrastructure should be properly
regulated. Fair PKCs may provide a technical and democratic way to regulate
key distribtion, but first Society must agree on the need of such a regulation.
Assuming this to be the case, many other political questions await for answers:
Who should the Trustees be? How many should they be? For how long should
line-tapping be authorized? Answering these questions well will require a
debate as public, wide, and informed as possible.

23

Acknowledgments

I wish to thank Allan Borodin, Dennis Branstad, Daniela Caruso Micali, Michael
Dertouzos, John Deuteh, Oded Goldreich, Shafi Goldwasser, Martin Hellman, Carl
Keysen, Tom Leighton, Ron Rivest, and Phillip Rogaway for their valuable
comments.

References

[AwChGoMi] B. Awerbuch, B. Chor, S. Goldwasser and S. Micali. Verifiable
Secret Sharing and Achieving Simultaneity in the Presence of Faults. In
Proceedings of the 26th Annual IEEE Symposium of Foundations of Computer
Science. IEEE, New York, 1986, pp. 383-395.

[Be] J. Benaloh. Secret Sharing Homomorphisms: Keeping Shares of a Secret
Secret. Advances in Cryptology --Proceedings of Crypto '86. Springer
Verlag, 1986.

[BeGoWi] M. Ben-Or, S. Goldwasscr, and A. Wigderson. Completeness Theorems
for Fault-Tolerant Distributed Computing. In Proceedings of the 20th ACM
Symposium of Theory of Computing. ACM, New York, 1988, pp. 1-10.

[Bl] G. Blakley. Safeguarding Cryptographic Keys. In AF/PS - Conference
Proceedings. NCC, New Jersey, 1979, Vol. 48 (June), pp. 313-317.

[BlMi] M. Blum and S. Micali. How to Generate Cryptographically Strong
Sequences of Pseudo-Random Bits. Siam Journal on Computing, 1984, vol. 13
(Novenber), pp. 850-863.
Proceeding Version: FOCS 1982

[ChCrDa] D. Chaum, C. Crepeau, and I. Damgard. Multi-party Unconditionally
Secure Protocols. In Proceedings of the 20th ACM Symposium of Theory of
Computing. ACM, New York, 1988, pp. 11-19.

[De] D. Denning. To Tap or Not To Tap. In Comm. of the ACM. March 1993, Vol. 36,
No. 3, pp. 25-44.

[DiHe] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans.
Inform. Theory. IT-22, 6 (Nov. 1976), IEEE, New York, pp. 644-654.

[Fe87] P. Feldman. A Practical Scheme for Non-Interactive verifiable Secret
Sharing. In Proceedings of the 28th Annual IEEE Symposium of Foundations
of Computer Science. IEEE, New York,1987, pp. 427-438.

[GoMi] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of
Computer Systems Science. Academic Press, New York, Vol. 28 No. 2 (1984),
pp. 270-299.

[GMWl] 0. Goldreich, S. Micali, and A. Wigderson. Proofs that yield Nothing
but their Validity and a Methodology of Cryptographic Protocol Design. In
Proceedings of the 27th Annual IEEE Symposium of Foundations of Computer
Science. IEEE, New York,1986, pp. 174-187.

24

[GMW2] 0. Goldrcich, S. Micali, and A. Wigderson. How To Play ANY Mental
Game or A Completeness Theorem for Protocols with Honest Majority. In
Proceedings of the 19th Annual ACM Symposium of Theory of Computing.
ACM, New York, 1987, pp. 218-229.

[LM] T. Leighton and S. Micali. Secret-Key Distribution witout public-key
cryptography. Presented at Crypto 93, Santa Barbara, CA, August 1993.
Improved manuscript available from authors.

[RaBe] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty
Protocols with Honest Majority. In Proceedings of the 21st ACM Symposium
of Theory of Computing. ACM, New York, 1989, pp. 73-85.

[RSA] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystens. Comm. ACM 21, 2 (Feb. 1978), pp. 120-
126.

[Sh] A. Shamir. How to Share a Secret. Communications of the ACM. ACM, New
York, 1979, Vol. 22, No. 11 (Nov.), pp. 612-613.

25

A. Technical Appendix

Al. How to make Fair any PKC

In this section we want to show how to implement concretely the general (but
quite abstract) construction of Section 3.2. Like for all things general, also this
transformation is not too efficient.

Disregarding efficiency considerations, this section is devoted to the reader
who, being superficially aware of concepts like "secret sharing" or "zero­
knowledge," wishes to clarify what is their relationship with Fair PKCs. The
reader who has never dealt with the above mentioned concepts may prefer to
skip this section entirely; as for the expert in secure protocol theory, she may
read just the following sketch.

Al.I A Sketch For The Expert.

Cutting corners, each user should (1) come up with a pair of matching public
and private keys and give the trustees his chosen public key, (2) encrypt (by a
different cryptosystem, even one based on a one-way function) his chosen
private key, (3) give the trustees the just computed ciphertext and a zero­
knowledge proof that the corresponding "decryption" really consists of the
private key corresponding to the given public key, and (4) give the trustees
shares of this decryption by means of a Verifiable Secret Sharing protocol that
has the property of guaranteeing that the shared secret really is what was
encryted in Step 2.

Al.2 A More Informative Discussion

In expanding the above sketch for the non-expert in protocol design, we feel
it is important to illustrate both similarities and differences between Fair PKCs
and other related prior notions.

SECRET SHARING
As independently put forward by Shamir [Sh] and Blakley [Bil, secret sharing
(with parameters n,T,t) is a cryptographic scheme consisting of two phases: in
phase 1, a secret value chosen by a distinguished person, the dealer, is put in
"safe storage" with n people or computers, the trustees, by giving each one of
them a piece of information, a share, of the secret value. In phase 2, when the
trustees pool together the information in their possession, the secret is
recovered. In a secret sharing, this storage is safe only in two senses:

1 Redundancy.
Not all trustees need to reveal their shares in phase 2: it is enough that T
of them do. (Thus the system tolerates that some of the trustees "die" or
accidentally destroy the shares in their possession)

2 Privacy.
If less than t of the trustees accidentally or even intentionally divulge
the information in their possession to each other or to an outside party,
the secret remains unpredictable until phase 2 occurs.

26

However, secret sharing suffers of a main problem: Assumed honesty; namely,

Secret sharing presupposes that the dealer gives the trustees correct
"shares" (pieces of information) about his secret value. This is so
because each trustee cannot verify that he has received a meaningful
share of anything. A dishonest dealer may thus give "junk" shares in
phase 1, so that, when in phase 2 the trustees pool together the shares
in their possession, there is no secret to be reconstructed.

EXAMPLE (Shamir)
The following is a secret sharing scheme with parameters n=2t+ 1 and T=t+ 1.

Let p be a prime >n, and let S belong to the interval [0,p-1]. Choose a
polynomial P(x) of degree t by choosing at random each of its
coefficients in [0,p-1], except for the last one which is taken to be equal
to S , that is, P(O)=S. Then the n shares are so computed:
Sl=P(l), ... ,Sn=P(n). Redundancy holds since the polynomial P(x) can be
interpolated from its value at any t+ 1 distinct points. (This, in turn,
allows the computation of P(O) and thus of the secret.) Privacy holds
since P(O) is totally undetermined by the value of P at any t distinct
points Xl ... Xt different from O (in fact, any value v for P(O), together
with the value of P at points Xl ... Xt uniquely determines a polynomial).

As it can be easily seen, if the dealer is dishonest, he may give each trustee a
random number mod p. If this is the case, then (a) each trustee cannot tell that
he has a junk share, and (b) in phase 2 there will be no secret to reconstruct.
The consequence of this is that secret sharing is more useful in those
occasions in which the dealer is certainly honest, for instance, because being
honest is in his own interest. (A user that encrypts his own files with a secret
key has a big interest in properly secret sharing his key with, say, a group of
colleagues: if he accidentally looses it, he needs to reconstruct it!) Secret
sharing alone, instead, cannot be too useful for building Fair Cryptosystems:
we cannot expect that a criminal give proper shares of his secret key to some
federal judges when the only purpose of his doing this is allowing the
authorities, under a court order, to understand his communications!

VERIFIABLE SECRET SHARING
A closer connection exists between Fair PKCs and verifiable secret sharing
(VSS) protocols. While the two concepts are not identical, a special type of VSS
can be used to build Fair PKCs. As put forward by Awerbuch, Chor, Goldwasser,
and Micali [CGMA], a verifiable secret sharing (VSS) scheme is a scheme that,
while guaranteeing both the redundancy and the privacy property,
overcomes the "honesty problem." In fact, in a VSS scheme each trustee can
verify that the share given to him is genuine without knowing at all the
shares of other trustees or the secret itself. That is, he can verify that, if T
verified shares are revealed in phase 2, the original secret will be
reconstructed, no matter what the dealer or dishonest trustees might do.

EXAMPLE (Goldreich, Micali, and Wigderson [GMWl I)

Assume that a PKC is in place and let Ei be the public encryption
function of trustee i. Then, as in Shamir's scheme, the dealer selects a
random polynomial P of degree t such that P(O)=the secret, and gives

27

each trustee the n-vector of encryptions El(P(l)) E2(P(2)) ... En(P(n)).
Trustee i will therefore properly decode P(i), but has no idea about the
value of the other shares, and, consequently, whether these shares
"define" a unique t-degree polynomial passing through them. The
dealer thus proves to each trustee that the following sentence is true "if
you were so lucky to guess all decryption keys, you could easily verify
that there exists a unique t-degree polynomial interpolating the
encrypted shares." Since easily verifying something after a lucky guess
corresponds to NP, the above is an "NP sentence." Since, further, the
authors show that whole of NP is in zero-knowledge, the dealer proves
the correctness of the sentence, in zero knowledge, to every trustee.
This guarantees each trustee that he has a legitimate share of the secret,
since he has a legitimate share of P, but does not enable him (or him
and any other t-1 trustees) to guess what the secret is before phase 2.

VSS AND FAIR PKCs
Assume that each user chooses a secret/public key pair, and then VSS shares
his secret key with some federal judges. Does this constitute a Fair PKC? Not
necessarily. In a VSS scheme, in fact, the secret may be unstructured. That is,
each trustee can only verify that he got a genuine share of some secret value,
but this value can be "anything." For instance, if the dealer promises that his
secret value is a prime number, in an unstructured VSS a trustee can verify
that he got a genuine share of some number, but has no assurances that this
number is prime.

Unstructured VSS is not enough for Fair PKCs. In fact, the trustees should not
stop at verifying that they possess a legitimate share of a "generic" secret
number: they should verify that the number they have a share of actually is
the decryption key of a given public key! The GMWl scheme, as described
above, is an unstructured VSS, and thus unsuitable for directly building Fair
PKCs. The same is true for other VSS schemes (e.g. the ones of Ben-Or,
Goldwasser and Wigderson [BeGoWi]; of Chaum, Crepeau and Damgard [ChCrDa};
and of Rabin and Ben-Or [RaBe], just to mention a few).

Some VSS schemes are structured, that is each trustee can further verify that
the secret value of which he possesses a genuine share satisfies some
additional property. What this property is depends on the VSS scheme used. For
instance, Feldman proposes a VSS in which, given an RSA modulus N and an
RSA ciphertext E(m)= me mod N (of some cleartext message m), the trustees can
verify that they do possess genuine shares of the decryption of E(m) (i.e., of
m). This scheme is attractive in that it is "non-interactive," but cannot be used
to hand out in a verifiable way shares of the decryption key of a given public
key. In fact,

the trustees have no guarantee that the decryption of E(m) actually
consists of N's factorization.

In other words, the trustees can verify that they have genuine shares of the
decryption (m) of a ciphertext E(m), but m is unstructured (with respect to N's
factorization and anything else).

CONSTRUCTING FAIR PKCs WIIB A GENERIC VSS
Can a generic VSS scheme be transformed so as to yield Fair PKCs? The answer
is YES, but at a formidable cost. All of the above mentioned VSS protocols can
be "structured" so that the extra property verifiable by the trustees is that the
dealer's secret actually is the decryption key of a given public key. In fact,

28

this can be achieved as an instance of secure function evaluation between
many parties as introduced by Goldreich, Micali, and Wigderson in a second
paper [GMW2]. Such secure evaluation protocols arc possible, though, more in
theory than in practice in light of the complexity of the particular functions
involved. In the case of the GMWl VSS scheme, since the encryption of all the
shares is publicly known, the transformation can actually be achieved by a
simpler machinery: an additional zero-knowledge proof. But even in this case
the computational effort involved is formidable. Essentially, one has to encode
the right statement (i.e., the secret, whose proper shares are the decodings of
these public ciphertexts, is the decryption key of this given public key) as a
VERY BIG graph, 3-colorable if and only if the statement is true, and then
prove, in zero-knowledge, that indeed the graph is 3-colorable. Not only are
these transformations of a generic VSS to one with the right property
computationally expensive, but they require INTERACTION (on top, if any, of
the interaction required by the VSS scheme itself)! All these considerations
may rule out constructing Fair PKCs this way in practice. Thus CUSTOM­
TAILORED methods should be sought, whenever possible, to transform ordinary
PKCs to Fair ones. This is our next goal.

A2. Making Fair the RSA Scheme

In Section Al we have demonstrated that any PKC can be made Fair by means
of an interactive (and not so efficient) protocol for key registration. In
Section 5, we have instead seen that the Diffie-Hellman scheme can be made
Fair by a much simpler method, one that does not require any "talking back
and forth." For completeness sake, given the popularity of the RSA scheme, I
feel obliged to show here that it too can be made Fair by a non-interactive
protocol. That is, I whish to show that, in order to ensure that each Trustee
holds a verified piece of a user-chosen RSA secret key, it is enough that the
user send a single message to each Trustee.

I wish to add, however, that our Fair RSA system, though more interesting
from a mathematical point of view, does not possess the attracti vc simplicity of
our Fair Diffie-Hellman scheme. Further, the latter scheme enjoys a big
advantage from the point of view of law enforcement. Namely, in the Diffie­
Hellman cryptosystem, once, in response to a court order, the secret key of a
user X has been reconstructed, the Government can easily understand both the
messages sent to X and those sent by X. By contrast, in the RSA scheme, if the
secret key of a user X becomes know, only the messages sent to X become easily
computable. To allow also the messages sent by X to become intelligible in case
of a court order, one must complicate the RSA scheme by requiring a special
common-key-agreement protocol prior to any encrypted conversation. An
example of such a protocol is given in Subsection 8.1.3, but for now we will be
content to show how to share a standard secret RSA key with the Trustees.
Finally, let me note that our effort would be consirerably simplified if we were
willing to make Fair not the standard RSA scheme, but some variant exhibiting
its same security.

In the basic RSA PKC, the public key consists of an integer N which is the
product of two primes and one exponent e (relatively prime with f(N), where f
is Euler's totient function). No matter what the exponent, the private key may
always be chosen to be N's factorization. Before we show how to make a Fair
PKC out of RSA we need to recall some facts from number theory.

29

* Fact 1. Let ZN denote the multiplicative group of the integers between 1 and
N which are relatively prime with N. If N is the product of two primes N=pq (or
two prime powers: N=papb), then

* a number s in ZN* is a square mod N if and only if it has four distinct

square-roots mod N: x, -x mod N, y, and -y mod N. (That is, x2 =y 2=s mod
N.) Moreover, for i,j E {1,-1}, from the greatest common divisor of ix+jy
and N, one easily computes the factorization of N. Also,

* one in four of the numbers in ZN* is a square mod N.

Fact 2. On the integers in ZN* is defined a function easy to evaluate, the
Jacobi symbol, that evaluates to either 1 or -1. The Jacobi symbol of x is denoted
by (x/N). The Jacobi symbol is multiplicative; that is, (x/N)(y/N)=(xy/N). If N is
the product of two primes N=pq (or two prime powers: N=papb), and p and q are
congruent to 3 mod 4, then, letting x, -x, y, and -y mod N be the four square
roots of a square mod n, (x/N)=(-x/N)=+ 1 and (y/N)=(-y/N)=-1. Thus, because of
fact 1, if one is given a Jacobi symbol 1 root and a Jacobi symbol -1 root of any
square, he can easily factor N.

We are now ready to describe how the RSA cryptosystem can be made fair in a
simple way. For simplicity we again assume that we have 5 trustees and that all
of them must collaborate to reconstruct a secret key, while no 4 of them can
even predict it.

A Fair RSA Scheme
(All-Shares Case)

Instructions for the user
A user chooses P and Q primes and congruent to 3 mod 4 as his private key, and
N=PQ as his public key. Then he chooses, at random in ZN*, 5 integers whose

Jacobi symbol equals 1, X1 X2 X3 X4 and X5, and computes the values Xi 2 mod N
for all i=l, ... ,5. (These values are called the public pieces of N, and the Xi's the
private pieces.) Then, he gives each Trustee Tj the modulus N and the private
piece Xj. Finally, the user computes Z, the product of the 5 public pieces and
itself a square mod N; extracts a square root, Y, of Z mod N whose Jacobi symbol
is -1; and sends Y to the key-management center.

Instructions for the trustees
Trustee Ti stores Xi and N, checks that Xi has Jacobi symbol 1 mod N, and if this
is the case, squares Xi mod N and gives the key-management center his

signature of Xi2 mod N.

Instructions for the key-management center
The center first checks that (-1/N)=l (thereby checking that for all x: (x/N)=(­
x/N), which is partial evidence that N is of the right form). Upon receiving
the valid signature of the public pieces of N and the Jacobi -1 value Y from the
user, the center checks whether, mod N, the square of Y equals the product of
the 5 public pieces. If so, the center is now guaranteed that it has a split of N.
To make sure that it actually has the complete factorization of N, it must now
perform the missing procedure (i.e., a procedure whose description we

30

temporarily postpone) to check that N is the product of two prime powers. If
this is the case, it a roves N.

Again, it should be noticed that the Fair RSA scheme can be conveniently
implemented in software.

Why does this work?
The reasoning behind the scheme is the following. The trustees' signatures of
the Xi 2 •s (mod N) guarantee the center that every trustee Ti has stored a Jacobi

symbol 1 root of Xi2 mod N. Thus, in case of a court order, all these Jacobi
symbol 1 roots can be retrieved. Their product mod N will also have Jacobi
symbol 1, since this function is multiplicative, and will be a root of x2 mod N.
But since the center has verified that y2 =X2 mod N, one would have two roots X
and Y of a common square mod N; moreover, Y is different from X since it has a
different Jacobi symbol, and is also different from -x, since (-x/N)=(x/N); in
fact: (a) (-1/N) has been checked to be 1 and (b) the Jacobi symbol is
multiplicative. Possession of such square roots, by Facts 1 and 2, is equivalent
to having the factorization of N, provided that N is a product of at most two
prime powers. That's why this last property has also been checked by the
center before it approved N.

The reason that 4 (or less) trustees cannot factor N with the information in
their possession is similar to the one of the discrete log scheme. Namely, the
information in their possession solely consists of 4 random squares and their
square roots mod N. This cannot be of any help in factoring N, since anybody
could randomly choose 4 integers in ZN* and square them mod N.

The missing procedure
The center can easily verify that N is not prime. It can also easily verify that N
is not a prime power by checking that N is not of the form xY, for x and y
positive integers, y> 1. In fact, for each fixed y one can perform a binary
search for x, and there are at most log2 (N) y's to check, since x must be at least
2 if N> I. It is thus now sufficient to check that N is the product of at most 2
prime powers. Since no efficient algorithm is known for this task when N's
factorization is not known, any such check must involve the user who chose N,
since he will be the only one to know N's factorization. In the spirit of what we
have done so far, we seek a verification method that is (1) simple, (2) non­
interactive, and (3) provably safe. The key to this is the older idea of
Goldwasser and Micali of counting the number of prime divisors of N by
estimating the number of quadratic residues in ZN*. In fact, if N is the product
of no more than two prime powers, at least one number in four is a square mod
N, otherwise at most 1 in 8 is. Thus the user can demonstrate that N has at most
two different prime divisors by computing and sending to the center a square
root mod N for at least, say, 3/16 of the elements of a prescribed list of numbers
that are guaranteed to be randomly chosen. This list may be taken to be part of
the system. Requiring the user to give the square roots of those numbers in
such a random sequence that are squares mod N does not enable the center -­
or anybody else for that matter-- to easily factor N. To make this idea viable
one would need some additional details. For instance, the trustees may be
involved in choosing this public sequence so as to guarantee to all users the
randomness of their elements; also the sequence should be quite long, else a
user may "shop around" for a number N' that, though product of --say-- 3
prime powers, is such that at least 3/16 of the numbers in the sequence are

3 1

squares modulo it; and so on. In "practice" this idea can be put to work quite
efficiently by one-way hashing the user's chosen N to a small "random"
number H(N), where H is a publicly known one-way hash function, and then
generating a sufficiently long sequence of integers S(N) by giving H(m) as a
seed to a reasonable pseudo-random number generator. This way, the number
sequence may he assumed to be random enough by everybody, since the user
cannot really control the seed of the generator. Moreover, the sequence
changes with N, and thus a dishonest user cannot shop around for a tricky N as
he might when the sequence is chosen before hand. Thus, the sequence
chosen may be much shorter than before. If a dishonest user has chosen his N
to be the product of three or more prime powers, then it would be foolish for
him to hope that roughly 1/4 of the integers in the sequence are squares mod
N. The scheme is of course non-interactive, since the user can compute on his
own H(N), the number sequence S(N), and the square roots mod N of those
clements in S(N) that are quadratic residues, and then sends the center only N
and the computed square roots. Given N, the center will compute on its own the
same value H(N) and thus the same sequence S(N). Then, without involving the
user at all, it will check that, by squaring mod N the received square roots, it
obtains a sufficiently high number of elements in S(N).

A.3 An Effective Method for Time-Bounded Eavesdropping
Based on Algorithmically-chosen Session Keys.

The high-level mechanics of our Suggestion
In presence of a court order to tap X's lines beween dates D1 and D2, no matter
how many dates there may be between D 1 and D2, our method allows the
Trustees to easily compute and give the Police a small amount of information,
i=i(X,D l ,D2), that makes it easy to tap X's lines in the specified time interval.
The method consists of using a Fair PKC F together with a special additional
step for selecting session keys for a conventional single-key cryptosystcm C.
In our suggested method, call it the (F,C) method, for any users X and Y, and any
date D, there is a session key SXDY for enabling X to send a private message to Y
at time D. Each user X is asked to provide the trustees not only with proper
shares of his secret key in F, but also with additional pieces of information
that enable them, should they receive a legitimate court order for tapping X
between dates Dl and D2, to compute easily i(X,Dl,D2) and hand it to the Police.

While the trustees can verify that they possess correct shares of X's secret key
in F, we do not insist that the same holds for X's session keys. This decreased
amount of verifiability is not crucial in this context for the following reasons.
Assume that the Police, after receiving i(X,D l ,D2) from the Trustees in
response to a legitimate court order, arc unable to reconstruct a session key of
X during the given time interval. Then, this inability proves that X did not
originally give the Trustees the proper additional pieces of information about
his session keys. It is therefore quite justified that, in response to X's malicious
action, the Trustees put together the verified pieces of information in their
possession so as to reconstruct X's secret key in F. Consequently, from that
point on, all messages sent to X via F, and in particular via the (F, C) system,
will cease to be private. Moreover, the adoption of a proper "hand-shaking
protocol" also ensures that the Police will understand all messages sent by X to
any user who replies to him in the (F,C)system.

In sum, therefore, malicious users who want to hide their conversations from
law-enforcement agents even in presence of a court order, cannot do so by

32

taking advantage of the convenience of a nation-wide (F ,C) system. They must
go back to the cumbersome practice of exchanging common secret keys before
hand, outside any major communication network. It is my firm opinion that
the amount of illegal business privately conducted in this cumbersome way is
estimated minuscule in comparison to the one that might be conducted via a
nation-wide ordinary PKC.

The Specifics Of Our Suggestion
The hand-shaking protocol of our suggested (F ,C) cryptosystem is the
following. When X wants to initiate a secret conversation with Y at date D, she
computes a secret session key SXDY and sends it to Y using the Fair PKC F (i.e.,

encrypts it with Y's public key in F). User Y then computes his secret session
key SYDX and sends it to X after encrypting it with the received secret key
SXDY (by means of the agreed-upon conventional cryptosystem C). User X then
sends SYDX to Y by encrypting it with SXDY. Throughout the session, X sends
messages to Y conventionally encrypted with SXDY, and Y sends messages to X
via SYDX. (If anyone spots that the other disobeys the protocol the
communication is automatically terminated, and an alarm signal may be
generated.) Thus in our example, though X and Y will understand each other
perfectly, they will not be using a common, conventional key. Notice that, if
the Police knows SXDY (respectively, SYDX), it will also know SYDX
(respectively, SXDY).

Assume now that the Court authorizes tapping the lines of user X from date D1
to date D2, and that a conversation occurs at a time D in the time interval
[Dl,D2] between X and Y. The idea is to make SXDY available to the Police in a
convenient manner, because knowledge of this quantity will enable the Police
to understand X's out-going and in-coming messages, if the hand-shaking has
been performed, independently of whether X or Y initiated the call. To make
SXDY conveniently available to the Police, we make sure that it is easily
computable on input SXD, a master secret key that X uses for computing his
own session key at date D with every other user. For instance, SXDY = H(SXD,Y),
where H is a one-way function.

Since there may be many dates D in the desired interval, however, we make
sure that SXD is easily computable from a short string, i(X,D 1,D2), immediately
computable by the Police from the information it receives from the Trustees
when they are presented with the court order "tap X from D 1 to D2." For
instance, in a 3-out-of-3 case, if we denote by ij(X,D 1,D2) the information
received by the Police from Trustee j in response to the court order, we may set

i(X,D1,D2)= H(i1(X,D1,D2), i2(X,D1,D2), i3(X,D1,D2)),

where H is a one-way (preferably hashing) function. Now, we must specify
one last thing: what should ij(X,D1 ,D2) consist of? Letting Xj be the value
originally given to Trustee j by user X when she entered the system (i.e., X
gives Xj to Trustee j together with the j-th piece of her own secret key in the

FAIR PKC F), we wish that ij(X,Dl,D2) easily depend on Xj. Let us thus describe

effective choices for Xj, ij(X,D 1,D2), and SXD. Assume that there are 2ct possible

dates. Imagine a binary tree with 2ct leaves, whose nodes have n-bit identifiers
--where n=O, ... ,d. Quantity ij(X,Dl,D2) is computed from Xj by storing a value at

each of the nodes of our tree. The value stored at the root, node Ne (where e is

33

the empty word), is Xj. Then a secure function G is evaluated on input Xj so as to
yield two values, XjO and Xj 1. The effect of G is that the value Xj is unpredictable
given XjO and Xj 1. (For instance, Xj is a random k-bit value and G is a secure
pseudo-random number generator that, using Xj as a seed, outputs 2k bits: the
first k will constitute value XjO, the second k value Xj 1.) Value XjO is then stored
in the left child of the root (i.e., it is stored in node NO) and value Xj 1 is stored
in the right child of the root (node N 1). The values of below nodes in the tree
are computed using G and the value stored in their ancestor in a similar way.
Let SXjD be the value stored in leaf D (where D is a n-bit date) and
SXD=H(SX1D,SX2D,SX3D). If DI < D2 are n-bit dates, say that a node N controls the
interval [DI ,D2] if every leaf in the tree that is a descendent of N belongs to
[Dl,D2], while no proper ancestor of N has this property. Then, if ij(X,D I ,D2)
consists of the (ordered) sequence of values stored in the nodes that control
[DI,D2], then

I. ij(X,Dl,D2) is quite short (with respect to the interval [Dl,D2]), and

II. For each date D in the interval [Dl,D2], the value SXjD stored in leaf D is
easily computable from ij(X,D 1,D2), and

II I. The value stored at any leaf not belonging to [Dl ,D2] is not easily
predictable from ij(X,D I ,D2).

Thus if each user X chooses her Xj values (sufficiently) randomly and
(sufficiently) independently, the scheme has all the desired properties. ln
particular,

1. user X computes SXD very efficiently for every value of D.

2. When presented with a court order to tap the line of user X between
dates DI and D2, each Trustee j quickly computes ij(X,Dl,D2). (In fact, he

does not need to compute all values in the 2° -node tree, but only those of
the nodes that control [DI,D2].)

3. Having received ij(X,D1,D2) from every trustee j, the Police can, very
quickly and without further interaction with the Trustees, co mpu le
(3. l)SXjD from ij(X,DI,D2) for every date D in the specified interval (in
fact, its job is even easier since the SXiD's are computed in order and
intermediate results can be stored)
(3.2) the master secret-session key SXD from the SXjD's, and
(3.3) the session key SXDY from SXD from any user Y talking to X in the
specified time interval.

Note, however, that no message sent or received before or after the time­
interval specified by the court order will be intelligible to the Police (unless a
new proper court order is issued).

A4. Additional Methods for Relying on Fewer Shares

The method described in Section 6.2 relied on fewer shares but increased the
number of necessary trustees. Here we want to show, for the case of the Fair

34

Diffie-Hellman PKC, one can rely on the same number of Trustees, but increase
the length of the messages sent by the user to the Trustees. Though this
increase is exponential in the number of Trustees, the method is very effective
if this number is small.

THE SUBSET METHOD.
Each Fair PKC described so far is based on a (properly structured, non­
interactive) VSS scheme with parameters n=5, T=5 and t=4. It may be preferable
to have different values for our parameters; for instance, n=5, T=3, and t=2.
That is, any majority of the trustees can recover a secret key, while no
minority of trustees can predict it at all. This is achieved as follows (and it is
easily generalized to any desired values of n,T and t in which T>t). We confine
ourselves to exemplifying our method in conjunction with the Diffie-Hellman
scheme. The same method essentially works for the RSA case as well.

The Subset Method for the Di/fie-Hellman scheme

After choosing a secret key Sx in [1,p-1), user X computes his public key
Px=gSx mod p. (All computations from now on will be mod p.) User X now
considers all triplets of numbers between 1 and 5: (1,2,3), (2,3,4), etc.
For each triplet (a,b,c), he randomly chooses 3 integers SJ abc, ... ,S3abc in the
interval [I ,p-1] so that their sum mod p equals Sx. Then he computes the 3
numbers

ti abc=gSl abc, t2abc=gS2abc, t3abc=gS3abc

The tiabc' s will be referred to as public pieces of P x, and the Sxiabc' s as
private pieces. Again, the product of the public pieces equals the public key
Px. In fact,

tlabc • t2abc • t3abc = 8s1 abc. gS2abc. 8S3abc =
=g(Slabc+ S2abc +S3abc) = 8Sx = Px

User X then gives trustee Ta tlabc and Slabc, trustee Tb t2abc and S2abc, and
trustee Tc t3abc and S3abc, always specifying the triplet in question.

Upon receiving these quantities, trustee Ta (all other trustees do something
similar) verifies that tlabc=gSlabc, signs the value (Px,tlabc,(a,b,c)) and gives
the signature to the key management center.

The key-management center, for each triple (a,b,c), retrieves the values tl abc
t2abc and t3abc from the signed information received from trustees Ta, Tb and
Tb. If the product of these three values equals Px and the signatures arc valid,
it approves Px as a public key.

The reason the scheme works, assuming that at most 2 trustees are bad, is that
all secret pieces of a triple are needed for computing (or predicting) a secret
key. Thus no secret key in the system can be retrieved by any 2 trustees. On
the other hand, when after a court order, at least 3 trustees reveal all the
secret pieces in their possession about a given public key, the Government has
all the necessary secret pieces for at least one triple, and thus can compute
easily the desired secret key.

35

Finally, we would like to mention that, by making better use of number theory,
Ray Sidney has observed that the work of Feldman [Fe87] can be used to rely on
fewer shares within the Fair Diffie-Hellman PKC without increasing
exponentially the size of the messages. Describing this method does require,
however, substantially more number theory. We would also like to mention
that, if one allows interaction between the Trustees and the user, then by
using a proper VSS protocol in the strategy discussed in section A 1, one may
transform any PKC into a Fair one relying on any fewer shares and working
in polynomial time no matter how many Trustees one wishes to have.

AS. An Effective Method for Making Trustees Oblivious

The strategy exemplified below assumes that the Trustees can communicate to
the center by means of a cryptosystem satisfying a suitable algebraic
property: essentially, random self-reducibility as introduced by Blum and
Micali [BlMi]. This Trustees-center cryptosystem needs not to coincide with the
underlying Fair PKC, nor to be itself Fair. To clarify this point, below we
assume that the Fair PKC (for which the Trustees need to be made oblivious) is
our Fair Diffie-Hellman PKC, while the cryptosystcm used by the Trustees to
communicate with the center is the standard RSA PKC. For simplicity, we
further assume the "all-shares" case for the underlying PKC.

Oblivious and Fair Di/fie-Hellman Scheme
(All-Shares Case)

The trustees' encryption algorithms
Since RSA itself possesses a sufficient algebraic property, let us assume that all
trustees use deterministic RSA for receiving private messages. Thus, let Ni be
the public RSA modulus of trustee Ti and ei his encryption exponent (i.e., to
send Ti a message m in encrypted form, one would send meimod Ni.)

Instructions for user U
User U prepares his public and secret key, respectively Px and Sx (thus Px =
gSx mod p), as well as his public and secret pieces of the secret key,
respectively ti and Sxi's (thus Px= tl · t2· ... ·t5 mod p and ti = gSxi mod p for all i).
Then he gives to the key-management center Px, all of the ti's and the n values
Ui=(Sxi)ei mod Ni; that is, he encrypts the i-th share with the public key of
trustee Ti.
(Comment: Since the center does not know the factorization of the Ni's this is
not useful information to predict Sx, nor can it verify that the decryption of
the n ciphertexts are proper shares of Sx. For this, the center will seek the
cooperation of the n trustees, but without informing them of the identity of
the user.)

Instructions for the center/trustees
The center stores the values tj's and Uj's relative to user U and then forwards
Ui and ti to trustee Ti. If every trustee Ti responds to have verified that the
decryption of Ui is a proper private piece relative to ti, the center approves Px.

Instructions in case of a court order

36

To lawfully reconstruct secret key Sx without leaking to a trustee the identity
of the suspected user U, a judge (or another authorized representative)
randomly selects a number Ri mod Ni and computes yi = Ri ei mod Ni. Then, he
sends trustee Ti the value zi = Ui · yi mod Ni, asking with a court order to
compute and send back wi, the ei-th root of zi mod Ni. Since zi is a random
number mod Ni, no matter what the value of Ui is, trustee Ti cannot guess the
identity of the user U in question. Moreover, since zi is the product of Ui and yi
mod Ni, the ei-th root of zi is the product mod Ni of the ei-th root of Ui (i.e., Sxi)
and the ei-th root of yi (i.e., Ri). Thus, upon receiving wi, the judge divides it
by yi mod Ni, thereby computing the desired Sxi. The product of these Sxi's
equals the desired Sx.

